
TL/DD/9342

E
x
p
a
n
d
in

g
th

e
H

P
C

A
d
d
re

s
s

S
p
a
c
e

A
N

-4
9
7

National Semiconductor
Application Note 497
Joe Cocovich
August 1988

Expanding the HPC
Address Space

INTRODUCTION

The maximum address range of the HPC family of 16-bit

High Performance microControllers is 64k bytes using the

external address/data bus to interface with external memo-

ry. This application note describes a method to increase the

amount of memory in a system to 544k bytes utilizing bank

switching techniques. Block diagrams are presented to aid

in circuit design. Software examples are given for memory

and bank management.

HPC ADDRESSING

Program memory addressing is accomplished by the 16-bit

Program Counter on a byte basis (instructions are always

fetched a byte at a time). Memory can be addressed as

words or bytes directly by instructions or indirectly through

the B, X and SP registers. Words are always addressed on

even-byte boundaries. The HPC uses memory-mapped or-

ganization to support registers, I/O and on-chip peripheral

functions.

The external address/data bus of the HPC is 16 bits wide.

This means the maximum address that the bus can hold is

FFFF for a maximum address range of 64K bytes (65,536).

Keep in mind, this uses the external address/data bus

(A0:A15 for Address/Data and B10, 11, 12, 15) for Control.

BANK SWITCHING

If more than 64k of addressing is needed in the HPC sys-

tem, the following method of increasing memory space can

be used. Divide the total address range into two halves (32k

bytes each). One half of this address range will be the MAIN

memory address space. The MAIN memory address space

will contain logical addresses (those addresses which the

Program Counter can generate) in the range 8000 to FFFF

and is accessed when A15 is a ‘1’. This includes the Inter-

rupt vectors’ and the Reset vector memory locations. The

other half of the address range will be the BANK memory

address space. The BANK memory address space will con-

tain logical addresses in the range 0000 to 7FFF and is

accessed when A15 is a ‘0’. This includes the on-chip I/O,

registers, and RAM at locations 0000 to 01FF.

Now, four additional address lines are created using Port B

pins (B8, B9, B13, B14). This prevents the use of the four

timer synchronous outputs TS0–TS3 which are the alter-

nate functions for these pins. The BANK memory is now

addressed using A0:A14, B8, B9, B13, B14 and is accessed

when A15 is a ‘0’. The BANK memory address space is now

expanded to 512k bytes broken down into 16 individually

selectable banks of 32k bytes each selected by these four

bits of Port B.

A look at Table 1 andFigure 1 quickly tells you that only one

bank in the BANK memory space can share the logical ad-

dress range 0000:7FFF at any one time. Therefore, pro-

grams running in the BANK memory address space can only

directly access data and programs in the MAIN memory ad-

dress space or in it’s own bank (selected by B8, B9, B13,

B14). On chip resources, which include RAM, I/O, and reg-

isters are mapped into logical addresses 0000 to 01FF.

These logical addresses are in the BANK memory address

space, but, since these addresses are considered to be al-

ways on-chip by the HPC, it never looks at the external ad-

dress/data bus and will not read external memory in this

range. Therefore, the first 256 bytes in each bank of memo-

ry in the BANK memory space will not be accessible by the

HPC, but this address range (on chip resources) is directly

accessible by any bank of memory in the BANK memory

address space. This is why Figure 1 shows a total available

memory of 536.5k.

The interrupt vectors are mapped into logical addresses

FFF0 to FFFF which are in the MAIN memory address

space. Interrupts are handled properly if they occur while

executing a program out of one of the banks of memory in

BANK memory space, since the interrupt vector locations

have A15 set to ‘1’ which will allow access to the MAIN

memory space. However, these interrupt vectors must ei-

ther point to a routine in the MAIN memory address space

which performs the interrupt service or point to code that

selects the appropriate bank of memory in the BANK mem-

ory space and go there if the interrupt service routine is

located there.

The stack must be located so that it can be directly accessi-

ble from anywhere in memory. It can be placed in the MAIN

memory space or in the on-chip RAM. Programs and data

storage that must be shared and directly accessed by all

memory banks in the BANK memory space should also re-

side in the MAIN memory space.

HPC OPERATING MODES

The HPC must be configured to run in one of it’s Expanded

modes of operation by setting the EA bit in the PSW to be

able to address the BANK memory range of 0000 to 7FFF.

This memory expansion addressing scheme will work if the

HPC is configured in either the Normal Expanded mode

(EXM pin tied low) or ROMless Expanded mode (EXM pin

tied high). The Normal mode differs from the ROMless

mode only by the fact that the HPC will access the on-chip

ROM for addresses in the range of E000 to FFFF (in the

case of the HPC16083) and will access the external MAIN

memory for addresses in the range of 8000 to DFFF.

The external data bus size is determined once, at reset, by

sampling the state of HBE (B12). If HBE is high when sam-

pled, the HPC enters 8-bit mode. In 8-bit mode, only pins

A0–A7 are used to transfer data and pins A8–A15 continue

to hold the most-significant eight bits of the address. So,

only the lower eight bits of the address need to be latched

externally (Figure 2). If HBE is low when sampled, the HPC

enters 16-bit mode. In 16-bit mode, all 16 pins of Port A are

used to transfer data as well as addresses. Two octal latch-

es are then required externally to hold each address as it is

issued by the HPC. The signal ALE from the HPC clocks the

latches (Figure 3).

Keep in mind that if the external memory is configured as

8-bit memory, then the program stack must be in internal

on-chip RAM because it has to be accessible as 16-bit

words. If the external memory is configured as 16-bit memo-

ry then the stack can be in external RAM but must be in the

MAIN memory address space to be directly accessible by all

banks.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.

PROGRAMMING CONVENTIONS

A convention must be followed for maintaining linkages be-

tween the programs and data running in the MAIN memory

space and the programs and data running in the BANK

memory space. For the following discussion, the MAIN

memory space will be referred to as just another bank of

memory.

MAIN bank reserved portion

A portion of the MAIN memory bank should be reserved for

Jump instructions to subroutines in the MAIN memory bank

that need to be called by programs running in any selected

bank in the BANK memory space. These Jump instructions

serve as entry points for programs and subroutines. Typical-

ly, common functions that are required by programs running

in several banks would be put in the MAIN memory bank.

These could include: interrupt service routines, I/O drivers,

and data handling and conversion routines. This portion

also contains address pointers to tables of data in the MAIN

memory bank that also are required by programs running in

any selected bank in the BANK memory space. See Listing

1 for an example.

BANK memory reserved portion

A portion of each bank in the BANK memory space should

be reserved for Jump instructions to subroutines in that

bank that need to be called by programs running in the

MAIN memory bank. These Jump instructions serve as en-

try points for programs and subroutines. For example, each

bank in the BANK memory space could contain routines

that perform unique but related functions. One bank could

be reserved for math routines; another bank could perform

message handling; and yet another could contain diagnostic

routines. All of these functions could be scheduled and exe-

cuted from some sort of Supervisor running in the MAIN

memory bank performing the linkages to all these routines

thru the entry points. This reserved portion of each bank

also contains address pointers to tables of data in that bank

that also are required by programs running in the MAIN

memory bank. In the case of a bank running message han-

dling routines, address pointers could be inserted to point to

buffers that programs running in MAIN memory need to ac-

cess. See Listing 2 for an example.

Linkage areas

These reserved portions of each memory bank (MAIN

space or BANK space) must be fixed and known to each

other memory bank that requires access to programs and

data in that bank. Therefore, one other requirement in each

bank is a set of labels that are assigned the values of the

pointer locations to subroutines and tables in the bank of

interest (see Listings 3 and 4).

One last requirement in the MAIN memory bank, if it is to

perform bank to bank moves and for general housekeeping,

is to reserve two byte locations to be used to keep track of

the bank currently selected (high byte value on Port B) be-

ing used in the transfer of data (see Listing 5).

From the MAIN memory bank, the user can access all mem-

ory in the system. He can call subroutines in any bank in the

BANK memory space and read/write data to the entire

memory. From any bank in the BANK memory space, the

user can call subroutines in the MAIN memory bank and

read/write data to the MAIN memory bank in addition to his

own local bank.

The basic procedure used to call a program in the BANK

memory space from the MAIN memory bank is merely to set

the proper value on the Port B select lines and execute a

Jump to SubRoutine through a pointer in the selected bank:

Interrupts

Regardless of where the interrupt service routine actually

resides, an image of the bank selected must be retained by

the service routine to allow it to return to the appropriate

bank when complete. If the interrupt service routine is in the

MAIN memory bank, the linkage is handled in the normal

fashion where the interrupt vector points to the service rou-

tine. The interrupt service can reside in the BANK memory

space and takes a little extra overhead for the linkage.

To call a program in the MAIN memory bank from the BANK

memory space, merely execute a Jump to SubRoutine

through a pointer in the MAIN memory bank:

JSRL CMPBLNK ;see Listing 1 and 4

EXAMPLE SOFTWARE

Now that a convention has been established for communi-

cating between the MAIN memory space and the BANK

memory space, let’s take a look at some sample code that

can be used to move data between these memory spaces.

In order to make the selection of bank memory efficient, it is

important to keep in mind that the four bits of the high byte

of Port B that are used to select a bank of memory in the

BANK memory space can be written to directly since the

other 4 bits of this byte of Port B are used for memory con-

trol outputs (the external control bus) and are not affected

by a write to the high byte of Port B.

Bank to Bank data transfer by MAIN

Listing 6 shows the setup required to initialize the linkage

area in order to perform a transfer of data from one bank to

another bank in the BANK memory space by a program

running in the MAIN memory space. This involves setting up

the RAM locations that are used to ‘select’ the source bank

and the destination bank, select the source bank to deter-

mine the starting address of the area to move, select the

destination bank to determine the starting address of the

area to move data into, then finally calling the subroutine in

MAIN memory that performs the move. After the setup por-

tion, the subroutine that performs the transfer is presented.

This code assumes that the external memory is configured

in 16-bit mode.

Bank to MAIN data transfer by Bank

Listing 7 presents a similar example for moving blocks of

data from a bank in BANK memory to MAIN memory by a

program running in that bank. This code also assumes that

the external memory is configured in 16-bit mode.

External 8-bit mode

If the external memory is configured in 8-bit mode, the setup

portion changes because the initialization of the RAM ad-

dress pointers SSTART, DSTART and DEND requires build-

ing word address pointers from word pointers in the external

reserved areas of each bank. In 8-bit mode, this requires

two 8-bit transfers compared to one 16-bit transfer in 16-bit

mode (see Listing 8). Once these address pointers have

been built, however, the subroutine that actually performs

the move does not have to change because 1) word trans-

fers are allowed between On-chip RAM and registers re-

gardless of the mode and 2) the subroutine performs byte

moves. To improve speed in the 16-bit mode, this subrou-

tine can be modified to perform 16-bit moves. However,

keep in mind that this will impose the restriction on the ad-

dress pointers in the linkage areas of requiring that address-

es be on word boundaries. Listing 9 presents a similar ex-

ample for moving blocks of data from a bank in BANK mem-

ory to MAIN memory by a program running in that bank.

2

PROGRAM DEVELOPMENT

The MOLE monitor software can support the development

of HPC programs in multiple banks of memory. It provides

the means of qualifying a trigger condition, as set in Trace

or Breakpoint functions, with the memory bank number. The

BANK command will allow a trigger only when executing in

the memory bank of interest. The MOLE supports a total of

16 memory banks which are normally selected by 4 bits of

Port B as described earlier. See the HPC Personality Board

User’s Manual for further detail on this command.

CONCLUSION

What has been presented is a method to expand the memo-

ry space of the HPC to 544k. Although this method utilized

four bits of Port B to accomplish the extra addressing, theo-

retically, the remaining 8 bits could have been used if not

required for other purposes. This could mean a maximum

addressability for the HPC of greater than 128 Megabytes.

However, the MOLE will only support the fixed definition of

four extra address lines. Clever utilization of existing re-

sources can enable you to get the most out of hardware and

software limited only by one’s imagination.

TABLE I. Logical Addresses vs Physical Memory Locations

Logical
Bank Ý

Hi Byte Physical

Address Port B Address

0000:7FFF 0 00 00000:07FFF

0000:7FFF 1 01 08000:0FFFF

0000:7FFF 2 02 10000:17FFF

0000:7FFF 3 03 18000:1FFFF

0000:7FFF 4 20 20000:27FFF

0000:7FFF 5 21 28000:2FFFF

0000:7FFF 6 22 30000:37FFF

0000:7FFF 7 23 38000:3FFFF (BANK)

0000:7FFF 8 40 40000:47FFF

0000:7FFF 9 41 48000:4FFFF

0000:7FFF A 42 50000:57FFF

0000:7FFF B 43 58000:5FFFF

0000:7FFF C 60 60000:67FFF

0000:7FFF D 61 68000:6FFFF

0000:7FFF E 62 70000:77FFF -
0000:7FFF F 63 78000:7FFFF

8000:FFFF Ð Ð 08000:0FFFF (MAIN)

TL/DD/9342–1

FIGURE 1. How BANK Memory is Mapped into the HPC Address Space

3

FIGURE 2. HPC in 8-Bit Mode TL/DD/9342–2

TL/DD/9342–3

FIGURE 3. HPC in 16-Bit Mode

4

.408000 ;set PC counter to 8000

;This code resides in the MAIN memory bank

;

; The following address pointers are inserted to allow

; programs running in BANK memory to find these

; locations. They represent the starting and ending

; location for code in MAIN memory.

;

.WORD INIT ;addr pointer to first location in bank

.WORD PROGEND ;addr pointer to last location in bank

;

; The following Jump instructions are inserted to allow

; programs running in BANK memory to call these

; subroutines. They represent subroutines that compare

; blocks of memory in MAIN memory space with blocks of

; memory in BANK memory space or compare blocks of memory

; in BANK memory for zeros.

;

JMPL CMPM ;entry for compare blocks (MAIN-BANK)

JMPL CMPBFB ;entry for compare BANK cleared

LISTING 1. MAIN Bank Reserved Portion

.40200 ;set PC counter to 200

;This code resides in any bank in BANK memory

;

; The following address pointers are inserted to allow

; programs running in MAIN memory to find these

; locations. They represent the ending location for code

; in this bank of BANK memory.

;

.WORD PROGEND ;addr pointer to last loc in this bank

;

; The following Jump instructions are inserted to allow

; programs running in MAIN memory to call these

; subroutines. They represent subroutines that compare

; blocks of memory in MAIN memory space with blocks of

; memory in this bank, diagnostic routines, and interrupt service routine.

;

JMPL CMPMB ;entry for comp blocks (MAIN-this bank)

JMPL BTEST ;entry for this bank’s diag routines

JMPL BINTS ;entry for this bank’s interrupt service routine

LISTING 2. Typical Bank Reserved Portion

5

;This code resides in the MAIN memory bank

;

; linkages to Bank 0

;

B0START e 0200 ;addr of pointer to first avail loc

;

CMPMB0 e 0202 ;addr of JMPL to routine that compares

; move results

B0TEST e 0205 ;addr of JMPL to test routines

;

; linkages to Bank 1

;

B1START e 0200 ;addr of pointer to first avail loc

;

CMPMB1 e 0202 ;addr of JMPL to routine that compares

; move results

B1TEST e 0205 ;addr of JMPL to test routines

;

; linkages to Bank 2

;

B2START e 0200 ;addr of pointer to first avail loc

;

CMPMB2 e 0202 ;addr of JMPL to routine that compares

; move results

e 0205 ;addr of JMPL to test routines

;

B2INTS e 0208 ;addr of JMPL to interrupt service routine

LISTING 3. MAIN Memory Bank Linkage Area

;This code resides in any bank in BANK memory

;

; linkages to MAIN memory

;

MSTART e 08000 ;addr of pointer to first avail loc

MEND e 08002 ;addr of pointer to last avail loc

;

CMPM e 08004 ;addr of JMPL to routine that compares

; move results

CMPBLNK e 08007 ;addr of JMPL to routine that compares

; if a block in selected BANK is zero

LISTING 4. Typical Bank Linkage Area

6

;This code resides in the MAIN memory bank

;

; The following locations are used for bank to bank moves

; and compares

BANKS e 01C0 ;source bank byte value

BANKD e 01C1 ;destination bank byte value

;

BANK0 e 0 ;Port B high byte value to select bank 0

BANK1 e 1 ; 1

BANK2 e 2 ; 2

BANK3 e 3 ; 3

BANK4 e 020 ; 4

BANK5 e 021 ; 5

BANK6 e 022 ; 6

BANK7 e 023 ; 7

BANK8 e 040 ; 8

BANK9 e 041 ; 9

BANKA e 042 ; 10

BANKB e 043 ; 11

BANKC e 060 ; 12

BANKD e 061 ; 13

BANKE e 062 ; 14

BANKF e 063 ; 15

;

; Main Memory Bank is logical and physical address range

; 8000:FFFF. Switched Memory Banks are logical addresses

; in the range 0000:7FFF combined with the

; Port B(14,13,9,8) bits to create physical addresses in

; the range 00000:7FFFF

;

LISTING 5. BANK Memory Management

LD M(0E3),BANK1;set bank select lines to select bank 1

JSRL B1TEST ;see Listing 2 and 3

#
#
#

INT35:

LD BANKS,M(0E3) ;save bank interrupted from

LD M(0E3),BANK2 ;set bank select lines to select bank 2

JSRL B2INTS ;see listing 2 and 3

#
#
#

LD M(0E3),BANKS ;restore bank interrupted from

RETI

#
#
#

.IPT 2,INT35 ;set interrupt vector

7

;This code resides in the MAIN memory bank

;

LD M(BANKS),BANK0 ;prepare to move data from Bank 0

LD M(BANKD),BANK1 ;to Bank 1

LD M(0E3),BANK0 ;select Bank 0

LD W(SSTART),W(B0START) ;set starting address in source bank

LD M(0E3),BANK1 ;select Bank 1

LD W(DSTART),W(B1START) ;set starting address in destination bank

LD W(DEND),W(B1START) ;set ending address in destination bank

ADD W(DEND),1023 ;to 1K greater than starting address

JSRL MOVBB ;do it

#
#
#
#
#

;

; This subroutine moves data from bank memory to bank memory

; where the source bank is defined by the contents of the byte

; at RAM location BANKS and the destination bank is defined by

; the contents of the byte at RAM location BANKD. In addition,

; the following locations must be set up before calling:

;

; SSTART x RAM location containing source bank start address

; DSTART x RAM location containing destination bank start address

; DEND x RAM location containing destination bank end address

;

MOVBB:

LD B,W(DSTART) ;B w starting address (destination)

LD K,W(DEND) ;K w ending address (destination)

LD X,W(SSTART) ;X w starting address (source)

LOOPBB:

LD M(0E3),M(BANKS) ;select source BANK

LD A,M(X0) ;byte at source into A

;increment source pointer

LD M(0E3),M(BANKD) ;select destination BANK

XS A,M(B0) ;A into byte at destination, bump pntr

JP LOOPBB ;back for more if B less than K

RET

LISTING 6. Move Data by MAIN from BANK to BANK (16-Bit Mode)

8

;This code resides in any bank in BANK memory

;

LD W(SSTART),TABLE1 ;starting address of table in this memory

LD W(DSTART),W(MSTART) ;starting address in main memory

LD W(DDEND),TABLE101023 ;ending address in main memory

JSRL MOVE ;do it

#
#
#
#
#

;

; This subroutine moves data from this bank to main memory

;

; SSTART x RAM location containing source memory start address

; DSTART x RAM location containing destination memory start addr

; DENDx RAM location containing destination memory end address

;

MOVE:

LD B,W(DSTART) ;B w starting address (destination)

LD K,W(DEND) ;K w ending address (destination)

LD X,W(SSTART) ;X w starting address (source)

LOOPBM:

LD A,M(X0) ;byte at source into A

;increment source pointer

XS A,M(B0) ;A into byte at destination, bump pntr

JP LOOPBM ;back for more if B less than K

RET

LISTING 7. Move Data by BANK from BANK to MAIN (16-Bit Mode)

9

;This code resides in the MAIN memory bank

;

LD M(BANKS),BANK0 ;prepare to move data from Bank 0

LD M(BANKD),BANK1 ;to Bank 1

LD M(0E3),BANK0 ;select Bank 0

LD M(SSTART),M(B0START) ;set starting address in source bank

LD M(SSTART01),M(B0START01)

LD M(0E3),BANK1 ;select Bank 1

LD M(DSTART),M(B1START) ;set starting address in destination bank

LD M(DSTART01),M(B1START01)

LD M(DEND),M(B1START) ;set ending address in destination bank

LD M(DEND01),M(B1START01)

ADD M(DEND),L(1023) ;to 1K greater than starting address

ADC M(DEND01),H(1023)

JSRL MOVBB ;do it

#
#
#
#
#

;

; This subroutine moves data from bank memory to bank memory

; where the source bank is defined by the contents of the byte

; at RAM location BANKS and the destination bank is defined by

; the contents of the byte at RAM location BANKD. In addition,

; the following locations must be set up before calling:

;

; SSTART x RAM location containing source bank start address

; DSTART x RAM location containing destination bank start address

; DEND x RAM location containing destination bank end address

;

MOVBB:

LD B,W(DSTART) ;B w starting address (destination)

LD K,W(DEND) ;K w ending address (destination)

LD X,W(SSTART) ;X w starting address (source)

LOOPBB:

LD M(0E3),M(BANKS) ;select source BANK

LD A,M(X0) ;byte at source into A

;increment source pointer

LD M(0E3),M(BANKD) ;select destination BANK

XS A,M(B0) ;A into byte at destination, bump pntr

JP LOOPBB ;back for more if B less than K

RET

LISTING 8. Move Data by MAIN from BANK to BANK (8-Bit Mode)

10

;This code resides in any bank in BANK memory

;

LD M(SSTART),L(TABLE1) ;starting address of table in this memory

LD M(SSTART01),H(TABLE1)

LD M(DSTART),M(MSTART) ;starting address in main memory

LD M(DSTART01),M(MSTART01)

LD M(DEND),M(MSTART) ;set ending address in main memory

LD M(DEND01),M(MSTART01)

ADD M(DEND),L(1023) ;to 1K greater than starting address

ADC M(DEND01),H(1023)

JSRL MOVE ;do it

#
#
#
#
#

;

; This subroutine moves data from this bank to main memory

;

; SSTART x RAM location containing source memory start address

; DSTART x RAM location containing destination memory start addr

; DDEND x RAM location containing destination memory end address

;

MOVE:

LD B,W(DSTART) ;B w starting address (destination)

LD K,W(DEND) ;K w ending address (destination)

LD X,W(SSTART) ;X w starting address (source)

LOOPBM:

LD A,M(X0) ;byte at source into A

;increment source pointer

XS A,M(B0) ;A into byte at destination, bump pntr

JP LOOPBM ;back for more if B less than K

RET

LISTING 9. Move Data by BANK from BANK to MAIN (8-Bit Mode)

The code listed in the App Note is available on Dial-A-Helper.

Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A-Helper system provides access

to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24

hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communicating to and from the

Microcontroller Applications Group and a FILE SECTION mode that can be used to search out and retrieve application

data about NSC Microcontrollers. The minimum system requirement is a dumb terminal, 300 or 1200 baud modem, and a

telephone.

With a communications package and a PC, the code detailed in this App Note can be downloaded from the FILE

SECTION to disk for later use. The Dial-A-Helper telephone lines are:

Modem (408) 739-1162

Voice (408) 721-5582

For Additional Information, Please Contact Factory

11

A
N

-4
9
7

E
x
p
a
n
d
in

g
th

e
H

P
C

A
d
d
re

s
s

S
p
a
c
e

Lit. Ý 100497

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

