
Replacing Dedicated
Protocol Controllers with
Code Efficient and
Configurable
Microcontrollers—Low
Speed CAN Network
Applications
BACKGROUND

The CAN (Controller Area Network) is one of today’s most
widely accepted car networking systems. Various protocol
implementations are available from different suppliers. Dedi-
cated protocol controllers—Full-CAN controllers—are found
as system bus interfaces connected to a main CPU or inte-
grated into them. Yet in some applications, particularly in the
low speed arena, these devices don’t meet the price target
or offer the flexibility required by the system designer. This
Application Note outlines the application interfaces available
for the CAN protocol, gives an overview to National Semi-
conductor’s CAN devices and demonstrates in a practical
example how these products can help to minimize the cost of
Full-CAN controller applications while increasing the flexibil-
ity of such systems.

INTRODUCTION

CAN is designed to address the needs for a highly reliable
protocol with maximum throughput for interconnecting mul-
tiple autonomous controller modules within harsh industrial
or automotive applications. The need for such a system
arose first when more and more electronic modules where
introduced to the automobiles, resulting in huge amounts of
wires being lain out within a car to perform interconnection
between control modules and the sensors/actuators. The
first objective of the CAN system was to reduce these kilo-

meters of cabling and thereby reduce system cost by saving
wiring effort. Additionally, the system had to have maximum
reliability as basically all functions within a car could intro-
duce a safety risk. Next to obviously important functions
such as motor management and anti-blocking systems,
comfort electronic functions can lead to unsafe operation of
cars. Taking a faulty electronically controlled driver seat as
an example this becomes more clear. Only assume due to a
fault the seat is suddenly moving while the car runs at high
speed.

BASIC AND Full-CAN IMPLEMENTATIONS

Many Semiconductor suppliers implemented various ver-
sions of a CAN user interface. Even the protocol remains the
same. Basic-CAN implementations provide only the basic
functionality of a CAN interface with the capability to buffer
only one message with a limited acceptance filter. Though,
an additional burden is placed on the CPU since it has to
perform message filtering next to its regular task. Full-CAN
controllers extend this basic features by not only implement-
ing the protocol—moreover they implement a complete mes-
sage “server“ capable of automatically receiving and trans-
mitting multiple messages on the CAN bus without
interrupting the system’s main CPU if it is not necessary. Fig-
ure 1 shows the Basic-CAN interface with the extension for
Full-CAN from the programmer’s point of view.

COP8™, MICROWIRE/PLUS™ and WATCHDOG™ are trademarks of National Semiconductor Corporation.

AN012850-1

FIGURE 1. CAN Programming Model

National Semiconductor
Application Note 1048
Martin Embacher
May 1997

R
eplacing

D
edicated

P
rotocol

C
ontrollers

w
ith

C
ode

E
fficient

and
C
onfigurable

M
icrocontrollers

—
Low

S
peed

C
A
N
N
etw

ork
A
pplications

A
N
-1048

© 1997 National Semiconductor Corporation AN012850 www.national.com

The hardware interface to the processor is provided with ei-
ther serial links or a paralell interface with message data
(identifier, control and data) being accesed on memory
mapped address locations, so the user “sees” message data
and control information.

Typical multiplex systems consist of one or more of each
protocol implementation connected to each other over a
common bus. The Full-CAN is used where the CPU has to
perform a magnitute of other tasks and where communica-
tion needs to be highly independent from the rest of the soft-
ware. A Basic-CAN controller is used in areas in which the
CPU has some spare performance to assist the communica-
tion work. Full-CAN implementations with their higher level
of functionality, require a larger silicon area than a
Basic-CAN implementation, which translates directly into
higher prices. Though, from a systems designer’s point of
view, it might be desirable to use as many Full-CAN control-
lers as possible to free up the CPU for applications tasks and
provide free processing resources for future or different fea-
tures. Common to both implementations is that they can pro-
cess at least one receive and one transmit message object
completely autonomously—which results in a specific num-
ber of registers being required on the CAN block to store the
information. Lastly, fully autonomous CAN modules, com-
monly known as SLIO (Serial Linked I/O) devices are also
available. These devices integrate a quasi Full-CAN control-
ler with self-sufficient simple I/O capabilities, having no need
for a main CPU within the module and therefore no dedi-
cated programming requirements. With these devices a
simple CAN module can be designed by only developing the
input and output circurity required for the specific application.
All I/O control is then provided via the CAN network. (See
Application Note 1073 “SLIO-CAN; CAN-Linked I/O based
on COP884BC”).

NATIONAL’S COPCAN INTERFACE

With the implementation of the COPCAN on the COP8™ mi-
crocontroller family, National has addressed especially the
high implementation costs of previous CAN modules by re-
ducing the amount of registers required to implement the
CAN protocol. The driving factors were cost on the one side
and the idea that not all applications require the high speed

feature all CAN implementation known so far offered. To re-
duce cost the object buffer for both receive and transmit was
reduced from 10 bytes (2 identifier + 8 data bytes) to 4 bytes
(2 identifier + 2 data bytes). The “remainder” of the CAN in-
terface, error management, BTL was not changed in order to
achieve full compatibility. With the reduction of registers the
interface is no longer capable to process messages with
more than two bytes of data independently. Data needs to be
provided by the main processor in time. This register reduc-
tion, however, has no influence on the interface performance
in low speed (<125 kbit/s) applications, since the processor
has enough time to store/provide the data when required. In-
terrupt flags indicate to the CPU when the processor needs
to provide data to the COPCAN interface. This results in a
ratio between the maximum possible bus speed and the time
the processor needs to save and provide data which will now
be explained in more detail. On the one side, the COP8 mi-
crocontroller core features an instruction cycle time of 1 µs =
1 tC with an external clock of 10 MHz. Most instructions take
one tC to execute. On the other side, with a bus speed of
125 kbit/s, typical for low speed applications, one byte time
on the CAN bus takes a minimum of: 8 (bit) * (1/125 kHz)
(µs) = 64 µs, without the possible stuff bits. With a given in-
terrupt latency time of 20 tC maximum (including transfer of
control instructions) this leaves 44 µs to store the receive
data or write new data into the transmit register. Figure 2
shows the timing of a message reception with four data
bytes. It can be seen from the picture that adding data bytes
to the frame would neither introduce a critical path nor de-
crease the processor’s free time.

In this example, the CPU’s usage to store the received data
is given as approximately 20 tC. The critical path is to read
the first receive buffer byte after the receive buffer full flag
(RBF) is set and before it gets overwritten by new incoming
data. During the free processor time, other application tasks
can be exceuted. Basically the same example is valid for a
transmitter. The main difference is that transmitting data is
mostly synchronus to the program’s excecution where re-
ceiving is asynchronous. Thus, the transmission of data is
not time-critical. Also, using a high speed link (>125 kbit/s) is
possible for applications which don’t need to receive more
than two bytes of data.

IMPLEMENTING A Full-CAN PROCESSOR WITH A
COP8 MICROCONTROLLER

National’s COP8 microcontroller core contains, beside the
pure CPU, a serial synchronous MICROWIRE/PLUS™ inter-
face and a processor independent Timer. Additional func-
tional blocks like the COPCAN interface, Timers, USART,
A/D convertors and various sizes of ROM and RAM can be

added with the Configurable Controller Methodology (CCM).
Today several standard parts are offered, of which two fea-
ture the COPCAN interface. The COP884BC and the
COP888EB. All COP8 microcontroller family members are
also available as one time programmable (OTP) devices.
The following section shows how a protocol processor, pro-
viding a customizable Full-CAN interface, can be integrated

AN012850-2

FIGURE 2. Message Processing with the COPCAN Interface

www.national.com 2

with the COP8 family. A block diagram of the setup with the
microcontroller and the main CPU is shown in Figure 3. Ad-
ditional customized options, like time stamp for received
messages or timed automatic transmission of data, can be
integrated by simply altering the software. In addition, sev-
eral data processing tasks, i.e., automatic keyboard scan-
ning can be integrated—thus reducing the overhead on the
main CPU and freeing up processing resources. Another ad-
vantage of having a second CPU in the system is automatic
diagnostics, either with a specific protocol or with the
WATCHDOG™ circuit integrated on the COP8. Finally, the
power-save features of the COP8 microcontrollers help to
minimize power consumption in the application by gradually
switching off modules—including the main CPU. The
multi-input wake-up feature allows multiple sources to return
from the save mode to the active mode. The interface to the
main CPU can be chosen to be provided with standard I/O
ports of the microcontroller, the MICROWIRE/PLUS inter-
face or, if very high speed communication is required, with a
newly developed high-speed serial link.

In this example, however, the MICROWIRE/PLUS interface
is used. Communication is done with three wires and one
handshake signal. The data from the main CPU to the micro-
controller is transmitted in packets of eight bits with a cus-
tomizable protocol. The MICROWIRE/PLUS interface can
be programmed to generate an interrupt every eight clocks

applied to the SK, thus indicating the master CPU wants to
exchange some commands or data with the microcontroller.
After the COP8 reads out the data from the MICROWIRE/
PLUS register, it returns an acknowledge signal to the main
processor, by toggling the handshake line. Figure 3 shows a
block diagram of the COP8 microcontroller linked with the
main CPU. The instructions stored in the COP8 ROM first
execute the protocol between the master and the COP8,
then process CAN messages, and finally filter out unwanted
data.

The software of the application is divided into several tasks
which allow easy customization. A main loop continuously
polls various flags. These are set by the microcontroller’s
hardware, like the system timer, the muti-sourced external
interrupt/wake-up or by the interrupt handlers (e.g., of the
MICROWIRE/PLUS interface or CAN interface). The
MICROWIRE/PLUS interrupt indicates a main CPU commu-
nication request. The CAN interrupts are receive, transmit
and error. All of them are leading to a separate interrupt vec-
tor within the COP8 memory. Upon detecting one flag to be
set, the program branches to the certain subroutine. This
program structure is chosen to ensure fast response times
for the time-critical communication parts CAN and
MICROWIRE/PLUS. A flowchart of the main routine is found
in Figure 4, together with the CAN receive interrupt handler.

AN012850-3

FIGURE 3. COP8-Based Full-CAN Interface

3 www.national.com

The communication request flag is set as soon as the
MICROWIRE/PLUS received the first byte, indicating the
command for the COP8. This data was read from the µW
shift register and the handshake signal set, to indicate the
possibility to read or write the next data byte to the main
CPU. Within the communication subroutine these data bytes
are exchanged with the main processor. The system time
can be generated by the idle timer’s pending flag. This flag is
set every 4096 tC on the COP884BC and it can be pro-
grammed to be set every 4k, 8k, 16k or 32k tC on the
COP888EB. Secondly, the system time can be generated
with a free programmable 16 bit auto-reload timer T1, for in-
creased flexibility. Timed events, like automatic transmission
of a CAN message or a software real time clock are then ex-
ecuted. CAN message objects are handled by a subroutine
as described later. Finally, flags for optional tasks can be in-
cluded and polled within the main loop in order to comprise
additional features.

The CAN receive interrupt routine stores received data in re-
ceive buffers located within the RAM (Figure 2). For this data

storage, special memory locations—base page RAM—are
used as indirect addressing operations in this area and are
executed faster than if used on the remaining RAM area. Af-
ter a complete message object is received, and no errors oc-
curred, a flag is set. Optionally, the system’s time can be
stored as well to allow verification of the creation time for a
specific message in real time systems. Then the message
object is filtered and stored into its final location within the
message object handlers. One receive message object han-
dler is shown in Figure 5 and described below. CAN transmit
interrupts work similarly to the receive routine on a different
interrupt vector. Additions to the transmit schedule
routine—which are not offered with standard Full-CAN
chips—can be done as well. For example, a transmit object
may be verified to be sent within a specific time or within a
certain number of retries if they’re likley to lose arbitration on
a highly frequented bus. Another example is the automatic
transmission of the system’s (real) time in order to have a
common time base over the network.

AN012850-4

FIGURE 4. Main Program and CAN Receive Interrupt Handler

www.national.com 4

The CAN receive object handler is called after a CAN mes-
sage was satisfactorily received. One object handler verifies
the received message object with its specific acceptance fil-
ter and stores the data if the message’s identifier matches.
Otherwise, the next receive object handler is called until all
possible receive objects are verified. Afterwards, a flag may
be set to indicate the reception of a message by the main
CPU. If new data for one object is received, a flag is set to in-
dicate the data overwrite. The number of possible message
objects to be stored is only limited by the processor’s RAM.

SOFTWARE EXAMPLE

After theoretically outlining the implementation of the proto-
col processor’s software, this section provides an example in
COP8 assembly language to instanciate one receive object
handler. The program is written in the form of a macro which
allows multiple message handlers to be used within one pro-
gram by simply calling the macro several times. The program
uses 10 or 12 bytes of RAM for every message object and
two global status bytes. One to indicate the reception of a
message (rx__status) and one to indicate the overrun condi-
tion if new data is received before it was transmitted to the
main controller (rx__overwrite).

The parameters to the macro are the number of the mes-
sage object and a pointer to the message object memory.
The program is executed as shown in Figure 5. After initial-
izing some pointers (lines 004 and 005) the received mes-
sage’s identifier is compared with the identifier of the current
object (lines 006 to 013). As the identifier now matches, it is
checked if the object’s data was read by the main processor.
If the data was not read, the overrun flag is set (lines 014 and
015). Finally, the received data is copied into the object’s
memory (line 016 to 033).

This macro uses 41 bytes of ROM and takes a maximum of
19 tC until the acceptance of one message is filtered.

AN012850-5

FIGURE 5. CAN Receive Object Handler

5 www.national.com

CONCLUSION

This paper explained the different programming models of CAN chips. It showed how a Full-CAN controller to move and shape
the information contained within the messages can be implemented at low cost. Finally, the flexibility of a microcontroller solution
with customizable software compared to a fixed chip solution was outlined.

(001) .macro rx__object, obj__number, msg__obj
(002) .local ; local variables used
(003) $message__filter: ;
(004) ld b, #msg__obj ; point to msg__obj
(005) ld x, #rx__buffer ; point to receive buffer
(006) ld a, [x+] ; get receive identifier
(007) ifne a, [b] ; compare with object id
(008) jp $end__msg ; if fail - then end
(009) $idlc__test: ;
(010) ld a, [b+] ; increment rx buff pointer
(011) ld a, [x+] ; get remaining receive id
(012) ifne a, [b] ; compare with object id
(013) jp $end__msg ; if fail - then end
(014) ifbit obj__number, rx__status ; data received before ?
(015) sbit obj__number, rx__overwite ; then indicate
(016) andsz a, #0x0f ; mask data length code
(017) jp $copy__loop ; and copy data
(018) jp $end__obj ; if dlc == 0 then end
(019) x a, byte__count ; save dlc to byte counter
(020) $copy__loop: ;
(021) ld a, [x+] ; read bytes
(022) x a, [b+] ; and save to memory
(023) drsz byte__count ; decrement counter
(024) jp $copy__loop ; ..until done
(025) $end__obj: ;
(026) ld b, #msg__time ; point to time stamp
(027) ld a, system__time__high ; get time high byte
(028) x a, [b+] ; and save
(029) ld a, system__time__low ; get time low byte
(030) x a, [b] ; and save
(031) sbit obj__number, rx__status ; indicate receive
(032) $end__msg: ; end
(033) .endm ;

www.national.com 6

7 www.national.com

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-
VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-
CONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or sys-
tems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, and whose fail-
ure to perform when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.

2. A critical component in any component of a life support
device or system whose failure to perform can be rea-
sonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.

National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com

www.national.com

National Semiconductor
Europe

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor
Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

National Semiconductor
Japan Ltd.
Tel: 81-3-5620-6175
Fax: 81-3-5620-6179

A
N
-1
04
8

R
ep
la
ci
ng

D
ed
ic
at
ed

P
ro
to
co
lC

on
tro
lle
rs
w
ith

C
od
e
E
ffi
ci
en
ta
nd

C
on
fig
ur
ab
le

M
ic
ro
co
nt
ro
lle
rs

—
Lo
w
S
pe
ed

C
A
N
N
et
w
or
k
A
pp
lic
at
io
ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

