
M EC030UM /AD

32-BIT
EMBEDDED
CONTROLLER
USER'S MANUAL

@ MOTOROLA

Introduction

Data Organization and Addressing Capabilities

Instruction Set Summary

Processing States

Signal Description

On-Chip Cache Memories

Bus Operation

Exception Processing

Access Control Unit

Coprocessor Interface Description _

Instruction Execution Timing l1li
Applications Information _

Electrical Characteristics _

Ordering Information and Mechanical Data l1li
Appendix A

Index

l1li Introduction

_ Data Organization and Addressing Capabilities

III Instruction Set Summary

_ Processing States

III Signal Description

III On-Chip Cache Memories

_ Bus Operation

III Exception Processing

__ Access Control Unit

III Coprocessor Interface Description

III Instruction Execution Timing

_ Applications Information

_ Electrical Characteristics

1:11 Ordering Information and Mechanical Data

_ AppendixA

Index

MC68EC030
32-BIT EMBEDDED
CONTROLLER USER'S MANUAL

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume
any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights
of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and ® are registered trademarks of Motorola, Inc. Motorola,
Inc. is an Equal Opportunity/Affirmative Action Employer.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission
in writing from the publisher.

CMOTOROLA INC., 1990

TABLE OF CONTENTS

Paragraph
Number Title

Page
Number

Section 1
Introduction

1.1 Features.......................... 1-3
1.2 MC68EC030 Extensions to the M68000 Family......... 1-4
1.3 Programming Model ... 1-4
1.4 Data Types and Addressing Modes... 1-9
1.5 Instruction Set Overview... 1-12
1.6 The Access Control Unit. ... 1-12
1.7 PipelinedArchitecture ... 1-14
1.8 The Cache Memories.. 1-14

2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7

2.4.8

2.4.9
2.4.10

Section 2
Data Organization and Addressing Capabilities

Instruction Operands .. 2-1
Organization of Data in Registers... 2-2

Data Registers.. 2-2
Address Registers................................ 2-4
Control Registers.. 2-4

Organization of Data in Memory... 2-5
Addressing Modes.. 2-8

Data Register Direct Mode............................... 2-10
Address Register Direct Mode................ 2-10
Address Register Indirect Mode........ 2-10
Address Register Indirect with Postincrement Mode 2-10
Address Register Indirect with Predecrement Mode 2-11
Address Register Indirect with Displacement Mode.............. 2-11
Address Register Indirect with Index (8-Bit Displacement)

Mode .. 2-12
Address Register Indirect with Index (Base Displacement)

Mode .. 2-12
Memory Indirect Postindexed Mode......................... 2-13
Memory Indirect Preindexed Mode 2-14

MOTOROLA MC68EC030 USER'S MANUAL iii

Paragraph
Number

2.4.11
2.4.12

2.4.13

2.4.14
2.4.15
2.4.16
2.4.17
2.4.18
2.5
2.6
2.6.1
2.6.2
2.7
2.8
2.8.1
2.8.2
2.8.3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.11
3.3
3.3.1
3.3.2

iv

TABLE OF CONTENTS (Continued)

Title
Page

Number

Program Counter Indirect with Displacement Mode.............. 2-15
Program Counter Indirect with Index (8-Bit Displacement)

Mode .. 2-16
Program Counter Indirect with Index (Base Displacement)

Mode ; .. 2-16
Program Counter Memory Indirect Postindexed Mode 2-17
Program Counter Memory Indirect Preindexed Mode 2-18
Absolute Short Addressing Mode ,' 2-19
Absolute Long Addressing Mode .. 2-19
Immediate Data.. 2-20

Effective Address Encoding Summary 2-21
Programmer's View of Addressing Modes 2-25

Add ressi ng Capa bi lities 2-25
General Addressing Mode Summary 2-32

M68000 Family Addressing Compatibility.................................. 2-35
Other Data Structures.................. 2-36

System Stack 2-36
User Prog ram Stacks... 2-37
Queues.. 2-38

Section 3
Instruction Set Summary

Instruction Format .. 3-1
Instruction Summary .. : .. 3-2

Data Movement Instructions .. 3-4
Integer Arith metic Instructions... 3-5
Logical Instructions ... 3-6
Shift and Rotate Instructions .. 3-7.
Bit Manipulation Instructions ... 3-8
Bit Field Instructions ... 3-9
Binary-Coded Decimal Instructions 3-10
Program Control Instructions ... 3-10
System Control Instructions... 3-11
Access Control Unit instructions... 3-12
Multiprocessor Instructions.. 3-13

I nteger Condition Codes ;........................ 3-13
Condition Code Computation... 3-15
Conditional Tests.. 3-16

MC68EC030 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

3.4 Instruction Set Summary... 3-17
3.5 Instruction Examples.. 3-24
3.5.1 Using the CAS and CAS2 Instructions................................. 3-24
3.5.2 Nested Subroutine Calls.................................. 3-31
3.5.3 Bit Field Operations.............. 3-31
3.5.4 Pipeline Synchronization with the NOP Instruction.. 3-32

Section 4
Processing States

4.1 Privilege Levels.. 4-2
4.1.1 Supervisor Privilege Level... 4-2
4.1.2 User Privilege Level.. 4-3
4.1.3 Changing Privilege Level... 4-3
4.2 Address Space Types.. 4-4
4.3 Exception Processing... 4-5
4.3.1 Exception Vectors... 4-6
4.3.2 Exception Stack Frame.. 4-6

5.1
5.2
5.3
5.4
5.5
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8
5.6.9
5.7
5.7.1
5.7.2

MOTOROLA

Section 5
Signal Description

Signal Index .. .
Function Code Signals (FCO-FC2) .. .
Address Bus (AO-A31) .. .
Data Bus (DO-D31)
Transfer Size Signals (SIZO, SIZ1) .. .
Bus Control Signals

Operand Cycle Start (OCS)
External Cycle Start (ECS)
Read/Write (R/W)
Read-Modify-Write Cycle (RMC) . ~
Address Strobe (AS) .. .
Data Strobe (DS) .. .
Data Buffer Enable (DBEN) .. .
Data Transfer and Size Acknowledge (DSACKO, DSACK1)
Synchronous Termination (STERM)

Cache Control Signals
Cache Inhibit Input (CIIN) .. .
Cache Inhibit Output (ClOUT)

MC68EC030 USER'S MANUAL

5-2
5-3
5-4
5-4
5-4
5-4
5-4
5-5
5-5
5-5
5-5
5-5
5-6
5-6
5-6
5-6
5-6
5-6

v

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

vi

5.7.3 Cache Burst Request (CBREQ).. 5-7
5.7.4 Cache Burst Acknowledge (CBACK) 5-7
5.8 Interrupt Control Signals... 5-7
5.8.1 Interrupt Priority level Signals... 5-7
5.8.2 Interrupt Pending (lPEND) .. 5-7
5.8.3 Autovector (AVEC) .. 5-8
5.9 Bus Arbitration Control Signals.. 5-8
5.9.1 Bus Request (BR).. 5-8
5.9.2 Bus Grant (BG) ... 5-8
5.9.3 Bus Grant Acknowledge (BGACK)....................................... 5-8
5.10 Bus Exception Control Signals....................................... 5-8
5.10.1 Reset (RESET) .. 5-9
5.10.2 Halt (HALT) .. 5-9
5.10.3 Bus Error (BERR) .. 5-9
5.11 Emulator Support Signals...... 5-9
5.11.1 Cache Disable (cDTs")... 5-9
5.11.2 Pipeline Refill (REFill).... ... 5-10
5.11.3 Internal Microsequencer Status (STATUS)...... 5-10
5.12 Clock (ClK) 5-10
5.13 Power Supply Connections.. 5-10
5.14 No Connection... 5-10
5.15 Signal Summary ... 5-10

6.1
6.1.1
6.1.2
6.1.2.1
6.1.2.2
6.1.3
6.1.3.1
6.1.3.2
6.2
6.3
6.3.1
6.3.1.1
6.3.1.2

Section 6
On-Chip Cache Memories

On-Chip Cache Organization and Operation 6-3
Instruction Cache... 6-4
Data Cache... 6-6

Write Allocation .. 6-8
Read-Modify-Write Accesses.. 6-9

Cache Filling .. 6-10
Single Entry Mode.. 6-10
Burst Mode Filling............................... 6-15

Cache Reset ;...................................... 6-20
Cache ControL.. 6-20

Cache Control Register................................. 6-21 ,
Write Allocate... 6-21
Data Burst Enable... 6-21

MC68EC030 USER'S MANUAL MOTOROLA

Paragraph
Number

6.3.1.3
6.3.1.4
6.3.1.5
6.3.1.6
6.3.1.7
6.3.1.8
6.3.1.9
6.3.1.10
6.3.1.11
6.3.2

7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5

MOTOROLA

TABLE OF CONTENTS (Continued)

Title
Page

Number

Clear Data Cache
Clear Entry in Data Cache
Freeze Data Cache
Enable Data Cache
Instruction Burst Enable
Clear Instruction Cache
Clear Entry in Instruction Cache
Freeze Instruction Cache
Enable Instruction Cache .. .

Cache Address Register .. :

Section 7
Bus Operation

Bus Transfer Signals .. .
Bus Control Signals
Address Bus .. .
Address Strobe .. .
Data Bus
Data Strobe
Data Buffer Enable
Bus Cycle Termination Signals .. .

Data Transfer Mechanism
Dynamic Bus Sizing
Misaligned Operands
Effects of Dynamic Bus Sizing and Operand Misalignment
Address, Size, and Data Bus Relationships
MC68EC030 versus MC68020 Dynamic Bus Sizing
Cache Filling
Cache Interactions
Asynchronous Operation .. .
Synchronous Operation with DSACKx
Synchronous Operation with STERM

Data Transfer Cycles .. .
Asynch ronous Read Cycle .. .
Asynchronous Write Cycle .. .
Asynchronous Read-Modify-Write Cycle
Synchronous Read Cycle .. .
Synchronous Write Cycle .. .

MC68EC030 USER'S MANUAL

6-21
6-22
6-22
6-22
6-22
6-22
6-23
6-23
6-23
6-23

7-1
7-3
7-4
7-4
7-5
7-5
7-5
7-5
7-6
7-7
7-16
7-17
7-25
7-27
7-27
7-27
7-30
7-31
7-32
7-33
7-33
7-40
7-46
7-51
7-55

vii

Paragraph
Number

7.3.6
7.3.7
7.4
7.4.1
7.4.1.1
7.4.1.2
7.4.1.3
7.4.2
7.4.3
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.6
7.7
7.7.1
7.7.2
7.7.3
7.7.4
7.8

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5

8.1.6
8.1.7
8.1.8
8.1.9
8.1.10
8.1.11
8.1.12

viii

TABLE OF CONTENTS (Continued)

Title
Page

Number

Synchronous Read-Modify-Write Cycle............................... 7-58
Burst Operation Cycles...... .. 7-63

CPU Space Cycles.. 7-72
Interrupt Acknowledge Bus Cycles 7-73

Interrupt Acknowledge Cycle - Terminated Normally.... 7-73
Autovector Interrupt Acknowledge Cycle 7-76
Spurious Interrupt Cycle .. 7-76

Breakpoint Acknowledge Cycle ... 7-78
Coprocessor Communication Cycles................................... 7-81

Bus Exception Control Cycles... 7-81
Bus Errors.. 7-85
Retry Operation 7-93
Halt Operation.. 7-97
Double Bus Fault.. 7-99

Bus Synchronization.... .. 7-99
Bus Arbitration... 7-101

Bus Request ... 7-103
Bus Grant .. 7-103
Bus Grant Acknowledge .. 7-105
Bus Arbitration Control.. 7-105

Reset Operation .. 7-110

Section 8
Exception Processing

Exception Processing Sequence... 8-1
Reset Exception.. 8-4
Bus Error Exception ~ -.. 8-6
Address Error Exception .. 8-7
Instruction Trap Exception ... 8-7
Illegal Instruction and Unimplemented Instruction

Exceptions.. 8-8
Privilege Violation Exception .. 8-9
Trace Exception. 8-10
Format Error Exception... 8-12
Interrupt Exceptions .. 8-12
Breakpoint Instruction Exception................................. 8-19
Multiple Exceptions... 8-21
Return from Exception.................................... 8-23

MC68EC030 USER'S MANUAL MOTOROLA

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

8.2 Bus Fault Recovery.................. 8-25
8.2.1 Special Status Word (SSW).. 8-26
8.2.2 Using Software To Complete the Bus Cycles 8-27
8.2.3 Completing the Bus Cycles with RTE 8-28
8.3 Coprocessor Considerations... 8-29
8.4 Exception Stack Frame Formats... 8-30

Section 9
Access Control Unit

9.1 Effect of RESET on ACU .. 9-3
9.2 Access Control... 9-3
9.3 Registers.............. 9-4
9.3.1 Access Control Registers... 9-5
9.3.2 ACU Status Register.. 9-7
9.4 ACU Instructions........ 9-7

10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.1.4.1
10.1.4.2
10.1.4.3
10.2
10.2.1
10.2.1.1
10.2.1.2
10.2.2
10.2.2.1
10.2.2.1.1
10.2.2.1.2
10.2.2.2
10.2.2.2.1
10.2.2.2.2

MOTOROLA

Section 10
Coprocessor Interface Description

Introduction ... 10-1
Interface Features ... 10-2
Concurrent Operation Support ... 10-3
Coprocessor Instruction Format. ... 10-4
Coprocessor System Interface .. 10-5

Coprocessor Classification ... 10-5
Controller-Coprocessor Interface 10-6
Coprocessor Interface Register Selection 10-8

Coprocessor Instruction Types ... 10-9
Coprocessor General Instructions 10-9

Format. .. 10-10
Protocol ... 10-11

Coprocessor Conditional Instructions 10-12
Branch On Coprocessor Condition Instruction 10-13

Format. .. 10-13
Protocol ... 10-14

Set On Coprocessor Condition Instruction 10-15
Format. .. 10-15
Protocol ... 10-16

MC68EC030 USER'S MANUAL ix

Paragraph
Number

10.2.2.3

TABLE OF CONTENTS (Continued)

Title

Test Coprocessor Condition, Decrement and

Page
Number

Branch Instruction .. 10-16
Format. .. 10-16
Protocol ... 10-17

Trap On Coprocessor Condition 10-18
Format. .. 10-18
Protocol ... 10-19

Coprocessor Save and Restore Instructions 10-19
Coprocessor Internal State Frames 10-20
Coprocessor Format Words ... 10-21

Empty/Reset Format Word 10-22
Not Ready Format Word .. 10-22
Invalid Format Word ... 10-23
Valid Format Word .. 10-23

Coprocessor Context Save Instruction ... ; 10-24
Format ... 10-24
Protocol ... 10-25

Coprocessor Context Restore Instruction 10-26
Format ... 10-27
Protocol ... 10-27

10.2.2.3.1
10.2.2.3.2
10.2.2.4
10.2.2.4.1
10.2.2.4.2
10.2.3
10.2.3.1
10.2.3.2
10.2.3.2.1
10.2.3.2.2
10.2.3.2.3
10.2.3.2.4
10.2.3.3
10.2.3.3.1
10.2.3.3.2
10.2.3.4
10.2.3.4.1
10.2.3.4.2
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
10.3.10
10.3.11
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5

Coprocessor Interface Register Set ... 10-29
Response CIR .. 10-29
Control CIR ... 10-29
Save CIR .. 10-30
Restore CIR .. 10-30
Operation Word CIR .. 10-30
Command CIR .. 10-30
Condition CIR ... 10-31
Operand CIR ... 10-31
Register Select CIR .. 10-32
Instruction Address CIR ... 10-32
Operand Address CIR .. 10-32

Coprocessor Response Primitives ... 10-32
ScanPC .. 10-33
Coprocessor Response Primitive General Format 10-34
Busy Primitive .. 10-35
Null Primitive ... 10-36
Supervisor Check Primitive .. 10-38

x MC68EC030 USER'S MANUAL MOTOROLA

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

Transfer Operation Word Primitive 10-39
Transfer from Instruction Stream Primitive 10-40
Evaluate and Transfer Effective Address Primitive 10-41
Evaluate Effective Address and Transfer Data Primitive 10-41
Write to Previously Evaluated Effective Address Primitive 10-44
Take Address and Transfer Data Primitive 10-46
Transfer to/from Top of Stack Primitive 10-46
Transfer Single Main Controller Register Primitive 10-47
Transfer Main Controller Control Register Primitive 10-48
Transfer Multiple Main Controller Registers Primitive 10-49
Transfer Multiple Coprocessor Registers Primitive 10-50
Transfer Status Register and ScanPC Primitive 10-52
Take Pre-Instruction Exception Primitive 10-54
Take Mid-Instruction Exception Primitive 10-56
Take Post-Instruction Exception Primitive 10-57

10.4.6
10.4.7
10.4.8
10.4.9
10.4.10
10.4.11
10.4.12
10.4.13
.10.4.14
10.4.15
10.4.16
10.4.17
10.4.18
10.4.19
10.4.20
10.5
10.5.1
10.5.1.1
10.5.1.2

Exceptions ... 10-58
Coprocessor-Detected Exceptions 10-59

Coprocessor-Detected Protocol Violations 10-59
Coprocessor-Detected Illegal Command or Condition

Words .. 10-60
Coprocessor Data-Processing Exceptions ' 10-61
Coprocessor System-Related Exceptions 10-61
Format Errors ... 10-61

Main-Controller-Detected Exceptions 10-62
Protocol Violations .. 10-62
F-Line Emulator Exceptions .. 10-64
Privilege Violations ... 10-65
cpTRAPcc Instruction Traps ... 10-66
Trace Exceptions .. 10-66
I nterru pts ... 10-67
Format Errors ... 10-68
Address and Bus Errors ... 10-68

Coprocessor Reset .. 10-69

10.5.1.3
10.5.1.4
10.5.1.5
10.5.2
10.5.2.1
10.5.2.2
10.5.2.3
10.5.2.4
10.5.2.5
10.5.2.6
10.5.2.7
10.5.2.8
10.5.3
10.6 Coprocessor Summary .. 10-69

MOTOROLA MC68EC030 USER'S MANUAL xi

Paragraph
Number

11.1
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.5.1
11.2.5.2
11.2.5.3
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.4
11.5
11.6
11.6.1
11.6.2
11.6.3
11.6.4
11.6.5
11.6.6
11.6.7
11.6.8
11.6.9
11.6.10
11.6.11
11.6.12
11.6.13
11.6.14
11.6.15
11.6.16
11.6.17
11.6.18

xii

TABLE OF CONTENTS (Continued)

Title

Section 11
Instruction Execution Timing

Page
Number

Performance Tradeoffs .. 11-1
Resource.Scheduling ... 11-2

Microsequencer .. 11-4
Instruction Pipe .. 11-4
Instruction Cache .. 11-5
Data Cache ... ·11-5
Bus Controller Resources ... 11-5

Instruction Fetch Pending Buffer 11-5 -
Write Pending Buffer ... 11-6
Microbus Controller .. 11-6

Instruction Execution Timing Calculations 11-6
Instruction-Cache Case .. 11-6
Overlap and Best Case ; 11-7
Average No-Cache Case .. 11-8
Actual Instruction-Cache-Case Execution Time Calculations ... 11-10

Effect of Data Cache ; 11-16
Effect of Wait States .. 11-18
Instruction Timing Tables .. 11-23

Fetch Effective Address (fea) .. 11-25
Fetch Immediate Effective Address (fiea) 11-26
Calculate Effective Address (cea) .. 11-29
Calculate Immediate Effective Address Mode (ciea) 11-31
Jump Effective Address ... 11-34
MOVE Instruction .. 11-35
Special-Purpose MOVE Instruction 11-38
Arithmetical/Logical Instructions ... 11-39
Immediate Arithmetical/Logical Instructions 11-40
Binary-Coded Decimal and Extended Instructions 11-42
Single Operand Instructions ... 11-43
Shift/Rotate Instructions .. 11-44
Bit Manipulation Instructions ... 11-45
Bit Field Manipulation Instructions 11-46
Conditional Branch Instructions .. 11-47
Control Instructions ... 11-48
Exception-Related Instructions and Operations 11-49
Save and Restore Operations ... 11-50

MC68EC030 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Concluded)

Paragraph
Number Title

Page
Number

11.6.19
11.6.20
11.7
11.8

ACU Effective Address Calculation 11-50
ACU Instruction Timing ... 11-52

Interrupt Latency .. 11-52
Bus Arbitration Latency ... 11-52

Section 12
Applications Information

12.1 Adapting the MC68EC030 to MC68030 Designs 12-1
12.2 Adapting the MC68EC030 to MC68020 Designs 12-1
12.2.1 Signal Routing .. 12-2
12.2.2 Hardware Differences .. 12-3
12.2.3 Software Differences ... 12-5
12.3 Floating-Point Units .. 12-6
12.4 Byte Select Logic for the MC68EC030 .. 12-10
12.5 Clock Driver ... 12-15
12.6 Memory Interface ... 12-16
12.6.1 Access Time Calculations .. 12-16
12.6.2 Burst Mode Cycles .. 12-21
12.7 Debugging Aids .. 12-21
12.7.1 STATUS and REFILL .. 12-21
12.7.2 Real-Time Instruction Trace ... 12-25
12.8 Power and Ground Considerations ... 12-29

Section 13
Electrical Characteristics

13.1 Maximum Ratings ... 13-1
13.2 Thermal Characteristics - PGA Package 13-1

Section 14
Ordering Information and Mechanical Data

14.1 Standard MC68EC030 Ordering Information 14-1
14.2 Pin Assignments - Pin Grid Array (RP Suffix) 14-2
14.3 Package Dimensions ... 14-3

MOTOROLA

Appendix A
MC68EC030 New Instructions

Index

MC68EC030 USER'S MANUAL xiii

Figure
Number

xiv

1-1
1-2
1-3
1-4

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15

3-1
3-2
3-3
3-4
3-5

4-1

5-1

6-1
6-2
6-3

LIST OF ILLUSTRATIONS

Page,
Title Number

Block Diagram ~...................................... 1-2
User Programming Model.. 1-6
Supervisor Programming Model Supplement 1-7
Status Register.. 1-8

Memory Operand Address.. 2-6
Memory Data Organization ... 2-7
Single Effective Address Instruction Operation Word............... 2-9
Effective Address Specification Formats................................. 2-22
Using SIZE in the Index Selection.. 2-25
Using Absolute Address with Indexes.................................... 2-26
Addressing Array Items.. 2-27
Using Indirect AbsoluteMemory Addressing.......................... 2-28
Accessing an Item in a Structure Using Pointer....................... 2-28
Indirect Addressing, Suppressed Index Register...................... 2-29
Preindexed Indirect Addressing... 2-30
Postindexed Indirect Addressing... 2-30
Preindexed Indirect Addressing with Outer Displacement 2-31
Postindexed Indirect Addressing with Outer Displacement....... 2-31
M68000 Family Address Extension Words ;.............. 2-36

Instruction Word General Format .. 3-1
Linked List Insertion.. 3-26
Linked List Deletion.. 3-27
Doubly Linked List Insertion.. 3-29
Doubly Linked List Deletion .. 3-30

General Exception Stack Frame ~............. 4-7

Functional Signal Groups... 5-1

Internal Caches and the MC68EC030...................................... 6-2
On-Chip Instruction Cache Organization................................. 6-5
On-Chip Data Cache Organization.. 6-7

MC68EC030 USER'S MANUAL MOTOROLA

Figure
Number

6-4
6-5
6-6
6-7
6-8

6-9

6-10

6-11
6-12
6-13
6-14
6-15

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11

7-12
7-13
7-14

7-15
7-16
7-17

7-18
7-19

MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Title

No-Write-Allocation and Write-Allocation Mode Examples
Single Entry Mode Operation - 8-Bit Port.
Single Entry Mode Operation - 16-Bit Port
Single Entry Mode Operation - 32-Bit Port
Single Entry Mode Operation - Misaligned Long Word and

8-Bit Port .. .
Single Entry Mode Operation - Misaligned Long Word and

16-Bit Port
Single Entry Mode Operation - Misaligned Long Word and

32-Bit DSACKx Port .. .
Burst Operation Cycles and Burst Mode
Burst Filling Wraparound Example
Deferred Burst Filling Example
Cache Control Register
Cache Address Register

Relationship Between External and Internal Signals
Asynchronous Input Sample Window
Internal Operand Representation .. .
MC68EC030 Interface to Various Port Sizes
Example of Long-Word Transfer to Word Port
Long-Word Operand Write Timing (16-Bit Data Port)
Example of Word Transfer to Byte Port
Word Operand Write Timing (8-Bit Data Port)
Misaligned Long-Word Transfer to Word Port Example
Misaligned Long-Word Transfer to Word Port
Misaligned Cacheable Long-Word Transfer from Word Port

Example
Misaligned Word Transfer to Word Port Example
Misaligned Word Transfer to Word Port
Example of Misaligned Cacheable Word Transfer from Word

Bus .. .
Misaligned Long-Word Transfer to Long-Word Port
Misaligned Write Cycles to Long-Word Port
Misaligned Cacheable Long-Word Transfer from Long-Word

Bus .. .
Byte Data Select Generation for 16- and 32-Bit Ports
Asynchronous Long-Word Read Cycle Flowchart

MC68EC030 USER'S MANUAL

Page
Number

6-9
6-11
6-12
6-12

6-13

6-14

6-15
6-17
6-18
6-18
6-21
6-23

7-2
7-3
7-8
7-9
7-12
7-13
7-14
7-15
7-17
7-19

7-20
7-20
7-21

7-22
7-23
7-24

7-25
7-28
7-34

xv

Figure
Number

7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30

7-31

7-32
7-33
7-34
7-35
7-36

7-37
7-38

7-39

7-40
7-41

7-42
7-43
7-44
7-45
7-46
7-47
7-48
7-49
7-50
7-51

xvi

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

Asynchronous Byte Read Cycle Flowchart.............................. 7-35
Asynchronous Byte and Word Read Cycles - 32-Bit Port........ 7-36
Long-Word Read - 8-Bit Port with ClOUT Asserted................ 7-37
Long-Word Read - 16-Bit and 32-Bit Port.............................. 7-38
Asynchronous Write Cycle Flowchart..................................... 7-40
Asynchronous Read-Write-Read Cycles - 32-Bit Port.............. 7-41
Asynchronous Byte and Word Write Cycles - 32-Bit Port........ 7-42
Long-Word Operand Write - 8-Bit Port................................. 7-43
Long-Word Operand Write - 16-Bit Port................................ 7-44
Asynchronous Read-Modify-Write Cycle Flowchart..... 7-47
Asynchronous Byte Read-Modify-Write Cycle - 32-Bit Port

(TAS Instruction with ClOUT or CIIN Asserted)..... 7-48
Synchronous Long-Word Read Cycle Flowchart - No Burst

Allowed ... 7-52
Synchronous Read with CIIN Asserted and CBACK Negated..... 7-53
Synchronous Write Cycle Flowchart....................................... 7-56
Synchronous Write Cycle with Wait States - ClOUT Asserted 7-57
Synchronous Read-Modify-Write Cycle Flowchart 7-59
Synchronous Read-Modify-Write Cycle Timing - CIIN

Asserted.. 7-60
Burst Operation Flowchart - Four Long Words Transferred.. ... 7-65
Long-Word Operand Request from $07 with Burst Request

and Wait Cycles.. 7-66
Long-Word Operand Request from $07 with Burst

Request - CBACK Negated Early....................................... 7-67
Long-Word Operand Request from $OE - Burst Fill Deferred... 7-68
Long-Word Operand Request from $07 with Bu'rst

Request - CBACK and CIIN Asserted................................. 7-69
MC68EC030 CPU Space Address Encoding ,.... 7-73
Interrupt Acknowledge Cycle Flowchart.................................. 7-74
Interrupt Acknowledge Cycle Timing...................................... 7-75
Autovector Operation Timing ,................. 7-77
Breakpoint Operation Flow.................. 7-78
Breakpoint Acknowledge Cycle Timing................................... 7-79
Breakpoint Acknowledge Cycle Timing (Exception Signaled).... 7-80
Bus Error without DSACKx ... 7-87
Late Bus Error with DSACKx 7-88
Late Bus Error with STERM - Exception Taken...................... 7-90

MC68EC030 USER'S MANUAL MOTOROLA

Figure
Number

7-52
7-53
7-54
7-55
7-56
7-57
7-58
7-59
7-60
7-61
7-62
7-63
7-64
7-65

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9

9-1
9-2
9-3
9-4

10-1
10-2

10-3
10-4
10-5
10-6

LIST OF ILLUSTRATIONS (Continued)

Title

Long-Word Operand Request - Late BERR on Third Access
Long-Word Operand Request - BERR on Second Access
Asynchronous Late Retry
Synchronous Late Retry
Late Retry Operation for a Burst
Halt Operation Timing
Bus Synchronization Example .. .
Bus Arbitration Flowchart for Single Request
Bus Arbitration Operation Timing
Bus Arbitration State Diagram .. .
Single-Wire Bus Arbitration Timing Diagram
Bus Arbitration Operation (Bus Inactive)
Initial Reset Operation Timing .. .
Processor-Generated Reset Operation

Reset Operation Flowchart. .. .
Interrupt Pending Procedure .. .
Interrupt Recognition Examples ;
Assertion of IPEND
Interrupt Exception Processing Flowchart
Examples of Interrupt Recognition and Instruction Boundaries ..
Breakpoint Instruction Flowchart .. .
RTE Instruction for Throwaway Four-Word Frames
Special Status Word (SSW) .. .

ACU Block Diagram .. .
ACU Programming ModeL
Access Control Register Format.. .. .
ACU Status Register (ACUSR) Format

F-Line Coprocessor Instruction Operation Word
Asynchronous Non-DMA M68000 Coprocessor Interface

Signal Usage
MC68EC030 CPU Space Address Encodings
Coprocessor Address Map in MC68EC030 CPU Space
Coprocessor Interface Register Set Map
Coprocessor General Instruction Format (cpGEN)

MOTOROLA MC68EC030 USER'S MANUAL

Page
Number

7-91
7-92
7-94
7-95
7-96
7-98
7-100
7-102
7-104
7-106
7-108
7-109
7-110
7-111

8-5
8-13
8-15
8-16
8-17
8-18
8-21
8-24
8-26

9-2
9-3
9-5
9-7

10-4

10-6
10-7
10-8
10-9
10-10

xvii

Figure
Number

LIST OF ILLUSTRATIONS (Continued)

Title
Page

Number

10-7 Coprocessor Interface Protocol for General Category
Instructions .. 10-11

10-8 Coprocessor Interface Protocol for Conditional Category
Instructions .. 10-13

10-9 Branch on Coprocessor Condition Instruction (cpBcc.W).......... 10-14
10-10 Branch on Coprocessor Condition Instruction (cpBcc.L) 10-14
10-11 Set on Coprocessor Condition (cpScc) 10-15
10-12 Test Coprocessor Condition, Decrement and Branch Instruction

Format (cpDBcc) ... 10-17
10-13 Trap on Coprocessor Condition (cpTRAPcc)................ 10-18
10-14 Coprocessor State Frame Format in Memory 10-20
10-15 Coprocessor Context Save Instruction Format (cpSAVE) 10-24
10-16 Coprocessor Context Save Instruction Protocol....................... 10-25
10-17 Coprocesor Context Restore Instruction Format (cpRESTORE) .. 10-27
10-18 Coprocessor Context Restore Instruction Protocol................... 10-28
10-19 Control CIR Format...... 10-29
10.:20 Condition CIR Format... 10-31
10-21 Operand Alignment for Operand CIR Accesses 10.:31
10-22 Coprocessor Response Primitive Format.............. 10-34
10-23 Busy Primitive Format.. 10-35
10-24 Null Primitive Format. .. 10-36
10-25 Supervisor Check Primitive Format.. 10-39
10-26 Transfer Operation Word Primitive Format............................. 10-39
10-27 Transfer from Instruction Stream Primitive Format.................. 10-40
10-28 Evaluate and Transfer Effective Address Primitive Format........ 10-41
10-29 Evaluate Effective Address and Transfer Data Primitive Format 10-42
10-30 Write to Previously Evaluated Effective Address Primitive

Format... 10-44
10-31 Take Address and Transfer Data Primitive Format................... 10-46
10-32 Transfer to/from Top of Stack Primitive Format....................... 10-47
10-33 Transfer Single Main Controller Register Primitive Format....... 10-47
10-34 Transfer Main Controller Control Register Primitive Format...... 10-:-48
10-35 Transfer Multiple Main Controller Registers Primitive Format ... 10-49
10-36 Register Select Mask Format... 10-50
10-37 Transfer Multiple Coprocessor Registers Primitive Format....... 10-50
10-38 Operand Format in Memory for Transfer to - (An)............ 10-52
10-39 Transfer Status Register and ScanPC Primitive Format...... 10-52
10-40 Take Pre-Instruction Exception Primitive Format..................... 10-54

xviii MC68EC030 USER'S MANUAL MOTOROLA

Figure
Number

10-41
10-42
10-43
10-44
10-45

11-1
11-2
11-3
11-4
11-5

12-1

12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17

MOTOROLA

LIST OF ILLUSTRATIONS (Concluded)

Page
Title Number

MC68EC030 Pre-Instruction Stack Frame................................ 10-54
Take Mid-Instruction Exception Primitive Format..................... 10-56
MC68EC030 Mid-Instruction Stack Frame..................... 10-56
Take Post-Instruction Exception Primitive Format.................... 10-57
MC68EC030 Post-Instruction Stack Frame............................... 10-58

Block Diagram - Eight Independent Resources 11-3
Simultaneous Instruction Execution 11-7
Derivation of Instruction Overlap Time 11-8
Controller Activity - Even Alignment.................................... 11-9
Controller Activity - Odd Alignment. 11-10

Signal Routing for Adapting the MC68EC030 to MC68020
Designs... 12-3

32-Bit Data Bus Coprocessor Connection................................ 12-7
Chip-Select Generation PAL.................................. 12-8
PAL Equations... 12-9
Bus Cycle Timing Diagram.. 12-10
Example MC68EC030 Byte Select PAL System Configuration 12-13
MC68EC030 Byte Select PAL Equations 12-14
Low-Cost DRAM Clock Controller 12-15
High-Resolution DRAM Clock Controller................................. 12-15
Access Time Computation Diagram 12-18
Normal Instruction Boundaries .. 12-23
Trace or Interrupt Exception.. 12-23
Other Exceptions... 12-24
Controller Halted... 12-24
Trace Interface Circuit.. 12-27
PAL Pin Definition ... : 12-30
Logic Equations... 12-31

MC68EC030 USER'S MANUAL xix

LIST OF TABLES

Table
Number Title

Page
Number

1-1 Addressing Modes .. 1-11
1-2 Instruction Set .. 1-13

2-1 IS-I/IS Memory Indirection Encodings 2-23
2-2 Effective Addressing Mode Categories...................................... 2-24

3-1 Data Movement Operations... 3-5
3-2 Integer Arithmetic Operations.. 3-6
3-3 Logical Operations.. 3-7
3-4 Shift and Rotate Operations... 3-8
3-5 Bit Manipulation Operations ~ 3-9
3-6 Bit Field Operations.. 3-9
3-7 BCD Operations .. 3-10
3-8 Program Control Operations .. 3-11
3-9 . System Control Operations.. 3-12
3-10 ACU Instructions ... 3-13
3-11 Multiprocessor Operations (Read-Modify-Write)........... 3-13
3-12 Condition Code Computations.. 3-15
3-13 Conditional Tests.. 3-17
3-14 Instruction Set Summary ... 3-19

4-1 Address Space Encodings.. 4-5

5-1 Signal Index ... 5-2
5-2 Signal Summary............... 5-11

7-1 DSACK Codes and Results ... 7-7
7-2 Size Signal Encoding ... 7-10
7-3 Address Offset Encodings .. 7-10
7-4 Data Bus Requirements for Read Cycles........... 7-10
7-5 MC68EC030 Internal to External Data Bus Multiplexer - Write

Cycles... 7-11
7-6 Memory Alignment and Port Size Influence on Write Bus Cycles .. 7-18

xx MC68EC030 USER'S MANUAL MOTOROLA

Table
Number

LIST OF TABLES (Continued)

Title

7-7 Data Bus Write Enable Signals for Byte, Word, and Long-Word

Page
Number

Ports 7-26
]:·8 DSACK, BERR, and HALT Assertion Results.............. 7-83
7-9 STERM, BERR, and HALT Assertion Results................ 7-84

8-1 Exception Vector Assignments... 8-2
8-2 Microsequencer STATUS Indications .. 8-4
8.;.3 Tracing Control... 8-11
8-4 Interrupt Levels and Mask Values... 8-14
8-5 Exception Priority Groups.... .. 8-22
8-6 Exception Stack Frames... 8-31

10-1 cpTRAPcc Opmode Encodings ... 10-19
10-2 Coprocessor Format Word Encodings 10-21
10-3 Null Coprocessor Response Primitive Encodings 10-38
10-4 Valid Effective Address Codes .. 10-42
10-5 Main Controller Control Register Selector Codes 10-49
10-6 Exceptions Related to Primitive Processing 10-62

12-1 Data Bus Activity for Byte, Word, and Long-Word Ports 12-12
12-2 Memory Access Time Equations at 40 MHz 12-19
12-3 Calculated tAVDV Values for Operation at Frequencies

Less Than or Equal to the CPU Maximum Frequency Rating 12-20
12-4 Microsequencer STATUS Indications .. 12-22
12-5 Parts List for Trace Interface Circuit .. 12-28
12-6 AS and ECSC Encoding ... 12-29
12-7 VCC and GND Pin Assignments .. 12-32

MOTOROLA MC68EC030 USER'S MANUAL xxi

xxii MC68EC030 USER'S MANUAL MOTOROLA

PREFACE

The MC68EC030 User's Manual describes the capabilities, operation, and
programming of the MC68030 32-bit embedded controller. The manual con
sists of the following sections and appendix. For detailed information on the
MC68EC030 instruction set, refer to M68000PM/AD, M68000 Family Program
mer's Reference Manual.

Section 1. Introduction
Section 2. Data Organization and Addressing Capabilities
Section 3. Instruction Set Summary
Section 4. Processing States
Section 5. Signal Description
Section 6. On-Chip Cache Memories
Section 7. Bus Operation
Section 8. Exception Processing
Section 9. Access Control Unit
Section 10. Coprocessor Interface Description
Section 11. Instruction Execution Timing
Section 12. Applications Information
Section 13. Electrical Characteristics
Section 14. Ordering Information and Mechanical Data
Appendix A. MC68EC030 New Instructions
Index

NOTE

In this manual, assertion and negation are used to specify forcing a
signal to a particular state. In particular, assertion and assert refer
to a signal that is active or true; negation and negate indicate a
signal that is inactive or false. These terms are used independently
of the voltage level (high or low) that they represent.

The audience of this manual includes systems designers, systems program
mers, and applications programmers. Systems designers need some knowl
edge of all sections, with particular emphasis on Sections 1,5,6,7,13, and
14. Designers who implement a coprocessor for their system also need a
thorough knowledge of Section 10. Systems programmers should become

MOTOROLA MC68EC030 USER'S MANUAL xxiii

xxiv

familiar with Sections 1, 2, 3, 4, 6, 8, 9, and 11. Applications programmers
can find most of the information they need in Sections 1, 2, 3, 4, 9, 11, 12,
and Appendix A.

From a different viewpoint, the audience for this book consists of users of
other M68000 Family members and those who are not familiar with the
embedded controller. Users of the other family members can find references
to similarities to and differences from the Motorola microprocessors through
out the manual. However, Section 1 specifically identifies the MC68EC030
within the rest of the family and contrast its differences.

MC68EC030 USER'S MANUAL MOTOROLA

SECTION 1
INTRODUCTION

The MC68EC030 is a second-generation, full 32-bit, enhanced embedded
controller from Motorola. The MC68EC030 is a member of the M68000 Family
of devices that combines a central processing unit (CPU) core, a data cache,
an instruction cache, and an enhanced bus controller in a single VLSI device.
The controller is designed to operate at clock speeds beyond 25 MHz. The
MC68EC030 is implemented with 32-bit registers and data paths, 32-bit ad
dresses, a rich instruction set, and versatile addressing modes.

The MC68EC030 is upward object-code compatible with all members of the
M68000 Family and has the added features of an on-chip access control unit
(ACU), a data cache, and an improved bus interface. It retains the flexible
coprocessor interface pioneered in the MC68020 and provides full IEEE
floating-point support through this interface with the MC68881 or MC68882
floating-point coprocessor. Also, the internal functional blocks of this embed
ded controller are designed to operate in parallel, allowing instruction exe
cution to be overlapped. In addition to instruction execution, the internal
caches, the on-chip ACU, and the external bus controller all operate in parallel.

The MC68EC030 fully supports the non multiplexed bus structure of the
MC68020 and MC68030, with 32 bits of address and 32 bits of data. The
MC68EC030 bus has an enhanced controller that supports both asynchronous
and synchronous bus cycles and burst data transfers. It also supports the
MC68020 and MC68030 dynamic bus sizing mechanism that automatically
determines device port sizes on a cycle-by-cycle basis as the controller trans
fers operands to or from external devices.

A block diagram of the MC68EC030 is shown in Figure 1-1. The instructions
and data required by the controller are supplied from the internal caches
whenever possible. The bus controller manages the transfer of data between
the CPU and memory or devices at the address.

MOTOROLA MC68EC030 USER'S MANUAL 1-1

N

~
n
C')
co
m
n
0
w
0

c
en
m
:n en
~ »
2
c »
r-

s:
o
-i o
:lJ
o
~

ADDRESS ¢I ADDRESs.-t<
BUS PADS

II

MICROSEQUENCER AND
CONTROL

CONTROL
STORE

CONTROL
LOGIC

INSTRUCTION

"UUnI:O:>O:>

i i

I nUN1i--1
i

BUS CONTROL
SIGNALS

I

ADDRESS
BUS

<
ADDRESS

BUS

li~~~Tj~~ I rrl SECTK)N Ir~ SECTION I

DATA
ADDRESS

BUS

Figure 1-1. Block Diagram

INTERNAL
DATA
BUS

•

I r>I SIZE I¢>I DATA ~DATA
MULTIPLEXER PADS BUS

1.1 FEATURES

The features of the MC68EC030 microprocessor are as follows:

• Object-Code Compatible with the M68000 Microprocessor Family

• Complete 32-Bit Nonmultiplexed Address and Data Buses

• 16 32-Bit General-Purpose Data and Address Registers

• Two 32-Bit Supervisor Stack Pointers and Seven Special-Purpose Control
Registers

• 256-Byte Instruction Cache and 256-Byte Data Cache Can Be Accessed
Simultaneously

• Two Access Control Registers Allow Cache Restrictions on Memory Ac
cesses.

o Pipelined Architecture with Increased Parallelism Allows Accesses to
Internal Caches To Occur in Parallel with Bus Transfers and Instruction
Execution To Be Overlapped

o Enhanced Bus Controller Supports Asynchronous Bus Cycles (three clocks
minimum), Synchronous Bus Cycles (two clocks minimum), and Burst
Data Transfers (one clock minimum) all to the Address Space

o Dynamic Bus Sizing Supports 8-, 16-, 32-Bit Memories and Peripherals

• Support for Coprocessors with the M68000 Coprocessor Interface - e.g.,
Full IEEE Floating-Point Support Provided by the MC68881/MC68882
Floating-Point Coprocessors

• 4-Gbyte Addressing Range

• Implemented in Motorola's HCMOS Technology That Allows CMOS and
HMOS (High-Density NMOS) Gates To Be Combined for Maximum Speed,
Low Power, and Optimum Die Size

Both improved performance and increased functionality result from the on
chip implementation of the data and instruction caches. The enhanced bus
controller and the internal parallelism also provide increased system per
formance. Finally, the improved bus interface, the reduction in physical size,
and the lower power consumption combine to reduce system costs and
satisfy cost/performance goals of the system designer.

MOTOROLA MC68EC030 USER'S MANUAL 1-3

•
1.2 MC68EC030 EXTENSIONS TO THE M68000 FAMILY

In addition to the on-chip instruction cache present in the MC68020, the
MC68EC030 has an internal data cache. Data that is accessed during read
cycles may be stored in the on-chip cache, where it is available for subsequent
accesses. The data cache reduces the number of external bus cycles when
the data operand required by an instruction is already in the data cache.

Performance is enhanced further because the on-chip caches can be internally
accessed in a single clock cycle. In addition, the bus controller provides a
two-clock-cycle synchronous mode and burst mode accesses that can transfer
data in as little as one clock per long word.

The MC68EC030 enhanced embedded controller allows access control check
ing to operate in parallel with the CPU core, the internal caches, and the bus
controller.

Additional signals support emulation and system analysis. External debug
equipment can disable the on-chip caches to freeze the MC68EC030 internal
state during breakpoint processing. In addition, the MC68EC030 indicates:

1. The start of a refill of the instruction pipe
2. Instruction boundaries
3. Pending trace or interrupt processing
4. Exception processing
5. Halt conditions

This status and control information allows external debugging equipment to
trace the MC68EC030 activity and interact nonintrusively with the MC68EC030
to effectively reduce system debug effort.

1.3 PROGRAMMING MODEL

1-4

The programming model of the MC68EC030 consists of two groups of reg
isters: the user model and the supervisor model. This corresponds to the
user and supervisor privilege levels. User programs executing at the user
privilege level use the registers of the user model. System software executing
at the supervisor level uses the control registers of the supervisor level to
perform supervisor functions.

MC68EC030.USER'S MANUAL MOTOROLA

Figure 1-2 shows the user programming model, consisting of 16 32-bit
general-purpose registers and two control registers:

• General-Purpose 32-Bit Registers (00-07, AO-A7)

• 32-Bit Program Counter (PC)

• 8-Bit Condition Code Register (CCR)

The supervisor programming model consists of the registers available to the
user plus 11 control registers:

• Two 32-Bit Supervisor Stack Pointers (ISP and MSP)

• 16-Bit Status Register (SR)

• 32-Bit Vector Base Register (VBR)

• Two 32-Bit Alternate Function Code Registers (SFC and OFC)

• 32-Bit Cache Control Register (CACR)

G 32-Bit Cache Address Register (CAAR)

• Two 32-Bit Access Control Registers (ACO and AC1)

• 16-Bit ACU Status Register (ACUSR)

MOTOROLA MC68EC030 USER'S MANUAL 1-5

-

•

1-6

31 16 15 8 7

DO

D1

D2

D3 DATA
D4 REGISTERS

D5

D6

D7

31 16 15 0

AO

A1

A2.

A3 ADDRESS
REGISTERS

A4

A5

A6

31 16 15 0

I A7 (USP)} ~g~N~~~CK I I
31 0

I I PC
} PROGRAM

COUNTER

15 7 0
} CONDITION

C=========I

ICCR CODE
REGISTER

Figure 1-2. User Programming Model

The user programming model remains unchanged from previous M68000
Family microprocessors. The supervisor programming model supplements
the user programming model and is used exclusively by the MC68EC030
system programmers who utilize the supervisor privilege level to implement
sensitive operating system functions, liD control, and access control sub
systems. The supervisor programming model contains all the controls to
access and enable the special features of the MC68EC030. This segregation
was carefully planned so that all application software is written to run at the
nonprivileged user level and migrates to the MC68EC030 from any M68000
platform without modification. Since system software is usually modified by
system programmers when ported to a new design, the control features are
properly placed in the supervisor programming model. For example, the
access control feature of the MC68EC030 is new to the M68000 Family su
pervisor programming model, and the two access control registers are new

MC68EC030 USER'S MANUAL MOTOROLA

additions to the M68000 Family supervisor programming model for the
MC68EC030. Only supervisor code uses this feature, and user application _
programs remain unaffected.

Registers 00-07 are used as data registers for bit and bit field (1 to 32 bits),
byte (8 bit), word (16 bit), long-word (32 bit), and quad-word (64 bit) oper
ations. Registers AO-A6 and the user, interrupt, and master stack pointers
are address registers that may be used as software stack pointers or base
address registers. Register A7 (shown as A7' and A7" in Figure 1-3) is a
register designation that applies to the user stack pointer in the user privilege
level and to either the interrupt or master stack pointer in the supervisor
privilege level. In the supervisor privilege level, the active stack pointer (in
terrupt or master) is called the supervisor stack pointer (SSP). In addition,
the address registers may be used for word and long-word operations. All
of the 16 general-purpose registers (00-07, AO-A7) may be used as index
registers.

31 1615
o I p} INTERRUPT

'--_________ ..1...-________ ----' A7' (IS) STACK POINTER I I

31 16 15
o I A7' (MSP)} MASTER STACK

'--_________ ..1...-________ ----'. POINTER I I
15 8 7

I (CCR) I SR

31 o
I '--__________________ ----'IVBR

} STATUS REGISTER

}
VECTOR BASE
REGISTER

r~------------------------------------BO
I SFC
r-------------------------------------
I DFC --------------------------------------

}
ALTERNATE FUNCTION
CODE REGISTERS

31 0

I ICACR

31 0

I ICMR

31 0

I I ACO

31 0

I I AC1

15 0

I I ACUSR

}
CACHE CONTROL
REGISTER

}
CACHE ADDRESS
REGISTER

}

ACCESS
CONTROL
REGISTER 0

}
ACCESS
CONTROL
REGISTER 1

}
ACUSTATUS
REGISTER

Figure 1-3. Supervisor Programming Model Supplement

MOTOROLA MC68EC030 USER'S MANUAL 1-7

•

1-8

The program counter (PC) contains the address of the next instruction to be
executed by the MC68EC030. During instruction execution and exception
processing, the controller automatically increments the contents of the PC
or places a new value in the PC, as appropriate.

The status register, SR, (see Figure 1-4) stores the controller status. It contains
the condition codes that reflect the results of a previous operation and can
be used for conditional instruction execution in a program. The condition
codes are extend (X), negative (N), zero (Z), overflow (V), and carry (C). The
user byte containing the condition codes is the only portion of the status
register information available in the user privilege level, and it is referenced
as the CCR in user programs. In the supervisor privilege level, software can
access the full status register, including the interrupt priority mask (three

. bits) as .well as additional control bits. These bits indicate whether the con-
troller is in:

1. One of two trace modes (T1, TO)
2. Supervisor or user privilege level (S)
3. Master or interrupt mode (M)

SYSTEM BYTE
USER BYTE

(CONDITION CODE REGISTER)
~ ______ ~A~ ________ ~,/~ ______ ~A~ ________ ~,

13 12 11 9 5

SUPERVISORIUSER
STATE

MASTERANTERRUPT ________ ~
STATE

Figure 1-4. Status Register

CARRY

OVERFLOW

'------ ZERO

'------- NEGATIVE

'--------- EXTEND

The vector base register (VBR) contains the base address of the exception
vector table in memory. The displacement of an exception vector is added
to the value in this register to access the vector table.

Alternate function code registers, SFC and DFC, contain 3-bit function codes.
Function codes can be considered extensions of the 32-bit linear address that
optionally provide as many as eight 4-Gbyte address spaces. Function codes
are automatically generated by the controller to select address spaces for
data and program at the user and supervisor privilege levels and a CPU

MC68EC030 USER'S MANUAL MOTOROLA

address space for controller functions (e.g., coprocessor communications).
Registers SFC and DFC are used by certain instructions to explicitly specify
the function codes for operations.

The cache control register (CACR) controls the on-chip instruction and data
caches of the MC68EC030. The cache address register (CAAR) stores an ad
dress for cache control functions.

The access control registers, ACO and AC1, can each specify separate blocks
of memory as accessible with restrictions. Function codes and the eight most
significant bits of the address can be used to define the area of memory and
type of access; either read, write, or both types of memory access can be
controlled. The access control feature allows addresses that match the ACx
registers to be cache inhibited, which is useful for marking I/O space as
noncacheable.

The ACU status register (ACUSR) contains access control status information
resulting from a test of the access control registers.

1.4 DATA TYPES AND ADDRESSING MODES

Seven basic data types are supported:
1. Bits
2. Bit Fields (Fields of consecutive bits, 1-32 bits long)
3. BCD Digits (Packed: 2 digits/byte; Unpacked: 1 digit/byte)
4. Byte Integers (8 bits)
5. Word Integers (16 bits)
6. Long-Word Integers (32 bits)
7. Quad-Word Integers (64 bits)

In addition, the instruction set supports operations on other data types such
as memory addresses. The coprocessor mechanism allows direct support of
floating-point operations with the MC68881 and MC68882 floating-point co
processors as well as specialized user-defined data types and functions.

MOTOROLA MC68EC030 USER'S MANUAL 1-9

1-10

The 18 addressing modes, shown in Table 1-1, include nine basic types:
1. Register Direct
2. Register Indirect
3. Register Indirect with Index
4. Memory Indirect
5. Program Counter Indirect with Displacement
6. Program Counter Indirect with Index
7. Program Counter Memory Indirect
8. Absolute
9. Immediate

The register indirect addressing modes can also postincrement, predecre
ment, offset, and index addresses. The program counter relative mode also
has index and offset capabilities. As in the MC68020 and MC68030, both
modes are extended to provide indirect reference through memory. In ad
dition to these addressing modes, many instructions implicitly specify the
use of the condition code register, stack pointer, and/or program counter.

MC68EC030 USER'S MANUAL MOTOROLA

MOTOROLA

Table 1-1. Addressing Modes

Addressing Modes Syntax

Register Direct
Data Register Direct Dn
Address Register Direct An

Register Indirect
Address Register Indirect (An)
Address Register Indirect with Postincrement (An)+
Address Register Indirect with Predecrement -(An)
Address Register Indirect with Displacement (d16,An)

Register Indirect with Index
Address Register Indirect with Index (S-Bit Displacement) (ds,An,Xn)
Address Register Indirect with Index (Base Displacement) (bd,An,Xn)

Memory Indirect
Memory Indirect Postindexed ([bd,An),Xn,od)
Memory Indirect Preindexed ([bd,An,Xn),od)

Program Counter Indirect with Displacement (d16,PC)

Program Counter Indirect with Index
PC Indirect with Index (S-Bit Displacement) (ds,PC,Xn)
PC Indirect with Index (Base Displacement) (bd,PC,Xn)

Program Counter Memory Indirect
PC Memory Indirect Postindexed ([bd,PC),Xn,od)
PC Memory Indirect Preindexed ([bd,PC,Xn),od)

Absolute
Absolute Short (xxx).W
Absolute Long (xxx).L

Immediate #(data)

NOTES:
Dn = Data Register, DO-D7
An = Address Register, AO-A7

S, d16 = A twos-complement or sign-extended displacement; added as part of the
effective address calculation; size is S (dS) or 16 (d16) bits; when omitted,
assemblers use a value of zero.

Xn = Address or data register used as an index register; form is Xn.SIZE*SCALE,
where SIZE is .W or .L (indicates index register size) and SCALE is 1,2,4,
or S (index register is multiplied by SCALE); use of SIZE and/or SCALE is
optional.

bd = A twos-complement base displacement; when present, size can be 16 or
32 bits.

od = Outer displacement, added as part of effective address calculation after
any memory indirection; use is optional with a size of 16 or 32 bits.

PC = Program Counter
(data) = Immediate value of S, 16, or 32 bits

() = Effective Address
[I = Use as indirect access to long-word address.

MC68EC030 USER'S MANUAL 1-11

1.5 INSTRUCTION SET OVERVIEW

The instructions in the MC68EC030 instruction set are listed in Table 1-2. The
instruction set has been tailored to support structured high-level languages
and sophisticated operating systems. Many instructions operate on bytes,
words, or long words, and most instructions can use any of the 18 addressing
modes.

1.6 THE ACCESS CONTROL UNIT

1-12

The ACU supports access controls by comparing the address, read/write, and
function codes of the access to the address, read/write, and function codes
of the ACx registers. If a match occurs and the ACx register is enabled, then
the cacheability of the access is controlled by the cache inhibit bit of the ACx.
If a match does not occur, the cacheability is determined by the cache inhibit
in (CIIN) signal. This allows parts of the memory map to be cache inhibited.
The effect of the ACU can be duplicated in hardware by asserting CIIN on
the appropriate addresses. The status of the ACx registers can be tested, and
the results can be stored in the ACUSR.

MC68EC030 USER'S MANUAL MOTOROLA

Table 1-2. Instruction Set

Mnemonic Description Mnemonic Descriotion

ABCD Add Decimal with Extend MOVE Move
ADD Add MOVEA Move Address
ADDA Add Address MOVE CCR Move Condition Code Register
ADDI Add Immediate MOVE SR Move Status Reqister
ADDQ Add Quick
ADDX Add with Extend
AND Logical AND
ANDI Logical AND Immediate
ASL, ASR Arithmetic Shift Left and RiQht

MOVE USP Move User Stack Pointer
MOVEC Move Control Register
MOVEM Move Multiple Registers
MOVEP Move Peripheral
MOVEQ Move Quick

Bcc Branch Conditionally MOVES Move Alternate Address Space
BCHG Test Bit and Change
BCLR Test Bit and Clear
BFCHG Test Bit Field and Change

MULS Signed Multiply
MULU Unsigned Multiply

BFCLR Test Bit Field and Clear NBCD Negate Decimal with Extend
BFEXTS Signed Bit Field Extract NEG Negate
BFEXTU Unsigned Bit Field Extract NEGX Negate with Extend
BFFFO Bit Field Find First One NOP No Operation
BFINS Bit Field Insert NOT Logical Complement
BFSET Test Bit Field and Set
BFTST Test Bit Field
BKPT Breakpoint
BRA Branch

OR Logical Inclusive OR
ORI Logical Inclusive OR Immediate
ORI CCR Logical Inclusive OR Immediate to

Condition Codes
BSET Test Bit and Set
BSR Branch to Subroutine
BTST Test Bit

ORI SR Logical Inclusive OR Immediate to
Status Register

PACK Pack BCD
CAS Compare and Swap Operands PEA Push Effective Address
CAS2 Compare and Swap Dual Operands
CHK Check Register Against Bound
CHK2 Check Register Against Upper and

PMOVE Move to/from AC Registers
PTESTR, Test ACU for an Address

PTESTW
Lower Bounds

CLR Clear RESET Reset External Devices

CMP Compare
CMPA Compare Address
CMPI Compare Immediate
CMPM Compare Memory to Memory
CMP2 Compare Register Against Upper and

Lower Bounds

ROL, ROR Rotate Left and Right
ROXL, ROXR Rotate with Extend Left and Right
RTD Return and Deallocate
RTE Return from Exception
RTR Return and Restore Codes
RTS Return from Subroutine

DBcc Test Condition, Decrement and
DIVS, DIVSL Branch
DIVU, DIVUL Signed Divide

UnsiQned Divide

SBCD Subtract Decimal with Extend
Scc Set Conditionally
STOP Stop
SUB Subtract
SUBA Subtract Address

EOR Logical Exclusive OR SUBI Subtract Immediate
EORI Logical Exclusive OR Immediate SUBQ Subtract Quick
EXG Exchange Registers SUBX Subtract with Extend
EXT,EXTB Sign Extend SWAP Swap Register Words
ILLEGAL Take Illegal Instruction Trap TAS Test Operand and Set
JMP Jump TRAP Trap
JSR Jump to Subroutine TRAPcc Trap Conditionally

LEA Load Effective Address
LINK Link and Allocate

TRAPV Trap on Overflow
TST Test Operand

LSL, LSR Logical Shift Left and Right UNLK Unlink
UNPK Unpack BCD

MOTOROLA MC68EC030 USER'S MANUAL 1-13

•
Coprocessor Instructions

Mnemonic Description Mnemonic Description

cpBcc Branch Conditionally cpRESTORE Restore Internal State of Coprocessor
cpDBcc Test Coprocessor Condition, cpSAVE Save Internal State of Coprocessor

Decrement and Branch cpScc Set Conditionally
cpGEN Coprocessor General Instruction cpTRAPcc Trap Conditionally

1.7 PIPELINED ARCHITECTURE

The MC68EC030 uses a three-stage pipelined internal architecture to provide
for optimum instruction throughput. The pipeline allows as many as three
words of a single instruction or three consecutive instructions to be decoded
concurrently.

1.8 THE CACHE MEMORIES

1-14

Due to locality of reference, instructions and data that are used in a program
have a high probability of being reused within a short time. Additionally,
instructions and data operands that reside in proximity to the instructions
and data currently in use also have a high probability of being utHized within
a short period. To exploit these locality characteristics, the MC68EC030 con
tains two on-chip caches, a data cache, and an instruction cache.

Each of the caches stores 256 bytes of information, organized as 16 entries,
each containing a block of four long words (16 bytes). The controller fills the
cache entries either one long word at a time or, during burst mode accesses,
four long words consecutively. The burst mode of operation not only fills
the cache efficiently but also captures adjacent instruction or data items that
are likely to be required in the near future due to locality characteristics of
the executing task.

The caches improve the overall performance of the system by reducing the
number of bus cycles required by the controller to fetch information from
memory and by increasing the bus bandwidth available for other bus masters
in the system. Addition of the data cache in the MC68EC030 extends the
benefits of cache techniques to all memory accesses. During a write cycle, .
the data cache circuitry writes data to a cached data item as well as to the
item in memory, maintaining consistency between data in the cache and that
in memory. However, writing data that is not in the cache mayor may not
cause the data item to be stored in the cache, depending on the write allo
cation policy selected in the cache control register (CACR).

MC68EC030 USER'S MANUAL MOTOROLA

SECTION 2
DATA ORGANIZATION AND ADDRESSING
CAPABILITIES

Most external references to memory by an embedded controller are either
program references or data references; they either access instruction words
or operands (data items) for an instruction. Program references refer to the
program space, the section of memory that contains the program instructions
and any immediate data operands residing in the instruction stream.
M68000PM/AD, M68000 Programmer's Reference Manual, and APPENDIX A
MC68EC030 NEW INSTRUCTIONS have descriptions of the instructions in
the program space. Data references refer to the data space, the section of
memory that contains the program data. Data items in the instruction stream
can be accessed with the program counter relative addressing modes, and
these accesses are classified as program references. A third type of external
reference, classified as a CPU space reference, is used for coprocessor com
munications, interrupt acknowledge cycles, and breakpoint acknowledge
cycles is classified as a CPU space reference. The MC68EC030 automatically
sets the function codes to access the program space, the data space, or the
CPU space for special functions as required. The access control unit (ACU)
can use function codes to specify cacheability of separate program (read
only) and data (read-write) memory areas.

This section describes the data organization and addressing capabilities of
the MC68EC030. It lists the types of operands used by instructions and de
scribes the registers and their use as operands. Next, the section describes
the organization of data in memory and the addressing modes available to
access data in memory. Last, the section describes the system stack and user
program stacks and queues.

2.1 INSTRUCTION OPERANDS

The MC68EC030 supports a general-purpose set of operands to serve the
requirements of a large range of applications. Operands of MC68EC030 in
structions may reside in registers, in memory, or within the instructions
themselves. An instruction operand might also reside in a coprocessor. An
operand may be a single bit, a bit field of from 1 to 32 bits in length, a byte
(8 bits), a word (16 bits), a long word (32 bits), or a quad word (64 bits). The

MOTOROLA MC68EC030 USER'S MANUAL 2-1

-

-
operand size for each instruction is either explicitly encoded in the instruction
or implicitly defined by the instruction operation. Coprocessors are designed
to support special computation models that require very specific but widely
varying data operand types and sizes. Hence, coprocessor instructions can
specify operands of any size.

2.2 ORGANIZATION OF DATA IN REGISTERS

The eight data registers can store data operands of 1, 8, 16, 32, and 64 bits,
addresses of 16 or 32 bits, or bit fields of 1 to 32 bits. The seven address
registers and the three stack pointers are used for address operands of 16
or 32 bits. The control registers (SR, VBR, SFC, DFC, CACR, CAAR, ACQ, AC1,
and ACUSR) vary in size according to function. Coprocessors may define
unique operand sizes and support them with on-chip registers accordingly.

2.2.1 Data Registers

2-2

Each data register is 32 bits wide. Byte operands occupy the low-order 8 bits,
word operands the low-order 16 bits, and long-word operands the entire 32
bits. When a data register is used as either a source or destination operand,
only the appropriate low-order byte or word (in byte or word operations,
respectively) is used or changed; the remaining high-order portion is neither
used nor changed. The least significant bit of,a long-word integer is addressed
as bit zero, and the most significant bit is addressed as bit 31. For bit fields,
the most significant bit is addressed as bit zero, and the least significant bit
is addressed as the width of the field minus one. If the width of the field plus
the offset is greater than 32, the bit field wraps around within the register.
The following illustration shows the organization of various types of data in
the data registers.

Bit (O~Modulo (Offset)<31, Offset of Q = MSB)
31 30 29

I MSB I

Byte
31

High-Order Byte

24 23 16 15

Middle-High Byte Middle-Low Byte

MC68EC030 USER'S MANUAL

I LSB I

Low-Order Byte

MOTOROLA

16-Bit Word
31

Long Word
31

Quad Word
63 62

I MSB I
31

16 15

High-Order Word Low-Order Word

Long Word

Any Ox

Any Oy

Bit Field (O~Offset<32, O<Width~32)
31 I Width

Offset

Note: If width + offset<32, bit field wraps around within the register.

Unpacked BCD (a = MSB)
31 8 4 3

x I x I x I x I a I

Packed BCD (a = MSB First Digit, e = MSB Second Digit)
31 8 7 6 543

Data Organization in Data Registers

o

32

o
I LSB I

o

o
c I d

o
g I h

Quad-word data consists of two long words: for example, the product of 32-
bit multiply or the quotient of 32-bit divide operations (signed and unsigned).
Quad words may be organized in any two data registers without restrictions
on order or pairing. There are no explicit instructions for the management
of this data type, although the MOVEM instruction can be used to move a
quad word into or out of the registers.

MOTOROLA MC68EC030 USER'S MANUAL 2-3

l1li

l1li

Binary-coded decimal (BCD) data represents decimal numbers in binary form.
Although many BCD codes have been devised, the BCD instructions of the
M68000 Family support formats in which the four least significant bits consist
of a binary number having the numeric value of the corresponding decimal
number. Two BCD formats are used. In the unpacked BCD format, a byte
contains one digit; the four least significant bits contain the binary value and
the four most significant bits are undefined. Each byte of the packed BCD
format contains two digits; the least significant four bits contain the least
significant digit.

2.2.2 Address Registers

Each address register and stack pointer is 32 bits wide and holds a 32-bit
address. Address registers cannot be used for byte-sized operands. There
fore, when an address register is used as a source operand, either the low
order word or the entire long-word operand is used, depending upon the
operation size. When an address register is used as the destination operand,
the entire register is affected, regardless of the operation size. If the source
operand is a word size, it is first sign-extended to 32 bits and then used in
the operation to an address register destination. Address registers are used
primarily for addresses and to support address computation. The instruction
set includes instructions that add to, subtract from, compare, and move the
contents of address registers. The following example shows the organization
of addresses in address registers.

31 16 15

Sign-Extended 16-Bit Address Operand

31 o
Full 32-Bit Address Operand

Address Organization in Address Registers

2.2.3 Control Registers

2-4

The control registers described in this section contain control information
for supervisor functions and vary in size. With the exception of the user
portion of the status register (CCR), they are accessed only by instructions
at the supervisor privilege level.

MC68EC030 USER'S MANUAL MOTOROLA

The status register (SR), shown in Figure 1-4, is 16 bits wide. Only 12 bits of
the status register are defined; all undefined values are reserved by Motorola
for future definition. The undefined bits are read as zeros and should be
written as zeros for future compatibility. The lower byte of the status register
is the CCR. Operations to the CCR can be performed at the supervisor or user
privilege level. All operations to the status register and CCR are word-sized
operations, but for all CCR operations, the upper byte is read as all zeros and
is ignored when written, regardless of privilege level.

The supervisor programming model (see Figure 1-3) shows the control reg
isters. The cache control register (CACR) provides control and status infor
mation forthe on-chip instruction and data caches. The cache address register
(CAAR) contains the address for cache control functions. The vector base
register (VBR) provides the base address of the exception vector table. All
operations involving the CACR, CAAR, and VBR are long-word operations,
whether these registers are used as the source or the destination operand.

The alternate function code registers (SFC and DFC) are 32-bit registers with
only bits 2-0 implemented that contain the address space values (FCO-FC2)
for the read or write operands of MOVES and PTEST instructions. The MOVEC
instruction is used to transfer values to and from the alternate function code
registers. These are long-word transfers; the upper 29 bits are read as zeros
and are ignored when written.

The remaining control registers in the supervisor programming model are
used by the acces control unit (ACU). The access control registers (ACO and
AC1) contain 32 bits each; they identify memory area cacheability. Data trans
fers to and from these registers are long-word transfers. The ACU status
register (ACUSR) stores the status of the ACU after execution of a PTEST
instruction. It is a 16-bit register, and transfers to and from the ACUSR are
word transfers. Refer to SECTION 9 ACCESS CONTROL UNIT for more detail.

2.3 ORGANIZATION OF DATA IN MEMORY

Memory is organized on a byte-addressable basis where lower addresses
correspond to higher order bytes. The address, N, of a long-word data item
corresponds to the address of the most significant byte of the highest order
word. The lower order word is located at address N + 2, leaving the least
significant byte at address N + 3 (refer to Figure 2-1). Notice that the
MC68EC030 does not require data to be aligned on word boundaries (refer
to Figure 2-2), but the most efficient data transfers occur when data is aligned
on the same byte boundary as its operand size. However, instruction words
must be aligned on word boundaries.

MOTOROLA MC68EC030 USER'S MANUAL 2-5

31 23 15 7 o

LONG WORD $00000000

WORD $00000000 WORD $00000002

BYTE $00000000 I BYTE $00000001 BYTE $00000002 1 BYTE $00000003

LONG WORD $00000004

WORD $00000004 WORD $00000006

BYTE $00000004 I BYTE $00000005 BYTE $00000006 I BYTE $00000007

• •
• •
• •

LONG WORD $FFFFFFFC

WORD $FFFFFFFC

I
WORD $FFFFFFFE

BYTE $FFFFFFFC I BYTE $FFFFFFFD BYTE $FFFFFFFE I BYTE $FFFFFFFF

Figure 2-1. Memory Operand Address

2-6 MC68EC030 USER'S MANUAL MOTOROLA

BIT DATA
7

'f 1 ~17 01
7

I BYTE n-1 BYTEn + 1 BYTE n + 2 7654~2

BASE ADDRESS BIT NUMBER

BIT FIELD DATA
o 7 o 7

BYTE n-1 BYTEn o 1 23 w-1

~OFFSET- - - - - - - - OFFSET---~-WIDTH~
... 3-2-1 012 ...

BASE ADDRESS
BYTE INTEGER DATA

7

I or 01
7 0

I BYTE n-1 BYTE n LSB: BYTE n+ 1 BYTE n + 2 MSB

ADDRESS

WORD INTEGER DATA
7 o 7 o 7 o 7 o 7 0

BYTE n-1 WORD INTEGER BYTE n +2 BYTE n +3

ADDRESS

7 o 7 o 7 o 7 o 7 0

BYTE n-1 LONG-WORD INTEGER BYTE n + 4

ADDRESS
ADDRESS

QUAD-WORD DATA
7 t 01 7 01 7 01 7

T
0

I BYTE n-1
QUAD WORD

BYTE 0+8

PACKED BINARY-CODED DATA

BYTE n-1 I MSD 41
3

LSD 0 r BYTE 0+ 1
01

7
BYTE 0+2

ADDRESS

UNPACKED BINARY-CODED DATA

I xx
413 0 17 41

3 or 0

BYTEn -1 MSD XX LSD BYTE n+ 2

ADDRESS

xx = USER DEFINED VALUE

Figure 2-2. Memory Data Organization

MOTOROLA MC68EC030 USER'S MANUAL 2-7

•
The data types supported in memory by the MC68EC030 are bit and bit field
data; integer data of 8, 16, or 32 bits; 32-bit addresses; and BCD data (packed
and unpacked). These data types are organized in memory as shown in Figure
2-2. Note that all of these data types can be accessed at any byte address .

Coprocessors can implement any data types and lengths up to 255 bytes.
For example, the MC68881/MC68882 floating-point coprocessors support
memory accesses for quad-word-sized items (double-precision floating-point
values).

A bit operand is specified by a base address that selects one byte in memory
(the base byte) and a bit number that selects the one bit in this byte. The
most significant bit" of the byte is bit 7.

A bit field operand is specified by:

1. A base address that selects one byte in memory,

2. A bit field offset that indicates the leftmost (base) bit of the bit field in
relation to the most significant bit of the base byte, and

3. A bit field width that determines how many bits to the right of the base
bit are in the bit field.

The most significant bit ofthe base byte is bit field offset 0, the least significant
bit of the base byte is bit field offset 7, and the least significant bit of the
previous byte in memory is bit offset - 1. Bit field offsets may have values
in the range of - 231 to 231 - 1, and bit field widths may range between 1
and 32 bits.

2.4 ADDRESSING MODES

2-8

The addressing mode of an instruction can specify the value of an operand
(with an immediate operand), a register that contains the operand (with the
register direct addressing mode), or how the effective address of an operand
in memory is derived. An assembler syntax has been defined for each ad
dressing mode.

Figure 2-3 shows the general format ofthe single effective address instruction
operation word. The effective address field specifies the addressing mode
for an operand that can use one of the numerous defined modes. The (ea)
designation is composed of two 3-bit fields: the mode field and the register
field. The value in the mode field selects one or a set of addressing modes.
The register field specifies a register for the mode or a submode for modes
that do not use registers.

MC68EC030 USER'S MANUAL MOTOROLA

15 14 13 12 11 10 9 5 o
EFFECTIVE ADDRESS

MODE REGISTER

Figure 2-3. Single Effective Address Instruction Operation Word

Many instructions imply the addressing mode for one of the operands. The.
formats of these instructions include appropriate fields for operands that use
only one addressing mode.

The effective address field may require additional information to fully specify
the operand address. This additional information, called the effective address
extension, is contained in an additional word or words and is considered part
of the instruction. Refer to 2.5 EFFECTIVE ADDRESS ENCODING SUMMARY
for a description of the extension word formats.

The notational conventions used in the addressing mode descriptions in this
section are:

EA-Effective address
An-Address register n

Example: A3 is address register 3
On-Data register n

Example: 05 is data register 5
Xn.SIZE*SCALE-Denotes index register n (data or address), the index size

(W for word, L for long word), and a scale factor (1, 2, 4,
or 8, for no, word, long;.word or quad-word scaling, re
spectively).

PC-The program counter
dn-Displacement value, n bits wide
bd-Base displacement
od-Outer displacement
. L-Long-word size
W-Word size
()-Identify an indirect address in a register
[]-Identify an indirect address in memory

When the addressing mode uses a register, the register field of the operation
word specifies the register to be used. Other fields within the instruction
specify whether the register selected is an address or data register and how
the register is to be used.

MOTOROLA MC68EC030 USER'S MANUAL 2-9

-

•
2.4.1 Data Register Direct Mode

In the data register direct mode, the operand is in the data register specified
by the effective address register field .

GENERATION: EA = Dn
ASSEMBLER SYNTAX: Dn
MODE: 000
REGISTER: n 31 0
DATA REGISTER: Dn ----~~ I OPERAND I
NUMBER OF EXTENSION WORDS: 0 '----------------'

2.4.2 Address Register Direct Mode

In the address register direct mode, the operand is in the address register
specified by the effective address register field.

GENERATION: EA = An
ASSEMBLER SYNTAX: An
MODE: 001
REGISTER: n 31 0
ADDRESS REGISTER: An ----~~ I OPERAND I
NUMBER OF EXTENSION WORDS: 0 '----------------'

2.4.3 Address Register Indirect Mode

In the address register indirect mode, the operand is in memory, and the
address of the operand is in the address register specified by the register
field.

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

MEMORY ADDRESS:

EA .. (An)
(An)
010
n
An----~

NUMBER OF EXTENSION WORDS: 0

31 o
MEMORY ADDRESS

31 o
OPERAND

2.4.4 Address Register Indirect with Postincrement Mode

2-10

In the address register indirect with postincrement mode, the operand is in
memory, and the address of the operand is in the address register specified
by the register field. After the operand address is used, it is incremented by
one, two, or four, depending on the size of the operand: byte, word, or long
word. Coprocessors may support incrementing for any size of operand up

MC68EC030 USER'S MANUAL MOTOROLA

to 255 bytes. If the address register is the stack pointer and the' operand size
is byte, the address is incremented by two rather than one to keep the stack
pointer aligned to a word boundary.

GENERATION:

ASSEMBLER SYNTAX:
MODE:

EA= (An)
An =An + SIZE
(An) +
011
n F31~ ______________________ ~0

An ------'~~I
REGISTER:
ADDRESS REGISTER: MEMORY ADDRESS

OPERAND LENGTH (1,2, OR 4):

31 o
MEMORY ADDRESS: OPERAND
NUMBER OF EXTENSION WORDS: 0

2.4.5 Address Register Indirect with Predecrement Mode

In the address register indirect with predecrement mode, the operand is in
memory, and the address of the operand is in the address register specified
by the register field. Before the operand address is used, it is decremented
by one, two, or four, depending on the operand size: byte, word, or long
word. Coprocessors may support decrementing for any operand size up to
255 bytes. If the address register is the stack pointer and the operand size is
byte, the address is decremented by two rather than one to keep the stack
pointer aligned to a word boundary.

GENERATION:

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

OPERAND LENGTH (1, 2, OR 4):

MEMORY ADDRESS:

An = An-SIZE
EA= (An)
-(An)
100
n
An----~

31

~-------~------~----~

31
OPERAND

NUMBER OF EXTENSION WORDS: 0

2.4.6 Address Register Indirect with Displacement Mode

In the address register indirect with displacement mode, the operand is in
memory. The address of the operand is the sum of the address in the address
register plus the sign-extended 16-bit displacement integer in the extension
word. Displacements are always sign-extended to 32 bits prior to being used
in effective address calculations.

MOTOROLA MC68EC030 USER'S MANUAL 2-11

•

".; ,'",'" ,c

•
, 'GENERATION:'

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

EA = (An) + d16
(d16,An)
101
n
An----~

31

MEMORY ADDRESS

31 15 0
DISPLACEMENT: [SIGN EXTENDED --,---IN-TE-GE-R----,

31

MEMORY.ADDRESS:
NUMBER OF EXTENSION WORDS: 1

o

2.4.7 Address Register Indirect with Index (S-Bit Displacement) Mode

This addressing mode requires one extension word that contains the index
register indicator and an 8-bit displacement. The index register indicator
includes size and scale information. In this mode, the operand is in memory.
The address of the operand is the sum of the contents of the address register,
the sign-extended displacement value in the low-order eight bits of the ex
tension word, and the sign-extended contents of the index register (possibly
scaled). The user must specify the displacement, the address register, and
the index register in this mode.

GENERATION:

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

DISPLACEMENT:

INDEX REGISTER

SCALE:

MEMORY ADDRESS:

EA = (An) + (XN) + da
(da,An,Xn.SIZE·SCALE)
110
n
An ~31~ ______________ ~

.. MEMORY ADDRESS
~--------------.-----~

31 0 r------------
L ___ ~IG.!'I ~T~N£E~ _ _ _ INTEGER

31 0

SIGN-EXTENDED VALUE

7 0

SCALE VALUE

31

OPERAND
NUMBER OF EXTENSION WORDS:

2.4.S Address Register Indirect with Index (Base Displacement) Mode

This addressing mode requires an index register indicator and an optional
16- or 32-bit sign-extended base displacement. The index register indicator
includes size and scaling information. The operand is in memory. The address
of the operand is the sum of the contents of the address register, the scaled
contents of the sign-extended index register, and the base displacement.

2-12 MC68EC030 USER'S MANUAL MOTOROLA

In this mode, the address register, the index register, and the displar"ment
are all optional. If none is specified, the effective address is zero. This mode
provides a data register indirect address when no address register is specified
and the index register is a data register (On).

GENERATION:
ASSEMBLER SYNTAX:
MODE:

EA ,. (An) + (Xn) + bd
(bd,An,Xn.SIZE"SCALE)
110

REGISTER: n ~31~ ________________ ~ ____ ~

ADDRESS REGISTER: An-----'~

31 o
BASE DISPLACEMENT: SIGN-EXTENDED VALUE

31 o
INDEX REGISTER: SIGN-EXTENDED VALUE

7 o
SCALE: SCALE VALUE

31
MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2, OR 3

2.4.9 Memory Indirect Postindexed Mode

In this mode, the operand and its address are in memory. The controller
calculates an intermediate indirect memory address using the base register
(An) and base displacement (bd). The controller accesses a long word at this
address and adds the index operand (Xn.SIZE*SCALE) and the outer dis
placement to yield the effective address. Both displacements and the index
register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
Both the base and outer displacements may be null, word, or long word.
When a displacement is omitted or an element is suppressed, its value is
taken as zero in the effective address calculation.

MOTOROLA MC68EC030 USER'S MANUAL 2-13

l1li

•
GENERATION:
ASSEMBLER SYNTAX: EA = (bd + An) + Xn.SIZE·SCALE + od
MODE: ([bd,An),Xn.SIZE·SCALE,od)
ADDRESS REGISTER: 110 31

An

31 0

BASE DISPLACEMENT: SIGN·EXTENDED VALUE

31

31

31 0

INDEX REGISTER: SIGN-EXTENDED VALUE

7 0

SCALE: SCALE VALUE

31 0

OUTER DISPLACEMENT: SIGN-EXTENDED VALUE

31

EFFECTIVE ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2,3,4, OR 5

2.4.10 Memory Indirect Preindexed Mode

2-14

In this mode, the operand and its address are in memory. The controller
calculates an intermediate indirect memory address using the base register
(An), a base displacement (bd), and the index operand (Xn.SIZE * SCALE).
The controller accesses a long word at this address and adds the outer
displacement to yield the effective address. Both displacements and the index
register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
Both the base and outer displacements may be null, word, or long word.
When a displacement is omitted or an element is suppressed, its value is
taken as zero in the effective address calculation.

MC68EC030 USER'S MANUAL MOTOROLA

GENERATION:
ASSEMBLER SYNTAX:
MODE:
ADDRESS REGISTER: 110 31

An

31 0

BASE DISPLACEMENT: SIGN-EXTENDED VALUE

31 0

SIGN-EXTENDED VALUE

0

SCALE VALUE

31

INDEX REGISTER:

31

SCALE:

31

OUTER DISPLACEMENT: SIGN-EXTENDED VALUE

31

EFFECTIVE ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2,3,4, OR 5

2.4.11 Program Counter Indirect with Displacement Mode

In this mode, the operand is in memory. The address of the operand is the
sum of the address in the PC and the sign-extended 16-bit displacement
integer in the extension word. The value in the PC is the address of the
extension word. The reference is a program space reference and is only
allowed for reads (refer to 4.2 ADDRESS SPACE TYPES).

GENERATION: .
ASSEMBLER SYNTAX:
MODE:
REGISTER:

EA = (PC) + d 16
d16,PC)
111
010 31

PROGRAM COUNTER: ADDRESS OF EXTENSION WORD

DISPLACEMENT:
31 15 0 r - - - - - - - - -r-:--------,
L _ ~IG~ ~XT..§N~E~ _ INTEGER f---~

31

MEMORY ADDRESS: OPERAND
NUMBER OF EXTENSION WORDS: 1

MOTOROLA MC68EC030 USER'S MANUAL

o

o

2-15

2.4.12 Program Counter Indirect with Index (a-Bit Displacement) Mode

This mode is similar to the address register indirect with index (8-bit dis
placement) mode described in 2.4.7 Address Register Indirect with Index
(S-Bit Displacement) Mode, but the PC is used as the base register. The
operand is in memory. The address of the operand is the sum of the address
in the PC, the sign-extended displacement integer in the lower eight bits of
the extension word, and the sized, scaled, and sign-extended index operand.
The value in the PC is the address of the extension word.'This reference is
a program space reference and is only allowed for reads. The user must
include the displacement, the PC, and the index register when specifying this
addressing mode.

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
PROGRAM COUNTER:

EA = (PC) + (Xn) + dS
(dS, PC,Xn. SIZE'SCALE)
111
011 ,=-31:.....-__________ ____=_.

31 7 0
DISPLACEMENT: r------------

L ___ ~G~ ~!J~D_ _ _ _ _ INTEGER

31 0

INDEX REGISTER SIGN-EXTENDED VALUE

7 0

SCALE: I SCALE VALUE I
31

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

2.4.13 Program Counter Indirect with Index (Base Displacement) Mode

This mode is similar to the address register indirect with index (base dis
placement) mode described in 2.4.S Address Register Indirect with Index
(Base Displacement) Mode, but the PC is used as the base register. It requires
an index register indicator and an optional 16- or 32-bit sign-extended base
displacement. The operand is in memory. The address of the operand is the
sum of the contents of the PC, the scaled contents of the sign-extended index
register, and the base displacement. The value of the PC is the address of
the first extension word. The reference is a program space reference and is
only allowed for reads (refer to 4.2 ADDRESS SPACE TYPES).

2-16

In this mode, the PC, the index register, and the displacement are all optional.
However, the user must supply the assembler notation "ZPC" (zero value is
taken for the PC) to indicate that the PC is not used. This allows the user to
access the program space without using the PC in calculating the effective

MC68EC030 USER'S MANUAL MOTOROLA

address. The user can access the program space with a data register indirect
access by placing ZPC in the instruction and specifying a data register (Dn)
as the index register.

GENERATION:
ASSEMBLER SYNTAX:

EA = (PC) + (Xn) + bd
(bd, PC, Xn. SIZE'SCALE)
111 MODE: '

REGISTER: 011 ,::..31:-___________ _=_.

PROGRAM COUNTER:, »0

31 . o
BASE DISPLACEMENT: SIGN-EXTENDED VALUE

~----------------------~
31 o

INDEX REGISTER SIGN-EXTENDED VALUE

o
SCALE: SCALE VALUE

31
MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2 OR 3

2.4.14 Program Counter Memory Indirect Postindexed Mode

This mode is similar to the memory indirect postindexed mode described in
2.4.9 Memory Indirect Postindexed Mode, but the PC is used as the base
register. Both the operand and operand address are in memory. The con
troller calculates an intermediate indirect memory address by adding a base
displacement (bd) to the PC contents. The controller accesses a long word
at that address and adds the scaled contents of the index register and the
optional outer displacement (od) to yield the effective address. The value of
the PC used in the calculation is the address of the first extension word. The
reference is a program space reference and is only allowed for reads (refer
to 4.2 ADDRESS SPACE TYPES).

In the syritax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
However, the user must supply the assembler notation ZPC (zero value is
taken for the PC) to indicate that the PC is not used. This allows the user to
access the program space without using the PC in calculating the effective
address. Both the base and outer displacements may be nUll, word, or long
word. When a displacement is omitted or an element is suppressed, its value
is taken as zero in the effective address calculation.

MOTOROLA MC68EC030 USER'S MANUAL 2-17

GENERATION: EA = (bd + PC) + Xn.SIZE·SCALE + od
ASSEMBLER SYNTAX: ([bd, PC], Xn.SIZE·SCALE,od) .
MODE: 111
REGISTER AELD: 011 31
PROGRAM COUNTER: MEMORY ADDRESS

31 0

BASE DISPLACEMENT: SIGN·EXTENDED VALUE

31

31

31 0

INDEX REGISTER: SIGN·EXTENDED VALUE

7 0

SCALE VALUE

31 0

OUTER DISPLACEMENT: SIGN·EXTENDED VALUE

31

EFFECTIVE ADDRESS: OPERAND
NUMBER OF EXTENSION WORDS: 1,2,3,4, OR 5

2.4.15 Program Counter Memory Indirect Preindexed Mode

2-18

This mode is similar to the memory indirect preindexed mode described in
2.4.10 Memory Indirect Preindexed Mode, but the PC is used as the base
register. Both the operand and operand address are in memory. The con
troller calculates an intermediate indirect memory address by adding the PC
contents, a base displacement (bd), and the scaled contents of an index
register. The controller accesses a long word at that address and adds the
optional outer displacement (od) to yield the effective address. The value of
the PC is the address of the first extension word. The reference is a program
space reference and is only allowed for reads (refer to 4.2 AI;)DRESS SPACE
TYPES).

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
However, the user must supply the assembler notation ZPC (zero value is
taken for the pC) to indicate that the PC is not used. This allows the user to
access the program space without using the PC in calculating the effective
address. Both the base and outer displacements may be null, word, or long
word. When a displacement is omitted or an element is suppressed, its value
is taken as zero in the effective address calculation.

MC68EC030 USER'S· MANUAL MOTOROLA

GENERATION:
ASSEMBLER SYNTAX:
MODE:

EA = (bd + PC + Xn . SIZE' SCALE) + od
([bd, PC, Xn. SIZE'SCALE),od)
111

REGISTER AELD:
PROGRAM COUNTER:

011 r-31:...--___________ --..::...

..
31 o

BASE DISPLACEMENT: SIGN-EXTENDED VALUE

31 o
INDEX REGISTER SIGN-EXTENDED VALUE

7 o
SCALE VALUE

31

31

31 o
OUTER DISPLACEMENT: SIGN-EXTENDED VALUE

~--------------------~
31

EFFECTIVE ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2,3,40RS

2.4.16 Absolute Short Addressing Mode

In this addressing mode, the operand is in memory, and the address of the
operand is in the extension word. The 16-bit address is sign-extended to 32
bits before it is used.

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER AELD:
EXTENSION WORD:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

EAGIVEN
(xxx).W
111
000 31 r-----------
-----~ .. i SIGN EXTENDED

31
OPERAND

2.4.17 Absolute Long Addressing Mode

o
MEMORY ADDRESS

o

In this mode, the operand is in memory, and the address of the operand
occupies the two extension words following the instruction word in memory.
The first extension word contains the high-order part of the address; the low
order part of the address is the second extension word.

MOTOROLA MC68EC030 USER'S MANUAL 2-19

l1li

GENERATION: EAGIVEN
ASSEMBLER SYNTAX: (xxx).L
MODE: 111

15 0 REGISTER RELD: 001
FIRST EXTENSION WORD: ADDRESS HIGH

15
SECOND EXTENSION WORD:

31
CONCATENATION

31 0
. MEMORY ADDRESS: OPERAND

NUMBER OF EXTENSION WORDS: 2

2.4.18 Immediate Data

2-20

In this addressing mode, the operand is in one or two extension words:

Byte Operation
Operand is in the low-order byte of the extension word

Word Operation
Operand is in the extension word

Long-Word Operation
The high-order 16 bits of the operand are in the first extension word;
the low-order 16 bits are in the second extension word.

Coprocessor instructions can support immediate data of any size. The in
struction word is followed by as many extension words as are required.

GENERATION:
ASSEMBLER SYNTAX:
MODE RELD:
REGISTER RELD:
NUMBER OF EXTENSION WORDS:

OPERAND GIVEN
#Xxx
111
100
1 or 2, EXCEPT FOR COPROCESSOR INSTRUCTIONS

MC68EC030 USER'S MANUAL MOTOROLA

2.5 EFFECTIVE ADDRESS ENCODING SUMMARY

Most of the addressing modes use one of the three formats shown in Figure
2-4. The single effective address instruction is in the format of the instruction
word. The encoding of the mode field of this word selects the addressing
mode. The register field contains the general register number or a value that
selects the addressing mode when the mode field contains "111". Table
2-2 shows the encoding of these fields. Some indexed or indirect modes use
the instruction word followed by the brief format extension word. Other
indexed or indirect modes consist of the instruction word and the full format
of extension words. The longest instruction for the MC68EC030 contains 10
extension words. It is a MOVE instruction with full format extension words
for both the source and destination effective addresses and with 32-bit base
displacements and 32-bit outer displacements for both addresses. However,
coprocessor instructions can have any number of extension words. Refer to
the coprocessor instruction formats in SECTION 10 COPROCESSOR INTER
FACE DESCRIPTION.

MOTOROLA MC68EC030 USER'S MANUAL 2-21

-
15 14

. 15 14

D/A

15 14

D/A I

Field

Instruction:
Register

Extensions:

2-22

Register
D/A

W/L

Scale

Single Effective Address Instruction Format

13 12 11 10 9 8 7 6 5

EFFECTIVE ADDRESS

MODE REGISTER

Brief Format Extension Word

12 11 10

REGISTER W/L ·SCALE DISPLACEMENT

Full Format Extension Word(s)

12 11 10 9 8 7 6 5

REGISTER I W/L I SCALE I 1 I BS I IS I BD SIZE I o I IllS

BASE DISPLACEMENT W. 1. OR 2 WORDS)

OUTER DISPLACEMENT W. 1. OR 2 WORDS)

Definition

General Register Number

Index Register Number
Index Register Type

O=Dn
1 =An

Word/Long-Word Index Size
0= Sign-Extended Word
1 = Long Word

Scale Factor
00=1
01 =2
10=4
11 =8

Field

BS

IS

BD SIZE

I/IS

Definition

Base Register Suppress:
0= Base Register Added
1 = Base Register Suppressed

Index Suppress:
0= Evaluate and Add Index

Operand
1 = Suppress Index Operand

Base Displacement Size:
00 = Reserved
01 = Null Displacement
10 = Word Displacement
11 = Long Displacement

Index/Indirect Selection:
Indirect and Indexing Oper
and Determined in Conjunc
tion with Bit 6, Index Suppress

Figure 2-4. Effective Address Specification Formats

MC68EC030 USER'S MANUAL MOTOROLA

For effective addresses that use the full format, the index suppress (IS) bit
and the indexlindirect selection (IllS) field determine the type of indexing and
indirection. Table 2-1 lists the indexing and indirection operations corre
sponding to all combinations of IS and IllS values.

Table 2-1. IS-IllS Memory Indirection Encodings

IS Index/Indirect Operation

0 000 No Memory Indirection

0 001 Indirect Preindexed with Null Outer Displacement

0 010 Indirect Preindexed with Word Outer Displacement

0 011 Indirect Preindexed with Long Outer Displacement

0 100 Reserved

0 101 Indirect Postindexed with Null Outer Displacement

0 110 Indirect Postindexed with Word Outer Displacement

0 111 Indirect Postindexed with Long Outer Displacement

1 000 No Memory Indirection

1 001 Memory Indirect with Null Outer Displacement

1 010 Memory Indirect with Word Outer Displacement

1 011 Memory Indirect with Long Outer Displacement

1 100-111 Reserved

Effective address modes are grouped according to the use of the mode. They
can be classified as follows:

Data A data addressing effective address mode is one that refers to
data operands.

Memory A memory addressing effective address mode is one that refers
to memory operands.

Alterable An alterable addressing effective address mode is one that refers
to alterable (writable) operands.

Control A control addressing effective address mode is one that refers
to memory operands without an associated size.

MOTOROLA MC68EC030 USER'S MANUAL 2-23

2-24

Table 2-2 shows the categories to which each of the effective addressing
modes belong.

Table 2-2. Effective Addressing Mode Categories

Address Modes Mode Register Data Memory Control Alterable Assembler Syntax

Data Register Direct 000 reg. no. X - - X Dn

Address Register Direct 001 reg. no. - - - X An

Addres~ Register Indirect 010 reg. no. X X X X: (An)
Address Register Indirect

with Postincrement 011 reg. no. X X - X (An)+
Address Register Indirect

with Predecrement 100 reg. no. X X - X -(An)
Address Register Indirect

with Displacement 101 reg. no. X X X X (d16,An)

Address Register Indirect with
Index (8-Bit Displacement) 110 reg. no. X X X X (d8,An,Xn)

Address Register Indirect with
Index (Base Displacement) 110 reg. no. X X X X (bd,An,Xn)

Memory Indirect Postindexed 110 reg. no. X X X X ([bd,AnJ.Xn,od)
Memory Indirect Preindexed 110 reg. no. X X X X ([bd,An,XnJ.od)

Absolute Short 111 000 X X X X (xxx).W
Absolute Long 111 001 X X X X (xxx).L

Program Counter Indirect
with Displacement 111 010 X X X - (d16,PC)

Program Counter Indirect with
Index (8-Bit) Displacement 111 011 X X X - (d8,PC,Xn)

Program Counter Indirect with
Index (Base Displacement) 111 011 X X X - (bd,PC,Xn)

PC Memory Indirect
Postindexed 111 011 X X X - ([bd,PC),Xn,od

PC Memory Indirect
Preindexed 111 011 X X X - ([bd,PC,Xn)'od)

Immediate 111 100 X X - - #(data)

These categories are sometimes combined, forming new categories that are
more restrictive. Two combined classifications are alterable memory or data
alterable. The former refers to those addressing modes that are both alterable
and memory addresses, and the latter refers to addressing modes that are
both data and alterable.

MC68EC030 USER'S MANUAL MOTOROLA

2.6 PROGRAMMER'S VIEW OF ADDRESSING MODES

Extensions to the indexed addressing modes, indirection, and full 32-bit dis
placements provide additional programming capabilities for the MC68020,
MC68030, and the MC68EC030. This section describes addressing techniques
that exploit these capabilities and summarizes the addressing modes from
a programming point of view.

Several of the addressing techniques described in this section use data reg
isters and address registers interchangeably. While the MC68EC030 provides
this capability, its performance has been optimized for addressing with ad
dress registers. The performance of a program that uses address registers
in address calculations is superior to that of a program that similarly uses
data registers. The specification of addresses with data registers should be
used sparingly (if at all), particularly in programs that require maximum
performance.

2.6.1 Addressing Capabilities

In the MC68020, MC68030, and the MC68EC030, setting the base register
suppress (8S) bit in the full format extension word (see Figure 2-4) suppresses
use of the base address register in calculating the effective address. This
allows any index register to be used in place of the base register. Since any
of the data registers can be index registers, this provides a data register
indirect form (Dn). The mode could be called register indirect (Rn) since either
a data register or an address register can be used. This addressing mode is
an extension to the M68000 Family because the MC68020, MC68030, and
MC68EC030 can use both the data registers and the address registers to
address memory. The capability of specifying the size and scale of an index
register (Xn.SIZE*SCALE) in these modes provides additional addressing
flexibility. Using the SIZE parameter, either the entire contents of the index
register can be used, or the least significant word can be sign-extended to
provide a 32-bit index value (refer to Figure 2-5).

31 0

D1.L D1

31 16 15 0

D1.W I D1

~ USED IN ADDRESS CALCULATION

Figure 2-5. Using SIZE in the Index Selection

MOTOROLA MC68EC030 USER'S MANUAL 2-25

2-26

For the MC68020, MC68030, and the MC68EC030, the register indirect modes
can be extended further. Since displacements can be 32 bits wide, they can
represent absolute addresses or the results of expressions that contain ab
solute addresses. This allows the general register indirect form to be (bd,Rn)
or (bd,An,Rn) when the base register is not suppressed. Thus, an absolute
address can be directly indexed by one or two registers (refer to Figure 2-
6).

SYNTAX (bd,An,Rn)

bd-~

An

Rn

Figure 2-6. Using Absolute Address with Indexes

Scaling provides an optional shifting of the value in an index register to the
left by zero, one, two, or three bits before using it in the effective address
calculation (the actual value in the index register remains unchanged). This
is equivalent to multiplying the register by one, two, four, or eight for direct
subscripting into an array of elements of corresponding size using an arith
metic value residing in any of the 16 general registers. Scaling does not add
to the effective address calculation time. However, when combined with the
appropriate derived modes, it produces additional capabilities. Arrayed struc
tures can be addressed absolutely and then subscripted, (bd,Rn*scale), for
example. Optionally, an address register that contains a dynamic displace
ment can be included in the address calculation (bd,An,Rn*scale). Another
variation that can be derived is (An,Rn*scale). In the first case, the array
address is the sum of the contents of a register and a displacement, as shown
in Figure 2-7. In the second example, An contains the address of an array,
and Rn contains a subscript.

MC68EC030 USER'S MANUAL MOTOROLA

15

15

AS = 11-~""'''

SYNTAX: MOVE.W (AS, A6.L'SCALE),(A7)

SIMPLE ARRAY
(SCALE = 1)

RECORD OF 4 WORDS
(SCALE = 4)

WHERE:
AS = ADDRESS OF ARRAY STRUCTURE
A6 = INDEX NUMBER OF ARRAY ITEM
A7 = STACK POINTER

AS= 1--~

15

AS = 1

RECORD OF 2 WORDS
(SCALE .. 2)

RECORD OF B WORDS
(SCALE = B)

NOTE: Regardless of array structure, software increments
index by the appropriate amount to point to next record.

Figure 2-7. Addressing Array Items

The memory indirect addressing modes use a long-word pointer in memory
to access an operand. Any of the modes previously described can be used

MOTOROLA MC68EC030 USER'S MANUAL 2-27

•

•

2-28

to address the memory pointer, Because the base and index registers can
both be suppressed, the displacement acts as an absolute address, providing
indirect absolute memory addressing (refer to Figure 2-8),

SYNTAX: ([bd])

POINTER DATA ITEM.

Figure 2-8. Using Indirect Absolute Memory Addressing

The outer displacement (od) available in the memory indirect modes is added
to the pointer in memory. The syntax for these modes is ([bd,An],Xn,od) and
([bd,An,Xn],od), When the pointer is the address of a structure in memory
and the outer displacement is the offset of an item in the structure, the
memory indirect modes can access the item efficiently (refer to Figure 2-9).

SYNTAX: ([AnJ,od)

MEMORY STRUCTURE

An POINTER

1
DATA ITEM

7 7 7

Figure 2-9. Accessing an Item in a Structure Using Pointer

MC68EC030 USER'S MANUAL MOTOROLA

Memory indirect addressing modes are used with a base displacement in
five basic forms: '

1. [bd,An] - Indirect, suppressed index register
2. ([bd,An,Xn]) - Preindexed indirect
3. ([bd,An],Xn) - Postindexed indirect •
4. ([bd,An,Xn],od) - Preindexed indirect with outer displacement
5. ([bd,An],Xn,od) - Postindexed indirect with outer displacement

The indirect, suppressed index register mode (see Figure 2-10) uses the con
tents of register An as an index to the pointer located at the address specified
by the displacement. The actual data item is at the address in the selected
pointer.

SYNTAX: ([bd.An])

POINTER LIST

bd ,. ,..

M

,:.-

POINTER DATA ITEM

7

Figure 2-10. Indirect Addressing, Suppressed Index Register

The preindexed indirect mode (see Figure 2-11) uses the contents of An as
an index to the pointer list structure at the displacement. Register Xn is the
index to the pointer, which contains the address of the data item.

MOTOROLA MC68EC030 USER'S MANUAL 2-29

•

2-30

SYNTAX: ([bd,An,Xn))

POINTER LIST

An

DATA ITEM
Xn

POINTER

Figure 2-11. Preindexed Indirect Addressing

The postindexed indirect mode (see Figure 2-12) uses the contents of An as
an index to the pointer list at the displacement. Register Xn is used as an
index to the structure of data items located at the address specified by the
pointer. Figure 2-13 shows the preindexed indirect addressing with outer
displacement mode.

SYNTAX: ([bd,AnJ,Xn)

POINTER LIST POSTINDEXED STRUCTURE

bd __ ~

POINTER

Figure 2-12. Postindexed Indirect Addressing

MC68EC030 USER'S MANUAL MOTOROLA

SYNTAX: ([bd,An,Xn),od)

POINTER LIST STRUCTURE

An

od

Xn

POINTER DATA ITEM

Figure 2-13. Preindexed Indirect Addressing with Outer Displacement

The postindexed indirect mode with outer displacement (see Figure 2-14)
uses the contents of An as an index to the pointer list at the displacement.
Register Xn is used as an index to the structure of data structures at the
address in the pointer. The outer displacement (ad) is the displacement of
the data item within the selected data structure.

POINTER LIST

bd-~~

An

POINTER

SYNTAX: ([bd,An),Xn,od)

POSTINDEXED STRUCTURE
WITH OUTER DISPLACEMENT

Xn

DATA ITEM

Figure 2-14. Postindexed Indirect Addressing with Outer Displacement

MOTOROLA MC68EC030 USER'S MANUAL 2-31

•

•
2.6.2 General Addressing Mode Summary

2-32

The addressing modes described in the previous section are derived from
specific combinations of options in the indexing mode or a selection of two
alternate addressing modes. For example, the addressing mode called reg
ister indirect (Rn) assembles as the address register indirect if the register is
an address register. If Rn is a data register, the assembler uses the address
register indirect with index mode using the data register as the indirect reg
ister and suppresse's the address register by setting the base suppress bit in
the effective address specification. Assigning an address register as Rn pro
vides higher performance than using a data register as Rn. Another case is
(bd,An), which selects an addressing mode depending on the size of the
displacement. If the displacement is 16 bits or less, the address register
indirect with displacement mode (d16,An) is used. When a 32-bit displace
ment is required, the address register indirect with index (bd,An,Xn) is used

. with the index register suppressed.

It is useful to examine the derived addressing modes available to a pro
grammer (without regard to the MC68EC030 effective addressing mode ac
tually encoded) because the programmer need not be concerned about these
decisions. The assembler can choose the more efficient addressing mode to
encode.

In the list of derived addressing modes that follows, common programming
terms are used. The following definitions apply:

pointer

base

index

disp

subscript

- Long-word value in a register or in memory which rep
resents an address.

- A pointer combined with a displacement to represent
an address.

- A constant or variable value added into an effective
address calculation. A constant index is a displacement.
A variable index is always represented by a register
containing the value.

- Displacement, a constant index.

- The use of any of the data or address registers as a
variable index subscript into arrays of items 1, 2, 4, or
8 bytes in size.

MC68EC030 USER'S MANUAL MOTOROLA

relative

addr

psaddr

preindexed

- An address calculated from the program counter con
tents. The address is position independent and is in
program space. All other addresses but psaddr are in
data space.

- An absolute address.

- An absolute address in program space. All other ad
dresses but PC relative are in data space.

- All modes from absolute address through program
counter relative.

postindexed - Any of the following modes:
addr - Absolute address in data space
psaddr,ZPC - Absolute address in program space
An - Register pointer
disp,An - Register pointer with constant dis-

placement
addr,An - Absolute address with single variable

name
disp,PC - Simple PC relative

The addressing modes defined in programming terms, which are derivations
of the addressing modes provided by the MC68EC030 architecture, are as
follows:

Immediate Data - #data:
The data is a constant located in the instruction stream.

Register Direct - Rn:
The contents of a register contain the operand.

Scanning Modes:
(An)+

Address register pointer automatically incremented after use.

-(An)
Address register pointer automatically decremented before use.

MOTOROLA MC68EC030 USER'S MANUAL 2-33

-

2-34

Absolute Address:
(addr)

Absolute address in data space.

(psaddr,ZPC)
Absolute address in program space. Symbol ZPC suppresses the PC,
but retains PC relative mode to directly access the program space.

Register Pointer:
(Rn)

Register as a pointer.

(disp,Rn)
Register as a pointer with constant index (or base address).

Indexing:
. (An,Rn)

Register pointer An with variable index Rn.

(disp,An,Rn)
Register pointer with constant and variable index (or a base address
with a variable index).

(addr,Rn)
Absolute address with variable index.

(addr,An,Rn)
Absolute address with two variable indexes.

Subscripting:
(An,Rn*scale)

Address register pointer subscript.

(disp,An,Rn*scale)
Address register pointer subscript with constant displacement (or base
address with subscript).

(addr, Rn*scale)
Absolute address with subscript.

(addr,An,Rn*scale)
Absolute address subscript with variable index.

MC68EC030 USER'S MANUAL MOTOROLA

Program Relative:
(disp,PC)

Simple PC relative.

(disp,PC,Rn)
PC relative with variable index.

(disp,PC,Rn*scale)
PC relative with subscript.

Memory Pointer:
([preindexed])

Memory pointer directly to data operand.

([preindexed],disp)
Memory pointer as base with displacement to data operand.

([postindexed],Rn)
Memory pointer with variable index.

([postindexed],disp,Rn)
Memory pointer with constant and variable index.

([postindexed],Rn*scale)
Memory pointer subscripted.

([postindexed], disp, Rn*scale)
Memory pointer subscripted with constant index.

2.7 M68000 FAMILY ADDRESSING COMPATIBILITY

Programs can be easily transported from one member of the M68000 Family
to another in an upward compatible fashion. The user object code of each
early member of the family is upward compatible with newer members and
can be executed on the newer embedded controller without change. The
address extension word(s) are encoded with the information that allows the
MC68020/MC68030/MC68EC030 to distinguish the new address extensions
to the basic M68000 Family architecture. The address extension words for
the early MC68000/MC68008/MC68010 microprocessors and for the newer
32-bit MC68020/MC68030 microprocessors and MC68EC030 embedded con
troller are shown in Figure 2-15. Notice the encoding for SCALE used by the
MC68EC030 is a compatible extension of the M68000 architecture. A value
of zero for SCALE is the same encoding for both extension words; hence,
software that uses this encoding is both upward and downward compatible
across all processors in the product line. However, the other values of SCALE
are not found in both extension formats; thus, while software can be easily
migrated in an upward compatible direction, only nonscaled addressing is

MOTOROLA MC68EC030 USER'S MANUAL 2-35

supported in a downward fashion. If the MC68000 were to execute an in
struction that encoded a scaling factor, the scaling factor would be ignored
and not access the desired memory address. The earlier microprocessors
have no knowledge of the extension word formats implemented by newer
processors; while they do detect illegal instructions, they do not decode
invalid encodings of the extension words as exceptions.

MC6800oiMC68008/MC68010 Address
Extension Word

15 .. 14 12 11 10

I D/A I REGISTER I W/L I 0 I 0 I 0 I
D/A: 0 = Data Register Select

1. = Address Register Select
W/L: 0 = Word-Sized Operation

1 = Long-Word-Sized Operation

MC68020/MC68030/MC68EC030 Address
Extension Word

15 14 12 11 10 9

I D/A I REGISTER I W/L I SCALE

D/A: 0 = Data Register Select
1 = Address Register Select

W/L: 0 = Word-Sized Operation
1 = Long-Word-Sized Operation

o I

SCALE: 00 = Scale Factor 1 (Compatible with MC68000)
01 = Scale Factor 2 (Extension to MC68000)
10 = Scale Factor 4 (Extension to MC68000)
11 = Scale Factor 8 (Extension to MC68000)

DISPLACEMENT INTEGER

DISPLACEMENT INTEGER

Figure 2-15. M68000 Family Address Extension Words

o

o

2.8 OTHER DATA STRUCTURES

Stacks and queues are widely used data structures. The MC68EC030 imple
ments a system stack and also provides instructions that support the use of
user stacks and queues.

2.8.1 System Stack

2-36

Address register seven (A7) is used as the system stack pointer (SP). Any of
the three system stack registers is active at anyone time. The M and S bits
of the status register determine which stack pointer is used. When S = 0
indicating user mode (user privilege level), the user stack pointer (USP) is

MC68EC030 USER'S MANUAL MOTOROLA

the active system stack pointer, and the master and interrupt stack pointers
cannot be referenced. When S = 1 indicating supervisor mode (at supervisor
privilege level) and M = 1, the master stack pointer (MSP) is the active system
stack pointer. When S = 1 and M = 0, the interrupt stack pointer (lSP) is the
active system stack pointer. This mode is the MC68EC030 default mode after
reset and corresponds to the MC68000, MC68008, and MC68010 supervisor
mode. The term supervisor stack pointer (SSP) refers to the master or inter
rupt stack pointers, depending on the state of the M bit. When M = 1, the
term SSP (or A7) refers to the MSP address register. When M = 0, the term
SSP (or A7) refers to the ISP address register. The active system stack pointer
is implicitly referenced by all instructions that use the system stack. Each
system stack fills from high to low memory.

A subroutine call saves the program counter on the active system stack, and
the return restores it from the active system stack. During the processing of
traps and interrupts, both the program counter and the status register are
saved on the supervisor stack (either master or interrupt). Thus, the execution
of supervisor code is independent of user code and the condition of the user
stack; conversely, user programs use the user stack pointer independently
of supervisor stack requirements.

To keep data on the system stack aligned for maximum efficiency, the active
stack pointer is automatically decremented or incremented by two for all
byte-sized operands moved to or from the stack. In long-word-organized
memory, aligning the stack pointer on a long-word address significantly
increases the efficiency of stacking exception frames, subroutine calls and
returns, and other stacking operations.

2.8.2 User Program Stacks

The user can implement stacks with the address register indirect with post
increment and predecrement addressing modes. With address register An
(n = 0-6), the user can implement a stack that is filled either from high to low
memory or from low to high memory. Important considerations are as fol
lows:

• Use the predecrement mode to decrement the register before its contents
are used as the pointer to the stack.

• Use the postincrement mode to increment the register after its contents
are used as the pointer to the stack.

• Maintain the stack pointer correctly when byte, word, and long-word
items are mixed in these stacks.

MOTOROLA MC68EC030 USER'S MANUAL 2-37

-
To implement stack growth from high to low memory, use:

- (An) to push data on the stack,

(An) + to pull data from the stack.

For this type of stack, after either a push or a pull operation, register An
points to the top item on the stack. This is illustrated as:

An-~~

LOW MEMORY

(FREE)

TOP OF STACK

•
•
•

BonOM OF STACK

HIGH MEMORY

To implement stack growth from low to high memory, use:

(An) + to push data on the stack,

- (An) to pull data from the stack.

In this case, after either a push or pull operation, register An points to the
next available space on the stack. This is illustrated as:

LOW MEMORY

BonOM OF STACK

•
•
•

TOP OF STACK
... (FREE) ,. An

HIGH MEMORY

2.8.3 Queues

2-38

The user can implement queues with the address register indirect with post
increment or predecrement addressing modes. Using a pair of address reg
isters (two of AD-A6), the user can implement a queue which is filled either
from high to low memory or from low to high memory. Two registers are
used because queues are pushed from one end and pulled from the other.
One register, An, contains the "put" pointer; the other, Am, the "get" pointer.

MC68EC030 USER'S MANUAL MOTOROLA

To implement growth of the queue from low to high memory, use:

(An) + to put data into the queue,

(Am) + to get data from the queue.

After a "put" operation, the "put" address register points to the next available •
space in the queue, and the unchanged "get" address register points to the
next item to be removed from the queue. After a "get" operation, the "get"
address register points to the next item to be removed from the queue, and
the unchanged "put" address register points to the next available space in
the queue. This is illustrated as:

GET (Am) +

PUT (An) +

LOW MEMORY

LAST GET (FREE)

NEXT GET

•
•
•

LAST PUT

(FREE)

HIGH MEMORY

To implement the queue as a circular buffer, the relevant address register
should be checked and adjusted, if necessary, before performing the "put"
or "get" operation. The address register is adjusted by subtracting the buffer
length (in bytes) from the register.

To implement growth of the queue from high to low memory, use:

- (An) to put data into the queue,

- (Am) to get data from the queue.

MOTOROLA MC68EC030 USER'S MANUAL 2-39

•

2-40

After a "put" operation, the "put" address register points to the last item
placed in the queue, and the unchanged "get" address register points to the
last item removed from the queue. After a "get" operation, the "get" address
register points to the last item removed from the queue, and the unchanged
"put" address register points to the last item placed in the queue. This is
illustrated as: .

PUT -(An)

GET -(Am)

LOW MEMORY

(FREE)

LAST PUT

•
•
•

NEXT GET

LAST GET (FREE)

HIGH MEMORY

To implement the queue as a circular buffer, the "get" or "put" operation
should be performed first, and then the relevant address register should be
checked and adjusted, if necessary. The address register is adjusted by adding
the buffer length (in bytes) to the register contents.

MC68EC030 USER'S MANUAL MOTOROLA

SECTION 3
INStRl)CTION SET SUMMARY

TMhCiS section brieflYcdescribes the MC687C03~ instrucMtion se,t.fRefer to Ithe •
68000PM/AD, M 68000 Programmer s Relerence anua, or comp ete

details on the MC68EC030 instruction set. APPENDIX A MC68EC030 NEW
INSTRUCTIONS has details on PMO)JE and PTEST instructions for the
MC68EC030. The MC68EC030 executes all instructions the same as the
MC68030, except the MC68EC030 does not execute all memory management
unit instructions.

The following paragraphs include descriptions of the instruction format and
the operands used by instructions, followed by a summary of the instruction
set. The integer condition codes and floating-point details are discussed.
Programming examples for selected instructions are also presented.

3.1 INSTRUCTION FORMAT

All MC68EC030 instructions consist of at least one word; some have as many
as 11 words (see Figure 3-1). The first word of the instruction, called the
operation word, specifies the length of the instruction and the operation to
be performed. The remaining words, called extension words, further specify
the instruction and operands. These words may be floating-point command
words, conditional predicates, immediate operands, extensions to the effec
tive address mode specified in the operation word, branch displacements,
bit number or bit field specifications, special register specifications, trap op
erands, pack/unpack constants, or argument counts.

15

OPERATION WORD
(ONE WORD, SPECIFIES OPERATION AND MOOESI

SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDSI

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO SIX WORDSI

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO SIX WORDSI

Figure 3-1. Instruction Word General Format

MOTOROLA MC68EC030 USER'S MANUAL 3-1

•

Besides the operation code, which specifies the function to be performed,
an instruction defines the location of every operand for the function. Instruc
tions specify an operand location in one of three ways:

1. Register Specification - A register field of the instruction contains the
number of the register.

2. Effective Address - An effective address field of the instruction contains
address mode information.

3. Implicit Reference - The definition of an instruction implies the use of
specific registers.

The register field within an instruction specifies the register to be used. Other
fields within the instruction specify whether the register selected is an address
or data register and how the register is to be used. SECTION 1 INTRODUC
TION contains register information.

Effective address information includes the registers, displacements, and ab
solute addresses for the effective address mode. SECTION 2 DATA ORGANI
ZATION AND ADDRESSING CAPABILITIES describes the effective address
modes in detail.

Certain instructions operate on specific registers. These instructions imply
the required registers.

3.2 INSTRUCTION SUMMARY

The instructions form a set of tools to perform the following operations:

Data Movement Bit Field Manipulation
Integer Arithmetic Binary-Coded Decimal Arithmetic
Logical Program Control
Shift and Rotate System Control
Bit Manipulation Multiprocessor Communications

Each instruction type is described in detail in the following paragraphs.

3-2 MC68EC030 USER'S MANUAL MOTOROLA

The following notations are used in this section. In the operand syntax state
ments ofthe instruction definitions, the operand on the right is the destination
operand.

MOTOROLA

An = any address register, A7-AO
Dn = any data register, D7-DO
Rn = any address or data register

CCR = condition code register (lower byte of status register)
cc = condition codes from CCR

SR = status register
SP = active stack pointer'

USP = user stack pointer
ISP = supervisor/interrupt stack pointer

MSP = supervisor/master stack pointer
SSP = supervisor (master or interrupt) stack pointer
DFC = destination function code register
SFC = source function code register

Rc = control register (VBR, SFC, DFC, CACR)
MRc = ACR control register (ACO, AC1)

B, W, L= specifies a signed integer data type (twos complement)
of byte, word, or long word

S = single-precision real data format (32 bits)
D = double-precision real data format (64 bits)
X = extended-precision real data format (96 bits, 16 bits

unused)
P = packed BCD real data format (96 bits, 12 bytes)

FPm, FPn = any floating-point data register, FP7-FPO
PFcr = floating-point system control register (FPCR, FPSR, or

FPIAR)
k=a twos-complement signed integer (-64 to + 17) that

specifies the format of a number to be stored in the packed
BCD format

d = displacement; d16 is a 16-bit displacement
<ea> = effective address

list= list of registers, for example D3-DO
#<data> = immediate data; a literal integer

{offset:width} = bit field selection
label = assemble program label

[m] = bit m of an operand
[m:n] = bits m through n of operand

X = extend (X) bit in CCR
N = negative (N) bit in CCR
Z = zero (Z) bit in CCR

MC68EC030 USER'S MANUAL 3-3

III

v = overflow (V) bit in CCR
C= carry (C) bit in CCR
+ = arithmetic addition or postincrement indicator
- = arithmetic subtraction or predecrement indicator
x = arithmetic multiplication
-;- = arithmetic division or conjunction symbol
~ = invert; operand is logically complemented
A = logical AND
V = logical OR

EB = logical exclusive OR
Dc = data register, 07-00 used during compare
Ou = data register, 07-00 used during update

Dr, Dq = data registers, remainder or quotient of divide
Oh, 01 = data registers, high- or low-order 32 bits of product
MSW = most significant word
LSW = least'significant word
MSB = most significant bit

FC = function code
{R/W} = read or write indicator

[An] = add ress extensions

3.2.1 Data Movement Instructions

3-4

The MOVE instructions with their associated addressing modes are the basic
means of transferring and storing addresses and data. MOVE instructions
transfer byte, word, and long-word operands from memory to memory, mem
ory to register, register to memory, and register to register. Address move
ment instructions (MOVE or MOVEA) transfer word and long-word operands
and ensure that only valid address manipulations are executed. In addition
to the general MOVE instructions, there are several special data movement
instructions: move multiple registers (MOVEM), move peripheral data
(MOVEP), move quick (MOVEQ), exchange registers (EXG), load effective
address (LEA), push effective address (PEA), link stack (LINK), and unlink
stack (UNLK).

Table 3-1 is a summary of the integer and floating-point data movement
operations.

MC68EC030 USER'S MANUAL MOTOROLA

Table 3-1. Data Movement Operations

Instruction Operand Syntax Operand Size Operation

EXG Rn, Rn 32 Rn •• Rn

LEA <ea>,An 32 <ea>. An

LINK An,#<d> 16,32 Sp-4. SP; An. (SP); SP. An, SP+O. SP

MOVE <ea>,<ea> 8,16,32 source. destination
MOVEA <ea>,An 16,32.32

MOVEM list,<ea> 16,32 listed registers. destination
<ea>,list 16,32.32 source. listed registers

MOVEP On, (d16,An) 16,32 On[31:24]. (An+d); On[23:16].An+d+2);
On[15:8]. (An+d+4); On[7:0]. (An+d+6)

(d16,An),On (An+d). On[31:24]; (An+d+2). On[23:16];
(An+d+4). On[15:8]; (An+d+6). On[7:0]

MOVEQ #<data>,On 8.32 immediate data. destination

PEA <ea> 32 SP-4. SP; <ea> • (SP)

UNLK An 32 An. SP; (SP). An; SP+4. SP

3.2.2 Integer Arithmetic Instructions

The integer arithmetic operations include the four basic operations of add
(ADD), subtract (SUB), multiply (MUL), and divide (DIV) as well as arithmetic
compare (CMP, CMPM, CMP2), clear (CLR), and negate (NEG). The instruction
set includes ADD, CMP, and SUB instructions for both address and data
operations with all operand sizes valid for data operations. Address operands
consist of 16 or 32 bits. The clear and negate instructions apply to all sizes
of data operands.

Signed and unsigned MUL and DIV instructions include:
• Word multiply to produce a long-word product
• Long-word multiply to produce a long-word or quad-word product
• Division of a long word divided by a word divisor (word quotient and

word remainder)
• Division of a long word or quad word dividend· by a long-word divisor

(long-word quotient and long-word remainder)

A set of extended instructions provides multiprecision and mixed-size arith
metic. These instructions are add extended (ADDX), subtract extended (SUBX),
sign extended (EXT), and negate binary with extend (NEGX). Refer to Table
3-2 for a summary of the integer arithmetic operations.

MOTOROLA MC68EC030 USER'S MANUAL 3-5

III

•

Table 3-2. Integer Arithmetic Operations

Instruction Operand Syntax Operand Size Operation

ADD Dn,(ea) 8,16,32 source + destination. destination
(ea),Dn 8,16,32

ADDA (ea),An 16,32

ADDI #(data),(ea) 8,16,32 immediate data + destination. destination
ADDQ #(data),(ea) 8,16,32

ADDX Dn,Dn 8,16,32 source + destination + X • destination
-(Anl.-(An) 8,16,32

CLR (ea) 8,16,32 o • destination

CMP (ea),Dn 8,16,32 destination - source
CMPA (ea),An 16,32

CMPI #(data),(ea) 8,16,32 destination - immediate data

CMPM (An) + ,(An) + 8,16,32 destination - source

CMP2 (ea),Rn 8,16,32 lower bound (= Rn (= upper bound

DIVS/DIVU (ea),Dn 32/16.16:16 destination/source. destination (signed or unsigned)
(ea),Dr:Dq 64/32.32:32

(ea),Dq 32/32.32
DIVSUDIVUL (ea),Dr:Dq 32/32. 32:32

EXT Dn 8.16 sign extended destination. destination
Dn 16.32

EXTB Dn 8.32

MULS/MULU (ea),Dn 16x 16.32 source x destination. destination (signed or unsigned)
(ea),DI 32 x32. 32

(ea),Dh:DI 32 x32. 64

NEG (ea) 8,16,32 o - destination. destination

NEGX (ea) 8,16,32 o - destination - X. destination

SUB (ea),Dn 8,16,32 destination = source. destination
Dn,(ea) 8,16,32

SUBA (ea),An 16, 32

SUBI #(data),(ea) 8,16,32 destination - immediate data. destination
SUBQ #(data),(ea) 8,16,32

SUBX Dn,Dn 8,16,32 destination - source - X. destination
- (An), - (An) 8,16,32

3.2.3 Logical Instructions

3-6

The logical operation instructions (AND, OR, EOR, and NOT) perform logical
operations with all sizes of integer data operands. A similar set of immediate
instructions (ANDI, OR I, and EORI) provide these logical operations with all
sizes of immediate data. The TST instruction compares the operand with zero
arithmetically, placing the result in the condition code register. Table 3-3
summarizes the logical operations.

MC68EC030 USER'S MANUAL MOTOROLA

Table 3-3. Logical Operations

Instruction Operand Syntax Operand Size Operation

AND (ea),Dn 8,16,32 source ,\ destination. destination
Dn,(ea) 8,16,32

ANDI #<data>,<ea> 8,16,32 immediate data ,\ destination. destination

EOR Dn,<data>,<ea> 8,16,32 source 8J destination. destination

EORI #(data),(ea) 8, 16, 32 immediate data 8J destination. destination

NOT (ea) 8,16,32 - destination. destination

OR (ea),Dn 8,16,32 source V destination. destination
Dn,(ea) 8,16,32

ORI #(data),(ea) 8,16,32 immediate data V destination. destination

TST (ea) 8, 16, 32 source - 0 to set condition codes

3.2.4 Shift and Rotate Instructions

The arithmetic shift instructions (ASR and ASL) and logical shift instructions
(LSR and LSL) provide shift operations in both directions. The ROR, ROL,
ROXR, and ROXL instructions perform rotate (circular shift) operations, with
and without the extend bit. All shift and rotate operations can be performed
on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count
may be specified in the instruction operation word (to shift from 1-8 places)
or in a register (modulo 64 shift count).

Memory shift and rotate operations shift word-length operands one bit po
sition only. The SWAP instruction exchanges the 16-bit halves of a register.
Performance of shift/rotate instructions is enhanced so that use of the ROR
and ROL instructions with a shift count of eight allows fast byte swapping.
Table 3-4 is a summary of the shift and rotate operations.

MOTOROLA MC68EC030 USER'S MANUAL 3-7

•

"',1'· t, . . :.#"

. Table 3-4. Shift and Rotate Operations

Instruction Operand Syntax Operand Size Operation

ASL Dn,Dn 8,16,32
#(data),Dn 8,16,32 §~< 1<-0 (ea) 16

ASR Dn,Dn 8,16,32

~~~ #(data),Dn 8,16,32 [jj (ea) 16 

LSL Dn,Dn 8,16,32 
#(data),Dn 8,16,32 ~-1- 1<-0 (ea) 16 

LSR Dn,Dn 8,16,32 
#(data),Dn 8,16,32 

)o~ (ea) 16 o-~ 

ROL Dn,Dn 8,16,32 
#(data),Dn 8,16,32 @~< I<J (ea) 16 

ROR Dn,Dn 8,16,32 
#(data),Dn 8,16,32 [~ ~~>0 (ea) 16 

ROXL Dn,Dn 8,16,32 

@Lj< 1<-1 X ~ #(data),Dn 8,16,32 
(ea) 16 

ROXR Dn,Dn 8,16,32 
#(data),Dn 8,16,32 [>0-~ ~~ (ea) 16 

SWAP Dn 32 

~ 
3.2.5 Bit Manipulation Instructions 

3-8 

Bit manipulation operations are accomplished using the following instruc
tions: bit test (BTST), bit test and set (BSET), bit test and clear (BCLR), and 
bit test and change (BCHG). All bit manipulation operations can be performed 
on either registers or memory. The bit number is specified as immediate 
data or in a data register. Register operands are 32 bits long, and memory 
operands are 8 bits long. In Table 3-5, the summary of the bit manipulation 
operations, Z refers to bit 2, the zero bit of the status register. 

MC68EC030 USER'S MANUAL MOTOROLA 



Table 3-5. Bit Manipulation Operations 

Instruction Operand Syntax Operand Size Operation 

BCHG Dn,(ea) 8, 32 - ((bit number) of destination) • Z • bit of destination 
#(data),(ea) 8, 32 

BClR Dn,(ea) 8, 32 - ((bit number) of destination) • Z; 
#(data),(ea) 8,32 o • bit of destination 

BSET Dn,(ea) 8, 32 - ((bit number) of destination) • Z; 
#(data),(ea) 8, 32 1 • bit of destination 

BTST Dn,(ea) 8, 32 - ((bit number) of destination) • Z 
#(data),(ea) 8, 32 

3.2.6 Bit Field Instructions 

The MC68EC030 supports variable-length bit field operations on fields of up 
to 32 bits. The bit field insert (BFINS) instruction inserts a value into a bit 
field. Bit field extract unsigned (BFEXTU) and bit field extract signed (BFEXTS) 
extract a value from the field. Bit field find first one (BFFFO) finds the first 
bit that is set in a bit field. Also included are instructions that are analogous 
to the bit manipulation operations; bit field test (BFTST), bit field test and 
set (BFSET), bit field test and clear (BFCLR), and bit field test and change 
(BFCHG). Table 3-6 is a summary of the bit field operations. 

Table 3-6. Bit Field Operations 

Instruction Operand Syntax Operand Size Operation 

BFCHG (ea) {offset:width} 1-32 - Field. Field 

BFClR (ea) {offset:width} 1-32 O's. Field 

BFEXTS (ea) {offset:width},Dn 1-32 Field. Dn; Sign Extended 

BFEXTU (ea) {offset:width},Dn 1-32 Field. Dn; Zero Extended 

BFFFO (ea) {offset:width},Dn 1-32 Scan for first bit set in field; offset. Dn 

BFINS Dn,(ea) {offset:width} 1-32 Dn. Field 

BFSET (ea) {offset:width} 1-32 l's. Field 

BFTST (ea) {offset:width} 1-32 Field MSB • N; - (OR of all bits in field) • Z 

NOTE: All bit field instructions set the Nand Z bits as shown for BFTST before performing the specified operation. 

MOTOROLA MC68EC030 USER'S MANUAL 3-9 

• 



• 

3.2.7 Binary-Coded Decimal Instructions 

Five instructions support operations on binary-coded decimal (BCD) num
bers. The arithmetic operations on packed BCD numbers are add decimal 
with extend (ABCD), subtract decimal with extend (SBCD), and negate dec
imal with extend (NBCD). PACK and UNPACK instructions aid in the con
version of byte encoded numeric data, such as ASCII or EBCDIC strings, to 
BCD data and vice versa. Table 3-7 is a summary of the BCD operations . 

Table 3-7. BCD Operations 

Instruction Operand Syntax Operand Size Operation 

ABCD Dn,Dn 8 sourcelO + destination 10 + X • destination 
- (An), - (An) 8 

NBCD (ea) 8 o - destinationlO - X • destination 

PACK - (An), - (An) 16.8 unpackaged source + immediate data. packed 
#(data) destination 

Dn,Dn,#(data) 16.8 

SBCD Dn,Dn 8 destinationlO - sourcelO - X. destination 
- (An), - (An) 8 

UNPK - (An), - (An) 8.16 packed source. unpacked source 
#(data) unpacked source + immediate data. 

. Dn,Dn,#(data) 8. 16 unpacked destination 

3.2.8 Program Control Instructions 

3-10 

A set of subroutine call and return instructions and conditional and uncon
ditional branch instructions perform program control operations. The no 
operation instruction (NOP) may be used to force synchronization of the 
internal pipelines. Table 3-8 summarizes these instructions. 

MC68EC030 USER'S MANUAL MOTOROLA 



Table 3-8. Program Control Operations 

Instruction Operand Syntax Operand Size Operation 

Integer and Floating-Point Conditional 

Bcc <label> 8,16,32 if condition true, then PC + d • PC 

OBcc On,<label> 16 if condition false, then On -1 • On 
if On oF - 1, then PC + d • PC 

Scc <ea> 8 if condition true, then 1's • destination; 
else O's • destination 

Unconditional 

BRA <label> 8,16,32 PC+d. PC 

BSR <label> 8,16,32 SP-4. SP; PC. (SP); PC+d • PC 

JMP <ea> none destination. PC 

JSR <ea> none SP-4. SP; PC. (SP); destination. PC 

NOP none none PC+2. PC 

Returns 

RTO #<d> 16 (SP). PC; SP+4+d. SP 

RTR none none (SP). CCR; SP+2. SP; (SP). PC; SP+4. SP 

RTS none none (SP) • PC; SP+4. SP 

Letters cc in the integer instruction mnemonics Bcc, OBcc, and Scc specify testing one of the following conditions: 
CC - Carry clear GE - Greater or equal 
LS - Lower or same PL - Plus 
CS - Carry set GT - Greater than 
LT - Less than T - Always true* 
EQ - Equal HI - Higher 
MI - Minus VC - Overflow clear 
F - Never true* LE - Less or equal 
NE - Not equal VS - Overflow set 
*Not applicable to the Bcc or cpBcc instructions. 

3.2.9 System Control Instructions 

Privileged instructions, trapping instructions, and instructions that use or 
modify the condition code register (CCR) provide system control operations. 
Table 3-9 summarizes these instructions. The TRAPcc instruction uses the 
same conditional tests as the corresponding program control instructions. 
All of these instructions cause the controller to flush the instruction pipe. 

MOTOROLA MC68EC030 USER'S MANUAL 3-11 



Table 3-9. System Control Operations 

Instruction Operand Syntax Operand Size Operation 

Privileged 

ANDI #<data>,SR 16 immediate data A SR • SR 

EORI #<data>,SR 16 immediate data EEl SR • SR 

MOVE <ea>,SR 16 source. SR 
SR,<ea> 16 SR • destination 

MOVE USP,Ari 32 USP. An 
An,USP 32 An. USP 

MOVEC RC,Rn 32 Rc. Rn 
Rn,Rc 32 Rn. Rc 

MOVES Rn,<ea> 8,16,32 Rn • destination using DFC 
<ea>,Rn source using SFC • Rn 

ORI #<data>,SR 16 immediate data V SR • SR 

RESET none none assert RESET line 

RTE none none (SP). SR; SP+2. SP; (SP). PC; SP+4. SP; 
Restore stack according to format 

STOP #<data> 16 immediate data. SR; STOP 

Trap Generating 

BKPT #<data> none run breakpoint cycle, then trap as illegal instruction 

CHK <ea>,Dn 16,32 if Dn<O or Dn>(ea). then CHK exception 

CHK2 <ea>,Rn 8,16,32 if Rn<lower bound or Rn>upper bound, the CHK 
exception 

ILLEGAL none none SSP -2. SSP; Vector Offset. (SSP); 
SSP -4. SSP; PC. (SSP); 
SSP - 2. SSP; SR. (SSP); 
Illegal Instruction Vector Address. PC 

TRAP #<data> none SSP - 2 • SSP; Format and Vector Offset. (SSP) 
SSP -4. SSP; PC. (SSP); SSP -2. SSP; 
SR. (SSP); Vector Address. PC 

TRAPcc none none if cc true, then TRAP exception 
#<data> 16,32 

TRAPV none none if V then take overflow TRAP exception 

Condition Code Register 

ANDI #<data>,CCR 8 immediate data A CCR • CCR 

EORI #<data>,CCR 8 immediate data EEl CCR • CCR 

MOVE <ea>,CCR 16 source. CCR 
CCR,<ea> 16 CCR • destination 

ORI #<data>,CCR 8 immediate data V CCR • CCR 

3.2.10 Access Control Unit Instructions 

3-12 

PTEST performs a search of the access control registers, storing results in 
the ACU status register. PMOVE loads and stores ACU registers. Table 3-10 
summarizes these instructions. 

MC68EC030 USER'S MANUAL MOTOROLA 



Table 3-10. ACU Instructions 

Instruction Operand Syntax Operand Size Operation 

PTEST (Function Code), none Information about ACR into ACU status register 
(ea),{RIW} 

PMOVE Rn,(ea) 16,32 Register n • Destination 
(ea),Rn 16,32 Source. Register n 

PFLUSH (An) none No effect 

PFLUSH.N (An) none No effect 

PTEST (An) none Information about ACR into MMU status register 

3.2.11 Multiprocessor Instructions 

The TAS, CAS, and CAS2 instructions coordinate the operations of processbrs 
in multiprocessing systems. These instructions use read-modify-write bus 
cycles to ensure uninterrupted updating of memory. Coprocessor instructions 
control the coprocessor operations. Table 3-11 lists these instructions. 

Table 3-11. Multiprocessor Operations (Read-Modify-Write) 

Instruction Operand Syntax Operand Size Operation 

Read-Modify-Write 

CAS DC,Du,<ea> 8,16,32 destination - Dc • CC; if Z then Du • destination 
else destination. Dc 

CAS2 Dcl :Dc2, Dul :Du2, 8,16,32 dual operand CAS 
(Rn):(Rn) 

TAS <ea> 8 destination - 0; set condition codes; 1 • destination [7) 

Coprocessor 

cpBcc (label) 16,32 if cpcc true then pc + d • PC 

cpDBec (label),Dn 16 if cpec false then On - 1 • On 
if On oF - 1, then PC + d • PC 

cpGEN User Defined User Defined operand. coprocessor 

cp RESTORE (ea) none restore coprocessor state from (ea) 

cpSAVE (ea) none save coprocessor state at (ea) 

cpScc (ea) 8 if cpcc true, then l's • destination; else O's • destination 

cpTRAPcc none none if cpcc true then TRAPcc exception 
#(data) 16,32 

3.3 INTEGER CONDITION CODES 

The CCR portion of the SR contains five bits which indicate the results of 
many integer instructions. Program and system control instructions use cer
tain combinations of these bits to control program and system flow. 

MOTOROLA MC68EC030 USER'S MANUAL 3-13 



-

3-14 

The first four bits represent a condition resulting from a controller operation. 
The X bit is an operand for multiprecision computations; when it is used, it 
is set to the value of the C bit. The carry bit and the multiprecision extend 
bit are separate in the M68000 Family to simplify programming techniques 
that use them (refer to Table 3-8 as an example). 

The condition codes were developed to meet two criteria : 
• Consistency - across instructions, uses, and instances 
• Meaningful Results - no change unless it provides useful information 

Consistency across instructions means that all instructions that are special 
cases of more general instructions affect the condition codes in the same 
way. Consistency across instances means that all instances of an instruction 
affect the condition codes in the same way. Consistency across uses means 
that conditional instructions test the condition codes similarly and provide 
the same results, regardless of whether the condition codes are set by a 
compare, test, or move instruction. 

In the instruction set definitions, the CCR is shown as follows: 

x N z v c 
I 

where: 
X (extend) 

Set to the value of the C bit for arithmetic operations. Otherwise not 
affected or set to a specified result. 

N (negative) 
Set if the most significant bit of the result is set. Cleared otherwise. 

Z (zero) 
Set if the result equals zero. Cleared otherwise. 

V (overflow) 
Set if arithmetic overflow occurs. This implies that the result cannot be 
represented in the operand size. Cleared otherwise. 

C (carry) 
Set if a carry out of the most significant bit of the operand occurs for an 
addition. Also set if a borrow occurs in a subtraction. Cleared otherwise. 

MC68EC030 USER'S MANUAL MOTOROLA 



3.3.1 Condition Code Computation 

Most operations take a source operand and a destination operand, compute, 
and store the result in the destination location. Single-operand operations 
take a destination operand, compute, and store the result in the destination 
location. Table 3-12 lists each instruction and how it affects the condition 
code bits. 

Table 3-12. Condition Code Computations 

Operations X N Z V C Special Definition 

ABCD * U ? U ? C = Decimal Carry 
Z=Z A Rm A ... A RO 

ADD, ADDI, AD DO * * * ? ? V = Sm A Dm A Rm V Sm A Dm A Rm 
C = Sm A Dm V Rm A Dm V Sm A Rm 

ADDX * * ? ? ? V = Sm A Dm A Rm V Sm A Dm A Rm 
C = Sm A Dm V Rm A Dm V Sm A Rm 
Z = Z A Rm A ... A RO 

AND, ANDI, EOR, EORI, - * * 0 0 
MOVEO, MOVE, OR, ORI, 
CLR, EXT, NOT, TAS, TST 

SUB, SUBI, SUBO * * * ? ? V = Sm A Dm A Rm V Sm A Dm A Rm 
C = Sm A Dm V Rm A Dm V Sm A Rm 

SUBX * * ? ? ? V = Sm A Dm A Rm V Sm A Dm A Rm 
C = Sm A Dm V Rm A Dm V Sm A Rm 
Z = Z A Rm A ... A RO 

CAS, CAS2, CMP, CMPI, - * * ? ? V = Sm A Dm A Rm V Sm A Dm A Rm 
CMPM C = Sm A Dm V Rm A Dm V Sm A Rm 

DIVS, DUVI' - * * ? 0 V = Division Overflow 

MULS, MULU - * * ? 0 V = Multiplication Overflow 

SBCD,NBCD * U ? U ? C = Decimal Borrow 
Z = Z A Rm A ... A Ro 

NEG * * * ? ? V = Dm;\ Rm 
C = Dm V Rm 

NEGX * * ? ? ? V = Dm A Rm 
C = Dm V Rm 
Z = Z A Rm A ... A RO 

BTST, BCHG,BSET,BCLR - - ? - - Z = Dn 

BFTST, BFCHG, BFSET, - ? ? 0 0 N = Dm 
BFCLR Z = Dm A DM - 1 A ... A DO 

BFEXTS,BFEXTU,BFFFO - ? ? 0 0 N = Sm 
Z = Sm A Sm - 1 A ... A SO 

BFINS - ? ? 0 0 N = Dm 
Z = Dm A DM - 1 A ... A DO 

ASL * * * ? ? V = Dm ;\ (Dm -1 V ... V Dm - r) V Dm A 
(DM-1 V ... +Dm-r) 

C = Dm-r+1 

ASL (R=O) - * * 0 0 

LSL, ROXL * * * 0 ? C = Dm-r+ 1 

LSR (r=O) - * * 0 0 

MOTOROLA MC68EC030 USER'S MANUAL 3-15 



l1li 

Table 3-12. Condition Code Computations (Continued) 

Operations X N 

ROXL (r=O) - * 

ROL - * 

ROL (r=O) - * 

ASR, LSR, ROXR * * 

ASR, LSR (r = 0) - * 

ROXR (r=O) - * 

ROR - * 
ROR (r=O) - * 

- = Not Affected 
U = Undefined, Result Meaningless 
? = Other - See Special Definition 
* = General Case 

X = C 
N = Rm 
Z = Rm A ... A RO 

Z V 

* 0 

* 0 

* 0 

* 0 

* 0 

* 0 

* 0 

* 0 

Sm = Source Operand - Most Significant Bit 
Dm = Destination Operand - Most Significant Bit 

C 

? 

? 

0 

? 

0 

? 

? 

0 

Special Definition 

C=X 

C=Dm-r+ 1 

C= Dr-1 

C=X 

C = Dr-1 

Rm = Result Operand - Most Significant Bit 
R = Register Tested 
n = Bit Number 
r = Shift Count 

LB = Lower Bound 
UB = Upper Bound 

A = Boolean AND 
V = Boolean OR 

Rm = NOT Rm 

3.3.2 Conditional Tests 

3-16 

Table 3-13 lists the condition names, encodings, and tests for the conditional 
branch and set instructions. The test associated with each condition is a 
logical formula using the current states of the condition codes. If this formula 
evaluates to one, the condition is true. If the formula evaluates to zero, the 
condition is false. For example, the T condition is always true, and the EQ 
condition is true only if the Z bit condition code is currently true. 

MC68EC030 USER'S MANUAL MOTOROLA 



Table 3-13. Conditional Tests 

Mnemonic 

T* 

F* 

HI 

LS 

CC(HS) 

CS(LO) 

NE 

EQ 

VC 

VS 

PL 

MI 

GE 

LT 

GT 

LE 

• = Boolean AND 
+ = Boolean OR 
N = Boolean NOT N 

Condition 

True 

False 

High 

Low or Same 

Carry Clear 

Carry Set 

Not Equal 

Equal 

Overflow Clear 

Overflow Set 

Plus 

Minus 

Greater or Equal 

Less Than 

Greater Than 

Less or Equal 

*Not available for the Bee instruction. 

3.4 INSTRUCTION SET SUMMARY 

Encoding 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

Test 

1 

0 

C'l 

C+Z 

C 

C 

l 
Z 

V 

V 

N 

N 

N·V+N·V 

N·V+N·V 

N·V·l + N·V·l 

Z+N'V+N'V 

Table 3-14 provides a alphabetized listing of the MC68EC030 instruction set 
listed by opcode, operation, and syntax. 

Table 3-14 use notational conventions for the operands, the subfields and 
qualifiers, and the operations performed by the instructions. In the syntax 
descriptions, the left operand is the source operand, and the right operand 
is the destination operand. The following list contains the notations used in 
Table 3-14. 

Notation for operands: 

MOTOROLA 

PC-Program counter 
SR-Status register 

V-Overflow condition code 
Immediate Data-Immediate data from the instruction 

Source-Source contents 
Destination-Destination contents 

Vector-Location of exception vector 

MC68EC030 USER'S MANUAL 3-17 



l1li 

3-18 

+ inf-Positive infinity 
- inf-Negative infinity 

<fmt>-Operand data format: byte (8), word (W), long 
(L), single (5), double (D), extended (X), or packed 
(P). 

FPm-One of eight floating-point data registers (always 
specifies the source register) 

FPn-One of eight floating-point data registers (always 
specifies the detination register) 

Notation for subfields and qualifiers: 
<bit> of <operand>-Selects a single bit of the operand 

<ea>{offset:width}-5elects a bit field 
«operand»-The contents of the referenced location 

<operand>10-The operand is binary coded decimal, operations 
are performed in decimal 

«address register»-The register indirect operator 
- «address register> )-Indicates that the operand register points to the 

memory 
«address register» +-Location of the instruction operand - the op

tional mode qualifiers are -, +, (d), and (d,ix) 
#xxx or #<data>-Immediate data that follows the instruction 

word(s) 

Notations for operations that have two operands, written <operand> <op> 
<operand>, where <op> is one of the following: 

.-The source operand is moved to the destination 
operand 

• .-The two operands are exchanged 
+-The operands are added 
--The destination operand is subtracted from the 

source operand 
x-The operands are multiplied 
-:--The source operand is divided by the destination 

operand 
<-Relational test, true if source operand is less than 

destination operand 
>-Relational test, true if source operand is greater 

than destination operand 
V-Logical OR 
E8-Logica\ exclusive OR 
A-Logical AND 

MC68EC030 USER'S MANUAL MOTOROLA 



shifted by, rotated by-The source operand is shifted or rotated by the 
number of positions specified by the second 
operand 

Notation for single-operand operations: 
~<operand>-The operand is logically complemented 

<operand>sign-extended-The operand is sign extended; all bits ofthe upper 
portion are made equal to the high-order bit of lEI 
the lower portion 

<operand>tested-The operand is compared to zero, and the con
dition codes are set appropriately 

Notation for other operations: 

Opcode 

ABCD 

ADD 

ADDA 

ADDI 

AD DO 

ADDX 

AND 

ANDI 

ANDI 
to CCR 

MOTOROLA 

TRAP-Equivalent to Format/Offset Word, (SSP); SSP-2 
• SSP; PC • (SSP); SSP-4 • SSP; SR • (SSP); 
SSP - 2 • SSP; (vector) • PC 

STOP-Enter the stopped state, waiting for interrupts 
If <condition> then-The condition is tested. If true, the operations 

<operations> else after "then" are performed. If the condition is 
<operations> false and the optional "else" clause is present, 

the operations after "else" are performed. If the 
condition is false and else is omitted, the instruc
tion performs no operation. Refer to the Bcc in
struction description as an example. 

Table 3-14. Instruction Set Summary 

Operation Syntax 

Source1Q + Destination1Q + X • Destination ABCD Dy,Dx 
ABCD - (Ay), - (Ax) 

Source + Destination. Destination ADD (ea),Dn 
ADD Dn,(ea) 

Source + Destination. Destination ADDA (ea),An 

Immediate Data + Destination. Destination ADDI #(data),(ea) 

Immediate Data + Destination. Destination AD DO #(data),(ea) 

Source + Destination + X • Destination ADDX Dy,Dx 
ADDX - (Ay). - (Ax) 

SourceADestination • Destination AND (ea),Dn 
AND Dn,(ea) 

Immediate DataADestination • Destination ANDI #(data),(ea) 

SourceACCR tCCR ANDI #(data),CCR 

MC68EC030 USER'S MANUAL 3-19 



Table 3-14. Instruction Set Summary (Continued) 

Opcode Operation Syntax 

ANDI If supervisor state ANDI #(data),SR 
to SR the SourceASR • SR 

else TRAP 

ASL,ASR Destination Shifted by (count) • Destination ASd DX,Dy 
ASd #(data),Dy 

• ~ 
ASd (ea) 

Bcc If (condition true) then PC + d • PC Bcc (label) 

BCHG -((number) of Destination) • Z; BCHG Dn,(ea) 
-((number) of Destination) • (bit number) of Destination BCHG #(data),(ea) 

BCLR -((bit number) of Destination) • Z; BCLR Dn,(ea) 
O. (bit number) of Destination BCLR #(data),(ea) 

BFCHG -((bit field) of Destination) • (bit field) of Destination BFCHG (ea){offset:width} 

BFCLR o • (bit field) of Destination BFCLR (ea){offset:width} 

BFEXTS (bit field) of Source. On BFEXTS (ea){offset:width},Dn 

BFEXTU (bit offset) of Source. On BFEXTU (ea){offset:width},Dn 

BFFFO (bit offset) of Source Bit Scan. On BFFFO (ea){offset:width},Dn 

BFINS On • (bit field) of Destination BFINS Dn,(ea){offset:width} 

BFSET , s • (bit field) of Destination BFSET (ea){offset:width} 

BFTST (bit field) of Destination BFTST (ea){offset:width} 

BKPT Run breakpoint acknowledge cycle; BKPT #(data) 
TRAP as illegal instruction 

BRA PC+d. PC BRA (label) 

BSET -((bit number) of Destination) • Z; BSH Dn,(ea) 
, • (bit number) of Destination BSET #(data),(ea) 

BSR SP-4. SP; PC. (SP); PC+d. PC BSR (label) 

BTST - ((bit number) of Destination) • Z; BTST Dn,(ea) 
BTST #(data),(ea) 

CAS CAS Destination - Compare Operand. cc; CAS Dc,Du,(ea) 
CAS2 if Z, Update Operand. Destination CAS2 Dc' :Dc2,Du1 :Du2,(Rn1):(Rn2) 

else Destination. Compare Operand 
CAS2 Destination' - Compare' • cc; 

if Z, Destination 2 - Compare. cc; 
if Z, Update' • Destination'; Update 2 • Destination 2 
else Destination' • Compare'; Destination 2. Compare 2 

CHK If Dn < 0 or On > Source then TRAP CHK (ea),Dn 

CHK2 If Rn < lower bound or CHK2 (ea),Rn 
Rn > upper bound 
then TRAP 

CLR o • Destination CLR (ea) 

CMP Destination - Source. cc CMP (ea),Dn 

CMPA Destination - Source CMPA (ea),An 

CMPI Destination - Immediate Data CMPI #(data),(ea) 

CMPM Destination - Source. cc CMPM (Ay) + ,(Ax) + 

3-20 MC68EC030 USER'S MANUAL MOTOROLA 



Table 3-14. Instruction Set Summary (Continued) 

Opcode Operation Syntax 

CMP2 Compare Rn < lower-bound or CMP2 (ea),Rn 
Rn > upper-bound 
and Set Condition Codes 

cpBcc If cpcc true then scanPC + d • PC cpBcc (label) 

cpDBcc If cpcc false then (Dn - 1 • Dn; cpDBcc Dn,(label) 
If Dn f. - 1 then scanPC + d • PC) 

cpGEN Pass Command Word to Coprocessor cpGEN (parameters as defined by co-
processor) 

cpRESTORE If supervisor state cpRESTORE (ea) 
then Restore Internal State of Coprocessor 

else TRAP 

cpSAVE If supervisor state cpSAVE (ea) 
then Save Internal State of Coprocessor 

else TRAP 

cpScc If cpcc true then 1 s • Destination cpScc (ea) 
else Os • Destination 

cpTRAPcc If cpcc true then TRAP cpTRAPcc 
cpTRAPcc #(data) 

DBcc If condition false then (Dn -1 • Dn; DBcc Dn,<label) 
If Dn f. -1 then PC+d • PC) 

DIVS Destination/Source. Destination DIVS.w (ea),Dn 32/16. 16r:16q 
DIVSL DIVS.L (ea),Dq 32/32.32q 

DIVS.L (ea),Dr:Dq 64/32 • 32r:32q 
DIVSL.L (ea),Dr:Dq 32/32. 32r:32q 

DIVU Destination/Source. Destination DIVU.w (ea),Dn 32/16. 16r:16q 
DIVUL DIVU.L (ea),Dq 32/32.32q 

DIVU.L (ea),Dr:Dq 64/32 • 32r:32q 
DIVUL.L (ea),Dr:Dq 32/32. 32r:32q 

EaR Source EB Destination. Destination EaR Dn,(ea) 

EaRl Immediate Data EB Destination. Destination EaRl #(data),(ea) 

EaRl Source EB CCR • CCR EaRl #(data),CCR 
to CCR 

EaRl If supervisor state EaRl #(data),SR 
to SR the Source EB SR • SR 

else TRAP 

EXG Rx •• Ry EXG DX,Dy 
EXG Ax.Ay 
EXG Dx.Ay 
EXG Ay,Dx 

EXT Destination Sign-Extended. Destination EXT.W Dn extend byte to word 
EXTB EXT.L L Dn extend word to long word 

EXTB.L Dn extend byte to long word 

ILLEGAL SSP - 2 • SSP; Vector Offset. (SSP); ILLEGAL 
SSP-4. SSP; PC. (SSP); 
SSp - 2. SSP; SR • (SSP); 
Illegal Instruction Vector Address. PC 

JMP Destination Address. PC JMP (ea) 

MOTOROLA MC68EC030 USER'S MANUAL 3-21 



Table 3-14. Instruction Set Summary (Continued) 

Opcode Operation Syntax 

JSR SP-4. SP; PC. (SP) JSR (ea) 
Destination Address. PC 

LEA (ea). An LEA (ea),An 

LINK SP-4. SP; An • (SP) LINK An,#(displacement) 
SP. An, SP+d. SP 

• LSL,LSR Destination Shifted by (count) • Destination LSd5 DX,Dy 
LSd5 #(data),Dy 
LSd5 (ea) 

MOVE Source. Destination MOVE (ea),(ea) 

MOVEA Source. Destination MOVEA (ea),An 

MOVE CCR • Destination MOVE CCR,(ea) 
from CCR 

MOVE Source. CCR MOVE (ea),CCR 
to CCR 

MOVE If supervisor state MOVE SR,(ea) 
from SR then SR • Destination 

else TRAP 

MOVE If supervisor state MOVE (ea),SR 
to SR then Source. SR 

else TRAP 

MOVE If supervisor state MOVE USP,An 
USP then USP • An or An • USP MOVE An,USP 

else TRAP 

MOVEC If supervisor state MOVEC RC,Rn 
then Rc • Rn or Rn • Rc MOVEC Rn,Rc 

else TRAP 

MOVEM Registers. Destination MOVEM register Iist.(ea) 
Source. Registers MOVEM (ea),register list 

MOVEP Source. Destination MOVEP DX,(d,Ay) 
MOVEP (d,Ay),Dx 

MOVEO Immediate Data. Destination MOVEO #(data),Dn 

MOVES If supervisor state MOVES Rn,(ea) 
then Rn • Destination [DFC) or Source [SFC) • Rn MOVES (ea),Rn 

else TRAP 

MULS Source x Destination. Destination MULS.W (ea),Dn 16 x 16.32 
MULS.L (ea),DI 32 x 32.32 
MULS.L (ea),Dh:DI 32 x 32.64 

MULU Source x Destination. Destination MULU.W (ea),Dn 16x 16.32 
MULU.L (ea),DI 32 x 32.32 
MULU.L (ea),Dh:DI 32 x 32.64 

NBCD 0- (DestinationlO) - X • Destination NBCD (ea) 

NEG 0- (Destination) • Destination NEG (ea) 

NEGX 0- (Destination) - X • Destination NEGX (ea) 

Nap None Nap 

NOT -Destination. Destination NOT (ea) 

3-22 MC68EC030 USER'S MANUAL MOTOROLA 



Table 3-14. Instruction Set Summary (Continued) 

Opcode Operation Syntax 

OR Source V Destination. Destination OR (ea),Dn 
OR Dn,(ea) 

ORI Immediate Data V Destination. Destination ORI #(data),(ea) 

ORI Source V CCR • CCR ORI #(data),CCR 
to CCR 

ORI If supervisor state ORI #(data),SR 
to SR then Source V SR • SR 

else TRAP 

PACK Source (Unpacked BCD) + adjustment. Destintion (Packed BCD) PACK - (Ax). - (Ay).#(adjustment) 
PACK DX,Dy,#(adjustment) 

PEA Sp -4. SP; (ea) • (SP) PEA (ea) 

PMOVE If supervisor state PMOVE MRn,(ea) 
then (Source) • MRn or MRn • (Destination) PMOVE (ea),MRn 

else TRAP PMOVEFD (ea),MRn 

PTEST If supervisor state PTESTR (An) 
then Access control status. ACUSR; PTESTW (An) 

else TRAP 

RESET If supervisor state RESET 
then Assert RSTO Line 

else TRAP 

ROL,ROR Destination Rotated by (count) • Destination ROd 5 RX,Dy 
ROd5 #(data),Dy 
ROd 5 (ea) 

ROXL,ROXR Destination Rotated with X by (count) • Destination ROXd5 DX,Dy 
ROXd5 #(data),Dy 
ROXd5 (ea) 

RTD (SP). PC; SP+4+d. SP RTD #(displacement) 

RTE If supervisor state RTE 
the (SP) • SR; SP + 2 • SP; (SP) • PC; 
SP+4. SP; 
restore state and deallocate stack according to (SP) 

else TRAP 

RTR (SP) • CCR; SP + 2. SP; RTR 
(SP). PC; SP+4. SP 

RTS (SP). PC; SP+4. SP RTS 

SBCD DestinationlO-SourcelO-X. Destination SBCD DX,Dy 
SBCD - (Ax). - (Ay) 

Scc If Condition True Scc (ea) 
then 1 s • Destination 

else Os • Destination 

STOP If supervisor state STOP #(data) 
then Immediate Data. SR; STOP 

else TRAP 

SUB Destination - Source. Destination SUB (ea),Dn 
SUB Dn,(ea) 

SUBA Destination - Source. Destination SUBA (ea),An 

MOTOROLA MC68EC030 USER'S MANUAL 3-23 



-

Table 3-14. Instruction Set Summary (Concluded) 

Opcode Operation Syntax 

SUBI Destination -Immediate Data. Destination SUBI #(data),(ea) 

SUBO Destination -Immediate Data. Destination SUBO #(data),(ea) 

SUBX Destination - Source - X • Destination SUBX DX,Dy 
SUBX - (Ax), - (Ay) 

SWAP Register [31: 16) •• Register [15:0) SWAP Dn 

TAS Destination Tested. Condition Codes; 1 • bit 7 of Destination TAS (ea) 

TRAP SSP-2. SSP; Format/Offset. (SSP); TRAP #(vector) 
SSP-4. SSP; PC. (SSP); SSP-2. SSP; 
SR. (SSP); Vector Address. PC 

TRAPcc If cc then TRAP TRAPcc 
TRAPcc.w #(data) 
TRAPcc.L #(data) 

TRAPV If V then TRAP TRAPV 

TST Destination Tested. Condition Codes TST (ea) 

UNLK An. SP; (SP) • An; SP +4. SP UNLK An 

UNPK Source (Packed BCD) + adjustment. Destination (Unpacked BCD) UNPACK - (Ax), -(AY),#(adjustment) 
UNPACK DX,DY,#(adjustment) 

NOTES: 
1. Specifies either the instruction (lC), data (DC), or IC/DC caches. 
2. Where r is rounding precision, S or D. 
3. A list of any combination of the eight floating-point data registers, with individual register names separated by a slash 

(I); and/or contiguous blocks of registers specified by the first and last register names separated by a dash (-). 
4. A list of any combination of the three floating-point system control registers (FPCR, FPSR, and FPIAR) with individual 

register names separated by a slash (I). 
5. Where d is direction, Lor R. 

3.5 INSTRUCTION EXAMPLES 

The following paragraphs provide examples of how to use selected instruc
tions. 

3.5.1 Using the CAS and CAS2 Instructions 

3-24 

The CAS instruction compares the value in a memory location with the value 
in a data register, and copies a second data register into the memory location 
if the compared values are equal. This provides a means of updating system 
counters, history information, and globally shared pointers. The instruction 
uses an indivisible read-modify-write cycle; after CAS reads the memory 
location, no other instruction can change that location before CAS has written 
the new value. This provides security in single-processor systems, in multi
tasking environments, and in multiprocessor environments. In a single
processor system, the operation is protected from instructions of an interrupt 

MC68EC030 USER'S MANUAL MOTOROLA 



routine. In a multitasking environment, no other task can interfere with writing 
the new value of a system variable. In a multiprocessor environment, the 
other processors must wait until the CAS instruction completes before ac
cessing a global pointer. 

The following code fragment shows a routine to maintain a count, in location 
SYS-CNTR, of the executions of an operation that may be performed by any 
process or processor in a system. The routine obtains the current value of 
the count in register DO and stores the new count value in register D1. The 
CAS instruction copies the new count into SYS-CNTR if it is valid. However, 
if another user has incremented the counter between the time the count was 
stored and the read-modify-write cycle of the CAS instruction, the write por
tion of the cycle copies the new count in SYS-CNTR into DO, and the routine 
branches to repeat the test. The following code sequence guarantees that 
SYS-CNTR is correctly incremented. 

MOVE.W 
INC-LOOP MOVE.W 

AOOQ.W 
CAS.W 
BNE 

SYS_CNTR,OO 
00,01 
#1,01 
00,01,SYS_CNTR 
INC_LOOP 

get the old value of the counter 
make a copy of it 
and increment it 
if counter value is still the same, update it 
if not, try again 

The CAS and CAS2 instructions together allow safe operations in the ma
nipulation of system linked lists. Controlling a single location, HEAD in the 
example, manages a last-in-first-out linked list (see Figure 3-2). If the list is 
empty, HEAD contains the NULL pointer (0); otherwise, HEAD contains the 
address of the element most recently added to the list. The code fragment 
shown in Figure 3-2 illustrates the code for inserting an element. The MOVE 
instructions load the address in location HEAD into DO and into the NEXT 
pointer in the element being inserted, and the address of the new element 
into D1. The CAS instruction stores the address of the inserted element into 
location HEAD if the address in HEAD remains unaltered. If HEAD contains 
a new address, the instruction loads the new address into DO and branches 
to the second MOVE instruction to try again. 

MOTOROLA MC68EC030 USER'S MANUAL 3-25 



IEII 

3-26 

SINSERT 

SILOOP 
MOVE.L 
MOVE.L 
MOVE.L 
CAS.L 
BNE 

HEAD.DO 
DO, (NEXT, Al) 
Al,Dl 
DO, Dl, HEAD 
SILOOP 

BEFORE INSERTING AN ELEMENT: 

ENTRY 

+ NEXT 

NEW ? 

AFTER INSERTING AN ELEMENT: 

HEAD 
NEW 

HEAD 

ALLOCATE N EW ENTRY, ADDRESS IN A 1 
MOVE HEAD POINTER VALUE TO DO 
ESTABLISH FORWARD LINK IN NEW ENTRY 
MOVE NEW ENTRY POINTER VALUE TO Dl 
IF WE STILL POINT TO TOP OF STACK, UPDATE THE HEAD POINTER 
IF NOT, TRY AGAIN 

ENTRY ENTRY 

+ NEXT 

ENTRY 

Figure 3-2. Linked List Insertion 

The CAS2 instruction is similar to the CAS instruction except that it performs 
two comparisons and updates two variables when the results of the com
parisons are equal. If the results of both comparisons are equal, CAS2 copies 
new values into the destination addresses. If the result of either comparison 
is not equal, the instruction copies the values in the destination addresses 
into the compare operands. 

The next code (see Figure 3-3) fragment shows the use of a CAS2 instruction 
to delete an element from a linked list. The first LEA instruction loads the 
effective address of HEAD into AO. The MOVE instruction loads the address 
in pointer HEAD into DO. The TST instruction checks for an empty list, and 
the BEQ instruction branches to a routine at label SDEMPTY if the list is 
empty. Otherwise, a second LEA instruction loads the address of the NEXT 
pointer in the newest element on the list into A 1, and the following MOVE 
instruction loads the pointer contents into 01. The CAS2 instruction compares 
the address of the newest structure to the value in HEAD and the address in 
D1 to the pointer in the address in A 1. If no element has been inserted or 
deleted by another routine while this routine has been executing, the results 
of these comparisons are equal, and the CAS2 instruction stores the new 

MC68EC030 USER'S MANUAL MOTOROLA 



value into location HEAD. If an element has been inserted or deleted, the 
CAS2 instruction loads the new address in location HEAD into DO, and the 
BNE instruction branches to the TST instruction to try again. 

SDELETE 

SDLOOP 

SDEMPTY 

LEA 
MOVE.L 
TST.L . 
BEQ 
LEA 
MOVE.L 
CAS2.L 

BNE 

HEAD, AD 
(AO), DO 
DO 
SDEMPTY 
(NEXT, DO), A1 
(A1),D1 
00:01,01:01, (AO):(A1) 

SDLOOP 

BEFORE DELETING AN ELEMENT: 

HEAD 

AFTER DELETING AN ELEMENT: 

ENTRY 

+ NEXT 

I 
HEAD -----------

LOAD ADDRESS OF HEAD POINTER INTO AO 
MOVE VALUE OF HEAD POINTER INTO DO 
CHECK FOR NULL HEAD POINTER _ 
IF EMPTY, NOTHING TO DELETE 
LOAD ADDRESS OF FORWARD UNK INTO A1 
PUT FORWARD UNK VALUE IN D1 
IF STILL POINT TO ENTRY TO BE DELETED, THEN UPDATE HEAD AND 
FORWARD POINTERS 
IF NOT, TRY AGAIN 
SUCCESSFUL DELETION, ADDRESS OF DELETED ENTRY IN DO (MAY BE 
NULL) 

ENTRY 

ENTRY ENTRY 

... 

Figure 3-3. Linked List Deletion 

The CAS2 instruction can also be used to correctly maintain a first-in-first
out doubly linked list. A doubly linked list needs two controlled locations, 
LIST-PUT and LIST-GET, which contain pointers to the last element inserted 
in the list and the next to be removed, respectively. If the list is empty, both 
pointers are NULL (0). 

The code fragment shown in Figure 3-4 illustrates the insertion of an element 
in a doubly linked list. The first two instructions load the effective addresses 

MOTOROLA MC68EC030 USER'S MANUAL 3-27 



• 

3-28 

of LIST-PUT and LIST-GET into registers AO and A 1, respectively. The next 
instruction moves the address of the new element into register D2. Another 
MOVE instruction moves the address in LIST-PUT into register DO. At label 
DILOOP, a TST instruction tests the value in DO, and the BEQ instruction 
branches to the MOVE instruction when DO is equal to zero. Assuming the 
list is empty, this MOVE instruction is executed next; it moves the zero in 
DO into the NEXT and LAST pointers of the new element. Then the CAS2 
instruction moves the address of the new element into both LIST-PUT and 
LIST-GET, assuming that both of these pointers still contain zero. If not, the 
BNE instruction branches to the TST instruction at label DILOOP to try again. 
This time, the BEQ instruction does not branch, and the following MOVE 
instruction moves the address in DO to the NEXT pointer of the new element. 
The CLR instruction clears register D1 to zero, and the MOVE instruction 
moves the zero into the LAST pointer of the new element. The LEA instruction 
loads the address of the LAST pointer of the most recently inserted element 
into register A 1. Assuming the LIST-PUT pointer and the pointer in A 1 have 
not been changed, the CAS2 instruction stores the address ofthe new element 
into these pointers. 

MC68EC030 USER'S MANUAL MOTOROLA 



DINSERT 

DILOOP 

DIEMPTY 

DlDONE 

LEA 
LEA 
MOVE.L 
MOVE.L 
TST.L 
BEQ 
MOVE.L 
CLR.L 
MOVE.L 
LEA 
CAS2.L 
BNE 
BRA 
MOVE.L 
MOVE.L 
CAS2.L 
BNE 

BEFORE INSERTING NEW ENTRY: 

UST_PUT, AD 
UST_GET,A1 
A2,D2 
(AD), DO 
DO 
DIEMPTY 

DO, (NEXT, A2) 
D1 
D1, (LAST, A2) 
(LAST, DO), A1 
DO:D1,D2:D2,(AO):(A 1) 
01 LOOP 
DIDONE 
DO, (NEXT, A2) 
DO, (LAST, A2) 
DO:DO,D2:D2,(AO):(A 1) 
DILOOP 

ENTRY 

+ LAST + NEXT 

AFTER INSERTING NEW ENTRY: 

(ALLOCATE NEW UST ENTRY, LOAD ADDRESS INTO A2) 
LOAD ADDRESS OF HEAD POINTER INTO AD . 
LOAD ADDRESS OF TAIL POINTER INTO A1 
LOAD NEW ENTRY POINTER INTO D2 
LOAD POINTER TO HEAD ENTRY INTO DO 
IS HEAD POINTER NULL, (0 ENTRIES IN UST)? 
IF SO, WE NEED ONLY TO EST ABUSH POINTERS 
PUT HEAD POINTER INTO FORWARD POINTER OF NEW ENTRY 
PUT NULL POINTER VALUE INTO 01 
PUT NULL POINTER IN BACKWARD POINTER OF NEW ENTRY 
LOAD BACKWARD POINTER OF OLD HEAD ENTRY INTO A1 
IF WE STILL POINT TO OLD HEAD ENTRY, UPDATE POINTERS 
IF NOT, TRY AGAIN 

PUT NULL POINTER IN FORWARD POINTER OF NEW ENTRY 
PUT NULL POINTER IN BACKWARD POINTER OF NEW ENTRY 
IF WE STILL HAVE NO ENTRIES, SET BOTH POINTERS TO THIS ENTRY 
IF NOT, TRY AGAIN 
SUCCESSFUL UST ENTRY INSERTION 

Figure 3-4. Doubly Linked List Insertion 

The code fragment to delete an element from a doubly linked list is similar 
(see Figure 3-5). The first two instructions load the effective addresses of 
pointers LIST-PUT and LIST-GET into registers AD and A 1, respectively. The 
MOVE instruction at label DDLOOP moves the LIST-GET pointer into register 
D1. The BEQ instruction that follows branches out of the routine when the 
pointer is zero. The MOVE instruction moves the LAST pointer of the element 
to be deleted into register D2. Assuming this is not the last element in the 
list, the Z condition code is not set, and the branch to label DDEMPTY does 

MOTOROLA MC68EC030 USER'S MANUAL 3-29 

l1li 



• 

3-30 

not occur. The LEA instruction loads the address of the NEXT pointer of the 
element at the address in 02 into register A2. The next instruction, a CLR 
instruction, clears register 00 to zero. The CAS2 instruction compares the 
address in 01 to the LIST-GET pointer and to the address in register A2. If 
the pointers have not been updated, the CAS2 instruction loads the address 
in 02 into the LIST-GET pointer and zero into the address in register A2. 

When the list contains only one element, the routine branches to the CAS2 
instruction at label OOEMPTY after moving a zero pointer value into 02. This 

DDELETE 

DDLOOP 

DDEMPTY 

DDDONE 

LEA 
LEA 
MOVE.L 
BEQ 
MOVE.L 
BEQ 
LEA 
CLR.L 
CAS2.L 
BNE 
BRA 
CAS2.L 
BNE 

BEFORE DELETING ENTRY: 

AFTER DELEnNG ENTRY: 

UST_PUT,AO 
UST_GET,A1 
(A1),D1 
DDDONE 
(LAST,D1),D2 
DDEMPTY 
(NEXT,D2),A2 
DO 
01 :D1,D2:DO,(A 1 ):(A2) 
DDLOOP 
DDDONE 
01 :D1,D2:D2,(A 1 ):(AO) 
DDLOOP 

GET ADDRESS OF HEAD POINTER IN AO 
GET ADDRESS OF TAIL POINTER IN A1 
MOVE TAIL POINTER INTO 01 
IF NO UST, QUIT 
PUT BACKWARD POINTER IN 02 
IF ONLY ONE ELEMENT, UPDATE POINTERS 
PUT ADDRESS OF FORWARD POINTER IN A2 
PUT NULL POINTER VALUE IN DO 
IF BOTH POINTERS STILL POINT TO THIS ENTRY, UPDATE THEM 
IF NOT, TRY AGAIN 

IF STILL FIRST ENTRY, SET HEAD AND TAIL POINTERS TO NULL 
IF NOT, TRY AGAIN 
SUCCESSFUL ENTRY DELETION, ADDRESS OF DELETED ENTRY IN 01 
(MAY BE NULL) 

Figure 3-5. Doubly Linked List Deletion 

MC68EC030 USER'S MANUAL MOTOROLA 



instruction checks the addresses in LIST-PUT and LIST-GET to verify that 
no other routine has inserted another element or deleted the last element. 
Then the instruction moves zero into both pointers, and the list is empty. 

3.5.2 Nested Subroutine Calls 

The LINK instruction pushes an address onto the stack, saves the stack ad- _ 
dress at which the address is stored, and reserves an area of the stack. Using 
this instruction in a series of subroutine calls results in a linked list of stack 
frames. 

The UNLK instruction removes a stack frame from the end of the list by 
loading an address into the stack pointer and pulling the value at that address 
from the stack. When the operand of the instruction is the address of the link 
address at the bottom of a stack frame, the effect is to remove the stack 
frame from the stack and from the linked list. 

3.5.3 Bit Field Operations 

One data type provided by the MC68EC030 is the bit field, consisting of as 
many as 32 consecutive bits. A bit field is defined by an offset from an effective 
address and a width value. The offset is a value in the range of - 231 through 
231 -1 from the most significant bit (bit 7) at the effective address. The width 
is a positive number, 1-32. The most significant bit of a bit field is bit 0; the 
bits number in a direction opposite to the bits of an integer. 

The instruction set includes eight instructions that have bit field operands. 
The insert bit field (BFINS) instruction inserts a bit field stored in a register 
into a bit field. The extract bit field signed (BFEXTS) instruction loads a bit 
field into the least significant bits of a register and extends the sign to the 
left, filling the register. The extract bit field unsigned (BFEXTU) also loads a 
bit field, but zero fills the unused portion of the destination register. 

The set bit field (BFSET) instruction sets all the bits of a field to ones. The 
clear bit field (BFCLR) instruction clears a field. The change bit field (BFCHG) 
instruction complements all the bits in a bit field. These three instructions 
all test the previous value of the bit field, setting the condition codes ac
cordingly. The test bit field (BFTST) instruction tests the value in the field, 
setting the condition codes appropriately without altering the bit field. The 
find first one in bit field (BFFFO) instruction scans a bit field from bit 0 to the 
right until it finds a bit set to one and loads the bit offset of the first set bit 
into the specified data register. If no bits in the field are set, the field offset 
and the field width is loaded into the register. 

MOTOROLA MC68EC030 USER'S MANUAL 3-31 



-

An important application of bit field instructions is the manipulation of the 
exponent field in a floating-point number. In the IEEE standard format, the 
most significant bit is the sign bit of the mantissa. The exponent value begins 
at the next most significant bit position; the exponent field does not begin 
on a byte boundary. The extract bit field (BFEXTU) instruction and the BFTST 
instruction are the most useful for this application, but other bit field instruc
tions can also be used. 

Programming of input and output operations to peripherals requires testing, 
setting, and inserting of bit fields in the control registers of the peripherals, 
which is another application for bit field instructions. However, control reg
ister locations are not memory locations; therefore, it is not always possible 
to insert or extract bit fields of a register without affecting other fields within 
the register. 

Another widely used application for bit field instructions is bit-mapped graph
ics. Because byte boundaries are ignored in these areas of memory, the field 
definitions used with bit field instructions are very helpful. 

3.5.4 Pipeline Synchronization with the NOP Instruction 

3-32 

Although the no operation (NOP) instruction performs no visible operation, 
it serves an important purpose. It forces synchronization of the integer unit 
pipeline by waiting for all pending bus cycles to complete. All previous integer 
instructions and floating-point external operand accesses complete execution 
before the NOP begins. The NOP instruction does not synchronize the FPU 
pipeline; floating-point instructions with floating-point register operand des
tinations can be executing when the NOP begins. 

MC68EC030 USER'S MANUAL MOTOROLA 



SECTION 4 
PROCESSING STATES 

This section describes the processing states of the MC68EC030. It describes 
the functions of the bits in the supervisor portion of the status register and 
the actions taken by the controller in response to exception conditions. 

Unless the controller has halted, it is always in either the normal or the 
exception processing state. Whenever the controller is executing instructions 
or fetching instructions or operands, it is in the normal processing state. The 
controller is also in the normal processing state while it is storing instruction 
results or communicating with a coprocessor. 

NOTE 

Exception processing refers specifically to the transition from normal 
processing of a program to normal processing of system routines, 
interrupt routines, and other exception handlers. Exception pro
cessing includes all stacking operations, the fetch of the exception 
vector, and filling of the instruction pipe caused by an exception. It 
has completed when execution of the first instruction of the excep
tion handler routine begins. 

The controller enters the exception processing state when an interrupt is 
acknowledged, when an instruction is traced or results in a trap, or when 
some other exceptional condition arises. Execution of certain instructions or 
unusual conditions occurring during the execution of any instructions can 
cause exceptions. External conditions, such as interrupts, bus errors, and 
some coprocessor responses, also cause exceptions. Exception processing 
provides an efficient transfer of control to handlers and routines that process 
the exceptions. 

A catastrophic system failure occurs whenever the controller receives a bus 
error or generates an address error while in the exception processing state. 
This type of failure halts the controller. For example, if during the exception 
processing of one bus error another bus error occurs, the MC68EC030 has 
not completed the transition to normal processing and has not completed 
saving the internal state of the machine, so the controller assumes that the 
system is not operational and halts. Only an external reset can restart a halted 

MOTOROLA MC68EC030 USER'S MANUAL 4-1 

-



-

controller. (When the controlelr executes a STOP instruction, it is in a special 
type of normal processing state, one without bus cycles. It is stopped, not 
halted.) 

4.1 PRIVILEGE LEVELS 

The controller operates at one of two levels of privilege: the user level or 
the supervisor level. The supervisor level has higher privileges than the user 
level. Not all controller or coprocessor instructions are permitted to execute 
in the lower privileged User level, but all are available at the supervisor level. 
This allows a separation of supervisor and user so the supervisor can protect 
system resources from uncontrolled access. The controller uses the privilege 
level indicated by the S bit in the status register to select either the user or 
supervisor privilege level and either the user stack pointer or a supervisor 
stack pointer for stack operations. The controller identifies a bus access (su
pervisor or user mode) via the function codes so that differentiation between 
supervisor and user can be maintained. The access control unit uses the 
indication of privilege level to control memory accesses to protect supervisor 
code, data, and resources from access by user programs. 

In many systems, the majority of programs execute at the user level. User 
programs can access only their own code and data areas and can be restricted 
from accessing other information. The operating system typically executes 
at the supervisor privilege level. It has access to all resources, performs the 
overhead tasks for the user level programs, and coordinates their activities. 

4.1.1 Supervisor Privilege Level 

4-2 

The supervisor level is the higher privilege level. The privilege level is de
termined by the S bit of the status register; if the S bit is set, the supervisor 
privilege level applies, and all instructions are executable. The bus cycles for 
instructions executed at the supervisor level are normally classified as su
pervisor references, and the values of the function codes on FCO-FC2 refer 
to supervisor address spaces. 

In a multitasking operating system, it is more efficient to have a supervisor 
stack space associated with each user task and a separate stack space for 
interrupt associated tasks. The MC68EC030 provides two supervisor stacks, 
master and interrupt; the M bit of the status register selects which of the 
two is active. When the M bit is set to one, supervisor stack pointer references 
(either implicit or by specifying address register A7) access the master stack 
pointer (MSP). The operating system sets the MSP for each task to point to 

MC68EC030 USER'S MANUAL MOTOROLA 



The value of the M bit in the status register does not affect execution of 
privileged instructions; both master and interrupt modes are at the supervisor 
privilege level. Instructions that affect the M bit are MOVE to SR, ANDI to 
SR, EORI to SR, ORI to SR, and RTE. Also, the controller automatically saves 
the M-bit value and clears it in the SR as part of the exception processing 
for interrupts. 

All exception processing is performed at the supervisor privilege level. All 
bus cycles generated during exception processing are supervisor references, 
and all stack accesses use the active supervisor stack pointer . 

4.1.2 User Privilege Level 

The user level is the lower privilege level. The privilege level is determined 
by the S bit of the status register; if the S bit is clear, the controller executes 
instructions at the user privilege level. 

Most instructions execute at either privilege level, but some instructions that 
have important system effects are privileged and can only be executed at 
the supervisor level. For instance, user programs are not allowed to execute 
the STOP instruction or the RESET instruction. To prevent a user program 
from entering the supervisor privilege level, except in a controlled manner, 
instructions that can alter the S bit in the status register are privileged. The 
TRAP #n instruction provides controlled access to operating system services 
for user programs. 

The bus cycles for an instruction executed at the user privilege level are 
classified as user references, and the values ofthe function codes on FCO-FC2 
specify user address spaces. When it is enabled, the access control unit of 
the controller uses the value of the function codes to distinguish between 
user and supervisor activity and to control cacheability to protected portions 
of the address space. While the controller is at the user level, references to 
the system stack pointer implicitly, or to address register seven (A7) explicitly, 
refer to the user stack pointer (USP). 

4.1.3 Changing Privilege Level 

To change from the user to the supervisor privilege level, one of the con
ditions that causes the controller to perform exception processing must oc
cur. This causes a change from the user level to the supervisor level and can 
cause a change from the master mode to the interrupt mode. Exception 
processing saves the current values of the Sand M bits of the status register 

MOTOROLA MC68EC030 USER'S MANUAL 4-3 

• 



l1li 

(along with the rest of the status register) on the active supervisor stack, and 
then sets the S bit, forcing the controller into the supervisor privilege level. 
When the exception being processed is an interrupt and the M bit is set, the 
M bit is cleared, putting the controller into the interrupt mode. Execution of 
instructions continues at the supervisor level to process the exception con
dition. 

To return to the user privilege level, a system routine must execute one of 
the following instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, 
or RTE.The MOVE, ANDI, EORI, and ORI to SR and RTE instructions execute 
at the supervisor privilege level and can modify the S bit of the status register. 
After these instructions execute, the instruction pipeline is flushed and is 
refilled from the appropriate address space. This is indicated externally by 
the assertion of the REFILL signal. 

The RTE instruction returns to the program that was executing when the 
exception occurred. It restores the exception stack frame saved on the su
pervisor stack. If the frame on top of the stack was generated by an interrupt, 
trap, or instruction exception, the RTE instruction restores the status register 
and program counter to the values saved on the supervisor stack. The con
troller then continues execution at the restored program counter address and 
at the privilege level determined by the S bit of the restored status register. 
If the frame on top of the stack was generated by a bus fault (bus error or 
address error exception), the RTE instruction restores the entire saved con
troller state from the stack. 

4.2 ADDRESS SPACE TYPES 

4-4 

The controller specifies a target address space for every bus cycle with the 
function code signals according to the type of access required. In addition 
to distinguishing between supervisor/user and program/data, the controller 
can identify special controller cycles, such as the interrupt acknowledge cycle, 
and the access control unit can control access cacheability. Table 4-1 lists 
the types of accesses defined for the MC68EC030 and the corresponding 
values of function codes FCO-FC2. 

MC68EC030 USER'S MANUAL MOTOROLA 



Table 4-1. Address Space Encodings 

FC2 FC1 FCO Address Space 

0 0 0 (Undefined, Reserved)* 

0 0 1 User Data Space 

0 1 0 User Program Space 

0 1 1 (Undefined, Reserved)* 

1 0 0 (Undefined, Reserved)* 

1 0 1 Supervisor Data Space 

1 1 0 Supervisor Program Space 

1 1 1 CPU Space 

*Address space 3 is reserved for user definition; 0 and 4 are 
reserved for future use by Motorola. 

The memory locations of user program and data accesses are not predefined. 
Neither are the locations of supervisor data space. During reset, the first two 
long words beginning at memory location zero in the supervisor program 
space are used for controller initialization. No other memory locations are 
explicitly defined by the MC68EC030. 

A function code of $7 ([FC2:FCO] = 111) selects the CPU address space. This 
is a special address space that does not contain instructions or operands but 
is reserved for special controller functions. The controller uses accesses in 
this space to communicate with external devices for special purposes. For 
example, all M68000 processors use the CPU space for interrupt acknowledge 
cycles. The MC68020, MC68030, and MC68EC030 also generate CPU space 
accesses for breakpoint acknowledge and coprocessor operations. 

Supervisor programs can use the MOVES instruction to access all address 
spaces, including the user spaces and the CPU address space. Although the 
MOVES instruction. can be used to generate CPU space cycles, this may 
interfere with proper system operation. Thus, the use of MOVES to access 
the CPU space should be done with caution. 

4.3 EXCEPTION PROCESSING 

An exception is defined as a special condition that pre-empts normal pro
cessing. Both internal and external conditions cause exceptions. External 
conditions that cause exceptions are interrupts from external devices, bus 
errors, coprocessor detected errors, and reset. Instructions, address errors, 
"tracing, and breakpoints are internal conditions that cause exceptions. The 
TRAP, TRAPcc, TRAPV, cpTRAPcc, CHK, CHK2, RTE, and DIV instructions can 

MOTOROLA MC68EC030 USER'S MANUAL 4-5 

-



l1li 

all generate exceptions as part of their normal execution. In addition, illegal 
instructions, privilege violations, and coprocessor protocol violations cause 
exceptions. 

Exception processing, which is the transition from the normal processing of 
a program to the processing required for the exception condition, involves 
the exception vector table and an exception stack frame. The following par
agraphs describe the vector table and a generalized exception stack frame. 
Exception processing is discussed in detail in SECTION 8 EXCEPTION PRO
CESSING. Coprocessor detected exceptions are discussed in detail in SEC
TION 10 COPROCESSOR INTERFACE DESCRIPTION. 

4.3.1 Exception Vectors 

The vector base register (VBR) contains the base address of the 1024-byte 
exception vector table, which consists of 256 exception vectors. Exception 
vectors contain the memory addresses of routines that begin execution at 
the completion of exception processing. These routines perform a series of 
operations appropriate for the corresponding exceptions. Because the ex
ception vectors contain memory addresses, each consists of one long word, 
except for the reset vector. The reset vector consists of two long words: the 
address used to initialize the interrupt stack pointer and the address used to 
initialize the program counter. 

The address of an exception vector is derived from an 8-bit vector number 
and the VBR. The vector numbers for some exceptions are obtained from an 
external device; others are supplied automatically by the controller. The 
controller multiplies the vector number by four to calculate the vector offset, 
which it adds to the VBR. The sum is the memory address of the vector. All 
exception vectors are located in supervisor data space, except the reset vec
tor, which is located in supervisor program space. Only the initial reset vector 
is fixed in the controller's memory map; once initialization is complete, there 
are no fixed assignments. Since the VBR provides the base address of the 
vector table, the vector table can be located anywhere in memory; it can 
even be dynamically relocated for each task that is executed by an operating 
system. Details of exception processing are provided in SECTION 8 EXCEP
TION PROCESSING, and Table 8-1 lists the exception vector assignments. 

4.3.2 Exception Stack Frame 

4-6 

Exception processing saves the most volatile portion of the current controller 
context on the top of the supervisor stack. This context is organized in a 

MC68EC030 USER'S MANUAL MOTOROLA 



format called the exception stack frame. This information always includes a 
copy of the status register, the program counter, the vector offset of the 
vector, and the frame format field. The frame format field identifies the type 
of stack frame. The RTE instruction uses the value in the format field to 
properly restore the information stored in the stack frame and to deallocate 
the stack space. The general form of the exception stack frame is illustrated 
in Figure 4-1. Refer to SECTION 8 EXCEPTION PROCESSING for a complete 
list of exception stack frames. 

15 12 

SP STATUS REGISTER 

PROGRAM COUNTER 

FORMAT I VECTOR OFFSET 

I- ADDITIONAL PROCESSOR STATE INFORMATION _ 
(2.6.12. OR 42 WORDS, IF NEEDED) 

Figure 4-1. General Exception Stack Frame 

MOTOROLA MC68EC030 USER'S MANUAL 4-7 

• 



., . . ,' 

• 

4-8 MC68EC030 USER'S MANUAL MOTOROLA 



SECTION 5 
SIGNAL DESCRIPTION 

This section contains brief descriptions of the input and output signals in 
their functional groups, as shown in Figure 5-1. Each signal is explained in 
a brief paragraph with reference to other sections that contain more detail 
about the signal and the related operations. 

MOTOROLA 

NOTE 

In this section and in the remainder of the manual, assertion and 
negation are used to specify forcing a signal to a particular state. In 
particular, assertion and assert refer to a signal that is active or true; 
neg'ation and negate indicate a signal that is inactive or false. These 
terms are used independently of the voltage level (high or low) that 
they represent. 

FUNCTION CODES 

ADDRESS BUS 

DATA BUS 

TRANSFER { 
SIZE 

ASYNCHRONOUS 
BUS CONTROL 

CACHE { 
CONTROL 

A 

FC2-FCO 
; 
< A31-AO 
; " < 031-00 
~ v 

- SIZO -,. SIZ1 -
-- OCS --- ECS --- RNI 

:; RMC ...... - AS --- OS 
:; DBEN 

-- DSACKO ~ 
DSACK1 .... -

CIIN .... - ClOUT ~ 

-: CBREQ 

- CBACK >-

,. IPLO 
;_ IPL1 

:: IPL2 
- IPEND .... 

~ 

, AVEC ...... 
__ BR 

...... BG .... 
, BGACK ~ -
__ RESET _ ..... 

:.:_ HALT -MC68EC030 
;_ BERR -
__ STERM 

--
REFILL ... 

STATUS: 
,. CDIS 

~ 

...... 

, CLK 
;_ VccJ10) 

:: GNQ{14} 
...... 

Figure 5-1. Functional Signal Groups 

MC68EC030 USER'S MANUAL 

} 

INTERRUPT 
CONTROL 

} 

BUS ARBITRATION 
CONTROL 

} 

BUS EXCEPTION 
CONTROL 

SYNCHRONOUS 
BUS CONTROL 

} 
EMULATOR 
SUPPORT 

5-1 

-



• 

5.1 SIGNAL INDEX 

5-2 

The input and output signals for the MC68EC030 are listed in Table 5-1. Both 
the names and mnemonics are shown along with brief signal descriptions. 
For more detail on each signal, refer to the paragraph in this section named 
for the signal and the reference in that paragraph to a description of the 
related operations. 

Guaranteed timing specifications for the signals listed in Table 5-1 can be 
found in M68EC030/D, MC68EC030 Technical Summary. 

Table 5-1. Signal Index 

Signal Name Mnemonic Function 

Function Codes FCO-FC2 3-bit function code used to identify the address space of 
each bus cycle. 

Address Bus AO-A31 32-bit address bus. 

Data Bus DO-D31 32-bit data bus used to transfer 8, 16,24, or 32 bits of data 
per bus cycle. 

Size SIZO/SIZ1 Indicates the number of bytes remaining to be transferred 
for this cycle. These signals, together with AO and A 1, define 
the active sections of the data bus. 

Operand Cycle Start OCS Identical operation to that of ECS except that OCS is asserted 
only during the first bus cycle of an operand transfer. 

External Cycle Start ECS Provides an indication that a bus cycle is beginning. 

Read/Write Rm Defines the bus transfer as a controller read or write. 

Read-Modify-Write Cycle RMC Provides an indicator that the current bus cycle is part of an 
indivisible read-modify-write operation. 

Address Strobe AS Indicates that a valid address is on the bus. 

Data Strobe DS Indicates that valid data is to be placed on the data bus by 
an external device or has been placed on the data bus by 
the MC68EC030. 

Data Buffer Enable DBEN Provides an enable signal for external data buffers. 

Data Transfer and DSACKO/ Bus response signals that indicate the requested data trans-
Size Acknowledge DSACK1 fer operation is completed. In addition, these two lines in-

dicate the size of the external bus port on a cycle-by-cycle 
basis and are used for asynchronous transfers. 

Synchronous STERM Bus response signal that indicates a port size of 32 bits and 
Termination that data may be latched on the next falling clock edge. 

Cache Inhibit In CIIN Prevents data from being loaded into the MC68EC030 in-
struction and data caches. 

Cache Inhibit Out ClOUT Reflects the CI bit in ATO and AC1 in the ACU; indicates that 
external caches should ignore these accesses. 

MC68EC030 USER'S MANUAL MOTOROLA 



Table 5-1. Signal Index (Continued) 

Signal Name Mnemonic Function 

Cache Burst Request CBREQ Indicates a burst request for the instruction or data cache. 

Cache Burst CBACK Indicates, that the accessed device can operate in burst mode. 
Acknowledge 

Interrupt Priority level IPlO-IPl2 Provides an encoded interrupt level to the controller. 

Interrupt Pending IPEND Indicates that an interrupt is pending. 

Autovector AVEC Requests an autovector during an interrupt acknowledge 
cycle. 

Bus Request BR Indicates that an external device requires bus mastership. 

Bus Grant BG Indicates that an external device may assume bus master-
ship. 

Bus Grant Acknowledge BGACK Indicates that an external device has assumed bus master-
ship. 

Reset RESET System reset. 

Halt HALT Indicates that the controller should suspend bus activity. 

Bus Error BERR Indicates that an erroneous bus operation is being at-
tempted. 

Cache Disable CDIS Dynamically disables the on-chip cache to assist emulator 
support. 

Pipe Refill REFill Indicates when the MC68EC030 is beginning to fill pipeline. 

Microsequencer Status STATUS Indicates the state of the microsequencer. 

Clock ClK Clock input to the controller. 

Power Supply VCC Power supply. 

Ground GND Ground connection. 

No Connect NC Do not connect. 

5.2 FUNCTION CODE SIGNALS (FCO-FC2) 

These three-state outputs identify the address space of the current bus cycle. 
Table 4-1 shows the relationship of the function code signals to the privilege 
levels and the address spaces. Refer to 4.2 ADDRESS SPACE TYPES for more 
information. 

MOTOROLA MC68EC030 USER'S MANUAL 5-3 

-



III 

5.3 ADDRESS BUS (AO-A31) 

These three-state outputs provide the address for the current bus cycle, ex
cept in the CPU address space. Refer to 4.2 ADDRESS SPACE TYPES for more 
information on the CPU address space. A31 is the most significant address 
signal. Refer to 7.1.2 Address Bus for information on the address bus and 
its relationship to bus operation. 

5.4 DATA BUS (00-031) 

These three-state bidirectional signals provide the general-purpose data path 
between the MC68EC030 and all other devices. The data bus can transfer 8, 
16, 24, or 32 bits of data per bus cycle. D31 is the most significant bit of the 
data bus. Refer to 7.1.4 Data Bus for more information on the data bus and 
its relationship to bus operation. 

5.5 TRANSFER SIZE SIGNALS (SIZO, SIZ1) 

These three-state outputs indicate the number of bytes remaining to be trans
ferred for the current bus cycle. With AO, A 1, DSACKO, DSACK1, and STERM, 
SIZO and SIZ1 define the number of bits transferred on the data bus. Refer 
to 7.2.1 Dynamic Bus Sizing for more information on the size signals and 
their use in dynamic bus sizing. 

5.6 BUS CONTROL SIGNALS 

The following signals control synchronous bus transfer operations for the 
MC68EC030. 

5.6.1 Operand Cycle Start (OCS) 

5-4 

This output signal indicates the beginning of the first external bus cycle for 
an instruction prefetch or a data operand transfer. DCS is not asserted for 
subsequent cycles that are performed due to dynamic bus sizing or operand 
misalignment. Refer to 7.1.1 Bus Control Signals for information about the 
relationship of DCS to bus operation. 

MC68EC030 USER'S MANUAL MOTOROLA 



5.6.2 External Cycle Start (ECS) 

This output signal indicates the beginning of a bus cycle of any type. Refer 
to 7.1.1 Bus Control Signals for information about the relationship of ECS to 
bus operation. 

5.6.3 Read/Write (R/W) 

This three-state output signal defines the type of bus cycle. A high level 
indicates a read cycle; a low level indicates a write cycle. Refer to 7.1.1 Bus 
Control Signals for information about the relationship of R/W to bus oper
ation. 

5.6.4 Read-Modify-Write Cycle (RMC) 

This three-state output signal identifies the current bus cycle as part of an 
indivisible read-modify-write operation; it remains asserted during all bus 
cycles of the read-modify-write operation. Refer to 7.1.1 Bus Control Signals 
for information about the relationship of RMC to bus operation. 

5.6.5 Address Strobe (AS) 

This three-state output indicates that a valid address is on the address bus. 
The function code, size, and read/write signals are also valid when AS is 
asserted. Refer to 7.1.3 Address Strobe for information about the relationship 
of AS to bus operation. 

5.6.6 Data Strobe (OS) 

During a read cycle, this three-state output indicates that an external device 
should place valid data on the data bus. During a write cycle, the data strobe 
indicates that the MC68EC030 has placed valid data on the bus. During two
clock synchronous write cycles, the MC68EC030 does not assert OS. Refer 
to 7.1.5 Data Strobe for more information about the relationship of OS to 
bus operation. 

MOTOROLA MC68EC030 USER'S MANUAL 5-5 

-



• 

5.6.7 Data Buffer Enable (DBEN) 

This output is an enable signal for external data buffers. This signal may not 
be required in all systems. The timing of this signal may preclude its use in 
a system that supports two-clock synchronous bus cycles. Refer to 7.1.6 Data 
Buffer Enable for more information about the relationship of DBEN to bus 
operation. 

5.6.8 Data Transfer and Size Acknowledge (DSACKO, DSACK1) 

These inputs indicate the completion of a requested data transfer operation. 
In addition, they indicate the size of the external bus port at the completion 
of each cycle. These signals apply only to asynchronous bus cycles. Refer to 
7.1.7 Bus Cycle Termination Signals for more information on these signals 
and their relationship to dynamic bus sizing. 

5.6.9 Synchronous Termination (STERM) 

This input is a bus handshake signal indicating that the addressed port size 
is 32 bits and that data is to be latched on the next falling clock edge for a 
read cycle. This signal applies only to synchronous operation. Refer to 7.1.7 
Bus Cycle Termination Signals for more information about the relationship 
of STERM to bus operation. 

5.7 CACHE CONTROL SIGNALS 

The following signals relate to the on-chip caches. 

5.7.1 Cache Inhibit Input (CIIN) 

This input signal prevents data from being loaded into the MC68EC030 in
struction and data caches. It is a synchronous input signal and is interpreted 
on a bus-cycle-by-bus-cycle basis. CIIN is ignored during all write cycles. 
Refer to 6.1 ON-CHIP CACHE ORGANIZATION AND OPERATION for infor
mation on the relationship of CIIN to the on-chip caches. 

5.7.2 Cache Inhibit Output (ClOUT) 

5-6 

This three-state output signal reflects the state of the CI bit in the access 
control unit registers (ACO and AC1) for the referenced address, indicating 
that an external cache should ignore the bus transfer. When the referenced 

MC68EC030 USER'S MANUAL MOTOROLA 



address is within the specified area, the CI bit of the appropriate access control 
register controls the state of ClOUT. Refer to SECTION 9 ACCESS CONTROL 
UNIT for more information about the access control unit. Also, refer to SEC· 
TION 6 ON·CHIP CACHE MEMORIES for the effect of ClOUT on the internal 
caches. 

5.7.3 Cache Burst Request (CBREQ) 

This three-state output signal requests a burst mode operation to fill a line 
in the instruction or data cache. Refer to 6.1.3 Cache Filling for filling infor
mation and 7.3.7 Burst Operation Cycles for bus cycle information pertaining 
to burst mode operations. 

5.7.4 Cache Burst Acknowledge (CBACK) 

This input signal indicates that the accessed device can operate in the burst 
mode and can supply at least one more long word for the instruction or data 
cache. Refer to 7.3.7 Burst Operation Cycles for information about burst mode 
operation. 

5.8 INTERRUPT CONTROL SI~NALS 

The following signals are the interrupt control signals for the MC68EC030. 

5.8.1 Interrupt Priority Level Signals (lPLO-IPL2) 

These input signals provide an indication of an interrupt condition and the 
encoding of the interrupt level from a peripheral or external prioritizing cir
cuitry. IPL2 is the most significant bit of the level number. For example, since 
the IPLn signals are active low, IPLO-IPL2 equal to $5 corresponds to an 
interrupt request at interrupt level 2. Refer to 8.1.9 Interrupt Exceptions for 
information on MC68EC030 interrupts. 

5.8.2 Interrupt Pending (lPEND) 

This output signal indicates that an interrupt request has been recognized 
internally and exceeds the current interrupt priority mask in the status register 
(SR). This output is for use by external devices (coprocessors and other bus 

MOTOROLA MC68EC030 USER'S MANUAL 5-7 

III 



masters, for example) to predict controller operation on the following in
struction boundaries. Refer to 8.1.9 Interrupt Exceptions for interrupt infor
mation. Also, refer to 7.4.1 Interrupt Acknowledge Bus Cycles for bus 
information related to interrupts. 

5.8.3 Autovector (AVEC) 

This input signal indicates that the MC68EC030 should generate an automatic 
vector during an interrupt acknowledge cycle. Refer to 7.4.1.2 AUTOVECTOR 
INTERRUPT ACKNOWLEDGE CYCLE for more information about automatic 
vectors . 

• 5.9 BUS ARBITRATION CONTROL SIGNALS 

The following signals are the three bus arbitration control signals used to 
determine which device in a system is the bus master. 

5.9.1 Bus Request (BR) 

This input signal indicates that an external device needs to become the bus 
master. This is typically a Iwire-ORed" input (but does not need to be con
structed from open-collector devices). Refer to 7.7 BUS ARBITRATION for 
more information. 

5.9.2 Bus Grant (BG) 

This output indicates that the MC68EC030 will release ownership of the bus 
master when the current controller bus cycle completes. Refer to 7.7.2 Bus 
Grant for more information. 

5.9.3 Bus Grant Acknowledge (BGACK) 

This input indicates that an external device has become the bus master. Refer 
to 7.7.3 Bus Grant Acknowledge for more information. 

5.10 BUS EXCEPTION CONTROL SIGNALS 

The following signals are the bus exception control signals for the MC68EC030. 

5-8 MC68EC030 USER'S MANUAL MOTOROLA 



5.10.1 Reset (RESET) 

This bidirectional open-drain signal is used to initiate a system reset. An 
external reset signal resets the MC68EC030 as well as all external devices. 
A reset signal from the controller (asserted as part of the RESET instruction) 
resets external devices only; the internal state of the controller is not altered. 
Refer to 7.8 RESET OPERATION for a description of reset bus operation and 
8.1.1 Reset Exception fo r info rm ati 0 n abo ut th e reset exce pti 0 n. 

5.10.2 Halt (HALT) 

The halt signal indicates that the controller should suspend bus activity or, 
when used with BERR, that the controller should retry the current cycle. Refer III 
to 7.5 BUS EXCEPTION CONTROL CYCLES for a description of the effects of 
HALT on bus operations. 

5.10.3 Bus Error (BERR) 

The bus error signal indicates that an invalid bus operation is being attempted 
or, when used with HALT, that the controller should retry the current cycle. 
Refer to 7.5 BUS EXCEPTION CONTROL CYCLES for a description of the 
effects of BERR on bus operations. 

5.11 EMULATOR SUPPORT SIGNALS 

The following signals support emulation by providing a means for an em
ulator to disable the on-chip caches and access control unit and by supplying 
internal status information to an emulator. Refer to SECTION 12 APPLICA
TIONS INFORMATION for more detailed information on emulation support. 

5.11.1 Cache Disable (CDIS) 

The cache disable signal dynamically disables the on-chip caches to assist 
emulator support. Refer to 6.1 ON-CHIP CACHE ORGANIZATION AND OP
ERATION for information about the caches; refer to SECTION 12 APPLICA
TIONS INFORMATION for a description of the use of this signal by an emulator. 
CDIS does not flush the data and instruction caches; entries remain unaltered 
and become available again when CDIS is negated. 

MOTOROLA MC68EC030 USER'S MANUAL 5-9 



• 

5.11.2 Pipeline Refill (REFill) 

The pipeline refill signal indicates that the MC68EC030 is beginning to refill 
the internal instruction pipeline. Refer to SECTION 12 APPLICATIONS IN
FORMATION for a description of the use of this signal by an emulator. 

5.11.3 Internal Microsequencer Status (STATUS) 

The microsequencer status signal indicates the state of the internal micro
sequencer. The varying number of clocks for which this signal is asserted 
indicates instruction boundaries, pending exceptions, and the halted con
dition. Refer to SECTION 12 APPLICATIONS INFORMATION for a description 
of the use of this signal by an emulator. 

5.12 CLOCK (ClK) 

The clock signal is the clock input to the MC68EC030. It is a TTL-compatible 
signal. Refer to SECTION 12 APPLICATIONS INFORMATION for suggestions 
on clock generation. 

5.13 POWER SUPPLY CONNECTIONS 

The MC68EC030 requires connection to a VCC power supply, positive with 
respect to ground. The VCC connections are grouped to supply adequate 
current for the various sections of the controller. The ground connections 
are similarly grouped. SECTION 14 ORDERING INFORMATION AND ME
CHANICAL DATA describes the groupings of VCC and ground connections, 
and SECTION 12 APPLICATIONS INFORMATION describes a typical power 
supply interface. 

5.14 NO CONNECTION 

Do not connect to this pin. 

5.15 SIGNAL SUMMARY 

5-10 

Table 5-2 provides a summary of the electrical characteristics of the signals 
discussed in this section. 

MC68EC030 USER'S MANUAL MOTOROLA 



Table 5-2. Signal Summary 

Signal Function Signal Name Input/Output Active State Three·State 

Function Codes FCO-FC2 Output High Yes 

Address Bus AO-A31 Output High Yes 

Data Bus DO-D31 Input/Output High Yes 

Transfer Size SIZO/SIZ1 Output High Yes 

Operand Cycle Start OCS Output Low No 

External Cycle Start ECS Output Low No 

ReadlWrite RiW Output High/Low Yes 

Read-Modify-Write Cycle RMC Output Low Yes 

Address Strobe AS Output Low Yes 

Data Strobe DS Output Low Yes 

Data Buffer Enable DBEN Output Low Yes 

Data Transfer and Size Acknowledge DSACKO/ Input Low -
DSACK1 

Synchronous Termination STERM Input Low -

Cache Inhibit In CIIN Input Low -

Cache Inhibit Out ClOUT Output Low Yes 

Cache Burst Request CBREQ Output Low Yes 

Cache Burst Acknowledge CBACK Input Low -

Interrupt Priority Level IPLO-IPL2 Input Low -

Interrupt Pending IPEND Output Low No 

Autovector AVEC Input Low -

Bus Request BR Input Low -
Bus Grant BG Output Low No 

Bus Grant Acknowledge BGACK Input Low -

Reset RESET Input/Output Low No 

Halt HALT Input Low -

Bus Error BERR Input Low -

Cache Disable CDIS Input Low -

Pipeline Refill REFILL Output Low No 

Microsequencer Status STATUS Output Low No 

Clock CLK Input - -
Power Supply VCC Input - -

Ground GND Input - -

No Connect NC - - -

MOTOROLA MC68EC030 USER'S MANUAL 5-11 



• 

5-12 MC68EC030 USER'S MANUAL MOTOROLA 



SECTION 6 
ON·CHIP CACHE MEMORIES 

The MC68EC030 embedded controller includes a 256-byte on-chip instruction 
cache and a 256-byte on-chip data cache that are accessed by addresses. 
These caches improve performance by reducing external bus activity and 
increasing instruction throughput. 

Reduced external bus activity increases overall performance by increasing 
the availability of the bus for use by external devices (in systems with more 
than one bus master, such as a controller and a DMA device) without de
grading the performance of the MC68EC030. An increase in instruction 
throughput results when instruction words and data required by a program 
are available in the on-chip caches and the time required to access them on 
the external bus is eliminated. Additionally, instruction throughput increases 
when instruction words and data can be accessed simultaneously. 

As shown in Figure 6-1, the instruction cache and the data cache have sep
arate on-chip address and data buses. The address buses are combined to 
provide the address to the access control unit (ACU), The MC68EC030 initiates 
an access to the appropriate cache for the requested instruction or data 
operand at the same time that it initiates an access for the cacheability of 
the address in the ACU. When a hit occurs in the instruction or data cache 
and the ACU does not invalidate the cacheability on a write, the information 
is transferred from the cache (on a read) or to the cache and the bus controller 
(on a write). When a hit does not occur, the address is used for an external 
bus cycle to obtain the instruction or operand. The ACU performs cacheability 
lookup in parallel with the cache lookup in case an external cycle is required, 
regardless of whether or not the required operand is located in one of the 
on-chip caches. 

MOTOROLA MC68EC030 USER'S MANUAL 6-1 



en 
~ 

s: 
(") 
0) 
co 
m 
(") 
o 
Co\) 
o 
c 
en 
m 
:::IJ 
en 
s: 
l> 
:2: 
C 
l> 
r-

~ 
o 
--I o 
:xl 
o 
r-
:t> 

ADDRESS 
BUS 

MICROSEQUENCER AND 
CONTROL 

CONTROL 
STORE 

CONTROL 
LOGIC 

INSTRUCTION 
ADDRESS 

BUS 

ADDRESS V''--------------I 
PADS 

BUS CONTROL 
SIGNALS 

DATA 
ADDRESS 

BUS 

I 

Figure 6-1. Internal Caches and the MC68EC030 

INTERNAL 
DATA 
BUS 

DATA 
PADS 

DATA 
BUS 



6.1 ON·CHIP CACHE ORGANIZATION AND OPERATION 

Both on-chip caches are 256-byte direct-mapped caches, each organized as 
16 lines. Each line consists of four entries, and each entry contains four bytes. 
The tag field for each line contains a valid bit for each entry in the line; each 
entry is independently replaceable. When appropriate, the bus controller 
requests a burst mode operation to replace an entire cache line. The cache 
control register (CACR) is accessible by supervisor programs to control the 
operation of both caches. 

System hardware can assert the cache disable (CDIS) signal to disable both 
caches. The assertion of CDIS disables the caches, regardless of the state of 
the enable bits in CACR. CDIS is primarily intended for use by in-circuit 
emulators. 

Another input signal, cache inhibit in (CIIN), inhibits caching of data reads 
or instruction prefetches on a bus-cycle by bus-cycle basis. Examples of data 
that should not be cached are data for 1/0 devices and data from memory 
devices that cannot supply a full port width of data, regardless of the size of 
the required operand. 

Subsequent paragraphs describe how CIIN is used during the filling of the 
caches. 

An output signal, cache inhibit out (ClOUT), reflects the state of the cache 
inhibit (CI) bit in the ACU access control register that corresponds to that 
address. When the appropriate CI bit is set for either a read or a write access, 
an external bus cycle is required. ClOUT is asserted and the instruction and 
data caches are ignored for the access. This signal can also be used by 
external hardware to inhibit caching in external caches. 

Whenever a read access occurs and the required instruction word or data 
operand is resident in the appropriate on-chip cache (no external bus cycle 
is required), the ACU is completely ignored (see next two paragraphs). There
fore, the state of the corresponding CI bits in the ACU are also ignored. The 
ACU controls cacheability of all accesses that require external bus cycles; 
protections are checked, and the ClOUT signal is asserted appropriately. 

MOTOROLA MC68EC030 USER'S MANUAL 6-3 



• 

An external access is defined as cacheable for either the instruction or data 
cache when all the following conditions apply: 

• The cache is enabled with the appropriate bit in the CACR set. 

• The CDIS signal is negated. 

• The CIIN signal is negated for the access. 

• The ClOUT signal is negated for the access. 

• The ACU validates the access. 

Because both the data and instruction caches are referenced by addresses, 
they should be flushed during a memory swap or when the ACU is first 
enabled. In addition, if an address is currently marked as cacheable and is 
later changed to the noncacheable (due to a context switch) entries in the 
on-chip instruction or data cache corresponding to the old context must be 
first cleared (invalidated). Otherwise, if on-chip cache entries are valid for 
addresses marked noncacheable, controller operation is unpredictable. 

Data read and write accesses to the same address should also have consistent 
cacheability status to ensure that the data in the cache remains consistent 
with external memory. For example, if ClOUT is negated for read accesses 
within an address range and the ACU configuration is changed so that ClOUT 
is subsequently asserted for write accesses within the same range, those 
write accesses do not update data in the cache, and stale data may result. 
Similarly, when the ACU maps multiple function code addresses to the same 
address, all accesses to those addresses should have the same cacheability 
status. 

6.1.1 Instruction Cache 

6-4 

The instruction cache is organized with a line size of four long words, as 
shown in Figure 6-2. Each of these long words is considered a separate cache 
entry as each has a separate valid bit. All four entries in a line have the same 
tag address. Burst filling all four long words can be advantageous when the 
time spent in filling the line is not long relative to the equivalent bus-cycle 
time for four non burst long-word accesses, because of the probability that 
the contents of memory adjacent to or close to a referenced operand or 
instruction is also required by subsequent accesses. Dynamic RAMs sup
porting fast access modes (page, nibble, or static column) are easily em
ployed to support the MC68EC030 burst mode. 

MC68EC030 USER'S MANUAL MOTOROLA 



LONG-WORD 
SELECT 

Tj INi
EX I 

~ __________ ~A~ __________ ~~~ 

A AAAAAAAAAAAAAAAAAAAAAAAA 
3 ••• 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ACCESS ADDRESS 
1 321098765432109876543210 

~ ____________ ~ __________ ~f~~ 

I 

t 
~ 

TAG V V V V 

~ 1 • • • • · lOF16 .- • • · · · SELECT • • · · · 
t '-v-" 

TAG REPLACE 
VALID 

W 

• • 

DATA TO INSTRUCTION 
CACHE HOLDING REGISTER 

::.1 COMPARATOR I 1----"------'-'--------ilt-3I~ CACHE CONTROL LOGIC 

CACHE SIZE = 64 (LONG WORDS) 
LINE SIZE = 4 (LONG WORDS) 
SET SIZE = 1 

LINE HIT 

Figure 6-2. On-Chip Instruction Cache Organization 

When enabled, the instruction cache is used to store instruction prefetches 
(instruction words and extension words) as they are requested by the CPU. 
Instruction prefetches are normally requested from sequential memory ad
dresses except when a change of program flow occurs (e.g., a branch taken) 
or when an instruction is executed that can modify the status register, in 
which cases the instruction pipe is automatically flushed and refilled. The 
output signal REFILL indicates this condition. For more information on the 
operation of this signal, refer to SECTION 12 APPLICATIONS INFORMATION. 

In the instruction cache, each of the 16 lines has a tag consisting of the 24 
most significant address bits, the FC2 function code bit (used to distinguish 
between user and supervisor accesses), and the four valid bits (one corre
sponding to each long word). Refer to Figure 6-2 for the instruction cache 
organization. Address bits A7-A4 select one of 16 lines and its associated 
tag. The comparator compares the address and function code bits in the 

MOTOROLA MC68EC030 USER'S MANUAL 6-5 



selected tag with address bits A31-A8 and FC2 from the internal prefetch 
request to determine if the requested word is in the cache. A cache hit occurs 
when there is a tag match and the corresponding valid bit (selected by A3-A2) 
is set. On a cache hit, the word selected by address bit A 1 is supplied to the 
instruction pipe. 

When the address and function code bits do not match or the requested entry 
is not valid, a miss occurs. The bus controller initiates a long-word prefetch 
operation for the required instruction word and loads the cache entry, pro
vided the entry is cacheable. A burst mode operation may be requested to 
fill an entire cache line. If the function code and address bits match and the 
corresponding long word is not valid (but one or more of the other three 
valid bits for that line are set) a single entry fill operation replaces the required 
long word only, using a normal prefetch bus cycle or cycles (no burst). 

__ 6.1.2 Data Cache 

6-6 

The data cache stores data references to any address space except CPU space 
(FC = $7), including those references made with PC relative addressing modes 
and accesses made with the MOVES instruction. Operation of the data cache 
is similar to that of the instruction cache, except for the address comparison 
and cache filling operations. The tag of each line in the data cache contains 
function code bits FCD, FC1, and FC2 in addition to address bits A31-A8. The 
cache control circuitry selects the tag using bits A7-A4 a~d compares it to 
the corresponding bits of the access address to determine if a tag match has 
occurred. Address bits A3-A2 select the valid bit for the appropriate long 
word in the cache to determine if an entry hit has occurred. Misaligned data 
transfers may span two data cache entries. In this case, the controller checks 
for a hit one entry at a time. Therefore, it is possible that a portion of the 
access results in a hit and a portion results in a miss. The hit and miss are 
treated independently. Figure 6-3 illustrates the organization of the data cache. 

MC68EC030 USER'S MANUAL MOTOROLA 



LONG-WORD 
SELECT 

Ti IN~EX I 
~------------~~~----------~,~~ 

A AA AAAAAAAAAAAAAAAAAAAAAA 
3 ••• 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ACCESS ADDRESS 
1 321098765432109876543210 

~------------~~----------~'~~ 

i 
~ 

TAG V V V V 

~ 1 · • • • • 
lOF16 .- · · · • • 
SELECT • • • • • 

'-v-" t 
TAG REPLACE L--+-<t--+-~-+-*--- g~~~~~~::J~ 

VALID 

\1/ 
DATA TO 
EXECUTION UNIT 

,. l COMPARATOR I I--="-'-'-'---'--'-----il~~ CACHE CONTROL LOGIC 

CACHE SIZE = 64 (LONG WORDS) 
LINE SIZE = 4 (LONG WORDS) 
SET SIZE = 1 

LINE HIT 

Figure 6-3. On-Chip Data Cache Organization 

The operation of the data cache differs for read and write cycles. A data read 
cycle operates exactly like an instruction cache read cycle; when a miss 
occurs, an external cycle is initiated to obtain the operand from memory, 
and the data is loaded into the cache if the access is cacheable. In the case 
of a misaligned operand that spans two cache entries, two long words are 
required from memory. Burst mode operation may also be initiated to fill an 
entire line of the data cache. Read accesses from the CPU address space and 
address translation table search accesses are not stored in the data cache. 

The data cache on the MC68EC030 is a writethrough cache. When a hit occurs 
on a write cycle, the data is written both to the cache and to external memory 
(provided the ACU validates the access), regardless of the operand size and 
even if the cache is frozen. If the ACU determines that the access is invalid, ' 
the write is aborted, the corresponding entry is invalidated, and a bus error 
exception is taken. Since the write to the cache completes before the write 
to external memory, the cache contains the new value even if the external 

MOTOROLA MC68EC030 USER'S MANUAL 6-7 



l1li 

write terminates in a bus error. The value in the data cache might be used 
by another instruction before the external write cycle has completed, al
though this should not have any adverse consequences. Refer to 7.6 BUS 
SYNCHRONIZATION for the details of bus synchronization. 

6.1.2.1 WRITE ALLOCATION. The supervisor program can configure the data cache 
for either of two types of allocation for data cache entries that miss on write 
cycles. The state of the write allocation (WA) bit in the cache control register 
specifies either no write allocation or write allocation with partial validation 
of the data entries in the cache on writes. 

6-8 

When no write allocation is selected (WA = 0), write cycles that miss do not 
alter the data cache contents. In this mode, the controller does not replace 
entries in the cache during write operations. The cache is updated only during 
a write hit. 

When write allocation is selected (WA= 1), the controller always updates the 
data cache on cacheable write cycles, but only validates an updated entry 
that hits or an entry that is updated with long-word data that is long-word 
aligned. When a tag miss occurs on a write of long-word data that is long
word aligned, the corresponding tag is replaced, and only the long word 
being written is marked as valid. The other three entries in the cache line are 
invalidated when a tag miss occurs on a misaligned long-word write or on 
a byte or word write, the data is not written in the cache, the tag is unaltered, 
and the valid bit(s) are cleared. Thus, an aligned long-word data write may 
replace a previously valid entry; whereas, a misaligned data write or a write 
of data that is not long word may invalidate a previously valid entry or entries. 

Write allocation eliminates stale data that may reside in the cache by allowing 
the same location to be accessed by both supervisor and user mode cycles. 
Stale data conditions can arise when operating in the no-write-allocation 
mode and all the following conditions are satisfied: 

• Multiple mapping (supervisor/user space aliasing) is allowed by the op
erating system. 

• A read cycle loads a value for an aliased address into the data cache. 

• A write cycle occurs, referencing the same aliased object as above but 
using a different privilege level, causing a cache miss and no update to 
the cache. 

• The object is then read using the first alias, which provides stale data 
from the cache. 

MC68EC030 USER'S MANUAL MOTOROLA 



In this case, the data in the cache no longer matches that in memory and is 
stale. Since the write-allocation mode updates the cache during write cycles, 
the data in the cache remains consistent with memory. Note that when ClOUT 
is asserted, the data cache is completely ignored, even on write cycles op
erating in the write-allocation mode. Also note that since the CIIN signal is 
ignored on write cycles, cache entries may be created for noncacheable data 
(when CIIN is asserted on a write) when operating in the write-allocation 
mode. Figure 6-4 shows the manner in which each mode operates in two 
different situations. 

TAG' 
I 

I I 
LOGICAL ADDRESS = FC2-FCO, A31-AS, A7-A4, A3-A2 

LINE 
SELECT USER DATA, $000010 

($5) 

TAG 

EXAMPLE 1: 
USER WORD WRITE OF b2' -b3'lo $00001052 
(CACHE HIT, ALWAYS UPDATE CACHE AND MEMORY) 

EXAMPLE 2: 
USER LONG-WORD WRITE OF bS'-b9'10 $00001 05S 
(TAG MATCH, LONG-WORD DATA, MISALIGNED, 
bS-b7 RESULT IN A CACHE MISS, 
bS-b9 RESULT IN A CACHE HIT) 

NO WRITE ALLOCATE WRITE ALLOCATE 

A) STARTEXTERNALCYCLE 
B) b2-b3 ~b2'-b3' 

A) STARTEXTERNALCYCLE 
B) b2-b3 ~ b2'-b3' 

A) START EXTERNAL CYCLE 
B) bS-b9 ~bS'-b9' 

A) START EXTERNAL CYCLE 
B) bS-b9 ~ bS'-b9' 

Figure 6-4. No-Write-Allocation and Write-Allocation Mode Examples 

6.1.2.2 READ-MODIFY -WRITE ACCESSES. The read portion of a read-modify-write 
cycle is always forced to miss in the data cache. However, if the system 
allows internal caching of read-modify-write cycle operands (ClOUT and CIIN 
both negated), the controller either uses the data read from memory to update 
a matching entry in the data cache or creates a new entry with the read data 
in the case of no matching entry. The write portion of a read-modify-write 
operation also updates a matching entry in the data cache. In the case of a 
cache miss on the write, the allocation of a new cache entry for the data 
being written is controlled by the WA bit. 

MOTOROLA MC68EC030 USER'S MANUAL 6-9 



l1li 

6.1.3 Cache Filling 

The bus controller can load either cache in either of two ways: 

• Single entry mode 

• Burst fill mode 

In the single entry mode, the bus controller loads a single long-word entry 
of a cache line. In the burst fill mode, an entire line (four long words) can be 
filled. Refer to SECTION 7 BUS OPERATION for detailed information about 
the bus cycles required for both modes. 

6.1.3.1 SINGLE ENTRY MODE. When a cacheable access is initiated and a burst 
mode operation is not requested by the MC68EC030 or is not supported by 
external hardware, the bus controller transfers a single long word for the 
corresponding cache entry. An entire long word is required. If the port size 
of the responding device is smaller than 32 bits, the MC68EC030 executes 

6-10 

. all bus cycles necessary to fill the long word. 

When a device cannot supply its entire port width of data, regardless of the 
size of the transfer, the responding device must consistently assert the cache 
inhibit input (CIIN) signal. For example, a 32-bit port must always supply 32 
bits, even for 8- and 16-bit transfers; a 16-bit port must supply 16 bits, even 
for 8-bit transfers. The MC68EC030 assumes that a 32-bit termination signal 
for the bus cycle indicates availability of 32 valid data bits, even if only 16 
or 8 bits are requested. Similarly, the controller assumes that a 16-bit ter
mination signal indicates that all 16 bits are valid. If the device cannot supply 
its full port width of data, it must assert CIIN for all bus cycles corresponding 
to a cache entry. 

When a cacheable read cycle provides data with both CIIN and BERR negated, 
the MC68EC030 attempts to fill the cache entry. Figure 6-5 shows the orga
nization of a line of data in the caches. The notation bO, b1, b2, and so forth 
identifies the bytes within the line. For each entry in the line, a valid bit in 
the associated tag corresponds to a long-word entry to be loaded. Since a 
single valid bit applies to an entire long word, a single entry mode operation 
must provide a full 32 bits of data. Ports less than 32 bits wide require several 
read cycles for each entry. 

Figure 6-5 shows an example of a byte data operand read cycle starting at 
byte address $03 from an 8-bit port. Provided the data item is cacheable, this 
operation results in four bus cycles. The first cycle requested by the 
MC68EC030 reads a byte from address $03. The 8-bit DSACKx response 

MC68EC030 USER'S MANUAL MOTOROLA 



causes the MC68EC030 to fetch the remainder of the long word starting at 
address $00. The bytes are latched in the following order: b3, bO, b1, and 
b2. Note that during cache loading operations, devices must indicate the 
same port size consistently throughout all cycles for that long-word entry in 
the cache. 

CYCLE SIZE ADDRESS COMMENT 

BYTE $03 8 - THIS IS THE REQUESTED OPERAND 

2 3-BYTE $00 I ~ I I I - NEXT BYTE FOR COMPLETING CACHE ENTRY 

3 WORD $01 ED - NEXT BYTE FOR COMPLETING CACHE ENTRY 

4 BYTE $02 G - LAST BYTE TO COMPLETE THE LONG WORD 

Figure 6-5. Single Entry Mode Operation - a-Bit Port 

Figure 6-6 shows the access of a byte data operand from a 16-bit port This 
operation requires two read cycles. The first cycle requests the byte at address 
$03. If the device responds with a 16-bit DSACKx encoding, the word at 
address $02 (including the requested byte) is accepted by the MC68EC030. 
The second cycle requests the word at address $00. Since the device again 
responds with a 16-bit DSACKx encoding, the remaining two bytes of the 
long word are latched, and the cache entry is filled. 

MOTOROLA MC68EC030 USER'S MANUAL 6-11 



l1li 

6-12 

CYCLE SIZE ADDRESS COMMENT 

BYTE $03 EEl - INCLUDES THE REQUESTED OPERAND AND THE PREVIOUS BYTE 

2 WORD $00 EG - THE REMAINING WORD FOR THE LONG-WORD CACHE ENTRY 

Figure 6-6. Single Entry Mode Operation - 16-Bit Port 

With a 32-bit port, the same operation is shown in Figure 6-7. Only one read 
cycle is required. All four bytes (including the requested byte) are latched 
during the cycle. 

CYCLE SIZE ADDRESS COMMENT 

BYTE $03 I bO I b1 I b21 b31 - THE ENTIRE LONG WORD MUST BE VALID 

Figure 6-7. Single Entry Mode Operation - 32-Bit Port 

If a requested access is misaligned and spans two cache entries, the bus 
controller attempts to fill both associated long-word cache entries. An ex
ample ofthis is an operand request for a long word on an odd-word boundary. 
The MC68EC030 first fetches the initial byte(s) of the operand (residing in 
the first long word) and then requests the remaining bytes to fill that cache 
entry (if the port size is less than 32 bits) before it requests the remainder of 
the operand and corresponding long word to fill the second cache entry. If 
the port size is 32 bits, the controller performs two accesses, one for each 
cache entry. 

Figure 6-8 shows a misaligned access of a long word at address $06 from 
an 8-bit port requiring eight bus cycles to complete. Reading this long-word 

MC68EC030 USER'S MANUAL MOTOROLA 



CYCLE 

operand requires eight read cycles, since accesses to all eight addresses 
return 8-bit port-size encodings. These cycles fetch the two cache entries that 
the requested long-word spans. The first cycle requests a long word at ad
dress $06 and accepts the first requested byte (b6). The subsequent transfers 
of the first long word are performed in the following order: b7, b4, b5. The 
remaining four read cycles transfer the four bytes of the second cache entry. 
The sequence of access for the entire operation is b6, b7, b4, b5, b8, b9, bA, 
and bB. 

SIZE ADDRESS COMMENT 

LONG WORD $06 - FIRST BYTE OF OPERAND LATCHED 

3-BYTE $07 

3 WORD $04 

4 BYTE $05 

WORD $08 

6 BYTE $09 

WORD $OA 

BYTE $OB 

MOTOROLA 

- SECOND BYTE OF OPERAND 

- TO FILL THE CACHE ENTRY AT $04 

- REMAINDER OF CACHE ENTRY AT $04 

- THIRD BYTE OF OPERAND 

- LAST BYTE OF OPERAND 

ru -TO FILL CACHE ENTRY AT $08 

~ - REMAINDER OF ENTRY AT $08 

Figure 6-8. Single Entry Mode Operation -
Misaligned Long Word and 8-Bit Port 

MC68EC030 USER'S MANUAL 6-13 



• 
CYCLE 

The next example, shown in Figure 6-9, is a read of a misaligned long-word 
operand from dev'ices that return 16-bit DSACKx encodings. The controller 
accepts the first portion of the operand, the word from address $06, and 
requests a word from address $04 to fill the cache entry. Next, the controller 
reads the word at address $08, the second portion of the operand, and stores 
it in the cache also. Finally, the controller accesses the word at $OA to fill the 
second long-word cache entry. 

SIZE ADDRESS COMMENT 

1 LONG WORD $06 - FIRST WORD OF OPERAND LATCHED 

6-14 

WORD $04 

WORD $08 

WORD $OA 

- TO FILL THE CACHE ENTRY AT $04 

- SECOND WORD TO OPERAND 

EE1 -TO FILL ENTRY AT $08 

Figure 6-9. Single Entry Mode Operation -
Misaligned Long Word and 16-Bit Port 

Two read cycles are required for a misaligned long-word operand transfer 
from devices that return 32-bit DSACKx encodings. As shown in Figure 6-10, 
the first read cycle requests the long word at address $06 and latches the 
long word at address $04. The second read cycle requests and latches the 
long word corresponding to the second cache entry at address $08. Two read 
cycles are also required if STERM is used to indicate a 32-bit port instead of 
the 32-bit DSACKx encoding. 

MC68EC030 USER'S MANUAL MOTOROLA 



CYCLE SIZE 

1 LONG WORD 

2 LONG WORD 

ADDRESS COMMENT 

I b41 bSI bGl b71 CD - FIRST WORD OF OPERAND 
$06 PLUS REST OF ENTRY AT $04 

'~I~lbAlbBl $08 - SECOND WORD OF OPERAND 
PLUS REST OF ENTRY AT $08 

Figure 6-10. Single Entry Mode Operation -
Misaligned Long Word and 32-Bit DSACKx Port 

If all bytes of a long word are cacheable, CIIN must be negated for all bus 
cycles required to fill the entry. If any byte is not cacheable, CIIN must be 
asserted for all corresponding bus cycles. The assertion of the CIIN signal 
prevents the caches from being updated during read cycles. Write cycles 
(including the write portion of a read-modify-write cycle) ig nore the assertion 
of the CIIN signal and may cause the data cache to be altered, depending on 
the state of the cache (whether or not the write cycle hits), the state of the 
WA bit in the CACR, and the conditions indicated by the ACU. 

The occurrence of a bus error while attempting to load a cache entry aborts 
the entry fill operation but does not necessarily cause a bus error exception. 
If the bus error occurs on a read cycle for a portion of the required operand 
(not the remaining bytes of the cache entry) to be loaded into the data cache, 
the controller immediately takes a bus error exception. If the read cycle in 
error is made only to fill the data cache (the data is not part of the target 
operand), no exception occurs, but the corresponding entry is marked invalid. 
For the instruction cache, the controller marks the entry as invalid, but only 
takes an exception if the execution unit attempts to use the instruction word(s) .. 

6.1.3.2 BURST MODE FILLING. Burst mode filling is enabled by bits in the cache 
control register. The data burst enable bit must be set to enable burst filling 
of the data cache. Similarly, the instruction burst enable bit must be set to 

MOTOROLA MC68EC030 USER'S MANUAL 6-15 



-

6-16 

enable burst filling of the instruction cache. When burst filling is enabled and 
the corresponding cache is enabled, the bus controller requests a burst mode 
fill operation in either of these cases: 

- A read cycle for either the instruction or data cache misses due to the 
indexed tag not matching. 

-A read cycle tag matches, but all long words inthe line are invalid. 

The bus controller requests a burst mode fill operation by asserting the cache 
burst request signal (CBREO). The responding device may sequentially supply 
one to four long words of cacheable data, or it may assert the cache inhibit 
input signal (CIIN) when the data in a long word is not cacheable. If the 
responding device does not support the burst mO,de and it terminates cycles 
with STERM, it should not acknowledge the request with the assertion of the 
cache burst acknowledge (CBACK) signal. The MC68030 ignoresthe assertion 
of CBACK during cycles terminated with DSACKx. 

The cache burst request signal (CBREO) requests burst mode operation from 
the referenced external device. To operate in the burst mode, the device or 
external hardware must be able to increment the low-order address bits if 
required, and the current cycle must he a 32-bit synchronous transfer (STERM 
must be asserted) as described in SECTION 7 BUS OPERATION. The device 
must also assert CBACK (at the same time as STERM) at the end of the cycle 
in which the MC68EC030 asserts CBREO. CBACK causes the controller to 
continue driving the address and bus control signals and to latch a new data 
value for the next cache entry at the completion of each subsequent cycle 
(as defined by STERM), for a total of up to four cycles (until four long words 
have been read). 

When a cache burst is initiated, the first cycle attempts to load the cache 
entry corresponding to the instruction word or data item explicitly requested 
by the execution unit. The subsequent cycles are for the subsequent entries 
in the cache line. Inthe case of a misaligned transfer when the operand spans 
two cache entries within a cache line, the first cycle corresponds to the cache 
entry containing the portion of the operand at the lower address. 

Figure 6-11 illustrates the four cycles of a burst operation and shows that 
the second, third, and fourth cycles are run in burst mode. A distinction is 
made between the first cycle of a burst operation and the subsequent cycles 
because the first cycle is requested by the microsequencer and the burst fill 
cycles are requested by the bus controller. Therefore, when data from the 
first cycle is returned, it is immediately available for the execution unit (EU). 
However, data from the burst fill cycles is not available to the EU until the 

MC68EC030 USER'S MANUAL MOTOROLA 



burst operation is complete. Since the microsequencer makes two separate 
requests for misaligned data operands, only the first portion ofthe misaligned 
operand returned during a burst operation is available to the EU after the 
first cycle is complete. The microsequencer must wait for the burst operation 
to complete before requesting the second portion of the operand. Normally, 
the request for the second portion results in a data cache hit unless the second 
cycle of the burst operation terminates abnormally. 

r<E------------ BURST OPERATION ----------~>~I 
CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 

FIRST ACCESS OF BURST 
OPERATION REQUIRED 

OPERAND OR PREFETCH 
BURST ALL CYCLE 

BURSTMODE + REQUESTED AND BURST MODE BEGINS HERE 
ACKNOWLEDGED 

BURST ALL CYCLE BURST ALL CYCLE 

Figure 6-11. Burst Operation Cycles and Burst Mode 

The bursting mechanism allows addresses to wrap around so that the entire 
four long words in the cache line can be filled in a single burst operation, 
regardless of the initial address and operand alignment. Depending on the 
structure of the external memory system, address bits A2 and A3 may have 
to be incremented externally to select the long words in the proper order for 
loading into the cache. The MC68EC030 holds the entire address bus constant 
for the duration of the burst cycle. Figure 6-12 shows an example of this 
address wraparound. The initial cycle is a long-word access from address 
$6. Because the responding device returns CBACK and STERM (signaling a 
32-bit port), the entire long word at base address $04 is transferred. Since 
the initial address is $06 when CBREQ is asserted, the next entry to be burst 
filled into the cache should correspond to address $08, then $OC, and last, 
$00. This addressing is compatible with existing nibble-mode dynamic RAMs, 
and can be supported by page and static column modes with an external 
modulo 4 counter for A2 and A3. 

MOTOROLA MC68EC030 USER'S MANUAL 6-17 

iii 



• 

6-18 

FINAL CACHE ENTRY FIRST LONG-WORD SECOND CACHE ENTRY THIRD CACHE ENTRY 
TO BE FILLED ACCESS-INCLUDES TO BE FILLED TO BE FILLED 

FIRST PART OF 
OPERAND REQUIRED 

Figure 6-12. Burst Filling Wraparound Example 

The MC68EC030 does not assert CBREQ during the first portion of a misa
ligned access if the remainder of the access does not correspond to the same 
cache line. Figure 6-13 shows an example in which the first portion of a 
misaligned access is at address $OF. With a 32-bit port, the first access cor
responds to the cache entry at address $OC, which is filled using a single
entry load operation. The second access, at address $10 corresponding to 
the second cache line, requests a burst fill and the controller asserts CBREQ. 
During this burst operation, long words $10, $14, $18, and $1C are all filled 
in that order. 

$00 $04 $08 ,..$OC--..,._r--__ _ 

Io.....-o
TA ______ G 

i.....--
VO--,V3 II II I II I I I I r----r-I 1---'--1 -'---'1 II be I bD I bE I bF I 

TAG VO-V3 

$10 

I I 

FIRST LONG WORD CACHED
NO BURST REQUEST 

$14 $18 $1C 

I I I I II I I I 11r----r-,--r-, -,---" I 
~~ __ ~II I 

SECOND CYCLE- THE REMAINING CACHE ENTRIES FOR SECOND BLOCK ARE BURSTED 
BURST REQUESTED 

Figure 6-13. Deferred Burst Filling Example 

MC68EC030 USER'S MANUAL MOTOROLA 



The controller does not assert CBREQ if any of the following conditions exist: 

• The appropriate cache is not enabled 

• Burst filling for the cache is not enabled 

• The cache freeze bit for the appropriate cache is set 

• The current operation is the read portion of a read-modify-write oper
ation 

• The ACU has inhibited caching for the current address 

• The cycle is for the first access of an operand that spans two cache lines 
(crosses a modulo 16 boundary) 

Additionally, the assertion of CIIN and BERR and the premature negation of 
CBACK affect burst operation as described in the following paragraphs. 

The assertion of CIIN during the first cycle of a burst operation causes the 
data to be latched by the controller, and if the requested operand is aligned 
(the entire operand is latched in the first cycle), the data is passed on to the I 

instruction pipe or execution unit. However, the data is not loaded into its 
corresponding cache. In addition, the MC68EC030 negates CBREQ, and the 
burst operation is aborted. If a portion of the requested operand remains to 
be read (due to misalignment), a second read cycle is initiated at the appro
priate address with CBREQ negated. 

The assertion of CIIN during the second, third, or fourth cycle of a burst 
operation prevents the data during that cycle from being loaded into the 
appropriate cache and causes CBREQ to negate, aborting the burst operation. 
However, if the data for the cycle contains part of the requested operand, 
the execution unit uses that data. ' 

The premature negation of the CBACK signal during the burst operation 
causes the current cycle to complete normally, loading the data successfully 
transferred into the appropriate cache. However, the burst operation aborts 
and CBREQ negates. 

A bus error occurring during a burst operation also causes the burst operation 
to abort. If the bus error occurs during the first cycle of a burst (i.e., before 
burst mode is entered), the data read from the bus is ignored, and the entire 
associated cache line is marked lIinvalid". If the access is a data cycle, ex
ception processing proceeds immediately. If the cycle is for an instruction 
fetch, a bus error exception is made pending. This bus error is processed 
only if the execution unit attempts to use either instruction word. Refer to 
11.2.2 Instruction Pipe for more information about pipeline operation. 

MOTOROLA MC68EC030 USER'S MANUAL 6-19 



-

For either cache, when a bus error occurs after the burst mode has been 
entered (that is, on the second cycle or later), the cache entry corresponding 
to that cycle is marked invalid, but the controller does not take an exception 
(the microsequencer has not yet requested the data). In the case of an in
struction cache burst, the data from the aborted cycle is completely ignored. 
Pending instruction prefetches are still pending and are subsequently run by 
the controller. Ifthe second cycle is for a portion of a misaligned data operand 
fetch and a bus error occurs, the controller terminates the burst operation 
and negates CBREO. Once the burst terminates, the microsequencer requests 
a read cycle for the second portion. Since the burst terminated abnormally 
for the second cycle of the burst, the data cache results in a miss, and a 
second external cycle is required. If BERR is again asserted, the MC68EC030 
then takes an exception. 

On the initial access of a burst operation, 'a "retry" (indicated by the assertion 
of BERi=f and HALT) causes the controller to retry the bus cycle and assert 
CBREO again. However, signaling a retry with simultaneous BERR and HALT 
during the second, third, or fourth cycle of a burst operation does not cause 
a retry operation, even if the requested operand is misaligned. Assertion of 
BERR and HALT during burst fill cycles of a burst operation causes inde
pendent bus error and halt operations. The controller remains halted until 
HALT is negated, and then handles the bus error as described in the previous 
paragraphs. 

6.2 CACHE RESET 

When a hardware reset of the controller occurs, all valid bits of both caches 
are cleared. The cache enable bits, burst enable bits, and the freeze bits in 
the cache control register (CACR) for both caches (refer to Figure 6-14) are 
also cleared, effectively disabling both caches. The WA bit in the CACR is 
also cleared. 

6.3 CACHE CONTROL 

6-20 

Only the MC68EC030 cache control circuitry can directly access the cache 
arrays, but the supervisor program can set bits in the CACR to exercise control 
over cache operations. The supervisor also has access to the cache address 
register (CAAR), which contains the address for a cache entry to be cleared. 

MC68EC030 USER'S MANUAL MOTOROLA 



6.3.1 Cache Control Register 

The CACR, shown in Figure 6-14, is a 32-bit register that can be written or 
read by the MOVEC instruction or indirectly modified by a reset. Five of the 
bits (4-0) control the instruction cache; six other bits (13-8) control the data 
cache. Each cache is controlled independently of the other, although a similar 
operation can be performed for both caches by a single MOVEC instruction. 
For example, loading a long word in which bits 3 and 11 are set into the 
CACR clears both caches. Bits 31-14 and 7-5 are reserved for Motorola 
definition. They are currently read as zeros and are ignored when written. 
For future compatibility, writes should not set these bits. 

31 14 13 12 11 10 

000000000000000000 

WA = Write Allocate 
DBE = Data Burst Enable 

CD = Clear Data Cache 
CED = Clear Entry in Data Cache 

FD = Freeze Data Cache 
ED = Enable Data Cache 
IBE = Instruction Burst Enable 

CI = Clear Instruction Cache 
CEI = Clear Entry in Instruction Cache 

FI = Freeze Instruction Cache 
EI = Enable Instruction Cache 

Figure 6-14. Cache Control Register 

6.3.1.1 WRITE ALLOCATE. Bit 13, the WA bit, is set to select the write-allocation 
mode (refer to 6.1.2.1 WRITE ALLOCATION) for write cycles. Clearing this bit 
selects the no-write-allocation mode. A reset operation clears this bit. The 
supervisor should set this bit when it shares data with the user task. If the 
data cache is disabled or frozen, the WA bit is ignored. 

6.3.1.2 DATA BURST ENABLE. Bit 12, the DBE bit, is set to enable burst filling of 
the data cache. Operating systems and other software set this bit when burst 
filling of the data cache is desired. A reset operation clears the DBE bit. 

6.3.1.3 CLEAR DATA CACHE. Bit 11, the CD bit, is set to clear all entries in the 
data cache. Operating systems and other software set this bit to clear data 
from the cache prior to a context switch. The controller clears all valid bits 
in the data cache at the time a MOVEC instruction loads a one into the CD 
bit of the CACR. The CD bit is always read as a zero. 

MOTOROLA MC68EC030 USER'S MANUAL 6-21 

iii 



• 

6.3.1.4 CLEAR ENTRY IN DATA CACHE. Bit 10, the CED bit, is set to clear an entry 
in the data cache. The index field of the CAAR (see Figure 6-15) corresponding 
to the index and long-word select portion of an address specifies the entry 
to be cleared. The controller clears only the specified long word by clearing 
the valid bit for the entry at the time a MOVEC instruction loads a one into 
the CED bit of the CACR, regardless of the states of the ED and FD bits: The 
CED bit is always read as a zero. 

6.3.1.5 FREEZE DATA CACHE. Bit 9, the FD bit, is set to freeze the data cache. 
When the FD bit is set and a miss occurs during a read or write of the data 
cache, the indexed entry is not replaced. However, write cycles that hit in 
the data cache cause the entry to be updated even when the cache is frozen. 
When the FD bit is clear, a miss in the data cache during a read cycle causes 
the entry (or line) to be filled, and the filling of entries on writes that miss 
are then controlled by the WA bit. A reset operation clears the FD bit. 

6.3.1.6 ENABLE DATA CACHE. Bit 8, the ED bit, is set to enable the data cache. 
When it is cleared, the data cache is disabled. A reset operation clears the 
ED bit. The supervisor normally enables the data cache, but it can clear ED 
for system debugging or emulation, as required. Disabling the data cache 
does not flush the entries. If it is enabled again, the previously valid entries 
remain valid and can be used. 

6.3.1.7 INSTRUCTION BURST ENABLE. Bit 4, the IBE bit, is set to enable burst 
filling of the instruction cache. Operating systems and other software set this 
bit when burst filling of the instruction cache is desired. A reset operation 
clears the IBE bit. 

6.3.1.8 CLEAR INSTRUCTION CACHE. Bit 3, the CI bit, is set to clear all entries in 
the instruction cache. Operating systems and other software set this bit to 
clear instructions from the cache prior to a context switch. The controller 
clears all valid bits in the instruction cache at the time a MOVEC instruction 
loads a one into the CI bit of the CACR. The CI bit is always read as a zero. 

6-22 MC68EC030 USER'S MANUAL MOTOROLA 



6.3.1.9 CLEAR ENTRY IN INSTRUCTION CACHE. Bit 2, the CEI bit, is set to clear 
an entry in the instruction cache. The index field of the CAAR (see Figure 
6-15) corresponding to the index and long-word select portion of an address 
specifies the entry to be cleared. The controller clears only the specified long 
word by clearing the valid bit for the entry at the time a MOVEC instruction 

. loads a one into the CEI bit of the CACR, regardless of the states of the EI 
and FI bits. The CEI bit is always read as a zero. 

6.3.1.10 FREEZE INSTRUCTION CACHE. Bit 1, the FI bit, is set to freeze the in
struction cache. When the FI bit is set and a miss occurs in the instruction 
cache, the entry (or line) is not replaced. When the FI bit is cleared to zero, 
a miss in the instruction cache causes the entry (or line) to be filled. A reset 
operation clears the FI bit. 

6.3.1.11 ENABLE INSTRUCTION CACHE. Bit 0, the EI bit, is set to enable the in- • 
struction cache. When it is cleared, the instruction cache is disabled. A reset 
operation clears the EI bit. The supervisor normally enables the instruction 
cache, but it can clear EI for system debugging or emulation, as required. 
Disabling the instruction cache does not flush the entries. If it is enabled 
again, the previously valid entries remain valid and may be used. 

6.3.2 Cache Address Register 

The CAAR is a 32-bit register shown in Figure 6-15. The index field (bits 7-2) 
contains the address for the "clear cache entry" operations. The bits of this 
field correspond to bits 7-2 of addresses; they specify the index and a long 
word of a cache line. Although only the index field is used currently, all 32 
bits of the register are implemented and are reserved for use by Motorola. 

31 8 7 2 1 o 
CACHE FUNCTION ADDRESS INDEX 

Figure 6-15. Cache Address Register 

MOTOROLA MC68EC030 USER'S MANUAL 6-23 



• 

6-24 MC68EC030 USER'S MANUAL MOTOROLA 



SECTION 7 
BUS OPERATION 

This section provides a functional description of the bus, the signals that 
control it, and the bus cycles provided for data transfer operations. It also 
describes the error and halt conditions, bus arbitration, and the reset oper
ation. Operation of the bus is the same whether the controller or an external 
device is the bus master; the names and descriptions of bus cycles are from 
the point of view of the bus master. For exact timing specifications, refer to 
MC68EC030/D, MC68EC030 Technical Summary. 

The MC68EC030 architecture.supports byte, word, and long-word operands, 
allowing access to 8-, 16-, and 32-bit data ports through the use of asyn
chronous cycles controlled by the data transfer and size acknowledge inputs 
(DSACKO and DSACK1). • 

Synchronous bus cycles controlled by the synchronous termination signal 
(STERM) can only be used to transfer data to and from 32-bit ports. 

The MC68EC030 allows byte, word, and long-word operands to be located 
in memory on any byte boundary. For a misaligned transfer, more than one 
bus cycle may be required to complete the transfer, regardless of port size. 
For a port less than 32 bits wide, multiple bus cycles may be required for an 
operand transfer due to either misalignment or a port width smaller than the 
operand size. Instruction words and their associated extension words must 
be aligned on word boundaries. The user should be aware that misalignment 
of word or long-word operands can cause the MC68EC030 to perform multiple 
bus cycles for the operand transfer; therefore, controller performance is op
timized if word and long-word memory operands are aligned on word or 
long-word boundaries, respectively. 

7.1 BUS TRANSFER SIGNALS 

The bus transfers information between the MC68EC030 and an external mem
ory, coprocessor, or peripheral device. External devices can accept or provide 
8 bits, 16 bits, or 32 bits in parallel and must follow the handshake protocol 
described in this section. The maximum number of bits accepted or provided 
during a bus transfer is defined as the port width. The MC68EC030 contains 
an address bus that specifies the address for the transfer and a data bus that 

MOTOROLA MC68EC030 USER'S MANUAL 7-1 



• 

7-2 

transfers the data. Control signals indicate the beginning of the cycle, the 
address space and the size of the transfer, and the type of cycle. The selected 
device then controls the length of the cycle with the signa/(s) used to ter
minate the cycle. Strobe signals, one for the address bus and another for the 
data bus, indicate the validity of the address and provide timing information 
for the data. 

The bus can operate in an asynchronous mode identical to the MC68030 and 
MC68020 bus for any port width. The bus and control input signals used for 
asynchronous operation are internally synchronized to the MC68EC030 clock, 
introducing a delay. This delay is the time period required for the MC68EC030 
to sample an asynchronous input signal, synchronize the input to the internal 
clocks of the controller, and determine whether it is high or low. Figure 7-1 
shows the relationship between the clock signal and the associated internal 
signal of a typical asynchronous input. 

eLK 

EXT 

INT 

~--SYNC DELAY--~ 

Figure 7-1. Relationship between External and Internal Signals 

Furthermore, for all asynchronous inputs, the controller latches the level of 
the input during a sample window around the falling edge of the clock signal. 
This window is illustrated in Figure 7-2. To ensure that an input signal is 
recognized on a specific falling edge of the clock, that input must be stable 
during the sample window. If an input makes a transition during the window 
time period, the level recognized by the controller is not predictable; however, 
the controller always resolves the latched level to either a logic high or low 
before using it. In addition to meeting input setup and hold times for deter
ministic operation, all input signals must obey the protocols described in this 
section. 

. MC68EC030 USER'S MANUAL MOTOROLA 



eLK 

EXT 

~ 
SAMPLE 
WINDOW 

Figure 7-2. Asynchronous Input Sample Window 

A device with a 32-bit port size can also provide a synchronous mode transfer. 
In synchronous operation, input signals are externally synchronized to the 
controller clock, and the synchronizing delay is not incurred. 

Synchronous inputs (STERM, GBAGK, and GIIN) must remain stable during • 
a sample window for all rising edges of the clock during a bus cycle (i.e., 
while address strobe (AS) is asserted), regardless of when the signals are 
asserted or negated, to ensure proper operation. This sample window is 
defined by the synchronous input setup and hold times (see MC68EC030/D, 
MC68EC030 Technical Summary). 

7.1.1 Bus Control Signals 

The external cycle start (ECS) signal is the earliest indication that the con
troller is initiating a bus cycle. The MC68EC030 initiates a bus cycle by driving 
the address, size, function code, read/write, and cache inhibit-out outputs 
and by asserting ECS. However, if the controller finds the required program 
or data item in an on-chip cache, or if the ACU finds a fault with the access, 
the controller aborts the cycle before asserting AS. ECS can be used to initiate 
various timing sequences that are eventually qualified with AS. Qualification 
with AS may be required since, in the case of an internal cache hit, or an 
ACU fault, a bus cycle may be aborted after ECS has been asserted. The 
assertion of AS ensures that the cycle has not been aborted by these internal 
conditions. 

During the first external bus cycle of an operand transfer, the operand cycle 
start (DCS) signal is asserted with ECS. When several bus cycles are required 

MOTOROLA MC68EC030 USER'S MANUAL 7-3 



• 

to transfer the entire operand, DCS is asserted only at the beginning of the 
first external bus cycle. With respect to DCS, an "operand" is any entity 
required by the execution unit, whether a program or data item. 

The function code signals (FCO-FC2) are also driven at the beginning of a 
bus cycle. These three signals select one of eight address spaces (refer to 
Table 4-1) to which the address applies. Five address spaces are presently 
defined. Of the remaining three, one is reserved for user definition and two 
are reserved by Motorola for future use. The function code signals are valid 
while AS is asserted. 

At the beginning of a bus cycle, the size signals (SilO and SIZ1) are driven 
along with ECS and the FCO-FC2. SilO and SIZ1 indicate the number of bytes 
remaining to be transferred during an operand cycle (consisting of one or 
more bus cycles) or during a cache fill operation from a device with a port 
size that is less than 32 bits. Table 7-2 shows the encoding of SilO and SIZ1. 
These signals are valid while AS is asserted . 

The read/write(RIW) signal determines the direction of the transfer during 
a bus cycle. This signal changes state, when required, at the beginning of a 
bus cycle and is valid while AS is asserted. RIW only transitions when a write 
cycle is preceded by a read cycle or vice versa. The signal may remain low 
for two consecutive write cycles. 

The read-modify-write cycle signal (RMC) is asserted at the beginning of the 
first bus cycle of a read-modify-write operation and remains asserted until 
completion of the final bus cycle of the operation. The RMC signal' is guar
anteed to be negated before the end of state o for a bus cycle following a 
read-modify-write operation. 

7.1.2 Address Bus 

The address bus signals (AO-A31) define the address of the byte (or the most 
significant byte) to be transferred during a bus cycle. The controller places 
the address on the bus at the beginning of a bus cycle. The address is valid 
while AS is asserted. 

7.1.3 Address Strobe 

7-4 

AS is a timing signal that indicates the validity of an address on the address 
bus and of many control signals. It is asserted one-half clock after the be
ginning of a bus cycle. 

MC68EC030 USER'S MANUAL , MOTOROLA 



7.1.4 Data Bus 

The data bus signals (DO-D31) comprise a bidirectional, nonmultiplexed par
allel bus that contains the data being transferred to or from the controller. 
A read or write operation may transfer 8, 16, 24, or 32 bits of data (one, two, 
three, or four bytes) in one bus cycle. During a read cycle, the data is latched 
by the controller on the last falling edge of the clock for that bus cycle. For 
a write cycle, all 32 bits of the data bus are driven, regardless of the port 
width or operand size. The controller places the data on the data bus one
half clock cycle after AS is asserted in a write cycle. 

7.1.5 Data Strobe 

The data strobe (DS) is a timing signal that applies to the data bus. For a 
read cycle, the controller asserts DS to signal the external device to place 
data on the bus. It is asserted at the same time as AS during a read cycle. 
For a write cycle, DS signals to the external device that the data to be written 
is valid on the bus. The controller asserts DS one full clock cycle after the 
assertion of AS during a write cycle. DS is most useful to asynchronous 
systems which can not use the synchronous set-up and hold times to clock 
edges. 

7.1.6 Data Buffer Enable 

The data buffer enable signal (DBEN) can be used to enable external data 
buffers while data is present on the data bus. During a read operation, DBEN 
is asserted one clock cycle after the beginning of the bus cycle and is negated 
as DS is negated. In a write operation, DBEN is asserted at the time AS is 
asserted and is held active for the duration of the cycle. In a synchronous 
system supporting two-clock bus cycles, DBEN timing may prevent its use. 

7.1.7 Bus Cycle Termination Signals 

During asynchronous bus cycles, extern~1 devices assert the data transfer 
and size acknowledge signals (DSACKO and/or DSACK1) as part of the bus 
protocol. During a read cycle, the assertion of DSACKx signals the controller 
to terminate the bus cycle and to latch the data. During a write cycle, the 
assertion of DSACKx indicates that the external device has successfully stored 
the data and that the cycle may terminate. These signals also indicate to the 
controller the size of the port for the bus cycle just completed, as shown in 
Table 7-1. Refer to 7.3.1 Asynchronous Read Cycle for timing relationships 
of DSACKO and DSACK1. 

MOTOROLA MC68EC030 USER'S MANUAL 7-5 



• 

For synchronous bus cycles, external devices assert the synchronous ter.:. 
mination signal (STERM) as part of the bus protocol. During a read cycle, 
the assertion of STERM causes the controller to latch the data. During a write 
cycle, it indicates that the external device has successfully stored the data. 
In either case, it terminates the cycle and indicates that the transfer was made 
to a 32-bit port. Refer to 7.3.2 Asynchronous Write Cycle for timing relation
ships of STERM. 

The bus error (BERR) signal is also a bus cycle termination indicator and can 
be used in the absence of DSACKx or STERM to indicate a bus error condition. 
It can also be asserted in conjunction with DSACKx or STERM to indicate a 
bus error condition, provided it meets the appropriate timing described in 
this section and in MC68EC030/D, MC68EC030 Technical Summary. Addi
tionally, the BERR and HALT signals can be asserted together to indicate a 
retry termination. Again, the BERR and HALT signals can be asserted simul
taneously in lieu of or in conjunction with the DSACKx or STERM signals. 

Finally, the autovector (AVEC) signal can be used to terminate interrupt ac
knowledge cycles, indicating that the MC68EC030 should internally generate 
a vector numberto locate an interrupt handler routine. AVEC is ignored during 
all other bus cycles. 

7.2 DATA TRANSFER MECHANISM 

7-6 

The MC68EC030 architecture supports byte, word, and long-word operands 
allowing access to 8-, 16-, and 32-bit data ports through the use of asyn
chronous cycles controlled by DSACKO and DSACK1. It also supports syn
chronous bus cycles to and from 32-bit ports, terminated by STERM. Byte, 
word, and long-word operands can be located on any byte boundary, but 
misaligned transfers may require additional bus cycles, regardless of port 
size. 

When the controller requests a burst mode fill operation, it asserts the cache 
burst request (CBREQ) signal to attempt.to fill four entries within a line in 
one of the on-chip caches. This mode is compatible with nibble, static column, 
or page mode dynamic RAMs. The burst fill operation uses synchronous bus 
cycles, each terminated by STERM, to fetch as many as four long words. 

MC68EC030 USER'S MANUAL MOTOROLA 



7.2.1 Dynamic Bus Sizing 

The MC68EC030 dynamically interprets the port size of the addressed device 
during each bus cycle, allowing operand transfers to or from 8-, 16-, and 32-
bit ports. During an asynchronous operand transfer 'cycle, the slave device 
signals its port size (byte, word, or long word) and indicates completion of 
the bus cycle to the controller through the use of the DSACKx inputs. Refer 
to Table 7-1 for DSACKx encodings and assertion results. 

Table 7-1. DSACK Codes and Results 

DSACK1 DSACKO Result 

H H Insert Wait States in Current Bus Cycle 

H L Complete Cycle - Data Bus Port Size is 8 Bits 

L H Complete Cycle - Data Bus Port Size is 16 Bits 

L L Complete Cycle - Data Bus Port Size is 32 Bits 

For example, if the controller is executing an instruction that reads a long
word operand from a long-word aligned address, it attempts to read 32 bits 
during the first bus cycle. (Refer to 7.2.2 Misaligned Operands for the case 
of a word or byte address.) If the port responds that it is 32 bits wide, the 
MC68EC030 latches all 32 bits of data and continues with the next operation. 
If the port responds that it is 16 bits wide, the MC68EC030 latches the 16 bits 
of valid data and runs another bus cycle to obtain the other 16 bits. The 
operation for an 8-bit port is similar, but requires four read cycles. The ad
dressed device uses the DSACKx signals to indicate the port width. For in
stance, a 32-bit device a/ways returns DSACKx for a 32-bit port (regardless 
of whether the bus cycle is a byte, word, or long-word operation). 

Dynamic bus sizing requires that the portion of the data bus used for a transfer 
to or from a particular port size be fixed. A 32-bit port must reside on data 
bus bits 0-31, a 16-bit port must reside on data bus bits 16-32, and an 8-bit 
port must reside on data bus bits 24-31. This requirement minimizes the 
number of bus cycles needed to transfer data to 8- and 16-bit ports and 
ensures that the MC68EC030 correctly transfers valid data. The MC68EC030 
always attempts to transfer the maximum amount of data on all bus cycles; 
for a long-word operation, it always assumes that the port is 32 bit wide 
when beginning the bus cycle. 

The bytes of operands are designated as shown in Figure 7-3. The most 
significant byte of a long-word operand is OPO, and OP3 is the least significant 
byte. The two bytes of a word-length operand are OP2 (most significant) and 
OP3. The single byte of a byte-length operand is OP3. These designations 
are used in the figures and descriptions that follow. 

MOTOROLA MC68EC030 USER'S MANUAL 7-7 



• 

7-8 

31 0 

LONG WORD OPERAND I OPO OP1 OP2 OP3 I 
15 0 

WORD OPERAND I OP2 OP3 

7 0 

BYTE OPERAND I OP3 I 

Figure 7-3. Internal Operand Representation 

Figure 7-4 shows the required organization of data ports on the MC68EC030 
bus for 8-, 16-, and 32-bit devices. The four bytes shown in Figure 7-4 are 
connected through the internal data bus and data multiplexer to the external 
data bus. This path is the means through which the MC68EC030 supports 
dynamic bus sizing and operand misalignment. Refer to 7.2.2 Misaligned 
Operands for the definition of misaligned operand. The data multiplexer 
establishes the necessary connections for different combinations of address 
and data sizes. 

The multiplexer takes the four bytes of the 32-bit bus and routes them to 
their required positions. For example, OPO can be routed to D24-D31, as 
would be the normal case, orit can be routed to any other byte position to 
support a misaligned transfer. The same is true for any of the operand bytes. 
The positioning of bytes is determined by the size (SIZO and SIZ1) and address 
(AO and A 1) outputs. 

The SIZO and SIZ1 outputs indicate the remaining number of bytes to be 
transferred during the current bus cycle, as shown in Table 7-2. 

The number of bytes transferred during a write or noncacheable read bus 
cycle is equal to or less than the size indicated by the SIZO and SIZ1 outputs, 
depending on port width a~d operand alignment. For example, during the 
first bus cycle of a long-word transfer to a word port, the size outputs indicate 
that four bytes are to be transferred, although only two bytes are moved on 
that bus cycle. Cachable read cycles must always transfer the number of 
bytes indicated by the port size. 

MC68EC030 USER'S MANUAL MOTOROLA 



OPO OP1 OP2 OP3 

REGISTER 

MULTIPLEXER ~ 
_______ .EXTERNAL 

INTERNAL TO 
THE MC68EC030 ------------DATA BUS 

ADDRESS 
xxxxxxxO 

EXTERNAL BUS 

~---'----r----'---_r_---'--_r_---'--__, 32-BIT PORT t 
INCREASING 

MEMORY 
ADDRESSES 

~. 
xxxxxxxO 

xxxxxxxO 

BYTE 0 BYTE 1 
t-----f------I 16-BIT PORT 

BYTE 2 BYTE 3 

a 

BYTE 0 

BYTE 1 
t------I 8-BIT PORT 

BYTE 2 

BYTE 3 

Figure 7-4. MC68EC030 Interface to Various Port Sizes 

AO and A 1 also affect operation of the data multiplexer. During an operand 
transfer, A2-A31 indicate the long-word base address of that portion of the 
operand to be accessed; AO and A1 indicate the byte offset from the base. 
Table 7-3 shows the encodings of AO and A 1 and the corresponding byte 
offsets from the long-word base. 

Table 7-4 lists the bytes required on the data bus for read cycles that are 
cacheable. The entries shown as OPn are portions of the requested operand 
that are read or written during that bus cycle and are defined by SIZO, SIZ1, 
AO, and A 1 for the bus cycle. The PRn and the Nn bytes correspond to the 
previous and next bytes in memory, respectively, that must be valid on the 
data bus for the specified port size (long word or word) so that the internal 
caches operate correctly. (For cacheable accesses, the MC68EC030 assumes 
that all portions of the data bus for a given port size are valid.) This same 
table applies to noncacheable read cycles except that the bytes labeled PRn 
and Nn are not required and can be replaced by IIdon't cares". 

MOTOROLA MC68EC030 USER'S MANUAL 7-9 

-



• 

Table 7-2. Size Signal 
Encoding 

SlZ1 SIZO Size 

0 1 Byte 

1 0 Word 

1 1 3 Bytes 

0 0 Long Word 

Table 7-3. Address Offset 
Encodings 

A1 AO Offset 

0 0 +0 Bytes 

0 1 +1 Byte 

1 0 +2 Bytes 

1 1 +3 Bytes 

Table 7-4. Data Bus Requirements for Read Cycles 

Word Port 
Byte Port 

Transfer Long-Word Port External 

Size 
Size Address 

External Oata Bytes Required 
External Oata Bytes Oata Bytes 

Required Required 

SIZ1 SIZO A1 AO 031:024 023:016 015:08 07:00 031 :024 023:016 031:024 

Byte 0 1 0 0 OP3 N N1 N2 OP3 N ~ 
0 1 0 1 PR OP3 N N1 PR OP3 ~ 
0 1 1 0 PR1 PR OP3 N OP3 N ~ 
0 1 1 1 PR2 PR1 PR OP3 PR OP3 ~ 

Word 1 0 0 0 OP2 OP3 N N1 OP2 OP3 ~ 
1 0 0 1 PR OP2 OP3 N PR OP2 ~ 
1 0 1 0 PR1 PR OP2 OP3 OP2 OP3 ~ 
1 0 1 1 PR2 PR1 PR OP2 PR OP2 ~ 

3 Byte 1 1 0 0 OP1 OP2 OP3 N OP1 OP2 ~ 
1 1 0 1 PR OP1 OP2 OP3 PR OP1 ~ 
1 1 1 0 PR1 PR OP1 OP2 OP1 OP2 ~ 
1 1 1 1 PR2 PRl PR OP1 PR OP1 ~ 

Long 0 0 0 0 OPO OP1 OP2 OP3 OPO OP1 ~ 
Word 0 0 0 1 PR OPO OP1 OP2 PR OPO ~ 

0 0 1 0 PRl PR OPO OP1 OPO OP1 ~ 
0 0 1 1 PR2 PR1 PR OPO PR OPO ~ 

NOTE: The bytes labeled as Nn (Next n) and PRn (Previous n) are only required to be valid for cacheable read cycles. They 
can be interpreted as don't cares for noncacheable read cycles. 

7-10 MC68EC030 USER'S MANUAL MOTOROLA 



Table 7-5 lists the combinations of SIZO, SIZ1, AO, and Aland the corre
sponding pattern of the data transfer for write cycles from the internal mul
tiplexer of the MC68EC030 to the external data bus. 

Table 7-5. MC68EC0301nternai to External Data Bus 
Multiplexer - Write Cycles 

Transfer Size Address External Oata Bus Connection 

Size SIZ1 SIZO A1 AO 031:024 023:016 015:08 

Byte 0 1 x x OP3 OP3 OP3 

Word 1 0 x 0 OP2 OP3 OP2 

1 0 x 1 OP2 OP2 OP3 

3 Byte 1 1 0 0 OP1 OP2 OP3 

1 1 0 1 I OP1 OP1 OP2 

1 1 1 0 I OP1 OP2 OP1 

1 1 1 1 I OP1 OP1 OP2* 

Long Word 0 0 0 0 I OPO OP1 OP2 

0 0 0 1 I OPO OPO OP1 

0 0 1 0 I OPO OP1 OPO 

0 0 1 1 I OPO OPO OP1* 

*Due to the current implementation, this byte is output but never used. 
x = don't care 

D7:00 

OP3 

OP3 

OP2 

OPO* 

OP3 

OP2 

OP1 

OP3 

OP2 

OP1 

OPO 

NOTE: The OP tables on the external data bus refer to a particular byte of the operand 
that is written on that section of the data bus. 

Figure 7-5 shows the transfer of a long-word operand to a word port. In the 
first bus cycle, the MC68EC030 places the four operand bytes on the external 
bus. Since the address is long-word aligned in this example, the multiplexer 
follows the pattern in the entry of Table 7-5 corresponding to 
SIZO_SIZ1_AO_A 1 = 0000. The port latches the data on bits 016-031 of the 
data bus, asserts DSACKl (OSACKO remains negated), and the controller 
terminates the bus cycle. It then starts a new bus cycle with 
SIZO_SIZ1_AO_Al = 1010 to transfer the remaining 16 bits. SIZO and SIZl 
indicate that a word remains to be transferred; AO and A 1 indicate that the 
word corresponds to an offset of two from the base address. The multiplexer 
follows the pattern corresponding to this configuration of the size and address 
signals and places the two least significant bytes of the long word on the 
word portion of the bus (016-031). The bus cycle transfers the remaining 
bytes to the word-size port. Figure 7-6 shows the timing qf the bus transfer 
signals for this operation. . 

MOTOROLA MC68EC030 USER'S MANUAL 7-11 

• 



31 LONG WORD OPERAND 0 

OPO i OP1 OP2 OP3 

• 031 DATA BUS 016 

I I 

~ 
WORD MEMORY MC68EC030 MEMORY CONTROL 

MSB LSB SIZ1 SIZO A1 AO DSACK1 DSACKO 
0 0 0 0 L H 

OPO OP1 
1 0 1 0 L H 

OP2 OP3 

Figure 7-5. Example of Long-Word Transfer to Word Port 

7-12 MC68EC030 USER'S MANUAL MOTOROLA 



MOTOROLA 

so S2 S4 so S2 54 

CLK 

A31-A2 J __________ --IX'-______ _ 

A1 ~ / 

AO~ 

FC2-FCO ==>< _________ -"'X'-_______ _ 

SIZ1~ 

SIZO ~ 

/ 

\~----~;--\~----~I 

OBEN \ r----\. 
-----~----~/ \~--------

031-024 ==>-<'--__ OPO __ -J}--<'-__ OP_2 __ 

023-016 ==>-< OP1 }-----( OP3 

~WOROWRITE >1< WOROWRIT~ 
~ LONG WORD OPERAND WRITE TO 16-BIT PORT ~ 

Figure 7-6. Long-Word Operand Write Timing (16-Bit Data Port) 

MC68EC030 USER'S MANUAL 

-

7-13 



• 

7-14 

Figure 7-7 shows a word transfer to an 8-bit bus port. Like the preceding 
example, this example requires two bus cycles. Each bus cycle transfers a 
single byte. The size signals for the first cycle specify two bytes; for the 
second cycle, one byte. Figure 7-8 shows the associated bus transfer signal 
timing. 

15 WORD OPERAND 

OP2 

t 
D31 DATA BUS D24 

cr 
BYTE MEMORY 

~ 
~ 

OP3 

MC68EC030 

SIZ1 SIZO A1 
1 0 o 
o 1 o 

AO 
o 
1 

MEMORY CONTROL 

DSACK1 DSACKO 
H L 

H L 

Figure 7-7. Example of Word Transfer to Byte Port 

MC68EC030 USER'S MANUAL MOTOROLA 



MOTOROLA 

so S2 S4 so S2 S4 

CLK 

A31-A2 ==>< ______ -JX'-_____ _ 

A1~ 

AO~ I 
FC2-FCO ==x'--_____ -...JX'-______ _ 

SIZ1 =--.! 
SIZO~ 

OSACK1 ~ 

OSACKO ~ 

\"---------
I 

\~_~I \\--_-...Jr 

\\....-__ ----J! \\....---
OBEN ~ \ r--\. ~ _. _____ ----J1 \------

031-024 ==>--<""---__ OP_2_-J)--<'-__ O_P_3 __ 

023-016 ==>--<""---__ OP_3_-J)--<'-__ O_P_3 __ 

015-D8 ==>--< ___ OP_2_-J>--< ..... __ O_P_3 __ 

07-00 =:J>---«,-__ OP_3_--J)--<,-__ OP_3 __ 

~ BYTE WRITE »" I < BYTEWRITE~ 
~WOROOPERANOWRITE~ 

Figure 7-8. Word Operand Write Timing (8-Bit Data Port) 

MC68EC030 USER'S MANUAL 

-

7-15 



• 

7.2.2 Misaligned Operands 

7-16 

Since operands may reside at any byte boundaries, they may be misaligned. 
A byte operand is properly aligned at any address; a word operand is mis
aligned at an odd address; a long word is misaligned at an address that is 
not evenly divisible by four. The MC68000, MC68008, and MC68010 imple
mentations allow long-word transfers on odd-word boundaries but force 
exceptions if word or long-word operand transfers are attempted at odd-byte 
addresses. Although the MC68EC030 does not enforce any alignment re
strictions for data operands (including PC relative data addresses), some 
performance degradation occurs when additional bus cycles are required for 
long-word orword operands that are misaligned. For maximum performance, 
data items should be aligned on their natural boundaries. All instruction 
words and extension words must reside on word boundaries. Attempting to 
prefetch an instruction word at an odd address causes an address error 
exception. 

Figure 7-9 shows the transfer of a long-word operand to an odd address in 
word-organized memory, which requires three bus cycles. For the first cycle, 
the size signals specify a long-word transfer, and the address offset (A2:AO) 
is 001. Since the port width is 16 bits, only the first byte of the long word is 
transferred. The slave device latches the byte and acknowledges the data 
transfer, indicating that the port is 16 bits wide. When the controller starts 
the second cycle, the size signals specify that three bytes remain to be trans
ferred with an address offset (A2:AO) of 010. The next two bytes are trans
ferred during this cycle. The controller then initiates the third cycle, with the 
size signals indicating one byte remaining to be transferred. The address 
offset (A2:AO) is now 100; the port latches the final byte; and the operation 
is complete. Figure 7-10 shows the associated bus transfer signal timing. 

Figure 7-11 shows the equivalent operation for a cacheable data read cycle. 

MC68EC030 USER'S MANUAL MOTOROLA 



31 LONG WORD OPERAND o 

OPO OPl I OP2 OP3 

D31 DATA BUS 016 

WORD MEMORY MC68EC030 MEMORY CONTROL 

MSB LSB SIZl SIZO A2 Al AO DSACKl DSACKO 
0 0 0 L H 

xxx OPO 
1 1 0 0 L H 

OPl OP2 0 0 0 L H 

OP3 XXX 

Figure 7-9. Misaligned Long-Word Transfer to Word Port Example 

Figures 7-12 and 7-13 show a word transfer to an odd address in word
organized memory. This example is similar to the one shown in Figures 7-9 
and 7-10 except that the operand is word sized and the transfer requires only 
two bus cycles. 

Figure 7-14 shows the equivalent operation for a ,cacheable data read cycle. 

Figures 7-15 and 7-16 show an example of a long-word transfer to an odd 
address in long-ward-organized memory. In this example, a long-word access 
is attempted beginning at the least significant byte of a long-word-organized 
memory. Only one byte can be transferred in the first bus cycle. The second 
bus cycle then consists of a three-byte access to a long-word boundary. Since 
the memory is long-word organized, no further bus cycles are necessary. 

Figure 7-17 shows the equivalent operation for a cacheable data read cycle. 

MOTOROLA MC68EC030 USER'S MANUAL 7-17 



• 

7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment 

7-18 

The combination of operand size, operand alignment, and port size deter
mines the number of bus cycles required to perform a particular memory 
access. Table 7-6 shows the number of bus cycles required for different 
operand sizes to different port sizes with all possible alignment conditions 
for write cycles and noncacheable read cycles. 

Table 7-6. Memory Alignment and Port Size Influence 
. on Write Bus Cycles 

A1/AO 
Number of Bus Cycles 

00 01 10 11 

Instruction* 1 :2:4 N/A N/A N/A 

Byte Operand 1: 1: 1 1: 1: 1 1: 1: 1 1: 1: 1 

Word Operand 1:1 :2 1 :2:2 1: 1 :2 2:2:2 

Long-Word Operand 1 :2:4 2:3:4 2:2:4 2:3:4 

Data Port Size - 32 Bits: 16 Bits:8 Bits 
*Instruction prefetches are always two words from a long-word boundary. 

MC68EC030 USER'S MANUAL MOTOROLA 



so S2 S4 so S2 S4 

eLK 

A31-A2 ==><'--_____ ---1 '--_____ ---IX'-______ _ 

A1~ 

AO .-J 

SIZ1~ 

SIZO~ 

\ ___ ----J1 

\ 

< 031-024 -------< OPO 

< 023-016 ------< OPO 

< 015-08 ------< OP1 

07-00 

\'-------

\ ...... __ ---1 

1\ 
) 

) 

) 

BYTEWRITE~ 

Figure 7-10. Misaligned Long-Word Transfer to Word Port 

MOTOROLA MC68EC030 USER'S MANUAL 

-

7-19 



• 

31 lONG WORD OPERANO (REGISTER) 

OPO OP1 OP2 OP3 

31 CACHE ENTRIES 0 

I PR OPO I OP1 OP2 

31 0 

N 

f 
N1 N2 I OP3 

D31 
DATA BUS ------01-6----------' 

I 

t 
WOROMEMORY MC68EC030 MEMORY CONTROL 

MSB lSB SIZ1 SIZO A2 A1 AO DSACK1 DSACKO 
0 0 0 0 l H 

PR OPO 
1 1 0 1 0 l H 

OP1 OP2 0 1 0 0 l H 

OP3 N 1 0 l H 

N1 N2 

Figure 7-11. Misaligned Cacheable Long-Word Transfer from Word Port Example 

7-20 

15 WORD OPERAND 

OP2 i OP3 

031 DATA BUS 

t 
WORD MEMORY 

MSB lSB 

xxx OP2 

OP3 XXX 

0 

016 

MC68EC030 

SIZ1 SIZO A2 A 1 AD 

000 

o o 

MEMORY CONTROL 

DSACK1 DSACKO 

l 

l 

H 

H 

Figure 7-12. Misaligned Word Transfer to Word Port Example 

MC68EC030 USER'S MANUAL MOTOROLA 

I 



MOTOROLA MC68EC030 USER'S MANUAL 7-21 



-
15 

D31 

I 

This table shows that bus cycle throughput is significantly affected by port 
size and alignment. The MC68EC030 system designer and programmer should 
be aware of and account for these effects, particularly in time-critical appli
cations. 

Table 7-6 shows that the controller always prefetches instructions by reading 
a long word from a long-word address (A 1 :AO = 00), regardless of port size 
or alignment. When the required instruction begins at an odd-word boundary, 
the controller attempts to fetch the entire 32 bits and loads both words into 
the instruction cache, if possible, although the second one is the required 
word. Even ifthe instruction access is not cached, the entire 32 bits are latched 
into an internal cache holding register from which the two instructions words 
can subsequently be referenced. Refer to SECTION 11 INSTRUCTION EXE
CUTION TIMING for a complete description of the cache holding register and 
pipeline operation. 

WORD OPERAND (REGISTER) 

OP2 

t 
OP3 

DATA BUS 
016 

t 
WOROMEMORY 

MSB LSB 

PR OP2 

OP3 N 

31 

PR 

MC68EC030 

SIZ1 SIZO A2 A1 AO 

000 

o 

CACHE ENTRY 

OP2 OP3 

MEMORY CONTROL 

DSACK1 DSACKO 

L 

L 

H 

H 

o 

N 

Figure 7-14. Example of Misaligned Cacheable Word Transfer from Word Bus 

7-22 MC68EC030 USER'S MANUAL MOTOROLA 



31 

031 

LONG WORD OPERAND o 

OPO OP1 i OP2 OP3 

DATA BUS DO 

t 
LONG WORD MEMORY MC68EC030 MEMORY CONTROL 

LMB MSB UMB LSB SIZ1 SIZO A2 A1 AO DSACK1 DSACKO 
r-~~--~--~~--~------~--------~ 

XXX XXX XXX 

OP1 OP2 OP3 

OPO o 0 

xxx o 
L 

L 

Figure 7-15. Misaligned Long-Word Transfer to Long-Word Port 

L 

L 

MOTOROLA MC68EC030 USER'S MANUAL 7-23 



50 52 54 50 52 54 

CLK 

A31-A2~ X 

A1~ \ 

AO~ \ 

FC2-FCO =:::x X 

51Z1~ / 
51Z0~ / 

RNl~ 

- EC5~ V 
OC5 ~ 

AS \ ! \ / 
OS 

D5ACK1 -.I \ ;-\ 

DSACKO -.I \ ;-\ 

. DBEN ~ \ 1\ 
D31-D24 .=> < OPO ) < OP1 

D23-D16 ~ < OPO ) < OP2 

Dl5-08 .=> < OP1 ) < OP3 

D7-DO .=> < OPO ) < OP1 

~~ >1< '-m~ 
LONG-WORD OPERAND WRITE 

Figure 7-16. Misaligned Write Cycles to Long-Word Port 

7-24 MC68EC030 USER'S MANUAL MOTOROLA 



31 LONG WORD OPERAND (REGISTER) 

OP~ OPl OP2 OP3 

31 CACHE ENTRIES 

I PR2 PRl I PR OPO 

31 

I OPl OP2 

1 
OP3 N 

DATA BUS 
031 DO 

t 
LONG WORD MEMORY MC68EC030 MEMORY CONTROL 

MSB UMB LMB LSB SIZl SIZO A2 Al AO DSACKl DSACKO 

PR2 PRl PR OPO 0 0 0 L L 

OPl OP2 OP3 N 0 0 L L 

Figure 7-17. Misaligned Cacheable Long-Word Transfer from Long-Word Bus 

7.2.4 Address, Size, and Data Bus Relationships 

The data transfer examples show how the MC68EC030 drives data onto or 
receives data from the correct byte sections of the data bus. Table 7-7 shows 
the combinations of the size signals and address signals that are used to 
generate byte enable signals for each of the four sections of the data bus for 
noncacheable read cycles and all write cycles if the addressed device requires 
them. The port size also affects the generation of these enable signals as 
shown in the table. The four columns on the right correspond to the four 
byte enable signals. Letters 8, W, and L refer to port sizes: 8 for 8-bit ports, 
W for 16-bit ports, and L for 32-bit ports. The letters 8, W, and L imply that 
the byte enable signal should be true for that port size. A dash (-) implies 
that the byte enable signal does not apply. ' 

MOTOROLA MC68EC030 USER'S MANUAL 7-25 

0 

0 



7-26 

Transfer 
SIZ1 

Size 

Byte 0 
0 
0 
0 

Word 1 
1 
1 
1 

3 Byte 1 
1 
1 
1 

long Word 0 
0 
0 
0 

Table 7-7. Data Bus Write Enable Signals for 
Byte, Word, and Long-Word Ports 

Oata Bus Active Sections 

SIZO A1 AO Byte (B) - Word (W) - Long-Word (L) Ports 

031 :024 023:016 015:08 07:00 

1 0 0 BWl - - -
1 0 1 B Wl - -
1 1 0 BW - l -
1 1 1 B W - l 

0 0 0 BWl Wl - -
0 0 1 B Wl l -
0 1 0 BW W l l 
0 1 1 B W - l 

1 0 0 BWl Wl l -
1 0 1 B Wl l l 
1 1 0 BW W l l 
1 1 1 B W - l 

0 0 0 BWl Wl l l 
0 0 1 B Wl l l 
0 1 0 BW W L l 
0 1 1 B W - l 

The MC68EC030 always drives all sections of the data bus because, at the 
start of a write cycle, the bus controller does not know the port size. The byte 
enable signals in the table apply only to read operations that are not to be 
internally cached and to write operations; For cacheable read cycles, during 
which the data is cached, the addressed porf must drive all sections of the 
bus on which it resides. 

The table shows that the MC68EC030 transfers the number of bytes specified 
by the size signals to or from the specified address unless the operand is 
misaligned or the number of bytes is greater than the port width. In these 
cases, the device transfers the greatest number of bytes possible for the port. 
For example, if the size is four bytes and the address offset (A 1 :AO) is 01, a 
32-bit slave can only receive three bytes in the current bus cycle. A 16- or 
8-bit slave can only receive one byte. The table defines the byte enables for 
all port sizes. Byte data strobes can be obtained by combining the enable 
signals with the data strobe signal. Devices residing on 8-bit ports can use 
the data strobe by itself since there is only one valid byte for every transfer. 
These enable or strobe signals select only the bytes required for write cycles 
or for noncacheable read cycles. The other bytes are not selected, which 
prevents incorrect accesses in sensitive areas such as liD. 

Figure 7-18 shows a logic diagram for one method for generating byte data 
enable signals for 16- and 32-bit ports from the size and address encodings 
and the readlwrite signal. 

MC68EC030 USER'S MANUAL MOTOROLA 



7.2.5 MC68EC030 versus MC68020 Dynamic Bus Sizing 

The MC68EC030 supports the dynamic bus sizing mechanism of the MC68020 
for asynchronous bus cycles (terminated with DSACKx) with two restrictions. 
First, for a cacheable access within the boundaries of an aligned long word, 
the port size must be consistent throughout the transfer of each long word. 
For example, when a byte port resides at address $00, addresses $01, $02, 
and $03 must also correspond to byte ports. Second, the port must supply 
as much data as it signals as port size, regardless of the transfer size indicated 
with the size signals and the address offset indicated by AO and A 1 for 
cacheable accesses. Otherwise, dynamic bus sizing is identical in the 
MC68EC030 and MC68020. Dynamic bus sizing is identical in all respects in 
the MC68EC030 and MC68030. 

7.2.6 Cache Filling 

The on-chip data and instruction caches, described in SECTION 6 ON-CHIP 
CACHE MEMORIES, are each organized as 16 lines of four long-word entries 
each. For each line, a tag contains the most significant bits of the address, 
FC2 (instruction cache) or FCO-FC2 (data cache), and a valid bit for each entry 
in the line. An entry fill operation loads an entire long word accessed from 
memory into a cache entry. This type of fill operation is performed when one 
entry of a line is not valid and an access is cacheable. A burst fill operation 
is requested when a tag miss occurs for the current cycle or when all four 
entires in the cache line are invalid (provided the cache is enabled and burst 
filling for the cache is enabled). The burst fill operation attempts to fill all 
four entries in the line. To support burst filling, the slave device must have 
a 32-bit port and must have a burst mode capability; that is, it must acknowl
edge a burst request with the cache burst acknowledge (CBACK) signal. It 
must also terminate the burst accesses with STERM and place a long word 
on the data bus for each transfer. The device may continue to supply suc
cessive long words, asserting STERM with each one, until the cache line is 
full. For further information about filling the cache, both entry fills and burst 
mode fills, refer to 6.1.3 Cache Filling, 7.3.4 Synchronous Read Cycle, 7.3.5 
Synchronous Write Cycle, and 7.3.7 Burst Operation Cycles, which discuss 
in detail the required bus cycles. 

7.2.7 Cache Interactions 

The organization and requirements of the on-chip instruction and data caches 
affect the interpretation of the DSACKx and STERM signals. Since the 
MC68EC030 attempts to load all data operands and instructions that are 

MOTOROLA MC68EC030 USER'S MANUAL 7-27 



-

7-28 

cacheable into the on-chip caches, the bus may operate differently when 
caching is enabled. Specifically, on cacheable read cycles that terminate 
normally, the low-order address signals (AD and A 1) and the size signals do 
not apply. 

-L; ) UUD 

I 

I UMD 

I 

~ LMD 

J 

~~ LLD 

D-
) UD 

LD 

AD 

Y> 
Al 

Y> 
Y> 

UUD = UPPER UPPER DATA (32-BIT PORT) 
UMD = UPPER MIDDLE DATA (32-BIT PORT) 
LMD = LOWER MIDDLE DATA (32-BIT PORT) 

SIZO 

Y> 
LLD = LOWER LOWER DATA (32-BIT PORT) 
UD '" UPPER DATA (IS-BIT PORT) 
LD = LOWER DATA (IS-BIT PORT) 

SIZI 

NOTE: These select lines can be combined with the address decode circuitry, or all can be generated within the same 
programmed array logic unit. 

Figure 7-18. Byte Data Select Generation for 16- and 32-Bit Ports 

MC68EC030 USER'S MANUAL MOTOROLA 



The slave device must supply as much aligned data on the data bus as its 
port size allows, regardless of the requested operand size. This means that 
an 8-bit port must supply a byte, a 16-bit port must supply a word, and a 
32-bit port must supply an entire long word. This data is loaded into the 
cache. For a 32-bit port, the slave device ignores AO and A 1 and supplies the 
long word beginning at the long-word boundary on the data bus. For a 
16-bit port, the device ignores AO and supplies the entire word beginning at 
the lower word boundary on D16-D31 of the data bus. For a byte port, the 
device supplies the addressed byte on D24-D31. 

If the addressed device cannot supply port-sized data or if the data should 
not be cached, the device must assert cache inhibit in (CIIN) as it terminates 
the read cycle. If the bus cycle terminates abnormally, the MC68EC030 does 
not cache the data. For details of interactions of port sizes, misalignments, 
and cache filling, refer to 6.1.3 Cache Filling. 

The caches can also affect the assertion of AS and the operation of a read 
cycle. The search of the appropriate cache by the controller begins when the 
microsequencer requires an instruction or a data item. At this time, the bus 
controller may also initiate an external bus cycle in case the requested item 
is not resident in the instruction or data cache. If the bus is not occupied with 
another read or write cycle, the bus controller asserts the ECS signal (and 
the DCS signal, if appropriate). If an internal cache hit occurs, the external 
cycle aborts, and AS is not asserted. This makes it possible to have ECS 
asserted on multiple consecutive clock cycles. Notice that there is a minimum 
time specified from the negation of ECS to the next assertion of ECS (refer 
to MC68EC030/D, MC68EC030 Technical Summary. 

Instruction prefetches can occur every other clock so that if, after an aborted 
cycle due to an instruction cache hit, the bus controller asserts ECS on the 
next clock, this second cycle is for a data fetch. However, data accesses that 
hit in the data cache can also cause the assertion of ECS and an aborted 
cycle. Therefore, since instruction and data accesses are mixed, it is possible 
to see multiple successive ECS assertions on the external bus if the controller 
is hitting in both caches and if the bus controller is free. Note that, if the bus 
controller is executing other cycles, these aborted cycles due to cache hits 
may not be seen externally. Also, DCS is asserted for the first external cycle 
of an operand transfer. Therefore, in the case of a misaligned data transfer 
where the first portion of the operand results in a cache hit (but the bus 
controller did not begin an external cycle and then abort it) and the second 
portion in a cache miss, DCS is asserted forthe second portion ofthe operand. 

MOTOROLA MC68EC030 USER'S MANUAL 7-29 

• 



• 

7.2.8 Asynchronous Operation 

7-30 

The MC68EC030 bus may be used in an asynchonous manner. In that case, 
the external devices connected to the bus can operate at clock frequencies 
different from the clock for the MC68EC030. Asynchronous operation requires 
using only the handshake line (AS, DS, DSACK1, DSACKO, BERR, and HALT) 
to control data transfers. Using this method, AS signals the start of a bus 
cycle, and DS is used as a condition for valid data on a write cycle. Decoding 
the size outputs and lower address lines (AO and A 1) provides strobes that 
select the active portion of the data bus. The slave device (memory or pe
ripheral) then responds· by placing the requested data on the correct portion 
of the data bus for a read cycle or latching the data on a write cycle, and 
asserting the DSACK1/DSACKO combination that corresponds to the port size 
to terminate the cycle. If no slave responds or the access is invalid, external 
control logic asserts the BERR or BERR and HALT signal(s) to abort or retry 
the bus cycle, respectively. 

The DSACKx signals can be asserted before the data from a slave device is 
valid on a read cycle. The length of time that DSACKx may precede data is 
given by parameter #31, and it must be met in any asynchronous system to 
insure that valid data is latched into the controller. (Refer to MC68EC030/D, 
MC68E.C030 Technical Summary for timing parameters.) Notice that no max
imum time is specified from the assertion of AS to the assertion of DSACKx. 
Although the controller can transfer data in a minimum of three clock cycles 
when the cycle is terminated with DSACKx, the controller inserts wait cycles 
in clock period increments until DSACKx is recognized. 

The BERR and/or HALT signals can be asserted after the DSACKx signal(s) 
is asserted. BERR and/or RAIT must be asserted within the time given as 
parameter #48, after DSACKx is asserted in any asynchronous system. If this 
maximum delay time is violated, the controller may exhibit erratic behavior. 

For asynchronous read cycles, the value of CIIN is internally latched on the 
rising edge of bus cycle state 4. Refer to 7.3.1 Asynchronous Read Cycle for 
more details on the states for asynchonous read cycles. 

During any bus cycle terminated by DSACKx or BERR, the assertion of CBACK 
is completely ignored. 

MC68EC030 USER'S MANUAL MOTOROLA 



7.2.9 Synchronous Operation with DSACKx 

Although cycles terminated with the DSACKx signals are classified as asyn
chronous and cycles terminated with STERM are classified as synchronous, 
cycles terminated with DSACKx can also operate synchronously in that sig
nals are interpreted relative to clock edges. 

The devices that use these cycles must synchronize the responses to the 
MC68EC030 clock to be synchronous. Since they terminate bus cycles with 
the DSACKx signals, the dynamic bus sizing capabilities of the MC68EC030 
are available. In addition, the minimum cycle time for these cycles is also 
three clocks. 

To support those systems that use the system clock to generate DSACKx and 
other asynchronous inputs, the asynchronous input setup time (parameter 
#47 A) and the asynchronous input hold time (parameter #47B) are given. If 
the setup and hold times are met for the assertion or negation of a signal, 
such as DSACKx, the controller can be guaranteed to recognize that signal 
level on that specific falling edge of the system clock. If the assertion of 
DSACKx is recognized on a particular falling edge of the clock, valid data is 
latched into the controller (for a read cycle) on the next falling clock edge 
provided the data meets the data setup time (parameter #27). In this case, 
parameter #31 for asynchronous operation can be ignored. The timing pa
rameters referred to are described in MC68EC030/D, MC68EC030 Technical 
Summary; If a system asserts DSACKx for the required window around the 
falling edge of S2 and obeys the proper bus protocol by maintaining DSACKx 
(and/or BERR/HAL T) until and throughout the clock edge that negates AS 
(with the appropriate asynchronous input hold time specified by parameter 
#47B), no wait states are inserted. The bus cycle runs at its maximum speed 
(three clocks per cycle) for bus cycles terminated with DSACKx .. 

To assure proper operation in a synchronous system when BERR or BERR 
and HALT is asserted after DSACKx, BERR (and HALT) must meet the ap
propriate setup time (parameter #27 A) prior to the falling clock edge one 
clock cycle after DSACKx is recognized. This setup time is critical, and the 
MC68EC030 may exhibit erratic behavior if it is violated. 

When operating synchronously, the data-in setup and hold times for syn
chronous cycles may be used instead of the timing requirements for data 
relative to the DS signal. 

The value of CIIN is latched on the rising edge of bus cycle state 4 for all 
cycles terminated with DSACKx. 

MOTOROLA MC68EC030 USER'S MANUAL 7-31 



7.2.10 Synchronous Operation with STERM 

7-32 

The MC68EC030 supports synchronous bus cycles terminated with STERM. 
These cycles, for 32-bit ports only, are similar to cycles terminated with 
DSACKx. The main difference is that STERM can be asserted (and data can 
be transferred) earlier than for a cycle terminated with DSACKx, causing the 
controller to perform a minimum access time transfer in two clock periods. 
However, wait cycles can be inserted by delaying the assertion of STERM 
appropriately. 

Using STERM instead of DSACKx in any bus cycle makes the cycle synchron
ous., Any bus cycle is synchronous if: 

1. Neither DSACKx nor AVEC is recognized during the cycle. 

2. The port size is 32 bits. 

3. Synchronous input setup and hold time requirements (specifications 
#60 and #61) for STERM are met. 

Burst mode operation requires the use of STERM to terminate each of its 
cycles. The first cycle of any burst transfer must be a synchronous cycle as 
described in the preceding paragraph. The exact timing of this cycle is con
trolled by the assertion of STERM, and wait cycles can be inserted as nec
essary. However, the minimum cycle time is two clocks. If a burst operation 
is initiated and allowed to terminate normally, the second, third, and fourth 
cycles latch data on successive falling edges of the clock at a minimum. 
Again, the exact timing for these subsequent cycles is controlled by the timing 
of STERM for each of these cycles, and wait cycles can be inserted as nec
essary. 

Although the synchronous input signals (STERM, CIIN, and CBACK) must be 
stable for the appropriate setup and hold times relative to every rising edge 
of the clock during which AS is asserted, the assertion or negation of CBACK 
and CIIN is internally latched on the rising edge of the clock for which STERM 
is asserted in a synchronous cycle. 

The STERM signal can be generated from the address bus and function code 
value and does not need to be qualified with the AS signal. If STERM is 
asserted and no cycle is in progress (even if the cycle has begun, ECS is 
asserted and then the cycle is aborted), STERM is ignored by the MC68EC030. 

Similarly, CBACK can be asserted independently of the assertion of CBREQ. 
If a cache burst is not requested, the assertion of CBACK is ignored. 

MC68EC030 USER'S MANUAL MOTOROLA 



The assertion of CIIN is ignored when the appropriate cache is not enabled 
or when cache inhibit out (ClOUT) is asserted. It is also ignored during write 
cycles or translation table searches. 

NOTE 

STERM and DSACKx should never be asserted during the same bus 
cycle. 

7.3 DATA TRANSFER CYCLES 

The transfer of data between the controller and other devices involves the 
following signals: 

• Address Bus AO-A31 

• Data Bus 00-031 

o Control Signals 

The address and data buses are both parallel nonmultiplexed buses. The bus 
master moves data on the bus by issuing control signals, and the asynchron
ous/synchronous bus uses a handshake protocol to insure correct movement 
of the data. In all bus cycles, the bus master is responsible for de-skewing 
all signals it issues at both the start and the end of the cycle. In addition, the 
bus master is responsible for de-skewing the acknowledge and data signals 
from the slave devices. The following paragraphs define read, write, and 
read-modify-write cycle operations. An additional paragraph describes burst 
mode transfers. 

Each of the bus cycles is defined as a succession of states. These states apply 
to the bus operation and are different from the controller states described 
in SECTION 4 PROCESSING STATES. The clock cycles used in the descrip
tions and timing diagrams of data transfer cycles are independent of the 
clock frequency. Bus operations are described in terms of external bus states. 

7.3.1 Asynchronous Read Cycle 

During a read cycle, the controller receives data from a memory, coprocessor, 
or peripheral device. If the instruction specifies a long-word operation, the 
MC68EC030 attempts to read four bytes at once. For a word operation, it 
attempts to read two bytes at once, and for a byte operation, one byte. For 
some operations, the controller requests a three-byte transfer. The controller 
properly positions each byte internally. The section of the data bus from 

MOTOROLA MC68EC030 USER'S MANUAL 7-33 



-

7-34 

which each byte is read depends on the operand size, address signals (AO-A 1), 
CIIN and ClOUT, whether the internal caches are enabled, and the port size. 
Refer to 7.2.1 Dynamic Bus Sizing, 7.2.2 Misaligned Operands, and 7.2.6 
Cache Filling for more information on dynamic bus sizing, misaligned op
erands, and cache interactions. 

Figure 7-19 is a flowchart of an asynchronous long-word read cycle. Figure 
7-20 is a flowchart of a byte read cycle. The following figures show functional 
read cycle timing diagrams specified in terms of clock periods. Figure 7-21 
corresponds to byte and word read cycles from a 32-bit port. Figure 7-22 
corresponds to a long-word read cycle from an 8-bit port. Figure 7-23 also 
applies to a long-word read cycle, but from a 16-bit port. 

CONTROLlER EXTERNAL DEVICE 

ADDRESS DEVICE 

1) ASSERT ECSIOCS FOR ONE-HALF CLOCK 
2) SET ANi TO READ 
3) DRIVE ADDRESS ON A31-AO 
4) DRIVE FUNCTION CODE ON FC2-FCO 
5) DRIVE SIZE (SIZ1,SIZO) (FOUR BYTES) 
6) CACHE INHIBIT OUT (ClOUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (ASi .... PRESENT DATA 
8) ASSERT DATA STROBE (os) 

, 

9) ASSERT DATA BUFFER ENABLE (DBEN) 1) DECODE ADDRESS 
2) PLACE DATA ON 031-00 
3) ASSERT DATA TRANSFER AND SIZE 

ACQUIRE DATA - ACKNOWLEDGE (DSACKx) ..... 

1) SAMPLE CACHE INHIBIT IN (CIIN) 
2) LATCH DATA 
3) NEGATE AS AND os .... TERMINATE CYCLE 
4) NEGATE DBEN 

, , 1) REMOVE DATA FROM 031-00 
2) NEGATE DSACK 

START NEXT CYCLE 

Figure 7-19. Asynchronous Long-Word Read Cycle Flowchart 

MC68EC030 USER'S MANUAL MOTOROLA 



CONTROLLER EXTERNAL DEVICE 

ADDRESS DEVICE 

1) ASSERT ECS/ocS FOR ONE· HALF CLOCK 
2) SET ANi TO READ 
3) DRIVE ADDRESS ON A31-AO .... PRESENT DATA 4) DRIVE FUNCTION CODE ON FC2-FCO -
5) DRIVE SIZE (SIZ1,SIZO) (ONE BYTE) 1) DECODE ADDRESS 
6) CACHE INHIBIT OUT (ClOUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (AS) 

2) PLACE DATA ON D31-D24 OR 
D23-D16OR 

8) ASSERT DATA STROBE (OS) 015-D80R 
9) ASSERT DATA BUFFER ENABLE (OOEN) 07-00 

(BASED ON Al,AO, CACHE AND BUS WIDTH) 

ACQUIRE DATA 
3) ASSERT DATA TRANSFER AND SIZE 

,. ACKNOwtEDGE (~ 
-

1) SAMPLE CACHE INHIBIT IN (CIIN) 
2) LATCH DATA 
3) NEGATE AS AND OS 
4) NEGATE DBEN ~ ..... TERMINATE CYCLE -

t 1) REMOVE DATA FROM DATA BUS 
2) NEGATE DSACKx 

START NEXT CYCLE 

Figure 7-20. Asynchronous Byte Read Cycle Flowchart 

MOTOROLA MC68EC030 USER'S MANUAL 7-35 



so S2 S4 SO S2 S4 SO S2 S4 

ClK 

A31-A2 ==x x X 
Al~ / 

AO~ / 

FC2-FCO ==x x X 
SIZl =--.J \ 

WORO BYTE 

SIZO \ / 
RNl=--.J 
ECS~ V V 
OCS~ V V 

AS \ I \ I \ r 
OS \ / \ I \ r 

OSACKl \ I \ / \ 
OSACKO \ / \ / \ 

OBEN =--.J \ / \ / ~ 
031-024 ~ 
023-016 ( OP3 ) 

015-08 ( OP3 ) 

07-00 ( OP3 

~WOROREAO >1< BYTE REAO >1< BYTEREAO~ 

Figure 7-21. Asynchronous Byte and Word Read Cycles - 32-Bit Port 

7-36 MC68EC030 USER'S MANUAL MOTOROLA 



so 52 54 SO 52 54 50 52 54 SO 52 54 

CLK 

A31-A2 ==x X X X 
A1~ / 

AO~ ! \ ! 
FC2-FCO ==x X X X 

51Z1\ ! \ 
LONGWORO 3-BYTE WORO BYTE 

51Z0 \ ! \ ! 
RiWJ 

EC5~ \J \J \J 
OCS \J 

AS 

OS 

ClOUT ~ 
OSACK1 J 
OSACKO 

DBEN J \ ! \ ! \ ! \ r 
031-024 => ~ ( OP1 ) ( OP2 ) ~ 
023-016 => 
015-D8 => 

07-DO => 
I===" BYTE READ ;.i-E BYTE READ ;.i-E BYTE READ ~I-E BmREAD1 

LONG WORD OPERAND READ FROM 8-BIT PORT 

Figure 7-22. Long-Word Read - 8-Bit Port with ClOUT Asserted 

MOTOROLA MC68EC030 USER'S MANUAL 7-37 



so 52 54 50 52 54 SO 52 54 

CLK 

A31-A2 =x X X 
A1~ ! \ 

AO~ 

FC2-FCO ==x X X 
51Z1 \ ! \ 

LONGWORO WORO LONGWORO 

SIZO \ 

ANi=-; 
ECS-V V V 
OCS -V V 

AS \ r-\ ;---\ r 
OS \ r-\ ;---\ r 

OSACK1 J \ / \ / \ 
OSACKO J 

OBEN J \ I \ I \ r 
031-024 => GQ < OP2 ) ( OPO 

023-016 => < OP1 ) < OP3 ) ( OP1 

015-08 => ( OP2 

07-00 => ( OP3 

i====-WOROREAD >1< WORDREAD~lONG-WORDREAD~ 
FROM 32-BIT PORT 

LONG WORO OPERANO REAO FROM 16-BIT PORT 

Figure 7-23. Long-Word Read - 16-Bit and 32-Bit Port 

7-38 MC68EC030 USER'S MANUAL MOTOROLA 



State 0 
The read cycle starts in state 0 (50). The controller drives EC5 low, indi
cating the beginning of an external cycle. When the cycle is the first external 
cycle of a read operand operation, operand cycle start (OC5) is driven low 
at the same time. Ouring 50, the controller places a valid address on AO-A31 
and valid function codes on FCO-FC2. The function codes select the address 
space for the cycle. The controller drives R/W high for a read cycle and 
drives DBEN inactive to disable the data buffers. 51Z0-51Z1 become valid, 
indicating the number of bytes requested to be transferred. ClOUT also 
becomes valid, indicating the state of the ACU CI bit in the access control 
register. 

State 1 
One-half clock later in state 1 (51), the controller asserts A5 indicating that 
the address on the address bus is valid. The controller also asserts D5 also 
during 51. In addition, the EC5 (and OC5, if asserted) signal is negated 
during 51. 

State 2 
Ouring state 2 (52), the controller asserts OBEN to enable external data 
buffers. The selected device uses R/W, 5IZ0-5IZ1, AO-A 1, ClOUT, and D5 
to place its information on the data bus, and drives CIIN if appropriate. 
Any or all of the bytes (D24-031, 016-023, 08-015, and DO-07) are se
lected by 51Z0-51Z1 and AO-A 1. Concurrently, the selected device asserts 
D5ACKx. 

State 3 
As long as at least one of the 05ACKx signals is recognized by the end of 
52 (meeting the asynchronous input setup time requirement), data is latched 
on the next falling edge of the clock, and the cycle terminates. If D5ACKx 
is not recognized by the start of state 3 (53), the controller inserts wait 
states instead of proceeding to states 4 and 5. To ensure that wait states 
are inserted, both 05ACKO and DSACK1 must remain negated throughout 
the asynchronous input setup and hold times around the end of 52. If wait 
states are added, the controller continues to sample the D5ACKx signals 
on the falling edges of the clock until one is recognized. 

State 4 
The controller samples CIIN at the beginning of state 4 (54). Since CIIN is 
defined as a synchronous input, whether asserted or negated, it must meet 
the appropriate synchronous input setup and hold times on every rising 
edge of the clock while AS is asserted. At the end of 54, the controller 
latches the incoming data. 

MOTOROLA MC68EC030 USER'S MANUAL 7-39 



State 5 
The controller negates AS, OS, and DBEN during state 5 (S5). It holds the 
address valid during S5 to provide address hold time for memory systems. 
R/W, SIZO-SIZ1, and FCO-FC2 also remain valid throughout S5. 

The external device keeps its data and DSACKx signals asserted until it 
detects the negation of AS or DS (whichever it detects first). The device 
must remove its data and negate OSACKx within approximately one clock 
period after sensing the negation of AS or DS. OSACKx signals that remain 
asserted beyond this limit may be prematurely detected for the next bus 
cycle. 

7.3.2 Asynchronous Write Cycle 

7-40 

During a write cycle, the controller transfers data to memory or a peripheral 
device. 

Figure 7-24 is a flowchart of a write cycle operation for a long-word transfer. 
The following figures show the functional write cycle timing diagrams spec
ified in terms of clock periods. Figure 7-25 shows two write cycles (between 
two read cycles with no idle time) for a 32-bit port. Figure 7-26 shows byte 
and word write cycles to a 32-bit port. Figure 7-27 shows a long-word write 
cycle to an 8-bit port. Figure 7-28 shows a long-word write cycle to a 16-bit 
port. 

CONTROLLER EXTERNAL DEVICE 

ADDRESS DEVICE 

1) ASSERT ECSIOCS FOR ONE-HALF CLOCK 
2) DRIVE ADDRESS ON A31-AO 
3) DRIVE FUNCTION CODE ON FC2-FCO 
4) DRIVE SIZE (SIZl ,SIZO) (FOUR BYTES) 
5) SET RNrTO WRITE 
6) CACHE INHIBIT OUT (ClOUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (AS) 
8) ASSERT DATA BUFFER ENABLE (DBEN) 
9) DRIVE DATA LINES D31-DO .. ACCEPT DATA -10) ASSERT DATA STROBE (OS) 

1) DECODE ADDRESS 
2) STORE DATA FROM D31-OO 

TERMINATE OUTPUT TRANSFER 
, 3) ASSERT OAT A TRANSFER AND SIZE 

-- ACKNOWLEDGE (DSACKx) 
1) NEGATE AS AND os 
2) REMOVE DATA FROM 031-00 ... TERMINATE CYCLE 3) NEGATE DBEN 

t 1) NEGATE DSACKx 

START NEXT CYCLE 

Figure 7-24. Asynchronous Write Cycle Flowchart 

MC68EC030 USER'S MANUAL MOTOROLA 



SO S2 S4 SO S2 S4 SO S2 S4 SO S2 Sw Sw S4 

ClK 

A31-A2 =x x x X 
A1\ 

AO~ 

FC2-FCO =x x x X 
SIZ1\ 

lONG WORD 

SIZO ~ 

RiiiJ \ / 

ECS~ V V V 
OCS~ V V V 

AS 

DS \ / V ~ ;-
DSACK1 \ r\ r\ I \ ! 
DSACKO \ r\ r\ I \ ! 

DBEN J ~ 1\ r 
D31-DO C=> ( ) < ) C 

~READ >1< WRITE >\< WRITE >1< READ WITH WAIT STATES ~ 

Figure 7-25. Asynchronous Read-Write-Read Cycles - 32-Bit Port 

MOTOROLA MC68EC030 USER'S MANUAL 7-41 



so 52 54 50 52 54 SO 52 54 

CLK 

A31-A2 ==x X X 
A1~ 

AO~ I 
FC2-FCO .==x X X 

SIZ1 .-J \ 
WORD BYTE 

SIZO \ I 
R1ii~ 

EC5 --V V V 
OCS --V V V 

AS \ 1\ 1\ r 
OS 

OSACK1 J \ 1\ I \ 

OSACKO J \ 1\ I \ 
OBEN \ 

031-024 ==> < OP2 ) < OP3 ) < OP3 

023-016 ==> < OP3 ) < OP3 ) < OP3 

015-08 ==> < OP2 ) < OP3 ) < OP3 

07-00 ~ < OP3 ) < OP3 ) < OP3 

~WOROWRITE >1< BYTE WRITE >1< BYTEWRITE~ 

Figure 7-26. Asynchronous Byte and Word Write Cycles - 32-Bit Port 

7-42 MC68EC030 USER'S MANUAL MOTOROLA 



so S2 54 SO S2 54 SO S2 54 SO S2 54 

ClK 

A31-A2 =::x X X X 
Al~ / 

AO"\ ! \ ! 
FC2-FCO .=::x X X X 

SIZ1\ I \ 
lONGWORO 3-BYTE WORO BYTE 

SIZO \ ! \ ! 
Riii~ 

ECS 

• 
os 

\'--_----.J! \'--_----.J;---\~ __ __ 

DBEN " 

D31-024 J----< OPO >----< OPl r----< OP2 >----< OP3 

023-016 =>-----< OPl >----< OPl >-< OP3 >----< OP3 

015-D8 =>-----< OP2 >-< OP2 >-< OP2 >-< OP3 

07-DO =>-----< OP3 >----< OP3 >-< OP3 >----< OP3 

~BYTEWRITE ;.I~ BYTE WRITE >1< BYTE WRITE ;.1< BYTEWRITE~ 

lONG WORO OPERAND REAO TO 8-BIT PORT ;. 

Figure 7-27. Long-Word Operand Write - 8-Bit Port 

MOTOROLA MC68EC030 USER'S MANUAL 7-43 



so S2 S4 SO S2 S4 so S2 S4 

CLK 

A31-A2 ==x x x 
A1~ / \ 

AO~ 

FC2-FCO ==x x x 
SIZ1~ / \ 

LONG WORD WORD LONG WORD 

SIZO~ 

Riii~ 

ECS --V V V 

• OCS --V V 
AS \ 1\ 1\ r 
OS 

OSACK1 --.I \ 1\ I \ 
OSACKO --.I 

OBEN ~ 
031-024 ~ < OPO ) < OP2 ) < OPO 

023-016 ~ < OP1 ) < OP3 ) < OP1 

015-08 ~ < OP2 ) < OP2 ) < OP2 

07-00 ~ < OP3 ) < OP3 ) < OP3 

l:==-=oRDW"~ -. I'"' WORDWRI::=::J-lONGWORDWRITE1 TO 32-BIT PORT 

LONG WORD OPERAND WRITE TO 16-BIT PORT 

Figure 7-28. Long-Word Operand Write - 16-Bit Port 

7-44 MC68EC030 USER'S MANUAL MOTOROLA 



State 0 
The write cycle starts in 50. The controller drives EC5 low, indicating the 
beginning of an external cycle. When the cycle is the first external cycle 
of a write operation, OC5 is driven low at the same time. Ouring 50, the 
controller places a valid address on AO-A31 and valid function codes on 
FCO-FC2. The function codes select the address space for the cycle. The 
controller drives RIW low for a write cycle. 51Z0-51Z1 become valid, indi
cating the number of bytes to be transferred. ClOUT also becomes valid, 
indicating the state of the ACU CI bit in the access control register. 

State 1 
One-half clock later in 51, the controller asserts A5, indicating that the 
address on the address bus is valid. The controller also asserts DBEN during 
51, which can enable external data buffers. In addition, the EC5 (and OC5, 
'if asserted) signal is negated during 51. 

State 2 
During 52, the controller places the data to be written onto the 00-031, 
and samples D5ACKx at the end of 52. 

State 3 
The controller asserts 05 during 53, indicating that the data is stable on 
the data bus. As long as at least one of the 05ACKx signals is recognized 
by the end of 52 (meeting the asynchronous input setup time requirement), 
the cycle terminates one clock later. If D5ACKx is not recognized by the 
start of 53, the controller inserts wait states instead of proceeding to 54 
and 55. To ensure that wait states are inserted, both 05ACKO and D5ACK1 
must remain negated throughout the asynchronous input setup and hold 
times around the end of 52. If wait states are added, the controller continues 
to sample the 05ACKx signals on the falling edges of the clock until one 
is recognized. The selected device uses RIW, 05, 5IZ0-5IZ1, and AO-A 1 to 
latch data from the appropriate byte(s) of the data bus (024-031, 016-023, 
08-015, and 00-07). 51Z0-51Z1 and AO-A 1 select the bytes of the data 
bus. If it has not already done so, the device asserts 05ACKx to signal that 
it has successfully stored the data. 

State 4 
The controller issues no new control signals during 54. 

State 5 
The controller negates A5 and 05 during 55. It holds the address and data 
valid during 55 to provide address hold time for memory systems. R/W, 
5IZ0-5IZ1, FCO-FC2, and OBEN also remain valid throughout 55. 

MOTOROLA MC68EC030 USER'S MANUAL 7-45 

• 



• 

The external device must keep DSACKx asserted until it detects the ne
gation of AS or DS (whichever it detects first). The device must negate 
DSACKx within approximately one clock period after sensing the negation 
of AS or DS. DSACKx signals that remain asserted beyond this limit may 
be prematurely detected for the next bus cycle. 

7.3.3 Asynchronous Read-Modify-Write Cycle 

7-46 

The read-modify-write cycle performs a read, conditionally modifies the data 
in the arithmetic logic unit, and may write the data out to memory. In the 
MC68EC030 controller, this operation is indivisible, providing semaphore 
capabilities for multiprocessor systems. During the entire read-modify-write 
sequence, the MC68EC030 asserts the RMC signal to indicate that an indi
visible operation is occurring. The MC68EC030 does not issue a bus grant 
(BG) signal in response to a bus request (BR) signal during this operation. 
The read portion of a read-modify-write operation is forced to miss in the 
data cache because the data in the cache would not be valid if another 
controller had altered the value being read. However, read-modify-write cycles 
may alter the contents of the data cache as described in 6.1.2. Data Cache. 

No burst filling ofthe data cache occurs during a read-modify-write operation. 

The test and set (TAS) and compare and swap (CAS and CAS2) instructions 
are the only MC68EC030 instructions that utilize read-modify-write opera
tions. Depending on the compare results of the CAS and CAS2 instructions, 
the write cycle(s) may not occur. 

Figure 7-29 is a flowchart of the asynchronous read-modify-write cycle op
eration. Figure 7-30 is an example of a functional timing diagram of a TAS 
instruction specified in terms of clock periods. 

MC68EC030 USER'S MANUAL MOTOROLA 



CONTROLLER EXTERNAL DRIVE 

LOCK BUS 

1) ASSERT READ-MODIFY-WRITE 
CYCLE (RMC) 

t 
ADDRESS DEVICE 

1) ASSERT ECS/ocS FOR ONE-HALF CLOCK 
2) SET RiWTO READ 
3) DRIVE ADDRESS ON A31-AO 
4) DRIVE FUNCTION CODE ON FC2-FCO ~ 

5) DRIVE SIZE (SIZ1,SIZO) 
....... 

6) CACHE INHIBIT OUT (ClOUT) BECOMES VAUD 
7) ASSERT ADDRESS STROBE (AS) 
8) ASSERT DATA STROBE (DS) ~ PRESENT DATA 
9) ASSERT DATA BUFFER ENABLE (DBEN) 

1) DECODE ADDRESS 
2) PLACE DATA ON D31-oo 

ACQUIRE DATA ~ 
3) ASSERT DATA TRANSFER AND 

® SIZE ACKNOWLEDGE (DSACKx) 

1) SAMPLE CACHE INHIBIT IN (CnN) IF CAS2 INSTRUCTION 
2) LATCH DATA AND ONLY ONE OPERAND 
3) NEGATE AS AND OS READ, THEN GO TO @; 
4) NEGATE DBEN 

~ 
IF OPERANDS DO NOT 

5) START DATA MODIRCATION TERMINATE CYCLE MATCH, THEN GO TO 
©;ELSEGOTO 

1) REMOVE DATA FROM D31-DO ® © r--

START OUTPUT TRANSFER 
2) NEGATE DSACKx ~ ® 

• 
1) ASSERT ECS/ocS FOR ONE-HALF CLOCK 
2) DRIVE ADDRESS ON A31-AO (IF DIFFERENT) 
3) DRIVE SIZE (SIZ1,SIZO) t 4) SET RmTOWRITE 

" 5) ClOUT BECOMES VAUD -
6) ASSERT AS 
7) ASSERT DBEN 
8) PLACE DATA ON D31-oo 

f-->- ACCEPT DATA 9) ASSERTDS 

1) DECODE ADDRESS 
2) STORE DATA FROM D31-DO 
3) ASSERT DSACKx @ 

TERMINATE OUTPUT TRANSFER ~ 
IF CAS2 INSTRUCTION 

1) NEGATE AS AND OS AND ONLY ONE OPERAND 
2) REMOVE DATA FROM D31-00 WRITTEN, THEN GO TO 
3) NEGATE DBEN ~ TERMINATE CYCLE ®; ELSE GO TO ® 

1) NEGATE DSACKx ~ ® 

UNLOCK BUS 

I 1) NEGATE RMC ~ ....... t f 
START NEXT CYCLE 

Figure 7-29. Asynchronous Read-Modify-Write Cycle Flowchart 

MOTOROLA MC68EC030 USER'S MANUAL 7-47 



7-48 

so S2 54 5i 5i 56 sa 510 511 50 ___ JLSUL _____ IL 
, _____ -----=x== 

c= 
c= , _____ -----=x== 

---------------------------- c= 
c= 

--~'--------- - --.~ 
r - - - -.------

---------------, ---v------'--
~----JI \ r-----·~ 

~----JI --~-----.~ 

\ ;------
r---·-----, 

------------------------' 

\ 
,..---

I 

\ , 
I 

\ r----, 

( OP3 \.----, 

( OP3 '>----_. , 
( OP3 \..----. , 
( OP3 \..----. , 

--------------- -- - - .-----

----------------~ \ , 
'- -, 

------ INDIVI5IBLECYCLE-------~>~1 /<-NEXT CYCLE 

Figure 7-30. Asynchronous Byte Read-Modify-Write Cycle - 32-Bit Port 
(TAS Instruction with ClOUT or CIIN Asserted) 

MC68EC030 USER'S MANUAL MOTOROLA 



State 0 
The controller asserts ECS and OCS in SO to indicate the beginning of an 
external operand cycle. The controller also asserts RMC in SO to· identify 
a read-modify-write cycle. The controller places a valid address on AO-A31 
and valid function codes on FCO-FC2. The function codes select the address 
space for the operation. SilO-Sill become valid in SO to indicate the 
operand size. The controller drives R/W high for the read cycle and sets 
ClOUT according to the value ofthe ACU CI bit in the access control register. 

State 1 
One-half clock later in S1, the controller asserts AS, indicating that the 
address on the address bus is valid. The controller asserts DS during S1. 
In addition, the ECS (and OCS, if asserted) signal is negated during S1. 

State 2 
During state 2 (S2), the controller drives DBEN active to enable external 
data buffers. The selected device uses R/W, SllO-Sll1, AO-A 1, and OS to 
place information on the data bus. Any or all of the bytes (024-031, D16-023, 
D8-015, and DO-D7) are selected by SllO-Sll1 and AO-A 1. Concurrently, 
the selected device may assert the DSACKx signals. 

State 3 
As long as at least one of the OSACKx signals is recognized by the end of 
S2 (meeting the asynchronous input setup time requirement), data is latched 
on the next falling edge of the clock, and the cycle terminates. If DSACKx 
is not recognized by the start of S3, the controller inserts wait states instead 
of proceeding to S4 and S5. To ensure that wait states are inserted, both 
DSACKO and DSACKl must remain negated throughout the asynchronous 
input setup and hold times around the end of S2. If wait states are added, 
the controller continues to sample the DSACKx signals on the falling edges 
of the clock until one is recognized. 

State 4 
The controller samples the level of CIIN at the beginning of S4. At the end 
of S4, the controller latches the incoming data. 

State 5 
The controller negates AS, OS, and DBEN during S5. If more than one read 
cycle is required to read in the operand(s), SO-S5 are repeated for each 
read cycle. When finished reading, the controller holds the address, R/W, 
and FCO-FC2 valid in preparation for the write portion of the cycle. 

The external device keeps its data and DSACKx signals asserted until it 
detects the negation of AS or OS (whichever it detects first). The device 

MOTOROLA MC68EC030 USER'S MANUAL 7-49 

• 



III 

7-50 

must remove the data and negate DSACKx within approximately one clock 
period after sensing the negation of AS or DS. DSACKx signals that remain 
asserted beyond this limit may be prematurely detected for the next portion 
of the operation. 

Idle States 
The controller does not assert any new control signals during the idle states, 
but it may internally begin the modify portion of the cycle at this time. 
S6-S11 are omitted if no write cycle is required. If a write cycle is required, 
the RIW signal remains in the read mode until S6 to prevent bus conflicts 
with the preceding read portion of the cycle; the data bus is not driven 
until S8. 

State 6 
The controller asserts ECS and OCS in S6 to indicate that another external 
cycle is beginning. The controller drives R/W low for a write cycle. ClOUT 
also becomes valid, indicating the state of the ACU CI bit in the access 
control register. Depending on the .write operation to be performed, the 
address lines may change during S6. 

State 7 
In S7, the controller asserts AS, indicating that the address on the address 
bus is valid. The controller also asserts DBEN, which can be used to enable 
data buffers during S7. In addition, the ECS (and OCS, if asserted) signal 
is negated during S7. 

State 8 
During S8, the controller places the data to be written onto DO-D31. 

State 9 
The controller asserts DS during S9 indicating that the data is stable on 
the data bus. As long as at least one of the DSACKx signals is recognized 
by the end of S8 (meeting the asynchronous input setup time requirement), 
the cycle terminates one clock later. If DSACKx is not recognized by the 
start of S9, the controller inserts wait states instead of proceeding to S10 
and S11. To ensure that wait states are inserted, both DSACKO and DSACK1 
must remain negated throughout the asynchronous input setup and hold 
times around the end of S8.lfwait states are added, the controller continues 
to sample DSACKx signals on the falling edges of the clock until one is 
recognized. 

The selected device uses R/W, DS, SIZO-SIZ1, and AO-A 1 to latch data from 
the appropriate section(s) of the data bus (D24-D31, D16-D23, D8-D15, 

MC68EC030 USER'S MANUAL MOTOROLA 



and DO-D7). SilO-Sill and AO-A 1 select the data bus sections. If it has 
not already done so, the device asserts OSACKx when it has successfully 
stored the data. 

State 10 
The controller issues no new control signals during S10. 

State 11 
The controller negates AS and DS during S11. It holds the address and 
data valid during Sll to provide address hold time for memory systems. 
R/W and FCO-FC2 also remain valid throughout Sll. 

If more than one write cycle is required, S6-S11 are repeated for each write 
cycle. 

The external device keeps DSACKx asserted until it detects the negation 
of AS or OS (whichever it detects first). The device must remove its data 
and negate OSACKx within approximately one clock period after sensing 
the negation of AS or DS. 

7.3.4 Synchronous Read Cycle 

A synchronous read cycle is terminated differently from an asynchronous 
read cycle; otherwise, the cycles assert and respond to the same signals, in 
the same sequence. STERM rather than OSACKx is asserted by the addressed 
external device to terminate a synchronous read cycle. Since STERM must 
meet the synchronous setup and hold times with respect to all rising edges 
of the clock while AS is asserted, it does not need to be synchronized by the 
controller. Only devices with 32-bit ports may assert STERM. STERM is also 
used with the CBREQ and CBACK signals during burst mode operation. It 
provides a two-clock (minimum) bus cycle for 32-bit ports and single-clock 
(minimum) burst accesses, although wait states can be inserted for these 
cycles as well. Therefore, a synchronous cycle terminated with STERM with 
one wait cycle is a three-clock bus cycle. However, note that STERM is as
serted one-half clock later than DSACKx would be for a similar asynchronous 
cycle with zero wait cycles (also three clocks). Thus, if dynamic bus sizing is 
not needed, STERM can be used to provide more decision time in an external 
cache design than is available with DSACKx for three-clock accesses. 

Figure 7-31 is a flowchart of a synchronous long-word read cycle. Byte and 
word operations are similar. Figure 7-32 is a functional timing diagram of a 
synchronous long-word read cycle. 

MOTOROLA MC68EC030 USER'S MANUAL 7-51 

• 



• 

7-52 

CONTROlleR EXTERNAL DEVICE 

ADDRESS DEVICE 

1) ASSERT ECSIOCS FOR ONE-HALF CLOCK 
2) DRIVE RNlTO READ 
3) DRIVE ADDRESS ON A31-AO 
4) DRIVE FUNCTION CODE ON FC2-FCO 
5) DRIVE SIZE (SIZ1,SIZO) (FOUR BYTES) 
6) CACHE INHIBIT OUT (ClOUT) BECOMES VAUD 
7) ASSERT ADDRESS STROBE (AS) 
8) ASSERT CACHE BURST REQUEST (CBREQ) 

(IF BURST POSSSIBLE) 
9) ASSERT DATA STROBE (OS) 

10) ASSERT DATA BUFFER ENABLE (DBEN) ..... PRESENT DATA 

1) DECODE ADDRESS 
2) PLACE DATA ON D31-OO 
3) ASSERT SYNCHRONOUS TERMINATION (STERM) -ACQUIRE DATA --

1) SAMPLE CACHE INHIBIT IN (CIIN) 
AND CACHE BURST ACKNOWLEDGE (CBACK) 

2) LATCH DATA 
3) NEGATE AS AND DS 
4) NEGATE DBEN ... 

TERMINATE CYCLE ,. 

t 1) REMOVE DATA FROM D31-DO 
2) NEGATE STERM 

START NEXT CYCLE 

Figure 7-31. Synchronous Long-Word Read Cycle Flowchart -
No Burst Allowed 

MC68EC030 USER'S MANUAL MOTOROLA 



SO S2 

CLK~ 
A31-AO ==>< ______ _ 

FC2-FCO ==>< ______ _ 
SIZ1~ 

SIZO~ 

RiiiJ 
ECS~ 

OCS~ 

As~ 

DS~ 

OSACK1 J 
OSACKO J 
STERM~ 

CIIN~ 

ClOUT J 
CBREQ~ 

CBACK J 
031-00 ) ('--__ 

OBEN~ 

Figure 7-32. Synchronous Read with CIIN Asserted and CBACK Negated 

MOTOROLA MC68EC030 USER'S MANUAL 

• 

7-53 



• 

7-54 

State 0 
The read cycle starts with SO. The controller drives ECS low, indicating the 
beginning of an external cycle. When the cycle is the first cycle of a read 
operand operation, OCS is driven low at the same time. During SO, the 
controller places a valid address on AO-A31 and valid function codes on 
FCO-FC2. The function codes select the address space for the cycle. The 
controller drives R/W high for a read cycle and drives DBEN inactive to 
disable the data buffers. SIZ1-SIZO become valid, indicating the number 
of bytes to be transferred. ClOUT also becomes valid, indicating the state 
of the ACU CI bit in the access control register. 

State 1 
One-half clock later in S1, the controller asserts AS, indicating that the 
address on the address bus is valid. The controller also asserts OS during 
S1. If the burst mode is enabled for the appropriate on-chip cache and all 
four long words of the cache entry are invalid, (i.e., four long words can 
be read in), CBREQ is asserted. In addition, the ECS (and OCS, if asserted) 
signal is negated during S1. 

State 2 
The selected device uses RIW, SIZO-SIZ1, AO-A 1, and ClOUT to place its 
information on the data bus. Any or all of the byte sections of the data bus 
(024-031, 016-023, D8-015, and 00-07) are selected by SIZO-SIZ1 and 
AO-A 1. During S2, the controller drives DBEN active to enable external 
data buffers. In systems that use two-clock synchronous bus cycles, the 
timing of DBEN may prevent its use. At the beginning of S2, the controller 
samples the level of STERM. If STERM is recognized, the controller latches 
the incoming data at the end of S2. If the selected data is not to be cached 
for the current cycle or if the device cannot supply 32 bits, CIIN must be 
asserted at the same time as STERM. In addition, the state of CBACK is 
latched when STERM is recognized. 

Since CIIN, CBACK, and STERM are synchronous signals, they must meet 
the synchronous input setup and hold times for all rising edges of the clock 
while AS is asserted. If STERM is negated at the ~eginning of S2, wait 
states are inserted after S2, and STERM is sampled on every rising edge 
thereafter until it is recognized. Once STERM is recognized, data is latched 
on the next falling edge of the clock (corresponding to the beginning of 
S3). 

State 3 
The controller negates AS, DS, and OBEN during S3. It holds the address 
valid during S3 to simplify memory interfaces. RIW, SIZO-SIZ1, and FCO-FC2 
also remain valid throughout S3. 

MC68EC030 USER'S MANUAL MOTOROLA 



The external device must keep its data asserted throughout the synchron
ous hold time for data from the beginning of S3. The device must remove 
its data within one clock after asserting STERM and negate STERM within 
two clocks after asserting STERM; otherwise, the controller may inad
vertently use STERM for the next bus cycle. 

7.3.5 Synchronous Write Cycle 

A synchronous write cycle is terminated differently from an asynchronous 
write cycle and the data strobe may not be useful. Otherwise, the cycles 
assert and respond to the same signal, in the same sequence. STERM is 
asserted by the external device to terminate a synchronous write cycle. The 
discussion of STERM in the preceding section applies to write cycles as well 
as to read cycles. 

DS is not asserted for two-clock synchronous write cycles; therefore, the 
clock (ClK) may be used as the timing signal for latching the data. In addition, 
there is no time from the latest assertion of AS and the required assertion 
of STERM for any two-clock synchronous bus cycle. The system must qualify 
a memory write with the assertion of AS to ensure that the write is not aborted 
by internal conditions within the MC68EC030. 

Figure 7-33 is a flowchart of a synchronous write cycle. Figure 7-34 is a 
functional timing diagram of this operation with wait states. 

MOTOROLA MC68EC030 USER'S MANUAL 7-55 



7-56 

CONTROLLER EXTERNAL DEVICE 

ADDRESS DEVICE 

1) ASSERT ECSIOCS FOR ONE-HALF CLOCK 
2) DRIVE ADDRESS ON A31-AO 
3) DRIVE FUNCTION ON FC2-FCO 
4) DRIVE SIZE (SIZ1,SIZO) (FOUR BYTES) 
5) SET Am TO WRITE 
6) CACHE INHIBIT OUT (ClOUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (ASj 
8) ASSERT DATA BUFFER ENABLE (DBEN) 
9) DRIVE DATA LINES D31-00 

10) ASSERT DATA STROBE (OS) IF WAIT STATES) .. ACCEPT DATA ,. 

1) DECODE ADDRESS 
2) STORE DATA ON 00-031 
3) ASSERT SYNCHRONOUS TERMINATION (STERM) -TERMINATE OUTPUT TRANSFER -

1) NEGATE AS (AND OS) 
2) REMOVE DATA FROM D0-31 
3) NEGATE DBEN .. TERMINATE CYCLE ,. 

~ --
1) NEGATE STERM 

START NEXT CYCLE 

Figure 7-33. Synchronous Write Cycle Flowchart 

State 0 
The write cycle starts with SO. The controller drives ECS low, indicating 
the beginning of an external cycle. When the cycle is the first cycle of a 
write operation, OCS is driven low at the same time. During SO, the con
troller places a valid address on AO-A31 and valid function codes on 
FCO-FC2. The function codes select the address space for the cycle. The 
controller drives RIW low for a write cycle. SIZO-SIZ1 become valid, indi
cating the number of bytes to be transferred. ClOUT also becomes valid, 
indicating the state of the ACU CI bit in the access control register. 

State 1 
One-half clock later in S 1, the controller asserts AS, indicating that the 
address on the address bus is valid. The controller also asserts DBEN during 
S1, which may be used to enable the external data buffers. In addition, the 
ECS (and OCS, if asserted) signal is negated during S1. 

MC68EC030 USER'S MANUAL MOTOROLA 



SO S1 S2 Sw Sw S3 

CLKSLJl.JL 

A31-AO ~""---_____ _ 

FC2-FCO ~'--_____ _ 

SIZ1~ 

SIZO~ 

PiiiJ 
ECS~ 

OCS~ 

As \ r 
Ds~ 

OSACKO J 
STERM J 

CIIN J 
ClOUT -n 

CBREQ 

CBACK J 
031-00 ~ >------«---
OBENJ \ 

Figure 7-34. Synchronous Write Cycle with Wait States - ClOUT Asserted 

MOTOROLA MC68EC030 USER'S MANUAL 7-57 



-

State 2 
Ouring S2, the controller places the data to be written onto 00-031. The 
selected device uses R/W, ClK, SIZO-SIZ1, and AO-A 1 to latch data from 
the appropriate section(s) of the data bus (024-031, 016-023, 08-015, 
and 00-07). SIZO-SIZ1 and AO-A 1 select the data bus sections. The device 
asserts STERM when it has successfully stored the data. If the device does 
not assert STERM by the rising edge of S2, the controller inserts wait states 
until it is recognized. The controller asserts OS at the end of S2 if wait 
states are inserted. For zero-wait-state synchronous write cycles, OS is not 
asserted. 

State 3 
The controller negates AS (and OS, if necessary) during S3. It holds the 
address and data valid during S3 to simplify memory interfaces. RIW, 
SIZO-SIZ1, FCO-FC2, and OBEN also remain valid throughout S3. 

The addressed device must negate STERM within two clock periods after 
asserting it, or the controller may use STERM for the next bus cycle. 

7.3.6 Synchronous Read-Modify-Write Cycle 

7-58 

A synchronous read-modify-write operation differs from an asynchronous 
read-modify-write operation only in the terminatin'g signal of the read and 
write cycles and in the use of ClK instead of OS latching data in the write 
cycle. Like the asynchronous operation, the synchronous read-modify-write 
operation is indivisible. Although the operation is synchronous, the burst 
mode is never used during read-modify-write cycles. 

Figure 7-35 is a flowchart of the synchronous read-modify-write operation. 
Timing for the" cycle is shown in Figure 7-36. 

MC68EC030 USER'S MANUAL MOTOROLA 



CONTROLLER EXTERNAL DEVICE 
LOCK BUS 

1) ASSERT READ-MODIFY-WRITE CYCLE 
(RMC) 

-l 
START INPUT TRANSFER 

1) ASSERT ECSIOCS FOR ONE-HALF CLOCK 
2) DRIVE RlWTO READ 
3) DRIVE FUNCTION CODE ON FC2-fCO 
4) DRIVE ADDRESS ON A31-AO ., 
5) DRIVE SllE (Sill, SilO) ..... 
6) CACHE INHIBIT OUT (CIOUl) BECOMES 

VALID 
7) ASSERT ADDRESS STROBE (AS) 
8) ASSERT DATA STROBE (DS) 

~ PRESENT DATA 9) ASSERT DATA BUFFER ENABLE (~ 

1) DECODE ADDRESS 
2) PLACE DATA ON D31-oo 

~ 
3) ASSERT SYNCHRONOUS 

TERMINATE INPUT TRANSFER TERMINATION (STERM) 

1) SAMPLE CACHE INHIBIT IN (CIIN) ® 
2) LATCH DATA 

IF CAS2 INSTRUCTION 
3) NEGATE AS AND OS 
4) NEGATE DBEN AND ONLY ONE OPERAND 

5) START DATA MODICIATION READ, THEN GO TO ®; 
~ TERMINATE CYCLE IF OPERANDS DO NOT 

MATCH, THEN GO TO ©; 
1) REMOVE DATA FROM D31-oo 

~ 
ELSEGOTO® 

START OUTPUT TRANSFER 
2) NEGATE STERM ® © f-

1) ASSERT ECSIOCS FOR ONE-HALF CLOCK 
2) SET RIW TO WRITE 
3) DRIVE ADDRESS ON A31-AO (IF DIFFERENT) ~ 4) DRIVE SIZE (Sill, SilO) ., 
5) ClOUT BECOMES VALID 
6) ASSERT AS 
7) ASSERT DBEN 
8) PLACE DATA ON D31-00 
9) ASSERT OS (IF WAIT STATES) 

~ ACCEPT DATA 

1) DECODE ADDRESS 
2) STORE DATA FROM D31-DO 

TERM INATE OUTPUT TRANSFER ~ 3) ASSERT STERM @ 

1) NEGATE AS (AND OS) IF CAS2 INSTRUCTION 

2) REMOVE DATA FROM D31-00 AND ONLY ONE 

3) NEGATE DBEN 
~ 

OPERAND 
TERMINATE CYCLE WRITTEN, THEN GO TO 

~ 
@; ELSE GO TO ® 

1) NEGATE STERM ® 
UNLOCK BUS 

1) NEGATE RMC ., - t 1 
START NEXT CYCLE 

Figure 7-35. Synchronous Read-Modify-Write Cycle Flowchart 

MOTOROLA MC68EC030 USER'S MANUAL 7-59 



SO S1 S2 S3 Si Si S4 S5 S6 S7 

CLK~ ___ J1JL 
A31-AO ==>< -- -==>< ___ _ 

FC2-FCO ==><""'--_____ _ 
SIZ1 .-J 
SIZO~ 

RiiiJ 
RMC \ ______ _ 

---\1......_--

-~ ~---~ ~ 
ECS LJ LJ 

OCS~---~ 

AS~---~ 

-~ r-----
os ~ 

OSACK1 J 
OSACKO J 
STERM~---~ 

CIIN~---

ClOUT J 
CBREQ ---------

CBACK J 
031-00 =:)>-----« )--- ---c= 

OBEN J V \'--__ 

Figure 7-36. Synchronous Read-Modify-Write Cycle Timing - CIIN Asserted 

7-60 MC68EC030 USER'S MANUAL MOTOROLA 



State 0 
The controller asserts ECS and OCS in SO to indicate the beginning of an 
external operand cycle. The controller also asserts RMC in SO to identify 
a read-modify-write cycle. The controller places a valid address on AO-A31 
and valid function codes on FCO-FC2. The function codes select the address 
space for the operation. SIZO-SIZ1 become valid in SO to indicate the 
operand size. The controller drives R/W high for a read cycle and sets ClOUT 
to the value of the ACU CI bit in the access control register. The controller 
drives OBEN inactive to disable the data buffers. 

State 1 
One-half clock later in S 1, the controller asserts AS, indicating that the 
address on the address bus is valid. The controller also asserts OS during 
S1. In addition, the ECS (and OCS, if asserted) signal is negated during S1. 

State 2 
The selected device uses R/W, SIZO-SIZ1, AO-A 1, and ClOUT to place its 
information on the data bus. Any or all of the byte sections (024-031, 
016-023, 08-015, and 00-07) are selected by SIZO-SIZ1 and AO-A 1. Our- • 
ing S2, the controller drives OBEN active to enable external data buffers. 
In systems that use two-clock synchronous bus cycles, the timing of OBEN 
may prevent its use. At the beginning of S2, the controller samples the 
level of STERM. If STERM is recognized, the controller latches the incoming 
data. If the selected data is not to be cached for the current cycle or if the 
device cannot supply 32 bits, CIIN must be asserted at the same time as 
STERM. 

Since CIIN and STERM are synchronous signals, they must meet the syn
chronous input setup and hold times for all rising edges of the clock while 
AS is asserted. If STERM is negated at the beginning of S2, wait states are 
inserted after S2, and STERM is sampled on every rising edge thereafter 
until it is recognized. Once STERM is recognized, data is latched on the 
next falling edge of the clock (corresponding to the beginning of S3). 

State 3 
The controller negates AS, OS, and OBEN during S3. If more than one read 
cycle is required to read in the operand(s), SO-S3 are repeated accordingly. 
When finished with the read cycle, the controller holds the address, R/w, 
and FCO-FC2 valid in preparation for the write portion of the cycle. 

The external device must keep its data asserted throughout the synchron
ous hold time for data from the beginning of S3. The device must remove 
the data within one-clock cycle after asserting STERM to avoid bus con-

MOTOROLA MC68EC030 USER'S MANUAL 7-61 



III 

7-62 

tention. It must also negate STERM within two clocks after asserting STERM; 
otherwise, the controller may inadvertently use STERM for the next bus 
cycle. 

Idle States 
The controller does not assert any new control signals during the idle states, 
but it may begin the modify portion of the cycle at this time. The R/W signal 
remains in the read mode until S4 to prevent bus conflicts with the pre
ceding read portion of the cycle; the data bus is not driven until S6. 

State 4 
The controller asserts ECS and OCS in S4 to indicate that an external cycle 
is beginning. The controller drives R/W low for a write cycle. ClOUT also 
becomes valid, indicating the state of the ACU CI bit in the access control 
register. Oepending on the write operation to be performed, the address 
lines may change during S4. 

State 5 
In state 5 (S5), the controller asserts AS to indicate that the address on the 
address bus is valid. The controller also asserts OBEN during S5, which 
can be used to enable external data buffers. 

State 6 
Ouring S6, the controller places the data to be written onto the 00-031. 

The selected device uses R/W, ClK, SIZO-SIZ1, and AO-A 1 to latch data 
from the appropriate byte(s) of the data bus (024-031, 016-023, 08-015, 
and 00-07). SIZO-SIZ1 and AO-A 1 select the data bus sections. The device 
asserts STERM when it has successfully stored the data. If the device does 
not assert STERM by the rising edge of S6, the controller inserts wait states 
until it is recognized. The controller asserts OS at the end of S6 if wait 
states are inserted. Note that for zero-wait-state synchronous write cycles, 
OS is not asserted. 

State 7 
The controller negates AS (and OS, if necessary) during S7. It holds the 
address and data valid during S7 to simplify memory interfaces. R/Wand 
FCO-FC2 also remain valid throughout S7. 

If more than one write cycle is required, S8-S11 are repeated for each write 
cycle. 

The external device must negate STERM within two clock periods after 
asserting it, or the controller may inadvertently use STERM for the next 
bus cycle. 

MC68EC030 USER'S MANUAL MOTOROLA 



7.3.7 Burst Operation Cycles 

The MC68EC030 supports a burst mode for filling the on-chip instruction and 
data caches. 

The MC68EC030 provides a set of handshake control signals for the burst 
mode. When a miss occurs in one of the caches, the MC68EC030 initiates a 
bus cycle to obtain the required data or instruction stream fetch. If the data 
or instruction can be cached, the MC68EC030 attempts to fill a cache entry. 
Depending on the alignment for a data access, the MC68EC030 may attempt 
to fill two cache entries. The controller may also assert CBREO to request a 
burst fill operation. That is, the controller can fill additional entries in the line. 
The MC68EC030 allows a burst of as many as four long words. 

The mechanism that asserts the CBREO signal for burstable cache entries is 
enabled by the data burst enable (DBE) and instruction burst enable (lBE) 
bits of the cache control register (CACR) for the data and instruction caches, 
respectively. Either of the following conditions cause the MC68EC030 to in
itiate a cache burst request (and assert CBREO) for a cacheable read cycle: 

• The address and function code signals of the current instruction or data 
fetch do not match the indexed tag field in the respective instruction or 
data cache . 

• All four long words corresponding to the indexed tag in the appropriate 
cache are marked invalid. 

However, the MC68EC030 does not assert CBREO during the first portion of 
a misaligned access if the remainder of the access does not correspond to 
the same cache line. Refer to 6.1.3.1 SINGLE ENTRY MODE for details. 

If the appropriate cache is not enabled or if the cache freeze bit for the cache 
is set, the controller does not assert CBREO. CBREO is not asserted during 
the read or write cycles of any read-modify-write operation. 

The MC68EC030 allows burst filling only from 32-bit ports that terminate bus 
cycles with STERM and respond to CBREO by asserting CBACK. When the 
MC68EC030 recognizes STERM and CBACK and it has asserted CBREO, it 
maintains AS, OS, R/W, AO-A31, FCO-FC2, SIZO-SIZ1 in their current state 
throughout the burst operation. The controller continues to accept data on 
every clock during which STERM is asserted until the burst is complete or 
an abnormal termination occurs. 

CBACK indicates that the addressed device can respond to a cache burst 
request by supplying one more long word of data in the burst mode. It can 

MOTOROLA MC68EC030 USER'S MANUAL 7-63 

• 



• 

7-64 

be asserted independently of the CBREO signal, and burst mode is only 
initiated if both of these signals are asserted for a synchronous cycle. If the 
MC68EC030 executes a full burst operation and fetches four long words, 
CBREO is negated after STERM is asserted for the third cycle, indicating that 
the MC68EC030 only requests one more long word (the fourth cycle). CBACK 
can then be negated, and the MC68EC030 latches the data for the fourth cycle 
and completes the cache line fill. 

The following conditions can, abort a burst fill: 

• CIIN asserted, 

• BEFfR asserted, or 

• CBACK negated prematurely. 

The processing of a bus error during a burst fill operation is described in 
7.5.1 Bus Errors. 

For the purposes of halting the controller or arbitrating the bus away from 
the controller with BR, a burst operation is a single cycle since AS remains 
asserted during the entire operation. If the HALT signal is asserted during a 
burst operation, the controller halts at the end of the operation. Refer to 7.5.3 
Halt Operation for more information about the halt operation. An alternate 
bus master requesting the bus with BR may become bus master at the end 
of the operation provided BR is asserted early enough to be internally syn
chronized before another controller cycle begins. Refer to 7.7 BUS ARBITRA-

, TION for more information about bus arbitration. 

The simultaneous assertion of BERR and HALT during a bus cycle normally 
indicates that the cycle should be retried. However, during the second, third, 
or fourth cycle of a burst operation, this signal combination indicates a bus 
error condition, which aborts the burst operation. In addition, the controller 
remains in the halted state until HALT is negated. For information about bus 
error processing, refer to 7.5.1. Bus Errors. 

Figure 7-37 is a flowchart of the burst operation. The following timing dia
grams show various burst operations. Figure 7-38 shows burst operations 
for long-word requests with two wait states inserted in the first access and 
one wait cycle inserted in the subsequent accesses. Figure 7-39 shows a burst 
operation that fails to complete normally due to CBACK negating prema
turely. Figure 7-40 shows a burst operation that is deferred because the entire 
operand does not correspond to the same cache line. Figure 7-41 shows a 
burst operation aborted by CIIN. Because CBACK corresponds to the next 
cycle, three long words are transferred even thoughCBACK is only asserted 
for two clock periods. 

MC68EC030 USER'S MANUAL MOTOROLA 



CONTROLlER EXTERNAL DEVICE 

ADDRESS DEVICE 

1) ASSERT ECS/ocS FOR ONE·HALF CLOCK 
2) DRIVE Riii TO READ 
3) DRIVE ADDRESS ON A31-AO 
4) DRIVE FUNCTION ON FC2-FCO 
5) DRIVE SIZE (SIZ1-SIZO) (FOUR BYTES) 
6) CACHE INHIBIT OUT (ClOUT) BECOMES 

VALID 
7) ASSERT ADDRESS STROBE (AS) 
8) ASSERT CACHE BURST REQUEST (CSREQ) -9) ASSERT DATA STROBE (OS) ~ PRESENT DATA f<--

10) ASSERT DATA BUFFER ENABLE (DBENf 
1) DECODE ADDRESS 
2) PLACE DATA ON 031-00 
3) ASSERT SYNCHRONOUS TERMINATION (STERM) 

.-ACQUIRE DATA ..... 4) ASSERT CACHE BURST ACKNOWLEDGE (CBACK) 

1) SAMPLE CACHE INHIBIT IN (CUN) 
AND CACHE BURST ACKNOWLEDGE 
(CBACK) • 2) LATCH DATA 

, 
TERMINATE CYCLE , 

1) REMOVE DATA FROM 031-00 
2) NEGATE STERM (IF NECESSARY) 
3) NEGATE CBACK (IF NECESSARY) 

END OF BURST 
_ WHEN 4 LONG WORDS TRANSFERRED UNTIL 4 LONG WORDS TRANSFERRED 
..... 

1) NEGATE AS AND OS 
2) NEGATE DBEN 

t 
START NEXT CYCLE 

Figure 7-37. Burst Operation Flowchart - Four Long Words Transferred 

MOTOROLA MC68EC030 USER'S MANUAL 7-65 



III 

ClK 

A31-A4 J __________________________ _ 

FC2-FCO J'---_________________________ _ 
SIZ1-SIZO \ __ ...... __________________________ _ 

ANi=.! 
ECS-V 

OCS -v 
~ \~-------------------~;-

\~------------------------------~;-

CBREQ \~------------------------~I 
\~--------------~I 

031-00 

DBEN J 

7-66 

\~----------------------~;-
01 10 11 00 

VALUE OF A3:A2INCREMENTED BY THE SYSTEM HARDWARE 

Figure 7-38. Long-Word Operand Request from $07 with 
Burst Request and Wait Cycle 

MC68EC030 USER'S MANUAL MOTOROLA 



MOTOROLA 

so S2 S4 S6 

CLK 

A31-A4 ===xl--_________ _ 
A3~ 

A2-AO ~ 

FC2-FCO ===xl-__________ _ 
SIZ1-SIZO _~_.....J.. __________ _ 

cv 
\.-_____ --Ili 

I 

AS \ 
r----

DS \ \....--__ ----;..--Jr 
STERM 

CIINJ 

ClOUT j 

CBREQ \'--_------!..._I 
CBACK / 

D31-oo ) 

DBENJ 

\: I I~EOFCBACK 
:.. ____ -1 ___ -' CONTROL NEXT CYCLE 

~ \-00(-
01 I 10 I 11 

VALUE OF A3:A2INCREMENTED BY THE SYSTEM HARDWARE 

NOTES: 
1. Assertion of CBACK causes data to be placed on 031-00. 
2. Continued assertion of CBACK causes data to be placed on 031-00. 
3. Negation of CBACK causes AS to be negated. 

Figure 7-39. Long-Word Operand Request from $07 with 
Burst Request - CBACK Negated Early 

MC68EC030 USER'S MANUAL 7-67 



SO Sl S2 Sw Sw S3 SO Sl S2 Sw Sw S3 Sw Sw S4 S5 Sw Sw S6 S7 Sw Sw S8 S9 

ClK 

A31-A5 ~""'--_____ ...JX ..... ____________________ _ 

A4~ I 
A3-A1 .-J \~-------------------------------
AO~ 

FC2-FCO ~ ______ ...JXI....-___________________ __ 

SIZ1~ 

SIZO~ 

PJW .-J 
ECS -v 
ocs-V 

/ AS \ ..... ___ ...J 

I ~ \ ..... ___ ...J 

CBACKJ 

D31-DO 

I 

V 

\ r 
\ r 

\ I 
\ I 

DBEN J \ I \~ ________________________ -...Jr 
PREVIOUS CACHE BLOCK +- NEXT CACHE BLOCK· START BURST CYCLE 

Figure 7-40. Long-Word Operand Request from $OE - Burst Fill Deferred 

7-68 MC68EC030 USER'S MANUAL MOTOROLA 



MOTOROLA 

SO S2 S4 

CLKSLJUL 
A31-AO ==::x ......... _____ _ 

FC2-FCO ==::x ......... _____ _ 
SIZ1~ 

SIZO~ 

RNi~ 

ECS~ 

OCS~ 

AS 

DS 

DSACK1 J 
DSACKO J 
STERM~ 

\ __ ---'f 

\ r 
D31-DO~ 

DBENJ \ r 
I 

I-< BURST MODE ENDS, 
01 10 1-1-1 -DATANOTCACHED 

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE 

Figure 7-41. Long-Word Operand Request from $07 with 
Burst Request - CBACK and CIIN Asserted 

MC68EC030 USER'S MANUAL 7-69 



7-70 

The burst operation sequence begins with states SO-S3, which are very sim
ilar to those states for a synchronous read cycle except that CBREO is as
serted. S4-S9 perform the final three reads for a complete burst operation. 

State 0 
The burst operation starts with SO. The controller drives ECS low, indicating 
the beginning of an external cycle. When the cycle is the first cycle of a 
read operation, OCS is driven low at the same time. During SO, the con
troller places a valid address on AO-A31 and valid function codes on 
FCO-FC2. The function codes select the address space for the cycle. The 
controller drives R/W high, indicating a read cycle, and drives OBEN inactive 
to disable the data buffers. SIZO-SIZ1 become valid, indicating the number 
of operand bytes to be transferred. ClOUT also becomes valid, indicating 
the state of the ACU CI bit in the access control register. 

State 1 
One-half clock later in S 1, the controller asserts AS to indicate that the 
address on the address bus is valid. The controller also asserts OS during 
S1. CBREO is also asserted, indicating that the MC68EC030 can perform a 
burst operation into one of its caches and can read in four long words. In 
addition, ECS (and OCS, if asserted) is negated during S1. 

State 2 
The selected device uses R/W, SIZO-SIZ1, AO-A 1, and ClOUT to place the 
data on the data bus. (The first cycle must supply the long word at the 
corresponding long-word boundary.) All of the byte sections (024-031, 
016-023, 08-015, and DO-D7) of the data bus must be driven since the 
burst operation latches 32 bits on every cycle. During S2, the controller 
drives DBEN active to enable external data buffers. In systems that use 
two-clock synchronous bus cycles, the timing of DBEN may prevent its 
use. At the beginning of S2, the controller tests the level of STERM. If 
STERM is recognized, the controller latches the incoming data at the end 
of S2. For the burst operation to proceed, CBACK must be asserted when 
STERM is recognized. If the data for the current cycle is not to be cached, 
CIIN must be asserted at the same time as STERM. The assertion of CIIN 
also has the effect of aborting the burst operation. 

Since CIIN, CBACK, and STERM are synchronous signals, they must meet 
the synchronous input setup and hold times for all rising edges of the clock 
while AS is asserted. If STERM is negated at the beginning of S2, wait 
states are inserted after S2, and STERM is sampled on every rising edge 
of the clock thereafter until it is recognized. Once STERM is recognized, 
data is latched on the next falling edge of the clock (corresponding to the 
beginning of S3). 

MC68EC030 USER'S MANUAL MOTOROLA 



State 3 
The controller maintains A5, D5, and DBEN asserted during 53. It also 
holds the address valid during 53 for continuation of the burst. R/W, 
5IZ0-5IZ1, and FCO-FC2 also remain valid throughout 53. 

The external device must keep the data driven throughout the synchronous 
hold time for data from the beginning of 53. The device must negate 5TERM 
within one clock after asserting 5TERM; otherwise, the controller may 
inadvertently use 5TERM prematurely for the next burst access. 5TERM 
need not be negated if subsequent accesses do not require wait cycles. 

State 4 
At the beginning of 54, the controller tests the level of 5TERM. This state 
signifies the beginning of burst mode, and the remaining states correspond 
to burst fill cycles. If 5TERM is recognized, the controller latches the in
coming data at the end of 54. This data corresponds to the second long 
word of the burst. If 5TERM is negated at the beginning of 54, wait states 
are inserted instead of 54 and 55, and 5TERM is sampled on every rising 
edge of the clock thereafter until it is recognized. As for synchronous cycles, 
the states of CBACK and CIIN are latched at the time 5TERM is recognized. 
The assertion of CBACK at this time indicates that the burst operation 
should continue, and the assertion of CIIN indicates that the data latched 
at the end of 54 should not be cached and that the burst should abort. 

State 5 
The controller maintains all the signals on the bus driven throughout 55 
for continuation of the burst. The same hold times for 5TERM and data 
described for 53 apply here. 

State 6 
This state is identical to 54 except that once 5TERM is recognized, the third 
long word of data for the burst is latched at the end of 56. 

State 7 
During this state, the controller negates CBREO, and the memory device 
may negate CBACK. Aside from this, all other bus signals driven by the 
controller remain driven. The same hold times for 5TERM and data de
scribed for 53 apply here. 

State 8 
This state is identical to 54 except that CBREO is negated, indicating that 
the controller cannot continue to accept more data after this. The data 
latched at the end of 58 corresponds to the fourth long word of the burst. 

MOTOROLA MC68EC030 USER'S MANUAL 7-71 



State 9 
The controller negates A5, D5, and DBEN during 59. It holds the address, 
R/W, 5IZ0-5IZ1, and FCO-FC2 valid throughout 59. The same hold times 
for data described for 53 apply here. 

Note that the address bus of the MC68EC030 remains driven to a constant 
value for the duration of a burst transfer operation (including the first transfer 
before burst mode is entered). If an external memory system requires incre
menting of the long-word base address to supply successive long words of 
information, this function must be performed by external hardware. Addi
tionally, in the case of burst transfers that cross a 16-byte boundary (i.e., the 
first long word transferred is not located at A3/A2 = 00), the external hardware 
must correctly control the continuation or termination of the burst transfer 
as desired. The burst may be terminated by negating CBACK during the 
transfer of the most significant long word of the 16-byte image (A3/A2 = 11) 
or may be continued (with CBACK asserted) by providing the long word 
located at A3/A2 = 00 (i.e., the count sequence wraps back to zero and con
tinues as necessary). The MC68EC030 caches assume the higher order ad
dress lines (A4-A31) remain unchanged as the long-word accesses wrap back 
around to A3/A2 = 00. 

7.4 CPU SPACE CYCLES 

7-72 

FCO-FC2 select user and supervisor program and data areas as listed in Table 
4-1. The area selected by FCO-FC2 = $7 is classified as the CPU space. The 
interrupt acknowledge, breakpoint acknowledge, and coprocessor commu
nication cycles described in the following sections utilize CPU space. 

The CPU space type is encoded on A 16-A 19 during a CPU space operation 
and indicates the function that the controller is performing. On the MC68EC030, 
three of the encodings are implemented as shown in Figure 7-42. All unused 
values are reserved by Motorola for future additional CPU space types. 

MC68EC030 USER'S MANUAL MOTOROLA 



FUNCTION 
CODE 

2 0 
BREAKPOINT ~ 

ACKNOWLEDGE ~ 

31 

o 0 0 0 0 000 0 0 0 o 0 0 0 0 0 0 0 

2 0 r31~ ______________ -r ____ ~~~ __________ ~ ______ ~ 
COPROCESSOR ~ 0 0 0 0 0 0 0 0 0 0 0 

COMM. ~ o 0 0 0 0 0 0 0 

1 0 2 0 31 
INTERRUPT 0 ,------------------+------+------------------,----,--, 

ACKNOWLEDGE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
~----------------~----~----------------~--~~ 

~ 

CPU SPACE 
TYPE FIELD 

Figure 7-42. MC68EC030 CPU Space Address Encoding 

7.4.1 Interrupt Acknowledge Bus Cycles 

When a peripheral device signals the controller (with the IPLO-IPL2 signals) 
that the device requires service, and the internally synchronized value on 
these signals indicates a higher priority than the interrupt mask in the status 
register (or that a transition has occurred in the case of a level 7 interrupt), 
the controller makes the interrupt a pending interrupt. Refer to 8.1.9 Interrupt 
Exceptions for details on the recognition of interrupts. 

The MC68EC030 takes an interrupt exception for a pending interrupt within 
one instruction boundary (after processing any other pending exception with 
a higher priority). The following paragraphs describe the various kinds of 
interrupt acknowledge bus cycles that can be executed as part of interrupt 
exception processing. 

7.4.1.1 INTERRUPT ACKNOWLEDGE CYCLE - TERMINATED NORMALLY. When 
the MC68EC030 processes an interrupt exception, it performs an interrupt 
acknowledge cycle to obtain the number of the vector that contains the 
starting location of the interrupt service routine. 

Some interrupting devices have programmable vector registers that contain 
the interrupt vectors for the routines they use. The following paragraphs 
describe the interrupt acknowledge cycle for these devices. Other interrupting 
conditions or devices cannot supply a vector number and use the autovector 
cycle described in 7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. 

The interrupt acknowledge cycle is a read cycle. It differs from the asyn
chronous read cycle described in 7.3.1 Asynchronous Read Cycle or the syn-

MOTOROLA MC68EC030 USER'S MANUAL 7-73 



7-74 

chronous read cycle described iii 7.3.4 Synchronous Read Cycle in that it 
accesses the CPU address space. Specifically, the differences are: 

1. FCO-FC2 are set to seven (FCO/FC1/FC2 = 111) for CPU address space. 

2. A 1, A2, and A3 are set to the interrupt request level (the inverted values 
of IPLO, IPL 1, and IPL2, respectively). 

3. The CPU space type field (A 16-A 19) is set to $F, the interrupt acknowl
edge code. 

4. A20-A31, A4-A15"andAO are set to one. 

The responding device places the vector number on the data bus during the 
interrupt acknowledge cycle. Beyond this, the cycle is terminated normally 
with either STERM or DSACKx. Figure 7-43 is the flowchart of the interrupt 
acknowledge cycle. 

CONTROLLER INTERRUPTING DEVICE 

ACKNOWLEDGE INTERRUPT - I REQUEST INTERRUPT I ...... I 
1) INTERRUPT PENDING (IPEND) RECOGNIZED BY 

CURRENT INSTRUCTION-WAIT FOR INSTRUC-
TION BOUNDARY 

2) SET RNl TO READ 
3) SET FUNCTION CODE TO CPU SPACE 
4) PLACE INTERRUPT LEVEL ON A1, A2, AND A3. 

TYPE FIELD = INTERRUPT ACKNOWLEDGE (lACK) 
5) SET SIZE TO BYTE 
6) NEGATE IPEND 
7) ASSERT ADDRESS STROBE (AS) AND DATA _ .... PROVIDE VECTOR INFORMATION STROBE (OS) 

,. 

1) PLACE VECTOR NUMBER ON LEAST 
SIGNIFICANT BYTE OF DATA PORT 
(DEPENDS ON PORT SIZE) 

2) ASSERT DATA AND SIZE ACKNOWLEDGE 
(DSACKx) 

OR 
ASSERT SYNCHRONOUS TERMINATION , ACQUIRE VECTOR NUMBER ...... ~ 

1) LATCH VECTOR NUMBER 
2) NEGATE AS AND os ... RELEASE ,. 

l 1) REMOVE VECTOR NUMBER FROM DATA BUS 

CONTINUE INTERRUPT EXCEPTION PROCESSING 
2) NEGATE DSACKx 

Figure 7-43. Interrupt Acknowledge Cycle Flowchart 

Figure 7-44 shows the timing for an interrupt acknowledge cycle terminated 
with DSACKx. 

MC68EC030' USER'S MANUAL MOTOROLA 



CLK 

A31-A4 

A3-Al 

AO 

FC2-FCO 

SIZl 

SIZO 

RiN 

ECS 

OCS 

AS 

OS 

OSACKl 

OSACKO 

OBEN 

031-024 

023-016 

07-00 

IPL2-IPLO 

IPEND 

MOTOROLA 

so S2 S4 so S2 S4 so S2 

____ JLJL 

=x ""'""-____ _.JI ---- \'-__ _ 

=x '--_____ --'X INTERRUPT LEVEL - - - - =:)( ........ ___ _ 

=x ~ ____ _.JI \~ __ _ 

=x '----___ ---<1 

=x \ 

=x _____ _.JI 

=.7 
'--I 
'--I 

\ 

\ 

----.!\ 
----.!\ 
~ \ 

\'----
! 

\~---

\\..---
----~ 

----~ 

'---_---Jr---~ 

'---_--'f --- \ 
'----_I ----~ 

'------.II ----~ 
'-----'/----~ 

~ ~---c=.>---< VECTOR • FROM 8-BIT PORT )- - - - --C 

~ ~---c=.>---<VECTOR II FROM 1S-BiTPORT )- - - ---C 
~ >------« H VECTOR. FROM 32-BlT PORT )- - - - --C 

\ '--__________ x----· ____ _ 
_____ --J! 

~ READ CYCLE :> I <: INTERRUPT ~ 
ACKNOWLEDGE --I ~WRITE STACK 

Figure 7-44. Interrupt Acknowledge Cycle Timing 

MC68EC030 USER'S MANUAL 7-75 



7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupt
ing device cannot supply a vector number, it requests an automatically gen
erated vector or autovector. Instead of placing a vector number on the data 
bus and asserting DSACKx or STERM, the device asserts the autovector signal 
(AVEC)to terminate the cycle. Neither STERM nor DSACKx may be asserted 
during an interrupt acknowledge cycle terminated by AVEC. 

The vector number supplied in an autovector operation is derived from the 
interrupt level of the current interrupt. When AVEC is asserted instead of 
DSACK or STERM during an interrupt acknowledge cycle, the MC68EC030 
ignores the state of the data bus and internally generates the vector number, 
the sum of the interrupt level plus 24 ($18). There are seven distinct auto
vectors that can be used, corresponding to the seven levels of interrupt 
available with signals IPLO-IPL2. Figure 7-45 shows the timing for an auto
vector operation. 

7.4.1.3 SPURIOUS INTERRUPT CYCLE. When a device does not respond to an 
interrupt acknowledge cycle with AVEC, STERM, or DSACKx, the external 
logic typically returns BERR. The MC68EC030 automatically generates the 
spurious interrupt vector number, 24, instead of the interrupt vector number 
in this case. If HALT is also asserted, the controller retries the cycle. 

7-76 MC68EC030 USER'S MANUAL MOTOROLA 



CLK 

A31-A4 

A3-A1 

AO 

FC2-FCO 

SIZ1 

SIZO 

Rfii 

ECS 

OCS 

AS 

os 

OSACK1 

OSACKO 

OBEN 

031-00 

IPL2-IPLO 

AVEC 

MOTOROLA 

so S2 S4 so 

_________ --11 =x 
=x "'--____ ----'x 
=x _________ -J1 

=x "'--____ ----'1 

=x \ 

=x _______ --11 
=-; 
~ 

~ 

\ 

\ 

=--; \ I 
( ) 

\ 

~ READ CYCLE :> I .... 

S2 S4 so S2 

-----~ 
----- \\.....----

INTERRUPT LEVEL = = = = = )( ______ _ 

\ 

\ 
INTERRUPT 4 

ACKNOWLEDGE 
AUTOVECTORED 

\\.----

\'-----
I 

~WRITESTACK 

Figure 7-45. Autovector Operation Timing 

MC68EC030 USER'S MANUAL 7-77 



7.4.2 Breakpoint Acknowledge Cycle 

7-78 

The breakpoint acknowledge cycle is generated by the execution of a break
point instruction (BKPT). The breakpoint acknowledge cycle allows the ex
ternal hardware to provide an instruction word directly into the instruction 
pipeline as the program executes. This cycle accesses the CPU space with a 
type field of zero and provides the breakpoint number specified by the in
struction on address lines A2-A4. If the external hardware terminates the 
cycle with DSACKx or STERM, the data on the bus (an instruction word) is 
inserted into the instruction pipe, replacing the breakpoint opcode, and is 
executed after the breakpoint acknowledge cycle completes. The breakpoint 
instruction requires a word to be transferred so that if the first bus cycle 
accesses an 8-bit port, a second cycle is required. If the external logic ter
minates the breakpoint acknowledge cycle with BERR (i.e., no instruction 
word available), the controller takes an illegal instruction exception. Figure 
7-46 is a flowchart of the breakpoint acknowledge cycle. Figure 7-47 shows 
the timing for a breakpoint acknowledge cycle that returns an instruction 
word. Figure 7-48 shows the timing for a breakpoint acknowledge cycle that 
signals an exception. 

CONTROLLER EXTERNAL DEVICE 

BREAKPOINT ACKNOWLEDGE 

1) SET RlWTO READ 
2) SET FUNCTION CODE TO CPU SPACE 
3) PLACE CPU SPACE TYPE 0 ON A16-A19 
4) PLACE BREAKPOINT NUMBER ON A2-A4 
5) SET SIZE TO WORD 1) PLACE REPLACEMENT OPCODE ON DATA 
6) ASSERT ADDRESS STROBE (AS) AND DATA ... BUS 

STROBE (OS) ,. 2) ASSERT DATA TRANSFER AND SIZE 
ACKNOWLEDGE (DSACKx) OR SYNCHRONOUS 
TERMINATION (STERM) 

IF DSACKx OR STERM ASSERTED: - OR 

1) LATCH DATA 
-. 1) ASSERT BUS ERRROR (BERR) TO INITIATE 

2) NEGATE AS AND os EXCEPTION PROCESSING 

3) GO TO ® 
IF BERR ASSERTED: 

1) NEGATE AS AND OS 
2) GO TO ® ® ® 

t 
1) PLACE LATCHED DATA IN INSTRucnON SLAVE NEGATES DSACKx, STERM OR BERR 

PIPELINE 
2) CONTINUE PROCESSING 

1) INITIATE ILLEGAL INSTRUCTION PROCESSING I,., 

I -

Figure 7-46. Breakpoint Operation Flow 

MC68EC030 USER'S MANUAL MOTOROLA 



so 52 54 

CLK 

A31-A20 ==x 
A19-A16 ==x 
A15-A2 ==x 

Al.AO ~ 

FC2-FCO ==x 
Sill =-; 
SIZO ==x 
RiW 

ECS --V 
OCS \ 

AS \ 
DS \ 

DSACKl -...I \ 
DSACKO -...I \ 

DBEN =-; \ 
D31-024 

D23-016 

SO S2 54 SO S2 

---~ 
\ L 
~ (OOO~ 

BREAKPOINT NCODING L 
X BREAKPOINT NUMBER ---=x 

L 
7 CPU SPACE \ 

WORD 

\ I 

V 
r\ 

----~ 

\.....--_---I/---~ 

'---_--J/---~ 

\.....---_----J/---~ 

r\ 
r\ 

I \ ~ __ -----J7 ~ 

I \ ~ __ ---J7 ~ 

I \ '--_---JI---~ 

D15-D8 

D7-00 

=> 
=> 

r-----~c===J~------------

r------~c===J~------------

-----i(I......-__ 

----«\----

BERR J 
HALT J 

~READ CYCLE '> I < A~~~~~~~~E----:3'>~1 
INSTRUCTION WORD 

FETCH 

I 
FETCHED 

f-oI<IE---INSTRUCTION 
EXECUTION 

Figure 7-47. Breakpoint Acknowledge Cycle Timing 

MOTOROLA MC68EC030 USER'S MANUAL 

• 

7-79 



so S2 Sw Sw Sw S4 so S2 S4 

eLK ____ JLJL.fL 
A31-AO ==:x ----=x 

FC2-FCO ==:x ----=x 
SIZ1-SIZO ==:x ----=x 

Rfii =-; ----\ 

ECS ~ ----"--I 

OCS ~ ----"--I 

• AS \ I ----~ 

os \ I ----~ 

DSACK1 -.! \ 

DSACKO -.! \ 

DBEN =-; \ I ----~ 

D31-DO ( 

BERR \ I 
HALT =.J 
~ READ WITH BUS ERROR ASSERTED \ INTERNAL > < PROCESSING >\< STACK WRITE 

Figure 7-48. Breakpoint Acknowledge Cycle Timing (Exception Signaled) 

7-80 MC68EC030 USER'S MANUAL MOTOROLA 



7.4.3 Coprocessor Communication Cycles 

The MC68EC030 coprocessor interface provides instruction-oriented com
munication between the controller and as many as seven coprocessors. The 
bus communication required to support coprocessor operations uses the 
MC68EC030 CPU space with a type field of $2. 

Coprocessor accesses use the MC68EC030 bus protocol except that the ad
dress bus supplies access information rather than a 32-bit address. The CPU 
space type field (A 16-A 19) for a coprocessor operation is $2. A 13-A 15 contain 
the coprocessor identification number (CpID), and AO-A4 specify the copro
cessor interface register to be accessed. Coprocessor accesses to a CplD of 
zero correspond to ACU instructions, some of which are not supported by 
the MC68EC030. These cycles can only be generated by the MOVES instruc
tion. Refer to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for 
further information. 

7.5 BUS EXCEPTION CONTROL CYCLES 

The MC68EC030 bus architecture requires assertion of either DSACKx or 
STERM from an external device to signal that a bus cycle is complete. DSACKx, 
STERM, or AVEC is not asserted if: 

o The external device does not respond. 

o No interrupt vector is provided. 

o Various other application-dependent errors occur. 

External circuitry can provide BERR when no device responds by asserting 
DSACKx, STERM, or AVEC within an appropriate period of time after the 
controller asserts AS. This allows the cycle to terminate and the controller 
to enter exception processing for the error condition. 

Another signal that is used for bus exception control is HALT. This signal 
can be asserted by an external device for debugging purposes to cause single 
bus cycle operation or (in combination with BERR) a retry of a bus cycle in 
error. 

To properly control termination of a bus cycle for a retry or a bus error 
condition, DSACKx, BERR, and HALT can be asserted and negated with the 
rising edge of the MC68EC030 clock. This assures that when two signals are 
asserted simultaneously, the required setup time (#47 A) and hold time (#47B) 
for both of them is met for the same falling edge of the controller clock. 

MOTOROLA MC68EC030 USER'S MANUAL 7-81 

-



• 

7-82 

(Refer to MC68EC030/D, MC68EC030 Technical Summary for timing require
ments.) This or some equivalent precaution should be designed into the 
external circuitry that provides these signals. 

The acceptable bus cycle terminations for asynchronous cycles are sum
marized in relation to DSACKx assertion as follows (case numbers refer to 
Table 7-8): 

Normal Termination: 
DSACKx is asserted; BERR and HALT remain negated (case 1). 

Halt Termination: 
HALT is asserted at same time or before DSACKx, and BERR remains 
negated (case 2). 

Bus Error Termination: 
BERR is asserted in lieu of, at the same time, or before DSACKx (case 
3) or after DSACKx (case 4), and HALT remains negated; BERR is 
negated at the same time or after DSACKx. 

Retry Termination: 
HALT and BERR are asserted in lieu of, at the same time, or before 
DSACKx (case 5) or after DSACKx (case 6); BERR is negated at the 
same time or after DSACKx; HALT may be negated at the same time 
or after BERR. 

MC68EC030 USER'S MANUAL MOTOROLA 



Table 7-8. DSACK, BERR, and HALT Assertion Results 

Asserted on Rising 
Case Control Edge of State Result 
No. Signal 

N N+2 

1 DSACKx A S Normal cycle terminate and continue. 
BERR NA NA 
HALT NA X 

2 DSACKx A S Normal cycle terminate and halt. Continue when HALT 
BERR NA NA negated. 
HALT AJS S 

3 DSACKx NAJA X Terminate and take bus error exception, possibly 
BERR A S deferred. 
HALT NA NA 

4 DSACKx A X Terminate and take bus error exception, possibly 
BERR NA A deferred. 
HALT NA NA 

5 DSACKx NAJA X Terminate and retry when HALT negated. 
BERR A S 
HALT AJS S 

6 DSACKx A X Terminate and retry when HALT negated. 
BERR NA A 
HALT NA A 

LEGEND: 
N - The number of current even bus state (e.g., S2, S4, etc.) 
A - Signal is asserted in this bus state 
NA - Signal is not asserted in this state 
X Don't care 
S - Signal was asserted in previous state and remains asserted in this state 

Table 7-8 shows various combinations of control signal sequences and the 
resulting bus cycle terminations. To ensure predictable operation, BERR and 
HALT should be negated according to the specifications in MC68EC030/D, 
MC68EC030 Technical Summary. DSACKx, BERR, and HALT may be negated 
after AS. If DSACKx or BERR remain asserted into S2 of the next bus cycle, 
that cycle may be terminated prematurely. 

The termination signal for a synchronous cycle is STERM. An analogous set 
of bus cycle termination cases exists in relationship to STERM assertion. 
Note that STERM and DSACKx must never both be asserted in the same 
cycle. STERM has setup time (#60) and hold time (#61) requirements relative 
to each rising edge of the controller clock while AS is asserted. Bus error 
and retry terminations during burst cycles operate as described in 6.1.3.2 
BURST MODE FILLING, 7.5.1 Bus Error, and 7.5.2 Retry Operation. 

MOTOROLA MC68EC030 USER'S MANUAL 7-83 

-



• 

7-84 

For ST~RM, the bus cycle terminations are summarized as follows (case 
numbers refer to Table 7-9): 

Normal Termination: 
STERM is asserted; BERR and HALT remain negated (case 1). 

Halt Termination: 
HALT is asserted before STERM, and BERR remains negated (case 
2). 

Bus Error Termination: 
BERR is asserted in lieu of, at the same time, or before STERM (case 
3) or after STERM (case 4), and HALf remains negated; BERR is 
negated at the same time or after STERM. 

Retry Termination: 

Case 
No. 

1 

2 

3 

4 

5 

6 

LEGEND: 
N -
A -
NA
X 
S 

HALf and BERR are asserted in lieu of, at the same time, or before 
STERM (case 5) or after STERM (case 6); BERR is negated at the 
same time or after STERM ; HALT may be negated at the same time 
or after BERR. 

Table 7-9. STERM, BERR, and HALT Assertion Results 

Asserted on Rising 
Control Edge of State Result 
Signal 

N N+2 

STERM A - Normal cycle terminate and continue. 
BERR NA -
HALT NA -

STERM NA A Normal cycle terminate and halt. Continue when HALT 
BERR NA NA negated. 
HALT AJS S 

STERM NA A Terminate and take bus error exception, possibly 
BERR AJS S deferred. 
HALT NA NA 

STERM A - Terminate and take bus error exception, possibly 
BERR A - deferred. 
HALT NA -
STERM NA A Terminate and retry when HALT negated. 
BERR A S 
HALT AJS S 

STERM A - Terminate and retry when HALT negated. 
BERR A -
HALT A -

The number of current even bus state (e.g., S2, S4, etc.) 
Signal is asserted in this bus state 
Signal is not asserted in this state 
Don't care 
Signal was asserted in previous state and remains asserted in this state 
State N + 2 not part of bus cycle 

MC68EC030 USER'S MANUAL MOTOROLA 



EXAMPLE A: 
A system uses a watchdog timer to terminate accesses to an unpopulated 
address space. The timer asserts BERR after timeout (case 3). 

EXAMPLE B: 
A system uses error detection and correction on RAM contents. The de
signer may: 

1. Delay DSACKx until data is verified; assert BERR and HALT simul
taneously to indicate to the controller to automatically retry the error 
cycle (case 5) or, if data is valid, assert DSACKx (case 1). 

2. Delay DSACKx until data is verified and assert BERR with or without 
DSACKx if data is in error (case 3). This initiates exception pro
cessing for software handling of the condition. 

3. Return DSACKx prior to data verification. If data is invalid, BERR is 
asserted on the next clock cycle (case 4). This initiates exception 
processing for software handling of the condition. 

4. Return DSACKx prior to data verification; if data is invalid, assert 
BERR and HALT on the next clock cycle (case 6). The memory con
troller can then correct the RAM prior to or during the automatic 
retry. 

7.5.1 Bus Errors 

The bus error signal can be used to abort the bus cycle and the instruction 
being executed. BERR takes precedence over DSACKx or STERM provided 
it meets the timing constraints described in MC68EC030ID, MC68EC030 Tech
nical Summary. If BERR does not meet these constraints, it may cause un
predictable operation of the MC68EC030. If BERR remains asserted into the 
next bus cycle, it may cause incorrect operation of that cycle. 

When the bus error signal is issued to terminate a bus cycle, the MC68EC030 
may enter exception processing immediately following the bus cycle, or it 
may defer processing the exception. The instruction prefetch mechanism 
requests instruction words from the bus controller and the instruction cache 
before it is ready to execute them. If a bus error occurs on an instruction 
fetch, the controller does not take the exception until it attempts to use that 
instruction word. Should an intervening instruction cause a' branch or should 
a task switch occur, the bus error exception does not occur.' 

MOTOROLA MC68EC030 USER'S MANUAL 7-85 



• 

7-86 

The bus error signal is recognized during a bus cycle in any of the following 
cases: 

• DSACKx (or STERM) and HALT are negated and BERR is asserted. 

• HALT and BERR are negated and DSACKx is asserted. BERR is then 
asserted within one clock cycle (HALT remains negated). 

• BERR is asserted and recognized on the next falling clock edge following 
the rising clock edge on which STERM is asserted and recognized (HALT 
remains negated). 

When the controller recognizes a bus error condition, it terminates the current 
bus cycle in the normal way. Figure 7-49 shows the timing of a bus error for 
the case in which neither DSACKx nor STERM is asserted. Figure 7-50 shows 
the timing for a bus error that is asserted after DSACKx. Exceptions are taken 

. in both cases. (Refer to 8.1.2 Bus Error Exception for details of bus error 
exception processing.) When BERR is asserted during a read cycle that sup
plies data to either on-chip cache, the data in the cache is marked invalid. 
However, when a write cycle that writes data into the data cache results in 
an externally generated bus error, the data in the cache is not marked invalid. 

MC68EC030 USER'S MANUAL MOTOROLA 



so 52 

ClK 

A1S-A16 ==>< __________________ _ 
AI5-AO ==>< ________ --J 

Al,AO ~ 

7 FC2-fCO ==>< ________ ~ CPU SPACE 

7 
WORD 

\ 

so 52 ___ SUL 
I 
I 

---J'--__ 

I 
---'=X~ __ 

\'----
I 

----\'----

V ----~ 

V ---~ 

\'-------I\ ...... ------'/---~ 
OS \'--_____ /\ 1--- '----

DSACKI --.I \ I ---~ 

DSACKO --.I \ I ---~ 

\"---~/---~ 

D31-D24 :J).------<c=J>---------
D2~D16 :J c=Jr---------
D15-D8 =:J c=Jr--------
D7-oo :J>----~c=J)-------

BERR J \'--_-'1- --

HALT J 
~ I 

BREAKPOINT ~ 
READ CYCLE -~>.r",:<:---- ACKNOWLEDGE 

BUS ERROR 
ASSERTED 

---«\---

---«\---

---«'---

--~(\-_-

~ EXCEPTION 
~ STACKING 

Figure 7-49_ Bus Error without DSACKx 

MOTOROLA MC68EC030 USER'S MANUAL 7-87 



Figure 7-50. Late Bus Error with DSACKx 

7-88 MC68EC030 USER'S MANUAL MOTOROLA 



In the second case, where BERR is asserted after DSACKx is asserted, BERR 
must be asserted within specification #48 (refer to MC68EC030/D, MC68EC030 
Technical Summary) for purely asynchronous operation, or it must be as
serted and remain stable during the sample window, defined by specifica
tions #27 A and #47B, around the next falling edge of the clock after DSACKx 
is recognized. If BERR is not stable at this time, the controller may exhibit 
erratic behavior. BERR has priority over DSACKx. In this case, data may be 
present on the bus, but may not be valid. This sequence may be used by 
systems that have memory error detection and correction logic and by ex
ternal cache memories. 

The assertion of BERR described in the third case (recognized after STERM) 
has requirements similar to those described in the preceding paragraph. 
BERR must be stable throughout the sample window for the next falling edge 
of the clock, as defined by specifications #27 A and #28A. Figure 7-51 shows 
the timing for this case. 

A bus error occurring during a burst fill operation is a special case. If a bus 
error occurs during the first cycle of a burst, the data is ignored, the entire 
cache line is marked invalid, and the burst operation is aborted. If the cycle 
is for an instruction fetch, a bus error exception is made pending. This bus 
error is processed only if the execution unit attempts to use either of the two 
words latched during the bus cycle. If the cycle is for a data fetch, the bus 
error exception is taken immediately. Refer to SECTION 11 INSTRUCTION 
EXECUTION TIMING for more information about pipeline operation. 

MOTOROLA MC68EC030 USER'S MANUAL 7-89 



-

7-90 

so S2 Sw Sw Sw Sw S3 so S2 

CLK -----~ __________ x=-----=x ____ _ A31:-AO J 
__________ x=-----J __ 
__________ x=-----J __ 

FC2-FCO J 
SIZ1-SIZO J 
RfN~ _...l.-_________ ~;_-----\'__ __ _ 

ECS~ -----~ 

OCS~ -----~ 

AS \ ~--------------------------------~! \'----
OS ~------------------------~! \ 

STERM I \'---_---JI- ----

DBEN~ \ ~ _______________ ____J! \'--__ 

031-00 -----------«'--_~~-----__C 

BERR~ \ ;-------
HALT~ 

L-WRITE WITH BUS ERROR ASSERTED --~»~I""<E-INTERNAL ~STACK WRITE 
~ PROCESSING 1----

Figure 7-51. Late Bus Error with STERM - Exception Taken 

When a bus error occurs after the burst mode has been entered (that is, on 
the second access or later), the controller terminates the burst operation, and 
the cache entry corresponding to that cycle is marked invalid, but the con
troller does not take an exception (see Figure 7-52). If the second cycle is for 
a portion of a misaligned operand fetch, the controller runs another read 
cycle for the second portion with CBREQ negated, as shown in Figure 7-53. 
If BERR is asserted again, the MC68EC030 then takes an exception. The 
MC68EC030 supports late bus errors during a burst fill operation; the timing 
is the same relative to STERM and the clock as for a late bus error in a normal 
synchronous cycle. 

MC68EC030 USER'S MANUAL MOTOROLA 



so S2 S4 S6 

CLK 

A31-M =x""--________ _ 
A3~ 

A2-AO =-; 
FC2-FCO =x""--________ _ 

SIZ1-SIZO _~_ ........ _________ _ 

AS 

OS 

CIIN J 
ClOUT J 

031-00 

\""'---__ -----.lr 
\ r 

\\....-__ -----JI 
\ r 

\'---__ ---Ir 
'---

I 
~ LATE BERR ENDS BURST; 

0111 1000 I 1100 NO EXCEPTION TAKEN 

VALUE OF A3:AO INCREMENTED BY THE SYSTEM HARDWARE 

Figure 7-52. Long-Word Operand Request - Late BERR on Third Access 

MOTOROLA MC68EC030 USER'S MANUAL 7-91 



• 

so S1 S2 Sw Sw Sw Sw Sw Sw S3 Sw Sw Sw Sw S4 S5 so S1 S2 S3 Sw Sw Sw Sw S4 S5 

CLK 

A31-AO ==>< ________________ ..... >C= ~)(_~-A3-:A-Oa-1....;.000-----
FC2-FCO ==>< x== ~=X ______ _ 

SIZ1-SIZO ~ (--

RNi.--J 
ECS~ 

OCS~ 

--\...j 

AS 

os 

DSACK1 J 
DSACKO J 
STERM ] 

CIIN J 
ClOUT J 

CBREQ 

CBACK I 

\'--_______ -..Jr---~'__ ____ _ 
\ r---~'___ ___ _ 

\'-----------'(--

\\.--

\'----

D31-oo ) ~---------~~~-------- ---------~~ 

DBENJ \'----_____ --'0(--''----_----
BERR J \'---_-Jr --
HALT I 

~~~~~b~~~~~ro I -=INTERNAt I -= ~~~~C6~~~~~:JJ LAST 
I Btl PROCESSING

0111 1000

VALUE OF A3:AO INCREMENTED BY THE SYSTEM HARDWARE

Figure 7-53. Long-Word Operand Request - BERR on Second Access

7-92 MC68EC030 USER'S MANUAL MOTOROLA

7.5 .. 2 Retry Operation

When the BERR and HALT signals are both asserted by an external device
during a bus cycle, the controller enters the retry sequence. A delayed retry,
similar. to the delayed bus error signal described previously, can also occur,
both for synchronous and asynchronous cycles.

The controller terminates the bus cycle, places the control signals in their
inactive state, and does not begin another bus cycle until the HALT signal is
negated by external logic. After a synchronization delay, the controller retries
the previous cycle using the same access information (address, function code,
size, etc.) The BERR signal should be negated before 52 of the read cycle to
ensure correct operation of the retried cycle. Figure 7-54 shows a retry op
eration of an asynchronous cycle, and Figure 7-55 shows a retry operation
of a synchronous cycle.

MOTOROLA MC68EC030 USER'S MANUAL 7-93

•

•

ClK

A31-AO ==x
FC2-FCO ==x

SIZ1-SIZO ==x
pjjj ________________ ~I \\.....----
ECS~

-OCS~

AS \
OS \

DSACKl ---.J \
DSACKO ~ \
031-00 ~ <

BERR J
HALT --.!

I
I

\

I
I

V
V

\ r
LJ

\\.....-

\'----
~< ~---OATA BUS NOT ORIVEN---~>~I ____ _

~------------------------~<~------

I
\ \.-._----~/

~WRITE CYCLE RETRY SIGNAlED....:l>-.l..o1 <~----HAlT----~>~I....:<O----RETRY CYClE~

Figure 7-54. Asynchronous Late Retry

7-94 MC68EC030 USER'S MANUAL MOTOROLA

so S1 52 53 so S1 S2 53

CLK

A31-AO Jo....-____________________ _
FC2-FCO Jo....-____________________ _

SIZ1-5IZ0 J _____________________ _

AS

OS

STERM J
031-00 ==>
BERR ~

HALT J

'--I
'--I

'---J

v
v

'---J
'---J
'----I

< > ~----------------~c===

\ I
~ _____ --II \

Figure 7-55. Synchronous Late Retry

The controller retries any read or write cycle of a read-modify-write operation
separately; RMC remains asserted during the entire retry sequence.

On the initial access of a burst operation, a retry (indicated by the assertion
of 13ERR and HALT) causes the controller to retry the bus cycle and assert
CBREQ again. Figure 7-56 shows a late retry operation that causes an initial
burst operation to be repeated. However, signaling a retry with simultaneous
BERR and HALT during the second, third, or fourth cycle of a burst operation
does not cause a retry operation, even if the requested operand is misaligned.
Assertion of BERR and HALT during a subsequent cycle of a burst operation

MOTOROLA MC68EC030 USER'S MANUAL 7-95

-

-

causes independent BERR and HALT operations. The external bus activity
remains halted until HALT is negated and the controller acts as previously

" described for the bus error during a burst operation.

so 51 52 53 so 51 52 53 54

A31-AO J~_.......; ___; _____; __ ~X ______ _
FC2-FCO J X"'---_____ _

,5IZ1-SIZ0 J X'-_____ _
ANi=-;
'EC5~

OC5~

AS L---.I
D5 '-----J

STEAM =-; V
CIIN =-;

u
V

_---

\'-----
~

_---

\'------
D31-oo ==>---<) ~----------------~(___ x===

BEAA J \ /
HALT J' \ /

r-AEAD >1< HALT

Figure 7-56. Late Retry Operation for a Burst

MC68EC030 USER'S MANUAL MOTOROLA

Asserting BR along with BERR and HALT provides a relinquish and retry
operation. The MC68EC030 does not relinquish thebusduring a read-modify
write operation, except during the first read cycle. Any device that requires
the controller to give up the bus and retry a bus cycle during a read-modify
write cycle must either assert BERR and BR only (HALT must not be included)
or use the single wire arbitration method discussed in 7.7.4 Bus Arbitration
Control. The bus error handler software should examine the read-modify
write bit in the special status word (refer to 8.2.1 Special Status Word) and
take the appropriate action to resolve this type of fault when it occurs.

7.5.3 Halt Operation

When HALT is asserted and BERR is not asserted, the MC68EC030 halts
external bus activity at the next bus cycle boundary. HALT by itself does not
terminate a bus cycle. Negating and reasserting HALT in accordance with
the correct timing requirements provides a single-step (bus cycle'to bus cycle)
operation. The HALT signal affects external bus cycles only; thus, a program
that resides in the instruction cache and performs no data writes (or reads _
that miss in the data cache) may continue executing, u'naffected by the HALT
signal.

The single-cycle mode allows the user to proceed through (and debug) ex
ternal controller operations, one bus cycle at a time. Figure 7-57 shows the
timing requirements for a single-cycle operation. Since the occurrence of a
bus error while HALT is asserted causes a retry operation, the user must
anticipate retry cycles while debugging in the single-cycle mode. The single
step operation and the software trace capability allow the system debugger
to trace single bus cycles, single instructions, or changes in program flow.
These controller capabilities, along with a software debugging package, give
complete debugging flexibility.

When the controller completes a bus cycle with the HALT signal asserted,
the data bus is placed in the high-impedance state, and bus control signals
are driven inactive (not high-impedance state); the address, function code,
size, and read/write signals remain in the same state. The halt operation has
no effect on bus arbitration (refer to 7.7 BUS ARBITRATION). When bus
arbitration occurs while the MC68EC030 is halted, the address and control
signals are also placed in the high-impedance state. Once bus mastership is
returned to the MC68EC030, if HALT is still asserted, the address, function
code, size, and read/write signals are again driven to their previous states.
The controller does not service interrupt requests while it is halted, but it
may assert the IPEND signal as appropriate.

MOTOROLA MC68EC030 USER'S MANUAL 7-97

so 52 54 SO 52 54

CLK

A31-AO =x >----- (

FC2-FCO =x >----- (

51Z1,51Z0 =x ,
<)-----

RNi ----..I I

EC5 \..J V
OC5 \..J ------ V

AS \ r-"---- I \

OS \ ;-',----- I \ • D5ACK1 \
D5ACKO \

DBEN =-.; \ r------ \
D31-OO C

BERR

HALT \ -------.-1
BR

, I
\ I '- _ ...

BG
--, _J

BGACK ---\,J

1-< READ >~HALT >1 ~READ~
(ARBITRATION PERMITTED
WHILE THE CONTROLLER

15 HALTED)

Figure 7-57. Halt Operation Timing

7-98 MC68EC030 USER'S MANUAL MOTOROLA

7.5.4 Double Bus Fault

When a bus error or an address error occurs during the exception processing
sequence for a previous bus error, a previous address error, or a reset ex
ception, the bus or address error causes a double bus fault. For example,
the controller attempts to stack several words containing information about
the state of the machine while processing a bus error exception. If a bus
error exception occurs during the stacking operation, the second error is
considered a double bus fault. Only an external reset operation can restart
a halted controller. However, bus arbitration can still occur (refer to 7.7 BUS
ARBITRATION).

The MC68EC030 indicates that a double bus fault condition has occurred by
continuously asserting the STATUS signal 'until the controller is reset. The
controller asserts STATUS for one, two, or three clock periods to signal other
microsequencer status indications. Refer to SECTION 12 APPLICATIONS IN
FORMATION for a description of the interpretation of the STATUS signal.

A second bus error or address error that occurs after exception processing •
has completed (during the execution ofthe exception handler routine or later)
does not cause a double bus fault. A bus cycle that is retried does not con-
stitute a bus error or contribute to a double bus fault. The controller continues
to retry the same bus cycle as long as the external hardware requests it.

7.6 BUS SYNCHRONIZATION

The MC68EC030 overlaps instruction execution; that is, during bus activity
for one instruction, instructions that do not use the external bus can be
executed. Due to the independent operation of the on-chip caches relative
to the operation of the bus controller, many subsequent instructions can be
executed, resulting in seemingly nonsequential instruction execution. When
this is not desired and the system depends on sequential execution following
bus activity, the NOP instruction can be used. The NOP instruction forces
instruction and bus synchronization in that it freezes instruction execution
until all pending bus cycles have completed.

An example of the use of the NOP instruction for this purpose is the case of
a write operation of control information to an external register, where the
external hardware attempts to control program execution based on the data
that is written with the conditional assertion of BERR. If the data cache is
enabled and the write cycle results in a hit in the data cache, the cache is
updated. That data, in turn, may be used in a subsequent instruction before
the external write cycle completes. Since the MC68EC030 cannot process the

MOTOROLA MC68EC030 USER'S MANUAL 7-99

•

7-100

bus error until the end of the bus cycle, the external hardware has not suc
cessfully interrupted program execution. To prevent a subsequent instruction
from executing until the external cycle completes, a NOP instruction can be
inserted after the instruction causing the write. In this case, bus error excep
tion processing proceeds immediately after the write before subsequent in
structions are executed. This is an irregular situation, and the use of the NOP
instruction for this purpose is not required by most systems.

Note that even in a system with error detection/correction circuitry, the NOP
is not required for this synchronization. Since the ACU always checks the
validity of write cycles before they proceed to the data cache and are executed
externally, the MC68EC030 is guaranteed to write correct data to the cache.
Thus, there is no danger in subsequent instructions using erroneous data
from the cache before an extern,al bus error signals an error.

A bus synchronization example is given in Figure 7-58.

so Sw

~~ ________ E_X_TE_R_NA_LW_R_IT_E ________ ~.~

WRITE TO D. CACHE

MOVE. L DO, (AO)

D. CACHE READ

MOVE. L (AO), 01

NOP PREVENTS EXECUTION OF SUBSEQUENT
INSTRUCTIONS UNTIL MOVE. L DO, (AO)
WRITE CYCLE COMPLETES

Figure 7-58. Bus Synchronization Example

MC68EC030 USER'S MANUAL MOTOROLA

7.7 BUS ARBITRATION

The bus design of the MC68EC030 provides for a single bus master at any
one time: either the controller or an external device. One or more of the
external devices on the bus can have the capability of becoming bus master.
Bus arbitration is the protocol by which an external device becomes bus
master; the bus controller in the MC68EC030 manages the bus arbitration
signals so that the controller has the lowest priority. External devices that
need to obtain the bus must assert the bus arbitration signals in the se
quences described in the following paragraphs. Systems having several de
vices that can become bus master require external circuitry to assign priorities
to the device so that, when two or more external devices attempt to become
bus master at the same time, the one having the highest priority becomes
bus master first. The sequence of the protocol is:

1. An external device asserts the bus request signal.

2. The controller asserts the bus grant signal to indicate that the bus will
become available at the end of the current bus cycle.

3. The external device asserts the bus grant acknowledge signal to indicate •
that it has assumed' bus mastership ..

BR may be issued any time during a bus cycle or between cycles. BG is
asserted in response to BR; it is usually asserted as soon as BR has been
synchronized and recognized, except when the MC68EC030 has made an
internal decision to execute a bus cycle. Then, the assertion of BG is deferred
until the bus cycle has begun. Additionally, BG is not asserted until the end
of a read-modify-write operation (when RMC is negated) in response to a BR
signal. When the requesting device receives BG and more than one external
device can be bus master, the requesting device should begin whatever
arbitration is required. The external device asserts BGACK when it assumes
bus mastership and maintains BGACK during the entire bus cycle (or cycles)
for which it is bus master. The following conditions must be met for an
external device to assume mastership of the bus through the normal bus
arbitration procedure:

MOTOROLA MC68EC030 USER'S MANUAL 7-101

•

7-102

• It must have received BG through the arbitration process.

• AS must be negated, indicating that no bus cycle is in progress, and the
external device must ensure that all appropriate controller signals have
been placed in the high-impedance state (by observing specification #7
in MC68EC0301D, MC68EC030 Technical Summary).

• The termination signal (DSACKx or STERM) for the most recent cycle
must have become inactive, indicating that external devices are off the
bus (optional, refer to 7.7.3 Bus Grant Acknowledge).

• BGACK must be inactive, indicating that no other bus master has claimed
ownership of the bus.

Figure 7-59 is a flowchart showing the detail involved in bus arbitration for
a single device. Figure 7-60 is a timing diagram for the same operation. This
technique allows processing of bus requests during data transfer cycles.

CONTROLLER REQUESTING DEVICE

REQUEST THE BUS

GRANT BUS ARBITRATION - 1) ASSERT BUS REQUEST (SR) -- I

1) ASSERT BUS GRANT (BG)
_ ACKNOWLEDGE BUS MASTERSHIP .-

1) EXTERNAL ARBITRATION DETERMINES
NEXT BUS MASTER

2) NEXT BUS MASTER WAITS FOR
CURRENT CYCLE TO COMPLETE

3) NEXT BUS MASTER ASSERTS BUS
GRANT ACKNOWLEDGE (BGACK) TO
BECOME NEW MASTER

TERMINATE ARBITRATION - 4) BUS MASTER NEGATES Em -.

1) NEGATE BG AND WAIT FOR BGACK TO
BE NEGATED ... OPERATE AS BUS MASTER ,

1) PERFORM DATA TRANSFERS
(READ AND WRITE CYCLES)

t
RELEASE BUS MASTERSHIP

RE·ARBITRATE OR RESUME
CONTROLLER OPERATION - 1) NEGATE BGACK

Figure 7-59. Bus Arbitration Flowchart for Single Request

The timing diagram shows that BR is negated at the time that BGACK is
asserted. This type of operation applies to a system consisting of the con
troller and one device capable of bus mastership. In a system having a num-

MC68EC030 USER'S MANUAL MOTOROLA

ber of devices capable of bus mastership, the bus request line from each
device can be wire-ORed to the controller. In such a system, more than one
bus request can be asserted simultaneously.

The timing diagram in Figure 7-60 shows that BG is negated a few clock
cycles after the transition of the BGACK signal. However, if bus requests are
still pending after the negation of BG, the controller asserts another BG within
a few clock cycles after it was negated. This additional assertion of BG allows
external arbitration circuitry to select the next bus master before the current
bus master has finished with the bus. The following paragraphs provide
additional information about the three steps in the arbitration process.

Bus arbitration requests are recognized during normal processing, RESET
assertion, HALT assertion, and even when the controller has halted due to a
double bus fault.

7.7.1 Bus Request

External devices capable of becoming bus masters request the bus by as
serting BR. This can be a wire-ORed signal (although it need not be con
structed from open-collector devices) that indicates to the controller that
some external device requires control of the bus. The controller is effectively
at a lower bus priority level than the external device and relinquishes the
bus after it has completed the current bus cycle (if one has started).

If no acknowledge is received while the BR is active, the controller remains
bus master once BR is negated. This prevents unnecessary interference with
ordinary processing if the arbitration circuitry inadvertently responds to noise
or if an external device determines that it no longer requires use of the bus
before it has been granted mastership.

7.7.2 Bus Grant

The controller asserts BG as soon as possible after receipt of BR. This is
immediately following internal synchronization except during a read-modify
write cycle or following an internal decision to execute a bus cycle. During
a read-modify-write cycle, the controller does not assert BG until the entire
operation has completed. RMC is asserted to indicate that the bus is locked.
In the case of an internal decision to execute another bus cycle, BG is deferred
until the bus cycle has begun.

MOTOROLA MC68EC030 USER'S MANUAL 7-103

•

ClK

BG may be routed through a daisy-chained network or through a specific
priority-encoded network. The controller allows any type of external arbitra
tion that follows the protocol.

so S2 54 so S2

A31-AO ==><""--____ -J)>----------------«"'-___ _

FC2-FCO ==><"""-____ -J)>----------------«\.., ___ _

SIZ1-SIZ0 ==><"""-____ ---') (\.., ___ _

RiiiJ
ECS~

OCS~

AS

os

OSACK1

OSACKO

OBEN =-;

\
\

\

\

\~ ______________ __JI

~

~

/' ""---------------------~

I' ""---------------------~
/

/

'---I'~------------------------~I

031-00 --------~()r----------------------------------
SA ~ ~------------~/ \ _-
BG \ ______ ----J/

BGACK _------------~/
CONTROLLER~ I <E---- OMAOEVICE----,lI>~1 ~ CONTROLLER

Figure 7-60. Bus Arbitration Operation Timing

7-104 MC68EC030 USER'S MANUAL MOTOROLA

7.7.3 Bus Grant Acknowledge

Upon receiving BG, the requesting device waits until AS, DSACKx (or syn
chronous termination, STERM)' and BGACK are negated before asserting its
own BGACK. The negation of the AS indicates that the previous master
releases the bus after specification #7 (refer to MC68EC030/D, MC68EC030
Technical Summary). The negation of DSACKx or STERM indicates that the
previous slave has completed its cycle with,the previous master. Note that
in some applications, DSACKx might not be used in this way.

General-purpose devices are then connected to be dependent only on AS.
When BGACK is asserted, the device is the bus master until it negates BGACK.
BGACK should not be negated until all bus cycles required by the alternate
bus master are completed. Bus mastership terminates at the negation of
BGACK. The BR from the granted device should be negated after BGACK is
asserted. If a BR is still pending after the assertion of BGACK, another BG is
asserted within a few clocks of the negation of BG, as described in the 7.7.4
Bus Arbitration Control. Note that the controller does not perform any ex
ternal bus cycles before it reasserts BG in this case.

7.7.4 Bus Arbitration Control

The bus arbitration control unit in the MC68EC030 is implemented with a
finite state machine. As discussed previously, all asynchronous inputs to the
MC68EC030 are internally synchronized in a maximum of two cycles of the
controller clock.

As shown in Figure 7-61, input signals labeled R and A are internally syn
chronized versions of the BR and BGACK signals, respectively. The BG output
is labeled G, and the internal high-impedance control signal is labeled T. If
T is true, the address, data, and control buses are placed in the high
impedance state after the next rising edge following the negation of AS and
RMC. All signals are shown in positive logic (active high), regardless of their
true active voltage level.

State changes occur on the next rising edge of the clock after the internal
signal is valid. The BG signal transitions on the falling edge of the clock after
a state is reached during which G changes. The bus control signals (controlled
by T) are driven by the controller, immediately following a state change,
when bus mastership is returned to the MC68EC030.

State 0, at the top center of the diagram, in which G and T are both negated,
is the state of the bus arbiter while the controller is bus master. Request R

MOTOROLA MC68EC030 USER'S MANUAL 7-105

•

7-106

R - BUS REQUEST
A - BUS GRANT ACKNOWLEDGE
G-BUSGRANT
T - THREE-STATE CONTROL TO BUS CONTROL LOGIC
X - DON'T CARE

NOTE: The BG output will not be asserted while RMC is asserted.

Figure 7-61. Bus Arbitration State Diagram

and acknowledge A keep the arbiter in state 0 as long as they are both
negated. When a request R is received, both grant G and signal T are asserted
(in state 1 at the top left). The next clock causes a change to state 2, at the
lower left, in which G and T are held. The bus arbiter remains in that state
until acknowledge A is asserted or request R is negated. Once either occurs,
the arbiter changes to the center state, state 3, and negates grant G. The next
clock takes the arbiter to state 4, at the upper right, in which grant G remains
negated and signal T remains asserted. With acknowledge A asserted, the
arbiter remains in state 4 until A is negated or request R is again asserted.
When A is negated, the arbiter returns to the original state, state 0, and
negates signal T. This sequence of states follows the normal sequence of
signals for relinquishing the bus to an external bus master. Other states apply

MC68EC030 USER'S MANUAL MOTOROLA

to other possible sequences of combinations of Rand A. As shown by the
path from state 0 to state 4, BGACK alone can be used to place the controller's
external bus buffers in the high-impedance state, providing single-wire ar
bitration capability'.

The read-modify-write sequence is normally indivisible to support sema
phore operations and multiprocessor synchronization. During this indivisible
sequence, the MC68EC030 asserts the RMC signal and causes the bus arbi
tration state machine to ignore bus requests (assertions of BR) that occur
after the first read cycle of the read-modify-write sequence by not issuing
bus grants (asserting BG).

In some cases, however, it may be necessary to force the MC68EC030 to
release the bus during an read-modify-write sequence. One way for an al
ternate bus master to force the MC68EC030 to release the bus applies only
to the first read cycle of an read-modify-write sequence. The MC68EC030
allows normal bus arbitration during this read cycle; a normal relinquish and
retry operation (asserting BERR, HALT, and BR at the same time) is used .
Note that this method applies only to the first read cycle of the read-modify
write sequence, but this method preserves the integrity of the read-modify
write sequence without imposing any constraint on the alternate bus master.

A second method is single-wire arbitration, the timing of which is shown in
Figure 7-62. An alternate master forces the MC68EC030 to release the bus
by asserting BGACK and waits for AS to negate before taking the bus. It
applies to all bus cycles of a read-modify-write sequence, but can cause
system integrity problems if used improperly. The alternate bus master must
guarantee the integrity of the read-modify-write sequence by not altering the
contents of memory locations accessed by the read-modify~write sequence.
Note that for the method to operate properly, AS must be observed to be
negated (high) on two consecutive clock edges before the alternate bus mas
ter takes the bus. Waiting for this condition ensures that any current or
pending bus activity has completed or has been pr~-empted.

MOTOROLA MC68EC030 USER'S MANUAL 7-107

•

•

7-108

~------SEE NOTE -----~

elK

ADDRESS

NOTE: The alternate bus master must sample AS high on two consecutive rising edges of the clock (after BGACK is
recognized low) before taking the bus.

Figure 7-62. Single-Wire Bus Arbitration Timing Diagram

A timing diagram of the bus arbitration sequence during a controller bus
cycle is shown in Figure 7-60. The bus arbitration sequence while the bus is
inactive (i.e., executing internal operations such as a multiply instruction) is
shown in Figure 7-63.

MC68EC030 USER'S MANUAL MOTOROLA

so

------------------~)~------------------~(~------
_________ -J) ('--__ _

--------~) ('------

\~--------------------~/

~

v
\'-----------------~

\~--------~~

\~--------------------~/

~--------------------------------~c=

\....-____ --J!

\~ __ __JI

\\...-__ --J!

-+- BUSINACnVE I
CONTROLLER (ARBITRATION PERMITTED --3>~-<E--- ALTERNATE MASTER

WHILE THE CONTROLLER IS > I -< CONTROLLER
INACnVE OR HALTED)

Figure 7-63. Bus Arbitration Operation (Bus Inactive)

MOTOROLA MC68EC030 USER'S MANUAL 7-109

-

•

7.8 RESET OPERATION

RESET is a bidirectional signal with which an external device resets the
system or the controller resets external devices. When power is applied to
the system, external circuitry should assert RESET for a minimum of 520
clocks after VCC is within tolerance. Figure 7-64 is a timing diagram of the

.. powerup reset operation, showing the relationships between R,ESET, VCC,
and bus signals. The clock signal is required to be stable by the time VCC
reaches the minimum operating specification. During the reset period, the
entire bus three-states (except for non-three-statable signals, which are dri
ven to their inactive state). Once RESET negates, all control signals are driven
to their inactive state, the data bus is in read mode, and the· address bus is
driven. After this, the first bus cycle for reset exception processing begins.

ClK

VOL"r~ \r----------
VCC k--- t" >520 CLOCKS ~

RESET kI<4ClOCKS~ ~r--------
~4ClOCKS~

CYC~~~ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXH C

7-110

I ENTIRE I ALL CONTROL SIGNALS 1-_
BUS HIGH NEGATED, DATA BUS IN r-'l

IMPEDANCE READ MODE, ADDRESS ISP XXXXX: BUS STATE UNKNOWN BUS DRIVEN READ
STARTS

Figure 7-64. Initial Reset Operation Timing

The external RESET signal resets the controller and the entire system. Except
for the initial reset, RESET should be asserted for at least 520 clock periods
to ensure that the controller resets. Asserting RESET for 10 clock periods is
sufficient for resetting the controller logic; the additional clock periods pre
vent a reset instruction from overlapping the external RESET signal.

Resetting the controller causes any bus cycle in progress to terminate as if
DSACKx, BERR, or STERM had been asserted. In addition, the controller
initializes registers appropriately for a reset exception. Exception processing
for a reset operation is described in 8.1.1 Reset Exception.

When a reset instruction is executed, the controller drives the RESET signal
for 512 clock cycles. In this case, the controller resets the external devices of
the system, and the internal registers of the controller are unaffected. The
external devices connected to the RESET signal are reset at the completion
of the reset instruction. An' external RESET signal that is asserted to the

MC68EC030 USER'S MANUAL MOTOROLA

controller during execution of a reset instruction must extend beyond the
reset period of the instruction by at least eight clock cycles to reset the
controller. Figure 7-65 shows the timing information for the reset instruction.

1

/

'---_----'I

'---_----'I
DBEN 7 \\.,.._--J1

SO S2

____ S1SLlL
__ ---'x'-___ _
_______ x'-___ _
__ --'x'-___ _

v
V ---\-.-

'---

D31-DO~ (~ __ ----'»----------
'-

---<C
HALT~

\'--------~
I f.oIII <t'---- READ---3I>~1 L-_RESET INTERNAL,,---"lI>~lf.oIII<E'-- RESUME NORMAL

~ 512CLOCKS OPERATION

Figure 7-65. Processor-Generated Reset Operation

MOTOROLA MC68EC030 USER'S MANUAL 7-111

•

7-112 MC68EC030 USER'S MANUAL MOTOROLA

SECTION 8
EXCEPTION PROCESSING

Exception processing is defined as the activities performed by the controller
in preparing to execute a handler routine for any condition that causes an
exception. In particular, exception processing does not include execution of
the handler routine itself. An introduction to exception processing, as one of
the processing states of the MC68EC030 controller, was given in SECTION 4
PROCESSING LEVELS. This section describes exception processing in detail,
describing the processing for each type of exception. It describes the return
from an exception and bus fault recovery. For more detail on protocol vio
lation and coprocessor-related exceptions, refer to SECTION 10 COPROCES·
SOR INTERFACE DESCRIPTION. Also, for more detail on exceptions defined
for floating-point coprocessors, refer to MC68881 UM/AD, MC688811MC68882
User's Manual.

8.1 EXCEPTION PROCESSING SEQUENCE

Exception processing occurs in four functional steps. However, all individual
bus cycles associated with exception processing (vector acquisition, stacking,
etc.) are not guaranteed to occur in the order in which they are described in
this section. Nonetheless, all addresses and offsets from the stack pointer
are guaranteed to be as described.

The first step of exception processing involves the status register. The con
troller makes an internal copy of the status register. Then the controller sets
the S bit, changing to the supervisor privilege level. Next, the controller
inhibits tracing of the exception handler by clearing the T1 and TO bits. For
the reset and interrupt exceptions, the controller also updates the interrupt
priority mask.

In the second step, the controller determines the vector number of the ex
ception. For interrupts, the controller performs an interrupt acknowledge
cycle (a read from the CPU address space type $F; see Figures 7-45 and
7-46) to obtain the vector number. For coprocessor-detected exceptions, the
vector number is included in the coprocessor exception primitive response.
(Refer to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for a com
plete discussion of coprocessor exceptions.) For all other exceptions, internal

MOTOROLA MC68EC030 USER'S MANUAL 8-1

iii

•

8-2

logic provides the vector number. This vector number is used in the last step
to calculate the address of the exception vector. Throughout this section,
vector numbers are given in decimal notation.

For all exceptions other than reset, the third step is to save the current
controller context. The controller creates an exception stack frame on the
active supervisor stack and fills it with context information appropriate for
the type of exception. Other information may also be stacked, depending on
which exception is being processed and the state of the controller prior to
the exception. If the exception is an interrupt and the M bit of the status
register is set, the controller clears the M bit in the status register and builds
a second stack frame on the interrupt stack.

The last step initiates execution of the exception handler. The controller
multiplies the vector number by four to determine the exception vector offset.
It adds the offset to the value stored in the vector base register to obtain the
memory address of the exception vector. Next, the controller loads the pro
gram counter (and the interrupt stack pointer (lSP) for the reset exception)
from the exception vector table in memory. After prefetching the first three
words to fill the instruction pipe, the controller resumes normal processing
at the address in the program counter. Table 8-1 contains a description of
all the exception vector offsets defined for the MC68EC030.

Table 8-1. Exception Vector Assignments

Vector Vector Offset STATUS
Number(s)

Assignment
Asserted Hex Space

0 000 SP Reset Initial Interrupt Stack Pointer -
1 004 SP Reset Initial Program Counter -
2 008 SD Bus Error Yes
3 OOC SD Address Error Yes

4 010 SD Illegal Instruction No
5 014 SD Zero Divide No
6 018 SD CHK, CHK2 Instruction No
7 01C SD cpTRAPcc, TRAPcc, TRAPV Instructions No

8 020 SD Privilege Violation No
9 024 SD Trace Yes

10 028 SD Line 1010 Emulator No
11 02C SD Line 1111 Emulator Yes

12 030 SD (Unassigned, Reserved) -
13 034 SD Coprocessor Protocol Violation No
14 038 SD Format Error No
15 03C SD Uninitialized Interrupt Yes

16 040 SD
Through Unassigned, Reserved -

23 05C SD

MC68EC030 USER'S MANUAL MOTOROLA

Table 8-1. Exception Vector Assignments (Continued)

Vector Vector Offset

Number(s) Hex Space

24 060 SD
25 064 SD
26 068 SD
27 06C SD

28 070 SD
29 074 SD
30 078 SD
31 07C SD

32 080 SD
Through

47 OBC SD

48 OCO SD
49 OC4 SD
50 OC8 SD
51 OCC SD

52 ODO SD
53 OD4 SD
54 OD8 SD
55 ODC SD

56 OEO SD
57 OE4 SD
58 OE8 SD

59 OEC SD
Through

63 OFC SD

64 100 SD
Through

255 3FC SD

SP = Supervisor Program Space
SD = Supervisor Data Space

Assignment

Spurious Interrupt
Levell Interrupt Autovector
Level 2 Interrupt Autovector
Level 3 Interrupt Autovector

Level 4 Interrupt Autovector
Level 5 Interrupt Autovector
Level 6 Interrupt Autovector
Level 7 Interrupt Autovector

TRAP #0-15 Instruction Vectors

FPCP Branch or Set on Unordered Condition
FPCP Inexact Result
FPCP Divide by Zero
FPCP Underflow

FPCP Operand Error
FPCPOverfiow
FPCP Signaling NAN
Unassigned, Reserved

Defined for MC68030 not used by MC68EC030
Defined for MC68851 not used by MC68EC030
Defined for MC68851 not used by MC68EC030

Unassigned, Reserved

User Defined Vectors (192)

STATUS
Asserted

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

No

No
No
No
No

No
No
No
No

No
No
No

-

Yes

As shown in Table 8-1, the first 64 vectors are defined by Motorola and 192
vectors are reserved for interrupt vectors defined by the user. However,
external devices may use vectors reserved for internal purposes at the dis
cretion of the system designer.

The MC68EC030 provides the STATUS signal to identify instruction bound
aries and some exceptions. As shown in Table 8-2, STATUS indicates an
instruction boundary and exceptions to be processed, depending on the state
of the internal microsequencer. In addition, STATUS indicates when an ACU
address translation cache miss has occurred and the controller is about to
begin a table search access for the address that caused the miss. Instruction
related exceptions do not cause the as'sertion of STATUS as shown in Table

MOTOROLA MC68EC030 USER'S MANUAL 8-3

III

•

8-1. For STATUS signal timing information, refer to SECTION 12 APPLICA
TIONS INFORMATION.

Table 8-2. Microsequencer STATUS Indications

Asserted for Indicates

1 Clock Sequencer at instruction boundary will begin execution of next instruction.

2 Clocks Sequencer at instruction boundary but will not begin the next instruction im-
mediately due to:

• pending trace exception
OR

• pending interrupt exception

3 Clocks ACU address translation cache miss - controller to begin table serach
OR

Exception processing to begin for:
• reset OR
• bus error OR
• address error OR
• spurious interrupt OR
• autovectored interrupt OR
• F-line instruction (no coprocessor responded)

Continuously Processor halted due to double bus fault .

8.1.1 Reset Exception

8-4

Assertion by external hardware of the RESET signal causes a reset exception.
For details on the requirements for the assertion of RESET, refer to 7.8 RESET
OPERATION.

The reset exception has the highest priority of any exception; it provides for
system initialization and recovery from catastrophic failure. When reset is
recognized, it aborts any processing in progress, and that processing cannot
be recovered. Figure 8-1 is a flowchart of the reset exception, which performs
the following operations:

1. Clears both trace bits in the status register to disable tracing.

2. Places the controller in the interrupt mode of the supervisor privilege
level by setting the supervisor bit and clearing the master bit in the
status register.

3. Sets the controller interrupt priority mask to the highest priority level
(level 7).

4. Initializes the vector base register to zero ($00000000).

5. Clears the enable, freeze, and burst enable bits forboth on-chip caches
and the write-allocate bit for the data cache in the cache control register.

MC68EC030 USER'S MANUAL MOTOROLA

6. Invalidates all entries in the instruction and data caches.

7. Clears the enable bit in both access control registers of the ACU.

8. Generates a vector number to reference the reset exception vector (two
long words) at offset zero in the supervisor program address space.

9. Loads the first long word of the reset exception vector into the interrupt
stack pointer.

10. Loads the second long word of the reset exception vector into the
program counter.

MOTOROLA

(ENTRY

I
S • 1
M • 0

TO, T1 • 0
12-10 • $7
VBR • $0

CACR. $0

)

INSTRUCTION AND
DATA CACHE

ENTRIES INVAUDATED

OTHERWISE
SP. (VECTOR #0)

OTHERWISE
PC • (VECTOR #1)

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

cb

BUS ERROR

BUS ERROR

BUS ERROR OR ADDRESS ERROR

Figure 8-1. Reset Operation Flowchart

MC68EC030 USER'S MANUAL 8-5

-

After the initial instruction prefetches, program execution begins at the ad
dress in the program counter. The reset exception does not save the value
of either the program counter or the status register.

As described in 7.5.4 Double Bus Fault, if bus error or address error occur
during the exception processing sequence for a reset, a double bus fault
occurs. The controller halts, and the STATUS signal is asserted continuously
to indicate the halted condition;

Execution of the reset instruction does not cause a reset exception, nor does
it affect any internal registers, but it does cause the MC68EC030 to assert the
RESET signal, resetting all external devices.

8.1.2 Bus Error Exception

8-6

A bus error exception occurs when external logic aborts a bus cycle by
asserting the BERR input signal. If the aborted bus cycle is a data access, the
controller immediately begins exception processing. If the aborted bus cycle
is an instruction prefetch, the controller may delay taking the exception until
it attempts to use the prefetched information. The assertion of the BERR
signal during the second, third, or fourth access of a burst operation does
not cause a bus error exception, but the burst is aborted. Refer to 6.1.3.2
BURST MODE FILLING and 7.5.1 Bus Errors for details on the effects of bus
errors during burst operation.

The controller begins exception processing for a bus error by making an
internal copy of the current status register. The controller then enters the
supervisor privilege level (by setting the Sbit in the status register) and clears
the trace bits. The controller generates exception vector number 2 for the
bus error vector. It saves the vector offset, program counter, and the internal
copy of the status register on the stack. The saved program counter value is
the address of the instruction that was executing at the time the fault was
detected. This is not necessarily the instruction that initiated the bus cycle,
since the controller overlaps execution of instructions. The controller also
saves the contents of some of its internal registers. The information saved
on the stack is sufficient to identify the cause of the bus fault and recover
from the error.

For efficiency, the MC68EC030 uses two different bus error stack frame for
mats. When the bus error exception is taken at an instruction boundary, less

. information is required to recover from the error, and the controller builds
the short bus fault stack frame as shown in Table 8-7. When the exception
is taken during the execution of an instruction, the controller must save its

MC68EC030 USER'S MANUAL MOTOROLA

entire state for recovery and uses the long bus fault stack frame shown in
Table 8-7. The format code in the stack frame distinguishes the two stack
frame formats. Stack frame formats are described in detail in 8.4 EXCEPTION
STACK FRAME FORMATS.

If a bus error occurs during the exception processing for a bus error, address
error, or reset or while the controller is loading internal state information
from the stack during the execution of an RTE instruction, a double bus fault
occurs, and the controller enters the halted state as indicated by the contin
uous assertion of the STATUS signal. In this case, the controller does not
attempt to alter the current state of memory. Only an external RESET can
restart a controller halted by a double bus fault.

8.1.3 Address Error Exception

An address error exception occurs when the controller attempts to prefetch
an instruction from an odd address. This exception is similar to a bus error
exception, but is internally initiated. A bus cycle is not executed, and the
controller begins exception processing immediately. After exception pro
cessing commences, the sequence is the same as that for bus error exceptions
described in the preceding paragraphs, except that the vector number is 3 _
and the vector offset in the stack frame refers to the address error vector. :
Either a short or long bus fault stack frame may be generated. If an address
error occurs'during the exception processing for a bus error, address error,
or reset, a double bus fault occurs:

8.1.4 Instruction Trap Exception

Certain instructions are used to explicitly cause trap exceptions. The TRAP
#n instruction always forces an exception and is useful for implementing
system calls in user programs. The TRAPcc, TRAPV, cpTRAPcc, CHK; and
CHK2 instructions force exceptions ifthe user program detects an error, which
may be an arithmetic, overflow or a subscript value that is out of bounds.

The DIVS and DIVU instructions force exceptions if a division operation is
attempted with a divisor of zero.

When a trap exception occurs, the controller copies the status register in
ternally, enters the supervisor privilege level, and clears the trace bits. If
tracing is enabled for the instruction that caused the trap, a trace exception
is taken after the RTE instruction from the trap handler is executed, and the
trace corre$ponds to the trap instruction; the' trap handler routine is not

MOTOROLA MC68EC030 USER'S MANUAL 8-7

•

traced. The controller generates a vector number according to the instruction
being executed; for the TRAP#n instruction, the vector number is 32 plus
n. The stack frame saves the trap vector offset, the program counter, ~nd the
internal copy of the status register on the supervisor stack. The saved value
of the program counter is the address of the instruction following the in
struction that caused the trap. For all instruction traps other than TRAP #n,
a pointer to the instruction that caused the trap is also saved. Instruction
execution resumes at the address in the exception vector after the .required
instruction prefetches.

8.1.5 Illegal Instruction and Unimplemented Instruction Exceptions

An illegal instruction is an instruction that contains any bit pattern in its first
word that does not correspond to the bit pattern of the first word of a valid
MC68EC030 instruction or is a MOVEC instruction with an undefined register
specification field in the first extension word. An illegal instruction exception
corresponds to vector number 4 and occurs when the controller attempts to
execute an illegal instruction.

8-8

An illegal instruction exception is also taken if a breakpoint acknowledge bus
cycle (see 7.4.2 Breakpoint Acknowledge Cycle) is terminated with the as
sertion of the bus error signal. This implies that the external circuitry did not

, supply an instruction word to replace the BKPT instruction word in the in
struction pipe.

Instruction word patterns with bits [15: 12] equal to $A are referred to as
unimplemented instructions with A-line opcodes. When the controller at
tempts to execute an unimplemented instruction with an A-line opcode, an
exception is generated with vector number 10, permitting efficient emulation
of unimplemented instructions.

Instructions that have word patterns with bits [15: 121' equal to $F, bits [11 :9]
equai to $0, and defined word patterns for subsequent words are legal ACU
instructions. Execution of some of these instructions by the MC68EC030 can
cause undefined results. They are not treated as unimplemented instructions.
Refer to SECTION 9 ACCESS CONTROL UNIT for more details. Instructions
that have bits [15: 12] of the first words equal to $F, bits [11 :9] equal to $0,
and undefined patterns in su~sequent words are treated as unimplemented
instructions with F-line opcodes when execution is attempted in supervisor
mode. Whe'n execution of the same instruction is attempted in user mode,
a privilege violation exception is taken. The exception vector· number for an
unimplemented instruction with an F-line opcode is number 11.

MC68EC030 USER'S MANUAL MOTOROLA

· The word patterns with bits [15: 12] equal to $F and bits [11 :9] not equal to
zero are used for coprocessor instructions. When the controller identifies a
coprocessor instruction, it runs a bus cycle referencing CPU space type $2
(refer to 4.2 ADDRESS SPACE TYPES) and addressing one of seven copro
cessors (1-7, according to bits [11 :9]). If the addressed coprocessor is not
included in the system and the cycle terminates with the assertion of the bus
error signal, the instruction takes an unimplemented instruction (F-line op
code) exception. The system can emulate the functions of the coprocessor
with an F-line exception handler. Refer to SECTION 10 COPROCESSOR
INTERFACE DESCRIPTION for more details.

Exception processing for illegal and unimplemented instructions is similar
to that for instruction traps. When the controller has identified an illegal or
unimplemented instruction, it initiates exception processing instead of at
tempting to execute the instruction. The controller copies the status register,
enters the supervisor privilege level, and clears the trace bits, disabling fur
ther tracing. The controller generates the vector number, either 4, 10, or 11,
according to the exception type. The illegal or unimplemented instruction
vector offset, current program counter, and copy of the status register are
saved on the supervisor stack, with the saved value of the program counter
being the address of the illegal or unimplemented instruction. Instruction
execution resumes at the address contained in the exception vector. It is the _.
responsibility of the handling routine to adjust the stacked program counter
if the instruction is emulated in software or is to be skipped on return from
the handler.

8.1.6 Privilege Violation Exception

To provide system security, the following instructions are privileged:
ANDI TO SR
EOR to SR
cpRESTORE
cpSAVE
MOVE from SR
MOVE to SR
MOVE USP
MOVEC
MOVES
ORI to SR
PMOVE
PTEST
RESET
RTE
STOP

MOTOROLA MC68EC030 USER'S MANUAL 8-9

•

An attempt to execute one of the privileged instructions while at the user
privilege level causes a privilege violation exception. Also, a privilege vio
lation exception occurs if a coprocessor requests a privilege check and the
controller is at the user level.

Exception processing for privilege violations is similar to that for illegal in
stnictions. When the controller identifies a privilege violation, it begins ex
ception processing before executing the instruction. The controller copies
the status register, enters the supervisor privilege level, and clears the trace
bits. The controller generates vector number 8, the privilege violation ex
ception vector, and saves the privilege violation vector offset, the current
program counter value, and the internal copy of the status register on the
supervisor stack. The saved value of the program counter is the address of
the first word of the instruction that caused the privilege violation. Instruction
execution resumes after the required prefetches from the address in the
privilege violation exception vector.

8.1.7 Trace Exception

8-10

To aid in program development, the M68000 processors include instruction
by-instruction tracing capability. The MC68EC030 can be programmed to
trace all instructions or only instructions that change program flow. In the
trace mode, an instruction generates a trace exception after it completes
execution, allowing a debugger program to monitor execution of a program.

The T1 and TO bits ill the supervisor portion of the status register control
traping. The state of these bits when an instruction begins execution deter
m,nes whether the instruction generates a trace exception after the instruc
tion completes. Clearing both T bits disables tracing, and instruction execution
proceeds normally. Clearing the T1 bit and setting the TO bit causes an in
struction that forces a change of flow to take a trace exception. Instructions
that increment the program counter normally do not take the trace exception.
InstqJctions that are traced in this mode include all branches, jumps, instruc
tion traps, returns, and coprocessor instructions that modify the program
counter flow. This mode also includes status register manipulations, because
the controller must re-prefetch instruction words to fill the pipe again any
time an instruction that can modify the status register is executed. The ex
ecution of the BKPT instruction causes a change of flow if the opcode re
placing the BKPT is an instruction that causes a change of flow (i.e., a jump,
branch, etc.). Setting the T1 bit and clearing the TO bit causes the execution
of all instructions to force trace exceptions. Table 8-3 shows the trace mode
selected by each combination of T1 and TO.

MC68EC030 USER'S MANUAL MOTOROLA

Table 8-3. Tracing Control

T1 TO Tracing Function

0 0 No Tracing

0 1 Trace on Change of Flow (BRA, JMP, etc.)

1 0 Trace on Instruction Execution (Any Instruction)

1 1 Undefined, Reserved

In general terms, a trace exception is an extension to the function of any
traced instruction - that is, the execution of a traced instruction is not com
plete until the trace exception processing is completed. If an instruction does
n'ot complete due to a bus error or address error exception, trace exception
processing is deferred until after the execution of the suspended instruction
is resumed and the instruction execution completes normally. If an interrupt
is pending at the completion of an instruction, the trace exception processing
occurs before the interrupt exception processing starts. If an instruction forces
an exception as part of its normal execution, the forced exception processing
occurs before the trace exception is processed. See 8.1.12 Multiple Excep
tions for a more complete discussion of exception priorities.

When the controller is in the trace mode and attempts to execute an' illegal
or unimplemented instruction, that instruction does not cause a trace ex
ception since it is not executed. This is of particular importance to an instruc
tion emulatioh routine that performs the instruction function, adjusts the
stacked program counter to skip the unimplemented instruction, and returns.
Before returning, the trace bits of the status register on the stack should be
checked. If tracing is enabled, the trace exception processing should also be
emulated for the trace exception handler to account for the emulated instruc
tion.

The exception processing for a trace starts at the end of normal processing
for the traced instruction and before the start of the next instruction. The
controller makes an internal copy of the status register and enters the su
pervisor privilege level. It also clears the TO and T1 bits of the status register,
disabling further tracing. The controller supplies vector number 9 for the
trace exception and saves the trace exception vector offset, program counter
value, and the copy of the status register on the supervisor stack. The saved
value of the program counter is the address of the next instruction to be
executed. Instruction execution resumes after the required prefetches from
the address in the trace exception vector.

MOTOROLA MC68EC030 USER'S MANUAL 8-11

The STOP instruction does not perform its function when it is traced. A STOP
instruction that begins execution with T1 = 1 and TO = 0 forces a trace excep
tion after it loads the status register. Upon return from the trace handler
routine, execution continues with the instruction following the STOP, and
the controller never enters the stopped condition.

8.1.8 Format Error Exception

Just as the controller checks that prefetched instructions are valid, the con
troiler (with the aid of a coprocessor, if needed) also performs some checks
of data values for control operations, including the coprocessor state frame
format word for a cpRESTORE instruction and the stack frame format for an
RTE instruction.

The RTE instruction checks the validity of the stack format code. For long
bus cycle fault format frames, the RTE instruction also compares the internal
version number of the controller to that contained in the frame at memory
location SP + 54 (SP + $36). This check ensures that the controller can correctly
interpret internal state information from the stack frame.

The cpRESTORE instruction passes the format word of the coprocessor state
frame to the coprocessor for validation. If the coprocessor does not recognize
the format value, it signals the MC68EC030 to take a format error exception.
Refer to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for details
of coprocessor-related exceptions.

If any of the checks previously described determine that the format of the
stacked data is improper, the instruction generates a format error exception.
This exception saves a short format stack frame, generates exception vector
number 14, and continues execution at the address in the format exception
vector. The stacked program counter value is the address of the instruction
that detected the format error.

8.1.9 Interrupt Exceptions

8-12

When a peripheral device requires the services of the MC68EC030 or is ready
to send information that the controller requires, it may signal the controller
to take an interrupt exception. The interrupt exception transfers control to a
routine that responds appropriately.

The peripheral device uses the active-low interrupt priority level signals
(lPLO-IPL2) to signal an interrupt condition to the controller and to specify

MC68EC030 USER'S MANUAL MOTOROLA

the priority of that condition. The three signals encode a value of zero through
seven (lPLO is the least significant bit). High levels on all three signals cor
respond to no interrupt requested (level 0) and low levels on IPLO-IPL2 cor
respond to interrupt request level 7. Values 1-7 specify one of seven levels
of prioritized interrupts; level seven has the highest priority. External circuitry
can chain or otherwise merge signals from devices at each level, allowing
an unlimited number of devices to interrupt the controller.

The IPLO-IPL2 interrupt signals must maintain the interrupt request level until
the MC68EC030 acknowledges the interrupt to guarantee that the interrupt
is recognized. The MC68EC030 continuously samples the IPLO-IPL2 signals
on consecutive falling edges of the controller clock to synchronize and de
bounce these signals. An interrupt request that is the same for two consec
utive falling clock edges is considered a valid input. Although the protocol
requires that the request remain until the controller runs an interrupt ac
knowledge cycle for that interrupt value, an interrupt request that is held for
as short a period as two clock cycles could be recognized.

The status register of the MC68EC030 contains an interrupt priority mask (12,
11, 10, bits 10-8). The value in the interrupt mask is the highest priority level
that the controller ignores. When an interrupt request has a priority higher
than the value in the mask, the controller makes the request a pending in
terrupt. Figure 8-2 is a flowchart of the procedure for making an interrupt
pending.

MOTOROLA

(COMPARE INTERRUPT LEVEL
WITH STATUS REGISTER MASK)

Figure 8-2. Interrupt Pending Procedure

MC68EC030 USER'S MANUAL 8-13

l1li

8-14

When several devices are connected to the same interrupt level, each device
should hold its interrupt priority level constant until its corresponding inter
rupt acknowledge cycle to ensure that all requests are processed.

Table 8-4 lists the interrupt levels, the states of IPL2-IPLO that define each
level, and the mask value that allows an interrupt at each level.

Table 8-4. Interrupt Levels and Mask Values

Requested Control Line Status Interrupt Mask Level
Interrupt Level IP2 IP1 IPO Required for Recognition

0* High High High N/A*

1 High High Low 0

2 High Low High 0-1

3 High Low Low 0-2

4 Low High High 0-3

5 Low High Low 0-4

6 Low Low High 0-5

7 Low Low Low 0-7

*Indicates that no interrupt is requested.

Priority level 7, the nonmaskable interrupt (NMI), is a special case. Level 7
interrupts cannot be masked by the interrupt priority mask, and they are
transition sensitive. The controller recognizes an interrupt request each time
the external interrupt request level changes from some lower level to level
7, regardless of the value in the mask. Figure 8-3 shows two examples of
interrupt recognitions, one for level 6 and one for level 7. When the MC68EC030
processes a level 6 interrupt, the status register mask is automatically updated
with a value of 6 before entering the handler routine so that subsequent level
6 interrupts are masked. Provided no instruction that lowers the mask value
is executed, the external request can be lowered to level 3 and then raised
back to level 6 and a second level 6 interrupt is not processed. However, if
the MC68EC030 is handling a level 7 interrupt (status register mask set to 7)
and the external request is lowered to level 3 and then raised back to level
7, a second level 7 interrupt is processed. The second level 7 interrupt is
processed because the level 7 interrupt is transition sensitive. A level 7 in
terrupt is also generated by a level comparison if the request level and mask
level are at seven and the priority mask is then set to a lower level (with the
MOVE to SR or RTE instruction, for example). As shown in Figure 8-3 for
level 6 interrupt request level and mask level, this is the case for all interrupt
levels.

MC68EC030 USER'S MANUAL MOTOROLA

EXTERNAL IPL2-IPLO SR MASK (12-10) ACTION

LEVEL 6 EXAMPLE:

100 ($3) 101 ($5) INITIAL CONDITIONS

IF 001 ($6) THEN 110 ($6) AND LEVEL 6 INTERRUPT (LEVEL COMPARISON)

IF 100 ($3) AND STILL 110 ($6) THEN NO ACTION

IF 001 ($6) AND STILL 110 ($6) THEN NO ACTION

IF STILL 001 ($6) AND RTE SO THAT 101 ($5) THEN LEVEL 6 INTERRUPT (LEVEL COMPARISON)

LEVEL 7 EXAMPLE:

100($3) 101 ($5) INITIAL CONDITIONS

IF 000 ($7) THEN 111 ($7) AND LEVEL 7 INTERRUPT (TRANSITION)

IF 100 ($3) AND STILL 111 ($7) THEN NO ACTION

IF 000 ($7) AND STILL 111 ($7) THEN LEVEL 7 INTERRUPT (TRANSITION)

IF STILL 000 ($7) AND RTE SO THAT 101 ($5) THEN LEVEL 7 INTERRUPT (LEVEL COMPARISON)

Figure 8-3. Interrupt Recognition Examples

Note that a mask value of 6 and a mask value of 7 both inhibit request levels
1-6 from being recognized. In addition, neither masks a transition to an
interrupt request level of 7. The only difference between mask values of 6
and 7 occurs when the interrupt request level is 7 and the mask value is 7.
If the mask value is lowered to 6, a second level 7 interrupt is recognized.

The MC68EC030 asserts the interrupt pending signal (lPEND) when it makes
an interrupt request pending. Figure 8-4 shows the assertion of IPEND relative
to the assertion of an interrupt level on the IPLx lines. IPEND signals to
external devices that an interrupt exception will be taken at an upcoming
instruction boundary (following any higher priority exception).

MOTOROLA MC68EC030 USER'S MANUAL 8-15

•

8-16

CLK

IPLs RECOGNIZED

IPLs SYNCHRONIZED

COMPARE REQUEST
WITH MASK IN SR

ASSERT IPEND

Figure 8-4. Assertion of IPEND

The state of the IPEND signal is internally checked by the controller once per
instruction, independently of bus operation. In addition, it is checked during
the second instruction prefetch associated with exception ·processing. Figure
8-5 is a flowchart of the interrupt recognition and associated exception pro
cessing sequence.

MC68EC030 USER'S MANUAL MOTOROLA

(CHECK RELATIONSHIP BETWEEN IPEND AND STATUS)

OTHERWISE

~

THESE
INDIVIDUAL

BUS CYCLES
MAY OCCUR

IN ANY ORDER

IPEND BEFORE STATUS

I
STATO • THIS INSTRUCTION BOUNDARY
STATl • NEXT INSTRUCTION BOUNDARY

WAlT FOR STATO OR STAT1°
INDICATE INTERRUPT TO BE PROCESSED

(ASSERT STATUS FOR 2 CLOCKS)

-(SP). TEMP
-(SP). PC

-(SP). FORMAT WORD
-(SP) • OTHER EXCEPTION-DEPENDENT

INFORMATION

°EXPlAINED FURTHER IN TEXT

PC. VECro"RT'kLE ENTRY M. ~
TEMP. SR

M. 0

BEGIN EXECUTION OF THE INTERRUPT
HANDLER ROUTINE OR PROCESS A
HIGHER PRIORITY EXCEPTION

Figure 8-50 Interrupt Exception Processing Flowchart

To predict the instruction boundary during which a pending interrupt is pro
cessed, the timing relationship between the assertion of IPEND for that in
terrupt and the assertion of STATUS must be examined. Figure 8-6 shows
two examples of interrupt recognition. The first assertion of STATUS after
IPEND is denoted as STATO. The next assertion of STATUS is denoted as

MOTOROLA MC68EC030 USER'S MANUAL 8-17

III

•

8-18

STAT1. If STATD begins on the falling edge of the clock immediately following
the clock edge that caused IPEND to assert (as shown in example 1), STAT1
is at least two clocks long, and, when there are no other pending exceptions,
the interrupt is acknowledged at the boundary defined by STAT1. If IPEND
is asserted with more setup time to STATD, the interrupt may be acknowl
edged at the boundary defined by STATD (as shown in example 2). In that
case, STATD is asserted for two clocks, signaling this condition.

CLK

IPEND~~ ________________________________ _

~;;======:>-I*---3~~ PROCEED TO INTERRUPT ~ I- STAT1 + EXCEPTION PROCESSING

EXAMPLE 1: INTERRUPT EXCEPTION SIGNALED DURING STAT1

CLK

IPEND ~~ ______________________ ~ ________ _

STATUS /
------'

EXAMPLE 2: INTERRUPT EXCEPTION SIGNALED DURING STATO

Figure 8-6. Examples of Interrupt Recognition and Instruction Boundaries

If no higher priority interrupt has been synchronized, the IPEND signal is
negated during state D (SO) of an interrupt acknowledge cycle (refer to 7.4.1.1
INTERRUPT ACKNOWLEDGE CYCLE - TERMINATED NORMALLY), and the
IPLx signals for the interrupt being acknowledged can be negated at this
time.

When processing an interrupt exception, the controller first makes an internal
copy of the status register, sets the privilege level to supervisor, suppresses
tracing, and sets the controller interrupt mask level to the level of the interrupt
being serviced. The controller attempts to obtain a vector number from the
interrupting device using an interrupt acknowledge bus cycle with the inter
rupt level number output on pins A 1-A3 of the address bus. For a device
that cannot supply an interrupt vector, the autovector signal (AVEC) can be

MC68EC030 USER'S MANUAL MOTOROLA

asserted, and the MC68EC030 uses an internally generated autovector, which
is one of vector numbers 25-31; that corresponds to the interrupt level num
ber. If external logic indicates a bus error during the interrupt acknowledge
cycle, the interrupt is considered spurious, and the controller generates the
spurious interrupt vector number, 24. Refer to 7.4.1 Interrupt Acknowledge
Bus Cycles for complete interrupt bus cycle information.

Once the vector number is obtained, the controller saves the exception vector
offset, program counter value, and the internal copy of the status register on
the active supervisor stack. The saved value of the program counter is the
address of the instruction that would have been executed had the interrupt
not occurred. If the interrupt was acknowledged during the execution of a
coprocessor instruction, further internal information is saved on the stack so
that the MC68EC030 can continue executing the coprocessor instruction when
the interrupt handler completes execution.

If the M bit of the status register is set, the controller clears the M bit and
creates a throwaway exception stack frame on top of the interrupt stack as
part of interrupt exception processing. This second frame contains the same
program counter value and vector offset as the frame created on top of the
master stack, but has a format number of 1 instead of O. or 9. The copy of
the status register saved on the throwaway frame is exactly the same as that
placed on the master stack except that the S bit is set in the version placed
on the interrupt stack. (It mayor may not be set in the copy saved on the
master stack.) The resulting status register (after exception processing) has
the S bit set and the M bit cleared.

The controller loads the address in the exception vector into the program
counter, and normal instruction execution resumes after the required pre
fetches for the interrupt handler routine.

Most M68000 Family peripherals use programmable interrupt vector num
bers as part of the interrupt request/acknowledge mechanism of the system.
If this vector number is not initialized after reset and the peripheral must
acknowledge an interrupt request, the peripheral usually returns the vector
number for the uninitialized interrupt vector, 15.

8.1.10 Breakpoint Instruction Exception

To use the MC68EC030 in a hardware emulator, it must provide a means of
inserting breakpoints in the emulator code and of performing appropriate
operations at each breakpoint. For the MC68000 and MC68008, this can be
done by inserting an illegal instruction at the breakpoint and detecting the

MOTOROLA MC68EC030 USER'S MANUAL 8-19

l1li

8-20

illegal instruction exception from its vector location. However, since the vec
tor base register on the MC68010, MC68020, MC68030, and MC68EC030 al
lows arbitrary relocation of exception vectors, the exception address cannot
reliably identify a breakpoint. The MC68020, MC68030, and MC68EC030 pro
vide a breakpoint capability with a set of breakpoint instructions, $4848-$484F,
for eight unique breakpoints. The· breakpoint facility also allows external
hardware to monitor the execution of a program residing in the on-chip
instruction cache without severe performance degradation.

When the MC68EC030 executes a breakpoint instruction, it performs a break
point acknowledge cycle (read cycle) from CPU space type $0 with address
lines A2-A4 corresponding to the breakpoint number. Refer to Figure 7-44
for the CPU space type $0 addresses and to 7.4.2 Breakpoint Acknowledge
Cycle for a description of the breakpoint acknowledge cycle. The external
hardware can return either BERR, DSACKx, or STERM with an instruction
word on the data bus. If the bus cycle terminates with BERR, the controller
performs illegal instruction exception processing. If the bus cycle terminates
with DSACKx or STERM, the controller uses the data returned to replace the
breakpoint instruction in the internal instruction pipe and begins execution
of that instruction. The remainder of the pipe remains unaltered. In addition,
no stacking or vector fetching is involved with the execution of the instruction.
Figure 8-7 is a flowchart of the breakpoint instruction execution.

MC68EC030 USER'S MANUAL MOTOROLA .

ENTRY

A19-A16. $0
A4-A2. BREAKPOINT NUMBER

DSACKx OR STERM

r
PIPE STAGE D • INSTRUCTION WORD ON DATA BUS

EXECUTE INSTRUCTION WORD

I
C ___ EX_IT __)

BERR

Figure 8-7. Breakpoint Instruction Flowchart

8.1.11 Multiple Exceptions

When several exceptions occur simultaneously, they are processed according
to a fixed priority. Table 8-5 lists the exceptions, grouped by characteristics.
Each group has a priority from 0-4. Priority 0 has the highest priority.

MOTOROLA MC68EC030 USER'S MANUAL 8-21

8-22

Table 8-5. Exception Priority Groups

Group/ Exception and
Characteristics

Priority Relative Priority

0 0.0 - Reset Aborts all processing (instruction or ex-
ception) and does not save old context.

1 1.0 - Address Error Suspends processing (instruction or ex-
1.1 - Bus Error ception) and saves internal context.

2 2.0- BKPT #n, CHK, CHK2, cp Mid-Instruc- Exception processing is part of instruction
tion, cp Protocol Violation, cp- execution.
TRAPcc, Divide by Zero, RTE, TRAP
#n, TRAPV, ACU Configuration

3 3.0 - Illegal Instruction, Line A, Unimple- Exception processing begins before in-
mented Line F, Privilege Violation, struction is executed.
cp Pre-Instruction

4 4.0 - cp Post-Instruction Exception processing begins when current
4.1 - Trace instruction or previous exception process-
4.2 - Interrupt ing is completed.

0.0 is the highest priority, 4.2 is the lowest.

As soon as the MC68EC030 has completed exception processing for a con
dition when another exception is pending, it begins exception processing for
the pending exception instead of executing the exception handler for the
original exception condition. Also, whenever a bus error or address error
occurs, its exception processing takes precedence over lower priority excep
tions and occurs immediately. For example, if a bus error occurs during the
exception processing for a trace condition, the system processes the bus
error and executes its handler before completing the trace exception proc
essing. However, most exceptions cannot occur during exception processing,
and very few combinations of the exceptions shown in Table 8-5 can be
pending simultaneously.

The priority scheme is very important in determining the order in which
exception handlers execute when several exceptions occur at the same time.
As a general rule, the lower the priority of an exception, the sooner the
handler routine for that exception executes. For example, if simultaneous
trap, trace, and interrupt exceptions are pending, the exception processing
for the trap occurs first, followed immediately by exception processing for
the trace and then for the interrupt. When the controller resumes normal
instruction execution, it is in the interrupt handler, which returns to the trace
handler, which returns to the trap exception handler. This rule does not apply
to the reset exception; its handler is executed first even though it has the
highest priority because the reset operation clears all other exceptions.

MC68EC030 USER'S MANUAL MOTOROLA

8.1.12 Return from Exception

After the controller has completed exception processing for all pending ex
ceptions, the controller resumes normal instruction execution at the address
in the vector for the last exception processed. Once the exception handler
has completed execution, the controller must return to the system context
prior to the exception (if possible). The RTE instruction returns from the
handler to the previous system context for any exception.

When the controller executes an RTE instruction, it examines the stack frame
on top of the active supervisor stack to determine if it is a valid frame and
what type of context restoration it requires. This section describes the pro
cessing for each of the stack frame types; refer to 8.3 COPROCESSOR CON
SIDERATIONS for a description of the stack frame type formats.

For a normal four-word frame, the controller updates the status register and
program counter with the data read from the stack, increments the stack
pointer by eight, and resumes normal instruction execution.

For the throwaway four-word stack, the controller reads the status register
value from the frame, increments the active stack pointer by eight, updates
the status register with the value read from the stack, and then begins RTE
processing again, as shown in Figure 8-8. The controller reads a new format
word from the stack frame on top of the active stack (which mayor may not
be the same stack used for the previous operation) and performs the proper
operations corresponding to that format. In most cases, the throwaway frame
is on the interrupt stack and when the status register value is read from the
stack, the Sand M bits are set. In that case, there is a normal four-word frame
or a ten-word coprocessor mid-instruction frame on the master stack. How
ever, the second frame may be any format (even another throwaway frame)
and may reside on any of the three system stacks.

MOTOROLA MC68EC030 USER'S MANUAL 8-23

•

8-24

TAKE FORMAT
ERROR EXCEPTION

ENTRY

OTHERWISE

FORMAT CODE = $1

(THROWAWAY FRAME)

DE'~MEJ

PC. (SP) +
SP. SP+6
SR. TEMP

I C ___ EX_IT __)

Figure 8-8. RTE Instruction for Throwaway Four-Word Frame

For the six-word stack frame, the controller restores the status register and
program counter values from the stack, increments the active supervisor
stack pointer by 12, and resumes normal instruction execution.

For the coprocessor mid-instruction stack frame, the controller reads the
status register, program counter, instruction address, internal register values,
and the evaluated effective address from the stack, restores these values to
the corresponding internal registers, and increments the stack pointer by 20.
The controller then reads from the response register of the coprocessor that
initiated the exception to determine the next operation to be performed. Refer
to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for details of
coprocessor-related exceptions.

For both the short and long bus fault stack frames, the controller first checks
the format value on the stack for validity. In addition, for the long stack frame,
the controller compares the version number in the stack with its own version

MC68EC030 USER'S MANUAL MOTOROLA

number. The version number is located in the most significant nibble (bits
15-12) of the word at location SP + $36 in the long stack frame. This validity
check is required in a multiprocessor system to ensure that the data is prop
erly interpreted by the RTE instruction. The RTE instruction also reads from
both ends of the stack frame to make sure it is accessible. If the frame is
invalid or inaccessible, the controller takes a format error or a bus error
exception, respectively. Otherwise, the controller reads the entire frame into
the proper internal registers, deal locates the stack, and resumes normal pro
cessing. Once the controller begins ~o load the frame to restore its internal
state, the assertion of the BERR signal causes the controller to enter the
halted state with the continuous assertion of the STATUS signal. Refer to 8.2
BUS FAULT RECOVERY for a description of the processing that occurs after
the frame is read into the internal registers.

If a format error or bus error exception occurs during the frame validation
sequence of the RTE instruction, either due to any of the errors previously
described or due to an illegal format code, the controller creates a normal
four-word or a bus fault stack frame below the frame that it was attempting
to use. In this way, the faulty stack frame remains intact. The exception
handler can examine or repair the faulty frame. In a multiprocessor system,
the faulty frame can be left to be used by another controller of a different
type when appropriate.

8.2 BUS FAULT RECOVERY

An address error exception or a bus error exception indicates a bus fault.
The saving of the controller state for a bus error or address error is described
in 8.1.2 Bus Error Exception, and the restoring of the controller state by an
RTE instruction is described in 8.1.13 Return from Exception.

Controller accesses of either data items or the instruction stream can result
in bus errors. When a bus error exception occurs while accessing a data item,
the exception is taken immediately after the bus cycle terminates. A bus error
occurring during an instruction stream access is not processed until the
controller attempts to use the information (if ever) that the access should
have provided. For instruction faults, when the short format frame applies,
the address of the pipe stage B word is the value in the program counter
plus four, and the address of the stage C word is the value in the program
counter plus two. For the long format, the long word at SP + $24 contains
the address of the stage B word; the address of the stage C word is the
address of the stage B word minus two. Address error faults occur only for
instruction stream accesses, and the exceptions are taken before the bus
cycles are attempted.

MC68EC030 USER'S MANUAL 8-25

•

8.2.1 Special Status Word (SSW)

8-26

The internal SSW (see Figure 8-9) is one of several registers saved as part
of the bus fault exception stack frame. Both the short bus cycle fault format
and the long bus cycle fault format include this word at offset $A. The bus
cycle fault stack frame formats are described in detail at the end of this
section.

15 14

I FC I FB

FC
FB
RC
RB
DF
RM
RW
SIZE
FC2-FCO

13 12 11 10 9 7 6

RC RB x x x OF RM I RW I
- Fault on stage C of the instruction pipe
- Fault on stage B of the instruction pipe
- Rerun flag for stage C of the instruction pipe*
- Rerun flag for stage B of the instruction pipe*
- Fault/rerun flag for data cycle*
- Read-modify-write on data cycle
- Read/write for data cycle - 1 = read, 0 = write
- Size code for data cycle
-Address space for data cycle

*1 = Rerun Faulted bus Cycle, or run pending prefetch

0= Do not rerun bus sycle
X = For internal use only

5 4

SIZE

Figure 8-9. Special Status Word (SSW)

3 o
x I FC2-FCO

The SSW information indicates whether the fault was caused by an access
to the instruction stream, data stream, or both. The high-order half of the
SSW contains two status bits each for the Band C stages of the instruction
pipe. The fault bits (FB and FC) indicate that the controller attempted to use
a stage (B or C) and found it to be marked invalid due to a bus error on the
prefetch for that stage. The fault bits can be used by a bus error handler to
determine the cause(s) of a bus error exception. The rerun flag bits (RB and
RC) are set to indicate that a fault occurred during a prefetch for the corre
sponding stage. A rerun bit is always set when the corresponding fault bit
is set. The rerun bits indicate that the word in a stage of the instruction pipe
is invalid, and the state of the bits can be used by a handler to repair the
values in the pipe after an address error or a bus error, if necessary. If a rerun
bit is set when the controller executes an RTE instruction, the controller may
execute a bus cycle to prefetch the instruction word for the corresponding
stage of the pipe (if it is required). If the rerun and fault bits are- set for a
stage of the pipe, the RTE instruction automatically reruns the prefetch cycle
for that stage. The address space for the bus cycle is the program space for
the privilege level indicated in the copy of the status register on the stack. If
a rerun bit is cleared, the words on the stack for the corresponding stages
of the pipe are accepted as valid; the controller assumes that there is no
prefetch pending for the corresponding stage and that software has repaired
or filled the image of the stage, if necessary.

MC68EC030 USER'S MANUAL MOTOROLA

If an address error exception occurs, the fault bits written to the stack frame
are not set (they are only set due to a bus error, as previously described),
and the rerun bits alone show the cause of the exception. Depending on the
state of the pipeline, either RB and RC are both set, or RC alone is set. To
correct the pipeline contents and continue execution of the suspended in
struction, software must place the correct instruction stream data in the stage
C and/or stage B images requested by the rerun bits and clear the rerun bits.
The least significant half of the SSW applies to data cycles only. If the OF bit
of the SSW is set, a data fault has occurred and caused the exception. If the
DF bit is set when the controller reads the stack frame, it reruns the faulted
data access; otherwise, it assumes that the data input buffer value on the
stack is valid for a read or that the data has been correctly written to memory
for a write (or that no data fault occurred). The RM bit of the SSW identifies
a read-modify-write operation and the RW bit indicates whether the cycle
was a read or write operation. The SIZE field indicates the size of the operand
access, and the FC field specifies the address space for the data cycle. Data
and instruction stream faults may be pending simultaneously; the fault han
dier should be able to recognize any combination of the FC, FB, RC, RB, and
OF bits.

8.2.2 Using Software To Complete the Bus Cycles

One method of completing a faulted bus cycle is to use a software handler
to emulate the cycle. This is the only method for correcting address errors.
The handler should emulate the faulted bus cycle in a manner that is trans
parent to the instruction that caused the fault. For instruction stream faults,
the handler may need to run bus cycles for both the Band C stages of the
instruction pipe. The RB and RC bits identify the stages that may require a
bus cycle; the FB and FC bits indicate that a stage was invalid when an attempt
was made to use its contents. Those stages must be repaired. For each faulted
stage, the software handler should copy the instruction word from the proper
address space as indicated by the S bit of the copy of the status register
saved on the stack to the image of the appropriate stage in the stack frame.
In addition, the handler must clear the rerun bit associated with the stage
that it has corrected. The handler should not change the fault bits FB and
FC.

To repair data faults (indicated by DF = 1), the software should first examine
the RM bit in the SSW to determine if the fault was generated during a read
modify-write operation. If RM = 0, the handler should then check the RIW bit
of the SSW to determine if the fault was caused by a read or a write cycle.
For data write faults, the handler must transfer the properly sized data from
the data output buffer (DOB) on the stack frame to the location indicated by

MOTOROLA MC68EC030 USER'S MANUAL 8-27

•

the data fault address in the address space defined by the SSW. (Both the
DOB and the data fault address are part of the stack frame at SP + $18 and
SP + $1 0, respectively.) Data read faults only generate the long bus fault frame
and the handler must transfer properly sized data from the location indicated
by the fault address and address space to the image of the data input buffer
(DIB) at location SP + $2C of the long format stack frame. Byte~ word, and
3-byte operands are right-justified in the 4-byte data buffers. In addition, the
software handler must clear the DF bit of the SSW to indicate that the faulted
bus cycle has been corrected.

To emulate a read-modify-write cycle, the exception handler must first read
the operation word at the program counter address (SP + 2 of the stack frame).
This word identifies the CAS, CAS2, or TAS instruction that caused the fault.
Then the handler must emulate this entire instruction (which may consist of
up to four long word transfers) and update the condition code portion of the
status register appropriately, because the RTE instruction expects the entire
operation to have been completed if the RM bit is set and the DF bit is cleared.
This is true even if the fault occurred on the first read cycle.

To emulate the entire instruction, the handler must save the data and address
registers for the instruction (with a MOVEM instruction, for example). Next,
the handler reads and modifies (if necessary) the memory location. It clears
the DF bit in the SSW of the stack frame and modifies the condition codes
in the status register copy and the copies of any data or address registers
required for the CAS and CAS2 instructions. Last, the handler restores the
registers that it saved at the beginning of the emulation. Except for the data
input buffer (DIB), the copy of the status register, and the SSW, the handler
should not modify a bus fault stack frame. The only bits in the SSW that may
be modified are DF, RB, and RC; all other bits, including those defined for
internal use, must remain unchanged.

Address error faults must be repaired in software. Address error faults can
be distinguished from bus error faults by the value in the vector offset field
of the format word.

8.2.3 Completing the Bus Cycles with RTE

8-28

Another method of completing a faulted bus cycle is to allow the controller
to rerun the bus cycles during execution ofthe RTE instruction that terminates
the exception handler. This method cannot be used to recover from address
errors. The RTE instruction is always executed.' Unless the handler routine
has corrected the error and cleared the fault (and cleared the rerun and DF

MC68EC030 USER'S MANUAL MOTOROLA

bits of the SSW)' the RTE instruction can complete the bus cycle(s). If the OF
bit is still set at the time of the RTE execution, the faulted data cycle is rerun
by the RTE instruction. If the fault bit for a stage of the pipe is set and the
corresponding rerun bit was not cleared by the software, the RTE reruns the
associated instruction prefetch. The fault occurs again unless the cause of
the fault, such as a non-resident page in a virtual memory system, has been
corrected. If the rerun bit is set for a stage of the pipe and the fault bit is
cleared, the associated prefetch cycle mayor may not be run by the RTE
instruction (depending on whether the stage is required).

If a fault occurs when the RTE instruction attempts to rerun the bus cycle(s),
the controller creates a new stack frame on the supervisor stack after de
allocating the previous frame, and address error or bus error exception pro
cessing starts in the normal manner.

The read-modify-write operations of the MC68EC030 can also be completed
by the RTE instruction that terminates the handler routine. The rerun oper
ation, executed by the RTE instruction with the OF bit of the SSW set, reruns
the entire instruction. If the cause of the error has been corrected, the handler
does not need to emulate the instruction but can leave the OF bit set and
execute the RTE instruction.

Systems programmers and designers should be aware that the ACU of the
MC68EC030 treats any bus cycle with RMC asserted as a write operation for
protection checking, regardless of the state of R/W signal. Otherwise, the
potential for partially destroying system pointers with CAS and CAS2 instruc
tions exists since one portion of the write operation could take place and the
remainder be aborted by a bus error.

8.3 COPROCESSOR CONSIDERATIONS

Exception handler programmers should consider carefully whether to save
and restore the context of a coprocessor at the beginning and end of handler
routines for exceptions that can occur during the execution of a coprocessor
instruction (i.e., bus errors, interrupts, and coprocessor-related exceptions).
The nature of the coprocessor and the exception handler routine determines
whether or not saving the state of one or more coprocessors with the cpSAVE
and cpRESTORE instructions is required. If the coprocessor allows multiple
coprocessor instructions to be executed concurrently, it may require its state
to be saved and restored for all coprocessor-generated exceptions, regardless
of whether or not the coprocessor is accessed during the handler routine.

MOTOROLA MC68EC030 USER'S MANUAL 8-29

III

The MC68882 floating-point coprocessor is an example of this type of co
processor. On the other hand, the MC68881 floating-point coprocessor re
quires FSAVE and FRESTORE instructions within an exception handler routine
only if the exception handler itself uses the coprocessor.

8.4 EXCEPTION STACK FRAME FORMATS

8-30

The MC68EC030 provides six different stack frames for exception processing.
The set of frames includes the normal four- and six-word stack frames, the
four-word throwaway stack frame, the coprocessor mid-instruction stack
frame, and the short and long bus fault stack frames.

When the MC68EC030 writes or reads a stack frame, it uses long-word op
erand transfers wherever possible. Using a long-word-aligned stack pointer
with memory that is on a 32-bit port greatly enhances exception processing
performance. The controller does not necessarily read or write the stack frame
data in sequential order.

The system software should not depend on a particular exception generating
a particular stack frame. For compatibility with future devices, the software
should be able to handle any type of stack frame for any type of exception.

MC68EC030 USER'S MANUAL MOTOROLA

Table 8-6 summarizes the stack frames defined for the M68000 Family.

Table 8-6. Exception Stack Frames

Stack Frames Exception Types (Stacked PC Points to)

15 0 • Interrupt [Next instruction]
SP-. STATUS REGISTER • Format Error [RTE or cpRESTORE instruction]

+$02
PROGRAM COUNTER • TRAP #N [Next instruction]

+$06 000 01 VECTOR OFFSET • Illegal Instruction [Illegal instruction]

• A-Line Instruction [A-line instruction]

• F-Line Instruction [F-line instruction]
FOUR-WORD STACK FRAME - FORMAT $0

• Privilege Violation [First word of instruction causing
Privilege Violation]

• Coprocessor lOp-Word of instruction that
Pre-Instruction returned the Take Pre-Instruction

primitive]

15 0 • Created on Interrupt Stack [Next instruction - same
SP-. STATUS REGISTER during interrupt exception as on master stack]

+$02 PROGRAM COUNTER processing when transition
from master state to

+$06 000 1/ VECTOR OFFSET interrupt state occurs

THROWAWAY FOUR-WORD STACK FRAME - FORMAT $1 II
15 0

• CHK [Next instruction for all these
SP-. STATUS REGISTER

• CHK2 exceptions]
+$02 PROGRAM COUNTER • cpTRAPcc

+$06 001 0/ VECTOR OFFSET • TRAPcc INSTRUCTION ADDRESS

• TRAPV is the address of the

+$08
c---- INSTRUCTION ADDRESS -

• Trace instruction that caused

• Zero Divide the exception
SIX-WORD STACK FRAME - FORMAT $2 • Coprocessor Post-Instruction

15 0
SP_ STATUS REGISTER • Coprocessor [Next word to be fetched

+$02
Mid-Instruction from instruction stream

PROGRAM COUNTER for all these exceptions] • Main-Detected
+$06 1 o 0 11 VECTOR OFFSET Protocol Violation

INSTRUCTION ADDRESS
r-- INSTRUCTION ADDRESS - • Interrupt Detected is the address of the +$08 during Coprocessor

+$OC instruction that caused
INTERNAL REGISTERS Instruction (supported the exception

4 WORDS with 'null come again

+$12 with interrupts
allowed' primitive)

COPROCESSOR AND INSTRUCTION STACK FRAME
(10 WORDS) - FORMAT $9

MOTOROLA MC68EC030 USER'S MANUAL 8-31

Table 8-6. Exception Stack Frames (Continued)

Stack Frames Exception Types (Stacked PC Points to)

15 0
SP- STATUS REGISTER • Address Error or [Next instruc~ion]

I

Bus Error - Execution +$02 PROGRAM COUNTER ", .. ,
Unit at Instruction

+$06 1 0 1 01 VECTOR OFFSET Boundary
+$08 INTERNAL REG ISTER

+$OA SPECIAL STATUS WORD . ,

+$OC INSTRUCTION PIPE STAGE C

+$OE INSTRUCTION PIPE STAGE B
+$10
+$12

- DATA CYCLE FAULT ADDRESS -

+$14 INTERNAL REG ISTER

+$16 INTERNAL REG ISTER

+$18
+$lA

DATA OUTPUT BUFFER -

+$lC INTERNAL REGISTER

+$lE INTERNAL REGISTER

SHORT BUS CYCLE FAULT STACK FRAME (16 WORDS) - FORMAT $A

15 0
SP- STATUS REGISTER • Address Error or [Address of instruction in

+$02
PROGRAM COUNTER

Bus Error -Instruction execution when fault
Execution in Progress occurred - may not be

III
+$06 1 0 1 1 I VECTOR OFFSET the instruction that
+$08 INTERNAL REGISTER generated the faulted
+$OA SPECIAL STATUS WORD bus cycle]
+$OC INSTRUCTION PIPE STAGE C
+$OE INSTRUCTION PIPE STAGE B
+$10

- DATA CYCLE FAULT ADDRESS -
+$12
+$14 INTERNAL REG ISTER
+$16 INTERNAL REG ISTER
+$18

DATA OUTPUT BUFFER -
+$lA
+$lC

INTERNAL REGISTERS, 4 WORDS

+$22
+$24 STAGE BADDRESS -

+$28
INTERNAL REGISTERS, 2 WORDS

+$2A
+$2C DATA INPUT BUFFER -

+$30
INTERNAL REGISTERS, 3 WORDS

+$34
+$36 VERSION# I INTERNAL INFORMATION
+$38

INTERNAL REGISTERS, 18 WORDS

+$5A

LONG BUS CYCLE FAULT STACK FRAME (46 WORDS) - FORMAT $B

8-32 MC68EC030 USER'S MANUAL MOTOROLA

SECTION 9
ACCESS CONTROL UNIT

The MC68EC030 includes an access control unit (ACU) that supports cache
ability distinctions for address blocks.

The ACU completely overlaps address control checking time with other proc
essing activity. ACU accesses operate in parallel with the on-chip instruction
and data caches.

Figure 9-1 is a block diagram of the MC68EC030 showing the relationship of
the ACU to the execution unit and the bus controller. For either an instruction
or operand access, the MC68EC030 simultaneously searches for an address
match in the instruction cache, the data cache, and the ACU.

MOTOROLA MC68EC030 USER'S MANUAL 9-1

CD

N

s:
(")
m
CO
m
(")
o
w
o
c
en
m
::IJ
en
s:
l>
2:
C
l>
r-

s:
o
-i o
:0
o
~

ADDRESS
BUS

BUS CONTROL
SIGNALS

I
MICROSEQUENCER AND

CONTROL

CONTROL
STORE

CONTROL
LOGIC

INSTRUCTION
ADDRESS

BUS

DATA
ADDRESS

BUS

Figure 9-1. ACU Block Diagram

INTERNAL
DATA
BUS

DATA
BUS

The programming model of the ACU (see Figure 9-2) consists of two access
control registers an9 an ACU status register. These registers can only be
accessed by supervisor programs. Each access control register can define a
block of addresses that are marked as cacheable or noncacheable. The ACU
status register contains status information from a test performed as a part
of a PTEST instruction.

31

ACCESS CONTROL 0

31

ACCESS CONTROL 1

15

ACU STATUS (ACUSR)

Figure 9-2. ACU Programming Model

9.1 EFFECT OF RESET ON ACU

When the MC68EC030 is reset by the assertion of the RESET signal, the E
bits of the access control registers are cleared, disabling address access
control.

9.2 ACCESS CONTROL

Two independent access control registers (ACO and AC1) in the ACU option
ally define two blocks of the address space that control cacheability for access
to those address spaces. The ACU does not explicitly check write protection
for the addresses in these blocks, but a block can be specified as cache
inhibited for read cycles only. The blocks of addresses defined by the ACx
registers include at least 16 Mbytes of address space; the two blocks can
overlap or can be separate.

The following description of the address comparison assumes that both ACO
and AC1 are enabled; however, each ACx register can be independently
disabled. A disabled ACx register is completely ignored.

When the ACU receives an address to be checked, the function code and the
eight high-order bits of the address are compared to the block of addresses
defined by ACO and AC1. The address space block for each ACx register is

MOTOROLA MC68EC030 USER'S MANUAL 9-3

•

III

defined by the base function code, the function code .mask, the base address,
and the address mask. When a bit in a mask field is set, the corresponding
bit of the base function code or base address is ignored in the function code
and address comparison. Setting successively higher order bits in the address
mask increases the size of the access-controlled block.

The address for the current bus cycle and an ACx register address match
when the function code bits and address bits (not including masked bits) are
equal. Each ACx register can specify either read accesses or write accesses
as controlled. The internal R/W signal must match the R/W bit in the ACx
register for the match to occur. The selection of the type of access (read or
write) can also be masked. The read/write mask bit (RWM) must be set for
access control of addresses used by instructions that execute read-modify
write operations. Otherwise, neither the read nor write portions of read
modify-write operations are matched with the ACx registers, regardless of
the function code and address bits for the individual cycles within a read
modify-write operation.

By appropriately configuring an ACx register, flexible address mapping can
be specified. For example, to control access to user program space with an
ACx register, the RWM bit is set to 1, the FC BASE is set to $2, and the FC
MASK is set to $0. To control access to supervisor data read accesses of
addresses $OOOOOOOO-$OFFFFFFF, the BASE ADDRESS field is set to $OX, the
ADDRESS MASK is set to $OF, the RIW bit is set to 1, the RWM bit is set to
0, the FC BASE is set to $5, and the FC MASK field is set to $0. Since only
read cycles are specified by the ACx register for this example, write accesses
for this address range are cacheable unless cache inhibit in (CIIN) or cache
inhibit out (ClOUT) is asserted.

Each ACx register can specify that the contents of addresses in its block
should not be stored in either an internal or external cache. ClOUT is asserted
and CBREQ is negated when an address matches the address specified by
an ACx register and the cache inhibit (CI) bit in that ACx register is set. If the
address matches in both registers, the CI bits are ORed together to generate
the ClOUT signal. ClOUT is used by the on-chip instruction and data caches
to inhibit caching of data associated with this address. The signal is available
to external caches for the same purpose.

9.3 REGISTERS

9-4

The registers of the ACU described in the following paragraphs are part of
the supervisor programming model for the MC68EC030. The PMOVE instruc
tion is used to load or read the ACU registers (ACUSR, ACO, and AC1).

MC68EC030 USER'S MANUAL MOTOROLA

The three registers that control and provide status information for memory
access control in the MC68EC030 are the two ACx registers and the ACU
status register (ACUSR). These registers can be accessed only by programs
that execute at the supervisor level.

: 9.3.1 Access Control Registers

The ACx registers are 32-bit registers that define blocks of address space
controlled for cacheability status. The minimum size block that can be defined
by either ACx register is 16 Mbytes of address space. The two ACx registers
can specify blocks that overlap. An ACx register is shown in Figure 9-3.

31 24 23

ADDRESS BASE

E

15 7

ADDRESS BASE - VALUE OF A31-A24 THAT DEFINES BLOCK
ADDRESS MASK - BITS A31-A24 TO BE IGNORED

E- ENABLE
CI- CACHE INHIBIT
ANI -READNVRITE
RWM - READ WRITE MASK
FC BASE - FUNCTION CODE VALUE FOR BLOCK
FC MASK - FUNCTION CODE BITS TO BE IGNORED

ADDRESS MASK

FCMASK

Figure 9-3. Access Control Register Format

The fields of an ACx register are as follows:

Enable (E)

16

o

This bit enables access control of the block defined by this register:
0= Access control disabled
1 = Access control enabled

A reset operation clears this bit.

MOTOROLA MC68EC030 USER'S MANUAL 9-5

•

•

9-6

Cache Inhibit (CI)
This bit inhibits caching for the matching block:

O=Caching allowed
1 = Caching inhibited

When this bit is set, the contents of a matching address are not stored in
the internal instruction or data cache. Additionally, ClOUT is asserted and
CBREQ is negated when this bit is set and a matching address is accessed,
signaling external caches to inhibit caching for those accesses.

ReadlWrite (RIW)
This bit defines the type of access that is access controlled (for a matching
address):

0= Write accesses controlled
1 = Read accesses controlled

Read/Write Mask (RWM)
This bit masks the RIW field:

0= R/W field used
1 = RIW field ignored

When RWM is set to one, both read and write accesses of a matching
address are access controlled. For access control of read-modify-write cycles
with matching addresses, RWM must be set to one. If the RWM bit equals
zero, neither the read nor the write of any read-modify-write cycle is access
controlled.

Function Code Base (FC BASE)
This 3-bit field defines the base function code for accesses to be access
controlled with this register. Addresses with function codes that match the
FC BASE field (and are otherwise eligible) are access controlled.

Function Code Mask (FC MASK)
This 3-bit field contains a mask for the FC BASE field. Setting a bit in this
field causes the corresponding bit of the FC BASE field to be ignored.

Address Base (ADDRESS BASE)
This 8-bit field is compared with address bits A31-A24. Addresses that
match in this comparison (and are otherwise eligible) are access controlled.

MC68EC030 USER'S MANUAL MOTOROLA

Address Mask (ADDRESS MASK) .
This 8-bit field contains a mask for the ADDRESS BASE field. Setting a bit
in this field causes the corresponding bit of the ADDRESS BASE field to
be ignored. Blocks of memory larger than 16 Mbytes can be access con
trolled by setting some of the address mask bits to ones. The low-order
bits of this field are normally set to define contiguous blocks larger than
16 Mbytes, although this is not required.

9.3.2 ACU Status Register

The ACUSR (see Figure 9-4) is a 16-bit register that contains the status in
formation returned by execution of the PTEST instruction. The PTEST in
struction searches the ACx registers to determine ACx match of a specified
address. The AC bit in the ACUSR is set if a match occurred in either (or
both) of the ACx registers.

15 7 6 o

AC - ACCESS CONTROLLED

Figure 9-4. ACU Status Register (ACUSR) Format

9.4 ACU INSTRUCTIONS

The MC68EC030 instruction set includes two privileged instructions that per
form ACU operations. A brief description of each instruction follows.

The PMOVE instruction transfers data between a CPU register or memory
location and either of the two ACx registers. The operating system uses the
PMOVE instruction to control and monitor ACU operation by manipulating
and reading these registers.

The PTEST instruction searches the ACx registers for a specified function
code and address, and sets the AC bit in the ACUSR to indicate a match
occurred during the search. Note that the PTESTR and PTESTW instructions
have different results when either ACx register matches the address and the
R/W bit of that register is not masked.

MOTOROLA MC68EC030 USER'S MANUAL 9-7

iii

-

9-8

The ACU instructions use the same opcodes and coprocessor identification
(CpID) as the corresponding instructions of the MC68851, MC68030, and
MC68040. F-line instructions with CplD = 0 (including MC68851 instructions),
which the MC68EC030 does not support, automatically cause F-line unim
plemented instruction exceptions when execution is attempted in the ~u
perviser mode. PFLUSH, PMOVEFD, and PLOAD with CplD = 0" mayor may
not cause F-line unimplemented instruction exceptions in th"e supervisor mode
but can produce undefined results and should not be used. If execution of a
unimplemented F-line instruction with CplD = 0 is attempted in the user mode,
the MC68EC030 takes a privilege violation exception. F-line instructions with
a CplD other than zero are executed as coprocessor instructions by the
MC68EC030.

The MC68030 assembler can be used for the MC68EC030 as long as the
following procedures are observed:

1. To access ACO in the MC68EC030, use TIO in the MC68030 assembler.
2. To access AC1 in the MC68EC030, use TI1 in the MC68030 assembler.
3. To access ACUSR in the MC68EC030, use MMUSR in the MC68030

assembler.
4. PTEST uses the assembler syntax of PTESTR <function code> ,<ea>,

#0 and PTESTW <function code>,<ea>, #0.
5. All other accesses to MMU functions are invalid, can produce undefined

results, and should not be used.

Details of the two new instructions for the MC68EC030 are listed in APPENDIX
A MC68EC030 NEW INSTRUCTIONS.

MC68EC030 USER'S MANUAL MOTOROLA

SECTION 10
COPROCESSOR INTERFACE DESCRIPTION

The M68000 Family of general-purpose microprocessors provides a level of
performance that satisfies a wide range of computer applications. Special
purpose hardware, however, can often provide a higher level of performance
for a specific application. The coprocessor concept allows the capabilities
and performance of a general-purpose controller to be enhanced for a par
ticular application without encumbering the main controller architecture. A
coprocessor can efficiently meet specific capability requirements that must
typically be implemented in software by a general-purpose controller. With
a general-purpose main controller and the appropriate coprocessor(s), the
processing capabilities of an embedded control system can be tailored to a
specific application.

The MC68EC030 supports the M68000 coprocessor interface described in this
section. The section is intended for designers who are implementing copro
cessors to interface with the MC68EC030.

The designer of a system that uses one or more Motorola coprocessors (the
MC68881 or MC68882 floating-point coprocessor, for example) does not re-
quire a detailed knowledge of the M68000 coprocessor interface. Motorola
coprocessors conform to the interface described in this section. Typically, --=
they implement a subset of the interface, and that subset is described in the IIMiII
coprocessor user's manual. These coprocessors execute Motorola defined
instructions that are described in the user's manual for each coprocessor.

10.1 INTRODUCTION

The distinction between standard peripheral hardware and a M68000 copro
cessor is important from a perspective of the programming model. The pro
gramming model of the main controller consists ofthe instruction set, register
set, and memory map available to the programmer. An M68000 coprocessor
is a device or set of devices that communicates with the main controller
through the protocol defined as the M68000 coprocessor interface. The pro
gramming model for a coprocessor is different than that for a peripheral
device. A coprocessor adds additional instructions and generally additional
registers and data types to the programming model that are not directly

MOTOROLA MC68EC030 USER'S MANUAL 10-1

•

supported by the main controller architecture. The additional instructions are
dedicated coprocessor instructions that utilize the coprocessor capabilities.
The necessary interactions between the main controller and the coprocessor
that provide a given service are transparent to the programmer. That is, the
programmer does not need to know the specific communication protocol
between the main controller and the coprocessor because this protocol is
implemented in hardware. Thus, the coprocessor can provide capabilities to
the user without appearing separate from the main controller.

In contrast, standard peripheral hardware is generally accessed through in
terface registers mapped into the memory space of the main controller. To
use the services provided by the peripheral, the programmer accesses the
peripheral registers with standard controller instructions. While a peripheral
could conceivably provide capabilities equivalent to a coprocessor for many
applications, the programmer must implement the communication protocol
between the main controller and the peripheral necessary to use the periph
eral hardware.

The communication protocol defined for the M68000 coprocessor interface
is described in 10.2 COPROCESSOR INSTRUCTION TYPES. The algorithms
that implement the M68000 coprocessor interface are provided in the micro
code of the MC68EC030 and are completely transparent to the MC68EC030
programmer's model. For example, floating-point operations are not imple
mented in the MC68EC030 hardware. In a system utilizing both the MC68EC030
and the MC68881 or MC68882 floating-point coprocessor, a programmer can
use any of the instructions defined for the coprocessor without knowing that
the actual computation is performed by the MC68881 or MC68882 hardware .

10.1.1 Interface Features

10-2

The M68000 coprocessor interface design incorporates a number of flexible
capabilities. The physical coprocessor interface uses the main controller ex
ternal bus, which simplifies the interface since no special-purpose signals
are involved. With the MC68EC030, a coprocessor can use either the asyn
chronous or synchronous bus transfer protocol. Since standard bus cycles
transfer information between the main controller and the coprocessor, the
coprocessor can be implemented in whatever technology is available to the
coprocessor designer. A coprocessor can be implemented as a VLSI device,
as a separate system board, or even as a separate computer system.

Since the main controller and a M68000 coprocessor can communicate using
the asynchronous bus, they can operate at different clock frequencies. The
MC68882 can not have a clock frequency difference of more than one fre-

MC68EC030 USER'S MANUAL MOTOROLA

quency step lower than the MC68EC030 (e.g., a 40-MHz MC68EC030 and a
33-MHz MC68882 is valid, but a 25-MHz or slower MC68882 is not valid). The
MC68881 does not have this restriction. The system designer can choose the
speeds of a main controller and coprocessor that provide the optimum per
formance for a given system. If the coprocessor uses the synchronous bus
interface all coprocessor signals and data must be synchronized with the
main controller clock. 80th the MC68881 and MC68882 floating-point copro
cessors use the asynchronous bus handshake protocol.

The M68000 coprocessor interface also facilitates the design of coprocessors.
The coprocessor designer must only conform to the coprocessor interface
and does not need an extensive knowledge of the architecture of the main
controller. Also, the main controller can operate with a coprocessor without
having explicit provisions made in the main controller for the capabilities of
that coprocessor. This provides a great deal of freedom in the implementation
of a given coprocessor.

10.1.2 Concurrent Operation Support

The programmer's model for the M68000 Family of microprocessors is based
on sequential, nonconcurrent instruction execution. This implies that the
instructions in a given sequence must appear to be executed in the order in
which they occur. To maintain a uniform programmer's model, any copro
cessor extensions should also maintain the model of sequential, noncon
current instruction execution at the user level. Consequently, the programmer
can assume that the images of registers and memory affected by a given
instruction have been updated when the next instruction in the sequence _
accessing these registers or memory locations is executed.

The M68000 coprocessor interface provides full support of all operations
necessary for nonconcurrent operation of the main controller and its asso
ciated coprocessors. Although the M68000 coprocessor interface allows con
currency in coprocessor execution, the coprocessor designer is responsible
for implementing this concurrency while maintaining a programming model
based on sequential nonconcurrent instruction execution.

For example, if the coprocessor determines that instruction 118" does not use
or alter resources to be altered or used by instruction "A", instruction "8"
can be executed concurrently (if the execution hardware is also available).
Thus, the required instruction interdependencies and sequences of the pro
gram are always respected. The MC68882 coprocessor offers concurrent in
struction execution while the MC68881 coprocessor does not. However, the
MC68EC030 can execute instructions concurrently with coprocessor instruc
tion execution in the MC68881.

MOTOROLA MC68EC030 USER'S MANUAL 10-3

•

10.1.3 Coprocessor Instruction Format

10-4

The instruction set for a given coprocessor is defined by the. design of that
coprocessor. When a coprocessor instruction is encountered in the main
controller instruction stream, the MC68EC030 hardware initiates communi
cation with the coprocessor and coordinates any interaction necessary to
execute the instruction with the coprocessor. A programnier needs to know
only the instruction set and register set defined by the coprocessor in order
to use the functions provided by the coprocessor hardware.

The instruction set of an M68000 coprocessor uses a subset of the F-line
operation words in the M68000 instruction set. The operation word is the
first word of any M68000 Family instruction. The F-line operation word con
tains ones in bits 15-12 ([15:12]=1111; refer to Figure 10-1); the remaining
bits are coprocessor and instruction dependent. The F-line operation word
may be followed by as many extension words as are required to provide
additional information necessary for the execution of the coprocessor in
struction.

15 14 13 12 11 9 o
I 1 1 I 1 I 1 CplO TYPE TYPE DEPENDENT

Figure 10-1. F-Line Coprocessor Instruction Operation Word

As shown in Figure 10-1, bits 9-11 of the F-line operation word encode the
coprocessor identification code (CpID). The MC68EC030 uses the coprocessor
identification field to indicate the coprocessor to which the instruction ap
plies. F-line operation words, in which the CplD is zero, are not coprocessor
instructions for the MC68EC030. If the CplD (bits 9-11) and the type field (bits
6-8) contain zeros, the instruction accesses the on-chip access control unit
of the MC68EC030. If the instruction is not implemented by the ACU, an
unimplemented instruction exception mayor may not be taken. See APPEN
DIX A MC68EC030 NEW INSTRUCTIONS for ACU instructions. Instructions
with a CplD of zero and a nonzero type field are unimplemented instructions
that cause the MC68EC030 to begin exception processing. The MC68EC030
never generates coprocessor interface bus cycles with the CplD equal to zero
(except via the MOVES instruction).

CplD codes of 001-101 are reserved for current and future Mqtorola copro
cessors and CplD codes of 110-111 are reserved for user-defined coproces
sors. The Motorola CplD code that is currently defined is 001 for the MC68881
or MC68882 floating-point coprocessor. By default, Motorola assemblers will
use CplD code 001 when generating the instruction operation 'codes for the
MC68881 or MC68882 coprocessor instructions.

MC68EC030 USER'S MANUAL MOTOROLA·

The encoding of bits 0-8 of the coprocessor instruction operation word ,is
dependent on the particular instruction being implemented (see 10.2 CO
PROCESSOR INSTRUCTION TYPES).

,1,9.1.4 Co~rocessor System Interface

The communication protocol between the main controller and coprocessor
necessary to execute a coprocessor instruction uses a group of interface
registers, called coprocessor interface registers, resident within the copro
cessor. By accessing one of these interface registers, the MC68EC030 hard
ware initiates coprocessor instructions. The coprocessor uses a set of response
primitive codes and format codes defined for the M68000 coprocessor in
terface to communicate status and service requests to the main controller
through these registers. The coprocessor interface registers (CIRs) are also
used to pass operands between the main controller and the coprocessor.
The CIR set, response primitives, and format codes are discussed in 10.3
COPROCESSOR INTERFACE REGISTER SET and 10.4 COPROCESSOR RE
SPONSE PRIMITIVES.

10.1.4.1 COPROCESSOR CLASSIFICATION. M68000 coprocessors can be classi
fied into two categories depending on their bus interface capabilities. The
first category, non-DMA coprocessors, consists of coprocessors that always
operate as bus slaves. The second category, DMA coprocessors, consists of
coprocessors that operate as bus slaves while communicating with the main
controller across the coprocessor interface, but also have the ability to op
erate as bus masters, directly controlling the system bus.

If the operation of a coprocessor does not require a large portion of the
available bus bandwidth or has special requirements not directly satisfied
by the main controller, that coprocessor can be efficiently implemented as
a non-DMA coprocessor. Since non-DMA coprocessors always operate as
bus slaves, all external bus-related functions that the coprocessor requires
are performed by the main controller. The main controller transfers operands
from the coprocessor by reading the operand from the appropriate CIR and
then writing the operand to a specified effective address with the appropriate
address space specified on the function code lines. Likewise, the main con
troller transfers operands to the coprocessor by reading the operand from a
specified effective address (and address space) and then writing that operand
to the appropriate CIR using the coprocessor interface. The bus interface
circuitry of a ~oprocessor operating as a bus slave is not as complex as that
of a devi~e operating, as a' bus master.

MOTOROLA MC68EC030 USER'S MANUAL 10-5

•

•

To improve the efficiency of operand transfers between memory and the
coprocessor, a coprocessor that requires a relatively high amount of bus
bandwidth or has special bus requirements can be implemented as a DMA
coprocessor. DMA coprocessors can operate as bus masters. The coproces
sor provides all control, address, and data signals necessary to request and
obtain the bus and then performs DMA transfers using the bus. DMA copro
cessors, however, must still act as bus slaves when they require information
or services of the main controller using the M68000 coprocessor interface
protocol.

10.1.4.2 CONTROLLER-COPROCESSOR INTERFACE. Figure 10-2 is a block dia
gram of the signals involved in an asynchronous non-DMA M68000 copro
cessor interface. The synchronous interface is similar. Since the CplD on
signals A 13-A 15 of the address bus is used with other address signals to
select the coprocessor, the system designer can use several coprocessors of
the same type and assign a unique CplD to each one.

10-6

FC2-FCO /

COPROCESSOR CS ...
DECODE . ,.

A19-A13 /
LOGIC·

/

-
AS ...

MAIN CONTROLLER ,.
MC68EC030 -

OS ... ,.
R7W ,.

" DSACK1IDSACKO
.....

A4-A1

,,031-00
--

FC2-FCO = 111 tCPU SPACE CYCLE
A19-A16 = 0010 tCOPROCESSOR ACCESS IN CPU SPACE
A15-A13 = xxx t COPROCESSOR IDENTIFICATION
A4-A1 = rrrr t COPROCESSOR INTERFACE REGISTER SELECTOR

·Chip select logic may be integrated into the coprocessor.

Address lines not specified above are ·0· during coprocessor access.

....

.... ,.

COPROCESSOR

ASYNCHRONOUS
BUS

INTERFACE
LOGIC

Figure 10-2. Asynchronous Non-DMA M68000 Coprocessor
Interface Signal Usage

MC68EC030 USER'S MANUAL MOTOROLA

The MC68EC030 accesses the registers in the CIR set using standard asyn
chronous or synchronous bus cycles. Thus, the bus interface implemented
by a coprocessor for its interface register set must satisfy the MC68EC030
address, data, and control signal timing. The MC68EC030 never requests a
burst operation during a coprocessor (CPU space) bus cycle, nor does it
internally cache data read or written during coprocessor (CPU space) bus
cycles. The MC68EC030 bus operation is described in detail in SECTION 7
BUS OPERATION.

During coprocessor instruction execution, the MC68EC030 executes CPU space
bus cycles to access the CIR set. The MC68EC030 drives the three function
code outputs high (FC2: FCO = 111) identifying a CPU space bus cycle. The
CIR set is mapped into CPU space in the same manner that a peripheral
interface register set is generally mapped into data space. The information
encoded on the function code lines and address bus ofthe MC68EC030 during
a coprocessor access is used to generate the chip select signal for the co
processor being accessed. Other address lines select a register within the
interface set. The information encoded on the function code and address
lines of the MC68EC030 during a coprocessor access is illustrated in Figure
10-3.

FUNCTION
CODE ADDRESS BUS

2 0 31 20 19 16 15 13 12 5 4 0
11 1 1 1 1""0-0-0 -0-0-0-0-0 -0-0-0 -0-'..-0-0-1-0 '-C-PIO-..-' 0-0-0 -0-0-0 -o-o""",--c-IR-";;"'I

'---v--l
CPU SPACE
TYPE FIELD

Figure 10-3. MC68EC030 CPU Space Address Encodings

Address signals A16-A19 specify the CPU space cycle type for a CPU space
bus cycle. The types of CPU space cycles currently defined for the MC68EC030
are interrupt acknowledge, breakpoint acknowledge, and coprocessor access
cycles. CPU space type $2 (A19:A16=0010) specifies a coprocessor access
cycle.

Signals A 13-A 15 of the MC68EC030 address bus specify the coprocessor
identification code CplD for the coprocessor being accessed. This code is
transferred from bits 9-11 of the coprocessor instruction operation word
(refer to Figure 10-1) to the address bus during each coprocessor access.

MOTOROLA MC68EC030 USER'S MANUAL 10-7

•

Thus, decoding the MC68EC030 function code signals and bits A 13-A 19 of
the address bus provides a unique chip select signal for a given coprocessor.
The function code signals and A 16-A 19 indicate a coprocessor access;
A 13-A 15 indicate which of the possible seven coprocessors, (001-111) is
being accessed. Bits A20-A31 and A5-A 12 of the MC68EC030 address bus
are always zero during a coprocessor access.

10.1.4.3 COPROCESSOR INTERFACE REGISTER SELECTION. Figure 10-4 shows
that the value on the MC68EC030 address bus during a coprocessor access
addresses a unique region of the main controller's CPU address space. Sig
nals AO-A4 of the MC68EC030 address bus select the CIR being accessed.
The register map for the M68000 coprocessor interface is shown in Figure
10-5. The individual registers are described in detail in 10.3 COPROCESSOR
INTERFACE REGISTER SET.

10-8

CPU SPACE ADDRESS

2000

2oo1F

22000

2201F

24000

2EOOO

2E01F

INTERFACE REGISTER SET

RESERVED

INTERFACE REGISTER SET

RESERVED

•
•
•

INTERFACE REGISTER SET

RESERVED

}

ADDRESSSPACEFOR
COPROCESSOR WITH
CpID=O

} ADDRESS SPACE FOR
COPROCESSOR WITH
CpID=1

}

ADDRESS SPACE FOR
COPROCESSOR WITH
CpID= 7

Figure 10-4. Coprocessor Address Map in MC68EC030 CPU Space

MC68EC030 USER'S MANUAL MOTOROLA

00

04

08

OC

10

14

18

1C

31

RESPONSE*

SAVE*

OPERATION WORD

(RESERVED)

REGISTER SELECT

16 15

CONTROL*

RESTORE*

COMMAND*

CONDITION*

OPERAND*

(RESERVED)

INSTRUCTION ADDRESS

OPERAND ADDRESS

Figure 10-5. Coprocessor Interface Register Set Map

10.2 COPROCESSOR INSTRUCTION TYPES

o

The M68000 coprocessor interface supports four categories of coprocessor
instructions: general, conditional, context save, and context restore. The cat
egory name indicates the type of operations provided by the coprocessor
instructions in the category. The instruction category also determines the
CIR accessed by the MC68EC030 to initiate instruction and communication
protocols between the main controller and the coprocessor necessary for
instruction execution.

During the execution of instructions in the general or conditional categories,
the coprocessor uses the set of coprocessor response primitive codes defined
for the MC68000 coprocessor interface to request services from and indicate
status to the main controller. During the execution of the instructions in the •
context save and context restore categories, the coprocessor uses the set of
coprocessor format codes defined for the M68000 coprocessor interface to
indicate its status to the main controller.

10.2.1 Coprocessor General Instructions

The general coprocessor instruction category contains data processing in
structions and other general-purpose instructions for a given coprocessor.

MOTOROLA MC68EC030 USER'S MANUAL 10-9

10.2.1.1 FORMAT. Figure 10-6 shows the format of a general type instruction.

10-10

15 14 13 12 11 9 8 o
1 I 1 I 1 I 1 I CplD I 0 I 0 I 0 I EFFECTIVE ADDRESS

COPROCESSOR COMMAND

OPTIONAL EFFECTIVE ADDRESS OR COPROCESSOR-DEFINED EXTENSION WORDS

Figure 10-6. Coprocessor General Instruction Format (cpGEN)

The mnemonic cpGEN is a generic mnemonic used in this discussion for all
general instructions. The mnemonic of a specific general instruction usually
suggests the type of operation it performs and the coprocessor to which it
applies. The actual mnemonic and syntax used to represent a coprocessor
instruction is determined by the syntax of the assembler or compiler that
generates the object code.

A coprocessor general type instruction consists of at least two words. The
first word of the instruction is an F-line operation code (bits [15: 12] = 1111).
The CplD field of the F-line operation code is used during the coprocessor
access to indicate which of the coprocessors in the system executes the
instruction. During accesses to the coprocessor interface registers (refer to
10.1.4.2 CONTROLLER-COPROCESSOR INTERFACE), the controller places the
CplD on address lines A 13-A 15.

Bits [8:6] = 000 indicate that the instruction is in the general instruction cat
egory. Bits 0-5 of the F-line operation code sometimes encodes a standard
M68000 effective address specifier (refer to 2.5 EFFECTIVE ADDRESS EN
CODING SUMMARY). During the execution of a cpGEN instruction, the co
processor can use a coprocessor response primitive to request that the
MC68EC030 perform an effective address calculation necessary for that in
struction. Using the effective address specifier field of the F-line operation
code, the controller then determines the effective addressing mode. If a co
processor never requests effective address calculation, bits 0-5 can have any
value (don't cares).

The second word of the general-type instruction is the coprocessor command
word. The main controller writes this command word to the command CIR
to initiate execution of the instruction by the coprocessor.

An instruction in the coprocessor general instruction category optionally
includes a number of extension words following the coprocessor command
word. These words can provide additional information required for the co-

MC68EC030 USER'S MANUAL MOTOROLA

processor instruction. For example, if the coprocessor requests that the
MC68EC030 calculate an effective address during coprocessor instruction
execution, information required for the calculation must be included in the
instruction format as effective address extension words.

10.2.1.2 PROTOCOL. The execution of a cpGEN instruction follows the protocol
shown in Figure 10-7. The main controller initiates communication with the
coprocessor by writing the instruction command word to the command CIR.
The coprocessor decodes the command word to begin processing the cpGEN
instruction. Coprocessor design determines the interpretation of the copro
cessor command word; the MC68EC030 does not attempt to decode it.

MAIN CONTROLLER COPROCESSOR

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LiNE
OPERATION WORD

M2 WRITE COPROCESSOR CONDITION WORD TO
COMMANDCIR - Cl DECODE COMMAND WORD AND INITIATE

COMMAND EXECUTION

C2 WHILE (MAIN CONTROLLER SERVICE IS REQUIRED)
DO STEPS 1) AND 2) BELOW

M3 READ COPROCESSOR RESPONSE PRIMITIVE CODE ~ 1) REQUEST SERVICE BY PLACING APPROPRIATE
FROM RESPONSE CIR RESPONSE PRIMITIVE CODE IN RESPONSE CIR
1) PERFORM SERVICE REQUESTED BY RESPONSE 2) RECEIVE SERVICE FROM MAIN CONTROLLER

PRIMITIVE
2) IF (COPROCESSOR RESPONSE PRIMITIVE C3 REFLECT 'NO COME AGAIN" IN RESPONSE CIR

INDICATES 'COME AGAIN') GO TO M3
(SEE NOTE 1) C4 COMPLETE COMMAND EXECUTION

C5 REFLECT 'PROCESSING FINISHED' STATUS IN
RESPONSE CIR

M4 PROCEED WITH EXECUTION OF NEXT INSTRUCTION
(SEE NOTE 2)

NOTES: 1. "Come Again" indicates that further service of the main controller is being requested
by the coprocessor.

2. The next instruction should be the operation word pointed to by the ScanPC at this point.
The operation of the MC68EC030 ScanPC is discussed in 10.4.1 Scan PC.

Figure 10-7. Coprocessor Interface Protocol for
General Category Instructions

While the coprocessor is executing an instruction, it requests any required
services from and communicates status to the main controller by placing
coprocessor response primitive codes in the response CIR. After writing to

MOTOROLA MC68EC030 USER'S MANUAL 10-11

III

the command CIR, the main controller reads the response CIR and responds
appropriately. When the coprocessor has completed the execution of an
instruction or no longer needs the services of the main controller to execute
the instruction, it provides a response to release the controller. The main
controller can then execute the next instruction in the instruction stream.
However, if a trace exception is pending, the MC68EC030 does not terminate
communication with the coprocessor until the coprocessor indicates that it
has completed all processing associated with the cpGEN instruction (refer
to 10.5.2.5 TRACE EXCEPTIONS).

The coprocessor interface protocol shown in Figure 10-7 allows the copro
cessor to define the operation of each general category instruction. That is,
the main controller initiates the instruction execution by writing the instruc
tion command word to the command CIR and by reading the response CIR
to determine its next action. The execution of the coprocessor instruction is
then defined by the internal operation of the coprocessor and by its use of
response primitives to request services from the main controller. This in
struction protocol allows a wide range of operations to be implemented in
the general instruction category.

10.2.2 Coprocessor Conditional Instructions

10-12

The conditional instruction category provides program control based on the
operations of the coprocessor. The coprocessor evaluates a condition and
returns a true/false indicator to the main controller. The main controller com
pletes the execution of the instruction based on this true/false condition
indicator.

The implementation of instructions in the conditional category promotes
efficient use of both the main controller's and the coprocessor's hardware.
The condition specified for the instruction is related to the coprocessor op
eration and is, therefore, evaluated by the coprocessor. The instruction com
pletion following the condition evaluation is, however, directly related to the
operation of the main controller. The main controller performs the change
of flow, the setting of a byte, or the TRAP operation, since its architecture
explicitly implements these operations for its instruction set.

Figure 10-8 shows the protocol for a conditional category coprocessor in
struction. The main controller initiates execution of an instruction in this
category by writing a condition selector to the condition CIR. The coprocessor
decodes the condition selector to determine the condition to evaluate. The
coprocessor can use response primitives to request that the main controller
provide services required for the condition evaluation. After evaluating the

MC68EC030 USER'S MANUAL MOTOROLA

condition, the coprocessor returns a true/false indicator to the main controller
by placing a null primitive (refer to 10.4.4 Null Primitive) in the response CIR.
The main controller completes the coprocessor instruction execution when
it receives the condition indicator from the coprocessor.

MAIN CONTROLLER

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-UNE
OPERATION WORD

M2 WRITE COPROCESSOR COONDITION SELECTOR TO
CONDITION CIR -

COPROCESSOR

C1 DECODE COMMAND WORD AND INITIATE
CONDITION EVALUATION

C2 WHILE (MAIN CONTROLLER SERVICE IS REQUIRED)
DO STEPS 1) AND 2) BELOW

M3 READ COPROCESSOR RESPONSE PRIMITIVE CODE - 1) REQUEST SERVICE BY PLACING APPROPRIATE
FROM RESPONSE CIR RESPONSE PRIMITIVE CODE IN RESPONSE CIR
1) PERFORM SERVICE REQUESTED BY RESPONSE

PRIMITIVE
2) IF (COPROCESSOR RESPONSE PRIMITIVE

INDICATES 'COME AGAIN') GO TO M3
(SEE NOTE 1)

M4 COMPLETE EXECUTION OF INSTRUCTION BASED ON
THE TRUEIFALSE CONDITION INDICATOR RETURNED
IN THE RESPONSE CIR

2) RECEIVE SERVICE FROM MAIN CONTROLLER

C3 COMPLETE CONDITION EVALUATION

C4 REFLECT 'NO COME AGAIN' STATUS WITH TRUEIFALSE
CONDITION INDICATOR IN RESPONSE CIR

NOTE: 1. All coprocessor response primitives, except the Null primitive, that allow the "Come Again" primitive
attribute must indicate "Come Again" when used during the execution of a conditional category
instruction. If a "Come Again" attribute is not indicated in one of these primitives, the main controller
will initiate protocol violation exception processing (see 10.6.2.1 PROTOCOL VIOLATIONS).

Figure 10-8. Coprocessor Interface Protocol for Conditional
Category Instructions

10.2.2.1 BRANCH ON COPROCESSOR CONDITION INSTRUCTION. The condi
tional instruction category includes two formats of the M68000 Family branch
instruction. These instructions branch on conditions related to the copro
cessor operation. They execute similarly to the conditional branch instruc
tions provided in the M68000 Family instruction set.

10.2.2.1.1 Format, Figure 10-9 shows the format of the branch on coprocessor
condition instruction that provides a word-length displacement. Figure
10-10 shows the format of the instruction that includes a long-word displace
ment.

MOTOROLA MC68EC030 USER'S MANUAL 10-13

III

•

15 14 13 12 11 o
1 I 1 I 1 I 1 I CplD I 0 I 1 I 0 I CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS

DISPLACEMENT

Figure 10-9. Branch on Coprocessor Condition Instruction (cpBcc.W)

15 14 13 12 11 6 5 o
1 I 1 I 1 I 1 I CplD I 0 I 1 I 1 I CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS

DISPLACEMENT - HIGH

DISPLACEMENT - LOW

Figure 10-10. Branch On Coprocessor Condition Instruction (cpBcc.L)

The first word of the branch on coprocessor condition instruction is the
F-line operation word. Bits [15: 12] = 1111 and bits [11 :9] contain the identi
fication code of the coprocessor that is to evaluate the condition. The value
in bits [8:6] identifies either the word or the long-word displacement format
of the branch instruction, which is specified by the cpBcc.W or cpBcc.L mne
monic, respectively.

Bits [0-5] of the F-line operation word contain the coprocessor condition
selector field. The MC68EC030 writes the entire operation word to the con
dition CIR to initiate execution of the branch instruction by the coprocessor.
The coprocessor uses bits [0-5] to determine which condition to evaluate.

If the coprocessor requires additional information to evaluate the condition,
the branch instruction format can include this information in extension words.
Following the F-line operation word, the number of extension words is de
termined by the coprocessor design. The final word(s) of the cpBcc instruction
format contains the displacement used by the main controller to calculate
the destination address when the branch is taken.

10.2.2.1.2 Protocol. Figure 10-8 shows the protocol for the cpBcc.L and cpBcc.W
instructions. The main controller initiates the instruction by writing the
F-line operation word to the condition CIR to transfer the condition selector
to the coprocessor. The main controller then reads the response CIR to de
termine its next action. The coprocessor can return a response primitive to

10-14 MC68EC030 USER'S MANUAL MOTOROLA

request services necessary to evaluate the condition. If the coprocessor re
turns the false condition indicator, the main controller executes the next
instruction in the instruction stream. If the coprocessor returns the true con
dition indicator, the controller adds the displacement to the MC68EC030
scanPC (refer to 10.4.1 ScanPC) to determine the address of the next instruc
tion for the main controller to execute. The scanPC must be pointing to the
location of the first word of the displacement in the instruction stream when
the address is calculated. The displacement is a twos-complement integer
that can be either a 16-bit word or a 32-bit long word. The controller sign
extends the 16-bit displacement to a long-word value for the destination
address calculation.

10.2.2.2 SET ON COPROCESSOR CONDITION INSTRUCTION. The set on copro
cessor condition instructions set or reset a flag (a data alterable byte) ac
cording to a condition evaluated by the coprocessor. The operation of this
instruction is similar to the operation of the Scc instruction in the M68000
Family instruction set. Although the Scc instruction and the cpScc instruction
do not explicitly cause a change of program flow, they are often used to set
flags that control program flow.

10.2.2.2.1 Format. Figure 10-11 shows the format of the set on coprocessor con
dition instruction, denoted by the cpScc mnemonic.

15 14 13 12 11 8 6 o
1 I 1 I 1 I 1 I CplD I 0 I 0 I 1 I EFFECTIVE ADDRESS

I CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS

OPTIONAL EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS)

Figure 10-11. Set On Coprocessor Condition (cpScc)

The first word of the cpScc instruction is the F-line operation word. This word
contains the CplD field in bits [9-11] and 001 in bits [8:6] to identify the cpScc
instruction. The lower six bits of the F-line operation word are used to encode
an M68000 Family effective addressing mode (refer to 2.5 EFFECTIVE AD
DRESS ENCODING SUMMARY).

MOTOROLA MC68EC030 USER'S MANUAL 10-15

-

-

The second word of the cpScc instruction format contains the coprocessor
condition selector in bits [0-5]. Bits [6-15] of this word are reserved by
Motorola and should be zero to ensure compatibility with future M68000
products. This word is written to the condition CIR to initiate the cpScc in
struction.

If the coprocessor requires additional information to evaluate the condition,
the instruction can include extension words to provide this information. The
number of these extension words, which follow the word containing the
coprocessor condition selector field, is determined by the coprocessor de
sign.

The final portion of the cpScc instruction format contains zero to five effective
address extension words. These words contain any additional information
required to calculate the effective address specified by bits [0-5] of the
F-line operation word.

10.2.2.2.2 Protocol. Figure 10-8 shows the protocol for the cpScc instruction. The
MC68EC030 transfers the condition selector to the coprocessor by writing
the word following the F-line operation word to the condition CIR. The main
controller then reads the response CIR to determine its next action. The
coprocessor can return a response primitive to request services necessary
to evaluate the condition. The operation of the cpScc instruction depends on
the condition evaluation indicator returned to the main controller by the
coprocessor. When the coprocessor returns the false condition indicator, the
main controller evaluates the effective address specified by bits [0-5] of the
F-line operation word and sets the byte at that effective address to FALSE
(all bits cleared). When the coprocessor returns the true condition indicator,
the main controller sets the byte at the effective address to TRUE (all bits set
to one).

10.2.2.3 TEST COPROCESSOR CONDITION, DECREMENT AND BRANCH INSTRUC
TION. The operation of the test coprocessor condition, decrement and branch
instruction is similar to that of the DBcc instruction provided in the M68000
Family instruction set. This operation uses a coprocessor evaluated condition
and a loop counter in the main controller. It is useful for implementing DO
UNTIL constructs used in many high-level languages.

10.2.2.3.1 Format. Figure 10-12 shows the format of the test coprocessor condi
tion, decrement and branch instruction, denoted by thecpDBcc mnemonic.

10-16 MC68EC030 USER'S MANUAL MOTOROLA

:

15 14 13 12 11 4 3 2 o
1 I 1 I 1 I 1 I CplD , 0 I 0 , 1 , 0 , 0 I 1 'EFFECTIVE ADDRESS

(RESERVED) I CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS

DISPLACEMENT

Figure 10-12. Test Coprocessor Condition, Decrement and Branch
Instruction Format (cpDBcc)

The first word of thecpDBcc instruction is the F-line operation word. This
word contains the CplD field in bits [9-11] and 001001 in bits [8:3] to identify
the cpDBcc instruction. Bits [0:2] of this operation word specify the main
controller data register used as the loop counter during the execution of the
instruction.

The second word of the cpDBcc instruction format contains the coprocessor
condition selector in bits [0-5] and should contain zeros in bits [6-15] to
maintain compatibility with future M68000 products. This word is written to
the condition CIR to initiate execution of the cpDBcc instruction by the co
processor.

If the coprocessor requires additional information to evaluate the condition,
the cpDBcc instruction can include this information in extension words. These
extension words follow the word containing the coprocessor condition se
lector field in the cpDBcc instruction format.

The last word of the instruction contains the displacement for the cpDBcc
instruction. This displacement is a twos-complement 16-bit value that is sign
extended to long-word size when it is used in a destination address calcu
lation.

10.2.2.3.2 Protocol. Figure 10-8 shows the protocol for the cpDBcc instructions.
The MC68EC030 transfers the condition selector to the coprocessor by writing
the word following the operation word to the condition CIR. The main con
troller then reads the response CIR to determine its next action. The copro
cessor can use a response primitive to request any services necessary to
evaluate the condition. If the coprocessor returns the true condition indicator,
the main controller executes the next instruction in the instruction stream.
If the coprocessor returns the false condition indicator, the main controller
decrements the low-order word of the register specified by bits [0-2] of the
F-line operation word. If this register contains minus one (-1) after being

MOTOROLA MC68EC030 USER'S MANUAL 10-17

-

III

decremented, the main controller executes the next instruction in the instruc
tion stream. If the register does not contain minus one (-1) after being
decremented, the main controller branches to the destination address to
continue instruction execution.

The MC68EC030 adds the displacement to the scanPC (refer to 10.4.1 Scan PC)
to determine the address of the next instruction. The scanPC must point to
the 16-bit displacement in the instruction stream when the destination ad
dress is calculated.

10.2.2.4 TRAP ON COPROCESSOR CONDITION. The trap on coprocessor condi
tion instruction allows the programmerto initiate exception processing based
on conditions related to the coprocessor operation.

10.2.2.4.1 Format. Figure 10-13 shows the format of the trap on coprocessor con
dition instruction, denoted by the cpTRAPcc mnemonic.

10-18

15 14 13 12 11 8 6 4 3 2 o
1 I 1 J 1 I 1 I CplD I 0 J 0 I 1 J 1 I 1 111 OPMODE

(RESERVED) I CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS

OPTIONAL WORD

OR LONG-WORD OPERAND

Figure 10-13. Trap On Coprocessor Condition (cpTRAPcc)

The F-line operation word contains the CplD field in bits [9-11) and 001111
in bits [8:3) to identify the cpTRAPcc instruction. Bits [0-2) of the cpTRAPcc
F-line operation word specify the number of optional operand words in the
instruction format. The instruction format can include zero, one, or two op
erand words.

The second word of the cpTRAPcc instruction format contains the coproces
sor condition selector in bits [0-5) and should contain zeros in bits [6-15) to
maintain compatibility with future M68000 products. This word is written to
the condition CIR of the coprocessor to initiate execution of the cpTRAPcc
instruction by the coprocessor.

If the coprocessor requires additional information to evaluate a condition,
the instruction can include this information in extension words. These ex-

MC68EC030 USER'S MANUAL MOTOROLA

tension words follow the word containing the coprocessor condition selector
field in the cpTRAPcc instruction format.

The operand words of the cpTRAPcc F-line operation word follow the
coprocessor-defined extension words. These operand words are not explicitly
used by the MC68EC030, but can be used to contain information referenced
by the cpTRAPcc exception handling routines. The valid encodings for bits
[0-2] ofthe F-line operation word and the corresponding numbers of operand
words are listed in Table 10-1. Other encodings of these bits are invalid for
the cpTRAPcc instruction.

Table 10-1. cpTRAPcc Opmode
Encodings

Optional Words in
Opmode Instruction Format

010 One

011 Two

100 Zero

10.2.2.4.2 Protocol. Figure 10-8 shows the protocol for the cpTRAPcc instructions.
The MC68EC030 transfers the condition selector to the coprocessor by writing
the word following the operation word to the condition CIR. The main con
troller then reads the response CIR to determine its next action. The copro
cessor can, using a response primitive, request any services necessary to
evaluate the condition. If the coprocessor returns the true condition indicator,
the main controller initiates exception processing forthe cpTRAPcc exception
(refer to 10.5.2.4 cpTRAPcc INSTRUCTION TRAPS). If the coprocessor returns
the false condition indicator, the main controller executes the next instruction
in the instruction stream.

10.2.3 Coprocessor Save and Restore Instructions

The coprocessor context save and context restore instruction categories in
the M68000 coprocessor interface support multitasking programming envi
ronments. In a multitasking environment, the context of a coprocessor may
need to be changed asynchronously with respect to the operation of that
coprocessor. That is, the coprocessor may be interrupted at any point in the
execution of an instruction in the general or conditional category to begin
context change operations.

MOTOROLA MC68EC030 USER'S MANUAL 10-19

-

In contrast to the general and conditional instruction categories, the context
save and context restore instruction categories do not use the coprocessor
response primitives. A set of format codes defined by the M68000 copro
cessor interface communicates status information to the main controller dur
ing the execution of these instructions. These coprocessor format codes are
discussed in detail in 10.2.3.2 COPROCESSOR FORMAT WORDS.

10.2.3.1 COPROCESSOR INTERNAL STATE FRAMES. The context save (cpSAVE)
and context restore (cpRESTORE) instructions transfer an internal coproces
sor state frame between memory and a coprocessor. This internal copro
cessor state frame represents the state of coprocessor operations. Using the
cpSAVE and cpRESTORE instructions, it is possible to interrupt coprocessor
operation, save the context associated with the current operation, and initiate
coprocessor operations with a new context.

10-20

A cpSAVE instruction stores a coprocessor's internal state frame as a se
quence of long-word entries in memory. Figure 10-14 shows the format of a
coprocessor state frame. During execution of the cpSAVE instruction, the
MC68EC030 calculates the state frame effective address from information in
the operation word of the instruction and stores a format word at this effective
address. The controller writes the long words that form the coprocessor state
frame to descending memory addresses, beginning with the address spec
ified by the sum of the effective address and the format word-length field
multiplied by four. During execution of the cpRESTORE instruction, the
MC68EC030 reads the format word and long words in the state frame from
ascending addresses, beginning with the effective address specified in the
instruction operation word.

SAVE RESTORE
ORDER ORDER 31 23 15 o

0 0 FORMAT I LENGTH I (UNUSED, RESERVED)

COPROCESSOR-DEPENDENT INFORMATION

n-1 2

n-2

• • •
• • •
• • •

Figure 10-14. Coprocessor State Frame Format in Memory

MC68EC030 USER'S MANUAL MOTOROLA

The controller stores the coprocessor format word at the lowest address of
the state frame in memory, and this word is the first word transferred for
both the cpSAVE and the cpRESTORE instructions. The word following the
format word does not contain information relevant to the coprocessor state
frame, but serves to keep the information in the state frame a multiple of
four bytes in size. The number of entries following the format word (at higher
addresses) is determined.

The information in a coprocessor state frame describes a context of operation
for that coprocessor. This description of a coprocessor context includes the
program invisible state information and, optionally, the program visible state
information. The program invisible state information consists of any internal
registers or status information that cannot be accessed by the program but
is necessary for the coprocessor to continue its operation at the point of
suspension. Program visible state information includes the contents of all
registers that appear in the coprocessor programming model and that can
be directly accessed using the coprocessor instruction set. The information
saved by the cpSAVE instruction must include the program invisible state
information. If cpGEN instructions are provided to save the program visible
state of the coprocessor, the cpSAVE and cpRESTORE instructions should
only transfer the program invisible state information to minimize interrupt
latency during a save or restore operation.

10.2.3.2 COPROCESSOR FORMAT WORDS. The coprocessor communicates sta-
tus information to the main controller during the execution of cpSAVE and
cpRESTORE instructions using coprocessor format words. The format words _.
defined for the M68000 coprocessor interface are listed in Table 10-2.

Table 10-2. Coprocessor Format Word Encodings

Format Code Length Meaning

00 xx Empty/Reset

01 xx Not Ready, Come Again

02 xx Invalid Format

03-0F xx Undefined, Reserved

10-FF Length Valid Format, Coprocessor Defined

The upper byte of the coprocessor format word contains the code used to
communicate coprocessor status information to the main controller. The
MC68EC030 recognizes four types of format words: empty/reset, not ready,
invalid format, and valid format. The MC68EC030 interprets the reserved

MOTOROLA MC68EC030 USER'S MANUAL 10-21

format codes ($03-$OF) as invalid format words. The lower byte of the co
processor format word specifies the size in bytes (which must be a mUltiple
of four) of the coprocessor state frame. This value is only relevant when the
code byte contains the valid format code (refer to 10.2.3.2.4 Valid Format
Word).

10.2.3.2.1 Empty/Reset Format Word. The coprocessor returns the empty/reset
format code during a cpSAVE instruction to indicate that the coprocessor
contains no user-specific information. That is, no coprocessor instructions
have been executed since either a previous cpRESTORE of an empty/reset
format code or the previous hardware reset. If the main controller reads the
empty/reset format word from the save CIR during the initiation of a cpSAVE
instruction, it stores the format word at the effective address specified in the
cpSAVE instruction and executes the next instruction.

When th,e main controller reads the empty/reset format word from memory
during the execution of the cpRESTORE instruction, it writes the format word
to the restore CIA. The main controller then reads the restore CIR and, if the
coprocessor returns the empty/reset format word, executes the next instruc
tion. The main controller can initialize the coprocessor by writing the empty/
reset format code to the restore CIA. When the coprocessor receives the
empty/reset format code, it terminates any current operations and waits for
the main controller to initiate the next coprocessor instruction. In particular,
after the cpRESTORE of the empty/reset format word, the execution of a
cpSAVE should cause the empty/reset format word to be returned when a
cpSAVE instruction is executed before any other coprocessor instructions.
Thus, an empty/reset state frame consists only of the format word and the
following reserved word in memory (refer to Figure 10-14).

10.2.3.2.2 Not Ready Format Word. When the main controller initiates a cpSAVE
instruction by reading the save CIR the coprocessor can delay the save op
eration by returning a not ready format word. The main controller then serv
ices any pending interrupts and reads the save CIR again. The not ready
format word delays the save operation until the coprocessor is ready to save
its internal state. The cpSAVE instruction can suspend execution of a general
or conditional coprocessor instruction; the coprocessor can resume execu
tion of the suspended instruction when the appropriate state is restored with
a cpRESTORE. If no further main controller services are required to complete
coprocessor instruction execution, it may be more efficient to complete the
instruction and thus reduce the size of the saved state. The coprocessor
designer should consider the efficiency of completing the instruction or of

10-22 MC68EC030 USER'S MANUAL MOTOROLA

suspending and later resuming the instruction when the main controller
executes a cpSAVE instruction.

When the main controller initiates a cpRESTORE instruction by writing a
format word to the restore CIR, the coprocessor should usually terminate
any current operations and restore the state frame supplied by the main
controller. Thus, the not ready format word should usually not be returned
by the coprocessor during the execution of a cpRESTORE instruction. If the
coprocessor must delay the cpRESTORE operation for any reason, it can
return the not ready format word when the main controller reads the restore
CIR. If the main controller reads the not ready format word from the restore
CIR during the cpRESTORE instruction, it reads the restore CIR again without
servicing any pending interrupts.

10.2.3.2.3 Invalid Format Word. When the format word placed in the restore CIR
to initiate a cpRESTORE instruction does not describe a valid coprocessor
state frame, the coprocessor returns the invalid format word in the restore
CIR. When the 'main controller reads this format word during the cpRESTORE
instruction, it writes the abort mask to the control CIR and initiates format
error exception processing. The two least significant bits of the abort mask
are 01; the fourteen most significant bits are undefined.

A coprocessor should usually not place an invalid format word in the save
CIR when the main controller initiates a cpSAVE instruction. A coprocessor,
however, may not be able to support the initiation of a cpSAVE instruction
while it is executing a previously initiated cpSAVE or cpRESTORE instruction. _
In this situation, the coprocessor can return the invalid format word when
the main controller reads the save CIR to initiate the cpSAVE instruction while
either another cpSAVE or cpRESTORE instruction is executing. If the main
controller reads an invalid format word from the save CIR, it writes the abort
mask to the control CIR and initiates format error exception processing (refer
to 10.5.1.5 FORMAT ERRORS).

10.2.3.2.4 Valid Format Word. When the main controller reads a valid format word
from the save CIR during the cpSAVE instruction, it uses the length field to
determine the size of the coprocessor state frame to save. The length field
in the lower eight bits of a format word is relevant only in a valid format
word. During the cpRESTORE instruction, the main controller uses the length
field in the format word read from the effective address in the instruction to
determine the size of the coprocessor state frame to restore.

MOTOROLA MC68EC030 USER'S MANUAL 10-23

The length field of a valid format word, representing the size of the copro
cessor state frame, must contain a multiple of four. If the main controller
detects a value that is not a multiple of four in a length field during the
execution of a cpSAVE or cpRESTORE instruction, the main controller writes
the abort mask (refer to 10.2.3.2.3 Invalid Format Word) to the control CIR
and initiates format error exception processing.

10.2.3.3 COPROCESSOR CONTEXT SAVE INSTRUCTION. The M68000 coproces
sor context save instruction category consists of one instruction. The copro
cessor context save instruction, denoted by the cpSAVE mnemonic, saves
the context of a coprocessor dynamically without relation to the execution
of coprocessor instructions in the general or conditional instruction cate
gories. During the execution of a cpSAVE instruction, the coprocessor com
municates status information to the main controller by using the coprocessor
format codes.

10.2.3.3.1 Format. Figure 10-15 shows the format of the cpSAVE instruction. The
first word of the instruction is the F-line operation word, which contains the
coprocessor identification code in bits [9-11] and an M68000 effective address
code in bits [0-5]. The effective address encoded in the cpSAVE instruction
is the address at which the state frame associated with the current context
of the coprocessor is saved in memory.

10-24

15 14 13 12 11 9 o
CplD 1 EFFECTIVE ADDRESS

EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS)

Figure 10-15. Coprocessor Context Save Instruction Format (cpSAVE)

The control alterable and predecrement addressing modes are valid for the
cpSAVE instruction. Other addressing modes cause the MC68EC030 to initiate
F-line emulator exception processing as described in 10.5.2.2 F-LiNE EMU
LATOR EXCEPTIONS.

The instruction can include as many as five effective address extension words
following the cpSAVE instruction operation word. These words contain any
additional information required to calculate the effective aqdress specified
by bits [0-5] of the operation word.

MC68EC030 USER'S MANUAL" MOTOROLA

10.2.3.3.2 Protocol. Figure 10-16 shows the protocol for the coprocessor context
save instruction. The main controller initiates execution of the cpSAVE in
struction by reading the save CIR. Thus, the cpSAVE instruction is the only
coprocessor instruction that begins by reading from a CIR. (All other copro
cessor instructions write to a CIR to initiate execution of the instruction by
the coprocessor.) The coprocessor communicates status information asso
ciated with the context save operation to the main controller by placing
coprocessor format codes in the save CIR.

MAIN CONTROLLER

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LiNE
OPERATION WORD

M2 READ SAVE CIR TO INITIATE THE cpSAVE INSTRUCTION

M3 IF (FORMAT = NOT READY) DO STEPS 1) AND 2) BELOW
1) SERVICE PENDING INTERRUPTS
2) GOTOM2

M4 EVALUATE EFFECTIVE ADDRESS SPECIFIED IN F-LiNE
OPWORD AND STORE FORMAT WORD AT
EFFECTIVE ADDRESS

M5 IF (FORMAT = EMPTy) GO TO M6
ELSE, TRANSFER NUMBER OF BYTES INDICATED
IN FORMAT WORD FROM OPERAND CIR TO
EFFECTIVE ADDRESS

M6 PROCEED WITH EXECUTION OF NEXT INSTRUCTION

-

COPROCESSOR

C1 IF (NOT READY TO BEGIN CONTEXT SAVE OPERATION)
DO STEPS 1) AND 2) BELOW
1) PLACE NOT READY FORMAT CODE IN SAVE CIR
2) SUSPEND OR COMPLETE CURRENT OPERATIONS

C2 PLACE APPROPRIATE FORMAT WORD IN SAVE CIR

C3 TRANSFER NUMBER OF BYTES INDICATED IN FORMAT
WORD THROUGH OPERAND CIR

Figure 10-16. Coprocessor Context Save Instruction Protocol

If the coprocessor is not ready to suspend its current operation when the
main controller reads the save CIR, it returns a "not ready" format code. The
main controller services any pending interrupts and then reads the save CIR
again. After placing the not ready format code in the save CIR, the coprocessor
should either suspend or complete the instruction it is currently executing,

Once the coprocessor has suspended or completed the instruction it is ex
ecuting, it places a format code representing the internal coprocessor state
in the save CIR. When the main controller reads the save CIR, it transfers the
format word to the effective address specified in the cpSAVE instruction. The
lower byte of the coprocessor format word specifies the number of bytes of
state information, not including the format word and associated null word,
to be transferred from the coprocessor to the effective address specified. If

MOTOROLA MC68EC030 USER'S MANUAL 10-25

-

-

the state information is not a multiple of four bytes in size, the MC68EC030
initiates format error exception processing (refer to 10.5.1.5 FORMAT ER
RORS). The coprocessor and main controller coordinate the transfer of the
internal state of the coprocessor using the operand CIR. The MC68EC030
completes the coprocessor context save by repeatedly reading the operand
CIR and writing the information obtained into memory until all the bytes
specified in the coprocessor format word have been transferred. Following
a cpSAVE instruction, the coprocessor should be in an idle state - that is,
not executing any coprocessor instructions.

The cpSAVE instruction is a privileged instruction. When the main controller
identifies a cpSAVE instruction, it checks the supervisor bit in the status
register to determine whether it is operating at the supervisor privilege level.
If the MC68EC030 attempts to execute a cpSAVE instruction while at the user
privilege level (status register bit [13] = 0), it initiates privilege violation ex
ception processing without accessing any of the coprocessor interface reg
isters (refer to 10.5.2.3 PRIVILEGE VIOLATIONS).

The MC68EC030 initiates format error exception processing if it reads an
invalid format word (or a valid format word whose length field is not a
multiple of four bytes) from the save CIR during the execution of a cpSAVE
instruction (refer to 10.2.3.2.3 Invalid Format Word). The MC68EC030 writes
an abort mask (refer to 10.2.3.2.3 Invalid Format Word) to the control CIR to
abort the coprocessor instruction prior to beginning exception processing.
Figure 10-16 does not include this case since a coprocessor usually returns
either a not ready or a valid format code in the context of the cpSAVE in
struction. The coprocessor can return the invalid format word, however, if a
cpSAVE is initiated while the coprocessor is executing a cpSAVE or cp
RESTORE instruction and the coprocessor is unable to support the suspen
sion of these two instructions.

10.2.3.4 COPROCESSOR CONTEXT RESTORE INSTRUCTION. The M68000 copro
cessor context restore instruction category includes one instruction. The co
processor context restore instruction, denoted by the cpRESTORE mnemonic,
forces a coprocessor to terminate any current operations and to restore a
former state. During the execution of a cpRESTORE instruction, the copro
cessor can communicate status information to the main controller by placing
format codes in the restore CIR.

10-26 MC68EC030 USER'S MANUAL MOTOROLA

10.2.3.4.1 Format. Figure 10-17 shows the format of the cpRESTORE instruction.

15 13 12 11 6 o
CplD EFFECTIVE ADDRESS

EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS)

Figure 10-17. Coprocessor Context Restore Instruction Format (cpRESTORE)

The first word of the instruction is the F-line operation word, which contains
the coprocessor identification code in bits [9-11] and an M68000 effective
addressing code in bits [0-5]. The effective address encoded in the cp
RESTORE instruction is the starting address in memory where the copro
cessor context is stored. The effective address is that of the coprocessor
format word that applies to the context to be restored to the coprocessor.

The instruction can include as many as five effective address extension words
following the first word in the cpRESTORE instruction format. These words
contain any additional information required to calculate the effective address
specified by bits [0-5] of the operation word.

All memory addressing modes except the predecrement addressing mode
are valid. Invalid effective address encodings cause the MC68EC030 to initiate
F-line emulator exception processing (refer to 10.5.2.2 F-UNE EMULATOR
EXCEPTIONS).

10.2.3.4.2 Protocol. Figure 10-18 shows the protocol for the coprocessor context III
restore instruction. When the main controller executes a cpRESTORE instruc-
tion, it first reads the coprocessor format word from the effective address in
the instruction. This format word contains a format code and a length field.
During cpRESTORE operation, the main controller retains a copy of the length
field to determine the number of bytes to be transferred to the coprocessor
during the cpRESTORE operation and writes the format word to the restore
CIR to initiate the coprocessor context restore.

When the coprocessor receives the format word in the restore CIR, it must
terminate any current operations and evaluate the format wor,d. If the format
word represents a valid coprocessor context as determined by the copro
cessor design, the coprocessor returns the format word to the main controller
through the restore CIR and prepares to receive the number of bytes specified
in the format word through its operand CIR.

MOTOROLA MC68EC030 USER'S MANUAL 10-27

10-28

MAIN CONTROLLER

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LiNE
OPERATION WORD

M2 READ COMPRESSOR FORMAT CODE FROM EFFECTIVE
ADDRESS SPECIFIED IN OPERATION WORD

COPROCESSOR

M3 WRITE COPROCESSOR FORMAT WORD TO RESTORE CIR - C1 TERMINATE CURRENT OPERATIONS AND EVALUATE
FORMAT WORD

M4 READ RESTORE CIR

M5 IF (FORMAT = INVALID FORMAn WRITE $0001
ABORT CODE TO CONTROL CIR AND INITIATE FORMAT
ERROR EXCEPTION PROCESSING (SEE NOTE 1)

M6 IF (FORMAT = EMPTY/RESET) GO TO M7
ELSE, TRANSFER NUMBER OF BYTES SPECIFIED BY
FORMAT WORD TO OPERAND CIR (SEE NOTE 2)

M7 PROCEED WITH EXECUTION OF NEXT INSTRUCTION

NOTES: 1. See 10.6.1.5 FORMAT ERROR.

C2 IF (INVALID FORMAn PLACE INVALID FORMAT CODE
--- IN THE RESTORE CIR

C3 IF (VALID FORMAT) RECEIVE NUMBER OF BYTES
INDICATED IN FORMAT WORD THROUGH OPERAND CIR

2. The MG68EG030 uses the length field in the format word read during M2 to determine the number
of bytes to read from memory and write to the operand GIR.

Figure 10-18. Coprocessor Context Restore Instruction Protocol

After writing the format word to the restore CIR the main controller continues
the cpRESTORE dialog by reading that same register. If the coprocessor
returns a valid format word, the main controller transfers the number of
bytes specified by the format word at the effective address to the operand
CIR.

If the format word written to the restore CIR does not represent a valid
coprocessor state frame, the coprocessor places an invalid format word in
the restore CIR and terminates any current operations. The main controller
receives the invalid format code, writes an abort mask (refer to 10.2.3.2.3
Invalid Format Word) to the control CIR, and initiates format error exception
processing (refer to 10.5.1.5 FORMAT ERRORS).

The cpRESTORE instruction is a privileged instruction. When the main con
troller accesses a cpRESTORE instruction, it checks the supervisor bit in the
status register. If the MC68EC030 attempts to execute a cpRESTORE instruc
tion while at the user privilege level (status register bit [13] = 0), it initiates
privilege violation exception processing without accessing any of the copro
cessor interface registers (refer to 10.5.2.3 PRIVILEGE VIOLATIONS).

MC68EC030 USER'S MANUAL MOTOROLA

10.3 COPROCESSOR INTERFACE REGISTER SET

The instructions of the M68000 coprocessor interface use registers of the CIR
set to communicate with the coprocessor. These CIRs are not directly related
to the coprocessor's programming model.

Figure 10-4 is a memory map ofthe CIR set. The registers denoted by asterisks
(*) must be included in a coprocessor interface that implements coprocessor
instructions in all four categories. The complete register model must be
implemented if the system uses all of the coprocessor response primitives
defined for the M68000 coprocessor interface.

The following paragraphs contain detailed descriptions of the registers.

10.3.1 Response CIR

The coprocessor uses the 16-bit response CIR to communicate all service
requests (coprocessor response primitives) to the main controller. The main
controller reads the response CIR to receive the coprocessor response pri
mitives during the execution of instructions in the general and conditional
instruction categories. The offset from the base address of the CIR set for
the response CIR is $00. Refer to 10.4 COPROCESSOR RESPONSE PRIMI
TIVES.

10.3.2 Control CIR

The main controller writes to the 2-bit control CIR to acknowledge copro- _
cessor-requested exception processing or to abort the execution of a copro- •
cessor instruction. The offset from the base address of the CIR set for the
control CIR is $02. The control CIR occupies the two least significant bits of
the word at that offset. The 14 most significant bits of the word are undefined.
Figure 10-19 shows the format of this register.

15 1 0

(UNDEFINED, RESERVED) XA AB

Figure 10-19. Control CIR Format

When the MC68EC030 receives one of the three take exception coprocessor
response primitives, it acknowledges the primitive by writing the exception
acknowledge mask (102) to the control CIR, which sets the exception ac
knowledge (XA) bit. The MC68EC030 writes the abort mask (012), which sets

MOTOROLA MC68EC030 USER'S MANUAL 10-29

•

the abort (AB) bit, to the control CIR to abort any coprocessor instruction in
progress. (The most significant 14 bits of both masks are undefined.) The
MC68EC030 aborts a coprocessor instruction when it detects one of the fol
lowing exception conditions:

• An F-line emulator exception condition after reading a response primitive

• A privilege violation exception as it performs a supervisor check in re
sponse to a supervisor check primitive

• A format error exception when it receives an invalid format word or a
valid format word that contains an invalid length

10.3.3 Save CIR

The coprocessor uses the 16-bit save CIR to communicate status and state
frame format information to the main controller while executing a cpSAVE
instruction. The main controller reads the save CIR to initiate execution of
the cpSAVE instruction by the coprocessor. The offset from the base address
of the CIR set for the save CIR is $04. Refer to 10.2.3.2 COPROCESSOR FOR
MAT WORDS.

10.3.4 Restore CIR

The main controller initiates the cpRESTORE instruction by writing a copro
cessor format word to the 16-bit restore register. During the execution of the
cpRESTORE instruction, the coprocessor communicates status and state frame
format information to the main controller through the restore CIR. The offset
from the base address of the CIR set for the restore CIR is $06. Refer to
10.2.3.2 COPROCESSOR FORMAT WORDS.

10.3.5 Operation Word CIR

The main controller writes the F-line operation word of the instruction in
progress to the 16-bit operation word CIR in response to a transfer operation
word coprocessor response primitive (refer to 10.4.6 Transfer Operation Word
Primitive). The offset from the base address of the CIR set for the operation
word CIR is $08.

10.3.6 Command CIR

10-30

The main controller initiates a general category instruction by writing the
instruction command word, which follows the instruction F-line operation

MC68EC030 USER'S MANUAL MOTOROLA

word in the instruction stream, to the 16-bit command CIR. The offset from
the base address of the CIR set for the command CIR is $OA.

10.3.7 Condition CIR

The main controller initiates a conditional category instruction by writing the
condition selector to the 16-bit condition CIR. The offset from the base address
of the CIR set for the condition CIR is $OE. Figure 10-20 shows the format of
the condition CIR.

15 6 o
(UNDEFINED, RESERVED) CONDITION SELECTOR

Figure 10-20. Condition CIR Format

10.3.8 Operand CIR

When the coprocessor requests the transfer of an operand, the main con
troller performs the transfer by reading from or writing to the 32-bit operand
CIR. The offset from the base address of the CIR set for the operand CIR is
$10. .

The MC68EC030 aligns all operands transferred to and from the operand CIR
to the most significant byte of this CIR. The controller performs a sequence
of long-word transfers to read or write any operand larger than four bytes.
If the operand size is not a multiple of four bytes, the portion remaining after
the initial long-word transfers is aligned to the most significant byte of the III
operand CIR. Figure 10-21 shows the operand alignment used by the
MC68EC030 when accessing the operand CIR.

31 23 15 7 o
BYTE OPERAND I NO TRANSFER

WORD OPERAND NO TRANSFER

THREE-BYTE OPERAND NO TRANSFER

LONG-WORD OPERAND

TEN-

BYTE

OPERAND NO TRANSFER

Figure 10-21. Operand Alignment for Operand CIR Accesses

MOTOROLA MC68EC030 USER'S MANUAL 10-31

10.3.9 Register Select CIR

When the coprocessor requests the transfer of one or more main controller
registers or a group of coprocessor registers, the main controller reads the
16-bit register select CIR to identify the number or type of registers to be
transferred. The offset from the base address of the CIR set for the register
select CIR is $14. The format of this register depends on the primitive that
is currently using it. Refer to 10.4 COPROCESSOR RESPONSE PRIMITIVES.

10.3.10 Instruction Address CIR

When the coprocessor requests the address of the instruction it is currently
executing, the main controller transfers this address to the 32-bit instruction
address CIR. Any transfer of the scanPC is also performed through the in
struction address CIR (refer to 10.4.17 Transfer Status Register and Scan PC
Primitive). The offset from the base address of the CIR set for the instruction
address CIR is $18.

10.3.11 Operand Address CIR

When a coprocessor requests an operand address transfer between the main
controller and the coprocessor, the address is transferred through the 32-bit
operand address CIR. The offset from the base address of the CIR set for the
operand address CIR is $1 C .

• 10.4 COPROCESSOR RESPONSE PRIMITIVES

10-32

The response primitives are primitive instructions that the coprocessor issues
to the main controller during the execution of a coprocessor instruction. The
coprocessor uses response primitives to communicate status information
and service requests to the main controller. In response to an instruction
command word written to the command CIR or a condition selector in the
condition CIR, the coprocessor returns a response primitive in the response
CIR. Within the general and conditional· instruction categories, individual
instructions are distinguished by the operation of the coprocessor hardware
and also by services specified by coprocessor response primitives provided
by the main controller.

Subsequent paragraphs, beginning with 10.4.2 Coprocessor Response Pri
m,itive General Format, consist of detailed descriptions of the M68000 co
processor response primitives supported by the MC68EC030. Any response

MC68EC030 USER'S MANUAL MOTOROLA

primitive that the MC68EC030 does not recognize causes it to initiate protocol
violation exception processing (refer to 10.5.2.1 PROTOCOL VIOLATIONS).
This processing of undefined primitives supports emulation of extensions to
the M68000 coprocessor response primitive set by the protocol violation
exception handler. Exception processing related to the coprocessor interface
is discussed in 10.5 EXCEPTIONS.

10.4.1 ScanPC

Several of the response primitives involve the scanPC, and many of them
require the main controller to use it while performing services requested.
These paragraphs describe the scanPC and tell how it operates.

During the execution of a coprocessor instruction, the program counter in
the MC68EC030 contains the address of the F-line operation word of that
instruction. A second register, called the scanPC, sequentially addresses the
remaining words of the instruction.

If the main controller requires extension words to calculate an effective ad
dress or destination address of a branch operation, it uses the scanPC to
address these extension words in the instruction stream. Also, if a copro
cessor requests the transfer of extension words, the scanPC addresses the
extension words during the transfer. As the controller references each word,
it increments the scanPC to point to the next word in the instruction stream.
When an instruction is completed, the controller transfers the value in the
scanPC to the program counter to address the operation word of the next
instruction.

The value in the scanPC when the main controller reads the first response
primitive after beginning to execute an instruction depends on the instruction
being executed. For a cpGEN instruction, the scanPC points to the word
following the coprocessor command word. For the cpBcc instructions, the
scanPC points to the word following the instruction F-line operation word.
For the cpScc, cpTRAPcc, and cpDBcc instructions, the scanPC points to the
word following the coprocessor condition specifier word.

If a coprocessor implementation uses optional instruction extension words
with a general or conditional instruction, the coprocessor must use these
words consistently so that the scanPC is updated accordingly during the
instruction execution. Specifically, during the execution of general category
instructions, when the coprocessor terminates the instruction protocol, the
MC68EC030 assumes that the scanPC is pointing to the operation word of

MOTOROLA MC68EC030 USER'S MANUAL 10-33

-

III

the next instruction to be executed. During the execution of conditional cat
egory instructions, when the coprocessor terminates the instruction protocol,
the MC68EC030 assumes that the scanPC is pointing to the word following
the last of any coprocessor-defined extension words in the instruction format.

10.4.2 Coprocessor Response Primitive General Format

10-34

The M68000 coprocessor response primitives are encoded in a 16-bit word
that is transferred to the main controller through the response CIR. Figure
10-22 shows the format of the coprocessor response primitives.

15 14 13 12 o
CA PC I DR I FUNCTION PARAMETER

Figure 10-22. Coprocessor Response Primitive Format

The encoding of bits [0-12] of a coprocessor response primitive depends on
the individual primitive. Bits [13-15], however, specify optional additional
operations that apply to most of the primitives defined for the M68000 co
processor interface.

Bit [15], the CA bit, specifies the Hcome againH operation of the main con
troller. When the main controller reads a response primitive from the re
sponse CIR with the come again bit set to one, it performs the service indicated
by the primitive and then reads the response CIR again. Using the CA bit, a
coprocessor can transfer several response primitives to the main controller
during the execution of a single coprocessor instruction.

Bit [4], the PC bit, specifies the pass program counter operation. When the
main controller reads a primitive with the PC bit set from the response CIR,
the main controller immediately passes the current value in its program
counter to the instruction address CIR as the first operation in servicing the
primitive request. The value in the program counter is the address of the
F-line operation word of the coprocessor instruction currently executing. The
PC bit is implemented in all of the coprocessor response primitives currently
defined for the M68000 coprocessor interface.

When an undefined primitive or a primitive that requests an illegal operation
is passed to the main controller, the main controller initiates exception pro
cessing for either an F-line emulator or a protocol violation exception (refer
to 10.5.2 Main-Controller-Detected Exceptions). If the PC bit is set in one of

MC68EC030 USER'S MANUAL MOTOROLA

these response primitives, however, the main controller passes the program
counter to the instruction address CIR before it initiates exception processing.

When the main controller initiates a cpGEN instruction that can be executed
concurrently with main controller instructions, the PC bit is usually set in the
first primitive returned by the coprocessor. Since the main controller pro
ceeds with instruction stream execution once the coprocessor releases it, the
coprocessor must record the instruction address to support any possible
exception processing related to the instruction. Exception processing related
to concurrent coprocessor instruction execution is discussed in 10.5.1 Co
processsor-Detected Exceptions.

Bit [13], the DR bit, is the direction bit. It applies to operand transfers between
the main controller and the coprocessor. If DR = 0, the direction of transfer
is from the main controller to the coprocessor (main controller write). If
DR = 1, the direction of transfer is from the coprocessor to the main controller
(main controller read). Ifthe operation indicated by a given response primitive
does not involve an explicit operand transfer, the value of this bit depends
on the particular primitive encoding.

10.4.3 Busy Primitive

The busy response primitive causes the main controller to reinitiate a co
processor instruction. This primitive applies to instructions in the general
and conditional categories. Figure 10-23 shows the format of the busy pri
mitive.

15 14 13 12 11 10 8 7 5 4 3 2 1 0

I 1 PC I 1 I 0 0 I 1 0 I 0 0 I 0 0 0 0 0 0

Figure 10-23. Busy Primitive Format

This primitive uses the PC bit as previously described.

Coprocessors that can operate concurrently with the main controller but
cannot buffer write operations to their command or condition CIR use the
busy primitive. A coprocessor may execute a cpGEN instruction concurrently
with an instruction in the main controller. If the main controller attempts to
initiate an instruction in the general or conditional instruction category while
the coprocessor is concurrently executing a cpGEN instruction, the copro
cessor can place the busy primitive in the response CIR. When the main
controller reads this primitive, it services pending interrupts (using a pre-

MOTOROLA MC68EC030 USER'S MANUAL 10-35

-I

instruction exception stack frame, refer to Figure 10-41). The controller then
restarts the general or conditional coprocessor instruction that it had at
tempted to initiate earlier.

The busy primitive should only be used in response to a write to the command
or condition CIA. It should be the first primitive returned after the main
controller attempts to initiate a general or conditional category instruction.
In particular, the busy primitive should not be issued after program-visible
resources have been altered by the instruction. (Program-visible resources
include coprocessor and main controller program-visible registers and op
erands in memory, but not the scanPC.) The restart of an instruction after it
has altered program-visible resources causes those resources to have in
consistent values when the controller reinitiates the instruction.

The MC68EC030 responds to the busy primitive differently in a special case
that can occur during a breakpoint operation (refer to 8.1.12 Multiple Excep
tions). This special case occurs when a breakpoint acknowledge cycle initiates
a coprocessor F-line instruction, the coprocessor returns the busy primitive
in response to the instruction initiation, and an interrupt is pending. When
these three conditions are met, the controller re-executes the breakpoint
acknowledge cycle after the interrupt exception processing has been com
pleted. A design that uses a breakpoint to monitor the number of passes
through a loop by incrementing or decrementing a counter may not work
correctly under these conditions. This special case may cause several break
point acknowledge cycles to be executed during a single pass through a loop.

III 10.4.4 Null Primitive

10-36

The null coprocessor response primitive communicates coprocessor status
information to the main controller. This primitive applies to instructions in
the general and conditional categories. Figure 10-24 shows the format of the
null primitive.

15 14 13 12 11 10 9 8 7 4 3 2 1 0

CA PC 0 I 0 I 1 0 0 IA I 0 I 0 o I 0 I 0 o PF TF

Figure 10-24. Null Primitive Format

This primitive uses the CA and PC bits as previously described.

MC68EC030 USER'S MANUAL MOTOROLA

Bit [8], the IA bit, specifies the interrupts allowed optional operation. This bit
determines whether the MC68EC030 services pending interrupts prior to re
reading the response CIR after receiving a null primitive. Interrupts are al
lowed when the IA bit is set.

Bit [1], the PF bit, shows the "processing finished" status of the coprocessor.
That is,PF = 1 indicates that the coprocessor has completed all processing
associated with an instruction.

Bit [0], the TF bit, indicates the true/false condition during the execution of
a conditional category instruction. TF = 1 is the true condition specifier, and
TF = 0 is the false condition specifier. The TF bit is only relevant for null
primitives with CA= 0 that are used by the coprocessor during the execution
of a conditional instruction.

The MC68EC030 processes a null primitive with CA= 1 in the same manner
whether executing a general or conditional category coprocessor instruction.
If the coprocessor sets CA and IA to one in the null primitive, the main
controller services pending interrupts (using a mid-instruction stack frame,
refer to Figure 10-43) and reads the response CIR again. If the coprocessor
sets CA to one and IA to zero in the null primitive, the main controller reads
the response CIR again without servicing any pending interrupts.

A null, CA= 0 primitive provides a condition evaluation indicator to the main
controller during the execution of a conditional instruction and ends the
dialogue between the main controller and coprocessor for that instruction.
The main controller completes the execution of a conditional category co-~
processor instruction when it receives the primitive. The PF bit is not relevant ~
during conditional instruction execution since the primitive itself implies
completion of processing.

Usually, when the main controller reads any primitive that does not have
CA= 1 while executing a general category instruction, it terminates the dia
logue between the main controller and coprocessor. If a trace exception is
pending, however, the main controller does not terminate the instruction
dialogue until it reads a null, CA= 0, PF =·1 primitive from the response CIR
(refer to 10.5.2.5 TRACE EXCEPTIONS). Thus, the main controller continues
to read the response CIR until it receives a null, CA = 0, PF = 1 primitive, and
then performs trace exception processing. When IA = 1, the main controller
services pending interrupts before reading the response CIR again.

A coprocessor can be designed to execute a cpGEN instruction concurrently
with the execution of main controller instructions and, also, buffer one write

MOTOROLA MC68EC030 USEWS MANUAL 10-37

III

operation to either its command or condition CIR. This type of coprocessor
issues a null primitive with CA= 1 when it is concurrently executing a cpGEN
instruction, and the main controller initiates another general or conditional
coprocessor instruction. This primitive indicates that the coprocessor is busy
and the main controller should read the response CIR again without reini
tiating the instruction. The IA bit of this null primitive usually should be set
to minimize interrupt latency while the main controller is waiting for the
coprocessor to complete the general category instruction.

Table 10-3 summarizes the encodings of the null primitive.

Table 10-3. Null Coprocessor Response Primitive Encodings

CA PC IA PF TF General Instructions Conditional Instructions

x 1 x x x Pass Program Counter to Instruc- Same as General Category
tion Address CIR, Clear PC Bit, and
Proceed with Operation Specified
by CA, lA, PF, and TF Bits

1 0 0 x x Reread Response CIR, Do Not Same as General Category
Service Pending Interrupts

1 0 1 x x Service Pending Interrupts and Same as General Category
Reread the Response CIR

0 0 0 0 c If (Trace Pending) Reread Re- Main Controller Completes In-
sponse CIR; Else, Execute Next In- struction Execution Based on TF = c
struction

0 0 1 0 c If (Trace Pending) Service Pending Main Controller Completes In-
Interrupts and Reread Response struction Execution Based on TF = c
CIR; Else, Execute Next Instruction

0 0 x 1 c Coprocessor Instruction Com- Main Controller Completes In-
pleted; Service Pending Excep- struction Execution Based on
tions or Execute Next Instruction TF=c.

x=Don't Care
c= 1 or 0 Depending on Coprocessor Condition Evaluation

10.4.5 Supervisor Check Primitive

10-38

The supervisor check primitive verifies that the main controller is operating
in the supervisor state while executing a coprocessor instruction. This pri
mitive applies to instructions in the general and conditional coprocessor
instruction categories. Figure 10-25 shows the format of the supervisor check
primitive.

MC68EC030 USER'S MANUAL MOTOROLA

15 14 13 12 11 10 9 5 4 3 2 o
1 PC 0 0 0 I 1 0 o I 0 o o o I 0 I 0 o I 0

Figure 10-25. Supervisor Check Primitive Format,

This primitive uses the PC bit as previously described. Bit [15] is shown as
one, but during execution of a general category instruction, this primitive
performs the same operations regardless of the value of bit [15]. If this pri
mitive is issued with bit [15] = 0 during a conditional category instruction,
however, the main controller initiates protocol violation exception process
ing.

When the main controller reads the supervisor check primitive from the
response CIR, it checks the value of the S bit in the status register. If S = 0
(main controller operating at user privilege level), the main controller aborts
the coprocessor instruction by writing an abort mask (refer to 10.3.2 Control
CIR) to the control CIR. The main controller then initiates privilege violation
exception processing (refer to 10.5.2.3 PRIVILEGE VIOLATIONS). If the main
controller is at the supervisor privilege level when it receives this primitive,
it reads the response CIR again.

The supervisor check primitive allows privileged instructions to be defined
in the coprocessor general and conditional instruction categories. This pri
mitive should be the first one issued by the coprocessor during the dialog
for an instruction that is implemented as privileged.

10.4.6 Transfer Operation Word Primitive

The transfer operation word primitive requests a copy of the coprocessor
instruction operation word for the coprocessor. This primitive applies to
general and conditional category instructions. Figure 10-26 shows the format
of the transfer operation word primitive.

15 14 13 12 11 10 9 8 7 6 4 3 2 1 0

CA PC I 0 I 0 I 0 I 1 I 1 I 1 I 0 I 0 I 0 I 0 o I 0 I 0

Figure 10-26. Transfer Operation Word Primitive Format

This primitive uses the CA and PC bits as previously described. If this primitive
is issued with CA = 0 during a conditional category instruction, the main
controller initiates protocol violation exception processing.

MOTOROLA MC68EC030 USER'S MANUAL 10-39

•

When the main controller reads this primitive from the response CIR, it trans
fers the F-line operation word of the currently executing coprocessor instruc
tion to the operation word CIR. The value of the scanPC is not affected by
this primitive.

10.4.7 Transfer from Instruction Stream Primitive

10-40

The transfer from instruction stream primitive initiates transfers of operands
from the instruction stream to the coprocessor. This primitive applies to
general and conditional category instructions. Figure 10-27 shows the format
of the transfer from instruction stream primitive.

15 14 13 12 11 10 9 8

CA I PC I 0 I 0 I 1 I 1 I 1 I 1 I LENGTH

Figure 10-27. Transfer from Instruction Stream Primitive Format

This primitive uses the CA and PC bits as previously described. Ifthis primitive
is issued with CA= 0 during a conditional category instruction, the main
controller initiates protocol violation exception processing.

Bits [0-7] of the primitive format specify the length, in bytes, of the operand
to be transferred from the instruction stream to the coprocessor. The length
must be an even number of bytes. If an odd length is specified, the main
controller initiates protocol violation exception processing (refer to 10.5.2.1
PROTOCOL VIOLATIONS).

This primitive transfers coprocessor-defined extension words to the copro
cessor. When the main controller reads this primitive from the response CIR,
it copies the number of bytes indicated by the length field from the instruction
stream to the operand CIR. The first word or long word transferred is at the
location pointed to by the scanPC when the primitive is read by the main
controller, and the scanPC is incremented after each word or long word is
transferred. When execution of the primitive has completed, the scanPC has
been incremented by the total number of bytes transferred and points to the
word following the last word transferred. The main controller transfers the
operands from the instruction stream using a sequence of long-word writes
to the operand CIR. If the length field is not an even multiple of four bytes,
the last two bytes from the instruction stream are transferred using a word
write to the operand CIR.

MC68EC030 USER'S MANUAL MOTOROLA

10.4.8 Evaluate and Transfer Effective Address Primitive

The evaluate and transfer effective address primitive evaluates the effective
address specified in the coprocessor instruction operation word and transfers
the result to the coprocessor. This primitive applies to general category in
structions. If this primitive is issued by the coprocessor during the execution
of a conditional category instruction, the main controller initiates protocol
violation exception processing. Figure 10-28 shows the format of the evaluate
and transfer effective address primitive.

15 14 13 12 11 10 9 8 7 4 2 o
I CA I PC I 0 I 0 I 1 I 0 I 1 I 0 I 0 o o o o I 0 o o

Figure 10-28. Evaluate and Transfer Effective Address Primitive Format

This primitive uses the CA and PC bits as previously described.

When the main controller reads this primitive while executing a general
category instruction, it evaluates the effective address specified in the in
struction. At this point, the scanPC contains the address of the first of any
required effective address extension words. The main controller increments
the scanPC by two after it references each of these extension words. After
the effective address is calculated, the resulting 32-bit value is written to the
operand address CIR.

The MC68EC030 only calculates effective addresses for control alterable ad
dressing modes in response to this primitive. If the addressing mode in the
operation word is not a control alterable mode, the main controller aborts
the instruction by writing a $0001 to the control CIR and initiates F-line em
ulation exception processing (refer to 10.5.2.2 F-LiNE EMULATOR EXCEP
TIONS).

10.4.9 Evaluate Effective Address. and Transfer Data Primitive

The evaluate effective address and transfer data primitive transfers an op
erand between the coprocessor and the effective address specified in the
coprocessor instruction operation word. This primitive applies to general
category instructions. If the coprocessor issues this primitive during the ex
ecution of a conditional category instruction, the main controller initiates
protocol violation exception processing. Figure 10-29 shows the format of
the evaluate effective address and transfer data primitive.

MOTOROLA MC68EC030 USER'S MANUAL 10-41

-

10-42

15 14 13 12 11 10 o
CA PC DR I 1 0 VALID EA LENGTH

Figure 10-29. Evaluate Effective Address and Transfer Data Primitive Format

This primitive uses the CA, PC, and DR bits as previously described.

The valid effective address field (bits [8-10]) of the primitive format specifies
the valid effective address categories for this primitive. Ifthe effective address
specified in the instruction operation word is not a member of the class
specified by bits [8-10], the main controller aborts the coprocessor instruction
by writing an abort mask (refer to 10.3.2 Control CIR) to the control CIR and
by initiating F-line emulation exception processing. Table 10-4 lists the valid
effective address field encodings.

Table 10-4. Valid Effective
Address Codes

Field Category

000 Control Alterable

001 Data Alterable

010 Memory Alterable

011 Alterable

100 Control

101 Data

110 Memory

111 Any Effective Address
(No Restriction)

Even when the valid effective address fields specified in the primitive and in
the instruction operation word match, the MC68EC030 initiates protocol vi
olation exception processing ifthe primitive requests a write to a nonalterable
effective address.

The length in bytes of the operand to be transferred is specified by bits [0-7]
of the primitive format. Several restrictions apply to operand lengths for
certain effective addressing modes. If the effective address is a main con
troller register (register direct mode), only operand lengths of one, two, or
four bytes are valid; all other lengths (zero, for example) cause the main
controllerto initiate protocol violation exception processing. Operand lengths
of 0-255 bytes are valid for the memory addressing modes.

MC68EC030 USER'S MANUAL MOTOROLA

The length of 0-255 bytes does not apply to an immediate operand. The
length of an immediate operand must be one byte or an even number of
bytes (less than 256), and the direction of transfer must be to the coprocessor;
otherwise, the main controller initiates protocol violation exception pro
cessing.

When the main controller receives this primitive during the execution of a
general category instruction, it verifies that the effective address encoded in
the instruction operation word is in the category specified by the primitive.
If so, the controller calculates the effective address using the appropriate
effective address extension words at the current scanPC address and incre
ments the scanPC by two for each word referenced. The main controller then
transfers the number of bytes specified in the primitive between the operand
CIR and the effective address using long-word transfers whenever possible.
Refer to 10.3.8 Operand CIR for information concerning operand alignment
for transfers involving the operand CIR.

The DR bit specifies the direction of the operand transfer. DR = 0 requests a
transfer from the effective address to the operand CIR, and DR = 1 specifies
a transfer from the operand CIR to the effective address.

If the effective addressing mode specifies the predecrement mode, the ad
dress register used is decremented by the size of the operand before the
transfer. The bytes within the operand are then transferred to or from as
cending addresses beginning with the location specified by the decremented
address register. In this mode, if A7 is used as the address register and the
operand length is one byte, A7 is decremented by two to maintain a word- ~.
aligned stack. IIIIAiIIII
For the postincrement effective addressing mode, the address register used
is incremented by the size of the operand after the transfer. The bytes within
the operand are transferred to or from ascending addresses beginning with
the location specified by the address register. In this mode, if A7 is used as
the address register and the operand length is one byte, A7 is incremented
by two after the transfer to maintain a word aligned stack. Transferring odd
length operands longer than one byte using the - (A7) or (A7) + addressing
modes can result in a stack pointer that is not word aligned.

The controller repeats the effective address calculation each time this pri
mitive is issued during the execution of a given instruction. The calculation
uses the current contents of any required address and data registers. The
instruction must include a set-of effective address extension words for each
repetition of a calculation that requires them. The controller locates these

MOTOROLA MC68EC030 USER'S MANUAL 10-43

words at the current scanPC location and increments the scanPC by two for
each word referenced in the instruction stream.

The MC68EC030 sign-extends a byte or word-sized operand to a long-word
value when it is transferred to an address register (AO-A7) using this primitive
with the register direct effective addressing mode. A byte or word-sized
operand transferred to a data register (DO-D7) only overwrites the lower byte
or word of the data register.

10.4.10 Write to Previously Evaluated Effective Address Primitive

10-44

The write to previously evaluated effective address primitive transfers an
operand from the coprocessor to a previously evaluated effective address.
This primitive applies to general category instructions. If the coprocessor
uses this primitive during the execution of a conditional category instruction,
the main controller initiates protocol violation exception processing. Figure
10-30 shows the format of the write to previously evaluated effective address
primitive.

15 14 13 12 11 10 9 8

CA PC I 1 I 0 o I 0 o o LENGTH

Figure 10-30. Write to Previously Evaluated Effective
Address Primitive Format

This primitive uses the CA and PC bits as previously described.

o

Bits [0-7] of the primitive format specify the length of the operand in bytes.
The MC68EC030 transfers operands between zero and 255 bytes in length.

When the main controller receives this primitive during the execution of a
general category instruction, it transfers an operand from the operand CIR
to an effective. address specified by a temporary register within the
MC68EC030. When a previous primitive for the current instruction has eval
uated the effective address, this temporary register contains the evaluated
effective address. Primitives that store an evaluated effective address in a
temporary register of the main controller are the evaluate and transfer ef
fective address, evaluate effective address and transfer data, and transfer
multiple coprocessor registers primitive. If this primitive is used during an
instruction in which the effective address specified in the instruction oper
ation word has not been calculated, the effective address used for the write
is undefined. Also, if the previously evaluated effective address was register
direct, the address written to in response to this primitive is undefined.

MC68EC030 USER'S MANUAL MOTOROLA

The function code value during the write operation indicates either supervisor
or user data space, depending on the value of the 5 bit in the MC68EC030
status register when the controller reads this primitive. While a coprocessor
should request writes to only alterable effective addressing modes, the
MC68EC030 does not check the type of effective address used with this pri
mitive. For example, if the previously evaluated effective address was pro
gram counter relative and the MC68EC030 is at the user privilege level (5 = 0
in status register), the MC68EC030 writes to user data space at the previously
calculated program relative address (the 32-bit value in the temporary internal
register of the controller).

Operands longer than four bytes are transferred in increments of four bytes
(operand parts) when possible. The main controller reads a long-word op
erand part fro~ the operand CIR and transfers this part to the current effective
address. The transfers continue in this manner using ascending memory
locations until all of the long-word operand parts are transferred, and any
remaining operand part is then transferred using a one-, two-, or three-byte
transfer as required. The operand parts are stored in memory using ascending
addresses beginning with the address in the MC68EC030 temporary register.

The execution of this primitive does not modify any of the registers in the
MC68EC030 programmer's model, even if the previously evaluated effective
address mode is the predecrement or postincrement mode. If the previously
evaluated effective addressing mode used any of the MC68EC030 internal
address or data registers, the effective address value used is the final value
from the preceding primitive. That is, this primitive uses the value from an
evaluate and transfer effective address, evaluate effective address and trans-~
fer data, or transfer multiple coprocessor registers primitive without modi- __
fication.

The take address and transfer data primitive described in the next section
does not replace the effective address value that has been calculated by the
MC68EC030. The address that the main controller obtains in response to the
take address and transfer data primitive is not available to the write to pre
viously evaluated effective address primitive.

A coprocessor can issue an evaluate effective address and transfer data
primitive followed by this primitive to perform a read-modify-write operation
that is not indivisible. The bus cycles for this operation are normal bus cycles
that can be interrupted, and the bus can be arbitrated between the cycles.

MOTOROLA MC68EC030 USER'S MANUAL 10-45

•

10.4.11 Take Address and Transfer Data Primitive

The take address and transfer data primitive transfers an operand between
the coprocessor and an address supplied by the coprocessor. This primitive
applies to general and conditional category instructions. Figure 10-31 shows
the format of the take address and transfer data primitive.

15 14 13 12 11 10 9 8 o
CA I PC I DR I 0 I 0 I ·1 I 0 I 1 I LENGTH

Figure 10-31. Take Address and Transfer Data Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the
coprocessor issues this primitive with CA= 0 during a conditional category
instruction, the main controller initiates protocol violation exception pro
cessing.

Bits [0-7] of the primitive format specify the operand length, which can be
from 0-255 bytes.

The main controller reads a 32-bit address from the operand address CIR.
Using a series of long-word transfers, the controller transfers the operand
between this address and the operand CIR. The DR bit determines the di
rection of the transfer. The controller reads or writes the operand parts to
ascending addresses, starting at the address from the operand address CIR.
If the operand length is not a multiple of four bytes, the final operand part
is transferred using a one-, two-, or three-byte transfer as required.

The function code used with the address read from the operand address CIR
indicates either supervisor or user data space according to the value of the
S bit in the MC68EC030 status register.

10.4.12 Transfer to/from Top of Stack Primitive

10-46

The transfer to/from top of stack primitive transfers an operand between the
coprocessor and the top of the currently active main controller stack (refer
to 2.S.1 System Stack). This primitive applies to general and conditional
category instructions. Figure 10-32 shows the format of the transfer to/from
top of stack primitive.

MC68EC030 USER'S MANUAL MOTOROLA

15 14 13 12 11 10 o
CA PC DR I 0 LENGTH

Figure 10-32. Transfer to/from Top of Stack Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the
coprocessor issues this primitive with CA = 0 during a conditional category
instruction, the main controller initiates protocol violation exception pro
cessing.

Bits [0-7] of the primitive format specify the length in bytes of the operand
to be transferred. The operand may be one, two, or four bytes in length;
other length values cause the main controller to initiate protocol violation
exception processing.

If DR = 0, the main controller transfers the operand from the currently active
system stack to the operand CIR. The implied effective address mode used
for the transfer is the (A7) + addressing mode. A one-byte operand causes
the stack pointer to be incremented by two after the transfer to maintain
word alignment of the stack.

If DR =1, the main controller transfers the operand from the operand CIR to
the currently active stack. The implied effective address mode used for the
transfer is the - (A7) addressing mode. A one-byte operand causes the stack
pointer to be decremented by two before the transfer to maintain word align
ment of the stack.

10.4.13 Transfer Single Main Controller Register Primitive

The transfer single main controller register primitive transfers an operand
between one of the main controller's data or address registers and the co
processor. This primitive applies to general and conditional category instruc
tions. Figure 10-33 shows the format of the transfer single main controller
register primitive.

15 14 13 12 11 10 9 8 432 0

CA PC DR 0 1 I 1 o I 0 I 0 o I 0 I 0 lOlA I REGISTER

Figure 10-33. Transfer Single Main Controller Register Primitive Format

MOTOROLA MC68EC030 USER'S MANUAL 10-47

•

III

This primitive uses the CA, PC, and DR bits as previously described. If the
coprocessor issues this primitive with CA = 0 during a conditional category
instruction, the main controller initiates protocol violation excep~ion pro
cessing.

Bit [3], the D/A bit, specifies whether the primitive transfers an address or
data register. D/A= 0 indicates a data register, and D/A= 1 indicates an ad
dress register. Bits [2-0] contain the register number.

If DR = 0, the main controller writes the long-word operand in the specified
register to the operand CIR. If DR = 1, the main controller reads a long-word
operand from the operand CIR and transfers it to the specified data or address
register.

10.4.14 Transfer Main Controller Control Register Primitive

10-48

The transfer main controller control register primitive transfers a long-word
operand between one of its control registers and the coprocessor. This pri
mitive applies to general and conditional category instructions. Figure 10-34
shows the format of the transfer main controller control register primitive.
This primitive uses the CA, PC, and DR bits as previously described. If the
coprocessor issues this primitive with CA= 0 during a conditional category
instruction, the main controller initiates protocol violation exception pro-
cessing.

15 14 13 12 11 10 9 4 3 2 0

I CA I PC I DR 0 1 I 1 0 I 1 I 0 0 I 0 I 0 0 I 0 0 I 0

Figure 10-34. Transfer Main Controller Control Register Primitive Format

When the main controller receives this primitive, it reads a control register
select code from the register select CIR. This code determines which main
controller control register is transferred. Table 10-5 lists the valid control
register select codes. If the control register select code is not valid, the
MC68EC030 initiates protocol violation exception processing (refer to 10.5.2.1
PROTOCOL VIOLATIONS).

MC68EC030 USER'S MANUAL MOTOROLA

Table 10-5. Main Controller Control Register
Selector Codes

Hex Control Register .

xOOO Source Function Code (SFC) Register

xOO1 Destination Function Code (DFC) Register

xOO2 Cache Control Register (CACR)

x800 User Stack Pointer (USP)

x801 Vector Base Register (VBR)

x802 Cache Address Register (CAAR)

x803 Master Stack Pointer (MSP)

x804 Interrupt Stack Pointer (ISP)

All other codes cause a protocol violation exception

After reading a valid code from the register select CIR, if DR = 0, the main
controller writes the long-word operand from the specified control register
to the operand CIR. If DR = 1, the main controller reads a long-word operand
from the operand CIR and places it in the specified control register.

10.4.15 Transfer Multiple Main Controller Registers Primitive

The transfer multiple main controller registers primitive transfers long-word
operands between one or more of its data or address registers. and the
coprocessor. This primitive applies to general and conditional category in
structions. Figu re 10-35 shows the format of the transfer mUltiple main con
troller registers primitive.

15 14 13 12 11 10 9 4 3 2 o
I CA I PC I DR I 0 I 0 I 1 I 1 o o o I 0 I 0 I 0 o o o

Figure 10-35. Transfer Multiple Main Controller Registers Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the
coprocessor issues this primitive with CA = 0 during a conditional category
instruction, the main controller initiates protocol violation exception pro
cessing.

When the main controller receives this primitive, it reads a 16-bit register
select mask from the register select CIR. The format of the register select
mask is shown in Figure 10-36. A register is transferred if the bit correspond-

MOTOROLA MC68EC030 USER'S MANUAL 10-49

•

•

ing to the register in the register select mask is set to one. The selected
registers are transferred in the order 00-07 and then AO-A7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

A7 A6 A5 I A4 I A31 A2 I A1 I AO I 07 I 06 I 05 I 04 I 03 I 02 I 01 DO

Figure 10-36. Register Select Mask Format

If DR = 0, the main controller writes the contents of each register indicated
in the register select mask to the operand CIR using a sequence of long-word
transfers. If DR = 1, the main controller reads a long-word operand from the
operand CIR into each register indicated in the register select mask. The
registers are transferred in the same order, regardless of the direction of
transfer indicated by the DR bit.

10.4.16 Transfer Multiple Coprocessor Registers Primitive·

10-50

The transfer multiple coprocessor registers primitive transfers from 0-16
operands between the effective address specified in the coprocessor instruc
tion and the coprocessor. This primitive applies to general category instruc
tions. If the coprocessor issues this primitive during the execution of a
conditional category instruction, the main controller initiates protocol vio
lation exception processing. Figure 10-37 shows the format of the transfer
multiple coprocessor registers primitive .

15 14 13 12 11 10 9 8 o
I CA I PC I DR I 0 I 0 I 0 I 0 I 1 I LENGTH

Figure 10-37. Transfer Multiple Coprocessor Registers Primitive Format

This primitive uses the CA, PC, and DR bits as previously described.

Bits [7-0] of the primitive format indicate the length in bytes of each operand
transferred. The operand length must be an even number of bytes; odd length
operands cause the MC68EC030 to initiate protocol violation exception pro
cessing (refer to 10.5.2.1 PROTOCOL VIOLATIONS).

When the main controller reads this primitive, it calculates the effective ad
dress specified in the coprocessor instruction. The scanPC should be pointing
to the first of any necessary effective address extension words when this
primitive is read from the response CIR; the scanPC is incremented by two

MC68EC030 USER'S MANUAL MOTOROLA

for each extension word referenced during the effective address calculation.
For transfers from the effective address to the coprocessor (DR = 0), the con
trol addressing modes and the postincrement addressing mode are valid.
For transfers from the coprocessor to the effective address (DR = 1), the con
trol alterable and predecrement addressing modes are valid. Invalid address
ing modes cause the MC68EC030 to abort the instruction by writing an abort
mask (refer to 10.3.2 Control CIR) to the control CIR and to initiate F-line
emulator exception processing (refer to 10.5.2.2 F-LiNE EMULATOR EXCEP
TIONS).

After performing the effective address calculation, the MC68EC030 reads a
16-bitregister select mask from the register select CIR. The coprocessor uses
the register select mask to specify the number of operands to transfer; the
MC68EC030 counts the number of ones in the register select mask to deter
mine the number of operands. The order of the ones in the register select
mask is not relevant to the operation of the main controller. As many as 16
operands can be transferred by the main controller in response to this pri
mitive. The total number of bytes transferred is the product of the number
of operands transferred and the length of each operand specified in bits [0-7]
of the primitive format.

If DR = 1, the main controller reads the number of operands specified in the
register select mask from the operand CIR and writes these operands to the
effective address specified in the instruction using long-word transfers when
ever possible. If DR = 0, the main controller reads the number of operands
specified in the register select mask from the effective address and writes
them to the operand CIR.

For the control addressing modes, the operands are transferred to or from
memory using ascending addresses. For the postincrement addressing mode,
the operands are read from memory with ascending addresses also, and the
address register used is incremented by the size of an operand after each
operand is transferred. The address register used with the (An) + addressing
mode is incremented by the total number of bytes transferred during the
primitive execution.

For the predecrement addressing mode, the operands are written to memory
with descending addresses, but the bytes within each operand are written
to memory with ascending addresses. As an example, Figure 10-38 shows
the format in long-word-oriented memory for two 12-byte operands trans
ferred from the coprocessor to the effective address using the - (An) ad
dressing mode. The controller decrements the address register by the size
of an operand before the operand is transferred. It writes the bytes of the

MOTOROLA MC68EC030 USER'S MANUAL 10-51

EI

II

operand to ascending memory addresses. When the transfer is complete,
the address register has been decremented by the total number of bytes
transferred. The MC68EC030 transfers the data using long-word transfers
whenever possible.

An - 2 'LENGTH = FINAL An - OP1. BYTE (0) : i :
I I I

I I I OPt BYTE (L -1)

An-LENGTH - OPO. BYTE (0) : 1 :
I I I

I I I OPO.BYTE(L-l)

INITIAL An - : : :
NOTE: OPO. Byte (0) is the first byte written to memory.

OPO. Byte (L-l) is the last byte of the first operand written to memory.
OP1. Byte (0) is the first byte of the second operand written to memory.
OP1. Byte (L-l) is the last byte written to memory.

Figure 10-38. Operand Format in Memory for Transfer to - (An)

10.4.17 Transfer Status Register and ScanPC Primitive

10-52

Both the transfer status register and the scanPC primitive transfers values
between the coprocessor and the main controller status register. On an op
tional basis, the scanPC also makes transfers. This primitive applies to general
category instructions. If the coprocessor issues this primitive during the ex
ecution of a conditional category instruction, the main controller initiates
protocol violation exception processing. Figure 10-39 shows the format of
the transfer status register and scanPC primitive.

15 14 13 12 11 10 9 8 7 6 5 4 3 1 0

I CA I PC I DR I o· I 0 I 0 I 1 I SP I 0 I 0 I 0 o I 0 o o I 0

Figure 10-39. Transfer Status Register and ScanPC Primitive Format

This primitive uses the CA, PC, and DR bits as previously described.

Bit [8], the SP bit, selects the scanPC option. If SP = 1, the primitive transfers
both the scanPC and status register. If SP = 0, only the status register is
transferred.

MC68EC030 USER'S MANUAL MOTOROLA

If SP = 0 and DR = 0, the main controller writes the 16-bit status register value
to the operand CIR. If SP = 0 and DR = 1, the main controller reads a 16-bit
value from the operand CIR into the main controller status register.

If SP = 1 and DR = 0, the main controller writes the long-word value in the
scanPC to the instruction address CIR and then writes the status register
value to the operand CIR. If SP = 1 and DR = 1, the main controller reads a
16-bit value from the operand CIR into the status register and then reads a
long-word value from the instruction address CIR into the scanPC.

With this primitive, a general category instruction can change the main con
troller program flow by placing a new value in the status register, in the
scanPC, or new values in both the status register and the scanPC. By ac
cessing the status register, the coprocessor can determine and manipulate
the main controller conditi~:>n codes, supervisor status, trace modes, selection
of the active stack, and interrupt mask level.

The MC68EC030 discards any instruction words that have been prefetched
beyond the current scanPC location when this primitive is issued with DR = 1
(transfer to main controller). The MC68EC030 then refills the instruction pipe
from the scanPC address in the address space indicated by the status register
S bit.

If the MC68EC030 is operating in the trace on change of flow mode (T1 :TO
in the status register contains 01) when the coprocessor instruction begins
to execute and if this primitive is issued with DR = 1 (from coprocessor to
main controller), the MC68EC030 prepares to take a trace exception. The _.
trace exception occurs when the coprocessor signals that it has completed
all processing associated with the instruction. Changes in the trace modes
due to the transfer of the status register to main controller take effect on
execution of the next instruction.

MOTOROLA MC68EC030 USER'S MANUAL 10-53

III

10.4.18 Take Pre-Instruction Exception Primitive

10-54

The take pre~instruction exception primitive initiates exception processing
using a coprocessor-supplied exception vector number and the pre-instruc
tion exception stack frame format. This primitive applies to general and con
ditional category instructions. Figure 10-40 shows the format of the take pre
instruction exception primitive.

15 14 13 12 11 10 9 8 7

o I PC I 0 I 1 I 1 I 1 I 0 I 0 I VECTOR NUMBER

Figure 10-40. Take Pre-Instruction Exception Primitive Format

The primitive uses the PC bit as previously described. Bits [0-7] contain the
exception vector number used by the main controller to initiate exception
processing.

When the main controller receives this primitive, it acknowledges the copro
cessor exception request by writing an exception acknowledge mask (refer
to 10.3.2 Control CIR) to the control CIR. The MC68EC030 then proceeds with
exception processing as described in 8.1 EXCEPTION PROCESSING SE
QUENCE. The vector number for the exception is taken from bits [0-7] of the
primitive, and the MC68EC030 uses the four-word stack frame format shown
in Figure 10-41.

15 14 13 12 11 10 9 8 7 6 5 4 3 o

SP- STATUS REGISTER

+02
PROGRAM COUNTER

0 0 0 o ~ VECTOR NUMBER

Figure 10-41. MC68EC030 Pre-Instruction Stack Frame

MC68EC030 USER'S MANUAL MOTOROLA

The value of the program counter saved in this stack frame is the F-line
operation word address of the coprocessor instruction during which the pri
mitive was received. Thus, if the exception handler routine does not modify
the stack frame, an RTE instruction causes the ·MC68EC030 to return and
reinitiate execution of the coprocessor instruction.

The take pre-instruction exception primitive can be used when the copro
cessor does not recognize a value written to either its command CIR or
condition CIR to initiate a coprocessor instruction. This primitive can also be
used if an exception occurs in the coprocessor instruction before any pro
gram-visible resources are modified by the instruction operation. This pri
mitive should not be used during a coprocessor instruction if program-visible
resources have been modified by that instruction. Otherwise, since the
MC68EC030 reinitiates the instruction when it returns from exception proc
essing, the restarted instruction receives the previously modified resources
in an inconsistent state.

One of the most important uses of the take pre-instruction exception primitive
is to signal an exception condition in a cpGEN instruction that was executing
concurrently with the main controller's instruction execution. If the copro
cessor no longer requires the services of the main controller to complete a
cpGEN instruction and the concurrent instruction completion is transparent
to the programmer's model, the coprocessor can release the main controller
by issuing a primitive with CA = O. The main controller usually executes the
next instruction in the instruction stream, and the coprocessor completes its
operations concurrently with the main controller operation. If an exception
occurs while the coprocessor is executing an instruction concurrently, the _
exception is not processed until the main controller attempts to initiate the- •
next general or conditional instruction. After the main. controller writes to
the command or condition CIR to initiate a general or conditional instruction,
it then reads the response CIR. At this time, the coprocessor can return the
take pre-instruction exception primitive. This protocol allows the main con-
troller to proceed with exception processing related to the previous concur-
rently executing coprocessor instruction and then return and reinitiate the
coprocessor instruction during which the exception was signaled. The co
processor should record the addresses of all general category instructions
that can be executed concurrently with the main controller and that support
exception recovery. Since the exception is not reported until the next copro-
cessor instruction is initiated, the controller usually requires the instruction
address to determine which instruction the coprocessor was executing when
the exception occurred. A coprocessor can record the instruction address by
setting PC = 1 in one of the primitives it uses before releasing the main con-
troller.

MOTOROLA MC68EC030 USER'S MANUAL 10-55

•

10.4.19 Take Mid-Instruction Exception Primitive

10-56

The take mid-instruction, exception primitive initiates exception processing
using a coprocessor-supplied exception vector number and the mid-instruc
tion exception stack frame format. This primitive applies to general and con
ditional category instructions. Figure 10-42 shows the format of the take mid
in$truction ex~eption primitive.

15 14'13 12 11 10 9 8 o
o 1 PC 1 0 1 1 1 ' 1 11 1 0 1 1 1 VECTOR NUMBER

Figure 10-42. Take Mid-Instruction Exception Primitive Format

This primitive uses the.PC bit as previously described. Bits [7-0] contain the
exception vector number used by the main controller to initiate exception
processing.

When the m~in controller receives this primitive, it acknowledges the copro
cessor exception 'request by writing an exception acknowledge mask (refer
to 10.3.2 Control CIR) to the control CIR. The MC68EC030 then performs
exception processing as described in 8.1' EXCEPTION PROCESSING SE
QUENCE. The vector number for the exception is taken from bits [0-7] of the
primitive and the MC68EC030 uses the 10-word stack frame format shown
in Figure 10-43.

15 14 13 12 11 10 9 7 6 5 4 3 2 o

, SP-" STATUS REGISTER,

+02
, SCANPC

+06 1 0 0 1 I VECTOR NUMBER

+08
PROGRAM COUNTER

INTERNAL REGISTER

+OE OPERAND WORD

+10

EFFECTIVE ADDRESS

Figure 10-43. MC68EC030 Mid-Instruction Stack Frame

MC68EC030 USER'S MANUAL MOTOROLA

The program counter value saved in this stack frame is the operation word
address of the coprocessor instruction during which the primitive is received.
The scanPC field contains the value of the MC68EC030 scanPC when the
primitive is received. If the current instruction does not evaluate an effective
address prior to the exception request primitive, the value of the effective
address field in the stack frame is undefined.

The coprocessor uses this primitive to request exception processing for an
exception during the instruction dialog with the main controller. If the ex
ception handler does not modify the stack frame, the MC68EC030 returns
from the exception handler and reads the response CIR. Thus, the main
controller attempts to continue executing the suspended instruction by read
ing the response CIR and processing the primitive it receives.

'10.4.20 Take Post-Instruction Exception Primitive

The take post-instruction exception primitive initiates exception processing
using a coprocessor-supplied exception vector number and the post-instruc
tion exception stack frame format. This primitive applies to general and con
ditional category instructions. Figure 10-44 shows the format of the take post
instruction exception primitive.

15 14 13 12 11 10 9 8 o
o I PC I 0 I 1 I 1 I 1 I 1 I 0 I VECTOR NUMBER

Figure 10-44. Take Post-Instruction Exception Primitive Format

This primitive uses the PC bit as previously described. Bits [0-7] contain the
exception vector number used by the main controller to initiate exception
processing.

When the main controller receives this primitive, it acknowledges the copro
cessor exception request by writing an exception acknowledge mask (refer
to 10.3.2 Control CIR) to the control CIR. The MC68EC030 then performs
exception processing as described in 8.1 EXCEPTION PROCESSING SE
QUENCE. The vector number for the exception is taken from bits [0-7] of the
primitive, and the MC68EC030 uses the six-word stack frame format shown
in Figure 10-45.

MOTOROLA MC68EC030 USER'S MANUAL 10-57

•

•

15 14 13 12 11 10 9 7 4 3 o

SP- STATUS REGISTER

+02
SCAN PC

+06 0 0 1 o I VECTOR NUMBER

+08
PROGRAM COUNTER

Figure 10-45. MC68EC030 Post-Instruction Stack Frame

The value in the main controller scanPC at the time this primitive is received
is saved in the scanPC field of the post-instruction exception stack frame.
The value of the program counter saved is the F-line operation word address
of the coprocessor instruction during which the primitive is received.

When the MC68EC030 receives the take post-instruction exception primitive,
it assumes that the coprocessor either completed or aborted the instruction
with an exception. If the exception handler does not modify the stack frame,
the MC68EC030 returns from the exception handler to begin execution at the
location specified by the scanPC field of the stack frame. This location should
be the address of the next instruction to be executed.

The coprocessor uses this primitive to request exception processing when
it completes or aborts an instruction while the main controller is awaiting a
normal response. For a general category instruction, the response is a re
lease; for a conditional category instruction, it is an evaluated true/false
condition indicator. Thus, the operation of the MC68EC030 in response to
this primitive is compatible with standard M68000 Family instruction related
exception processing (for example, the divide-by-zero exception).

10.5 EXCEPTIONS

10-58

Various exception conditions related to the execution of coprocessor instruc
tions may occur. Whether an exception is detected by the main controller or
by the coprocessor, the main controller coordinates and performs exception
processing. Servicing these coprocessor-related exceptions is an extension
of the protocol used to service standard M68000 Family exceptions. That is,
when either the main controller detects an exception or is signaled by the

MC68EC030 USER'S MANUAL MOTOROLA

coprocessor that an exception condition has occurred, the main controller
proceeds with exception processing as described in 8.1 EXCEPTION PRO·
CESSING SEQUENCE.

10.5.1 Coprocessor-Detected Exceptions

Exceptions that the coprocessor detects, also those that the main controller
detects, are usually classified as coprocessor-detected exceptions. These ex
ceptions can occur during M68000 coprocessor interface operations, internal
operations, or other system-related operations of the coprocessor.

Most coprocessor-detected exceptions are signaled to the main controller
through the use of one of the three take exception primitives defined for the
M68000 coprocessor interface. The main controller responds to these pri
mitives as previously described. However, not all coprocessor-detected ex
ceptions are signaled by response primitives. Coprocessor-detected format
errors during the cpSAVE or cpRESTORE instruction are signaled to the main
controller using the invalid format word described in 10.2.3.4.3 Invalid Format
Words.

10.5.1.1 COPROCESSOR·DETECTED PROTOCOL VIOLATIONS. Protocol violation
exceptions are communication failures between the main controller and co
processor across the M68000 coprocessor interface. Coprocessor-detected
protocol violations occur when the main controller accesses entries in the
coprocessor interface register set in an unexpected sequence. The sequence
of operations that the main controller performs for a given coprocessor in
struction or coprocessor response primitive has been described previously
in this section.

A coprocessor can detect protocol violations in various ways. According to
the M68000 coprocessor interface protocol, the main controller always ac
cesses the operation word, operand, register select, instruction address, or
operand address CIRs synchronously with respect to the operation of the
coprocessor. That is, the main controller accesses these five registers in a
certain sequence, and the coprocessor expects them to be accessed in that
sequence. As a minimum; all M68000 coprocessors should detect a protocol
violation if the main controller accesses any of these five registers when the
coprocessor is expecting an access to either the command or condition CIR.
Likewise, if the coprocessor is expecting an access to the command or con
dition CIR and the main controller accesses one of these five registers, the
coprocessor should detect and signal a protocol violation.

MOTOROLA MC68EC030 USER'S MANUAL 10-59

III

•

According to the M68000 coprocessor interface protocol, the main controller
can perform a read of either the save or response CIRs or a write of either
the restore or control CIRs asynchronously with respect to the operation of
the coprocessor. That is, an access to one of these registers without the
coprocessor explicitly expecting that access at that point can be a valid access.
Although the coprocessor can anticipate certain accesses to the restore, re
sponse, and control coprocessor interface registers, these registers can be
accessed at other times also.

The coprocessor cannot signal a protocol violation to the main controller
during the execution of cpSAVE or cpRESTORE instructions. If a coprocessor
detects a protocol violation during the cpSAVE or cpRESTORE instruction, it
should signal the exception to the main controller when the next coprocessor
instruction is initiated.

The main philosophy of the coprocessor-detected protocol violation is that
the coprocessor should always acknowledge an access to one of its interface
registers. If the coprocessor determines that the access is not valid, it should
assert DSACKx, to the main controller and signal a protocol violation when
the main controller next reads the response CIR. If the coprocessor fails to
assert DSACKx, the main controller waits for the assertion of that signal (or
some other bus termination signal) indefinitely. The protocol previously de
scribed ensures that the coprocessor cannot halt the main controller.

The coprocessor can signal a protocol violation to the main controller with
the take mid-instruction exception primitive. To maintain consistency, the
vector number should be 13, as it is for a protocol violation detected by the
main controller. When the main controller reads this primitive, it proceeds
as described in 10.4.19 Take Mid-Instruction Exception Primitive. If the ex
ception handler does not modify the stack frame, the MC68EC030 returns
from the exception handler and reads the response CIR.

10.5.1.2 COPROCESSOR· DETECTED ILLEGAL COMMAND OR CONDITION
WORDS. Illegal coprocessor command or condition words are values writ
ten to the command CIR or condition CIR that the coprocessor does not
recognize. If a value written to either of these registers is not valid, the
coprocessor should return the take pre-instruction exception primitive in the
response CIR. When it receives this primitive, the main controller takes a pre
instruction exception as described in 10.4.18 Take Pre-Instruction Exception
Primitive. If the exception handler does not modify the main controller stack
frame, an RTE instruction causes the MC68EC030 to reinitiate the instruction
that took the exception. The coprocessor designer should ensure that the

10-60 MC68EC030 USER'S MANUAL MOTOROLA

state of the coprocessor is not irrecoverably altered by an illegal command
or condition exception if the system supports emulation of the unrecognized
command or condition word.

All Motorola M68000 coprocessors signal illegal command and condition
words by returning the take pre-instruction exception primitive with the
F-line emulator exception vector number 11.

10.5.1.3 COPROCESSOR DATA-PROCESSING EXCEPTIONS. Exceptions related
to the internal operation of a coprocessor are classified as data-processing
related exceptions. These exceptions are analogous to the divide-by-zero
exception defined by M68000 microprocessors and should be signaled to the
main controller using one of the three take exception primitives containing
an appropriate exception vector number. Which of these three primitives is
used to signal the exception is usually determined by the point in the in
struction operation where the main controller should continue the program
flow after exception processing. Refer to 10.4.18 Take Pre-Instruction Excep
tion Primitives, 10.4.19 Take Mid-Instruction Exception Primitive, and 10.4.20
Take Post-Instruction Exception Primitive.

10.5.1.4 COPROCESSOR SYSTEM-RELATED EXCEPTIONS. System-related ex
ceptions detected by a DMA coprocessor include those associated with bus
activity and any other exceptions (interrupts, for example) occurring external
to the coprocessor. The actions taken by the coprocessor and the main con
troller depend on the type of exception that occurs.

When an address or bus error is detected by a DMA coprocessor, the co
processor should store any information necessary for the main controller
exception handling routines in system-accessible registers. The coprocessor
should place one of the three take exception primitives encoded with an
appropriate exception vector number in the response CIR. Which of the three
primitives is used depends upon the point in the coprocessor instruction at
which the exception was detected and the point in the instruction execution
at which the main controller should continue after exception processing.

10.5.1.5 FORMAT ERRORS. Format errors are the only coprocessor-detected ex
ceptions that are not signaled to the main controller with a response primitive.
When the main controller writes a format word to the restore CIR during the
execution of a cpRESTORE instruction, the coprocessor decodes this word

MOTOROLA MC68EC030 USER'S MANUAL 10-61

to determine if it is valid (refer to 10.2.3.3 COPROCESSOR CONTEXT SAVE
INSTRUCTION). If the format word is not valid, the coprocessor places the
invalid format code in the restore CIR. When the main controller reads the
invalid format code, it aborts the coprocessor instruction by writing an abort
mask (refer to 10.3.2 Control CIR) to the control CIR. The main controller then
performs exception processing using a four-word pre-instruction stack frame
and the format error exception vector number 14. Thus, if the exception
handler does not modify the stack frame, the MC68EC030 restarts the
cpRESTORE instruction when the RTE instruction in the handler is executed.
If the coprocessor returns the invalid format code when the main controller
reads the save CIR to initiate a cpSAVE instruction, the main controller per
forms format error exception processing as outlined for the cpRESTORE
instruction.

10.5.2 Main-Controller-Detected Exceptions

A number of exceptions related to coprocessor instruction execution are
detected by the main controller instead of the coprocessor (they are still
serviced by the main controller). These exceptions can be related to the
execution of coprocessor response primitives, communication across the
M68000 coprocessor interface, or the completion of conditional coprocessor
instructions by the main controller.

10.5.2.1 PROTOCOL VIOLATIONS. The main controller detects a protocol violation
when it reads a primitive from the response CIR that is not a valid primitive.
The protocol violations that can occur in response to the primitives defined
for the M68000 coprocessor interface are summarized in Table 10-6.

Table 10-6. Exceptions Related to Primitive Processing

Primitive Protocol F-Line Other

Busy

NULL

Supervisory Check* X
Other: Privilege Violation if "5" Bit = 0

Transfer Operation Word*

Transfer from Instruction Stream* X
Protocol: If Length Field is Odd (Zero Length Legal)

10-62 MC68EC030 USER'S MANUAL MOTOROLA

Table 10-6. Exceptions Related to Primitive Processing (Continued)

Evaluate and Transfer Effective Address
Protocol: If Used with Conditional Instruction X
F-Line: If EA in Op-Word is NOT Control Alterable X

Evaluate Effective Address and Transfer Data
Protocol: X

1. If Used with Conditional Instructions
2. Length is Not 1, 2, or 4 and EA== Register Direct
3. If EA == Immediate and Length Odd and Greater Than 1
4. Attempt to Write to Nonalterable Address Even if Address De-

clared Legal in Primitive
F-Line: Valid EA Field Does Not Match EA in Op-Word X

Write to Previously Evaluated Effective Address
Protocol: If Used with Conditional Instruction X

Busy

Take Address and Transfer Data*

Transfer To/From Top of Stack*
Protocol: Length Field Other Than 1, 2, or 4 X

Transfer To/From Main Controller Register*

Transfer To/From Main Controller Control Register
Protocol: Invalid Control Register Select Code X

Transfer Multiple Main Controller Registers*

Transfer Multiple Coprocessor Registers X
Protocol:

1. If Used with Conditional Instructions X
2. Odd Length Value

F-Line:
1. EA Not Control Alterable or (An) + for CP to Memory Transfer
2. EA Not Control Alterable or - (An) for Memory to CP Transfer

Transfer Status and/or ScanPC X
Protocol: If Used with Conditional Instruction
Other:

1. Trace - Trace Made Pending if MC68EC030 in "Trace on Change
of Flow" Mode and DR == 1

2. Address Error - If Odd value Written to ScanPC

Take Pre-Instruction, Mid-Instruction, or Post-Instruction Exception X X
Exception Depends on Vector Supplies in Primitive

*Use of this primitive with CA== 0 will cause protocol violation on conditional instructions.

Abbreviations:
EA == Effective Address
CP == Coprocessor

X

X

When the MC68EC030 detects a protocol violation, it does not automatically
notify the coprocessor of the resulting exception by writing to the control
CIR. The exception handling routine may, however, use the MOVES instruc
tion to read the response CIR and thus determine the primitive that caused
the MC68EC030 to initiate protocol violation exception processing. The main

MOTOROLA MC68EC030 USER'S MANUAL 10-63

III

controller initiates exception processing using the mid-instruction stack frame
(refer to Figure 10-43) and the coprocessor protocol violation exception vector
number 13. If the exception handler does not modify the stack frame, the
main controller reads the response CIR again following the execution of an
RTE instruction to return from the exception handler. This protocol allows
extensions to the M68000 coprocessor interface to be emulated in software
by a main controller that does not provide hardware support for these ex
tensions. Thus, the protocol violation is transparent to the coprocessor if the
primitive execution can be emulated in software by the main controller.

10.5.2.2 F-UNE EMULATOR EXCEPTIONS. The F-line emulator exceptions de
tected by the MC68EC030 are either explicitly or implicitly related to the
encodings of F-line operation words in the instruction stream. If the main
controller determines that an F-line operation word is not valid, it initiates
F-line emulator exception processing. Any F-line operation word with bits
[8:6] = 110 or 111 causes the MC68EC030 to initiate exception processing
without initiating any communication with the coprocessor for that instruc
tion. Also, anoperation word with bits [8:6] =000-101 that does not map to
one of the valid coprocessor instructions in the instruction set causes the
MC68EC030 to initiate F-line emulator exception processing, except those F
line instructions implemented on the MC68030 but not on the MC68EC030.
See APPENDIX A MC68EC030 NEW INSTRUCTIONS. If the F-line emulator
exception is either of these two situations, the main controller does not write
to the control CIR prior to initiating exception processing.

10-64

F-line exceptions can also occur if the operations requested by a coprocessor
response primitive are not compatible with the effective address type in bits
[0-5] of the coprocessor instruction operation word. The F-line emulator
exceptions that can result from the use of the M68000 coprocessor response
primitives are summarized in Table 10-6. If the exception is caused by re
ceiving an invalid primitive, the main controller aborts the coprocessor in
struction in progress by writing an abort mask (refer to 10.3.2 Control CIR)
to the control CIR prior to F-line emulator exception processing.

Another type of F-line emulator exception occurs when a bus error occurs
during the coprocessor interface register access that initiates a coprocessor
instruction. The main controller assumes that the coprocessor is not present
and takes the exception.

MC68EC030 USER'S MANUAL MOTOROLA

When the main controller initiates F-line emulator exception processing, it
uses the four-word pre-instruction exception stack frame (refer to Figure
1 0-41) and the F-line emulator exception vector number 11. Thus, if the ex
ception handler does not modify the stack frame, the main controller attempts
to restart the instruction that caused the exception after it executes an RTE
instruction to return from the exception handler.

If the cause of the F-line exception can be emulated in software, the handler
stores the results of the emulation in the appropriate registers of the pro
grammer's model and in the status register field of the saved stack frame.
The exception handler adjusts the program counter field of the saved stack
frame to point to the next instruction operation word and executes the RTE
instruction. The MC68EC030 then executes the instruction following the in
struction that was emulated.

The exception handler should also check the copy of the status register on
the stack to determine whether tracing is on. If tracing is on, the trace ex
ception processing should also be emulated. Refer to 8.1.7 Trace Exception
for additional information.

10.5.2.3 PRIVILEGE VIOLATIONS. Privilege violations can result from the cpSAVE
and cpRESTORE instructions and, also, from the supervisor check coproces
sor response primitive. The main controller initiates privilege violation ex
ception processing if it attempts to execute either the cpSAVE or cpRESTORE
instruction when it is in the user state (S = 0 in status register). The main
controller initiates this exception processing priorto any communication with _.
the coprocessor associated with the cpSAVE or cpRESTORE instructions. .

If the main controller is executing a coprocessor instruction in the user state
when it reads the supervisor check primitive, it aborts the coprocessor in
struction in progress by writing an abort mask (refer to 10.3.2 Control CIR)
to the control CIR. The main controller then performs privilege violation
exception processing.

If a privilege violation occurs, the main controller initiates exception pro
cessing using the four-word pre-instruction stack frame (refer to Figure
10-41) and the privilege violation exception vector number 8. Thus, if the
exception handler does not modify the stack frame, the main controller at
tempts to restart the instruction during which the exception occurred after
it executes an RTE to return from the handler.

MOTOROLA MC68EC030 USER'S MANUAL 10-65

-

10.5.2.4 cpTRAPcc INSTRUCTION TRAPS. If, during the execution of a cpTRAPcc
instruction, the coprocessor returns the TRUE condition indicator to the main
controller with a null primitive, the main controller initiates trap exception
processing. The main controller uses the six-word post-instruction exception
stack frame (refer to Figure 10-45) and the trap exception vector number 7.
The scanPC field of this stack frame contains the address of the instruction
following the cpTRAPcc instruction. The processing associated with the
cpTRAPcc instruction can then proceed, and the exception handler can locate
any immediate operand words encoded in the cpTRAPcc instruction using
the information contained in the six-word stack frame. If the exception han
dier does not modify the stack frame, the main controller executes the in
struction following the cpTRAPcc instruction after it executes an RTE
instruction to exit from the handler.

10.5.2.5 TRACE EXCEPTIONS. The MC68EC030 supports two modes of instruction
tracing, discussed in 8.1.7 Trace Exception. In the trace on instruction exe
cution mode, the MC68EC030 takes a trace exception after completing each
instruction. In the trace on change of flow mode, the MC68EC030 takes a
trace exception after each instruction that alters the status register or places
an address other than the address of the next instruction in program counter.

10-66

The protocol used to execute coprocessor cpSAVE, cpRESTORE, or condi
tional category instructions does not change when a trace exception is pend
ing in the main controller. The main controller performs a pending trace on
instruction execution exception after completing the execution of that in
struction. If the main controller is in the trace on change of flow mode and
an instruction places an address other than that of the next instruction in the
program counter, the controller takes a trace exception after it executes the
instruction.

If a trace exception is not pending during a general category instruction, the
main controllerterminates communication.with the coprocessor after reading
any primitive with CA = O. Thus, the coprocessor can complete a cpGEN
instruction concurrently with the execution of instructions by the main con
troller. When a trace exception is pending, however, the main controller must
ensure that all processing associated with a cpGEN instruction has been
completed before it takes the trace exception. In this case, the main controller
continues to read the response CIR and to service the primitives until it
receives either a null, CA = 0, PF = 1 primitive, or until exception processing
caused by a take post-instruction exception primitive has completed. The
coprocessor should return the null, CA = 0 primitive with PF = 0, while it'is
completing the execution of the cpGEN instruction. The main controller may

MC68EC030 USER'S MANUAL MOTOROLA

service pending interrupts between reads of the response CIR if IA= 1 in
these primitives (refer to Table 10-3). This protocol ensures that a trace ex
ception is not taken until all processing associated with a cpGEN instruction
has completed.

If T1 :TO = 01 in the MC68EC030 status register (trace on change of flow) when
a general category instruction is initiated, a trace exception is taken for the
instruction only when the coprocessor issues a transfer status register and
scanPC primitive with DR = 1 during the execution of that instruction. In this
case, it is possible that the coprocessor is still executing the cpGEN instruction
concurrently when the main controller begins execution of the trace excep
tion handler. A cpSAVE instruction executed during the trace on change of
flow exception handler could thus suspend the execution of a concurrently
operating cpGEN instruction.

10.5.2.6 INTERRUPTS. Interrupt processing, discussed in 8.1.9 Interrupt Excep
tions, can occur at any instruction boundary. Interrupts are also serviced
during the execution of a general or conditional category instruction under
either of two conditions. If the main controller reads a null primitive with
CA = 1 and IA = 1, it services any pending interrupts prior to reading the
response CIR. Similarly, if a trace exception is pending during cpGEN in
struction execution and the main controller reads a null primitive with CA = 0,
IA = 1, and PF = 0 (refer to 10.5.2.5 TRACE EXCEPTIONS)' the main controller
services pending interrupts prior to reading the response CIR again.

The MC68EC030 uses the ten-word mid-instruction stack frame when it serv
ices interrupts during the execution of a general or conditional category
coprocessor instruction. Since it uses this stack frame, the main controller
can perform all necessary processing and then return to read the response
CIR. Thus, it can continue the coprocessor instruction during which the in
terrupt exception was taken.

The MC68EC030 also services interrupts if it reads the not ready format word
from the save CIR during a cpSAVE instruction. The MC68EC030 uses the
normal four word pre-instruction stack frame when it services interrupts after
reading the not ready format word. Thus, the controller can service any
pending interrupts and execute an RTE to return and re-initiate the cpSAVE
instruction by reading the save CIR.

MOTOROLA MC68EC030 USER'S MANUAL 10-67

-

-

10.5.2.7 FORMAT ERRORS. The MC68EC030 can detect a format error while ex
ecuting a cpSAVE or cpRESTORE instruction if the length field of a valid
format word is not a multiple of four bytes in length. If the MC68EC030 reads
a format word with an invalid length field from the save CIR during the
cpSAVE instruction, it aborts the coprocessor instruction by writing an abort
mask (refer to 10.3.2 Control CIR) to the control CIR and initiates format error
exception processing. If the MC68EC030 reads a format word with an invalid
length field from the effective address specified in the cpRESTORE instruc
tion, the MC68EC030 writes that format word to the restore CIR and then
reads the coprocessor response from the restore CIR. The MC68EC030 then
aborts the cpRESTORE instruction by writing an abort mask (refer to 10.3.2
Control CIR) to the control CIR and initiates format error exception processing.

The MC68EC030 uses the four-word pre-instruction stack frame and the for
mat error vector number 14 when it initiates format error exception proc
essing. Thus, if the exception handler does not modify the stack frame, the
main controller attempts to restart the instruction during which the exception
occurred after it executes an RTE to return from the handler.

10.5.2.8 ADDRESS AND BUS ERRORS. Coprocessor-instruction-related bus faults
can occur during main controller bus cycles to CPU space to communicate
with a coprocessor or during memory cycles run as part of the coprocessor
instruction execution. If a bus error occurs during the coprocessor interface
register access that is used to initiate a coprocessor instruction, the main
controller assumes that the coprocessor is not present and takes an F-line
emulator exception as described in 10.5.2.2 F-UNE EMULATOR EXCEPTIONS.
That is, the controller takes an F-line emulator exception when a bus error
occurs during the initial access to a CIR by a coprocessor instruction. If a bus
error occurs on any other coprocessor access or on a memory access made
during the execution of a coprocessor instruction, the main controller per
forms bus error exception processing as described in 8.1.2 Bus Error Excep
tions. After the exception handler has corrected the cause of the bus error,
the main controller can return to the point in the coprocessor instruction at
which the fault occurred.

10-68

An address error occurs if the MC68EC030 attempts to prefetch an instruction
from an odd address. This can occur if the calculated destination address of
a cpBcc or cpDBcc instruction is odd or if an odd value is transferred to the
scanPC with the transfer status register and the scanPC response primitive.
If an address error occurs, the MC68EC030 performs exception processing
for a bus fault as described in 8.1.3 Address Error Exception.

MC68EC030 USER'S MANUAL MOTOROLA

10.5.3 Coprocessor Reset

Either an external reset signal or a RESET instruction can reset the external
devices of a system. The system designer can design a coprocessor to be
reset and initialized by both reset types or by external reset signals only. To
be consistent with the MC68EC030 design, the coprocessor should be affected
by external reset signals only and not by RESET instructions, because the
coprocessor is an extension to the main controller programming model and
to the internal state of the MC68EC030.

10.6 COPROCESSOR SUMMARY

I

Coprocessor instruction formats are presented for reference. Refer to the
M68000PM/AD, M6BOOO Programmer's Reference Manual, for detailed infor
mation on coprocessor instructions.

The M68000 coprocessor response primitive formats are shown in this sec
tion. Any response primitive with bits [13:8] =$00 or $3F causes a protocol
violation exception. Response primitives with bits [13:8] = $08, $18-$18, $1 F,
$28-$28, and $38-38 currently cause protocol violation exceptions; they are
undefined and reserved for future use by Motorola.

BUSY

15 14 13 12 11 10 7 5 4 2 1 0

1 I PC I 1 0 0 I 1 0 I 0 I 0 0 I 0 0 0 I 0

TRANSFER MULTIPLE COPROCESSOR REGISTERS

15 14 13 12 11 10 9 8 0

I CA I PC I DR I 0 I 0 I 0 I 0 I 1 I LENGTH

TRANSFER STATUS REGISTER AND SCANPC

15 14 13 12 11 10 9 5 4 3 2 0

I CA I PC I DR I 0 I 0 0 I 1 SP I 0 I 0 0 0 0 0 0 I 0

SUPERVISOR CHECK

15 14 13 12 11 10 9 8 6 5 4 3 2 1 0

I 1 PC 0 I 0 I 0 I 1 0 0 I 0 I 0 I 0 0 0 I 0 I 0 0

MOTOROLA MC68EC030 USER'S MANUAL 10-69

-

TAKE ADDRESS AND TRANSFER DATA

15 14 13 12 11 10 9 8 o
I CA I PC I DR I 0 I 0 I 1 I 0 I 1 I LENGTH

TRANSFER MULTIPLE MAIN CONTROLLER REGISTERS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

I CA I PC I DR I 0 I 0 I 1 I 1 I 0 I 0 0 0 I 0 I 0 0 I 0 I 0

TRANSFER OPERATION WORD

15 14 13 12 11 10 9 8 6 4 3

I CA I PC I 0 0 0 I 1 I 1 I 1 I 0 I 0 0 I 0 I 0 I 0 0 I 0

NULL

15 14 13 12 11 10 9 7 6 4 3 1 0

I CA I PC I 0 0 I 1 0 I 0 IA I 0 I 0 0, I 0 I 0 I 0 PF I TF

EVALUATE AND TRANSFER EFFECTIVE ADDRESS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I CA I PC I 0 I 0 I 1 I 0 I 1 I 0 I 0 I 0 I 0 I 0 0 0 0 I 0

TRANSFER SINGLE MAIN CONTROLLER REGISTER

III
15 14 13 12 11 10 9 8 7 6 5 4 3

I CA I PC I DR I 0 I 1 I 1 I 0 I 0 I 0 I 0 I 0 I 0 I D/A I REGISTER

TRANSFER MAIN CONTROLLER CONTROL REGISTER

15 14 13 12 11 10 9 8 6 4 3 2 0

I CA I PC I DR I 0 I 1 I 1 I 0 I 1 I 0 I 0 0 I 0 I 0 0 I 0 I 0

TRANSFER TO/FROM TOP OF STACK

15 14 13 12 11 10 9 8

I CA I PC I DR I 0 I 1 I 1 I 1 I 0 I LENGTH

TRANSFER FROM INSTRUCTION STREAM

15 14 13 12 11 10 9 0

I CA I PC I 0 0 1 I 1 I 1 I 1 LENGTH

10-70 MC68EC030 USER'S MANUAL MOTOROLA

EVALUATE EFFECTIVE ADDRESS AND TRANSFER DATA

15 14 13 12 11 10 9

I CA I PC I DR I 1 I 0 I VALID EA LENGTH

TAKE PRE-INSTRUCTION EXCEPTION

15 14 13 12 11 10 8 o

I 0 I PC I 0 I 1 I 1 I 1 0 I 0 VECTOR NUMBER

TAKE MID-INSTRUCTION EXCEPTION

15 14 13 12 11 10 9 8 o
I 0 I PC I 0 I 1 I 1 I 1 I 0 I 1 I VECTOR NUMBER

TAKE POST-INSTRUCTION EXCEPTION

15 14 13 12 11 10 9 8 o
I 0 I PC I 0 I 1 I 1 I 1 I 1 I 0 I VECTOR NUMBER

WRITE TO PREVIOUSLY EVALUATED EFFECTIVE ADDRESS

15 14 13 12 11 10 o
I CA I PC I 1 0 I 0 I 0 I 0 0 I LENGTH

-

MOTOROLA MC68EC030 USER'S MANUAL 10-71

•

10-72 MC68EC030 USER'S MANUAL MOTOROLA

SECTION 11
INSTRUCTION EXECUTION TIMING

This section describes the instruction execution and operations (table
searches, etc.) of the MC68EC030 in terms of external clock cycles. It provides
accurate execution and operation timing guidelines but not exact timings for
every possible circumstance. This approach is used since exact execution
time for an instruction or operation is highly dependent on memory speeds
and other variables. The timing numbers presented in this section allow the
assembly language programmer or compiler writer to predict actual cache
case and average no-cache-case timings needed to evaluate the performance
of the MC68EC030. Additionally, the timings for exception processing, context
switching, and interrupt processing are included so that designers of mult~
tasking or real-time systems can predict task switch overhead, maximum
interrupt latency, and similar timing parameters.

In this section, instruction and operation times are shown in clock cycles to
eliminate clock frequency dependencies.

11.1 PERFORMANCE TRADEOFFS

The MC68EC030 maximizes average performance at the expense, of worst
case performance. The time spent executing one instruction can vary from
zero to over 100 clocks. Factors affecting the execution time are the preceding
and following instructions, the instruction stream alignment, residency of
operands and instruction words in the caches, and operand alignment.

To increase the average performance of the MC68EC030, certain tradeoffs
were made to increase best case performance and to decrease the occurrence
of worst case behavior. For example, burst filling increases performance by
prefetching data for later accesses, but it commits the external bus controller
and a cache for a longer period.

The MC68EC030 can overlap data writes with instruction cache reads, data
cache reads, and/or microsequencer execution. Instruction cache reads can
be overlapped with data cache fills and/or microsequencer activity. Similarly,

MOTOROLA MC68EC030 USER'S MANUAL 11-1

III

data cache reads can be overlapped with instruction cache fills and/or micro
sequencer activity. The execution of an instruction that only accesses on
chip registers can be overlapped entirely with a concurrent data write gen
erated by a previous instruction, if prefetches generated by that instruction
are resident in the instruction cache.

11.2 RESOURCE SCHEDULING

11-2

Some of the variability in instruction execution timings results from the over
lap of resource utilization. The controller can be viewed as consisting of eight
independently scheduled resources. Since very little of the scheduling is
directly related to instruction boundaries, it is impossible to make accurate
estimates of the time required to execute a particular instruction, without
knowing the complete context within which the instruction is executing. The

, position of these resources within the MC68EC030 is shown in Figure 11-1.

MC68EC030 USER'S MANUAL MOTOROLA

s:
o
-l o
::0
o
r »

S':
(")
0)
00
m
(")
o
w
o
C
CJ)
m
::0
en
S': »
:2
C »
r

w

INSTRUCTION
ADDRESS

BUS

ADDR~~ dt~~~~k i i l\Uunc~ I

BUS CONTROL
SIGNALS

DATA
ADDRESS

BUS

Figure 11-1. Block Diagram - Eight Independent Resources

INTERNAL
DATA
BUS

DATA
BUS

III

11.2.1 Microsequencer

The microsequencer is either executing microinstructions or awaiting com
pletion of accesses that are necessary to continue executing microcode. The
bus controller is responsible for all bus activity. The microsequencer controls
the bus controller, instruction execution, and internal controller operations
such as calculation of effective addresses and setting of condition codes. The
microsequencer initiates instruction word prefetches and controls the vali
dation of instruction words in the instruction pipe.

11.2.2 Instruction Pipe

11-4

The MC68EC030 contains a three-word instruction pipe where instruction
opcodes are decoded. As shown in Figure 11-1, instruction words (instruction
operation words and all extension words) enter the pipe at stage Band
proceed to stages C and D. An instruction word is completely decoded when
it reaches stage D of the pipe. Each of the pipe stages has a status bit that
reflects whether the word in the stage was loaded with data from a bus cycle
that was terminated abnormally. Stages of the pipe are only filled in response
to specific prefetch requests issued by the microsequencer.

Words are loaded into the instruction pipe from the cache holding register.
While the individual stages ofthe pipe are only 16 bits wide, the cache holding
register is 32 bits wide and contains the entire long word. This long word is
obtained from the instruction cache or the external bus in response to a
prefetch request from the microsequencer. When the microsequencer re
quests an even-word (long-word aligned) prefetch, the entire long word is
accessed from the instruction cache or the external bus and loaded into the
cache holding register, and the high-order word is also loaded into stage B
of the pipe. The instruction word for the next sequential prefetch can then
be accessed directly from the cache holding register, and no external bus
cycle or instruction cache access is required. The cache holding register
provides instruction words to the pipe, regardless of whether the instruction
cache is enabled or disabled.

Prefetch requests are simultaneously submitted to the cache holding register,
the instruction cache, and the bus controller. Thus, even if the instruction
cache is disabled, an instruction prefetch may hit in the cache holding register
and cause an external bus cycle to be aborted.

MC68EC030 USER'S MANUAL MOTOROLA

11.2.3 Instruction Cache

The instruction cache services the instruction prefetch portion 'of the micro
sequencer. The prefetch of an instruction that hits in the on-chip instruction
cache causes no delay in instruction execution since no external bus activity
is required for the prefetch. The instruction cache also interacts with the
external bus during instruction cache fills following instruction cache misses.

11.2.4 Data Cache

The data cache services data reads and is updated on data writes. Data
operands required by the execution unit that are accessed from the data
cache cause no delay in instruction execution due to external bus activity for
the data fetch. The data cache also interacts with the external bus during
data cache fills following data cache misses.

11.2.5 Bus Controller Resources

Prefetches that miss in the instruction cache cause an external memory cycle
to be performed. Similarly, when data reads miss in the on-chip data cache,
an external memory cycle is required. The time required for either of these
bus cycles may be overlapped with other internal activity.

The bus controller and microsequencer can operate on an instruction con
currently. The bus controller can perform a read or write while the micro
sequencer controls an effective address calculation or sets the condition
codes. The microsequencer may also request a bus cycle that the bus con
troller cannot perform immediately. In this case, the bus cycle is queued and
the bus controller runs the cycle when the current cycle is complete.

The bus controller consists of the microbus controller, the instruction fetch
pending buffer, and the write pending buffer. These three resources carry
out all writes and reads that miss in the on-chip caches.

11.2.5.1 INSTRUCTION FETCH PENDING BUFFER. The instruction prefetch mech
anism includes a single long-word instruction fetch pending buffer. Interlocks
are provided to prevent this buffer from being overwritten by an instruction
prefetch request before a previously requested prefetch is completed.

MOTOROLA MC68EC030 USER'S MANUAL 11-5

-

-

11.2.5.2 WRITE PENDING BUFFER. The MC68EC030 incorporates a single write
pending buffer, allowing the microsequencer to continue execution after the
request for awrite cycle proceeds to the bus controller. Interlocks prevent
.the micrpsequencerfrom overwriting this buffer.

11.2.5.3 MICROBUS CONTROLLER. The microbus controller performs the bus
cycles issued to the bus controller by the rest of the controller. It implements
any dynamic bus sizing required and also controls burst operations.

When prefetching instructions from external memory, the microbus con
troller utilizes long-word read cycles. The main controller reads two words,
which may load two instructions at once or two words of a multi-word in
struction into the cache holding register (and the instruction cache if it is
enabled and not frozen). A special case occurs when prefetch that corre
sponds to an instruction word at an odd-word boundary is not found in the
cache holding register (e.g., due to a branch to an odd-word location) with
an instruction cache miss. From a 32-bit memory, the MC68EC030 reads both
the even and odd words associated with the long-word base address in one
bus cycle. From an 8- or 16-bit memory, the controller reads the even word
before the odd word. Both the even and odd word are loaded into the cache
holding register (and the instruction cache if it is enabled and not frozen).

11.3 INSTRUCTION EXECUTION TIMING CALCULATIONS

The instruction-cache-case timing, overlap, average no-cache-case timing,
and actual instruction-cache-case execution time calculations are discussed
in the following paragraphs.

11.3.1 Instruction-Cache Case

11-6

The instruction-cache-case (CC) time for an instruction is the total number
of clock periods required to execute the instruction, provided all the corre
sponding instruction prefetches are resident in the on-chip instruction cache.
All bus cycles are assumed to take two clock periods. The instruction-cache
case time does not assume any overlap with other instructions nor does it
take into account hits in the on-chip data cache. The overall instruction-cache
case time for some instructions is divided into the instruction-cache-case
time for the required effective address calculation (CCea) and the instruction
cache-case time for the remainder of the operation (CCop). The instruction
cache-case times for all instructions and addressing modes are listed in the
tables of 11.6 INSTRUCTION TIMING TABLES.

MC68EC030 USER'S MANUAL MOTOROLA

11.3.2 Overlap and. Best Case

Overlap is the time, measured in clock periods, that an instruction executes
concurrently with the previous instruction. In Figure 11-2, a portion of in
structions A and B execute simultaneously. The overlap time decreases the
overall execution time for the two instructions. Similarly, an overlap period
between instructions Band C reduces the overall execution time of these
two instructions.

I- - - - - - - INSTRUCTION A ---~

I- - - - - - - INSTRUCTION 8 -----I

I- - - - - - - ·INSTRUCTION C -----\

~
OVERLAP

Figure 11-2. Simultaneous Instruction Execution

Each instruction contributes to the total overlap time. As shown in Figure
11-2, a portion of time at the beginning of the execution of instruction B can
overlap the end of the execution time of instruction A. This time period is
called the head of instruction B. The portion of time at the end of instruction
A that can overlap the beginning of instruction B is called the tail of instruction
A. The total overlap time between instructions A and B consists of the lesser
of the tail of instruction A or the head of instruction B. Refer to the instruction
timing tables in 11.6 INSTRUCTION TIMING TABLES for head and tail times.

Figure 11-3 shows the relationship of the factors that comprise the instruction
cache-case time for either an effective address calculation (CCea) or for an
operation (CCop).ln Figure 11-12, the best case execution time for instruct·ion
8 occurs when the instruction-cache-case times for instruction B and instruc
tion A overlap so that the head of instruction B is completely overlapped
with the tail of instruction A.

MOTOROLA MC68EC030 USER'S MANUAL 11-7

•

HEAD

CACHE CASE

READmRlTE BUS
TIME OR SYNC

MICROCODE TIME

BEST CASE

WRITE BUS TIME

TAIL

Figure 11-3. Derivation of Instruction Overlap Time

The nature' of the instruction overlap and the fact that the heads of some
instructions equal the total instruction-cache-case time for those instructions
makes a zero net execution time possible. The execution time of an instruction
is completely absorbed by overlap with the previous instruction.

11.3.3 Average No-Cache Case

11-8

The average no-cache-case (NCC) time for an instruction takes into account
the time required for the microcode to execute plus the time required for all
external bus activity. This time is calculated assuming both caches miss and
the associated instruction prefetches require one external bus cycle per two
instruction prefetches. Refer to 11.2.2 Instruction Pipe. The average no-cache
case time also assumes no overlap. All bus cycles are assumed to take two
clock periods. Average no-cache-case times for instructions and effective
address calculations are listed in 11.6 INSTRUCTION TIMING TABLES. Be
cause the no-cache-case times assume no overlap, the head and tail values
listed in these tables do not apply to the no-cache-case values .

Since the actual no-cache-case time depends on the alignment of prefetches
associated with an instruction, both alignment cases were considered, and
the value shown in the table is the average of theodd-word-aligned case
and the even-word-aligned case (rounded up to an integral number of clocks).
Similarly, the number of prefetch bus cycles is the average of these two cases
rounded up to an integral number of bus cycles.

The effect of instruction alignment on timing is illustrated by the following
example. The assumptions referred to in 11.6 INSTRUCTION TIMING TABLES
apply. Both the data cache and instruction cache miss on all accesses.

Instruction
1. MOVE.L (d16,An,Dn},Dn
2. CMPI,W #(data).W,(d16,An)

MC68EC030 USER'S MANUAL MOTOROLA

The instruction stream is positioned with even alignment in 32-bit memory
as:

Address n

n+4

n+8

n+ 12

MOVE

d16

#(data.W)

.. .

EA Ext

CMPI

d16

...

Figure 11-4 shows controller activity for even alignment of the given instruc
tion stream.

2 3 4 5 6 10 11 12 13 14

CLOCK

BUS (PRE FETCH X READ X PRE FETCH) ~ READ XPREFETCH) ACTIVITY I I I I I I
BUS

IDLE READ FROM PRE FETCH
CONTROLLER

SEQUENCER

(~6,An)

CALCULATE AND FETCH
SOURCEEA
FORCMPI

n+16

IDLE

INSTRUCTION
EXECUTION TIME CMPI.w #(data).W,(d16,An)

CLOCK I COUNT I"I<~-----

LEGEND:

I:::::::::tll) MOVE.L (d16,An,Dn),Dn o 2) #(data).w,(d16.An)

Figure 11-4. Controller Activity - Even Alignment

The instruction stream is positioned in 32-bit memory as:

Address n ... MOVE

n+4 EA Ext d16

n+8 CMPI #(data.W)

n+ 12 d16 ...

Figure 11-5 shows controller activity for odd alignment.

MOTOROLA MC68EC030 USER'S MANUAL

15 16

IDLE

PERFORM
CMPI

11-9

III

III

2 4 7 9 10 11 12 13 14 15 16

CLOCK

ACTl~N~ --------<I< __ R_EA_D --'fPREFETCH)>-i ---<~ PREFETCH t __ RE_AD---'t PREFETCH ~

BUS
CONTROLLER

SEQUENCER

PREFETCH READ FROM PRE FETCH
n + 12 (d16,An) n + 16

CALCULATE AND FETCH PERFORM
SOURCE EA CMPI
FORCMPI

INSTRUCTION
EXECUTION TIME CMPI.W #(dala).w,(d16,An)

g6~~ 1 <E------- 10 ------~>~I!-oII<E----- 6 ----:3I>~1
LEGEND:

[tit] 1) MOVE.L (d16,An,Dn),Dn

D 2) #(dala).w,(d16,An)

~igure 11-5. Processor Activity - Odd Alignment

Comparing the two alignments, the execution time of the MOVE instruction
is 8 clocks for even alignment and 10 clocks for odd alignment, an average
of 9 clocks. Referring to the table in 11.6.6 MOVE Instruction and the table
in 11.6.1 Fetch Effective Address (tea), the average no-cache-case time is
2 + 7 = 9 clocks. A similar calculation can be made of the CMPI instruction,
which has an average no-cache-case time of seven clocks.

The average no-cache-case timing rather than the maximum no-cache-case
timing gives a closer approximation of the actual timing of an instruction
stream in many cases. The total execution time of the two instructions in the
previous example is 16 clocks for both even and odd alignment. Adding the
average no-cache-case timing of the given instructions also gives 16 clocks
(9 + 7 = 16 clocks). It should be noted again that the no-cache-case time as
sumes no overlap. Therefore, the actual execution time of an instruction
stream may be less than that given by adding the no-cache-case times. To
factor in the effect of wait states for the no-cache case, refer to 11.5 EFFECT
OF WAIT STATES.

11.3.4 Actual Instruction-Cache-Case Execution Time Calculations

11-10

The overall execution time for an instruction may depend on the overlap
with the previous and following instructions. Therefore, to calculate instruc
tion execution time estimations, the entire code sequence to be evaluated
must be analyzed as a whole. To derive the actual instruction-cache-case

MC68EC030 USER'S MANUAL MOTOROLA

execution times for an instruction sequence (under the assumptions listed
in 11.6 INSTRUCTION TIMING TABLES), the instruction-cache-case times
listed in the tables must be used, and the proper overlap must be subtracted
for the entire sequence. The formula for this calculation is as follows:

where:
CCn is the instruction-cache-case time for an instruction,
Tn is the tail time for an instruction,
Hn is the head time for an instruction, and
min(a,b) is the minimum of parameters a and b.

The instruction-cache-case time for most instructions is composed of the
instruction-cache-case time for the effective address calculation (CCea) over
lapped with the instruction-cache-case time for the operation (CCop). The
more specific formula is as follows:

CCea1 + [CCoP1 - min(HoP1,Tea 1)] + [CCea2 - min(Hea2,ToP1)] +
[CCOP2 - min(HoP2,Tea2)] + [CCea3 - min(Hea3,ToP2)] +. .. (11-2)

where:
CCean is the effective address time for the instruction-cache case,
CCoPn is the instruction-cache-case time for the operation portion of an

instruction,
Tean is the tail time for the effective address of an instruction,
HOPn is the head time for the operation portion of an instruction,
TOPn is the tail time for the operation portion of an instruction,
Hean is the head time for the effective address of an instruction, and
min(a,b) is the minimum of parameters a and b.

The instructions that require the instruction-cache case, head, and tail of an
effective address (CCea, Hea, and Tea) to be overlapped with CCop, Hop, and
Top are footnoted in 11.6 INSTRUCTION TIMING TABLES.

The actual instruction-cache-case execution time for a stream of instructions
can be computed using Equation (11-1) or the general Equation (11-2). Equa
tion (11-1) is used unless the instruction-cache case, head, and tail of an
effective address are required.

MOTOROLA MC68EC030 USER'S MANUAL 11-11

•

III

11-12

An example using a series of instructions that require ,Equation (11-1) to
calculate the instruction-cache-case execution time follows. The assumptions
referred to in 11.6 INSTRUCTION TIMING TABLES apply.

Instruction
1. ADD.L A1,D1
2. SUBA.L D1,A2

Referring to the timing table in 11.6.8 Arithmetic/Logical Instructions, the
head, tail, and instruction-cache-case (CC) times for ADD.L A 1 ,D1 and SUBA.L
D1,A2 are found. There is no footnote directing the user to add an effective
address time for either instruction. Since both of the instructions use register
operands only, there is no need to add effective address calculation times.
Therefore, the general Equation (11-1) can be used for both.

1. ADD.L A1,D1

2. SUBA.L D1,A2

NOTE

Head

2

4

Tail

o
o

CC

2

4

The underlined numbers show the typical pattern for the comparison
of head and tail in the following equation.

The following computations use Equation (11-1):

Execution Time = CC1 + [CC2 - min(H2,T1)]
= 2+ [4- min(4,0)]
=2+[4-0]
= 6 clocks

Instructions that require the addition of an effective address calculation time
from an appropriate table .use the general Equation (11-2) to calculate the
actual CC time. The CCea, Hea, and Tea values must be extracted from the
appropriate effective address table (either fetch effective address, fetch im
mediate effective address, calculate effective address, calculate immediate
effective address, or jump effective address) as indicated and included in
Equation (11-2). All of the following instructions (except the last) require
general Equation (11-2). The last instruction uses Equation (11-1).

Instruction
1. ADD.L -(A1),D1
2. AND.L D1,([A2])
3. MOVE.L (A6),(8,A1)
4. TAS (A3) +
5. NEG D3

MC68EC030 USER'S MANUAL MOTOROLA

Using the appropriate operation and effective address tables from 11.6 IN-
STRUCTION TIMING TABLES:

Head Tail CC

1. ADD.L - (A 1),D1
Fetch Effective Address (tea) - (An) 2 2 4

ADD EA,Dn 0 0 2

2. AND.L D1 ;([A2])
tea ([8]) 4 0 10

AND Dn,EA 0 3

3. MOVE.L (A6),(8,A 1)
fea (An) 3

MOVE Source,(d16,An) 2 0 4

4. TAS (A3) +
Calculate Effective Address (cea) (An) + 0 0 2

TAS Mem 3 0 12

5. NEG D3 2 0 2

The following calculations use Equations (11-1) and (11-2):

Execution Time = CCea1 +[CCoP1-min(HoP1,Tea1)]+[CCea2-min(Hea2,ToP1)]+
[CCoP2 - min(HoP2,Tea2)] + [CCea3 - min(Hea3,ToP2)] +
[CCoP3 - min(HoP3,Tea3)] + [CCea4 - min(HoP4,ToP3)] +
[CCoP4 - min(HoP4,ToP3)] + [CCoP5 - min(HoP5,ToP4)]

= 4 + [2 - min(O,2)] + [10 - min(4,O)] + [3 - min(O,O)] + [3 - min(1,1)] +
[4 - min(2,1)] + [2 - min(O,O)] + [12 - min(3,O)] + [2 - min(2,O)]

=4+2+10+3+2+3+2+12+2

= 40 clock periods

Notice that the last instruction did not require the general Equation (11-2)
since there were no effective address (ea) additions. Therefore, Equation
(11-1) is used:

When using the fetch immediate effective address (fiea) or the calculate
immediate effective address (ciea) tables, the size of the data is significant
in the timing calculations. For each effective address, a line is listed for word
data, #<data>.W, and for long data, #<data>.L.

MOTOROLA MC68EC030 USER'S MANUAL 11-13

III

•

11-14

The total head of some effective address types extends through the effective
address calculation and includes the head of the operation. These effective
address calculations are marked in the head column as follows:

X+op head

where:
X is the head of the ,effective address alone.

An example using the fiea table and the X + op head notation is:

Instruction
1. EORI,W #$400, - (A 1)
2. ADDI,L #$6000FF,D1

Head Tail CC

1. EORI,W #$400, - (A 1)
fiea #<data>.W, - (An) 2 2 4

EORI #<data>,Mem 0 1 3

2. ADDI,L #$6000FF,D1
fiea #<data>.L,D1 4+ op head 0 4

6 0 4

ADDI, #<data>,Dn 2(op head) 0 2

The following calculations use the general Equation (11-2):

Execution Time ' = CCea1 + [CCoP1 - min(HoP1 ,Tea1] + [CCea2 - min(Hea2,ToP1)] +
[CCoP2 - min(HoP2,Tea2)]

= 4 + [3 - min(0,2)] + [4 - min(6, 1)] +- [2 - min(2,0)]

=4+3+3+2

= 12 clock periods

Note that for the head of fiea #<data>.L,D1, 4+ op head, the resulting head
of 6 is larger than the instruction-cache-case time of the fetch. A negative
number for the execution time of that portion could result (e.g.,
4- min(6,6) = -2). This result would produce the correct execution time since
the fetch was completely overlapped and the operation was partially over
lapped by the same tail. No changes in the calculation for the operation
execution time are required.

MC68EC030 USER'S MANUAL MOTOROLA

Many two-word instructions (e.g., MULU.L, DIV.L, BFSfT, etc.) include the
fetch immediate effective address (fiea) time or the calculate immediate ef
fective address (ciea) time in the execution time calculation. The timing for
immediate data of word length (#<data>. W) is used for these calculations.
If the instruction has a source and a destination, the source fA is used for
the table lookup. If the instruction is single operand, the effective address of
that operand is used.

The following example includes multi-word instructions that refer to the fetch
immediate effective address and calculate immediate effective address tables
in 11.6 INSTRUCTION TIMING TABLES.

Instruction
1. MULU.L (07),01:02
2. BFCLR $6000{0:8}
3. OIVS.L #$10000,03:04

1. MULU.L (07),01 :02
fiea #<data>.W,On

MUL.L EA, On

2. BFCLR $6000{0:8}
fiea #<data>.W,$XXX.W

BFCLR Mem«5 bytes)

3. OIVS.L #$10000,03:04
fiea #<data>.W,#<data>.L

OIVS.L EA,On

Head

2+op head
4

2(op head)

4

6

6+op head
6

O(op head)

Use the general Equation (11-2) to compute:

Tail CC

° 2

° 2

° 44

2 6

° 14

° 6

° 6

° 90

Execution Time = CCea1 + [CCoP1 - min(HoP1 ,Tea1)] + [CCea2 - min(Hea2,ToP1)] +
[CCoP2 - min(HoP2,Tea2)] + [CCea3 - min(Hea3,ToP2)] +

MOTOROLA

[CCoP3 - min(HoP3,Tea3)]

= 2+ [44-min(2,0)] + [6-min(4,0)] + [14- min(6,2)]+ [6- min(6,0)] +
[90 - min(O,O)]

= 2 + 44 + 6 + 12 + 6 + 90

= 160 clock periods

NOTE

This CC time is a maximum since the times given for the MULU.L
and DIVS.L are maximums.

MC68EC030 USER'S MANUAL 11-15

-

III

11.4 EFFECT OF DATA CACHE

11-16

When the data accesses required by an instruction are in the data cache,
reading these operands requires no bus cycles, and the execution time for
the instruction may be minimized. Write accesses, however, always require
bus cycles because the data cache is a write-through cache.

The effect of the data cache on operand read accesses can be factored into
the actual instruction execution time as follows.

When a data cache hit occurs for the data fetch corresponding to either the
fetch effective address table or the fetch immediate effective address table
in 11.6 INSTRUCTION TIMING TABLES, the following rules apply:

1 a. if Tailt = 0: No change in timing.

1 b. if Tailt = 1 : Tail = Tailt-1
CC=CCt- 1

1 c. if Tailt> 1: Tail = Tailt - (Tailt -1) = 1
CC=CCt-(Tailt-1)

where:
Tailt and CCt are the values listed in the tables.

2. If the EA mode is memory indirect (two data reads), the tail and CC
time are calculated as for one data read.

NOTE

Data cache hits cannot easily be accounted for in instruction and
operation timings that include an operand fetch in the CCop (e.g.,
BFFFO and CHK2). The effect of a data cache hit on such CCop's has
been ignored for computational purposes.

RMC cycles (e.g., TAS and CAS) are forced to miss on data cache
reads. Therefore, a data cache hit has no effect on these instructions.

The following example assumes data cache hits. The lines that are corrected
for data cache hits are printed in boldface type. These lines are used to
calculate the instruction-cache-case execution time. References are to the
preceding rules.

Instruction
1. ADD.L -(A1),D1
2. AND.L D1,([A2])
3. MOVE.L (A6),(8,A 1)
4. TAS (A3)

MC68EC030 USER'S MANUAL MOTOROLA

Head Tail CC

1. ADD.L -(A1),D1
Fetch Effective Address
fea - (An) 2 2-1 4-1 (1/010)

*1c 2 3(1/0/0)

*AOO EA,On 0 0 2(0/0/1)

2. AND.L D1,([A2])
*1a & 2 fea ([B]) 4 0 10(2/0/0)

*ANO On,EA 0 3(0/0/1)

3. MOVE.L (A6),(8,A 1)
fea (An) 1-1 3 -1(1/010)

*1b 0 2(1/0/0)

*MOVE Source, (d16,An) 2 0 4(0/0/1)

4. TAS (A3)+
*Cea (An)+ 0 0 2(0/0/0)

*TAS Mem 0 0 12(1/0/1)

*Corrected for data cache hits.

NOTE

It is helpful to include the number of operand reads and writes along
with the number of instruction accesses in the CC column for com
puting the effect of data cache hits on execution time.

The following computations use the general Equation (11-2):

Execution Time = CCea1 + [CCoP1 - min(HoP1 ,Tea1)] + [CCea2 - min(Hea2,ToP1)] +
[CCoP2 - min(HoP2,Tea2)] + [CCea3 - min(Hea3,ToP2)] +

MOTOROLA

[CCoP3 - min(HoP3,Tea3)] + [CCea4 - min(Hea4,ToP3)] +
[CCoP4 - min(HoP4,Tea4)]

= 3 + [2 - min(O, 1)] + [10 - min(4,0)] + [3 - min(O,O)] + [2 - min(1, 1)] +
[4- min(2,0)] + [2 - min(O,O)] + [12 - min(O,O)]

=3+2+10+3+1+4+2+12

= 37 clock periods

MC68EC030 USER'S MANUAL 11-17

•

III

11.5 EFFECT OF WAIT STATES

11-18

The constraints of a system design may require the insertion of wait states
in memory cycles. When the bus or the memory device requires many wait
states, instruction execution time is increased. However, one or two wait
states may have little effect on instruction timing. Often the only effect of
one or more wait states is to reduce bus idle time.

The effect of wait states on data accesses may be accounted for in the
instruction-cache-case timings.

To add the effect of wait states on data accesses:

1a.

1b.

1c.

2a.

For nonmemory indirect effective address timings that include an
operand read, add the number of wait states (in clocks) to the tail
and instruction-cache-case (CC) times. The head is not affected.

For memory indirect effective address timings that use the calculate
<ea> tables and have only one data read (for the address fetch),
add the number of wait states to the CC time only. The head and
tail are not affected.

For memory indirect effective address timings (fetch <ea» that have
two data reads (for the address fetch), add the number of wait states
for two reads to the CC time. Add the number of wait states for one
data read to the tail. The head is not affected.

For operation timings that include a data read (e.g., BFFFO and TAS)'
add the number of wait states to the CC time only. Neither the head
nor the tail are affected.

NOTE

The CC timing and tail of the MOVEM instruction are special
cases for both data reads and writes. Equations for both the CC
timing and the tail as a function of wait states are footnoted in
the table in 11.6.7 Special-Purpose MOVE Instruction.

MC68EC030 USER'S MANUAL MOTOROLA

2b. If the operation has more than one data read, add the total amount
of wait states for all reads to the CC time. Neither the head nor the
tail are affected. Refer to preceding note.

3a. For operation timings that include a data write, the number of wait
states is added to the tail and the CC time. The head is not affected.
Refer to preceding note.

3b. If there is more than one write in the operation, the tail is only
increased by the wait states for one write. The CC timing is increased
by the total amount of wait states for all writes. Refer to preceding
note.

The following example calculates the instruction-cache-case execution time
for the specified instruction stream with two wait states (four-clock reads and
writes). The lines that are corrected for wait states are printed in boldface
type and are used to calculate the instruction execution time. References are
to the preceding rules.

1.
2.
3.
4.
5.

MOVE.L
ADD.L
BFCLR
BFTST
MOVEM

Wait States = 2

1. MOVE.L ($800,A2,D3),(A5,D2)
tea (d16,An,Xn)
*1a

MOVE Source,(B)
*3a

2. ADD.L D1,([$30,A4])
tea ([d16,B])
*1c

ADD Dn,EA
*3a

3. BFCLR ($20,A5){1 :5}
*ciea #<data>.W,(d16,An)
Single EA Format

BFCLR Mem « 5 bytes)
*2a & 3a

Instruction
($800,A2,D3),(A5,D2)
D1,([$30,A4])
($20,A5){1 :5} - «5 bytes)
($1 0,A3,D3){31 :31} - (5 bytes)
([A1,D1]),A1-A4 - 4 registers

Head Tail

4 0+2
4 2

4 0+2
4 2

4 0+2
4 2

0 1+2
0 3

10 0

6 0+2
6 2

MOTOROLA MC68EC030 USER'S MANUAL

CC

6+2(1/010)
8(1/0/0)

8 + 2(010/1)
10(010/1)

12 + 4(2/010)
16(210/0)

3 + 2(010/1)
5(0/0/1)

4(0/0/0)

14 + 4(1 10/1)
18(110/1)

11-19

•

•

11-20

4. BFTST ($1 0,A3,D3}{31 :31}
*ciea (d16,An,Xn) 14 0 8(0/0/0)

BFTST Mem (5 bytes) 6 0 14 + 4(2/010)
*2b 6 0 18(210/0)

5. MOVEM ([A1,D1]),A1-A4
ciea ([B)) 6 0 12 + 2(1/010)
*1b 6 0 14(110/0)

MOVEM EA,RL 2 0 24 + 0(4/010)
*2a & 2b 2 0 24(410/0)

*Corrected for wait states.

NOTE

It is helpful to include the number of operand read and writes along
with the number of instruction accesses in the CC column for com
puting the effect of wait states on execution time.

Using the general Equation (11-2), calculate as follows:

Execution Time = CCea1 + [CCoP1 - min(HoP1,Tea1)] + [CCea2 - min(Hea2,ToP1)] +
[CCoP2 - min(HoP2,Tea2)] + [CCea3 - min(Hea3,ToP2)] +
[CCoP3 - min(HoP3,Tea3)] + [CCea4 - min(Hea4,ToP3)] +
[CCoP4 - min(HoP4,Tea4)] + [CCea5 - min(Hea5,ToP4)] +
[CCoP5 - min(HoP5,Tea5)]

= 8 + [10 - min(4,2)] + [16 - min(4,2)] +
[5- min(O,2)] + [4- min(10,3)] + [18- min(6,0)] + [8-min(14,2)] +
[18- min(6,0)] + [14- min(6,0)] +
[24-min(2,O)]

= 8+8+ 14+ 5+ 1 + 18+6+ 18+ 14+ 24

= 116 clock periods

The next example is the data cache hit example from 11.4 EFFECT OF DATA
CACHE with two wait states per cycle (four-clock read/write). Hits in the data
cache and instruction cache are assumed. Three lines are shown for each
timing. The first is the timing from the appropriate table. The second is the
timing adjusted for a data cache hit. The third adds wait states only to write
operations, since the read operations hit in the cache and cause no delay.
The third line for each timing is used to calculate the instruction cache ex
ecution time; it is shown in boldface type.

MC68EC030 USER'S MANUAL MOTOROLA

Instruction
1. ADD.L -(A1),D1

2. AND.L D1,([A2))

3. MOVE.L (A6),(8,A1)

4. TAS (A3)+

Head Tail CC

1. ADD.L -(A1)'D1
fea - (An) 2 2 4(1/010)

* 2 1 3(1/010)

** 2 3(110/0)

ADD.L EA,Dn 0 0 2(0/1/0)

* 0 0 2(0/1/0)

** 0 0 2(0/1/0)

2. AND.L D1,([A 1])
fea ([B]) 4 0 10(11010)

* 4 0 10(1/0/0)

*** 4 0 12(1/0/0)

AND Dn,EA 0 3(01011)

* 0 1 3(010/1)

** 0 3 5(0/0/1)

3. MOVE.L (A6)'(8,A 1)
fea (An) 1 3(1/010)

* 0 2(1/010)

** 1 0 2(1/0/0)

MOVE Source,(d16,An) 2 0 4(010/1)

* 2 0 4(010/1)

** 2 2 6(0/0/1)

4. TAS (A3)+
Cea (An) 0 0 2(01010)

* 0 0 2(01010) -** 0 0 2(0/0/0)

TAS Mem 3 0 12(110/1)

* 3 0 12(110/1)

** 3 0 14(1/0/1)

NOTES:
*Corrected for data cache hits.

**Corrected for wait states also (only on data writes).
***No data cache hit assumed for address fetch.

MOTOROLA MC68EC030 IJSER'S MANUAL 11-21

III

11-22

Using the general Equation (11-2), calculate as follows:

Execution Time = CCea1 + [CCoP1 - min(Hea1,ToP1)] + [CCea2 - min(Hea2,ToP1)] +
[CCoP2 - min(HoP2,Tea2)] + [CCea3 - min(Hea3,ToP2)] +
[CCoP3 - min(HoP3,Tea3)] + [CCea4 - min(Hea4,ToP3)] +
[CCoP4 - min(HoP4,Tea4)]

= 3+ [2- min(O,1)]m+ [12- min(4,O)] +
[5 - min(O,O)] + [2 - min(1 ,3)] +
[6 - min(2,O)] + [2 - min(O,2)] +
[14- min(3,O)

=3+2+12+5+1+6+2+14

= 45 clock periods

A similar analysis can be constructed for the average no-cache case. Since
the average no-cache-case time assumes two clock periods per bus cycle
(i.e., no wait states), the timing given in the tables does not apply directly to
systems with wait states. To approximate the average no-cache-case time
for an instruction or effective address with W wait states, use the following
formula:

where:

NCC = NCCt + (# of data reads and writes)·W +
(max. # of instruction accesses)·W

NCCt is the no-cache-case timing value from the appropriate table.

The number of data reads, data writes, and maximum instruction accesses
are found in the appropriate table.

The average no-cache-case timing obtained from this formula is equal to or
greater than the actual no-cache-case timing since the number of instruction
accesses used is a maximum (the values in the tables are always rounded
up) and no overlap is assumed.

MC68EC030 USER'S MANUAL MOTOROLA

11.6 INSTRUCTION TIMING TABLES

All the following assumptions apply to the times shown in the tables in this
section:

• All memory accesses occur with two-clock bus cycles and no wait states.

• All operands in memory, including the system stack, are long-word
aligned.

• A 32-bit bus is used for communications between the MC68EC030 and
system memory.

• The data cache is not enabled.

• No exceptions occur (except as specified).

Four values are listed for each instruction and effective address:

1. Head,

2. Tail,

3. Instruction-cache case (CC) when the instruction is in the cache but has
no overlap, and

4. Average no-cache case (NCC) when the instruction is not in the cache
or the cache is disabled and there is no instruction overlap.

The only instances for which the size of the operand has any effect are the
instructions with immediate operands and the ADDA and SUBA instructions.
Unless specified otherwise, immediate byte and word operands have iden
tical execution times.

The instruction-cache-case and average no-cache-case columns of the in- III
struction timing tables contain four sets of numbers, three of which are .
enclosed in parentheses. The outer number is the total number of clocks for
the given cache case and instruction. The first number inside the parentheses
is the number of operand read cycles performed by the instruction. The
second value inside the parentheses is the maximum number of instruction
bus cycles performed by the instruction, including all prefetches to keep the
instruction pipe filled. Because the second value is the average of the odd
word-aligned case and the even-word-aligned case (rounded up to an integral
number of bus cycles), it is always greater than or equal to the actual number

MOTOROLA MC68EC030 USER'S MANUAL 11-23

-

11-24

of bus cycles (one bus cycle per two instruction prefetches). The third value
within the parentheses is the number of write cycles performed by the in
struction. One example from the instruction timing table is as follows:

TOTAL NUMBER OF CLOCKS

NUMBER OF READ CYCLES

MAXIMUM NUMBER OF INSTRUCTION ACCESS CYCLES

NUMBER OF WRITE CYCLES

The total numbers of bus-activity clocks and internal clocks (not overlapped
by bus activity) of the instruction in this example are derived as follows:

(2 Reads • 2 Clocks/Read) + (3 Instruction Accesses • 2 Clocks/Access) +
(0 Writes • 2 ClockslWrite) = 10 Clocks of Bus Activity

21 Total Clocks -1 0 Bus Activity Clocks = 11 Internal Clocks

The example used here is taken from a no-cache-case 'fetch effective address'
time. The addressing mode is ([d32,B],I,d32). The same addressing mode
under the instruction-cache-case execution time entry is 18(2/0/0). For the
instruction-cache-case execution time, no instruction accesses are required
because the cache is enabled and the sequencer does not have to access
external memory for the instruction words.

The first five timing tables deal exclusively with fetching and calculating
effective addresses and immediate operands. The remaining tables are in
struction and operation timings. Some instructions use addressing modes
that are not included in the corresponding instruction timings. These cases
refer to footnotes that indicate the additional table needed for the timing
calculation. All read and write accesses are assumed to take two clock periods.

MC68EC030 USER'S MANUAL MOTOROLA

· 11.6.1 Fetch Effective Address (fea)

The fetch effective address table indicates the number of clock periods needed
for the controller to calculate and fetch the specified effective address. The
effective addresses are divided by their formats (refer to 2.5 Effective Address
Encoding Summary). For instruction-cache case and for no-cache case, the
total number of clock cycles is outside the parentheses. The number of read,
prefetch, and write cycles is given inside the parentheses as (r/p/w). The read,
prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Address Mode

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% Dn - - 0(01010) 0(01010)

% An - - 0(01010) 0(01010)

(An) 1 1 3(1/010) 3(1/010)

(An)+ 0 1 3(1/010) 3(1/010)

-(An) 2 2 4(11010) 4(11010)

(d16,An) or (d16,PC) 2 2 4(11010) 4(111/0)

(xxx).w 2 2 4(1/010) 4(1/1/0)

(xxx).L 1 0 4(1/010) 5(1/1/0)

#(data).B 2 0 2(01010) 2(0/1/0)

#(data).w 2 0 2(01010) 2(0/1/0)

#(data).L 4 0 4(01010) 4(0/1/0)

BRIEF FORMAT EXTENSION WORD

I (ds,An,Xn) or (ds,PC,Xn) 4 2 6(11010) 6(1/1/0)

FULL FORMAT EXTENSION WORD(S)

(d16,An) or (d16,PC) 2 0 6(1/010) 7(1/1/0)

(d16,An,Xn) or (d16,PC,Xn) 4 0 6(1/010) 7(1/1/0)

([d16,An]) or ([d16,PC]) 2 0 10(2/010) 10(2/1/0)

([d16,An],Xn) or ([d16,PC],Xn) 2 0 10(2/010) 10(2/1/0)

([d16,An],d16) or ([d16,PC],d16) 2 0 12(2/010) 13(2/2/0)

([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 2 0 12(2/010) 13(2/2/0)

([d16,An],d32) or ([d16,PC],d32) 2 0 12(2/010) 14(2/2/0)

([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 2 0 12(2/010) 14(2/2/0)

(B) 4 0 6(11010) 7(1/1/0)

(d16,B) 4 0 8(1/010) 10(111/0)

(d32,B) 4 0 12(11010) 13(112/0)

([B]) 4 0 10(2/010) 10(2/110)

([B],I) 4 0 10(2/010) 10(2/1/0)

([B],d16) 4 0 12(2/010) 13(2/1/0)

MOTOROLA MC68EC030 USER'S MANUAL 11-25

III

III

11.6.1 Fetch Effective Address (tea) (Continued)
Address Mode

FULL FORMAT EXTENSION WORD(S) (CONTINUED)

([B).I,d16) 4 0 12(2/0/0) 13(2/1/0)

([B],d32) 4 0 12(2/0/0) 14(2/2/0)

([B).I,d32) 4 0 12(2/0/0) 14(2/2/0)

([d16,B)) 4 0 12(2/0/0) 13(2/1/0)

([d16,B),I) 4 0 12(2/0/0) 13(2/1/0)

([d16,B),d16) 4 0 14(2/0/0) 16(2/2/0)

([d16,B),I,d16) 4 0 14(2/0/0) 16(2/2/0)

([d16,B).d32) 4 0 14(2/0/0) 17(21210)

([d16,B).I,d32) 4 0 14(2/0/0) 17(2/2/0)

([d32,B)) 4 0 16(2/0/0) 17(2/2/0)

([d32,B),I) 4 0 16(2/0/0) 17(2/2/0)

([d32,B).d16) 4 0 18(2/0/0) 20(2/2/0)

([d32,B),I,d16) 4 0 18(2/0/0) 20(2/2/0)

([d32,B),d32) 4 0 18(2/0/0) 21(2/3/0)

([d32,B),I,d32) 4 0 18(2/0/0) 21(2/3/0)

B = Base Address; 0, An, PC, Xn, An + Xn, PC + Xn. Form does not affect timing.
I = Index; 0, Xn

%= No clock cycles incurred by effective address fetch.

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

11.6.2 Fetch Immediate Effective Address (tiea)

11-26

The fetch immediate effective address table indicates the number of clock
periods needed for the controller to fetch the immediate source operand and
to calculate and fetch the specified destination operand. In the case of two
word instructions, this table indicates the number of clock periods needed
for the controller to fetch the second word of the instruction and to calculate
and fetch the specified source operand or single operand. The effective ad
dresses are divided by their formats (refer to 2.5 Effective Address Encoding
Summary). For instruction-cache case and for no-cache case, the total num
ber of clock cycles is outside the parentheses. The number of read, prefetch,
and write cycles is given inside the parentheses as (r/p/w). The read, prefetch,
and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

MC68EC030 USER'S MANUAL MOTOROLA

11.6.2 Fetch Immediate Effective Address (fiea) (Continued)

Address Mode

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% #(data)'w.Dn 2+op head 0 2(0/0/0) 2(0/1/0)

% #(data).L.Dn 4+op head 0 4(0/0/0) 4(0/1/0)

#(data)'w.(An) 1 1 3(1/0/0) 4(1/1/0)

#(data).L.(An) 1 0 4(1/0/0) 5(11110)

#(data),W.(An) + 2 1 5(1/0/0) 5(1/1/0)

#(data).L.(An) + 4 1 7(1/0/0) 7(1/1/0)

#(data).W. - (An) 2 2 4(110/0) 4(111/0)

#(data).L. - (An) 2 0 4(110/0) 5(111/0)

#(data),W.(d16,An) 2 0 4(1/0/0) 5(1/1/0)

#(data).L.(d16,An) 4 0 6(1/0/0) 8(1/2/0)

#(data).W.$XXX.W 4 2 6(1/0/0) 6(1/1/0)

#(data).L.$XXX'w 6 2 8(1/0/0) 8(1/2/0)

#(data)'w.$XXX.L 3 0 6(110/0) 7(112/0)

#(data).L.$XXX.L 5 0 8(1/0/0) 9(1/2/0)

#(data).W.#(data).L 6+op head 0 6(0/0/0) 6(0/2/0)

BRIEF FORMAT EXTENSION WORD

#(data).W.(da,An.Xn) or (da.PC.Xn)

#(data).L.(da,An.Xn) or (da.PC.Xn)

FULL FORMAT EXTENSION WORD(S)

#(data).W.(d16,An) or (d16.PC) 4 0 8(110/0) 9(112/0)

#(data).L.(d16,An) or (d16.PC) 6 0 10(110/0) 11(112/0)

#(data),W.(d16,An.Xn) or (d16.PC.Xn) 6 0 8(1/0/0) 9(1/2/0)

#(data).L.(d16,An.Xn) or (d16.PC.Xn) a 0 10(1/0/0) 11(1/2/0)

#(data).W.([d16,An)) or ([d16.PC)) 4 0 12(2/0/0) 12(2/2/0)

#(data).L.([d16,An)) or ([d16.PC)) 6 0 14(2/0/0) 14(2/2/0)

#(data).W.([d16,An).Xn) or ([d16.PC).Xn) 4 0 12(2/0/0) 12(2/2/0) III
#(data).L.([d16,An).Xn) or ([d16,PC).Xn) 6 0 14(2/0/0) 14(2/2/0)

#(data).W,([d16,An).d16) or ([d16.PC).d16) 4 0 14(2/0/0) 15(2/2/0)

#(data).L.([d16,An).d16) or ([d16.PC),d16) 6 0 16(2/0/0) 17(2/3/0)

#(data),W.([d16,An).Xn,d16) or ([d16,PC),Xn,d16) 4 0 14(2/0/0) 15(2/2/0)

#(data).L.([d16,An).Xn,d16) or ([d16,PC),Xn.d16) 6 0 16(2/0/0) 17(2/3/0)

#(data)'w,([d16,An),d32) or ([d16,PC).d32) 4 0 14(2/0/0) 16(2/3/0)

#(data).L.([d16,An).d32) or ([d16.PC).d32) 6 0 16(2/0/0) 18(2/3/0)

#(data).W.([d16,An).Xn,d32) or ([d16,PC).Xn.d32) 4 0 14(2/0/0) 16(2/3/0)

MOTOROLA MC68EC030 USER'S MANUAL 11-27

11.6.2 Fetch Immediate Effective Address (fiea) (Continued)

Address Mode

FULL FORMAT EXTENSION WORD(S) (CONTINUED)

#(data).L,([d16.AnJ,Xn,d32) or ([d16,PC],Xn,d32) 6 0 16(2/010) 18(2/3/0)

#(data).w,(B) 6 0 8(1/010) 9(1/1/0)

#(data).L,(B) 8 0 10(1/010) 11(1/2/0)

#(data).W,(d16,B) 6 0 10(1/010) 12(1/2/0)

#(data).L,(d16,B) 8 0 12(1/010) 14(1/2/0)

#(data).W,(d32,B) 10 0 14(1/010) 16(1/2/0)

#(data).L,(d32,B) 12 0 16(1/010) 18(1/3/0)

#(data).W,([B]) 6 0 12(2/010) 12(2/1/0)

#(data).L,([B]) 8 0 14(2/010) 14(2/2/0)

#(data).w,([B],I) 6 0 12(2/010) 12(2/1/0)

#(data).L,((BJ.I) 8 0 14(2/010) 14(2/2/0)

#(data).w,([Bl.d16) 6 0 14(2/010) 15(2/2/0)

#(data).L,([B],d16) 8 0 16(2/010) 17(21210)

#(data).W,([B].I,d16) 6 0 14(2/010) 15(2/2/0)

#(data).L,([Bl.l,d16) 8 0 16(2/010) 17(2/2/0)

#(data).W,([Bl.d32) 6 0 14(2/010) 16(2/2/0)

#(data).L,([BJ,d32) 8 0 16(2/010) 18(2/3/0)

#(data).W,([B].I,d32) 6 0 14(2/010) 16(2/2/0)

#(data).L.([Bl.I.d32) 8 0 16(2/010) 18(2/3/0)

#(data).w,([d16,B]) 6 0 14(2/010) 15(2/2/0)

#(data).L,([d16,B]) 8 0 16(2/010) 17(2/2/0)

#(data).w,([d16,B],I) 6 0 14(2/010) 15(2/2/0)

#(data).L,([d16,Bl.ll 8 0 16(2/010) 17(2/2/0)

#(data).W,([d16,B).d16) 6 0 16(2/010) 18(2/2/0)

III
#(data).L,([d16,BJ,d16) 8 0 18(2/010) 20(2/3/0)

#(data).W,([d16,B].I,d16) 6 0 16(2/010) 18(2/2/0)

#(data).L,([d16,B].I,d16) 8 0 18(2/010) 20(2/3/0)

#(data).w,([d16,Bl.d32) 6 0 16(2/010) 19(2/3/0)

#(data).L,([d16,B).d32) 8 0 18(2/010) 21(2/3/0)

#(data).W,([d 16,B).I,d32) 6 0 16(2/010) 19(2/3/0)

#(data).L,([d 16,B].I,d32) 8 0 18(2/010) 21(2/3/0)
#(data).w,([d32,B]) 6 0 18(2/010) 19(2/2/0)

#(data).L,([d32,B]) 8 0 20(2/010) 21(2/3/0)

#(data).W,([d32,B],I) 6 0 18(2/010) 19(2/2/0)

#(data).L,([d32,B].I) 8 0 20(2/010) 21(2/3/0)

#(data).W,([d32,B],d16) 6 0 20(2/0/0) 22(2/3/0)

#(data).L,([d32,BJ,d16) 8 0 22(2/010) 24(2/3/0)

#(data).w,([d32,B).I,d 16) 6 0 20(2/010) 22(2/3/0)

11-28 MC68EC030 USER'S MANUAL MOTOROLA

11.6.2 Fetch Immediate Effective Address (fiea) (Continued)
Address Mode

FULL FORMAT EXTENSION WORD(S) (CONTINUED)

#(data).L,([d32,B],I,d16) S 0

#(data).W,([d32,Bj,d32) 6 0

#(data).L,([d32,B],d32) S 0

#(data).W,([d32,B],I,d32) 6 0

#(data).L,([d32,B],I,d32) S 0

B= Base Address: 0, An, PC, Xn, An+Xn, PC+Xn. Form does not affect timing.
1= Index: O,Xn

22(2/0/0)

20(2/0/0)

22(2/0/0)

20(2/0/0)

22(2/0/0)

24(2/3/0)

23(2/3/0)

25(2/4/0)

23(2/3/0)

25(2/4/0)

% = Total head for fetch immediate effective address timing includes the head time for the operation.

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

11.6.3 Calculate Effective Address (cea)

The calculate effective address table indicates the number of clock periods
needed for the controller to calculate the specified effective address. Fetch
time is only included for the first level of indirection on memory indirect
addressing modes. The effective addresses are divided by their formats (refer
to 2.5 Effective Address Encoding Summary). For instruction-cache case and
for no-cache case, the total number of clock cycles is outside the parentheses.
The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock
cycle number.

All timing data assumes two-clock reads and writes.

Address Mode

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% Dn - - 0(0/0/0) 0(0/0/0)

% An - - 0(01010) 0(010/0)

(An) 2+op head 0 2(0/010) 2(010/0)

(An)+ 0 0 2(0/0/0) 2(0/0/0)

-(An) 2+op head 0 2(0/0/0) 2(0/0/0)

(d16,An) or (d16,PC) 2+op head 0 2(0/0/0) 2(01110)

(xxx).W 2+op head 0 2(0/0/0) 2(011/0)

(xxx).L 4+op head 0 4(0/0/0) 4(011/0)

BRIEF FORMAT EXTENSION WORD

I (ds,An,Xn) or (ds,PC,Xn) 14+0P head I o 4(0/0/0) 4(0/1/0)

MOTOROLA MC68EC030 USER'S MANUAL 11-29

-

11.6.3 Calculate Effective Address (cea) (Continued)

Address Mode

FULL FORMAT EXENSION WORD(S)

(d16.An) or (d16,PC) 2 0 6(01010) 6(0/1/0)

(d16.An,Xn) or (d16,PC,Xn) 6+ophead 0 6(01010) 6(0/1/0)

([d16.An)) or ([d16,PC)) 2 0 10(1/010) 10(111/0)

([d16.An).Xn) or ([d16,PC),Xn) 2 0 10(1/010) 10(1/1/0)

([d16.An).d16) or ([d16,PC).d16) 2 0 12(1/010) 13(1/2/0)

([d16.An),Xn,d16) or ([d16,PC).Xn,d16) 2 0 12(1/010) 13(1/2/0)

([d16.An).d32) or ([d16,PC),d32) 2 0 12(1/010) 13(1/2/0)

([d16.An).Xn,d32) or ([d16,PC).Xn,d32) 2 0 12(1/010) 13(1/2/0)

(B) 6+op head 0 6(01010) 6(0/1/0)

(d16,B) 4 0 8(01010) 9(0/1/0)

(d32,B) 4 0 12(010/0) 12(0/2/0)

([B)) 4 0 10(1/010) 10(1/1/0)

([BJ.I) 4 0 10(1/010) 10(1/1/0)

([B).d16) 4 0 12(110/0) 13(111/0)

([Bl.I.d16) 4 0 12(1/010) 13(1/1/0)

([B),d32) 4 0 12(1/010) 13(1/2/0)

([B).I,d32) 4 0 12(2/010) 13(1/2/0)

([d16,B)) 4 0 12(1/010) 13(1/1/0)

([d16,B).I) 4 0 12(1/010) 13(1/1/0)

([d16,B).d16) 4 0 14(1/010) 16(1/2/0)

([d16,B).I,d16) 4 0 14(1/010) 16(1/2/0)

([d16,B).d32) 4 0 14(1/010) 16(1/2/0)

([d16,B),I,d32) 4 0 14(1/010) 16(1/2/0)

([d32,B)) 4 0 16(1/010) 17(1/2/0)

III ([d32,B).1) 4 0 16(1/010) 17(1/2/0)

([d32,B).d16) 4 0 18(1/010) 20(1/2/0)

([d32,B).I,d16) 4 0 18(1/010) 20(1/2/0)

([d32,B).d32) 4 0 18(1/010) 20(1/3/0)

([d32,B).I,d32) 4 0 18(1/010) 20(1/3/0)

B = Base address; 0, An, PC, Xn, An + Xn, PC + Xn. Form does not affect timing.
I = Index; 0, Xn

% = No clock cycles incurred by effective address calculation.

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

11-30 MC68EC030 USER'S MANUAL MOTOROLA

11.6.4 Calculate Immediate Effective Address (ciea)

The calculate immediate effective address table indicates the number of clock
periods needed for the controller to fetch the immediate source operand and
calculate the specified destination effective address. In the case of two-word
instructions, this table indicates the number of clock periods needed for the
controller to fetch the second word of the instruction and calculate the spec
ified source operand or single operand. Fetch time is only included for the
first level of indirection on memory indirect addressing modes. The effective
addresses are divided by their formats (refer to 2.5 Effective Address En
coding Summary). For instruction-cache case and for no-cache case, the total
number of clock cycles is outside the parentheses. The number of read,
prefetch, and write cycles is given inside the parentheses as (r/p/w). The read,
prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Address Mode

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% #(data).W.Dn 2+ophead 0 2(01010) 2(0/1/0)

% #(data).L.Dn 4+op head 0 4(01010) 4(0/1/0)

% #(data).w.(An) 2+op head 0 2(01010) 2(0/1/0)

% #(data).L.(An) 4+op head 0 4(01010) 4(0/110)

#(data).w.(An) + 2 0 4(01010) 4(0/1/0)

#(data).L.(An) + 4 0 6(01010) 6(0/1/0)

% #(data).w, - (An) 2+ophead 0 2(01010) 2(0/1/0)

% #(data).L.-(An) 4+op head 0 4(01010) 4(0/1/0)

% #(data).W.(d16.An) 4+ophead 0 4(01010) 4(0/110)

% #(data).L.(d16.An) 6+op head 0 6(0/010) 7(012/0)

% #(data).W.$XXX.W 4+op head 0 4(01010) 4(0/1/0)

% #(data).L.$XXX.W 6+op head 0 6(01010) 6(0/2/0)

% #(data).W.$XXX.L 6+op head 0 6(01010) 6(0/2/0)

% #(data).L.$XXX.L S+op head 0 8(01010) 8(0/2/0)

BRIEF FORMAT EXTENSION WORD

% #(data).w.(ds.An.Xn) or (ds.PC.Xn)

% #(data).L.(ds.An.Xn) or (ds.PC.Xn)

MOTOROLA MC68EC030 USER'S MANUAL 11-31

-

11.6.4 Calculate Immediate Effective Address (ciea) (Continued)

Address Mode

FULL FORMAT EXTENSION WORD(S)

#(data).W,(d16,An) or (d16,PC) 4 0 8(0/0/0) 8(0/2/0)

#(data).L,(d16,An) or (d16,PC) 6 0 10(0/0/0) 10(0/2/0)

% #(data).w,(d16,An,Xn) or (d16,PC,Xn) 8+op head 0 8(0/0/0) 8(0/2/0)

% #(data).L,(d16,An,Xn) or (d16,PC,Xn) 10+op head 0 10(0/0/0) 10(0/2/0)

#(data).w,([d16,An)) or ([d16,PC)) 4 0 12(1/0/0) 12(1/2/0)

#(data).L,([d16,An)) or ([d16,PC)) 6 0 14(1/0/0) 14(1/1/0)

#(data).W,([d16,An),Xn) or ([d16,PC),Xn) 4 0 12(1/0/0) 12(1/2/0)

#(data).L,([d16,An),Xn) or ([d16,PC),Xn) 6 0 14(1/0/0) 14(1/110)

#(data).w,([d16,An],d16) or ([d16,PC],d16) 4 0 14(1/0/0) 15(1/2/0)

#(data).L,([d16,An],d16) or ([d16,PC),d16) 6 0 16(1/0/0) 17(11310)

#(data).w,([d16,An),Xn,d16) or ([d16,PC),Xn,d16) 4 0 14(1/0/0) 15(1/2/0)

#(data).L,([d16,An),Xn,d16) or ([d16,PC),Xn,d16) 6 0 16(1/0/0) 17(1/3/0)

#(data).W,([d16,An],d32) or ([d16,PC],d32) 4 0 14(1/0/0) 16(1/3/0)

#(data).L,([d16,An],d32) or ([d16,PC]'d32) 6 0 16(1/0/0) 17(1/3/0)

#(data).w,([d16,An),Xn,d32) or ([d16,PC),Xn,d32) 4 0 14(1/0/0) 15(1/3/0)

#(data).L,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 6 0 16(1/0/0) 17(1/3/0)

% #(data).W,(B) 8+op head 0 8(0/0/0) 8(0/1/0)

% #(data).L,(B) 10+op head 0 10(0/0/0) 10(0/2/0)

#(data).w,(d16,B) 6 0 10(0/0/0) 11(0/2/0)

#(data).L,(d16,B) 8 0 12(0/0/0) 13(0/2/0)

#(data).W,(d32,B) 6 0 14(0/0/0) 15(0/2/0)

#(data).L,(d32,B) 8 0 16(0/0/0) 17(0/3/0)

#(data).W,([B)) 6 0 12(1/0/0) 12(11110)

#(data).L,([B)) 8 0 14(1/0/0) 14(1/2/0)

- #(data).w,([B),I) 6 0 12(1/0/0) 12(1/1/0)

#(data).L,([B],I) 8 0 14(1/0/0) 14(11210)

#(data).W,([B),d16) 6 0 14(1/0/0) 15(1/2/0)

#(data).L,([B),d16) 8 0 16(1/0/0) 17(1/2/0)

#(data).w,([B),I,d 16) 6 0 14(1/0/0) 15(1/2/0)

#(data).L,([B),I,d16) 8 0 16(2/0/0) 17(1/2/0)

#(data).W,([B],d32) 6 0 14(1/0/0) 15(1/2/0)

#(data).L,([B],d32) 8 0 16(110/0) 17(1/3/0)

#(data).W,([B),I,d32) 6 0 14(1/0/0) 15(1/2/0)

#(data).L,([B),I,d32) 8 0 16(110/0) 17(1/3/0)

#(data).W,([d16,B)) 6 0 14(1/0/0) 15(1/2/0)

#(data).L,([d16,B)) 8 0 16(110/0) 17(112/0)

11-32 MC68EC030 USER'S MANUAL MOTOROLA

11.6.4 Calculate Immediate Effective Address (ciea) (Continued)

Address Mode

FULL FORMAT EXTENSION WORD(S) (CONTINUED)

#(data).W,([d16,B),1) 6 0 14(110/0) 15(112/0)

#(data).L,([d16,B),1) 8 0 16(1/0/0) 17(11210)

#(data).W,([d16,B),d16) 6 0 16(1/0/0) 18(1/2/0)

#(data).L,([d16,B),d16) 8 0 18(1/0/0) 20(1/3/0)

#(data).W,([d16,B),I,d16) 6 0 16(1/0/0) 18(1/2/0)

#(data).L,([d16,B),I,d16) 8 0 18(1/0/0) 20(1/3/0)

#(data).W,([d16,B),d32) 6 0 16(1/0/0) 18(1/3/0)

#(data).L,([d16,B),d32) 8 0 18(1/0/0) 20(1/3/0)

#(data).W,([d 16,B),I,d32) 6 0 16(1/0/0) 18(1/3/0)

#(data).L,([d16,B),I,d32) 8 0 18(1/0/0) 20(1/3/0)

#(data).W,([d32,B)) 6 0 18(1/0/0) 19(1/2/0)

#(data).L,([d32,B)) 8 0 20(1/0/0) 21(1/3/0)

#(data).W,([d32,B),I) 6 0 18(1/0/0) 19(1/2/0)

#(data).L,([d32,B),I) 8 0 20(110/0) 21(1/3/0)

#(data).W,([d32,B),d16) 6 0 20(1/010) 22(1/3/0)

#(data).L,([d32,B),d16) 8 0 22(1/010) 24(1/3/0)

#(data).W,([d32,B),I,d16) 6 0 20(11010) 22(1/3/0)

#(data).L,([d32,B),I,d16) 8 0 22(11010) 24(1/3/0)

#(data).W,([d32,B),d32) 6 0 20(1/010) 22(1/3/0)

#(data).L,([d32,B),d32) 8 0 22(11010) 24(1/4/0)

#(data).W,([d32,B),I,d32) 6 0 20(1/010) 22(1/3/0)

#(data).L,([d32,B),I,d32) 8 0 22(11010) 24(1/4/0)

B = Base address; 0, An, PC, Xn, An + Xn, PC + Xn. Form does not affect timing.
I = Index; 0, Xn

% = Total head for address timing includes the head time for the operation.

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing. III

MOTOROLA MC68EC030 USER'S MANUAL 11-33

III

11.6.5 Jump Effective Address

11-34

The jump effective address table indicates the number of clock periods needed
for the controller to calculate the specified effective address for the JMP or
JSR instructions. Fetch time is only included for the first level of indirection
on memory indirect addressing modes. The effective addresses are divided
by their formats (refer to 2.5 Effective Address Encoding Summary). For
instruction-cache case and for no-cache case, the total number of clock cycles
is outside the parentheses. The number of read, prefetch, and write cycles
is given inside the parentheses as (r/p/w). The read, prefetch, and write cycles
are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Address Mode

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% (An) 2+op head 0 2(01010) 2(01010)

% (d16,An) 4+ op head 0 4(01010) 4(01010)

% (xxx).W 2+op head 0 2(01010) 2(01010)

% (xxx).L 2+op head 0 2(01010) 2(01010)

BRIEF FORMAT EXTENSION WORD

1% (da,An,Xn) or (da,PC,Xn) 16+op head I o 6(01010) 6(01010)

FULL FORMAT EXTENSION WORD(S)

(d16,An) or (d16,PC) 2 0 6(01010) 6(01010)

% (d16,An,Xn) or (d16,PC,Xn) 6+op head 0 6(01010) 6(01010)

([d16,An)) or ([d16,PC)) 2 0 10(1/010) 10(1/1/0)

([d16,An].Xn) or ([d16,PC].Xn) 2 0 10(1/010) 10(1/1/0)

([d16,An].d16) or ([d16,PC].d16) 2 0 12(11010) 12(111/0)

([d16,An].Xn,d16) or ([d16,PC],Xn,d16) 2 0 12(11010) 12(111/0)

([d16,An].d32) or ([d16,PC].d32) 2 0 12(1/010) 12(1/1/0)

([d16,An].Xn,d32) or ([d16,PC].Xn,d32) 2 0 12(1/010) 12(1/1/0)

% (B) 6+ophead 0 6(01010) 6(01010)

(d16,B) 4 0 8(01010) 9(0/110)

(d32,B) 4 0 12(0/0/0) 13(0/1/0)

([B)) 4 0 10(1/010) 10(1/1/0)

([B].I) 4 0 10(11010) 10(111/0)

([B].d16) 4 0 12(1/010) 12(1/1/0)

([BLI,d16) 4 0 12(1/010) 12(1/1/0)

([B].d32) 4 0 12(1/010) 12(1/1/0)

([B].d32) 4 0 12(1/010) 12(1/1/0)

([B].I,d32) 4 0 12(1/010) 12(1/1/0)

([d16,B)) 4 0 12(1/010) 13(1/1/0)

([d16,BJ.I) 4 0 12(1/010) 13(1/1/0)

([d16,B].d16) 4 0 14(1/010) 15(1/1/0)

MC68EC030 USER'S MANUAL MOTOROLA

11.6.5 Jump Effective Address (Continued)

Address Mode

FULL FORMAT EXTENSION WORD(S) (CONTINUED)

([d16,Bl,l,d16) 4 0 14(1/0/0) 15(11110)

([d16,Bl,d32) 4 0 14(110/0) 15(111/0)

([d16,Bl,l,d32) 4 0 14(1/0/0) 15(1/1/0)

([d32,B)) 4 0 16(1/0/0) 17(11210)

([d32,Bl,l) 4 0 16(110/0) 17(112/0)

([d32,B)'d16) 4 0 18(1/0/0) 19(1/2/0)

([d32,Bl,l,d16) 4 0 18(1/0/0) 19(1/2/0)

([d32,Bl,d32) 4 0 18(110/0) 19(112/0)

([d32,Bl,l,d32) 4 0 18(11010) 19(112/0)

B = Base address; 0, An, PC, Xn, An + Xn, PC + Xn. Form does not affect timing.
I = Index; 0, Xn

% = Total head for effective address timing includes the head time for the operation.

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

11.6.6 MOVE Instruction

The MOVE instruction timing table indicates the number of clock periods
needed for the controller to calculate the destination effective address and
perform the MOVE or MOVEA instruction, including the first level of indi
rection on memory indirect addressing modes. The fetch effective address
table is needed on most MOVE operations (source, destination dependent).
The destination effective addresses are divided by their formats (refer to 2.5
Effective Address Encoding Summary). For instruction-cache case and for
no-cache case, the total number of clock cycles is outside the parentheses.
The number of read, prefetch, and write cycles is given inside the parentheses •
as (r/p/w). The read, prefetch, and write cycles are included in the total clock
cycle number.

All timing data assumes two-clock reads and writes.

MOTOROLA MC68EC030 USER'S MANUAL 11-35

11.6.6 MOVE Instruction (Continued)

MOVE Source.Destination

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

MOVE Rn. Dn 2 0 2(01010) 2(0/1/0)

MOVE Rn. An 2 0 2(01010) 2(0/1/0)

* MOVE EA.An 0 0 2(01010) 2(0/1/0)

* MOVE EA,Dn 0 0 2(01010) 2(0/1/0)

MOVE Rn.(An) 0 1 3(010/1) 4(0/1/1)

* MOVE SOURCE. (An) 2 0 4(010/1) 5(0/1/1)

MOVE Rn.(An) + 0 1 3(010/1) 4(0/1/1)

* MOVE SOURCE. (An) + 2 0 4(010/1) 5(0/1/1)

MOVE Rn. - (An) 0 2 4(010/1) 4(0/1/1)

* MOVE SOURCE. - (An) 2 0 4(010/1) 5(0/1/1)

* MOVE EA. (d16.An) 2 0 4(0/0/1) 5(0/1/1)

* MOVE EA.XXX.W 2 0 4(010/1) 5(0/1/1)

* MOVE EA.XXX.L 0 0 6(010/1) 7(0/2/1)

BRIEF FORMAT EXTENSION WORD

1* MOVE EA. (da.An.Xn) 4 o 6(010/1) 7(0/1/1)

FULL FORMAT EXTENSION WORD(S)

* MOVE EA. (d16.An) or (d16.PC) 2 0 8(010/1) 9(0/211)

* MOVE EA. (d16.An.Xn) or (d16.PC.Xn) 2 0 8(0/0/1) 9(012/1)

* MOVE EA. ([d16.An).Xn) or ([d16.PC).Xn) 2 0 10(1/0/1) 11(1/2/1)

* MOVE EA,([d16.An).d16) or ([d16.PC).d16) 2 0 12(1/0/1) 14(112/1)

* MOVE EA,([d16.An).Xn.d16) or ([d16.PC).Xn.d16) 2 0 12(1/0/1) 14(1/2/1)

* MOVE EA,([d16.An).d32) or ([d16.PC).d32) 2 0 14(1/0/1) 16(1/3/1)

III
* MOVE EA.([d16.An).Xn.d32) or ([d16.PC).Xn.d32) 2 0 14(1/0/1) 16(1/3/1)

* MOVE EA.(B) 4 0 8(01011) 9(0/1/1)

* MOVE EA.(d16.B) 4 0 10(010/1) 12(0/2/1)

* MOVE EA.(d32.B) 4 0 14(O101l) 16(0/2/1)

* MOVE EA,([B)) 4 0 10(1/0/1) 11(1/1/1)

* MOVE EA.([B).I) 4 0 10(1/0/1) 11(1/1/1)

* MOVE EA.([B).d16) 4 0 12(1/0/1) 14(112/1)

* MOVE EA.([B).I.d16) 4 0 12(1/0/1) 14(1/2/1)

* MOVE EA.([B).d32) 4 0 14(1/0/1) 16(1/2/1)

* MOVE EA.([Bl.l.d32) 4 0 14(1/0/1) 16(1/211)

11-36 MC68EC030 USER'S MANUAL MOTOROLA

11.6.6 MOVE Instruction (Continued)

MOVE Source. Destination

FULL FORMAT EXTENSION WORD(S) (CONTINUED)

* MOVE EA.([d16.BlI

* MOVE EA,([d16.B],I)

* MOVE EA.([d16.B],d16)

* MOVE EA,([d16.BI.I.d16)

* MOVE EA.([d16.B],d32)

* MOVE EA,([d16.BI.I.d32)

* MOVE EA.([d32.BlI

* MOVE EA.([d32.BI.1I

* MOVE EA.([d32.Bl,d16)

* MOVE EA.([d32.B],I.d16)

* MOVE EA.([d32.BI.d32)

* MOVE EA.([d32.B],I.d32)

Add Fetch Effective Address Time
Rn Is a Data or Address Register

4 0 12(1/0/1) 14(1/2/1)

4 0 12(1/0/1) 14(1/2/1)

4 0 14(1/0/1) 17(112/1)

4 0 14(1/0/1) 17(112/1)

4 0 16(1/0/1) 19(1/311)

4 0 16(1/011) 19(1/3/1)

4 0 16(1/0/1) 18(1/2/1)

4 0 16(1/0/1) 18(1/2/1)

4 0 18(1/0/1) 21(1/3/1)

4 0 18(1/0/1) 21(113/1)

4 0 20(1/0/1) 23(1/3/1)

4 0 20(1/0/1) 23(113/1)

SOURCE· Is Memory or Immediate Data Address Mode
EA Is any Effective Address

MOTOROLA MC68EC030 USER'S MANUAL 11-37

III

III

11.6.7 Special-Purpose MOVE Instruction

11-38

The special-purpose MOVE timing table indicates the number of clock periods
needed for the controller to fetch, calculate, and perform the special-purpose
MOVE operation on the control registers or specified effective address. Foot
notes indicate when to account for the a'ppropriate effective address times.
The total number of clock cycles is outside the parentheses. The number of
read, prefetch, and write cycles is given inside the parentheses as (r/p/w).
The read, prefetch, and write cycles are included in the total clock cycle
number. .

All timing data assumes two-clock reads and writes.

Instruction

EXG Ry,Rx

MOVEC Cr,Rn

MOVEC Rn,Cr-A

MOVEC Rn,Cr- B

MOVE CCR,Dn

* MOVE CCR,Mem

MOVE Dn,CCR

* MOVE EA,CCR

MOVE SR,Dn

* MOVE SR,Mem

MOVE EA,SR

%+ MOVEM EA,RL

%+ MOVEM RL,EA

MOVEP,W Dn,(d16,An)

MOVEP,W (d16,An),Dn

MOVEP,L Dn,(d16,An)

MOVEP.L (d16,An),Dn

% MOVES EA,Rn

% MOVES Rn,EA

MOVE USP,An

MOVE An,USP

SWAP Dn

CR-A Control Registers USP, VBR, CAAR, MSP, and ISP
CR - B Control Registers SFC, DFC, and CACR
n Number of Register to Transfer (n>O)
RL Register List

Add Calculate Effective Address Time
Add Fetch Effective Address Time
% Add Calculate Immediate Address Time

Head Tail I-Cache Case No-Cache Case

4 0 4(0/010) 4(011/0)

6 0 6(0/010) 6(011/0)

6 0 6(01010) 6(0/1/0)

4 0 12(010/0) 12(0/1/0)

2 0 4(0/010) 4(011/0)

2 0 4(0/0/1) 5(0/1/1)

4 0 4(0/010) 4(011/0)

0 0 4(0/010) 4(0/1/0)

2 0 4(0/0/0) 4(0/1/0)

2 0 4(0/0/1) 5(0/1/1)

0 0 8(01010) 10(012/0)

2 0 8+4n(n/0/0) 8+4n(n/1/0)

2 0 4+2n(O/0/n) 4+2n(O/1/n)

4 0 10(0/0/2) 10(0/1/2)

2 0 10(2/0/0) 10(21110)

4 0 14(0/0/4) 14(0/1/4)

2 0 14(4/0/0) 14(4/1/0)

3 0 7(1/0/0) 7(1/1/0)

2 1 5(0/011) 6(011/1)

4 0 4(0/010) 4(0/1/0)

4 0 4(0/010) 4(0/1/0)

4 0 4(0/0/0) 4(0/1/0)

+ MOVEM EA,RL - For n Registers (n > 0) and w Wait States
I-Cache Case Timing = w 0:; 2: (8+4n)

w> 2: (8+4n)+(w-2)n
Tail = 0 for all Wait States
MOVEM RL,EA - For n Registers (n > 0) and w Wait States

I-Cache Case Timing = w 0:; 2: (4+2n)+(n-l)w
w> 2: (4+2n)+(n-l)w+(w-2)

Tail = wo:;2:(n-l)w
w> 2: (n)w+(n)(w-2)

MC68EC030 USER'S MANUAL MOTOROLA

11.6.8 Arithmetical/Logical Instructions

The arithmetical/logical operation timing table indicates the number of clock
periods needed for the controller to perform the specified arithmetical/logical
instruction using the specified addressing mode. Footnotes indicate when to
account for the appropriate fetch effective address or fetch immediate effec
tive address times. For instruction-cache case and for no-cache case, the total
number of clock cycles is outside the parentheses. The number of read,
prefetch, and write cycles is given inside the parentheses as (r/p/w). The read,
prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case No-Cache Case

ADD Rn,Dn 2 0 2(01010) 2(0/1/0)

ADDAW RnAn 4 0 4(01010) 4(0/1/0)

ADDA.L RnAn 2 0 2(01010) 2(0/1/0)

* ADD EA,Dn 0 0 2(01010) 2(0/1/0)

* ADDW EAAn 0 0 4(01010) 4(0/1/0)

* ADDAL EA,An 0 0 2(01010) 2(0/1/0)

* ADD Dn,EA 0 1 3(010/1) 4(0/1/1)

AND Dn,Dn 2 0 2(01010) 2(0/1/0)

* AND EA,Dn 0 0 2(01010) 2(0/1/0)

* AND Dn,EA 0 1 3(010/1) 4(0/1/1)

EOR Dn,Dn 2 0 2(010/0) 2(0/110)

* EOR Dn,EA 0 1 3(010/1) 4(0/111)

OR Dn,Dn 2 0 2(01010) 2(0/1/0)

* OR EA,Dn 0 0 2(010/0) 2(01110)

* OR Dn,EA 0 1 3(010/1) 4(0/111)

SUB Rn,Dn 2 0 2(01010) 2(0/1/0)

* SUB EA,Dn 0 0 2(01010) 2(0/1/0)

* SUB Dn,EA 0 1 3(010/1) 4(0/1/1)

SUBAW Rn,An 4 0 4(01010) 4(0/1/0)

SUBA.L Rn,An 2 0 2(0/0/0) 2(0/1/0)

* SUBAW EAAn 0 0 4(01010) 4(0/1/0)

* SUBAL EA,An 0 0 2(01010) 2(0/1/0)

CMP Rn,Dn 2 0 2(01010) 2(0/1/0)

* CMP EA,Dn 0 0 2(01010) 2(0/1/0)

CMPA Rn,An' 4 0 4(01010) 4(0/1/0)

* CMPA EA,An 0 0 4(01010) 4(0/1/0)

** + CMP2 EA,Rn 2 0 20(1/010) 20(111/0)

* + MULS.W EA,Dn 2 0 28(01010) 28(0/1/0)

** + MULS.L EA,Dn 2 0 44(01010) 44(0/1/0)

* + MULUW EA,Dn 2 0 28(01010) 28(0/1/0)

MOTOROLA MC68EC030 USER'S MANUAL 11-39

•

III

11.6.8 Arithmetical/Logical Instructions (Continued)

Instruction Head Tail I-Cache Case No-Cache Case

** + MULU.L EA,On 2 0 44(01010) 44(0/1/0)

+ OIVS.W On,On 2 0 56(01010) 56(0/1/0)

* + OIVS.W EA,On 0 0 56(01010) 56(0/1/0)

** + OIVS.L On,On 6 0 90(01010) 90(0/1/0)

** + OIVS.L EA,On 0 0 90(01010) 90(0/1/0)

+ OIVU.W On,On 2 0 44(01010) 44(011/0)

* + OIVU.W EA,On 0 0 44(01010) 44(011/0)

** + OIVU.L On,On 6 0 78(01010) 78(0/1/0)

** + OIVU.L EA,On 0 0 78(01010) 78(0/1/0)

*Add Fetch Effective Address Time
**Add Fetch Immediate Effective Address Time
+ Indicates Maximum Time (Acutal time is data dependent)

11.6.9 Immediate Arithmetical/Logical Instructions

11-40

The immediate arithmetical/logical operation timing table indicates the num
ber of clock periods needed for the controller to fetch the source immediate
data value and to perform the specified arithmetic/logical operation using
the specified destination addressing mode. Footnotes indicate when to ac
count for the appropriate fetch effective or fetch immediate effective address
times. For instruction-cache case and for no-cache case, the total number of
clock cycles is outside the parentheses. The number of read, prefetch, and
write cycles is given inside the parentheses as (r/p/w). The read, prefetch,
and write cycles are included in the total clock cycle number.

MC68EC030 USER'S MANUAL MOTOROLA

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case No-Cache Case

MOVEQ #(data),Dn 2 0 2(0/0/0) 2(0/1/0)

ADDQ #(data),Rn 2 0 2(0/0/0) 2(0/1/0)

* ADDQ #(data),Mem 0 1 3(0/0/1) 4(0/1/1)

SUBQ #(data),Rn 2 0 2(0/0/0) 2(0/1/0)

* SUBQ #(data),Mem 0 1 3(0/0/1) 4(0/1/1)

** ADDI #(data),Dn 2 0 2(0/0/0) 2(0/110)

** ADDI #(data),Mem 0 1 3(0/0/1) 4(0/1/1)

** ANDI #(data),Dn 2 0 2(0/0/0) 2(0/1/0)

** ANDI #(data),Mem 0 1 3(0/0/1) 4(0/1/1)

** EORI #(data),Dn 2 0 2(0/0/0) 2(0/1/0)

** EORI #(data),Mem 0 1 3(0/0/1) 4(0/1/1)

** ORI #(data),Dn 2 0 2(0/0/0) 2(0/1/0)

** ORI #(data),Mem 0 1 3(0/0/1) 4(0/1/1)

** SUBI #(data),Dn 2 0 2(0/0/0) 2(0/1/0)

** SUBI #(data),Mem 0 1 3(0/0/1) 4(0/111)

** CMPI #(data),Dn 2 0 2(0/0/0) 2(0/1/0)

** CMPI #(data),Mem 0 0 2(0/0/0) 2(0/1/0)

*Add Fetch Effective Address Time
**Add Fetch Immediate Effective Address Time

III

MOTOROLA MC68EC030 USER'S MANUAL 11-41

III

11.6.10 Binary-Coded Decimal and Extended Instructions

11-42

The binary-coded decimal and extended instruction table indicates the number
of clock periods needed for the controller to perform the specified operation
using the given addressing modes. No additional tables are needed to calculate
total effective execution time for these instructions. For instruction-cache case
and for no-cache case, the total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside
the parentheses as (r/p/w). The read, prefetch, and write cycles are included
in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case No-Cache Case

ABCO On/On 0 0 4(01010) 4(011/0)

ABCO - (An), - (An) 2 1 13(2/0/1) 14(2/1/1)

SBCO On/On 0 0 4(01010) 4(011/0)

SBCO -(An)/-(An) 2 1 13(210/1) 14(2/1/1)

AOOX On/On 2 0 2(01010) 2(011/0)

AOOX - (An), - (An) 2 1 9(210/1) 10(2/1/1)

SUBX On/On 2 0 2(01010) 2(011/0)

SUBX - (An), - (An) 2 1 9(210/1) 10(2/1/1)

CMPM (An) + ,(An) + 0 0 8(2/010) 8(2/1/0)

PACK On/On/#(data) 6 0 6(01010) 6(011/0)

PACK - (An), - (An)/#(data) 2 1 11(1/0/1) 11(1/1/1)

UNPK On/On/#(data) 8 0 8(01010) 8(011/0)

UNPK - (An), - (An)/#(data) 2 1 11(1/0/1) 11(1/1/1)

MC68EC030 USER'S MANUAL MOTOROLA

11.6.11 Single Operand Instructions

The single operand instruction table indicates the number of clock periods
needed for the controller to perform the specified operation on the given
addressing mode. Footnotes indicate when it is necessary to account for the
appropriate effective address time. For instruction-cache case and for no
cache case, the total number of clock cycles is outside the parentheses. The
number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock
cycle number.

All timing data assumes two-clock reads and writes.

Instruction

CLR On

** CLR Mem

NEG On

* NEG Mem

NEGX On

* NEGX Mem

NOT On

* NOT Mem

EXT On

NBCO On

NBCO Mem

Scc On

** Scc Mem

TAS On

** TAS Mem

TST On

* TST Mem

*Add Fetch Effective Address Time
**Add Calculate Effective Address Time

Head Tail

2 0

0 1

2 0

0 1

2 0

0 1

2 0

0 1

4 0

0 0

0 1

4 0

0 1

4 0

3 0

0 0

0 0

MOTOROLA MC68EC030 USER'S MANUAL

I-Cache Case No-Cache Case

2(0/0/0) 2(0/1/0)

3(0/0/1) 4(0/1/1)

2(0/0/0) 2(01110)

3(010/1) 4(0/1/1)

2(0/0/0) 2(0/1/0)

3(0/0/1) 4(0/1/1)

2(0/0/0) 2(0/1/0)

3(0/0/1) 4(0/1/1)

4(0/0/0) 4(0/1/0)

6(0/0/0) 6(0/1/0)

5(0/011) 6(0/1/1)

4(0/010) 4(0/1/0)

5(0/0/1) 5(0/111)

4(010/0) 4(0/1/0)

12(110/1) 12(1/1/1)

2(0/010) 2(0/1/0)

2(0/0/0) 2(0/1/0)

11-43

III

•

11.6.12 Shift/Rotate Instructions

11-44

The shift/rotate instruction table indicates the number of clock periods needed
for the controller to perform the specified operation on the given addressing
mode. Footnotes indicate when it is necessary to account for the appropriate
effective address time. The number of bits shifted does not affect the exe
cution time, unless noted. For instruction-cache case and for no-cache case,
the total number of clock cycles is outside the parentheses. The number of
read, prefetch, and write cycles is given inside the parentheses as (r/p/w).
The read, prefetch, and write cycles are included in the total clock cycle
number.

All timing data assumes two-clock reads and writes.

Instruction

LSd #(data),Dy

% LSd DX,Dy

+ LSd DX,Dy

* LSd Mem by 1

ASL #(data),Dy

ASL DX,Dy

* ASL Mem by 1

ASR #(data),Dy

% ASR DX,Dy

+ ASR DX,Dy

* ASR Mem by 1

ROd #(data),Dy

ROd DX,Dy

* ROd Mem by 1

ROXd Dn

* ROXd Mem by 1

d Direction of shift/rotate: L or R
Add Fetch Effective Address Time

Head

4

6

8

0

2

4

0

4

6

10

0

4

6

0

10

0

% Indicates shift count is less than or equal to the size of data
+ Indicates shift count is greater than size of data

Tail

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

MC68EC030 USER'S MANUAL

I-Cache Case No-Cache Case

4(01010) 4(0/1/0)

6(01010) 6(0/1/0)

8(01010) 8(0/1/0)

4(010/1) 4(0/1/1)

6(01010) 6(0/1/0)

8(01010) 8(0/1/0)

6(010/1) 6(0/1/1)

4(01010) 4(0/1/0)

6(01010) 6(0/1/0)

10(010/0) 10(0/1/0)

4(01011) 4(0/1/1)

6(01010) 6(0/1/0)

8(01010) 8(0/1/0)

6(01011) 6(0/1/1)

12(01010) 12(0/1/0)

4(01010) 4(0/1/0)

MOTOROLA

11.6.13 Bit Manipulation Instructions

The bit manipulation instruction table indicates the number of clock periods
needed for the controller to perform the specified bit operation on the given
addressing mode. Footnotes indicate when it is necessary to account for the
appropriate effective address time. For instruction-cache case and for no
cache case, the total number of clock cycles is outside the parentheses. The
number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock
cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case No-Cache Case

BTST #(data),On 4 0 4(0/0/0) 4(0/1/0)

BTST On,On 4 0 4(0/0/0) 4(0/1/0)

BTST #(data),Mem 0 0 4(0/0/0) 4(0/1/0)

* BTST On,Mem 0 0 4(0/0/0) 4(0/1/0)

BCHG #(data),On 6 0 6(0/0/0) 6(0/1/0)

BCHG On,On 6 O· 6(0/0/0) 6(0/1/Oj

BCHG #(data),Mem 0 0 6(0/0/1) 6(0/111)

* BCHG On,Mem 0 0 6(0/0/1) 6(0/1/1)

BCLR #(data),On 6 0 6(0/0/0) 6(0/1/0)

BCLR On,On 6 0 6 (O/O/Oj 6(0/1/0)

BCLR #(data),Mem 0 0 6(0/0/1) 6(01111l

* BCLR On,Mem 0 0 6(0/0/1) 6(0/1/1)

BSET #(data),On 6 0 6(0/0/0) 6(0/1/0)

BSET On,On 6 0 6(0/0/0) 6(0/1/0)

BSET #(data),Mem 0 0 6(0/0/1) 6(0/111)

* BSET On,Mem 0 0 6(0/0/1) 6(0/1/1)

*Add Fetch Effective Address Time
#Add Fetch Immediate Effective Address Time

MOTOROLA MC68EC030 USER'S MANUAL 11-45

•

III

11.6.14 Bit Field Manipulation Inst~uctions

11-46

The bit field manipulation instruction table indicates the number of clock
periods needed for the controller to perform the specified bit field operation
using the given addressing mode. Footnotes indicate when it is necessary
to account for the appropriate effective address time. For instruction-cache
case and for no-cache case, the total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside
the parentheses as (r/p/w). The read, prefetch, and write cycles are included
in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case No-Cache Case

BFTST On 8 0 8(01010) 8(0/1/0)

* BFTST Mem «5 Bytes) 6 0 10(110/0) 10(111/0)

* BFTST Mem (5 Bytes) 6 0 14(210/0) 14(2/1/0)

BFCHG On 14 0 14(010/0) 14(0/1/0)

* BFCHG Mem «5 Bytes) 6 0 14(1/0/1) 14(111/1)

* BFCHG Mem (5 Bytes) 6 0 22(210/2) 22(2/1/2)

BFCLR On 14 0 14(010/0) 14(0/1/0)

* BFCLR . Mem «5 Bytes) 6 0 14(1/0/1) 14(111/1)

* BFCLR Mem (5 Bytes) 6 0 22(210/2) 22(2/1/2)

BFSET On 14 0 14(010/0) 14(0/1/0)

* BFSET Mem «5 Bytes) 6 0 14(1/0/1) 14(111/1)

* BFSET Mem (5 Bytes) 6 0 22(210/2) 22(2/112)

BFEXTS On 10 0 10(010/0) 10(0/1/0)

* BFEXTS Mem «5 Bytes) 6 0 12(1/010) 12(1/1/0)

* BFEXTS Mem (5 Bytes) 6 0 18(2/010) 18(2/1/0)

BFEXTU On 10 0 10(010/0) 10(0/1/0)

* BFEXTU Mem «5 Bytes) 6 0 12(1/010) 12(111/0)

* BFEXTU Mem (5 Bytes) 6 0 18(2/010) 18(2/110)

BFINS On 12 0 12(010/0) 12(0/1/0)

* BFINS Mem «5 Bytes) 6 0 12(1/0/1) 12(111/1)

* BFINS Mem (5 Bytes) 6 0 18(210/2) 18(2/1/2r

BFFFO On 20 0 20(01010) 20(0/1/0)

* BFFFO Mem «5 Bytes) 6 0 22(1/010) 22(1/110)

* BFFFO Mem (5 Bytes) 6 0 28(2/010) 28(2/110)

*Add Calculate Immediate Effective Address Time

NOTE: A bit field of 32 bits may span 5 bytes that require two operand cycles to access or may span 4 bytes
that require only one operand cycle to access.

MC68EC030 USER'S MANUAL MOTOROLA

11.6.15 Conditional Branch Instructions

The conditional branch instruction table indicates the number of clock periods
nee.ded for the controller to perform the specified branch on the given branch
size, with complete execution times given. No additional tables are needed
to calculate total effective execution time for these instructions. For instruc
tion-cache case and for no-cache case, the total number of clock cycles is
outside the parenthees. The number of read, prefetch, and write cycles is
given inside the parentheses as (r/p/w). The read, prefetch, and write cycles
are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case No-Cache Case

Bee (Taken) 6 0 6(01010) 8(0/2/0)

Bee.B (Not Taken) 4 0 4(01010) 4(0/1/0)

Bee.W (Not Taken) 6 0 6(01010) 6(0/110)

Bee.L (Not Taken) 6 0 6(01010) 8(0/2/0)

OBee (ee = False, Count Not Expired) 6 0 6(01010) 8(0/2/0)

OBee (ee = False, Count Expired) 10 0 10(010/0) 13(0/3/0)

OBee (ee=True) 6 0 6(01010) 8(0/1/0)

MOTOROLA MC68EC030 USER'S MANUAL 11-47

•

III

11.6.16 Control Instructions

11-48

The control instruction table indicates the number of clock periods needed
for the controller to perform the specified operation. Footnotes indicate when
it is necessary to account for the appropriate effective address time. For
instruction-cache case and for no-cache case, the total number of clock cyclces
is outside the parentheses. The number of read, prefetch, and write cycles
is given inside the parentheses as (r/p/w). The read, prefetch, and write cycles
are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case

ANDI to SR 4 0 12(01010)

EORI to SR 4 0 12(01010)

ORI to SR 4 0 12(01010)

ANDI to CCR 4 0 12(01010)

EORI to CCR 4 0 12(01010)

ORI to CCR 4 0 12(01010)

BSR 2 0 6(0/011)

CAS (Successful Compare) 1 0 13(110/1)

CAS (Unsuccessful Compare) 1 0 11(1/010)

+ CAS2 (Successful Compare) 2 0 24(2/0/2)

+ CAS2 (Unsuccessful Compare) 2 0 24(2/010)

CHK Dn,Dn (No Exception) 8 0 8(01010)

+ CHK Dn,Dn (Exception Taken) 4 0 28(110/4)

* CHK EA,Dn (No Exception) 0 0 8(01010)

* + CHK EA,Dn (Exception Taken) 0 0 28(110/4)

+ CHK2 Mem,Rn (No Exception) 2 0 18(1/010)

+ CHK2 Mem,Rn (Exception Taken) 2 0 40(2/0/4)

% JMP 4 0 4(01010)

% JSR 0 0 4(010/1)

** LEA 2 0 2(01010)

LlNK,W 0 0 4(010/1)

LlNK.L 2 0 6(010/1)

NOP 0 0 2(01010)

** PEA 0 2 4(010/1)

RTD 2 0 10(1/010)

RTR 1 0 12(2/010)

RTS 1 0 9(11010)

UNLK 0 0 5(11010)

+ Indicates Maximum Time
* Add Fetch Effective Address Time

Add Calculate Effective Address Time
Add Fetch Immediate Address Time

Add Calculate Immediate Address Time
% Add Jump Effective Address Time '

MC68EC030 USER'S MANUAL

No-Cache Case

14(0/2/0)

14(0/2/0)

14(0/2/0)

14(0/2/0)

14(0/2/0)

14(0/2/0)

9(0/2/1)

13(1/1/1)

11(1/1/0)

26(2/2/2)

24(2/2/0)

8(0/1/0)

30(1/3/4)

8(0/1/0)

30(1/3/4)

18(1/1/0)

42(2/3/4)

6(0/2/0)

7(01211)

2(01110)

5(0/1/1)

7(01211)

2(01110)

4(01111)

12(112/0)

14(2/2/0)

11(112/0)

5(1/1/0)

MOTOROLA

11.6.17 Exception-Related Instructions and Operations

The exception-related instruction and operation table indicates the number
of clock periods needed for the controller to perform the specified exception
related action. No additional tables are needed to calculate total effective
execution time for these operations. For instruction-cache case and for no
cache case, the total number of clock cycles is outside the parentheses. The
number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock
cycle number.

All timing data assumes two-clock reads and writes.

Instruction/Operation Head Tail I-Cache Case No-Cache Case

BKPT 1 0 9(1/010) 9(1/010)

Interrupt (I-Stack) 0 0 23(210/4) 24(2/2/4)

Interrupt (M-Stack) 0 0 33(2/0/8) 34(2/2/8)

RESET Instruction 0 0 518(01010) 518(0/1/0)

STOP 0 0 8(01010) 8(0/2/0)

TRACE 0 0 22(110/5) 24(1/2/5)

TRAP #n 0 0 18(11014) 20(112/4)

Illegal Instruction 0 0 18(110/4) 20(112/4)

A-Line Trap 0 0 18(1/0/4) 20(1/2/4)

F-Line Trap 0 0 18(11014) 20(112/4)

Privilege Violation 0 0 18(1/0/4) 20(1/2/4)

TRAPcc (Trap) 2 0 22(1/0/5) 24(1/2/5)

TRAPcc (No Trap) 4 0 4(01010) 4(0/1/0)

TRAPcc.W (Trap) 5 0 24(1/0/5) 26(1/3/5)

TRAPcc.w (No Trap) 6 0 6(01010) 6(0/110)

TRAPcc.L (Trap) 6 0 26(1/0/5) 28(1/3/5)

TRAPcc.L (No Trap) 8 0 8(01010) 8(0/2/0)

TRAPV (Trap) 2 0 22(110/5) 24(1/2/5)

TRAPV (No Trap) 4 0 4(01010) 4(0/1/0)

MOTOROLA MC68EC030 USER'S MANUAL 11-49

•

III

11.6.18 Save and Restore Operations

The save and restore operation table indicates the number of clock periods
needed for the controller to perform the specified state save or to return from
exception, with complete execution times and stack length given. No addi
tional tables are needed to calculate total effective execution time for these
operations. For instruction-cache case and for no-cache case, the total num
ber of clock cycles is outside the parentheses. The number of read, prefetch,
and write cycles is given inside the parentheses as (r/p/w). The read, prefetch,
and write cycles are included in the total clock cycle number.

All timing data ssumes two-clock reads and writes.

Operation Head Tail I-Cache Case No-Cache Case

Bus Cycle Fault (Short) 0 0 36(1/0/10) 38(1/2/10)

Bus Cycle Fault (Long) 0 0 62(1/0/24) 64(1/2/24)

RTE (Normal Four Word) 1 0 18(4/010) 20(4/2/0)

RTE (Six Word) 1 0 18(4/010) 20(4/2/0)

RTE (Throwaway) 1 0 12(4/010) 12(4/010)

RTE (Coprocessor) 1 0 26(71010) 26(7/2/0)

RTE (Short Fault) 1 0 36(101010) 26(10/2/0)

RTE (Long Fault) 1 0 76(25/010) 76(25/2/0)

11.6.19 ACU Effective Address Calculation

11-50

The calculate effective address table for ACU instructions lists the number
of clock periods needed for the controller to calculate various effective ad
dresses. Fetch time is only included forthe first level of indirection on memory
indirect addressing modes. The total number of clock cycles is outside the
parentheses. This total includes the number of read, prefetch, and write
cycles, which are shown inside the parentheses as (r/pr/w).

MC68EC030 USER'S MANUAL MOTOROLA

11.6.19 ACU Effective Address Calculation (Continued)

Address Mode Head Tail I-Cache Case No-Cache Case

(An) 4+op head 0 4(01010) 4(0/1/0)

(d16,An) 4+op head 0 4(01010) 4(0/1/0)

(xxx).W 4+op head 0 4(01010) 4(0/1/0)

(xxx).L 6+ophead 0 6(01010) 6(0/2/0)

(ds,An,Xn) 4+op head 0 4(0/010) 4(011/0)

FULL FORMAT EXTENSION WORD(S)

(d16,An) 4 0 8(01010) 8(0/2/0)

(d16,An,Xn) 4 0 8(01010) 8(0/2/0)

([d16,An)) 4 0 12(1/010) 12(1/2/0)

([d16,An),Xn) 4 0 12(1/010) 12(1/2/0)

([d16,An),d16) 2 0 12(1/010) 12(1/2/0)

([d16,An),Xn,d16) 4 0 12(1/010) 12(1/2/0)

([d16,An),d32) 4 0 14(1/010) 14(1/3/0)

([d 16,An),Xn,d32) 4 0 14(1/010) 14(1/3/0)

(B) S+op head 0 8(01010) 8(0/1/0)

(d16,B) 6 0 10(010/0) 10(0/2/0)

(d32,B) 6 0 16(010/0) 16(0/2/0)

([B)) 6 0 12(1/010) 12(1/1/0)

([B),I) 6 0 12(1/010) 12(1/1/0)

([B),d16) 6 0 12(1/010) 12(1/2/0)

([B],I,d16) 6 0 12(1/010) 12(1/2/0)

([B),d32) 6 0 14(1/0/0) 14(1/2/0)

([B),I,d32) 6 0 14(1/010) 14(1/2/0)

([d16,B)) 6 0 14(1/010) 14(1/2/0)

([d16,B),1) 6 0 14(1/010) 14(1/2/0)

([d16,B),d16) 6 0 14(1/010) 14(1/2/0)

([d16,B),I,d16) 6 0 14(1/010) 14(1/2/0) -([d16,B),d32) 6 0 16(1/010) 16(1/3/0)

([d16,B),I,d32) 6 0 16(1/010) 16(1/3/0)

([d32,B)) 6 0 20(1/010) 20(1/2/0)

([d32,B)'1) 6 0 20(11010) 20(112/0)

([d32,B),d16) 6 0 20(1/010) 20(1/3/0)

([d32,Bl,l,d16) 6 0 20(11010) 20(113/0)

([d32,B),d32) 6 0 22(1/010) 22(11310)

([d32,B),I,d32) 6 0 22(1/010) 22(1/3/0)

B = Base address; 0, An, Xn, An + Xn. Form does not affect timing.
I = Index; 0, Xn

*No separation on effective address and operation in timing. Head and tail are the operation's.

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

MOTOROLA MC68EC030 USER'S MANUAL 11-51

11.6.20 ACU Instruction Timing

The ACU instruction timing table lists the numbers of clock periods needed
for the ACU to perform the ACU instructions. The total number of clock cycles
is outside the parentheses. It includes the numbers of read, prefetch, and
write cycles, which are shown inside the parentheses as (r/pr/w).

Instruction Head Tail I-Cache Case No-Cache Case

PMOVE (from ACO, AC1)* 0 0 8(010/1) 8(0/1/1)

PMOVE (to ACO, AC1)* 0 0 12(11010) 14(1/2/0)

PMOVE (from ACUSR)* 2 0 4(010/1) 5(0/1/1)

PMOVE (to ACUSR)* 0 0 6(1/010) 6(1/1/0)

PTEST[R:W) (fc),(ea),#O* 0 0 22(01010) 22(0/1/0)

*Add the appropriate effective address calculation time.

11.7 INTERRUPT LATENCY

In real-time systems, the response time required for a controller to service
an interrupt is a very important factor pertaining to overall system perform
ance. Processors in the M68000 Family support asynchronous assertion of
interrupts and begin processing them on subsequent instruction boundaries.
The average interrupt latency is quite short, but the maximum latency is
often critical because real-time interrupts cannot require servicing in less
than the maximum interrupt latency. The maximum interrupt latency for the
MC68EC030 alone is approximately 200 clock cycles (for the MOVEM.L
([d32,An]'Xn,d32), DO-D7/AO-A7 instruction where the last data fetch is
aborted with a bus error). This maximum interrupt latency can be greatly
reduced by careful selection of instructions and addressing modes.

111".8 BUS ARBITRATION LATENCY

11-52

The MC68EC003 does not relinquish the external bus while it is performing
. a read-modify-write operation. A bus arbitration delay occurs when a copro
cessor or other device delays or fails to assert DSACKx or STERM signals to
terminate a bus cycle. The maximum delay in this case is undefined; it de
pends on the length of the delay in asserting the signals.

MC68EC030 USER'S MANUAL MOTOROLA

SECTION 12
APPLICATIONS INFORMATION

This section provides guidelines for using the MC68EC030. The following
paragraph discusses the requirements for adapting the MC68EC030 to
MC68030 designs. Next, adapting MC68EC030 to MC68020 designs is pre
sented. Then, this section describes the use of the MC68881 and MC68882
coprocessors with the MC68EC030. The byte select logic is described next,
followed by memory interface information. The use of the STATUS and REFILL
signals, and power and ground considerations complete the section.

12.1 ADAPTING THE MC68EC030 TO MC68030 DESIGNS

The difference between the MC68EC030 and MC68030 is the streamlining of
the MC68EC030 for embedded control application. Embedded control sys
tems that need virtual memory capabilities should use an MC68030 or
MC68040 instead. An MC68EC030 is pin compatible with an existing MC68030
system. The MMUDIS pin of the MC68030 is a no connect on the MC68EC030.
The user code is identical for the MC68030 and MC68EC030. The supervisor
code is identical except portions that deal with the MMU. PFLUSH and PLOAD
MMU instructions must be removed from existing supervisor code.

12.2 ADAPTING THE MC68EC030 TO MC68020 DESIGNS

One way to utilize the MC68EC030 is in a system designed for the MC68020.
The asynchronous buses of the MC68020 and MC68EC030 are compatible.
This section describes configuring an adapter for the MC68EC030 to allow _
insertion into an existing MC68020-based system. Software and architectural
differences between the two controllers are also discussed. The need for an
adapter is absolute because the MC68020 and MC68EC030 are NOT pin com-
patible. Use of the adapter board provides the immediate capability for eval-
uating the programmer's model and instruction set of the MC68EC030 and
for developing software to utilize the additional enhanced features of the
MC68EC030. This adapter board also provides a relatively simple method for
increasing the performance of an existing MC68020 system by insertion of
a more advanced 32-bit controller with an on-chip data cache. Since the
adapter board does not support the synchronous bus interface of the

MOTOROLA MC68EC030 USER'S MANUAL 12-1

III

MC68EC030, performance measurements for the MC68EC030 used in this
manner are misleading when compared to a system designed specifically
for the MC68EC030.

The adapter board plugs into the CPU socket of an MC68020 target system,
drawing power, ground, and clock signals through the socket and running
bus cycles in a fashion compatible with the MC68EC030. The only support
hardware necessary is a single 1 K-ohm pullup resistor and two capacitors
for decoupling power and ground on the adapter board.

12.2.1 Signal Routing

12-2

Figure 12-1 shows the complete schematic for routing the signals of the
MC68EC030 to the MC68020 header. All signals common to both controllers
are directly routed to the corresponding signal of the other controller. The
signals on the MC68EC030 that do not have a compatible signal on the
MC68020 are either pulled up or left unconnected:

Pulled Up No Connect:

STERM STATUS
CBACK REFILL
CIIN' CBREQ

ClOUT

MC68EC030 USER'S MANUAL MOTOROLA

MC68EC030 MC68020 HEADER

-- STATUS BR BR
- REFill BG 00

. BGACK BGACK
IPL2 I-

'---- IPL2 IPL1
IPL1 HALT HALT IPlO
IPlO BERR BERR IPEND
IPEND AVEC
AVEC --

DSACKl DSACKl
DSACKO DSACKO CLK

ClK

SilO SilO RESET
--
RESET Sill Sill

ECS
ECS RMC

-
RMC OCS

OCS DBEN DBEN
Riii Riii
OS OS CDIS

CDIS AS AS
- ClOUT
- CBREQ

1k

f
CBACK D31-DO D31-oo
CIIN

FC2-FCO FC2-FCO

--
STERM A31-AO A31-AO

Figure 12-1. Signal Routing for Adapting the MC68EC030 to MC68020 Designs

12.2.2 Hardware Differences

Before enabling the on-chip caches of the MC68EC030, an important system
feature must be checked. Because of the MC68EC030 cache organization and
implementation, cacheable read bus cycles are expected to transfer the entire
port width of data (as indicated by the DSACKx encoding), regardless of how
many bytes are actually requested by the SIZx pins. The MC68020 does not
have this requirement, and system memory banks or peripherals mayor may

MOTOROLA MC68EC030 USER'S MANUAL 12-3

-

III

12-4

not supply the amount of data required by the MC68EC030. If the target
system does not supply the full port width with valid data for any cacheable
instruction or data access, the user should either designate that area of mem
ory as noncacheable (with the access control unit (ACU)) or not enable the
corresponding on-chip cache(s). In some systems, modifying the target sys
tem hardware may also be an option; frequently, the byte select logic is
generated by a single programmable array logic (PAL) device, which might
easily be replaced or reprogrammed to select all bytes during read cycles
from multibyte ports.

The HALT input-only signal of the MC68EC030 is slightly different than the
bidirectional HALT signal of the MC68020. However, this difference should
not cause any problems beyond eliminating an indication to the external
system (e.g., lighting an LED) that the controller has halted due to a double
bus fault.

When used in a system originally designed for both an MC68020 and an
MC68851, the MC68851 may be left in the system or removed (and replaced
with a jumpered header). However, if left in the system, the MC68851 is not
accessible to the programmer with the M68000 coprocessor interface. All
MMU instructions access the MC68EC030's on-chip ACU. This is true even
if the MMU instruction is not supported by the ACU. The benefit in removing
the MC68851 is that the minimum asynchronous bus cycle time is reduced
from four clock cycles to three. An existing MC68020 system using memory
management should upgrade to an MC68030 or MC68040 rather than to an
MC68EC030.

If the MC68851 is removed and replaced with a jumpered header, the fol
lowing MC68851 signals may need special system-specific consideration: CLI,
RMC, LBRO, LBG, LBGACK, and LBGI. During translation table searches, the
MC68851 asserts the CLI signal but not RMC. In simple MC68020/MC68851
systems without logical bus arbitration or logical caches, the MC68851 jumper
can have the following signals connected together:

LAS •• PAS
LBRO •• PBR
IBGl •• PBG

=----::----,---,--

LBGACK •• PBGACK
LA(8-31) •• PA(8-31)
CLI •• no connect or LAS

CLI has two connection options because some systems may use CLI to qualify
the occurrence of CPU space cycles since the MC68851 PAS does not assert.

MC68EC030 USER'S MANUAL MOTOROLA

12.2.3 Software Differences

The instruction cache control bits in the cache control register (CACR) of the
MC68EC030 are in the identical bit positions as the corresponding bits in the
MC68020 CACR. However, the MC68EC030 has additional control bits for
burst enable and data cache control. Because this adapter board does not
support synchronous bus cycles (and thus burst mode), enabling burst mode
through the CACR does not affect system operation in any way. Refer to
SECTION 6 ON·CHIP CACHE MEMORIES for more information on the bit
positions and functions of the CACR bits.

When used in a system originally designed for an MC68020, the programmer
must be aware that the MC68EC030 does not support the CALLM and RTM
instructions of the MC68020. If code is executed on the MC68EC030 using
either the CALLM or RTM instructions, an unimplemented instruction excep
tion is taken. If no ACU software development capability is desired and the
cache behavior described under hardware differences is understood, the user
may ignore the MC68EC030 ACU.

When the adapter is used in a system originally designed for the MC68020/
MC68851 pair, the software differences described below also apply. The
MC68EC030 ACU offers a subset of the MC68851 MMU features. The features
not supported by the MC68EC030 ACU are as follows:

• Logical address to physical address translation

• On-chip breakpoint registers

• Task aliasing

• Instructions: PBcc, PDBcc, PRESTORE, PSAVE, PScc, PTRAPcc, PVALlD,
PFLUSH, PMOVE

Only control-alterable addressing modes are allowed for ACU instructions
on the MC68EC030.

The MC68EC030 ACU also implements PLOAD and PMOVE differently from
the MC68851 MMU.

A feature new to the MC68EC030 ACU (not on the MC68851) is the access
control of two address blocks with the access control registers (see SECTION
9 ACCESS CONTROL UNIT).

MOTOROLA MC68EC030 USER'S MANUAL 12-5

-

•

12-6

12.3 FLOATING-POINT UNITS

Floating-point support for the MC68EC030 is provided by the MC68881 float
ing-point coprocessor and the MC68882 enhanced floating-point coproces
sor. Both devices offer a full implementation of the IEEE Standard for Binary
Floating-Point Arithmetic (754). The MC68882 is a pin and software
compatible upgrade of the MC68881, with an optimized interface to the main
controller that provides over 1.5 times the performance of the MC68881 at
the same clock frequency.

Both coprocessors provide a logical extension to the integer data processing
capabilities of the main controller. They contain a very high-performance
floating-point arithmetic unit and a set of floating-point data registers that
are utilized in a manner that is analagous to the use of the integer data
registers of the controller. The MC68881/MC68882 instruction set is a natural
extension of all earlier members of the M68000 Family and supports all
addressing modes and data types of the host MC68EC030. The programmer
perceives the MC68EC030/coprocessor execution model as if both devices
are implemented on one chip. In addition to supporting the full IEEE standard,
the MC68881 and MC68882 provide a full set of trigonometric and transcen
dental functions, on-chip constants, and a full 80-bit extended-precision-real
data format.

The interface of the MC68EC030 to the MC68881 or the MC68882 is easily
tailored to system cost/performance needs. The MC68EC030 and the MC688811
MC68882 communicate via standard asynchronous M68000 bus cycles. All
data transfers are performed by the main controller at the request of the
MC68881/MC68882; thus, bus errors, address errors, and bus arbitration func
tion as if the MC68881/MC68882 instructions are executed by the main con
troller. Up to seven floating-point coprocessors can simultaneously reside in

. an MC68EC030 system. The MC68881 and the cOFltrolier may operate at
different clock speeds. The MC68882 can only operate at one clock frequency
step lower than the MC68EC030. That is, a 40-MHz MC68EC030 and a 33-
MHz MC68882 is valid; a 25-MHz or lower MC68882 is invalid.

Figure 12-2 illustrates the coprocessor interface connection of an MC688811
MC68882 to an MC68EC030 (uses entire 32-bit data bus). The MC688811
MC68882 is configured to operate with a 32-bit data bus when both the AO
and SIZx pins are connected to VCC. Refer to MC68881 UM/AD, MC688811
MC68882 Floating-Point Coprocessor User's Manual, for configuring the
MC68881/MC68882 for smaller data bus widths. Note that the MC68EC030
CIIN signal is not used for the coprocessor interface because the MC68EC030
does not cache data obtained during CPU space accesses.

MC68EC030 USER'S MANUAL MOTOROLA

MC68EC030

FC2-FCO

A31-A20
Al9--A16
Al5-A13
A12-A5
A4-A1

AO

AS
OS

Am

031-024
023-016
015-08
07-00

OSACKO
OSACK1

CIIN

t
MAIN CONTROLLER

CLOCK

.. ,.
r-- ..

~ ,
I---

r--

,.
;
~
:;
"
,.
:; -

-

CHIP
SELECT ..
OECOOE

,.

VCC~
,.

VCC~

...
:-
~ ,

...
:..
;:
~

MC688811MC68882

CS

SIZE
A4-A1
AO

AS
OS
Am

031-024
023-016
015-08
07-00

OSACKO
OSACK1

t
COPROCESSOR

CLOCK

Figure 12-2. 32-Bit Data Bus Coprocessor Connection

The CS decode circuitry is asynchronous logic that detects when a particular
floating-point coprocessor is addressed. The MC68EC030 signals used by the
logic include the function code signals (FCO-FC2), and the address lines
(A13-A19). Refer to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION
for more information about the encoding of these signals. Allor a subset of
these lines may be decoded, depending on the number of coprocessors in
the system.

The major concern of a system designer is to design a CS interface that meets _
the AC electrical specifications for both the MC68EC030 (ECU) and the
MC68881/MC68882 (FPCP) without adding unnecessary wait states to FPCP
accesses. The following maximum specifications (relative to ClK low) meet
these objectives:

tCLK low to AS 10w(ECU Spec 1 ECU Spec 47 AFPCP Spec 19) (1)

tCLK low to CS 10w(ECU Spec 1 ECU Spec 47 AFPCP Spec 19) (2)

Even though requirement (1) is not met under worst case conditions, if the
ECU AS is loaded within specifications and the AS input to the FPCP is

MOTOROLA MC68EC030 USER'S MANUAL 12-7

12-8

unbuffered, the requirement is met under typical conditions. Designing the
CS generation circuit to meet requirement (2) provides the highest probability
that accesses to the FPCP occur without unnecessary wait states. A PAL 16L8
(see Figure 12-3) with a maximum propagation delay of 10 ns, programmed
according to the equations in Figure 12-4, can be used to generate CS. For
a 25-MHz system, tCLK low to CS low is less than or equal to 10 ns when
this design is used. Should worst case conditions cause tCLK low to AS low
to exceed requirement (1), one wait state is inserted in the access to the
FPCP; no other adverse effect occurs. Figure 12-5 shows the bus cycle timing
for this interface. Refer to MC68881 UM/AD, MC688811MC68882 Floating-Point
Coprocessor User's Manual, for FPCP specifications.

The circuit that generates CS must meet another requirement. When a non
floating-point access immediately follows a floating-point access, CS (for the
floating-point access) must be negated before AS and DS (for the subsequent
access) are asserted. The PAL circuit previously described also meets this
requirement.

For example, if a system has only one coprocessor, the full decoding of the
ten signals (FCO-FC2 and A13-A19) provided by the PAL equations in Figure
12-4 is not absolutely necessary. It may be sufficient to use only FCO-FC1
and A16-A17. FCO-FC1 indicate when a bus cycle is operating in either CPU
space ($7) or user-defined space ($3), and A16-A17 encode CPU space type
as coprocessor space ($2). A13-A15 can be ignored in this case because they
encode the coprocessor identification code (CpID) used to differentiate be
tween multiple coprocessors in a system. Motorola assemblers always de
fault to a CplD of $1 for floating-point instructions; this can be controlled
with assembler directives if a different CplD is desired or if multiple copro
cessors exist in the system.

ClK VCC
AS NC

FC2 NC
FC1 NC
FCO PAL 1618 NC

A19
10 ns

A13
A18 A14
A17 ClKD
A16 Cs

GND A15

Figure 12-3. Chip Select Generation PAL

MC68EC030 USER'S MANUAL MOTOROLA

PAL 1618
FPCP CS GENERATION CIRCUITRY FOR 25 MHz OPERATION
MOTOROLA INC., AUSTIN, TEXAS
ClK AS FC2 FC1 FCD A19 A18 A17 A16 GND
A15 ICS IClKD A14 A13 NC NC NC NC VCC

CS = FC2 * FC1 * FCD ;cpu space = $7
* IA19 * IA18 *A17 * IA16 ;coprocessor access = $2
* IA15 * IA14 * A13 ;coprocessor id = $1
*/ClK ;qualified by MPU clock low

+ FC2 * FC1 * FCD ;cpu space = $7
* IA19 * IA18 * A17 * IA16 ;coprocessor access = $2
* IA15 * IA14 * A13 ;coprocessor id = $1
* lAS ;qualified by address strobe low

+ FC2 * FC1 * FCD
* IA19 * IA18 * A17 * IA16 ;coprocessor access = $2
* IA15 * IA14 * A13 ;coprocessor id = $1
* IClKD ;qualified by ClKD (delayed ClK)

ClKD = ClK

Description: There are three terms to the CS generation. The first term denotes the earliest time
CS can be asserted. The second term is used to assert CS until the end of the FPCP access. The
third term is to ensure that no race condition occurs in case of a late AS.

Figure 12-4. PAL Equations

MOTOROLA MC68EC030 USER'S MANUAL 12-9

-

CLK

AS

DSACK1IDSACKO

START

o FPCP SPECIRCATION D MPU SPECIRCATION

Figure 12-5. Bus Cycle Timing Diagram

12.4 BYTE SELECT LOGIC FOR THE MC68EC030

12-10

The architecture of the MC68EC030 allows it to support byte, word, and long
word operand transfers to any 8-, 16-, or 32-bit data port, regardless of align
ment. This feature allows the programmer to write code that is not bus-width
specific. When accessed, the peripheral or memory subsystem reports its
actual port size to the controller, and the MC68EC030 then dynamically sizes
the data transfer accordingly, using multiple bus cycles when necessary. The
following paragraphs describe the generation of byte select control signals
that enable the dynamic bus sizing mechanism, the transfer of differently
sized operands, and the transfer of misaligned operands to operate correctly.

MC68EC030 USER'S MANUAL MOTOROLA

The following signals control the MC68EC030 operand transfer mechanism:

• A1, AO

• Sll1, SilO

• RIW

• DSACK1,
DSACKO

• STERM

= Address lines. The most significant byte of the operand
to be transferred is addressed directly.

= Transfer size. Output of the MC68EC030. These indicate
the number of bytes of an operand remaining to be
transferred during a given bus cycle.

= ReadlWrite. Output of the MC68EC030. For byte select
generation in MC68EC030 systems, RIW must be in
cluded in the logic if the data from the device is cache
able.

= Data transfer and size acknowledge. Oriven by an asyn
chronous port to indicate the actual bus width of the
port.

= Synchronous termination. Oriven by a 32-bit synchron
ous port only.

The MC68EC030 assumes that 16-bit ports are situated on data lines 016-031
and that 8-bit ports are situated on data lines 024-031. This ensures that the
following logic works correctly with the MC68EC030 on-chip internal-to-ex
ternal data bus multiplexer. Refer to SECTION 7 BUS OPERATION for more
details on the dynamic bus sizing mechanism.

The need for byte select signals is best illustrated by an example. Consider
a long-word write cycle to an odd address in word-organized memory. The
transfer requires three bus cycles to complete. The first bus cycle transfers
the most significant byte of the long word on 016-023. The second bus cycle
transfers a word on 016-D31, and the last bus cycle transfers the least sig
nificant byte of the original long word on 024-D31. To prevent overwriting
those bytes that are not used in these transfers, a unique byte data strobe
must be generated for each byte when using devices with 16- and 32-bit port
widths.

For noncacheable read cycles and all write cycles, the required active bytes
of the data bus for any given bus transfer are a function of the size (SllOI
Sll1) and lower address (AO/A 1) outputs (see Table 12-1). Individual strobes
or select signals can be generated by decoding these four signals for every
bus cycle. Devices residing on 8-bit ports can utilize DS alone since there is
only one valid byte for any transfer.

MOTOROLA MC68EC030 USER'S MANUAL 12-11

-

•

12-12

Table 12-1. Data Bus Activity for Byte, Word, and Long-Word Ports

Oata Bus Active Sections
Transfer

SlZ1 SIZO A1 AO Byte (B) - Word (W) - Long-Word (L) Ports
Size

031-024 023-016 015-08 07-00

0 1 0 0 BWL - - -
Byte 0 1 0 1 B WL - -

0 1 1 0 BW - L -
0 1 1 1 B W - L

1 0 0 0 BWL WL - -

Word 1 0 0 1 B WL L -
1 0 1 0 BW W L L
1 0 1 1 B W - L

1 1 0 0 BWL WL L -
Three Byte

1 1 0 1 B WL L L
1 1 1 0 BW W L L
1 1 1 1 B W - L

0 0 0 0 BWL WL L L

Long Word 0 0 0 1 B WL L L
0 0 1 0 BW W L L
0 0 1 1 B W - L

During cacheable read cycles, the addressed device must provide valid data
over its full bus width (as indicated by DSACKx or STERM). While instructions
are always prefetched as long-word-aligned accesses, data fetches can occur
with any alignment and size. Because the MC68EC030 assumes that the entire
data bus port size contains valid data, cacheable data read bus cycles must
provide as much data as signaled by the port size during a bus cycle. To
satisfy this requirement, the RIW signal must be included in the byte select
logic for the MC68EC030.

Figure 12-6 shows a block diagram of an MC68EC030 system with two mem
ory banks. The PAL provides memory-mapped byte select signals for an
asynchronous 32-bit port and unmapped byte select signals for other memory
banks or ports. Figure 12-7 provides sample equations for the PAL.

MC68EC030 USER'S MANUAL MOTOROLA

~
o
-I o
:0
o
r
:t>

s:
(")
en
00
m
(")
o
w
o
C
C/)
m
::D en
s: »
:2
c »
r-

~

~
w

MC68EC030

SIZO
SIZ1

AO
A1

FCC
FC1

A31-AO
AS

Rfjj

031-00

-} ~ LLUA
, LMOA - UMOA ~ , UUOA

PAL16L8

UUOA CONTROL
UMOA ANO
LMOA SYNCHRONOUS MOOE AOORESS

ANO
LLDA

~
BURST MOOE

CPU CONTROL LOGIC

~iip- D Dr £)r
~

~
~

f---<

b I r I)
"

1
"

32-BIT BURST MOOE PORT

32-BIT PORT Vi E Vi E Vi E Vi E

A31-A2 I------' ~

07-00 015-08 023-016 031-024 07-00 015-08 023-016 031-024

J J
'\
L
L

Figure 12-6. Example MC68EC030 Byte Select PAL System Configuration

II

lEI

PAl16L8
U1
MC68EC030 BYTE DATA SELECT GENERATION FOR 32-BIT PORTS, MAPPED AND UNMAPPED.
MOTOROLA INC., AUSTIN, TEXAS
AO A1 SIZO SIZ1 Fm A18 A19 A20 A21 GND
ICPU IUUDA IUMDA ILMDA ILLDA IUUDA IUMDB ILMDB ILLDB VCC

UUDA=RW
+ lAO * IA1

UMDA-RW
+ AO */A1
+/A1 */SIZO
+/A1 * SIZ1

LMDA=RW
+ lAO * A1
+ IA1 */SIZO */SIZ1
+ IA1 * SIZO * SIZ1
+ IA1 * AO */SIZO

LLDA-RW
+AO* A1
+ AO * SIZO * SIZ1
+ ISIZO * ISIZ1
+A1 * SIZ1

UUDB - RW * ICPU * (addressb)
+ lAO */A1 */CPU * (addressb)

UMDB - RW * ICPU * (addressb)
+ AO */A1 */CPU * (addressb)
+ IA1 * /sIZO * ICPU * (addressb)
+ IA1 * SIZ1 * ICPU * (addressb)

LMDB - RW * ICPU * (addressb)
+ lAO * A1 */CPU * (addressb)

;enable upper byte on read of 32-bit port
;directly addressed, any size
;enable upper middle byte on read of 32-bit port
;directly addressed, any size
;word aligned, size byte or three byte
;word aligned, size is word or long word
;enable lower middle byte on read of 32-bit port
;directly addressed, any size
;word aligned, size is long word
;word aligned, size is three byte
;word aligned, size is word or long word
;enable lower byte on read of 32-bit port
;directly addressed, any size
;odd alignment, three byte size
;size is long word, any address
;word aligned, word or three byte size

;enable upper byte on read of 32-bit port
;directly addressed, any size
;enable upper middle byte on read of 32-bit port
;directly addressed, any size
;word aligned, size byte or three byte
;word aligned, size is word or long word
;enable lower middle byte on read of 32-bit port
;directly addressed, any size

+ IA1 * /sIZO * /sIZ1 * ICPU * (addressb)
+ IA1 * SIZO * SIZ1 * ICPU * (addressb)
+ IA1 * AO * ISIZO * ICPU * (addressb)

;word aligned, size is long word
;word aligned, size is three byte
;word aligned, size is word or long word
;enable lower byte on read of 32-bit port
;directly addressed, any size

LLDB - RW * ICPU * (addressb)
+ AO * A1 */CPU * (addressb)
+ AO * SIZO * SIZ1 * ICPU * (addressb)
+ ISIZO * ISIZ1 * ICPU * (addressb)
+ A1 * SIZ1 */CPU * (addressb)

;odd alignment, three byte size
;size is long word, any address
;word aligned, word or three byte size

DESCRIPTION: Byte select signals for writing. On reads, all bytes selects are asserted if the respective
memory block Is addressed. The Input slgnal/CPU prevents byte select assertion during CPU space
cycles and Is derived from NANDing FCO-FC1 or FCO-FC2. The label, (addressb), is a designer-selectable
combination of address lines used to generate the proper address decode for the system's memory bank.
With the address lines given here the decode block size Is 256K bytes. A similar address might be
included In the equations for UUDA, UMDA, etc. if the designer wishes them to be memory mapped also.

Figure 12-7. MC68EC030 Byte Select PAL Equations

12-14 MC68EC030 USER'S MANUAL MOTOROLA

The PAL equations and circuits presented here cannot be the optimal imple
mentation for every system. Depending on the CPU clock frequency, memory
access times, and system architecture, different circuits may be required.

12.5 CLOCK DRIVER

The MC68EC030 is designed to sustain high performance while using low
cost (DRAM) memory subsystems. Coupled with the MC88916 clock gener
ation and distribution circuit, the MC68EC030 provides simple interface to
lower speed memory subsystems. The MC88916 (see Figure 12-8) generates
the clock signals required to efficiently control low-speed memory subsys
tems, simplifying system design requirements by providing clock generation
and distribution.

CONTROLLER
CLOCK (40 MHz)

1D-MHz <0
;;;

OSCILLATOR ~ MC68EC030
::E (40 MHz)

//3

BUS CLOCKS
(20 MHz)

Figure 12-8. Low-Cost DRAM Clock Controller

The MC88916 phase-locked loop clock driver (see Figure 12-9) can also be
used to provide clock inputs with greater resolution to a memory controller.

CONTROLLER
CLOCK (40 MHz)

20-MHz <0

OSCILLATOR rn
co

MC68EC030 ~
::E (40 MHz)

//3

BUS CLOCKS
(40 MHz)

Figure 12-9. High-Resolution DRAM Clock Controller

MOTOROLA MC68EC030 USER'S MANUAL 12-15

-

III

12.6 MEMORY INTERFACE

The MC68EC030 is capable of running three types of external bus cycles as
determined by the cycle terminationand handshake signals (referto SECTION
7 BUS OPERATION). The three types of bus cycles are as follows:

1. Asynchronous cycles, terminated by the DSACKx signals, have a min
imum duration of three controller clock periods in which up to four
bytes are transferred.

2. Synchronous cycles, terminated by the STERM signal, have a minimum
duration of two controller clock periods in which up to four bytes are
transferred.

3. Burst operation cycles, terminated by the STERM and CBACK signals,
have a duration of as little as five controller clock periods in which up
to four long words (16 bytes) are transferred.

During read operations, MC68EC030 controllers latch data on the last falling
clock edge of the bus cycle, one-half clock before the bus cycle ends (burst
mode is a special case). Latching data here, instead of the next rising clock
edge, helps to avoid data bus contention with the next bus cycle and allows
the MC68EC030 to receive the data into its execution unit sooner for a net
performance increase.

Write operations also use this data bus timing to allow data hold times from
the negating strobes and to avoid any bus contention with the following bus
cycle. This usually allows the system to be designed with a minimum of bus
buffers and latches.

One of the benefits. of the MC68EC030 on-chip caches is that the effect of
external wait states on performance is lessened because the caches are al
ways accessed in fewer than fIno wait states" regardless of the external
memory configuration.

12.6.1 Access Time Calculations

12-16

The timing paths that are critical in any memory interface are illustrated and
defined in Figure 12-10. For burst transfers, the first long word transferred
also uses these parameters, but the subsequent transfers are different and
are discussed in 12.6.2 Burst Mode Cycles.

The type of device that is interfaced to the MC68EC030 determines exactly
which of the paths is most critical. The address-to-data paths are typically
the critical paths for static devices since there is no penalty for initiating a

MC68EC030 USER'S MANUAL MOTOROLA

cycle to these devices and later validating that access with the appropriate
bus control signal. Conversely, the address-strobe-to-data-valid path is often
most critical for dynamic devices since the cycle must be validated before
an access can be initiated. For devices that signal termination of a bus cycle
before data is validated (e.g., error detection and correction hardware and
some external caches) to improve performance, the critical path may be from
the address or strobes to the assertion of BERR (or BERR and HALT). Finally,
the address-valid-to-DSACKx-or-STERM-asserted path is most critical for very
fast devices and external caches, since the time available between the address
becoming valid and the DSACKx or STERM assertion to terminate the bus
cycle is minimal. Table 12-2 provides the equations required to calculate the
various memory access times assuming a 50-percent duty cycle clock.

MOTOROLA MC68EC030 USER'S MANUAL 12-17

-

III

so 51 52 so

CLK

A31-AO ~I'--______ ----IX,---_
-----' t,...<E------ a -----~-

AS

STERM

BERR. HALT

D31-oo

NOTE: This diagram illustrates access time calculations only. DSACK1/DSACKO and STERM should never be asserted
together during the same bus cycle.

Parameter Description System Equation

a Address Valid to DSACKx Asserted tAVDL 12-1
b Address Strobe Asserted to DSACKx Asserted tSADL 12-2
c Address Valid to STERM Asserted tAVSL 12-3
d Address Strobe Asserted to STERM Asserted tSASL 12-4
e Address Valid to BERR/HALT Asserted tAVBHL 12-5
f Address Strobe Asserted to BERR/HAL T Asserted tSABHL 12-6

9 Address Valid to Data Valid tAVDV 12-7
h Address Strobe Asserted to Data Valid tSADV 12-8

Figure 12-10. Access Time Computation Diagram

12-18 MC68EC030 USER'S MANUAL MOTOROLA

Table 12-2. Memory Access Time Equations at 40 MHz

(12-1) tAVDL=(N-1)ot1-t2-t6-t47A
(12-2) tSADL = (N-2)ot1-t9-t47A

(12-3) tAVSL=(N-1H1-t6-t60
(12-4) tSASL = (N-1)ot1 - t3 - t9 - t60

(12-5) tAVBHL = Not1 -t2 -t6 -t27A
(12-6) tSABHL = (N-1)ot1 -t9 - t27A

(12-7) tAVDV=Not1-t2-t6-t27
(12-8) tSADV = (N-1)ot1 - t9 - t27

where:
tX
t1
t2
t3
t6

= Refers to AC Electrical Specification #X
= The Clock Period
= The Clock Low Time
= The Clock High Time
= The Clock High to Address Valid Time
= The Clock Low to AS Low Delay
= The Data-In to Clock Low Setup Time

N=2

-
-

9 ns
0.5 ns

20.5 ns
12 ns

22.5 ns
14 ns

= The BERR/HAL T to Clock Low Setup Time
= The Asynchronous Input Setup Time
= The Synchronous Input to CLK High Setup Time

N=3 N=4

21.5 ns 46.5 ns
13 ns 38 ns

34 ns 59 ns
25 ns 50.5 ns

45.5 ns 70.5 ns
37 ns 62 ns

47.5 ns 72.5 ns
39 ns 64 ns

t9
t27
t27A
t47A
t60
N = The Total Number of Clock Periods in the Bus Cycle (Nonburst)

(N~2 for Synchronous Cycles; N~3 for Asynchronous Cycles)

N=5

71.5 ns
63 ns

84 ns
75.5 ns

95.5 ns
87 ns

97.5 ns
89 ns

N=6

96.5 ns
88 ns

109 ns
100.5 ns

120.5 ns
112 ns

122.5 ns
114 ns

During asynchronous bus cycles, DSACK1 and DSACKO are used to terminate
the current bus cycle. In true asynchronous operations, such as accesses to
peripherals operating at a different clock frequency, either or both signals
may be asserted without regard to the clock, and then data must be valid a
certain amount of time later as defined by specification 31. With a 25-MHz
controller, this time is 28 ns after DSACKx asserts; with a 40-MHz controller~
this time is 14 ns after DSACK asserts (both numbers vary with the actual
clock frequency).

However, many local memory systems do not operate in a truly asynchronous _
manner because the memory control logic can either be related to the
MC68EC030 clock or worst case propagation delays are known; thus, asyn-
chronous setup times for the DSACKx signals can be guaranteed. The timing
requirements for this pseudo-synchronous DSACKx generation is governed
by the equation for tAVDL.

Synchronous cycles use the STERM signal to terminate the current bus cycle.
In bus cycles of equal length, STERM has more relaxed timing requirements
than DSACKx since an additional time is available when comparing tAVSL(or I

tSASU to tAVDL (or tSADL). The only additional restriction is that STERM
must meet the setup and hold times as defined by specifications 60 and 61,

MOTOROLA MC68EC030 USER'S MANUAL 12-19

IF!

12-20

respectively, for all rising edges of the clock during a bus cycle. The value
for tSASL when the total number of clock periods (N) equals two in Table
12-2 requires further explanation. Because the calculated value of this access
time (see Equation 12-4 of Table 12-2) is zero under certain conditions, hard
ware cannot always qualify STERM with AS at all frequencies. However, such
qualification is not a requirement for the MC68EC030. STERM can be gen
erated by the assertion of ECS, the falling edge of SO, or most simply by the
output(s) of an address decode or comparator logic. Note that other devices
in the system may require qualification of the access with AS since the
MC68EC030 has the capability to initiate bus cycles and then abort them
before the assertion of AS.

Another way to optimize the CPU to memory access times in a system is to
use a clock frequency less than the rated maximum ofthe specific MC68EC030
device. Table 12-3 provides calculated tAVDV (see Equation 12-7 of Table 12-
2) results for an MC68EC030RP25 and MC68EC030RP40 operating at various
clock frequencies. If the system uses other clock frequencies, the above equa
tions can be used to calculate the exact access times.

Table 12-3. Calculated tAVDV Values for Operation at Frequencies Less
Than or Equal to the CPU Maximum Frequency Rating

Equation 12-7 tAVDV MC68EC030RP40 MC68EC030RP25

Clocks Per Bus Wait Clock at Clock at Clock at Clock at Clock at
Cycle (N) and Type States 33.3 MHz 40 MHz 16.67 MHz 20 MHz 25 MHz

2 Clock Synchronous 0 30 22.5 68 53 38

3 Clock Synchronous 1 60 47.5 128 103 78
3 Clock Asynchronous 0 60 47.5 128 103 78

4 Clock Synchronous 2 90 72.5 188 153 118
4 Clock Asynchronous 1 90 72.5 188 153 118

5 Clock Synchronous 3 120 97.5 248 203 158
5 Clock Asynchronous 2 120 97.5 248 203 158

6 Clock Synchronous 4 150 122.5 308 253 198
6 Clock Asynchronous 3 150 122.5 308 253 198

MC68EC030 USER'S MANUAL MOTOROLA

12.6.2 Burst Mode Cycles

The memory access times for burst mode bus cycles follow the above equa
tions for the first access only. For the subsequent (second, third, and fourth)
accesses, the memory access time calculations depend on the architecture
of the burst mode memory system.

Architectural tradeoffs include the width of the burst memory and the type
of memory used. If the memory is 128 bits wide, the subsequent operand
accesses do not affect the critical timing paths. For example, if a 3-1-1-1 burst
accesses 128-bit-wide memory, the first access is governed by the equations
in Table 12-2 for N equal to three. The subsequent accesses also use these
values as a base but have additional clock periods. The second access has
one additional clock period, the third access has two additional clock periods,
and the fourth has three additional clock periods. Thus, the access time for
the first cycle determines the critical timing paths.

Memory that is 64 bits wide presents a compromise between the two con
figurations listed above.

12.7 DEBUGGING AIDS

The MC68EC030 supports the monitoring of internal microsequencer activity
with the STATUS and REFILL signals. The use of these signals is described
in the following paragraphs. A useful device to aid programming debugging
is described in 12.8.2 Real-Time Instruction Trace.

12.7.1 STATUS and REFILL

The MC68EC030 provides the STATUS and REFILL signals to identify internal
microsequencer activity associated with the processing of data in the pipe-
line. Since bus cycles are independently controlled and scheduled by the bus IIII!II
controller, information concerning the processing state of the micro-~
sequencer is not available by monitoring bus signals alone. The internal
activity identified by the STATUS and REFILL signals include instruction
boundaries, some exception conditions, whether the microsequencer has
halted, and instruction pipeline refills. STATUS and REFILL track only internal
microsequencer activity and are not directly related to bus activity.

As shown in Table 12-4, the number of consecutive clocks during which
STATUS is asserted indicates an instruction boundary, an exception to be
processed, or that the controller has halted. Note that the controller halted
condition is an internal error state in which the microsequencer has shut

MOTOROLA MC68EC030 USER'S MANUAL 12-21

lEI

12-22

down due to a double bus fault and is not related to the external assertion
of the HALT input signal. The HALT signal only affects bus operation, not
the microsequencer.

Table 12-4. Microsequencer STATUS Indications

Asserted for Indicates

1 Clock Sequencer at instruction boundary will begin execution of next instruction

2 Clocks Sequencer at instruction boundary but will not begin next instruction immediately
due to:

• pending trace exception
OR

• pending interrupt exception

3 Clocks Exception processing to begin for:
• reset OR
• bus error OR
• address error OR
• spurious interrupt OR
• autovectored interrupt OR
• F-line instruction (no coprocessor responded)

Continuously Processor halted due to double bus fault

The REFill signal identifies when the microsequencer requests an instruction
pipeline refill. Refill requests are a result of having to break sequential in
struction execution to handle nonsequential events. Both exceptions and
instructions can cause the assertion of REFilL. Instructions that cause refills
include branches, jumps, instruction traps, returns, coprocessor general in
structions that modify the program counter flow, and status register manip
ulations. logical and arithmetic operations affecting the condition codes of
the status register do not result in a refill request. However, operations like
the MOVE <ea>,SR instruction, which updates the status register, cause a
refill request since this can change the .program space as defined by the
function codes. When the program space changes, the controller must fetch
data from the new space to replace data already prefetched from the old
program space. Similarly, operations that affect the address access control
mechanism of the ACU cause a refill request. The test condition, decrement
and branch (DBcc) instruction causes two refill requests when the condition
being tested is false. To optimize branching performance, the DBcc instruc
tion requests a refill before the condition is tested. If the condition is false,
another refill is· requested to continue with the next sequential instruction.

Figure 12-11 illustrates the relation between the ClK signal and normal in
struction boundaries as identified by the STATUS signal. STATUS asserting
for one clock cycle identifies normal instruction boundaries. Note that the

MC68EC030 USER'S MANUAL MOTOROLA

assertion of REFill does not necessarily correspond to the assertion of
STATUS. Both STATUS and REFill assert and negate from the falling edge
of the elK signal.

INSTRUCTION _____ ,.-__________________ --,

BOUNDARIES ~ t
CLK

\~--I/

Figure 12-11. Normal Instruction Boundaries

Figure 12-12 shows a normal instruction boundary followed by a trace or
interrupt exception boundary. STATUS asserting for two clock cycles iden
tifies a trace or interrupt exception. Instruction boundary information is still
present since both trace and interrupt exceptions are processed only at in
struction boundaries. Before the exception handler instructions are pre
fetched, the REFill signal asserts (not shown) to identify a change in program
flow.

PENDING TRACE OR
INSTRUCTION ------------.--------,1 INTERRUPT EXCEPTION
BOUNDARIES ~ l PROCESSING

CLK

REFILL ---

\ ___ -----J/

Figure 12-12. Trace or Interrupt Exception

MOTOROLA MC68EC030 USER'S MANUAL 12-23

III

•

12-24

Figure 12-13 illustrates the assertion of the STATUS signal for other exception
conditions, which include reset, bus error, address error, spurious interrupt,
autovectored interrupt, and F-line instruction when no coprocessor responds.
Exception processing causes STATUS to assert for three clock cycles to in
dicate that normal instruction processing has stopped. Instruction boundaries
cannot be determined in this case since these exceptions are processed
immediately, not just at instruction boundaries.

ClK

REFill ---

'''---__ ----II
Figure 12-13. Other Exceptions

Figure 12-14 shows the assertion of STATUS, indicating that the controller
has halted due to a double bus fault. Once a bus error has occurred, any
additional bus error exception occurring before the execution of the first
instruction of the bus error handler routine constitutes a double bus fault.
The controller also halts if it receives a bus error or address error during the
vector table read operations or the prefetch for the first instruction after an
external reset. STATUS remains asserted until the controller is reset.

ClK

REFilL ---

STATUS ,\.--_----11
Figure 12-14. Controller Halted

MC68EC030 USER'S MANUAL MOTOROLA

12.7.2 Real-Time Instruction Trace

Microprocessor-based systems used for real-time applications typically lack
development aids for program debug. The real-time environment does not
allow program instruction execution to arbitrarily stop to handle debugging
events. These systems include control applications where mechanical events
cannot halt, such as robotics, automotive, and industrial control and emulator
systems that may need to keep the target system executing in real time.

To solve the problems inherent with real-time systems, the MC68EC030 in
corporates extra hardware-based features to enhance program debug. Real
time systems cannot take advantage of the trace exception mechanism built
into all M68000 Family controllers since this takes processing time away from
real-time events. Additional output pins have been incorporated into the
MC68EC030 to gain real-time visibility into the controller. Tracing capability
can be added by decoding MC68EC030 control signals to detect the cycles
that are important for tracking. Post analysis of collected data allows for
program debug.

Several problems exist with an external trace mechanism. These problems
include determining which cycles are important for tracking program flow,
detecting if instructions obtained in prefetch operations are discarded by the
execution unit, and the inability of external trace circuitry to capture accesses
to on-chip cache memories.

External trace hardware used for program debug must be synchronized to
the MC68EC030 bus activity. Since all clock cycles are not traced in a program
debug environment, the trace hardware requires a sampling signal. For ex
ternal read and write operations, trace sampling occurs when the data bus
contains valid data. Two modes of external bus operation are possible: the
synchronous mode in which the system returns the STERM signal and the
asynchronous mode in which the system responds with the DSACK1 and/or
the DSACKO signals. Both modes of bus operation need to generate a sam- _
piing signal when valid data is present on the bus. This allows for tracing
data flow in and out of the controller, which is the basis for tracking program
execution.

The pipelined architecture of the MC68EC030 prefetches instructions and
operands to keep the three stages of the instruction pipe full. The pipeline
allows concurrent operations to occur for up to three words of a single
instruction or for up to three consecutive instructions. While sequential in
struction execution is the norm, it is possible that prefetched data is not used
by the execution unit due to a nonsequential event. The STATUS signal allows
trace hardware to mark the progress of the execution unit as it processes

MOTOROLA MC68EC030 USER'S MANUAL 12-25

•

12-26

program memory operands and allows marking of some exceptions. Non
sequential events, where the entire pipeline needs to reload before continuing
execution, are marked by the REFill signal.

External hardware typically has no visibility into on-chip cache memory op
erations. However, the MC68EC030 provides a local address reference to
increase visibility. Write operations are totally visible since the MC68EC030
implements a write-through policy allowing external hardware to capture
data. For read operations from on-chip cache memories, the least significant
byte of the address bus provides a local address reference.

The MC68EC030 begins an external cycle by driving the address bus and
asserting the ECS signal. AS asserts later in the cycle to validate the address.
If a hit occurs in the cache or the cache holding register, then the external
cycle is aborted and AS is not asserted. In addition, the low-order address
bits (AO-A7) are not involved in the address access control process performed
by the on-chip ACU, creating a local address reference that can be used by
trace functions. All read cycles from the onchip cache memories cannot be
captured externally since the cache access does not depend on the availability
of the external bus.

Figure 12-15 shows a trace interface circuit that can be used with a logic
analyzer for program debug. The nine input signals (DSACK1, DSACKO, ClK,
AS, RESET, STATUS, REFill, STERM, and ECS) are connected to the
MC68EC030 controller in the system under development. Six output signals
are generated to aid in capturing and analyzing data. In addition to connecting
the logic analyzer to the address bus, the data bus, and the bus control signals,
the trace interface signals (SAMPLE, PHAl T, Fill, EP, IE, and ECSC) should
also be connected. The external clock probe of the logic analyzer connects
to the system ClK signal for synchronization. Setting up the logic analyzer
for data capture requires that samples be taken on the falling edge of the
ClK signal when the SAMPLE signal is high. Table 12-5 lists the parts required
to implement this circuit.

MC68EC030 USER'S MANUAL MOTOROLA

s VCC VCC

0
--l
0
:::xJ
0 OSACKO
r 2 0 osao
»

1 74FOO

~CP aPL
Co

1:0 T' ~ OSACKl I 1210
SO - 4 6 OSACK

o 9 OSOl 5
Vee

s: IY aPJ-
(") CD 0)
(X)

13 m
(")

Sl..K 0 w ...& 0

C RESET
en 74F114 m
::0 STATUS SOl en REFILL

PAL 16R6O

20 VCC
OSACK
ClK

I o 18 PHAlT

AS o 17 Fill

RESET o 16 EP

STATUsa 6 o 15 IE

REFlllO 7 o tlL-
ECSQ o 13 SECS

s: 01 » Qi :2

STERMO
10 19 SAMPLE

CP 10 12 ClKOUT

C CP Q2
» Q2 r-

12

C?V~ CD

1
_4 74F74

--L- SO

2 0 ol-L

11 OE
10

VSS

ECSQ ~ ECSC

rtcp
Ni

I~
apL

~r~
10 74F74

55

~D :~ 11 C

P Co
13

STERM 1
ECS

.....
N
r:v
....... Figure 12-15. Trace Interface Circuit

I

12-28

Table 12-5. Parts List for Trace Interface Circuit

Quantity Part Part Description

1 74FOO Quad 2 Input NAND Gate

1 74F114 Dual JK Negative Edge-Triggered Flip-Flop

2 74F74 Dual D-Type Positive Edge-Triggered Flip-Flop

1 PAL16R6D Programmable Logic Array, Ultra High Speed

SAMPLE is an active-high signal which qualifies the next falling edge of the
CLK signal as the sampling point. Five types of conditions cause SAMPLE to
assert:

1. An external bus cycle
2. An internal cache hit, including a hit in the cache holding register
3. An instruction boundary
4. Exception processing as marked by the EP signal discussed below
5. The controller halting

The remaining five output siynals are used to qualify the information col
lected.

The PHAL T signal indicates that the MC68EC030 has received a double bus
fault and needs a reset operation to continue processing. PHAL T asserts after
the assertion of STATUS for greater than three clock cycles and generates a
SAMPLE signal.

The FILL signal indicates a break in sequential instruction execution. FILL is
a latched version of the REFILL signal and remains asserted until a sample
is collected as indicated by the assertion of SAMPLE. The assertion of FILL
does not generate a SAMPLE signal.

The EP signal indicates that the MC68EC030 is beginning exception proc
essing.for a reset, bus error, address error, spurious interrupt, autovectored
interrupt, F-line instruction exception, trace exception, or interrupt exception.
The EP signal asserts after STATUS negates from a two- or three-clock cycle
assertion. The assertion of EP does generate a SAMPLE signal.

The IE signal indicates the execution unit has just finished processing an
instruction. The IE signal asserts after STATUS negates from a one-clock
cycle assertion. The assertion of IE also generates a SAMPLE signal.

MC68EC030 USER'S MANUAL MOTOROLA

The external cycle start condition (ECSC) signal is used in conjunction with
the AS signal to determine if the address bus and data bus are valid in the
current trace sample. Table 12-6 lists the possible combinations of AS and
ECSC and shows what parts of the traced address and data bus are valid.
The assertion of ECSC does not generate a SAMPLE signal.

Table 12-6. AS and ECSC Encoding

AS ECSC Indicates

0 0 Both Address and Data Bus Are Valid

0 1 Both Address and Data Bus Are Valid

1 0 Address Bits (AO-A7) are Valid
Address Bits (A8-A31) Are Invalid
Data Bus Is Invalid

1 1 Both Address and Data Bus Are Invalid

Figure 12-16 shows the pin definitions for the PAL 16R6 package used in the
trace circuit. These definitions are used by the PAL equations listed in Figure
12-17.

12.8 POWER AND GROUND CONSIDERATIONS

The MC68EC030 is fabricated in Motorola's advanced HCMOS process, con
tains approximately 275,000 total transistor sites, and is capable of operating
at clock frequencies of up to 40 MHz. While the use of CMOS for a device
containing such a large number of transistors allows significantly reduced
power consumption compared to an equivalent NMOS circuit, the high clock
speed makes the characteristics of power supplied to the device very im
portant. The power supply must be able to furnish large amounts of instan
taneous current when the MC68EC030 performs certain operations, and it
must remain within the rated specification at all times. To meet these re- •
quirements, more detailed attention must be given to the power supply con-
nection to the MC68EC030 than is required for NMOS devices operating at
slower clock rates.

For a solid power supply connection, 10 VCC pins and 14 GND pins are
provided. This allows two VCC and four GND pins to supply power for the
address bus and two VCC and four GND pins to supply the data bus; the
remaining VCC and GND pins are used by the internal logic and clock gen
eration circuitry. Table 12-7 lists the VCC and GND pin assignments.

MOTOROLA MC68EC030 USER'S MANUAL 12-29

/***/
/* This device generates a sampling signal for tracing processor activity on *
/* an instruction level basis for the MC68EC030. In the pin definitions and *
/* equations listed below the following symbols are used: *
/* Symbol Definition *
/* ! logical NOT *
/* # logical OR *
/* & logical AND *
/* In addition, the '.d' extension on signal names refers to the 'D' input of *
/* the internal PAL flip flop. *
/***/
/* Allowable Target Device Types: PAL 16R6D High Speed PAL *
/***/
/** Inputs **/
PIN 1 elk /* same as pin 3 ClK */
PIN 2 DSACK /* Data Strobe Acknowledge */
PIN 3 ClK /* MPU Clock Signal */
PIN 4 !AS /* Address Strobe */
PIN 5 !RESET /* System Reset Signal */
PIN 6 !STATUSO /* latched STATUS Signal */
PIN 7 !REFlllO /* latched REFill Signal */
PIN 8 !ECSO /* latched ECS Signal */
PIN 9 !STERMO /* latched STERM Signal */

/** Outputs **/
PIN 19 SAMPLE /* Sample Signal */
PIN 18 PHAlT /* Processor Halted */
PIN 17 Fill /* REFill received */
PIN 16 EP /* Exception Pending */
PIN 15 IE /* Instruction Executed */
PIN 14 sc /* status complete */
PIN 13 secs /* sampled ECS signal */
PIN 12 ClKOUT /* Delayed ClK Signal */

• Figure 12-16 PAL Pin Definition

12-30 MC68EC030 USER'S MANUAL MOTOROLA

/** Intermediate Equations **/ /* State PHALT SC EP IE */
SO !PHALT & !SC & !EP & !IE; /* 0 0 0 0 0 */
S1 !PHALT & !SC & !EP & IE; /* 1 0 0 0 1 */
S2 !PHALT & !SC & EP & IE; /* 2 0 0 1 1 */
S3 !PHALT & !SC & EP & !IE; /* 3 0 0 1 0 */
S4 PHALT & SC & EP & IE; /* 4 1 1 1 1 */
S5 !PHALT & SC & !EP & IE; /* 5 0 1 0 1 */
S6 !PHALT & SC & EP & IE; /* 6 0 1 1 1 */
S7 !PHALT & SC & EP & !IE; /* 7 0 1 1 0 */

/** Logic Equations **/
!SAMPLE = !SC & !AS & !SECS #

!SC & !DSACK & !STERMO & !SECS #
!SC & AS & !DSACK & !STERMO & SECS;

!PHALT.d = !STATUSO # !EP # IE # RESET;

!SC.d = RESET #
SO #
S1 & STATU SO #
S2 & STATUSO #
S4 & !STATUSO #
SC & !PHALT;

!EP.d = RESET #
SO #
S1 & !STATUSO #
S4 & !STATUSO #
SC & !PHALT;

!IE.d = RESET #
SO & !STATUSO #
S2 & STATUSO #
S3 & !STATUSO #
SC & !STATUSO;

!SECS.d = !ECSO; • !CLKOUT = !CLK;

!FILL.d = !REFILLO & SAMPLE #
!FILL & !REFILLO #
RESET;

Figure 12-17. Logic Equations

MOTOROLA MC68EC030 USER'S MANUAL 12-31

•

12-32

Table 12-7. Vee and GND Pin Assignments

Pin Group vcc GND

Address Bus C6, D10 C5, C7, CS, E11

Data Bus L6, K10 J11, LS, L7, L5

ECS, SIZX, DS, AS, DBEN, CBREQ, RIW K4 J3

FCO-FC2, RMC, OCS, ClOUT, BG D4 E3

Internal Logic, RESET, STATUS, REFILL, Misc. H3, F2, F11, H11 L8, G3, F3, G11

To reduce the amount of noise in the power supplied to the MC68EC030 and
to provide for instantaneous current requirements, common capacitive de
coupling techniques should be observed. While there is no recommended
layout for this capacitive decoupling, it is essential that the inductance be
tween these devices and the MC68EC030 be minimized to provide sufficiently
fast response time to satisfy momentary current demands and to maintain
a constant supply voltage. It is suggested that a combination of low, middle,
and high-frequency, high-quality capacitors be placed as close to the
MC68EC030 as possible (e.g., a set of 10 mF, 0.1 mF, and 330 pF capacitors
in parallel provides filtering for most frequencies prevalent in a digital sys
tem). Similar decoupling techniques should also be observed for other VLSI
devices in the system.

In addition to the capacitive decoupling of the power supply, care must be
taken to ensure a low-impedance connection between all MC68EC030 VCC
and GND pins and the system power supply planes. Failure to provide con
nections of sufficient quality between the MC68EC030 power supply pins and
the system supplies will result in increased assertion delays for external
signals, decreased voltage noise margins, and possible errors in internal
logic.

MC68EC030 USER'S MANUAL MOTOROLA

SECTION 13
ELECTRICAL CHARACTERISTICS

The following paragraphs provide information on the maximum rating and
thermal characteristics for the MC68EC030. Detailed information on timing
specifications for power considerations, DC electrical characteristics, and AC
timing specifications can be found in the MC68EC030/D, MC68EC030 Tech
nical Summary.

13.1 MAXIMUM RATINGS

Rating Symbol

Supply Voltage* VCC

Input Voltage Vin

Operating Temperature Range TA

Storage Temperature Range Tstg

Value

-0.3 to + 7.0

-0.5 to + 7.0

o to 70

-55 to 150

Unit

V

V

°C

°C

This device contains protective cir
cuitry against damage due to high
static voltages or electrical fields;
however, it is advised that normal
precautions be taken to avoid ap
plication of any voltages higher than
maximum-rated voltages to this
high-impedance circuit. Reliability
of operation is enhanced if unused

*A continuous clock must be supplied to the MC68EC030 when it is powered inputs are tied to an appropriate
up. logic voltage level (e.g., either GND

or VCC).

13.2 THERMAL CHARACTERISTICS - PGA PACKAGE

Characteristic Symbol Value Rating

Thermal Resistance - Plastic °CIW
Junction to Ambient 6JA TBD*
Junction to Case 6JC TBD*

*To Be Determined

MOTOROLA MC68EC030 USER'S MANUAL 13-1

•

•
13-2 MC68EC030 USER'S MANUAL MOTOROLA

SECTION 14
ORDERING INFORMATION AND
MECHANICAL DATA

This section contains the pin assignments and package dimensions of the
MC68EC030. In addition, detailed information is provided to be used as a
guide when ordering.

14.1 STANDARD MC68EC030 ORDERING INFORMATION

Package Type
Pin Grid Array

RP Suffix

MOTOROLA

Frequency
(MHz)
25.0
40.0

Temperature
O°C to 70°C
O°C to 70°C

Order Number
MC68EC030RP25
MC68EC030RP40

MC68EC030 USER'S MANUAL 14-1

III

14.2 PIN ASSIGNMENTS - PIN GRID ARRAY (RP SUFFIX)

14-2

The Vee and GND pins are separated into three groups to provide individual
power supply connections for the address bus buffers, data bus buffers, and
all other output buffers and internal logic.

Pin Group Vee GND

Address Bus C6, D10 C5, C7, C9, E11

Data Bus L6, K10 J11, L9, L7, L5

ECS, SIZx, DS, AS, DBEN, CBREQ, RIW K4 J3

FCO-FC2, RMC, OCS, ClOUT, BG D4 E3

Internal Logic, RESET, STATUS, REFILL, Misc. H3, F2, F11, H11 L8, G3, F3, G11

N 00 0 000 000 0 0 0 0
031 028 026 025 023 021 019 018 016 015 013 011 D8

MOO 0 000 000 0 0 0 0
DBEN ECS D29 D27 D24 D22 D20 D17 D14 D12 D9 D6 D3

L 000 000 000 0 0 0 0
CIIN SIZO R1ii D30 GND VCC GND GND GND D10 D7 D4 D2

K 000 0
CBREQ DS SIZ1 VCC

000
CBACK AS GND

H 000
BERR HALT VCC

GOO 0
STERM DSACK1 GND

F 000
DSACKO VCC GND

E o o o
CLK AVEC GNO

D o 0 0 0"
- " FC2 FCO OCS,," VCC

" " "

e 000"00 o
FC1 ClOUT,," BGACK A1 GND Vee

B 000 0 0 o
RMC ,," BG A31 A29 A27 A25 ---,

A 01 0 0 0 0 o
BR: AO A30 A28 A26 A24

1

2 4

MC68EC030
BOTTOM

VIEW

o 0 0 0
VCC D5 D1 DO

000
GND STATUS RERLL

000
VCC CDIS IPLO

000
GND IPL2 IPL1

000
VCC RESET NC'

o o 0
GNO NC' IPENO

o 0 o 0
VCC AS A3 A2

00000 o 0
GND A18 GND A11 A9 AS A4

00000 o 0
A22 A20 A16 A14 A12 A8 A7

00000 o 0
A23 A21 A19 A17 A15 A13 A10

7 9 10 11 12 13

MC68EC030 USER'S MANUAL MOTOROLA

14.3 PACKAGE DIMENSIONS

MC68EC030
RP SUFFIX PACKAGE
CASE 789F-01

~-----v------~
G

N @@@@@@@@@ OH~}{~Mr--L-
M @@@@@@@@ @ oH~}-{<»-f-r-
L @@@@@@@@@@@@@
K @@@@ @@@@
J @@@ @@@
H @@@ @@@
G @@@ @@@

.L F @@@ @@@
--L E @@@ @@@

D @@@ @@@

B @@@@@@@@@@@@@
A @@@@@@@@@@@@@

G

l
c @@@@ @@@@

L 1 2 3 4 5 6 7 8 9 10 11 12 13

C D 124 PL
I -< I±ll---~~I

MILUMETERS

DIM MIN MAX
A 34.04 35.05

B 34.04 35.05

C 2.92 3.18

D 0.44 0.55

G 2.54BSC

K 4.32 4.95
L 1.02 1.52

M 2.79 3.81

V 30.48BSC

MOTOROLA

INCHES

MIN MAX
1.340 1.380

1.340 1.380

0.115 0.135

0.017 0.022

0.100 BSC

0.170 0.195

0.040 0.060

0.110 0.150

1.200BSC

NOTES:
1. DIMENSIONING AND TOLERANCING

PER Y14.5M.1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION D INCLUDES LEAD ANISH.

-$-
-e-
1..

cp 0.76 (0.030) @ T A®IB®I

cp 0.76 (0.030) @ X

0.17 (0.007) @ T

MC68EC030 USER'S MANUAL 14-3

-

III

14-4 MC68EC030 USER'S MANUAL MOTOROLA

APPENDIX A
MC68EC030 NEW INSTRUCTIONS

This appendix gives details of the new instructions for the MC68EC030
embedded controller. Refer to M68000 PM/AD, M68000 Programmer's Ref
erence Manual, for details of the other MC68EC030 instructions .

MOTOROLA MC68EC030 USER'S MANUAL A-l

•

•

PMOVE Move to/from ACU Registers

Operation:

Assembler
Syntax:

Attributes:

If supervisor state
then (Source) • MRn or MRn • (Destination)
else TRAP

PMOVE MRn,(ea)
PMOVE (ea),MRn

Size = (Word, Long, Quad)

PMOVE

Description: Moves the contents of the source effective address tothe ACx reg
ister or moves the contents of the ACx register to the destination effective
address.

The instruction is a long-word operation for the access control. registers (ACO
and AC1). It is a word operation for the ACU status register (ACUSR).

Writing to the ACx registers enables or disables the access control register
according to the E bit written. If the E bit is set to one, the access control register
is enabled. If the E bit is zero, the register is disabled.

Condition Codes:
Not affected.

ACUSR:
Not affected (unless the ACUSR is specified as the destination operand).

Instruction Format (for ACUSR):

15 14 13 12 11 10

EFFECTIVE ADDRESS
1 1 1 1 0 0 0 0 0 0

MODE I REGISTER

0 1 1 0 0 0 RIW 0 0 0 o I o I o I o I 0 I 0

Instruction Fields (for ACUSR):
Effective Address field - Specifies the memory location for the transfer.
RIW field - Specifies the direction of transfer:

o - Memory to ACUSR
1 - ACUSR to memory

A-2 MC68EC030 USER'S MANUAL MOTOROLA

PMOVE Move to/from ACU Registers PMOVE
NOTE

The syntax of assemblers for the MC68851 use the symbol PSR for the
ACUSR. The syntax of assemblers for the MC68030 uses the symbols
TIO and TI1 for ACO and AC1.

Instruction Format (for ACx registers):

15 14 13 12 11 10

I 0 I EFFECTIVE ADDRESS
1 1 1 1 0 0 0 0 0 MODE I REGISTER

0 0 0 P REG RIW 0 0 0 01010101010

Instruction Fields (for ACx registers):
Effective Address field - Specifies the memory location for the transfer.
P Reg field - Specifies the ACx register:

010 - Access control register O.
011 - Access control register 1.

RIW field - Specifies the direction of transfer:
o - Memory to ACUSR
1 - ACUSR to memory

MOTOROLA MC68EC030 USER'S MANUAL A-3

•

•

PTEST

Operation:

Assembler
Syntax:

Attributes:

Test an Address

If supervisor state
then address status. ACUSR
else TRAP

PTESTR (function code),(ea)
PTESTW (function code),(ea)

Unsized

PTEST

Description: This instruction searches the ACX registers for the address descriptor
corresponding to the (ea) field and sets the bit of the ACUSR according to the
status of the descriptor.

The (function code) operand is specified in one of the following ways:
1. Immediate - Three bits in the command word.
2. Data Register - The three least significant bits of the data register spec

ified in the instruction.
3. Source Function Code Register.
4. Destination Function Code Register.

The effective address is the address to test.

Condition Codes:
Not affected.

ACUSR:

I x I x I x o I x I x. I x I 0 I 0 I AC 0 I 0 I 0 I x x I x
X=May be 0 or 1

The AC bit is set if a match occurred in either (or both) of the ACx registers.

Instruction Field:

15 14 13 12 11 10

I 0 I EFFECTIVE ADDRESS
1 1 1 1 0 0 0 0 0

MODE I REGISTER

1 0 0 0 0 0 RIW 0 REG I FC

A-4 MC68EC030 USER'S MANUAL MOTOROLA

PTEST Test an Address PTEST
Instruction Fields:

Effective field - Specifies the address to be tested. Only control alterable
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode

Dn - - (xxx).W 111

An - - (xxx).L 111

(An) 010 reg. number:An #(data) -

(An)+ - -
-(An) - -

(d16,An) 101 reg. number:An (d16,PC) -
(da,An,Xn) 110 reg. number:An (da,PC,Xn) -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

([bd,An,Xnl.od) 110 reg. number:An ([bd,PC, Xnl.od) -

([bd,Anl.Xn,od) 110 reg. number:An ([bd,PCl.Xn,od) -

RIW field - Specifies simulating a read or write bus cycle:
0- Write
1 - Read

Register

000

001

-

-

-

-
-

-

Reg field - Specifies an address register for the instruction. When the A field
contains 0, this field must contain O.

FC field - Function code of address to be tested:
10XXX - Function code is specified as bits XXX.
01 DOD - Function code is specified as bits 2:0 of data register DOD.
00000 - Function code is specified as SFC register.
00001 - Function code is specified as DFC register.

NOTE

The syntax for assemblers for the MC68030 is PTESTR (function
code),(ea),#O and PTESTW (function code),(ea),#O.

MOTOROLA MC68EC030 USER'S MANUAL A-5

-
A-6 MC68EC030 USER'S MANUAL MOTOROLA

INDEX

-A-
Absolute Long Address Mode, 2-19
Absolute Short Address Mode, 2-19
ACO, 1-9, 2-5, 9-3ff
AC1, 1-9, 2-5, 9-3ff
Access Control Unit, 1-2, 1-12, 9-3ff
Access Time Calculations, Memory, 12-16ff
Accesses, Read-Modify-Write, 6-9
Acknowledge, Breakpoint, 7-78, 8-8
Activity,

Controller,
Even Alignment, 11-9
Odd Alignment, 11-10

Data Bus, 12-12
Actual Instruction Cache Case, 11-10
ACU, 1-2, 1-12, 9-3ff
ACUSR 1-5, 1-9, 2-5, 9-3, 9-4, 9-7
Adapter Board,

MC68020,12-1
Signal Routing, 12-2

Address Bus, 5-4, 7-4, 7-33ff, 12-6
Address Encoding, CPU Space, 7-72
Address Error Exception, 8-17, 10-68
Address Offset Encoding, 7-10
Address Register

Direct Mode, 2-10
Indirect Modes, 2-10ff
Indirect Index (Base Displacement) Mode, 2-12
I ndi rect Index (8-Bit Displacement) Mode, 2-12
Indirect Mode, 2-10
Indirect Postincrement Mode, 2-10
Indirect Predecrement Mode, 2-11

Address Registers, 1-6, 2-4
Address Space Types, 4-4
Address Strobe Signal, 5-5, 7-3, 7-4, 7-21ff
Addressing,

Capabilities, 2-25
Compatibility, M68000, 2-35
Indexed, 2-26
Indirect, 2-27
Indirect Absolute Memory, 2-28
Mode Summary, 2-32
Modes, 1-9, 2-8
Structure, 2-36

Aids, Debugging, 12-21
Arbitration, Bus, 7-101
Arithmetic/Logical Instruction,

Immediate, Timing Table, 11-41
Timing Table, 11-40

AS Signal, 5-5, 7-3, 7-4, 7-21ff
Assignment, Pin, 14-2
Asynchronous

Bus Operation, 7-30

Byte
Read Cycle, 32-Bit Port, Timing, 7-36
Read Cycle Flowchart, 7-34
Read-Modify-Write Cycle, 32-Bit Port, Timing,

7-46
Write Cycle, 32-Bit Port, Timing, 7-36

Long-Word Read Cycle Flowchart, 7-34
Read Cycle, 7-33

32-Bit Port, Timing, 7-36
Read-Modify-Write Cycle, 7-47

Flowchart, 7-47
Sample Window, 7-3
Word

Read Cycle, 32-Bit Port, Timing, 7-36
Write Cycle, 32-Bit Port, Timing, 7-42

Write Cycle, 7-40
32-Bit Port, Timing, 7-41
Flowchart, 7-40

Autovector Interrupt Acknowledge Cycle, 7-74
Timing, 7-75

Autovector Signal, 5-8, 7-6, 7-32, 7-76ff, 8-18
AVEC Signal, 5-8, 7-6, 7-32, 7-76ff, 8-18
Average No Cache Case, 11-8
AO-A 1 Signals, 7-8, 7-9, 7-22ff
AO-A31 Signals, 5-4, 7-4, 7-33ff
AO-A7, 1-7

-8-

BERR Signal, 5-9, 6-10,7-6, 7-30ff, 8-6, 8-21ff
BG Signal, 5-8,7-46, 7-103ff
BGACK Signal, 5-8, 7-101ff
Binary-Coded Decimal Instruction Timing Table,

11-42
Binary-Coded Decimal Instructions, 3-10
Bit,

CA,10-34
CD, 6-21
CED,6-22
CEI,6-23
CI,6-22
Clear Data Cache, 6-21
Clear Entry in Data Cache, 6-22
Clear Entry in Instruction Cache, 6-23
Clear Instruction Cache, 6-22
Data Burst Enable, 6-21
DBE,6-21
DR, 10-36
ED, 6-22
EI,6-23
Enable Data Cache, 6-22

MOTOROLA MC68EC030 USER'S MANUAL INDEX-l

Enable Instruction Cache, 6-23
FD,6-22
FI,6-23
Freeze Data Cache, 6-22
Freeze Instruction Cache, 6-23
IBE,6-22
Instruction Burst Enable, 6-22
PC, 10-34
WA, 6-21
Write Allocate, 6-21

Bit Field
Instruction Timing Table, 11-46
Instructions, 3-9
Operations, 3-31

Bit Manipulation
Instruction Timing Table, 11-45
Instructions, 3-8

BKPT Instruction, 7-78, 8-20
Block Diagram, 1-2
BR Signal, 5-8, 7-46, 7-64, 7-1 o 1ft
Branch on Coprocessor Condition Instruction, 10-13
Breakpoint Acknowledge, 7-78ff, 8-8

Cycle, 7-78
Exception Signaled, Timing, 7-80
Timing, 7-79

Flowchart, 7-78
Breakpoint Instruction, 7-78, 8-19

Exception, 8-19
Buffer,

Instruction Fetch Pending, 11-5
Write Pending, 11-6

Burst
Cycle,7-63,12-16
Mode Cache Filling, 6-10, 7-27
Operation, 7-63

Flowchart, 7-65
Bus,

Address, 5-4, 7-4, 7-33tt
Arbitration, 7-101 .

Bus Inactive, Timing, 7-109
Control,7-105
Flowchart, 7-102
Latency, 11-62
State Diagram, 7-106
Timing, 7-104

Control Signals, 7-3
Controller, 11-5tf
Data, 5-4,7-5, 7-33ff, 12-10ff, 12-16ff
Error,

Late, STERM, Timing, 7-90
Late, Third Access, Timing, 7-91
Late, With DSACKx, Timing, 7-88
Second Access, Timing, 7-92
Exception, 8-6, 10-68
Signal, 5-9, 6-11, 7-5, 7-30tt, 8-6, 8-21ft
Without DSACKx Timing, 7-87

Errors, 7-82, 10-68
Exceptions, 7-81
Fault Recovery, 8-25

Operation,
Asynchronous, 7-30
Synchronous, 7-31ff

Synchronization, 7-99
Timing, 7-99ff

Transfer Signals, 7-1
Bus Grant, 7-103

Signal, 5-8, 7-46, 7-103ff
Bus Grant Acknowledge, 7-105

Signal, 5-8, 7-101ff
Bus Request, 7-103

Signal, 5-8, 7-46, 7-64, 7-101ff
Busy Primitive, 10-35
Byte

Data Select, 7-28
Read Cycle, Asynchronous,

Flowchart, 7-35
32-Bit Port, Timing, 7-36

Select Logic, 12-10ff
Write Cycle, Asynchronous, 32-Bit Port,

Flowchart 7-40,
Timing, 7-42

CA Bit, 10-34
CAAR, 1-9, 2-5, 6-23
Cache,

-c-

Data, 1-14,6-6,11-5,11-16
Filling, 6-10, 7-27

Burst Mode, 6-15
Single Entry, 6-10

Instruction, 1-14,6-1,6-4,11-4
Interactions, 7-27
Organization, 6-3
Reset, 6-20

Cache Address Register, 1-9,2-5,6-23
Cache Burst Acknowledge Signal, 5-7, 6-15ff, 7-30ff
Cache Burst Request Signal, 5-7, 6-15ff, 7-6,

7 -32, 7 -51ft
Cache Control Register, 1-9, 2-4, 6-1, 6-3, 6-20ff
Cache Disable Signal, 5-9, 6-3
Cache Inhibit Input Signal, 5-6, 6-3, 6-9-6-10, 6-15,

7-3, 7-27ff, 9-4
Cache Inhibit Output Signal, 5-6, 6-3, 6-9, 7-27ft,

9-4
CACR, 1-9, 2-4, 6-1, 6-3, 6-20ff
Calculate Effective Address Timing Table, 11-29
Calculate Immediate Effective Address Timing

Table, 11-31
Calculations, Execution Time, 11-6ff
Capabilities, Addressing, 2-25
CAS Instruction, 7-46

Example, 3-24
Case,

Actual Instruction Cache, 11-10
Average No Cache, 11-8
Best, 11-7

INDEX-2 MC68EC030 USER'S MANUAL MOTOROLA

Instruction Cache, 11-6
CAS2 Instruction, 7-46

Example, 3-24
CBACK Signal, 5-7, 6-16ft, 7-3, 7-32ff, 7-51ff
CBREQ Signal, 5-7, 6-16ff, 7-6, 7-32, 7-51ff,
CCR, 2-4, 3-14
CD Bit, 6-21
CDIS Signal, 5-9, 6-3
CED Bit, 6-22
CEI Bit, 6-23
Changing Privilege level, 4-3
CI Bit, 6-22
CIIN Signal, 5-6, 6-3, 6-9ff, 7-3, 7-31, 7-33ff, 9-4
ClOUT Signal, 5-6, 6-3, 6-9ff, 7-33ft, 9-4
CIR, 10-8, 10-29

Command, 10-30
Condition, 10-31
Control, 10-29
Instruction Address, 10-32
Operand, 10-32
Operand Address, 10-32
Operation Word, 10-30
Register Select, 10-32
Response, 10-29
Restore, 10-30
Save, 10-30

Clear Data Cache Bit, 6-21
Clear Entry in Data Cache Bit, 6-21
Clear Entry in Instruction Cache Bit, 6-23
Clear Instruction Cache Bit, 6-23
ClK Signal, 5-10, 7-54ff
Clock Signal, 5-10, 7-54ff
Command CIR, 10-30
Command Words, Illegal, Coprocessor Detected,

10-60
Compare and Swap Instruction, 3-24, 7-46
Compatibility, M68000 Addressing, 2-35
Computation, Condition Code, 3-15
Concu rrent Operation, 10-3
Condition CIR, 10-31
Condition Code

Computation, 3-15
Register, 2-4, 3-14

Condition Tests, 3-16
Conditional Branch Instruction Timing Table, 11-47
Connections, Power Supply, 5-10, 12-29
Considerations,

Ground, 12-29
Power, 12-29

Control, Bus Arbitration, 7-105
Control CIR, 10-29
Control Instruction Timing Table, 11-48
Controller,

Activity,
Even Alignment, 11-9
Odd Alignment, 11-10

Bus, 11-5
Generated Reset Timing, 7-111
Microbus, 11-6

Resource Block Diagram, 11-3
Coprocessor,

Communication Cycle, 7-81
Conditional Instructions, 10-12
Context Restore Instruction, 10-26
Context Save Instruction, 10-24
Data Processing Exceptions, 10-61
DMA, 10-6
Format Words, 10-21
General Instruction Protocol, 10-11
General Instructions, 10-9
Identification Code, 10-4
Instruction Format, 10-4
Instruction Summary, 10-69ft
Instructions, 3-21
Interface, 10-1, 10-5ft
MC68881,12-6
MC68882, 12-6
Non-DMA, 10-6
Reset, 10-69
Response Primitive, 10-32
Response Primitive Format, 10-34
State Frames, 10-20
System Related Exceptions, 10-61

Coprocessor Detected
Exceptions, 10-61
Format Errors, 10-61
Illegal Command Words, 10-60
Illegal Condition Words, 10-60
Protocol Violations, 10-59

Coprocessor Interface Register, 10-8, 10-29
CpID, 7-81,10-4
cpBcc Instruction, 10-14
cpDBcc Instruction, 10-17
cpRESTORE Instruction, 10-26
cpSAVE Instruction, 10-26
cpScc Instruction, 10-15
cpTRAPcc Instruction, 10-18
cpTRAPcc Instruction Exception, 10-66
CPU Space, 7-68ff, 10-5ft
CPU Space Address Encoding, 7-69
Cycle,

Asynchronous Read, 7-33
Breakpoint Acknowledge, 7-78, 7-79ff
Burst, 7-63, 12-16
Coprocessor Communication, 7-81
Interrupt Acknowledge, 7-73ff
Interrupt Acknowledge, Autovector, 7-76

Cycles, Data Transfer, 7-30

-0-

Data, Immediate, 2-20
Data Buffer Enable Signal, 5-6, 7-5, 7-33ff
Data Burst Enable Bit, 6-21
Data

Bus, 5-4, 7-5, 7-33ff, 12-10ff
Activity, 12-12

MOTOROLA MC68EC030 USER'S MANUAL INDEX-3

Requirements, Read Cycle, 7-10
Write Enable Signals, 7-26

Cache, 1-14, 6-1, 6-6, 11-5, 11-16 .
Movement Instructions, 3-4
Port Organization, 7-7
Register Direct Mode, 2-10
Registers, 1-7,2-2
Select, Byte, 7-25
Transfer

Cycles, 7-33
Transfer Mechanism, 7-6

Types, 1-9
Data Strobe Signal, 5-5, 7-5, 7-30ff
Data Transfer and Size Acknowledge Signals, 5-6,

6-11, 6-14, 7-5,7-6, 7-30ff
DBE Bit, 6-21
DBEN Signal, 5-6, 7-5, 7-33ff
Debugging Aids, 12-21
Delay, Input, 7-2
Description, General, 1-1
DFC, 1-8, 2-5
Differences,

MC68020 Hardware, 12-3
MC68020 Software, 12-5

DMA Coprocessor, 10-6
Double Bus Fault, 7-99
Doubly-Linked List

Deletion Example, 3-27
Insertion Example, 3-29

DR Bit, 10-35
DS Signal, 5-5, 7-5, 7-30ff
DSACKO Signal, 5-6, 6-11, 6-14, 7-6, 7-7, 7-27ff,
DSACK1 Signal, 5-6, 6-11, 6-14,7-6,7-7, 7-27ff,
Dynamic Bus Sizing, 7-7, 7-19, 7-24
DO-D31 Signals, 5-4, 7-10, 7-33ff
DO-D7, 1-6

-E-
ECS Signal, 5-5, 7-3, 7-29ff
ED Bit, 6-22
Effective Address Encoding Summary, 2-21
EI Bit, 6-23 '
Empty/Reset Format Word, 10-22
Enable Data Cache Bit, 6-22
Enable Instruction Cache Bit, 6-23
Encoding,

Address Offset, 7-10
Size Signal, 7-10

Errors, Bus, 7-81
EU,6-16
Example,

CAS Instruction, 3-24
CAS2 Instruction, 3-24
Doubly-Linked List

Deletion, 3-27
Insertion, 3-29

Exception,
Address Error, 8-7, 10-68
Breakpoint Instruction, 8-19
Bus Error, 8-6, 10-68
cpTRAPcc Instruction, 10-66
Format Error, 8-12
Illegal Instruction, 8-8
Instruction Trap, 8-7
Interrupt, 8-12, 10-67
Priority, 8-15
Privilege Violation, 8-9, 10-65
Processing, 4-5

Sequence, 8-1
State, 4-1 ff

Reset, 8-4, 8-5
Return from, 8-23
Stack Frame, 4-5, 8-30
Trace, 8-10, 10-67
Unimplemented Instruction, 8-8
Vector

Assignments, 8-2
Numbers, 8-2

Vectors, 4-6
Exception Related

Instruction Timing Table, 11-49
Operation Timing Table, 11-49

Exceptions,
Bus, 7-81
Bus Error, 8-6

Coprocessor Data Processing, 10-61
Coprocessor Detected, 10-61
Coprocessor System Related, 10-61
F-Line Emulator, 8-9, 10-64
Multiple, 8-21
Primitive Processing, 10-62

Execution Time Calculations, 11-6ff
Execution Unit, 6-16
Extended Instruction Timing Table, 11-42
External Cycle Start Signal, 5-5, 7-3, 7-29

-F-
F-Li ne, 10-4

Emulator Exceptions, 8-9, 10-64
Fault, Double Bus, 7-99
FCO-FC2 Signals, 5-3, 6-6, 7-4, 7-33ff
FD Bit, 6-22
Fetch Effective Address Timing Table, 11-25
Fetch Immediate Effective Address Timing Table,

11-26
FI Bit, 6-23
Flowchart,

Asynchronous Byte Read Cycle, 7-36
Asynchronous Long Word Read Cycle, 7-34
Asynchronous Read-Modify-Write Cycle, 7-47
Asynchronous Write Cycle, 7-40
Breakpoint Acknowledge, 7-78

INDEX-4 MC68EC030 USER'S MANUAL MOTOROLA

Burst Operation, 7-65
Bus Arbitration, 7-102
Interrupt Acknowledge Cycle, 7-74
Synchronous Long-Word Read Cycle, 7-52
Synchronous Read-Modify-Write Cycle, 7-59
Synchronous Write Cycle, 7-56

Format,
Coprocessor Instruction, 10-4
Coprocessor Response Primitive,10-32
Instruction, 3-1
Instruction Description, 3-17

Format Error Exception, 8-12
Format Errors,

Coprocessor Detected, 10-61
Main Controller Detected, 10-68

Format Word,
Empty/Reset, 10-22
Invalid, 10-23
Not Ready, 10-22
Valid, 10-23

Format Words, Coprocessor, 10-21
Formula, Instruction Cache Case Time, ll-l1ff
Freeze Data Cache Bit, 6-22
Freeze Instruction Cache Bit, 6-23
Function Code Registers, 1-8, 2-5
Function Codes, 5-3, 6-6, 7-4, 7-33ff

-G-
General Description, 1-1
GND Pin Assignments, 12-32
Grant, Bus, 7-101
Ground Considerations, 12-29
Groups, Signal, 5-1

-H-
Halt Operation, 7-97

Timing, 7-98
Halt Signal, 5-9, 7-6, 7-30ff
HALT Signal, 5-9, 7-6, 7-30ff
Halted State, 4-1

-1-

IBE Bit, 6-22
Identification Code, Coprocessor, 10-4
Illegal Instruction Exception, 8-8
Immediate Data, 2-20
Index, Signal, 5-2
Indexed Addressing, 2-25ff
Indirect Absolute Memory Addressing, 2-28
Indirect Addressing, 2-28
Information, Ordering, 14-1
Initial Reset Timing, 7-110

Input Delay, 7-2
Instruction,

BKPT, 7-78, 8-19
Branch on Coprocessor Condition, 10-13
Breakpoint, 7-78, 8-19
CAS, 7-46
CAS2,7-46
Compare and Swap, 3-24, 7-46
Coprocessor Context Restore, 10-26
Coprocessor Context Save, 10-24
cpBcc, 10-14
cpDBcc, 10-17
cpRESTORE, 10-26
cpSAVE, 10-26
cpScc, 10-15
cpTRAPcc, 10-18
No Operation, 7-99
NOP,7-99
Set on Coprocessor Condition, 10-15
STOP, 8-12
TAS,7-46
Test and Set, 7-46
Test Coprocessor Condition, Decrement and

Branch, 10-16
Trap on Coprocessor Condition, 10-18

Instruction Address CIR, 10-32
Instruction Boundary Signals, 12-33
Instruction Burst Enable Bit, 6-22
Instruction Cache, 1-14, 6-1, 6-4, 11-4

Case-,11-6
Instruction Description

Format, 3-17
Notation, 3-3

Instruction Fetch Pending Buffer, 11-5
Instruction Format, 3-1

Summary, 3-19-3-24
Instruction Set, 1-12
Instruction Timing Tables, 11-23
Instruction Trace, Real-Time, 12-25ff
Instruction Trap Exception, 8-7
Instructions,

ACU,3-12
Binary Coded Decimal, 3-10
Bit Field, 3-9
Bit Manipulation, 3-8
Coprocessor, 3-21

Conditional, 10-12
General, 10-9

Data Movement, 3-4
Integer Arithmetic, 3-5
Logical, 3-6
Multiprocessor, 3-13
Privileged, 8-9
Program Control, 3-10
Rotate, 3-7
Shift, 3-7
System Control, 3-1.1

Integer Arithmetic Instructions, 3-5
Interactions, Cache, 7-27

MOTOROLA MC68EC030 USER'S MANUAL INDEX-5

Interface,
Coprocessor, 10-1, 10-5ff
Memory, 12-16

Internal Microsequencer Status Signal, 5-10, 7-99,
8-3,8-17

Internal Operand Representation, 7-8
Internal to External Data Bus Multiplexer, 7-11
Interrupt Acknowledge Cycle, 7-73

Flowchart, 7-74
Timing, 7-75

Interrupt
Cycle, Spurious, 7-76
Exception, 8-12, 10-67
Latency, 11-52
Levels, 8-14

Interrupt Pending Signal, 5-7, 8-13ff
Interrupt Priority Level Signals, 5-7, 7-73, 8-12ff
Invalid Format Word, 10-23
IPEN~nal, 5-7, 8-13ff
IPLO-IPL2 Signals, 5-7, 7-73, a-12ff

-J-

Jump Effective Address Timing Table, 11-34

-L-
Late Bus Error,

STERM, Timing, 7-90
Third Access, Timing, 7-91
With DSACKx, Timing, 7-88

Late Retry Operation, Burst, Timing, 7-96
Latency,

Bus Arbitration, 11-52
I nterru pt, 11-52

Levels, Interrupt, 8-14
Linked List

Deletion Example, 3-27
Insertion Example, 3-29

Logic, Byte Select, 12-10
Logical Instructions, 3-6
Long-Word Operand ~uest,

Burst, CBACK and CIIN Asserted, Timing, 7-69
Burst Fill Deferred, Timing, 7-68
Burst Request

CBACK Negated, Timing, 7-67
Wait States, Timing, 7-66

Long-Word Read Cycle,
Asynchronous, Flowchart, 7-34
Synchronous, Flowchart, 7-52
16-Bit Port, Timing, 7-38
32-Bit Port, Timing, 7-38
8-Bit Port, ClOUT Asserted, Timing, 7-37

Long-Word to Long-Word Transfer,
Misaligned, 7-23

Cachable, 7-22

Long-Word to Word Transfer, 7-17
Misaligned, 7-20

Long-Word Write Cycle,
16-Bit Port, Timing, 7-44
8-Bit Port, Timing, 7-43

-M-
Main Controller Detected

Format Errors, 10-68
Protocol Violations, 10-62

MC68020
Adapter Board, 12-1
Hardware Differences, 12-3
Software Differences, 12-5

MC68851 Signals, 12-4
MC68881 Coprocessor, 12-6
MC68882 Coprocessor, 12-6
Mechanism, Data Transfer, 7-6
Memory Interface, 12-6
Memory Access Time Calculations, 12-16ff
Memory Data Organization, 2-5
Memory Indirect Postindexed Mode, 2-13
Memory Indirect Preindexed Mode, 2-14
Memory Interface, 12-16

Access Time Calculation, 12-16
Burst Mode, 12-21

Microbus Controller, 11-6
Microsequencer, 11-4
Mid-Instruction Stack Frame, 10-56
Mode,

Absolute
Long Address, 2-19
Short Address, 2-19

Address Registers
Direct, 2-10
Indirect, 2-10
Indirect Displacement, 2-11
Indirect Index (Base Displacement), 2-12
Indirect Index (8-Bit Displacement), 2-12
Indirect Postincrement, 2-10
Indirect Predecrement, 2-11

Data Register Direct, 2-10
Memory Indirect

Postindexed,2-13
Preindexed, 2-14

Program Counter
Indirect Displacement, 2-15
Indirect Index (Base Displacement), 2-16
Indirect Index (8-Bit Displacement), 2-16
Memory Indirect Postindexed, 2-13
Memory Indirect Preindexed, 2-14

Model, Programming, 1-6, 1-7, 9-4
Modes, Addressing, 1-9,2-8
MOVE Instruction,

Special-Purpose, Timing Table, 11-38
Timing Table, 11-36

Multiple Exceptions, 8-21

INDEX-6 MC68EC030 USER'S MANUAL MOTOROLA

Multiplexer, Data Bus, Internal to External, 7-11
Multiprocessor Instructions, 3-13
M68000 Family, 1-4,2-35

-N-

Nested Subroutine Calls, 3-31
No Operation Instruction, 7-99
Non-DMA Coprocessor, 10-6
NOP Instruction, 7-99
Normal Processing State, 4-1
Not Ready Format Word, 10-22
Notation, Instruction Description, 3-3
Null Primitive, 10-36ff

-0-

OCS Signal, 5-4, 7-4, 7-33ff
Operand, Misaligned, 7-16, 7-18
Operand Address CIR, 10-33
Operand CIR, 10-32
Operand Cycle Start Signal, 5-4, 7-3, 7-31ff
Operands, 2-1
Operation,

Burst, 7-53
Concurrent, 10-3
Halt, 7-97
Reset, 7-110
Retry, 7-93

Operation Word CIR, 10-30
Operations, Bit Field, 3-31
Ordering Information, 14-1
Organization,

Cache, 6-3
Data Port, 7-7
Memory Data, 2-5
Register Data, 2-2

Overlap, 11-7

-p-

Package Dimensions, 14-3
Performance Tradeoffs, 11-1
Pin Assignments, 14-2

GND, 12-32
VCC, 12-32

Pipeline, 1-14, 11-4
Pipeline Refill Signal, 5-10, 6-5
Pipeline Synchronization, 3-32
Post-Instruction Stack Frame, 10-58
Power Supply Connections, 5-10, 12-29ff
Pre-Instruction Stack Frame, 10-54
Primitive,

Busy, 10-35
Coprocessor Response, 10-13, 10-32
Evaluate and Transfer Effective Address, 10-41

Evaluate Effective Address and Transfer Data,
10-42

Null, 10-36ff
Supervisor Check, 10-38
Take Address and Transfer Data, 10-46
Take Mid-Instruction Exception, 10-56
Take Post-Instruction Exception, 10-57
Take Pre-Instruction Exception, 10-54
Transfer from Instruction Stream, 10-40
Transfer Main Controller Control Register, 10-48
Transfer Multiple Coprocessor Registers, 10-50
Transfer Multiple Main Controller Registers,

10-49
Transfer Operation Word, 10-39
Transfer Single Main Controller Register, 10-47
Transfer Status Register and ScanPC, 10-52
Transfer to/from Top of Stack, 10-46
Write to Previously Evaluated Effective Address,

10-43
Primitive Processing Exceptions, 10-66
Privilege Level, 4-2

Changing, 4-3
Supervisor, 4"2
User, 4-3

Privilege Violation Exception, 8-7, 10-65
Privileged Instructions, 8-9
Processing, Exception, 4-5
Program Control Instructions, 3-10
Program Counter

Controller General Instruction, 10-11
Indirect Mode, 2-12
Indirect Index (Base Displacement) Mode, 2-12
Indirect Index (8-Bit Displacement) Mode, 2-12
Memory Indirect Postindexed Mode, 2-13
Memory Indirect Preindexed Mode, 2-14

Programming Model, 1-4,9-4
Protocol

Violations,
Coprocessor Detected, 10-59
Main Controller Detected, 10-62

-0-

Queue, 2-38

-R-

RIW Signal, 5-5, 7-4, 7-36ff
Ratings, Maximum, 13-1
Read Cycle,

Asynchronous, 32-Bit Port, Timing, 7-36
Data Bus Requirements, 7-10
Synchronous, 7-51

CIIN Asserted, CBACK Negated, Timing, 7-53
Read-Modify-Write

Accesses, 6-9

MOTOROLA MC68EC030 USER'S MANUAL INDEX-7

Cycle,
Asynchronous, 7-47
Asynchronous, Byte, 32-Bit Port, Timing, 7-48
Asynchronous, Flowchart, 7-47
Synchronous, 7-58
Synchronous, CIIN Asserted, Flowchart, 7-60
Synchronous, Flowchart, 7-59

Signal, 5-5, 7-4, 7-46ff
ReadlWrite Signal, 5-5, 7-4, 7-46ft
Real Time Instruction Trace, 12-25ff
Recovery,

Bus Fault, 8-25
RTE,8-23

REFill Signal, 5-10, 6-5
Register,

ACU Status, 1-5, 1-9,2-5,9-4,9-7
Cache Address, 1-9, 2-5, 6-23
Cache Control, 1-9, 2-4, 6-1, 6-3, 6-20ff
Condition Code, 2-4, 3-14
Coprocessor Interface, 10-8, 10-29
Status, 1-8, 2-5, 6-5
Vector Base, 1-8,2-5
Data Organization, 2-2

Register Select CIR, 10-32
Registers,

Access Control, 1-9, 2-5, 9-3ft
Address, 1-6, 2-4
Data, 1-7,2-2
Function Code, 1-8, 2-5

Representation, Internal Operand, 7-8
Request, Bus, 7-103
Requirements, Data Bus, Read Cycle, 7-10
Reset,

Cache, 6-20
Coprocessor, 10-69
Exception, 8-4, 8-5
Operation, 7-110
Signal, 5-9, 7-110, 9-3

RESET Signal, 5-9, 7-110, 9-3
Resource Scheduling, 11-2
Response CIR, 10-29
Restore CIR, 10-30
Restore Operation Timing Table, 11-50
Retry Operation, 7-93

late,
Asynchronous, Timing, 7-94
Burst, Timing, 7-96
Synchronous, Timing, 7-95

Return from Exception, 8-23
RMC Signal, 5-5, 7-4, 7-46ff
Rotate Instructions, 3-7
RTE

Bus Fault Recovery, 8-25
Instruction, 8-23ft

-S-

Save CIA, 10-30
Save Operation Timing Table, 11-50

ScanPC, 10-15, 10-18, 10-33
Scheduling, Resource, 11-2
Sequence, Exception Processing, 8-1
Set, Instruction, 1-12, 1-13, 3-1ff
Set on Coprocessor Condition Instruction, 10-15
SFC, 1-8,2-5
Shift Instructions, 3-7
Shift/Rotate Instruction Timing Table, 11-44
Signal,

Address Strobe, 5-5, 7-3, 7-4, 7-21ff
AS, 5-5, 7-3, 7-4, 7-21ft
Autovector, 5-8, 7-6, 7-32, 7-76ft, 8-18
AVEC, 5-8, 7-6, 7-32, 7-76ft, 8-18
BERR, 5-9, 6-10, 7-6, 7-30ff, 8-6, 8-21ff
BG,5-8, 7-46, 7-103ft
BGACK, 5-8, 7-101ft
BR, 5-8, 7-46, 7-64, 7-101ft
Bus Error, 5-9, 6-11, 7-5, 7-30ft, 8-6, 8-21ft
Bus Grant, 5-8, 7-46, 7-103ft
Bus Grant Acknowledge, 5-8, 7-101ff
Bus Request, 5-8, 7-46, 7-64, 7-101ff
Cache Burst Acknowledge, 5-7, 6-15, 7-30ft
Cache Burst Request, 5-7, 6-15ff, 7-6, 7-32,

7-51ft
Cache Disable, 5-9, 6-3
Cache Inhibit Input, 5-6, 6-3, 6-9, 7-27ft
Cache Inhibit Output, 5-6, 6-3, 6-9, 7-27ft, 9-4
CBACK, 5-7, 6-16, 7-3, 7-32ff
CBREQ, 5-7, 6-16, 7-6, 7-32, 7-51
CDIS, 5-9, 6-3
CIIN, 5-6, 6-3, 6-9, 7-3, 7-31ff
ClOUT, 5-6, 6-3, 6-9ft, 7-33ff, 9-4
ClK, 5-10, 7-55
Clock, 5-10, 7-55
Data Buffer Enable, 5-6, 7-5, 7-30ft
Data Strobe, 5-5, 7-5, 7-30ft,
DBEN, 5-6, 7-5, 7-30
DS, 5-5, 7-5, 7-30ff
DSACKO, 5-6, 6-11, 6-14, 7-6, 7-7, 7-27ff
DSACK1, 5-6, 6-11,6-14,7-6,7-7, 7-27ff
ECS, 5-5, 7-3, 7-29ff
External Cycle Start, 5-5, 7-3, 7-29ff
Halt, 5-9, 7-6, 7-30ff
HALT, 5-9, 7-6, 7-30ff
Internal Microsequencer Status, 5-10, 7-99, 8-3,

8-17

Interrupt Pending, 5-7, 8-13
IPEND, 5-7, 8-13
OCS, 5-4, 7-4, 7-33ff
Operand Cycle Start, 5-4, 7-4, 7-33ff
Pi~line Refill, 5-10, 6-5
RIW, 5-5, 7-4, 7-46ff
Read-Modify-Write, 5-5, 7-4, 7-46ff
ReadlWrite, 5-5, 7-4, 7-46ff
REFill, 5-10, 6-5
Reset, 5-9, 7-110, 9-3
RESET, 5-9, 7-110, 9-3
RMC, 5-5, 7-4, 7-46ff
SIZO, 5-4, 7-4, 7-8, 7-9, 7-11, 7-14ff

INDEX-8 MC68EC030 USER'S MANUAL MOTOROLA

SIZ1, 5-4, 7-4, 7-8, 7-9, 7-11, 7-14ff
STATUS, 5-10, 7-99, 8-3, 8-6, 8-7
STERM, 5-6, 6-14, 6-16, 7-3, 7-6, 7-27ff
Synchronous Termination, 5-6, 6-16, 7-3, 7-6,

7-27ff,
Signal Groups, 5-1
Signal Index, 5-2
Signal Routing, Adapter Board, 12-2
Signal Summary, 5-11
Signals,

AO-A 1, 7-8, 7-9, 7-22ff
AO-A31, 5-4, 7-4, 7-33ff
Bus Control, 7-3
Bus Transfer, 7-1
Controller Halted, 12-28
Data Bus Write Enable, 7-26
Data Transfer and Size Acknowledge, 5-6, 6-11,

6-14, 7-6, 7-7, 7-27ff
DO-D31, 5-4, 7-10, 7-33
FCO-FC2, 5-3, 6-6, 7-4, 7-33ff
Function Code, 5-3, 6-6, 7-4, 7-33ff
Instruction Boundary, 12-33
Interrupt Exception, 12-23
Interr~riority Level, 5-7, 7-73ff, 8-12
IPLO-IPL2, 5-7, 7-73ff, 8-12
MC68851,12-4
Other Exception, 12-24
Status, 5-10
Trace Exception, 12-23
Transfer Size, 5-4, 7-4, 7-8, 7-9, 7-14ff

Single Entry Cache Filling, 6-10
Single Operand Instruction Timing Table, 11-43
Size Signal Encoding, 7-10
Sizing, Dynamic Bus, 7-7, 7-17, 7-25
SIZO Signal, 5-4, 7-4, 7-8, 7-9, 7-14
SIZ1 Signal, 5-4, 7-4, 7-8, 7-9, 7-14
Software Bus Fault Recovery, 8-27
Space, CPU, 7-68, 7-70, 10-5ff
Special Status Word, 8-26
Spurious Interrupt Cycle, 7-76
Stack,

System, 2-36
User Program, 2-37

Stack Frame,
Exception, 4-5, 8-30
Mid-Instruction, 10-56
Post-I nstruction, 10-58
Pre-Instruction, 10-54

State,
Diagram, Bus Arbitration, 7-106
Exception Processing, 4-1
Halted, 4-1
Normal Processing, 4-1

State Frames, Coprocessor, 10-20
States, Wait, 11-18
Status Register, 1-8, 2-5, 6-5
Status Word, Special, 8-26
STATUS Signal, 5-10, 7-99, 8-3, 8-6, 8-7
STERM Signal, 5-6, 6-14, 6-16, 7-3, 7-6, 7-27ff

. Subroutine Calls, Nested, 3-31
Summary,

Addressing Mode, 2-32
Coprocessor Instruction, 10-69ff
Effective Address Encoding, 2-21
Signal, 5-11

Supervisor Check Primitive, 10-38
Supervisor Privilege Level, 4-2
Synchronization,

Bus, 7-99
Pipeline, 3-32

Synchronous
Bus Operation, 7-31ff
Cycle Signal Assertion Results, 7-83
Long Word Read Cycle Flowchart, 7-52
Read Cycle, 7-51
CIIN Asserted, CBACK Negated, Timing, 7-53
Read-Modify-Write Cycle, 7-58
Read-Modify-Write Cycle, CIIN Asserted, Timing,

7-60
Read-Modify-Write Cycle Flowchart, 7-59
Termination Signal, 5-6, 6-14, 6-16, 7-3, 7-6,

7-27ff,
Write Cycle,

Wait States, ClOUT Asserted, Timing, 7-57
Flowchart, 7-56

System
Control Instructions, 3-11
Stack, 2-36

-T-

Tables, Instruction Timing, 11-23
Take Address and Transfer Data Primitive, 10-46
Take Mid-Instruction Exception Primitive, 10-56
Take Post-Instruction Exception Primitive, 10-57
Take Pre-Instruction Exception Primitive, 10-54
TAS Instruction, 7-46
Test and Set Instruction, 7-46
Tests, Condition, 3-16
Timing,

Asynchronous
Byte Read Cycle, 32-Bit Port, 7-36
Byte Read-Modify-Write Cycle, 32-Bit Port, 7-46
Byte Write Cycle, 32-Bit Port, 7-36
Read Cycle, 32-Bit Port, 7-33
Word Read Cycle, 32-Bit Port, 7-36
Word Write Cycle, 32-Bit Port, 7-42
Write Cycle, 32-Bit Port, 7-41

Autovector Interrupt Acknowledge Cycle, 7-74
Breakpoint Acknowledge Cycle, 7-79

Exception Signaled, 7-80
Bus Arbitration, 7-104

Bus Inactive, 7-109
Bus Error,

Late, STERM, 7-90
Late, Third Access, 7-91
Late, With DSACKx, 7-88

MOTOROLA MC68EC030 USER'S MANUAL INDEX-9

Second Access, 7-92
Without DSACKx, 7-87

Bus Synchronization, 7-99ff
Controller-Generated Reset, 7-111
Halt Operation, 7-98
Initial Reset, 7-110
Interrupt Acknowledge Cycle, 7-75
Long Word,

Operand Request, Burst, CBACK and CIIN
Asserted,7-69

Operand Request, Burst Fill Deferred, 7-68
Operand Request, Burst Request, CBACK

Negated,7-67
Operand Request, Burst Request, Wait States,

7-66
Read Cycle, 16-Bit Port, 7-38
Read Cycle, 32-Bit Port, 7-38
Read Cycle, 8-Bit Port, ClOUT Asserted, 7-37
Write, 7-13
Write Cycle, 16-Bit Port, 7-44
Write Cycle, 8-Bit Port, 7-43

Misaligned
Long-Word to Word Transfer, 7-19
Word to Word Transfer, 7-21

Retry Operation, Late,
Asynchronous, 7-94
Burst, 7-99
Synchronous, 7-95

Synchronous
Read Cycle, CIIN Asserted, CBACK Negated,

7-53
Read-Modify-Write Cycle, CINN Asserted, 7-60
Write Cycle, Wait States, ClOUT Asserted, 7-57

Table Search, 11-38
Write, Long-Word, 7-13
Write, Word, 7-15

Timing Table,
Arithmetic/Logical Instruction, 11-40

Immediate, 11-41
Binary Coded Decimal Instruction, 11-42
Bit Field Instruction, 11-46
Bit Manipulation Instruction, 11-45
Calculate Effective Address, 11-29
Calculate Immediate Effective Address, 11-31
Conditional Branch Instruction, 11-47
Control Instruction, 11-48
Exception Related

Instruction, 11-49
Operation, 11-49

Extended Instruction, 11-42
Fetch Effective Address, 11-25
Fetch Immediate Effective Address, 11-26
Jump Effective Address, 11-34
MOVE Instruction, 11-36

Special Purpose, 11-38
Restore Operation, 11-50
Save Operation, 11-50
Shift/Rotate Instruction, 11-44
Single Operand Instruction, 11-43

Trace Exception, 8-10, 10-67

Signals, 12-26
Tradeoffs, Performance, 11-1
Transfer,

Long Word to Long Word, Misaligned Cachable,
7-22

Long Word to Word, 7-17
Misaligned

Cachable Word to Long Word, 7-20
Cachable Word to Word, 7-22
Long Word to Long Word, 7-23
Long Word to Word, 7-20
Word to Word, 7-20
Word to Word, Timing, 7-21

Word to Byte, 7-14
Transfer Main Controller Control Register Primitive,

10-48
Transfer Multiple Coprocessor Registers Primitive,

10-50
Transfer Multiple Main Controller Registers

Primitive, 10-49
Transfer Operation Word Primitive, 10-39
Transfer Single Main Controller Register Primitive,

10-47
Transfer Size Signals, 5-4, 7-4, 7-8, 7-9, 7-11, 7-14
Transfer Status Register and ScanPC Primitive,

10-52
Transfer to/from Top of Stack Primitive, 10-46

-U-

Unimplemented Instruction Exception, 8-8
Unit, Execution, 6-16
User Privilege Level, 4-2, 4-3
User Program Stack, 2-37

-v-
Valid Format Word, 10-23
VBR, 1-8, 2-5
VCC Pin Assignments, 12-32
Vector

Base Register, 1-8, 2-5
Numbers, Exception, 8-2

Vectors, Exception, 4-6

WA Bit, 6-21
Wait States, 11-18
Window,

-w-

Asynchronous Sample, 7-3
Word, Special Status, 8-26
Write Allocate Bit, 6-21
Write Pending Buffer, 11-6
Write to Previously Evaluated Effective Address

Primitive, 10-43

INDEX-10 MC68EC030 USER'S MANUAL MOTOROLA

Introduction

Data Organization and Addressing Capabilities _

Instruction Set Summary _

Processing States _

Signal Description __

On-Chip Cache Memories __

Bus Operation _

Exception Processing _

Access Control Unit _

Coprocessor Interface Description _

Instruction Execution Timing III
Applications Information _

Electrical Characteristics _

Ordering Information and Mechanical Data _

Appendix A

Index

• Introduction

• Data Organization and Addressing Capabilities

• Instruction Set Summary

III Processing States

III Signal Description

__ On-Chip Cache Memories

_ Bus Operation

_ Exception Processing

iii Access Control Unit

_ Coprocessor Interface Description

III Instruction Execution Timing

_ Applications Information

_ Electrical Characteristics

11:1 Ordering Information and Mechanical Data

_ AppendixA

Index
A26578 PRINTED IN THE USA 11/90 GTE 13913 25,000 MPU YGABAA

® MOTOROLA

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No.2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong.

