MEMORY PRODUCTS

NEC

DATA BOOK Summer 1996

Application-Specific

Memory

NEC

Application-Specific Memory Summer 1996 Data Book

Document No. M11375EJ2V0DBU1 ©1996 NEC Electronics Inc. All rights reserved. Printed in the United States of America.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. ALL DEVICES SOLD BY NECEL ARE COVERED BY THE PROVISIONS APPEARING IN NECEL TERMS AND CONDITIONS OF SALE ONLY, INCLUDING THE LIMITATION OF LIABILITY, WARRANTY, AND PATENT PROVISIONS. NECEL makes no warranty, express, statutory, implied or by description, regarding information set forth herein or regarding the freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes no commitments to update or to keep current information contained in this document. The devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. "Standard" quality grade devices are recommended for computers, office equipment, communication equipment, test and measurement equipment, traffic control systems, antistaster and anticrime systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the reliability requirements for any such application and any cost adder. NECEL does not recommend or approve use of any of its products in life support devices or systems or in any application where failure could result in injury or death. If customers wish to use NECEL's willingness to support a given application.

·

Index

NEC Semiconductor Device Reliability/Quality Control System	49
---	----

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Contents

Selection Guide 1					
Dual Port Graphics Buffer 7					
$[4M] - 256K \times 16 - 5V \pm 10\% - Fast Page - \mu PD482444$					
Hyper Page μ PD482445					
$3.3V \pm 0.3V$ Hyper Page $-\mu$ PD482445L					
2M 256K $\times 8$ 5V $\pm 10\%$ Fast Page μ PD482234					
Hyper Page – µ PD482235 113					
Synchronous GRAM195					
$[8M] \qquad \qquad \boxed{128K \times 32 \times 2 \text{ banks}} \qquad \qquad \boxed{3.3V \pm 0.3V} - \mu \text{PD481850.} \qquad \qquad 197$					
Rambus DRAM					
$18M - 1M \times 9 \times 2 \text{ banks} - 3.3V \pm 0.15V - \mu PD488170L \dots 289$					
$16M \qquad \qquad 1M \times 8 \times 2 \text{ banks} \qquad \qquad 3.3V \pm 0.15V - \mu PD488130L \dots 337$					
$8M - 1M \times 8 \times 1 \text{ bank} - 3.3V \pm 0.15V - \mu PD488031L \dots 385$					
Line Buffer					
80K 5K × 16/10K × 8 5V \pm 10% μ PD485506					
40K 5K \times 8 5V \pm 10% $-\mu$ PD485505					
Field RAM					
4.75M 270 Row × 288 Col. × 8 Blocks × 8 Bits $3.3V \pm 0.3V$ μ PD487000					

NEC Semiconductor Device Reliability/Quality Control System 497

Selection Guide

Part Number

Dual Port Graphics Buffer

Synchronous GRAM

$\underline{\mu PD48} \stackrel{1}{\underline{1}} \stackrel{8}{\underline{5}} \stackrel{0}{\underline{0}} \stackrel{\mathbf{GF}}{\underline{\mathbf{GF}}} - \underline{\mathbf{A}}$	10
NEC CMOS Application Specific Memory	
Device code	
1 : Graphics RAM2 : Dual Port Graphics Buffer5 : Line Buffer8 : Rambus DRAM	
Capacity	
8 : 8M bits	
Word organization 5 : × 32 bits	
Function	
Package GF : QFP	
V _{cc}	
$A: 3.3V \pm 0.3V$	
Cycle time	
10 : 10ns	

- 12 : 12ns 15 : 15ns

Rambus DRAM

9:0.65 mm (pitch)

Line Buffer

35: 35ns (Read cycle), 35ns (Write cycle)

Field RAM

	<u>µPD48</u>	<u>7000 C</u>	<u>3C - 30</u>
NEC CMOS ——— Application Specific M	/emory		-
4.75 M bits Field RAM	A		
Package GC : 100-pin plast	tic QFP (0.5 mm	n pitch) (\Box 14	4 mm)
Serial cycle time —			
30 : 30 ns 40 : 40 ns			

6

Dual Port Graphics Buffer

.9

MOS INTEGRATED CIRCUIT μ PD482444, 482445

4M-Bit Dual Port Graphics Buffer

256K-WORD BY 16-BIT

Description

NEC

The μ PD482444 and μ PD482445 have a random access port and a serial access port. The random access port has a 4M-bit (262, 144 words × 16 bits) memory cell array structure. The serial access port can perform clock operations of up to 50 MHz from the 8K-bit data register (512 words × 16 bits).

To simplify the graphics system design, the split data transfer function and binary boundary jump function have been adopted so that the number of split data registers can be programmed with the software during serial read/write operations.

The μ PD482445 is provided with the hyper page mode, an improved version of the fast page mode of the μ PD482444. The random access port can input and output data by CAS clock operations of up to 33 MHz. The power supply voltage is either 5 V ± 10 % (μ PD482444, 482445) or 3.3 V ± 0.3 V (μ PD482445L).

Features

Dual port structure (Random access port, Serial access port)

• Random access port (262, 144-word × 16-bit structure)

μ**PD482444**

	μPD482444-60	μPD482444-70
RAS access time	60 ns(MAX.)	70 ns(MAX.)
Fast page mode cycle time	35 ns(MIN.)	40 ns(MIN.)

μ**PD482445**

	μPD482445-60	μPD482445-70 μPD482445L-A70
RAS access time	60 ns(MAX.)	70 ns(MAX.)
Hyper page mode cycle time	30 ns(MIN.)	35 ns(MIN.)

- · Block write function (8 columns) (Write-per-bit can be specified.)
- · Mask write (Write-per-bit function)
- · 512 refresh cycles /8 ms
- · CAS before RAS refresh, RAS only refresh, Hidden refresh

- Serial access port (512 words × 16 bits organization)
 - · Serial read/write cycle time

μPD482444-60	μPD482444-70
μPD482445-60	μPD482445-70, 482445L-A70
20 ns(MIN.)	22 ns(MIN.)

- · Serial data read/write
- Split buffer data transfer
- · Binary boundary jump function

Ordering Information

Part Number	RAS Access Time ns (MAX.)	Package	Power Supply Voltage	Page Mode
μPD482444GW-60	60	64-pin plastic shrink	5 V ± 10 %	Fast page mode
μPD482444GW-70	70	SOP (525 mil)		
μPD482445GW-60	60	64-pin plastic shrink	5 V ± 10 %	Hyper page mode
μPD482445GW-70	70	SOP (525 mil)		
μPD482445LGW-A70	70		3.3 V ± 0.3 V	

Pin Configurations (Marking Side)

	٠	Address inputs
W0 to W15/IO0 to IO15	:	Mask data selects/Data inputs and outputs
SIO0 to SIO15	:	Serial data inputs and outputs
RAS	:	Row address strobe
CAS	:	Column address strobe
DT/OE	:	Data transfer/Output enable
UWE, LWE	:	Write-per-bit/Write enable
SE	:	Serial data input/Output enable
SC	:	Serial clock
QSF	:	Special function output
DSF	:	Special function enable
Vcc	:	Power supply voltage
GND	:	Ground
NC ^{Note}	:	No connection

64-Pin Plastic Shrink SOP (525 mil)

[MEMO]

Block Diagram

13

1. Pin Functions

This product is equipped with the RAS, CAS, UWE, LWE, DT/OE, A0 to A8, DSF, SC, SE inputs, QSF output, and W0 to W15/IO0 to IO15, SIO0 to SIO15 input/output pins.

(1/3)

Pin Name	Input/ Output	Function
RAS (Row address strobe)	Input	This signal latches the row addresses (A0 to A8), selects the corresponding word line, and activates the sense amplifier. It also refreshes the memory cell array of the one line (8,192 bits) selected from the row addresses (A0 to A8).
		It also serves as the signal which selects the following operations. Write-per-bit Split data transfer CAS before RAS refresh
CAS (Column address strobe)		This signal latches the column addresses (A0 to A8), selects the digit line connecting the sense amplifier, and activates the output circuit which outputs data to the random access port.
		It also serves as the signal which selects the following operations. • Read/write • Block write • Color register set • Mask register set
A0 to A8 (Address inputs)		These are the address input pins, TAP register input pins, and STOP register input pins.
		Address input This is a 9-bit address bus. It inputs a total of 18 bits of the address signal, starting from the upper 9 bits (row address) and then followed by the lower 9 bits (column bits) (address multiplex method). Using these, one word memory cells (16 bits) are selected from the 262,144 words × 16 bits memory cell array.
		During use, specify the row address, activate the \overline{RAS} signal, latch the row address, switch to the column address, and activate the \overline{CAS} signal. After activating the \overline{RAS} and \overline{CAS} signals, each address signal is taken into the device. For this reason, the address input setup time (tash, tasc) and hold time (trah, tcah) are specified for activating the \overline{RAS} and \overline{CAS} signals.
		TAP Register Input In the data transfer cycle, this TAP register input pin functions as the address input pin which selects the memory cell for transferring (9 bits are latched at the falling edge of \overline{RAS}) and the TAP register data input pin which specifies the start addresses of the serial read/write operation after data transfer (9 bits are latched at the falling edge of the \overline{CAS}).
		STOP Register Input This pin functions as the STOP register input pin when the STOP register is set (STOP register data (9 bits) are latched at the falling edge of the RAS.)

(2/3)

Pin Name	Input/ Output	Function
DT/OE (Data transfer/ output enable)	Input	These are the data transfer control signal and read operation control signal respectively. They have different functions in the data transfer cycle and read cycle.
		Data transfer control signal (In data transfer cycle) The data transfer cycle is initiated when a low level is input to this pin at the falling edge of \overrightarrow{RAS} .
		Read operations control signal (In read cycle) Read operation is performed when this signal, and the $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ signals are activated. The input/output pin is high impedance when this signal is not activated. When the $\overline{\text{UWE}}$ and $\overline{\text{LWE}}$ signals are activated while the $\overline{\text{DT}}/\overline{\text{OE}}$ signals are activated, the $\overline{\text{DT}}/\overline{\text{OE}}$ signals are invalid in the memory and read operations cannot be performed.
UWE, LWE (Write enable)		These are the write operation control signal and mask write cycle (write-per- bit function) mask data input control signal, respectively. UWE controls the upper bytes (W8 to W15/IO8 to IO15) and LWE controls the lower bytes (W0 to W7/IO0 to IO7) of the input/output pins. When this signal, RAS and CAS signals are activated, write operations or mask write can be performed. These mode are determined by the level of UWE and LWE at the falling edge of RAS. • High level8 or 16-bit write cycle • Low levelMask write cycle (Write-per-bit)
DSF (Special function enable)		 This signal controls the selection of functions. The selection of functions is determined by the level of this signal at the falling edge of the RAS and CAS. The functions will change as follows when this signal is high level. The data transfer cycle changes to a split data transfer cycle. The write cycle of each CAS clock changes to the block write cycle.
W0 to W15/IO0 to IO15 (Mask data selects/ Data inputs, outputs)	Input/ Output	These are normally 16-bit data bus and are used for inputting and outputting data. (IO0 to IO15). Function as the mask data input pins (W0 to W15) in the mask write cycle (write-per-bit function). Write operations can be performed only for W0 to W15 that are input with a high level at the falling edge of \overline{RAS} (new mask data). Functions as the column selection data input pin in the block write cycle.

(3/3)

Pin Name	Input/ Output	Function
SC (Serial clock)	Input	This pin inputs the clock which controls the serial access port operation. Serial Read The data of the data register which is synchronized with the rising edge of the SC are output from the SIO0 to SIO15 pins and kept until the next SC rising edge. Serial Write The data from the SIO0 to SIO15 pins are latched at the rising edge of the
SE (Serial data input/ output enable)		SC and written in the data register. This is a control pin for the serial access port input/output buffer. It controls data output during serial reading and controls data input during serial writing. By inputting the serial clock, the serial pointer will operate even if SE has not been activated (high level input).
SIO0 to SIO15 (Serial data inputs/ outputs)	Input/ Output	These are the serial data input and output pins of the serial access port.
QSF (Special function output)	Output	 This is a position discrimination pin of the serial pointer (upper side or lower side). Which side is being serial accessed (upper side or lower side) can be discriminated according to the output of this pin. High level Upper side (Addresses 256 to 511) Low level Lower side (Addresses 0 to 255)

2. Random Access Port Operations

The operation mode is determined by the CAS, DT/OE, UWE, LWE, and DSF level at the falling edge of RAS and DSF level at the falling edge of CAS.

RAS Falling Edge					CAS Falling Edge		Operation Mode		
CAS	DT/OE	UWE	LWE	DSF	DSF				
н	н	н	н	L	L		Read/Write cycle		
н	н	н	н	L	н		Block write cycle		
н	н	L	L	L	L		Mask write cycle ^{Note 1}		
н	н	L	н	L	L	ycle	Upper byte mask write cycle ^{Note 1}		
н	н	н	L	L	L	ite C	Lower byte mask write cycle ^{Note 1}		
н	н	L	L	L	н	/Wri	Block mask write cycle ^{Note 1}		
н	н	L	Н	L	н	Read	Upper byte block mask write cycle ^{Note 1}		
н	н	н	L	L	н		Lower byte block mask write cycle ^{Note 1}		
н	н	н	н	н	н		Color register set cycle		
н	н	н	н	н	L		Write mask register set cycle		
н	L	Н	н	L	×	ycle	Single read data transfer cycle		
н	L	Н	Н	н	×	ster C	Split read data transfer cycle		
н	L	L	L	L	×	Single write data transfer cycle ^{Note 1}			
н	L	L	L	Н	×	Data	Split write data transfer cycle ^{Note 1}		
L	×	×	×	L	×	cle	CAS before RAS refresh cycle (Option reset)Note 1, 2		
L	×	Н	Н	Н	×	ר כע	CAS before RAS refresh cycle (No reset)		
L	×	L	L	н	×	rest	CAS before RAS refresh cycle (STOP register set)Note 2		
н	н	×	×	×	×	Rei	RAS only refresh cycle		

Table 2	2-1. 0	peration	Mode
---------	--------	----------	------

Notes 1. Observe the following conditions when using the new mask data or old mask data in these cycles.

(1) Old mask data

Can be used after setting the mask data using the write mask register set cycle.

(2) New mask data

Can be used after setting the mask data using the \overline{CAS} before \overline{RAS} refresh cycle (Option reset cycle).

2. The STOP register is set to "FFH (11111111)" by the optional reset cycle.

Remark H: High level, L: Low level, x: High level or low level

NEC

2.1 Random Read Cycle

This product has a common 16-bit input/output pin. To output data, specify the address using the \overrightarrow{RAS} and \overrightarrow{CAS} clocks and then set $\overrightarrow{DT}/\overrightarrow{OE}$ to low level.

The data output will be kept until one of the following conditions is set.

- (1) Set RAS and CAS to high level
- (2) Set DT/OE to high level
- (3) Set UWE and LWE to low level (UWE controls the upper bytes, LWE controls the lower bytes)

The read cycle and data transfer cycle are differentiated according to the level of $\overline{\text{DT}}/\overline{\text{OE}}$ at the falling edge of the $\overline{\text{RAS}}$ clock. If $\overline{\text{DT}}/\overline{\text{OE}}$ is set to low level at the falling edge of the $\overline{\text{RAS}}$ clock, data transfer cycle operations will be initiated. Therefore, to set the read cycle, input a high level above tohe (MIN.) to $\overline{\text{DT}}/\overline{\text{OE}}$ from the falling edge of the $\overline{\text{RAS}}$ clock, and then input a low level.

Caution Set the DSF to low level at the falling edge of RAS. If set to high level, the memory cell data cannot be output.

2.1.1 Extended Read Data Output (µPD482445, 482445L)

The μ PD482445 and μ PD482445L adopt the hyper page mode cycle which is a faster read/write cycle than the fast page mode of the μ PD482444 (Hyper page mode cycle time: 30 ns (MIN.)).

With this cycle, the read data output can be kept until the next \overline{CAS} cycle, and because the output is extended, the minimum cycle can easily be used. For example, by fixing $\overline{DT}/\overline{OE}$ at low level after dropping \overline{RAS} and executing the hyper page read cycle, each time the column address is latched at the falling edge of \overline{CAS} , the data output will be updated and kept until the next falling edge of \overline{CAS} . As a result, the output will be extended only during \overline{CAS} precharge time (tcp) as compared to the normal fast page mode.

Notes 1. Time during which the output data is kept in the fast page read cycle.

2. Time during which the output data is kept in the hyper page read cycle (part: Extended data output).

2.2 Random Write Cycle (Early Write, Late Write)

There are three types of random write cycles-the early write and late write. To use these cycles, activate the RAS and \overline{CAS} clocks and set \overline{UWE} and \overline{LWE} to low level. In addition, as this product has two write enables, data input can be controlled for every 8 bits (upper byte and lower byte). \overline{UWE} controls the upper bytes (W8 to W15/IO8 to IO15) while \overline{LWE} controls the lower bytes (W0 to W7/IO0 to IO7). Byte write cycle can therefore be performed by controlling \overline{UWE} and \overline{LWE} .

The random write cycle, regardless of the word/byte write cycle, latches the word data (16 bits) input to the data bus. By inputting a low level to \overline{UWE} (or \overline{LWE}) during the byte write cycle, the latched word (16 bits) data will be written only in the upper byte (or lower byte) and the data of the unselected lower byte (or upper byte) will be ignored. In the same write cycle, by inputting a low level to \overline{LWE} (or \overline{LWE}) later, the ignored lower byte (or upper byte) data can be written. By controlling the \overline{UWE} and \overline{LWE} pins, the word data (16 bits) in the same cycle can be written in one byte (8 bits).

The UWE and LWE also control the mask data for the write-per-bit function (mask write cycle). Therefore, when performing the normal write cycle which does not use the write-per-bit function, set these pins to high level at the falling edge of the RAS clock.

2.2.1 Early Write Cycle

The early write cycle controls data writing according to the \overline{CAS} clock.

To execute this cycle, set UWE and LWE to low level earlier than the CAS clock. The write data is taken into the device at the falling edge of the CAS clock.

2.2.2 Late Write Cycle

The late write cycle controls data writing according to the \overline{WE} clock.

To execute this cycle, set UWE and LWE to low level later than the CAS clock. The write data is taken into the device at the falling edge of UWE and LWE. To set the output to high impedance at this time, keep DT/OE at high level until UWE and LWE are input.

2.3 Read Modify Write Cycle

The read modify write cycle performs data reading and writing in one RAS and CAS cycle.

To execute this cycle, delay \overline{UWE} and \overline{LWE} from the late write cycle by tawo (MIN.), tcwo (MIN.), and tawo (MIN.). Follow the toez and toed specifications so that the output data and input data do not clash in the data bus. The data after modification can be input after more than toed (MIN.) from the rising edge of $\overline{DT}/\overline{OE}$.

2.4 Fast Page Mode Cycle (µPD482444)

The μ PD482444 adopt the fast page mode. This mode accesses memory cells in the same row array in about 1/3 of the time taken by the normal random read/write cycle. This fast page mode cycle is executed by repeating the \overline{CAS} clock cycle more than two times while the \overline{RAS} clock is being activated. In this mode read, write and read modify write cycles are available for each of the consecutive \overline{CAS} cycles within the same \overline{RAS} cycle.

2.5 Hyper Page Mode Cycle (µPD482445, 482445L)

The μ PD482445 and μ PD482445L adopt a hyper page mode cycle which is a faster read/write cycle than the fast page mode of the μ PD482444 (Hyper page mode cycle time: 30 ns (MIN.)).

In this cycle, because the read data output is kept until the following \overline{CAS} cycle and as a result, the output is extended, the minimum cycle can easily be used. The output is extended compared to the normal fast page mode of μ PD482444. Refer to **2.1.1 Extended Read Data Output**.

2.6 Block Write Cycle

This cycle writes the color register data in 128-bit or 64-bit memory cell in one cycle. The memory cell range in which data can be written in one block write cycle is eight continuous columns on one row address (8-column \times 16 \cdot IO = 128 bits or 8-column \times 8 \cdot IO = 64 bits).

Any column of the eight columns can be selected and writing prohibited. Determine whether to write or prohibit writing according to the data selected for column.

2.6.1 Free Column Selection

Determine which column to select according to the W/IO pin to which the data selected for the column is to be input.

The eight columns (1st to 8th) correspond to W0 to W15/IO0 to IO15 to which the data selected for column will be input (The following table shows the 1st to 8th columns specified by A0, A1, and A2 and the corresponding W/ IO pins to which the data selected will be input.).

2.6.2 Column Select Data

Input column select data for every eight columns at the upper 64 bits and lower 64 bits (a total of 16 columns). The data will be written if the column select data is "1". Writing will be prohibited if the column select data is "0".

2.6.3 Execution of Block Write Cycle

At the falling edge of the slowest signal (CAS, UWE, or LWE), input the "1" column select data or "0" column select data to W0 to W15/IO0 to IO15 corresponding to columns 1st to 8th.

By using the write-per-bit (new mask data/old mask data) function, only the required W/IO can be selected and written.

Table 2-2. I/O Pins Input with Column Select Data Corresponding to Columns 1st to 8th

Column Select Data of Lower Byte (IO0 to IO7)

Column Select Data of Upper Byte (IO8 to IO15)

Selected 8 Columns	Co and	olum I Cor W/	n Ad resp IO Pi	dress onding in	Column Select Data	Writing
	A2 A1 A0		10	Dala		
1st column	0	0	0	100	1	Yes
					0	No
2nd column	0	0	1	101	1	Yes
					0	No
3rd column	0	1	0	102	1	Yes
					0	No
4th column	0	1	1	103	1	Yes
					0	No
5th column	1	0	0	104	1	Yes
					0	No
6th column	1	0	1	105	1	Yes
					0	No
7th column	1	1	0	106	1	Yes
					0	No
8th column	1	1	1	107	1	Yes
					0	No

Selected 8 Columns	Co and	olum I Cor W/	n Ad resp IO Pi	dress onding in	Column Select Data	Writing
	A2	2 A1 A0		10	Dulu	
1st column	0	0	0	108	1	Yes
					0	No
2nd column	0	0	1	109	1	Yes
					0	No
3rd column	0	1	0	IO10	1	Yes
					0	No
4th column	0	1	1	IO11	1	Yes
					0	No
5th column	1	0	0	1012	1	Yes
					0	No
6th column	1	0	1	IO13	1	Yes
					0	No
7th column	1	1	0	IO14	1	Yes
					0	No
8th column	1	1	1	IO15	1	Yes
					0	No

Figure 2-2. Memory Cell Range That Can be Written in Block Write Cycle

2. () is the W/IO pin input with the column select data.

2.7 Register Set Cycle (Color Register, Write Mask Register)

This cycle writes data in the color register and write mask register. To execute the register set cycle, set \overline{CAS} , $\overline{DT}/\overline{OE}$, \overline{UWE} , \overline{LWE} and DSF to high level at the falling edge of \overline{RAS} . Determine which register to select according to the DSF level at the falling edge of \overline{CAS} .

The register set cycle also serves as the RAS only refresh cycle.

DSF level at CAS falling edge	Selected register
High level	Color register
Low level	Write mask register

Caution After selecting the write mask register and writing the mask data, the write-per-bit function in the mask write cycle will be set for the old mask register. Refer to 2.8.1 Write-Per-Bit Function.

2.8 Mask Write Cycle

Cycles that use the write-per-bit function during the random write cycle, flash write cycle, block write cycle, write data transfer cycle, are called mask write cycles. In the fast page/hyper page mode write cycle, the mask data cannot be changed during the CAS cycle.

2.8.1 Write-Per-Bit Function

The write-per-bit function writes data using the mask data only in the required IO-pin. It writes when the mask data is "1" and prohibits writing when the data is "0".

W Pin	Mask Data	Writing		
W0 to W15	1	Yes		
	0	No		

Table 2-4. Mask Data Selection

2.8.2 Selecting Mask Data

There are two ways of selecting mask data. One is the new mask data method and the other is the old mask data method.

With the new mask data method, new mask data is set in the cycle writing. With the old mask data, mask data set in the write mask register is used.

(1) New Mask Data Method

To switch to the mode using new mask data, set the DSF to low level at the falling edge of \overline{CAS} in the \overline{CAS} before \overline{RAS} refresh cycle.

As a result, the write-per-bit function can be used using the new mask data from the next mask write cycle.

(2) Old Mask Data Method

To switch to the mode using old mask data, set the DSF to low level at the falling edge of \overline{CAS} in the write mask register set cycle, and write the mask data in the write mask register.

As a result, the write-per-bit function can be used using the old mask data from the next mask write cycle.

2.8.3 Execution of Mask Write Cycle

To execute the write-per-bit function, select the new mask data method or old mask data method, and set $\overline{\text{UWE}}$ and $\overline{\text{LWE}}$ to low level at the falling edge of $\overline{\text{RAS}}$ of each write cycle ($\overline{\text{UWE}}$ controls the upper byte (W8 to W15/IO8 to IO15) and $\overline{\text{LWE}}$ controls the lower byte (W0 to W7/IO0 to IO7).). At this time, input the mask data to the W pin in the write cycle using the new mask data. In the write cycle using the old mask data, as the mask data set to the write mask register will be used, there is no need to input the mask data to the W pin.

This function is valid only at the falling edge of \overline{RAS} . In the fast page/hyper page mode write cycle, the mask data determined in the first \overline{RAS} cycle for moving onto the next fast page/hyper page mode will be valid while the fast page/hyper page mode write cycle continues.

2.9 Refresh Cycle

The refresh cycle of this product consists of the CAS before RAS refresh cycle and refresh cycle using external address inputs (RAS only refresh and read/write refresh). The refresh period is the same as the 2M-bit dual port graphics buffer (× 8), 512 cycles/8 ms.

2.9.1 Refresh Cycle Using External Address Input (RAS Only Refresh and Read/Write Refresh)

By specifying the row address using the 9 bits between A0 to A8 at the falling edge of \overline{RAS} , setting \overline{CAS} to high level, and keeping \overline{CAS} at high level while \overline{RAS} is low level, the memory cells on the specified row address (512 × 16 bits) can be refreshed. At this time, refresh is executed, W0 to W15/IO0 to IO15 pins are kept at high impedance, and information such as memory contents, register data, function settings, etc. are all also kept.

At the falling edge of \overline{RAS} , all cycles whose \overline{CAS} are high level input the external address. Therefore, in addition to the read/write cycle operations, etc. refresh operations similar to the \overline{RAS} only refresh operations will be performed. For this reason, in systems in which addresses in the memory are always increased or decreased, it may not be necessary to perform refresh again.

When several devices exist on one bus, data will clash in the bus during the above read/write operations unless each device is equipped with a buffer. Consequently, as it is necessary to set the I/O line to high impedance beforehand during refresh, normally the $\overline{\text{RAS}}$ only refresh operation is used.

2.9.2 CAS Before RAS Refresh Cycle (Including Hidden Refresh)

When \overline{CAS} is set to low level at the falling edge of \overline{RAS} , the refresh address is supplied from the internal refresh address counter. The internal refresh address counter is increased automatically each time this refresh cycle is executed.

During this refresh cycle, functions of random access port and serial access port are selected as follows according to the DSF, UWE, and LWE levels at the falling edge of RAS.

(1) When DSF is low level: Optional reset

All STOP register data become "1" and the mask write cycle switches to the new mask data method.

(2) When DSF is high level and UWE, LWE are low level: STOP register set

The STOP register data is input from the A0 to A8 pins at the falling edge of \overline{RAS} .

(3) When DSF, UWE, and LWE are high level: No reset

Only refresh operations are performed and the function selection state is kept.

In all cases, the W/IO pin is kept at high impedance. When CAS and DT/OE are kept low level while the mode is changed to the CAS before RAS refresh cycle following the read cycle, and RAS is activated, the hidden refresh cycle will be initiated. In this cycle, the W/IO pin does not become high impedance and the data read in the former read cycle will be kept as it is.

Because internal memory operations are equivalent to CAS before RAS refresh, no external addresses are required.

Like \overline{CAS} before \overline{RAS} refresh, in the hidden cycle, functions will be selected according to the level of DSF, \overline{UWE} , and \overline{LWE} at the falling edge of \overline{RAS} . Operations are guaranteed when DSF is low level and when DSF, \overline{UWE} , and \overline{LWE} are high level.

3. Serial Access Port Operations

There are two types of data transfer cycles-data transfer from the random access port to the serial access port (read data transfer) and data transfer from the serial access port to the random access port (write data transfer). There are also two types of data transfer methods-single data transfer and split data transfer.

To set the data transfer cycle, input high level to \overline{CAS} and input low level to $\overline{DT}/\overline{OE}$ at the falling edge of \overline{RAS} . The data transfer type differs according to the input levels of \overline{UWE} , \overline{LWE} , and DSF at the falling edge of \overline{RAS} .

	At RAS	Falling Edge			Transfer Direction		
CAS	DT/OE	UWE, LWE	DSF	Data Transfer Type	Transfer Source	Transfer Destination	
Н	L	Н	L	Single read data transfer	Random access port	Serial access port	
Н	L	н	н	Split read data transfer			
н	L	L	L	Single mask write data transfer ^{Note}	Serial access	Random access	
Н	L	L	н	Split mask write data transfer ^{Note}	port	port	

Table 3-1. Serial Access Port Operation Mode

Note Write-per-bit function can be specified.

Remark H: High level, L: Low level

3.1 Single Data Transfer Method

With this method, $512 \text{ words} \times 16 \text{ bits}$ (whole memory range of serial access port) data is transferred at one time. This method can be used in both write data transfer and read data transfer.

3.1.1 Single Read Data Transfer Cycle

This cycle transfers the 8K-bit (512 words \times 16 bits) data of the random access port to the serial access port in one cycle.

(a) Setting of Single Read Data Transfer Cycle

To set the data transfer cycle, input a high level to CAS, UWE, and LWE and low level to DT/OE and DSF at the falling edge of RAS.

Using the row address input to A0 to A8 at the falling edge of \overline{RAS} , the memory cells (512 words × 16 bits) of the transfer source of the random access port can be selected. The address data input to A0 to A8 at the falling edge of \overline{CAS} will be latched as the TAP register data. Refer to **3.4 TAP Register**.

(b) Execution of Single Read Data Transfer Cycle

To execute the data transfer cycle, set the single read data transfer cycle and then input a high level to $\overline{\text{DT}}$ / $\overline{\text{OE}}$ and $\overline{\text{RAS}}$.

When SC is active (edge control), data transfer will be executed at the rising edge of $\overline{DT}/\overline{OE}$. When SC is inactive (self control), it will be executed at the rising edge of \overline{RAS} . At the same time, the serial address pointer jumps to the start column (TAP) of the next serial read cycle, and the TAP register will be set the empty state.

After the transfer is completed, the new serial access port data is output after tscA following the rise of the SC clock that occurs after tspH if the SC is active, and after tspH if SC is inactive.

Caution When the single read data transfer cycle is executed while the serial access port is performing serial write operations, the serial access port will start serial read operations at the rising edge of \overline{RAS} . Refer to 4. Electrical Characteristics Read Data Transfer Cycle (Serial Write \rightarrow Serial Read Switching) Timings.

3.1.2 Single Mask Write Data Transfer Cycle

This cycle transfers 8K-bit (512 word \times 16 bits) data of the serial access port to the random access port in one cycle. Because UWE and LWE are low level at the falling edge of RAS, the write-per-bit function always functions in this transfer cycle. Refer to **2.8 Mask Write Cycle**.

(a) Setting of Single Mask Write Data Transfer Cycle

To set this cycle, latch the data to be transferred to the serial access port, and then input a high level to \overline{CAS} and low level to $\overline{DT/OE}$, \overline{UWE} , \overline{LWE} , and DSF at the falling edge of \overline{RAS} . Because the write-per-bit function functions in this transfer operation, for the new mask data method, the mask data must be supplied to W0 to W15 at the falling edge of \overline{RAS} , and for the old mask data method, there is no need to control the mask data.

The memory cells (512 words \times 16 bits) of the transfer destination of the random access port are selected using the row address input to A0 to A8 at the falling edge of $\overline{\text{RAS}}$. The address data input to A0 to A8 at the falling edge of $\overline{\text{CAS}}$ is input as the TAP register data. Refer to **3.4 TAP Register**.

(b) Execution of Single Mask Write Data Transfer Cycle

To execute this cycle, set the single write data transfer cycle and then input high level to \overline{RAS} . Data will be transferred at the rising edge of \overline{RAS} . At the same time, the serial address pointer jumps to the start column (TAP) of the next serial write cycle, and the TAP register will be set the empty state.

After the transfer is completed, the new serial access port data is latched at the rising edge of the SC clock that occurs after tsohn.

- Caution 1. When the single mask write data transfer cycle is executed while the serial access port is performing serial read operations, the serial access port will start serial write operations at the rising edge of RAS. Refer to 4. Electrical Characteristics Write Data Transfer Cycle (Serial Read → Serial Write Switching) Timings.
 - 2. Always make CAS low level in the write data transfer cycle and latch TAP. If write data transfer is performed without setting TAP, serial access port operations cannot be ensured until either one of the following points. If the SC clock is input during this time, the serial register value also cannot be guaranteed.
 - Until the falling edge of CAS during the write data transfer cycle
 - · Until the read data transfer cycle is executed again

Figure 3-1. Single Write Data Transfer and TAP Operation

3.2 Split Data Transfer Method

With this method, the 512 words \times 16 bits (whole memory range of serial access port) data is divided into the lower column (0 to 255) and upper column (256 to 511), each consisting of 256 words \times 16 bits.

Because the columns are divided into upper and lower columns with this method, data transfer can be performed on lower column (or upper column) while performing read/write operations in the upper column (or lower column). For this reason, transfer timing design is easy. This transfer method can be used in both write data transfer and read data transfer.

3.2.1 Split Read Data Transfer Cycle

This cycle divides the 8K-bit (512 words × 16 bits) data of the random access port into the lower and upper columns and transfers them to the serial access port.

In this cycle, the serial read/write can be performed in the columns to which data is not transfer.

(a) Setting of Split Read Data Transfer Cycle

To set this cycle, input a high level to \overline{CAS} , \overline{UWE} , \overline{LWE} and DSF, and low level to $\overline{DT}/\overline{OE}$ at the falling edge of \overline{RAS} .

The memory cells (512 words \times 16 bits) of the transfer source of the random access port are selected using the row address input to A0 to A8 at the falling edge of $\overline{\text{RAS}}$. And the address data input to A0 to A7 at the falling edge of $\overline{\text{CAS}}$ is latched as the TAP register data of serial access port. There is no need to control address data input to A8. Refer to **3.4 TAP Register**.

(b) Execution of Split Read Data Transfer Cycle

To execute this cycle, set the split read data transfer cycle and then input the high level to \overline{RAS} . Data will be transferred at the rising edge of \overline{RAS} . Data is transferred from the random access port to the serial access port automatically at the column side where serial access port is inactive. To confirm the transferred column side, check the output state of the QSF pin. Refer to **3.3.3 QSF Pin Output**.

When the serial address pointer comes to the jump source address specified by the STOP register, the serial address pointer jumps to the start column (TAP) of the serial read/write cycle at the inactive column side, and the TAP register will be set the empty state.

3.2.2 Split Mask Write Data Transfer Cycle

This cycle divides the 8K-bit (512 words × 16 bits) data of the serial access port into the lower and upper columns and transfers them to the random access port.

In this cycle, serial read/write can be performed for columns to which data is not transferred.

Because UWE and LWE are low level at the falling edge of RAS, the write-per-bit function always functions in this transfer cycle. Refer to **2.8 Mask Write Cycle**.

(a) Setting of Split Mask Write Data Transfer Cycle

To set this data transfer cycle, input a high level to \overline{CAS} and DSF and low level to $\overline{DT/OE}$, \overline{UWE} , and \overline{LWE} at the falling edge of \overline{RAS} . Because the write-per-bit function functions in this transfer operation, for the new mask data method, the mask data must be supplied to W0 to W15 at the falling edge of \overline{RAS} , and for the old mask data method, there is no need to control the mask data.

The memory cells (512 words \times 16 bits) of the transfer destination of the random access port are selected using the row address input to A0 to A8 at the falling edge of \overline{RAS} . The address data input to A0 to A7 at the falling edge of \overline{CAS} is input as the TAP register data. There is no need to control address data input to A8. Refer to 3.4 TAP Register.

(b) Execution of Split Mask Write Data Transfer Cycle

To execute this cycle, set the split write data transfer cycle and then input high level to \overline{RAS} . Data will be transferred at the rising edge of \overline{RAS} . Data is transferred from the serial access port to the random access port automatically at the column side where the serial access port is inactive. To confirm the transferred column side, check the output state of the QSF pin. Refer to **3.3.3 QSF Pin Output**.

When the serial address pointer comes to the jump source address specified by the STOP register, the serial address pointer jumps to the start column (TAP) of the serial read/write cycle at the inactive column side, and the TAP register will be set the empty state.

Figure 3-2. Split Mask Write Data Transfer and TAP Operations

3.3 Serial Read/Write

The serial access port (512 words \times 16 bits) is independent from the random access port and can perform read and write operations. The serial access port performing single data transfer and split data transfer can not perform read and write operations independently.

Caution When the power is turned on, the serial access port sets into the input (write) mode and the SIO pin is the high impedance state.

3.3.1 Serial Read Cycle

To set the serial read cycle, perform the single read data transfer cycle (The mode will not change in the split read data transfer cycle.).

Execute the single read data transfer cycle and latch the data and TAP data. By inputting a clock signal to the SC pin and inputting a low level to the \overline{SE} pin, data will be output from the serial address pointer specified by TAP register. The data synchronizes with the rising edge of the SC clock and is output from the SIO0 to SIO15 pin, and the data is kept until the next rising edge of the SC clock.

(a) Reading-Jump

The \overline{SE} pin controls the SIO pin output buffer independently from the SC clock. By setting the \overline{SE} pin to high level even while inputting the SC clock, SIO0 to SIO15 pins become high impedance. But the operations of serial address pointer will be continued while the SC clock is being input even though reading has been prohibited from \overline{SE} pin. Reading-jump of the column can be performed using this function.

3.3.2 Serial Write Cycle

To set the serial write cycle, perform the single write data transfer cycle (The mode will not change in the split write data transfer cycle.). To prevent the transfer data from being written in the memory cell of the random access port, set all bits of the mask data to "0" and control the mask data.

Execute the single write data transfer cycle and set the serial write cycle. By inputting the clock signal to the SC pin and inputting a low level to the \overline{SE} pin, data can be latched from the serial address pointer specified by TAP register. The data synchronizes with the rising edge of the SC clock and is input from SIO0 to SIO15 pins. Be sure to follow the specifications for the setup time (tses) and hold time (tseh) of \overline{SE} pin for the SC clock.

(a) Writing-Jumps (Intermittent Writing)

The \overline{SE} pin controls writing operations independently from the SC clock. By setting the \overline{SE} pin to high level even while inputting the SC clock, writing will not be executed. But the operations of serial address pointer will be continued while the SC clock is being input even though writing has been prohibited from \overline{SE} pin. These functions enable writing-jumps (intermittent writing) to be performed. The masked data is kept as the old data.

3.3.3 QSF Pin Output

QSF pin determines whether the serial address pointer is at the upper column side (addresses 256 to 511) or the lower column side (addresses 0 to 255) at the rising edge of the following SC clock during serial read or write. In other words, it outputs the uppermost bit (A8) of the column address of the serial address pointer.

During split data transfer cycle, data is transferred at the column side where serial access port is inactive. The following table shows the QSF pin output state and the access pointer of following SC clocks.

QSF Output	Access Address of Following SC clock	Transfer Destination (Split Data Transfer Method)
Low level	Addresses 0 to 255	Addresses 256 to 511
High level	Addresses 256 to 511	Addresses 0 to 255

3.4 TAP (Top Access Point) Register

The TAP register is a data register which specifies the start address (first serial address point = TAP) of the serial read or serial write.

Set data to this register each time a transfer cycle is executed.

3.4.1 Setting of TAP Register

The data input to A0 to A8 (A0 to A7: Split data transfer) at the falling edge of CAS during the setting of a transfer cycle is set as the TAP register data. By executing the transfer cycle, the start address of the following serial read (or write) operations is specified by the data of the TAP register and the TAP register will be kept in the empty state until the TAP register is set again.

In the split data transfer cycle, because the inactive serial access port column addresses are specified by the data of the TAP register automatically, there is no need to control the A8 data.

Caution When the TAP register is empty, the address following the 511 serial address point will be 0. In addition, because the serial address pointer will not jump to the column specified by the STOP register, the binary boundary jump function cannot be used. Refer to 3.6 Binary Boundary Jump Function.

3.5 STOP Register

The STOP register is a data register which determines the column of the jump source when jumping to a different column side (lower column or upper column) in the split data transfer cycle. Five types of columns can be selected for starting jump (jumping is possible at 2, 4, 8, 16, and 32 points). The following table shows the correspondence between the column at the jump source and data of the STOP register.

Once set, the STOP register data is kept until it is set again.

3.5.1 Setting of STOP Register

To set the STOP register, set UWE and LWE to low level at the falling edge of RAS in the CAS before RAS refresh cycle. The data input to A0 to A7 will be input as the STOP register data.

STOP Register Data		r Data	Divi-	Bit			
A7	A6	A5	A4	A3 to A0	sion	Width	Jump Source Bit Column (Decimal Number)
1	1	1	1	1	1/2	256	255
				•	1/2	200	511
6	1	1	1	1	1/4	128	127, 255
Ľ				1	1/4	120	383, 511
0	0	1	1	1	1/8	64	63, 127, 191, 255
Ľ	Ŭ			1	1/0	04	319, 383, 447, 511
0	0	0	1	1	1/16	32	31, 63, 95, 127, 159, 191, 223, 255
Ľ	Ŭ	Ŭ			1/10	02	287, 319, 351, 383, 415, 447, 479, 511
0	0	0	0	1	1/32	16	15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255
ľ				'	1/02		271, 287, 303, 319, 335, 351, 367, 383, 399, 415, 431, 447, 463, 479, 495, 511

Table 3-2. STOP Register Data and Jump Source Column

Remark A8: Don't care.

Caution When the power is supplied, all STOP register data will be undefined.

3.6 Binary Boundary Jump Function

This function causes the serial address pointer jump to the TAP specified by the TAP register when the pointer moves to a column specified by the STOP register (split data transfer).

This function cannot be used when the jump destination address is not set (TAP register is empty).

This function facilitates tile map application which divides the screen into tiles and manages data for each tile.

3.6.1 Usage of Binary Boundary Jump Function

After setting the STOP register, execute the single read (or write) data transfer and initialize the serial access port. The initialization process will switch the serial access port read (or write) operations, set TAP, set the serial access port data, and set the TAP register to empty. By inputting the serial clock in this state, the serial access port will read (or write) operations from TAP in ascending order of address. Because the TAP register is in the empty state, the address at the jump source set by the STOP register will be ignored, and the serial address pointer will move on.

When the column to be jumped approaches, execute split data transfer and set new TAP data in the TAP register. The serial pointer will jump at the desired jump source address. Jump can be controlled freely by repeating these operations.

3.7 Special Operations

3.7.1 Serial Address Set Operations

Because the serial address counter is undefined when the power up, the serial access port operations when the SC clock is input are not guaranteed. Execute single read (or write) transfer after turning on the power. The serial access port will be initialized, enabling serial access port operations to be performed.

3.7.2 Lap Around Operations

If all the data of the register is read (write) during data transfer while the serial read (write) cycle is being executed, the serial pointer will repeat 0 to 511.

3.7.3 Cycle After Power On

Execute the dummy cycle eight times more than 100 μ s after Vcc reaches the specified voltage in the recommended operation conditions.

If RAS, CAS, DT/OE, UWE, LWE are kept at high level when the power is turned on, the following will be set automatically.

- Serial access port Input mode, SIO: High impedance
- Color register Undefined
- Mask register Undefined
- TAP register Undefined
- STOP register Undefined

4. Electrical Characteristics

4.1 μ PD482444, 482445 (Power Supply Voltage Vcc = 5 V \pm 10 %)

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Pin voltage	VT	-1.0 to +7.0	V
Supply voltage	Vcc	-1.0 to +7.0	V
Output current	lo	50	mA
Power dissipation	Po	1.5	w
Operating ambient temperature	TA	0 to 70	°C
Storage temperature	Tstg	–55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits in the operational sections of this characteristics. Exposure to Absolute Maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	v
High level input voltage	Vін	2.4		5.5	v
Low level input voltage	Vil	-1.0		+0.8	v
Operating ambient temperature	TA	0		70	°C

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input leakage current	hı.	VIN = 0 V to 5.5 V, Other inputs are 0 V	-10		+10	μA
Output leakage current	lol	W/IO, SIO, QSF are inactive, Vout = 0 V to 5.5 V	-10		+10	μA
Random access port high level output voltage	Vон (R)	lон (R) = −1.0mA	2.4			V
Random access port low level output voltage	Vol (R)	lol (R) = 2.1mA			0.4	V
Serial access port high level output voltage	Vон (S)	lон (S) = -1.0mA	2.4			V
Serial access port low level output voltage	Vol (S)	lol (S) = 2.1mA			0.4	V

DC Characteristics 1 (Recommended operating conditions unless otherwise noted)

Capacitance (T_A = 25 °C, f = 1MHz)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input Capacitance	Cıı	RAS, CAS, UWE, LWE, DT/OE, DSF, SE, SC			8	pF
	C12	A0 to A8			5	
Input/Output Capacitance	Сю	W/IO (0 to 15), SIO (0 to 15)			7	pF
Output Capacitance	Co	QSF			7	pF

Random Access Port	Seria Access	al Port	Symbol	μPD482 μPD482	2444-60 2445-60	4-60 μPD482444-70 5-60 μPD482445-70		Unit	Conditions
	Standby	Active		MIN.	MAX.	MIN.	MAX.		
Random Read/Write Cycle	0		Icc1		110		95	mA	
trc = trc (MIN.), $Io = OmA$		0	lcc7		130		110		
Standby	0		lcc2		10		10	mA	Note 2
RAS = CAS = Vін, Dout = high impedance		0	Ісся		50		45	mA	Note 2
RAS only refresh cycle	0		lcc3	1	100		85	mA	Note 3
RAS cycle, CAS = ViH, trc = trc (MIN.)		0	lcca		140		120		
Fast/Hyper page mode cycle RAS = Vit, CAS cycle, trc = trc (MIN.) or thrc = thrc (MIN.)	0		Icc4	1	120		105	mA	Notes 4, 5
		0	ICC10		150		130		
CAS before RAS refresh cycle	0		lccs		100		95	mA	
TRC = TRC (MIN.)		0	Icc11		130		120		
Data transfer cycle	0		Icce		120		105	mA	
TRC = TRC (MIN.)		0	ICC12		150		130		
Color/Mask write register set cycle	0		ICC13		90		80	mA	
TRC = TRC (MIN.)		0	ICC14		120		105		
Flash write cycle	0		ICC15		90		80	mA	
TRC = TRC (MIN.)		0	ICC16		120		105		
Block write cycle	0		Icc17		110		100	mA	,
$t_{RC} = t_{RC} (MIN.)$		0	ICC18		140		125		
Fast/Hyper page mode block write cycle	0		Icc19		135		120	mA	
IPC = IPC (MIN.) OF THPC = THPC (MIN.)		0	Icc20		155		135		Notes 4, 5

DC Characteristics 2 (Recommended operating conditions unless otherwise noted)^{Note 1}

Notes 1. No load on W/IO, SIO, QSF. The current consumption actually used depends on the output load and operating frequency of each pin.

- 2. A change in row addresses must not occur more than once in tRc = tRc (MIN.).
- 3. When the address input is set to V_{IH} or V_{IL} during the tras period.
- 4. Value when the address in trc one cycle is changed once when μ PD482444 trc = trc (MIN.).
- 5. Value when the address in the cone cycle is changed once when μ PD482445 the = the (MIN.).

4.2 μ PD482445L (Power Supply Voltage Vcc = 3.3 V \pm 0.3 V)

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Pin voltage	VT	-1.0 to +4.6	V
Supply voltage	Vcc	-1.0 to +4.6	v
Output current	lo	20	mA
Power dissipation	Po	1.0	w
Operating ambient temperature	TA	0 to 70	°C
Storage temperature	Tstg	–55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits in the operational sections of this characteristics. Exposure to Absolute Maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc	3.0	3.3	3.6	V
High level input voltage	Vін	2.0		Vcc + 0.3	v
Low level input voltage	Vil	-0.3		+0.8	v
Operating ambient temperature	TA	0		70	°C

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input leakage current	lı.	V _{IN} = 0 V to 3.6 V, Other inputs are 0 V	5		+5	μA
Output leakage current	lol	W/IO, SIO, QSF are inactive Vouτ = 0 V to 3.6 V	5		+5	μA
Random access port high level output voltage	Vон (R)	lон (R) = −1.0mA	2.4			v
Random access port low level output voltage	Vol (R)	lol (R) = 2.0mA			0.4	v
Serial access port high level output voltage	Vон (S)	lон (S) = -1.0mA	2.4			۷
Serial access port low level output voltage	Vol (S)	lol (S) = 2.0mA			0.4	v

DC Characteristics 1 (Recommended operating conditions unless otherwise noted)

Capacitance (TA = 25 °C, f = 1MHz)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input Capacitance	C11	RAS, CAS, UWE, LWE, DT/OE, DSF, SE, SC			8	pF
	Ci2	A0 to A8			5	
Input/Output Capacitance	Сю	W/IO (0 to 15), SIO (0 to 15)			7	pF
Output Capacitance	Co	QSF			7	pF

Dandam Assass Dart	Serial Acce	ess Port	Sumbol	μPD4824	45L-A70	Linit	Condition
Handom Access Port	Standby	Active	Symbol	MIN.	MAX.	Unit	Condition
Random Read/Write Cycle	0		Icc1		75	mA	
$t_{RC} = t_{RC}$ (MIN.), $I_{O} = OmA$		0	Icc7		110		
Standby	0		ICC2		7	mA	Note 2
Dout = high impedance		0	Iccs		35	mA	Note 2
RAS only refresh cycle	0		Іссз		75	mA	Note 3
trc = trc (MIN.) $(AS = V_{iH}, CAS = V_{iH$		0	lcca		110		
Hyper page mode cycle	0		lcc₄		85	mA	Note 4
RAS = VIL, CAS cycle, thec = thec (MIN.)		0	ICC10		120		
CAS before RAS refresh cycle	0		Icc5		85	mA	
trc = trc (MIN.)		0	ICC11		120		
Data transfer cycle	0		Іссь		95	mA	
IRC = IRC (MIN.)		0	ICC12		130		
Color/Mask write register set cycle	0		Icc13		70	mA	
		0	Icc14		105		
Flash write cycle	0		Icc15		70	mA	
		0	ICC16		105		
Block write cycle	0		Icc17		90	mA	
(IVIII)		0	ICC18		125		
Hyper page mode block write cycle	0		ICC19		100	mA	Note 4
LHPC = LHPC (MIIN.)		0	Icc20		135		

DC Characteristics 2	(Recommended	operating condi	tions unless o	otherwise noted) ^{Note 1}
-----------------------------	--------------	-----------------	----------------	------------------------------------

Notes 1. No load on W/IO, SIO, QSF. The current consumption actually used depends on the output load and operating frequency of each pin.

- 2. A change in row addresses must not occur more than once in trc = trc (MIN.).
- 3. When the address input is set to VIH or VIL during the tRAS period.
- 4. Value when the address in the one cycle is changed once when μ PD482445L thec = the (MIN.).

4.3 AC Characteristics (Recommended operating conditions unless otherwise noted)

- · All applied voltages are referenced to GND.
- After supplying power, initialize the internal circuitry by waiting for at least 100 µs after Vcc ≥ 4.5 V (µPD482444, 482445), Vcc ≥ 3.0 V (µPD482445L), then supplying at least 8 RAS clock cycles. The RAS clock only requires tree, treas, and tree are satisfied; there is no problem if other signals are in any state.
- Measure at tr = 5 ns
- · AC characteristic measuring conditions
- (1) Input voltage, timing

(3) Output load conditions

40

(2) Output voltage determined

[Common]

(1/2)

Parameter	Symbol	μPD482 μPD482	2444-60 2445-60	μΡD482 μΡD482 μΡD4824	2444-70 2445-70 145L-A70	Unit	Conditions
		MIN.	MAX.	MIN.	MAX.		
Random read or write cycle time	trc	110		130		ns	
Access time from RAS	TRAC		60		70	ns	Note 1
Access time from CAS	tcac		18		18	ns	Note 1
Access time from column address	taa		30		35	ns	Note 1
Access time from OE	t OEA		18		18	ns	
RAS precharge time	trp	40		50		ns	
CAS precharge time	t CPN	10		10		ns	
(Non page mode)							
CAS precharge time (Fast page/Hyper page mode)	tcp	10		10		ńs	
\overline{CAS} high to \overline{RAS} low precharge time	tcrp	10		10		ns	
\overrightarrow{RAS} high to \overrightarrow{CAS} low precharge time	trpc	10		10		ns	
RAS pulse width (Non page mode)	tras	60	10,000	70	10,000	ns	
RAS pulse width	TRASP	60	125,000	70	125,000	ns	
(Fast page/Hyper page mode)							
CAS pulse width	tcas	15	100,000	15	100,000	ns	
CAS pulse width	thcas	10	100,000	10	100,000	ns	
Write command pulse width	twp	12		12		ns	
RAS hold time	tяsн	15		18		ns	
CAS hold time	tcsн	60		70		ns	
Row address setup time	tasr	0		0		ns	
Row address hold time	trah	15		15		ns	
Column address setup time	tasc	0		0		ns	
Column address hold time	tсан	10		10		ns	
Read command setup time	trics	0		0		ns	
Data in setup time	tos	0		0		ns	Note 2
Data in hold time	tон	15		15		ns	Note 2
DT high setup time	toнs	0		0		ns	
DT high hold time	tонн	15		15		ns	
Write-per-bit setup time	twвs	0		0		ns	
Write-per-bit hold time	twвн	15		15		ns	
DSF setup time from RAS	tras	0		0		ns	
DSF hold time from RAS	t FRH	15		15		ns	
DSF setup time from CAS	trcs	0		0		ns	
DSF hold time from CAS	tғсн	12		12		ns	

(2/2)

Parameter	Symbol	μPD482444-60 μPD482445-60		μPD482444-70 μPD482445-70 μPD482445L-A70		Unit	Conditions
		MIN.	MAX.	MIN.	MAX.		
Write-per-bit selection setup time	tws	0		0		ns	
Write-per-bit selection hold time	twн	15		15		ns	
Column address to RAS lead time	tral	30		35		ns	
Write command to RAS lead time	trwL	20		20		ns	
Write command to CAS lead time	tcwL	15		15		ns	
RAS to CAS delay time	trco	25	40	30	50	ns	Note 1
RAS to column address delay time	trad	15	30	15	35	ns	Note 1
Output disable time from RAS high	tofr	0	15	0	15	ns	Notes 3, 4
Output disable time from CAS high	torc	0	15	0	15	ns	Notes 3, 4
Output disable time from OE high	toez	0	15	0	15	ns	Notes 3, 4
Output disable time from UWE, UWE low	twez	0	15	0	15	ns	Notes 3, 4
Write command pulse width	twpz	12		12		ns	Note 4
Transition time (Rise/Fall)	tτ	3	35	3	35	ns	
Masked byte write setup time	tmcs	0		0		ns	
Masked byte write to RAS hold time	tмrн	0		0		ns	
Masked byte write to CAS hold time	tмсн	0		0		ns	

Notes 1. For read cycle, access time is defined as follows:

Input conditions	Access time	Access time from \overline{RAS}
trad \leq trad (MAX.) and trcd \leq trcd (MAX.)	trac (MAX.)	trac (MAX.)
trad > trad (MAX.) and trcd \leq trcd (MAX.)	taa (MAX.)	trad + taa (MAX.)
trcd > trcd (MAX.)	tcac (MAX.)	trcd + tcac (MAX.)

tRAD (MAX.) and tRCD (MAX.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (tRAC, tAA, tCAC) is to be used for finding out data will be available. Therefore, the input conditions tRAD \geq tRAD (MAX.) and tRCD \geq tRCD (MAX.) will not cause any operation problems.

- 2. These parameters are referenced to the following points.
 - (1) Early write cycle : The falling edge of CAS
 - (2) Late write cycle : The falling edge of UWE, LWE
 - (3) Read modify write cycle : The falling edge of $\overline{\text{UWE}}$, $\overline{\text{LWE}}$
- 3. tsez, toez, twez, toFF, toFF, and toFc define the time when the output achieves the condition of high impedance and is not referenced to VoH or VoL.

4. Control pins RAS, CAS, DT/OE, UWE, LWE to set pin W/IO to high impedance. Because the timings at which RAS, CAS and DT/OE are set to high level and UWE, LWE are set to low level affect the high impedance state, the specifications will change as follows. Controlling by RAS is usable in hyper page mode (μPD482445, 482445L).

Fast page mode (µPD482444)

	RAS	CAS	DT/OE	UWE, LWE	Remark
toff	x	$L\toH$	L	н	
twez	x	L	L	$H \rightarrow L$	twpz should be met.
toez	x	L	$L \rightarrow H$	Н	

Hyper page mode (µPD482445, 482445L)

\backslash	RAS	CAS	DT/OE	UWE, LWE	Remark
tofr	$L \rightarrow H$	н	L	Н	
torc	н	$L\toH$	L	н	
twez	L	L	L	$H \rightarrow L$	twpz should be met.
toez	L	L	$L \rightarrow H$	Н	

Remark H : High level

L : Low level

x : Don't care

 \rightarrow : Transition

γċ

[Read cycle]

Parameter	Symbol	μPD482444-60 Symbol μPD482445-60		μΡD482 μΡD482 μΡD4824	2444-70 2445-70 145L-A70	Unit	Conditions
		MIN.	MAX.	MIN.	MAX.		
Random read or write cycle time	tRC	110		130		ns	
Fast page mode cycle time	tec	35		40		ns	
Hyper page mode cycle time	tнрс	30		35		ns	
Access time from RAS	t rac		60		70	ns	Note 1
Access time from CAS	tcac		18		18	ns	Note 1
Access time from column address	taa		30		35	ns	Note 1
Access time from OE	t OEA		18		18	ns	
Access time from CAS trailing edge	tacp		30		35	ns	
OE to RAS inactive setup time	toes	0		0		ns	
Read command hold time after RAS high	trян	0		0		ns	Note 2
Read command hold time after CAS high	tясн	0		0		ns	Note 2
Output hold time from CAS	tонс	3		5		ns	
Output disable time from RAS high	tofr	0	15	0	15	ns	Notes 3, 4
Output disable time from CAS high	toff	0	15	0	15	ns	Notes 3, 4
Output disable time from CAS high (Hyper page mode)	torc	0	15	0	15	ns	Notes 3, 4
Output disable time from OE high	toez	0	15	0	15	ns	Notes 3, 4
Output disable time from \overline{UWE} , \overline{LWE} low	twez	0	15	0	15	ns	Notes 3, 4
Write command pulse width	twpz	12		12		ns	Note 4

Notes 1. For read cycle, access time is defined as follows:

Input conditions	Access time	Access time from RAS
trad \leq trad (MAX.) and trcd \leq trcd (MAX.)	trac (MAX.)	trac (MAX.)
trad > trad (MAX.) and trcd \leq trcd (MAX.)	taa (MAX.)	trad + taa (MAX.)
trcd > trcd (MAX.)	tcac (MAX.)	trcd + tcac (MAX.)

trad (MAX.) and trade (MAX.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (trade, take, take) is to be used for finding out data will be available. Therefore, the input conditions trade \geq trade (MAX.) and trade \geq trade (MAX.) will not cause any operation problems.

- 2. Either tRCH (MIN.) or tRRH (MIN.) should be met in read cycles.
- 3. tsez, toez, twez, toFF, toFF, and toFc define the time when the output achieves the condition of high impedance and is not referenced to VoH or VoL.

4. Control pins RAS, CAS, DT/OE, UWE, LWE to set pin W/IO to high impedance. Because the timings at which RAS, CAS and DT/OE are set to high level and UWE, LWE are set to low level affect the high impedance state, the specifications will change as follows. Controlling by RAS is usable in hyper page mode (μPD482445, 482445L).

Fast page mode (µPD482444)

\backslash	RAS	CAS	DT/OE	UWE, LWE	Remark
toff	x	$L \rightarrow H$	L	н	
twez	x	L	L	H→L	twpz should be met.
toez	x	L	$L \rightarrow H$	н	

Hyper page mode (µPD482445, 482445L)

\searrow	RAS	CAS	DT/OE	UWE, LWE	Remark
tofr	$L \rightarrow H$	н	L	н	
torc	н	$L \rightarrow H$	L	н	
twez	L	L	L	$H \rightarrow L$	twez should be met.
toez	L	L	$L \rightarrow H$	Н	

Remark H : High level

L : Low level

x : Don't care

 \rightarrow : Transition

NEC

Read Cycle (µPD482444)

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Read Cycle (Extended data output: µPD482445, 482445L)

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, $\overline{\text{SE}}$, SIO pins in this cycle.

Fast Page Mode Read Cycle (µPD482444)

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Hyper Page Mode Read Cycle (Extended data output: µPD482445, 482445L)

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, \overline{SE} , SIO pins in this cycle.

[Write cycle]

Parameter	Symbol	μΡD482 μΡD482	2444-60 2445-60	μΡD482 μΡD482 μΡD4824	2444-70 2445-70 445L-A70	Unit	Conditions
		MIN.	MAX.	MIN.	MAX.		
Random read or write cycle time	tric	110		130		ns	
Fast page mode cycle time	tPC	35		40		ns	
Hyper page mode cycle time	thec	30		35		ns	
Write command setup time	twcs	0		0		ns	Note
Write command hold time	twcн	12		12		ns	
OE high hold time after UWE, LWE low	tоен	0	1	0		ns	
Write-per-bit setup time	twвs	0		0		ns	
Write-per-bit hold time	twвн	15		15		ns	
Write-per-bit selection setup time	tws	0		0		ns	
Write-per-bit selection hold time	twн	15		15		ns	

Note twcs ≥ twcs (MIN.) is the condition for early write cycle to be set. Dou⊤ becomes high impedance during the cycle.

trwp \geq trwp (MIN.), tcwp \geq tcwp (MIN.), tawp \geq tawp (MIN.), are conditions for read modify write cycle to be set. The data of the selected address is output to Dout.

If any of the above conditions are not met, pin W/IO will become undefined.

Early Write Cycle/Early Block Write Cycle

Note tcas for the μPD482444 tHcas for the μPD482445, 482445L

Remarks 1. When DSF is high level : Block write cycle

When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Upper Byte Early Write Cycle/Upper Byte Early Block Write Cycle

Note tcas for the μPD482444 thcas for the μPD482445, 482445L

Remarks 1. W0 to W7/IO0 to IO7 : Don't care

- 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
- 3. WPB : Write-per-bit
- 4. When block write cycle is selected, input the column selection data to DATA IN.
- 5. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Lower Byte Early Write Cycle/Lower Byte Early Block Write Cycle

Note tcas for the μPD482444 tHcas for the μPD482445, 482445L

Remarks 1. W8 to W15/IO8 to IO15 : Don't care

- 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
- 3. WPB : Write-per-bit
- 4. When block write cycle is selected, input the column selection data to DATA IN.
- 5. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Late Write Cycle/Late Block Write Cycle

Note tcas for the μ PD482444

theas for the μ PD482445, 482445L

Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Upper Byte Late Write Cycle/Upper Byte Late Block Write Cycle

Note tcas for the μPD482444 thcas for the μPD482445, 482445L

- Remarks 1. W0 to W7/IO0 to IO7 : Don't care
 - 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 3. WPB : Write-per-bit
 - 4. When block write cycle is selected, input the column selection data to DATA IN.
 - 5. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Lower Byte Late Write Cycle/Lower Byte Late Block Write Cycle

Note tcas for the μPD482444 tHcas for the μPD482445, 482445L

Remarks 1. W8 to W15/IO8 to IO15 : Don't care

- 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
- 3. WPB : Write-per-bit
- 4. When block write cycle is selected, input the column selection data to DATA IN.
- 5. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page, Hyper Page Mode Early Write Cycle/Fast Page, Hyper Page Mode Early Block Write Cycle

Notes 1. tPc for the μPD482444 tHPc for the μPD482445, 482445L

- tcas for the μPD482444 thcas for the μPD482445, 482445L
- Remarks 1. When DSF is high level : Block write cycle

When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page, Hyper Page Mode Upper Byte Early Write Cycle/ Fast Page, Hyper Page Mode Upper Byte Early Block Write Cycle

- **Notes 1.** tPc for the μPD482444 tHPc for the μPD482445, 482445L
 - 2. tcas for the μPD482444 thcas for the μPD482445, 482445L
- Remarks 1. W0 to W7/IO0 to IO7 : Don't care
 - 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 3. WPB : Write-per-bit
 - 4. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page, Hyper Page Mode Lower Byte Early Write Cycle/ Fast Page, Hyper Page Mode Lower Byte Early Block Write Cycle

- Notes 1. tpc for the μPD482444 thpc for the μPD482445, 482445L
 - tcas for the μPD482444
 thcas for the μPD482445, 482445L
- Remarks 1. W8 to W15/IO8 to IO15 : Don't care
 - 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 3. WPB : Write-per-bit
 - 4. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page, Hyper Page Mode Late Write Cycle/Fast Page, Hyper Page Mode Late Block Write Cycle

- **Notes 1.** tPc for the μ PD482444
 - thec for the μPD482445, 482445L
 - 2. tcas for the μPD482444 thcas for the μPD482445, 482445L
- Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page, Hyper Page Mode Upper Byte Late Write Cycle/ Fast Page, Hyper Page Mode Upper Byte Late Block Write Cycle

- **Notes 1.** tec for the μPD482444 tHPc for the μPD482445, 482445L
 - tcas for the μPD482444 tHcas for the μPD482445, 482445L
- Remarks 1. W0 to W7/IO0 to IO7 : Don't care
 - 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 3. WPB : Write-per-bit
 - 4. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page, Hyper Page Mode Lower Byte Late Write Cycle/ Fast Page, Hyper Page Mode Lower Byte Late Block Write Cycle

- Notes 1. tPc for the μ PD482444
 - thec for the μ PD482445, 482445L
 - tcas for the μPD482444
 thcas for the μPD482445, 482445L

Remarks 1. W8 to W15/IO8 to IO15 : Don't care

- 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
- 3. WPB : Write-per-bit
- 4. When block write cycle is selected, input the column selection data to DATA IN.
- 5. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Parameter	Symbol	μPD482 μPD482	2444-60 2445-60	μPD482444-70 μPD482445-70 μPD482445L-A70		Unit	Conditions
		MIN.	MAX.	MIN.	MAX.		
Read modify write cycle time	trwc	160		180		ns	
Fast page mode read modify write cycle time	tprwc	90		95		ns	
Hyper page mode read modify write cycle time	thprwc	80		90		ns	
Access time from CAS trailing edge	tacp		30		35	ns	
Write-per-bit setup time	twвs	0		0		ns	
Write-per-bit hold time	twвн	15		15		ns	
Write-per-bit selection setup time	tws	0		0		ns	
Write-per-bit selection hold time	twн	15		15		ns	
$\overline{\text{OE}}$ high hold time after $\overline{\text{UWE}}$, $\overline{\text{LWE}}$ low	tоен	0		0		ns	
CAS to UWE, LWE delay time	tcwp	40		40		ns	Note
RAS to UWE, LWE delay time	trwp	85		90		ns	Note
Column address to UWE, LWE delay time	tawd	55		55		ns	Note
OE high to data in setup delay time	tOED	15		15		ns	

[Read modify write cycle]

Note twcs ≥ twcs (MIN.) is the condition for early write cycle to be set. Dour becomes high impedance during the cycle.

trwb \geq trwb (MIN.), tcwb \geq tcwb (MIN.), tawb \geq tawb (MIN.), are conditions for read modify write cycle to be set. The data of the selected address is output to Dout.

If any of the above conditions are not met, pin W/IO will become undefined.

Read Modify Write Cycle/Read Modify Block Write Cycle

Note tcas for the μ PD482444

thcas for the *µ*PD482445, 482445L

- Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

[MEMO]

Read Modify Upper Byte Write Cycle/Read Modify Upper Byte Block Write Cycle

Note that for the μ PD482444

theas for the μ PD482445, 482445L

Remarks 1. When DSF is high level : Block write cycle

When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Read Modify Lower Byte Write Cycle/Read Modify Lower Byte Block Write Cycle

Note tcas for the μ PD482444

theas for the μ PD482445, 482445L

- Remarks 1. When DSF is high level : Block write cycle
 - When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page Mode Read Modify Write Cycle (µPD482444)/ Fast Page Mode Read Modify Block Write Cycle (µPD482444)

Remarks 1. When DSF is high level : Block write cycle

When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

[MEMO]

Fast Page Mode Read Modify Upper Byte Write Cycle (µPD482444)/ Fast Page Mode Read Modify Upper Byte Block Write Cycle (µPD482444) Remarks 1. When DSF is high level : Block write cycle

When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page Mode Read Modify Lower Byte Write Cycle (μPD482444)/ Fast Page Mode Read Modify Lower Byte Block Write Cycle (μPD482444)

Remarks 1. When DSF is high level : Block write cycle

- When DSF is low level : Write cycle
- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Hyper Page Mode Read Modify Write Cycle (Extended data output: μ PD482445, 482445L)/ Hyper Page Mode Read Modify Block Write Cycle (Extended data output: μ PD482445, 482445L)

Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

[MEMO]

Hyper Page Mode Read Modify Upper Byte Write Cycle (Extended data output: μ PD482445, 482445L)/ Hyper Page Mode Read Modify Upper Byte Block Write Cycle (Extended data output: μ PD482445, 482445L)

Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Hyper Page Mode Read Modify Lower Byte Write Cycle (Extended data output: μPD482445, 482445L)/ Hyper Page Mode Read Modify Lower Byte Block Write Cycle (Extended data output: μPD482445, 482445L)

Remarks 1. When DSF is high level : Block write cycle

When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Parameter	Symbol	µPD482444-60 µPD482445-60		μPD482444-70 μPD482445-70 μPD482445L-A70		Unit	Conditions
		MIN.	MAX.	MIN.	MAX.		
Refresh period	tref		8		8	ms	
RAS high to CAS low precharge time	trpc	10		10		ns	
CAS setup time (for CAS before RAS refresh cycle)	tcsn	5		5		ns	
CAS hold time (for CAS before RAS refresh cycle)	tсня	10		10		ns	
OE to RAS inactive setup time	toes	0		0		ns	
SC setup time from RAS	tsrs	10		10		ns	Notes 1, 2, 3
SC hold time from RAS	tsян	10		10		ns	Note 1

[Refresh cycle]

- Notes 1. The tsRs and tsRH in the hidden refresh cycle, CAS before RAS refresh cycle (STOP register set cycle and optional reset cycle) are specified to guarantee the serial port operations until the transfer cycle is executed after the STOP register value is changed. When the STOP register value is not to be changed, or when the binary boundary jump function is not used (when the TAP register is empty), tsRs and tsRH will not be specified.
 - 2. tssc (split read data transfer cycle) and tsns (split write data transfer cycle) are specified at the rising edge of SC which reads/writes the address of the jump source in the binary boundary jump function. tsdhr (split read data transfer cycle and split write data transfer cycle) is specified at the rising edge of SC which reads/writes the address of the jump destination in the binary boundary jump function. The rising edge of these SCs cannot be input in periods (1) and (2).
 - (1) Split read data transfer cycle: Period from the rising edge of the SC specifying tssc to that of the SC specifying tssc to Note 2 at the Split Read/Write Data Transfer Cycle Timing Chart.)
 - (2) Split write data transfer cycle: Period from the rising edge of the SC specifying tsrs to that of the SC specifying tsphr (Refer to Note 2 at the Split Read/Write Data Transfer Cycle Timing Chart.)
 - 3. Limitations of split read/write data transfer cycle during serial write operations. When split read/write data transfer is performed while serial write is executed for the column specified by the STOP register, serial write operations cannot be guaranteed.

RAS Only Refresh Cycle

- Remarks 1. UWE, LWE : Don't care
 - 2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

CAS Before RAS Refresh Cycle (Optional Reset)

Remarks 1. A0 to A8, UWE, LWE, DT/OE : Don't care

2. Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.

tsrh

tras

tsrs

tғвн

CAS Before RAS Refresh Cycle (STOP Register Set)

Viн

DSF (Input) VIH -

SC (Input)

2. Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.

CAS Before RAS Refresh Cycle (No Reset)

Remarks 1. A0 to A8, DT/OE : Don't care

2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Hidden Refresh Cycle (µPD482444)

Remarks 1. When DSF is high level : Reset select = No Reset When DSF is low level : Reset select = Optional Reset

2. Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.

Hidden Refresh Cycle (Extended data output: µPD482445, 482445L)

2. Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.

[Register set cycle]

Parameter	Symbol	μPD482444-60 μPD482445-60		μΡD482444-70 μΡD482445-70 μΡD482445L-A70		Unit	Condition
		MIN.	MAX.	MIN.	MAX.		
$\overline{\text{RAS}}$ high to $\overline{\text{CAS}}$ low precharge time	trpc	10		10		ns	
Write command setup time	twcs	0		0		ns	Note
Write command hold time	twcн	12		12		ns	

Note twcs ≥ twcs (MIN.) is the condition for early write cycle to be set. Dou⊤ becomes high impedance during the cycle.

tRWD \geq tRWD (MIN.), tcwD \geq tcwD (MIN.), tAWD \geq tAWD (MIN.), are conditions for read modify write cycle to be set. The data of the selected address is output to Dout.

If any of the above conditions are not met, pin W/IO will become undefined.

Register Set Cycle (Early Write)

- Notes 1. tcas for the μ PD482444 tHcas for the μ PD482445, 482445L
 - 2. Refresh address (RAS only refresh)
- Remarks 1. When DSF is high level : Register select = Color Register Select When DSF is low level : Register select = Write Mask Register Select
 - 2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Register Set Cycle (Upper Byte Early Write)

- **Notes 1.** tcas for the μPD482444 tHcas for the μPD482445, 482445L
 - **6** Defines address $(\overline{DAC} \text{ arbitrack})$
 - 2. Refresh address (RAS only refresh)
- Remarks 1. W0 to W7/IO0 to IO7 : Don't care
 - When DSF is high level : Register select = Color Register Select
 When DSF is low level : Register select = Write Mask Register Select
 - 3. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Register Set Cycle (Lower Byte Early Write)

Notes 1. tcas for the μ PD482444

theas for the *µ*PD482445, 482445L

2. Refresh address (RAS only refresh)

Remarks 1. W8 to W15/IO8 to IO15 : Don't care

- 2. When DSF is high level : Register select = Color Register Select When DSF is low level : Register select = Write Mask Register Select
- 3. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Register Set Cycle (Late Write)

- Notes 1. tcas for the μ PD482444 tHcas for the μ PD482445, 482445L
 - 2. Refresh address (RAS only refresh)

Remarks 1. When DSF is high level : Register select = Color Register Select

- When DSF is low level : Register select = Write Mask Register Select
- 2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Register Set Cycle (Upper Byte Late Write)

Notes 1. teas for the μ PD482444

theas for the μ PD482445, 482445L

2. Refresh address (RAS only refresh)

Remarks 1. W0 to W7/IO0 to IO7 : Don't care

- 2. When DSF is high level : Register select = Color Register Select When DSF is low level : Register select = Write Mask Register Select
- 3. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Register Set Cycle (Lower Byte Late Write)

Notes 1. teas for the μ PD482444

the μ PD482445, 482445L

2. Refresh address (RAS only refresh)

Remarks 1. W8 to W15/IO8 to IO15 : Don't care

- 2. When DSF is high level : Register select = Color Register Select When DSF is low level : Register select = Write Mask Register Select
- 3. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

[Data transfer cycle]

Parameter	Symbol	μPD482444-60 μPD482445-60		μPD482444-70 μPD482445-70 μPD482445L-A70		Unit	Conditions
Serial clock cycle time	tscc	20	MAA.	22	MAA.	ns	
Serial output access time from SC	tsca		15		17	ns	
Propagation delay time from SC to QSF	ted	0	20	0	20	ns	
Propagation delay time from \overline{RAS} to QSF	trad	0	80	0	95	ns	
Propagation delay time from $\overline{\text{CAS}}$ to QSF	tcap	0	60	0	65	ns	
Propagation delay time from $\overline{\text{DT}}/\overline{\text{OE}}$ to QSF	τρορ	0	30	0	30	ns	
Propagation delay time from \overline{RAS} high to QSF	tdar	0	40	0	40	ns	
Serial input enable time from RAS	tszн	40		40		ns	
SC precharge time	tscL	5		5		ns	
SC pulse width	tscн	5		5		ns	
DT high pulse width	totp	20		20		ns	
DT low setup time	tols	0		0		ns	
Serial output hold time after SC high	tsoн	3		5		ns	
Serial data in setup time	tsis	0		0		ns	
Serial data in hold time	tsıн	10		10		ns	
SC setup time from RAS	tses	10		10		ns	Notes 1, 2, 3
DT low hold time after RAS low	trdh	55		60		ns	Note 4
DT low hold time after RAS low	trdhs	15		15		ns	Note 4
DT low hold time after CAS low	tсон	20		20		ns	Note 4
DT low hold time after address	tadd	25		25		ns	Note 4
SC low hold time after DT high	tsdh	60		60		ns	Note 4
SC low hold time after DT high	tsdhr	60		60		ns	Notes 2, 4
SC high to CAS low	tssc	10		10		ns	Notes 2, 3, 4
SC high to DT high	tsdd	0		0		ns	Note 4
DT high to RAS high delay time	t dtr	0		0		ns	Note 4
Serial input disable time from SC	tsız	0		0		ns	
Serial output disable time from $\overline{\text{RAS}}$	tsrz	0		0		ns	

- Notes 1. The tsRs and tsRH in the hidden refresh cycle, CAS before RAS refresh cycle (STOP register set cycle and optional reset cycle) are specified to guarantee the serial port operations until the transfer cycle is executed after the STOP register value is changed. When the STOP register value is not to be changed, or when the binary boundary jump function is not used (when the TAP register is empty), tsRs and tsRH will not be specified.
 - 2. tssc (split read data transfer cycle) and tsrs (split write data transfer cycle) are specified at the rising edge of SC which reads/writes the address of the jump source in the binary boundary jump function. tsdhr (split read data transfer cycle and split write data transfer cycle) is specified at the rising edge of SC which reads/writes the address of the jump destination in the binary boundary jump function. The rising edge of these SCs cannot be input in periods (1) and (2).
 - (1) Split read data transfer cycle: Period from the rising edge of the SC specifying tssc to that of the SC specifying tssche (Refer to Note 2 at the Split Read/Write Data Transfer Cycle Timing Chart.)
 - (2) Split write data transfer cycle: Period from the rising edge of the SC specifying tsrs to that of the SC specifying tsrs (Refer to Note 2 at the Split Read/Write Data Transfer Cycle Timing Chart.)
 - 3. Limitations of split read/write data transfer cycle during serial write operations. When split read/write data transfer is performed while serial write is executed for the column specified by the STOP register, serial write operations cannot be guaranteed.
 - 4. One of the following specifications will be valid depending on the type of read data transfer method used.
 - (1) $\overline{\text{DT}}/\overline{\text{OE}}$ edge control: Satisfy the following specifications.
 - For DT/OE edge inputs : tRDH, tCDH, tADD, tDTR
 - For SC inputs : tspb, tspн
 - (2) Self control: Satisfy the following specification.
 - For DT/OE edge inputs : trons
 - For SC inputs : tssc, tsphr

Read Data Transfer Cycle (SC Active)

Note tcas for the μPD482444 thcas for the μPD482445, 482445L

Read Data Transfer Cycle (SC Inactive)

Read Data Transfer Cycle (Serial Write \rightarrow Serial Read Switching)

[MEMO]
Split Read Data Transfer Cycle

Notes 1. tcas for the μ PD482444

thcas for the µPD482445, 482445L

- 2. Do not perform the following two serial read/write during this period.
 - Serial read/write of jump source address set to the STOP register of the data register which does not perform the data transfer cycle.
 - Serial read/write of last address of data register (Address 255 or 511)

Write Data Transfer Cycle

Note tcas for the μPD482444 tHcas for the μPD482445, 482445L

Write Data Transfer Cycle (Serial Read \rightarrow Serial Write Switching)

Note tcas for the μPD482444 thcas for the μPD482445, 482445L

Split Write Data Transfer Cycle

Notes 1. tcas for the μ PD482444

thcas for the *µ*PD482445, 482445L

- 2. Do not perform the following two serial read/write during this period.
 - Serial read/write of jump source address set to the STOP register of the data register which does not perform the data transfer cycle.
 - Serial read/write of last address of data register (Address 255 or 511)

[Serial read, write cycle]

Parameter	μΡD482444-60 Symbol μΡD482445-60 μ		μΡD482444-70 μPD482445-70 μPD482445L-A70		Unit	Condition	
		MIN.	MAX.	MIN.	MAX.		
Serial clock cycle time	tscc	20		22		ns	
Serial output access time from \overline{SE}	t sea		15		17	ns	
Serial output access time from SC	tsca		15		17	ns	
Propagation delay time from SC to QSF	ted	0	20	0	20	ns	
SC precharge time	tsci	5		5		ns	
SE precharge time	tsep	5		5		ns	
SC pulse width	tscн	5		5		ns	
SE pulse width	tsee	5		5		ns	
SE setup time	tses	0		0		ns	
SE hold time from SC	tseн	10		10		ns	
Serial data in setup time	tsis	0		0		ns	
Serial data in hold time	tsıн	10		10		ns	
Serial output hold time after SC high	tsoн	3		5		ns	
Output disable time from SE high	tsez	0	15	0	15	ns	Note
SE low to serial output setup delay time	tsoo	3		5		ns	

Note tsez, toez, twez, tore, tore, and torc define the time when the output achieves the condition of high impedance and is not referenced to VoH or VoL.

108

Serial Read Cycle

Notes 1. Last address of data register (Address 255 or 511)

- 2. Starting address of data register newly read (address is specified in the data transfer cycle).
- **Remark** Because the random access port operates independently of the serial access port, there is no need to control the RAS, CAS, Address, UWE, LWE, DT/OE, WI/O, DSF pins in this cycle.

Serial Write Cycle

- Notes 1. Last address of data register (Address 255 or 511)
 - 2. Starting address of data register newly read (address is specified in the data transfer cycle).
- **Remark** Because the random access port operates independently of the serial access port, there is no need to control the RAS, CAS, Address, UWE, LWE, DT/OE, WI/O, DSF pins in this cycle.

5. Package Drawings

64 PIN PLASTIC SHRINK SOP (525 mil)

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

		P64GVV-80-525A-1
ITEM	MILLIMETERS	INCHES
А	26.30 MAX.	1.036 MAX.
В	0.75 MAX.	0.030 MAX.
С	0.8 (T.P.)	0.031 (T.P.)
D	0.35±0.05	0.014+0.002
E	0.15±0.05	0.006±0.002
F	2.3 MAX.	0.091 MAX.
G	2.0	0.079
н	13.8±0.3	0.543 ^{+0.013} 0.012
1	11.8±0.1	0.465+0.004
J	1.0±0.2	0.039+0.009
к	0.20+0.10	0.008+0.004
L	0.5±0.2	0.020+0.008
М	0.10	0.004
N	0.10	0.004

[MEMO]

1

6. Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD482444, 482445 and 482445L.

Types of Surface Mount Device

μPD482444GW	:	64-Pin Plastic Shrink SOP (525 mil)
μPD482445GW	:	64-Pin Plastic Shrink SOP (525 mil)
μPD482445LGW-A	:	64-Pin Plastic Shrink SOP (525 mil)

MOS INTEGRATED CIRCUIT μ PD482234, 482235

2M-Bit Dual Port Graphics Buffer

256K-WORD BY 8-BIT

Description

The μ PD482234 and μ PD482235 have a random access port and a serial access port. The random access port has a 2M-bit (262, 144 words × 8 bits) memory cell array structure. The serial access port can perform clock operations of up to 55 MHz from the 4K-bit data register (512 words × 8 bits).

To simplify the graphics system design, the split data transfer function and binary boundary jump function have been adopted so that the number of split data registers can be programmed with the software during serial read/write operations.

The μ PD482235 is provided with the hyper page mode, an improved version of the fast page mode of the μ PD482234. The random access port can input and output data by \overline{CAS} clock operations of up to 33 MHz.

Features

Dual port structure (Random access port, Serial access port)

· Random access port (262, 144-word × 8-bit structure)

μ**PD482234**

	μPD482234-60	μPD482234-70
RAS access time	60 ns (MAX.)	70 ns (MAX.)
Fast page mode cycle time	40 ns (MIN.)	45 ns (MIN.)

μ**PD482235**

	μPD482235-60	μPD482235-70
RAS access time	60 ns (MAX.)	70 ns (MAX.)
Hyper page mode cycle time	30 ns (MIN.)	35 ns (MIN.)

- · Flash write function Note
- · Block write function (4 columns)Note
- · Mask write (Write-per-bit function)
- · 512 refresh cycles /8 ms
- · CAS before RAS refresh, RAS only refresh, Hidden refresh

Note Write-per-bit can be specified.

The information in this document is subject to change without notice.

- · Serial access port (512 words × 8 bits organization)
 - · Serial read/write cycle time

NEC

μPD482234-60, 482235-60	μPD482234-70, 482235-70
18 ns (MIN.)	22 ns (MIN.)

- · Serial data read/write
- · Split buffer data transfer
- · Binary boundary jump function

Version B, A, F, and E

There are four versions, B, A, F, and E, to both the μ PD482234 and μ PD482235. This data sheet can be applied to the versions B and A.

· How to identify each version

Each version is identified with its lot number (Refer to 7. Example of Stamping).

Ordering Information

Part Number	RAS Access Time ns (MAX.)	Package	Page Mode
μPD482234LE-60	60	40-pin plastic SOJ (400mil)	Fast page mode
μPD482234LE-70	70		
μPD482234G5-60	60	44-pin plastic TSOP (II)	
μPD482234G5-70	70	(400mil)	
μPD482235LE-60	60	40-pin plastic SOJ (400mil)	Hyper page mode
μPD482235LE-70	70		
μPD482235G5-60	60	44-pin plastic TSOP (II)	
μPD482235G5-70	70	(400mil)	

Pin Configurations (Marking Side)

Vcc ()	1		40	O GND
SC ()	2		39	⊖ SIO7
SIO0 🔿 🛶 🕨	3		38	⊖ SIO6
SIO1 O	4		37	
SIO2 🔾 🗕 🕨	5		36	⊖ SIO4
SIO3 ()	6		35	
DT/OE O	7		34	
W0/IO0 〇	8		33	
W1/IO1 〇	9	μμ	32	
W2/IO2 〇 	10	0 0 4 4 4	31	
W3/IO3 〇 	11	32 N 22 N	30	O GND
GND O	12	35L	29	O DSF
WB/WE	13	mm	28	O NC
RAS O	14		27	
A8 ()	15		26	
A7 ()	16		25	
A6 ()	17		24	O A1
A5 〇	18		23	
A4 ()	19		22	
Vcc ()	20		21	O GND
				J
A0 to A8	: Addres	s inputs		
W0 to W7/IO0 to IO7	: Mask d	lata selects/	/Data	inputs and outputs
SIO0 to SIO7	: Serial of	data inputs	and o	outputs
RAS	: Row ad	dress strob	e	
CAS	: Columr	n address si	trobe	
DT/OE	: Data tr	ansfer/Outp	ut er	able
WB/WE	: Write-p	er-bit/Write	enat	ble
SE	: Serial of	data input/O	utpu	t enable
SC	: Serial d	clock		
QSF	: Specia	l function ou	utput	
DSF	: Specia	I function er	nable	
Vcc	: Power	supply volta	ige	
GND	: Ground	i		
NC ^{Note}	: No con	nection		

40-pin plastic SOJ (400 mil)

Note Some signals can be applied because this pin is not connected to the inside of the chip.

44-pin plastic TSOP (II) (400 mil)

Note Some signals can be applied because this pin is not connected to the inside of the chip.

[MEMO]

١

Block Diagram

118

1. Pin Functions

This product is equipped with the RAS, CAS, WB/WE, DT/OE, A0 to A8, DSF, SC, SE inputs, QSF output, and W0 to W7/IO0 to IO7, SIO0 to SIO7 input/output pins.

		(1/3)
Pin Name	Input/ Output	Function
RAS (Row address strobe)	Input	This signal latches the row addresses (A0 to A8), selects the corresponding word line, and activates the sense amplifier. It also refreshes the memory cell array of the one line (4,096 bits) selected from the row addresses (A0 to A8).
		It also serves as the signal which selects the following operations. Write-per-bit Flash write CAS before RAS refresh Split data transfer
CAS (Column address strobe)		This signal latches the column addresses (A0 to A8), selects the digit line connecting the sense amplifier, and activates the output circuit which outputs data to the random access port.
		It also serves as the signal which selects the following operations. • Read/write • Block write • Color register set • Mask register set
A0 to A8 (Address inputs)		These are the address input pins, TAP register input pins, and STOP register input pins.
		Address input This is a 9-bit address bus. It inputs a total of 18 bits of the address signal, starting from the upper 9 bits (row address) and then followed by the lower 9 bits (column bits) (address multiplex method). Using these, one word memory cells (8 bits) are selected from the 262,144 words × 8 bits memory cell array. During use, specify the row address, activate the RAS signal, latch the row address, switch to the column address, and activate the CAS signal. After activating the RAS and CAS signals, each address signal is taken into the device. For this reason, the address input setup time (tASR, tASC) and hold time (tRAH, tCAH) are specified for activating the RAS and CAS signals.
		TAP Register Input In the data transfer cycle, this TAP register input pin functions as the address input pin which selects the memory cell for transferring (9 bits are latched at the falling edge of \overline{RAS}) and the TAP register data input pin which specifies the start addresses of the serial read/write operation after data transfer (9 bits are latched at the falling edge of the \overline{CAS}).
		STOP Register Input This pin functions as the STOP register input pin when the STOP register is set (STOP register data (9 bits) are latched at the falling edge of the RAS.)

Pin Name	Input/ Output	Function			
DT/OE (Data transfer/ output enable)	Input	These are the data transfer control signal and read operation control signal respectively. They have different functions in the data transfer cycle and read cycle.			
		Data transfer control signal (In data transfer cycle) The data transfer cycle is initiated when a low level is input to this pin at the falling edge of RAS.			
		Read operations control signal (In read cycle) Read operation is performed when this signal, and the \overline{RAS} and \overline{CAS} signals are activated. The input/output pin is high impedance when this signal is not activated. When the $\overline{WB}/\overline{WE}$ signal is activated while the $\overline{DT}/\overline{OE}$ signal is activated, the $\overline{DT}/\overline{OE}$ signal is invalid in the memory and read operations cannot be performed.			
WB/WE (Write-per-bit/ Write enable)		 These are the write operation control signal and mask write cycle (write-per- bit function) mask data input control signal, respectively. When this signal, RAS and CAS signals are activated, write operations or mask write can be performed. These mode are determined by the level of WB/WE at the falling edge of RAS. High level8-bit write cycle Low level Mask write cycle (Write-per-bit) 			
DSF (Special function enable)		 This signal controls the selection of functions. The selection of functions is determined by the level of this signal at the falling edge of the RAS and CAS. The functions will change as follows when this signal is high level. The data transfer cycle changes to a split data transfer cycle. The read/write cycle of each RAS clock changes to the flash write cycle. The write cycle of each CAS clock changes to the block write cycle. 			
W0 to W7/IO0 to IO7 (Mask data selects/ Data inputs, outputs)	Input/ Output	These are normally 8-bit data bus and are used for inputting and outputting data. (IO0 to IO7). Function as the mask data input pins (W0 to W7) in the mask write cycle (write-per-bit function). Write operations can be performed only for W0 to W7 that are input with a high level at the falling edge of RAS (new mask data). Functions as the column selection data input pin in the block write cycle.			

(2/3)

Pin Name	Input/ Output	Function
SC (Serial clock)	Input	This pin inputs the clock which controls the serial access port operation.
		Serial Read The data of the data register which is synchronized with the rising edge of the SC are output from the SIO0 to SIO7 pins and kept until the next SC rising edge.
		Serial Write The data from the SIO0 to SIO7 pins are latched at the rising edge of the SC and written in the data register.
SE (Serial data input/ output enable)		This is a control pin for the serial access port input/output buffer. It controls data output during serial reading and controls data input during serial writing. By inputting the serial clock, the serial pointer will operate even if SE has not been activated (high level input).
SIO0 to SIO7 (Serial data inputs/ outputs)	Input/ Output	These are the serial data input and output pins of the serial access port.
QSF (Special function output)	Output	 This is a position discrimination pin of the serial pointer (upper side or lower side). Which side is being serial accessed (upper side or lower side) can be discriminated according to the output of this pin. High level Upper side (Addresses 256 to 511) Low level Lower side (Addresses 0 to 255)

(3/3)

2. Random Access Port Operations

The operation mode is determined by the CAS, DT/OE, WB/WE, and DSF level at the falling edge of RAS and DSF level at the falling edge of CAS.

RAS Falling Edge		CAS				
	nas ra	uning Euge	Falling Edg			Operation Mode
CAS	DT/OE	WB/WE	DSF	DSF		
н	н	×	L	×		Read cycle
н	н	н	L	L		Write cycle
н	н	н	L	Н	, XCIE	Block write cycle
н	н	L	L	L	et o	Mask write cycle (New mask/Old mask) ^{Note 1}
н	н	L	L	н	N.	Block mask write cycle (New mask/Old mask)Note 1
н	н	н	н	н	Jeac	Color register set cycle
н	н	н	н	L	-	Write mask register set cycle
н	н	L	н	×		Flash write cycle (New mask/Old mask) ^{Note 1}
н	L	Н	L	×), ycle	Single read data transfer cycle
н	L	н	н	×	ster C	Split read data transfer cycle
н	L	L	L	×	Train	Single write data transfer cycle (New mask/Old mask)Note 1
н	L	L	н	×	Data	Split write data transfer cycle (New mask/Old mask)Note 1
L	×	×	L	×	cle	CAS before RAS refresh cycle (Option reset)Note 1, 2
L	×	н	н	×	S S	CAS before RAS refresh cycle (No reset)
L	×	L	н	×	rest	CAS before RAS refresh cycle (STOP register set)Note 2
н	н	×	L	×	Rei	RAS only refresh cycle

Table 2-1. Operation Mode

Notes 1. Observe the following conditions when using the new mask data or old mask data in these cycles. (1) Old mask data

Can be used after setting the mask data using the write mask register set cycle.

(2) New mask data

Can be used after setting the mask data using the \overline{CAS} before \overline{RAS} refresh cycle (Option reset cycle).

2. The STOP register is set to "FFH (11111111)" by the optional reset cycle.

Remark H: High level, L: Low level, X: High level or low level

2.1 Random Read Cycle

This product has a common 8-bit input/output pin. To output data, specify the address using the \overline{RAS} and \overline{CAS} clocks and then set $\overline{DT}/\overline{OE}$ to low level.

The data output will be kept until one of the following conditions is set.

- (1) Set RAS and CAS to high level
- (2) Set DT/OE to high level
- (3) Set $\overline{WB}/\overline{WE}$ to low level

The read cycle and data transfer cycle are differentiated according to the level of $\overline{\text{DT}}/\overline{\text{OE}}$ at the falling edge of the RAS clock. If $\overline{\text{DT}}/\overline{\text{OE}}$ is set to low level at the falling edge of the RAS clock, data transfer cycle operations will be initiated. Therefore, to set the read cycle, input a high level above tohe (MIN.) to $\overline{\text{DT}}/\overline{\text{OE}}$ from the falling edge of the RAS clock, and then input a low level.

Caution Set the DSF to low level at the falling edge of RAS. If set to high level, the memory cell data cannot be output.

2.1.1 Extended Read Data Output (µPD482235)

The μ PD482235 adopt the hyper page mode cycle which is a faster read/write cycle than the fast page mode of the μ PD482234 (Hyper page mode cycle time: 30 ns (MIN.)).

With this cycle, the read data output can be kept until the next \overline{CAS} cycle, and because the output is extended, the minimum cycle can easily be used. For example, by fixing $\overline{DT}/\overline{OE}$ at low level after dropping \overline{RAS} and executing the hyper page read cycle, each time the column address is latched at the falling edge of \overline{CAS} , the data output will be updated and kept until the next falling edge of \overline{CAS} . As a result, the output will be extended only during \overline{CAS} precharge time (tcp) as compared to the normal fast page mode.

Figure 2-1. Extended Data Output of Hyper Page Mode

- Notes 1. Time during which the output data is kept in the fast page read cycle.
 - 2. Time during which the output data is kept in the hyper page read cycle (part: Extended data output).

2.2 Random Write Cycle (Early Write, Late Write)

There are three types of random write cycles-the early write and late write. To use these cycles, activate the $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ clocks and set $\overline{\text{WB}}/\overline{\text{WE}}$ to low level.

The WB/WE also controls the mask data for the write-per-bit function (mask write cycle). Therefore, when performing the normal write cycle which does not use the write-per-bit function, set this pin to high level at the falling edge of the RAS clock.

2.2.1 Early Write Cycle

The early write cycle controls data writing according to the CAS clock.

To execute this cycle, set WB/WE to low level earlier than the CAS clock. The write data is taken into the device at the falling edge of the CAS clock.

2.2.2 Late Write Cycle

The late write cycle controls data writing according to the $\overline{\text{WE}}$ clock.

To execute this cycle, set $\overline{WB}/\overline{WE}$ to low level later than the \overline{CAS} clock. The write data is taken into the device at the falling edge of $\overline{WB}/\overline{WE}$. To set the output to high impedance at this time, keep $\overline{DT}/\overline{OE}$ at high level until $\overline{WB}/\overline{WE}$ is input.

2.3 Read Modify Write Cycle

The read modify write cycle performs data reading and writing in one RAS and CAS cycle.

To execute this cycle, delay $\overline{\text{WB}}/\overline{\text{WE}}$ from the late write cycle by trive (MIN.), tcwb (MIN.), and tawb (MIN.). Follow the toez and toep specifications so that the output data and input data do not clash in the data bus. The data after modification can be input after more than toep (MIN.) from the rising edge of $\overline{\text{DT}}/\overline{\text{OE}}$.

2.4 Fast Page Mode Cycle (µPD482234)

The μ PD482234 adopt the fast page mode. This mode accesses memory cells in the same row array in about 1/3 of the time taken by the normal random read/write cycle. This fast page mode cycle is executed by repeating the \overline{CAS} clock cycle more than two times while the \overline{RAS} clock is being activated. In this mode read, write and read modify write cycles are available for each of the consecutive \overline{CAS} cycles within the same \overline{RAS} cycle.

2.5 Hyper Page Mode Cycle (µPD482235)

The μ PD482235 adopt a hyper page mode cycle which is a faster read/write cycle than the fast page mode of the μ PD482234 (Hyper page mode cycle time: 30 ns (MIN.)).

In this cycle, because the read data output is kept until the following \overline{CAS} cycle and as a result, the output is extended, the minimum cycle can easily be used. The output is extended compared to the normal fast page mode of μ PD482234. Refer to **2.1.1 Extended Read Data Output**.

2.5.1 Setting the Output to the High Impedance State

The hyper page mode can use one of three methods of setting the output pin to the high impedance state depending on the version; these methods are \overline{WE} control and \overline{OE} control (latched control).

(1) WE control

After a high level is input to \overline{CAS} , when a pulse conforming to the twez specification is supplied to the \overline{WE} pin (\overline{WE} = enable) during the same \overline{CAS} cycle, the W/IO pin is held in the high impedance state until the next \overline{CAS} cycle.

(2) OE control (latched control)

After a high level is input to \overline{CAS} , when a high level is supplied to the \overline{OE} pin (\overline{OE} = disable) during the same \overline{CAS} cycle, the W/IO pin is held in the high impedance state until the next \overline{CAS} cycle. This specification enables efficient use of \overline{OE} interleaving during parallel connection.

2.6 Flash Write Cycle

This cycle writes the color register data in a 4,096-bit memory cell in one cycle. The memory cell range for one flash write cycle is 512 columns on the same row address (512-column $\times 8 \cdot IO = 4,096$ bits).

2.6.1 Execution of Flash Write Cycle

To execute the flash write cycle, set $\overline{\text{WB/WE}}$ to low level at the falling edge of $\overline{\text{RAS}}$. By using the write-per-bit function (new mask data/old mask data), only the required W/IO can be selected and written.

Remark _____ is the memory cell range that can be written in one flash write cycle.

2.7 Block Write Cycle

This cycle writes the color register data in 32-bit memory cell in one cycle. The memory cell range in which data can be written in one block write cycle is four continuous columns on one row address (4-column $\times 8 \cdot IO = 32$ bits).

Any column of the four columns can be selected and writing prohibited. Determine whether to write or prohibit writing according to the data selected for column.

2.7.1 Free Column Selection

Determine which column to select according to the W/IO pin to which the data selected for the column is to be input.

The four columns (1st to 4th) correspond to W0 to W3/IO0 to IO3 to which the data selected for column will be input (The following table shows the 1st to 4th columns specified by A0 and A1 and the corresponding W/IO pins to which the data selected will be input.).

2.7.2 Column Select Data

Input column select data for every four columns at the 32 bits (4-column $\times 8 \cdot 10$). The data will be written if the column select data is "1". Writing will be prohibited if the column select data is "0".

2.7.3 Execution of Block Write Cycle

At the falling edge of the slowest signal (CAS, WB/WE), input the "1" column select data or "0" column select data to W0 to W3/IO0 to IO3 corresponding to columns 1st to 4th.

By using the write-per-bit (new mask data/old mask data) function, only the required W/IO can be selected and written.

Selected 4 Columns	Column Address and Corresponding W/IO Pin			Column Select Data	Writing
	A1	A0	10		
1st column	0	0	100	1	Yes
				0	No
2nd column	0	1	101	1	Yes
				0	No
3rd column	1	0	102	1	Yes
				0	No
4th column	1	1	103	1	Yes
				0	No

Table 0.0	I/O Dine Imm	the suith Oalum	Colors Date	Corresponding		4.4.4.4.4.4.4.
i able 2-2.	I/O PINS INPI	ut with Colum	1 Select Data	Corresponding	g to Columns	151 10 411

Figure 2-5. Memory Cell Range That Can be Written in Block Write Cycle

Remarks 1. _____ is the memory cell range that can be written in one block write cycle.
2. () is the W/IO pin input with the column select data.

2.8 Register Set Cycle (Color Register, Write Mask Register)

This cycle writes data in the color register and write mask register. To execute the register set cycle, set \overline{CAS} , $\overline{DT}/\overline{OE}$, $\overline{WB}/\overline{WE}$ and DSF to high level at the falling edge of \overline{RAS} . Determine which register to select according to the DSF level at the falling edge of \overline{CAS} .

The register set cycle also serves as the RAS only refresh cycle.

Table 2-3	Register	Selection
-----------	----------	-----------

DSF level at CAS falling edge	Selected register		
High level	Color register		
Low level	Write mask register		

Caution After selecting the write mask register and writing the mask data, the write-per-bit function in the mask write cycle will be set for the old mask register. Refer to 2.9.1 Write-Per-Bit Function.

2.9 Mask Write Cycle

Cycles that use the write-per-bit function during the random write cycle, flash write cycle, block write cycle, write data transfer cycle, are called mask write cycles. In the fast page/hyper page mode write cycle, the mask data cannot be changed during the CAS cycle.

2.9.1 Write-Per-Bit Function

The write-per-bit function writes data using the mask data only in the required IO-pin. It writes when the mask data is "1" and prohibits writing when the data is "0".

W Pin	Mask Data	Writing	
W0 to W7	1	Yes	
	0	No	

Table 2-4. Mask Data Selection

2.9.2 Selecting Mask Data

There are two ways of selecting mask data. One is the new mask data method and the other is the old mask data method.

With the new mask data method, new mask data is set in the cycle writing. With the old mask data, mask data set in the write mask register is used.

(1) New Mask Data Method

This method is usable in all versions.

To switch to the mode using new mask data, set the DSF to low level at the falling edge of \overline{CAS} in the \overline{CAS} before \overline{RAS} refresh cycle.

As a result, the write-per-bit function can be used using the old mask data from the next mask write cycle.

(2) Old Mask Data Method

To switch to the mode using old mask data, set the DSF to low level at the falling edge of CAS in the write mask register set cycle, and write the mask data in the write mask register.

As a result, the write-per-bit function can be used using the old mask data from the next mask write cycle.

2.9.3 Execution of Mask Write Cycle

To execute the write-per-bit function, select the new mask data method or old mask data method, and set $\overline{\text{WB/WE}}$ to low level at the falling edge of $\overline{\text{RAS}}$ of each write cycle. At this time, input the mask data to the W pin in the write cycle using the new mask data. In the write cycle using the old mask data, as the mask data set to the write mask register will be used, there is no need to input the mask data to the W pin.

This function is valid only at the falling edge of RAS. In the fast page/hyper page mode write cycle, the mask data determined in the first RAS cycle for moving onto the next fast page/hyper page mode will be valid while the fast page/hyper page mode write cycle continues.

2.10 Refresh Cycle

The refresh cycle of this product consists of the CAS before RAS refresh cycle and refresh cycle using external address inputs (RAS only refresh and read/write refresh). The refresh period is the same as the DRAM (Standard), 512 cycles/8 ms.

2.10.1 Refresh Cycle Using External Address Input (RAS Only Refresh and Read/Write Refresh)

By specifying the row address using the 9 bits between A0 to A8 at the falling edge of \overline{RAS} , setting \overline{CAS} and $\overline{DT/OE}$ to high level, and keeping \overline{CAS} at high level while \overline{RAS} is low level, the memory cells on the specified row address (512 × 8 bits) can be refreshed. At this time, refresh is executed, W0 to W7/IO0 to IO7 pins are kept at high impedance, and information such as memory contents, register data, function settings, etc. are all also kept.

At the falling edge of \overline{RAS} , all cycles whose \overline{CAS} are high level input the external address. Therefore, in addition to the read/write cycle operations, etc. refresh operations similar to the \overline{RAS} only refresh operations will be performed. For this reason, in systems in which addresses in the memory are always increased or decreased, it may not be necessary to perform refresh again.

When several devices exist on one bus, data will clash in the bus during the above read/write operations unless each device is equipped with a buffer. Consequently, as it is necessary to set the I/O line to high impedance beforehand during refresh, normally the \overline{RAS} only refresh operation is used.

2.10.2 CAS Before RAS Refresh Cycle (Including Hidden Refresh)

When CAS is set to low level at the falling edge of RAS, the refresh address is supplied from the internal refresh address counter. The internal refresh address counter is increased automatically each time this refresh cycle is executed.

During this refresh cycle, functions of random access port and serial access port are selected as follows according to the DSF and $\overline{WB}/\overline{WE}$ levels at the falling edge of \overline{RAS} .

(1) When DSF is low level: Optional reset

All STOP register data become "1" and the mask write cycle switches to the new mask data method.

(2) When DSF is high level and WB/WE is low level: STOP register set

The STOP register data is input from the A0 to A7 pins at the falling edge of RAS.

(3) When DSF, WB/WE is high level: No reset

Only refresh operations are performed and the function selection state is kept.

In all cases, the W/IO pin is kept at high impedance. When CAS and DT/OE are kept low level while the mode is changed to the CAS before RAS refresh cycle following the read cycle, and RAS is activated, the hidden refresh cycle will be initiated. In this cycle, the W/IO pin does not become high impedance and the data read in the former read cycle will be kept as it is.

Because internal memory operations are equivalent to CAS before RAS refresh, no external addresses are required.

Like CAS before RAS refresh, in the hidden cycle, functions will be selected according to the level of DSF, $\overline{\text{WB}}/\overline{\text{WE}}$ at the falling edge of $\overline{\text{RAS}}$. Operations are guaranteed when DSF is low level and when DSF, $\overline{\text{WB}}/\overline{\text{WE}}$ are high level.

3. Serial Access Port Operations

There are two types of data transfer cycles-data transfer from the random access port to the serial access port (read data transfer) and data transfer from the serial access port to the random access port (write data transfer). There are also two types of data transfer methods-single data transfer and split data transfer.

To set the data transfer cycle, input high level to \overline{CAS} and input low level to $\overline{DT}/\overline{OE}$ at the falling edge of \overline{RAS} . The data transfer type differs according to the input levels of $\overline{WB}/\overline{WE}$, and DSF at the falling edge of \overline{RAS} .

At RAS Falling Edge		je		Transfer Direction		
CAS	DT/OE	WB/WE	DSF	Data Transfer Type	Transfer Source	Transfer Destination
н	L	н	L	Single read data transfer Random access		Serial access
н	L	н	н	Split read data transfer	port	port
н	L	L	L	Single mask write data transfer ^{Note}	Serial access	Random access
н	L	L	н	Split mask write data transfer ^{Note}	port	port

Table 3-1. Serial Access Port Operation Mode

Note Write-per-bit function can be specified.

Remark H: High level, L: Low level

3.1 Single Data Transfer Method

With this method, 512 words $\times 8$ bits (whole memory range of serial access port) data is transferred at one time. This method can be used in both write data transfer and read data transfer.

3.1.1 Single Read Data Transfer Cycle

This cycle transfers the 4K-bit (512 words \times 8 bits) data of the random access port to the serial access port in one cycle.

(a) Setting of Single Read Data Transfer Cycle

To set the data transfer cycle, input a high level to \overline{CAS} and $\overline{WB}/\overline{WE}$ and low level to $\overline{DT}/\overline{OE}$ and DSF at the falling edge of \overline{RAS} .

Using the row address input to A0 to A8 at the falling edge of $\overrightarrow{\text{RAS}}$, the memory cells (512 words × 8 bits) of the transfer source of the random access port can be selected. The address data input to A0 to A8 at the falling edge of $\overrightarrow{\text{CAS}}$ will be latched as the TAP register data of serial access port. Refer to **3.4 TAP Register**.

(b) Execution of Single Read Data Transfer Cycle

To execute the data transfer cycle, set the single read data transfer cycle and then input a high level to $\overline{\text{DT}}$ / $\overline{\text{OE}}$ and $\overline{\text{RAS}}$.

When SC is active (edge control), data transfer will be executed at the rising edge of $\overline{DT}/\overline{OE}$. When SC is inactive (self control), it will be executed at the rising edge of \overline{RAS} . At the same time, the serial address pointer jumps to the start column (TAP) of the next serial read cycle, and the TAP register will be set the empty state.

After the transfer is completed, the new serial access port data is output after tscA following the rise of the SC clock that occurs after tsbH if the SC is active, and after tsbHR if SC is inactive.

Caution When the single read data transfer cycle is executed while the serial access port is performing serial write operations, the serial access port will start serial read operations at the rising edge of \overline{RAS} . Refer to 4. Electrical Characteristics Read Data Transfer Cycle (Serial Write \rightarrow Serial Read Switching) Timings.

3.1.2 Single Mask Write Data Transfer Cycle

This cycle transfers 4K-bit (512 words \times 8 bits) data of the serial access port to the random access port in one cycle. Because $\overline{WB}/\overline{WE}$ is low level at the falling edge of \overline{RAS} , the write-per-bit function always functions in this transfer cycle. Refer to **2.9 Mask Write Cycle**.

(a) Setting of Single Mask Write Data Transfer Cycle

To set this cycle, latch the data to be transferred to the serial access port, and then input a high level to \overline{CAS} and low level to $\overline{DT/OE}$, $\overline{WB/WE}$, and DSF at the falling edge of \overline{RAS} . Because the write-per-bit function functions in this transfer operation, for the new mask data method, the mask data must be supplied to W0 to W7 at the falling edge of \overline{RAS} , and for the old mask data method, there is no need to control the mask data.

The memory cells (512 words \times 8 bits) of the transfer destination of the random access port are selected using the row address input to A0 to A8 at the falling edge of $\overline{\text{RAS}}$. The address data input to A0 to A8 at the falling edge of $\overline{\text{CAS}}$ is input as the TAP register data of serial access port. Refer to **3.4 TAP Register**.

(b) Execution of Single Mask Write Data Transfer Cycle

To execute this cycle, set the single write data transfer cycle and then input high level to \overline{RAS} . Data will be transferred at the rising edge of \overline{RAS} . At the same time, the serial address pointer jumps to the start column (TAP) of the next serial write cycle, and the TAP register will be set the empty state.

After the transfer is completed, the new serial access port data is latched at the rising edge of the SC clock that occurs after tsphr.

- Caution 1. When the single mask write data transfer cycle is executed while the serial access port is performing serial read operations, the serial access port will start serial write operations at the rising edge of RAS. Refer to 4. Electrical Characteristics Write Data Transfer Cycle (Serial Read → Serial Write Switching) Timings.
 - 2. Always make CAS low level in the write data transfer cycle and latch TAP. If write data transfer is performed without setting TAP, serial access port operations cannot be ensured until either one of the following points. If the SC clock is input during this time, the serial register value also cannot be guaranteed.
 - Until the falling edge of CAS during the write data transfer cycle
 - · Until the read data transfer cycle is executed again

Figure 3-1. Single Write Data Transfer and TAP Operation

3.2 Split Data Transfer Method

With this method, the 512 words \times 8 bits (whole memory range of serial access port) data is divided into the lower column (0 to 255) and upper column (256 to 511), each consisting of 256 words \times 8 bits.

Because the columns are divided into upper and lower columns with this method, data transfer can be performed on lower column (or upper column) while performing read/write operations in the upper column (or lower column). For this reason, transfer timing design is easy. This transfer method can be used in both write data transfer and read data transfer.

3.2.1 Split Read Data Transfer Cycle

This cycle divides the 4K-bit (512 words × 8 bits) data of the random access port into the lower and upper columns and transfers them to the serial access port.

In this cycle, the serial read/write can be performed in the columns to which data is not transfer.

(a) Setting of Split Read Data Transfer Cycle

To set this cycle, input a high level to \overline{CAS} , \overline{WB}/WE and DSF, and low level to $\overline{DT}/\overline{OE}$ at the falling edge of \overline{RAS} .

The memory cells (512 words \times 8 bits) of the transfer source of the random access port are selected using the row address input to A0 to A8 at the falling edge of \overline{RAS} . And the address data input to A0 to A7 at the falling edge of \overline{CAS} is latched as the TAP register data of serial access port. Refer to **3.4 TAP Register**. There is no need to control address data input to A8).

(b) Execution of Split Read Data Transfer Cycle

To execute this cycle, set the split read data transfer cycle and then input the high level to \overline{RAS} . Data will be transferred at the rising edge of \overline{RAS} . Data is transferred from the random access port to the serial access port automatically at the column side (Column not pointed to by the serial address pointer) where serial access port is inactive. To confirm the transferred column side, check the output state of the QSF pin. Refer to 3.3.3 QSF Pin Output.

When the serial address pointer comes to the jump source address specified by the STOP register, the serial address pointer jumps to the start column (TAP) of the serial read/write cycle at the inactive column side, and the TAP register will be set the empty state.

3.2.2 Split Mask Write Data Transfer Cycle

This cycle divides the 4K-bit (512 words \times 8 bits) data of the serial access port into the lower and upper columns and transfers them to the random access port.

In this cycle, serial read/write can be performed for columns to which data is not transferred.

Because WB/WE is low level at the falling edge of RAS, the write-per-bit function always functions in this transfer cycle. Refer to 2.9 Mask Write Cycle.

(a) Setting of Split Mask Write Data Transfer Cycle

To set this data transfer cycle, input a high level to \overline{CAS} and DSF and low level to $\overline{DT}/\overline{OE}$, $\overline{WB}/\overline{WE}$ at the falling edge of \overline{RAS} . Because the write-per-bit function functions in this transfer operation, for the new mask data method, the mask data must be supplied to W0 to W7 at the falling edge of \overline{RAS} , and for the old mask data method, there is no need to control the mask data.

The memory cells (512 words \times 8 bits) of the transfer destination of the random access port are selected using the row address input to A0 to A8 at the falling edge of \overline{RAS} . The address data input to A0 to A7 at the falling edge of \overline{CAS} is input as the TAP register data. Refer to **3.4 TAP Register**. There is no need to control address data input to A8.

(b) Execution of Split Mask Write Data Transfer Cycle

To execute this cycle, set the split write data transfer cycle and then input high level to \overline{RAS} . Data will be transferred at the rising edge of \overline{RAS} . Data is transferred from the serial access port to the random access port automatically at the column side (Column not pointed to by the serial address pointer) where the serial access port is inactive. To confirm the transferred column side, check the output state of the QSF pin. Refer to **3.3.3 QSF Pin Output**.

When the serial address pointer comes to the jump source address specified by the STOP register, the serial address pointer jumps to the start column (TAP) of the serial read/write cycle at the inactive column side, and the TAP register will be set the empty state.

Figure 3-2. Split Mask Write Data Transfer and TAP Operations

3.3 Serial Read/Write

The serial access port (512 words \times 8 bits) is independent from the random access port and can perform read and write operations. The serial access port performing single data transfer and split data transfer can not perform read and write operations independently.

Caution When the power is turned on, the serial access port sets into the input (write) mode and the SIO pin is the high impedance state.
3.3.1 Serial Read Cycle

To set the serial read cycle, perform the single read data transfer cycle (The mode will not change in the split read data transfer cycle.).

Execute the single read data transfer cycle and latch the data and TAP data. By inputting a clock signal to the SC pin and inputting a low level to the \overline{SE} pin, data will be output from the serial address pointer specified by TAP register. The data synchronizes with the rising edge of the SC clock and is output from the SIO0 to SIO7 pin, and the data is kept until the next rising edge of the SC clock.

(a) Reading-Jump

The \overline{SE} pin controls the SIO pin output buffer independently from the SC clock. By setting the \overline{SE} pin to high level even while inputting the SC clock, SIO0 to SIO7 pins become high impedance. But the operations of serial address pointer will be continued while the SC clock is being input even though reading has been prohibited from \overline{SE} pin. Reading-jump of the column can be performed using this function.

3.3.2 Serial Write Cycle

To set the serial write cycle, perform the single write data transfer cycle (The mode will not change in the split write data transfer cycle.). To prevent the transfer data from being written in the memory cell of the random access port, set all bits of the mask data to "0" and control the mask data.

Execute the single write data transfer cycle and set the serial write cycle. By inputting the clock signal to the SC pin and inputting a low level to the \overline{SE} pin, data can be latched from the serial address pointer specified by TAP register. The data synchronizes with the rising edge of the SC clock and is input from SIO0 to SIO7 pins. Be sure to follow the specifications for the setup time (tses) and hold time (tseh) of \overline{SE} pin for the SC clock.

(a) Writing-Jumps (Intermittent Writing)

The \overline{SE} pin controls writing operations independently from the SC clock. By setting the \overline{SE} pin to high level even while inputting the SC clock, writing will not be executed. But the operations of serial address pointer will be continued while the SC clock is being input even though writing has been prohibited from \overline{SE} pin. These functions enable writing-jumps (intermittent writing) to be performed. The masked data is kept as the old data.

3.3.3 QSF Pin Output

QSF pin determines whether the serial address pointer is at the upper column side (addresses 256 to 511) or the lower column side (addresses 0 to 255) at the rising edge of the following SC clock during serial read or write. In other words, it outputs the uppermost bit (A8) of the column address of the serial address pointer.

During split data transfer cycle, data is transferred at the column side where serial access port is inactive. The following table shows the QSF pin output state and the access pointer of following SC clocks.

QSF Output	Access Address of Following SC clock	Transfer Destination (Split Data Transfer Method)
Low level	Addresses 0 to 255	Addresses 256 to 511
High level	Addresses 256 to 511	Addresses 0 to 255

3.4 TAP (Top Access Point) Register

The TAP register is a data register which specifies the start address (first serial address point = TAP) of the serial read or serial write.

Set data to this register each time a transfer cycle is executed.

3.4.1 Setting of TAP Register

The data input to A0 to A8 (A0 to A7: Split data transfer) at the falling edge of CAS during the setting of a transfer cycle is set as the TAP register data. By executing the transfer cycle, the start address of the following serial read (or write) operations is specified by the data of the TAP register and the TAP register will be kept in the empty state until the TAP register is set again.

In the split data transfer cycle, because the inactive serial access port column addresses are specified by the data of the TAP register automatically, there is no need to control the A8 data.

Caution When the TAP register is empty, the address following the 511 serial address point will be 0. In addition, because the serial address pointer will not jump to the column specified by the STOP register, the binary boundary jump function cannot be used. Refer to 3.6 Binary Boundary Jump Function.

3.5 STOP Register

The STOP register is a data register which determines the column of the jump source when jumping to a different column side (lower column or upper column) in the split data transfer cycle. Five types of columns can be selected for starting jump (jumping is possible at 2, 4, 8, 16, and 32 points). The following table shows the correspondence between the column at the jump source and data of the STOP register.

Once set, the STOP register data is kept until it is set again.

3.5.1 Setting of STOP Register

To set the STOP register, set WB/WE to low level at the falling edge of RAS in the CAS before RAS refresh cycle. The data input to A0 to A7 will be input as the STOP register data.

s	тор	Reç	giste	r Data	Divi-	Bit	luma Course Bit Column (Desimel Number)
A7	A6	A5	A4	A3 to A0	sion	Width	Jump Source Bit Column (Decimal Number)
1	1	1	1	1	1/2	256	255
Ľ					1/2	200	511
6	1	1	1	1	1/4	128	127, 255
Ľ				'	1/4	120	383, 511
0	0	1	1	1	1/8	64	63, 127, 191, 255
Ŭ	ľ				1/0		319, 383, 447, 511
0	0	0	1	1	1/16	32	31, 63, 95, 127, 159, 191, 223, 255
Ŭ	Ŭ	Ŭ			1/10	02	287, 319, 351, 383, 415, 447, 479, 511
0	0	0	0	1	1/32	16	15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255
Ľ		Ĵ			1,02		271, 287, 303, 319, 335, 351, 367, 383, 399, 415, 431, 447, 463, 479, 495, 511

Table 3-2. S	TOP Register	Data and Jump	Source Column
--------------	---------------------	---------------	---------------

Remark A8: Don't care.

Caution. When the power is supplied, all STOP register data will be undefined.

3.6 Binary Boundary Jump Function

This function causes the serial address pointer jump to the TAP specified by the TAP register when the pointer moves to a column specified by the STOP register (split data transfer).

This function cannot be used when the jump destination address is not set (TAP register is empty).

This function facilitates tile map application which divides the screen into tiles and manages data for each tile.

3.6.1 Usage of Binary Boundary Jump Function

After setting the STOP register, execute the single read (or write) data transfer and initialize the serial access port. The initialization process will switch the serial access port read (or write) operations, set TAP, set the serial access port data, and set the TAP register to empty. By inputting the serial clock in this state, the serial access port will read (or write) operations from TAP in ascending order of address. Because the TAP register is in the empty state, the address at the jump source set by the STOP register will be ignored, and the serial address pointer will move on.

When the column to be jumped approaches, execute split data transfer and set new TAP data in the TAP register. The serial pointer will jump at the desired jump source address. Jump can be controlled freely by repeating these operations.

3.7 Special Operations

3.7.1 Serial Address Set Operations

Because the serial address counter is undefined when the power up, the serial access port operations when the SC clock is input are not guaranteed. Execute single read (or write) transfer after turning on the power. The serial access port will be initialized, enabling serial access port operations to be performed.

3.7.2 Lap Around Operations

If all the data of the register is read (write) during data transfer while the serial read (write) cycle is being executed, the serial pointer will repeat 0 to 511.

3.7.3 Cycle After Power On

After supplying power, initialize the internal circuitry by waiting for at least 100 μ s after Vcc ≥ 4.5 V, then supplying at least 8 RAS clock cycles. The RAS clock only requires that trac, traas, and trap are satisfied; there is no problem if other signals are in any state. Note however that if the signal supplied to RAS, CAS, DT/OE, and WB/WE is high at power-on, the serial access port and each register have the following values.

- Serial access port Input mode, SIO: High impedance
- Color register Undefined
- Mask register All "1"
- TAP register Undefined
- STOP register Undefined

4. Electrical Characteristics

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Pin voltage	VT	-1.0 to +7.0	v
Supply voltage	Vcc	-1.0 to +7.0	v
Output current	lo	50	mA
Power dissipation	PD	1.5	W
Operating ambient temperature	TA	0 to 70	°C
Storage temperature	Tstg	–55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits in the operational sections of this characteristics. Exposure to Absolute Maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
High level input voltage	Vін	2.4		5.5	v
Low level input voltage	Vil	-1.0		+0.8	v
Operating ambient temperature	TA	0		70	°C

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input leakage current	lı.	V _{IN} = 0 V to 5.5 V, Other inputs are 0 V	-10		+10	μA
Output leakage current	Ιοι	W/IO, SIO, QSF are inactive, Vout = 0 V to 5.5 V	-10		+10	μA
Random access port high level output voltage	Vон (R)	Іон (R) = -1.0mA	2.4			V
Random access port low level output voltage	Vol (R)	lol (R) = 2.1mA			0.4	V
Serial access port high level output voltage	Vон (S)	lон (S) = -1.0mA	2.4			v
Serial access port low level output voltage	Vol (S)	lol (S) = 2.1mA			0.4	V

DC Characteristics 1 (Recommended operating conditions unless otherwise noted)

Capacitance (T_A = 25 °C, f = 1MHz)

Parameter	Symbol	Test conditions		TYP.	MAX.	Unit
Input Capacitance	Cit	RAS, CAS, WB/WE, DT/OE, DSF, SE, SC			8	pF
	C12	A0 to A8			5	
Input/Output Capacitance	Сю	W/IO (0 to 7), SIO (0 to 7)			7	pF
Output Capacitance	Co	QSF			7	pF

DC Characteristics 2 (Recommended operating conditions unless otherwise noted)^{Note 1} (μ PD482234)

	Serial Acc	ess Port		µPD48	2234-60	μPD482234-70			
Random Access Port	ndom Access Port Standby A		Symbol	MIN.	MAX.	MIN.	MAX.	Unit	Conditions
Random Read/Write Cycle	0		Icc1		110		130	mA	Note 2
trc = trc (MIN.), Io = 0mA		0	Icc7		155		195	1	
Standby	0		Icc2		10		10	mA	
Dout = high impedance					1		1	mA	Note 3
		0	Ісся		55		70	mA	
RAS only refresh cycle	0		lcc3		110		115	mA	Note 4
trc = trc (MIN.) $(AS = ViH, AS = ViH)$		0	lcca		155		180		
Fast page mode cycle	0		Icc4	-	100		100	mA	Note 5
tPC = tPC (MIN.)		0	Icc10		145		165		i i
CAS before RAS refresh cycle	0		Iccs		110		90	mA	
IRC = IRC (MIN.)		0	ICC11		155		155		
Data transfer cycle	0		Icc6		120		140	mA	
TRC = TRC (MIN.)		0	ICC12		165		205		
Color/Mask write register set cycle	0		ICC13		100		120	mA	
LHC = LHC(IMIN.)		0	Icc14		145		185		
Flash write cycle	0		Icc15		100		120	mA	
LHC = LHC (MIIN.)		0	ICC16		145		185		
Block write cycle	0		Icc17		120		130	mA	
IRC = IRC (MIN.)		0	ICC18		165		195		
Fast page mode block write cycle	0		Icc19		100		110	mA	
IPC = IPC (MIN.)		0	Icc20		130		175		Note 5

- Notes 1. No load on W/IO, SIO, QSF. The current consumption actually used depends on the output load and operating frequency of each pin.
 - 2. A change in row addresses must not occur more than once in tRc = tRc (MIN.).
 - 3. RAS, CAS, and SE remain at VIH ≥ Vcc 0.2 V, and A0 to A8, WB/WE, DT/OE, DSF, SC remain at VIH ≥ Vcc 0.2 V or VIL ≤ GND + 0.2 V.
 - 4. When the address input is set to V_{IH} or V_{IL} during the tras period.
 - 5. Value when the address in trc one cycle is changed once when trc = trc (MIN.).

DC Characteristics 2 (Recommended operating conditions unless otherwise noted) $^{\rm Note \ 1}$ (µPD482235)

	Serial Acce	ess Port		μPD482	2235-60	μPD482235-70			
Random Access Port	Standby	Active	Symbol	MIN.	MAX.	MIN.	MAX.	Unit	Conditions
Random Read/Write Cycle	0		Icc1		110		130	mA	Note 2
$t_{RC} = t_{RC}$ (MIN.), $I_{O} = 0mA$		0	Icc7		155		195		
Standby	0		lcc2		10		10	mA	
Dout = high impedance					1		1	mA	Note 3
		0	Іссв		55		70	mA	
RAS only refresh cycle	0		Icc3		110		115	mA	Note 4
$t_{RC} = t_{RC}$ (MIN.)		0	lcca		155		180		
Hyper page mode cycle	0		lcc4		120		130	mA	Note 5
the = the (MIN.)		0	Icc10		155		195		
CAS before RAS refresh cycle	0		lccs		110		90	mA	
HC = HC(WHV)		0	lcc11		155		155		
Data transfer cycle	0		Iccs		120		140	mA	
IRC = IRC (IVIIN.)		0	ICC12		165		205		
Color/Mask write register set cycle	0		Icc13		100		120	mA	
		0	Icc14		145		185		
Flash write cycle	0		Icc15		100		120	mA	
		0	Icc16		145		185		
Block write cycle	0		lcc17		120		130	mA	
		0	ICC18		165		195		
Hyper page mode block write cycle	0		ICC19		140		135	mA	
HPC = HPC(MIN)		0	Icc20		190		200		Note 5

Notes 1. No load on W/IO, SIO, QSF. The current consumption actually used depends on the output load and operating frequency of each pin.

- 2. A change in row addresses must not occur more than once in tRc = tRc (MIN.).
- RAS, CAS, and SE remain at V_{IH} ≥ V_{CC} 0.2 V, and A0 to A8, WB/WE, DT/OE, DSF, SC remain at V_{IH} ≥ V_{CC} 0.2 V or V_{IL} ≤ GND + 0.2 V.
- 4. When the address input is set to V_{IH} or V_{IL} during the tras period.
- 5. Value when the address in the one cycle is changed once when the = the (MIN.).

AC Characteristics (Recommended operating conditions unless otherwise noted)

- · All applied voltages are referenced to GND.
- After supplying power, initialize the internal circuitry by waiting for at least 100 µs after Vcc ≥ 4.5 V, then supplying at least 8 RAS clock cycles. The RAS clock only requires tec, teas, and tep are satisfied; there is no problem if other signals are in any state.
- Measure at tr = 5 ns

NEC

· AC characteristic measuring conditions

(1) Input voltage, timing

(2) Output voltage determined

(3) Output load conditions

(Common)

(1/2)

Parameter	Symbol	μPD48 μPD48	2234-60 2235-60	μPD48 μPD48	2234-70 2235-70	Unit	Conditions
	-	MIN.	MAX.	MIN.	MAX.		
Random read or write cycle time	tric	120		140		ns	
Access time from RAS	trac		60		70	ns	Note 1
Access time from CAS	tcac		15		20	ns	Note 1
Access time from column address	taa		30		35	ns	Note 1
Access time from OE	toea		15		20	ns	
RAS precharge time	tRP	50		60		ns	
CAS precharge time (Non page mode)	tcpn	10		10		ns	
CAS precharge time (Fast page/Hyper page mode)	tcp	10		10		ns	
CAS high to RAS low precharge time	t CRP	5		10		ns	
RAS high to CAS low precharge time	trpc	10		10		ns	
RAS pulse width (Non page mode)	tras	60	10,000	70	10,000	ns	
RAS pulse width (Fast page/Hyper page mode)	trasp	60	100,000	70	100,000	ns	
CAS pulse width	tcas	15	10,000	20	10,000	ns	
CAS pulse width	thcas	10	10,000	10	10,000	ns	
Write command pulse width	twp	10		12		ns	
RAS hold time	tяsн	15		20		ns	
CAS hold time	tcsн	60		70		ns	
Row address setup time	tasr	0		0		ns	
Row address hold time	trah	10		10		ns	
Column address setup time	tasc	0		0		ns	
Column address hold time	tсан	10		10		ns	
Read command setup time	trics	0		0		ns	
Data in setup time	tos	0		0		ns	Note 2
Data in hold time	tdн	12		12		ns	Note 2
DT high setup time	toнs	0		0		ns	
DT high hold time	tонн	10		10		ns	
Write-per-bit setup time	twвs	0		0		ns	
Write-per-bit hold time	twвн	10		10		ns	
DSF setup time from RAS	tFRS	0		0		ns	
DSF hold time from RAS	tfrh	10		10		ns	
DSF setup time from CAS	trcs	0		0		ns	
DSF hold time from CAS	tғсн	10		12		ns	

1

Parameter	Symbol	μPD48 μPD48	2234-60 2235-60	μPD482234-70 μPD482235-70		Unit	Conditions	
		MIN.	MAX.	MIN.	MAX.			
Write-per-bit selection setup time	tws	0		0		ns		
Write-per-bit selection hold time	twн	10		10		ns		
Column address to RAS lead time	TRAL	30		35		ns		
Write command to RAS lead time	trwL	20		20		ns		
Write command to CAS lead time	tcwL	15	1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	15		ns		
RAS to CAS delay time	trcd	20	40	20	50	ns	Note 1	
RAS to column address delay time	trad	15	30	15	35	ns	Note 1	
Output disable time from RAS high	tofr	0	15	0	15	ns	Notes 3, 4	
Output disable time from CAS high	toff	0	15	0	15	ns	Notes 3, 4	
Output disable time from CAS high (Hyper page mode)	torc	0	15	0	15	ns	Notes 3, 4	
Output disable time from OE high	toez	0	15	0	15	ns	Notes 3, 4	
Output disable time from WB/WE low	twez	0	15	0	15	ns	Notes 3, 4	
Write command pulse width	twpz	10		12		ns	Note 4	
Transition time (Rise/Fall)	tт	3	35	3	35	ns		

(2/2)

Notes 1. For read cycle, access time is defined as follows:

Input conditions	Access time	Access time from RAS
trad \leq trad (MAX.) and trcd \leq trcd (MAX.)	trac (MAX.)	trac (MAX.)
trad > trad (MAX.) and trcd \leq trcd (MAX.)	taa (MAX.)	trad + taa (MAX.)
trcd > trcd (MAX.)	tcac (MAX.)	trcd + tcac (MAX.)

tRAD (MAX.) and tRCD (MAX.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (tRAC, tAA, tCAC) is to be used for finding out data will be available. Therefore, the input conditions tRAD \geq tRAD (MAX.) and tRCD \geq tRCD (MAX.) will not cause any operation problems.

- 2. These parameters are referenced to the following points.
 - (1) Early write cycle : The falling edge of CAS
 - (2) Late write cycle : The falling edge of WB/WE
 - (3) Read modify write cycle : The falling edge of WB/WE
- 3. tsez, toez, twez, toef, toef, toef, and toec define the time when the output achieves the condition of high impedance and is not referenced to VoH or VoL.

4. Control pins RAS, CAS, DT/OE, WB/WE to set pin W/IO to high impedance. Because the timings at which RAS, CAS and DT/OE are set to high level and WB/WE is set to low level affect the high impedance state, the specifications will change as follows. Controlling by RAS is usable in hyper page mode (μPD482235).

Fast page mode (µPD482234)

	RAS	CAS	DT/OE	WB/WE	Remark
toff	x	$L \rightarrow H$	L	н	
twez	x	L	L	$H \rightarrow L$	twpz should be met.
toez	x	L	$L \rightarrow H$	н	

Hyper page mode (μ PD482235)

	RAS	CAS	DT/OE	WB/WE	Remark
tofr	$L \rightarrow H$	н	L	н	
torc	Н	$L \rightarrow H$	L	н	
twez	L	L	L	$H \rightarrow L$	twpz should be met.
toez	L	L	$L \rightarrow H$	н	

Remark H : High level

L : Low level

x : Don't care

 \rightarrow : Transition

(Read cycle)

Parameter	Symbol	μPD482234-60 μPD482235-60		μΡD482234-70 μΡD482235-70		Unit	Conditions
		MIN.	MAX.	MIN.	MAX.		
Random read or write cycle time	trc	120		140		ns	
Fast page mode cycle time	tPC	40		45		ns	
Hyper page mode cycle time	tнрс	30		35		ns	
Access time from RAS	t rac		60		70	ns	Note 1
Access time from CAS	tcac		15		20	ns	Note 1
Access time from column address	taa		30		35	ns	Note 1
Access time from OE	toea		15		20	ns	
Access time from CAS trailing edge	tacp		35		40	ns	
OE to RAS inactive setup time	toes	0		0		ns	÷
Read command hold time after RAS high	trrн	0		0		ns	Note 2
Read command hold time after CAS high	tясн	0		0		ns	Note 2
Output hold time from CAS	tонс	3		5		ns	
Output disable time from RAS high	tofr	0	15	0	15	ns	Notes 3, 4
Output disable time from CAS high	toff	0	15	0	15	ns	Notes 3, 4
Output disable time from CAS high (Hyper page mode)	torc	0	15	0	15	ns	Notes 3, 4
Output disable time from OE high	toez	0	15	0	15	ns	Notes 3, 4
Output disable time from WB/WE low	twez	0	15	0	15	ns	Notes 3, 4
Write command pulse width	twpz	10		12		ns	Note 4

Notes 1. For read cycle, access time is defined as follows:

Input conditions	Access time	Access time from RAS
trad \leq trad (MAX.) and trcd \leq trcd (MAX.)	trac (MAX.)	trac (MAX.)
trad > trad (MAX.) and trcd \leq trcd (MAX.)	taa (MAX.)	trad + taa (MAX.)
trcd > trcd (MAX.)	tcac (MAX.)	trcd + tcac (MAX.)

tRAD (MAX.) and tRCD (MAX.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (tRAC, tAA, tCAC) is to be used for finding out data will be available. Therefore, the input conditions tRAD \geq tRAD (MAX.) and tRCD \geq tRCD (MAX.) will not cause any operation problems.

- 2. Either tRCH (MIN.) or tRRH (MIN.) should be met in read cycles.
- 3. tsez, toez, twez, toFF, toFF, and toFc define the time when the output achieves the condition of high impedance and is not referenced to VoH or VoL.

4. Control pins RAS, CAS, DT/OE, WB/WE to set pin W/IO to high impedance. Because the timings at which RAS, CAS and DT/OE are set to high level and WB/WE is set to low level affect the high impedance state, the specifications will change as follows. Controlling by RAS is usable in hyper page mode (μPD482235).

Fast page mode (µPD482234)

	RAS	CAS	DT/OE	WB/WE	Remark
toff	x	L → H	L	н	
twez	x	L	L	$H \rightarrow L$	twpz should be met.
toez	x	L	$L \rightarrow H$	н	

Hyper page mode (µPD482235)

	RAS	CAS	DT/OE	WB/WE	Remark
tofr	$L \rightarrow H$	Н	L	н	
torc	Н	$L \rightarrow H$	L	н	
twez	L	L	L	$H \rightarrow L$	twpz should be met.
toez	L	L	$L \rightarrow H$	н	

Remark H : High level

L : Low level

x : Don't care

 \rightarrow : Transition

NEC

Read Cycle (µPD482234)

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Read Cycle (Extended data output: μ PD482235)

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page Mode Read Cycle (µPD482234)

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Hyper Page Mode Read Cycle (Extended data output: µPD482235)

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Hyper Page Mode Read Cycle (WE controlled) (Extended data output: μPD482235)

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Hyper Page Mode Read Cycle ($\overline{\text{OE}}$ controlled: Latched control) (Extended data output: μ PD482235)

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

(Write cycle)

Parameter	Symbol	μPD482234-60 μPD482235-60		μPD482234-70 μPD482235-70		Unit	Conditions
		MIN.	MAX.	MIN.	MAX.		
Random read or write cycle time	tric	120		140		ns	
Fast page mode cycle time	tec	40		45		ns	
Hyper page mode cycle time	tнрс	30		35		ns	
Write command setup time	twcs	0		0		ns	Note
Write command hold time	twcн	10		12		ns	
OE high hold time after WB/WE low	tоен	0		0		ns	
Write-per-bit setup time	twвs	0		0		ns	
Write-per-bit hold time	twвн	10		10		ns	
Write-per-bit selection setup time	tws	0		0		ns	
Write-per-bit selection hold time	twн	10		10		ns	

Note twcs ≥ twcs (MIN.) is the condition for early write cycle to be set. Dour becomes high impedance during the cycle.

trwb \geq trwb (MIN.), tcwb \geq tcwb (MIN.), tawb \geq tawb (MIN.), are conditions for read modify write cycle to be set. The data of the selected address is output to Dout.

If any of the above conditions are not met, pin W/IO will become undefined.

Note tcas for the μ PD482234 thcas for the μ PD482235

Remarks 1. When DSF is high level : Block write cycle

When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Late Write Cycle/Late Block Write Cycle

Note tcas for the μ PD482234 thcas for the μ PD482235

Remarks 1. When DSF is high level : Block write cycle

When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page, Hyper Page Mode Early Write Cycle/Fast Page, Hyper Page Mode Early Block Write Cycle

- Notes 1. tpc for the μ PD482234 thpc for the μ PD482235
 - 2. tcas for the μ PD482234 thcas for the μ PD482235
- Remarks 1. When DSF is high level : Block write cycle
 - When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page, Hyper Page Mode Late Write Cycle/Fast Page, Hyper Page Mode Late Block Write Cycle

- **Notes 1.** tPc for the μPD482234 tHPc for the μPD482235
 - 2. tcas for the μPD482234 thcas for the μPD482235
- Remarks 1. When DSF is high level : Block write cycle
 - When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Flash Write Cycle

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

(Read modify write cycle)

Parameter	Symbol	μPD482234-60 μPD482235-60		μPD482234-70 μPD482235-70		Unit	Conditions
		MIN.	MAX.	MIN.	MAX.		
Read modify write cycle time	trwc	165		185		ns	
Fast page mode read modify write cycle time	tprwc	90		90		ns	
Hyper page mode read modify write cycle time	thprwc	80		90		ns	
Access time from CAS trailing edge	tacp		35		40	ns	
Access time from previous CAS	tace		60		65		Note 1
Access time from previous WB/WE	tawe		55		60		Note 1
Write-per-bit setup time	twвs	0		0		ns	
Write-per-bit hold time	twвн	10		10		ns	
Write-per-bit selection setup time	tws	0		0		ns	
Write-per-bit selection hold time	twн	10		10		ns	
OE high hold time after WB/WE low	tоен	0		0		ns	
CAS to WB/WE delay time	tcwp	40		40		ns	Note 2
RAS to WB/WE delay time	trwd	85		90		ns	Note 2
Column address to WB/WE delay time	tawd	55		55		ns	Note 2
OE high to data in setup delay time	toed	15		15		ns	

Notes 1. In the hyper page mode, the hyper page mode read modify write cycle, the hyper page mode read modify block write cycle, this parameter is valid when the read cycle changes to the write cycle.

 twcs ≥ twcs (MIN.) is the condition for early write cycle to be set. Dour becomes high impedance during the cycle.

tawb \geq tawb (MIN.), tcwb \geq tcwb (MIN.), tawb \geq tawb (MIN.), are conditions for read modify write cycle to be set. The data of the selected address is output to Dout.

If any of the above conditions are not met, pin W/IO will become undefined.

Read Modify Write Cycle/Read Modify Block Write Cycle

Note tcas for the μ PD482234 tHcas for the μ PD482235

Remarks 1. When DSF is high level : Block write cycle

When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page Mode Read Modify Write Cycle (µPD482234)/ Fast Page Mode Read Modify Block Write Cycle (µPD482234)

Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Hyper Page Mode Read Modify Write Cycle (Extended data output: μPD482235)/ Hyper Page Mode Read Modify Block Write Cycle (Extended data output: μPD482235)

- Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

(Refresh cycle)

Parameter	Symbol	μPD482234-60 μPD482235-60		μΡD482234-70 μΡD482235-70		Unit	Conditions
		MIN.	MAX.	MIN.	MAX.		
Refresh period	tref		8		8	ms	
RAS high to CAS low precharge time	tRPC	10		10		ns	
CAS setup time (for CAS before RAS refresh cycle)	tcsn	0		0		ns	
CAS hold time (for CAS before RAS refresh cycle)	tсня	10		10		ns	
OE to RAS inactive setup time	toes	0		0		ns	
SC setup time from RAS	tsrs	10		10		ns	Notes 1, 2, 3
SC hold time from RAS	tsrn	10		10		ns	Note 1

Notes 1. The tsRs and tsRH in the hidden refresh cycle, CAS before RAS refresh cycle (STOP register set cycle and optional reset cycle) are specified to guarantee the serial port operations until the transfer cycle is executed after the STOP register value is changed. When the STOP register value is not to be changed, or when the binary boundary jump function is not used (when the TAP register is empty), tsRs and tsRH will not be specified.

- 2. tssc (split read data transfer cycle) and tsns (split write data transfer cycle) are specified at the rising edge of SC which reads/writes the address of the jump source in the binary boundary jump function. tsdhr (split read data transfer cycle and split write data transfer cycle) is specified at the rising edge of SC which reads/writes the address of the jump destination in the binary boundary jump function. The rising edge of these SCs cannot be input in periods (1) and (2).
 - (1) Split read data transfer cycle: Period from the rising edge of the SC specifying tssc to that of the SC specifying tsphr (Refer to Note 2 at the Split Read/Write Data Transfer Cycle Timing Chart.)
 - (2) Split write data transfer cycle: Period from the rising edge of the SC specifying tses to that of the SC specifying tsere (Refer to Note 2 at the Split Read/Write Data Transfer Cycle Timing Chart.)
- 3. Restrictions to the split read data transfer cycle during serial write operation
 - (1) If split read data transfer is attempted for an address which is already involved in serial write, normal operation is not guaranteed, except for a period in which no serial write has been performed, that is from when SE goes low at the rising edge of SC to just before the serial write begins.
 - (2) If split read data transfer is attempted when an address involved in serial write is the boundary address specified by the STOP register, normal operation is not guaranteed, except for a period in which no serial write has been performed, that is from just after the mask write or mask split write transfer cycle is executed to just before the serial write is started by setting <u>SE</u> to a low level at the rising edge of SC.

RAS Only Refresh Cycle

- Remarks 1. WB/WE : Don't care
 - 2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Remarks 1. Address, WB/WE, DT/OE : Don't care

2. Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.

CAS Before RAS Refresh Cycle (STOP Register Set)

Remarks 1. DT/OE : Don't care

2. Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.

Remarks 1. Address, DT/OE : Don't care

2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

- Remarks 1. When DSF is high level : Reset select = No Reset When DSF is low level : Reset select = Optional Reset
 - 2. Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.

Hidden Refresh Cycle (Extended data output: µPD482235)

2. Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.

(Register set cycle)

Parameter	Symbol	μPD482234-60 μPD482235-60		μPD482234-70 μPD482235-70		Unit	Condition
		MIN.	MAX.	MIN.	MAX.		
RAS high to CAS low precharge time	trpc	10		10		ns	
Write command setup time	twcs	0		0		ns	Note
Write command hold time	twcн	10		12		ns	

Note twcs ≥ twcs (MIN.) is the condition for early write cycle to be set. Dour becomes high impedance during the cycle.

tRWD \geq tRWD (MIN.), tcwD \geq tcwD (MIN.), tAWD \geq tAWD (MIN.), are conditions for read modify write cycle to be set. The data of the selected address is output to Dout.

If any of the above conditions are not met, pin W/IO will become undefined.

Register Set Cycle (Early Write)

Notes 1. tcas for the μ PD482234

theas for the μ PD482235

2. Refresh address (RAS only refresh)

- Remarks 1. When DSF is high level : Register select = Color Register Select When DSF is low level : Register select = Write Mask Register Select
 - 2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Register Set Cycle (Late Write)

- Notes 1. tcas for the μ PD482234 thcas for the μ PD482235
 - 2. Refresh address (RAS only refresh)
- Remarks 1. When DSF is high level : Register select = Color Register Select When DSF is low level : Register select = Write Mask Register Select
 - 2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

NEC

(Data transfer cycle)

Parameter	Symbol	μPD482 μPD482	2234-60 2235-60	μPD482234-70 μPD482235-70		Unit	Conditions
		MIN.	MAX.	MIN.	MAX.		
Serial clock cycle time	tscc	18		22		ns	
Serial output access time from SC	tsca		15		17	ns	
Propagation delay time from SC to QSF	tpd		20		20	ns	1
Propagation delay time from RAS to QSF	trad		80		95	ns	
Propagation delay time from CAS to QSF	tcap		60		65	ns	
Propagation delay time from DT/OE to QSF	tdad		30		30	ns	
Propagation delay time from RAS high to QSF	tdar		40		40	ns	
Serial input enable time from RAS	tszн	20		20		ns	
SC precharge time	tscl	5		5		ns	
SC pulse width	tscн	5		5		ns	
DT high pulse width	t dtp	20		20		ns	
DT low setup time	tols	0		0		ns	
Serial output hold time after SC high	tsoн	3		5		ns	
Serial data in setup time	tsis	0		0		ns	
Serial data in hold time	tsıн	10		10		ns	
SC setup time from RAS	tses	10		10		ns	Notes 1, 2, 3
DT low hold time after RAS low	trdh	55		65		ns	Note 4
DT low hold time after RAS low	trdhs	10		25		ns	Note 4
DT low hold time after CAS low	tсрн	15		20		ns	Note 4
DT low hold time after address	tadd	20		25		ns	Note 4
SC low hold time after $\overline{\text{DT}}$ high	tsdh	40		40		ns	Note 4
SC low hold time after $\overline{\text{DT}}$ high	tsdhr	40		45		ns	Notes 2, 4
SC high to CAS low	tssc	10		10		ns	Notes 2, 3, 4
SC high to DT high	tsdd	0		0		ns	Note 4
DT high to RAS high delay time	t DTR	0		0		ns	Note 4
Serial input disable time from SC	tsız	0		0		ns	
Serial output disable time from RAS	tsnz	0		0		ns	

- Notes 1. The tsRs and tsRH in the hidden refresh cycle, CAS before RAS refresh cycle (STOP register set cycle and optional reset cycle) are specified to guarantee the serial port operations until the transfer cycle is executed after the STOP register value is changed. When the STOP register value is not to be changed, or when the binary boundary jump function is not used (when the TAP register is empty), tsRs and tsRH will not be specified.
 - 2. tssc (split read data transfer cycle) and tsns (split write data transfer cycle) are specified at the rising edge of SC which reads/writes the address of the jump source in the binary boundary jump function. tsdhr (split read data transfer cycle and split write data transfer cycle) is specified at the rising edge of SC which reads/writes the address of the jump destination in the binary boundary jump function. The rising edge of these SCs cannot be input in periods (1) and (2).
 - (1) Split read data transfer cycle: Period from the rising edge of the SC specifying tssc to that of the SC specifying tsbHR (Refer to Note 2 at the Split Read/Write Data Transfer Cycle Timing Chart.)
 - (2) Split write data transfer cycle: Period from the rising edge of the SC specifying tsps to that of the SC specifying tsphr (Refer to Note 2 at the Split Read/Write Data Transfer Cycle Timing Chart.)
 - 3. Restrictions to the split read data transfer cycle during serial write operation
 - (1) If split read data transfer is attempted for an address which is already involved in serial write, normal operation is not guaranteed, except for a period in which no serial write has been performed, that is from when SE goes low at the rising edge of SC to just before the serial write begins.
 - (2) If split read data transfer is attempted when an address involved in serial write is the boundary address specified by the STOP register, normal operation is not guaranteed, except for a period in which no serial write has been performed, that is from just after the mask write or mask split write transfer cycle is executed to just before the serial write is started by setting SE to a low level at the rising edge of SC.
 - 4. One of the following specifications will be valid depending on the type of read data transfer method used.
 - (1) $\overline{\text{DT}}/\overline{\text{OE}}$ edge control: Satisfy the following specifications.
 - For DT/OE edge inputs : tRDH, tCDH, tADD, tDTR
 - For SC inputs : tspb, tsph
 - (2) Self control: Satisfy the following specification.
 - For DT/OE edge inputs : tRDHS
 - For SC inputs : tssc, tsdhr

Read Data Transfer Cycle (SC Active)

Note tcas for the μ PD482234 thcas for the μ PD482235

Note tcas for the μ PD482234 tHcas for the μ PD482235

I.

Read Data Transfer Cycle (Serial Write \rightarrow Serial Read Switching)

Split Read Data Transfer Cycle

Notes 1. tcas for the μ PD482234

theas for the μ PD482235

- 2. Do not perform the following two serial read/write during this period.
 - Serial read/write of jump source address set to the STOP register of the data register which does not perform the data transfer cycle.
 - · Serial read/write of last address of data register (Address 255 or 511)

NEC

Write Data Transfer Cycle

Note tcas for the μ PD482234 tHcas for the μ PD482235

Write Data Transfer Cycle (Serial Read \rightarrow Serial Write Switching)

NEC

Split Write Data Transfer Cycle

Notes 1. tcas for the μ PD482234

theas for the μ PD482235

- 2. Do not perform the following two serial read/write during this period.
 - Serial read/write of jump source address set to the STOP register of the data register which does not perform the data transfer cycle.
 - Serial read/write of last address of data register (Address 255 or 511)

(Serial read, write cycle)

Parameter	Symbol	μPD482 μPD482	μPD482234-60 μP μPD482235-60 μP		μPD482234-70 μPD482235-70		Condition	
	MIN. MAX		MAX.	MIN.	MAX.			
Serial clock cycle time	tscc	18		22		ns		
Serial output access time from \overline{SE}	t sea		15		17	ns		
Serial output access time from SC	tsca		15		17	ns		
Propagation delay time from SC to QSF	tpd		20		20	ns		
SC precharge time	tscL	5		5		ns		
SE precharge time	tsep	5		5		ns		
SC pulse width	tscн	5		5		ns		
SE pulse width	tsee	5		5		ns		
SE setup time	tses	0		0		ns		
SE hold time from SC	tseн	10		10		ns		
Serial data in setup time	tsis	0		0		ns		
Serial data in hold time	tsıн	10		10		ns		
Serial output hold time after SC high	tsoн	3		5		ns		
Output disable time from SE high	tsez	0	15	0	15	ns	Note	
SE low to serial output setup delay time	tsoo	3		5		ns		

Note tsez, toez, twez, tore, tore, and torc define the time when the output achieves the condition of high impedance and is not referenced to VoH or VoL.

Serial Read Cycle

- Notes 1. Last address of data register (Address 255 or 511)
 - 2. Starting address of data register newly read (address is specified in the data transfer cycle).
- **Remark** Because the random access port operates independently of the serial access port, there is no need to control the RAS, CAS, Address, WB/WE, DT/OE, WI/O, DSF pins in this cycle.

Serial Write Cycle

- Notes 1. Last address of data register (Address 255 or 511)
 - 2. Starting address of data register newly read (address is specified in the data transfer cycle).
- **Remark** Because the random access port operates independently of the serial access port, there is no need to control the RAS, CAS, Address, WB/WE, DT/OE, WI/O, DSF pins in this cycle.

5. Package Drawings

40 PIN PLASTIC SOJ (400 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
В	26.29 ^{+0.2} -0.35	1.035+0.008
С	10.16	0.400
D	11.18±0.2	0.440±0.008
E	1.08±0.15	0.043 ^{+0.006} -0.007
F	0.7	0.028
G	3.5±0.2	0.138±0.008
н	2.4±0.2	0.094+0.009
I	0.8 MIN.	0.031 MIN.
J	2.6	0.102
к	1.27(T.P.)	0.050(T.P.)
м	0.40±0.10	$0.016^{+0.004}_{-0.005}$
N	0.12	0.005
Р	9.40±0.20	0.370±0.008
۵	0.15	0.006
Т	R0.85	R0.033
U	0.20+0.10	0.008+0.004 -0.002

P40LE-400A-2

44 PIN PLASTIC TSOP(II) (400 mil)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	18.63 MAX.	0.734 MAX.
В	0.93 MAX.	0.037 MAX.
С	0.8 (T.P.)	0.031 (T.P.)
D	0.32+0.08	0.013±0.003
E	0.1±0.05	0.004 ± 0.002
F	1.2 MAX.	0.048 MAX.
G	0.97	0.038
н	11.76±0.2	0.463±0.008
I	10.16±0.1	0.400 ± 0.004
J	0.8±0.2	0.031+0.009 -0.008
к	0.145 ^{+0.025} -0.015	0.006±0.001
L	0.5±0.1	0.020+0.004 -0.005
м	0.13	0.005
N	0.10	0.004
Р	3°+7° -3°	3°+7° -3°
		S44G5-80-7.IE4

[MEMO]

6. Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD482234, μ PD482235.

Types of Surface Mount Device

μPD482234LE-××	: 40-pin plastic SOJ (400 mil)
μPD482235LE-××	: 40-pin plastic SOJ (400 mil)
μPD482234G5-××	: 44-pin plastic TSOP (II) (400 mil)
μPD482235G5-××	: 44-pin plastic TSOP (II) (400 mil)

7. Example of Stamping

Letter B in the fifth character position in a lot number signifies version B, letter A, version A, letter F, version F, and letter E, version E.

NEC	JAPAN
D482235	
××××□×	×××

Lot number

[MEMO]

Synchronous GRAM

NEC

MOS INTEGRATED CIRCUIT μ PD481850

8M-bit Synchronous GRAM

Description

The μ PD481850 is a synchronous graphics memory (SGRAM) organized as 131,072 words × 32 bits × 2 banks random access port.

This device can operate up to 100 MHz by using synchronous interface. Also, it has 8-column Block Write function to improve capability in graphics system.

This product is packaged in 100-pin plastic QFP (14 × 20 mm).

Features

- 131,072 words × 32 bits × 2 banks memory
- · Synchronous interface (Fully synchronous DRAM with all input signals are latched at rising edge of clock)
 - : Pulsed interface
 - : Automatic precharge and controlled precharge commands
 - : Ping-pong operation between the two internal memory banks
 - : Up to 100 MHz operation frequency
- · Possible to assert random column address in every cycle
- Dual internal banks controlled by A9 (Bank Address: BA)
- · Byte control using DQM0 to DQM3 signals both in read and write cycle
- 8-column Block Write (BW) function
- · Persistent write per bit (WPB) function
- · Wrap sequence: Sequential
- Programmable burst length (1, 2, 4, 8 and full page)
- Programmable CAS latency (2 and 3)
- Power Down operation and Clock Suspend operation
- · Auto refresh (CBR refresh) or self refresh capability
- Single 3.3 V \pm 0.3 V power supply
- · LVTTL compatible inputs and outputs
- 100-pin Plastic QFP (14 × 20 mm)
- 1,024 refresh cycles/16 ms
- · Burst termination by Precharge command
- · Burst termination by Burst stop command (in case of full-page burst)

Ordering Information

Part number	Cycle time ns (MIN.)	Clock frequency MHz (MAX.)	Package
μPD481850GF-A10-JBT	10	100	100-pin Plastic QFP (14 × 20 mm)
μPD481850GF-A12-JBT	12	83	
µPD481850GF-A15-JBT	15	66	

The information in this document is subject to change without notice.

Part Number

Synchronous GRAM

	μ PD48	1	8	5	0	GF	-	A	10
NEC CMOS Application Specific	Memory	Τ							
Device code 1: Graphics RAM Capacity 8: 8M bits]							
Words organization									
Function									
Package GF: QFP									
Vcc A: 3.3 V ± 0.3 V									
Cycle time 10: 10 ns 12: 12 ns						·····			

15: 15 ns

Pin Configuration (Marking Side)

100-pin Plastic QFP (14 × 20 mm)

Block Diagram

1. Input/Output Pin Function

Pin name	Input/Output	Function
CLK	Input	CLK is the master clock input. Other inputs signals are referenced to the CLK rising edge.
CKE	Input	CKE determine validity of the next CLK (clock). If CKE is high, the next CLK rising edge is valid; otherwise it is invalid. If the CLK rising edge is invalid, the internal clock is not asserted and the μ PD481850 suspends operation. When the μ PD481850 is not in burst mode and CKE is negated, the device enters power down mode. During power down mode, CKE must remain low. In Self refresh mode, low level on this pin is also used as part of the input command to specify Self refresh.
CS	Input	$\overline{\text{CS}}$ low starts the command input cycle. When $\overline{\text{CS}}$ is high, commands are ignored but operations continue.
RAS, CAS, WE	Input	$\overline{\text{RAS}}, \overline{\text{CAS}}$ and $\overline{\text{WE}}$ have the same symbols on conventional DRAM but different functions. For details, refer to the command table.
DSF	Input	DSF is part of the inputs of graphics command of the μ PD481850. If DSF is inactive (Low level), μ PD481850 operates as same as SDRAM.
A0 - A8	Input	Row Address is determined by A0 - A8 at the CLK (clock) rising edge in the activate command cycle. Column Address is determined by A0 - A7 at the CLK rising edge in the read or write command cycle. A8 defines the precharge mode. When A8 is high in the precharge command cycle, both banks are precharged; when A8 is low, only the bank selected by A9 is precharged. When A8 high in read or write command cycle, the precharge start automatically after the burst access.
A9		A9 is the bank address signal (BA). In command cycle, A9 low selects bank A and A9 high selects bank B.
DQM0 - DQM3	Input	DQM controls I/O buffers. DQM0 corresponds to the lowest byte (DQ0 to DQ7), DQM1 corresponds to DQ8 to DQ15, DQM2 corresponds to DQ16 to DQ23. DQM3 corresponds to DQ24 to DQ31. In read mode, DQM controls the output buffers like a conventional \overrightarrow{OE} pin. DQM high and DQM low turn the output buffers off and on, respectively. The DQM latency for the read is two clocks. In write mode, DQM controls the word mask. Input data is written to the memory cell if DQM is low but not if DQM is high. The DQM latency for the write is zero.
DQ0 - DQ31	Input/Output	DQ pins have the same function as I/O pins on a conventional DRAM. These are normally 32-bit data bus and are used for inputting and outputting data. • Function as the mask data input pins in the special register set command. Write operations can be performed after Active command with WPB (old mask data). • Functions as the column selection data input pin in the block write cycle.
Vcc Vss VccQ VssQ	(Power supply)	Vcc and Vss are power supply pins for internal circuits. VccQ and VssQ are power supply pins for the output buffers.

2. Commands

Mode register set command

 $(\overline{CS}, \overline{RAS}, \overline{CAS}, \overline{WE}, DSF = Low)$

The μ PD481850 has a mode register that defines how the device operates. In this command, A0 through A9 are the data input pins. After power on, the mode register set command must be executed to initialize the device.

The mode register can be set only when both banks are in idle state. During 20 ns (tesc) following this command, the μ PD481850 cannot accept any other commands.

Refer to 6. Programming the Mode Register.

Bank activate command

 $(\overline{CS}, \overline{RAS}, DSF = Low, \overline{CAS}, \overline{WE} = High)$

The μ PD481850 has two banks, each with 512 rows.

This command activates the bank selected by A9 (BA) and a row address selected by A0 through A8.

This command corresponds to a conventional DRAM's RAS falling.

Fig. 2 Row address strobe and bank active command

Fig. 3 Row address strobe and bank active command with WPB enable

Bank activate command with WPB enable

 $(\overline{CS}, \overline{RAS} = Low, \overline{CAS}, \overline{WE}, DSF = High)$

This command is same as Bank activate command. After this command, write per bit function is available. Mask register's data is used as write mask data.

Refer to 12. Write/Block Write with Write Per Bit.

Precharge command

 $(\overline{CS}, \overline{RAS}, \overline{WE}, DSF = Low, \overline{CAS} = High)$

This command begins precharge operation of the bank selected by A9 (BA) and A8. When A8 is High, both banks are precharged, regardless of A9. When A8 is Low, only the bank selected by A9 is precharged. A9 low selects bank A and A9 high selects bank B.

After this command, the μ PD481850 can't accept the activate command to the precharging bank during the (precharge to activate command period). This command can terminate the current burst operation (2, 4, 8, full page burst length).

This command corresponds to a conventional DRAM's RAS rising. Refer to **10. Precharge** and **11. Auto Precharge**.

Write command

 $(\overline{CS}, \overline{CAS}, \overline{WE}, DSF = Low, \overline{RAS} = High)$

If the mode register is in the burst write mode, this command sets the burst start address given by the column address to begin the burst write operation. The first write data must be input with this write operation. The first write data in burst mode can input with this command with subsequent data on following clocks.

Fig. 4 Precharge command

Fig. 5 Column address and write command

Fig. 6 Column address and read command

Read command

 $(\overline{CS}, \overline{CAS}, DSF = Low, \overline{RAS}, \overline{WE} = High)$

This command sets the burst start address given by the column address. Read data is available after \overline{CAS} latency requirements have been met.

CBR (auto) refresh command

 $(\overline{CS}, \overline{RAS}, \overline{CAS}, DSF = Low, \overline{WE}, CKE = High)$

This command is a request to begin the CBR refresh operation. The refresh address is generated internally.

Before executing CBR refresh, both banks must be precharged.

After this cycle, both banks will be in the idle (precharged) state and ready for a bank activate command.

During the period (from refresh command to refresh or activate command), the μ PD481850 cannot accept any other command.

Self refresh entry command

 $(\overline{CS}, \overline{RAS}, \overline{CAS}, DSF, CKE = Low, \overline{WE} = High)$

After the command execution, self refresh operation continues while CKE remains low. When CKE goes high, the μ PD481850 exits the self refresh mode.

During self refresh mode, refresh interval and refresh operation are performed internally, so there is no need for external control.

Before executing self refresh, both banks must be precharged.

Fig. 8 Self refresh entry command

Fig. 9 Burst stop command in Full Page mode

Burst stop command in full page

 $(\overline{CS}, \overline{WE}, DSF = Low, \overline{RAS}, \overline{CAS} = High)$

This command can stop the current full page burst (BL = 256) operation. If BL is set to 2, 4, 8, to execute this command is Nop.

Refer to 14. Read/Write Command Interval and 15. Burst Termination.

No operation

 $(\overline{CS}, DSF = Low, \overline{RAS}, \overline{CAS}, \overline{WE} = High)$

This command is not a execution command. No operations begin or terminate by this command.

CLK CKE H CS RAS CAS WE DSF A8 (Bank address) A8

Fig. 10 No operation

Fig. 11 Special register set command

CLK	
CKE	Н
CS	$\overline{}$
RAS	
CAS	
WE	
DSF	XXX XXX
A9	
A8	
Add	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DQi	

Fig. 12 Masked block write command

CLK		
CKE	Н	
ĊŚ		
RAS	***	V
CAS	***	
WE	***	
DSF	***	W
A9	***	
A8	**	
Add	**	X
DQi	Column k	

Special register set command

 $(\overline{CS}, \overline{RAS}, \overline{CAS}, \overline{WE} = Low, DSF = High)$

The μ PD481850 has two special registers for graphics commands. One is color register and the other is mask register. In this command, A0 through A9 are the data input pins for the register select (color or mask register). DQ0 through DQ31 are the data input pins for the Color data or the WPB data.

During 20 ns (tesc) following this command, the μ PD481850 can not accept any other commands.

Refer to 8. Programming the Special Register.

Masked block write command

 $(\overline{CS}, \overline{CAS}, \overline{WE} = Low, \overline{RAS}, DSF = High)$

This command activates 8-column block write function. In this command, the burst length = 1. Write data comes from color register, column address mask data is input from DQi in this command.

Refer to 13. Block Write.

3. Simplified State Diagram

4. Truth Table

4.1 Command Truth Table

Eunction	Symbol	CKE		<u></u>	RAS	CAS	WE	DSE	Address		
Function	Symbol	n–1	n		170	CAS	**	031	A9	A8	A7 - A0
Device deselect	DESL	н	×	н	×	×	×	×	×	×	×
No operation	NOP	н	×	L	н	н	н	L	×	×	×
Burst stop in full page	BST	н	×	L	н	н	L.	L	×	×	×
Read	READ	н	×	L	н	L	н	L	ВА	L	CA
Read with auto precharge	READA	н	×	L	н	L	н	L	BA	н	CA
Write	WRIT	н	×	L	н	L	L	L	ВА	L	CA
Write with auto precharge	WRITA	н	×	L	н	L	L	L	ВА	н	CA
Masked block write	BW	н	×	L	н	L	L	н	BA	L	CA
Masked block write with auto precharge	BWA	н	×	L	н	L	L	н	ВА	н	CA
Bank activate	ACT	н	×	L	L	н	н	L	ВА	RA	
Bank activate with WPB enable	ACTWPB	н	×	L	L	н	н	н	BA	RA	
Precharge select bank	PRE	н	×	L	L	н	L	L	BA	L	×
Precharge all banks	PALL	н	×	L	L	н	L	L	×	н	×
Mode register set	MRS	н	×	L	L	L	L	L	OP. CO	DDE	
Special register set	SRS	н	×	L	L	L	L	н	OP. CO	DDE	

Remark H = High level, L = Low level, × = High or Low level (Don't care), BA = Bank address (A9), RA = Row address, CA = Column address

4.2 DQM Truth Table

Eurotion	Symbol	С	KE	DOMi	
	Symbol	n-1	n	DOM	
Data write/output enable	ENBi	н	×	L	
Data mask/output disable	MASKi	н	×	н	

Remark H = High level, L = Low level, × = High or Low level (Don't care), i = 0, 1, 2, 3

4.3 CKE Truth Table

Current state	Eurotion	Sumbol	Cł	٢E		DAS			DSE	Addross
Current state	Function	Symbol	n-1	n	03	hA3	UAS	VVC	DOF	Address
Activating	Clock suspend mode entry		н	L	×	×	×	×	×	×
Any	Clock suspend		L	L	×	×	×	×	×	×
Clock suspend	Clock suspend mode exit		L	н	×	×	×	×	×	×
ldle	CBR refresh command	REF	н	н	L	L	L	н	L	×
Idle	Self refresh entry	SELF	н	L	L	L	L	н	L	×
Solf refresh	Salf rafraab avit		L	н	L	н	н	н	×	×
Seir reiresii	Sen reiresn exit		L	н	H × × × ×	×				
Idle	Power down entry		н	L	×	×	×	×	×	×
Power down	Power down exit		L	н	×	×	×	×	×	×

Remark H = High Level, L = Low level, × = High or Low level (Don't care)

4.4 Operative Command Table^{Note 1}

Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Idle	н	×	×	×	×	×	DESL	Nop or Power down	2
	L	н	н	н	×	×	NOP	Nop or Power down	2
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	3
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	3
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	3
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	3
	L	L	н	н	н	BA, RA	ACTWPB	Bank active with WPB: Latch RA	
	L	L	н	н	L	BA, RA	ACT	Bank active: Latch RA	
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	Nop	11
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	CBR refresh/Self refresh	4, 12
	L	L	L	L	н	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	Mode register access	12
Bank active	н	×	×	×	×	×	DESL	Nop	
	L	н	н	н	×	×	NOP	Nop	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	3
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	Begin read; Latch CA: Determine AP	5
	L	н	L	L	н	BA, CA, A8	BW/BWA	Begin block write: Latch CA: Determine AP	5
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	Begin write; Latch CA: Determine AP	5
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	Precharge	6
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
									(2/7)
-------------------	----------	----------	-----	----	-----	------------	------------	---	-------
Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Read	н	×	×	×	×	×	DESL	Continue burst to end \rightarrow Bank active	
	L	н	н	н	×	x	NOP	Continue burst to end \rightarrow Bank active	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	1, 2, 4, 8 burst length; Nop (Continue burst	
								to end \rightarrow Bank active)	
	<u> </u>	<u> </u>						Full page burst; Burst stop \rightarrow Bank active	
		н	L	н	н	×	Undefined	ILLEGAL	
		н	L	н	L	BA, CA, A8	READ/READA	Term burst, new read: Determine AP	7
	L	н	L	L	н	BA, CA, A8	BW/BWA	Term burst, Start block write: Determine AP	7, 8
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	Term burst, start write: Determine AP	7, 8
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	Term burst, precharge timing for reads	
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Write/Block write	н	×	×	×	×	×	DESL	Continue burst to end \rightarrow Write recovering	
	L	н	н	н	×	×	NOP	Continue burst to end \rightarrow Write recovering	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	1, 2, 4, 8 burst length; Nop (Continue burst	
			.					to end \rightarrow Bank active)	
	<u> </u>							Full page burst; Burst stop \rightarrow Bank active	
		н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	Term burst, start read: Determine AP	7, 8
	L	н	L	L	н	BA, CA, A8	BW/BWA	Term burst, new block write: Determine AP	7
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	Term burst, new write: Determine AP	7
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	Term burst, precharge timing for writes	3, 9
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

(3/7)

Current state	cs	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Read with	н	×	×	×	×	×	DESL	Continue burst to end \rightarrow precharging	
auto precharge	L	н	н	н	×	×	NOP	Continue burst to end \rightarrow precharging	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Write/Block write with auto	н	×	×	×	×	×	DESL	Continue burst to end \rightarrow Write recovering with auto precharge	
precharge	L	н	н	н	×	×	NOP	Continue burst to end \rightarrow Write recovering with auto precharge	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

									(4/7)
Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Precharging	н	×	×	×	×	×	DESL	Nop \rightarrow Enter idle after t _{RP}	
	L	н	н	н	×	×	NOP	Nop \rightarrow Enter idle after tap	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	3
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	3
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	3
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	3
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	Nop \rightarrow Enter idle after t _{RP}	11
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Bank activating	н	×	×	×	×	×	DESL	Nop \rightarrow Enter bank active after teco	
(trcd)	L	н	н	н	×	×	NOP	Nop \rightarrow Enter bank active after tree	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	3
	L	н	Ľ	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	3
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	3
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	3
	L	L	н	H	н	BA, RA	ACTWPB	ILLEGAL	3, 10
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3, 10
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

-			
- 1	Б.	7	۱.
- 1	J		

								·····	
Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Write recovering	н	×	×	×	×	×	DESL	Nop → Enter bank active after top⊾	
(tdpl)	L	н	н	н	×	×	NOP	Nop \rightarrow Enter bank active after topu	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	3
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	Begin read; Latch CA: Determine AP	8
	L	н	L	L	н	BA, CA, A8	BW/BWA	Begin block write; Latch CA: Determine AP	
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	Begin write; Latch CA: Determine AP	
	L	L	н	н	н	BA, RA	АСТШРВ	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Write recovering	н	×	×	×	×	×	DESL	Nop → Enter precharge after topL	
with auto	L	н	н	н	×	×	NOP	Nop → Enter precharge after topL	
precharge	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	3, 8
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	3
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	3
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	Special register access	
	L	L,	L	L	L	Op-Code	MRS	ILLEGAL	

1

- 1

									(6/7)
Current state	ΤŚ	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Refreshing	н	×	×	×	×	×	DESL	Nop \rightarrow Enter idle after tec	
	L	н	н	н	×	×	NOP	Nop \rightarrow Enter idle after tec	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Mode register	н	×	×	×	×	x	DESL	Nop \rightarrow Enter idle after trac	
accessing	L	н	н	н	×	×	NOP	Nop \rightarrow Enter idle after trac	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	
	L	Ľ	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	x	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

x

(7/7)

Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Special mode	н	×	×	×	×	×	DESL	Nop \rightarrow Enter previous state after trac	
register	L	н	н	н	×	×	NOP	Nop \rightarrow Enter previous state after trac	
accessing	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

Notes 1. All entries assume that CKE was active (High level) during the preceding clock cycle.

- If both banks are idle, and CKE is inactive (Low level), μPD481850 will enter Power down mode. All input buffers except CKE will be disabled.
- 3. Illegal to bank in specified states; Function may be legal in the bank indicated by Bank Address (BA), depending on the state of that bank.
- If both banks are idle, and CKE is inactive (Low level), μPD481850 will enter Self refresh. All input buffers
 except CKE will be disabled.
- 5. Illegal if tRCD is not satisfied.
- 6. Illegal if tras is not satisfied.
- 7. Must satisfy burst interrupt condition.
- 8. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
- 9. Must mask preceding data which don't satisfy topl.
- 10. Illegal if tRRD is not satisfied.
- 11. Nop to bank precharging or in idle state. May precharge bank(s) indicated by BA (and A8).
- **12.** Illegal if any bank is not idle.
- **Remark** H = High level, L = Low level, \times = High or Low level (Don't care), V = Valid Data input,
 - BA = Bank address (A9), A8 = Precharge select, RA = Row address, CA = Column address, Term = Terminate, AP = Auto precharge, NOP = No operation,

ILLEGAL = Device operation and/or data-integrity are not guaranteed

4.5 Command Truth Table for CKE

Current state	CI	٢E	\overline{cs}	BAS	CAS	WF	DSF	Address	Action	Notes
	n–1	n			0/10					
Self refresh	н	×	×	×	×	×	×	×	INVALID, CLK(n-1) would exit S.R.	
(S.H.)	L	н	н	×	×	×	×	×	S.R. Recovery	1
	L	н	L	н	н	×	×	×	S.R. Recovery	1
	L	н	L	н	L	×	×	×	ILLEGAL	1
	L	н	L	L	×	×	×	×	ILLEGAL	1
	L	L	×	×	×	×	×	×	Maintain S.R.	
Self refresh	н	н	н	×	×	×	×	×	Idle after tec	
recovery	н	н	L	н	н	н	×	×	Idle after tec	
	н	н	L	н	н	L	×	×	ILLEGAL	
	н	н	L	н	L	×	×	×	ILLEGAL	
	н	н	L	L	×	×	×	×	ILLEGAL	
	н	L	н	×	×	×	×	×	ILLEGAL	
	н	L	L	н	н	н	×	×	ILLEGAL	
	н	L	L	н	н	L	×	x	ILLEGAL	
	н	L	L	н	L	×	×	x	ILLEGAL	
	н	L	L	L	×	×	×	×	ILLEGAL	
	L	н	×	×	×	×	×	×	Exit clock suspend next cycle	1
	L	L	×	×	×	×	×	×	Maintain clock suspend	
Power down	н	×	×	×	×	×	×	×	INVALID, CLK(n-1) would exit P.D.	
(P.D.)	L	н	×	×	×	×	×	x	EXIT P.D. \rightarrow Idle	1
	L	L	×	×	×	×	×	x	Maintain power down mode	
Both banks idle	н	н	н	×	×	×	×	×	Refer to operations in Operative Command Table	
	н	н	L	н	×	×	×	x	Refer to operations in Operative Command Table	
	н	н	L	L	н	×	×	×	Refer to operations in Operative Command Table	
	н	н	L	L	L	н	L	×	Refresh	
	н	н	L	L	L	L	×	Op-Code	Refer to operations in Operative Command Table	
	н	L	н	×	×	×	×	×	Refer to operations in Operative Command Table	
	н	L	L	н	×	×	×	×	Refer to operations in Operative Command Table	
	н	L	L	L	н	×	×	×	Refer to operations in Operative Command Table	
	н	L	L	L	L	н	L	×	Self refresh	2
	н	L	L	L	L	L	×	Op-Code	Refer to operations in Operative Command Table	
	L	×	×	×	×	×	×	×	Power down	2
Any state other	н	н	×	×	×	×	×	×	Refer to operations in Operative Command Table	
than listed	н	L	×	×	×	×	×	×	Begin clock suspend next cycle	3
above	L	н	×	×	×	×	×	×	Exit clock suspend next cycle	
	L	L	×	×	×	×	×	×	Maintain clock suspend	

Notes 1. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied before any command other than Power down or Self refresh exit.

2. Power down and Self refresh can be entered only from the both banks idle state.

3. Must be legal command as defined in Operative Command Table.

Remark H = High level, L = Low level, × = High or Low level (Don't care)

cs	RAS	CAS	WE	DSF	A9 (BA)	A8	A7 - A0	Action	"FROM" StateNote 1	"TO" StateNote 2
н	×	×	×	×	×	×	×	NOP	Any	Any
L	н	н	н	L	×	×	×	NOP	Any	Any
L	н	н	L	L	×	×	×	BST	(R/W/A)0(I/A)1	A0(I/A)1
									IO(I/A)1	IO(I/A)1
									(R/W/A)1(I/A)0	A1(I/A)0
									I1(I/A)0	l1(I/A)0
L	н	L	н	L	н	н	CA	Read	(R/W/A)1(I/A)0	RP1(I/A)0
					н	н	CA		A1(R/W)0	RP1A0
					н	L	CA		(R/W/A)1(I/A)0	R1(I/A)0
					н	L	CA		A1(R/W)0	R1A0
					L	н	CA		(R/W/A)0(I/A)1	RP0(I/A)1
					L	н	CA		A0(R/W)1	RP0A1
					L	L	CA		(R/W/A)0(I/A)1	R0(I/A)1
					L	L	CA		A0(R/W)1	R0A1
L	н	L	L	L/H	н	н	CA	Write/Block Write	(R/W/A)1(I/A)0	WP1(I/A)0
					н	н	CA		A1(R/W)0	WP1A0
					н	L	CA		(R/W/A)1(I/A)0	W1(I/A)0
					н	L	CA		.A1(R/W)0	W1A0
					L	н	CA		(R/W/A)0(I/A)1	WP0(I/A)1
					L	н	CA		A0(R/W)1	WP0A1
					L	L	CA		(R/W/A)0(I/A)1	W0(I/A)1
					L	L	CA		A0(R/W)1	W0A1
L	L	н	н	L/H	н	RA		Activate Row	l1Any0	A1Any0
					L	RA			I0Any1	A0Any1
L	L	н	L	L	×	н	×	Precharge	(R/W/A/I)0(I/A)1	1011
					×	н	×		(R/W/A/I)1(I/A)0	1110
					н	L	×		(R/W/A/I)1(I/A)0	I1(I/A)0
					н	L	×		(I/A)1(R/W/A/I)0	11(R/W/A/I)0
					L	L	×		(R/W/A/I)0(I/A)1	I0(I/A)1
					L	L	×		(I/A)0(R/W/A/I)1	10(R/W/A/I)1
L	L	L	н	L	×	×	×	Refresh	1011	1011
L	L	L	L	L	Op-Code			Mode Register Access	1011	1011
L	L	L	L	н	Op-Cod	le		Special Register Access	(I/A)0(I/A)1	(I/A)0(I/A)1

4.6 Command Truth Table for Two Banks Operation

Notes 1. If the μ PD481850 is in a state other than above listed in the "From State" column, the command is illegal.

2. The states listed under "To" might not be entered on the next clock cycle. Timing restrictions apply. Remark H = High level, L = Low level, × = High or Low level (Don't care), BA = Bank address (A9) State abbreviations I = Idle A = Bank active R = Read with No precharge (No precharge is posted) W = Write with No precharge (No precharge is posted) RP = Read with auto precharge (Precharge is posted)

WP = Write with auto precharge (Precharge is posted) Any = Any State X0Y1 = Bank0 is in state "X", Bank1 = in state "Y" (X/Y)0Z1 = Z1(X/Y)0 = Bank0 is in state "X" or "Y", Bank1 is in state "Z"

5. Initialization

NEC

The synchronous GRAM is initialized in the power-on sequence according to the following.

- (1) To stabilize internal circuits, when power is applied, a $100-\mu s$ or longer pause must precede any signal toggling.
- (2) After the pause, both banks must be precharged using the Precharge command (The Precharge all banks command is convenient).
- (3) Once the precharge is completed and the minimum tep is satisfied, the mode register can be programmed. After the mode register set cycle, tesc (20 ns minimum) pause must be satisfied as well.
- (4) Two or more CBR (Auto) refresh must be performed.
- Remarks 1. The sequence of Mode register programming and Refresh above may be transposed.
 - 2. CKE and DQM may be held high until the Precharge command is asserted to ensure data-bus Hi-Z.

6. Programming the Mode Register

The mode register is programmed by the Mode register set command using address bits A9 through A0 as data inputs. The register retains data until it is reprogrammed or the device loses power.

The mode register has four fields;

Options : A9 through A7 CAS latency : A6 through A4 Wrap type : A3 Burst length : A2 through A0

Following mode register programming, no command can be asserted before at least 20 ns (tesc) have elapsed.

CAS Latency

CAS latency is the most critical of the parameters being set. It tells the device how many clocks must elapse before the data will be available.

The value is determined by the frequency of the clock and the speed grade of the device. The table on page 51 shows the relationship of CAS latency to the clock period and the speed grade of the device.

Burst Length

Burst Length is the number of words that will be output or input in a read or write cycle. After a read burst is completed, the output bus will become Hi-Z.

The burst length is programmable as 1, 2, 4, 8 or full page (256 columns).

Wrap Type (Burst Sequence)

The wrap type specifies the order in which the burst data will be addressed. The μ PD481850 supports "Sequential mode" only.

The table on the page 221 shows the addressing sequence for each burst length.

7. Mode Register

NEC

Mode Register Write Timing

7.1 Burst Length and Sequence

[Burst of Two]

Starting Address (column	Sequential Addressing
address A0, binary)	Sequence (decimal)
0	0, 1
1	1, 0

[Burst of Four]

Starting Address (column address A1 - A0, binary)	Sequential Addressing Sequence (decimal)
00	0, 1, 2, 3
01	1, 2, 3, 0
10	2, 3, 0, 1
11	3, 0, 1, 2

[Burst of Eight]

Starting Address (column address A2 - A0, binary)	Sequential Addressing Sequence (decimal)
000	0, 1, 2, 3, 4, 5, 6, 7
001	1, 2, 3, 4, 5, 6, 7, 0
010	2, 3, 4, 5, 6, 7, 0, 1
011	3, 4, 5, 6, 7, 0, 1, 2
100	4, 5, 6, 7, 0, 1, 2, 3
101	5, 6, 7, 0, 1, 2, 3, 4
110	6, 7, 0, 1, 2, 3, 4, 5
111	7, 0, 1, 2, 3, 4, 5, 6

Full page burst is an extension of the above tables of Sequential Addressing, with the length being 256.

8. Programming the Special Register

The special register is programming by the Special register set command using address bits A9 through A0 and data bits DQ0 through DQ31. The color and mask register retain data until it is reprogrammed or the device losed power.

The special register has four fields.

Reserved:A9 through A7Color register:A6Mask register:A5Reserved:A4 through A0

Following special register programming, no command can be asserted before at least 20 ns (trsc) have elapsed.

8.1 Color Register

Color register is used as write data in Block Write cycle. In Special Register set command, if A5 is "0" and A6 is "1", the color register is selected. And the data of DQ0 through DQ31 is stored to color register as color data (write data).

8.2 Mask Register

Mask register is used as write mask data in Write and Block Write cycle. In Special Register set command, if A5 is "1" and A6 is "0", the mask register is selected. And the data of DQ0 through DQ31 is stored to mask register as write mask data.

8.3 Special Register

Remark If LC and LM are both high (1), data of Mask and Color register will be unknown.

9. Address Bits of Bank Address and Precharge

10. Precharge

The precharge command can be asserted anytime after tRAS(MIN.) is satisfied.

Soon after the precharge command is asserted, precharge operation performed and the synchronous GRAM enters the idle state after the is satisfied. The parameter the is the time required to perform the precharge.

The earliest timing in a read cycle that a precharge command can be asserted without losing any data in the burst is as follows.

CAS latency = 2 or 3 : One clock earlier than the last read data.

In order to write all data to the memory cell correctly, the asynchronous parameter "topt" must be satisfied. The topt(MIN) specification defines the earliest time that a precharge command can be asserted. Minimum number of clocks are calculated by dividing topt (MIN) with clock cycle time.

In summary, the precharge command can be asserted relative to reference clock that indicates the last data word is valid. In the following table, minus means clocks before the reference; plus means time after the reference.

CAS latency	Read	Write
2	-1	+tdpl (Min.)
3	-1	+topl (min.)

11. Auto Precharge

During a read or write/block write command cycle, A8 controls whether auto precharge is selected. A8 high in the read or write/block write command (Read with Auto precharge command or Write with Auto precharge command/ Block Write with Auto precharge command), auto precharge is selected and begins after the burst access automatically.

When the trans is not satisfied, the precharge does not start at above timing. And the precharge will start when the trans is satisfied.

The clock that begins the auto precharge cycle is depend on both the CAS latency programmed into the mode register and whether READ or WRITE/BLOCK WRITE cycle.

11.1 Read with Auto Precharge

When using auto precharge in READ cycle, knowing when the precharge starts is important because the next activate command to the bank being precharged cannot be executed until the precharge cycle ends. Once auto precharge has started, an activate command to the bank can be asserted after the has been satisfied.

During READ cycle, the auto precharge begins after tras and begins on the clock that indicates one clock earlier the last data word output during the burst is valid.

Remark READA means Read with Auto precharge

11.2 Write with Auto Precharge

In write cycle, the tDAL must be satisfied to assert the all commands to the bank being precharged. And it is not necessary to know when the precharge starts. In block write cycle, the tBAL must be satisfied to assert the all commands to the bank being precharged. And it is not necessary to know the precharge starts.

During WRITE cycle, the auto precharge begins after tras and begins one clock after the last data word input to the device (\overline{CAS} latency of 2) or two clocks after (\overline{CAS} latency of 3).

(tras is satisfied)

Remark WRITA means Write with Auto precharge

11.3 Block Write with Auto Precharge

During BLOCK WRITE cycle, the auto precharge begins two clocks after the block write command to the device (CAS latency of 2) or three clocks after (CAS latency of 3).

In summary, the auto precharge cycle begins relative to a reference clock that indicates the last data word is valid. In the table below, minus means clocks before the reference; plus means clocks after the reference.

CAS latency	Read	Write	Block Write
2	-1	+1	+2
3	-1	+2	+3

12. Write/Block Write with Write Per Bit

12.1 Write Per Bit

The write per bit function writes data using the write mask data only in the required DQi pins. It writes when the write mask data is "1" and prohibits writing when the data is "0". (Refer to **8.2 Mask Register**).

To use WPB operation

- (1) Execute Special register set command and set WPB data (32 bits) to mask register.
- (2) Execute Bank Activate with WPB enable command (ACTWPB) after trace (20 ns) period from Special register set command (SRS).
- (3) Execute Write/Block write command after theo period from ACTWPB.

In case SRS command is executed in activate state to set new WPB data, it is necessary to take tesc (20 ns) interval between SRS and Write/Block write command.

Remark Mask data = Mask register's data (WPB) + DQMi DQMi is prior to Mask register's data (WPB)

13. Block Write

13.1 Block Write

This cycle writes the color register data in 256 bits (8 columns \times 32 I/Os) memory cell in one cycle. The memory cell range in which data can be written in one block write cycle is eight continuous columns on one row address.

This cycle controls writing in 8 columns \times 8 DQ = 64 bits by DQM0 to DQM3 input. Color register data is written to the memory cell if DQM is low but not if DQM is high. DQM0 corresponds to the lowest byte (DQ0 to DQ7), DQM1 corresponds to DQ8 to DQ15, DQM2 corresponds to DQ16 to DQ23, DQM3 corresponds to DQ24 to DQ31.

Any column of the eight columns can be selected and writing prohibited. Determine whether to write or prohibit writing according to the data selected for column. (Refer to **13.2 Column Mask**)

To use Block write operation

- (1) Execute Special register set command and set color data (32 bits) to color register.
- (2) Execute Bank Activate (ACT) or Bank Activate with WPB enable command (ACTWPB) after tesc (20 ns) period from SRS.
- (3) Execute Block write command after tRcb period from ACT or ACTWPB.

In case new Write/Block write is executed or, it is necessary to take twoc interval from Block Write command to new Write/Block write command.

13.2 Column Mask

In block write cycle any column of the eight columns can be selected and writing prohibited. Determine which column to select according to the DQi pin to which the data selected for the column is to be input. Refer to the table below.

Column address ^{Note}	Column	address a	nd corres	ponding DQ pin	Column select data	Writing
	A3	A2	A1	DQi	(DQi)	
i	0	0	0	DQ0/DQ8/	1	Yes
(1st column)				DQ16/DQ24	0	No
i+1	0	0	1	DQ1/DQ9/	1	Yes
(2nd column)				DQ17/DQ25	0	No
i+2	0	1	0	DQ2/DQ10/	1	Yes
(3rd column)				DQ18/DQ26	0	No
i+3	0	1	1	DQ3/DQ11/	1	Yes
(4th column)				DQ19/DQ27	0	No
i+4	1	0	0	DQ4/DQ12/	1	Yes
(5th column)				DQ20/DQ28	0	No
i+5	1	0	1	DQ5/DQ13/	1	Yes
(6th column)				DQ21/DQ29	0	No
i+6	1	1	0	DQ6/DQ14/	1	Yes
(7th column)				DQ22/DQ30	0	No
i+7	1	1	1	DQ7/DQ15/	1	Yes
(8th column)				DQ23/DQ31	0	No

Note Refer to 13.3 Block Write Function.

Remark i is times of 8 numeric.

13.3 Block Write Function

Remarks 1. i is times of 8 numeric.

2. This diagram shows only for DQ0 - 7. The other DQ is similar as this.

14. Read/Write Command Interval

14.1 Read to Read Command Interval

During READ cycle, when new Read command is asserted, it will be effective after CAS latency, even if the previous READ operation does not completed. READ will be interrupted by another READ.

The interval between the commands is minimum 1 cycle. Each Read command can be asserted in every clock without any restriction.

14.2 Write to Write Command Interval

During WRITE cycle, when new Write command is asserted, the previous burst will terminate and the new burst will begin with a new Write commnad. WRITE will be interrupted by another WRITE.

The interval between the commands is minimum 1 cycle. Each Write command can be asserted in every clock without any restriction.

14.3 Write to Read Command Interval

Write command and Read command interval is also 1 cycle. Only the write data before Read command will be written.

The data bus must be Hi-Z at least one cycle prior to the first Dour.

14.4 Block Write to Write or Write/Block Write Command Interval

The interval between BLOCK WRITE and new BLOCK WRITE or WRITE is tawc or minimum 1 cycle. If tck is less than tawc, NOP command should be issued for the cycle between BLOCK WRITE and the following WRITE or new BLOCK WRITE.

14.5 Block Write to Read Command Interval

BLOCK WRITE command and READ command is also tawc or minimum 1 cycle. The data bus must be Hi-Z at least one cycle prior to the first Dour.

14.6 Read to Write/Block Write Command Interval

During READ cycle, Read can be interrupted by WRITE/BLOCK WRITE. But full page burst read can not be interrupted by WRITE/BLOCK WRITE. Full page burst read can be interrupted by Burst Stop command (BST) or Precharge command (Burst termination).

For CAS latency of 2, the READ and WRITE/BLOCK WRITE command interval is minimum 1 cycle. The data bus must be Hi-Z using DQM before WRITE/BLOCK WRITE to avoid data conflict. And DQM must be kept being High from at least 3 clocks to 1 clock before the Write/Block Write command.

For CAS latency of 3, the READ and WRITE command interval is [Burst length + 1] cycles. The data bus must be Hi-Z using DQM before WRITE to avoid data conflict. And DQM must be kept being High from at least 3 clocks to 1 clock before the WRITE command.

15. Burst Termination

Burst termination is to terminate a burst operation other than using a read or write command.

15.1 Burst Stop Command in Full Page

Burst Stop command is operated only in case full page burst mode. During the other burst mode, Burst Stop command is NOP.

During full page burst read cycle, when the burst stop command is asserted, the burst read data are terminated and the data bus goes to high-impedance after the CAS latency from the burst stop command.

Remark BST: Burst stop command

During full page burst write cycle, when the burst stop command is asserted, the burst read data are terminated and data bus goes to high-impedance at the same clock with the burst stop command.

15.2 Precharge Termination

15.2.1 Precharge Termination in READ Cycle

During READ cycle, the burst read operation is terminated by a precharge command.

When the precharge command is asserted, the burst read operation is terminated and precharge starts.

The same bank can be activated again after the from the precharge command.

The DQM must be high to mask the invalid data.

When CAS latency is 2, the read data will remain valid until one clock after the precharge command. Invalid data may appear one clock after valid data out.

The DQM may be high to mask the invalid data.

When CAS latency is 3, the read data will remain valid until one clock after the precharge command. Invalid data may appear one and two clocks after valid data out.

The DQM may be high to mask the invalid data.

15.2.2 Precharge Termination in WRITE Cycle

During WRITE cycle, the burst write operation is terminated by a precharge command.

When the precharge command is asserted, the burst write operation is terminated and precharge starts.

The same bank can be activated again after the from the precharge command.

The DQM must be high to mask invalid data in.

When \overline{CAS} latency is 2, the write data written prior to the precharge command will be correctly stored. However, invalid data may be written at the same clock as the precharge command. To prevent this from happening, DQM must be high at the same clock as the precharge command. This will mask the invalid data.

When CAS latency is 3, the write data written more than one clock prior to the precharge command will be correctly stored.

However, invalid data may be written at one clock before and the same clock as the precharge command.

To prevent this from happening, DQM must be high from one clock prior to the precharge command until the precharge command. This will mask the invalid data.

16. Electrical Specifications

- All voltage are referenced to Vss (GND).
- After power up, wait more than 100
 µs and then, execute Power on sequence and Auto Refresh before proper device operation is achieved.

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Voltage on power supply pin relative to GND	Vcc, VccQ		-1.0 to +4.6	v
Voltage on input pin relative to GND	Vτ		-1.0 to +4.6	v
Short circuit output current	lo		50	mA
Power dissipation	Po		1	w
Operating ambient temperature	TA		0 to 70	°C
Storage temperature	Tstg		-55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc		3.0	3.3	3.6	v
High level input voltage	Vін		2.0		Vcc + 0.3	v
Low level input voltage	VIL		-0.3		+0.8	v
Operating ambient temperature	TA		0		70	°C

Capacitance (TA=25°C, f=1MHz)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cii	A0 to A9	2		4	pF
	Cı2	CLK, CKE, CS, RAS, CAS, WE, DSF, DQM0 to DQM3	2		4	pF
Data input/output capacitance	Ci/o	DQ0 to DQ31	2		5	pF

Parameter	Symbol	Test condition	MAX.	Unit	Notes					
Operating current	Icc1	Burst length=1	105	mA	1					
		tras ≥ tras (MIN.)		-12	90	1				
		I = 0 m A		-15	85					
Precharge standby current	Icc2P	CKE ≤ VIL (MAX.) tck=15ns	I	7	mA					
in Power down mode	Icc2PS	CKE ≤ Vil (max.) tck=∞	6							
Precharge standby current in Non power down mode	Icc2N	$\begin{array}{l} CKE \geq V_{\text{IH (MIN.)}} \text{ tck=15ns} \\ \hline CS \geq V_{\text{IH (MIN.)}} \\ \\ Input signals are changed one tin \end{array}$	ne during 30ns.		36	mA				
	Icc2NS	CKE ≥ Viн (мім.) tcк=∞ Input signals are stable.	22							
Active standby current in	Icc3P	CKE ≤ VIL (MAX.) tck=15ns	KE ≤ Vil (max.) tck=15ns							
Power down mode	Icc3PS	CKE ≤ Vil (max.) tck=∞	$KE \leq VIL (MAX.) tck=\infty$							
Active standby current in Non power down mode	Icc3N	$\label{eq:cke} \begin{array}{l} CKE \geq V_{\text{IH} \mbox{ (MIN.)}} \ tck=15ns \\ \hline CS \geq V_{\text{IH} \mbox{ (MIN.)}} \\ \mbox{ Input signals are changed one tim} \end{array}$		36	mA					
	Icc3NS	CKE ≥ Viн (мім.) tcк=∞ Input signals are stable.		22						
Operating current	Icc4	tск≥ tск (мін.)	CAS latency = 2	-10	280	mA	2			
(Burst mode)		lo=0mA		-12	235					
				-15	220					
			CAS latency = 3	-10	365					
				-12	310					
				-15	285					
Refresh current	Icc5	ťrc≥trc (MIN.)	• · · · · · · · · · · · · · · · · · · ·	-10	85	mA	3			
			80							
			75							
Self refresh Current	Icce	CKE ≤ 0.2V	CKE ≤ 0.2V							
Operating Current (Block Write Mode)	ICC7	$t_{CK} \ge t_{CK}$ (MIN.), $I_0 = 0$ mA, \overline{CAS} cycle = 20 ns			250	mA				

DC Characteristics 1 (Recommended Operating Conditions unless otherwise noted)

Notes 1. Icc1 depends on output loading and cycle rates. Specified values are obtained with the output open. In addition to this, Icc1 is measured on condition that addresses are changed only one time during tck(MIN.).

2. Icc4 depends on output loading and cycle rates. Specified values are obtained with the output open. In addition to this, Icc4 is measured on condition that addresses are changed only one time during tck(MIN.).

3. Iccs is measured on condition that addresses are changed only one time during tck(MIN.).

DC Characteristics 2 (Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input leakage current	lı (L)	VI=0 to 3.6V, all other pins not under test =0V	-1.0		+1.0	μA
Output leakage current	lo(L)	Dout is disabled, Vo=0 to 3.6V	-1.0		+1.0	μA
High level output voltage	Vон	lo=-2mA	2.4			٧
Low level output voltage	Vol	lo=+2mA			0.4	v

AC Characteristics (Recommended Operating Conditions unless otherwise noted)

Test Conditions

- AC measurements assume tr=1ns.
- Reference level for measuring timing of input signals is 1.4V. Transition times are measured between ViH and ViL.
- If tt is longer than 1 ns, reference level for measuring timing of input signals is VIH (MIN.) and VIL (MAX.).
- · An access time is measured at 1.4V.

Synchronous Characteristics

Devementer		Cumhal		-10		-12		-15	فنعال	Nata
Parameter		Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Note
Clock cycle time	CAS latency=3	tскз	10	(100MHz)	12	(83MHz)	15	(66MHz)	ns	
	CAS latency=2	tck2	15	(66MHz)	18	(55MHz)	19.5	(50MHz)	ns	
Access time from CLK	CAS latency=3	tac3		9		11		14	ns	1
	CAS latency=2	tac2		12		15		16.5	ns	1
CLK high level width	tсн	3.5		4		5		ns		
CLK low level width		tc∟	3.5		4		5		ns	
Data-out hold time	tон	4		4		4		ns		
Data-out low-impedance time		tız	0		0		0		ns	
Data-out high-impedance time	CAS latency = 3	tнzз	4	8	4	8	4	10	ns	
	CAS latency = 2	tHZ2	4	11	4	11	4	11	ns	
Data-in setup time		tos	3		3.5		3.5		ns	
Data-in hold time		toн	1		1.5		1.5		ns	
Address setup time		tas	3		3.5		3.5		ns	
Address hold time	tан	1		1.5		1.5		ns		
CKE setup time	tcĸs	3		3.5		3.5		ns		
CKE hold time	tскн	1		1.5		1.5		ns		
CKE setup time (Power down exit)		tcksp	3		3.5		3.5		ns	

Note 1. Loading capacitance is 30 pF.

(1/2)

Synchronous Characteristics

(2/2)

Parameter		-10		-12			-15	Linit	Noto
Farameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Onii	Note
Command (CS, RAS, CAS, WE, DSF, DQM) setup time	tсмs	3		3.5		3.5		ns	
Command (CS, RAS, CAS, WE, DSF, DQM) hold time	tсмн	1		1.5		1.5		ns	

Asynchronous Characteristics

Bara	motor	Sumbol	-1	0	-1:	2	-1	5	Unit	Nata
Para	ineter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Note
REF to REF/ACT Com	trc	100		120		130		ns		
ACT to PRE Comman	d period	tras	70	120,000	84	120,000	90	120,000	ns	
PRE to ACT Comman	d period	tre	30		36		39		ns	
Delay time ACT to RE	AD/WRITE Command	tricd	30		36		39		ns	
ACT(0) to ACT(1) Con	nmand period	trrd	30		36		39		ns	
Data-in to PRE	CAS latency=3	t _{DPL3}	1CLK+10		1CLK+12		1CLK+15		ns	
Command period	CAS latency=2	tdpl2	15		18		19.5		ns	
Data-in to ACT (REF)	CAS latency=3	t DAL3	2CLK+30		2CLK+36		2CLK+45		ns	
(Auto precharge)	CAS latency=2	tdal2	1CLK+30		1CLK+36		1CLK+39		ns	
Block write cycle time	э .	tвwc	20		24		30		ns	
Block write data-in to	CAS latency=3	t _{BPL3}	1CLK+20		1CLK+24		1CLK+30		ns	
PRE Command period	CAS latency=2	tBPL2	30		36		39		ns	
Block write data-in	CAS latency=3	tBAL3	2CLK+40		2CLK+48		2CLK+60		ns	
Period (Auto Precharge)	CAS latency=2	tBAL2	1CLK+40		1CLK+48		1CLK+52		ns	
Mode register set cycle time		trisc	20		20		20		ns	
Transition time	tτ	1	30	1	30	1	30	ns		
Refresh time		tref		16		16		16	ms	

16.1 AC Parameters for Read/Write Cycles

AC Parameters for Read Timing (Burst length = 2, \overline{CAS} latency = 2)

µPD481850

NEC

243

	T21	7					- 								
	T20	\geq				-	-	-		-		 			
	T19	2	t.	$\mathbb{R}^{\mathbb{R}}$											Bank A
	T18	2												P	Activate Command
	T17	2	ι	\mathbb{R}										-	Bank A Precharge
	T16	ζ	· _ [<u>}</u>	tor	Command
	T15	\leq					-	-		-			$\left\{ \right.$		
	T14	\leq	<u> </u>				- 8	-		-			$\left\{ \right.$		
	E 113	\leq	Precharg]-[××			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				$\left\{ \right.$	в	onk A
		ς	Star	🕅		-	-	-						W W A	Inite Command ithout uto precharge
	0 	5	[-			-	- 👹 -		-	-		-[]		
	 	5	rge K A]]								+	}	11	Bank A Activate
	۲ 	5.	to Precha				-	-	-	-		-[4F	Bank B
		5	- Au][]	<u>۹</u>	Write Command with Auto precharge
	T6	5	-[<u>.</u>	╞	}_	<u> </u>	
1	T5	\geq							-			╞┤	}	ti ti	Bank B Activate Command
	T4	\geq	£	 \		₩	-	-					$\left\{ \right.$		Bank A Write Command
	Т3	\geq		┦ ╸										terec	with Auto precharge
	12	\sum		5									tro		Bank A
	F	2	teres t									Hi-Z			Command
	2	2						_							
		1	1 18888	18883	RXXXI	1555551	ISSSS I	188881	100000			я i			
		CLK	Ж К	S BAS	CAS	ME	DSF	BA)	A 8	ADC	ð	<u> </u>	3		

AC Parameters for Write Timing (Burst length = 4, CAS latency = 2)

244

Speed version	-10		-12		-15	
Clock cycle time [ns]	10	15	12	18	15	19.5
Frequency [MHz]	100	66	83	55	66	50
CAS latency	3	2	3	2	3	2
[trcd]	3	2	3	2	3	2
RAS latency (CAS latency + [teco])	6	4	6	4	6	4
[tec]	10	7	10	7	10	7
[tras]	7	5	7	5	7	5
[trro]	3	2	3	2	3	2
[tep]	3	2	3	2	3	2
[topl]	2	1	2	1	2	1
[tdal]	5	3	5	3	5	3

16.2 Relationship between Frequency and Latency
CS Function (Only CS signal needs to be asserted at minimum rate) (at 100 MHz Burst length = 4, CAS latency = 3)

µPD481850

16.4 Basic Cycles

16.4.1 Initialization

Power on Sequence and Auto Refresh

uPD481850

16.4.2 Mode Register Set

Mode Register (Burst length = 4, \overline{CAS} latency = 2)

µPD481850

ZIEC

NEC

Self Refresh (entry and exit)

µPD481850

N

Auto Precharge after Read Burst (2/2) (Burst length = 4, \overline{CAS} latency = 3)

252

^uPD481850

NIC

T12 T13 T14 T15 T16 T17 T18 T19 TO T1 Ť7 Τ8 Т9 T10 T11 T20 T21 CLK CKE н \overline{cs} RAS 8 8 CAS ÿ WE 8 DSF Α9 8 (BA) 8 RBa RBb RAa RAc A8 RAC ADD CAa RBa СВа CAb RBb СВЬ 💥 CAc 8 RAa DQM L 0-3 Hi-Z DAa1 DAa2 DAa3 DAa4 DBa1 DBa2 DBa3 DBa4 DAb1 DAb2 X DAb3 X DAb4 (DBb2 X DBb3 X DBb4 X DAc1 X DAc2) DAC3 X DAC4 DQ (DBb1) Activate Command Activate Activate Activate for Bank A Command Command Command Bank A Bank B for Bank B for Bank B Bank B for Bank A Bank A Bank A Write Command with Write Command without Write Command Write Command Write Command Auto Precharge Auto Precharge with with with Auto Precharge Auto Precharge Auto Precharge Auto Precharge Auto Precharge Start for Bank B Start for Bank A Start for Bank B

Auto Precharge after Write Burst (1/2) (Burst length = 4, CAS latency = 2)

253

µPD481850

Auto Precharge after Write Burst (2/2) (Burst length = 4, CAS latency = 3)

254

*ш*РD481850

16.4.5 Full Page Mode Cycle

Full Page READ Cycle (1/2) (CAS latency = 2)

μPD481850

255

NEC

µPD481850

NIIC

и**РD481850**

ZIIO

µPD481850

16.4.6 Precharge Termination Cycle

PRE (Precharge) Termination of Burst (1/2) (Burst length = 2, 4, 8, Full, CAS latency = 2)

µPD481850

µPD481850

16.4.7 Clock Suspension

Clock Suspension during Burst Read (using CKE Function) (1/2) (Burst length = 4, CAS latency = 2)

Clock Suspension during Burst Read (using CKE Function) (2/2) (Burst length = 4, CAS latency = 3)

262

µPD481850

NIEC

Clock Suspension during Burst Write (using CKE Function) (1/2) (Burst length = 4, CAS latency = 2)

Clock Suspension during Burst Write (using CKE Function) (2/2) (Burst length = 4, CAS latency = 3)

264

^uPD481850

ZEC

16.4.8 Power Down Mode

Power Down Mode and Clock Suspension (Burst length = 4, CAS latency = 2)

266

16.4.9 Other Cycles

Remark The timings of DQM2, DQM3, and the corresponding DQ16-23, DQ24-31 are omitted.

^uPD481850

N

Remark The timings of DQM2, DQM3, and the corresponding DQ16-23, DQ24-31 are omitted.

uPD481850

16.5 Graphics Cycles

Special Register Set (Burst length = 4, CAS latency = 2)

Remark Special Register Set command is able to input at any state.

268

μPD481850

ZIIC

μ**PD481850**

Random Row Write with WPB (Pingpong banks) (1/2) (Burst length = 8, CAS latency = 2)

270

uPD481850

Block Write (page at same bank) (CAS latency = 3)

^uPD481850

NIIC

Block Write (page at same bank) changing color and mask data (CAS latency = 3)

272

µPD481850

NIEC

16.6 Application Cycles

16.6.1 Page Cycles with Same Bank

Random Column Read (Page with same bank) (1/2) (Burst length = 4, TAS latency = 2)

uPD481850

Random Column Read (Page with same bank) (2/2) (Burst length = 4, CAS latency = 3)

274

µPD481850

NIIC NIIC Random Column Write (Page with same bank) (1/2) (Burst length = 4, TAS latency = 2)

μ**PD481850**

Random Column Write (Page with same bank) (2/2) (Burst length = 4, CAS latency = 3)

276

и**РD481850**

16.6.2 Cycles with Pingpong Banks

Random Row Read (Pingpong banks) (1/2) (Burst length = 8, CAS latency = 2)

µPD481850

Random Row Read (Pingpong banks) (2/2) (Burst length = 8, CAS latency = 3)

278

µPD481850

Random Row Write (Pingpong banks) (1/2) (Burst length = 8, CAS latency = 2)

279

µPD481850

Random Row Write (Pingpong banks) (2/2) (Burst length = 8, CAS latency = 3)

280

µPD481850

16.6.3 READ and WRITE Cycles

READ and WRITE (1/2) (Burst length = 4, CAS latency = 2)

и**РD481850**

NIEC

ZEC

μ**PD481850**

µPD481850

16.6.4 Full Page Random Cycles

Full Page Random Column Read (Burst length = Full Page, CAS latency = 2)

283

284

и**РD481850**

NEC

17. Package Drawing

100PIN PLASTIC QFP (14 \times 20)

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.2±0.2	0.913+0.009
в	20.0±0.2	0.787+0.009 -0.008
с	14.0±0.2	0.551+0.009
D	17.2±0.2	0.677±0.008
F	0.825	0.032
G	0.575	0.023
н	0.32+0.08	0.013±0.003
1	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
к	1.6±0.2	0.063±0.008
L	0.8±0.2	0.031+0.009
м	0.17+0.06	0.007±0.002
N	0.10	0.004
Р	2.7	0.106
Q	0.125±0.075	0.005±0.003
R	3° <u>+7</u> °	3°+7° -3°
S	3.0 MAX.	0.119 MAX.
		\$100GF-65-JBT

18. Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD481850.

Type of Surface Mount Device

 μ PD481850GF-JBT: 100-pin Plastic QFP (14 \times 20 mm)

Rambus DRAM

NEC

mos integrated circuit μ PD488170L

18M-BIT Rambus DRAM 1M-WORD X 9-BIT X 2-BANK

Description

The 18-Megabit Rambus[™] DRAM (RDRAM[™]) is an extremely-high-speed CMOS DRAM organized as 2M words by 9 bits and capable of bursting up to 256 bytes of data at 2 ns per byte. The use of Rambus Signaling Logic (RSL) technology makes this 500 MHz transfer rate achievable while using conventional system and board design methodologies. Low latency is attained by using the RDRAM's large internal sense amplifier arrays as high speed caches.

RDRAMs are general purpose high-performance memory devices suitable for use in a broad range of applications including main memory, graphics, video, and any other application where high-performance and low cost are required.

Detailed information about product features and specifications can be found in the following document. Please make sure to read this document before starting design.

Rambus DRAM user's manual (Reference Manual)

Features

- Rambus Interface
- 500 MB/sec peak transfer rate per RDRAM
- RSL interface
- · Synchronous protocol for fast block-oriented transfers
- Direct connection to Rambus ASICs, MPUs, and Peripherals
- 40 ns from start of read request to first byte; 2 ns per byte thereafter
- · Features for graphics include random-access mode, write-per-bit and mask-per-bit operations
- · Dual 2K-Byte sense amplifiers act as caches for low latency accesses
- Multiple power-saving modes
- · On-chip registers for flexible addressing and timing
- · Low pincount-only 15 active signals
- · Standardized pinout across multiple generations of RDRAMs
- 3.3 volt operation

Ordering Information

Part Number	Clock Frequency	Operation Voltage	Package	
μPD488170LVN-A50-9	250MHz	3.3±0.15 V	32-pin plastic SVP (11 \times 25)	
μPD488170LVN-A45-9	225MHz	3.3±0.15 V	32-pin plastic SVP (11 \times 25)	
μPD488170LG6-A50	250MHz	3.3±0.15 V	72/36-pin plastic SSOP type	
μPD488170LG6-A45	225MHz	3.3±0.15 V	72/36-pin plastic SSOP type	

The information in this document is subject to change without notice.

Pin Configuration (Marking Side)

VDD O 1 2 GND 0 BusData8 O-3 GND O 4 BusData7 O-5 IC 0 6 7 BusEnable O 8 VDD O 9 BusData6 O-GND O-10 BusData5 O-11 VDDA O 12 RxClk O 13 GNDA O-14 µPD488170LG6 μPD488170LVN TxClk O-15 VDD O-16 BusData4 O-17 GND O-18 BusCtrl O-19 SIn O 20 VREF O 21 SOut O-22 BusData3 O-23 GND O 24 BusData2 O-25 IC O 26 BusData1 O-27 28 GND 0 BusData0 O-29 NC 0 30 GND 0 31 VDD 0 32

32-pin plastic SVP (11 \times 25) 72/36-pin plastic SSOP type

BusData 0 - BusData 8 : Bus Data (Input/Output) **RxClk** : Receive Clock (Input) TxClk : Transmit Clock (Input) VREF : Logic Threshold Voltage (Input) BusCtrl : BusCtrl (Input/Output) BusEnable : BusEnable (Input) VDD, VDDA : Power Supply GND, GNDA : Ground Sin : Serial Input (Input) SOut : Serial Output (Output) NC : No Connection IC : Internal Connection

Note Leave this pin unconnected.

Block Diagram

1. Pin Function

Signal	I/O	Description	
BusData [8:0]	I/O	Signal lines for request, write data, and read data packets. The request packet contains the address, operation codes, and the count of the bytes to be transferred. This is a low-swing, active-low signal referenced to VREF.	
RxClk	I	Receive clock. Incoming request and write data packets are aligned to this clock. This is a low-swing, active-low signal referenced to VREF.	
TxClk	Ι.	Transmit clock. Outgoing acknowledge and read packets are aligned with this clock. This is a low- swing, active-low signal referenced to VREF.	
Vref	I	Logic threshold voltage for low swing signals.	
BusCtrl	I/O	Control signal to frame packets, to transmit part of the operation code, and to acknowledge requests. Low-swing, active-low signal referenced to VREF.	
BusEnable	I	Control signal to enable the bus. Long assertions of this signal will reset all devices on the Channel. This is a low-swing, active-low signal referenced to VREF.	
Vdd, Vdda	_	+3.3 V power supply. VDDA is a separate analog supply.	
GND, GNDA	_	Circuit ground. GNDA is a separate analog ground.	
Sin	I	Initialization daisy chain input. TTL levels. Active high.	
SOut	0	Initialization daisy chain output. TTL levels. Active high.	

2. Rambus System Overview

A typical Rambus memory system has three main elements: the Rambus Channel, the RDRAMs, and a Rambus Interface on a controller. The logical representation of this is shown in the following figure.

Figure 2-1. Logical Representation

The Rambus Channel is a synchronous, high-speed, byte-wide bus that is used to directly connect Rambus devices together. Using only 13 high-speed signals, the Channel carries all address, data, and control information to and from devices through the use of a high level block-oriented protocol.

The Rambus Interface is implemented on both master and slave devices. Rambus masters are the only devices capable of generating transaction requests and can be ASIC devices, memory controllers, graphics engines, peripheral chips, or microprocessors. RDRAMs are slave devices and only respond to requests from master devices.

The following figure shows a typical physical implementation of a Rambus system. It includes a controller ASIC that acts as the Channel master and a base set of RDRAMs soldered directly to the board. An RSocket[™] is included on the Channel for memory upgrade using RModule[™] expansion cards.

3. Rambus Signaling Logic

RSL technology is the key to attaining the high data rates available in Rambus systems. By employing high quality transmission lines, current-mode drivers, low capacitive loading, low-voltage signaling, and precise clocking, systems reliably transfer data at 2 nanosecond intervals on a Rambus Channel with signal quality that is superior to TTL or GTL-based interfaces.

All Rambus Interfaces incorporate special logic to convert signals from RSL to CMOS levels for internal use. In addition, these interfaces convert the Channel data rate of one byte every 2 nanoseconds to an internal data rate of 8 bytes every 16 nanoseconds as shown in the following figure. Although the bandwidth remains the same, the use of a wide internal bus eases internal timing requirements for chip designers.

Figure 3-1. Converting the Channel Data Rate

4. Register Space Map

The following table summarizes the registers included in all 18M RDRAMs.

Register Name	Adr[20:10]	Adr[9:2]	Register Number
Device Type[3:0][8:0]	xxxx	00000000	0
DeviceId[3:0][8:0]	xxxx	00000001	1
Delay[3:0][8:0]	xxxx	00000010	2
Mode[3:0][8:0]	xxxx	00000011	3
RefRow[3:0][8:0]	xxxx	00000101	5
RasInterval[3:0][8:0]	xxxx	00000110	6
MinInterval[3:0][8:0]	xxxx	00000111	7
AddressSelect[3:0][8:0]	xxxx	00001000	8
DeviceManufacturer[3:0][8:0]	xxxx	00001001	9
Row[3:0][8:0]	xxxx	10000000	128

Table 4-1. Registers Space Map

(1) Device Type Register

This register specifies RDRAM configuration and size.

(2) Deviceid Register

This register specifies RDRAM base address.

(3) Delay Register

This register specifies RDRAM programmable CAS delay values.

(4) Mode Register

This register specifies RDRAM programmable output drive current.

(5) RefRow Register

This register specifies RDRAM refresh row and bank address.

The RefRow register contains read-write fields. It is used to keep track of the bank and row being refreshed. Normally this register is only read or written for testing purposes. The fields are aliased in the following way:

RowField[7:1] equals RefRow[0][7:1] RowField[9:8] equals RefRow[2][1:0] BankField[3] equals RefRow[1][3]

(6) RasInterval Register

This register specifies RDRAM programmable RAS delay values. The RasInterval Register contains four writeonly fields. When a rowmiss occurs, or when a row is being refreshed during a burst refresh operation, it is necessary for the control logic of an RDRAM to count the appropriate number of clock cycles (tcycle) for four intervals. This is done with a counter which is loaded successively with three values from the RasInterval Register.

(7) MinInterval Register

This register specifies RDRAM refresh control. This register provides the minimum values for three time intervals for framing packets. The time intervals are specified in clock cycle (tcrcLE) units.

Caution Mininterval Register[3][2] = 0 is necessary. Because, 18M RDRAM don't support Power Down request.

(8) AddressSelect Register

This register specifies RDRAM address mapping.

(9) DeviceManufacturer Register

This register specifies RDRAM manufacturer information.

This register specifies the manufacturer of the device. Additional bits are available for manufacturer specific information, e.g. stepping or revision numbers.

(10) Row Register

This register specifies RDRAM current sensed row in each bank.

The detailed functional description is provided in RDRAM Reference Manual.

5. Packet Formation

5.1 Packet Summary

The following table summarizes the transmit/receive functionality of the two RDRAM types for the different packet classes.

Packet Type	Initiating Devices	μPD488170L
Request Packet	Transmit	Receive
Acknowledge Packet	Receive	Transmit
Read Data Packet	Receive	Transmit
Write Data Packet	Transmit	Receive
Serial Address Packet	Transmit	Receive
Serial Control Packet	Transmit	Receive
Serial Mode Packet	Transmit	Receive

Table 5-1. Transmitting/Receiving Devices for Packet Types

5.2 Request Packet

The request packet format is shown in the following figure.

	Device Pins										
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even	-	Start	Op [0]			1	Adr [9 : 2]		I	1	
[0] odd	-	Op [1]	Ор [3]				Adr [17 : 10]				
[1] even	-	OpX [1]					Adr [26 : 18]				
[1] odd	-	Op [2]				I	Adr [35 : 27]			1	
[2] even	-	OpX [0]	ReqU [5	Jnimp : 4]		Count [6, 4, 2]			ReqL (3	Jnimp : 0]	
[2] odd	-	Rec [8	Unimp 3 : 6]			Count [7, 5, 3]		Co [1	unt : 0]	A [1	dr : 0]
Time	-	This me by anoti	ans that her packe	this pin is et, it is pu	s not use illed to a	d by this logic zero	packet. II value.	it is not	used		Request Packet

The vertical axis in all packet figures in the following sections shows time in units of clock cycles, with each clock cycle broken into even and odd bus ticks. The timing is relative, measured from the beginning of the packet.

5.2.1 Start Field

A device should start framing a request packet when it sees this bit asserted to a logical one and it is not looking for an acknowledge packet nor framing an earlier request packet.

5.2.2 Op[3:0], OpX[1:0] Fields

The Op and OpX fields are summarized in the following table.

Op[3:0]	OpX[1:0] = 00	OpX[1:0] = 01	OpX[1:0] = 10	OpX[1:0] = 11
0000	Rseq	Rnsq	Rsrv	Rsrv
0001	Rsrv	Rsrv	Rsrv	Rsrv
0010	Rsrv	Rsrv	Rsrv	Rsrv
0011	Rsrv	Rsrv	Rsrv	Rsrv
0100	WseqNpb	WseqDpb	WseqBpb	WseqMpb
0101	Rsrv	Rsrv	Rsrv	Rsrv
0110	Rreg	Rsrv	Rsrv	Rsrv
0111	Wreg	Rsrv	Rsrv	Rsrv
1000	WnsqNpb	WnsqDpb	WnsqBpb	WnsqMpb
1001	Rsrv	Rsrv	Rsrv	Rsrv
1010	Rsrv	Rsrv	Rsrv	Rsrv
1011	Rsrv	Rsrv	Rsrv	Rsrv
1100	WbnsNpb	WbnsDpb	Rsrv	WbnsMpb
1101	Rsrv	Rsrv	Rsrv	Rsrv
1110	Rsrv	Rsrv	Rsrv	Rsrv
1111	WregB	Rsrv	Rsrv	Rsrv

Table 5-2. Op[3:0] and OpX[1:0] Fields - Command Encodings

The command opcode also determines which packets (in addition to the request packet) will form the transaction. A detailed functional description of the actions that an RDRAM takes for each implemented command is provided in "Rambus DRAM user's manual (Reference Manual)". The following table summarizes the functionality of each subcommand:

SubCommand	Description				
Rseq	Read sequential data from memory space.				
Rnsq	Read non-sequential (random-access) data from memory space.				
Wseq	Write sequential data to memory space.				
Wnsq	Write non-sequential (random-access) data to memory space.				
Wbns	Write non-sequential (random-access) data to memory space with non-contiguous byte masking.				
Npb	Write data is from data packet. There is no bit mask.				
Dpb	Write data is from data packet. The bit mask is in the MDReg.				
Мрb	Write data is from MDReg. The bit mask is from the data packet.				
Bpb	Write data is from data packet. The bit mask is also from the data packet.				
Rreg	Read sequential data from register space.				
Wreg	Write sequential data to register space.				
WregB	Broadcast write with no Okay acknowledge permitted.				

Table 5-3. Subcommand Summary

The memory read commands are formed using the Rseq and Rnsq subcommands to select sequential or nonsequential (random) access.

• Rrrr = {Rseq, Rnsq}

The following table summarizes the available write commands and shows how they are formed from a 3×4 matrix of the Wwww and Bbb subcommands.

WwwwBbb Wwww = {Wseq, Wnsq, Wbns}
 Bbb = {Npb, Dpb, Bpb, Mpb}

	Wwww subcommands				
Bbb subcommand	Wseq (seqential-access with contiguous byte masking)	Wnsq (non-sequential- access)	Wbns (non-sequential-access with non-contiguous-byte- masking)		
Npb	WseqNpb	WnsqNpb	WbnsNpb		
Dpb	WseqDpb	WnsqDpb	WbnsDpb		
Mpb	WseqMpb	WnsqMpb	WbnsMpb		
Bpb	WseqBpb	WnsqBpb	Not implemented		

Table	5-4.	Write	Commands
10010	• •		oomanao

There are three Wwww subcommands. They control the accessing pattern and the use of non-contiguous byte masking.

- Wseq octbyte blocks in the RDRAM core are accessed in sequential (ascending little-endien) address order. Contiguous byte masking is controlled with the Adr[2:0] and Count[2:0] fields of the request packet.
- Wnsq octbyte blocks in the RDRAM core are accessed in non-sequential address order. The addresses
 for the octbyte blocks within the sensed row come from serial address packets which are received
 on the BusEnable pin.
 The address order is arbitrary.
- Wbns octbyte blocks in the RDRAM core are accessed in non-sequential address order, as in the Wnsq subcommand. In addition, byte masks are transmitted with the write data, permitting arbitrary noncontiguous byte masking of this write data. The bytemask octbytes are not included in the total octbyte transfer count; i.e. a Count[7:3] field of 31 implies 4 bitmask octbytes and 32 write data octbytes, for a data packet size of 36 octbytes.

There are four Bbb subcommands. They select the type of bit masking to be applied to the write data.

- Npb (no-per-bit) There is no bit mask applied to the write data. The MDReg is not used or modified.
- Dpb (data-per-bit) The MDReg is used as a bit mask, the write data comes from the data packet. The same bit mask is used for each octbyte. This is also called persistent bit masking. The MDReg is not modified.
- Mpb (mask-per-bit) The bit mask comes from the data packet, the write data comes from the MDReg. The same data is used for each octbyte. This is also called color masking. The MDReg is not modified.
- Bpb (both-per-bit) The bit mask and the write data come from the data packet. The MDReg is not used, but is modified as a side effect (the WwwwBpb commands are used to load the MDReg for the WwwwDpb and WwwwMpb commands). This is also called non-persistent bit masking.
 The bitmask octbytes are included in the total octbyte transfer count ; i.e. a Count[7:3]

The bitmask octbytes are included in the total octbyte transfer count ; i.e. a Count[7:3] field of 31 implies 16 bitmask octbytes and 16 write data octbytes.

5.2.3 Adr[35:0] Field

The Adr field is used as either a memory or register space address depending upon the OP[3:0] and OpX[1:0] fields. Devices extract a portion of the Adr field to match against their Deviceld register (IdMatch), thus selecting the device to which the request is directed. The remainder of the Adr field accesses the desired region of the device's memory or register space. The memory read and write commands and the Rreg and Wreg commands will only take place if there is an IdMatch. The IdMatch criteria is ignored for the WRegB commands, with all responding devices performing the required actions.

The Rambus protocol uses quadbyte resolution in the data packet for register space read and write commands; i.e. one quadbyte is the smallest data item that may be transferred, and all transfers are an integral number of quadbytes. The Adr[35:2] field is the quadbyte address. The Adr[1:0] field is Unimp for these commands, and should be driven with "00" by initiating devices.

The Rambus protocol uses octbyte resolution in the data packet for memory space read and write commands; i.e. one octbyte is the smallest data item that may be transferred, and all transfers are an integral number of octbytes. The Adr[35:3] field is the octbyte address.

Some commands use the Adr[2:0] field to specify contiguous byte masking. Refer to "Rambus DRAM user's manual (Reference Manual)".

5.2.4 Count[7:0] Field

The following table summarizes the transfer count ranges for 18M RDRAMs:

Count Range	μPD488170L
Maximum count for memory space	32 octbytes
Minimum count for memory space	1 octbyte
Maximum count for register space	1 quadbyte
Minimum count for register space	1 quadbyte

Table 5-5. Transfer Count Summary

Register space read and write commands use a transfer count of one quadbyte, regardless of the Count[7:0] field value.

Memory space read and write commands specify the number of octbytes to be transferred with the Count[7:3] field. An offset-by-one-encoding is used so that "00000" specifies one octbyte, "00001" specifies two octbytes, and so on up to "11111" which specifies thirty-two octbytes. The transfer count does include the octbytes containing bitmasks (for commands using the Bpb subcommand). The transfer count does not include the octbytes containing noncontiguous ByteMasks (for commands using the Wbns subcommand).

Some commands use the Count[2:0] field to specify contiguous byte masking. Refer to "Rambus DRAM user's manual (Reference Manual)".

Memory space transactions to RDRAMs are not allowed to cross internal row address boundaries within the device. Attempts to do so have Undef (undefined) results. These row boundaries are at 2kbyte intervals for 18M RDRAMs.

5.2.5 Adr[2:0] and Count[2:0] Fields for Contiguous Byte Masking

An initiating device wishing to write an arbitrary number of contiguous bytes to a starting address on an arbitrary byte boundary may do so with the Adr[2:0] and Count[2:0] fields with the Wseq subcommands. The transfer count and starting address are given by:

- · MasterCount[7:0] specifies the number of bytes which the master device wishes to transfer.
- Adr[35:0] specifies the starting byte address (this is the same as the Adr[35:0] field in the request packet)

Where the convention used by the initiating device for the count is that Master-Count[7:0] = "00000000" means one byte, MasterCount[7:0] = "00000001" means two bytes and MasterCount[7:0] = "11111111" means 256 bytes (an offset-by-one encoding; the data block count is equal to MasterCount[7:0]+1).

The initiating device converts this internal count value into a value for the request packet with the following formula. Little-endien byte addressing is used for specifying bytes within octbytes.

Count[7:0] = Adr[2:0] + MasterCount[7:0] (Eq 5-1)

Where "+" denotes unsigned integer addition of two bit fields (short fields are zero-extended on the left). If the value of Adr[2:0] + MasterCount[7:0] is greater than 255 (it may be as much as 262), then the initiating device must break the request into two transactions.

The Adr[2:0] and Count[2:0] field generate masks for individual bytes within an octbyte. The Adr[35:3] and Count[7:3] field have the octbyte resolution previously described. The following tables show how the byte masks are generated. In the case of memory read transactions, the byte masks that are generated do not affect the data that is returned by the RDRAM; all data bytes in the first and last octbytes are returned in the read data packet.

In the case of memory write transactions, ByteMaskLS[7:0] applies to the first octbyte at Mem[AV][7:0][8:0]. Byte MaskMS[7:0] applies to the last octbyte at Mem[AV+CV][7:0][8:0]. All intermediate octbytes use a byte mask of 11111111 (a one means the byte is written, a zero means it is not). Here AV is the value of the Adr[35:3] field when interpreted as an unsigned, 33 bit integer, and CV is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit interger. If the Count[7:3] is "00000" (one octbyte), the ByteMaskLS[7:0] and ByteMaskMS[7:0] masks are logically 'anded' together to give the effective byte mask.:

Adr[2:0]	ByteMaskLS[7:0]	Adr[2:0]	ByteMaskLS[7:0]
000	11111111	100	11110000
001	11111110	101	11100000
010	11111100	110	11000000
011	11111000	111	1000000

Table 5-6.	Adr[2:0] to	ByteMaskLS[7:0]	Encoding
------------	-------------	-----------------	----------

Count[2:0]	ByteMaskMS[7:0]	Count[2:0]	ByteMaskMS[7:0]
000	0000001	100	00011111
001	00000011	101	00111111
010	00000111	110	01111111
011	00001111	111	11111111

Table 5-7. Count[2:0] to ByteMaskMS[7:0] Encoding

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

5.2.6 ReqUnimp[8:0] Fields

These fields are unimplemented (Unimp) in the request packet. They should be driven as zeroes by initiating devices.

uPD488170L

5.3 Acknowledge Packet

The Ack[1:0] field carries the acknowledge encoding from the responding device(s) to the initiating device and any other listening devices. The following figure shows the format of the acknowledge packet.

Figure 5-2. Acknowledge Packet Format

The following table summarizes the four combinations of the Ack[1:0] field. The Ack3 combination is Undef. The Okay combination indicates that the read or write access to the specified space will take place.

When a responding device acknowledges a request with a Nack, then there will be no immediate change in the state of the device's memory space or register space. The responding device will take the appropriate steps to make the requested region of memory or register space accessible when the initiating device makes a subsequent request. The initiating device will need to wait some device-dependent length of time until the requested region is available.

There are three possible reasons for an RDRAM to respond with Nack. They are summarized below. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

- tPostMemWriteDelay Or tPostRegWriteDelay violation
- RowMiss (this causes a delay of tRetrySensedClean Or tRetrySensedDirty)
- ongoing refresh (this causes a delay of up to tRetryRefresh)

Table 5-8. Ack[1:0] Encodings

Commands allowed to use the Ack Combination	Ack [1:0]	Name	Description	Spec Undef
All commands	00	Nonexistent	Indicates passive acceptance of the request (WregB), or indicates that the addressed device did not respond (all other commands).	Spec
All commands but WregB	01	Okay	Indicates that the request was accepted by the addressed by the addressed (responding) device.	Spec
All commands	10	Nack	Indicates that the request could not be accepted because the state of the responding device prevented an access at the fixed timing slot.	Spec
All commands but WregB	11	Ack3	This should not be returned by this responding device. Initiating devices will, when presented with this combi- nation, have an undefined response.	Undef

5.4 Data Packet

The following figure shows the format of a data packet for register space read and write commands. It consists of 1 quadbyte driven on the BusData[8:0] wires for RDRAMs.

Other responding devices may support data packet lengths longer than one quadbyte.

The following figure shows the format of a data packet for memory space read and write commands. For most of these commands, it consists of 1 to 32 octbytes driven on the BusData[8:0] wires. In the figure, "n" is either the CV value (if the transaction is allowed to complete) or the last count value (if the transaction is terminated prematurely by the serial control packet). "CV" is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit integer.

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

					D	evice Pir	าร				
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even	-	-				(0	Data)] [0] [8 :	0]			
[0] odd	-	-				1	Data	01	I		1
[1]	-	1				Г <u></u> и	Data	01	I	[1
[1]	-	+			[Data		1	1	l
[2]	-	1		[Data		1	[
[2]	-	+				 	Data			ſ	r
[3]	-	4					Data		1	[
[3]	-	+			[Data			[
							:	<u></u>			
[4*n] even	-	+		[[ا	Data 1] [0] [8 : 1	 0]	Γ	ſ	I
[4*n] odd		ŧ		[[[r	Data] [1] [8 :	0]	I		ſ
[4*n+1] even	-	-				[[r	Data] [2] [8 :	0]	1	ſ	
[4*n+1] odd	-	1				l (r	Data 1] [3] [8 :	(0)			
[4*n+2] even	-			[;		l lı	Data] [4] [8 :	[0]			[
[4*n+2] odd	-	1				l lı	Data] [5] [8 :	0]	ľ		
[4*n+3] even	-	-				[[r	Data] [6] [8 :	 0]	I	[1
[4*n+3] odd	-	-				l lı	Data 1] [7] [8 :	 0]	1	ſ	I
Time	-	This me by anot	eans that her pack	this pin i et, it is pi	s not use ulled to a	ed by this logic zer	packet. o value.	lf it is not	tused		Data Packet

Figure 5-4. Data Packet Format (Memory Space)

5.5 Serial Address Packet Format

The serial address packet is transmitted by the initiating device and received by the responding devices. It provides eight low-order address bits for each octbyte which is accessed in memory space (a non-sequential or random-access transfer). These eight address bits are transferred serially on the BusEnable pin of the RDRAM, and are thus called a serial address. Each eight bit serial address accesses an octbyte of data within the RowSenseAmpCache of one of the two banks of the RDRAM. The complete set of serial addresses transmitted by the initiating device during the transaction are referred to as a serial address packet. The commands which use this packet are the Rnsq, WnsqBbb, and WbnsBbb classes of commands.

The high order bits for each octbyte are provided by the Adr[35:11] address bits from the request packet. The low-order address bits for the first octbyte are Adr[10:3], also from the request packet. The low-order address bits for octbytes [n:1] are provided by the serial address packet. As before, "n" is either the CV value (if the transaction is allowed to complete) or the last count value (if the transaction is terminated prematurely by the serial control packet). "CV" is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit integer. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Serial Address Field	Description	Unimp Imp
SAdr[i][10:3]	Low-order address bits for each octbyte.	Imp

Table 5-9.	Serial	Address	Fields	(i =	n:1)
------------	--------	---------	--------	------	------

	Device Pins										
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[4] even	SAdr [1] [3]	1					I _				
[4] odd	SAdr [1] [4]	ł				I	- I				
[5] even	SAdr [1] [5]	1					-				
[5] odd	SAdr [1] [6]	-				I	Г <u>-</u>	I			
[6] even	SAdr [1] [7]	1				I	-				
[6] odd	SAdr [1] [8]	-				I	I _				
[7] even	SAdr [1] [9]	4					-				
[7] odd	SAdr [1] [10]	+					- I	1			
:	•	ł									
[4*n] even	SAdr [n] [3]	-				I	I _			I	
[4*n] odd	SAdr [n] [4]	+				I	I _	1			
[4*n+1] even	SAdr [n] [5]	4				I	· -				
[4*n+1] odd	SAdr [n] [6]	Ŧ				I	r _			1	
[4*n+2] even	SAdr [n] [7]					I	I _				
[4*n+2] odd	SAdr [n] [8]	1				I	I _				
[4*n+3] even	SAdr [n] [9]	+					-			Г	
[4*n+3] odd	SAdr [n] [10]	-				I	-			Г	
Time	Serial Ac Pack	ldress et	-	This n by and	neans th other pac	at this pir cket, it is	n is not u pulled to	sed by th a logic ze	is packet ero value.	. If it is no	ot used

Figure 5-5. Serial Address Packet Format

5.5.1 Serial Control Packet Format

The serial control packet is transmitted by the initiating device and received by the responding devices. It provides for the early termination of a memory space read or write transaction (before the specified data count in the Count[7:3] field has elapsed). It consists of eight bits transferred serially on the BusCtrl pin of the device, thus it is referred to as a serial control packet. The eight bits have the same timing alignment as the serial address packet. The commands which use this packet are all of those which access memory space. The register read and write commands do not use the serial control packet. The 18M RDRAM implements this packet.

The termination occurs on octbyte data packet boundaries. The next figure shows the format of the serial control packet. The following table summarizes the function of the bits within the serial control packet. Note that the bits in the even bus ticks must be zero in order for framing to work properly (otherwise, one of these bits would be interpreted as the Start bit of a new request packet). The SCtrl[5] bit is used to control termination, and the other three odd bus tick bits are unimplemented.

Serial Control Fields	Description	Unimp Imp
SCtrl[0]	This bit must be a zero due to framing requirements.	Imp
SCtrl[1]	unimplemented	Unimp(0)
SCtrl[2]	This bit must be a zero due to framing requirements.	Imp
SCtrl[3]	unimplemented	Unimp(0)
SCtrl[4]	This bit must be a zero due to framing requirements.	Imp
SCtrl[5]	0 means don't terminate the current access.	Imp
	1 means terminate the current access.	
SCtrl[6]	This bit must be a zero due to framing requirements.	Imp
SCtrl[7]	unimplemented	Unimp(0)

If a memory read transaction (RrrrAaa) is terminated by asserting the SCtrl[5] bit to a logical one, the data octbyte with which it is associated is not transmitted by the responding device. The initiating device may start a new transaction once the transmission of the read data packet has ceased. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)**".

	Device Pins										
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even	-	SCtrl [0]					-				
[0] odd	-	SCtrl [1]					1				
[1] even	-	SCtrl [2]					-				
[1] odd	-	SCtrl [3]					4				
[2] even	-	SCtrl [4]					4				
[2] odd	-	SCtrl [5]					-				
[3] even	-	SCtrl [6]					-				
[3] odd	-	SCtri [7]									
Time	Serial Control Time Packet This means that this pin is not used by this packet. If it is not used by another packet, it is pulled to a logic zero value.					ot used					

Figure 5-6. Serial Control Packet Format

5.5.2 Serial Mode Packet Format

The serial mode packet transmitted by initiating devices, and received by responding device. Its format is shown in the following figure.

The serial mode packet modifies the state of the Count00[7:0] and Count11[7:0] counters.

These counters cause operating mode transitions when they reach special values. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

A serial mode packet with the SMode[1:0] field set to 00 is the default. Most transitions are caused by blocks of sequential serial mode packets, each with the SMode[1:0] field set to 11. The serial mode packets should never set SMode[1:0] field to 01 or 10. This is because in some of the operating modes, the clock generator is unlocked (the frequency is correct but not the phase). When this happens, the BusEnable receiver is unable to discriminate anything other than long pulses of zeros or ones. Because the frequency of the clock generator is correct, it can count the length of these pulses with moderate accuracy.

Table	5-11.	Serial	Mode	Fields

SMode[1:0]	Description	Spec/Rsrv/ Undef
00	Increments Count00[3:0], clears Count11[7:0].	Spec
01	-	Undef
10	-	Undef
11	Increments Count11[7:0], clears Count00[3:0]	Spec

6. State Diagram

The following figure is a state diagram of the Frame state machine. The operating mode of the device depends upon which of the nine states it is in:

- reset mode ResetState
- standby mode StandbyState
- active mode ActiveState, IdCompareState, DeviceState, OkayState, NackState, AckWindowState

This section will only discuss the first three states (ResetState, StandbyState, ActiveState). The remaining five states which are shown shaded in the state diagram (IdCompareState, DeviceState, OkayState, NackState, AckWindowState) will be dealt with in the "Rambus DRAM user's manual (Reference Manual)".

The device will enter ResetState when power is initially applied (PowerOn). In ResetState, the device will be in the reset operating mode, in which all control registers assume a known state. If power has just been applied, the device will pass through ActiveState and settle in StandbyState, and remain there until serial mode packets are received from an initiating device.

ActiveState is the state in which all decisions are made to transition to the states for the other operating modes. From here, the device will also enter the transaction-framing states. Refer to "Rambus DRAM user's manual (Reference Manual)".

After poweron, the device will re-enter ResetState when the value of the Count11[7:0] counter is greater than or equal to tmodeAR,MIN. The device will leave ResetState when the value of the Count11[7:0] counter is less than tmodeSA,MIN. This will happen when an SMode[1:0] field of 00 is received, causing the Count11[7:0] counter to clear.

The device will enter StandbyState when the value of the Count00[3:0] counter is greater than or equal to tmodeDelay.MAX. The device will leave StandbyState when the value of the Count11[7:0] counter is greater than or equal to tmodesA.MIN.

Caution PD (MinInterval Register [3][2]) = 0 is necessary. Because, 18M RDRAM don't support Power Down request.

6.1 Parameters for Operating Mode Transitions

The following table summarizes the parameter values associated with operating mode transitions of a responding device. A minimum and maximum value are given for the parameters to account for implementation differences. In all cases, the SMode[1:0] field of the consecutive serial mode packets must have the value 11 to cause an operating mode transition (with the exception of the tmodeDelay.MAX as mentioned in the previous section). Initiating devices must use values within the minimum and maximum SMode packet count requirements shown above to control operating mode transitions.

Count Parameter Name	Minimum (clock cycles)	Maximum (clock cycles)	Description
tModeSA	1	4	Number of SMode packets to cause a transition from
			Standby-Mode to ActiveMode
tModeOffSet	4	7	Offset from beginning of SMode packet to request packet for
			standby to active transition
tModeDelay	-	20	Delay from end of SMode packet to request packet for
			standby to active transition
tModeSwitchReset	320	-	Number of SMode packets to cause a transition from Active-
			Mode to ResetMode
tReset	32	-	Time required for an RDRAM's internal nodes to settle to their
			reset values.
tLock, Reset	750	-	Time required for an RDRAM's internal clock generator to lock
			to the external clock.

Table 6-1. Responding Device Parameters for Operating Mode Transitions

6.2 Standby Mode and Active Mode

The following figure shows the basic transitions between active and standby modes in response to serial mode packets

This is a timing diagram, with time increasing in the downward direction. The time scale is in clock cycles, as shown on the left scale. The value of each of the eleven low-swing signal pins of the responding device is shown with the assumption that trn is zero (the responding device is located at the master end of the Channel).

Serial mode packets with an SMode[1:0] field are shown as a box with a "11" label in the BusEn column. The BusEnable defaults to a logical zero value. The initiating device has transmitted twodesA,MAX serial mode packets with SMode[1:0] equal to 11 (this is the longest sequence permitted for invoking a standby to active transition). After the first twodesA,MIN serial mode packets, the device begins the transition to active mode. It reaches active mode after twodeorrset, MIN clock cycles after the start of the first serial mode packet. It remains there for twodeDelay,MAX clock cycles after the last serial mode packet.

The responding device is in active mode when it begins framing the request packet. A transaction may begin in any of the clock cycles with the light shading above (labeled "Active Mode").

If the serial mode packet(s) causing a standby to active mode transition are not followed by a transaction with tmodeDelay,MAX clock cycles after the last serial mode packet, then the responding device will return to standby mode.

The next figure shows the case in which a transaction is started as early as possible after a serial mode packet which causes a standby to active mode transition.

Figure 6-3. ActiveMode/StandbyMode Transition - Early Transaction

A transaction is composed of packet types other than serial mode packets, and will be defined in the next chapter. These other packet types lie entirely inside the heavy black box in the above two figures. When a transaction has completed, the device returns to standby mode. The detailed functional description is provided in "**Rambus DRAM user's manual (Reference Manual)**".

6.3 ResetMode

Reset mode is entered when a consecutive sequence of tModeRA,MIN serial mode packets with a value of 11 are seen by a responding device (shown in the following figure). In reset mode, all devices enter a known state from which they may be Initialized. The device remains in reset mode for as long as serial mode packets with 11 value are received. When one or more serial mode packets with a value of 00 are seen, the responding device enters the active mode state.

Although devices enter the active mode state immediately, their clock circuitry requires a time tLock.MIN to resynchronize. Initiating devices must wait this long after the transition out of reset mode before starting any transactions.

Figure 6-4. ResetMode to ActiveMode Transition

7. Transactions

7.1 Read Transactions

The following figure shows the basic form of a memory space or register space read transaction. There are request and acknowledge packets, with the same tackDelay and tackWinDelay timing constraints. tackWinDelay will not be shown explicitly on any further transaction diagrams in this document.

When the responding device transmits an Okay acknowledge packet to the initiating device, it will also transmit a data packet with read data. This packet is sent a time tReadDelay after the end of the request packet. The tReadDelay value is in tcvcLE units and is programmed into the ReadDelay field of the Delay register of each responding device. It is not required to be the same for all devices within a Rambus system, but the difference (tReadDelay - tAckDelay) is required to be the same. This allows initiating devices to use the acknowledge packet to determine when the read data packet begins. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Figure 7-1. Read Transaction
7.2 Write Transactions

The following figure shows the basic form of a memory space or register space write transaction. There are request and acknowledge packets, with the same tackDelay and tackWinDelay timing constraints as already discussed.

When the initiating device transmits a request packet to the responding devices, it will also transmit a data packet with write data. This packet is sent a time twriteDelay cycles after the end of the request packet. The twriteDelay is in tcycLE units and is programmed into the WriteDelay field of the Delay register of each responding device. It is required to be the same for all devices within a Rambus system. A responding device will see the same twriteDelay interval between the request and write data packets whether the device is on the Primary Channel or on a Secondary Channel.

If the responding device returns an Okay acknowledge packet, then the transaction is complete at the end of the acknowledge window or at the end of the write data packet, whichever is later. The next request packet can be transmitted in the following clock cycle except for the case in which a register or memory space write to a device is followed by any other transaction to that device. In that case, one of the following two intervals must be inserted between the two transactions, where the memory or register case depends upon the first transaction.

- tPostRegWriteDelay if the current transaction is a register space access
- tPostMemWriteDelay if the current transaction is a memory space access

If the responding device returns a Nack or Nonexistent acknowledge packet for a write command, then no write data packet is required by the responding device. The current transaction is complete at the end of the acknowledge window, or when the initiating device stops transmitting the write data packet, whichever is later. The next request packet can be transmitted in the following clock cycle. For the case of a Nack or Nonexistent, the initiating device must terminate the write data packet before another initiating device is given control of the Rambus Channel for a transaction. This is part of the arbitration mechanism used by the initiating devices. The arbitration mechanism is not specified in this document because it does not use the Rambus Channel. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Figure 7-2. Write Transaction

7.3 Read Transactions with Serial Address Packet

The following figure shows a memory space read transaction for a command which uses the serial address packet. For a transaction which moves (n+1) octbytes of read data, the serial address packet will be $(4 \times n)$ clock cycles in length (recall that the low-order address bits for the first octbyte of read data come from the request packet).

Each serial address subpacket (each SAdr[i][10:3] field) is transmitted by the initiating device a time tserialReadOrfset clock cycles before the octbyte of read data to which it corresponds. This means that the serial address packet will move with the read data packet, with a constant offset.

 tserialReador(set is the delay from the beginning of a serial address subpacket to the beginning of the read data subpacket (octbyte) with which it is associated.

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Figure 7-3. Read Transaction with Serial Address Packet

7.4 Write Transactions with Serial Address Packet

The following figure shows a memory space write transaction for a command which uses the serial address packet. For a transaction which moves (n+1) octbytes of write data, the serial address packet will be $(4 \times n)$ clock cycles in length (recall that the low-order address bits for the first octbyte of write data come from the request packet).

Each serial address subpacket (each SAdr[i][10:3] field) is transmitted by the initiating device a time tserialwriteor/set clock cycles before the octbyte of write data to which it corresponds. This means that the serial address packet will move with the write data packet, with a constant offset.

 tserialwriteOffset is the delay from the beginning of a serial address subpacket to the beginning of the write data subpacket (octbyte) with which it is associated.

Note that this offset interval is measured at the initiating device or the responding device; it will be the same at either point since the serial address packet and write data packet are moving in the same direction - from initiating device to responding device.

7.5 Read Transactions with Serial Control Packet

The following figure shows a memory space read transaction for a command which uses the serial control packet. This packet is used to terminate a transaction before the (CV+1) octbytes of read data have been transferred, where CV is the value of the Count[7:3] Field when interpreted as an unsigned, five bit integer. In the example shown, the read data is terminated after (n) octbytes have been transferred.

The serial control packet is transmitted by the initiating device a time tserialReadorrset clock cycles before the end of the last read data octbyte which is transmitted by the responding device.

The serial control packet is also constrained to lie entirely outside the tAckWinDelay interval, as shown in the figure, in order to avoid interference with the acknowledge packet which is being returned by the responding device. Violation of this constraint will produce undefined (Undef) results. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)**".

Figure 7-5. Read Transaction with Serial Control Packet

7.6 Write Transactions with Serial Control Packet

The following figure shows a memory space write transaction for a command which uses the serial control packet. This packet is used to terminate a transaction before the (CV+1) octbytes of write data have been transferred, where CV is the value of the Count[7:3] field when interpreted as an unsigned, five bit integer. In the example shown, the write data is terminated after (n) octbytes have been transferred.

The serial control packet is transmitted by the initiating device a time tserialwriteorrset clock cycles before the end of the last write data octbyte which is transmitted by the initiating device.

Note that this offset interval is measured at the initiating device or the responding device; it will be the same at either since the serial address packet and write data packet are moving in the same direction - from initiating device to responding device.

The serial control packet is also constrained to lie entirely outside the tAckWinDelay interval, as shown in the figure, in order to avoid interference with the acknowledge packet which is being returned by the responding device. Violation of this constraint will produce undefined (Undef) results.

Figure 7-6. Write Transaction with Serial Control Packet

8. Nack Acknowledge Response

8.1 Retry and Miss Latency

If a responding device returns a Nack acknowledge packet, then no read or write data packet is transacted. The current transaction is complete at the end of the acknowledge window. It will be necessary to wait for an interval of time (called a tRETRY interval) before resubmitting the transaction. The following figure illustrates this case.

Once the tRETRY interval has elapsed, the transaction may be restarted by the initiating device, and the RDRAM will return an Okay acknowledge packet and the data packet will be transferred. An RDRAM will Nack any other transactions which are issued during the tRETRY interval.

Two miss latency parameters may be derived with the following equations:

tReadMiss = tRETRY + tReadHit	(Eq 8-1)
twriteMiss = tRETRY + twriteHit	(Eq 8-2)

where tRETRY = {tRetrySensedClean, tRetrySensedDirty, tRetryRefresh}. The tReadMiss and twriteMiss parameters are the time from the beginning of the original (Nacked) request packet to the beginning of the data packet which is eventually transferred.

8.2 **TRETRY Interval**

8.2.1 Retry Due to RowMiss

If an initiating device requests a region of memory space in an RDRAM slave which is not currently held in the RowSenseAmpCache, the RDRAM will respond with a Nackacknowledge packet. The RDRAM will then begin a RowMiss operation to get the proper row into the RowSenseAmpCache. During the RowMiss, the RDRAM will Nack any request it is given. When the RowMiss is complete, the new row may be accessed.

Each bank has a Valid flag and a Dirty flag for its Row register. After reset, both are zero. After a RowMiss has caused a new row to be placed into the RowSenseAmpCache, the Row register contains its row address and the Valid flag is set to a one. If the RowSenseAmpCache contents are modified with a memory write transaction, the dirty flag will be set. These flags are not directly accessible to initiating devices.

A subsequent RowMiss will cause the old row to be written back to the bank (if it was dirty and an explicit restore was not forced with the Close bit in the request packet) and a new row to be placed into the RowSenseAmpCache. The time required for this is called the tRETRY time, and is added to the normal read and write hit latency times, as shown in the preceding figure. These times are given by the following equations. The component parameters are shown in a subsequent table. All of these tRETRY intervals correspond roughly to the cycle time parameter tac of a conventional page mode DRAM. This is because RDRAMs use CAS-type accesses for all memory read and write transactions.

After a new row is sensed and placed into the RowSenseAmpCache, a final interval tRowImprestore is used to restore the row in core back to its original state. This is necessary because the DRAM sense operation is destructive. This interval is not in the critical timing path, and is performed in parallel with a subsequent data transfer. It can extend a subsequent retry operation.

There are two tRETRY equations for the 18M RDRAM:

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

8.2.2 Retry Due to Pending Burst Refresh

In a 18M RDRAM, a refresh burst will first restore the currently accessed row if it is dirty. This requires a tRowExprestore interval. If the row is clean, this interval is not required. A burst of four rows are precharged/sensed/restored (using the tRowPrecharge, tRowSense and tRowImprestore intervals), and the current row is precharged/sensed so the RDRAM is left with its RowSenseAmpCache state unaltered (except the row's dirty flag will be cleared):

tRetryRefreshClean	
= tWriteHit + tRefRequestIdleOverHead + 5xtLessRowRefreshOverHead	
+ 5x(2xRowPrecharge[0:4] + RowSense[0:4] + RowImpRestore[0:4])	(Eq 8-5)
tRetryRefreshDirty	
= tWriteHit + tRefRequestIdleOverHead + 5xtLessRowRefreshOverHead	
+ 5x(2xRowPrecharge[0:4] + RowSense[0:4] + RowImpRestore[0:4] + tRowExpRestore)	(Eq 8-6)
RowPrecharge[0:4], RowSense[0:4], RowImpRestore[0:4] are the value of every Reg	gister.

When a transaction initiates a manual burst refresh in an RDRAM (transaction "A" in the figure below), the RDRAM will Nack all further transactions directed to in during the thetryRefresh interval after. No information from these Nacked transactions will be retained after the tRetryRefresh interval. After the tRetryRefresh interval, transactions will be handled in a normal fashion. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

8.3 Retry Component Intervals

The tRETRY and tRASAgain intervals are built from the tRowOverHead, tRowPrecharge, tRowSense, tRowImprestore, tRowExprestore, tRefRequestidieOverHead, tLessRowRefreshOverHead, and tHoldoff intervals. All eight intervals are measured in tCYCLE units, and thus scale with the clock frequency.

The thowOverHead, therRequestideOverHead, and tLessRowRefreshOverHead intervals consist of the RowMiss and Refresh state machine overheads. The remaining five intervals represent the width of intervals used for timing core operations. These core operations have minimum times measured in nanosecond units (this is shown in the "core timing(ns)" columns in the table below). The five intervals are composed of a fixed part and a variable (programmable) part. If the clock frequency is reduced, the variable part may be reduced so the sum of the fixed and variable parts remain greater than or equal to the minimum core operation time (in nanoseconds).

Delay	Fixed Part (overhead)	18M RDRAM		
Parameter	and Variable Part ^{Note 1}	tcycLe Units (4 ns)	core timing (ns) with tcycle = 4ns	
tRowOverHead	Row overhead	7	28	
	_	n/a		
tRefRequestIdleOverHead	Row overhead	14	56	
	_	n/a		
tLessRowRefreshOverHead	Row overhead	20	80	
	_	n/a		
tRowPrecharge	RowPrecharge overhead	6	28	
	RowPrecharge[4:0]	1		
tRowSense	RowSense overhead	1	32	
	RowSense[4:0]	7		
tRowimprestore	RowImpRestore overhead	5	60	
	RowImpRestore[4:0]	10		
tRowExprestore	RowExpRestore overhead	4	32	
	RowExpRestore[4:0]Note 2	4		
tholdOff	HoldOff overhead	1	8	
	RowPrecharge [4:0]	1]	

Table 8-1. Retry Components

Notes 1. The variable part is programmed into the indicated field of the RasInterval register.

2. The RowPrecharge [4:0] field is used for both the precharge interval and the holdoff interval.

9. AddressMapping

The address space decoding logic contained in a 18M RDRAM is shown in the following figure. The initiating device places a 33 bit physical octbyte address Adr[35:3] on the Channel. This address is received by the RDRAM slave. The AddressSelect[1][1:0], [0][7:1] control register allows individual bits of the Adr[28:20] and Adr [19:11] fields to be swapped to produce the AdrS[28:20] and AdrS[19:11] fields. The Adr[35:29] and Adr[10:3] fields pass through unaltered to the AdrS[35:29] and AdrS[10:3] fields. The figure shows the case when AddressSelect[0][7:1],[1][1:0] = 111111111, and the two nine bit address fields are exchanged. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Figure 9-1. AddressMapping Hardware

10. Electrical Characteristics (Preliminary)

Absolute Maximum Ratings

Symbol	Parameter	MIN.	MAX.	Unit	Note
VI,ABS	Voltage applied to any RSL pin with respect to GND	-0.5	Vdd+0.5	ν	
VI,TTL,ABS	Voltage applied to any TTL pin with respect to GND	-0.5	Vdd+0.5	ν	
VDD,ABS	Voltage on VDD with respect to GND	0.5	Vdd,max+1.0	ν	
Торт	Operation temperature	0	+70	°C	1
TSTORE	Storage temperature	-55	+125	°C	

Caution The following table represents stress ratings only, and functional operation at the maximums is not guaranteed. Extended exposure to the maximum ratings may affect device reliability. Furthermore, although devices contain protective circuitry to resist damage from static electric discharge, always take precautions to avoid high static voltages or electric fields.

Note 1 This parameter apply at the status of using 50% Rambus channel by Read or Write and a transverse air flow greater than 1.5m/s maintained.

Thermal Parameters

Symbol	Parameter	MIN.	MAX.	Unit
TJ	Junction operating temperature		100	°C
Olc	Junction-to-Case thermal resistance		5	°C/W

Capacitance

Symbol	Parameter	MIN.	MAX.	Unit
Cı/o	Low-swing input/output parasitic capacitance		2	pF
CI,TTL	TTL input parasitic capacitance		8	рF

Power Consumption

Mode	Parameter		MIN.	MAX.	Unit
Icc1	Standby Current	-A45		125	mA
		-A50		135	
ICC2	Active Current	-A45		350	mA
		-A50		380	
Іссз	Read Operation Current	-A45		440	mA
	(Burst Length = 256)	-A50		480	
lcc4	Write Operation Current	-A45		440	mA
	(Burst Length = 256)	-A50		480	

Caution These do not include the loL current passing through the low-swing pins to ground.

Recommended Operating Conditions

Symbol	Parameter	MIN.	MAX.	Unit
Vdd, Vdda	Supply voltage	3.15	3.45	v
Vref	Reference voltage	1.95	2.15	v
Vswing	Input voltage range	1.0	1.4	v
Vін	High level input voltage	Vref+0.5	Vref+0.7	v
Vil	Low level input voltage	Vref-0.7	Vref-0.5	v
Vih, ttl	High level TTL input voltage	2.0	VDD+0.5	ν
Vil, ττι	Low level TTL input voltage	-0.5	+0.8	v

DC Characteristics (Recommended operating conditions unless otherwise noted)

Symbol	Parameter	Conditions	MIN.	MAX.	Unit
IREF	VREF current	VREF=Maximum	-10	+10	μA
Іон	High level output current	0≤Vout≤Vdd	-10	+10	μA
lol	Low level output current	Vouτ≈1.6 V		25	mA
Ιι, ττι	TTL input leakage current	0≤VI, TTL≤VDD	-10	+10	μA
Vон, тт∟	High level TTL output voltage	Іон, тті=–0.25 mA	2.4	Vod	v
Vol, ττι	Low level TTL output voltage	Iol, ττι=1.0 mA	0	0.4	v

Recommended Timing Conditions

Symbol	Parameter		MIN.	MAX.	Unit
t PAUSE	Pause time after Power On			200	μs
tcr, tcr	TxClk and RxClk input rise and fall times	TxClk and RxClk input rise and fall times		0.7	ns
toycle	TxClk and RxClk cycle times	-A45	4.45	5	ns
		-A50	4	5	ns
tтіск	Transport time per bit per pin (this timing interval is synthesized by the RDRAM's internal clock generator)		toyole/2	tcycle/2	ns
tcн, tc∟	TxClk and RxClk high and low times		47%	53%	tCYCLE
tтя	TxClk-RxClk differential		0.25	0.7	ns
tso	SIn-to-SOut propagation delay			50	ns
ta	TxClk-to-Data/Control output time		1-0.45	1+0.45	tcycle/4
ts	Data/Control-to-RxClk setup time		0.45		tcycle/4
tн	RxClk-to-Data/Control hold time		0.45		tcycle/4
tref	Refresh interval			17	ms
tlocк	RDRAM internal clock generator lock time		750		toycle

Transaction Timing Characteristics

Symbol	Parameter	MIN.	Unit
tPostRegWriteDelay	Delay from the end of the current transaction to the beginning of the next transaction if the current transaction is a write to register space and the next transaction is made to the same device. Use zero delay if the next transaction is to a different device.	6	toyole
tPostMemWriteDelay	Delay from the end of the current transaction to the beginning of the next transaction if the current transaction is a write to memory space and the next transaction is made to the same device. Use zero delay if the next transaction is to a different device.	4	toyole
tPostMemReadDelay	Delay from the end of the current memory read transaction to the beginning of the next transaction.	2	toyole
tSerialReadOffSet	Delay from the beginning of a serial address subpacket or serial control packet to the beginning of the read data subpacket (octbyte) with which it is associated.	12	toyole
tSerialWriteOffSet	Delay from the beginning of a serial address subpacket or serial control packet to the beginning of the write data subpacket (octbyte) with which it is associated.	8	toyole

Data and Transaction Latency Characteristics

Symbol	Parameter	MIN.	Unit	Notes
tReadDelay	Delay from the end of a read request packet to the beginning of the read data packet.	7	toyole	1
t WriteDelay	Delay from the end of a write request packet to the beginning of the write data packet.	1	toyole	2

Notes 1. tReadDelay is programmed to its minimum value.

2. twriteDelay is programmed to its minimum value.

Hit, Retry and Miss Delay Characteristics

Symbol	Parameter		MIN.	Unit	Notes
tReadHit	Start of request packet to start of read data pachit (Okay).	10	toyole	1	
twriteHit	Start of request packet to start of write data pac hit (Okay).	cket for row	4	toyole	1
tRetrySensedClean	Start of request packet for row miss (Nack) to request packet for row hit (Okay). The previous row is unmodified.	22	tcycle	2	
tRetrySensedDirty	Start of request packet for row miss (Nack) to request packet for row hit (Okay). The previous row is modified.	30	tcycle	2	
tRetryRefresh	Start of request packet for row miss (Nack)	Clean	213	toyole	2
	to start of request packet for row fill (Okay).	Dirty	221		
tReadMiss	Start of request packet for row miss (Nack) to st Data packet for row hit (Okay).	32	toyole	3	
tWriteMiss	Start of request packet for row miss (Nack) to st Data packet for row hit (Okay).	art of Write	26	tcycle	3

Notes 1. Programmable

- 2. tRowExprestore, tPrecharge, and tSense are programmed to there minimum value.
- 3. Calculated with tRetrySensedClean(MIN).

Rise/Fall Timing Chart

Clock Timing Chart

Receive Data Timing Chart

Transmit Data Timing Chart

Serial Configuration Pin Timing Chart

11. Package Drawings

32 PIN PLASTIC SVP (11×25)

1

NOTE

- * Each I/O lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.
- ** Each support lead centerline is located within 0.18 mm (0.007 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	25.30 MAX.	0.996 MAX.
В	11.0±0.1	0.433±0.004
С	0.24±0.06	0.009+0.003
D	0.13	0.005
E	0.65 (T.P.)	0.026 (T.P.)
F	2.575 MAX.	0.102 MAX.
G	0.10	0.004
н	0.52±0.06	0.020±0.002
I	0.9 (T.P.)	0.035 (T.P.)
J	23.20	0.913
к	1.25	0.049
L	11.80 MAX.	0.465 MAX.
м	0.5±0.1	$0.020 \substack{+0.004 \\ -0.005}$
N	3.70 MAX.	0.146 MAX.
Ρ	0.17+0.025	0.007±0.001
Q	0.9±0.25	0.035+0.011
R	3°+7° -3°	3°+7° -3°
S	1.90 MAX.	0.075 MAX.
Т	0.18	0.007
		S32VN-65-9

72/36 PIN PLASTIC SSOP TYPE

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	25.30 MAX.	0.996 MAX.
B	2.575 MAX.	0.102 MAX.
	0.65 (T.P.)	0.026 (T.P.)
D	0.24±0.06	0.009+0.003
Е	0.25±0.05	0.010+0.002
F	1.6 MAX.	0.063 MAX.
G	1.25	0.049
н	13.0±0.2	0.512±0.008
1	11.0±0.1	0.433±0.004
J	1.0±0.2	0.039+0.009
к	0.17+0.025	0.007±0.001
L	0.5±0.1	0.020+0.004
м	0.13	0.005
N	0.10	0.004
Р	3°+7° 3°	3° <u>+7</u> ° 3° <u>-3</u> °
Q	0.65 (T.P.)	0.026 (T.P.)
R	22.75	0.896
S	1.275 MAX.	0.051 MAX.
		P32G6-65A

NEC

[MEMO]

mos integrated circuit μ PD488130L

16M-BIT Rambus DRAM 1M-WORD X 8-BIT X 2-BANK

Description

The 16-Megabit Rambus[™] DRAM (RDRAM[™]) is an extremely-high-speed CMOS DRAM organized as 2M words by 8 bits and capable of bursting up to 256 bytes of data at 2 ns per byte. The use of Rambus Signaling Logic (RSL) technology makes this 500 MHz transfer rate achievable while using conventional system and board design methodologies. Low latency is attained by using the RDRAM's large internal sense amplifier arrays as high speed caches.

RDRAMs are general purpose high-performance memory devices suitable for use in a broad range of applications including main memory, graphics, video, and any other application where high-performance and low cost are required.

Detailed information about product features and specifications can be found in the following document. Please make sure to read this document before starting design.

Rambus DRAM user's manual (Reference Manual)

Features

- Rambus Interface
- 500 MB/sec peak transfer rate per RDRAM
- RSL interface
- · Synchronous protocol for fast block-oriented transfers
- Direct connection to Rambus ASICs, MPUs, and Peripherals
- 40 ns from start of read request to first byte; 2 ns per byte thereafter
- · Features for graphics include random-access mode, write-per-bit and mask-per-bit operations
- Dual 2K-Byte sense amplifiers act as caches for low latency accesses
- Multiple power-saving modes
- · On-chip registers for flexible addressing and timing
- · Low pincount-only 15 active signals
- Standardized pinout across multiple generations of RDRAMs
- 3.3 volt operation

Ordering Information

Part Number	Clock Frequency	Operation Voltage	Package
μPD488130LVN-A50-9	250MHz	3.3±0.15 V	32-pin plastic SVP (11 \times 25)
μPD488130LVN-A45-9	225MHz	3.3±0.15 V	32-pin plastic SVP (11 $ imes$ 25)
μPD488130LG6-A50	250MHz	3.3±0.15 V	72/36-pin plastic SSOP type
μPD488130LG6-A45	225MHz	3.3±0.15 V	72/36-pin plastic SSOP type

The information in this document is subject to change without notice.

Pin Configuration (Marking Side)

BusData 0 - BusData 8	: Bus Data (Input/Output)
RxClk	: Receive Clock (Input)
TxClk	: Transmit Clock (Input)
VREF	: Logic Threshold Voltage (Input)
BusCtrl	: BusCtrl (Input/Output)
BusEnable	: BusEnable (Input)
Vdd, Vdda	: Power Supply
GND, GNDA	: Ground
Sin	: Serial Input (Input)
SOut	: Serial Output (Output)
NC	: No Connection
IC ^{Note}	: Internal Connection

Note Leave this pin unconnected.

Block Diagram

1. Pin Function

Signal	I/O	Description
BusData [8:0]	1/0	Signal lines for request, write data, and read data packets. The request packet contains the address, operation codes, and the count of the bytes to be transferred. This is a low-swing, active-low signal referenced to VREF. BusData [8] is "Don't Care" in data packet of the accessing memory space.
RxClk	I	Receive clock. Incoming request and write data packets are aligned to this clock. This is a low-swing, active-low signal referenced to VREF.
TxClk	1	Transmit clock. Outgoing acknowledge and read packets are aligned with this clock. This is a low- swing, active-low signal referenced to VREF.
Vref	I	Logic threshold voltage for low swing signals.
BusCtrl	I/O	Control signal to frame packets, to transmit part of the operation code, and to acknowledge requests. Low-swing, active-low signal referenced to VREF.
BusEnable	Ι	Control signal to enable the bus. Long assertions of this signal will reset all devices on the Channel. This is a low-swing, active-low signal referenced to VREF.
Vdd, Vdda	_	+3.3 V power supply. VDDA is a separate analog supply.
GND, GNDA		Circuit ground. GNDA is a separate analog ground.
SIn	I	Initialization daisy chain input. TTL levels. Active high.
SOut	0	Initialization daisy chain output. TTL levels. Active high.

2. Rambus System Overview

A typical Rambus memory system has three main elements: the Rambus Channel, the RDRAMs, and a Rambus Interface on a controller. The logical representation of this is shown in the following figure.

Figure 2-1. Logical Representation

Rambus Channel = 8 bits every 2 ns

The Rambus Channel is a synchronous, high-speed, byte-wide bus that is used to directly connect Rambus devices together. Using only 13 high-speed signals, the Channel carries all address, data, and control information to and from devices through the use of a high level block-oriented protocol.

The Rambus Interface is implemented on both master and slave devices. Rambus masters are the only devices capable of generating transaction requests and can be ASIC devices, memory controllers, graphics engines, peripheral chips, or microprocessors. RDRAMs are slave devices and only respond to requests from master devices.

The following figure shows a typical physical implementation of a Rambus system. It includes a controller ASIC that acts as the Channel master and a base set of RDRAMs soldered directly to the board. An RSocket[™] is included on the Channel for memory upgrade using RModule[™] expansion cards.

3. Rambus Signaling Logic

RSL technology is the key to attaining the high data rates available in Rambus systems. By employing high quality transmission lines, current-mode drivers, low capacitive loading, low-voltage signaling, and precise clocking, systems reliably transfer data at 2 nanosecond intervals on a Rambus Channel with signal quality that is superior to TTL or GTL-based interfaces.

All Rambus Interfaces incorporate special logic to convert signals from RSL to CMOS levels for internal use. In addition, these interfaces convert the Channel data rate of one byte every 2 nanoseconds to an internal data rate of 8 bytes every 16 nanoseconds as shown in the following figure. Although the bandwidth remains the same, the use of a wide internal bus eases internal timing requirements for chip designers.

Figure 3-1. Converting the Channel Data Rate

4. Register Space Map

The following table summarizes the registers included in all 16M RDRAMs.

Register Name	Adr[20:10]	Adr[9:2]	Register Number
Device Type[3:0][8:0]	xxxx	00000000	0
Deviceld[3:0][8:0]	xxxx	00000001	1
Delay[3:0][8:0]	xxxx	00000010	2
Mode[3:0][8:0]	xxxx	00000011	3
RefRow[3:0][8:0]	xxxx	00000101	5
RasInterval[3:0][8:0]	xxxx	00000110	6
MinInterval[3:0][8:0]	xxxx	00000111	7
AddressSelect[3:0][8:0]	xxxx	00001000	8
DeviceManufacturer[3:0][8:0]	××××	00001001	9
Row[3:0][8:0]	xxxx	10000000	128

i adie 4-1. Registers Space Map	able 4-1.	Registers	Space	Мар
---------------------------------	-----------	-----------	-------	-----

(1) Device Type Register

This register specifies RDRAM configuration and size. Device Type [0] [2]=0: This means that the RDRAM is 8-bit wide.

(2) DeviceId Register

This register specifies RDRAM base address.

(3) Delay Register

This register specifies RDRAM programmable CAS delay values.

(4) Mode Register

This register specifies RDRAM programmable output drive current.

(5) RefRow Register

This register specifies RDRAM refresh row and bank address.

The RefRow register contains read-write fields. It is used to keep track of the bank and row being refreshed. Normally this register is only read or written for testing purposes. The fields are aliased in the following way:

RowField[7:1] equals RefRow[0][7:1] RowField[9:8] equals RefRow[2][1:0] BankField[3] equals RefRow[1][3]

(6) RasInterval Register

This register specifies RDRAM programmable RAS delay values. The RasInterval Register contains four writeonly fields. When a rowmiss occurs, or when a row is being refreshed during a burst refresh operation, it is necessary for the control logic of an RDRAM to count the appropriate number of clock cycles (tcycle) for four intervals. This is done with a counter which is loaded successively with three values from the RasInterval Register.

(7) MinInterval Register

This register specifies RDRAM refresh control. This register provides the minimum values for three time intervals for framing packets. The time intervals are specified in clock cycle (tcycLE) units.

Caution MinInterval Register [3] [2] = 0 is necessary. Because, 16M RDRAM don't support PowerDown request.

(8) AddressSelect Register

This register specifies RDRAM address mapping.

(9) DeviceManufacturer Register

This register specifies RDRAM manufacturer information.

This register specifies the manufacturer of the device. Additional bits are available for manufacturer specific information, e.g. stepping or revision numbers.

(10) Row Register

This register specifies RDRAM current sensed row in each bank.

The detailed functional description is provided in RDRAM Reference Manual.

5. Packet Formation

5.1 Packet Summary

The following table summarizes the transmit/receive functionality for the different packet classes.

Packet Type	Initiating Devices	μPD488130L
Request Packet	Transmit	Receive
Acknowledge Packet	Receive	Transmit
Read Data Packet	Receive	Transmit
Write Data Packet	Transmit	Receive
Serial Address Packet	Transmit	Receive
Serial Control Packet	Transmit	Receive
Serial Mode Packet	Transmit	Receive

Table 5-1. Transmitting/Receiving Devices for Packet Types

5.2 Request Packet

The request packet format is shown in the following figure.

Figure 5-1. Request Packe	t Format
---------------------------	----------

					C	evice Pir	าร				
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even	-	Start	Op [0]				Adr [9 : 2]				
[0] odd	-	Op [1]	Op [3]				Adr [17 : 10]				
[1] even	-	OpX [1]					Adr [26 : 18]				
[1] odd	-	Op [2]					Adr [35 : 27]				1
[2] even	-	OpX [0]	ReqU [5	Inimp : 4]		Count [6, 4, 2]	I		ReqL (3	jnimp : 0]	
[2] odd	-	R	eqUnimp [8 : 6])		Count [7, 5, 3]	1	Co [1	unt 0]	A [1	dr : 0]
Time	-	This me by anoth	ans that her packe	this pin is et, it is pu	s not use illed to a	d by this logic zero	packet. If value.	it is not	used		Request Packet

The vertical axis in all packet figures in the following sections shows time in units of clock cycles, with each clock cycle broken into even and odd bus ticks. The timing is relative, measured from the beginning of the packet.

5.2.1 Start Field

A device should start framing a request packet when it sees this bit asserted to a logical one and it is not looking for an acknowledge packet nor framing an earlier request packet.

5.2.2 Op[3:0], OpX[1:0] Fields

The Op and OpX fields are summarized in the following table.

Op[3:0]	OpX[1:0] = 00	OpX[1:0] = 01	OpX[1:0] = 10	OpX[1:0] = 11
0000	Rseq	Rnsq	Rsrv	Rsrv
0001	Rsrv	Rsrv	Rsrv	Rsrv
0010	Rsrv	Rsrv	Rsrv	Rsrv
0011	Rsrv	Rsrv	Rsrv	Rsrv
0100	WseqNpb	WseqDpb	WseqBpb	WseqMpb
0101	Rsrv	Rsrv	Rsrv	Rsrv
0110	Rreg	Rsrv	Rsrv	Rsrv
0111	Wreg	Rsrv	Rsrv	Rsrv
1000	WnsqNpb	WnsqDpb	WnsqBpb	WnsqMpb
1001	Rsrv	Rsrv	Rsrv	Rsrv
1010	Rsrv	Rsrv	Rsrv	Rsrv
1011	Rsrv	Rsrv	Rsrv	Rsrv
1100	WbnsNpb	WbnsDpb	Rsrv	WbnsMpb
1101	Rsrv	Rsrv	Rsrv	Rsrv
1110	Rsrv	Rsrv	Rsrv	Rsrv
1111	WregB	Rsrv	Rsrv	Rsrv

Table 5-2. Op[3:0] and OpX[1:0] Fields - Command Encodings

The command opcode also determines which packets (in addition to the request packet) will form the transaction. A detailed functional description of the actions that an RDRAM takes for each implemented command is provided in "Rambus DRAM user's manual (Reference Manual)". The following table summarizes the functionality of each subcommand:

SubCommand	Description
Rseq	Read sequential data from memory space.
Rnsq	Read non-sequential (random-access) data from memory space.
Wseq	Write sequential data to memory space.
Wnsq	Write non-sequential (random-access) data to memory space.
Wbns	Write non-sequential (random-access) data to memory space with non-contiguous byte masking.
Npb	Write data is from data packet. There is no bit mask.
Dpb	Write data is from data packet. The bit mask is in the MDReg.
Мрb	Write data is from MDReg. The bit mask is from the data packet.
Bpb	Write data is from data packet. The bit mask is also from the data packet.
Rreg	Read sequential data from register space.
Wreg	Write sequential data to register space.
WregB	Broadcast write with no Okay acknowledge permitted.

Table 5-3. Subcommand Summary

The memory read commands are formed using the Rseq and Rnsq subcommands to select sequential or nonsequential (random) access.

• Rrrr = {Rseq, Rnsq}

The following table summarizes the available write commands and shows how they are formed from a 3×4 matrix of the Wwww and Bbb subcommands.

WwwwBbb Wwww = {Wseq, Wnsq, Wbns}
 Bbb = {Npb, Dpb, Bpb, Mpb}

Table	5-4.	Write	Commands
-------	------	-------	----------

	Wwww subcommands				
Bbb subcommand	Wseq (seqential-access with contiguous byte masking)	Wnsq (non-sequential- access)	Wbns (non-sequential-access with non-contiguous-byte- masking)		
Npb	WseqNpb	WnsqNpb	WbnsNpb		
Dpb	WseqDpb	WnsqDpb	WbnsDpb		
Mpb	WseqMpb	WnsqMpb	WbnsMpb		
Bpb	WseqBpb	WnsqBpb	Not implemented		

There are three Wwww subcommands. They control the accessing pattern and the use of non-contiguous byte masking.

- Wseq octbyte blocks in the RDRAM core are accessed in sequential (ascending little-endien) address
 order. Contiguous byte masking is controlled with the Adr[2:0] and Count[2:0] fields of the request
 packet.
- Wnsq octbyte blocks in the RDRAM core are accessed in non-sequential address order. The addresses
 for the octbyte blocks within the sensed row come from serial address packets which are received
 on the BusEnable pin.
 The address order is arbitrary.
- Wbns octbyte blocks in the RDRAM core are accessed in non-sequential address order, as in the Wnsq subcommand. In addition, byte masks are transmitted with the write data, permitting arbitrary non-contiguous byte masking of this write data. The bytemask octbytes are not included in the total octbyte transfer count ; i.e. a Count[7:3] field of 31 implies 4 bitmask octbytes and 32 write data octbytes, for a data packet size of 36 octbytes.

There are four Bbb subcommands. They select the type of bit masking to be applied to the write data.

- Npb (no-per-bit) There is no bit mask applied to the write data. The MDReg is not used or modified.
 Dpb (data-per-bit) The MDReg is used as a bit mask, the write data comes from the data packet. The same bit mask is used for each octbyte. This is also called persistent bit masking. The MDReg is not modified.
 Mpb (mask-per-bit) The bit mask comes from the data packet, the write data comes from the MDReg. The same data is used for each octbyte. This is also called color masking. The MDReg is not modified.
- Bpb (both-per-bit) The bit mask and the write data come from the data packet. The MDReg is not used, but is modified as a side effect (the WwwwBpb commands are used to load the MDReg for the WwwwDpb and WwwwMpb commands). This is also called non-persistent bit masking.
 The bitmask octbytes are included in the total octbyte transfer count ; i.e. a Count[7:3] field of 31 implies 16 bitmask octbytes and 16 write data octbytes.

5.2.3 Adr[35:0] Field

The Adr field is used as either a memory or register space address depending upon the OP[3:0] and OpX[1:0] fields. Devices extract a portion of the Adr field to match against their Deviceld register (IdMatch), thus selecting the device to which the request is directed. The remainder of the Adr field accesses the desired region of the device's memory or register space. The memory read and write commands and the Rreg and Wreg commands will only take place if there is an IdMatch. The IdMatch criteria is ignored for the WRegB commands, with all responding devices performing the required actions.

The Rambus protocol uses quadbyte resolution in the data packet for register space read and write commands; i.e. one quadbyte is the smallest data item that may be transferred, and all transfers are an integral number of quadbytes. The Adr[35:2] field is the quadbyte address. The Adr[1:0] field is Unimp for these commands, and should be driven with "00" by initiating devices.

The Rambus protocol uses octbyte resolution in the data packet for memory space read and write commands; i.e. one octbyte is the smallest data item that may be transferred, and all transfers are an integral number of octbytes. The Adr[35:3] field is the octbyte address.

Some commands use the Adr[2:0] field to specify contiguous byte masking. Refer to "Rambus DRAM user's manual (Reference Manual)".

5.2.4 Count[7:0] Field

The following table summarizes the transfer count ranges for 16M RDRAMs:

Count Range	μPD488130L
Maximum count for memory space	32 octbytes
Minimum count for memory space	1 octbyte
Maximum count for register space	1 quadbyte
Minimum count for register space	1 quadbyte

Table 5-5. Transfer Count Summary

Register space read and write commands use a transfer count of one quadbyte, regardless of the Count[7:0] field value.

Memory space read and write commands specify the number of octbytes to be transferred with the Count[7:3] field. An offset-by-one-encoding is used so that "00000" specifies one octbyte, "00001" specifies two octbytes, and so on up to "11111" which specifies thirty-two octbytes. The transfer count does include the octbytes containing bitmasks (for commands using the Bpb subcommand). The transfer count does not include the octbytes containing noncontiguous ByteMasks (for commands using the Wbns subcommand).

Some commands use the Count[2:0] field to specify contiguous byte masking. Refer to "Rambus DRAM user's manual (Reference Manual)".

Memory space transactions to RDRAMs are not allowed to cross internal row address boundaries within the device. Attempts to do so have Undef (undefined) results. These row boundaries are at 2kbyte intervals for 16M RDRAMs.

5.2.5 Adr[2:0] and Count[2:0] Fields for Contiguous Byte Masking

An initiating device wishing to write an arbitrary number of contiguous bytes to a starting address on an arbitrary byte boundary may do so with the Adr[2:0] and Count[2:0] fields with the Wseq subcommands. The transfer count and starting address are given by:

- · MasterCount[7:0] specifies the number of bytes which the master device wishes to transfer.
- · Adr[35:0] specifies the starting byte address (this is the same as the Adr[35:0] field in the request packet)

Where the convention used by the initiating device for the count is that Master-Count[7:0] = "00000000" means one byte, MasterCount[7:0] = "00000001" means two bytes and MasterCount[7:0] = "11111111" means 256 bytes (an offset-by-one encoding; the data block count is equal to MasterCount[7:0]+1).

The initiating device converts this internal count value into a value for the request packet with the following formula. Little-endien byte addressing is used for specifying bytes within octbytes.

Count[7:0] = Adr[2:0] + MasterCount[7:0] (Eq 5-1)

Where "+" denotes unsigned integer addition of two bit fields (short fields are zero-extended on the left). If the value of Adr[2:0] + MasterCount[7:0] is greater than 255 (it may be as much as 262), then the initiating device must break the request into two transactions.

The Adr[2:0] and Count[2:0] field generate masks for individual bytes within an octbyte. The Adr[35:3] and Count[7:3] field have the octbyte resolution previously described. The following tables show how the byte masks are generated. In the case of memory read transactions, the byte masks that are generated do not affect the data that is returned by the RDRAM; all data bytes in the first and last octbytes are returned in the read data packet.

In the case of memory write transactions, ByteMaskLS[7:0] applies to the first octbyte at Mem[AV][7:0][8:0]. Byte MaskMS[7:0] applies to the last octbyte at Mem[AV+CV][7:0][8:0]. All intermediate octbytes use a byte mask of 11111111 (a one means the byte is written, a zero means it is not). Here AV is the value of the Adr[35:3] field when interpreted as an unsigned, 33 bit integer, and CV is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit interger. If the Count[7:3] is "00000" (one octbyte), the ByteMaskLS[7:0] and ByteMaskMS[7:0] masks are logically 'anded' together to give the effective byte mask.:

Adr[2:0]	ByteMaskLS[7:0]	Adr[2:0]	ByteMaskLS[7:0]
000	11111111	100	11110000
001	11111110	101	11100000
010	11111100	110	11000000
011	11111000	111	1000000

Table 5-6.	Adr[2:0]	to B	yteMaskLS	5[7:0]	Encoding	ĝ
------------	----------	------	-----------	--------	----------	---

Count[2:0]	ByteMaskMS[7:0]	Count[2:0]	ByteMaskMS[7:0]
000	0000001	100	00011111
001	00000011	101	00111111
010	00000111	110	01111111
011	00001111	111	11111111

Table 5-7. Count[2:0] to ByteMaskMS[7:0] Encoding

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

5.2.6 ReqUnimp[8:0] Fields

These fields are unimplemented (Unimp) in the request packet. They should be driven as zeroes by initiating devices.

5.3 Acknowledge Packet

The Ack[1:0] field carries the acknowledge encoding from the responding device(s) to the initiating device and any other listening devices. The following figure shows the format of the acknowledge packet.

Figure 5-2. Acknowledge Packet Format

The following table summarizes the four combinations of the Ack[1:0] field. The Ack3 combination is Undef. The Okay combination indicates that the read or write access to the specified space will take place.

When a responding device acknowledges a request with a Nack, then there will be no immediate change in the state of the device's memory space or register space. The responding device will take the appropriate steps to make the requested region of memory or register space accessible when the initiating device makes a subsequent request. The initiating device will need to wait some device-dependent length of time until the requested region is available.

There are three possible reasons for an RDRAM to respond with Nack. They are summarized below. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

- tPostMemWriteDelay Or tPostRegWriteDelay violation
- RowMiss (this causes a delay of tRetrySensedClean Or tRetrySensedDirty)
- ongoing refresh (this causes a delay of up to tRetryRefresh)

Table 5-	8. Acl	[1:0]	Encod	lings
----------	--------	-------	-------	-------

Commands allowed to use the Ack Combination	Ack [1:0]	Name	Description	Spec Undef
All commands	00	Nonexistent	Indicates passive acceptance of the request (WregB), or indicates that the addressed device did not respond (all other commands).	Spec
All commands but WregB	01	Okay	Indicates that the request was accepted by the addressed by the addressed (responding) device.	Spec
All commands	10	Nack	Indicates that the request could not be accepted because the state of the responding device prevented an access at the fixed timing slot.	Spec
All commands but WregB	11	Ack3	This should not be returned by this responding device. Initiating devices will, when presented with this combi- nation, have an undefined response.	Undef

5.4 Data Packet

The following figure shows the format of a data packet for register space read and write commands. It consists of 1 quadbyte driven on the BusData[8:0] wires for RDRAMs.

Other responding devices may support data packet lengths longer than one quadbyte.

Figure 5-3. Data Packet Format (Register Space)

The following figure shows the format of a data packet for memory space read and write commands. For most of these commands, it consists of 1 to 32 octbytes driven on the BusData[7:0] wires. BusData [8] is not used by this packet. In the figure, "n" is either the CV value (if the transaction is allowed to complete) or the last count value (if the transaction is terminated prematurely by the serial control packet). "CV" is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit integer.

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

5.4.1 MD Reg [7:0] [7:0]=U

This register holds the write data or mask for the persistent per-bit operations (Dpb & Mpb). The MDreg need not implement the ninth bits when the RDRAM is 8-bit wide.
	Device Pins										
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even	-	+	-			[[Data)] [0] [7 :	1 0]	1		
[0] odd	-	-	-			10	Data	01	I		1
[1]	-	-	-			10	Data	0) 01	I		1
[1]	-	-	-				Data	0]	l	[r [
[2]	-		-				Data				
[2]	-	-	-				Data		[
[3]	-	-	-			[[Data			[
[3]	-	-			[[()] [6] [7 : Data	0]			
odd						[()] [7] [7 :	0]			
:			:				÷				
[4*n]	-	-	-			[Data	01		[
[4*n] odd	-	-	-			[r	Data	0] 0]			
[4*n+1]	-	-	-			[r	Data	0) [[
[4*n+1]	-	-	-			[[Data	01		[
[4*n+2]	-	-	-				Data		[
[4*n+2]	-	-	-			lr	Data	0) 		[
[4*n+3]	-	-	-			[r] [5] [7 : Data			[
even [4*n+3]	-	-	-			(r] [6] [7 : Data	oj I		Γ	
Loddj			L	L		(r] [7] [7 :	0]			
↓ Time	-	This mothing the second	eans that ther pack	this pin i et, it is pu	s not use ulled to a	ed by this logic zer	packet. o value.	lf it is not	used		Data Packet

Figure 5-4. Data Packet Format (Memory Space)

5.5 Serial Address Packet Format

The serial address packet is transmitted by the initiating device and received by the responding devices. It provides eight low-order address bits for each octbyte which is accessed in memory space (a non-sequential or random-access transfer). These eight address bits are transferred serially on the BusEnable pin of the RDRAM, and are thus called a serial address. Each eight bit serial address accesses an octbyte of data within the RowSenseAmpCache of one of the two banks of the RDRAM. The complete set of serial addresses transmitted by the initiating device during the transaction are referred to as a serial address packet. The commands which use this packet are the Rnsq, WnsqBbb, and WbnsBbb classes of commands.

The high order bits for each octbyte are provided by the Adr[35:11] address bits from the request packet. The low-order address bits for the first octbyte are Adr[10:3], also from the request packet. The low-order address bits for octbytes [n:1] are provided by the serial address packet. As before, "n" is either the CV value (if the transaction is allowed to complete) or the last count value (if the transaction is terminated prematurely by the serial control packet). "CV" is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit integer. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Serial Address Field	Description	Unimp Imp
SAdr[i][10:3]	Low-order address bits for each octbyte.	Imp

Table 5-9. Serial Address Fields (i = n:1)

	Device Pins										
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[4] even	SAdr [1] [3]	-									
[4] odd	SAdr [1] [4]	+				I	-				I
[5] even	SAdr [1] [5]	-				1					
[5] odd	SAdr [1] [6]	-				I	-	1			
[6] even	SAdr [1] [7]	-				I	I _				
[6] odd	SAdr [1] [8]	-				I	-				
[7] even	SAdr [1] [9]	-				1	I _	I			
[7] odd	SAdr [1] [10]	-				I	-				
:	:	•									
[4*n] even	SAdr [n] [3]	-				T	ا _	T	r	[]	
[4*n] odd	SAdr [n] [4]	-				1	-				
[4*n+1] even	SAdr [n] [5]	-				I	Γ_	r			
[4*n+1] odd	SAdr [n] [6]	Ŧ				T	-				
[4*n+2] even	SAdr [n] [7]	-				I.	I _	r			
[4*n+2] odd	SAdr [n] [8]	-				1	I _	I	I		
[4*n+3] even	SAdr [n] [9]	-				1	I _	I			
[4*n+3] odd	SAdr [n] [10]	-				1	I _				
Serial Address This means that this pin is not used by this packet. If it is not used by another packet, it is pulled to a logic zero value.											

Figure 5-5. Serial Address Packet Format

5.5.1 Serial Control Packet Format

The serial control packet is transmitted by the initiating device and received by the responding devices. It provides for the early termination of a memory space read or write transaction (before the specified data count in the Count[7:3] field has elapsed). It consists of eight bits transferred serially on the BusCtrl pin of the device, thus it is referred to as a serial control packet. The eight bits have the same timing alignment as the serial address packet. The commands which use this packet are all of those which access memory space. The register read and write commands do not use the serial control packet. The 16M RDRAM implements this packet.

The termination occurs on octbyte data packet boundaries. The next figure shows the format of the serial control packet. The following table summarizes the function of the bits within the serial control packet. Note that the bits in the even bus ticks must be zero in order for framing to work properly (otherwise, one of these bits would be interpreted as the Start bit of a new request packet). The SCtrl[5] bit is used to control termination, and the other three odd bus tick bits are unimplemented.

Serial Control Fields	Description	Unimp Imp
SCtrl[0]	This bit must be a zero due to framing requirements.	lmp
SCtrl[1]	unimplemented	Unimp(0)
SCtrl[2]	This bit must be a zero due to framing requirements.	Imp
SCtrl[3]	unimplemented	Unimp(0)
SCtrl[4]	This bit must be a zero due to framing requirements.	Imp
SCtrl[5]	0 means don't terminate the current access. 1 means terminate the current access.	Imp
SCtrl[6]	This bit must be a zero due to framing requirements.	Imp
SCtrl[7]	unimplemented	Unimp(0)

Table	5-10.	Serial	Control	Fields
I abic	v- i v.	Ochan	0011001	1 10103

If a memory read transaction (RrrrAaa) is terminated by asserting the SCtrl[5] bit to a logical one, the data octbyte with which it is associated is not transmitted by the responding device. The initiating device may start a new transaction once the transmission of the read data packet has ceased. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

					0	Device Pir	าร				
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even	-	SCtrl [0]				I	-				
[0] odd	-	SCtrl [1]					I				
[1] even	-	SCtrl [2]	1				I _				
[1] odd	-	SCtrl [3]					-				
[2] even	-	SCtrl [4]									
[2] odd	-	SCtrl [5]					-				
[3] even	-	SCtrl [6]					-				
[3] odd	-	SCtrl [7]					I _				
Time	Serial C Pack	ontrol et	-	This r by an	neans th other pa	hat this pi cket, it is	n is not u pulled to	sed by th a logic ze	is packet ero value	. If it is n	ot used

Figure 5-6. Serial Control Packet Format

5.5.2 Serial Mode Packet Format

The serial mode packet transmitted by initiating devices, and received by responding device. Its format is shown in the following figure.

Figure 5-7. Serial Mode Packet Format

The serial mode packet modifies the state of the Count00[7:0] and Count11[7:0] counters.

These counters cause operating mode transitions when they reach special values. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

A serial mode packet with the SMode[1:0] field set to 00 is the default. Most transitions are caused by blocks of sequential serial mode packets, each with the SMode[1:0] field set to 11. The serial mode packets should never set SMode[1:0] field to 01 or 10. This is because in some of the operating modes, the clock generator is unlocked (the frequency is correct but not the phase). When this happens, the BusEnable receiver is unable to discriminate anything other than long pulses of zeros or ones. Because the frequency of the clock generator is correct, it can count the length of these pulses with moderate accuracy.

Table 5-11. Serial Mode Fields

SMode[1:0]	Description	Spec/Rsrv/ Undef
00	Increments Count00[3:0], clears Count11[7:0].	Spec
01	-	Undef
10	-	Undef
11	Increments Count11[7:0], clears Count00[3:0]	Spec

6. State Diagram

The following figure is a state diagram of the Frame state machine. The operating mode of the device depends upon which of the nine states it is in:

- reset mode ResetState
- · standby mode StandbyState
- active mode ActiveState, IdCompareState, DeviceState, OkayState, NackState, AckWindowState

This section will only discuss the first three states (ResetState, StandbyState, ActiveState). The remaining five states which are shown shaded in the state diagram (IdCompareState, DeviceState, OkayState, NackState, AckWindowState) will be dealt with in the "Rambus DRAM user's manual (Reference Manual)".

The device will enter ResetState when power is initially applied (PowerOn). In ResetState, the device will be in the reset operating mode, in which all control registers assume a known state. If power has just been applied, the device will pass through ActiveState and settle in StandbyState, and remain there until serial mode packets are received from an initiating device.

ActiveState is the state in which all decisions are made to transition to the states for the other operating modes. From here, the device will also enter the transaction-framing states. Refer to "Rambus DRAM user's manual (Reference Manual)".

After poweron, the device will re-enter ResetState when the value of the Count11[7:0] counter is greater than or equal to tmodeAR,MIN. The device will leave ResetState when the value of the Count11[7:0] counter is less than tmodeSA,MIN. This will happen when an SMode[1:0] field of 00 is received, causing the Count11[7:0] counter to clear.

The device will enter StandbyState when the value of the Count00[3:0] counter is greater than or equal to tmodeDelay.MAX. The device will leave StandbyState when the value of the Count11[7:0] counter is greater than or equal to tmodeSA,MIN.

Caution PD (MinInterval Register [3] [2]) = 0 is necessary. Because, 16M RDRAM don't support PowerDown request.

6.1 Parameters for Operating Mode Transitions

The following table summarizes the parameter values associated with operating mode transitions of a responding device. A minimum and maximum value are given for the parameters to account for implementation differences. In all cases, the SMode[1:0] field of the consecutive serial mode packets must have the value 11 to cause an operating mode transition (with the exception of the tmodeDelay.MAX as mentioned in the previous section). Initiating devices must use values within the minimum and maximum SMode packet count requirements shown above to control operating mode transitions.

Count Parameter Name	Minimum (clock cycles)	Maximum (clock cycles)	Description			
tModeSA	1	4	Number of SMode packets to cause a transition from			
			Standby-Mode to ActiveMode			
tModeOffSet	4	7	Offset from beginning of SMode packet to request packet for			
			standby to active transition			
tModeDelay	-	20	Delay from end of SMode packet to request packet for			
			standby to active transition			
tModeSwitchReset	320	-	Number of SMode packets to cause a transition from Active-			
			Mode to ResetMode			
tReset	32	-	Time required for an RDRAM's internal nodes to settle to their			
			reset values.			
tLock, Reset	750	-	Time required for an RDRAM's internal clock generator to lock			
			to the external clock.			

Table 6-1. Responding Device Parameters for Operating Mode Transitions

6.2 Standby Mode and Active Mode

The following figure shows the basic transitions between active and standby modes in response to serial mode packets

Figure 6-2. Basic ActiveMode/StandbyMode Transitions

This is a timing diagram, with time increasing in the downward direction. The time scale is in clock cycles, as shown on the left scale. The value of each of the eleven low-swing signal pins of the responding device is shown with the assumption that trn is zero (the responding device is located at the master end of the Channel).

Serial mode packets with an SMode[1:0] field are shown as a box with a "11" label in the BusEn column. The BusEnable defaults to a logical zero value. The initiating device has transmitted twodesA,MAX serial mode packets with SMode[1:0] equal to 11 (this is the longest sequence permitted for invoking a standby to active transition). After the first twodesA,MIN serial mode packets, the device begins the transition to active mode. It reaches active mode after twodeofrset, MIN clock cycles after the start of the first serial mode packet. It remains there for twodeolay,MAX clock cycles after the last serial mode packet.

The responding device is in active mode when it begins framing the request packet. A transaction may begin in any of the clock cycles with the light shading above (labeled "Active Mode").

If the serial mode packet(s) causing a standby to active mode transition are not followed by a transaction with tmodeDelay.MAX clock cycles after the last serial mode packet, then the responding device will return to standby mode.

The next figure shows the case in which a transaction is started as early as possible after a serial mode packet which causes a standby to active mode transition.

Figure 6-3. ActiveMode/StandbyMode Transition - Early Transaction

A transaction is composed of packet types other than serial mode packets, and will be defined in the next chapter. These other packet types lie entirely inside the heavy black box in the above figure. When a transaction has completed, the device returns to standby mode. The detailed functional description is provided in "**Rambus DRAM user's manual** (Reference Manual)".

6.3 ResetMode

Reset mode is entered when a consecutive sequence of tmodeRA.MIN serial mode packets with a value of 11 are seen by a responding device (shown in the following figure). In reset mode, all devices enter a known state from which they may be Initialized. The device remains in reset mode for as long as serial mode packets with 11 value are received. When one or more serial mode packets with a value of 00 are seen, the responding device enters the active mode state.

Although devices enter the active mode state immediately, their clock circuitry requires a time tLock.MIN to resynchronize. Initiating devices must wait this long after the transition out of reset mode before starting any transactions.

Figure 6-4. ResetMode to ActiveMode Transition

7. Transactions

7.1 Read Transactions

The following figure shows the basic form of a memory space or register space read transaction. There are request and acknowledge packets, with the same tackDelay and tackWinDelay timing constraints. tackWinDelay will not be shown explicitly on any further transaction diagrams in this document.

When the responding device transmits an Okay acknowledge packet to the initiating device, it will also transmit a data packet with read data. This packet is sent a time treadDelay after the end of the request packet. The treadDelay value is in tcycle units and is programmed into the ReadDelay field of the Delay register of each responding device. It is not required to be the same for all devices within a Rambus system, but the difference (treadDelay - tackDelay) is required to be the same. This allows initiating devices to use the acknowledge packet to determine when the read data packet begins. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Figure 7-1. Read Transaction

7.2 Write Transactions

The following figure shows the basic form of a memory space or register space write transaction. There are request and acknowledge packets, with the same tackDelay and tackWinDelay timing constraints as already discussed.

When the initiating device transmits a request packet to the responding devices, it will also transmit a data packet with write data. This packet is sent a time twriteDelay cycles after the end of the request packet. The twriteDelay is in tcycLE units and is programmed into the WriteDelay field of the Delay register of each responding device. It is required to be the same for all devices within a Rambus system. A responding device will see the same twriteDelay interval between the request and write data packets whether the device is on the Primary Channel or on a Secondary Channel.

If the responding device returns an Okay acknowledge packet, then the transaction is complete at the end of the acknowledge window or at the end of the write data packet, whichever is later. The next request packet can be transmitted in the following clock cycle except for the case in which a register or memory space write to a device is followed by any other transaction to that device. In that case, one of the following two intervals must be inserted between the two transactions, where the memory or register case depends upon the first transaction.

- tPostRegWriteDelay if the current transaction is a register space access
- tPostMemWriteDelay if the current transaction is a memory space access

If the responding device returns a Nack or Nonexistent acknowledge packet for a write command, then no write data packet is required by the responding device. The current transaction is complete at the end of the acknowledge window, or when the initiating device stops transmitting the write data packet, whichever is later. The next request packet can be transmitted in the following clock cycle. For the case of a Nack or Nonexistent, the initiating device must terminate the write data packet before another initiating device is given control of the Rambus Channel for a transaction. This is part of the arbitration mechanism used by the initiating devices. The arbitration mechanism is not specified in this document because it does not use the Rambus Channel. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Figure 7-2. Write Transaction

Clock

Cycles

7.3 Read Transactions with Serial Address Packet

The following figure shows a memory space read transaction for a command which uses the serial address packet. For a transaction which moves (n+1) octbytes of read data, the serial address packet will be $(4 \times n)$ clock cycles in length (recall that the low-order address bits for the first octbyte of read data come from the request packet).

Each serial address subpacket (each SAdr[i][10:3] field) is transmitted by the initiating device a time tserialReadOffset clock cycles before the octbyte of read data to which it corresponds. This means that the serial address packet will move with the read data packet, with a constant offset.

 tserialReadOffSet is the delay from the beginning of a serial address subpacket to the beginning of the read data subpacket (octbyte) with which it is associated.

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Figure 7-3. Read Transaction with Serial Address Packet

7.4 Write Transactions with Serial Address Packet

The following figure shows a memory space write transaction for a command which uses the serial address packet. For a transaction which moves (n+1) octbytes of write data, the serial address packet will be $(4 \times n)$ clock cycles in length (recall that the low-order address bits for the first octbyte of write data come from the request packet).

Each serial address subpacket (each SAdr[i][10:3] field) is transmitted by the initiating device a time tserialwriteor/set clock cycles before the octbyte of write data to which it corresponds. This means that the serial address packet will move with the write data packet, with a constant offset.

tserialWriteOrfset is the delay from the beginning of a serial address subpacket to the beginning of the write data subpacket (octbyte) with which it is associated.

Note that this offset interval is measured at the initiating device or the responding device; it will be the same at either point since the serial address packet and write data packet are moving in the same direction - from initiating device to responding device.

7.5 Read Transactions with Serial Control Packet

The following figure shows a memory space read transaction for a command which uses the serial control packet. This packet is used to terminate a transaction before the (CV+1) octbytes of read data have been transferred, where CV is the value of the Count[7:3] Field when interpreted as an unsigned, five bit integer. In the example shown, the read data is terminated after (n) octbytes have been transferred.

The serial control packet is transmitted by the initiating device a time tserialReadonset clock cycles before the end of the last read data octbyte which is transmitted by the responding device.

The serial control packet is also constrained to lie entirely outside the tackwindelay interval, as shown in the figure, in order to avoid interference with the acknowledge packet which is being returned by the responding device. Violation of this constraint will produce undefined (Undef) results. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

Figure 7-5. Read Transaction with Serial Control Packet

7.6 Write Transactions with Serial Control Packet

The following figure shows a memory space write transaction for a command which uses the serial control packet. This packet is used to terminate a transaction before the (CV+1) octbytes of write data have been transferred, where CV is the value of the Count[7:3] field when interpreted as an unsigned, five bit integer. In the example shown, the write data is terminated after (n) octbytes have been transferred.

The serial control packet is transmitted by the initiating device a time tserialwriteorriset clock cycles before the end of the last write data octbyte which is transmitted by the initiating device.

Note that this offset interval is measured at the initiating device or the responding device; it will be the same at either since the serial address packet and write data packet are moving in the same direction - from initiating device to responding device.

The serial control packet is also constrained to lie entirely outside the tAckWinDelay interval, as shown in the figure, in order to avoid interference with the acknowledge packet which is being returned by the responding device. Violation of this constraint will produce undefined (Undef) results.

Figure 7-6. Write Transaction with Serial Control Packet

8. Nack Acknowledge Response

8.1 Retry and Miss Latency

If a responding device returns a Nack acknowledge packet, then no read or write data packet is transacted. The current transaction is complete at the end of the acknowledge window. It will be necessary to wait for an interval of time (called a tRETRY interval) before resubmitting the transaction. The following figure illustrates this case.

Once the tRETRY interval has elapsed, the transaction may be restarted by the initiating device, and the RDRAM will return an Okay acknowledge packet and the data packet will be transferred. An RDRAM will Nack any other transactions which are issued during the tRETRY interval.

Two miss latency parameters may be derived with the following equations:

tReadMiss = tRETRY + tReadHit	(Eq 8-1)
twriteMiss = tRETRY + twriteHit	(Eq 8-2)

where tRETRY = {tRetrySensedClean, tRetrySensedDirty, tRetryRefresh}. The tReadMiss and twriteMiss parameters are the time from the beginning of the original (Nacked) request packet to the beginning of the data packet which is eventually transferred.

8.2 **TRETRY Interval**

8.2.1 Retry Due to RowMiss

If an initiating device requests a region of memory space in an RDRAM slave which is not currently held in the RowSenseAmpCache, the RDRAM will respond with a Nackacknowledge packet. The RDRAM will then begin a RowMiss operation to get the proper row into the RowSenseAmpCache. During the RowMiss, the RDRAM will Nack any request it is given. When the RowMiss is complete, the new row may be accessed.

Each bank has a Valid flag and a Dirty flag for its Row register. After reset, both are zero. After a RowMiss has caused a new row to be placed into the RowSenseAmpCache, the Row register contains its row address and the Valid flag is set to a one. If the RowSenseAmpCache contents are modified with a memory write transaction, the dirty flag will be set. These flags are not directly accessible to initiating devices.

A subsequent RowMiss will cause the old row to be written back to the bank (if it was dirty and an explicit restore was not forced with the Close bit in the request packet) and a new row to be placed into the RowSenseAmpCache. The time required for this is called the tRETRY time, and is added to the normal read and write hit latency times, as shown in the preceding figure. These times are given by the following equations. The component parameters are shown in a subsequent table. All of these tRETRY intervals correspond roughly to the cycle time parameter trac of a conventional page mode DRAM. This is because RDRAMs use CAS-type accesses for all memory read and write transactions.

After a new row is sensed and placed into the RowSenseAmpCache, a final interval tRowImprestore is used to restore the row in core back to its original state. This is necessary because the DRAM sense operation is destructive. This interval is not in the critical timing path, and is performed in parallel with a subsequent data transfer. It can extend a subsequent retry operation.

There are two tRETRY equations for the 16M RDRAM:

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

8.2.2 Retry Due to Pending Burst Refresh

In a 16M RDRAM, a refresh burst will first restore the currently accessed row if it is dirty. This requires a tRowExprestore interval. If the row is clean, this interval is not required. A burst of four rows are precharged/sensed/restored (using the tRowPrecharge, tRowSense, and tRowImprestore intervals), and the current row is precharged/sensed so the RDRAM is left with its RowSenseAmpCache state unaltered (except the row's dirty flag will be cleared):

tRetryRefreshClean	
= tWriteHit + tRefRequestIdleOverHead + 5XtLessRowRefreshOverHead	
+ 5x(2xRowPrecharge [0:4] + RowSense [0:4] + RowImpRestore [0:4])	(Eq 8-5)
tRetryrefreshDirty	
= tWriteHit + tRefRequestIdleOverHead + 5XtLessRowRefreshOverHead	
+ 5x(2xRowPrecharge [0:4] + RowSense [0:4] + RowImpRestore [0:4] + tRowExpRestore)	(Eq 8-6)
RowPrecharge [0:4], RowSense[0:4], RowImpRestore[0:4] are the value of every Regist	ter.

When a transaction initiates a manual burst refresh in an RDRAM (transaction "A" in the figure below), the RDRAM will Nack all further transactions directed to in during the tRetryRefresh interval after. No information from these Nacked transactions will be retained after the tRetryRefresh interval. After the tRetryRefresh interval, transactions will be handled in a normal fashion. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Figure 8-2. Transaction Holdoff Due to Burst Refresh

8.3 Retry Component Intervals

The tRETRY and tRasAgain intervals are built from the tRowOverHead, tRowPrecharge, tRowSense, tRowImprestore, tRowExprestore, tRefRequestIdleOverHead, tLessRowRefreshOverHead, and tHoldor intervals. All eight intervals are measured in tcycLe units, and thus scale with the clock frequency.

The tRowOverHead, tRetRequestIdeOverHead, and tLessRowRetreshOverHead intervals consist of the RowMiss and Refresh state machine overheads. The remaining five intervals represent the width of intervals used for timing core operations. These core operations have minimum times measured in nanosecond units (this is shown in the "core timing(ns)" columns in the table below). The five intervals are composed of a fixed part and a variable (programmable) part. If the clock frequency is reduced, the variable part may be reduced so the sum of the fixed and variable parts remain greater than or equal to the minimum core operation time (in nanoseconds).

Delay	Fixed Part (overhead)	16M RDRAM			
Parameter	and Variable Part ^{Note 1}	tcycLe Units (4 ns)	core timing (ns) with tcycle = 4ns		
tRowOverHead	Row overhead	7	28		
	-	n/a			
tRefRequestIdleOverHead	Row overhead	14	56		
	_	n/a			
tLessRowRefreshOverHead	Row overhead	20	80		
	-	n/a			
tRowPrecharge	RowPrecharge overhead	6	28		
	RowPrecharge[4:0]	1			
tRowSense	RowSense overhead	1	32		
	RowSense[4:0]	7			
tRowImprestore	RowImpRestore overhead	5	60		
	RowImpRestore[4:0]	10			
tRowExprestore	RowExpRestore overhead	4	32		
	RowExpRestore[4:0]Note 2	4			
tHoldOff	HoldOff overhead	1	8		
	RowPrecharge [4:0]	1			

Table 8-1. Retry Components

Notes 1. The variable part is programmed into the indicated field of the RasInterval register.

2. The RowPrecharge [4:0] field is used for both the precharge interval and the hold off interval.

9. AddressMapping

The address space decoding logic contained in a 16M RDRAM is shown in the following figure. The initiating device places a 33 bit physical octbyte address Adr[35:3] on the Channel. This address is received by the RDRAM slave. The AddressSelect[1][1:0], [0][7:1] control register allows individual bits of the Adr[28:20] and Adr [19:11] fields to be swapped to produce the AdrS[28:20] and AdrS[19:11] fields. The Adr[35:29] and Adr[10:3] fields pass through unaltered to the AdrS[35:29] and AdrS[10:3] fields. The figure shows the case when AddressSelect[0][7:1],[1][1:0] = 111111111, and the two nine bit address fields are exchanged. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Figure 9-1. AddressMapping Hardware

10. Electrical Characteristics (Preliminary)

Absolute Maximum Ratings

Symbol	Parameter	MIN.	MAX.	Unit	Note
VI,ABS	Voltage applied to any RSL pin with respect to GND	-0.5	Vdd+0.5	v	
VI,TTL,ABS	Voltage applied to any TTL pin with respect to GND	-0.5	Vdd+0.5	ν	
Vdd,abs	Voltage on Vod with respect to GND	-0.5	VDD,MAX+1.0	v	
Торт	Operation temperature	0	+70	°C	1
TSTORE	Storage temperature	-55	+125	°C	

Caution The following table represents stress ratings only, and functional operation at the maximums is not guaranteed. Extended exposure to the maximum ratings may affect device reliability. Furthermore, although devices contain protective circuitry to resist damage from static electric discharge, always take precautions to avoid high static voltages or electric fields.

Note 1 This parameter apply at the status of using 50% Rambus channel by Read or Write and a transverse air flow greater than 1.5m/s maintained.

Thermal Parameters

Symbol	Parameter	MIN.	MAX.	Unit
TJ	Junction operating temperature		100	°C
QJC	Junction-to-Case thermal resistance		5	°C/W

Capacitance

Symbol	Parameter		MAX.	Unit
Сі/о	Low-swing input/output parasitic capacitance		2	рF
CI,TTL	TTL input parasitic capacitance		8	рF

Power Consumption

Mode	Parameter		MIN.	MAX.	Unit
Icc1	Standby Current	-A45		125	mA
		-A50		135	
lcc2	Active Current	-A45		350	mA
		-A50		380	
Іссз	Read Operation Current	-A45		440	mA
	(Burst Length = 256)	-A50		480	
lcc4	Write Operation Current	-A45		440	mA
	(Burst Length = 256)	-A50		480	

Caution These do not include the loL current passing through the low-swing pins to ground.

Recommended Operating Conditions

Symbol	Parameter	MIN.	MAX.	Unit
Vdd, Vdda	Supply voltage	3.15	3.45	v
Vref	Reference voltage	1.95	2.15	v
Vswing	Input voltage range	1.0	1.4	v
Vін	High level input voltage	Vref+0.5	Vref+0.7	V
Vı∟	Low level input voltage	Vref-0.7	Vref-0.5	V
VIH, TTL	High level TTL input voltage	2.0	Vdd+0.5	٧
Vil, ttl	Low level TTL input voltage	0.5	+0.8	v

DC Characteristics (Recommended operating conditions unless otherwise noted)

Symbol	Parameter	Conditions	MIN.	MAX.	Unit
IREF	VREF CURRENT	VREF=Maximum	-10	+10	μA
Іон	High level output current	0≤Vout≤Vdd	-10	+10	μA
lol	Low level output current	Vout=1.6 V		25	mA
lι, ττι	TTL input leakage current	0≤ VI, TTL≤VDD	-10	+10	μA
Voh, ttl	High level TTL output voltage	Іон, тт∟=0.25 mA	2.4	VDD	V
Vol, TTL	Low level TTL output voltage	Iol, ττι=1.0 mA	0	0.4	V

Recommended Timing Conditions

Symbol	Parameter		MIN.	MAX.	Unit
TPAUSE	Pause time after Power On			200	μs
tcr, tcr	TxClk and RxClk input rise and fall times		0.3	0.7	ns
tCYCLE	TxClk and RxClk cycle times	-A45	4.45	5	ns
		-A50	4	5	ns
тіск	Transport time per bit per pin (this timing interval is synthesized by the RDRAM's internal clock generator)		tcycle/2	tcycle/2	ns
tcн, tcL	TxClk and RxClk high and low times		47%	53%	toycle
tтв	TxClk-RxClk differential		0.25	0.7	ns
tsp	SIn-to-SOut propagation delay			50	ns
ta	TxClk-to-Data/Control output time		1-0.45	1+0.45	tcycle/4
ts	Data/Control-to-RxClk setup time		0.45		tcycle/4
tн	RxClk-to-Data/Control hold time		0.45		tcycle/4
tref	Refresh interval			17	ms
tlocк	RDRAM internal clock generator lock time		750		tCYCLE

Transaction Timing Characteristics

Symbol	Parameter	MIN.	Unit
tPostRegWriteDelay	Delay from the end of the current transaction to the beginning of the next transaction if the current transaction is a write to register space and the next transaction is made to the same device. Use zero delay if the next transaction is to a different device.	6	toyole
tPostMemWriteDelay	Delay from the end of the current transaction to the beginning of the next transaction if the current transaction is a write to memory space and the next transaction is made to the same device. Use zero delay if the next transaction is to a different device.	4	toyole
tPostMemReadDelay	Delay from the end of the current memory read transaction to the beginning of the next transaction.	2	toyole
tSerialReadOffSet	Delay from the beginning of a serial address subpacket or serial control packet to the beginning of the read data subpacket (octbyte) with which it is associated.	12	t CYCLE
tSerialWriteOffSet	Delay from the beginning of a serial address subpacket or serial control packet to the beginning of the write data subpacket (octbyte) with which it is associated.	8	tcycle

Data and Transaction Latency Characteristics

Symbol	Parameter	MIN.	Unit	Notes
tReadDelay	Delay from the end of a read request packet to the beginning of the read data packet.	7	toyole	1
t WriteDelay	Delay from the end of a write request packet to the beginning of the write data packet.	1	tcycle	2

Notes 1. tReadDelay is programmed to its minimum value.

2. twriteDelay is programmed to its minimum value.

Hit, Retry and Miss Delay Characteristics

Symbol	Parameter		MIN.	Unit	Notes
tReadHit	Start of request packet to start of read data pachit (Okay).	cket for row	10	toyole	1
twriteHit	Start of request packet to start of write data pac hit (Okay).	cket for row	4	toyole	1
tRetrySensedClean	Start of request packet for row miss (Nack) to start of request packet for row hit (Okay). The previous row is unmodified.		22	tcycle	2
tRetrySensedDirty	Start of request packet for row miss (Nack) to start of request packet for row hit (Okay). The previous row is modified.		30	t CYCLE	2
tRetryRefresh	Start of request packet for row miss (Nack)	Clean	213	toyole	2
	Dirty		221		
tReadMiss	Start of request packet for row miss (Nack) to start of Read Data packet for row hit (Okay).		32	toyole	3
twriteMiss	Start of request packet for row miss (Nack) to start of Write Data packet for row hit (Okay).		26	tcycle	3

Notes 1. Programmable

- 2. tRowExprestore, tPrecharge, and tSense are programmed to there minimum value.
- 3. Calculated with tRetrySensedClean(MIN).

Rise/Fall Timing Chart

Clock Timing Chart

Receive Data Timing Chart

Transmit Data Timing Chart

Serial Configuration Pin Timing Chart

11. Package Drawings

32 PIN PLASTIC SVP (11×25)

Ι

NOTE

- * Each I/O lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.
- ** Each support lead centerline is located within 0.18 mm (0.007 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	25.30 MAX.	0.996 MAX.
В	11.0±0.1	0.433±0.004
с	0.24±0.06	$0.009\substack{+0.003\\-0.002}$
D	0.13	0.005
E	0.65 (T.P.)	0.026 (T.P.)
F	2.575 MAX.	0.102 MAX.
G	0.10	0.004
н	0.52±0.06	0.020±0.002
1	0.9 (T.P.)	0.035 (T.P.)
J	23.20	0.913
к	1.25	0.049
L	11.80 MAX.	0.465 MAX.
м	0.5±0.1	$0.020 \substack{+0.004 \\ -0.005}$
N	3.70 MAX.	0.146 MAX.
Р	0.17+0.025	0.007±0.001
Q	0.9±0.25	0.035 ^{+0.011} -0.010
R	3° <u>+7</u> °	3° <u>+7</u> °
s	1.90 MAX.	0.075 MAX.
т	0.18	0.007
		S32VN-65-9

72/36 PIN PLASTIC SSOP TYPE

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	25.30 MAX.	0.996 MAX.
в	2.575 MAX.	0.102 MAX.
С	0.65 (T.P.)	0.026 (T.P.)
D	0.24±0.06	0.009 <u>+0.003</u> _0.002
E	0.25±0.05	0.010 <u>+0.002</u> -0.003
F	1.6 MAX.	0.063 MAX.
G	1.25	0.049
н	13.0±0.2	0.512±0.008
1	11.0±0.1	0.433±0.004
J	1.0±0.2	0.039+0.009
к	0.17+0.025	0.007±0.001
L	0.5±0.1	0.020 <u>+0.004</u> _0.005
м	0.13	0.005
N	0.10	0.004
Р	3° <u>+7</u> °	3°+7° 3°
Q	0.65 (T.P.)	0.026 (T.P.)
R	22.75	0.896
S	1.275 MAX.	0.051 MAX.
		P32G6-65A

[MEMO]

MOS INTEGRATED CIRCUIT μ PD488031L

8M-BIT Rambus DRAM 1M-WORD X 8-BIT X 1-BANK

Description

NEC

The 8-Megabit RambusTM DRAM (RDRAMTM) is an extremely-high-speed CMOS DRAM organized as 1M words by 8 bits and capable of bursting up to 256 bytes of data at 2 ns per byte. The use of Rambus Signaling Logic (RSL) technology makes this 500 MHz transfer rate achievable while using conventional system and board design methodologies. Low latency is attained by using the RDRAM's large internal sense amplifier arrays as high speed caches.

RDRAMs are general purpose high-performance memory devices suitable for use in a broad range of applications including main memory, graphics, video, and any other application where high-performance and low cost are required.

Detailed information about product features and specifications can be found in the following document. Please make sure to read this document before starting design.

Rambus DRAM user's manual (Reference Manual)

Features

- Rambus Interface
- 500 MB/sec peak transfer rate per RDRAM
- RSL interface
- Synchronous protocol for fast block-oriented transfers
- · Direct connection to Rambus ASICs, MPUs, and Peripherals
- · 40 ns from start of read request to first byte; 2 ns per byte thereafter
- · Features for graphics include random-access mode, write-per-bit and mask-per-bit operations
- · 2K-Byte sense amplifiers act as caches for low latency accesses
- Multiple power-saving modes
- · On-chip registers for flexible addressing and timing
- · Low pincount-only 15 active signals
- · Standardized pinout across multiple generations of RDRAMs
- 3.3 volt operation

Ordering Information

Part Number	Clock Frequency	Operation Voltage	Package
μPD488031LG6-A50	250 MHz	3.3 ±0.15 V	72/36-pin plastic SSOP type

The information in this document is subject to change without notice.

Pin Configuration (Marking Side)

72/36-pin plastic SSOP type

Busdata 0 - Busdata 8:	Bus Data (Input/Output)
RxClk :	Receive Clock (Input)
TxClk :	Transmit Clock (Input)
Vref :	Logic Threshold Voltage (Input)
BusCtrl :	BusCtrl (Input/Output)
BusEnable :	BusEnable (Input)
Vdd, Vdda :	Power Supply
GND, GNDA :	Ground
Sin :	Serial Input (Input)
SOut :	Serial Output (Output)
NC :	No Connection
IC ^{Note} :	Internal Connection

Note Leave this pin unconnected.

Block Diagram

1. Pin Function

Signal	I/O	Description
BusData [8:0]	I/O	Signal lines for request, write data, and read data packets. The request packet contains the address, operation codes, and the count of the bytes to be transferred. This is a low-swing, active-low signal referenced to VREF.
RxClk	I	Receive clock. Incoming request and write data packets are aligned to this clock. This is a low-swing, active- low signal referenced to VREF.
TxClk	I	Transmit clock. Outgoing acknowledge and read packets are aligned with this clock. This is a low- swing, active-low signal referenced to VREF.
Vref	I	Logic threshold voltage for low swing signals.
BusCtrl	I/O	Control signal to frame packets, to transmit part of the operation code, and to acknowledge requests. Low-swing, active-low signal referenced to VREF.
BusEnable	I	Control signal to enable the bus. Long assertions of this signal will reset all devices on the Channel. This is a low-swing, active-low signal referenced to VREF.
Vdd, Vdda		+3.3 V power supply. Voda is a separate analog supply.
GND, GNDA	-	Circuit ground. GNDA is a separate analog ground.
SIn	1	Initialization daisy chain input. TTL levels. Active high.
SOut	0	Initialization daisy chain output. TTL levels. Active high.

2. Rambus System Overview

A typical Rambus memory system has three main elements: the Rambus Channel, the RDRAMs, and a Rambus Interface on a controller. The logical representation of this is shown in the following figure.

Figure 2-1. Logical Representation

The Rambus Channel is a synchronous, high-speed, byte-wide bus that is used to directly connect Rambus devices together. Using only 13 high-speed signals, the Channel carries all address, data, and control information to and from devices through the use of a high level block-oriented protocol.

The Rambus Interface is implemented on both master and slave devices. Rambus masters are the only devices capable of generating transaction requests and can be ASIC devices, memory controllers, graphics engines, peripheral chips, or microprocessors. RDRAMs are slave devices and only respond to requests from master devices.

The following figure shows a typical physical implementation of a Rambus system. It includes a controller ASIC that acts as the Channel master and a base set of RDRAMs soldered directly to the board. An RSocket[™] is included on the Channel for memory upgrade using RModule[™] expansion cards.

Figure 2-2. A Rambus System Example
3. Rambus Signaling Logic

RSL technology is the key to attaining the high data rates available in Rambus systems. By employing high quality transmission lines, current-mode drivers, low capacitive loading, low-voltage signaling, and precise clocking, systems reliably transfer data at 2 nanosecond intervals on a Rambus Channel with signal quality that is superior to TTL or GTL-based interfaces.

All Rambus Interfaces incorporate special logic to convert signals from RSL to CMOS levels for internal use. In addition, these interfaces convert the Channel data rate of one byte every 2 nanoseconds to an internal data rate of 8 bytes every 16 nanoseconds as shown in the following figure. Although the bandwidth remains the same, the use of a wide internal bus eases internal timing requirements for chip designers.

Figure 3-1. Converting the Channel Data Rate

4. Register Space Map

The following table summarizes the registers included in all 8M RDRAMs.

Register Name	Adr[20:10]	Adr[9:2]	Register Number
Device Type[3:0][8:0]	xxxx	00000000	0
Deviceld[3:0][8:0]	xxxx	00000001	1
Delay[3:0][8:0]	xxxx	00000010	2
Mode[3:0][8:0]	xxxx	00000011	3
RefRow[3:0][8:0]	xxxx	00000101	5
RasInterval[3:0][8:0]	xxxx	00000110	6
MinInterval[3:0][8:0]	xxxx	00000111	7
AddressSelect[3:0][8:0]	xxxx	00001000	8
DeviceManufacturer[3:0][8:0]	××××	00001001	9
Row[3:0][8:0]	xxxx	10000000	128

Table 4-1. Registers Space Map

(1) Device Type Register

This register specifies RDRAM configuration and size.

(2) DeviceId Register

This register specifies RDRAM base address. Id Field is extended to include Id Field[20] in location DeviceId[0][2].

(3) Delay Register

This register specifies RDRAM programmable CAS delay values.

(4) Mode Register

This register specifies RDRAM programmable output drive current.

(5) RefRow Register

This register specifies RDRAM refresh row and bank address.

The RefRow register contains read-write fields. It is used to keep track of the bank and row being refreshed. Normally this register is only read or written for testing purposes. The fields are aliased in the following way:

RowField[7:1] equals RefRow[0][7:1] RowField[9:8] equals RefRow[2][1:0]

(6) RasInterval Register

This register specifies RDRAM programmable RAS delay values. The RasInterval Register contains four write-only fields. When a rowmiss occurs, or when a row is being refreshed during a burst refresh operation, it is necessary for the control logic of an RDRAM to count the appropriate number of clock cycles (tcycLE) for four intervals. This is done with a counter which is loaded successively with three values from the RasInterval Register.

(7) MinInterval Register

This register specifies RDRAM refresh control.

This register provides the minimum values for three time intervals for framing packets. The time intervals are specified in clock cycle (tcvcLE) units.

Caution MinInterval Register [3] [2] = 0 is necessary. Because, 8M RDRAM don't support Power Down request.

(8) AddressSelect Register

This register specifies RDRAM address mapping.

(9) DeviceManufacturer Register

This register specifies RDRAM manufacturer information. This register specifies the manufacturer of the device. Additional bits are available for manufacturer specific information, e.g. stepping or revision numbers.

(10) Row Register

This register specifies RDRAM current sensed row. Row [2][7:1], Row [3][1:0] becomes Reserved.

The detailed functional description is provided in RDRAM Reference Manual.

5. Packet Formation

5.1 Packet Summary

The following table summarizes the transmit/receive functionality for the different packet classes.

Packet Type	Initiating Devices	μPD48830L
Request Packet	Transmit	Receive
Acknowledge Packet	Receive	Transmit
Read Data Packet	Receive	Transmit
Write Data Packet	Transmit	Receive
Serial Address Packet	Transmit	Receive
Serial Control Packet	Transmit	Receive
Serial Mode Packet	Transmit	Receive

Table 5-1. Transmitting/Receiving Devices for Packet Types

5.2 Request Packet

The request packet format is shown in the following figure.

Figure	5-1.	Request	Packet	Format
--------	------	---------	--------	--------

					D	evice Pir	IS				
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even	-	Start	Op [0]				Adr [9 : 2]				
[0] odd	-	Op [1]	Op [3]				Adr [17 : 10]	I			
[1] even	-	OpX [1]					Adr [26 : 18]				
[1] odd	-	Op [2]					Adr [35 : 27]				
[2] even	-	OpX [0]	ReqU [5 :	Inimp : 4]		Count [6, 4, 2]			ReqL [3	Jnimp : 0]	
[2] odd	-	F	ReqUnim [8 : 6]	D		Count [7, 5, 3]		Co [1:	unt 0]	A [1	dr : 0]
Time	-	This me by anot	eans that her pack	this pin i et, it is pu	s not use illed to a	d by this logic zer	packet. If o value.	it is not	used		Request Packet

Device Pip

The vertical axis in all packet figures in the following sections shows time in units of clock cycles, with each clock cycle broken into even and odd bus ticks. The timing is relative, measured from the beginning of the packet.

5.2.1 Start Field

A device should start framing a request packet when it sees this bit asserted to a logical one and it is not looking for an acknowledge packet nor framing an earlier request packet.

5.2.2 Op[3:0], OpX[1:0] Fields

The Op and OpX fields are summarized in the following table.

Op[3:0]	OpX[1:0] = 00	OpX[1:0] = 01	OpX[1:0] = 10	OpX[1:0] = 11
0000	Rseq	Rnsq	Rsrv	Rsrv
0001	Rsrv	Rsrv	Rsrv	Rsrv
0010	Rsrv	Rsrv	Rsrv	Rsrv
0011	Rsrv	Rsrv	Rsrv	Rsrv
0100	WseqNpb	WseqDpb	WseqBpb	WseqMpb
0101	Rsrv	Rsrv	Rsrv	Rsrv
0110	Rreg	Rsrv	Rsrv	Rsrv
0111	Wreg	Rsrv	Rsrv	Rsrv
1000	WnsqNpb	WnsqDpb	WnsqBpb	WnsqMpb
1001	Rsrv	Rsrv	Rsrv	Rsrv
1010	Rsrv	Rsrv	Rsrv	Rsrv
1011	Rsrv	Rsrv	Rsrv	Rsrv
1100	WbnsNpb	WbnsDpb	Rsrv	WbnsMpb
1101	Rsrv	Rsrv	Rsrv	Rsrv
1110	Rsrv	Rsrv	Rsrv	Rsrv
1111	WregB	Rsrv	Rsrv	Rsrv

Table 5-2.	Op[3:0] and	OpX[1:0] Fields -	Command Encodings
------------	-------------	-------------------	-------------------

The command opcode also determines which packets (in addition to the request packet) will form the transaction. A detailed functional description of the actions that an RDRAM takes for each implemented command is provided in "Rambus DRAM user's manual (Reference Manual)". The following table summarizes the functionality of each subcommand:

SubCommand	Description
Rseq	Read sequential data from memory space.
Rnsq	Read non-sequential (random-access) data from memory space.
Wseq	Write sequential data to memory space.
Wnsq	Write non-sequential (random-access) data to memory space.
Wbns	Write non-sequential (random-access) data to memory space with non-contiguous byte masking.
Npb	Write data is from data packet. There is no bit mask.
Dpb	Write data is from data packet. The bit mask is in the MDReg.
Mpb	Write data is from MDReg. The bit mask is from the data packet.
Врb	Write data is from data packet. The bit mask is also from the data packet.
Rreg	Read sequential data from register space.
Wreg	Write sequential data to register space.
WregB	Broadcast write with no Okay acknowledge permitted.

Table 5-3. Subcommand Summary

The memory read commands are formed using the Rseq and Rnsq subcommands to select sequential or nonsequential (random) access.

Rrrr = {Rseq, Rnsq}

The following table summarizes the available write commands and shows how they are formed from a 3×4 matrix of the Wwww and Bbb subcommands.

WwwwBbb Wwww = {Wseq, Wnsq, Wbns}
 Bbb = {Npb, Dpb, Bpb, Mpb}

	Wwww subcommands				
Bbb subcommand	Wseq (seqential-access with contiguous byte masking)	Wnsq (non-sequential- access)	Wbns (non-sequential-access with non-contiguous-byte- masking)		
Npb	WseqNpb	WnsqNpb	WbnsNpb		
Dpb	WseqDpb	WnsqDpb	WbnsDpb		
Mpb	WseqMpb	WnsqMpb	WbnsMpb		
Bpb	WseqBpb	WnsqBpb	Not implemented		

Table	5-4.	Write	Commands
	•		••••••••••••

There are three Wwww subcommands. They control the accessing pattern and the use of non-contiguous byte masking.

- Wseq octbyte blocks in the RDRAM core are accessed in sequential (ascending little-endien) address order. Contiguous byte masking is controlled with the Adr[2:0] and Count[2:0] fields of the request packet.
- Wnsq octbyte blocks in the RDRAM core are accessed in non-sequential address order. The addresses
 for the octbyte blocks within the sensed row come from serial address packets which are received
 on the BusEnable pin.
 The address order is arbitrary.
- Wbns octbyte blocks in the RDRAM core are accessed in non-sequential address order, as in the Wnsq subcommand. In addition, byte masks are transmitted with the write data, permitting arbitrary non-contiguous byte masking of this write data. The bytemask octbytes are not included in the total octbyte transfer count; i.e. a Count[7:3] field of 31 implies 4 bitmask octbytes and 32 write data octbytes, for a data packet size of 36 octbytes.

There are four Bbb subcommands. They select the type of bit masking to be applied to the write data.

- Npb (no-per-bit) There is no bit mask applied to the write data. The MDReg is not used or modified.
- Dpb (data-per-bit) The MDReg is used as a bit mask, the write data comes from the data packet. The same bit mask is used for each octbyte. This is also called persistent bit masking. The MDReg is not modified.
- Mpb (mask-per-bit) The bit mask comes from the data packet, the write data comes from the MDReg. The same data is used for each octbyte. This is also called color masking. The MDReg is not modified.
- Bpb (both-per-bit) The bit mask and the write data come from the data packet. The MDReg is not used, but is modified as a side effect (the WwwwBpb commands are used to load the MDReg for the WwwwDpb and WwwwMpb commands). This is also called non-persistent bit masking.

The bitmask octbytes are included in the total octbyte transfer count; i.e. a Count[7:3] field of 31 implies 16 bitmask octbytes and 16 write data octbytes.

5.2.3 Adr[35:0] Field

The Adr field is used as either a memory or register space address depending upon the OP[3:0] and OpX[1:0] fields. Devices extract a portion of the Adr field to match against their Deviceld register (IdMatch), thus selecting the device to which the request is directed. The remainder of the Adr field accesses the desired region of the device's memory or register space. The memory read and write commands and the Rreg and Wreg commands will only take place if there is an IdMatch. The IdMatch criteria is ignored for the WRegB commands, with all responding devices performing the required actions.

The Rambus protocol uses quadbyte resolution in the data packet for register space read and write commands; i.e. one quadbyte is the smallest data item that may be transferred, and all transfers are an integral number of quadbytes. The Adr[35:2] field is the quadbyte address. The Adr[1:0] field is Unimp for these commands, and should be driven with "00" by initiating devices.

The Rambus protocol uses octbyte resolution in the data packet for memory space read and write commands; i.e. one octbyte is the smallest data item that may be transferred, and all transfers are an integral number of octbytes. The Adr[35:3] field is the octbyte address.

Some commands use the Adr[2:0] field to specify contiguous byte masking. Refer to "Rambus DRAM user's manual (Reference Manual)".

5.2.4 Count[7:0] Field

The following table summarizes the transfer count ranges for 8M RDRAMs:

Count Range	μPD48830L
Maximum count for memory space	32 octbytes
Minimum count for memory space	1 octbyte
Maximum count for register space	1 quadbyte
Minimum count for register space	1 quadbyte

Table 5-5. Transfer Count Summary

Register space read and write commands use a transfer count of one quadbyte, regardless of the Count[7:0] field value.

Memory space read and write commands specify the number of octbytes to be transferred with the Count[7:3] field. An offset-by-one-encoding is used so that "00000" specifies one octbyte, "00001" specifies two octbytes, and so on up to "11111" which specifies thirty-two octbytes. The transfer count does include the octbytes containing bitmasks (for commands using the Bpb subcommand). The transfer count does not include the octbytes containing noncontiguous ByteMasks (for commands using the Wbns subcommand).

Some commands use the Count[2:0] field to specify contiguous byte masking. Refer to "Rambus DRAM user's manual (Reference Manual)".

Memory space transactions to RDRAMs are not allowed to cross internal row address boundaries within the device. Attempts to do so have Undef (undefined) results. These row boundaries are at 2kbyte intervals for 8M RDRAMs.

5.2.5 Adr[2:0] and Count[2:0] Fields for Contiguous Byte Masking

An initiating device wishing to write an arbitrary number of contiguous bytes to a starting address on an arbitrary byte boundary may do so with the Adr[2:0] and Count[2:0] fields with the Wseq subcommands. The transfer count and starting address are given by:

- MasterCount[7:0] specifies the number of bytes which the master device wishes to transfer.
- Adr[35:0] specifies the starting byte address (this is the same as the Adr[35:0] field in the request packet)

Where the convention used by the initiating device for the count is that Master-Count[7:0] = "00000000" means one byte, MasterCount[7:0] = "00000001" means two bytes and MasterCount[7:0] = "11111111" means 256 bytes (an offset-by-one encoding; the data block count is equal to MasterCount[7:0]+1).

The initiating device converts this internal count value into a value for the request packet with the following formula. Little-endien byte addressing is used for specifying bytes within octbytes.

(Eq 5-1)

Count[7:0] = Adr[2:0] + MasterCount[7:0]

Where "+" denotes unsigned integer addition of two bit fields (short fields are zero-extended on the left). If the value of Adr[2:0] + MasterCount[7:0] is greater than 255 (it may be as much as 262), then the initiating device must break the request into two transactions.

The Adr[2:0] and Count[2:0] field generate masks for individual bytes within an octbyte. The Adr[35:3] and Count[7:3] field have the octbyte resolution previously described. The following tables show how the byte masks are generated. In the case of memory read transactions, the byte masks that are generated do not affect the data that is returned by the RDRAM; all data bytes in the first and last octbytes are returned in the read data packet.

In the case of memory write transactions, ByteMaskLS[7:0] applies to the first octbyte at Mem[AV][7:0][8:0]. Byte MaskMS[7:0] applies to the last octbyte at Mem[AV+CV][7:0][8:0]. All intermediate octbytes use a byte mask of 11111111 (a one means the byte is written, a zero means it is not). Here AV is the value of the Adr[35:3] field when interpreted as an unsigned, 33 bit integer, and CV is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit interger. If the Count[7:3] is "00000" (one octbyte), the ByteMaskLS[7:0] and ByteMaskMS[7:0] masks are logically 'anded' together to give the effective byte mask.:

Adr[2:0]	ByteMaskLS[7:0]	Adr[2:0]	ByteMaskLS[7:0]
000	11111111	100	11110000
001	11111110	101	11100000
010	11111100	110	11000000
011	11111000	111	1000000

Table 5-6. Adr[2:0] to ByteMaskLS[7:0] Encoding

Count[2:0]	ByteMaskMS[7:0]	Count[2:0]	ByteMaskMS[7:0]
000	00000001	100	00011111
001	00000011	101	00111111
010	00000111	110	01111111
011	00001111	111	11111111

Table 5-7. Count[2:0] to ByteMaskMS[7:0] Encoding

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

5.2.6 RegUnimp[8:0] Fields

These fields are unimplemented (Unimp) in the request packet. They should be driven as zeroes by initiating devices.

5.3 Acknowledge Packet

The Ack[1:0] field carries the acknowledge encoding from the responding device(s) to the initiating device and any other listening devices. The following figure shows the format of the acknowledge packet.

The following table summarizes the four combinations of the Ack[1:0] field. The Ack3 combination is Undef. The Okay combination indicates that the read or write access to the specified space will take place.

When a responding device acknowledges a request with a Nack, then there will be no immediate change in the state of the device's memory space or register space. The responding device will take the appropriate steps to make the requested region of memory or register space accessible when the initiating device makes a subsequent request. The initiating device will need to wait some device-dependent length of time until the requested region is available.

There are three possible reasons for an RDRAM to respond with Nack. They are summarized below. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

- tPostMemWriteDelay Or tPostRegWriteDelay violation
- RowMiss (this causes a delay of tRetrySensedClean Or tRetrySensedDirty)
- ongoing refresh (this causes a delay of up to tRetryRefresh)

			The second se
Ack [1:0]	Name	Description	Spec Undef
00	Nonexistent	Indicates passive acceptance of the request (WregB), or indicates that the addressed device did not respond (all other commands).	Spec
01	Okay	Indicates that the request was accepted by the addressed	Spec
		by the addressed (responding) device.	
10	Nack	Indicates that the request could not be accepted because	Spec
		the state of the responding device prevented an access	
		at the fixed timing slot.	
11	Ack3	This should not be returned by this responding device.	Undef
(Initiating devices will, when presented with this combi-	
		nation, have an undefined response.	
	Ack [1:0] 00 01 10	Ack [1:0]Name00Nonexistent01Okay10Nack11Ack3	Ack [1:0] Name Description 00 Nonexistent Indicates passive acceptance of the request (WregB), or indicates that the addressed device did not respond (all other commands). 01 Okay Indicates that the request was accepted by the addressed by the addressed (responding) device. 10 Nack Indicates that the request could not be accepted because the state of the responding device prevented an access at the fixed timing slot. 11 Ack3 This should not be returned by this responding device. Initiating devices will, when presented with this combi- nation, have an undefined response.

Table 5-8. Ack[1:0] Encodings

5.4 Data Packet

NEC

The following figure shows the format of a data packet for register space read and write commands. It consists of 1 quadbyte driven on the BusData[8:0] wires for RDRAMs.

Other responding devices may support data packet lengths longer than one quadbyte.

Figure 5-3. Data Packet Format (Register Space)

The following figure shows the format of a data packet for memory space read and write commands. For most of these commands, it consists of 1 to 32 octbytes driven on the BusData[8:0] wires. In the figure, "n" is either the CV value (if the transaction is allowed to complete) or the last count value (if the transaction is terminated prematurely by the serial control packet). "CV" is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit integer.

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

5.4.1 MD Reg [7:0][7:0] = U

This register holds the write data or mask for the persistent per-bit operations (Dpb & Mpb). The MDreg need not implement the ninth bits when the RDRAM is 8-bit wide.

					D	evice Pir	IS				
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even	-	1	-			1	Data	01	I		I
[0]		-	-				Data	 	Γ		1
, odd ;						[[0] [1] [7 : 1	0] I	I		1
even		_				[0)] [2] [7 : I	0]		· · · · · · · · · · · · · · · · · · ·	
[1] odd	-	1	-		I	י ונ	Data	0]	1	1	ſ
[2]	-	-	-				Data	 01	1		1
[2]	_	+	-		-	[L	Data		I		
odd					[[0) [5] [7 :	0] 	I	r	
[3] even	-	•	-			[0	Data)] [6] [7 : (0]			
[3] odd	-	1	-			ו	Data	 01	1		1
F							1010-1				
:	:		:				÷				
[4*n] even	-	-	-			[r	Data] [0] [7 :	0]	[
[4*n] odd	-	1	-			ír	Data	ו וח	I		
[4*n+1] even	-	-	-			(r	Data] [2] [7 : 0	0] 0]	ſ		
[4*n+1] odd	-	-	-			[r	Data] [3] [7 : (0]			
[4*n+2] even	-	-	-			(r	Data 1] [4] [7 : (0]	I		
[4*n+2] odd	ł	+	-			[r	Data 1] [5] [7 : (0]			
[4*n+3] even	-	ł	-			(r	Data 1] [6] [7 : (0]			
[4*n+3] odd	-	-	-			[r	Data] [7] [7 : (0]			
Time	-	This me by anot	eans that her packe	this pin is et, it is pu	s not use illed to a	d by this logic zero	packet. I o value.	f it is not	used	\mathbf{A}	Data Packet

Figure 5-4. Data Packet Format (Memory Space)

5.5 Serial Address Packet Format

The serial address packet is transmitted by the initiating device and received by the responding devices. It provides eight low-order address bits for each octbyte which is accessed in memory space (a non-sequential or random-access transfer). These eight address bits are transferred serially on the BusEnable pin of the RDRAM, and are thus called a serial address. Each eight bit serial address accesses an octbyte of data within the RowSenseAmpCache of one of the two banks of the RDRAM. The complete set of serial addresses transmitted by the initiating device during the transaction are referred to as a serial address packet. The commands which use this packet are the Rnsq, WnsqBbb, and WbnsBbb classes of commands.

The high order bits for each octbyte are provided by the Adr[35:11] address bits from the request packet. The low-order address bits for the first octbyte are Adr[10:3], also from the request packet. The low-order address bits for octbytes [n:1] are provided by the serial address packet. As before, "n" is either the CV value (if the transaction is allowed to complete) or the last count value (if the transaction is terminated prematurely by the serial control packet). "CV" is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit integer. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Serial Address Field	Description	Unimp Imp
SAdr[i][10:3]	Low-order address bits for each octbyte.	Imp

	Device Pins										
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[4] even	SAdr [1] [3]	-	1			Г	Γ_	Γ		I	
[4] odd	SAdr [1] [4]	-					-				
[5] even	SAdr [1] [5]	-					· _			I	
[5] odd	SAdr [1] [6]	1	I				-				
[6] even	SAdr [1] [7]	-					I _			I	
[6] odd	SAdr [1] [8]	-	1		1				I	1	
[7] even	SAdr [1] [9]	-					· _			1	
[7] odd	SAdr [1] [10]	-	I		I	1	· _	1	1	I	
:	:						:				
[4*n] even	SAdr [n] [3]	-								I	
[4*n] odd	SAdr [n] [4]	-					-			I	
[4*n+1] even	SAdr [n] [5]	-	I				-			I	
[4*n+1] odd	SAdr [n] [6]	-	1			1	I _				
[4*n+2] even	SAdr [n] [7]	-	1				۱ <u>ـ</u>		1	I	
[4*n+2] odd	SAdr [n] [8]	-	1						1	I	
[4*n+3] even	SAdr [n] [9]	-	1							I	
[4*n+3] odd	SAdr [n] [10]	-	1			1	I _		1	1	
Serial Address Time Packet — This means that this pin is not used by this packet. If it is not used by another packet, it is pulled to a logic zero value											

Figure 5-5. Serial Address Packet Format

Time

by another packet, it is pulled to a logic zero value.

5.5.1 Serial Control Packet Format

The serial control packet is transmitted by the initiating device and received by the responding devices. It provides for the early termination of a memory space read or write transaction (before the specified data count in the Count[7:3] field has elapsed). It consists of eight bits transferred serially on the BusCtrl pin of the device, thus it is referred to as a serial control packet. The eight bits have the same timing alignment as the serial address packet. The commands which use this packet are all of those which access memory space. The register read and write commands do not use the serial control packet. The 8M RDRAM implements this packet.

The termination occurs on octbyte data packet boundaries. The next figure shows the format of the serial control packet. The following table summarizes the function of the bits within the serial control packet. Note that the bits in the even bus ticks must be zero in order for framing to work properly (otherwise, one of these bits would be interpreted as the Start bit of a new request packet). The SCtrl[5] bit is used to control termination, and the other three odd bus tick bits are unimplemented.

Serial Control Fields	Description	Unimp Imp
SCtrl[0]	This bit must be a zero due to framing requirements.	Imp
SCtrl[1]	unimplemented	Unimp(0)
SCtrl[2]	This bit must be a zero due to framing requirements.	Imp
SCtrl[3]	unimplemented	Unimp(0)
SCtrl[4]	This bit must be a zero due to framing requirements.	Imp
SCtrl[5]	0 means don't terminate the current access.	Imp
	1 means terminate the current access.	
SCtrl[6]	This bit must be a zero due to framing requirements.	Imp
SCtrl[7]	unimplemented	Unimp(0)

Table 5-10. Serial Control Fields

If a memory read transaction (RrrrAaa) is terminated by asserting the SCtrl[5] bit to a logical one, the data octbyte with which it is associated is not transmitted by the responding device. The initiating device may start a new transaction once the transmission of the read data packet has ceased. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

					C	evice Pin	s				
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even	-	SCtrl [0]					-				
[0] odd	-	SCtrl [1]					-				
[1] even	-	SCtrl [2]					-				
[1] odd	-	SCtrl [3]					-				
[2] even	-	SCtrl [4]					-				
[2] odd	-	SCtrl [5]					-				
[3] even	-	SCtrl [6]					-				
[3] odd	-	SCtrl [7]				. 1	-				
Time	Serial C Pack	ontrol	-	This r by an	neans th other pa	at this pir cket, it is	is not upulled to	sed by th a logic z	is packet ero value	. If it is no	ot used

Figure 5-6. Serial Control Packet Format

5.5.2 Serial Mode Packet Format

The serial mode packet transmitted by initiating devices, and received by responding device. Its format is shown in the following figure.

Figure 5-7. Serial Mode Packet Format

The serial mode packet modifies the state of the Count00[7:0] and Count11[7:0] counters.

These counters cause operating mode transitions when they reach special values. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

A serial mode packet with the SMode[1:0] field set to 00 is the default. Most transitions are caused by blocks of sequential serial mode packets, each with the SMode[1:0] field set to 11. The serial mode packets should never set SMode[1:0] field to 01 or 10. This is because in some of the operating modes, the clock generator is unlocked (the frequency is correct but not the phase). When this happens, the BusEnable receiver is unable to discriminate anything other than long pulses of zeros or ones. Because the frequency of the clock generator is correct, it can count the length of these pulses with moderate accuracy.

Table 5-11. Serial Mode Fields

SMode[1:0]	Description	Spec/Rsrv/ Undef
00	Increments Count00[3:0], clears Count11[7:0].	Spec
01	-	Undef
10	-	Undef
11	Increments Count11[7:0], clears Count00[3:0]	Spec

6. State Diagram

The following figure is a state diagram of the Frame state machine. The operating mode of the device depends upon which of the nine states it is in:

- reset mode ResetState
- · standby mode StandbyState
- active mode ActiveState, IdCompareState, DeviceState, OkayState, NackState, AckWindowState

This section will only discuss the first three states (ResetState, StandbyState, ActiveState). The remaining five states which are shown shaded in the state diagram (IdCompareState, DeviceState, OkayState, NackState, AckWindowState) will be dealt with in the "Rambus DRAM user's manual (Reference Manual)".

The device will enter ResetState when power is initially applied (PowerOn). In ResetState, the device will be in the reset operating mode, in which all control registers assume a known state. If power has just been applied, the device will pass through ActiveState and settle in StandbyState, and remain there until serial mode packets are received from an initiating device.

ActiveState is the state in which all decisions are made to transition to the states for the other operating modes. From here, the device will also enter the transaction-framing states. Refer to **"Rambus DRAM user's manual** (Reference Manual)".

After poweron, the device will re-enter ResetState when the value of the Count11[7:0] counter is greater than or equal to tmodeAR.MIN. The device will leave ResetState when the value of the Count11[7:0] counter is less than tmodesA.MIN. This will happen when an SMode[1:0] field of 00 is received, causing the Count11[7:0] counter to clear.

The device will enter StandbyState when the value of the Count00[3:0] counter is greater than or equal to tModeDelay,MAX. The device will leave StandbyState when the value of the Count11[7:0] counter is greater than or equal to tModeSA,MIN.

Caution PD (MinInterval Register [3] [2]) = 0 is necessary. Because, 8M RDRAM don't support Power Down request.

6.1 Parameters for Operating Mode Transitions

The following table summarizes the parameter values associated with operating mode transitions of a responding device. A minimum and maximum value are given for the parameters to account for implementation differences. In all cases, the SMode[1:0] field of the consecutive serial mode packets must have the value 11 to cause an operating mode transition (with the exception of the t_{ModeDelay,MAX} as mentioned in the previous section). Initiating devices must use values within the minimum and maximum SMode packet count requirements shown above to control operating mode transitions.

Count Parameter Name	Minimum (clock cycles)	Maximum (clock cycles)	Description
tModeSA	1	4	Number of SMode packets to cause a transition from Standby-Mode to ActiveMode
tModeOffSet	4	7	Offset from beginning of SMode packet to request packet for standby to active transition
t ModeDelay	-	20	Delay from end of SMode packet to request packet for standby to active transition
tModeSwitchReset	320	-	Number of SMode packets to cause a transition from Active- Mode to ResetMode
tReset	32	-	Time required for an RDRAM's internal nodes to settle to their reset values.
tLock, Reset	750	-	Time required for an RDRAM's internal clock generator to lock to the external clock.

Table 6-1. Responding Device Parameters for Operating Mode Transitions

6.2 Standby Mode and Active Mode

The following figure shows the basic transitions between active and standby modes in response to serial mode packets

Figure 6-2. Basic ActiveMode/StandbyMode Transitions

This is a timing diagram, with time increasing in the downward direction. The time scale is in clock cycles, as shown on the left scale. The value of each of the eleven low-swing signal pins of the responding device is shown with the assumption that tTR is zero (the responding device is located at the master end of the Channel).

Serial mode packets with an SMode[1:0] field are shown as a box with a "11" label in the BusEn column. The BusEnable defaults to a logical zero value. The initiating device has transmitted tmodeSA,MAX serial mode packets with SMode[1:0] equal to 11 (this is the longest sequence permitted for invoking a standby to active transition). After the first tmodeSA,MIN serial mode packets, the device begins the transition to active mode. It reaches active mode after tmodeOrrset, MIN clock cycles after the start of the first serial mode packet. It remains there for tmodeDelay,MAX clock cycles after the last serial mode packet.

The responding device is in active mode when it begins framing the request packet. A transaction may begin in any of the clock cycles with the light shading above (labeled "Active Mode").

If the serial mode packet(s) causing a standby to active mode transition are not followed by a transaction with tmodeDelay.MAX clock cycles after the last serial mode packet, then the responding device will return to standby mode.

The next figure shows the case in which a transaction is started as early as possible after a serial mode packet which causes a standby to active mode transition

Figure 6-3. ActiveMode/StandbyMode Transition - Early Transaction

A transaction is composed of packet types other than serial mode packets, and will be defined in the next chapter. These other packet types lie entirely inside the heavy black box in the above figure. When a transaction has completed, the device returns to standby mode. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

6.3 ResetMode

Reset mode is entered when a consecutive sequence of twodeRA.MIN serial mode packets with a value of 11 are seen by a responding device (shown in the following figure). In reset mode, all devices enter a known state from which they may be Initialized. The device remains in reset mode for as long as serial mode packets with 11 value are received. When one or more serial mode packets with a value of 00 are seen, the responding device enters the active mode state.

Although devices enter the active mode state immediately, their clock circuitry requires a time tLock,MIN to resynchronize. Initiating devices must wait this long after the transition out of reset mode before starting any transactions.

7. Transactions

7.1 Read Transactions

The following figure shows the basic form of a memory space or register space read transaction. There are request and acknowledge packets, with the same tackDelay and tackWinDelay timing constraints. tackWinDelay will not be shown explicitly on any further transaction diagrams in this document.

When the responding device transmits an Okay acknowledge packet to the initiating device, it will also transmit a data packet with read data. This packet is sent a time tReadDelay after the end of the request packet. The tReadDelay value is in tcvcLE units and is programmed into the ReadDelay field of the Delay register of each responding device. It is not required to be the same for all devices within a Rambus system, but the difference (tReadDelay - tAckDelay) is required to be the same. This allows initiating devices to use the acknowledge packet to determine when the read data packet begins. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

Figure 7-1. Read Transaction

7.2 Write Transactions

The following figure shows the basic form of a memory space or register space write transaction. There are request and acknowledge packets, with the same tackDelay and tackwinDelay timing constraints as already discussed.

When the initiating device transmits a request packet to the responding devices, it will also transmit a data packet with write data. This packet is sent a time twriteDelay cycles after the end of the request packet. The twriteDelay is in tcrcLE units and is programmed into the WriteDelay field of the Delay register of each responding device. It is required to be the same for all devices within a Rambus system. A responding device will see the same twriteDelay interval between the request and write data packets whether the device is on the Primary Channel or on a Secondary Channel.

If the responding device returns an Okay acknowledge packet, then the transaction is complete at the end of the acknowledge window or at the end of the write data packet, whichever is later. The next request packet can be transmitted in the following clock cycle except for the case in which a register or memory space write to a device is followed by any other transaction to that device. In that case, one of the following two intervals must be inserted between the two transactions, where the memory or register case depends upon the first transaction.

- · tPostRegWriteDelay if the current transaction is a register space access
- tPostMemWriteDelay if the current transaction is a memory space access

If the responding device returns a Nack or Nonexistent acknowledge packet for a write command, then no write data packet is required by the responding device. The current transaction is complete at the end of the acknowledge window, or when the initiating device stops transmitting the write data packet, whichever is later. The next request packet can be transmitted in the following clock cycle. For the case of a Nack or Nonexistent, the initiating device must terminate the write data packet before another initiating device is given control of the Rambus Channel for a transaction. This is part of the arbitration mechanism used by the initiating devices. The arbitration mechanism is not specified in this document because it does not use the Rambus Channel. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

Figure 7-2. Write Transaction

7.3 Read Transactions with Serial Address Packet

The following figure shows a memory space read transaction for a command which uses the serial address packet. For a transaction which moves (n+1) octbytes of read data, the serial address packet will be $(4 \times n)$ clock cycles in length (recall that the low-order address bits for the first octbyte of read data come from the request packet).

Each serial address subpacket (each SAdr[i][10:3] field) is transmitted by the initiating device a time tserialReadorfset clock cycles before the octbyte of read data to which it corresponds. This means that the serial address packet will move with the read data packet, with a constant offset.

 tserialReadOffSet is the delay from the beginning of a serial address subpacket to the beginning of the read data subpacket (octbyte) with which it is associated.

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

7.4 Write Transactions with Serial Address Packet

The following figure shows a memory space write transaction for a command which uses the serial address packet. For a transaction which moves (n+1) octbytes of write data, the serial address packet will be $(4 \times n)$ clock cycles in length (recall that the low-order address bits for the first octbyte of write data come from the request packet).

Each serial address subpacket (each SAdr[i][10:3] field) is transmitted by the initiating device a time tserial writeoffset clock cycles before the octbyte of write data to which it corresponds. This means that the serial address packet will move with the write data packet, with a constant offset.

 tserialWriteOffSet is the delay from the beginning of a serial address subpacket to the beginning of the write data subpacket (octbyte) with which it is associated.

Note that this offset interval is measured at the initiating device or the responding device; it will be the same at either point since the serial address packet and write data packet are moving in the same direction - from initiating device to responding device.

Figure 7-4. Write Transaction with Serial Address Packet

7.5 Read Transactions with Serial Control Packet

The following figure shows a memory space read transaction for a command which uses the serial control packet. This packet is used to terminate a transaction before the (CV+1) octbytes of read data have been transferred, where CV is the value of the Count[7:3] Field when interpreted as an unsigned, five bit integer. In the example shown, the read data is terminated after (n) octbytes have been transferred.

The serial control packet is transmitted by the initiating device a time tserialReadoffset clock cycles before the end of the last read data octbyte which is transmitted by the responding device.

The serial control packet is also constrained to lie entirely outside the tAckWinDelay interval, as shown in the figure, in order to avoid interference with the acknowledge packet which is being returned by the responding device. Violation of this constraint will produce undefined (Undef) results. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

Figure 7-5. Read Transaction with Serial Control Packet

7.6 Write Transactions with Serial Control Packet

The following figure shows a memory space write transaction for a command which uses the serial control packet. This packet is used to terminate a transaction before the (CV+1) octbytes of write data have been transferred, where CV is the value of the Count[7:3] field when interpreted as an unsigned, five bit integer. In the example shown, the write data is terminated after (n) octbytes have been transferred.

The serial control packet is transmitted by the initiating device a time tserial write oriset clock cycles before the end of the last write data octbyte which is transmitted by the initiating device.

Note that this offset interval is measured at the initiating device or the responding device; it will be the same at either since the serial address packet and write data packet are moving in the same direction - from initiating device to responding device.

The serial control packet is also constrained to lie entirely outside the tAckWinDelay interval, as shown in the figure, in order to avoid interference with the acknowledge packet which is being returned by the responding device. Violation of this constraint will produce undefined (Undef) results.

Figure 7-6. Write Transaction with Serial Control Packet

8. Nack Acknowledge Response

8.1 Retry and Miss Latency

If a responding device returns a Nack acknowledge packet, then no read or write data packet is transacted. The current transaction is complete at the end of the acknowledge window. It will be necessary to wait for an interval of time (called a tRETRY interval) before resubmitting the transaction. The following figure illustrates this case.

Figure 8-1. Nack Acknowledge Response

Once the tRETRY interval has elapsed, the transaction may be restarted by the initiating device, and the RDRAM will return an Okay acknowledge packet and the data packet will be transferred. An RDRAM will Nack any other transactions which are issued during the tRETRY interval.

Two miss latency parameters may be derived with the following equations:

	tReadMiss = tRETRY + tReadHit	(Eq 8-1)	
	twriteMiss = tretry + twriteHit	(Eq 8-2)	
1			

where tRETRY = {tRetrySensedClean, tRetrySensedDirty, tRetryRetresh}. The tReadMiss and twriteMiss parameters are the time from the beginning of the original (Nacked) request packet to the beginning of the data packet which is eventually transferred.

8.2 **TRETRY Interval**

8.2.1 Retry Due to RowMiss

If an initiating device requests a region of memory space in an RDRAM slave which is not currently held in the RowSenseAmpCache, the RDRAM will respond with a Nackacknowledge packet. The RDRAM will then begin a RowMiss operation to get the proper row into the RowSenseAmpCache. During the RowMiss, the RDRAM will Nack any request it is given. When the RowMiss is complete, the new row may be accessed.

Each bank has a Valid flag and a Dirty flag for its Row register. After reset, both are zero. After a RowMiss has caused a new row to be placed into the RowSenseAmpCache, the Row register contains its row address and the Valid flag is set to a one. If the RowSenseAmpCache contents are modified with a memory write transaction, the dirty flag will be set. These flags are not directly accessible to initiating devices.

A subsequent RowMiss will cause the old row to be written back to the bank (if it was dirty and an explicit restore was not forced with the Close bit in the request packet) and a new row to be placed into the RowSenseAmpCache. The time required for this is called the tRETRY time, and is added to the normal read and write hit latency times, as shown in the preceding figure. These times are given by the following equations. The component parameters are shown in a subsequent table. All of these tRETRY intervals correspond roughly to the cycle time parameter the of a conventional page mode DRAM. This is because RDRAMs use CAS-type accesses for all memory read and write transactions.

After a new row is sensed and placed into the RowSenseAmpCache, a final interval tRowImprestore is used to restore the row in core back to its original state. This is necessary because the DRAM sense operation is destructive. This interval is not in the critical timing path, and is performed in parallel with a subsequent data transfer. It can extend a subsequent retry operation.

There are two tRETRY equations for the 8M RDRAM:

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

8.2.2 Retry Due to Pending Burst Refresh

In a 8M RDRAM, a refresh burst will first restore the currently accessed row if it is dirty. This requires a tRowExprestore interval. If the row is clean, this interval is not required. A burst of four rows are precharged/sensed/restored (using the tRowPrecharge, tRowSense, and tRowImprestore intervals), and the current row is precharged/sensed so the RDRAM is left with its RowSenseAmpCache state unaltered (except the row's dirty flag will be cleared):

When a transaction initiates a manual burst refresh in an RDRAM (transaction "A" in the figure below), the RDRAM will Nack all further transactions directed to in during the tRetryRefresh interval after. No information from these Nacked transactions will be retained after the tRetryRefresh interval. After the tRetryRefresh interval, transactions will be handled in a normal fashion. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

8.3 Retry Component Intervals

The TRETRY and TRASAgain intervals are built from the TROWOverHead, TROWPrecharge, TROWSense, TROWINPrestore, TROWEXPRESSION, TRETREQUESTICIES, TRETRESSION, TRETRES

The theorematical thermal theorematical and the series of the series of the RowMiss and Refresh state machine overheads. The remaining five intervals represent the width of intervals used for timing core operations. These core operations have minimum times measured in nanosecond units (this is shown in the "core timing(ns)" columns in the table below). The five intervals are composed of a fixed part and a variable (programmable) part. If the clock frequency is reduced, the variable part may be reduced so the sum of the fixed and variable parts remain greater than or equal to the minimum core operation time (in nanoseconds).

Delay	Fixed Part (overhead)	8M RDRAM			
Parameter	and Variable Part ^{Note 1}	tcycle Units (4 ns)	core timing (ns) with tcycle = 4ns		
tRowOverHead	Row overhead	7	28		
	-	n/a			
tRefRequestIdleOverHead	Row overhead	14	56		
	-	n/a			
tLessRowRefreshOverHead	Row overhead	20	80		
	-	n/a			
tRowPrecharge	RowPrecharge overhead	6	28		
	RowPrecharge[4:0]	1			
tRowSense	RowSense overhead	1	32		
	RowSense[4:0]	7			
tRowimprestore	RowImpRestore overhead	5	60		
	RowImpRestore[4:0]	10			
tRowExprestore	RowExpRestore overhead	4	32		
	RowExpRestore[4:0]Note 2	4			
tHoldOff	HoldOff overhead	1	8		
	RowPrecharge[4:0]	1			

Table 8-1. Retry Components

Notes 1. The variable part is programmed into the indicated field of the RasInterval register.

2. The RowPrecharge[4:0] field is used for both the precharge interval and the holdoff interval.

9. AddressMapping

The address space decoding logic contained in a 8M RDRAM is shown in the following figure. The initiating device places a 33 bit physical octbyte address Adr[35:3] on the Channel. This address is received by the RDRAM slave. The AddressSelect[1][1:0], [0][7:1] control register allows individual bits of the Adr[28:20] and Adr [19:11] fields to be swapped to produce the AdrS[28:20] and AdrS[19:11] fields. The Adr[35:29] and Adr[10:3] fields pass through unaltered to the AdrS[35:29] and AdrS[10:3] fields. The figure shows the case when AddressSelect[0][7:1], [1][1:0] = 111111111, and the two nine bit address fields are exchanged. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

10. Electrical Characteristics (Preliminary)

Absolute Maximum Ratings

Symbol	Parameter	MIN.	MAX.	Unit	Note
VI,ABS	Voltage applied to any RSL pin with respect to GND	0.5	VDD+0.5	v	
VI,TTL,ABS	Voltage applied to any TTL pin with respect to GND	-0.5	Vdd+0.5	v	
Vdd,abs	Voltage on Vod with respect to GND	-0.5	VDD,MAX+1.0	v	
Торт	Operation temperature	0	+70	°C	1
TSTORE	Storage temperature	-55	+125	°C	

Caution The following table represents stress ratings only, and functional operation at the maximums is not guaranteed. Extended exposure to the maximum ratings may affect device reliability. Furthermore, although devices contain protective circuitry to resist damage from static electric discharge, always take precautions to avoid high static voltages or electric fields.

Note 1 This parameter apply at the status of using 50 % Rambus channel by Read or Write and a transverse air flow greater than 1.5 m/s maintained.

Thermal Parameters

Symbol	Parameter	MIN.	MAX.	Unit
Tj	Junction operating temperature		100	°C
өлс	Junction-to-Case thermal resistance		5	°C/W

Capacitance

Symbol	Parameter	MIN.	MAX.	Unit
Ci/o	Low-swing input/output parasitic capacitance		2	pF
CI,TTL	TTL input parasitic capacitance		8	pF
Power Consumption

Mode	Parameter		MIN.	MAX.	Unit
lcc1	Standby Current	-A50		135	mA
Icc2	Active Current	-A50		380	mA
Іссз	Read Operation Current (Burst Length = 256)	-A50		480	mA
Icc4	Write Operation Current (Burst Length = 256)	-A50		480	mA

Caution These do not include the loL current passing through the low-swing pins to ground.

Recommended Operating Conditions

Symbol	Parameter	MIN.	MAX.	Unit
Vdd, Vdda	Supply voltage	3.15	3.45	V
Vref	Reference voltage	1.95	2.15	V
Vswing	Input voltage range	1.0	1.4	v
Viн	High level input voltage	Vref+0.5	Vref+0.7	v
Vil	Low level input voltage	Vref-0.7	VREF-0.5	v
VIH, TTL	High level TTL input voltage	2.0	VDD+0.5	V
VIL, TTL	Low level TTL input voltage	-0.5	+0.8	V

DC Characteristics (Recommended operating conditions unless otherwise noted)

Symbol	Parameter	Conditions	MIN.	MAX.	Unit
IREF	VREF current	VREF = Maximum	-10	+10	μA
Іон	High level output current	0 ≤ Vout ≤ Vdd	-10	+10	μA
lo∟	Low level output current	Vout = 1.6 V		25	mA
lı, ττ∟	TTL input leakage current	0 ≤ VI, TTL ≤ VDD	-10	+10	μA
Voh, ttl	High level TTL output voltage	lон, ттl = −0.25 mA	2.4	Vdd	V
Vol, TTL	Low level TTL output voltage	Ιοι, ττι = 1.0 mA	0	0.4	v

Recommended Timing Conditions

Symbol	Parameter		MIN.	MAX.	Unit
TPAUSE	Pause time after Power On			200	μs
tcr, tcr	TxClk and RxClk input rise and fall times		0.3	0.7	ns
toyole	TxClk and RxClk cycle times	-A50	4	5	ns
tтicк	Transport time per bit per pin (this timing in synthesized by the RDRAM's internal clock gen	terval is erator)	tcycle/2	tcycle/2	ns
tcн, tc∟	TxClk and RxClk high and low times		47 %	53 %	tcycle
tтя	TxClk-RxClk differential		0.25	0.7	ns
tsp	SIn-to-SOut propagation delay			50	ns
ta	TxClk-to-Data/Control output time		1-0.45	1+0.45	tcycle/4
ts	Data/Control-to-RxClk setup time		0.45		tcycle/4
tн	RxClk-to-Data/Control hold time		0.45		tcycle/4
tref	Refresh interval			17	ms
tlocк	RDRAM internal clock generator lock time		750		t CYCLE

Transaction Timing Characteristics

Symbol	Parameter	MIN.	Unit
tPostRegWriteDelay	Delay from the end of the current transaction to the beginning of the next transaction if the current transaction is a write to register space and the next transaction is made to the same device. Use zero delay if the next transaction is to a different device.	6	toyole
tPostMemWriteDelay	Delay from the end of the current transaction to the beginning of the next transaction if the current transaction is a write to memory space and the next transaction is made to the same device. Use zero delay if the next transaction is to a different device.	4	toyole
tPostMemReadDelay	Delay from the end of the current memory read transaction to the beginning of the next transaction.	2	toyole
tSerialReadOffSet	Delay from the beginning of a serial address subpacket or serial control packet to the beginning of the read data subpacket (octbyte) with which it is associated.	12	toyole
tSerialWriteOffSet	Delay from the beginning of a serial address subpacket or serial control packet to the beginning of the write data subpacket (octbyte) with which it is associated.	8	toyole

Data and Transaction Latency Characteristics

Symbol	Parameter	MIN.	Unit	Notes
tReadDelay	Delay from the end of a read request packet to the beginning of the read data packet.	7	toyole	1
t WriteDelay	Delay from the end of a write request packet to the beginning of the write data packet.	1	toyole	2

Notes 1. tReadDelay is programmed to its minimum value.

2. twriteDelay is programmed to its minimum value.

Hit, Retry and Miss Delay Characteristics

Symbol	Parameter		MIN.	Unit	Notes
tReadHit	Start of request packet to start of read data pachit (Okay).	cket for row	10	toyole	1
twriteHit	Start of request packet to start of write data pachit (Okay).	cket for row	4	toyole	1
tRetrySensedClean	Start of request packet for row miss (Nack) to request packet for row hit (Okay). The previous row is unmodified.	o start of	22	tcycle	2
tRetrySensedDirty	Start of request packet for row miss (Nack) to request packet for row hit (Okay). The previous row is modified.	o start of	30	tcycle	2
tRetryRefresh	Start of request packet for row miss (Nack)	Clean	213	tCYCLE	2
	to start of request packet for row fill (Okay).	Dirty	221		
tReadMiss	Start of request packet for row miss (Nack) to st Data packet for row hit (Okay).	32	toyole	3	
twriteMiss	Start of request packet for row miss (Nack) to st Data packet for row hit (Okay).	26	toyole	3	

Notes 1. Programmable

- 2. tRowExprestore, tPrecharge, and tSense are programmed to there minimum value.
- 3. Calculated with tRetrySensedClean(MIN).

Rise/Fall Timing Chart

Clock Timing Chart

Receive Data Timing Chart

Transmit Data Timing Chart

Serial Configuration Pin Timing Chart

11. Package Drawing

SSOP TYPE

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	25.30 MAX.	0.996 MAX.
в	2.575 MAX.	0.102 MAX.
С	0.65 (T.P.)	0.026 (T.P.)
D	0.24±0.06	0.009+0.003
Е	0.25±0.05	$0.010\substack{+0.002\\-0.003}$
F	1.6 MAX.	0.063 MAX.
G	1.25	0.049
н	13.0±0.2	0.512±0.008
1	11.0±0.1	0.433±0.004
J	1.0±0.2	$0.039\substack{+0.009\\-0.008}$
к	0.17+0.025	0.007±0.001
L	0.5±0.1	0.020+0.004
м	0.13	0.005
N	0.10	0.004
Р	3°+7° 3°-3°	3°+7° 3°-3°
Q	0.65 (T.P.)	0.026 (T.P.)
R	22.75	0.896
S	1.275 MAX.	0.051 MAX.
		P32G6-65A

[MEMO]

Line Buffer

NEC

MOS INTEGRATED CIRCUIT μ PD485506

LINE BUFFER 5K-WORD BY 16-BIT/10K-WORD BY 8-BIT

Description

The μ PD485506 is a high speed FIFO (First In First Out) line buffer. Word organization can be changed either 5,048 words by 16 bits or 10,096 words by 8 bits.

Its CMOS static circuitry provides high speed access and low power consumption.

The μ PD485506 can be used for one line delay and time axis conversion in high speed facsimile machines and digital copiers.

Moreover, the μ PD485506 can execute read and write operations independently on an asynchronous basis. Thus the μ PD485506 is suitable as a buffer for data transfer between units with different transfer rates and as a buffer for the synchronization of multiple input signals.

There are four versions, E, K, P and X. These versions operate with different specifications. Each version is identified with its lot number (refer to **7. Example of Stamping**).

Features

- · 5,048 words by 16 bits (Word mode) /10,096 words by 8 bits (Byte mode)
- · Full static operation; data hold time = infinity
- Suitable for sampling one line of A3 size paper (16 dots/mm)
- · Asynchronous read/write operations available
- Variable length delay bits; 21 to 5,048 bits or 10,096 bits (Cycle time: 25 ns)

15 to 5,048 bits or 10,096 bits (Cycle time: 35 ns)

- Power supply voltage Vcc = 5 V \pm 10 %
- All input/output TTL compatible
- 3-state output

Ordering Information

Part Number	R/W Cycle Time	Package
μPD485506G5-25	25 ns	44-pin plastic TSOP (II) (400 mil)
μPD485506G5-35	35 ns	

The information in this document is subject to change without notice.

NEC

Pin Configuration (Marking side)

Douto	0◄	1		44	0	DINO
Dout1	0◄	2		43	 0	DIN1
Dout2	0◄	3		42	 0	DIN2
Douts	0◄	4		41	0	DIN3
Dout4	0◄	5		40	0	DiN4
Dout5	0∢	6		39	0	Dins
Dout6	0◄	7		38	← −0	DING
D ουτ7	0◄	8		37	 0	DIN7
ŌĒ	0>	9		36	~ _0	WE
RE	⊶	10		35	0	MD
GND	0	11	048	34	0	GND
RSTR	0>	12	550	33	0	RSTW
RCK	0	13	665	32	0	WCK
Vcc	0	14	•	31	0	Vcc
Douts	0◄	15		30	 0	DINB
Doute	○	16	:	29	•O	DIN9
DOUT10	○	17	:	28	0	DIN10
Dout11	0◄	18	:	27	0	DIN11
DOUT12	0∢	19	:	26	0	DIN12
Dout13	0◄	20		25	~ _0	Din13
Dout14	0∢	21		24	0	Din14
Dout15	⊶	22		23	 0	DIN15

44-pin plastic TSOP (II) (400 mil)

DINO tO DIN15	:	Data Inputs
Douto to Dout15	:	Data Outputs
WCK	:	Write Clock Input
RCK	:	Read Clock Input
WE	:	Write Enable Input
RE	:	Read Enable Input
ŌĒ	:	Output Enable Input
RSTW	:	Reset Write Input
RSTR	:	Reset Read Input
MD	:	Mode Set Input
Vcc	:	+5 V Power Supply
GND	:	Ground

٢

Block Diagram

1. Pin Function

Pin				
Pin Number	Symbol	Pin Name	1/0	Function
23 - 30 37 - 44	Dino Din15	Data Input	In	Write data input pins. The data inputs are strobed by the rising edge of WCK at the end of a cycle and the setup and hold times (tos, toн) are defined at this point.
1 - 8 15 - 22	Dоито I Dout15	Data Output	Out	Read data output pins. The access time is regulated from the rising edge of RCK at the beginning of a cycle and defined by tac.
33	RSTW	Reset Write Input	In	Reset input pin for the initialization of the write address pointer. The state of RSTW is strobed by the rising edge of WCK at the beginning of a cycle and the setup and hold times (trss, trn) are defined.
12	RSTR	Reset Read Input	In	Reset input pin for the initialization of the read address pointer. The state of RSTR is strobed by the rising edge of RCK at the beginning of a cycle and the setup and hold times (trs, tar) are defined.
36	WE	Write Enable Input	In	Write operation control signal input pin. When $\overline{\text{WE}}$ is in the disable mode ("H" level), the internal write operation is inhibited and the write address pointer stops at the current position.
10	RE	Read Enable Input	In	Read operation control signal input pin. When $\overline{\text{RE}}$ is in the disable mode ("H" level), the internal read operation is inhibited and the read address pointer stops at the current position. The data outputs remain valid for that address.
9	ŌĒ	Output Enable Input	In	Output operation control signal input pin. When \overline{OE} is in the disable mode ("H" level), the data out is inhibited and the output changes to high impedance. The internal read operation is executed at that time and the read address pointer incremented in synchronization with the read clock.
32	WCK	Write Clock Input	In	Write clock input pin. When WE is enabled ("L" level), the write operation is executed in synchronization with the write clock. The write address pointer is incremented simultaneously.
13	RCK	Read Clock Input	In	Read clock input pin. When RE is enabled ("L" level), the read operation is executed in synchroniza- tion with the read clock. The read address pointer is incremented simultaneously.
35	MD	Mode Set Input	In	Mode set input pin. The level of MD gives the operation mode. When MD is in "L" level, 5,048 words by 16 bits configuration with DIN0 - DIN15, DOUT0 - DOUT15 is enabled. When MD is in "H" level, 10,096 words by 8 bits configuration with DIN0 - DIN7, DOUT0 - DOUT7 is enabled.

2. Operation Mode

 μ PD485506 is a synchronous memory. All signals are strobed at the rising edge of the clock (RCK, WCK). For this reason, setup time and hold time are specified for the rising edge of the clock (RCK, WCK).

(1) Mode Set Cycle (5,048 words by 16 bits or 10,096 words by 8 bits organization)

 μ PD485506 has a capability of selecting from two operation modes by judging the MD level when RSTW or RSTR is enabled in the reset cycle.

MD Level	Bit Configuration	Data Inputs/Outputs	Control Signal
"L"	5,048 words by 16 bits	Dino - Din15	WCK, WE, RSTW
		Douto - Dout15	RCK, RE, RSTR
"H"	10,096 words by 8 bits	Dino - Din7	WCK, WE, RSTW
		Douto - Dout7	RCK, RE, RSTR

Caution Don't change the MD level during a reset cycle.

5,048 Words by 16 Bits FIFO

Remark Fix DINS - DIN15 to "L" or "H" level in the 10,096 words by 8 bits mode.

(2) Write Cycle

When the \overline{WE} input is enabled ("L" level), a write cycle is executed in synchronization with the WCK clock input. The data inputs are strobed by the rising edge of the clock at the end of a cycle so that read data after a oneline (5,048 bits or 10,096 bits) delay and write data can be processed with the same clock. When creating a variable length delay line by controlling \overline{WE} or \overline{RSTW} , delay bits are as follows.

Part Number	Cycle Time	Delay Bits
μPD485506-25	25 ns	21 to 5,048 bits/21 to 10,096 bits
μPD485506-35	35 ns	15 to 5,048 bits/15 to 10,096 bits

Unless inhibited by \overline{WE} , the internal write address will automatically wrap around from 5,047 to 0 and begin incrementing again.

(3) Read Cycle

When the \overline{RE} input is enabled ("L" level), a read cycle is executed in synchronization with the RCK clock input. When the \overline{OE} input is also enabled ("L" level) at that time, data is output at tac.

When creating a variable length delay line by controlling RE or RSTR, delay bits are as follows.

Part Number	Cycle Time	Delay Bits
μPD485506-25	25 ns	21 to 5,048 bits/21 to 10,096 bits
μPD485506-35	35 ns	15 to 5,048 bits/15 to 10,096 bits

When read and write cycles contend for the same line for a time axis conversion, etc., the old data (previous line) may be output for the last 21 bits in the case of 25 ns read cycle time, and the last 15 bits in the case of 35 ns read cycle time.

Unless inhibited by RE, the internal read address will automatically wrap around from 5,047 to 0 and begin incrementing again.

(4) Write Reset Cycle/Read Reset Cycle

After power up, the μ PD485506 requires the initialization of internal circuits because the read and write address pointers are not defined at that time.

It is necessary to satisfy setup requirements and hold times as measured from the rising edge of WCK and RCK, and then input the RSTW and RSTR signals to initialize the circuit.

- Caution Write and read reset cycles can be executed asynchronously. However, 1/2 cycle and 500 ns is required after a write cycle to read the data written in a cycle.
- **Remark** Write and read reset cycles can be executed at any time and do not depend on the state of $\overrightarrow{\mathsf{RE}}$, $\overrightarrow{\mathsf{WE}}$ or $\overrightarrow{\mathsf{OE}}$.

3. Electrical Specifications

• All voltages are referenced to GND.

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Voltage on any pin relative to GND	VT		-0.5 ^{Note} to Vcc + 0.5	v
Supply voltage	Vcc		-0.5 to +7.0	v
Output current	lo		20	mA
Power dissipation	Po		1	w
Operating ambient temperature	Ta		0 to +70	°C
Storage temperature	Tstg		-55 to +125	°C

Note -3.0 V MIN. (Pulse width = 10 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc		4.5	5.0	5.5	v
High level input voltage	Vін		2.4		Vcc + 0.5	v
Low level input voltage	ViL		-0.3 ^{Note}		+0.8	v
Operating ambient temperature	TA		0		70	°C

Note -3.0 V MIN. (Pulse width = 10 ns)

DC Characteristics (Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit
Operating current	lcc				140	mA
Input leakage current	h	VI = 0 to Vcc, Other Input 0 V	-10		+10	μA
Output leakage current	lo	Vo = 0 to Vcc,	-10		+10	μA
		Dout: High Impedance				
High level output voltage	Vон	lон = -1 mA	2.4			v
Low level output voltage	Vol	lol = 2 mA			0.4	v

Capacitance (TA = +25 °C, f = 1 MHz)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	С				10	pF
Output capacitance	Co				10	pF

μPD485506-35 μPD485506-25 Parameter Symbol Unit Notes MIN. MAX. MIN. MAX. Write clock cycle time 25 35 twork ns Write clock pulse width twow 11 12 ns Write clock precharge time 11 12 twcp ns Read clock cycle time 25 35 teck ns Read clock pulse width tecw 11 12 ns Read clock precharge time tRCP 11 12 ns Access time tac 18 25 ns Output hold time tон 5 5 ns Output low-impedance time t∟z 5 18 5 25 ns 4 Output high-impedance time 5 18 5 25 4 tнz ns 7 Input data setup time tos 10 ns 3 Input data hold time 3 tон ns MD Set setup time 20 20 tмs ns MD Set hold time tмн 10 10 ns MD Set time 0 0 5 tмD ns Output low-impedance time (Mode change) 5 18 5 25 4 tlzм ns Output high-impedance time (Mode change) tнzм 5 18 5 25 ns 4 RSTW/RSTR Setup time trs 7 10 ns 6 RSTW/RSTR Hold time tян 3 3 6 ns RSTW/RSTR Deselected time (1) 7 t_{RN1} 3 3 ns RSTW/RSTR Deselected time (2) 7 7 10 t_{RN2} ns WE Setup time twes 7 10 ns 8 WE Hold time 8 tweн 3 3 ns WE Deselected time (1) **t**wen1 3 3 ns 9 WE Deselected time (2) 7 twen2 10 9 ns RE Setup time 7 tres 10 ns 10 RE Hold time 3 3 10 tren ns RE Deselected time (1) 3 3 11 **t**REN1 ns RE Deselected time (2) 7 tren2 10 ns 11 OE Setup time 7 10 10 toes ns OE Hold time 3 10 tоен 3 ns OE Deselected time (1) 3 3 11 toen1 ns 11 OE Deselected time (2) 7 10 toen2 ns WE Disable time 0 0 twew ms RE Disable time 0 tREW 0 ms OE Disable time 0 0 toew ms Write reset time 0 0 testw ms Read reset time 0 **t**RSTR 0 ms Transition time 3 35 3 35 tт ns

AC Characteristics (Recommended Operating Conditions unless otherwise noted)^{Notes 1, 2, 3}

- **Notes 1.** AC measurements assume $t_{T} = 5$ ns.
 - 2. AC Characteristics test condition

Input Timing Specification

Output Timing Specification

Output Loads for Timing

- 3. Input timing reference levels = 1.5 V.
- 4. tLz, tHz, tLzm and tHzm are measured at ± 200 mV from the steady state voltage. Under any conditions, tLz \geq tHz and tLzm \geq tHzm.
- Mode set signal (MD) must be input synchronously with write reset signal (testw period) or read reset signal (testw period). Under this condition, testw = twp (testw = twp).
- 6. If either this or the is less than the specified value, reset operations are not guaranteed.
- 7. If either tRN1 or tRN2 is less than the specified value, reset operations may extend to cycles preceding or following the period of reset operations.
- 8. If either twes or twee is less than the specified value, write disable operations are not guaranteed.
- 9. If either tweN1 or twEN2 is less than the specified value, internal write disable operations may extend to cycles preceding or following the period of write disable operations.
- 10. If either tres or treh, toes or toeh is less than the specified value, read disable operations are not guaranteed.
- **11.** If either tREN1 Or TREN2, TOEN1 Or TOEN2 is less than the specified value, internal read disable operations may extend to cycles preceding or following the period of read disable operations.

NEC

Write Cycle

Remark RSTW = "H" level

Read Cycle (RE Control)

Read Cycle (OE Control)

Write Reset Cycle (WE Controlled 1) (Versions E, K and P)

Note In write reset cycle, reset operation is executed even without a reset cycle (trsstw). WCK can be input any number of times in a reset cycle.

Write Reset Cycle (WE Controlled 2) (Versions E, K, P and X)

Note In write reset cycle, reset operation is executed even without a reset cycle (thstw). WCK can be input any number of times in a reset cycle.

Write Reset Cycle (WE Controlled 3) (Version X)

Note In write reset cycle, reset operation is executed even without a reset cycle (thstw). WCK can be input any number of times in a reset cycle.

Read Reset Cycle (RE Controlled 1)

Note In read reset cycle, reset operation is executed even without a reset cycle (trstra). RCK can be input any number of times in a reset cycle.

Remark OE = "L" level

Read Reset Cycle (RE Controlled 2)

Note In read reset cycle, reset operation is executed even without a reset cycle (trssrr). RCK can be input any number of times in a reset cycle.

Remark OE = "L" level

4. Application

• 1 H Delay Line

 μ PD485506 easily allows a 1 H (5,048 bits/10,096 bits) delay line (see Figure 1, 2). It is also possible to change the number of delay bits depending on the cycle time as follows.

Part Number	Cycle Time	Delay Bits
μPD485506-25	25 ns	21 to 5,048 bits/21 to 10,096 bits
μPD485506-35	35 ns	15 to 5,048 bits/15 to 10,096 bits

To change the number of delay bits, you can choose the one of the following methods.

Adjustments of the number of delay bits

- (1) Reset the cycle proportionate to the delay length (Figure 3).
- (2) Shift the input timing of write reset (RSTW) and read reset signals (RSTR) according to the delay length (Figure 4).
- (3) Shift the address by disabling \overline{WE} or \overline{RE} for the period proportionate to the delay length (Figure 5).

Caution After power up, the μ PD485506 requires the initialization of internal circuits because the read and write address pointers are not defined at that time.

Remark $\overline{\text{RE}}$, $\overline{\text{WE}}$, $\overline{\text{OE}}$ = "L" level

Remark \overline{RE} , \overline{WE} , \overline{OE} = "L" level

Figure 4 n-Bit Delay Line Timing (2)

Remark \overline{WE} , \overline{OE} = "L" level

Remark WE = "L" level

Figure 9 Mode Set Cycle (Read) (2)

Remark $\overline{\text{RE}}$, $\overline{\text{OE}}$ = "L" level.

5. Package Drawing

44 PIN PLASTIC TSOP(II) (400 mil)

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	18.63 MAX.	0.734 MAX.
в	0.93 MAX.	0.037 MAX.
С	0.8 (T.P.)	0.031 (T.P.)
D	0.32+0.08	0.013±0.003
E	0.1±0.05	0.004±0.002
F	1.2 MAX.	0.048 MAX.
G	0.97	0.038
н	11.76±0.2	0.463±0.008
I	10.16±0.1	0.400±0.004
J	0.8±0.2	0.031+0.009 -0.008
к	$0.145\substack{+0.025\\-0.015}$	0.006±0.001
L	0.5±0.1	$0.020 \substack{+0.004 \\ -0.005}$
м	0.13	0.005
N	0.10	0.004
Ρ	3°+7° -3°	3°+7° -3°
		S44G5-80-7JF5

6. Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD485506.

Type of Surface Mount Device

μPD485506G5: 44-pin plastic TSOP (II) (400 mil)

7. Example of Stamping

Letter E in the fifth character position in a lot number signifies version E, letter K, version K, letter P, version P, and letter X, version X.

NEC	JAPAN
D485506	
××××□××	×××
Lot number	

NEC

MOS INTEGRATED CIRCUIT μ PD485505

LINE BUFFER 5K-WORD BY 8-BIT

Description

The μ PD485505 is a 5,048 words by 8 bits high speed FIFO (First In First Out) line buffer. Its CMOS static circuitry provides high speed access and low power consumption.

The μ PD485505 can be used for one line delay and time axis conversion in high speed facsimile machines and digital copiers.

Moreover, the μ PD485505 can execute read and write operations independently on an asynchronous basis. Thus the μ PD485505 is suitable as a buffer for data transfer between units with different transfer rates and as a buffer for the synchronization of multiple input signals. There are three versions, E, K, and P. These versions operate with different specifications. Each version is identified with its lot number (refer to **7. Example of Stamping**).

Features

٠

- · 5,048 words by 8 bits
- · Full static operation; data hold time = infinity
- · Suitable for sampling one line of A3 size paper (16 dots/mm)
- · Asynchronous read/write operations available
 - Variable length delay bits; 21 to 5,048 bits (Cycle time: 25 ns)

15 to 5,048 bits (Cycle time: 35 ns)

- Power supply voltage Vcc = 5 V \pm 10 %
- All input/output TTL compatible
- 3-state output

Ordering Information

Part Number	R/W Cycle Time	Package
μPD485505G-25	25 ns	24-pin plastic SOP (450 mil)
μPD485505G-35	35 ns	

Pin Configuration (Marking side)

24-pin plastic SOP (450 mil)

DINO - DIN7 :	Data Inputs
Douto - Dout7 :	Data Outputs
WCK :	Write Clock Input
RCK :	Read Clock Input
WE :	Write Enable Input
RE :	Read Enable Input
RSTW :	Reset Write Input
RSTR :	Reset Read Input
Vcc :	+5 V Power Supply
GND :	Ground

Block Diagram

1. Pin Function

Pin				
Pin Number	Symbol	Pin Name	I/O	Function
13 - 16 21 - 24	Dino Din7	Data Input	In	Write data input pins. The data inputs are strobed by the rising edge of WCK at the end of a cycle and the setup and hold times (tos, toH) are defined at this point.
1 - 4 9 - 12	Dουτο Ι Doυτ7	Data Output	Out	Read data output pins. The access time is regulated from the rising edge of RCK at the beginning of a cycle and defined by t _{Ac} .
19	RSTW	Reset Write Input	In	Reset input pin for the initialization of the write address pointer. The state of $\overrightarrow{\text{RSTW}}$ is strobed by the rising edge of WCK at the beginning of a cycle and the setup and hold times (trs, tar) are defined.
6	RSTR	Reset Read Input	In	Reset input pin for the initialization of the read address pointer. The state of $\overline{\text{RSTR}}$ is strobed by the rising edge of RCK at the beginning of a cycle and the setup and hold times (trs, tar) are defined.
20	WE	Write Enable Input	in	Write operation control signal input pin. When $\overline{\text{WE}}$ is in the disable mode ("H" level), the internal write operation is inhibited and the write address pointer stops at the current position.
5	RE	Read Enable Input	In	Read operation control signal input pin. When $\overrightarrow{\text{RE}}$ is in the disable mode ("H" level), the internal read operation is inhibited and the read address pointer stops at the current position. The output changes to high impedance.
17	WCK	Write Clock Input	In	Write clock input pin. When $\overline{\text{WE}}$ is enabled ("L" level), the write operation is executed in synchronization with the write clock. The write address pointer is incremented simultaneously.
8	RCK	Read Clock Input	In	Read clock input pin. When $\overline{\text{RE}}$ is enabled ("L" level), the read operation is executed in synchronization with the read clock. The read address pointer is incremented simultaneously.

2. Operation Mode

 μ PD485505 is a synchronous memory. All signals are strobed at the rising edge of the clock (RCK, WCK). For this reason, setup time and hold time are specified for the rising edge of the clock (RCK, WCK).

(1) Write Cycle

When the \overline{WE} input is enabled ("L" level), a write cycle is executed in synchronization with the WCK clock input. The data inputs are strobed by the rising edge of the clock at the end of a cycle so that read data after a oneline (5,048 bits) delay and write data can be processed with the same clock.

When creating a variable length delay line by controlling WE or RSTW, delay bits are as follows.

Part Number	Cycle Time	Delay Bits		
μPD485505-25	25 ns	21 to 5,048 bits		
μPD485505-35	35 ns	15 to 5,048 bits		

Unless inhibited by \overline{WE} , the internal write address will automatically wrap around from 5,047 to 0 and begin incrementing again.

(2) Read Cycle

When the RE input is enabled ("L" level), a read cycle is executed in synchronization with the RCK clock input and data is output at tac.

When creating a variable length delay line by controlling RE or RSTR, delay bits are as follows.

Part Number	Cycle Time	Delay Bits
μPD485505-25	25 ns	21 to 5,048 bits
μPD485505-35	35 ns	15 to 5,048 bits

When read and write cycles contend for the same line for a time axis conversion, etc., the old data (previous line) may be output for the last 21 bits in the case of 25 ns read cycle time, and the last 15 bits in the case of 35 ns read cycle time.

Unless inhibited by RE, the internal read address will automatically wrap around from 5,047 to 0 and begin incrementing again.

(3) Write Reset Cycle/Read Reset Cycle

After power up, the μ PD485505 requires the initialization of internal circuits because the read and write address pointers are not defined at that time.

It is necessary to satisfy setup requirements and hold times as measured from the rising edge of WCK and RCK, and then input the RSTW and RSTR signals to initialize the circuit.

Caution Write and read reset cycles can be executed asynchronously. However, 1/2 cycle and 500 ns is required after a write cycle to read the data written in a cycle.

Remark Write and read reset cycles can be executed at any time and do not depend on the state of \overline{RE} or \overline{WE} .

3. Electrical Specifications

· All voltages are referenced to GND.

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Voltage on any pin relative to GND	Vī		-0.5 ^{Note} to Vcc + 0.5	V
Supply voltage	Vcc		-0.5 to +7.0	v
Output current	lo		20	mA
Operating ambient temperature	Ta		0 to +70	°C
Storage temperature	Tsig		-55 to +125	°C

Note -3.0 V MIN. (Pulse width = 10 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc		4.5	5.0	5.5	v
High level input voltage	Vін		2.4		Vcc + 0.5	v
Low level input voltage	ViL		-0.3 ^{Note}		+0.8	v
Operating ambient temperature	TA		0		70	°C

Note -3.0 V MIN. (Pulse width = 10 ns)

DC Characteristics (Recommended Operating Conditions unless otherwise noted)

Parameter	Parameter Symbol		MIN.	TYP.	MAX.	Unit
Operating current	lcc				80	mA
Input leakage current	h	VI = 0 to Vcc, Other Input 0 V	-10		+10	μA
Output leakage current	lo	Vo = 0 to Vcc, Dout: High Impedance	-10		+10	μA
High level output voltage	Vон	Іон = -1 mA	2.4			v
Low level output voltage	Vol	lol = 2 mA			0.4	v

Capacitance (T_A = +25 °C, f = 1 MHz)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Сı				10	pF
Output capacitance	Co				10	pF

Devementer	Cumbal	μPD48	5505-25	μPD485505-35		Unit	Notos
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit	Notes
Write clock cycle time	twcĸ	25		35		ns	
Write clock pulse width	twcw	11		12		ns	
Write clock precharge time	twcp	11		12		ns	
Read clock cycle time	tяск	25		35		ns	
Read clock pulse width	trcw	11		12		ns	
Read clock precharge time	trcp	11		12		ns	
Access time	tac		18		25	ns	
Output hold time	tон	5		5		ns	
Output low-impedance time	tız	5	18	5	25	ns	4
Output high-impedance time	tHZ	5	18	5	25	ns	4
Input data setup time	tos	7		10		ns	
Input data hold time	toн	3		3		ns	
RSTW/RSTR Setup time	tris	7		10		ns	5
RSTW/RSTR Hold time	tян	3		3		ns	5
RSTW/RSTR Deselected time (1)	trn1	3		3		ns	6
RSTW/RSTR Deselected time (2)	trn2	7		10		ns	6
WE Setup time	fwes	7		10		ns	7
WE Hold time	tweн	3		3		ns	7
WE Deselected time (1)	t WEN1	3		3		ns	8
WE Deselected time (2)	twen2	7		10		ns	8
RE Setup time	tres	7		10		ns	9
RE Hold time	treн	3		3		ns	9
RE Deselected time (1)	t REN1	3		3		ns	10
RE Deselected time (2)	tren2	7		10		ns	10
WE Disable time	twew	0		0		ms	
RE Disable time	trew	0		0		ms	
Write reset time	trstw	0		0		ms	
Read reset time	t RSTR	0		0		ms	
Transition time	tτ	3	35	3	35	ns	

AC	Characteristics	(Recommended	Operating	Conditions	unless	otherwise	noted)Notes 1	1, 2, 3	
----	-----------------	--------------	-----------	------------	--------	-----------	---------------	---------	--
Notes 1. AC measurements assume $t\tau = 5$ ns.

NEC

2. AC Characteristics test condition

Input Timing Specification

- 3. Input timing reference levels = 1.5 V.
- 4. tLz and tHz are measured at ±200 mV from the steady state voltage. Under any conditions, tLz \ge tHz.
- 5. If either this or the is less than the specified value, reset operations are not guaranteed.
- 6. If either tRN1 or tRN2 is less than the specified value, reset operations may extend to cycles preceding or following the period of reset operations.
- 7. If either twes or tweh is less than the specified value, write disable operations are not guaranteed.
- 8. If either twen1 or twen2 is less than the specified value, internal write disable operations may extend to cycles preceding or following the period of write disable operations.
- 9. If either trees or treeh is less than the specified value, read disable operations are not guaranteed.
- **10.** If either tREN1 or tREN2 is less than the specified value, internal read disable operations may extend to cycles preceding or following the period of read disable operations.

Write Cycle

Remark RSTW = "H" level

Read Cycle

Remark RSTR = "H" level

Write Reset Cycle (WE Controlled 1) (Versions E, K)

Note In write reset cycle, reset operation is executed even without a reset cycle (thstw). WCK can be input any number of times in a reset cycle.

Write Reset Cycle (WE Controlled 2) (Versions E, K, and P)

Note In write reset cycle, reset operation is executed even without a reset cycle (thstw). WCK can be input any number of times in a reset cycle.

Write Reset Cycle (WE Controlled 3) (Version P)

Note In write reset cycle, reset operation is executed even without a reset cycle (thstw). WCK can be input any number of times in a reset cycle.

Read Reset Cycle (RE Controlled 1)

Note In read reset cycle, reset operation is executed even without a reset cycle (trssrr). RCK can be input any number of times in a reset cycle.

Read Reset Cycle (RE Controlled 2)

Note In read reset cycle, reset operation is executed even without a reset cycle (trestre). RCK can be input any number of times in a reset cycle.

4. Application

• 1 H Delay Line

 μ PD485505 easily allows a 1 H (5,048 bits) delay line (see Figure 1, 2).

It is also possible to change the number of delay bits depending on the cycle time as follows.

Part Number	Cycle Time	Delay Bits		
μPD485505-25	25 ns	21 to 5,048 bits		
μPD485505-35	35 ns	15 to 5,048 bits		

To change the number of delay bits, you can choose the one of the following methods.

Adjustments of the number of delay bits

- (1) Reset the cycle proportionate to the delay length (Figure 3).
- (2) Shift the input timing of write reset (RSTW) and read reset signals (RSTR) according to the delay length (Figure 4).
- (3) Shift the address by disabling \overline{WE} or \overline{RE} for the period proportionate to the delay length (Figure 5).

Caution After power up, the μ PD485505 requires the initialization of internal circuits because the read and write address pointers are not defined at that time.

Figure 1 1 H Delay Line Circuit

Remark \overline{RE} , \overline{WE} = "L" level

Remark WE = "L" level

5. Package Drawing

24 PIN PLASTIC SOP (450 mil)

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

		P24GM-50-450A-2
ITEM	MILLIMETERS	INCHES
А	16.51 MAX.	0.650 MAX.
В	1.27 MAX.	0.050 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	0.40±0.10	0.016+0.004
E	0.1+0.2	0.004 ^{+0.008} -0.004
F	2.5 MAX.	0.099 MAX.
G	2.00	0.079
Н	12.2±0.3	0.480+0.013
Ì	8.4	0.331
J	1.9	0.075
к	0.15+0.10	0.006+0.004
L	0.9±0.2	0.035+0.009
М	0.12	0.005
N	0.10	0.004

6. Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD485505.

Type of Surface Mount Device

µPD485505G: 24-pin plastic SOP (450 mil)

7. Example of Stamping

Letter E in the fifth character position in a lot number signifies version E, letter K, version K, and letter P, version P.

Lot number

NEC

[MEMO]

Field RAM

NEC

MOS INTEGRATED CIRCUIT μ PD487000

4.75 M-BIT FIELD RAM 270-ROW \times 288-COLUMN \times 8-BLOCK \times 8-BIT

Description

The μ PD487000GC is a random block access, serial read and write Field RAM. The 270-row and 288-column non multiplexed address inputs selects an 8-byte block. The random access time to the 8-byte block is 200 ns. This device has two (read and write) 8 by 8 serial shift registers that operate at a clock rate of 30 ns and can be used for asynchronous reading and writing to the 8-byte registers. The serial access time is 35 ns. Its dedicated serial shift registers (read and write) operate independently of the memory cell array. Serial write and read operations can be performed after and synchronous with read and write transfer operations.

The μ PD487000GC has a large 4.75 M bits capacity but has low power consumption. This Field RAM can be easily configured as 4.75 M bits image memory; featuring high data transfer rates.

Features

- · Built-in 8-pixel serial/parallel conversion circuit
- Memory organization: 4.75 M bits (270 × 288 × 8-block × 8-bit)
- Serial access time: 35/45 ns (MAX.)
- · Serial cycle time: 30/40 ns (MIN.)
- · Address cycle time: 200 ns (MIN.)
- Power consumption: 342/303 mW (MAX.)
- Supply voltage (Vcc): 3.3 ±0.3 V
- · Built-in memory refresh circuit
- Low-level data output control pin
- Data input/output switching pin
- Package: 100-pin QFP (with 0.5 mm pitch)

Ordering Information

Part Number	Serial Cycle Time	Package
μPD487000GC-30	30 ns	100-pin plastic QFP (Fine pitch) (14×14)
μPD487000GC-40	40 ns	100-pin plastic QFP (Fine pitch) (14 $ imes$ 14)

Pin Configuration (Marking side)

A0 to A17	:	Address input	DIOS	:	Data input/output switching input
CE	:	Chip enable input	DIOA1 to DIOA8	3:	Data input/output
OE	:	Output enable input	DIOB1 to DIOB8	3:	Data input/output
ws	:	Write strobe input	RFSH	:	Refresh input
WE	:	Write enable input	DOCTL	:	Low level data output control input
RS	:	Read strobe input	RST	:	Reset input
CS	:	Chip select input	Vcc	:	Supply voltage (3.0 to 3.6 V)
SIC	:	Serial-in clock input	GND	:	Power supply ground
SOC	:	Serial-out clock input	NC	:	No Connection

Block Diagram

1. Pin Functions

Pin name	Input/output	Function
A0 to A17	Input	These are inputs for one of 77,760 addresses. All address input bits are latched at the falling edge of \overline{CE} . The row address (decimal from 0 to 269) is selected by A0 to A8, and the column address (decimal from 0 to 287) is selected by A9 to A17.
CE	Input	After the non-multiplexed row and column addresses are latched, a word line is selected and the sense amplifier is activated. if CS is active (high level) when \overline{CE} goes active, one 8-byte block (64-bit) is selected.
ŌĒ	Input	\overline{OE} pin controls the output data buffer. (Note that there are two sets of eight I/O's which can be selected as inputs or outputs). When \overline{OE} pin is high level, D _{IOA} (1 - 8) pins or D _{IOB} (1 - 8) pins become high impedance. When \overline{OE} is low level, the I/O set selected as the output port will become active and drive output data. \overline{OE} has no affect on the shift-out register I/O buffer which is controlled by SOC.
ws	Input	When $\overline{\text{WS}}$ pin transitions low after $\overline{\text{CE}}$ = low level, the 8-byte block (64-bit) is transferred from the shift-in register to the I/O controller (IOC).
WE	Input	When $\overline{\text{CE}}$ and $\overline{\text{WE}}$ both go low level for the write transfer function, the write data at the IOC is written to a selected 8-byte blocks (64-bit) in the memory cell array.
RS	Input	When \overline{CE} and \overline{RS} pins go low level for a read transfer operation, the 8-byte block (64- bit) is transferred from a selected memory cell to the IOC, then to the shift-out register.
CS	Input	To begin read and write operations, it is necessary to bring CS to the active (high level) state. The state of CS pin is sampled simultaneously with the address when the \overline{CE} goes low level (active).
SIC	Input	The rising edge of SIC latches the 8-bit input data into the shift-in register.
SOC	Input	The rising edge of SOC begins the read access to the shift-out register, one-word is shifted out serially. Valid data is maintained until the next rising edge of SOC.
DIOS	Input	The DIOS pin controls switching of serial I/O from read to write and write to read.
DIOA1 tO DIOA8	Input/output	If DIOS pin is high level, D_{IOA} (1 - 8) pins function as data input pins. When DIOS pin is low level, they function as data output pins.
Dюв1 to Dюв8	Input/output	If DIOS pin is high level, D_{IOB} (1 - 8) pins function as data output pins. When DIOS pin is low level, they function as data input pins.
RFSH	Input	RFSH pin controls the refresh operation of dynamic memory cells. The refresh cycle must be performed 270 times within 4 ms.
DOCTL	Input	When this signal is held at the high level then all output data is changed to "0"s or low level.
RST	Input	This is the reset pin and must be toggled low after power up to perform an internal reset.
Vcc		Supply voltage (3.0 to 3.6 V)
GND		Power supply ground
NC	_	Leave these pins unconnected.

2. Controlling the Output Pins

The μ PD487000 has two output control pins, \overline{OE} and DOCTL. The table below summarizes the possible combinations of the states of these pins and the corresponding output pin states.

OE	DOCTL	Output pins (Dioa, Dioa)
н	н	High impedance
	L	
L	н	All output I/O pins go to low level.
	L	DIOA (1 - 8) or DIOB (1 - 8) are output state.

Remark H: High level

L: Low level

3. Serial Read or Serial Write Cycle

The serial read or write function is enabled by bringing the CS high level and \overline{CE} low level. A selected address is latched at the falling edge of \overline{CE} . Data transfer of read or write data in 8 byte blocks occurs between the I/O controller and the memory cell array.

Caution At least one SOC cycle is required between data transfers initiated by the falling edge of \overline{RS} . This is required because \overline{RS} is sampled by SOC.

3.1 Serial Read Cycle

In the serial read cycle, data is read in 8 byte blocks in parallel from a selected location in the memory cell array and sent to the I/O controller, then to the shift-out register. At the rising edge of the serial-out clock (SOC), the read data is output from DioA (1 - 8) pins or from DioB (1 - 8) pins serially.

<1> The read address is latched at the falling edge of \overline{CE} .

- <2> Cell data at a selected address is processed in 8 byte blocks. It is sent from the I/O controller to the shift-out register at the falling edge of RS.
- <3> If \overline{OE} is low level, 8-byte data in the shift-out register is read serially from the data input/output pins (DIA (1 8) or DIOB (1 8)) at the rising edge of the first SOC cycle after the falling edge of \overline{RS} .
- <4> When 8-word data is being output serially, the read cycle can be repeated to update the same read data. In addition, the shift-out register is configured in a loop and repeats the same 8-word data output if no data transfers occur.
- Caution If greater than (8) SOC clocks are inputted between RS signals (data transfers) then the shift-out register will wrap around outputting data No. 1 (8 bits) on the 9th clock, data No. 2 (8 bits) on the 10th clock etc.

3.2 Serial Write Cycle

In the serial write cycle, serial data from the data input/output pins (DIoA (1 - 8) or DIoB (1 - 8)) is held in the shiftin register. The data once received at the shift-in register is sent in 8 byte blocks to the I/O controller, then to the memory cell address selected by \overline{CE} .

<1> The write address is latched at the falling edge of \overline{CE} .

- <2> The serial input data is sent to the shift-in register at the rising edge of the serial-in clock (SIC).
- <3> When the shift-in register receives the 8 byte blocks, bringing the WS (Write Strobe) low level causes the data to be sent to the I/O controller in parallel on the falling edge of WS. (Data inputted to the shift-in register after WS goes low level is sent to the I/O controller on the next serial write cycle.)
- <4> Data received at the I/O controller is written in parallel to a specified memory cell address by making the WE (Write Enable) low level.
- Caution If greater than (8) SIC clocks are inputted between WS signals (write transfers) then the 9th clock will shift write data No. 2 into shift-in register1 and write data No. 1 will be lost.

Figure 3-2. Serial Write Cycle Timing

Remarks 1. B1_M to B8_M: 8-byte blocks by 8 bits data of Write address (M) 2. DIOS: Low level

4. Read-Modify-Write Cycle

This device supports read modify write operations. In the read-modify-write cycle, data is read from and written back to the same memory array address in 8-byte blocks.

5. Refresh Cycle

Because μ PD487000 consists of dynamic memory cells, it needs constant refreshing. There are two types of refreshing, \overline{CE} -only refresh and \overline{RFSH} auto refresh. The refreshing takes 270 cycles /4 ms.

5.1 CE-only refresh cycle

Cells with any specified row address (A0 to A8) are refreshed at the falling edge of \overline{CE} . Selecting all row addresses (from 0 to 269) within 4 ms will refresh all memory cells. CS pin should be held at the low (ViL) level.

5.2 RFSH auto refresh

When \overline{CE} is high level, making \overline{RFSH} low triggers automatic refreshing. In this refresh cycle, simply supplying 270 \overline{RFSH} signals within 4 ms will refresh all memory cells, since the cell address is generated in the internal address counter.

6. Initialization

When the power is turned on wait 100 μ s keeping \overline{CE} and \overline{RFSH} inactive, after Vcc reaches 3.0 V, initialize the circuit by performing:

- Refresh operation of at least 8 cycles.
- CE-only refresh or RFSH auto refresh is acceptable as the refresh cycle.
- Drop RS after at least one cycle of SOC is supplied.
- Supply a low level to the RST pin at least once.

Caution When the power is turned on, the output pins become high impedance.

Figure 6-1. Initialization

7. Electrical Characteristics

- · All voltages are relative to ground (GND).
- · All GND pins should be connected to ground.
- All Vcc pins should be connected to the same power supply.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	Vcc	-0.5 to +4.2	v
Pin voltage	VT	-0.5 to Vcc +0.5 (MAX. 4.2 V)	v
Output current	lo	4	mA
Power dissipation	P₀	1	w
Operating ambient temperature	TA	0 to 70	°C
Storage temperature	Tstg	-55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits in the operational sections of this characteristics. Exposure to Absolute Maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc	3.0		3.6	v
High level input voltage	Vін	0.7 Vcc		Vcc	v
Low level input voltage	Vil	0		0.3 Vcc	v
Operating ambient temperature	TA	0		70	°C

_	2 mbal		μPl	D487000	-30	μPD487000-40			
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	MÍN.	TYP.	MAX.	Unit
Operating current	Icc1	tsic, tsoc = 30/40 ns, tc = 200 ns		85	95		77	84	mA
Standby current	Iccs	$\overline{CE} = \overline{RFSH} = High level$ SIC = SOC = DIOA (1 - 8) or DIOB (1 - 8) = Low level (CMOS level input)			4.0			4.0	mA
Input leakage current (except for the RST pin)	lıı	Vii = 0 V to Vcc Other input = 0 V	-10		+10	-10		+10	μA
Input leakage current (for the $\overline{\text{RST}}$ pin)	112	Viz = 0 V to Vcc Other input = 0 V	-100		+100	-100		+100	μA
Output leakage current	lo	Vo = 0 V to Vcc	-10		+10	-10		+10	μA
High level output voltage	Vон	lон = −100 µА	0.8 Vcc			0.8 Vcc			V
Low level output voltage	Vol	lol = 400 μA			0.4			0.4	V

DC Characteristics (Recommended operating conditions unless otherwise noted)

Caution The indicated current drain is measured under no load on the output pin. The actual current drain varies with the operating conditions such as output load and operating cycle time.

Capacitance (T_A = 25 °C, f = 1 MHz)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сп	A0 to A17, CS			5	рF
	Cı2	Input pin other than the above pins			7	
Input/output capacitance	Сю	Dioa (1 - 8), Diob (1 - 8)			7	pF

AC Characteristics (Recommended Operating Conditions unless otherwise noted)

AC Characteristics Test Conditions

(1) Input timing specification

(2) Output timing specification

(3) Loading condition is 20 pF.

Parameter		Symbol	MIN.	MAX.	Unit	Conditions
Refresh cycle		t REF		4	ms	
OE access time	μPD487000-30	t OEA		30	ns	
	μPD487000-40			40		
SOC access time	μPD487000-30	tsoa		35	ns	
	μPD487000-40			45		
Output disable time	μPD487000-30	toez		30	ns	
	μPD487000-40			40		
Read/write cycle time		tc	200		ns	
Read-modify-write cycle time		trwc	240		ns	
CE precharge time		tP	80		ns	
CE pulse width		tce	100	1,000	ns	
Hold time from RS to CE		t CRL	20		ns	Note 1
Hold time from \overline{WE} to \overline{CE}		tcwl	60		ns	
Address set-up time		tasc	0		ns	Note 2
Address hold time		tанс	30		ns	Note 2
CE-RS delay time		t CRD	95		ns	
RS pulse width		tes	20		ns	
RS precharge time		trsp	30		ns	
Hold time from SOC to RS		trsl	0		ns	
WE pulse width		twp	45		ns	
WE read cycle set-up time		trics	0		ns	
WE read cycle hold time		tясн	20		ns	
Hold time from RS to WE		trwd	0		ns	
CE-WE delay time		tcwp	100		ns	Note 1
Hold time from CE to WE		twнc	85		ns	

Notes 1. This specification is valid only during a read-modify-write cycle.

 This specification is valid only for A0 to A8 during CE-only refresh. During the CE-only refresh cycle, the CS must be kept low level.

Parameter		Symbol	MIN.	MAX.	Unit	Condition
WS precharge time		twsp	30		ns	
WS pulse width		tws	20		ns	
WS inhibit time		twiн	70		ns	
WS set-up time		tswe	4	,	ns	
CS set-up time		tasc	0		ns	Note
CS hold time	i	tанс	30		ns	Note
SOC set-up time		tsos	4		ns	
SOC assertion time		tsov	15		ns	
SOC precharge time	μPD487000-30	tsop	12		ns	
	μPD487000-40		16			
SOC pulse width	μPD487000-30	tso	12		ns	
	μPD487000-40		16			
Serial-out cycle time	μPD487000-30	tsoc	30		ns	
	μPD487000-40		40			
Output data hold time		tsoн	10		ns	
SIC assertion time		tsıv	4		ns	
SIC hold time		tsıн	15		ns	
SIC precharge time	μPD487000-30	tsip	12		ns	
	μPD487000-40		16			
SIC pulse width	μPD487000-30	tsı	12		ns	
	μPD487000-40		16			
Serial-in cycle time	μPD487000-30	tsic	30		ns	
	μPD487000-40		40			
Data input set-up time	μPD487000-30	tos	12		ns	
	μPD487000-40		15			
Data input hold time		toн	4		ns	
Hold time from RFSH to CE		tra	80		ns	
Hold time from CE to RFSH		tcsr	80		ns	
Refresh cycle time		tcr	200		ns	
RFSH pulse width		t RDI	100	1,000	ns	
RFSH precharge time		t FP	80		ns	
Output enable time from DOCTL		t doa		40	ns	
Low-level-output time access from DOCT	٢L	t DOL		40	ns	
Input/output switching time		tioc		40	ns	
RST pulse width		t RST	10		ns	
CE set-up time from RST		tess	10		ns	
Rise/fall time		tτ	3	50	ns	

Note This specification is valid only for A0 to A8 during \overline{CE} -only refresh. During the \overline{CE} -only refresh cycle, the CS must be kept low level.

Memory Read Cycle

Memory Write Cycle

Remark OE: Low level DIOS: High level

Memory Read Modify Write Cycle

CE-Only Refresh Cycle

Remark A9 to A17: Don't care.

RFSH Auto Refresh Cycle

Shift In Cycle

Remark DIOS: High level

Shift Out Cycle

Remark DIOS : High level DOCTL: Low level

Shift Out Cycle (DOCTL Control)

Remark DIOS: High level OE : Low level

8. Application

8.1 Memory Read and Write Cycle

Remarks 1. M_1 to M_8: 8-byte blocks by 8 bits data of Read address (M)
2. N_1 to N_8: 8-byte blocks by 8 bits data of Write address (N)

8.2 Memory Write and Read Cycle

Remarks 1. M_1 to M_8: 8-byte blocks by 8 bits data of Write address (M) 2. N_1 to N_8: 8-byte blocks by 8 bits data of Read address (N)

8.3 Memory Write and Write Cycle

Remarks 1. M_1 to M_8: 8-byte blocks by 8 bits data of Write address (M)
2. N_1 to N_8: 8-byte blocks by 8 bits data of Write address (N)

9. Package Drawing

100 PIN PLASTIC QFP (FINE PITCH) (14)

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	16.0±0.2	0.630±0.008
в	14.0±0.2	$0.551\substack{+0.009\\-0.008}$
с	14.0±0.2	0.551 <u>+0.009</u> -0.008
D	16.0±0.2	0.630±0.008
F	1.0	0.039
G	1.0	0.039
н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
I	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
к	1.0±0.2	$0.039^{+0.009}_{-0.008}$
L	0.5±0.2	$0.020 \substack{+0.008 \\ -0.009}$
м	0.17+0.03	0.007+0.001 -0.003
N	0.10	0.004
Р	1.45	0.057
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.
		P100GC-50-7EA-2

10. Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD487000.

Type of Surface Mount Device

 μ PD487000GC: 100-pin plastic QFP (Fine pitch) (14 × 14)

NEC Semiconductor Device Reliability/Quality Control System
INFORMATION

NEC SEMICONDUCTOR DEVICE RELIABILITY/QUALITY CONTROL SYSTEM

MICROCOMPUTER LSI

MEMORY IC

GATE ARRAY

LOGIC LSI

The information in this document is subject to change without notice.

1. BASIC PRINCIPLES OF RELIABILITY/QUALITY CONTROL SYSTEM

NEC's reliability/quality control of semiconductors is based on the thorough integration of the reliable management in market analysis, development and design of the products meeting users' needs, and manufacturing process design, on one hand, and, quality control in materials and parts supply, each and every manufacturing process, direct and reliable assurance of thorough examination and reliability test of the products, and shipment and after-sale service management, on the other. It is our pleasure and pride to serve our customers best through a product-specific efficient management system to realize reliable quality and reasonable prices to the satisfaction of the users.

As the semiconductor application fields expand and develop, the amount used in those areas is increasing tremendously. The needs of our customers for higher and higher product quality are inevitable results of the development of the electronic industry.

To meet such users' needs, the NEC concentrates on the following three key points:

- (1) Master design of key aspects of the product characteristics
- (2) Quality control system built in the manufacturing process
- (3) Removal of fault products through inspection of the products

The followings are our routine practices assure high quality products:

- (a) Standardized designing practices to built reliability in to the developed products.
- (b) Thorough examination of potential factors that may cause fault products at the design examination stage.
- (c) Exhaustive and thoroughgoing evaluation of the characteristics and reliability test of the test products.
- (d) Automated manufacturing equipment to reduce variability in the product quality.
- (e) Quality control at each and every manufacturing process meeting the process-specific requirements.
- (f) Built-in learning process to increase workers' awareness of the importance of the product quality through small group activities such as the ZD (Zero-defect) groups or QC circles.
- (g) Product-specific screening, inspection, and reliability tests.
- (h) Analysis of quality information, including the field data, and feed back/forward of the analysis results. Through these effective measures, we believe that NEC can satisfy users' needs for its high quality products. It is not, however, the end of our efforts: we still try our best to improve the quality of our products. Figure 1 diagrammatically describes, our quality (Q) and reliability (R) control.

Fig. 1 Q and R System Diagram

501

2. MANUFACTURING PROCESS QUALITY CONTROL

NEC manufactures and sells its semiconductor products under the management policy of "Reliability Quality Control" based on an accurate understanding of customers' needs and operating conditions realized in the product designs.

To secure the intended reliability and quality in the product design, possible causes of off-grade products in the manufacturing processes must be eliminated in each step of the production line through qualified manufacturing management.

For the purpose, we carefully control the quality of the parts, materials and related goods, manufacturing equipment and environment. In addition, inspection processes are inserted in the manufacturing process to check the semifinalfinal products by referring to key control items at proper sampling frequency.

The above-described quality control system is explained in detail referring to the flow chart Fig. 2 - Fig. 6.

The following is a brief explanation of the material/parts control system.

First, parts, materials, chemicals, highly pure gases, and other related goods are purchased from specific manufacturers authorized by NEC.

The results of the inspection are monitored and, when necessary, corrective measures are requested to the identified suppliers or the plants are audited by the purchase division to maintain guality of the purchased items.

Fig. 2 Manufacturing Process Control Flow Chart: Example of Plastic Molded DIP, SOP, SOJ and QFJ (PLCC)

Fig. 3 Manufacturing Process Control Flow Chart: Example of Plastic Molded QFP and TSOP

Fig. 4 Manufacturing Process Control Flow Chart: Example of PPGA

Fig. 5 Manufacturing Process Control Flow Chart: Example of Ceramic DIP (CERDIP)

Fig. 6 Manufacturing Process Control Flow Chart: Example of Ceramic DIP (SEAM WELD), Ceramic QFN (LCC), and Ceramic PGA

3. RELIABILITY TEST

NEC's reliability test is conducted periodically, considering various standards such as JIS C 7022, MIL-STD-883, and other standards.

The following, section 3.1 describes an example of the reliability test, and section 3.2, fault evaluation criteria in the reliability test.

3.1 DESCRIPTION OF THE RELIABILITY TEST

nenability lest. Example of riastic rackage	Reliability Test	: Exampl	e of Plastic	Packages
---	-------------------------	----------	--------------	----------

Test Item		Test O	Sample	Equipment Test Method	
		lest Condition	Size	JIS C 7022	MIL-STD-883
Resistance to Soldering Heat ^{*1}		Soak the product in melted solder at 260 ± 5 °C with no flux from 10 seconds. 1.6 ± 0.8 mm deep from the product or its tab-stud.	18	A-1 Condition A	_
Temperature	Cycle	Soak the product in a low temperature (Tstg min.) bath for 30 minutes then another 30 minutes in a high-temperature (Tstg max.) bath. Repeat this cycle 10 times.		A-4	1010 Condition C
Thermal Sho	ck	Soak the product in a prescribed liquid at 100 °C for at least 5 minutes. Then, within 10 seconds, soak it in a prescribed liquid at 0 °C for at least 5 minutes. Repeat this cycle 15 times.		A-3 Condition A Method II	1011 Condition A
Solderability		Soak the device in noncorrosive flux up to 1.27 mm deep from the product for 5 to 10 seconds then in flux of melt solder at 230 ± 5 °C with a soaking speed of 25.4 ± 6.3 mm/s, again up to 1.27 mm deep from the device for 5 seconds. Wash away the flux in alcohol and examine the soldered area of the device.	5	A-2	2003
Terminal Strength	Bending ^{*1}	Apply a weight ^{*2} to the lead of the product in a vertical direction of the axis of the lead without causing twist in it until the lead bends by 90 degrees, then release it. Repeat this operation three times. Apply this operation separately to 3 randomly chosen terminals.	5	_	2004 Condition B2
High-Temper Storage	ature	Conduct the left test in an environment atmosphere at 150 °C for 1000 hours.	18	B-3	1008
High-Temperature Bias		In an environmental atmosphere at 125 °C, apply the upper limit supply voltage of the recommended operating conditions for 1000 hours to conduct the bias life test.	24	B-1	1005 Condition A,B, and C
High-Temperature/ Humidity Storage		Conduct the life test in an atmosphere with relative humidity of 85 $\%$ at temperature of 85 $^\circ C$ for 1000 hours.	26	B-5 Condition B	—
РСТ		Expose the device to vapor having a pressure of 2.3×10^5 Pa (2.3 barometric pressure) in an atmosphere at 125 °C for 96 hours.	18	<u></u>	

***1)** PLCC is not subjected to this test.

*2) The DIP and PPGA weight 250 grams; the SOP, QFP and QUIP weight 125 grams each.

Test Item		To de Oceativita	Sample	Equipment Test Method	
		l est Condition	Size	JIS C 7022	MIL-STD-883
Resistance to Heat ^{*3}	o Soldering	Soak the product in melted solder at 260 \pm 5 °C with no flux from 10 seconds. 1.6 \pm 0.8 mm deep from the product or its tab-stud.	18	A-1 Condition A	—
Temperature Cycle		Soak the product in a low temperature (Tstg min.) bath for 30 minutes, then another 30 minutes in a high-temperature (Tstg max.) bath. Repeat this cycle 10 times.		A-4	1010 Condition C
Thermal Sho	ock	Soak the product in a prescribed liquid at 100 °C for at least 5 minutes. Then, within 10 seconds, soak it in a prescribed liquid at 0 °C for at least 5 minutes. Repeat this cycle 15 times.		A-3 Condition A Method II	1011 Condition A
Variable Free Oscillation	quency	Fix the product on a vibrator and apply sine wave oscillation in the X, Y, and Z directions that logarithmically changes in the range between 10 to 2000, then 2000 to 10 Hz in 4 minutes, with a peak acceleration of 20 G.	18	A-10	2007 Condition A
Mechanical S	Shock	Mount the product on a shock tester and subject it to a shock of 1500 G (500 G^{1}) in acceleration and 0.5 ms in the pulse width, in the X, Y, and Z directions 3 times each.		A-7 Condition F, D	2002 Condition B, A
Constant Acc	celeration	Fix the product on the tester and subject it to a centrifugal acceleration of 20000 G (5000 G ^{*2}) is applied in the X, Y, and Z directions for 1 minute in each.		A-9 Condition C, A	2001 Condition A
Solderability		Soak the device in noncorrosive flux up to 1.27 mm deep from the product for 5 to 10 seconds, then in flux of melted solder at 230 ± 5 °C at a soaking speed of 25.4 ± 6.3 mm/s, again up to 1.27 mm deep from the device for 5 seconds. Wash away the flux in alcohol and examine the soldered area of the device.	5	A-2	2003
Terminal Strength	Bending*3	Apply a prescribed weight to the lead of the product in a vertical direction of the axis of the lead without causing twist in it until the lead bends by 90 ± 5 degrees, then release it. Repeat this three times. Apply this separately to 3 randomly chosen terminals.	5	_	2004 Condition B2
High-Temper Storage	rature	Conduct the life test in an environmental atmosphere at 150 °C for 1000 hours.	18	B-3	1008
High-Temper	rature Bias	In an environmental atmosphere at 125 °C, apply the upper limit supply voltage of the recommended operating conditions for 1000 hours to conduct the bias life test	24	B-1	1005 Condition A,B, and C

Reliability Test: Example of Ceramic Packages

- *1) Glass-windowed products. *2) Glass-windowed products and products with heat sink.
- *3) The LCC is not subjected to this test.

3.2 FAULT EVALUATION CRITERIA IN RELIABILITY TEST

Example of Plastic Package Product

Testing Item	Fault Evaluation Criterion		
Resistance to Soldering Heat* Temperature Cycle Thermal Shock* High-Temperature Storage High-Temperature Bias High-Temperature/Humidity/Storage PCT	Within tolerance of the	electrical characteristics	
Terminal Strength (Bending)*	Lead appearance	No breaking/Loosening	
Solderability	Lead appearance	Above 95 % Solder Coverage of Tested Surface	

*The PLCC is not subjected to this test.

Example of Ceramic Package Product

Testing Item	Fault Evaluation Criterion	
Resistance to Soldering Heat*	Within tolerance of the electrical characteristics	
Temperature Cycle		
Thermal Shock		
Variable Frequency Oscillation		
Mechanical Shock		
Constant Acceleration		
High-Temperature Storage		
High-Temperature Bias		
Terminal Strength (Bending)*	Lead appearance	No breaking/Loosening
Solderability	Lead appearance	Above 95 % Solder Coverage of Tested Surface

*The LCC is not subjected to this test.

. .

. .

.

Corporate Headquarters 2880 Scott Boulevard P.O. Box 58062 Santa Clara, CA 95052-8062 Telephone: (408) 588-6000 Facsimile: (408) 588-6130 On the Internet at http://www.nec.com

For literature, call toll-free 8 a.m. to 4 p.m., Pacific time: 1-800-366-9782 or FAX your request to 1-800-729-9288