
TL/DD12817

C
O

P
8

In
s
tru

c
tio

n
S
e
t
P
e
rfo

rm
a
n
c
e

E
v
a
lu

a
tio

n
A

N
-1

0
4
2

National Semiconductor
Application Note 1042
July 1996

COP8TM Instruction Set
Performance Evaluation

1.0 OVERVIEW

National offers two families of 8-bit COP8 microcontrollers:

Basic family and Feature family. The Feature family offers

more on-chip peripheral and nine additional instructions

compared to the Basic family. In this report, the COP8 Basic

family instruction set performance is evaluated versus that

of three competitive microcontrollers, the Motorola

M68HC05, the Intel 80C51, and the Microchip PIC16C5X.

The architecture, addressing modes, instruction sets and

salient features of these microcontrollers are compared.

Eight benchmark programs are developed, with each micro-

controller programmed with full documentation for each of

the benchmarks. Summary tables compare the results rela-

tive to both code efficiency and execution time.

The report examines only the instruction set efficiency and

speed of execution of the selected microcontrollers. Factors

related to on-chip hardware features (RAM/ROM sizes, in-

terrupts, etc.) are not considered. Manufactures offer a vari-

ety of options of hardware features, but the instruction set

efficiency and execution speed typically remain identical

across a manufacturer’s microcontroller product line.

When comparing a microcontroller to the competition, it is

customary for manufacturers to select benchmark programs

which particularly highlight the instruction set of their device.

To avoid this phenomenon, general purpose commonly

used benchmark routines were selected.

One word of cautionÐthis benchmark report, like all others

of its kind, relies on a set of small program fragments. The

operations performed by each of these fragments may or

may not correspond to the operations required for a particu-

lar application. When evaluating a microcontroller for a de-

manding application, it is important to examine how an indi-

vidual microcontroller will perform in that particular case.

ARCHITECTURE

Three of the four microcontrollers have a modified Harvard

architecture, while a fourth (the Motorola M68HC05) has a

Von Neumann architecture (named after John Von

Neumann, an early pioneer in the computer field at Prince-

ton). With a Von Neumann architecture, a CPU (Central Pro-

cessing Unit) and a memory are interconnected by a com-

mon address bus and a data bus. Positive aspects of this

approach include convenient access to tables stored in

ROM and a more orthogonal instruction set. The address

bus is used to identify which memory location is being ac-

ccessed, while the data bus is used to transfer information

either from the CPU to the selected memory location or vice

versa. Von Neumann was the first to realize that this archi-

tectural model could have the memory serve as either pro-

gram memory or data memory. In earlier computers (both

electronic and electromechanical), the program store (often

a programmed patchboard) had been completely separate

from the data store (often a bank of vacuum tubes or re-

lays).

The single address bus of the Von Neumann architecture is

used sequentially to access instructions from program

memory and then execute the instructions by retrieving data

from and/or storing data in data memory. This means that

instruction fetch cannot overlap data access from memory.

A Harvard architecture (names after the Harvard Mark 1 and

the early electromechanical computers developed at Har-

vard by Howard AikenÐanother computer pioneer) has sep-

arate program memory and data memory with a separate

address bus and data bus for each memory. One of the

benefits of the Harvard architecture is that the operation of

the microcontroller can be controlled more easily in the

event of corrupted program counter. A modified Harvard ar-

chitecture allows accessing data tables from program mem-

ory. This is very important with modern day computers,

since the program memory is usually ROM (Read Only

Memory) while the data memory is usually RAM (Random

Access Memory). Consequently, data tables usually need to

be in ROM so that they are not lost when the computer is

powered down.

The obvious advantage of a Von Neumann architecture is

the single address and single data bus linking memory with

the CPU. A drawback is that code can be executed from

data memory opening up the possibility for undesired opera-

tion due to corruption of the program counter or other regis-

ters. Alternatively, the advantage of a modified Harvard ar-

chitecture is that instruction fetch and memory data trans-

fers can be overlapped with a two stage pipeline, which

means that the next instruction can be fetched from pro-

gram memory while the current instruction is being executed

using data memory. A drawback is that special instructions

are required to access RAM and ROM data values making

programming more difficult.

The instructions which cause the ‘‘Modified’’ Harvard archi-

tectures of the three microcontrollers are the instructions

that provide a data path from program memory to the CPU.

These instructions are listed below:

COP8 LAID Load Accumulator

indirect from

program memory

80C51 MOVC A, @A a DPTR Move Constant -

Load Accumulator

with a ‘‘fixed

constant’’ from

program memory

PIC16C5X RETLW Return Literal to

W from program

memory

TRI-STATEÉ is a registered trademark of National Semiconductor Corporation.

COP8TM and WATCHDOGTM are trademarks of National Semiconductor Corporation.

C1996 National Semiconductor Corporation RRD-B30M106/Printed in U. S. A. http://www.national.com

COP8 offers the single-byte LAID instruction which uses the

contents of the accumulator to point to a data table stored

in the program memory. The data accessed from the pro-

gram memory is transferred to the accumulator. This in-

struction can be used for table lookup operations and to

read the entire program memory contents for checksum cal-

culations.

The 80C51 family offers a similar instruction. The

MC68HC05 family has a Von Neumann architecture where

CPU and program memory are interconnected by a com-

mon address and data bus.

Microchips’s PIC16C5x family offers the RETLW instruction.

To do table lookup, the table must contain a string of

RETLW instructions. The first instruction just in front of the

table of the RETLW instructions, calculates the offset into

the table. The table can only be used as a result of a CALL.

This instruction certainly does not offer the flexibility of the

COP8 LAID instruction and cannot be used to perform a

checksum calculation on the entire program memory con-

tents.

The use these instructions is demonstrated in the fourth

benchmark program, which entails a three byte table search

from a data table in program memory.

2.0 SELECTED MICROCONTROLLERS

COP8

The COP8 has a modified Harvard architecture with memory

mapped input/output. The CPU registers include an 8-bit

accumulator (A), a 16-bit program counter (PC), two 8-bit

data pointers (B and X), an 8-bit stack pointer (SP), an 8-bit

processor status word (PSW), and an 8-bit control register

(CNTRL). The data memory includes a bank of 16 registers

(including the three pointers) which have special attributes.

All RAM, I/O ports, and registers (except A and PC) are

mapped into the data memory address space. The timer

section includes a 16-bit timer, and an associated 16-bit au-

toreload register. The generic COP8 I/O section includes

two 8-bit I/O ports, each with an associated 8-bit configura-

tion register and an associated 8-bit data register. The I/O

section also contains one dedicated 8-bit output port with

an associated 8-bit data register, one dedicated 8-bit input

register, and one special purpose 8-bit I/O port with associ-

ated 8-bit configuration register and 8-bit data register.

M68HC05

The M68HC05 has a Von Neumann architecture with mem-

ory mapped input/output. The CPU registers include an

8-bit accumulator (A), a 16-bit program counter (PC), an 8-

bit index register (X), a stack pointer (SP), and an 8-bit con-

dition code register (CCR). The timer section includes a 16-

bit free running counter, two 16-bit counter registers to read

the counter, a 16-bit timer input capture register, a 16-bit

counter output compare register, an 8-bit timer control regis-

ter, and an 8-bit timer status register. The I/O section in-

cludes three bidirectional 8-bit I/O ports, each with an asso-

ciated 8-bit data register and an 8-bit direction register. The

I/O section also includes a 7-bit input port with an associat-

ed input register.

80C51

The 80C51 has a modified Harvard architecture with memo-

ry mapped input/output. The CPU registers include an 8-bit

accumulator (A), an 8-bit auxilliary register (B) for multiply

and divide, a 16-bit program counter (PC), and 8-bit program

status word (PSW), an 8-bit stack pointer (SP), and a 16-bit

data pointer (DPTR). The register bank consists of eight

special working registers R0–R7. Registers R0 and R1 can

be used as indirect address pointers to data memory. The

timer section includes two 16-bit timers, an 8-bit timer mode

register (TMOD), and an 8-bit timer control register (TCON).

The I/O section includes four 8-bit I/O ports, each with an

associated 8-bit register.

PIC16C5X

The PIC15C5X has a modified Harvard architecture with

memory mapped input/output. The PIC16C5X also has a

RISC (Reduced Instruction Set Computer) type architecture

in that there are only 33 single word basic instructions. Actu-

ally these 33 instructions should be expanded to a total of

47 for comparison purposes with the other microcontrollers.

This is necessary since 14 of the 33 instructions have a

programmable destination bit, which selects one of two des-

tinations for the result of the instruction. Consequently, each

of these 14 instructions should be counted as dual instruc-

tions. The CPU registers include an 8-bit working register

(W) which serves as a pseudo accumulator in that it holds

the second operand, receives the literal in the immediate

type instructions, and also can be program selected as the

destination register. However, a bank of 31 file registers

serve as the primary accumulators in that they represent the

first operand and also may be program selected as the des-

tination register. The first eight file registers include the real

time clock/counter register (RTCC) mapped as F1, the 9-bit

program counter (PC) mapped as F2, the 8-bit status word

register (SWR) mapped as F3, and the 8-bit I/O port regis-

ters mapped as F5–F7. The 8-bit File Select Register (FSR)

is mapped as F4, whose low order 5 bits select one of the

31 file registers in the indirect addressing mode. Calling for

file F0 in any of the file oriented instructions selects indirect

addressing and will use the File Select Register (FSR). It

should be noted that file register F0 is not a physically im-

plemented register. The CPU also contains a two level

12-bit hardware push/pop stack for subroutine linkage. The

PIC16C5X also has a WATCHDOGTM timer as well as the

real time clock/counter register (RTCC), but it does not

have any hardware interrupts. Consequently, the counter

register RTCC must be program sampled for any overflow.

The number of instructions in a program must also be cali-

brated differently with the PIC16C5X since the instruction

word is 12 bits in length. Consequently, twenty 12-bit word

instructions will contain the byte equivalent of thirty COP8

8-bit byte instructions. The larger size instruction word is

instrumental in implementing the RISC architecture. It

should also be noted that the upper members of the PIC

family expand to having a 16-bit instruction word.

http://www.national.com 2

3.0 INSTRUCTION SET ANALYSIS

Addressing Modes

COP8

1. Direct

2. Register Indirect

3. Register Indirect with Post Increment/Decrement

4. Immediate

5. Immediate Short

6. Indirect from Program Memory

7. Jump Relative

8. Jump Absolute

9. Jump Absolute Long

10. Jump Indirect

68HC05

1. Inherent

2. Immediate

3. Extended

4. Direct

5. Indexed with no offset

6. Indexed with 8-bit offset

7. Indexed with 16-bit offset

8. Relative

80C51

1. Register

2. Direct

3. Indirect

4. Immediate

5. Relative

6. Absolute

7. Long

8. Indexed

PIC16C5X

1. Data Direct

2. Data Indirect

3. Immediate

4. Program Direct

5. Program Indirect

6. Relative

Instruction Types

COP8

Total basic instructions: 49

Total instructions including addressing modes: 87

1. Arithmetic

2. Load and Exchange

3. Logical

4. Bit Manipulation

5. Conditional

6. Transfer of Control

68HC05

Total basic instructions: 62

Total instructions including addressing modes: 210

1. Register/Memory

2. Read/Modify/Write

3. Branch

4. Control

80C51

Total basic instructions: 51

Total instructions including addressing modes: 111

1. Arithmetic

2. Logical

3. Data Transfer

4. Boolean Variable

5. Program Branching

PIC16C5X

Total basic instructions: 33

Total instructions with 14 dual destination instructions

counted: 47

1. Byte-oriented File Register

2. Bit-oriented File Register

3. Literal and Control

COP8 Instruction Set Features

1. Majority of single byte opcode instructions to minimize

program size.

2. One instruction cycle for the majority of single byte in-

structions to minimize program execution time.

3. Many single byte multiple function instructions such as

DRSZ.

4. Three memory mapped pointers: Two data pointers (B

and X) for register indirect addressing, and one pro-

gram memory stack pointer (SP) for the software stack.

5. Sixteen memory mapped registers which allow an opti-

mized implementation of certain instructions.

6. Ability to set, reset, and test any individual bit in data

memory address space, including the memory mapped

I/O ports and associated registers.

7. Register indirect LOAD and EXCHANGE instructions

with optional automatic post-incrementing or post-dec-

rementing of the register pointers (Both B and X point-

ers). This allows for greater efficiency (both in through-

put time and program code) in both loading and pro-

cessing fields in data memory.

8. Unique instructions to optimize program size and

throughput efficiency. Some of these instructions are:

DRSZ IFBNE DCOR

RETSK RRC LAID

9. Forty nine basic instructions.

10. Ten addressing modes provide great flexibility.

http://www.national.com3

M68HC05 Instruction Set Features

1. Very flexible branch structure with 21 different branch

instructions.

2. Twelve different read/modify/write instructions.

3. Five bit manipulation instructions (Clear, Set, Branch if

Bit Clear, Branch if Bit Set, Bit Test Memory with Accu-

mulator) provide great flexibility.

4. Indexed addressing with options of no offset, 8-bit offset,

or 16-bit offset.

5. Data Tables located in page 0 address space (0000–

00FF) take advantage of the direct addressing mode for

optimal code.

6. Multiply instruction (unsigned, 8 c 8).

7. Sixty two basic instructions.

8. Eight addressing modes provide great flexibility.

80C51 Instruction Set Features

1. Optimized for 8-bit control applications.

2. Provides a variety of fast compact addressing modes

for accessing data memory to facilitate operations on

small data structures.

3. Offers extensive support for one bit variables, allowing

direct bit manipulation in control and logic systems that

require Boolean processing.

4. Eight working registers (R0–R7) selected by three bits

allow a function code and register address to be com-

bined in one single byte instruction.

5. Register R0 and R1 serve as indirect addressing data

memory pointers.

6. Four banks of working registers, with only one bank

active at a time, permit fast and effective ‘‘context

switching’’.

7. Several register specific instructions referring to the ac-

cumulator (A), the accumulator and auxiliary register

(B), register pair (AB), the carry flag (C), the data point-

er (DPTR), and the program counter (PC) provide great

efficiency.

8. Indexed addressing using a base register (either the

program counter (PC) or the data pointer (DPTR) and

an offset in the accumulator (A) provide great flexibility.

9. Multiply and Divide instruction (using A and B registers).

10. Fifty one basic instructions.

11. Eight addressing modes provide great flexibility.

PIC16C5X Instruction Set Features

1. All single word (12-bit) instructions for compact code effi-

ciency.

2. All instructions are single cycle except the jump type in-

structions (GOTO, CALL) and failed test instructions

(DECFSZ, INCFSZ, BTFSC, BTFSS) which are two cy-

cle.

3. 32 File registers can be addressed directly or indirectly,

and serve as accumulators to provide first operand,

Working register (W) serves as pseudo accumulator, pro-

viding second operand.

4. Working register (W) also serves as destination for literal

from program memory in MOVLW (Move Literal to W)

and RETLW (Return Literal to W) instructions.

5. Many instructions include a destination bit which se-

lects either the register file or the accumulator as the

destination for the result.

6. Four bit manipulation instructions (Set, Clear, Test and

Skip if Set, Test and Skip if Clear) provide great flexibili-

ty.

7. Status word register (SWR) memory mapped as regis-

ter file F3 allows testing of status bits (carry, digit carry,

zero, power down, and time-out).

8. Program counter (PC) memory mapped as register file

F2 allows W to be used as offset register for indirect

addressing of program memory.

9. Indirect addressing mode data pointer FSR (file select

register) memory mapped as register file F4. Address-

ing F0 causes FSR to be used to select file register.

10. Literal in RETLW (Return Literal to W) instruction com-

bined with file register mapped program counter allow

data tables to be accessed from program memory.

11. Two level 12-bit push/pop hardware stack for subrou-

tine linkage using the CALL and RETLW instructions.

12. WATCHDOG timer.

13. Thirty three basic instructions.

14. Six addressing modes provide great flexibility.

COMPARISON OF SALIENT INSTRUCTION SET

FEATURES

Addressing

The three types of indexed addressing (no offset, single

byte offset, and dual byte offset) in the M68HC05 provide

great flexibility in walking across two or three data fields

(two operands, result) simultaneously. The three other mi-

crocontrollers achieve the same result with indirect address-

ing and pointers. The COP8 and 80C51 both have dual

pointers for indirect data addressing (B and X pointers in the

COP8, R0 and R1 in the 80C51). The PIC16C5X only has

one indirect data pointer F4, which is called by using F0.

Consequently, processing two multiple byte operands with

the PIC16C5X requires alternate loading of the operand ad-

dresses into the F4 pointer as the multiple byte data fields

are processed.

All four microcontrollers have some form of indirect ad-

dressing for program memory, which is very useful in pro-

ducing jump tables. The COP8 uses the JID (jump indirect)

instruction, while the PIC16C51X can address the program

counter as file register F2 and add an offset to it. The

M68HC05 and 80C51 both use their indexed addressing

modes to achieve indirect addressing of program memory.

Both jump tables and lookup tables are easily created with

indexed addressing. The COP8 uses the LAID (load accu-

mulator indirect) instruction to implement lookup tables,

while the PIC16C5X uses the RETLW (return literal to W)

instruction as the table entries preceded by a table header

which produces the table offset address.

http://www.national.com 4

Bit Manipulation

All four microcontrollers have instructions to set, reset, and

test individual bits in data memory. However, the 80C51 al-

lows bit manipulation in only 210-bit addressable locations

of data memory (16 general purpose byte locations 20–2F,

and the rest in the special function registers including the

I/O ports). The other three microcontrollers are capable of

bit addressing anywhere in data memory. Three of the four

microcontrollers have direct bit tests for a bit being either

set or reset, while the COP8 test is for bit set only. The

80C51 has two instructions (MOV C, bit and MOV bit, C) to

either transfer a bit of data memory to or from the carry. This

is very handy for saving a carry and restoring it for later use.

The two bit test instructions (BRCLT and BRSET) in the

M68HC05 also set the carry to the state of the bit tested.

The 80C51 also has four logical (two logical AND, two logi-

cal OR) bit manipulation instructions, with the carry and a

selected memory bit serving as the two operands. These

four instructions are described more fully with the logical

instructions.

Input/Output

The four microcontrollers all have mulitple I/O ports, with

some of them (COP8, M68HC05) also having dedicated in-

put and/or dedicated output ports. The COP8 and

M68HC05 both have configuration registers for each I/O

port, with each configuration bit determining whether the

associated port bit is selected as input or output. The

PIC16C5X contains a TRISTATEÉ instruction (TRIS) whose

operand determines whether or not each associated port bit

is put in the TRISTATE condition to serve as an input pin.

The 80C51 configures a port by writing ones to TRISTATE

the port bit positions selected as inputs. Otherwise the as-

sociated 80C51 port bit is selected as an output bit. The

COP8 has three addresses associated with each I/O port.

The first two addresses select the associated data and con-

figuration register for the port, while the third address se-

lects the actual port pins. If a COP8 port bit is configured as

an input, then the associated bit in the data register selects

whether the associated input is Hi-Z or weak pull-up. Input/

Output manipulation with the I/O ports is demonstrated in

the fifth benchmark program.

Increment/Decrement

All four micrcontrollers have accumulator increment and

decrement instructions. The register file of the PIC16C5X

serves as multiple accumulators. The COP8 has a DRSZ

(decrement register and skip if zero) instruction for its six-

teen registers located at data memory addresses 0F0–0FF.

This register bank includes the B and X data memory point-

ers and also the SP stack pointer. The PIC16C5X also has

both INCFSZ (increment file and skip if zero) and DECFSZ

(decrement file and skip if zero) instructions. The M68HC05

increment and decrement instructions can be selected for

the accumulator, the index register, or any memory location.

The 80C51 increment and decrement instructions can be

selected for the accumulator, the eight R registers including

the R0 and R1 data pointers, or any memory location (se-

lected either directly or indirectly). The 80C51 also has a

DJNZ (decrement and jump if not zero) instruction which

can be selected for any of the eight R registers including the

R0 and R1 data pointers, or for any memory location select-

ed with a relative address.

Load Memory Immediate

Only the COP8 and the 80C51 have instructions that can

load memory with an immediate value. The memory location

to be loaded can be selected with either direct or indirect

addressing for both microcontrollers.

Post Incrementation or Decrementation of Data

Pointers

Only the COP8 has instructions that can post increment,

post decrement, or leave the data pointer unchanged. This

feature applies to both the COP8 load and exchange in-

structions, and can be used with either of the two pointers B

and X. The feature is very useful when processing multiple

byte fields, especially with two operands (additions, subtrac-

tions) or an operand and a result (block move). Examples of

the usage of this feature can be found in the first three

COP8 benchmark programs.

Loop Counting and Data Pointing Testing

Three of the four microcontrollers (excluding M68HC05)

have specific instructions to facilitate loop counting. The

COP8 DRSZ (decrement register and skip if zero) instruc-

tion tests one of sixteen registers (including the two data

pointers B and X) and skips the next instruction (a branch

back to loop) if the result is zero. The PIC16C5X DECFSZ

(decrement file register and skip if zero) is analogous to the

COP8 DRSZ instruction. The 80C51 DJNZ (decrement and

jump if not zero) instruction combines both the test and

jump in a single instruction. These three instructions (COP8

DRSZ, PIC16C5X DECFSZ, 80C51 DJNZ) all operate on a

loop counter, but uses the standard BNE (branch if not

equal) branch instruction following the decrement to test if

the counter is zero. The BNE instruction tests the M68HC05

zero status flag which is active with the decrement instruc-

tion. Only the COP8 contains a test data pointer uction (IF-

BNEÐIf B pointer not equal). This instruction is used to

sense the end of a program loop where multiple byte fields

are being processed.

The 80C51 CJNE (compare and jump if not equal) instruc-

tion used in the immediate addressing mode provides an

alternative method of loop counting. This instruction is anal-

ogous to the COP8 IFBNE instruction but combines the test

with the jump in a single instruction.

It should be noted that neither the COP8 IFBNE instruction

nor the 80C51 CJNE instruction require the use of a coun-

ter, but rather depend on an end of field comparison for loop

termination. Consequently these instructions are used in

loops where a data pointer is being used to walk across a

mulitple byte field. Examples of the usage of these two in-

structions can be found in the first three benchmarks.

Branch and Subroutine Call Instructions

All four micrcontrollers have absolute address branching,

and three of the four (excluding the PIC16C5X) also have

relative address branching. Only the COP8 and the

M68HC05 have single byte branching. The COP8 single

byte branching is with relative addressing, where six bits

provide relative addressing of b31 to a32. The M68HC05

single byte branching is with no offset indexed addressing,

where the index register X provides the absolute address.

All of the myriad conditional branch instructions of the

M68HC05 use two bytes, with the second bytes providing

relative addressing of b127 to a128.

http://www.national.com5

Three of the four microcontrollers have a software stack

(excluding the PIC16C5X) where the return address is

stored when a subroutine is called. Consequently, multiple

levels of subroutine and interrupt nesting are possible with

the software stack. The PIC16C5X has a two level hardware

stack where the return address is stored with a subroutine

call. Thus only two levels of subroutine nesting are possible

with the PIC16C5X. The other three microcontrollers have

absolute address subroutine calls, with the 80C51 also hav-

ing a relative address call. Only the M68HC05 provides a

single byte subroutine call, using no offset indexed address-

ing (with the index register providing the absolute address.

Return Instructions

All four microcontrollers have return from subroutine instruc-

tions and three of the four (excluding the PIC16C5X) have

return from interrupt instructions. The PIC16C5X does not

have an interrupt.

The COP8 has two return from subroutine instructions, RET

and RETSK. The RET is the normal return from subroutine

instruction, while the RETSK instruction returns from the

subroutine and then skips the next instruction. These two

instructions are very useful in passing back flag information

from the subroutine in lieu of actually using a flag such as

the carry. This is demonstrated in the fourth benchmark (ta-

ble search) where a flag needs to be passed back from the

subroutine to indicate whether or not the search was suc-

cessful. The COP8 simply uses the RETSK instruction to

indicate a successful search, whereas each of the other

three microcontrollers need to set up the carry as the flag.

The PIC16C5X return from subroutine instruction is RETLW

(return and place literal in W). The literal serves as an imme-

diate data value from memory. The use of this instruction is

demonstrated in the fourth benchmark (table search), where

the program memory data table consists of a block of

RETLW instructions preceded by the table header.

Comparison and Conditional Branch Instructions

Three of the four microcontrollers (excluding the PIC16C5X)

have comparison instructions. The COP8 has two compari-

son instructions, IFEQ (if equal) and IFGT (if greater than).

These comparison instructions compare the accumulator

versus an immediate value or a number from memory (se-

lected with either direct or indirect addressing). The

M68HC05 has two comparison instructions, CMP (compare)

and BIT (bit test memory with accumulator). The CMP in-

struction compares the accumulator versus an immediate

value or a number from memory (selected with either direct

or indexed addressing). The BIT instruction performs a logi-

cal AND comparison between the accumulator and an im-

mediate value or a number from memory (selected with ei-

ther direct or indexed addressing). The 80C51 has one com-

parison instruction CJNE (compare and jump if not equal)

which is combined with a branch in the same instruction. All

four microcontrollers have bit test instructions (including test

carry.)

The M68HC05 has a myriad of test conditions and branch

instructions, including BCC (branch if carry clear), BCS

(branch if carry set), BRCLR (branch if memory bit clear),

BRSET (branch if memory bit set), BEQ (branch if equal),

BHI (branch if higher), BHS (branch if higher or same), BLO

(branch if lower), BLS (branch if lower or same), BMI

(branch if minus), BNE (branch if not equal), and BPL

(branch if plus).

The 80C51 includes seven conditional branch instructions,

consisting if JC (jump if carry), JNC (jump if no carry), JNZ

(jump if not zero), JZ (jump if zero), JB (jump if memory bit

set), JNB (jump if memory bit not set), and JBC (jump if

memory bit set and clear bit).

The COP8 includes seven conditional test instructions,

IFBIT (test if memory bit is set), IFC (if carry), IFNC (if no

carry), IFEQ (if equal), IFGT (if greater than), IFBNE (if B

pointer not equal), and DRSZ (decrement register and skip if

zero). These seven instructions will all cause the next in-

struction to be skipped if the test is successful. The skipped

instruction can either be a branch or some function (such as

setting a bit flag or returning from a subroutine) that can be

contained in one instruction.

The PIC16C5X includes four test instructions, consisting of

DECFSZ (decrement file register and skip if zero), INCFSZ

(increment file register and skip if zero), BTFSC (bit test file

register and skip if bit clear), and BTFSS (bit test file register

and skip if bit set). These four instructions will all cause the

next instruction to be skipped if the test is successful.

Logical Instructions (AND, OR, Exclusive OR)

All four microcontrollers have a full complement of the logi-

cal instructions, with the accumulator and a selected memo-

ry location (using either direct or indirect addressing) serving

as the two operands. Three of the four microcontrollers (ex-

cluding the PIC16C5X) can also perform the logical instruc-

tions with the accumulator and an immediate value serving

as the operands. The 80C51 contains four logical bit instruc-

tions which perform either the logical AND or logical OR

between the carry bit and a selected memory bit, with either

polarity of the memory bit being selectable. The M68HC05

contains a logical compare instruction, which performs a

logical AND comparison between the accumulator and an

immediate value or a number from memory (selected with

either direct or indexed addressing).

Shift and Rotate Instructions

Only the M68HC05 has shift instructions, both logical left

shift and logical right shift. All four microcontrollers have a

right rotate instruction through carry (none bit loop), and

three of the four (excluding the COP8) also have a left ro-

tate through carry. The 80C51 also has both a right and left

rotate direct (eight bit loop).

Complement Instructions

Three of the four microcontrollers (excluding the COP8)

have a complement instruction for the accumulator. The

80C51 also has two complement bit instructions, with the

first being used to toggle the carry and the second to com-

plement selected accumulator bits.

BDC Decimal Correct

Only the COP8 and the 80C51 provide instructions to expe-

dite BCD processing. The DCOR (decimal correct) instruc-

tion of the COP8 is used following an add or subtract in-

struction to achieve the correct BCD result. Note that a hex

66 must be added to the first operand to start the addition

process. The DA (decimal adjust) instruction of the 80C51 is

used following an add instruction to achieve the correct

BCD result. The decimal adjust instruction does not work

following subtraction. Consequently, BCD subtraction in the

80C51 must be implemented by adding the complement of

the subtrahend (second operand) and then using the deci-

mal adjust instruction. BCD subtraction is demonstrated in

the third benchmark program.

http://www.national.com 6

Exchange and Swap

Only the COP8 and the 80C51 have exchange instructions

between the accumulator and memory. Both microcontrol-

lers can select either direct or indirect addressing for the

associated exchange memory selection. The 80C51 also

has a XCHD A, @Ri (exchange digit) instruction which ex-

changes the low order nibble (digit) of the accumulator with

the low order nibble of the indirectly addressed memory lo-

cation selected.

All of the microcontrollers except the M68HC05 have a

SWAP instruction which interchanges the low and high or-

der nibbles of the accumulator. With the PIC16C5X, the

SWAPF instruction can be selected for any of the register

bank accumulators.

Push and Pop Instructions

Only the 80C51 has PUSH and POP instructions to augment

operations with the software stack. Consequently, only the

80C51 has the ability to store temporary data in the soft-

ware stack as well as subroutine and interrupt return ad-

dresses.

4.0 BENCHMARK PROGRAMS

1. FIVE BYTE BLOCK MOVE

This benchmark program moves a block of five data byte

from one location to another.

2. FOUR BYTE BINARY ADDITION

This benchmark subroutine adds two four byte binary num-

bers and replaces the first operand with the result, like an

adding machine (A a B replaces A). The carry flag is used

to indicate an overflow.

3. FOUR BYTE PACKED BCD SUBTRACTION

This benchmark subroutine subtracts two eight digit packed

BCD numbers and replaces the first operand with the result,

like an adding machine. (A b B replaces A). The carry flag

is used to indicate a negative result.

4. THREE BYTE TABLE SEARCH

This benchmark subroutine searches a program memory

data table for a three byte match. A flag indicates whether

or not the search was successful, with the address of the

first byte of a matched string being returned.

5. INPUT/OUTPUT MANIPULATION

This benchmark compares two 8-bit I/O ports P1 and P2. If

they are equal, a nine is output as the least significant digit

of a third port P3. If P1 is greater than P2, then P2 data is

output on P1. If P1 is k P2, then the higher order digit of P1

is copied to the lower order digit position of P3.

6. SERIAL INPUT/OUTPUT WITH OFFSET TABLE

This benchmark subroutine inputs a sequence of byte cou-

plets, each of which consists of an address followed by a

data byte. The address is used to access a data table to

produce an offset value which is added to the data byte.

The updated data byte is output while the next couplet’s

address byte is input.

7. TIMEKEEPING

This timekeeping benchmark program emulates a real time

clock, keeping track of hours, minutes, and seconds in

packed BCD format. The program is interrupt driven, using a

timer interrupt.

8. SWITCH ACTIVATED FIVE SECOND LED

This benchmark samples a switch input to activate a five

second output for turning on an LED. The switch is de-

bounced with a 50 ms program delay both on opening and

closure.

5.0 BENCHMARK DATA

This section provides the benchmark programs for each mi-

crocontroller. For each instruction, the byte count and in-

struction cycle count is given. The total cycle count is multi-

plied by the fastest cycle time of the selected microcontrol-

ler to yield the total benchmark execution time.

Microcontrollers Instruction Cycle Time XTAL

COP8 1.0 ms 10 MHz

M68HC05 0.5 ms 4 MHz

80C51 1.0 ms 12 MHz

PIC16C5X 0.5 ms 8 MHz

http://www.national.com7

COP8 BENCHMARK Ý1ÐFIVE BYTE BLOCK MOVE

This benchmark moves only a block of five data bytes from a specific source location to a specific destination location.

MOVE: LD B, #14 ; 1/1 Source address to B pointer

LD X, #50 ; 2/3 Destination address to X pointer

LOOP: LD A, [B0] ; 1/2 Load A with source byte

X A, [X0] ; 1/3 Source byte to destination

IFBNE #3 ; 1/1 Test (modulo 16) if block move finished (19-16e3)

JP LOOP ; 1/3 Loop back if not finished

7 BYTES

47 CYCLES

68HC05 BENCHMARK Ý1ÐFIVE BYTE BLOCK MOVE

This benchmark moves only a block of five data bytes from a specific source location to a specific destination location.

MOVE: LDX #5 ; 2/2 Load X with block length

LOOP: LDA 24, X ; 2/4 Load A with source byte (start at block top)

STA 54, X ; 2/5 Store A at destination (start at block top)

DECX ; 1/3 Decrement X

BNE LOOP ; 2/3 Loop back if block transfer not finished

9 BYTES

76 CYCLES

http://www.national.com 8

80C51 BENCHMARK Ý1ÐFIVE BYTE BLOCK MOVE

This benchmark moves only a block of five data bytes from a specific source location to a specific destination location.

MOVE: MOV R0, #20 ; 2/1 Load R0 pointer with source address

MOV R1, #50 ; 2/1 Load R1 pointer with destination address

LOOP: MOV A, @R0 ; 1/1 Load A with source byte

MOV @R1, A ; 1/1 Store source byte at destination

INC R1 ; 1/1 Increment destination pointer

INC R0 ; 1/1 Increment source pointer

CJNE R0, #25, LOOP; 3/2 Compare & loop back if block transfer not finished

11 BYTES

32 CYCLES

PIC16C5X BENCHMARK Ý1ÐFIVE BYTE BLOCK MOVE

This benchmark moves only a block of five data bytes from a specific source location to a specific destination location.

TEMP EQU F29 ;

BASE EQU F30 ; Source @ F20–F24 Destination @ F25–F29

CNTR EQU F31 ;

MOVE: MOVLW 5 ; 1/1 Load W with length of block

MOVWF ; 1/1 Store block length in CNTR

MOVLW 20 ; 1/1 Load W with address of source

LOOP: MOVF BASE, W ;1/1 Source address to W

MOVWF F4 ; 1/1 Source address to F4 (indirect pointer)

MOVF F0, W ; 1/1 Source byte to W

MOVWF TEMP ; 1/1 Source byte to TEMP

MOVLW 5 ; 1/1 Destination/source address difference to W

ADDWF F4 ; 1/1 Add to pointer to get destination address

MOVF TEMP, W ; 1/1 Source byte to W

MOVWF F0 ; 1/1 Source byte to destination

INCF BASE ; 1/1 Increment BASE

DECFSZ CNTR ; 1/1 Test if block move finished

GOTO LOOP ; 1/2 Loop back if not finished

14 WORDS (Equivalent to 21 BYTES)

62 CYCLES

http://www.national.com9

COP8 BENCHMARK Ý2ÐFOUR BYTE BINARY ADDITION

This benchmark adds two four byte binary numbers and replaces the first operand with the result. This emulates an adding

machine addition, where A a B replaces A. The benchmark is programmed as a subroutine, with the carry flag indicating an

overflow.

ADDITION: LD B, #10 ; 1/1 Set up address of 1st operand in B pointer

LD X, #20 ; 2/3 Set up address of 2nd operand in X pointer

RC ; 1/1 Reset carry

LOOP: LD A, [X0] ; 1/3 Load 2nd operand to A

ADC A, [B] ; 1/1 Add 1st operand to 2nd operand

X A, [B0] ; 1/2 Result replaces 1st operand

IFBNE #14 ; 1/1 Test if addition finished

JP LOOP ; 1/3 Loop back if not finished

RET ; 1/5 Return from subroutine

10 BYTES

48 CYCLES

M68HC05 BENCHMARK Ý2ÐFOUR BYTE BINARY ADDITION

This benchmark adds two four byte binary numbers and replaces the first operand with the result. This emulates an adding

machine addition, where A a B replaces A. The benchmark is programmed as a subroutine, with the carry flag indicating an

overflow.

ADDITION: LD X, #16 ; 2/2 Load index register with 1st operand address

CLC ; 1/2 Clear carry

LOOP: LDA X ; 1/3 Load A with 1st operand

ADC 4, X ; 2/4 Add 2nd operand to A

STA X ; 1/4 Replace 1st operand with result

INCX ; 1/3 Increment index register

CPX #20 ; 2/2 Compare X with end of field

BNE LOOP ; 2/3 Loop back if addition not finished

RTS ; 1/6 Return from subroutine

13 BYTES

85 CYCLES

http://www.national.com 10

80C51 BENCHMARK Ý2ÐFOUR BYTE BINARY ADDITION

This benchmark adds two four byte binary numbers and replaces the first operand with the result. This emulates an adding

machine addition, where A a B replaces A. The benchmark is programmed as a subroutine, with the carry flag indicating an

overflow.

ADDITION: MOV R1, #20 ; 2/1 Load R1 pointer with address of 2nd operand

MOV R0, #16 ; 2/1 Load R0 pointer with address of 1st operand

CLR C ; 1/1 Clear carry

LOOP: MOV A, @R0 ; 1/1 Load 1st operand to A

ADD A, @R1 ; 1/1 Add 2nd operand to A

MOV @R0, A ; 1/1 Replace 1st operand with result

INC R1 ; 1/1 Increment 2nd operand pointer

INC R0 ; 1/1 Increment 1st operand pointer

CJNE R0, #20, LOOP ; 3/2 Test if finished and loop back if not

RET ; 1/2 Return from subroutine

14 BYTES

33 CYCLES

PIC16C5X BENCHMARK Ý2ÐFOUR BYTE BINARY ADDITION

This benchmark adds two four byte binary numbers and replaces the first operand with the result. This emulates an adding

machine addition, where A a B replaces A. The benchmark is programmed as a subroutine, with the carry flag indicating an

overflow.

STATUS EQU F3 ; Status register

BASE EQU F26 ; 1st operand @ F16–F19 2nd operand @ F20–F23

CNTR EQU F25 ;

TEMP EQU F24 ;

ADDITION: MOVLW 4 ; 1/1 Load W with byte count (length of field)

MOVWF CNTR ; 1/1 Store byte count in CNTR

MOVLW 20 ; 1/1 Load W with address of 2nd operand

MOWWF BASE ; 1/1 Store address of 2nd operand in BASE

BCF STATUS, 0 ; 1/1 Clear carry (carry is bit 0 of F3 register)

LOOP: MOVF BASE, W ; 1/1 2nd operand address to W

MOVWF F4 ; 1/1 2nd operand address to F4 (indirect pointer)

MOVF F0, W ; 1/1 2nd operand to W

MOVWF TEMP ; 1/1 2nd operand to TEMP

MOVLW 4 ; 1/1 Byte count to W

SUBWF F4 ; 1/1 Subtract from pointer to get 1st operand address

MOVF TEMP, W ; 1/1 2nd operand to W

ADDWF F0 ; 1/1 Add 2nd operand to 1st operand

MOVLW 4 ; 1/1 Byte count to W

ADDWF F4 ; 1/1 Add to pointer to restore 2nd operand address

INCF BASE ; 1/1 Increment BASE

DECFSZ CNTR ; 1/1 Test if addition finished

GOTO LOOP ; 1/2 Loop back if addition not finished

RETLW 0 ; 1/2 Return from subroutine

19 WORDS (Equivalent to 28 1/2 BYTES)

62 CYCLES

http://www.national.com11

COP8 BENCHMARK Ý3ÐFOUR BYTE PACKED BCD SUBTRACTION

This benchmark subtracts two eight digit packed BCD numbers (four bytes each) and replaces the minuend (first operand) with

the result. This emulates an adding machine subtraction, where A - B replaces A. The benchmark is programmed as a subrou-

tine, with the carry flag being used to indicate a positive or negative result (carry set for negative result). The BCD decimal

correct (DCOR) command is used following the subtraction to achieve the correct BCD result.

BCDSUBT: LD B, #14 ; 1/1 Set up address of 1st operand in B pointer

LD X, #20 ; 2/3 Set up address of 2nd operand in X pointer

SC ; 1/1 Set carry for no input borrow to subtraction

LOOP: LD A, [X0] ; 1/3 Load 2nd operand to A

X A, [B] ; 1/1 Exchange 1st and 2nd operands

SUBC A, [B] ; 1/1 Subtract 2nd from 1st operand

DCOR A ; 1/1 Decimal correct result of subtraction

X A, [B0] ; 1/2 Result replaces 1st operand

IFBNE #2 ; 1/1 Test (modulo 16) if subtraction finished (18-1642)

JP LOOP ; 1/3 Loop back if not finished

IFNC ; 1/1 Test if result negative (borrow4no carry)

JP NEGR ; 1/3 Jump if result negative

RC ; 1/1 Reset carry to indicate positive result

RET ; 1/5 Return from subroutine

NEGR: SC ; 1/1 Set carry for no input borrow to subtraction

LD B, #14 ; 1/1 Reinitialize B pointer to start of result

LUP: CLR A ; 1/1 Clear A to set up subtraction from zero

SUBC A, [B] ; 1/1 Subtract result from zero

DCOR A ; 1/1 Decimal correct new result

X A, [B0] ; 1/2 Store new result

IFBNE #2 ; 1/1 Test (modulo 16) if subtraction finished (18–1642)

JP LUP ; 1/3 Loop back if not finished

SC ; 1/1 Set carry to indicate negative result

RET ; 1/5 Return from subroutine

25 BYTES

97 CYCLES

http://www.national.com 12

M68HC05 BENCHMARK Ý3ÐFOUR BYTE PACKED BCD SUBTRACTION

This benchmark subtracts two eight digit packed BCD numbers (four bytes each) and replaces the minuend (first operand) with

the result. This emulates an adding machine subtraction, where A - B replaces A. The benchmark is programmed as a subrou-

tine, with the carry flag being used to indicate a positive or negative result (carry set for negative result). Note in the M68HC05

subtraction that the carry represents the borrow, unlike some microcontrollers where the carry represents the absence of

borrow in subtraction. The M68HC05 does not have any decimal correct or decimal adjust instructions, so the BCD correction

must be program implemented. The correction algorithm for BCD subtraction consists of subtracting six whenever a nibble

borrow occurs from the BCD subtraction result for each digit.

TEMP EQU $91 ;

FLAG EQU $92 ;

BCDSUBT: JSR INIT ; 2/5 Call initialization subroutine

LOOP: LDA X ; 1/3 Load A with 1st operand

SBC 4, X ; 2/4 Subtract 2nd operand from A

JSR CORRECT ; 2/5 Call correction subroutine

BNE LOOP ; 2/3 Loop back if subtraction not finished

BCS NEGR ; 2/3 Branch to NEGR (neg. result) if carry

RTS ; 1/6 Return from subroutine

NEGR: JSR INIT ; 2/5 Call initialization subroutine

LUP: CLRA ; 1/3 Clear A

SBC X ; 1/3 Subtract result of previous subtraction from zero

JSR CORRECT ; 2/5 Call correction subroutine

BNE LUP ; 2/3 Loop back if subtraction from zero not finished

SEC ; 1/2 Set carry to indicate negative result

RTS ; 1/6 Return from subroutine

INIT: LD X, #16 ; 2/2 Load index register with 1st operand address

CLC ; 1/2 Clear carry (reset borrow)

CLRA ; 1/2 Clear A

STA FLAG ; 2/4 Clear FLAG register

RTS ; 1/6 Return from initialization subroutine

CORRECT: STA X ; 1/4 Replace 1st operand with result

CLRA ; 1/3 Clear A

BCC BYP1 ; 2/3 Branch if carry set (no borrow)

BSET 0, FLAG ; 2/5 Set flag if carry (save carry value)

LDA #$60 ; 2/2 Load A with packed BCD 60

BYP1: BHCC BYP2 ; 2/3 Branch if half carry set (no half borrow)

ADD #$06 ; 2/2 Add packed BCD 06 to A

BYP2: STA TEMP ; 2/4 Store A in TEMP

LDA X ; 1/3 Load A with result of first subtraction

SUB A, TEMP ; 2/3 Subtract TEMP from previous result

BRSET 0, FLAG, NXT ; 3/5 Restore carry (flag value to carry)

NXT: STA X ; 1/4 Store new result

INCX ; 1/3 Increment index register

CPX #20 ; 2/2 Compare X with end of field

RTS ; 1/6 Return from correction subroutine

54 BYTES

567 CYCLES

http://www.national.com13

80C51 BENCHMARK Ý3ÐFOUR BYTE PACKED BCD SUBTRACTION

This benchmark subtracts two eight digit packed BCD numbers (four bytes each) and replaces the minuend (first operand) with

the result. This emulates an adding machine subtraction, where A - B replaces A. The benchmark is programmed as a subrou-

tine, with the carry flag being used to indicate a positive or negative result (carry set for negative result). It should be noted in the

80C51 subtraction that the carry represents the borrow, unlike some microcontrollers where the carry represents the absence of

borrow in subtraction.

The BCD decimal adjust (DA) command only works following addition, not subtraction. Consequently, the BCD subtraction must

be implemented as an addition by adding the complement of the subtrahend (2nd operand) to the 1st operand. This comple-

ment is achieved by subtracting the subtrahend from a packed BCD 99 (binary 10011001), and then adding one to the result.

The following are examples of this complementation procedure:

1. 61–49 e 61 a (99–49) a 1 e 61 a 50 a 1 e 12 (mod 100) (Output borrow shows positive result)

2. 49–61 e 49 a (99–61) a 1 e 49 a 38 a 1 e 88 (No output borrow indicates negative result)

Negative result correction: - (99–88 a 1) e b12

BCDSUBT: MOV R2, #4 ; 2/1 Load R2 with byte count

MOV R1, #20 ; 2/1 Load R1 with address of 2nd operand

MOV R0, #16 ; 2/1 Load R0 with address of 1st operand

CLR C ; 1/1 Clear carry for no input borrow to subtraction

LOOP: MOV A, #099H ; 2/1 Load accumulator with packed BCD 99

SUBB A, @R1 ; 1/1 Subtract 2nd operand from packed BCD 99

ADD A, #01 ; 2/1 Add one to result

DA A ; 1/1 Decimal correct result

ADD A, @R0 ; 1/1 Add 1st operand to result

DA A ; 1/1 Decimal correct new result

MOV @R0, A ; 1/1 Replace 1st operand with result

INC R1 ; 1/1 Increment 2nd operand pointer

INC R0 ; 1/1 Increment 1st operand pointer

DJNZ R2, LOOP ; 2/2 Test if finished and loop back if not

JC NEGR ; 2/2 Test and jump if negative result

RET ; 1/2 Return from subroutine (no carry: positive result)

NEGR: CLR C ; 1/1 Clear carry for no input borrow to subtraction

MOV R0, #16 ; 2/1 Load R0 with address of result

LUP: MOV A,#099H ; 2/1 Load accumulator with packed BCD 99

SUBB A, @R0 ; 1/1 Subtract result from packed BCD 99

ADD A, #01 ; 2/2 Add one to result

DA A ; 1/1 Decimal correct result

MOV @R0, A ; 1/1 Store result

INC R0 ; 1/1 Increment pointer

CJNZ R0, #20, LUP ; 3/2 Test if finished and loop back if not

SETB C ; 1/1 Set carry to indicate negative result

RET ; 1/2 Return from subroutine (carry: negative result)

39 BYTES

91 CYCLES

http://www.national.com 14

PIC16C5X BENCHMARK Ý3ÐFOUR BYTE PACKED BCD SUBTRACTION PAGE 1 OF 2

This benchmark subtracts two eight digit packed BCD numbers (four bytes each) and replaces the minuend (first operand) with

the result. This emulates an adding machine subtraction, where A - B replaces A. The benchmark is programmed as a subrou-

tine, with the carry flag being used to indicate a positive or negative result (carry set for negative result). The PIC16C5X does not

have any decimal adjust or decimal correct instructions, so the BCD correction must be program implemented. The correction

algorithm for BCD subtraction consists of subtracting six whenever a nibble borrow occurs from the BCD subtraction result for

each digit.

STATUS EQU F3 ; Status register

FLAG EQU F27 ;

BASE EQU F26 ; 1st operand @ F16–F19 2nd operand @ F20–F23

CNTR EQU F25 ;

TEMP EQU F24 ;

BCDSUBT: MOVLW 4 ; 1/1 Load W with byte count (length of field)

MOVWF CNTR ; 1/1 Store byte count in CNTR

MOVLW 20 ; 1/1 Load W with address of 2nd operand

MOVWF BASE ; 1/1 Store address of 2nd operand in BASE

BSF STATUS, 0 ; 1/1 Set carry (reset borrow) (STATUS register bit 0)

LOOP: MOVF BASE, W ; 1/1 2nd operand address to W

MOVWF F4 ; 1/1 2nd operand address to F4 (indirect pointer)

MOVF F0, W ; 1/1 2nd operand to W

MOVWF TEMP ; 1/1 2nd operand to TEMP

MOVLW 4 ; 1/1 Byte count to W

SUBWF F4 ; 1/1 Subtract from pointer to get 1st operand address

CALL CORRECT ; 1/2 Call CORRECT subroutine

MOVLW 4 ; 1/1 Byte count to W

ADDWF F4 ; 1/1 Add to pointer to restore 2nd operand address

DECFSZ CNTR ; 1/1 Test if subtraction finished

GOTO LOOP ; 1/2 Loop back if subtraction not finished

BTFSS STATUS, 0 ; 1/1 Test if output borrow (no carry)

GOTO NEGR ; 1/2 Branch to NEGR (neg. result) if output borrow

BCF STATUS, 0 ; 1/1 Clear carry to indicate positive result

RETLW 0 ; 1/2 Return from subroutine

NEGR: MOVLW 4 ; 1/1 Load W with byte count (length of field)

MOVWF CNTR ; 1/1 Store byte count in CNTR

MOVLW 16 ; 1/1 Load W with address of result (old 1st operand)

MOVWF BASE ; 1/1 Store address of result in BASE

BSF STATUS, 0 ; 1/1 Set carry (reset borrow)

LUP: MOVF BASE, W ; 1/1 Result address to W

MOVWF F4 ; 1/1 Result address to F4 (indirect pointer)

MOVF F0, W ; 1/1 Result to W

MOVWF TEMP ; 1/1 Result to TEMP

CLRF F0 ; 1/1 Zero to result (old 1st operand)

CALL CORRECT ; 1/2 Call CORRECT subroutine

DECFSZ CNTR ; 1/1 Test if subtraction finished

GOTO LUP ; 1/2 Loop back if subtraction not finished

BSF STATUS, 0 ; 1/1 Set carry to indicate negative result

RETLW 0 ; 1/2 Return from subroutine

35 WORDS

http://www.national.com15

PIC16C5X BENCHMARK Ý3ÐFOUR BYTE BCD SUBTRACTION (Continued)

CORRECT: CLRF FLAG ; 1/1 Clear FLAG register

MOVF TEMP, W ; 1/1 Move TEMP to W

SUBWF F0 ; 1/1 Subtract W from register

CLRF TEMP ; 1/1 Clear TEMP

BTFSC STATUS, 0 ; 1/1 Test if carry (no borrow)

GOTO BYP1 ; 1/2 Branch if carry (no borrow)

MOVLW 60H ; 1/1 Load W with packed BCD 60

ADDWF TEMP ; 1/1 Add W to TEMP

BYP1: BSF FLAG, 0 ; 1/1 Carry to FLAG bit 0

BTFSC STATUS, 1 ; 1/1 Test if digit carry (no digit borrow)

GOTO BYP2 ; 1/2 Branch if digit carry (no digit borrow)

MOVLW 06H ; 1/1 Load W with packed BCD 06

ADDWF TEMP ; 1/1 Add W to TEMP

BYP2: MOVF TEMP, W ; 1/1 Move TEMP to W

BSF STATUS, 0 ; 1/1 Set carry (reset borrow)

SUBWF F0 ; 1/1 Subtract W from previous result

BTFSC FLAG, 0 ; 1/1 Test if FLAG bit 0 reset

BCF STATUS, 0 ; 1/1 Clear carry (set borrow)

INCF BASE ; 1/1 Increment BASE

RETLW 0 ; 1/2 Return from CORRECT subroutine

20 WORDS

TOTAL: 55 WORDS (Equivalent to 82 1/2 BYTES)

274 CYCLES

http://www.national.com 16

COP8 BENCHMARK Ý4ÐTHREE BYTE TABLE SEARCH

This benchmark searches a 200 byte table (resident in program memory) for a three byte character string, which may be

resident anywhere in the lookup table (not necessarily on three byte boundaries). The type of return from subroutine (RETSK

versus RET) indicates the success or failure of the search, with the address of the first byte of a matched string being returned in

BASE. The benchmark is programmed as a subroutine, which should be located following the table since the LAID instructions

in the subroutine must be located in the same 256 byte page of program memory.

CHAR1 4 00 ; Three bytes of character string

CHAR2 4 01 ; resident in registers 00, 01, 02

CHAR3 4 02 ;

SIZE 4 0F0 ;

BASE 4 0F1 ;

TEMP 4 0F2 ;

TBLSRCH: LD B, #SIZE ; 2/3 Address of SIZE to B pointer

LD [B0], #198 ; 2/2 Table size (200) minus 2 to SIZE

LD [B], #0 ; 2/2 Table base address of 0 to BASE

SEARCH: LD A, [B0] ; 1/2 1st byte of table address to A

X A, [B] ; 1/1 Save 1st byte address in TEMP

LD A, [B] ; 1/1 Restore 1st byte table address to A

LAID ; 1/3 Load 1st of 3 test bytes from prog. memory table

IFEQ A, CHAR1 ; 3/4 Test if 1st byte match

JP SEARCH2 ; 1/3 First byte match

JP FAIL ; 1/3 Fail if mismatch

SEARCH2: LD A, [B] ; 1/1 Restore 1st byte address to A

INC A ; 1/1 Increment address to get 2nd byte table address

X A, [B] ; 1/1 Save 2nd byte address in TEMP

LD A, [B] ; 1/1 Restore 2nd byte table address to A

LAID ; 1/3 Load 2nd of 3 test bytes from prog. memory table

IFEQ A, CHAR2 ; 3/4 Test if 2nd byte match

JP SEARCH3 ; 1/3 Second byte match

JP FAIL ; 1/3 Fail if mismatch

SEARCH3: LD A, [B] ; 1/1 Restore 2nd byte address to A

INC A ; 1/1 Increment address to get 3rd byte table address

X A, [B] ; 1/1 Save 3rd byte address in TEMP

LD A, [B] ; 1/1 Restore 3rd byte table address to A

LAID ; 1/3 Load 3rd of 3 test bytes from prog. memory table

IFEQ A, CHAR3 ; 3/4 Test if 3rd byte match

SUCCESS: RETSK ; 1/5 RETURN and SKIP if three byte match found

FAIL: LD A, [B-] ; 1/2 Decrement B pointer to select BASE

LD A, [B] ; 1/1 Restore 1st byte address to A from BASE

INC A ; 1/1 Increment 1st byte address

X A, [B] ; 1/1 Save new 1st byte address in BASE

DRSZ SIZE ; 1/3 Decrement SIZE and skip if table search finished

JMP SEARCH ; 2/3 Continue table search

RET ; 1/5 RETURN if three byte match not found

*First search iteration fails with first byte 42 BYTES

mismatch, second search iteration successful 77 CYCLES*

http://www.national.com17

68HC05 BENCHMARK Ý4ÐTHREE BYTE TABLE SEARCH

This benchmark searches a 200 byte table (resident in program memory) for a three byte character string, which may be

resident anywhere in the lookup table (not necessarily on three byte boundaries). The status of the carry bit indicates the

success or failure of the search, with the address of the first byte of a matched string being returned in BASE. The benchmark is

programmed as a subroutine.

TBLSRCH: LDA #198 ; 2/2 Set up table size (200) minus 2

STA SIZE ; 2/4 Save table size

CLX ; 1/3 Set up table base address of 0

STX BASE ; 2/4 Save table base address

SEARCH: LDA X ; 2/4 Get first byte from table

CMP CHAR1 ; 2/3 Compare 1st byte with CHAR1

BNE FAIL ; 2/3 Fail

INCX ; 1/3 Set up address of 2nd byte from table

LDA X ; 2/4 Get second byte from table

CMP CHAR2 ; 2/3 Compare 2nd byte with CHAR2

BNE FAIL ; 2/3 Fail

INCX ; 1/3 Set up address of 3rd byte from table

LDA X ; 2/4 Get third byte from table

CMP CHAR3 ; 2/3 Compare 3rd byte with CHAR3

BNE FAIL ; 2/3 Fail

SUCCESS: SEC ; 1/2 Set carry to indicate three byte match found

RTS ; 1/6 Return

FAIL: LDX BASE ; 2/3 Restore base address

INCX ; 1/3 Increment base address to get new 1st byte address

STX BASE ; 2/4 Save new base address

CPX SIZE ; 2/3 Compare new base address with table size

BNE SEARCH ; 2/3 Continue table search

CLC ; 1/2 Reset carry to indicate no three byte match found

RTS ; 1/6 Return

40 BYTES

80 CYCLES*

*First search iteration fails with first byte mismatch, second search iteration successful

http://www.national.com 18

80C51 BENCHMARK Ý4ÐTHREE BYTE TABLE SEARCH

This benchmark searches a 200 byte table (resident in program memory) for a three byte character string, which may be

resident anywhere in the lookup table (not necessarily on three byte boundaries). The status of the carry bit indicates the

success or failure of the search, with the address of the first byte of a matched string being returned in DPTR. The benchmark is

programmed as a subroutine.

TBLSRCH: MOV DPTR, #TBLBASE ; 3/2 Set up table starting address

MOV R2, #198 ; 2/1 Set up table size (200) minus 2

SEARCH: CLR A ; 1/1 Clear accumulator

MOVC A, @A 0 DPTR ; 1/2 Get 1st byte from program memory table

CJNE A, CHAR1, FAIL ; 3/2 Compare 1st byte with CHAR1

MOV A, #1 ; 2/1 Load accumulator with offset of 1

MOVC A, @A 0 DPTR ; 1/2 Get 2nd byte from table

CJNE A, CHAR2, FAIL ; 3/2 Compare 2nd byte with CHAR2

MOV A, #2 ; 2/1 Load accumulator with offset of 2

MOVC A, @A 0 DPTR ; 1/2 Get 3rd byte from table

CJNE A, CHAR3, FAIL ; 3/2 Compare 3rd byte with CHAR3

SUCCESS: SET C ; 1/1 Set carry to indicate three byte match found

RET ; 1/2 Return from subroutine

FAIL: INC DPTR ; 1/2 Increment data pointer to get new

1st byte address

DJNZ R2, SEARCH ; 2/2 Decrement size and test if

table search finished

CLR C ; 1/1 Clear carry to indicate no three

byte match found

RET ; 1/2 Return from subroutine

29 BYTES

30 CYCLES*

*First search iteration fails with first byte mismatch, second search iteration successful

http://www.national.com19

PIC16C5X BENCHMARK Ý4ÐTHREE BYTE TABLE SEARCH

This benchmark searches a 200 word table (resident in program memory) for a three byte character string, which may be

resident anywhere in the lookup table (not necessarily on three word boundaries). The status of the carry bit indicates the

success or failure of the search, with the address of the first byte of a matched string being returned in OFFSET. The benchmark

is programmed as a subroutine, which in turn calls the table header (TABLE) as a subroutine. This table header should

immediately precede the 200 word table.

TBLSRCH: MOVLW 198 ; 1/1 Set up table size (200) minus 2

MOVWF SIZE ; 1/1 Save table size

MOVLW 1 ; 1/1 Initialize table offset from table header

MOVWF OFFSET ; 1/1 Save offset

SEARCH: MOVF W ; 1/1 Load offset

CALL TABLE ; 1/2 Get 1st byte from table

SUBWF CHAR1 ; 1/1 Subtract 1st test byte from CHAR1

BTFSS STATUS, Z ; 1/1 Test if result is zero (F3, bit 2)

GOTO FAIL1 ; 1/2 Fail if mismatch

INCF OFFSET ; 1/1 Increment offset to set up 2nd byte

MOVF W ; 1/1 Load offset

CALL TABLE ; 1/2 Get 2nd byte

SUBWF CHAR2 ; 1/1 Subtract 2nd test byte from CHAR2

BTFSS STATUS, Z ; 1/1 Test if result is zero (F3, bit 2)

GOTO FAIL2 ; 1/2 Fail if mismatch

INCF OFFSET ; 1/1 Increment offset to set up 3rd byte

MOVF W ; 1/1 Load offset

CALL TABLE ; 1/2 Get 3rd byte

SUBWF CHAR3 ; 1/1 Subtract 3rd test byte from CHAR3

BTFSS STATUS, Z ; 1/1 Test if result is zero (F3, bit 2)

GOTO FAIL3 ; 1/2 Fail if mismatch

SUCCESS: DECF OFFSET ; 1/1 Decrement offset to return to 2nd byte

DECF OFFSET ; 1/1 Decrement offset to return to 1st byte

BSF STATUS, C ; 1/1 Set carry (F3, bit 0) to indicate match

found

RETLW 0 ; 1/2 Return

FAIL3: DECF OFFSET ; 1/1 Decrement offset to set up 2nd byte

DECF OFFSET ; 1/1 Decrement offset to set up 1st byte

FAIL1: INCF OFFSET ; 1/1 Increment offset to set up new 1st byte

FAIL2: DECFSZ SIZE ; 1/1 Decrement size and skip if table search

finished

GOTO SEARCH ; 1/2 Continue table search

BCF STATUS, C ; 1/1 Clear carry (F3, bit 0) to indicate no

match found

RETLW 0 ; 1/2 Return

TABLE: ADDWF PC ; 1/1 Add offset to PC

RETLW Data 1 ; 1/2 1st entry of data table

RETLW Data 2 ; -/- 2nd entry of data table

*First search iteration fails with first byte 34 WORDS (Equivalent to 51 BYTES)

mismatch, second search iteration successful 52 CYCLES*

RETLW Program table entry 1 ; 1/2 This 200 word table contains 300 bytes

RETLW Program table entry 2 ; 1/2

–––– ––––––––– ––––

RETLW Program table entry 200 ; 1/2

http://www.national.com 20

COP8 BENCHMARK Ý5ÐINPUT/OUTPUT MANIPULATION

This benchmark compares two 8-bit I/O ports P1 and P2. If they are equal, a nine is output as the least significant digit (lower

nibble) of a third port P3. If port P1 is greater than port P2, then port P2 is output on port P1. If port P1 is less than port P2, then

the most significant digit of Port P1 is copied to the least significant digit of Port P3.

PORTLD 4 0D0 ;

PORTLC 4 0D1 ;

PORTLI 4 0D2 ;

PORTGD 4 0D4 ;

PORTGC 4 0D5 ;

PORTGI 4 0D6 ;

PORTD 4 0DC ;

PORTCMP: LD B, #PORTLI ; 2/3 Load B pointer (PORTL is P1)

LD X, #PORTGI ; 2/3 Load X pointer (PORTG is P2)

SC ; 1/1 Initialize carry (no borrow) for subtraction

LD A, [X] ; 1/1 Load P2

SUBC A, [B] ; 1/1 Subtract P1 from P2

IFC ; 1/1 Test if P2 greater or equal to P1

JP POS ; 1/3 Branch if result positive

NEG: LD A, [B-] ; 1/2 Decrement B pointer

LD [B-], #0FF ; 2/2 Configure PORTL (P1) as output port

LD A, [X] ; 1/3 Load P2 to A

X A, [B] ; 1/1 Output P2 to P1

JP FIN ; 1/3 Jump to finish

POS: IFEQ A, #0 ; 2/2 Test if result zero

JP EQUAL ; 1/3 Branch if zero

LD A, [B] ; 1/1 Load P1 to A

SWAP A ; 1/1 Swap nibbles of A

X A, PORTD ; 2/3 Result to P3 (PORTD)

JP FIN ; 1/3 Jump to finish

EQUAL: LD PORTD, #09 ; 3/3 Digit 9 to P3 (PORTD)

FIN: ––-

26 BYTES

P1 k P2 24 CYCLES

P1 4 P2 21 CYCLES

P1 l P2 22 CYCLES

http://www.national.com21

68HC05 BENCHMARK Ý5ÐINPUT/OUTPUT MANIPULATION

This benchmark compares two 8-bit I/O ports P1 and P2. If they are equal, a nine is output as the least significant digit (lower

nibble) of a third port P3. If Port P1 is greater than port P2, then port P2 is output on Port P1. If Port P1 is less than Port P2, then

the most significant digit of Port P1 is copied to the least significant digit of Port P3.

PORTA EQU $00 ; Port P1

PORTB EQU $01 ; Port P2

PORTC EQU $02 ; Port P3

DDRA EQU $04 ; PORTA configuration register

DDRB EQU $05 ; PORTB configuration register

DDRC EQU $06 ; PORTC configuration register

TEMP EQU $9F ; Temporary register

PORTCMP: CLA ; 1/3 Clear A

STA DDRA ; 2/4 Configure Port A as input port (P1)

STA DDRB ; 2/4 Configure Port B as input port (P2)

DECA ; 1/3 Decrement A to all ones

STA DDRC ; 2/4 Configure Port C as output port (P3)

LDA PORTB ; 2/3 Load A with Port P2 data

CMP A, PORTA ; 2/3 Compare Port P1 data with Port P2 data

BPL POS ; 2/3 Branch if comparison result (P2–P1) positive

NEG: LDA #$FF ; 2/2 Load A with all ones

STA DDRA ; 2/4 Configure Port A as output port (P1)

LDA PORTB ; 2/3 Port P2 data to A

STA PORTA ; 2/4 Output Port P2 data to Port P1

BRA FIN ; 2/3 Branch to FIN

POS: BEQ EQUAL ; 2/3 Branch if comparison result equal

LDA PORTA ; 2/3 Port P1 data to A

AND A, #$F0 ; 2/2 Extract high order nibble of Port P1 data

LSRA ; 1/3 Logical shift A right one bit four times

LSRA ; 1/3 in order to shift upper nibble

LSRA ; 1/3 down into lower nibble position

LSRA ; 1/3

STA PORTC ; 2/4 Output result to Port P3

BRA FIN ; 2/3 Branch to FIN

EQUAL: LDA #9 ; 2/2 Load A with digit 9

STA PORTC ; 2/4 Output digit 9 to Port P3

FIN: ––- ; -/-

42 BYTES

P1 k P2 53 CYCLES

P1 4 P2 36 CYCLES

P1 l P2 42 CYCLES

http://www.national.com 22

80C51 BENCHMARK Ý5ÐINPUT/OUTPUT MANIPULATION

This benchmark compares two 8-bit I/O ports P1 and P2. If they are equal, a nine is output as the least significant digit (lower

nibble) of a third port P3. If Port P1 is greater than Port P2, then Port P2 is output on Port P1. If Port P1 is less than Port P2, then

the most significant digit of Port P1 is copied to the least significant digit of Port P3.

PORTCMP: MOV P1, #0FF ; 3/2 Configure Port P1 for input

MOV P2, #0FF ; 3/2 Configure Port P2 for input

CLR C ; 1/1 Clear carry

MOV A, P2 ; 2/1 Load A with Port P2 data

SUBB A, P1 ; 2/1 Subtract Port P1 data from A

JNC POS ; 2/2 Jump TO POS if no carry from subtract

NEG: MOV A, P2 ; 2/1 Load A with Port P2 data

MOV P1, A ; 2/1 Output Port P2 data to Port P1

AJMP FIN ; 2/2 Jump to FIN

POS: JZ EQUAL ; 2/2 Jump to EQUAL if subtraction result zero

MOV A, P1 ; 2/1 Load A with Port P1 data

SWAP A ; 1/1 Swap nibbles of A

ANL A, #00F ; 2/1 Extract lower nibble of A

MOV P3, A ; 2/1 Output Port P1 upper nibble to Port P3

AJMP FIN ; 2/2 Jump to FIN

EQUAL: MOV P3, #9 ; 3/2 Output digit 9 to Port P3

FIN: ––- ; -/-

33 BYTES

P1 k P2 17 CYCLES

P1 4 P2 11 CYCLES

P1 l P2 13 CYCLES

http://www.national.com23

PIC16C5X BENCHMARK Ý5ÐINPUT/OUTPUT MANIPULATION

This benchmark compares two 8-bit I/O ports P1 and P2. If they are equal, a nine is output as the least significant digit (lower

nibble) of a third Port P3. If Port P1 is greater than Port P2, then Port P2 is output on Port P1. If Port P1 is less than Port P2, then

the most significant digit of Port P1 is copied to the least significant digit of Port P3.

STATUS EQU F3 ; Status register

PORTA EQU F5 ; Serves as Port P3

PORTB EQU F6 ; Serves as Port P2

PORTC EQU F7 ; Serves as Port P1

TEMP EQU F8 ; Temporary register

PORTCMP: MOVLW FFH ; 1/1 Load W with all ones

TRIS PORTB ; 1/1 Tristate PORTB

TRIS PORTC ; 1/1 Tristate PORTC

MOVF PORTB, W ; 1/1 Load W with PORTB input

MOVWF TEMP ; 1/1 Store PORTB input in TEMP

MOVF PORTC, W ; 1/1 Load W with PORTC input

BSF STATUS, 0 ; 1/1 Set carry (bit 0 of STATUS)

SUBWF TEMP ; 1/1 Subtract P1 from P2

CLRW ; 1/1 Clear W

TRIS PORTA ; 1/1 Configure PORTA as output port

BTFSC STATUS, 0 ; 1/1 Test if P2 less than P1

GOTO POS ; 1/2 Branch to POS if test fails

NEG: TRIS PORTC ; 1/1 Change PORTC to output port

MOVF PORTB, W ; 1/1 Load W with PORTB (P2) input

MOVWF PORTC ; 1/1 P2 input data output to PORTC (P1)

GOTO FIN ; 1/2 Branch to FIN

POS: BTFSC STATUS, 2 ; 1/1 Test if subtraction result non-zero

GOTO EQUAL ; 1/2 Branch to EQUAL if test fails

MOVF PORTC, W ; 1/1 Load W with PORTC (P1) input

MOVWF TEMP ; 1/1 P1 input to TEMP

SWAPF TEMP, W ; 1/1 Swap nibbles of TEMP with result to W

MOVWF PORTA ; 1/1 Output result from W to PORTA (P3)

GOTO FIN ; 1/2 Branch to FIN

EQUAL: MOVLW 9 ; 1/1 Digit 9 to W

MOVWF PORTA ; 1/1 Digit 9 output to PORT A (P3)

FIN: ––- ; -/-

25 WORDS (Equivalent to 37 1/2 BYTES)

P1 k P2 21 CYCLES

P1 4 P2 18 CYCLES

P1 l P2 17 CYCLES

http://www.national.com 24

COP8 BENCHMARK Ý6ÐSERIAL INPUT/OUTPUT WITH OFFSET TABLE

This benchmark inputs a sequence of byte couplets, with each couplet consisting of an 8-bit offset address followed by a data

byte. The address is used to access a program memory data table to produce an offset value which is added to the second byte

of the input couplet. The updated data byte is output while the address byte of the next couplet is being input. The benchmark is

written as a subroutine, with the size of the input stream being an input parameter.

The program is written using the MICROWIRE/PLUS fast burst technique, which utilizes a 500 kHz burst clock SK (instruction

cycle clock divided by 2). Each byte of the I/O stream utilizes nine burst clock periods, yielding an effective byte rate of 55.6

kHz.

*** Setting the Microwire busy bit to initialize the Microwire must occur at the same time in each alternating 18 cycle loop for this

program to work. Alternate cycle definitions are as follows:

Even cycle: New address input for table lookup offset value

Previous data result output

Odd cycle: New data input added to offset value from table lookup

New data input returned as output

PORTGD 4 0D4 ; PORTG configuration register

PORTGC 4 0D5 ; PORTG data register

SIOR 4 0E9 ; Serial Input/Output register

CNTRL 4 0EE ; Control register

PSW 4 0EF ; Program Status Word

SIZE 4 0F0 ; Size of data stream

BUSY 4 2 ; Microwire busy bit in PSW register

UPDATE: LD PORTGC, #030 ; 3/3 Configure G4, G5 as outputs SO, SK to

LD PORTGD, #0 ; 3/3 select uwire master mode (SI is G6)

INC A ; 1/1 Increment byte count to compensate for one

X A, SIZE ; 2/3 byte throughput and store result in SIZE

LD B, #CNTRL ; 2/3 Set up B pointer for CNTRL register

LD [B0], #8 ; 2/2 Select uwire master with divide by 2 clock

RC ; 1/1 Initialize carry

LOOP: IFNC ; 1/1 1 1 Test if no carry

JP BYP1 ; 1/3 1 3 Branch if no carry

NOP ; 1/1 1 - NOP for delay compensation for 18 cycle loop

ADD A, SIOR ; 3/4 4 - Add uwire input data to table offset value

SBIT BUSY, [B] ; 1/1 1 - ***Set uwire BUSY bit to start microwire

RC ; 1/1 1 - Reset carry

JP BYP2 ; 1/3 3 - Branch

BYP1: X A, SIOR ; 2/3 - 3 New address input & previous result output

SBIT BUSY, [B] ; 1/1 - 1 ***Set uwire BUSY bit to start microwire

LAID ; 1/3 - 3 Offset table lookup from program memory

SC ; 1/1 - 1 Set carry

BYP2: DRSZ SIZE ; 1/3 3 3 Decrement SIZE and test if result zero

JP LOOP ; 1/3 3 3 Loop back if zero test fails

RET ; 1/5 Return from subroutine

31 BYTES

18 CYCLES per Loop

http://www.national.com25

M68HC05 BENCHMARK Ý6ÐSERIAL INPUT/OUTPUT WITH OFFSET TABLE

This benchmark inputs a sequence of byte couplets, with each couplet consisting of an 8-bit offset address followed by a data

byte. The address is used to access a data table to produce an offset value which is added to the second byte of the input

couplet. The updated data byte is output while the address byte of the next couplet is being input. The benchmark is written as a

subroutine, with the size of the input stream being an input parameter.

The program is written using the SPI with the divide by 2 fast clock option selected, which yields a 1 MHz burst clock SCK

(instruction cycle clock divided by 2). Each byte of the I/O stream utilizes 27 burst clock periods (equivalent to 13.5 ms), yielding

an effective byte rate of 74.1 kHz.

***Setting the SPI system enable bit SPE to initialize the SPI must occur at the same time in each alternating 27 cycle loop for

this program to work. Alternate cycle definitions are as follows:

Even cycle: New address input for table lookup offset value

Previous data result output

Odd cycle: New data input added to offset value from table lookup

New data input returned as output

PORTD EQU $03 ; SPI Interface port

SPCR EQU $0A ; Serial Peripheral Control Register

SPSR EQU $0B ; Serial Peripheral Status Register

SPDR EQU $0C ; Serial Peripheral Data I/O Register

UPDATE: INCA ; 1/3 Increment byte count to compensate for one

STA A, SIZE ; 2/4 byte throughput and store result in SIZE

LDA Ý$040 ; 2/2 Set up data for SPCR register

STA SPCR ; 2/4 Enable SPI master with divide by 2 clock

CLC ; 1/2 Initialize carry

LOOP: BCC BYP1 ; 2/3 2 3 Test and branch if no carry

ADD SPDR ; 2/3 3 - Add SPI input data to table offset value in A

STA SPDR ; 2/4 4 - Output result to SPDR for SPI output

BSET 6, SPCR ; 2/5 5 - ***Turn on SPI system enable bit

CLC ; 1/2 2 - Clear carry

BRA BYP2 ; 2/3 3 - Branch

BYP1: LDA X ; 1/3 - 3 NOP for delay compensation for 27 cycle loop

LDX SPDR ; 2/3 - 3 SPI input data address to index register

BSET 6, SPCR ; 2/5 - 5 ***Turn on SPI system enable bit

LDA X ; 1/3 - 3 Load A with table lookup offset value

SEC ; 1/2 - 2 Set carry

BYP2: DEC SIZE ; 2/5 5 5 Decrement SIZE

BNE LOOP ; 2/3 3 3 Test and branch if result equal to zero

RTS ; 1/6 Return from subroutine

31 BYTES

27 CYCLES per Loop

http://www.national.com 26

80C51 BENCHMARK Ý6ÐSERIAL INPUT/OUTPUT WITH OFFSET TABLE

This benchmark inputs a sequence of byte couplets, with each couplet consisting of an 8-bit offset address followed by a data

byte. The address is used to access a program memory data table to produce an offset value which is added to the second byte

of the input couplet. The updated data byte is output while the address byte of the next couplet is being input. The benchmark is

written as a subroutine, with the size of the input stream being an input parameter.

The program is written using the 8-bit Shift Register Mode 0, with the serial data being either transmitted or received (not both

simultaneously) with the least significant bit first. The clock rate for this mode is 1/12 that of the on-chip oscillator frequency of

12 MHz, which equates to an I/O baud rate of 1 MHz. This is equivalent to the instruction cycle time of 1 ms. In Shift Register

Mode 0, the RXD line is used for both data input and output, while the TXD line is used for the output clock. Consequently, the

terms ‘‘RXD’’ and ‘‘TXD’’ are misleading in this mode of serial I/O.

The program takes 52 instruction cycles per couplet loop, which equates to 26 instruction cycles (26 ms) per byte. This yields an

effective byte rate of 38.5 kHz.

SIZE EQU R2 ;

UPDATE: MOV SIZE, A ; 1/1 Save and increment byte count to

INC SIZE ; 1/1 compensate for one byte throughput

MOV DPTR, #TBLBASE ; 3/2 Set up table starting address

LOOP: CLR C ; 1/1 Clear carry

SINP: MOV SCON, #010H ; 3/2 Initialize SCON for Mode 0 and enable receive

STALL1: JNB SCON.RI, STALL1 ; 3/2 Wait for receiving to finish

JC BYP ; 2/2 Jump if carry

MOV A, SBUF ; 2/1 Read SBUF to get data table address

MOVC A, @A 0 DPTR ; 1/2 Offset value from program memory

data table lookup

SETB C ; 1/1 Set carry

AJMP SINP ; 2/2 Jump to SINP

BYP: ADD A, SBUF ; 2/1 Add input data from SBUF to offset value

MOV SCON, #0 ; 3/2 Reinitialize SCON for Mode and no receive

SOUT: MOV SBUF, A ; 2/1 Result to SBUF starts serial output

STALL2: JNB SCON.TI, STALL2 ; 3/2 Wait for transmitting to finish

CLR SCON.TI ; 2/1 Clear TI (transmit interrupt) flag

DJNZ SIZE, LOOP ; 2/2 Decrement & test SIZE and loop back

if not finished

RET ; 1/2 Return from subroutine

35 BYTES

52 CYCLES per couplet Loop

http://www.national.com27

PIC16C5X BENCHMARK Ý6ÐSERIAL INPUT/OUTPUT WITH OFFSET TABLE

This benchmark inputs a sequence of byte couplets, with each couplet consisting of an 8-bit offset address followed by a data

byte. The address is used to access a program memory data table to produce an offset value which is added to the second byte

of the input couplet. The updated data byte is output while the address byte of the next couplet is being input. The benchmark is

written as a subroutine, with the size of the input stream being an input parameter.

The program is written using a transmit/receive subroutine and takes 214 instruction cycles per couplet loop. This equates to

107 instruction cycles (53.5 ms) per byte, yielding an effective byte rate of 18.7 kHz.

UPDATE: MOVWF SIZE ; 1/1 Save and increment byte couplet count to

INCF SIZE ; 1/1 compensate for one byte throughput

CLRF XRDATA ; 1/1 Clear data register

MOVLW 2 ; 1/1 Set up bit select for input

TRIS PORTB ; 1/1 Tristate bit 2 of PORTB

LOOP: CALL XMITREC ; 1/2 Call XMITREC transmit/receive subroutine

MOVF XRDATA, W ; 1/1 Move offset table address to W

CALL TABLE ; 1/2 Call TABLE (table lookup subroutine)

CALL XMITREC ; 1/2 Call XMITREC subroutine

ADDWF XRDATA ; 1/1 Add offset to received data

DECFSZ SIZE ; 1/1 Decrement SIZE and test if zero

GOTO LOOP ; 1/2 Branch back if not finished

RETLW 0 ; 1/2 Return from subroutine

XMITREC: MOVLW 8 ; 1/1 Set up bit count

MOVWF BITCNT ; 1/1 Bit count to BITCNT

LUP: BCF PORTB, 0 ; 1/1 Reset clock output bit

BCF PORTB, 1 ; 1/1 Reset data output bit

RRF XRDATA ; 1/1 Rotate right through carry

BTFSC F3, 0 ; 1/1 Test carry bit and skip if clear

BSF PORTB, 0 ; 1/1 Set data output bit

BSF PORTB, 1 ; 1/1 Set clock output bit

BCF XRDATA, 7 ; 1/1 Clear upper bit of XRDATA

BTFSC PORTB, 2 ; 1/1 Test receive bit

BSF XRDATA, 7 ; 1/1 Set upper bit of XRDATA if receive bit high

DECFSZ BITCNT ; 1/1 Decrement count and skip if zero

GOTO LUP ; 1/2 Branch back to XMITREC

BCF PORTB, 1 ; 1/1 Reset clock output bit

RETLW 0 ; 1/2 Return from subroutine

TABLE: ADDWF PC ; 1/1 Add offset to PC

RETLW Data 1 ; 1/2 1st entry of data table

RETLW Data 2 ; -/- 2nd entry of data table

–––- –––– ; -/- –––––––-

30 WORDS (Equivalent to 45 BYTES)

214 CYCLES per couplet Loop

http://www.national.com 28

COP8 BENCHMARK Ý7ÐTIMEKEEPING

This timekeeping benchmark is interrupt driven, using 5 ms. timer cycle interrupts. The program emulates a real time clock,

keeping track of hours, minutes, and seconds in packed BCD format.

TIMER SETUP ROUTINE:

LO 4 088 ; 5 ms low component for timer

HI 4 013 ; 5 ms high component for timer

TMRLO 4 0EA ; Timer low byte

TMRHI 4 0EB ; Timer high byte

TAULO 4 0EC ; Autoreload register low byte

TAUHI 4 0ED ; Autoreload register high byte

CNTRL 4 0EE ; CNTRL control register

PSW 4 0EF ; PSW control register

CNTR 4 0F0 ; 5 ms counter

HOUR 4 0F1 ; Hour register (packed BCD format)

MIN 4 0F2 ; Minute register (packed BCD format)

SEC 4 0F3 ; Second register (packed BCD format)

TEMP 4 0F4 ; Temporary register

TSETUP: LD B, #TAULO ; 2/3 Load B pointer with address of low autoreload

LD [B0], #LO ; 2/3 Load low autoreload reg with 5 ms component

LD [B0], #HI ; 2/2 Load high autoreload reg with 5 ms component

LD [B0], #080 ; 2/2 Set up timer PWM mode in CNTRL register

LD [B0], #011 ; 2/2 Set up timer interrupt in PSW register

LD [B0], #200 ; 2/2 Initialize 5 ms counter to count one second

LD [B0], #1 ; 2/2 Initialize HOUR to 1

LD [B0], #0 ; 2/2 Initialize MIN to 0

LD [B], #0 ; 2/2 Initialize SEC to 0

SBIT 4, CNTRL ; 3/4 Start timer

STALL: JP STALL ; -/- Loop back on self to simulate main program

21 BYTES

http://www.national.com29

COP8 BENCHMARK Ý7ÐTIMEKEEPING (Continued)

TIMER INTERRUPT SERVICE ROUTINE:

TIMEKEEP: DRSZ CNTR ; 1/3 Decrement 5 ms counter

RETI ; 1/5 Return from timer interrupt

LD CNTR, #200 ; 2/3 Reload 5 ms counter

LD B, #TEMP ; 2/3 Load B pointer with address of TEMP

X A, [B-] ; 1/2 Save A in TEMP

JSR INCBCD ; 2/5 Call INCBCD subroutine to increment SEC

RETI ; 1/5 Return from timer interrupt

JSR INCBCD ; 2/5 Call INCBCD subroutine to increment MIN

RETI ; 1/5 Return from timer interrupt

SC ; 1/1 Set carry for BCD increment of HOUR

LD A, #066 ; 2/2 Set up BCD increment

ADC A, [B] ; 1/1 Increment A in BCD

DCOR ; 1/1 Decimal correct result of BCD increment

X A, [B] ; 1/1 Store result in HOUR

IFEQ A, #012 ; 2/2 Test if result was BCD 13 (previous result 12)

LD [B], #1 ; 2/2 Reset HOUR from BCD 13 to BCD 1

LD A, TEMP ; 2/3 Restore A from TEMP

RETI ; 1/5 Return from timer interrupt

INCBCD: SC ; 1/1 Set carry for BCD increment

LD A, #066 ; 2/2 Set up BCD increment

ADC A, [B] ; 1/1 Increment A in BCD

DCOR ; 1/1 Decimal correct result of BCD increment

X A, [B] ; 1/1 Store result

IFEQ A, #059 ; 2/2 Test if result was BCD 60 (previous result 59)

JP RESTORE ; 1/3 Jump to RESTORE if test successful

RET ; 1/5 Return from subroutine

RESTORE: LD [B-], #0 ; 2/3 Reset to zero

RETSK ; 1/5 Return from subroutine and skip

39 BYTES

TOTAL: 60 BYTES

80 CYCLES*

*Case where 12:59:59 is advancing to 1:00:00

http://www.national.com 30

M68HC05 BENCHMARK Ý7ÐTIMEKEEPING

This timekeeping benchmark is interrupt driven, using the timer output compare interrupt (in conjunction with the 131.072 ms

timer cycle). The program emulates a real time clock, keeping track of hours, minutes, and seconds in packed BCD format.

The timer clock is equivalent to the instruction cycle clock (2 MHz) divided by 4, yielding a timer clock period of 2 ms. The 16-bit

free running timer has a maximum of 65536 counts, which at 2 ms per count equates to a timer cycle of 131.072 ms. One second

divided by the timer cycle (1,000,000 divided by 131,072) yields 7 cycles with a residual of 82.496 ms. This residual equates to

41248 timer counts, which represents the value (A120 in hex) added to the output compare register during each timer interrupt

service.

TIMER SETUP ROUTINE:

OCIE EQU 6 ; Output compare interrupt bit in TCR (timer control reg)

CNTR EQU 10 ;

TEMP EQU 11 ;

ATEMP EQU 12 ;

SEC EQU 20 ;

MIN EQU 21 ;

HOUR EQU 22 ;

TSETUP: CLR SEC ; 2/5 Initialize SEC to 0

CLR MIN ; 2/5 Initialize MIN to 0

CLR HOUR ; 2/5 Clear HOUR to 1

INC HOUR ; 2/5 Initialize HOUR to 1

LDA #7 ; 2/2 Load counter initialization value

STA CNTR ; 2/4 Initialize timer loop counter

BSET OCIE, TCR ; 2/5 Enable Output Compare Interrupt

STALL: JMP STALL ; -/- Loop back on self to simulate main program

14 BYTES

http://www.national.com31

M68HC05 BENCHMARK Ý7ÐTIMEKEEPING (Continued)

TIMER INTERRUPT SERVICE ROUTINE: ; OCMP 4 OUTPUT COMPARE

TIMEKEEP: DEC CNTR ; 2/5 Decrement 5 ms counter

BNE FINI ; 2/3 Branch if result zero

STA TEMP ; 2/4 Save A in TEMP

LDA #7 ; 2/2 Load A with counter reload value

STA CNTR ; 2/4 Reload timer loop counter

LDA OCMPLO ; 2/3 Read OCMPLO

ADD #$20 ; 2/2 ADD low byte of offset count

STA ATEMP ; 2/4 Store in ATEMP until OCMPHI is updated

LDA OCMPHI ; 2/3 Read OCMPHI

ADC #$A1 ; 2/2 Add high byte of offset count

STA OCMPHI ; 2/4 Update OCMPHI with new offset

LDA TSR ; 2/3 Read TSR to clear OCF flag

LDA ATEMP ; 2/3 Retrieve update for OCMPLO from ATEMP

STA OCMPLO ; 2/4 Update OCMPLO with new offset

LDX #20 ; 2/2 Load index register with address of SEC

JSR INCBCD ; 2/5 Call INCBCD subroutine

BCC FIN ; 2/3 Branch if carry clear

JSR INCBCD ; 2/5 Call INCBCD subroutine

BCC FIN ; 2/3 Branch if carry clear

JSR BCDFIX ; 2/5 Call BCDFIX subroutine

CMP A, #$013 ; 2/2 Compare A with BCD 13

BNE FIN ; 2/3 Branch if not equal

CLR X ; 1/5 Clear result

INC X ; 1/5 Set HOUR to 1

FIN: LDA TEMP ; 2/3 Restore A from TEMP

FINI: RTI ; 1/9 Return from interrupt

INCBCD: JSR BCDFIX ; 2/5 Call BCDFIX subroutine

CMP A, #$060 ; 2/2 Compare A with BCD 60

BNE BYP ; 2/3 Branch if not equal

CLR X ; 1/5 Clear result (SEC or MIN) to zero

SEC ; 1/2 Set carry

INCX ; 1/3 Increment index

BYP: RTS ; 1/5 Return from subroutine

BCDFIX: LDA X ; 1/3 Load A with operand (SEC or MIN)

ADD #1 ; 2/2 Add 1 to A

STA X ; 1/4 Store A in result

AND A, #$0F ; 2/2 Extract low order BCD digit

CMP A, #10 ; 2/2 Compare result with 10

BNE BYPASS ; 2/3 Branch if not equal

LDA #$010 ; 2/2 Load A with BCD 10

STA X ; 1/4 Store BCD 10 in result

BYPASS: RTS ; 1/5 Return from subroutine

*Case where 12:59:59 is advancing to 1:00:00 73 BYTES

TOTAL: 87 BYTES

218 CYCLES*

http://www.national.com 32

80C51 BENCHMARK Ý7ÐTIMEKEEPING

This timekeeping benchmark is interrupt driven, using 250 ms timer cycle interrupts. The program emulates a real time clock,

keeping track of hours, minutes, and seconds in packed BCD format.

TIMER SETUP ROUTINE:

CNTR1 EQU R2 ;

CNTR2 EQU R3 ;

TEMP EQU R4 ;

SEC EQU 20 ;

MIN EQU 21 ;

HOUR EQU 22 ;

TSETUP: MOV CNTR1, #20 ; 2/1 Initialize 250 ms counter to 20

MOV CNTR2, #200 ; 2/1 Initialize 5 ms counter to 200

MOV SEC, #0 ; 2/1 Initialize SEC to 0

MOV MIN, #0 ; 2/1 Initialize MIN to 0

MOV HOUR, #1 ; 2/1 Initialize HOUR to 1

MOV TMOD, #02H ; 3/2 Select Timer 0, Mode 2

MOV TH0, #-250 ; 3/2 Setup 250 ms delay for Timer 0

SETB TR0 ; 2/1 Start Timer 0

MOV IE, #82H ; 3/2 Enable Timer 0 interrupt

LOOP: SJMP LOOP ; -/- Loop back on self to simulate main program

21 BYTES

http://www.national.com33

80C51 BENCHMARK Ý7ÐTIMEKEEPING (Continued)

TIMER INTERRUPT SERVICE ROUTINE:

TIMEKEEP: DJNE CNTR1, FIN ; 2/2 Decrement 250 ms counter and jump if not zero

MOV CNTR1, #20 ; 2/1 Reload 250 ms counter

DJNE CNTR2, FIN ; 2/2 Decrement 5 ms counter and jump if not zero

MOV CNTR2, #200 ; 2/1 Reload 5 ms counter

MOV TEMP, A ; 1/1 Save A in TEMP

MOV R0, #20 ; 2/1 Load R0 with address of SEC

ACALL INCBCD ; 2/2 Call INCBCD subroutine

JNC FIN ; 2/2 Jump if no carry

ACALL INCBCD ; 2/2 Call INCBCD subroutine

JNC FIN ; 2/2 Jump if no carry

MOV A, @R0 ; 1/1 Move HOUR to A

CLR C ; 1/1 Initialize carry

ADD A, #1 ; 2/1 Add 1 to A

DA A ; 1/1 Decimal adjust A for BCD correction

MOV @R0, A ; 1/1 Return A to HOUR

CJNE A, #013H, FIN ; 3/2 Compare and jump if hour not equal to 13

MOV @R0, #1 ; 2/1 Correct HOUR to 1

FIN: MOV A, TEMP ; 1/1 Restore A from TEMP

RETI ; 1/2 Return from timer interrupt

INCBCD: MOV A, @R0 ; 1/1 Move operand to A (SEC or MIN)

ADD A, #1 ; 2/1 Add 1 to A

DA A ; 1/1 Decimal adjust A for BCD correction

MOV @R0, A ; 1/1 Return A to result register (SEC or MIN)

CJNE A, #060H, BYPASS; 3/2 Compare and jump if result not equal to 60

MOV @R0, #0 ; 2/1 Correct result to zero (SEC or MIN)

SETB C ; 1/1 Set carry to indicate corrected result

BYPASS: INC R0 ; 1/1 Increment indirect address data pointer

RET ; 1/2 Return from subroutine

45 BYTES

TOTAL: 66 BYTES

49 CYCLES*

*Case where 12:59:59 is advancing to 1:00:00

http://www.national.com 34

PIC16C5X BENCHMARK Ý7ÐTIMEKEEPING

This timekeeping benchmark uses a pseudo software 5 ms delay loop as the basic core timing for emulating a real time clock.

Note that the PIC16C5X does not have any hardware interrupts. Consequently, the program must keep track of when the

counter RTCC overflows for real time applications. The RTTC F1 file register is only 8 bits, but with an 8-bit prescaler selected

(1 : 256 RTTC rate), the RTTC emulates a 16-bit timer. The program keeps track of hours, minutes, and seconds in packed BCD

format.

5 ms timing analysis: 0.5 ms (instruction cycle time) c 256 (prescaler) e 128 ms RTTC increment rate

5 ms emulation: 5000/128 e 39 cycles a residue of 8 ms

RTCC EQU 1 ; Register File F1

STATUS EQU 3 ; Reg File F3

TEMP EQU 20 ; Reg File F20

SEC EQU 21 ; Reg File F21

MIN EQU 22 ; Reg File F22

HOUR EQU 23 ; Reg File F23

CNTR EQU 24 ; Reg File F24

TIMEKEEP: MOVLW 7 ; 1/1 Set up data for option register

OPTION ; 1/1 Select a 1:256 prescaler with RTTC

CLRF SEC ; 1/1 Initialize SEC to 0

CLRF MIN ; 1/1 Initialize MIN to 0

CLRF HOUR ; 1/1 Clear HOUR

INCF HOUR ; 1/1 Initialize HOUR TO 1

MOVLW 217 ; 1/1 256–39 4 217 (RTCC counter increments)

MOVWF RTCC ; 1/1 Set up RTCC for 39 counts until overflow

STALL: GOTO STALL ; -/- Loop back on self to simulate main program

8 WORDS

–––

–––

Main program must return within 5 ms to sense exactly when RTCC counter overflows ! ! !

–––

–––

http://www.national.com35

PIC16C5X BENCHMARK Ý7ÐTIMEKEEPING (Continued)

TSTOVFLW: BTFSC RTCC, 7 ; 1/1 Test if RTCC has overflowed

GOTO TSTOVFLW ; 1/2 Loop back if test fails

MOVLW 217 ; 1/1 256–39 4 217

MOVWF RTCC ; 1/1 Set up RTCC for 39 counts until overflow

DECFSZ CNTR ; 1/1 Decrement CNTR and test for zero result

GOTO STALL ; 1/2 Go to MAIN program

MOVLW 200 ; 1/1 Set up 200 (200 c 5 ms 4 1 sec)

MOVWF CNTR ; 1/1 Initialize 5 ms counter

MOVLW SEC ; 1/1 Address of SEC to W

MOVWF F4 ; 1/1 Address of SEC to F4

CALL INCBCD ; 1/2 Call INCBCD subroutine to increment SEC

BTFSS F3, 2 ; 1/1 Test and skip if zero result (Z is F3 bit 2)

GOTO STALL ; 1/2 Go to MAIN program

CALL INCBCD ; 1/2 Call INCBCD subroutine to increment MIN

BTFSS F3, 2 ; 1/1 Test and skip if zero result

GOTO STALL ; 1/2 Go to MAIN program

INCF HOUR ; 1/1 Increment hour

MOVLW 10 ; 1/1 Move 10 to W

SUBWF HOUR, W ; 1/1 HOUR - 10 to W

MOVLW 6 ; 1/1 Move 6 to W

BTFSC F3, 2 ; 1/1 Test if subtraction result not zero

ADDWF HOUR ; 1/1 Add 6 to HOUR for BCD correction

MOVLW 013H ; 1/1 Move BCD 13 to W

SUBWF HOUR, W ; 1/1 HOUR - BCD 13 to W

MOVLW 1 ; 1/1 Move 1 to W

BTFSC F3, 2 ; 1/1 Test and skip if subtraction result not zero

MOVWF HOUR ; 1/1 Move 1 to hour if subtraction result zero

GOTO STALL ; 1/2 Go to MAIN program

INCBCD: INCF F0 ; 1/1 Increment BCD data operand

MOVF F0, W ; 1/1 Move data to W

MOVWF TEMP ; 1/1 Move data to TEMP

MOVLW 0FH ; 1/1 Move hex 0F to W

ANDWF TEMP, W ; 1/1 Extract low order BCD digit

MOVLW 10 ; 1/1 Move 10 to W

BSF F3, 0 ; 1/1 Set carry (reset borrow for subtraction)

SUBWF TEMP, W ; 1/1 TEMP - 10 to TEMP

MOVLW 6 ; 1/1 Move 6 to W

BTFSC F3, 2 ; 1/1 Test if subtraction result zero (Z is F3 bit 2)

ADDWF F0 ; 1/1 Add 6 to correct BCD operand if test successful

MOVLW 060H ; 1/1 Move BCD 60 to W

BSF F3, 0 ; 1/1 Set carry (reset borrow for subtraction)

SUBWF F0, W ; 1/1 BCD operand - BCD 60 to W

BTFSC F3, 2 ; 1/1 Test if subtraction result zero

CLRF F0 ; 1/1 Reset BCD operand to zero if test successful

INCF F4 ; 1/1 Increment indirect address pointer

RETLW 0 ; 1/2 Return from subroutine

*Case where 12:59:59 is advancing to 1:00:00 46 WORDS

TOTAL: 54 WORDS (Equivalent to 81 BYTES)

69 CYCLES*

http://www.national.com 36

COP8 BENCHMARK Ý8ÐSWITCH ACTIVATED FIVE SECOND LED

This benchmark samples a switch input to activate a five second output for turning on an LED. The switch is debounced with a

50 ms delay both on opening and closure. Once activated, the switch will turn on an LED output for five seconds and then turn it

off, regardless of whether or not the switch is still activated. Once the switch is turned off, the procedure is repeated. Both the

switch input and the LED output are low true.

CNTR1 4 0F0 ; Three Counters in registers 0F0, 0F1, 0F2

CNTR2 4 0F1 ;

CNTR3 4 0F2 ;

PORTLD 4 0D1 ; PORTL Data register

PORTLC 4 0D2 ; PORTL Configuration register

PORTLI 4 0D3 ; PORTL Input address

LED5: LD B, #PORTLD ; 2/3 PORTL data register address to B pointer

LD [B0], #0F0 ; 2/2 Set upper 4 bits of data register for low true output

LD [B0], #0F0 ; 2/2 Configure L port for upper nibble output and

; lower nibble input (incr B ptr to port input addr)

WSWON: IFBIT 0, [B] ; 1/1 Sample input switch (low true)

JP WSWON ; 1/3 Wait for Switch ON

SWON: JSR DLY50 ; 2/5 Debounce 50 ms

RBIT 7, PORTLD ; 3/4 Turn on LED (low true)

LD CNTR1, #100 ; 2/3 Call DLY50 50 ms subroutine 100 times

SEC5: JSR DLY50 ; 2/5 to get 5 second LED ON time

DRSZ CNTR1 ; 1/3 Decrement CNTR1 and test for zero result

JP SEC5 ; 1/3 Loop back until count finished

SBIT 7, PORTLD ; 3/4 Turn off LED (low true)

WSWOFF: IFBIT 0, [B] ; 1/1 Sample input switch (low true)

JP SWOFF ; 1/3 Jump to Switch OFF

JP WSWOFF ; 1/3 Wait for Switch OFF

SOFF: JSR DLY50 ; 2/5 Debounce 50 ms

JP WSWON ; 1/3 Repeat procedure (wait for Switch ON)

DLY50: LD CNTR2, #33 ; 2/3 Set up outer loop count

LD CNTR3, #118 ; 2/3 Set up initial inner loop count

LOOP: DRSZ CNTR3 ; 1/3 Decrement inner loop count and test for zero

JP LOOP ; 1/3 Loop back until inner count finished

DRSZ CNTR2 ; 1/3 Decrement outer loop count and test for zero

JP LOOP ; 1/3 Loop back until outer count finished

RET ; 1/5 Return from subroutine

*Cycle times without wait loops37 BYTES

76 CYCLES*

DLY50 TIMING ANALYSIS: CYCLES

Initial (2 X 3) 6

1 x (117 x 6 0 1 x 10)712

32 x (255 x 6 0 1 x 10)49280

Terminating (5 - 2) 3

TOTAL 50001 Equivalent to 50.001 ms @ 1 ms per cycle

http://www.national.com37

M68HC05 BENCHMARK Ý8ÐSWITCH ACTIVATED FIVE SECOND LED

This benchmark samples a switch input to activate a five second output for turning on an LED. The switch is debounced with a

50 ms delay both on opening and closure. Once activated, the switch will turn on an LED output for five seconds and then turn it

off, regardless of whether or not the switch is still activated. Once the switch is turned off, the procedure is repeated. Both the

switch input and the LED output are low true.

PORTB EQU $01 ;

DDRB EQU $05 ;

TEMP EQU $9F ;

LED5: LDA #$F0 ; 2/2 Output data and configuration to A

STA PORTB ; 2/4 Set upper 4 bits of PORTB for low true output

STA DDRB ; 2/4 Configure PORTB for upper nibble output

; and lower nibble input

WSWON: BRSET 0, PORTB, WSWON ; 3/5 Sample input switch (low true)

SWON: JSR DLY50 ; 3/6 Debounce 50 ms

BCLR 7, PORTB ; 2/5 Turn on LED (low true)

LDA #100 ; 2/2 Call DLY50 50 ms subroutine 100 times

SEC5: JSR DLY50 ; 3/6 to get 5 second LED ON time

DECA ; 1/3 Decrement count

BNE SEC5 ; 2/3 Loop back until count finished

BSET 7, PORTB ; 2/5 Turn off LED (low true)

WSWOFF: BRCLR 0, PORTB, WSWOFF; 3/5 Sample input switch (low true)

SWOFF: JSR DLY50 ; 3/6 Debounce 50 ms

BRA WSWON ; 2/3 Repeat procedure (wait for Switch ON)

DLY50: STA TEMP ; 2/4 Save A

LDA #65 ; 2/2 Set up outer loop count

LDX #226 ; 2/2 Set up inner loop count

LOOP: DECX ; 1/3 Decrement inner loop count

BNE LOOP ; 2/3 Loop back if non-zero

DECA ; 1/3 Decrement outer loop count

BNE LOOP ; 2/3 Loop back if non-zero

LDA TEMP ; 2/3 Restore A

RTS ; 1/6 Return from subroutine

47 BYTES

88 CYCLES*

*Cycle times without wait loops

DLY50 TIMING ANALYSIS: CYCLES

Initial (4 0 2 0 2) 8

1 x (225 x 6 0 1 x 11) 1361

64 x (255 x 6 0 1 x 11) 98624

Terminating (3 0 6 - 1) 8

TOTAL 100001 Equivalent to 50.000 ms @ 0.5 ms per cycle

http://www.national.com 38

80C51 BENCHMARK Ý8ÐSWITCH ACTIVATED FIVE SECOND LED

This benchmark samples a switch input to activate a five second output for turning on an LED. The switch is debounced with a

50 ms delay both on opening and closure. Once activated, the switch will turn on an LED output for five seconds and then turn it

off, regardless of whether or not the switch is still activated. Once the switch is turned off, the procedure is repeated. Both the

switch input and the LED output are low true.

LED5: MOV P1, #00F ; 3/2 Configure lower 4 bits of port P1 for input

WSWON: JB P1.0, WSWON ; 3/2 Sample input switch (low true)

SWON: ACALL DLY50 ; 2/2 Debounce 50 ms

CLR P1.7 ; 2/1 Turn on LED (low true)

MOV R2, #100 ; 2/1 Call DLY50 50 ms subroutine 100 times

SEC5: ACALL DLY50 ; 2/2 to get 5 second LED ON time

DJNZ R2, SEC5 ; 2/2 Decrement count and test and test for zero result

SETB P1.7 ; 2/1 Turn off LED (low true)

WSWOFF: JNB P1.0, WSWOFF ; 3/2 Sample input switch (low true)

SWOFF: ACALL DLY50 ; 2/2 Debounce 50 ms

AJMP WSWON ; 2/2 Repeat procedure (wait for Switch ON)

DLY50: MOV R3, #98 ; 2/1 Set up outer loop count

MOV R4, #68 ; 2/1 Set up inner loop count

LOOP: DJNZ R4, LOOP ; 2/2 Decrement inner loop count and test for zero

DJNZ R3, LOOP ; 2/2 Decrement outer loop count and test for zero

RET ; 1/2 Return from subroutine

34 BYTES

27 CYCLES*

*Cycle times without wait loops

DLY50 TIMING ANALYSIS: CYCLES

INITIAL (2 x 1) 2

1 x (67 x 2 0 1 x 4) 138

97 x (255 x 2 0 1 x 4)49858

Terminating (2) 2

TOTAL 50000 Equivalent to 50.000 ms @ 1 ms per cycle

http://www.national.com39

PIC16C5X BENCHMARK Ý8ÐSWITCH ACTIVATED FIVE SECOND LED

This benchmark samples a switch input to activate a five second output for turning on an LED. The switch is debounced with

a 50 ms delay both on opening and closure. Once activated, the switch will turn on an LED output for five seconds and then

turn it off, regardless of whether or not the switch is still activated. Once the switch is turned off, the procedure is repeated.

Both the switch input and the LED output are low true.

PORTB EQU 6 ; Register File F6

CNTR EQU 21 ; Reg File F21

CNTR2 EQU 22 ; Reg File F22

CNTR3 EQU 23 ; Reg File F23

LED5: MOVLW F0H ; 1/1 Output data to W

MOVWF PORTB ; 1/1 Set upper 4 bits of port for low true output

MOVLW 0FH ; 1/1 Tri-state control to W

TRIS PORTB ; 1/1 Tri-state lower 4 bits of port for input

WSWON: BTFSC PORTB, 0 ; 1/1 Sample input switch (low true)

GOTO WSWON ; 1/2 Wait for Switch ON

SWON: CALL DLY50 ; 1/2 Debounce 50 ms

BCF PORTB, 7 ; 1/1 Turn on LED (low true)

MOVLW 100 ; 1/1 Five sec count to W

MOVWF CNTR ; 1/1 Call DLY50 50 ms subroutine 100 times

SEC5: CALL DLY50 ; 1/2 to get 5 second LED ON time

DECFSZ CNTR ; 1/1 Decrement CNTR1 and test for zero result

GOTO SEC5 ; 1/2 Loop back until count finished

BSF PORTB, 7 ; 1/1 Turn off LED (low true)

WSWOFF: BTFSS PORTB, 0 ; 1/1 Sample input switch (low true)

GOTO WSWOFF ; 1/2 Wait for Switch OFF

SWOFF: CALL DLY50 ; 1/2 Debounce 50 ms

GOTO WSWON ; 1/2 Repeat procedure (wait for Switch ON)

DLY50: MOVLW 130 ; 1/1 Outer loop count to W

MOVWF CNTR2 ; 1/1 Set up outer loop count

MOVLW 221 ; 1/1 Inner loop count to W

MOVWF CNTR3 ; 1/1 Set up inner loop count

LOOP: DECFSZ CNTR3 ; 1/1 Decrement inner loop count and test for zero

GOTO LOOP ; 1/2 Loop back until inner count finished

DECFSZ CNTR2 ; 1/1 Decrement outer loop count and test for zero

GOTO LOOP ; 1/2 Loop back until outer count finished

RETLW 0 ; 1/2 Return from subroutine

27 WORDS (Equivalent to 40 1/2 BYTES)

Cycle times without wait loops 37 CYCLES

DLY50 TIMING ANALYSIS: CYCLES

Initial (4 x 1) 4

1 x (220 x 3 0 1 x 5) 665

129 x (255 x 3 0 1 x 5) 99330

Terminating (2 - 1) 1

TOTAL 100000 Equivalent to 50.000 ms @ 0.5 ms/cycle

http://www.national.com 40

6.0 SUMMARY OF RESULTS (Both Positive (a) and Negative (b)

Benchmark Ý1 - BLOCK TRANSFER

COP8 Two indirect data pointers (a); IFBNE instruction (a)

M68HC05 Indexed addressing (a); Decrementing index to zero (a)

80C51 Two indirect data pointers (a)

PIC16C5X Only one indirect data pointer (b)

Benchmark Ý2 - BINARY ADDITION

COP8 Two indirect data pointers (a); IFBNE instruction (a)

M68HC05 Indexed addressing with offset (a)

80C51 Two indirect data pointers (a)

PIC16C5X Only one indirect data pointer (b)

Benchmark Ý3 - BCD SUBTRACTION

COP8 Two indirect data pointers (a); IFBNE instruction (a); DCOR (decimal correct) instruction (a)

M68HC05 Indexed addressing with offset (a); No BCD correction instruction (b)

80C51 Two indirect data pointers (a); DA instruction (BCD correction) only for add, not subtract (b)

PIC16C5X Only one indirect data pointer (b); No BCD correction instruction (b)

Benchmark Ý4 - TABLE SEARCH

COP8 LAID instruction (a); Lack of IFNE comparison instruction (b); RETSK instruction (a)

M68HC05 Indexed addressing (a); Lack of loading immediate values directly to memory (b)

80C51 16-bit DPTR (data pointer (a); MOV A @A a DPTR instruction (a); CJNE instruction combine comparison

and branch (a)

PIC16C5X RETLW instruction (a)

Benchmark Ý5 - INPUT/OUTPUT MANIPULATION

COP8 I/O Port Configuration registers for individual bit control (a)

M68HC05 I/O Port Data Direction reg’s for individual bit control (a); No SWAP to reverse nibbles (b)

80C51 Distinction between tristating for input versus output of 1 (?b); No configuration register (b)

PIC16C5X TRIS (tristate instruction) (a); No configuration register (b)

Benchmark Ý6 - SERIAL INPUT/OUTPUT WITH OFFSET TABLE

COP8 Microwire/Plus for serial I/O (a); LAID instruction (a)

M68HC05 SPI (Serial Peripheral Interface) for serial I/O (a)

80C51 Serial I/O with 8-bit shift register mode cannot input and output simultaneously (b); MOV A, @A a DPTR

instruction (a)

PIC16C5X Lack of any dedicated serial I/O (b); RETLW instruction (a)

Benchmark Ý7 - TIMEKEEPING

COP8 Timer autoreload with interrupt very flexible (a)

M68HC05 Timer Output Compare interrupt structuring for real time cumbersome and confusing (b)

80C51 Lack of 16-bit timer autoreload (b)

PIC16C5X OPTION instruction to select timer prescaler (a); Lack of timer interrupt (b); No timer autoreload (b)

Benchmark Ý8 - SWITCH ACTIVATED 5 SEC LED

COP8 Lack of bit testing for bit clear (b)

M68HC05 Bit testing for both set and clear (a); Versatility of index register (a)

80C51 DJNZ instruction combines testing and branch (a); JB and JNB instructions combine bit testing and

branch (a)

PIC16C5X Bit testing for both set and clear (a)

TABLE I. The Benchmark Results: Code Size Efficiency in Bytes

BENCHMARK BYTES
National Motorola Intel Microchip

COP8 68HC05 80C51 PIC16C5X

Five Byte Block Move 7 9 11 21

Four Byte Binary Addition 10 13 14 28 (/2

Four Byte BCD Subtraction 25 54 39 82 (/2

Three Byte Table Search 42 40 29 51

Input/Output Manipulation 26 42 33 37 (/2

Serial I/O with Offset Table 31 31 35 45

Timekeeping 60 87 66 81

Switch Activated 5s LED 37 47 34 40 (/2

TOTAL 238 323 261 387

RATIO 1 1.36 1.10 1.63

http://www.national.com41

A
N

-1
0
4
2

C
O

P
8

In
s
tr

u
c
ti
o
n

S
e
t
P
e
rf

o
rm

a
n
c
e

E
v
a
lu

a
ti
o
n

TABLE II. The Benchmark Results: Code Execution Time Efficiency in Cycles and Microseconds

BENCHMARK CYCLE/ms
National Motorola Intel Microchip

COP8 68HC05 80C51 PIC16C5X

Five Byte Block Move 47/47 76/38 32/32 62/31

Four Byte Binary Addition 48/48 85/42.5 33/33 62/31

Four Byte BCD Subtraction 97/97 567/283.5 91/91 274/137

Three Byte Table Search (Note 2) 77/77 80/40 30/30 52/26

Input/Output Manipulation (Note 3) 24/24 53/26.5 17/17 21/10.5

Serial I/O with Offset Table (Note 1) 36/36 54/27 52/52 214/107

Timekeeping (Note 5) 80/80 218/109 49/49 69/34.5

Switch Activated 5s LED (Note 4) 76/76 88/44 27/27 37/18.5

TOTAL 485/485 1221/610.5 331/331 791/395.5

RATIO 1/1 2.53/1.26 0.68/0.68 1.63/0.82

Note 1: Couplet (address, data) loop time: address and data input, updated data output.

Note 2: First search iteration falls with 1st byte mismatch, second search iteration successful.

Note 3: Case where P1 k P2.

Note 4: Cycle times without wait loops.

Note 5: Case where 12:59:59 is advancing to 1:00:00.

7.0 CONCLUSIONS

This report provides a detailed study of the instruction sets of popular 8-bit single chip microcontrollers. Eight benchmark

programs, demonstrating data movement, arithmetic operations, I/O manipulation, and timekeeping, were coded for four

current microcontrollers.

In terms of byte efficiency, the COP8 from National, uses 8% less program space than its nearest competitor, the Intel

80C51. The COP8 uses, 26% less program space than Motorola 68HC05, 39% less program space than the Microchip

PIC16C5X. Code efficiency is important because it enables designers to pack more on-chip functionality into less program

memory space. Selecting a microcontroller with smaller program memory size translates into lower system costs, and the

added security of knowing that more code can be packed into the microcontroller.

In terms of code execution, Intel’s 80C51 is the fastest, while COP8 executes these benchmark routines faster than

Motorola 68HC05 and Microchip PIC16C5X.

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: a49 (0) 180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2308
Arlington, TX 76017 Email: europe.support@nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: a49 (0) 180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: a49 (0) 180-532 78 32 Hong Kong

Fran3ais Tel: a49 (0) 180-532 93 58 Tel: (852) 2737-1600
http://www.national.com Italiano Tel: a49 (0) 180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

