
TL/EE10601

A
D

riv
e
r
fo

r
th

e
N

S
1
6
5
5
0

D
U

A
R

T
W

h
ic

h
R

u
n
s

o
n

a
n

N
S
3
2
G

X
3
2

C
P
U

A
N

-6
6
0

National Semiconductor
Application Note 660
Coby Hanoch
December 1989

A Driver for the NS16550
DUART Which Runs on an
NS32GX32 CPU

1.0 INTRODUCTION

This application note supplies a software program which

serves as a driver for the NS16550 DUART. The driver runs

on the NS32GX32 CPU, and should run with no modifica-

tions on all other Embedded System Processors.

The driver is useful for anyone who is writing a monitor or

system kernel which will run on a system with an

NS32GX32 and NS16550. It is well documented and can be

modified according to the user’s needs.

Drivers of this sort are hard to develop, since they are very

hard to debug. In order to debug such a driver there needs

to be some sort of a communication line to the developed

system. This line is used in order to load the driver into the

memory of the developed system. But, in this case the com-

munication line is controlled by the NS16550, which doesn’t

have a driver yet.

The NS16550 is a popular standard DUART which has 2

communication ports and is useful for serial I/O operations.

It also contains a FIFO on each port allowing synchronous

communication without losing data.

The driver has the following features:

Ð It controls both ports of the DUART.

Ð It can be told to echo its input, and if CR should be ech-

oed as CRLF. Echoing is a required feature by many sys-

tems.

Ð It can be told to ignore echo of its output, and if CR is

echoed as CRLF.

Ð It can be told to treat >S (XOFF), >Q (XON) and >H (Back-

space). These control characters are the standard com-

munication signals to pause and restart communication

(>S and >Q respectively), and to erase the last character

sent (>H).

Ð It can be told to wait until input arrives or only till a speci-

fied timeout has passed. These are the two popular

modes of operation in communication systems.

Ð It can read/write a single character or a whole line.

Ð It can be told to read a specified number of characters or

till a CR (and return the length).

The driver is designed for synchronous communication.

The driver is written in a very portable way so that it can be

transported to other Embedded System Processors with no

modifications.

It is compiled and linked by the GNX package supplied by

NSC.

2.0 USAGE

The driver consists of 3 files:

1. An assembler source file containing the initialization rou-

tine (intÐ16550).

2. A C source file containing the functions to read/write

from/to the DUART.

3. A CPP include file used by both source files, defining

global constants. These constants define the addresses

of the DUART on the board and the requested baud rate.

In addition the driver’s makefile (for UNIX systems) is sup-

plied, and a demo program which runs it.

The user should perform the following steps in order to use

the driver:

1. Modify the include file to define the DUART address on

his board. These are the lines:

Ýdefine USARTÐ0ÐADDR kaddress of port 0l

Ýdefine USARTÐ1ÐADDR kaddress of port 1l

2. Modify the include file to define the baud rate on his

board. The baud rate is defined according to the

NS16550 data sheet. For example: 12 signals 9600 baud

at 1.8432 MHz crystal. This is the line:

Ýdefine BAUDÐRATE kbaud ratel

3. Modify the include file to define the timeout constant ac-

cording to his needs. The read operations can be instruct-

ed to wait for input. This constant defines the number of

times a read will be attempted before a failure is reported

in this mode. This is the line:

Ýdefine IOÐTIMEOUT knumber of attemptsl

4. In his program he should add a call for the initÐ16550

routine as one of the first things it does. This must, of

course, come before any attempt to read or write from

the NS16550.

5. The driver uses 4 global variables which should be initial-

ized:

worldÐechoÐ Specifies if the world (the hardware on

the other side of the communication

line) echoes what it receives.

worldÐcrlfÐ Specifies if the world echoes a CR as

CRLF.

boardÐechoÐ Specifies if the board (on which the

driver and the NS16550 reside) should

echo what it receives.

boardÐcrlfÐ Specifies if the board should echo CR

as CRLF.

Each of these variables is a 2 element array, whose first

element refers to port 0 and the second to port 1. A value

of 0 specifies FALSE and a value of 1 specifies TRUE.

Example: worldÐecho[0] e 0;

This instruction informs the driver that the world

echoes any character it receives from port 0.

6. The user can call the following functions from his pro-

gram: readÐline, writeÐline, readÐchar, writeÐchar.

They are defined in the next section.

7. Compile the driver (no special switches needed) and link

it to his program.

Note: If the user calls the initÐ16550 function from a reset function (when

there is still no confidence that the memory is operative), the function can be

jumped to, and passed the return address in a register. The ret instruction at

the end of the function should be replaced by a jump 0(r7) for example.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.



3.0 INTERFACE

The interface to the driver is done via calls to a set of func-

tions. Following is a description of each of these functions

and its parameters.

Note: The type ‘str’ is defined to be ‘char*’

1. void readÐline (port, line, len, err);

int port;

str line, err;

unsigned *len;

Description: Reads a line from a port.

Parameters: portÐThe port number (0 or 1) to be read from.

lineÐA pointer to a character array in which

the line read will be returned.

lenÐThe number of characters to be read. 0

specifies to read until a CR.

errÐContains an error message, if an error oc-

curred during the read. If it is null, no error

occurred.

2. void writeÐline (port, line);

int port;

str line;

Description: Writes a line to a port.

Parameters: portÐThe port number (0 or 1) to be written to.

lineÐA pointer to a character array in which

the line to be written is placed. The line

should end with a CR.

3. void readÐchar (port, ch, wait, err);

int port;

char *ch;

boolean wait;

str err;

Description: Reads a character from a port.

Parameters: portÐThe port number (0 or 1) to be read from.

chÐA pointer to a character in which the char-

acter read will be returned.

waitÐ If TRUE, will wait until a character ar-

rives (if one is not present in the FIFO

already). If FALSE, will attempt to read

IOÐTIMEOUT times before giving up

and returning an error.

errÐContains an error message, if an error oc-

curred during the read. If it is null, no error

occurred.

4. void writeÐchar (port, ch);

int port;

char ch;

Description: Writes a character to a port.

Parameters: portÐThe port number (0 or 1) to be read from.

chÐA pointer to a character in which the char-

acter to be written is at.

2



4.0 THE FILES

Attached are the source files.

4.1 16550.hÐThe CPP Include File

TL/EE/10601–1

3



4.2 16550Ðasm.sÐThe Assembly File

TL/EE/10601–2

4



4.3 16550.cÐThe Driver Itself

TL/EE/10601–3

5



TL/EE/10601–4

6



TL/EE/10601–5

7



TL/EE/10601–6

8



TL/EE/10601–7

9



TL/EE/10601–8

10



TL/EE/10601–9

11



TL/EE/10601–10

12



4.4 demo.cÐThe Demo Program

TL/EE/10601–11

13



TL/EE/10601–12

14



4.5 makefileÐThe Makefile

TL/EE/10601–13

15



A
N

-6
6
0

A
D

ri
v
e
r
fo

r
th

e
N

S
1
6
5
5
0

D
U

A
R

T
W

h
ic

h
R

u
n
s

o
n

a
n

N
S
3
2
G

X
3
2

C
P
U

Lit. Ý 100660

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


