
TL/F/11784

A
rc

h
ite

c
tu

ra
l
C

h
o
ic

e
s

fo
r
N

e
tw

o
rk

P
e
rfo

rm
a
n
c
e

A
N

-8
7
3

National Semiconductor
Application Note 873
Larry Wakeman
John Von Voros
February 1993

Architectural Choices
for Network Performance

TABLE OF CONTENTS

INTRODUCTION

NETWORK PERFORMANCE

Defining Network Performance

Where’s the Bottleneck?

Measuring Performance

ARCHITECTURAL OVERVIEW

Hardware Interfaces

I/O Mapped Slave

Shared RAM Slave

Simple Bus Master

Buffered Bus Master

Intelligent Bus Master

Buffer Management Architectures

Transmit Requirements

Receive Requirements

Operating System Requirements

Hardware Packet Buffering Schemes

Simple DMA Buffering

Buffer Ring DMA

Linked List Packet Handling

SYSTEM APPLICATIONS

PCÉ/PC-ATÉ Client Adapter

PC (ISA Bus) Server Adapter

PC Motherboard Applications

PS/2É and EISA Server Adapter

PC System Bus (CPU Bus)

PC System I/O Bus Design

CONCLUSION

INTRODUCTION

Recently the popularity of networking has grown, and as a

result virtually any type of computer system and many pe-

ripherals are incorporating facilities to connect to a network.

With the integration of the network function onto just a few

IC’s, the design of the interface circuitry to the network’s

physical interface is becoming simpler. However, the design

of the interface can be implemented many different ways,

with varying tradeoffs.

The basic design tradeoffs for interfacing a system to Ether-

net are fairly simple:

1. Performance. Generally this is measured in terms of the

amount of data transmitted and received in a given time

period. The more data the better. As shown in Figure 1,

the purpose of a Network interface is simply to: Move

Data. The interface should be as fast and efficient as

possible.

TL/F/11784–1

FIGURE 1. The Success of a Network

Interface is it’s Ability to Quickly, and

Safely Move Data to/from the User

2. Low Cost. Obviously the user would like to pay as little

as possible for the network connection.

3. Compatibility. Both software and hardware compatibility

to established industry standards is crucial. In the PC

market, this means the ability to work with standard soft-

ware (i.e., Novell’s NetWareÉ and Microsoft’s Windows

for WorkgroupsÉ) and hardware. In the non-PC market,

interoperability with other network components is the key

to successful integration into an existing network.

Unfortunately, these simple goals can lead to choosing dra-

matically different designs for the Ethernet interface subsys-

tem. The diversity of computer architectures (both hardware

and software) requires a unique balance of all of these crite-

ria.

This paper will concentrate on the application of Ethernet in

PC type computer systems (i.e., Intel 286, 386, 486 CPUs).

Both hardware and software issues will be addressed as

they pertain to performance, cost, and compatibility. The

considerations presented here are applicable to other com-

puter systems as well.

NETWORK PERFORMANCE

Obviously one of the major tradeoff’s in developing a net-

work interface solution is performance versus cost.

But: What is network performance?

Defining Network Performance

Network performance is a measure of the ability of a partic-

ular network configuration to move data from one computer

to another. Typically, this data movement occurs from a

server to a workstation or client. Unfortunately, there is no

standard method of measuring and benchmarking perform-

ance, due to the multitude of network and node configura-

tions. We shall dissect the components of performance in

an attempt to describe the roles that hardware and software

play in a typical network.

SONICTM is a trademark of National Semiconductor Corporation.

PCÉ/PC-ATÉ and PS/2É are registered trademarks of International Business Machines Corp.

Microsoft Windows for WorkgroupsÉ is a registered trademark of Microsoft Corporation.

NetWareÉ is a registered trademark of Novell Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.



When a user makes a request for information or data not

resident on his own computer (like opening a memo in his

word processor when the memo is located on a remote sys-

tem), the network’s pieces must all respond to this request.

The user’s perception of performance is determined by how

long he must wait for the information to appear on his

screen.

When an inquiry is made on the network for some informa-

tion, a complex set of transactions occurs. The user’s com-

puter operating system tells the network protocol to send a

message to the server asking for the information. The proto-

col software then instructs the driver to send the request to

the hardware interface, which in turn sends data over the

cable to the server. After the packet has been received, an

acknowledgement is sent to the server indicating that a val-

id transfer was accomplished.

The reverse procedure occurs on the server end. When the

hardware receives the request, the driver is instructed to

pass it on to the network protocol. The computer operating

system takes the request from the protocol and issues a

response (the actual data) which is sent back through the

network in a similar fashion.

Each of these software and hardware components manipu-

lates the requests and responses to ensure proper delivery

of the data to/from each destination. This process is shown

in Figure 2. Each step requires time for the software and

hardware to execute its piece of the job. The sum total of

the time it takes for each operation to occur is the perform-

ance of the transaction.

WHERE’S THE BOTTLENECK?

There are many variables in the performance equation, and

the network interface card is only one factor. Much like

Ethernet cards, the overall performance of a system can be

divided into hardware and software issues. On the hardware

side, the speed of a network is determined by the perform-

ance of the server and all of the attached workstations. The

network operating system is a major contributor to the over-

all latency of a network.

The response time of a server or workstation is affected by

CPU speed, bus bandwidth, network loading, and the speed

and topology of the transmission media (such as coax,

twisted-pair, optical fiber, etc.). The server should provide

sufficient disk cache memory and a fast hard disk subsys-

tem to minimize delays. Typically, throughput on a loaded

network segment can be reduced to under 20% of maxi-

mum by random disk I/O requests. Improving individual

workstation throughput has very little impact on the overall

network since it only affects a small percentage of the total

load. The expense of outfitting a high performance server

can be amortized over the cost of the entire network since

all users will benefit.

The network operating system (NOS) can also have a dra-

matic affect on Ethernet throughput. The two main functions

of the NOS are to move large blocks of data around in RAM

and manage the disk I/O subsystem. Excessive copying of

data or poor file management will result in poor LAN per-

formance.

Since each item in the request/response path contributes to

overall performance, it is desirable to minimize delays

through each section. From the Ethernet hardware develop-

er’s perspective, the efficiency of the NOS and the cable

throughput are fixed. The only areas available for improve-

ment of the network hardware performance are optimization

of the driver and the bus interface design. It is important to

recognize that the hardware and driver are a small (but

important) part of the total performance equation. In most

TL/F/11784–2

FIGURE 2. Representation of System Delays that Impact Performance

2



cases doubling or tripling performance of the network hard-

ware will have a much smaller impact on total performance.

(Whereas doubling or tripling the CPU performance could

have a much greater affect.)

As can be seen in Figure 2, the total speed at which re-

quests/responses can be handled is dictated by the serial

path shown. For the analytically minded:

Performance e

KP

R(Request Delays)

Basically, network performance is the reciprocal of the sum

of the request delays for the measured transactions. KP is a

multiplier constant to convert to kbytes/sec.

A single request/acknowledge delay is the sum of the indi-

vidual delays as shown in Figure 2.

Request Delay e (D0 a D1) (2 KCPU1)

a(D5 a D6) (2 KCPU2)

a2(D2 a D3 a D4) a D7

D0, D1, D3, D5, D6 are all software delays and thus are

multiplied by the performance of the system processors,

while D2, D3, D4 are network hardware delays that are not

affected by software performance (ideally). D7 is the delay

due to system hardware other than the network interface,

such as a disk and controller.

Measuring Performance

Generally, one would like to measure these delays and cal-

culate the throughput of a particular network configuration.

Most benchmarks can only evaluate the summation of

these delays. This is done by measuring the actual data

throughput, usually in kbytes/sec or in seconds for a partic-

ular task.

Now, of course every good marketer has his favorite bench-

mark, but the validity of a benchmark can be very deceiving.

Most Ethernet vendors cite the Novell PERFORMx bench-

mark as a performance measure, this is valid but does not

accurately model the request/response of a real network.

Some testing labs have developed scripts that simulate user

transactions in an attempt to create a more representative

view of network speed, and these tend to be more valid.

However, due to the ease of testing and general availability

of the PERFORM program most comparisons utilize this

program’s measurements.

The perform benchmark tends to measure the throughput of

the network interface, the protocol software, and the system

CPU. The data being transferred is cached in the server’s

memory, so disk drive speed is not a factor. This means that

the largest delay for a system is not taken into considera-

tion.

Another important aspect of performance is the amount of

time the server CPU is idle. The more CPU bandwidth that is

available the greater the potential for the server to do other

processing or to handle more information. This becomes

important when the server is being used as a database en-

gine or if multiple Ethernet cards are used concurrently. A

server that is oversaturated will drop packets, and thus de-

crease performance because each of these packets will

have to be retransmitted. Generally, CPU utilization indi-

cates the potential for better performance rather than actual

performance. In the NetWare world, the CPU utilization

measure is made using the MONITOR program which is run

on the server. A meaningful benchmark should contain both

the throughput and the CPU utilization figures. For example,

a system with 100 kbyte/sec throughput with a 10% utiliza-

tion (90% idle) should be better than a 100 kbytes/sec with

a 90% utilization. When making comparisons between ar-

chitectures, it is important to use the same equipment for

each test since the benchmarks are also measuring the

server’s and workstations’ performance. The network

should have at least six workstations to ensure heavy Ether-

net traffic.

ARCHITECTURAL OVERVIEW

The architecture of an Ethernet card encompasses a hard-

ware interface to the system as well as a software interface,

which is really the packet buffer management that the hard-

ware implements with the device driver software. This sec-

tion will cover the hardware aspects first since this is very

much the systems designer’s decision. Secondly a descrip-

tion of various software interfaces is described, although in

most cases this is actually defined by the integrated control-

ler chosen for a particular design.

Hardware Interfaces

Before discussing actual applications, it is useful to catego-

rize Ethernet interfaces. Once done, this can be applied to

various applications to determine the best fit for each appli-

cation. A summary can be found in Table 1. The interfaces

from the Ethernet subsystem to the host’s system bus can

be divided into roughly 5 categories as follows:

1. I/O Mapped Slave: In this design, the adapter interfaces

to the system via a limited number of I/O ports, usually

16 bytes–64 bytes. The interface has dedicated RAM to

buffer network data, usually 8k to 64 kbytes. A simple

block diagram is shown in Figure 3. National’s DP8390

core controllers have on-chip logic to ease implementa-

tion of this interface.

TL/F/11784–3

FIGURE 3. Diagram Showing Major

Blocks of the I/O Mapped Architecture

Advantages: A very simple interface, tends to be low

cost. Does not occupy large address space (important for

PC’s with many peripherals competing for common ad-

dress allocations). Places little performance requirements

on the system bus, and so is ideal for systems that have

poor bus bandwidth or long bus latencies.

Disadvantages: May be slightly lower in performance.

Requires dedicated buffer RAM which can add to cost of

the interface.

3



2. Shared RAM Slave: This architecture utilizes a RAM that

is dual ported (usually a static RAM with an arbiter rather

than an integrated dual port RAM) to enable the network

interface and the main system to communicate through a

common ‘‘window’’ of memory, as shown inFigure 4. The

DP8390 has request/acknowledge logic to simplify imple-

mentation of this interface.

TL/F/11784–4

FIGURE 4. Basic Block Diagram

of the Shared Buffer RAM Design

Advantages: A fairly simple interface that is slightly high-

er in performance than the I/O Slave since the data is

directly accessible to the system via the buffer RAM.

Disadvantages: Tends to be more complex than the I/O

interface, and thus more expensive. The additional cost is

due to the logic required to dual port the buffer RAM

which includes a couple of extra PALs, 4–6 extra octal

buffers, and some added logic for software control. (How-

ever, as integrated or ASIC solutions become available

this extra logic can be absorbed inexpensively making the

solution cost equivalent to an I/O mapped design.) This

architecture places slightly greater performance require-

ments on the system bus than the I/O Slave since the

system is contending for the buffer RAM with the network

interface.

The Shared RAM architecture is not the best choice when

the host system has a limited addressing range and/or its

memory cycles aren’t significantly faster than its I/O cycles.

In a PC-AT compatible application, the Shared RAM design

typically has a 30% faster bus transfer speed, however

when the effects of driver and Network Operating System

(NOS) overhead are considered, the advantage of the

Shared RAM design is reduced to 10% or less. In Micro

Channel or EISA systems, the difference in I/O vs memory

transfer rates is less, so the performance disparities would

be reduced (assuming the network hardware does not pres-

ent any other constraints).

Note: These relative numbers do not include disk access overhead, so the

performance difference seen by a user will typically be lower.

3. Simple Bus Master: For the simple bus master interface,

the network peripheral directly requests the system bus,

and when granted, takes control of the bus and directly

places packet data into system memory (Figure 5) . The

performance of this design is heavily dependent on the

sophistication and speed of the DMA channel logic, and

the bus itself. In the past, most Ethernet controllers did

not have sufficient bus speed or buffer management to

support this type of architecture, hence it’s relatively new

emergence has coincided with the introduction of high

performance controllers such as the SONICTM DP83932.

TL/F/11784–5

FIGURE 5. Simple Bus Master Block Diagram

In order to understand memory buffer structures, it is useful

to compare the packet movement of a Shared Memory or

I/O Interface (local memory) to that of the Bus Master de-

sign. In a local memory design (Figure 6a) , the data is first

buffered, then copied to the system memory. The Bus Mas-

ter, on the other hand (Figure 6b) , places the data directly

into system memory. This latter approach is significantly

faster because local memory designs require an extra read

and write cycle to move the contents of the local buffer

RAM into system memory. In theory, the Bus Master can

eliminate additional data copies. Performance is reduced if

the Bus Master cannot buffer directly to the NOS and a data

copy has to be executed. The fact that local memory re-

quires data buffering in two steps is not as significant to

performance as the method of moving the data into system

memory (i.e., DMA, I/O channel, etc.). Bus latency is one of

the prime considerations when deciding to use a bus master

approach. Newer generation controllers rely on a FIFO to

buffer data until the bus becomes free for transfers. De-

pending on the computer, this delay can be longer than the

maximum time allowed by the FIFO. When a FIFO overrun

(or underrun) occurs, the packet must be retransmitted. In

theory, the maximum bus latency tolerated by a controller

can be calculated by the equation:

Latencymax e

Depth of FIFO (Bytes)

10 Mbits/S c 0.125 Byte/Bit

There are two classes of bus masters which for this docu-

ment we will call a MAC (Media Access Control) Bus Mas-

ter, and a Bus Master (for lack of better names). The distinc-

tion is that a MAC Bus Master becomes owner of the bus,

but utilizes some form of system or external DMA controller

to actually move the data. In other words the MAC Bus Mas-

ter cannot generate addressing for the received or transmit-

ted data. The Bus Master, on the other hand, utilizes a DMA

controller that is built into the MAC. This DMA controller is

capable of controlling data movement in a reasonably so-

phisticated way, and can place data into or take data from

any desired location.

Advantages. Properly designed with enough intelligence

in the packet buffering (i.e., not typically a MAC Bus Mas-

ter), this implementation provides a very high perform-

ance data transfer throughput. If the DMA master is so-

phisticated enough, data can be placed directly into sys-

tem memory, thus eliminating extraneous data copying

by the driver software as is required by I/O mapped and

Shared RAM designs.

4



TL/F/11784–6

(a) Shared Memory or I/O Architecture

TL/F/11784–7

(b) Bus Master Architecture

FIGURE 6. Comparison of Data Movement

Disadvantages. In order to achieve high performance,

the DMA machine must be sufficiently sophisticated (not

a MAC Bus Master). In many low performance bus sys-

tems, direct bus ownership is not supported. In other

buses, such as ISA, the bus is not sophisticated enough

to arbitrate between potential bus owners without tying

up the CPU unnecessarily. In some high performance

bus interfaces, the latency from bus request to bus grant

can be very long and require on-card buffering of the

data to avoid dropping packets.

When comparing software driver performance, the efficien-

cy of the driver plays a bigger role in Bus Master designs.

This is because the Bus Master’s hardware transfer is very

efficient and the overhead of the driver is a bigger percent-

age of the data throughput. Typically in a PC (ISA bus) the

bus master data transfer rate is 2–2.5 times that of an I/O

based design. When software overheads are included, how-

ever, the Bus Master design typically achieves a perform-

ance increase over the I/O design. (Driver inefficiencies in

reality can reduce this by about 5%.)

Note: These relative numbers do not include disk access overhead, so the

performance difference seen by a user will typically be lower.

4. Buffered Bus Master. In this design the network packet

data is DMA’d by a network controller through the on-

card bus into a buffer RAM (Figure 7) . The packet data is

then tranferred to the system by additional logic that

DMA’s the data across the system bus into main memory.

The performance of this architecture is comparable to

that of the standard bus master with a marginally higher

use of CPU bandwidth.

Advantages. This architecture provides high perform-

ance close to the simple bus master design even in situa-

tions where there are extremely long bus latencies (i.e.,

EISA).

Disadvantages. When compared to the simple bus mas-

ter interface, the cost of implementation is higher since

this design requires additional buffer RAM and a complex

system bus DMA channel in addition to the network inter-

face’s DMA channel. If the DMA interface is not sophisti-

cated, the performance will be lower and the software

driver will have to do additional processing.

5



TL/F/11784–8

FIGURE 7. Buffered Bus Master Block Diagram

5. Intelligent Bus Master. This design has a general pur-

pose processor dedicated to the network interface for

processing packet data (Figure 8) . For low-end cards, the

processor does not do protocol processing but only per-

forms packet data manipulation and controls access be-

tween the system and the network interface. On high end

designs, the dedicated network CPU does protocol pro-

cessing which off-loads this task from the main system.

The transfer of data to the system may be via an I/O,

shared RAM, or bus master interface.

TL/F/11784–9

FIGURE 8. Intelligent Bus

Master Block Diagram

Advantages. When using a processor with sufficient per-

formance, this solution offers the highest performance of

any of the solutions. This design also allows for the high-

est bus latencies, since on board RAM can store many

packets. This architecture can off-load the server’s CPU

from processing the low level protocol tasks and can thus

achieve very low server utilization relative to other tech-

nologies.

Disadvantages. Very costly in terms of hardware and

component count. In order to achieve significant packet

throughput advantages, the dedicated processor must

be able to process packets at least as fast as the host

CPU. In many cases, the low end cards are less efficient

than simple bus master cards in terms of packet through-

put.

In most practical examples, medium performance 16-bit

processors are chosen and this choice tends to offer lower

packet throughput than any of the other architectures. Typi-

cal CPU loading is roughly half that of a non-intelligent bus

master.

BUFFER MANAGEMENT ARCHITECTURES

Just as the performance of a particular hardware implemen-

tation depends on how fast data is transferred to the sys-

tem, the packet buffer management scheme helps deter-

mine how fast data can be transferred from the hardware to

the Network Operating System. A great hardware design

can be foiled by a poor software interface.

High performance software designs will reduce software

complexity and directly provide the data to the NOS in a way

that the NOS expects. There are cost/performance trade-

offs in this interface as well, and so there are various buffer-

ing methods.

Before discussing the types of buffering that hardware may

choose to implement, it is first useful to look at what operat-

ing systems expect for packet data. The goal is to minimize

the device driver overhead, so a look at what information

and in what form the NOS expects it is important.

Figure 9 shows a representation of how the user sends and

receives data to/from the NOS. For sending packets, the

NOS breaks up the data into smaller pieces so that they can

fit within an Ethernet frame. The driver then takes this data

and presents it to the hardware. On reception, the hardware

gives data to the driver which in turn passes this data to the

NOS. The NOS translates the data (if necessary) to a form

acceptable to the user’s application.

Transmit Requirements

The simpler part of the packet buffering scheme is the

transmission of a packet. In this instance, the packet starts

from the user’s application, and the NOS prefixes network

data, usually referred to as headers, to the application data

as shown inFigure 10. These headers can contain protocol,

routing, or application specific information. The most effi-

cient method of ‘‘prefixing’’ is to create a pointer list which

describes the data pieces’ locations rather than copying all

the data into a contiguous area. The driver receives this list

from the NOS and then sends the information to the hard-

ware. The network interface controller should be able to use

this list with as little driver software manipulation as possi-

ble. The hardware and its associated driver must also be

able to queue multiple requests since the network cable can

only send one packet at a time.

6



TL/F/11784–10

FIGURE 9. User-Cable Data Movement through NOS to Driver to Hardware

TL/F/11784–11

FIGURE 10. Transmit Packet Creation

7



Receive Requirements

One might assume that the receive packet handling should

be very similar to the transmit, but there are a number of

differences. First, unlike a transmit packet, the NOS, driver,

and hardware have no idea when a packet may arrive, what

kind of packet (i.e., IPX, TCP/IP, DECnet, etc.) it is going to

receive, and how may packets may be received in a given

time. While a packet to be transmitted is statically resident

in memory until it is operated on, a packet being received

must have sufficient memory allocated to it prior to recep-

tion. The amount of memory set aside must be equal to the

maximum packet size since there is no way to predetermine

a packet’s length.

These unknowns require a different type of buffer manage-

ment. Since a packet could be received at any moment, the

driver or the hardware must allocate memory before the

packet arrives. The system should provide enough memory

to handle several packets at a time in case the packets are

received faster then they can be processed. This memory

allocation is accomplished in hardware by most architec-

tures. A dedicated packet buffer RAM on the network card

allows sufficient space to receive multiple packets (this ca-

pability is the reason that dedicated hardware RAM is used).

All but the simple bus master architecture have a dedicated

packet buffer.

In the simple bus master, the driver must allocate a dynamic

pool of system memory, and so the structure of the receive

portion of the driver depends more on the memory alloca-

tion scheme of the NOS than the network side. Thus for

simple bus masters to be effective, they should implement a

memory allocation/management scheme similar to that of

the NOS to simplify data manipulation.

Another consideration is that ultimately the packet will be

given to the host’s operating system, so the hardware/driv-

er should present the data in a compatible format. The NOS

will fragment the packet to remove all of the headers and

give the data to the receiving application in the form it ac-

cepts.

As can be seen in Figure 11 a–c, there are several possible

schemes for dealing with received packets. In cases where

only one packet type is being received, the hardware/soft-

ware may be able to fragment the packet into it’s multiple

headers as it is received and to place each header into a

separate area for manipulation (called protocol fragmenta-

tion buffering). In some cases, this scheme is efficient since

data copying can be eliminated (in theory). The down side

for the NOS is that each layer must keep track of several

pointers. When multiple protocols and packet types are in-

volved, this type of scattering is difficult because the hard-

ware will have to receive enough of the packet to determine

its type, and then either the hardware or software must find

appropriate memory to place the fragments. This effort is

required because different packet types have different

header lengths and contents.

Another possible reception method is to fragment the pack-

et into small buffers, usually 256 or 512 bytes. This will re-

sult in a large Ethernet packet being chopped into 3 pieces

(Figure 11b) . There are several advantages to this tech-

nique:

1. Operating system memory management uses these

block sizes, so memory allocation is simplified by not hav-

ing to allocate large contiguous memory blocks.

2. Most Ethernet packets are relatively small, usually k256

bytes. This type of memory scheme is more memory effi-

cient than if a packet were contiguously buffered to a

single area. This is because each memory area must be

able to accommodate a full Ethernet packet 1518 bytes,

and if a small 100 byte packet is received then the rest of

the packet buffer will contain unused memory. (However

these days operating systems with huge multi-megabytes

of memory are common, and a few extra kbytes of packet

buffers is typically not a big problem.)

3. In some schemes, the beginning of a new packet may be

buffered directly at the end of the previous packet which

causes additional fragmentation and hence more pointers

(but is more memory efficient).

The problem with this second scheme is performance.

When a packet is scattered as shown inFigure 11b, multiple

pointers are required to keep track of the packet, this means

that there is more software overhead associated with main-

taining the pointers, and it is possible that some fields within

the packet may be split between two buffers. Fortunately,

this split is not likely to occur in the packet headers if
l64 byte buffers are used, but the application data will be

split, and may need to be copied to a contiguous buffer by

the NOS prior to handing it off to the receiving application.

The problems with the two associated schemes can be

overcome by having the hardware buffer the packet into a

single contiguous memory area (Figure 11c) . This allows the

protocol software to have only one pointer to describe a

packet. When a header is processed, the old pointer is

thrown out, and the next header’s pointer is easily created.

The packet data arrives at the application in contiguous

form. Multiple pointers to packet headers can easily be cre-

ated if the software requires it. In multiple packet type appli-

cations, it is easier/cheaper for the software (as opposed to

hardware) to determine the type of protocol/packet type for

the received packet and manipulate the data based on this

determination.

8



POINTER DESCRIPTOR LIST

Application Data and Headers

TL/F/11784–12

(a) Receive Packet Scattered by Section

TL/F/11784–13

(b) Received Packet Scattered Based on Small Allocated Memory Blocks

TL/F/11784–14

(c) Received Packet Buffered to a Contiguous Memory Area

FIGURE 11

9



Operating System Requirements

As has been described, the optimal buffering scheme for

packets depends, in part, on the way the NOS interacts with

the device driver and the hardware. At the device driver

level, the NOS defines a programming interface for the ex-

change of packets between the hardware/driver and the

NOS. The type of interface helps to determine the desired

buffering scheme.

Note: Hardware architecture also affects this choice.

For non-embedded applications which use standard operat-

ing systems, the most prevalent transmit schemes provide

the driver with a list of locations for the various portions of

the packet. The driver/hardware then assembles the packet

to prepare for transmission. Several schemes are used for

receiving packets, but contiguous packet reception is the

most popular. Packet scattering based on small memory

block allocation is also quite common.

Most operating systems require a certain byte alignment on

received packets to conform to their memory management

schemes. For example, 32 bits OS’s usually require double

word alignment, while PC DOS (an 8-bit OS), most often

demands byte alignment. In general, the transmit alignment

is usually byte oriented because the header fragments gen-

erated may be an odd number of bytes.

Hardware Packet Buffering Schemes

Keeping in mind the general characteristics outlined above,

several hardware packet buffering techniques can be com-

pared. The NOS requirements do not change based on the

hardware architecture or the buffering scheme chosen, so

when the hardware does not provide optimal algorithms, the

device driver software is required to complete the job.

When the hardware packet buffering scheme minimizes bot-

tlenecks (particularly software overhead), the theoretical

performance of the driver/hardware set will increase. This

section compares major buffering schemes and how they

map into the NOS operations, hopefully revealing an indica-

tion of the better architectures.

The several schemes can be categorized as follows:

1. Simple DMA: Utilizing a simple start address and length,

the system DMA performs all memory transfers.

2. Buffer Ring: A block of memory is setup as a recirculating

ring where data at the top of the memory block automati-

cally wraps to the bottom, and pointers track the used/

open memory space.

3. Linked Lists: A number of descriptor structures that de-

scribe blocks of memory. Each block can contain either a

part of a packet, a single packet, or multiple packets.

4. Protocol Translation: This scheme must be implemented

on an intelligent card since the on board CPU performs

driver tasks as well as protocol processing. The designer

can customize the hardware using any combination of the

three previous buffering schemes if the native CPU is not

needed for protocol translation. This buffering scheme,

due to it’s unique programmability, will not be discussed

separately.

SIMPLE DMA BUFFERING

Typically this buffering architecture is used when the Ether-

net Hardware is a simple MAC (Media Access Controller)

Bus Master card that uses the system’s DMA to provide a

low cost solution. It is possible that the System DMA can be

used in conjunction with a hardware scheme that includes a

dedicated buffer RAM (like Shared RAM).

Reception tends to be a problem for the simple MAC bus

master, so this is discussed first. Incoming packets are buff-

ered in a small FIFO and a request is made for the system

DMA controller to transfer the data. Simple bus master

cards that do not use local memory must have access to the

system bus before the FIFO fills, or the packet will be

dropped. In addition, the host CPU must be able to allocate

new blocks of memory as they are needed, which can be

significant in terms of software overhead. For ISA based

PC’s, the DMA transfer rate is between 1.0–2.0 Mbytes/

second which is not sufficient to keep up with the Ethernet

data rate.

The transmit operation requires the DMA controller to trans-

fer data from the host’s memory to the controller’s FIFOs

(Figure 12) . If the FIFOs are not large enough to buffer the

maximum packet size, care must be taken to avoid a FIFO

underrun because partial packets will be transmitted on the

network. Once again, the host’s CPU is responsible for all

memory management.

System Memory

TL/F/11784–15

FIGURE 12. System Memory Packet Reception

10



Buffer Ring DMA

For this architecture, the controller’s memory manager utli-

izes a ring structure comprised of a series of contiguous

fixed length buffers in a local RAM (Figure 13) . The ring is

typically divided into a transmit and receive section by the

driver software. During reception, incoming data is buffered

to the receive portion of the ring and then transferred to the

system by the local DMA channel. The memory manager is

responsible for three basic functions during reception: link-

ing receive buffers for long packets, recovery of buffers

when a packet is rejected, and recirculation of memory

blocks that have been read by the host.

When transmitting data, the software driver must first as-

semble the packet in the transmit portion of the ring using

DMA transfers. This information must include the destina-

tion address, the source address, the type/length of the

packet, and the data itself. When transmission begins, the

controller’s local DMA channel transfers the data out of the

ring and into the controller’s FIFO. The controller sends out

the data and appends a CRC field. The block of buffer mem-

ory used by the packet is then returned for reuse.

Linked List Packet Handling

In a linked list structure, packets that are received or trans-

mitted are placed in buffers that are linked by lists of point-

ers. The advantage to this approach, as mentioned earlier,

is that it should eliminate unnecessary packet copying. The

software driver pre-allocates memory for receiving data and

stores a list of pointers to available buffer pages in a Re-

ceive Resource Area (Figure 14) . Another list of pointers

(Resource Descriptor Area) is created when packets are re-

ceived. Each pointer in this list corresponds to the starting

address in memory of the received packet. Multiple packets

can be stored in the same buffer area as long as their total

length does not exceed the buffer page size.

The transmit buffer management scheme uses two areas in

memory for transmitting packets (Figure 15) . The Transmit

Descriptor Area contains several fields that describe the

packet to be transmitted and a pointer to the descriptor of

the next packet to be transmitted. Quite often, operating

systems store packet header information in one portion of

memory and application data in another. Each of these

fields is called a fragment.

The typical Ethernet packet contains multiple fragments, so

the linked list buffering scheme provides pointers to each

piece as well as a count of how many fragments are in the

packet. In contrast, the buffer ring architecture would have

required the driver to copy all of the fragments and the ap-

plications data into a contiguous area of local RAM prior to

transmission. The buffer ring is a simple lower performance

packet buffering scheme. The linked list structure adds

some complexity, but will increase performance when prop-

erly tailored to the network operating system.

TL/F/11784–16

FIGURE 13. Buffer Ring DMA Structure

11



TL/F/11784–17

FIGURE 14. Linked List Packet Receive Buffer Structure

TL/F/11784–18

FIGURE 15. Linked List Packet Transmit Structure

12



SYSTEM APPLICATIONS

For a certain application, many architectures may prove ad-

equate, but the best solution may not be obvious. The fol-

lowing section wil discuss the general design tradeoffs to

each approach as they apply to personal computers and

office peripherals.

PC/PC-AT Client Adapter

While many companies promote performance, most simple

interfaces prove to be sufficient, therefore cost and compat-

ibility are of greater importance. The I/O mapped design is

by far the most prevalent architecture for PC client cards

due to good packet throughput performance and low cost.

I/O mapped cards also tend to be the easiest to install be-

cause the I/O space of PC’s tends to be less crowded then

the memory space.

Shared memory cards must map their local packet RAM into

the PC’s address space between 640k and 1M. In the DOS

environment, this space is crowded with BIOS ROMs, EGA/

VGA video RAM, and disk controller hardware. Depending

on the machine, configuration address contention can re-

sult. Also, the PC-AT bus timing for dual ported RAMs is

tricky and varies somewhat between clones, thus making

compatibility a more difficult issue.

For bus mastering cards, arbitration is not well implemented

on many PC-AT compatibles and is not available in the

PC-XT. These types of cards seem to have the most trouble

interfacing to PC-AT clones because they are sensitive to

system timing and the addition of other add-in cards. An

improperly designed card can interfere with DRAM refresh

and thus cause catastrophic failure. Earlier Ethernet control-

lers are not suitable for this approach because the bus cy-

cles are excessively slow, thus limiting CPU performance.

Note: PS/2’s with a microchannel bus provide very good arbitration, so bus

masters are much more suitable for this environment.

The other architectures previously mentioned tend to be too

expensive for the minor performance gains that would be

achieved.

Performance. Assuming that the I/O port design is the refer-

ence, then the relative performance of the shared RAM de-

sign offers between a 2%–7% packet throughput improve-

ment. Faster 386 based machines tend to minimize any ad-

vantages when the NOS is taken into consideration. The

bus master could offer up to 10% speed improvement, but

when using older Ethernet controllers this improvement is

less. The major advantage to this approach can be lower

CPU utilization.

PC (ISA Bus) Server Adapter

Until very recently, servers have been mostly high perform-

ance ISA Bus PC-ATs. Due to multiple users, the traffic on

the server is much higher than the client, and so bottlenecks

in packet transfer will be more noticeable. Servers may also

have to support multiple network cards to allow for the inter-

nal bridging of networks. The weakest link in these systems

tends to be the relatively slow ISA bus.

For ISA bus servers, I/O mapped, shared RAM, and bus

master designs all have their advantages and disadvan-

tages. The best overall solution could be the I/O mapped

design in spite of its slightly lower performance; it is compat-

ible to industry standards, lower cost, and offers reasonable

performance. Multiple cards can easily be employed since

this interface does not put a burden on the bus, nor tie up

needed RAM space.

The Dual-Ported RAM design offers slightly better perform-

ance, and won’t tie up the bus, but does use precious mem-

ory space. This solution may prove less suitable if several

cards are required in the Server.

Simple bus masters can provide the best performance, but

since multiple cards can tie up the PC-AT’s ISA bus and

prevent CPU and refresh from getting sufficient access to

the bus, this could present a problem when multiple cards

are placed on the bus. No standard exists for supporting

arbitration among multiple bus masters. Some initial imple-

mentations will only allow installation of one card due to

slow bus cycles.

Performance. Assuming that the I/O port design is the refer-

ence, then the relative performance of the shared RAM de-

sign offers between a 2%–7% packet throughput improve-

ment. The bus master could offer up to 10% speed im-

provement.

PS/2 and EISA Server Adapter

The 32-Bit 386/486 PS/2 and EISA machines require the

best performance, and cost tends to be a secondary issue.

In addition, both these buses have intelligent bus arbitration

schemes for bus ownership. The major difference between

the two is that the arbitration scheme for EISA has the po-

tential for having a relatively large bus latency, whereas the

Micro Channel bus latency tends to be lower. This differ-

ence affects the bus mastering approaches taken.

The I/O mapped scheme is not optimal since cost is less of

an issue and performance is more important. The Dual Port

RAM scheme is a better choice as bus transfer speeds can

be optimized by using fast RAMs, but the cost of the associ-

ated RAMs and logic is more (4-32kx8 SRAM are typically

used for on-card buffering).

A simple bus master can be a very good choice if the de-

sired bus latency is accommodated and an intelligent buffer-

ing scheme is implemented. This architecture can cost the

same as a shared memory design, but provide faster packet

throughput. Also multiple cards can easily be accommodat-

ed.

For the best performance, a well implemented intelligent

board which does on board protocol processing is the best

choice. However, the cost is prohibitive, and while overall

server CPU usage can be minimized, typical implementa-

tions do not offer the best overall throughput.

PC Motherboard Applications

The goals in designing Ethernet connectivity onto PC moth-

erboards differs from those of PC add-in cards. First, due to

severe competition and a network oriented focus, add-in

board designers tend to concentrate on both the cost and

performance of an implementation. The primary concern for

PC motherboard designers is CPU performance and com-

patibility to existing standards. The purpose of including

Ethernet is to provide added value and a simple inexpensive

connection. Board space and power consumption tend to

be more critical on motherboards.

Applications on the motherboard fall into two design catego-

ries:

1. An adapter card design folded down onto the main sys-

tem board.

2. A system bus interface (or local bus) directly connected

to the CPU.

13



The best approach depends on whether the Ethernet’s de-

sign goal is primarily cost or performance driven. The fold-

ed-down design offers compatibility with well established

standards and thus the lowest risk. The system interface

architecture offers better performance at the expense of

complex system design considerations.

PC System I/O Bus Design

The easiest approach to embedded Ethernet is to simply

graft an existing PC adapter’s design onto the motherboard

or daughter card. This places the controller in a less per-

formance critical area of the overall system design (the I/O

bus) and allows a migration path from a solution that is

known to work. Since backward compatibility is achieved,

investments in software and experience are preserved. This

design can be applied across an entire line of PC’s with no

modification to the hardware or software.

The most common implementation would be to ‘‘fold’’ an

ISA bus 16-bit Ethernet card design onto the motherboard

and thus provide a common interface for both ISA and

EISA. The growing popularity for ISA based adapters has

led semiconductor suppliers to provide very highly integrat-

ed solutions for this environment. Unfortunately the same

integration level is not yet available for EISA based 32-bit

designs.

The only disadvantage to ‘‘folding down’’, an adapter card

solution is slightly lower performance. Since the throughput

of Ethernet is usually ‘‘cable limited’’ this approach is suit-

able for clients and most servers.

PC System Bus (CPU Bus)

In this implementation, the Ethernet controller is tightly cou-

pled to the system CPU bus (386 or 486). This is illustrated

by the top shaded block in Figure 16. In a PC, the highest

performance bus is the CPU system bus. Ethernet control-

lers designed to operate in this environment can provide a

relatively clean interface with a low parts count. The bus

master architecture makes the most sense for this bus due

to the simplicity of the interface.

The CPU system bus tends to be the most critical aspect of

a PC’s overall performance. Adding peripherals to this bus

has generally been avoided because I/O functions can re-

duce bus efficiency. Embedded cache memories on some

CPU’s help to lessen this burden, but system performance

will be affected. Another concern is that this bus was not

designed to support the large fanout required for driving

multiple I/O devices.

Interfacing to the CPU’s bus presents many challenging de-

sign problems. The characteristics of this bus are deter-

mined by both the CPU and the memory controller. Changes

in CPU type and frequency will cause the interface to vary

for each PC model in a product line. The controller’s operat-

ing frequency must be closely matched to that of the CPU to

avoid timing problems. This can create problems for modu-

lar PC’s that offer CPU upgradeability.

Table I summarizes the discussion on PC-Ethernet architec-

tures. It should be noted that the ratings assume that each

implementation is a good efficient design. For example, a

simple bus master is an excellent architecture only for appli-

cations where it meets with the requirements of the bus; this

may not always be true. Some qualitative performance ref-

erences are given, but these should not be taken as valid

for every case.

TL/F/11784–19

FIGURE 16. Two Choices for Ethernet on a PC Motherboard

14



TABLE I. Suitability of Architecture for PC Applications

Architecture I/O
Dual Simple Buffered

(Note 1) Mapped
Port Bus Bus Intelligent

RAM Master Master

PC, PC AT (ISA),
Excellent Good Fair Poor Poor

PS/2 (Client) (Note 2)

PC AT (ISA Bus)
Good Good Fair Poor Fair

(Server) (Note 2)

PS/2 (Server) (Note 2) Fair Good Excellent Fair Excellent

PC AT (EISA)
Fair Good Excellent Good Good

(Client/Server)

PC Motherboard
Good Good Good Poor Poor

(System Bus) (Note 3)

Note 1: The rating from best to worst: Excellent, Good, Fair, Poor.

Note 2: These applications assume that the Ethernet interface is supplied on an adapter card.

Note 3: This application places the Ethernet interface on the PC AT motherboard (system planar) interfaced to the system CPU bus. If the Ethernet interface is

placed on the motherboard connected to an I/O bus the architectural choice is represented by the bus (like ISA).

CONCLUSION

The correct choice of an Ethernet controller must be a carefull balance of all of the design goals. In the majority of cases, the

throughput of 16-bit Ethernet controllers is more than sufficient (with the exception of servers). For 386 or greater based PC’s,

throughput is limited by the network operating system and the 10 Mbit/sec. data rate of Ethernet. The decision to use a 32-bit

controller should be based on the need for available CPU bandwidth, and to a much lesser extent, throughput.

15



A
N

-8
7
3

A
rc

h
it
e
c
tu

ra
l
C

h
o
ic

e
s

fo
r
N

e
tw

o
rk

P
e
rf

o
rm

a
n
c
e

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


