
• •

• •
• •

•

•

•

•

•

• •

M 68851UM/AD
REV2

• •
• •

PAGED MEMORY
MANAGEMENT
UNIT
USER'S MANUAL
THIRD EDITION

® MOTOROLA

MC68851 USER'S MANUAL

Introduction ..

Overview of System Operation lEI
Signal Description lEI

Bus Operation Description •

Address Translation II
Instruction Set Processor ..

Protection •

Breakpoints •

Coprocessor Interface •

Access Level Control Interface m
Operation Timings III

Electrical Specifications II
Ordering Information and Mechanical Data lEI

Instruction Set •

Hardware Considerations II
Software Considerations •

® MOTOROLA

MC68851

PAGED MEMORY MANAGEMENT
UNIT USER'S MANUAL

Second Edition

PRENTICE HALL, Englewood Cliffs, N.J. 07632

© 1989, 1988 by Motorola Inc.

All rights reserved. No part of this book may be
reproduced, in any form or by an means,
without permission in writing from the publisher.

This document contains information on a new product. Specifications and
information herein are subject to change without notice. Motorola reserves
the right to make changes to any products herein to improve functioning or
design. Although the information in this document has been carefully re
viewed and is believed to be reliable, Motorola does not assume any liability
arising out ofthe application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of
others.

Motorola, Inc. general policy does not recommend the use of its components in life support appli
cations where in a failure or malfunction of the component may directly threaten life of injury. Per
Motorola Terms and Conditions of Sale, the user of Motorola components in life support applications
assumes all risk of such use and indemnifies Motorola against all damages.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-566993-6

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New De/hi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Paragraph
Number

TABLE OF CONTENTS

Title

Section 1
Introduction

Page
Number

1.1 MC68851 Overview.. 1-1
1.1.1 Address Translation.. 1-1
1.1.2 Protection Mechanism ... 1-2
1.1.3 Breakpoints... 1-2
1.1.4 M68000 Family Instruction Set Extensions............................. 1-2
1.1.5 The Coprocessor Concept.. 1-3
1.2 Hardware Overview.. 1-4
1.2.1 Coprocessor Interface.. 1-7
1.2.2 Access Level Control Interface... 1-8
1.2.3 Breakpoint Acknowledge Interface....................................... 1-8
1.2.4 Bus Operations.. 1-9

Section 2
Overview of System Operation

2.1 System Configuration... 2-1
2.2 Address Translation... 2-2
2.2.1 Address Translation Cache... 2-2
2.2.2 Address Translation Tables.. 2-3
2.2.3 Protection Mechanism... 2-4

Section 3
Signal Description

3.1 Logical Address Bus (LA8 through LA31) 3-2
3.2 Physical Address Bus (PA8 through PA31).............. 3-2
3.3 Shared Address Bus (AO through A7) ... 3-2
3.4 Function Code (FCO through FC3).. 3-2
3.5 Data Bus (DO through 031) .. 3-3
3.6 Transfer Size (SIZO, SIZ1)... 3-3
3.7 Bus Control Signals.. 3-3
3.7.1 Read-Modify-Write (RMC)... 3-3
3.7.2 Logical Address Strobe (LAS).. 3-4
3.7.3 Physical Address Strobe (PAS) .. 3-4
3.7.4 Data Strobe (OS).. 3-4
3.7.5 Read/Write (R/W).. 3-4
3.7.6 Data Transfer and Size Acknowledge (OSACKO, OSACK1).......... 3-5
3.7.7 Data Buffer Disable (OBOIS).. 3-5
3.8 Bus Exception Control Signals.. 3-5
3.8.1 Reset (RESET)................ 3-6
3.8.2 Halt (HALT)... 3-6
3.8.3 Bus Error (BERR).. 3-6

MC68030 USER'S MANUAL MOTOROLA
v

Paragraph
Number

3.9
3.10
3.11
3.12
3.12.1
3.12.2
3.12.3
3.13
3.13.1
3.13.2
3.13.3
3.13.4
3.13.5
3.14

4.1
4.1.1
4.1.2
4.1.2.1
4.1.2.2
4.1.2.3
4.1.2.4
4.1.2.5
4.1.2.6
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.2
4.2.2.1
4.2.2.2
4.2.3
4.2.3.1
4.2.3.2

4.2.3.3
4.2.3.4
4.2.3.5
4.2.3.6
4.3
4.3.1
4.3.1.1

MOTOROLA
vi

TABLE OF CONTENTS
(Continued)

Page
Title Number

Cache Load Inhibit (CLI) 3-7
Asynchronous Control (ASYNC) 3-7
Clock (CLK)... 3-7
Physical Bus Arbitration.. 3-7

Physical Bus Request (PBR) .. 3-8
Physical Bus Grant (PBG)... 3-8
Physical Bus Grant Acknowledge (PBGACK)........................... 3-8

Logical Bus Arbitration................... 3-8
Logical Bus Request In (LBRI).. 3-8
Logical Bus Request Out (LBRO).. 3-8
Logical Bus Grant In (LBGI) 3-8
Logical Bus Grant Out (LBGO)... 3-9
Logical Bus Grant Acknowledge (LBGACK) 3-9

Signa'i Summary.. 3-9

Section 4
Bus Operation Description

Reset Operation... 4-2
Initialization of Internal State... 4-2
Bus Interface Initialization 4-2

DO 4-3
Bus Size (D1, D2).. 4-3
Decision Timeout Delay (D3, D4) 4-3
Fast Table Search (D5)... 4-4
Early Processing Startup (D6) .. 4-4
Assertion Inhibit (D7)... 4-5

Address Translation... 4-5
Signal Usage During Address Translation.............................. 4-5

Address Buses... 4-5
Address Strobes.......... 4-6
Bus Cycle Termination Signals....................................... 4-6

Synchronous versus Asynchronous Address Translation........... 4-7
Synchronous Operation....... 4-7
Asynchronous Operation.. 4-8

Functional Descriptions.. 4-8
Normally Terminated Address Translation (Non-CPU Space) 4-8
Address Translation Terminated by Relinquish and Retry

Sequence.................................... 4-10
Address Translation Terminated by Bus Error 4-14
CPU Space Access with Relinquish Request...................... 4-15
Translation of CPU Space Accesses 4-17
CPU Space Access with Relinquish and Retry.. 4-17

Table Search Operations.......... ... 4-19
Operand Transfer Mechanism... 4-21

Dynamic Bus Sizing.... 4-21

MC68030 USER'S MANUAL

Paragraph
Number

4.3.1.2
4.3.1.3
4.3.2
4.3.2.1
4.3.2.2
4.3.2.3
4.3.2.4
4.2.3.4.1
4.3.2.4.2
4.3.2.4.3
4.3.2.4.4
4.3.2.5
4.3.2.5.1
4.3.2.5.2
4.3.3
4.4
4.4.1
4.4.1.1
4.4.1.2
4.4.2
4.4.3
4.4.4
4.4.5
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.6
4.7
4.7.1
4.7.2

5.1
5.1.1
5.1.2
5.1.2.1
5.1.2.2
5.1.2.3
5.1.2.4
5.1.2.5
5.1.3
5.1.3.1

TABLE OF CONTENTS
(Continued)

Title

Effects of Dynamic Bus Sizing
Address, Size, and Data Bus Relationships

Physical Bus Operation
Read Cycle
Write Cycle
Read-Modify-Write Cycle
Bus Error and Halt Operation

Bus Error Operation .. .
Retry Operation
Halt Operation
The Relationship of DSACKx, BERR, and HALT

Asynchronous versus Synchronous Physical Bus Operation
Asynchronous Operation .. .
Synchronous Operation

Bus Cycle Sequence
Logical Bus Arbitration

Requesting the Logical Bus
Alternate Master Requesting the Logical Bus
MC68851 Requesting the Logical Bus

Receiving the Logical Bus Grant
Passing the Logical Bus Grant
Acknowledgement of Logical Bus Mastership
Read-Modify-Write Cycles

Physical Bus Arbitration
Requesting the Physical Bus
Receiving the Physical Bus Grant
Acknowledgement of Physical Bus Mastership
Physical Bus Arbitration Control

Concurrent Dissociate Logical and Physical Bus Activity
Bus Operation Examples .. .

Table Search Operation
Logical Bus Arbitration

Section 5
Address Translation

Address Translation Tables
General Translation Table Structure
Variations in Translation Table Structure

Contiguous Memory
Indirection .. .
Table Sharing Between Tasks
Paging of Tables .. .
Dynamic A"ocation of Tables

Functions Controlled by Address Translation Tables
Protection .. .

Page
Number

4-24
4-24
4-26
4-28
4-29
4-30
4-32
4-32
4-32
4-35
4-40
4-41
4-41
4-41
4-42
4-42
4-43
4-43
4-46
4-48
4-48
4-49
4-49
4-51
4-54
4-54
4-54
4-55
4-55
4-58
4-58
4-64

5-1
5-2
5-5
5-5
5-8
5-8
5-9
5-12
5-12
5-12

MC68030 USER'S MANUAL MOTOROLA
vii

Paragraph
Number

5.1.3.2
5.1.3.3
5.1.4
5.1.4.1
5.1.4.1.1
5.1.4.1.2
5.1.4.1.3
5.1.4.1.4
5.1.4.1.5
5.1.4.1.6
5.1.4.2
5.1.5
5.1.5.1
5.1.5.2
5.1.5.2.1
5.1.5.2.2
5.1.5.2.3
5.1.5.2.4
5.1.5.3
5.1.5.3.1
5.1.5.3.2
5.1.5.3.3
5.1.5.3.4
5.1.5.3.5
5.1.5.3.6
5.1.5.3.7
5.1.5.3.8
5.1.5.3.9
5.1.5.3.10
5.1.5.3.11
5.1.5.3.12
5.1.5.3.13
5.1.5.3.14
5.1.5.3.15
5.1.5.3.16
5.1.5.3.17
5.1.6
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.1.3
5.2.2
5.2.2.1
5.2.2.2

MOTOROLA
viii

TABLE OF CONTENTS
(Continued)

Title
Page

Number

ATC Management... 5-13
Data Cache Inhibit... 5-14

Root Pointers... 5-14
Root Pointer Format "........................ 5-14

Lower/Upper (LlU)... 5-14
Limit.. 5-14
Shared Globally (SG) ... 5-15
Descri pto r Type (DT).. 5-15
Table Address.. 5-15
Unused ... 5-15

Selection of Root Poi nter "............ 5-16
Translation Descriptors.. 5-16

Descriptor Formats.. 5-17
Descriptor Types... 5-17

Table Descriptors.. 5-17
Type-1 and Type-2 Page Descriptors 5-17
Indirect Descriptors.. 5-17
Invalid Descriptors... 5-17

Descriptor Field Definitions ".................... 5-17
Lower/Upper (LlU)... 5-17
Limit... 5-21
Read Access Level (RAL)... 5-21
Write Access Level (WAL) ;................ 5-21
Shared Globally (SG) ... 5-21
Supervisor (S) .. 5-21
Gate (G).. 5-21
Cache Inhibit (C).. 5-21
Lock (L)... 5-22
Modified (M) .. ; 5-22
Unused (U).. 5-22
Write Protect (WP)... 5-23
Descriptor Type (DT).. 5-23
Table Address.. 5-23
Page Address... 5-23
Indirect Address.. 5-23
Unused... 5-23

Protections.. 5-24
Address Translation Cache... 5-24

Internal Organization... 5-24
Tag Section... 5-24
Data Section............. .. 5-24
Replacement Algorithm.. 5-25

ATC Operation... 5-26
Address Translation by the ATC..................................... 5-26
Translation Modes.. 5-26

MC68030 USER'S MANUAL

Paragraph
Number

TABLE OF CONTENTS
(Continued)

Title
Page

Number

5.3 Root Pointer Table... 5-27
5.3.1 Loading the RPT... 5-27
5.3.2 Flushing the RPT.. 5-27
5.4 Detail of Table Search Operations... 5-28

6.1
6.1.1
6.1.1.1
6.1.1.2
6.1.1.3
6.1.1.4
6.1.1.5
6.1.1.6
6.1.2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.3
6.1.3.1
6.1.3.2
6.1.3.3
6: 1.3.4
6.1.3.5
6.1.3.6
6.1.4
6.1.5
6.1.6
6.1.7
6.1.7.1
6.1.7.2
6.1.7.3
6.1.8
6.1.8.1
6.1.8.2
6.1.8.3
6.1.8.4
6.1.8.5
6.1.8.6
6.1.8.7
6.1.8.8
6.1.8.9
6.1.8.10
6.1.9

Section 6
Instruction Set Processor

Registers............................... 6-1
Root Pointer Registers... 6-1

Lower/Upper (LlU)... 6-2
Limit....... 6-2
Shared Globally (SG)... 6-2
Descriptor Type (DT) ;.. 6-3
Table Address.. 6-3
Unused.. 6-3

PMMU Cache Status (PCSR) ... 6-4
Task Alias (TA)........... 6-4
Flush (F)... 6-4
Lock Warning (LW)...... 6-4

Translation Control (TC)................. 6-4
Enable (E)... 6-5
Supervisor Root Pointer Enable (SRE) 6-5
Fu nction Code Looku p (FCL).. 6-5
Page Size (PS).. 6-5
Initial Shift (IS) 6-6
Table Index (TIA, TIB, TIC, and TID) 6-6

Current Access Level (CAL)... 6-6
Validate Access Level (VAL).. 6-6
Stack Change Control (SCC).. 6-7
Access Control (AC).. 6-7

Module Control (MC) ... 6-7
Access Level Control (ALC) ... 6-8
Module Descriptor Size (MDS)....................................... 6-8

PMMU Status Register (PSR) .. 6-8
Bus Error (B).. 6-8
Limit Violation (L) ... 6-8
Supervisor Violation (S) ... 6-8
Access Level Violation (A)... 6-9
Write Protected (W)...................................... 6-9
Invalid (I)... 6-9
Modified (M).. 6-9
Gate (G).. 6-9
Globally Shared (C)... 6-9
Level Number (N) ... 6-9

Breakpoint Acknowledge Data (BADO-BAD7) 6-10

MC68030 USER'S MANUAL MOTOROLA
ix

Paragraph
Number

6.1.10
6.1.10.1
6.1.10.2
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.5.1
6.2.5.2
6.2.5.3
6.2.6
6.2.6.1
6.2.6.2
6.2.6.3
6.2.6.4
6.2.7
6.2.7.1
6.2.7.2
6.2.7.3
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.1.5
6.3.1.6
6.3.1.7
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.2.5

7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5

MOTOROLA
x

TABLE OF CONTENTS
(Continued)

Page
Title Number

Breakpoint Acknowledge Control (BACO-BAC7)....................... 6-10
Breakpoint Enable (BPE) 6-10
Skip Count .. 6-10

Instructions.. 6-11
Data Movement (PMOVE)................ 6-11
Parameter Validation (PVALlD) 6-11
Address Attribute Testing (PTEST) 6-12
Cache Pre-Loading (PLOAD).. 6-12
Cache Flushing 6-12

PFLUSH/PFLUSHS... 6-12
PFLUSHR. ... 6-12
PFLUSHA.. 6-13

Conditionals... ... 6-13
Branch Conditionally (PBcc) 6-13
Decrement and Branch (PDBcc)............ 6-13
Set Conditionally (PScc) ... 6-13
Trap Conditionally (PTRAPcc) .. 6-13

State Save and Restore.. 6-13
PSAVE. 6-13
PRESTORE .. 6-13
State Formats.. 6-13

Exceptions...... 6-14
Bus Error .. 6-14

Bus Error Signaled from Main Memory........................... 6-15
Limit Field Exceeded.. 6-16
Attempted User Access of Supervisor Address.......... 6-16
Access Level Violation ... 6-16
Write Protection Violation... 6-16
Invalid Address.. 6-16
Read-Modify-Write (RMW) Cycle 6-17

Coprocessor Interface Exceptions... 6-17
F-Line Emulation... 6-17
Protocol Violation... 6-17
Configuration Error... 6-18
Illegal Operation Error.. 6-18
Access Violation... 6-18

Section 7
Protection

Protection Using Address Space Encodings. 7-1
Supervisor/User and User/Supervisor Protection..................... 7-1
User/User Protection... 7-3
Write Protection... 7-4
Access (Read and Write) Protection...................................... 7-5
Protection Examples... 7-7

MC68030 USER'S MANUAL

Paragraph
Number

7.2
7.2.1
7.2.2
7.2.3
7.2.3.1
7.2.3.2
7.2.4
7.2.5

7.2.6
7.2.7
7.2.8

8.1
8.1.1
8.1.2
8.2

9.-1
9.1.1
9.1.2
9.1.2.1
9.1.2.2
9.1.2.3
9.1.2.4
9.1.2.5
9.1.2.6
9.1.2.7
9.1.2.8
9.1.2.9
9.1.2.10
9.1.2.11
9.1.3
9.2
9.2.1
9.2.2
9.2.2.1
9.2.2.2
9.2.2.3
9.2.2.4

TABLE OF CONTENTS
(Continued)

Page
Title Number

Protection Using the Access level Protection Mechanism.. 7-8
Overview of Operation.. 7-8
Access Level Protection Mechanism Operation....................... 7-11
Constructing Address Spaces Using Access Levels 7-12

Write Protection............ 7-14
Access (Read and Write) Protection.................. 7-14

Transfers Between Access Levels... 7-15
Passing Parameters Between Routines at Different Access

Levels ... 7-15
Security.. 7-16
Relationship Between Access Levels and Supervisor Mode 7-16
Considerations for Non-32-Bit Systems...... 7-17

Section 8
Breakpoints

Instruction Breakpoint Mechanism... 8-1
Breakpoint Acknowledge Data Registers................................ 8-2
Breakpoint Acknowledge Control Registers.............. 8-2

Breakpoint Usage... 8-3

Section 9
Coprocessor Interface

Coprocessor Interface Signal Connection 9-1
Selecti ng the MC68851 .. 9-1
Coprocessor Interface Registers.... 9-2

Response CIR ($00) ... 9-3
Control CIR ($02) .. 9-4
Save CIR ($04)........................ 9-4
Restore CIR ($06).. 9-5
Operation Word CIR ($08)... 9-5
Command CIR ($OA).. 9-5
Condition CIR ($OE)... 9-6
Operand CIR ($10)................... 9-6
Register Select CIR ($14)......... 9-6
Instruction Address CIR ($18)... 9-7
Operand Address CIR ($1C)... 9-7

Interprocessor Transfers.. 9-7
Coprocessor Instructions... 9-8

Instruction ProtocoL.. 9-8
Response Primitives.. 9-9

Null Primitive ... 9-10
Evaluate Effective Address and Transfer Data Primitive....... 9-11
Transfer Single Main Processor Register Primitive 9-12
Supervisor Check Primitive : _................................... 9-12

MC68030 USER'S MANUAL MOTOROLA
xi

Paragraph
Number

9.2.2.5
9.2.2.6
9.2.2.7
9.2.2.7.1
9.2.2.7.2
9.2.2.8
9.3
9.3.1
9.3.1.1
9.3.1.2
9.3.1.3
9.3.1.4
9.3.1.5
9.3.2
9.3.3
9.3.3.1
9.3.3.2
9;3.4
9.3.4.1
9.3.4.2
9.3.4.3
9.3.4.4
9.3.4.5

10.1
10.1.1
10.1.2
10.1.2.1
10.1.2.2
10.1.2.3
10.1.2.4
10.1.2.5
10.2
10.2.1
10.2.2

TABLE OF CONTENTS
(Continued)

Page
Title Number

Evaluate and Transfer Effective Address Primitive... 9-13
Transfer Main Processor Control Register Primitive............ 9-13
Take Exception Primitives 9-14

Take Pre-Instruction Exception Primitive..................... 9-14
Take Post-Instruction Exception Primtiive 9-15

Response Primitive Summary.. 9-16
Instruction Dialogs........................ .. 9-16

General Instructions .. 9-18
PFLUSH Instructions.. 9-18
PLOAD Instructions... 9-20
PMOVE Instructions... 9-22
PTEST Instructions.. 9-25
PVALID Instructions... 9-25

Conditional Instructions... 9-25
Context Switch Instructions.. 9-25

PSAVE... 9-25
PRESTORE .. 9-29

Exception Processing.. 9-30
Take Pre-Instruction Exception....................................... 9-30
Take Post-Instruction Exception..................................... 9-31
F-Line Emulator Exception.. 9-31
Format Exception, PSAVE Instruction.............................. 9-32
Format Exception, PRESTORE Instruction......................... 9-33

Section 10
Access Level Control Interface

Access Level Control Interface Signal Connection......................... 10-1
Selecting the MC68851 ... 10-1
Access Level Control Interface Registers................................ 10-2

Current Level (CL) ALCR ($00).. 10-3
Access Status (AS) ALCR ($04)....................................... 10-3
Increase Access Level (IAL) ALCR ($08)............................ 10-3
Decrease Access Level (DAL) ALCR ($OC) 10-4
Descriptor Address ALCRS ($40 Through $5C)................... 10-4

CALLM and RTM Instructions... 10-6
CALLM· Instruction.. 10-6
RTM Instruction... 10-8

Section 11
Operation Timings

11.1 Factors Affecting Execution Times ... 11-1
11.2 Address Translation Table Search Timing 11-1
11.3 Instruction Timing.. 11-9
11.3.1 Effective Address Calculation.. 11-11
11.3.2 General Instructions.. 11-12

MOTOROLA
xii

MC68030 USER'S MANUAL

Paragraph
Number

11.3.3
11.4
11.5

12.1
12.2
12.3
12.4
12.5
12.6
12.7

13.1
13.2
13.3

A:1
A.2
A.3
A.4

B.1
B.2
B.3
B.3.1
B.3.2
BA
8.4.1
B.4.2
B.5
B.5.1
B.5.2
B.5.3
B.6
B.7

TABLE OF CONTENTS
(Continued)

Title
Page

Number

PSAVE and PRESTORE Instructions 11-13
Interrupt Latency ... 11-13
Bus Arbitration Latency... 11-14

Section 12
Electrical Specifications

Maximum Ratings
Thermal Characteristics - PGA Package
Power Considerations .. .
DC Electrical Characteristics .. .
AC Electrical Specifications - Clock Input
AC Electrical Specifications - All Bus Operations
AC Electrical Specification Definitions

Section 13
Ordering Information and Mechanical Data

Standard MC68851 Ordering Information
Pin Assignments
Mechanical Data

Appendix A
Instruction Set

MC68020/MC68851 Addressing Modes
Operation Description Definitions
Individual Instruction Descriptions .. .
Instruction Format Diagrams

Appendix B
Hardware Considerations

Simple System Configuration .. .
Alternate Logical Bus Masters
Logical Address Space Devices .. .

Logical Address Space Coprocessors
Other Logical Address Space Devices

Access Time Computations
CPU-to-Memory Access Time Computations
MC68851-to-Memory Access Time Computations

External Caches .. .
Logical Cache Implementation .. .
Physical Cache Implementation .. .
A Note on "Instruction-Only" Cache Implementations

Power and Ground Considerations
Test Equipment Considerations .. .

12-1
12-1
12-1
12-2
12-3
12-4

12-10

13-1
13-1
13-2

A-1
A-2
A-2

A-27

B-1
B-3
B-6
B-6
B-7
B-9
B-9
B-9

B-10
B-14
B-17
B-18
B-20
B-20

MC68030 USER'S MANUAL MOTOROLA
xiii

Paragraph
Number

C.1
C.2
C.2.1
C.2.2
C.3
C.4
C.4.1
C.4.2
C.4.3
C.5
C.5.1
C.5.2
C.5.3
C.5.3.1
C.5.3.2
C.5.3.3
C.5.3.4
C.5.3.5
C.5.3.S
C.5.3.7
C.S
C.S.1
C.S.2

MOTOROLA
xiv

TABLE OF CONTENTS
(Concluded)

Page
Title Number

Appendix C
Software Considerations

Context Save and Restore Considerations................................... C-1
Logical DMA Considerations.. C-2

Use of the Land SG Bits.. C-2
Mapping of DMA Activities... C-2

CALLM/RTM Programming Example.. C-3
Multiprocessing Considerations.. C-5

Sharing of Translation Table Structures................................ C-5
Globally Shared Data Areas.. C-5
Remote Manipulation of MCS8851 C-5

Defining and Using Page Tables in an Operating System............... C-S
CPU and Supervisor Root Pointer Registers........................... C-S
Task Memory Map Definition.. C-7
MCS8851 Features and Their Impact on Table Definition........... C-9

Number of Table Levels... C-9
Initial Shift Count .. C-10
Locki ng Entries in the A TC .. C-10
Limit Fields.. C-11
Page Tables at Other than the Lowest Three Level............. C-11
Indirect Descriptors.......... ... C-12
Unused Descriptor Bits .. C-12

Example MCS8851 Paging System Implementation.. C-13
O.S. Allocation Modules for Example System C-18
O.S. Paging System Bus Error Handler Example..................... C-21

MC68030 USER'S MANUAL

Figure
Number

1-1
1-2

2-1
2-2
2-3
2-4

3-1

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9

4-10

4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26 .
4-27
4-28
4-29
4-30
4-31

LIST OF ILLUSTRATIONS

Title

MC68851 Programming ModeL .. .
MC68851 Simplified Block Diagram .. .

Simple System Block Diagram
MC68851 Memory Managed System Simple Block Diagram
MC68851 Address Translation Functional Timing Diagram
MC68851 Translation Table Tree Structure

Functional Signal Groups

Relationship Between External and Internal Signals
Input Sample Window
Synchronous Mode Translation
Synchronous Translation Accessing Logical Cache
Asynchronous Mode Translation (LAS Meets Input Setup Time)
Synchronous Relinquish and Retry
Asynchronous Relinquish and Retry (LAS Misses Input Setup Time)
Synchronous Cycle Terminated by Bus Error
Asynchronous Cycle Terminated by Bus Error

(LAS Meets Input Setup Time).~
Synchronous CPU Space Cycle Accessing MC68851 Registers

Terminated by Relinquish Request
Synchronous CPU Space Read Cycle Accessing MC68851 Register .. .
Synchronous CPU Space Write Cycle Accessing MC68851 Register .. .
Synchronous CPU Space Cycle Accessing Physical Address Space; ..
Typical Physical Address Space Strobe and R/W Generation
MC68851 Interface to Various Port Sizes
Example of Long Word Transfer from 16-Bit Port
Long Word Operand Read Timing (16-Bit Data Port)
Example of Long Word Transfer from Byte Port
Long Word Operand Read Timing (8-Bit Data Port)
Read Cycle Flowchart .. .
Long Word Operand Read Timing (32-Bit Data Port)
Write Cycle Flowchart .. ;
Byte Write Timing Diagram
R~ad-Modify-Write Cycle Flowchart .. .
Read-Modify-Write Cycle Timing Diagram (32-Bit Port)
Bus Error Timing .. .
Delayed Bus Error Timing
Bus Cycle Retry Timing .. .
Delayed Bus Cycle Retry Timing
Halt Operation Timing .. .
Logical Bus Arbitration Flowchart for MC68851 Bus Request

Page
Number

1-6
1-7

2-1
2-2
2-3
2-4

3-1

4-1
4-2
4-9
4-10
4-11
4-12
4-13
4-14

4-15

4-16
4-18
4-19
4-20
4-20
4-22
4-24
4-25

. 4-26
4-27
4-28
4-29
4-30
4-31
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-44

MC68030 USER'S MANUAL MOTOROLA
xv

Figure
Number

LIST OF ILLUSTRATIONS
(Continued)

Title
Page

Number

4-32 Logical Bus Arbitration During Relinquish and Retry Sequence........ 4-45
4-33 Logical Bus Arbitration Signal Inter-Connection............................ 4-46
4-34 Single Alternate Logical Master Bus Request Conditioning Logic...... 4-46
4-35 Relinquish and Retry Operation - MC68851 Arbitration for Logical

Bus Preempted by Bus Request from Higher Priority Logical
Master , '" 4-47

4-36 MC68851 Passes Logical Bus Grant to Alternate Master................. 4-50
4-37 Physical Bus Arbitration Flowchart for Single Request................... 4-51
4-38 Physical Bus Arbitration During Address Translation..................... 4-52
4-33 Physical Bus Arbitration During MC68851 Table Search................. 4-53
4-40 Physical Bus Arbitration State Diagram....................................... 4-56
4-41 Physical Bus Arbitration (Bus Inactive).... 4-57
4-42 Example of Single Buffering Requirements for Support of

Concurrent Logical and Physical Bus Activity.......................... 4-59
4-43 Example of Concurrent Logical and Physical Bus Activity 4-60/4-61
4-44 MC68851 Table Search Example (Table Search with Function Code

Lookup and Two Levels of Long Format Descriptors) 4-62/4-63
4-45 Page Descriptor U Bit Status Update.. 4-65
4-46 Table Pointer U Bit or Page Descriptor U and M Bit Status Update... 4-66
4-47 MC68851 Table Search Operation Interrupted by

Alternate Logical Bus Master.. 4-67

5-1 Simplified MC68851 Table Search Flowchart................................ 5-3
5-2 Derivation of Table Index Fields.. 5-4
5-3 Example Translation Table Tree.. 5-6
5-4 Example Translation Tree Layout in Memory............................... 5-7
5-5 Example Translation Using Contiguous Memory.......................... 5-9
5-6 Example Translation Tree Using Indirect Descriptors 5-10
5-7 Example Translation Tree Using Shared Tables............................ 5-11
5-8 Example Translation Tree with Non-Resident Tables 5-13
5-9 Root Pointer Register Format.. 5-14
5-10 Descriptor Type Determination... 5-.16
5-11 Example Translation Tree Using Different Format Descriptors 5-18
5-12 Short Format Table Descriptor..................................... 5-18
5-13 Long Format Table Descriptor .. 5-19
5-14 Type-1 and Type-2 Short Format Page Descriptors........................ 5-19
5~15 Type-1 Long Format Page Descriptor ... 5-19
5-16 Type-2 Long Format Page Descriptor 5-19
5-17 Short Format Indirect Descriptor... 5-20
5-18 Long' Format Indirect Descriptor.. 5-20
5-19 Short Format Invalid Descriptor.. 5-20
5-20 Long Format Invalid Descriptor ~........ 5-20
5-21 ATC Tag Entry... 5-24
5-22 ATC Data Entry........ 5-25
5-23 Detailed Flowchart of MC68851 Table Search Operation................. 5-29
5-24 Table Search Initialization Detail......................... 5-30

MOTOROLA
xvi

MC68030 USER'S MANUAL

Figure
Number

5-25
5-26
5-27

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13

7-1
7-2
7-3

7-4
7-5

7-6
7-7

7-8
7-9

7-10

8-1
8-2
8-3
8-4
8-5
8-6

8-7

9-1
9-2
9-3
9-4

LIST OF ILLUSTRATIONS
(Continued)

Title

Detail of ATC Entry Creation During Table Search
Detail of Limit Check Procedure
Detailed Flowchart of Descriptor Fetch Operation

Root Pointer Register (CRP, SRP, DRP) Format
Cache Status Register (PCSR) Format
Translation Control Register Format .. .
CAL and VAL Register Formats .: .. .
Stack Change Control Register Format
Access Control Register Format
PMMU Status Register Format
Breakpoint Acknowledge Data Register Format
Breakpoint Acknowledge Control Register
Idle Format Frame
Mid-Coprocessor Format Frame
Breakpoint Enabled Format Frame
Reset Format Frame .. .

Logical Address Map Using Function Code Lookup
Example Translation Tree Using Function Code Lookup
Example Logical Address Map with Shared Supervisor and

User Spaces
Example Translation Tree Using Sand WP Bits to Set Protection
Example Translation Tree Structure for Two Tasks Sharing

a Common Supervisor Table
Example of Protection Mechanism Privilege Hierarchy
Example Logical Address Map for System Using

Access Level Mechanism
Translation Table for Example System
Logical Address Map Using Access Level Information as

Address Information
Logical Address Map Using Access Level Information as

Control Information Only .. .

Breakpoint Acknowledge Cycle Address Encoding
MC68851 Breakpoint Registers
Breakpoint Acknowledge Data Register Format
Breakpoint Acknowledge Control Register Format
Instruction Breakpoint Flowchart .. .
Breakpoint Acknowledge Cycle r MC68851 Supplies

Replacement Opcode , .. .
Breakpoint Acknowledge Cycle - Bus Error Asserted

Coprocessor Interface Address Bus Encoding
MC68851 Coprocessor Interface Register Map
Control CIR Register
Operand CIR Data Alignment

Page
Number

5-30
5-31
5-32

6-1
6-4
6-5
6-6
6-7
6-7
6-8

6-10
6-10
6-14
6-14
6-15
6-15

7-2
7-3

7-4
7-5

7-6
7-8

7-9
7-10

7-13

7-13

8-1
8-2
8-2
8-2
8-4

8-5
8-6

9-1
9-2
9-4
9-7

MC68030 USER'S MANUAL MOTOROLA
xvii

LIST OF ILLUSTRATIONS
(Continued)

Figure Page
Number Title Number

9-5 Coprocessor Instruction General Format..................................... 9-8
9-6 MC68851 Instruction Operation Word... 9-8
9-7 M68000 Coprocessor Response Primitive General Format............... 9-9
9-8 Null Primitive Format.. 9-10
9-9 Evaluate Address and Transfer Data Primitive Format.................... 9-11
9-10 Transfer Single Main Processor Register Primtiive 9-12
9-11 Supervisor Check Primitive Format 9-13
9-12 Evaluate and Transfer Effective Address Primitive Format........ 9-13
9-13 Transfer Main Processor Control Register Primitive Format............. 9-13
9-14 Take Pre-Instruction Exception Primitive Format........................... 9-14
9-15 Pre-Instruction Exception Stack Frame.. 9-14
9-16 Take Post-Instruction Exception Primitive Format.......................... 9-15
9-17 Post-Instruction Stack Frame .. 9-16
9-18 PFLUSH and PFLUSHS Instruction Dialog.................................... 9-19
9-19 PFLUSHA and PFLUSHR Instruction Dialog.................................. 9-20
9-20 PLOAD Instruction Dialog.. 9-21
9-21 PMOVE PMMUreg,(ea) Instruction Dialog.................................... 9-22
9-22 PMOVE (ea),PMMUreg (Root Pointer or TC Registers).................... 9-23
9~23 PMOVE (ea),PMMUreg (CAL, VAL, SCC, AC, PSR, PSCR, BADx,

and BACx Registers) 9-24
9-24 PTEST Instruction Dialog... 9-26
9-25 PVALID Instruction Dialog.. 9-27
9-26 Conditional Instruction Dialog.. ... 9-28
9-27 PSAVE Instruction Dialog.............. 9-28
9-28 PRESTORE Instruction Dialog... 9-29
9-29 Take Pre-Instruction Exception Dialog... 9-30
9-30 Take Post-Instruction Exception Dialog (PVALID Example) 9-31
9-31 Take F-Line Emulation Exception Dialog..................................... 9-32
9-32 PSAVE Format Exception Dialog.. ... 9-32
9-33 PRESTORE Format Exception Dialog.. 9-33

10-1 Access Level Control Interface Logical Address Bus Encoding 10-1
10-2 MC68851 Access Level Control Interface Register Map................... 10-2
10-3 CALLM Instruction Dialog Flowchart........ 10-5
10-4 Access Status Computation Flowchart.... 10-7
10-5 RTM Instruction Dialog Flowchart........ 10-8

12-1 Test Loads.................................... .. 12-3
12-2 Clock Input Timing Diagram... 12-3
12-3 MC68851 Initiated Read Cycle ... Foldout-1
12-4 MC68851 Initiated Write Cycle .. Foldout-2
12-5 Synchronous Mode Translation .. Foldout-3
112-6 Logical Master Relinquish and Retry Timing Diagram Foldout-4
12-7 Logical Bus Arbitration by Asynchronous Master Timing Diagram Foldout-5
12-8 Physical Bus Arbitration Timing Diagram Foldout-6

MOTOROLA
xviii

MC68030 USER'S MANUAL

Figure
Number

LIST OF ILLUSTRATIONS
(Concluded)

Title

12-9 CPU Space Read From MC68851 or From Other Coprocessor

Page
Number

(CLI Asserted by MC68851) Timing Diagram Foldout-7
12-10 CPU Space Write to MC68851 or To Other Coprocessor

(CLI Asserted by MC68851) Timing Diagram Foldout-8
12-11 Reset and Mode Select Timing Diagram Foldout-9
12-12 Drive Levels and Test Points for AC Specifications........................ 12-11

8-1 Example Simple MC68020/MC68851 Hardware Configuration 8-2
8-2 Example MC68020/MC68851 Hardware Configuration with Single

Alternate Logical 8us Master (MC68442)................................ 8-4
8-3 Address/Data 8us Demultiplex Logic for Figure 8-2....................... 8-5
8-4 Example MC68020/MC68851 Hardware Configuration with Logical

Address Space Device (MC68881 FPCP).................... 8-8
8-5 Access Time Computation Diagram... 8-10
8-6 Access Time Compuation Diagram - MC68851 Initiated Accesses... 8-12
8-7 Example MC68020/MC68851 Hardware Configuration with

Logical Data Cache ... 8-15
8-8 Example Early-Term ination Control Circuit.................................. 8-16
8-9 Example MC68020/MC68851 Hardware Configuration with

Physical Data Cache.. 8-19

MC68030 USER'S MANUAL MOTOROLA
xix

LIST OF TABLES

Table . Page
Number Title Number

3-1 M68000 Family Function Code Assignments................................ 3-2
3-2 Signal Summary.. 3-10

4-1 Coprocessor Data Bus Size Specification..................................... 4-3
4-2 Additional Decision Timeout Delay.. 4-3
4-3 DSACK Codes and Results... 4-21
4-4 Size Output Encodings.. 4-23
4-5 Address Offset Encodings................................ 4-23
4-6 MC68851 Internal to External Data Bus Multiplexer....................... 4-23
4-7 Data Bus Activity for Byte, Word, and Long Word Ports................. 4-26
4-8 DSACK, BERR, and HALT Assertion Results................................. 4-40

9-1 MC68020 CPU Space Type Field Encodings 9-2
9-2 Coprocessor Interface Register Characteristics.............................. 9-3
9-3 Null Primtive Encodings 9-10
9-4 Coprocessor Valid Effective Address Codes.. 9-11
9-5 Evaluate Effective Address and Transfer Data Primitive Encoding 9-12
9-6 MC68851 Vector Numbers 9-14
9-7 MC68851 Primitive Responses -................... 9-17

10-1 Access Level Control Interface Register Characteristics................... 10-3
10-2 Access Register Status Code.. 10-4

12-1 AC Electrical Specifications Reference Summary.......................... 12-10

A-1 Effective Addressing Mode Categories...................... A-2

B-1 CPU-to-Memory Access Time Equations..................................... B-11
8-2 Example CPU-to-Memory Access Time Calculations 8-11
8-3 MC68851-to-Memory Access Time Equations 8-13
8-4 Example MC68851-to-Memory Access Time Calculations.... 8-13
8-5 VCC and GND Pin Assignments 8-20

MOTOROLA
xx

MC68030 USER'S MANUAL

SECTION 1
INTRODUCTION

The MC68851 is a high-performance paged memory management unit (PMMU) designed
to efficiently support a demand paged virtual memory environment with the MC68020 32-
bit microprocessor. The MC68851 can also be used as a peripheral with other processors.
Implemented using VLSI technology and an HCMOS fabrication process, the MC68851 is
optimized to perform very fast logical-to-physical address translations, to provide a com
prehensive access control and protection mechanism, and to provide extensive support
for paged virtual systems.

Operating as a coprocessor to the MC68020, the MC68851 provides a logical extension to
program control and processing abilities of the main processor. It does this by providing
a set of translation, protection, and breakpoint registers that control operation of the com
prehensive memory management mechanism. These registers are utilized in a manner
that is analogous to the use of any internal processor register.

The implementation of a comprehensive memory management system is facilitated by
utilizing the following MC68851 features:

• Fast Logical-to-Physical Address Translation
• 32-Bit Logical and Physical Addresses with 4-Bit Function Code
• Eight Available Page Sizes Ranging from 256 to 32K Bytes
• Fully Associative 64-Entry On-Chip Address Translation Cache
• Address Translation Cache Support for Multi-Tasking
• Hardware Maintenance of External Translation Tables and On-Chip Cache
• MC68020 Instruction Set Extension and Instruction-Oriented Communcation Using

M68000 Family Coprocessor Interface
• Hierarchical Protection Mechanism with up to Eight Levels of Protection
• Instruction Breakpoints for Software Debug and Program Control
• Support for Logical and/or Physical Data Cache
• Support for Multiple Logical and/or Physical Bus Masters

1.1 MC68851 OVERVIEW

The primary system functions of the MC68851 are to provide logical-to-physical address
translation, to monitor and enforce the protection/privilege mechanism, and to support the
breakpoint operations; The MC68851 also supports the M68000 Family coprocessor inter
face in order to simplify processor/coprocessor communication.

1.1.1 Address Translation

Logical-to-physical address translation is the most frequently executed operation of the
MC68851 so this task has been optimized and requires minimal processor intervention.
The logical address operated on by the MC68851 consists of the 32-bit incoming address
and a 4-bit function code.

MC68851 USER'S MANUAL MOTOROLA
1-1

..

The MC68851 initiates address translation by searching for the page descriptor corre
sponding to the logical-to-physical mapping in the on-chip address translation cache (ATC).
The ATC is a very fast 64-entry fully-associative cache memory that stores recently used
page descriptors. If the descriptor does not reside in the ATC then the bus cycle of the
logical bus master is aborted and the MC68851 executes bus cycles to search the translation
table in physical memory. The translation table is a data structure in main memory that,
at its lowest level, contains the page descriptors controlling the logical-to-physical address
translation. After being located, the page descriptor is loaded into the ATC and the logical
bus master is allowed to retry its bus cycle, which is then correctly translated.

1.1.2 Protection Mechanism

The MC68851 hierarchical protection mechanism provides cycle-by-cycle examination and
enforcement of the access rights of the currently executing process. There may be up to
eight distinct levels in the privilege hierarchy and these levels are encoded in the upper
three bits of the incoming logical address. Privilege mechanisms of zero, two, or four levels
can also be implemented with the MC68851 in which case the access level encoding is
contained in the upper zero, one, or two logical address lines, respectively. The MC68851
compares these bits against the current access level and determines whether the bus cycle
is requesting a higher privilege than allowed. In the case where a privilege violation is
detected, the MC68851 terminates this access as a fault.

The MC68851 completely supports the MC68020 module call and return functions (CALLM/
RTM instructions), which include a mechanism to change privilege levels during module
operations.

1.1.3 Breakpoints

The MC68851 provides a breakpoint acknowledge facility to support the MC68020 and
other processors with on-chip caches. When the MC68020 encounters a breakpoint instruc
tion it executes a breakpoint acknowledge cycle by reading from a predetermined address
in the CPU address space. The MC68851 decodes this address and responds by either
providing a replacement opcode for the breakpoint opcode and asserting the data transfer
and size acknowledge outputs or by asserting bus error to initiate illegal instruction ex
ception processing. The MC68851 can be programmed to signal the illegal instruction
exception on every breakpoint or to provide the replacement opcode n times (1 ~ n ~ 255)
before signaling the exception.

1.1.4 M68000 Family Instruction Set Extensions

The MC68851 implements an extension to the M68000 Family instruction set using the
coprocessor interface. These instructions provide control functions for:

• Loading and storing of MMU registers,
• Testing access rights, and conditionals based on the results of this test, and
• MMU control functions.

The instruction set extensions are as follows:

PMOVE Moves data to/from MC68851 register.

PVALID Compares access rights of a logical address against the current access level
and traps if address requires a higher privilege than allowed. This instruction
can be used bya routine to verify that an address passed to it by a calling
routine is a valid address.

MOTOROLA Me688S1 USER'S MANUAL
1-2

PTESTR Searches the translation tables and loads the status and access rights infor
mation of a logical address used for a read cycle into the MC68851 status
register. This instruction allows the operating system to quickly determine
the cause of faults generated by a read cycle from a particular logical address.

PTESTW Searches the translation tables and loads the status and access rights infor
mation of a logical address used for a write access into the MC68851 status
register. This instruction allows the operating system to quickly determine
the cause of faults generated by a write cycle to a particular logical address.

PLOADR Searches translation tables and loads the ATC with a translation for the
specified logical address. The history information in the external translation
tables is updated to reflect that the physical page corresponding to the logical
address has been used.

PLOADW Searches translation tables and loads the ATC with a translation for the
specified logical address. The history information in the external translation
tables is updated to reflect that the physical page corresponding to the logical
address has been modified.

PFLUSH Flushes translation cache entries by function code or function code and ef
fective address. The PFLUSH instructions allow the operating system to easily
remove entries from the ATC after making modifications to the external
translation tables.

PFLUSHA Flushes all entries from the translation cache.

PFLUSHR Flushes root pointer table and translation cache entries by root pointer.

PFLUSHS Flushes globally shared entries from the ATC by function code and/or function
code and logical address.

PSAVE Saves the internal state of the MC68851 in order to support fast context
switching and MC68020 virtual memory/virtual machine capabilities.

PRESTORE Restores the internal state of the MC68851 stored by the PSAVE instruction.

PBcc Branches conditionally on MC68851 condition. The conditional instructions
provide the operating system with a means by which program flow can be
controlled by MC68851 conditions.

PDBcc Tests MC68851 condition, decrements a CPU register, and branches.

PScc Sets operand according to MC68851 condition.

PTRAPcc . Traps on MC68851 condition.

1.1.5 The Coprocessor Concept

The M68000 Family coprocessor interface is an integral part of the design of the MC68020
and the MC68851. The coprocessor interface allows the execution of special purpose in
structions that are not executable by the processor. Each processor in a system has an

MC68851 USER'S MANUAL MOTOROLA
1-3

•

instruction set that reflects its special function whether it be floating-point math, memory
management, etc. These instructions may be executed merely by placing the instruction
opcode and parameters in the MC68020 instruction stream. The MC68020 detects the
coprocessor instruction, initiates bus communication with the registers of the target co
processor to pass the instruction, and tests for conditions requiring further action. The
MC68020 performs activity to support the execution of the instruction (e.g., address cal
culation or data transfer) at the request of the coprocessor.

The interchange of information and the division of responsibility between the main pro
cessor and the coprocessor are controlled by the coprocessor interface and this process
is completely transparent to the user. The addition of a coprocessing unit to an MC68020
system supplements the instruction set executable by the processor. The register set of
the coprocessor is perceived, by system programmers, to be a direct extension of the main
processor registers.

The MC68851 functions as a coprocessor in systems where the MC68020 is the main
processor via the M68000 coprocessor interface. It can function as a peripheral in systems
where the main processor is an MC68010, MC68012, or any other processor with virtual
memory capabilities.

The MC68851 is a DMA-type coprocessor that uses a subset of the general-purpose co
processor interface supported by the M68000 Family. Features ofthe interface implemented
in the MC68851 are as follows:

• The main processor and the MC68851 communicate via standard bus cycles.
• The main processor and MC68851 communications are not dependent upon the in

struction sets of the individual devices (e.g., instruction pipes or caches, addressing
modes).

• The main processor and the MC68851 may operate at different clock speeds.
• MC68851 instructions may utilize any addressing modes provided by the main pro

cessor; all addresses are calculated by the main processor at the request of the
coprocessor.

• All data transfers (except translation table searches in physical memory) are per
formed by the main processor at the request of the MC68851; thus the memory
management mechanism functions as if the MC68851 instructions are executed by
the main processor.

• Coprocessor detection of exceptions that require a trap to be taken are serviced by
the main processor at the request of the MC68851; thus exception processing func
tions as if the MC68851 instructions were executed by the main processor.

• Support of virtual machine/virtual memory systems is provided via the PSAVE and
PRESTORE instructions.

• Up to eight coprocessors may reside on the same local bus simultaneously, although
only one of those may be an MC68851.

1.2 HARDWARE OVERVIEW

The MC68851 is a high-performance paged memory management unit designed to interface
to the MC68020 as a coprocessor. This device fully supports the MC68020 virtual machine
architecture and is implemented in HCMOS, a low-power, small geometry process. This
process allows both CMOS and HMOS (high density NMOS) gates to be combined on the
same device. CMOS structures are used where speed and low power are required, and
HMOS structures are used where minimum silicon area is desired. Using this technology

MOTOROLA
1-4

MC68851 USER'S MANUAL

enables the MC68851 to be very fast while consuming less power and results in a smaller
die size than is feasible with older technologies.

The MC68851 can also be used as a peripheral processor in systems where the MC68020
is not the main processor (e.g., the MC680 1 0 and MC68012). The configuration of the
MC68851 as a peripheral processor or coprocessor may be completely transparent to user
mode software (i.e., the same user object code may be executed in either configuration
with appropriate emulation software for the coprocessor interface).

The architecture of the MC68851 appears to the user as a logical extension of the M68000
Family architecture. Because of the coprocessor interface, the MC68020 programmer can
view the MC68851 registers as though the registers were resident in the main processor.
Thus, the MC68020/MC68851 device pair appears to be one processor that has registers
for data storage, address pointers, general control, translation and protection control, and
breakpoint functions.

The MC68851 programming model is shown in Figure 1-1 and consists of the following:
• Three 64-bit root point registers, one each pointing to the root of user, supervisor,

and DMA translation tables (CRP, SRP, and DRP).
• A 32-bit translation control register containing configuration information for the

MC68851 (TC).
• A 16-bit cache status register that provides information concerning the MC68851

internal translation cache (PCSR).
• A 16-bit status register that contains status and access rights information for a given

logical address (PSR).
• Three 8-bit protection control registers used in the privilege checking mechanism

(CAL, VAL, and SCC).
• A 16-bit access control register that contains configuration information for the priv

ilege mechanism (access control-AC).
• Eight 16-bit breakpoint acknowledge data registers that provide replacement opcodes

during MC68020 breakpoint acknowledge cycles (BADO-BAD7).
• Eight 16-bit breakpoint acknowledge control registers that contain enable and count

functions for the instruction breakpoint capabilities of the MC68020 and MC68851
(BACO-SAC7).

As shown in Figure 1-2, the MC68851 can be viewed as being composed of eight major
elements: the bus interface (BIU), the address translation cache (ATC)' the root pointer
table (RPT), the execution unit (EU), the control store, the control logic, the address trans
lation sense circuit, and the register decode logic.

The address translation cache contains 64 recently-used translation descriptors and the
control circuitry required to monitor access rights and to create new ATC entries. The ATC
itself is composed of three major components: the content-addressable-memory (CAM)
containing the logical address and access rights information to be compared against in
coming logical addresses, the physical address store that contains the physical address
associated with a particular CAM entry, and the control section containing the entry re
placement circuitry that implements the replacement algorithm (a variation of the least
recently-used algorithm).

The RPT contains a cache that stores the eight most recently used values of the CPU root
pointer and a task alias that is associated with each of the stored values. The root pointer

MC68851 USER'S MANUAL MOTOROLA
1-5

•

63

31

15

BADO

BAD1

BAD2

BA03

BAD4

BAD5

BAD6

BAD7

32

CPU ROOT

POINTER

DMA ROOT

POINTER

SUPERVISOR ROOT

POINTER

TRANSLATION CONTROL

PMMU CACHE STATUS (PCSR)

PMMU STATUS (PSR)

CAL VAL SCC

ACCESS CONTROL

BACO

BAC1

BAC2

BAC3

BAC4

BAC5

BAC6

BAC7

Figure 1-1. MC68851 Programming Model

ADDRESS
TRANSLATION
CONTROL
REGISTERS

STATUS
INFORMATION
REGISTERS

PROTECTION
MECHANISM
CONTROL
REGISTERS

BREAKPOINT
CONTROL
REGISTERS

caching and task alias maintenance performed by the RPT allows translation descriptors
for mUltiple tasks to reside in the ATC simultaneously.

The bus interface unit controls the interface to both the logical and physical buses. Included
in the BIU are the buffers for both the logical and physical address buses and the hardware
necessary to perform bus cycles in the physical address space. Also included in the BIU
are the bus arbitration state machines for both the logical and physical buses.

The register decode section contains the logic required to monitor the logical bus for
accesses to its register set internally such that no external decoding of addresses is required.

The address transition sense circuitry continuously monitors the logical address bus to
detect any transition in one or more of the logical address inputs. When a transition is
detected, the ATC and access rights checking circuits in the ATC initiate an address trans
lation. Monitoring for an address transition allows the ATC to begin address transl(!tion
as soon as an address is presented by the logical bus master rather than waiting for the

MOTOROLA
1-6

MC68851 USER'S MANUAL

2
0
E

BUS INTERFACE ."
2

~~ ADDRESS TRANSLATION UNIT
1-2

CACHE ."W
~CI)
0
c
<[

1il CONTROL

~ LOGIC CONTROl
"" EXECUTION STORE I:!:!
2 UNIT
~
I-
0
0

""

REGISTER
DECODE

Figure 1-2. MC68851 Simplified Block Diagram

assertion af one of the logical bus control strobes, thereby optimizing translation perform
ance.

The control store section contains the two-level microcode store of the MC68851 and the
address generation circuitry required to correctly sequence the control store during table
search operations and execution of the MC68851 instruction set.

The control logic section provides residual decode for the control store and register decode
outputs, and it drives control points in the execution unit (EU). The EU performs address
calculations for accessing the translation tables, contains the MC68851 register set, and
controls table search activities and instruction execution.

1.2.1 Coprocessor Interface

The MC68851 contains eleven coprocessor interface registers (CIRs) that are memory
mapped into the M68000 CPU space. The M68000 Family coprocessor interface is imple
mented as a protocol of reading and writing these registers by the main processor. The
MC68020 implements this general-purpose coprocessor interface protocol in hardware and
microcode. The MC68851 implements a subset of the general-purpose protocol.

When the MC68020 detects an MC68851 instruction, the MC68020 writes the instruction
to the appropriate CIR. The register decode section decodes the access from the logical
address bus and selects the required register in the EU. The MC68020 then reads the
response CIR, which in conjunction with the control store, provides requests for any further
action required of the MC68020 on behalf of the MC68851. For example, the response may
request that the MC68020 fetch an operand from the evaluated effective address and
transfer the operand to the operand CIR.

MC68851 USER'S MANUAL MOTOROLA
'-7

•

The only difference between a coprocessor bus transfer and any other bus transfer is that
the MC68020 issues a function code and address bus encoding that indicates the CPU
address space during the cycle. Thus, the memory-mapped coprocessor interface registers
do not infringe upon program and data address spaces. When accessing the MC68851, the
MC68020 places a coprocessor ID field of 0 (zero) onto three of the upper address lines in
order to distinguish the MC68851 from other coprocessors in the system (refer to SECTION
9 COPROCESSOR INTERFACE).

Since the coprocessor interface protocol is based solely on bus transfers, it is easily em
ulated by software when the MC68851 is used as a peripheral with any processor capable
of memory-mapped I/O over an M68000-type bus.

The M68000 Family coprocessor interface is an integral part of the MC68851 and MC68020
design, with the interface tasks shared between the two. The interface is fully compatible
with all present and will maintain compatibility with all future M68000 Family products.
Functionality required to execute coprocessor instructions is partitioned such that the
MC68020 does not have to decode coprocessor instructions, and the MC68851 does not
have to duplicate main processor functions such as address calculation for data transfers.

This partitioning provides an extension of the instruction set that permits MC68851 in
structions to utilize all MC68020 addressing modes and to generate execution time excep
tion traps. Thus, from the programmer's view, the CPU and coprocessor appear to be
integrated onto a single chip. The MC68020 single-step (trace) mode is fully supported by
the MC68851 and the M68000 Family coprocessor interface.

The MC68851 initiates bus cycles required to search the translation tables in physical
memory in order to load descriptors into the address translation cache, to check privilege
information contained in the descriptors, and to maintain descriptor history information.
The MC68851 does not initiate bus cycles to fetch instructions or to manipulate any data
other than the descriptor operations specified above. The MC68020 is responsible for
fetching instructions, transferring them to the MC68851, and performing any other actions
related to these instructions with the exception of descriptor manipulation.

1.2.2 Access Level Control Interface

For operations initiated by the MC68020 CALLM and RTM instructions, the MC68851 can
be accessed via a set of access level control registers (ALCRs) that participate in the pro
tection mechanism supported by the MC68020 and the MC68851. Similar to the CIRs of
the coprocessor interface, the ALCRs are memory-mapped into the M68000 CPU space
and accesses to these registers are detected by decode logic in the BIU that selects the
appropriate registers and control logic.

Refer to SECTION 10 ACCESS LEVEL CONTROL INTERFACE for further details on this
interface.

1.2.3 Breakpoint Acknowledge Interface

In response to breakpoint acknowledge cycles, one final method by which the MC68851
can be accessed is via the breakpoint acknowledge interface that supports the instruction
breakpoint capabilities of the MC68020. When a breakpoint acknowledge cycle in the CPU
space is observed by the register decode section,the appropriate breakpoint acknowledge
control and data registers are selected in the EU. The EU, under control from the control
store, then provides the correct MC68851 response to the'cycle.

MOTOROLA
1-8

MC68851 USER'S MANUAL

For further information on the MC68851 breakpoint operations refer to SECTION 8 BREAK
POINTS.

1.2.4 Bus Operations

In addition to controlling access to the MC68851 from the logical bus, the BIU also contains
the circuitry required to execute bus cycles in physical memory in order to access mapping
information located in the translation tables. The physical bus controller performs accesses
in memory following the standard protocol of the M68000 Family bus definition.

The BIU also contains arbiters to control and/or monitor mastership of both the logical
and physical buses. The MC68851 allows for multiple logical and/or physical alternate bus
masters.

The bus interface of the MC68851 is described in detail in SECTION 4 BUS OPERATIONS.

MC68851 USER'S MANUAL MOTOROLA
1-9

..

MOTOROLA
1-10

MC68851 USER'S MANUAL

SECTION 2
OVERVIEW OF SYSTEM OPERATION

This section provides a general overview of the MC68851 in a system.

2.1 SYSTEM CONFIGURATION

In a simple microprocessor-based system, the CPU is connected directly to memory, as
shown in Figure 2-1-. In this system, no memory mapping or protection functions are
provided, and the addresses generated by the CPU directly identify the physical locations
to be accessed. The number of physical devices present in the system uniquely determines
the range of the logical address space of the processor that is useable. Any location in the
address space that does not contain a device cannot be used by the CPU. This type of
system is unsuitable for execution of multiple concurrent tasks since there is no mechanism
to protect the memory of one task from corruption by any other task. It is also unsuitable
for hosting virtual systems that allow uniform use of an address space that is larger than
the address space represented by the devices present, or provide separate unique address
spaces for each task in the system.

The MC68851 is designed to provide the mapping and protection facilities needed to con
struct a multi-tasking, demand-paged virtual system. In order to build such a system, the
address bus is divided into two sections separated by the MC68851, as shown in Figure
2-2. The 'logical' address is output by the processor and is monitored by the MC68851 on
its logical address inputs. The MC68851 performs translation and privilege checking on

.A BUS ARBITRATION

K
"

)
y

A BUS CONTROl/RESPONSE I

~ / I lOGIC
~ I

FUNCTION COOE
CPU)

y

ADDRESS BUS

" ./
Y"

/
DATA BUS ...

)
~ v

Figure 2-1. Simple System Block Diagram

MC68851 USER'S MANUAL

MEMORY

MOTOROLA
2-1

E

BUS CONTROL/RESPONSE

CPU

LOGICAL BUS
ARBITRATION

FUNCTION CODE

LOGICAL ADDRESS
BUS

DATA
BUS

MC68B51

PHYSICAL BUS
ARBITRATION

PHYSICAL ADDRESS
BUS

SHARED ADDRESS BUS (AO-A71

MEMORY

Figure 2-2. MC68851 Memory Managed System Simple Block Diagram

the logical address and, if valid, outputs the translated 'physical' value on the physical
address bus where it is used to access memory or peripheral devices. Using this config
uration, all accesses to physical devices are controlled by the MC68851; tasks can be
prevented from accessing the resources owned by other tasks, and, under control of an
operating system with virtual capabilities, the logical-to-physical mapping functions of the
MC68851 allow tasks to utilize the entire address space of the CPU without knowledge of
the physical attributes of the system.

2.2 ADDRESS TRANSLATION

The address translation facility of the MC68851 is a comprehensive mechanism that pro
vides logical-to-physical mapping of up to a 4-gigabyte logical address space with no
software assistance from the CPU. The address translation mechanism is fully implemented
in hardware in order to minimize the system performance penalty for the mapping func
tions. The address translation mechanism provides full logical-to-physical mapping in less
than one clock cycle for a very high percentage of all bus cycles. The functional timing for
these translations is shown in Figure 2-3.

2.2.1 Address Translation Cache

In order to perform the translation functions as shown in Figure 2-3, the MC68851 contains
a high-speed memory that stores recently used logical-to-physical address translations.
This memory, the address translation cache (ATC), is a 64-entry, fully-associative array
containing logical addresses and their corresponding physical translations. When a bus
cycle is initiated by a logical master, the logical address and function code is input to the
ATC where it is compared against all current entries. If one of the ATC entries matches
(there is a 'hit'), the ATC drives the stored physical address onto the physical address bus.
If the MC68851 detects no exceptional conditions (for example, write violation, ... , etc.),
it then asserts the physical address strobe (PAS).

MOTOROLA
2-2

MC68851 USER'S MANUAL

SO S2 Sw S4 SO

CLOCK

==x X LOGICAL
ADDRESS

LOGICAL

\ / ADDRESS
STROBE

X C PHYSICAL
ADDRESS

PHYSICAL

\ / ADDRESS
STROBE

Figure 2-3. MC68851 Address Translation Functional Timing Diagram

In addition to the address mappings, each entry in the ATC also contains bits that describe
the protection information for that mapping, a data cache inhibit indicator, a lock-entry
flag, as well as history information used by the MC68851.

In order to improve utilization of the MC68851 address translation cache in a multi-tasking
environment, translation descriptors for multiple tasks can reside in the ATC simultane
ously. In order to control this, the logical portion of each ATC entry has three additional
bits, a 'task alias', that is included in the compare operation to determine if a cache hit has
occurred. The task alias identifies one of eight tasks that may have translation descriptors
resident in the ATC simultaneously and is used as an extension to the logical address.

The task alias mechanism works in conjunction with the root pointer caching function of
the root pointer table (RPT). The CPU root pointer register of the MC68851 contains the
address, in physical memory, of the root of the translation table for the currently executing
task. The RPT is a table of eight recently-used CPU root pointers. Each entry in the RPT
has a unique task alias associated with it. When the operating system initiates a new task,
or restarts a suspended one, it writes a value to the CPU root pointer register identifying
the location of the translation table for that task. When this value is written, it is compared
against entries currently in the RPT. If no match is found, then a new entry is made in the
RPT and the task alias associated with that entry is assigned to the current task. If the RPT
entry that is written has been previously assigned to another task, the MC68851 automat
ically flushes all entries in the ATC that are currently identified with this task alias. If the
value loaded into the CPU root pointer register is already in the RPT, then the previous
task alias is reused and none of the ATC entries are flushed.

2.2.2 Address Translation Tables

When a logical bus master initiates a cycle that does not have a corresponding translation
resident in the ATC, the MC68851 performs bus operations to load the mapping for that
cycle from the translation tables. To perform this search operation, the MC68851 simul
taneously aborts the logical bus cycle, signals the master to retry the operation, and re
quests mastership of the logical bus. Upon receiving indication that the logical bus is free,
the MC68851 completes the arbitration sequence, assumes mastership of the bus, and,

MC68851 USER'S MANUAL MOTOROLA
2-3

•

after loading the required translation descriptor, returns control of the bus to the logical
master which then retries the previous bus cycle.

The translation tables supported by the MC68851 have a tree structure. The root of a
translation table tree is pointed to by one of three root pointer registers: CPU, supervisor,
or DMA. Table entries at the higher levels of the tree (pointer tables) contain pointers to
other tables. Entries at the leaf level (page tables) contain page descriptors. All addresses
contained in the translation table entries are physical addresses.

Figure 2-4 illustrates the structure of the MC68851 translation tables. Several determinants
of the detailed table structure are software selectable. The first level of lookup in the table
normally uses the function codes as an index, but this may be suppressed if desired. The
logical address can be between 17 and 32 bits (inclusive). The number of levels in the table
indexed by the logical address can be set from one to four, and up to 15 logical address
bits can be used as an index at each level.

The first step in a normal table search operation by the MC68851 is to perform an index
into the translation table by the function code. The index by function code is performed
by adding (unsigned) the function code value generated by the current logical bus master
to the value contained in the appropriate root pointer register for that access. The MC68851
uses the sum of this operation as the physical address to read the pointer at the first level
of the translation table. The pointer read during this operation is used as the base address
for the next table search. Until a page descriptor is encountered, subsequent descriptor
fetches by the MC68851 operate similiarly: a table pointer is fetched and a specified field
of the logical address (the logical address that caused the table search to be initiated) is
added (unsigned) to generate the physical address for the next fetch. When a page de
scriptor is encountered, an entry is made in the ATC and the table search operation is
terminated.

2.2.3 Protection Mechanism

The MC68851 supports a comprehensive protection mechanism that facilitates implemen
tation of fully protected systems. In addition to the option of enforcing the distinction of

MOTOROLA
2-4

ROOT POINTER ..

Figure 2-4. MC68851 Translation Table Tree Structure

POINTER
TABLES

PAGE
TABLES

MC68851 USER'S MANUAL

user and supervisor modes normally found in an M68000 system, the MC68851 also sup
ports a mechanism that provides finer granularity of protection within the user address
spaces.

The access level mechanism subdivides the logical address spaces of user mode operations
into one, two, four, or eight level(s) of privilege. Routines operating at different access
levels can have different privileges to memory, and a facility is provided to closely control
changes in access level.

The access level for a bus cycle is encoded in the highest order (zero, one, two, or three)
bits of the logical address generated by the CPU. The access level mechanism, when
enabled, compares this value against the current access level as specified in the CAL
register. The current access level specifies the highest privilege level that a task may assume
at that time; If the privilege level value presented by the bus cycle is greater (less privileged)
than the current level allowed, then the cycle is requesting a privilege in excess of its rights
and is aborted by the MC68851.

In the MC68851 protection scheme, the privilege associated with a task is specified by its
access level. Smaller values for access levels represent higher privilege levels. In a system
using eight access levels, level zero is the highest privilege in the hierarchy and level seven
is the lowest. The privilege level associated with a particular page is specified by its read
access level, write access level, write protect, and supervisor attributes.

In orderto access code and/or data that requires a higher level of privilege than is possessed
by the current task, the MC68851 supports the MC68020 module call (CALLM) and return
(RTM) instructions that allow a less privileged routine to transfer execution control to a
module operating at a higher level and to return from that module after completion of the
module function. When the MC68020 executes a CALLM instruction that requests an in
crease in access level, the MC68020 automatically communicates with the MC68851 access
level protection mechanism via access level control CPU space cycles, to determine if the
requested change is valid. The MC68851 checks the request against a module descriptor
for that operation and indicates the validity of that request to the MC68020. The RTM
instruction operates similarly except that control is always passed from a higher privileged
task to a less privileged one.

MC68851 USER'S MANUAL MOTOROLA
2-5

•

MOTOROLA
2-6

MC68851 USER'S MANUAL

SECTION 3
SIGNAL DESCRIPTION

This section is a brief description of the input and output signals of the MC68851 paged
memory management unit. The signals are functionally grouped as shown in Figure 3-1.
Each signal is explained in a brief paragraph with reference (if applicable) to other sections
that contain more detailed information.

NOTE
The terms assertion and negation are used extensively. This is done to avoid
confusion when dealing with a mixture of 'active low' and 'active high' signals.
The term assert or assertion is used to indicate that a signal is active or true,
independent of whether that level is represented by a high or low voltage. The
term negate or negation is used to indicate that a signal is inactive or false.

BUS
CONTROL

BUS {
EXCEPTION

CONTROL

PHYSICAL {
BUS

ARBITRATION

LOGICAL BUS {
ARBITRATION

...

...

MC68851 USER'S MANUAL

RMC A

LAS rC LOGICAL ADDRESS

PAS ""
DS

R/W PHYSICAL ADDRESS

DSACK1

DSACKO .It

DBDIS K SHARED ADDRESS
...

BERR ~
HALT

MC68851 I'\.. FUNCTION CODE

"" RESET PAGED
MEMORY .It

MANAGEMENT K DATA BUS
UNIT

PBR
SIZO

PBG

PBGACK
... SIZ1

ill
LBRI ASYNC

LBRO

LBGI ... CLOCK

LBGO VCC (8)

LBGACK GND (8)

Figure 3·1. Functional Signal Groups

"
.....

......

.....

.1-..

.....

....

...

LA8-LA31

PA8-PA31

AO-A7

FCO-FC3

DO-D31

}

TRANSFER
SIZE

MOTOROLA
3-1

..

3.1 LOGICAL ADDRESS BUS (LAS through LA31)

These inputs are the lines on which the MC68851 accepts a logical address for translation
or for internal operations. The logical address bus should be connected to the address
outputs of all logical bus masters.

If the logical address is less than 32 bits (logical address space <232 bytes) as determined
by the translation control register (refer to 6.1.5.5 INITIAL SHIFT), the unused bits are
ignored and should be tied to a constant voltage level (either VCC or ground).

3.2 PHYSICAL ADDRESS BUS (PAS through PA31)

These three-state outputs provide the physical address for both address translations and
MC68851-initiated bus operations.

3.3 SHARED ADDRESS BUS (AO through A7)

The use of these three-state, bidirectional lines is shared between the functions of the
logical and physical buses. When the MC68851 is performing address translations, these
signals are input in order that the MC68851 be able to monitor the entire logical address
in the event that a CPU space cycle accesses one of its registers. When the MC68851 is
the bus master, these pins output the low-order eight bits of the physical address. With
the inclusion of AO through A7, both the logical and physical buses have a 32-bit (4 gigabyte)
linear addressing range.

3.4 FUNCTION CODE (FCO through FC3)

These three-state, bidirectional signals indicate the address space of the current bus cycle.
When the MC68851 is performing translations, these signals provide the address space
being accessed by the current logical bus master. The MC68851 uses the function code
associated with a bus cycle as an extension to the logical address when creating entries
in the address translation cache. The function code may also be used as an index from
the root pointer in the first level of a translation table search.

The 4-bh function code consists of the three function code outputs of the M68000 Family
processor and a fourth bit that indicates that a DMA access is in progress. The M68000
address spaces generated by the function codes are shown in Table 3-1.

MOTOROLA
3-2

Table 3-1. M6S000 Family Function Code
Assignments

FC3-FCO Cycle Type

$0 (Undefined, Reserved for Motorola Use)

$1 User Data Space

$2 User Program Space

$3 (Undefined, Reserved for User Definition)

$4 (Undefined, Reserved for Motorola Use)

$5 Supervisor Data Space

$6 Supervisor Program Space

$7 CPU Space

;;.$8 (Alternate Bus Master, Reserved for User Definition)

MC68851 USER'S MANUAL

When the MC68851 is bus master it drives the function code pins as outputs with a constant
value of FC3-FCO = $5, indicating the supervisor data space.

3.5 DATA BUS (DO through 031)

These three-state bidirectional signals provide the general-purpose data path between the
MC68851 and other devices. This bus may be dynamically sized through use ofthe OSACKx
signals, transferring 8, 16, 24, or 32 bits of information during a bus cycle. The most
significant byte of the data bus is 024 through 031.

In systems that do not use the MC68020 (or any other 32-bit CPU) as the main processor,
the width of the data bus used to communicate between the processor and the MC68851
may be fixed at 16, or 8 bits (refer to 4.1.2.2 BUS SIZE). In such systems, the dynamic bus
sizing mechanism st,ill functions but the maximum amount of data transferred in a single
cycle is limited to the bus size. In either case, the processor data bus is aligned towards
the high-order portion of the MC68851 data bus - that is, an 8-bit master is connected to
024 through 031 and a 16-bit master is connected to 016 through 031.

When the RESET signal is asserted, the MC68851 inputs configuration information from
the least significant byte of the data bus (00-07). This information determines the bus size
for coprocessor operations, sets the 'decision time' for determining whether or not an ATC
hit has occurred, determines whether the CLI signal is asserted for all MC68851-initiated
bus operations, and sets the timing for PAS assertion. The configuration operation is
detailed in 4.1 RESET OPERATION.

3.6 TRANSFER SIZE (SIZO, SIZ1)

These three-state, bidirectional signals are used in conjunction with the dynamic bus sizing
capabilities of the MC68851. When the MC68851 is the bus master, the SIZE signals are
driven as outputs and when accessed as a slave, these signals are inputs. Otherwise, the
size signals are ignored. Regardless of the state (input or output) of these signals, they
indicate the number of bytes remaining to be transferred during the current operand cycle.

An operand cycle is a bus cycle or sequence of bus cycles required to transfer a complete
operand.

The encodings for the SIZE signals are shown in Table 4-4.

3.7 BUS CONTROL SIGNALS

The logical and physical bus control signals are described in the following paragraphs.

3.7.1 Read-Modify-Write (RMC)

This three-state, bidirectional signal is used to indicate that the bus cycle in progress is an
indivisible read-modify-write cycle. This signal is asserted for the duration of the read
modify-write sequence and should be used as a bus lock to ensure integrity of operation
of these cycles.

When the MC68851 is translating addresses, the assertion of RMC by the logical bus master
indicates that the master is performing a read-modify-write cycle and that a write operation
to the same operand is likely to follow. When RMC is asserted during a read cycle, the

MC68851 USER'S MANUAL MOTOROLA
3-3

III

MC68851 performs access and privilege checking for that cycle as if it were a write cycle
in order that the operation not be aborted after having partially completed the write portion
of the cycle. In addition, physical bus arbitration is suspended once the physical bus cycle
for the address translation is initiated.

When the MC68851 is bus master, RMC may be asserted to indicate that the operation in
progress should not be interrupted by other bus traffic and, hence, all arbitration for the
physical bus is suspended by the MC68851 when this signal is asserted.

3.7.2 Logical Address Strobe (LAS)

The assertion of this input indicates that the logical bus master has driven the logical
address bus, function code, and R/W valid. When the MC68851 is being accessed as a
slave, the assertion of LAS also indicates that the SIZE signals are driven valid.

3.7.3 Physical Address Strobe (PAS)

This three-state output is asserted when the MC68851 has driven a valid address on the
physical address bus. When the MC68851 is master of the logical bus, the assertion of PAS
also indicates that the function code, R/W, and SIZE signals are valid.

3.7.4 Data Strobe (OS)

This bidirectional, three-state signal is used to control the flow of information on the data
bus.

When the MC68851 is selected by the CPU, DS is an input that indicates that the MC68851
should drive the data bus on a read cycle, or that the CPU has placed valid data on the
bus during a write cycle.

When the MC68851 is the bus master, DS indicates that the slave device should drive the
data bus in the case of a read cycle, or that the MC68851 has placed valid data on the bus
in the case of a write cycle.

The data strobe is ignored for the purposes of address translation.

3.7.5 Read/Write (R/W)

This bidirectional, three-state signal is used to indicate the direction of transfer for a bus
cycle.

When the MC68851 is translating addresses, the state of the R/W signal is input in order
to, support write-protection checking.

When the MC68851 register set is accessed by the CPU for an operation (refer to 4.2.3.5
TRANSLATION OF CPU SPACE ACCESSES)' the R/W output by the CPU determines the
direction of data transfer. If this signal is asserted (low) the MC68851 latches data from
the data bus at the termation of the cycle. If the signal is negated (high), the MC68851
outputs data on the data bus and signals that the transfer is complete.

When the MC68851 is bus master, the R/W signal is driven asan output. A high level
indicates a read from an external device; a low indicates a write to an external device.

MOTOROLA
3-4

MC68851 USER'S MANUAL

3.7.6 Data· Transfer and Size Acknowledge (DSACKO, DSACK1)

These bidirectional, three-state signals, whether used as inputs or outputs, are used to
normally terminate a bus cycle and to indicate the port size of the responding device.

When the MC68851 register set is accessed by the CPU, the DSACKx signals are output to
indicate that valid data has been or will be (see below) placed on the data bus for a read
cycle, or that data has been accepted from the data bus for a write cycle. Note that the
relationship between DSACKx and data is dependent on the operating mode of the MC68851.
When operating in the synchronous mode, the MC68851 drives the data bus on the same
clock edge that DSACKx is asserted. Otherwise, the MC68851 drives the data bus one clock
period before asserting the DSACKx signals.

The DSACKx signals are monitored as inputs when the MC68851 arbitrates for the logical
bus. After receiving a bus grant from the CPU, the MC68851 waits until LBGACK, LAS, and
both DSACKx signals are negated before asserting logical bus grant acknowledge in order
to ensure that the previous slave device has released connection from the bus.

When the MC68851 is executing bus cycles as the physical bus master, the DSACKx signals
are inputs to indicate that a data transfer is complete and the port size of the external
device being accessed. During a read cycle, when the MC68851 recognizes DSACKx, it
latches the data and then terminates the bus cycle; during a write cycle, when the MC68851
recognizes DSACKx, the bus cycle is terminated. Refer to 4.3.1.1 DYNAMIC BUS SIZING
for further information on DSACKx encodings.

When operating as bus master, the MC68851 synchronizes the DSACKx inputs and allows
skew between the two inputs of up to one quarter of a clock.

3.7.7 Data Buffer Disable (DBDIS)

This active-high output provides an enable to external data buffers connected to the MC68851
data bus.

When the logical bus master reads the contents of one of the MC68851 registers, the
MC68851 drives the data bus with the required operand. Typical systems directly connect
the MC68851 data bus with that of the main processor, and the combined bus is buffered
before being routed to a large number of physical address space devices. In order to avoid
contention, the buffers between the MC68851/CPU bus and the bus driving the physical
memory must be disabled when the MC68851 drives the bus. The MC68851 provides the
control necessary to perform this function with the DBDIS signal.

In addition, DBDIS performs a function similar to the function of the MC68020 DBEN signal
during table search operations and can be used to control data bus transceivers in order
to avoid contention between the transceivers and the MC68851 data bus drivers.

Finally, DBDIS is driven during reset in order to isolate the MC68851 data bus while con
figuration information is being input (refer to 4.1.1 Initialization of Internal State).

3.8 BUS EXCEPTION CONTROL SIGNALS

The following paragraphs describe the bus exception control signals for the MC68851.

MC68851.USER'S MANUAL MOTOROLA
3-5

•

•
3.S.1 Reset (RESET)

Assertion of this input signals the MC68851 to disable the address translation mechanism,
clear all breakpoints, set the internal state to idle, and input configuration information from
the data bus. Refer to 4.1 RESET OPERATION for additional information.

3.S.2 Halt (HALT)

HALT is a bidirectional, three-state signal.

When the MC68851 is the logical bus master, HALT is an input and assertion of HALT stops
all MC68851 bus activity at the completion of the current bus cycle. When the MC68851
has been halted using this input, all control signals, with the exception of bus arbitration
outputs, are placed in their inactive states and the physical address bus remains driven
with the value used during the previous bus cycle. Bus arbitration functions normally when
the MC68851 is halted.

When the MC68851 is translating addresses, HALT is used as an output in conjunction with
BERR and/or LBRO to signal the current logical bus master to perform either a 'relinquish
and retry' or a 'relinquish' operation. Refer to 4.2.3.2 ADDRESS TRANSLATION TERMI
NATED BY RELINQUISH AND RETRY SEQUENCE and to 4.2.3.4 CPU SPACE ACCESS WITH
RELINQUISH REQUEST.

During address translation, the assertion of HALT by an external device does not effect
translation operations of the MC68851.

3.S.3 Bus Error (BERR)

This bidirectional, three-state signal is used to indicate that a bus cycle should be terminated
due to abnormal conditions.

When the MC68851 is bus master, BERR is an input and assertion of HERR by an external
device signals that there has been some problem with the bus cycle currently being exe
cuted. These problems may be the result of:

1) Non-responding devices, or
2) Various other application-dependent errors (for example, parity errors).

When the MC68851 is translating addresses, bus error is used as an output to the logical
bus master. Bus error is asserted by the MC68851 for the following conditions:

1) The BERR bit is set in the matched ATC entry,
2) A write or read-modify-write cycle is attempted to a write-protected page,
3) An instruction breakpoint is detected and the associated count register is zero or it

is disabled,
4) As a portion of the relinquish and retry operation if:

a) the required address mapping is not resident in the ATC,
b) a write operation occurs to a previously unmodified page,
c) a read from the response CIR causes a suspended PLOAD or PTEST instruction

to be restarted,
d) a module call operation references a descriptor that does not have a corre

sponding entry in the ATC.
5) An RMC cycle is attempted and a corresponding descriptor with appropriate status

is not resident in the ATC,
6) The access level protection mechanism detects an access violation.

MOTOROLA
3-6

MC68851 USER'S MANUAL

The bus error signal interacts with the HALT signal to determine if the current bus cycle
should be retried or aborted. Refer to SECTION 4 BUS OPERATION DESCRIPTION for
additional information.

3.9 CACHE LOAD INHIBIT (CLI)

During address translation this output is asserted by the MC68851 if the matched address
translation cache entry has its CI (cache inhibit) bit set. Assertion of this output signals to
external caches that the data associated with the current bus cycle is non-cacheable.

In order to maintain the distinction between CPU space and other address spaces (for
example, supervisor program, ... , etc.) the MC68851 does not assert PAS for CPU space
cycles. Cache load inhibit is used to generate a CPU space address strobe during CPU
space cycles that do not access the MC68851. CLI is asserted on the falling edge of the
clock and external qualification of CLI with LAS and a CPU space indicator provides a CPU
space address strobe. CPU space cycles that access the MC68851 registers are decoded
internally and generate no physical bus activity. Refer to 4.2.3.5 TRANSLATION OF CPU
SPACE ACCESSES. Note that if the MC68851 is not master of the physical bus, CLI is not
asserted until ownership of the physical bus is returned to the MC68851.

When the MC68851 is performing table search operations, it continuously asserts CLI in
order to prevent caching of translation table in·formation. Thi.s function may be suppressed
during reset configuration if desired.

3.10 ASYNCHRONOUS CONTROL (ASYNC)

When a logical bus master does not present logical bus control signals with the exact
timing specifications of the MC68020, this input must be driven, with appropriate setup
and hold times, to inform the MC68851 that input synchronization must take place.

Operating in a synchronous mode, the MC68851 utilizes known signal relationships in
order to perform faster translations. If the logical bus master does not present signals
conforming to these relationships (different control strobe timings and/or different oper
ating frequency), it must assert ASYNC prior to initiating bus activity.

3.11 CLOCK (CLK)

The MC68851 clock input is a TTL-compatible signal that is internally buffered to develop
internal clocks for the memory management unit. The clock must conform to minimum
and maximum period and pulse width specifications and must be of a constant frequency.

Note that the MC68851 and the logical bus master may operate at different clock frequen
cies. Refer to 4.2.2.2 ASYNCHRONOUS OPERATION for further details.

3.12 PHYSICAL BUS ARBITRATION

This section describes the three-wire physical bus arbitration circuitry of the MC68851 used
to determine which device in a system is the master of the physical bus.

The MC68851 is the default master of the physical bus and any other devices requiring
access to the bus must arbitrate for mastership. Refer to 4.4 Physical Bus Arbitration for
further details.

Me688S1 USER'S MANUAL MOTOROLA
3-7

•

..
3.12.1 Physical Bus Request (PBR)

This input is the wire-OR of the bus request signals from all potential physical bus masters
and indicates that some device other than the MC68851 requires mastership of the physical
bus.

3.12.2 Physical Bus Grant (PBG)

This output signal indicates to potential bus masters that the MC68851 will release own
ership of the physical bus when the current bus cycle is completed.

3.12.3 Physical Bus Grant Acknowledge (PBGACK)

This input indicates that some other device has become master of the physical bus. This
signal should not be asserted until the following conditions have been met:

1) A physical bus grant (PBG) has been received through the arbitration process,

2) PAS is negated, indicating that neither the MC68851 nor the logical bus master is
using the physical bus,

3) DSACKx are negated, indicating that no external device is still driving the data bus,
and

4) PBGACK is negated, indicating that no other device is 'still claiming bus mastership.

PBGACK must remain asserted as long as any device other than the MC68851 is bus master.

3.13 LOGJCAL BUS ARBITRATION

The following paragraphs describe the five-wire bus arbitration pins used to determine
which device in the system is the master of the logical bus. Refer to 4.4 LOGICAL BUS
ARBITRATION.

3.13.1 Logical Bus Request In (LBRI)

The LBRI input indicates that a device with higher priority than the MC68851 or the current
logical bus master requires ownership of the logical bus.

3.13.2 Logical Bus Request Out (LBRO)

This output is asserted to inform the processor that the MC68851 requires ownership of
the logical bus and is used as a portion of the relinquish operation and the relinquish and
retry operation.

The request input to the logical bus arbiter (usually the main processor) should consist of
the wire-OR of requests input to LBRllogically ORed with the LBRO output of the MC68851.

3.13.3 Logical Bus Grant In (LBGI)

This input, generated by the MC68020, indicates that the MC68020 will release ownership
of the bus at the completion of the current bus cycle, or, if an alternate master is currently
the owner of the bus, that the MC68020 will not claim the bus after the alternate master
has released it.

MOTOROLA
3-8

MC68851 USER'S MANUAL

3.13.4 Logical Bus Grant Out (LBGO)

This output indicates that the MC68851 has recognized and synchronized the assertion of
LBGI by the MC68020, has detected the assertion of LBRI, and is passing the bus grant to
an alternate logical bus master or to arbitration prioritization circuitry.

3.13.5 Logical Bus Grant Acknowledge (LBGACK)

This bidirectional, three-state signal indicates that a logical bus master, other than the CPU,
has taken control of the logical bus.

This signal is asserted by the MC68851 to indicate when it is the current logical bus master.
LBGACK is also monitored as an input to determine when the MC68851 can become bus
master.

3.14 SIGNAL SUMMARY

Table 3-2 provides a summary of the electrical characteristics of the signals discussed in
the previous paragraphs.

MC68851 USER'S MANUAL MOTOROLA
3-9

•

..
Signal Function

Logical Address Bus

Physical Address Bus

Shared Address Bus

Function Codes

Data Bus

Size

Cache Load Inhibit

Asynchronous Control

Read-Modify-Write Cycle

Logical Address Strobe

Physical Address Strobe

Data Strobe

Read/Write

Data Transfer and Size
Acknowledge

Data Bus Disable

Bus Error

Halt

Reset

Physical Bus Request

Physical Bus Grant

Physical Bus Grant Acknowledge

Logical Bus Request In

Logical Bus Request Out

Logical Bus Grant In

Logical Bus Grant Out

Logical Bus Grant Acknowledge

Clock

Power Supply

Ground

MOTOROLA
3-10

Table 3-2. Signal Summary

Active Three-
Signal Name Input/Output State State

LA8-LA31 Input High -

PA8-PA31 Output High Yes

AO-A7 Input/Output High Yes

FCO-FC3 Input/Output High Yes

DO-D31 Input/Output High Yes

SIZO-SIZ1 Input/Output High Yes

CLI Output Low No

ASYNC Input Low -

RMC Input/Output Low Yes

LAS Input Low -
--
PAS Output Low Yes

DS I n put/Output Low Yes

-
R/W Input/Output High/ Yes

Low

DSACKO- Input/Output Low Yes
DSACK1

DBDIS Output High No

BERR Input/Output Low Yes

HALT Input/Output Low Yes

RESET Input Low -
-
PBR Input Low -

PBG Output Low No

PBGACK Input Low -

LBRI Input Low -

LBRO Output Low No
--
LBGI Input Low -

LBGO Output Low No

LBGACK Input/Output Low Yes

CLK Input - -

VCC Input - -

GND Input - -

Driven by MC68851 When

-

MC68851 Owns Physical Bus

MC68851 Owns Logical and
Physical Buses

MC68851 Owns Logical and
Physical Buses

Read from MC68851 Registers or
MC68851 Write Cycle

MC68851 Owns Logical and
Physical Buses

Always

-

MC68851 Owns Logical and
Physical Buses

-

MC68851 Owns Physical Bus

MC68851 Owns Logical and
Physical Buses

MC68851 Owns Logical and
Physical Buses

Access to Address Map Occupied
by MC68851 Interface Register
Set

Always

Exceptional Condition is Generated
by Address Translation

Exceptional Condition is Generated
by Address Translation

-

-

Always

-

-

Always

-

Always

MC68851 Has Assumed
Mastership of the
Logical Bus

-

-

-

MC68851 USER'S MANUAL

SECTION 4
BUS OPERATION DESCRIPTION

This section describes the bus operations of the MC68851 during reset, address translation,
table search operations, bus arbitration, and accesses to MC68851 internal registers .

NOTE
In paragraphs dealing with bus transfers, a 'port' refers to the width ofthe external
data path to which the slave device for the operation is connected whether that
device be the MC68851 or external memory.

During an MC68851-initiated write cycle, all bytes of the data bus are driven
regardless of the operand transfer size.

The term 'synchronization' is used repeatedly when discussing bus operation. This delay
is the time period required for the MC68851 to sample an external asynchronous signal,
determine whether it is high or low, and synchronize the input to its internal clocks. Figure
4-1 shows the relationship between the clock signal, an external input, and its associated
internal signal that is typical for all of the asynchronous inputs.

Furthermore, for all inputs, there is a sample window during which the MC68851 latches
the level of the input. This window is illustrated in Figure 4-2. In order to guarantee rec
ognition of a certain level on a specific falling edge of the clock, that level must be held
stable at the input throughout the sample window. If an input makes transitions during
the sample window, the level recognized by the MC68851 is not predictable; however, the
MC68851 will always resolve the latched input level to a logical high or low before taking
action on it. There are two exceptions to this rule. The first is for the late assertion of BERR
or BERR and HALT (refer to 4.3.2.4.1 Bus Error Operation), where the signal must be stable
through the window or the MC68851 may exhibit erratic behavior. The second is for the
assertion of LAS and DS when operating in the synchronous translation mode (refer to
4.2.2.1 SYNCHRONOUS OPERATION) where proper functionality cannot be guaranteed if

elK

EXT-

INT

...------ SYNC DELAY ------I~

Key: - Indicates that the signal is driven by
the MC68851

-- Indicates that the signal is driven by
the Main Processor

Indicates that the signal is driven by
an external device or alternate bus
master

Note: The Clock Signal is always depicted with a
normal width line

Figure 4-1. Relationship Between External and Internal Signals

MC68851 USER'S MANUAL MOTOROLA
4-1

..

• SAMPLE
WINDOW

Figure 4-2. Input Sample Window

setup times are not met. In addition to meeting input setup and hold times, all input signals
must obey the protocols described later in this section. For example, when the MC68851
is performing a table search and DSACKx is asserted by an external device, it must remain
asserted until PAS is negated.

4.1 RESET OPERATION

The following paragraphs describe the operation of the MC68851 in response to an external
reset. The timing for the reset operation is detailed in SECTION 12 ELECTRICAL SPECIFI
CATIONS.

4.1.1 Initialization of Internal State

The assertion of the RESET input by an external device initializes the MC68851 to a known
idle state by clearing the enable (E) bits in the translation control register (TC) and in each
of the eight breakpoint control registers (BACO-BAC7) and by clearing the ALC field of the
AC register.

Clearing of the E bit of the translation control register disables the address translation
mechanism of the MC68851 and causes logical addresses LA8 through LA31 to be passed
directly through (unmapped) to the physical bus. The physical address strobe is asserted
for all non-CPU space translations regardless of the state of the E bit; however, no access
right checking is performed when the translation mechanism is disabled.

Clearing the E bit of the breakpoint control registers disables all breakpoint operations. If
a breakpoint acknowledge cycle is executed by the CPU while the breakpoint acknowledge
functions are disabled, the MC68851 responds by asserting bus error (BERR). Clearing the
ALC field of the AC register inhibits RAL, WAL, and CAL access level checking.

4.1.2 Bus Interface Initialization

Several characteristics of the bus operations of the MC68851 are system-configurable. The
information that determines this configuration is latched from the data bus at the end of
the reset sequence (i.e., at the rising edge of the RESET input).

While the RESET input is asserted, the MC68851 asserts the DBDIS output, allowing its
data bus to be isolated from all other bus drivers. The condition of both RESET and DBDIS
being asserted can be used to gate configuration information onto the MC68851 data bus.

MOTOROLA
4-2

MC68851 USER'S MANUAL

The use of the data bus for MC68851 configuration, as discussed in the following para
graphs, is valid only during reset operation, and only the least significant byte of the bus
is used. The three higher-order bytes of the data bus are ignored during reset.

4.1.2.1 DO. This input must be either pulled high (logic one) or left floating during the
reset sequence.

4.1.2.2 BUS SIZE (01, 02). 01 and 02 specify the minimum data bus size that connects
the MC68851 to any device that may access its internal registers using the coprocessor
interface. If multiple logical devices are capable of accessing the MC68851 registers, the
maximum size for a single transfer is limited to the size of the smallest of the data buses.

When accessed as a slave device, the MC68851 responds with a OSACKx encoding that
indicates the port size as specified on 01 and 02 during reset.

Table 4-1 shows the 01, 02 encodings for various bus width configurations. The default
value (02, 01 left in high-impedance state) is 32 bits.

4.1.2.3 DECISION TIMEOUT DELAY (03, 04). 03 and 04 specify an additional, if any,
amount of delay for the MC68851 internal decision-timeout circuitry used to determine
when the compare logic of the address translation cache has generated a correct decision.
This additional delay is defined from the clock edge on which the bus control signals (PAS,
BERR, HALT, and LBRO) would normally be asserted by the MC68851 in the absence of a
timeout delay and resu Its in a delay of the assertion of these signals by an integral number
of half-clocks as specified by the encoding of 03, 04. These encodings are shown in Table
4-2.

The additional timeout delay is provided for proper operation of MC68851 devices that
have a mismatch between the clock speed and the speed of the address translation cache.
If the address translation cache decision logic requires more time to validate an access
than is available, as determined by the operating frequency and translation time, it is then
necessary to delay the assertion of the bus control signals until that validation can be
made. Otherwise, correct functionality of the address translation and protection mecha
nisms cannot be guaranteed since the bus control strobes may be activated before valid
decisions have been made.

The default additional timeout delay is zero and this can be obtained by either forcing both
03 and 04 high (logic one) or by leaving both in the high-impedance state during reset.

02

0

0

1

1

Table 4-1. Coprocessor Data Bus
Size Specification

Minimum Coprocessor
01 Data Bus Width

0 Unused, Reserved

1 8 Bits

0 16 Bits

1 32 Bits

MC68851 USER'S MANUAL

04

0

0

1

1

Table 4-2. Additional Decision
Timeout Delay

Additional
03 Timeout Delay

0 1 1/2 ClK

1 1 ClK

0 1/2 elK

1 No Delay

Strobe Assertion
Clock Edge

Rising

Falling

Rising

Falling

MOTOROLA
4-3

..

4.1.2.4 FAST TABLE SEARCH (05). Ouring all table search operations, the MC68851
always (except as described below) asserts the physical bus control strobes with the same
timing as that of the MC68020. That is, the strobes are asserted on the first falling edge of
the clock after initiation of the bus cycle (the falling edge of S1). Normally, during address
translations the control strobes are also asserted on a falling clock edge; however, the
additional decision timeout delay specified on 03 and 04, as described above, may alter
this.

In order to facilitate operation in systems that use the control strobes (for example, PAS)
in a synchronous manner (i.e., the signal relationship to a clock edge is important), the
MC68851 can be configured such that the control signals are always asserted on the same
clock edge regardless of whether a translation or a table search is taking place. In this type
of synchronous system, if the decision timeout delay is set such that the bus control signals
are asserted on the rising edge ofthe clock during address translations, it may be desirable
to also have them asserted on the rising clock edge during table search operations.

If 05 is held low (logic zero) during reset, the MC68851 asserts the bus control strobes on
the same edge of the system clock during both address translation and table search op
erations. The edge on which the signals are asserted is determined by the decision time
out delay indicated on 03 and 04. If 05 is driven high (logic one) or left in the high
impedance state during reset, the MC68851 will not delay the assertion of the bus control
strobes when performing table search operations and will always assert PAS on the first
falling edge of the clock for these bus cycles (bus state S1).

4.1.2.5 EARLY PROCESSING STARTUP (06). 06 specifies whether the exception proc
essing hardware of the MC68851 is enabled as soon as an exception (any operation by a
logical bus master that requires a table search by the MC68851) is detected or delayed
until the MC68851 has received control of the logical bus and has asserted logical bus
grant acknowledge (LBGACK).

There are two factors to be considered when selecting this mode. If the early processing
startup is selected, the exception processing hardware is activated as soon as the exception
is detected and six clock periods of the startup overhead are overlapped with the termi
nation of the current logical bus cycle and arbitration for the logical bus. However, the
early startup poses a potential problem since the MC68851 initiates processing prior to
becoming logical bus master.

In order to correctly service an alternate logical bus master, the MC68851 must be ready
to perform address translations as soon as that master gains control of the logical bus. In
order to perform this service, the exception processing hardware of the MC68851 must be
completely idle and ready for the next translation and, for certain exception conditions,
eight clock periods are required to bring the exception processing hardware into the idle
state. The MC68851 prevents conflicts between logical bus traffic and the exception proc
essing hardware by delaying the assertion of the logical bus grant output (LBGO) in re
sponse to a logical bus request (LBRI), if necessary, by the eight clock periods (maximum)
required to idle the exception hardware. If the early startup mode is not enabled, then this
delay is not imposed and the worst case arbitration latency for the logical bus is reduced
by seven clock periods.

If ~he early processing startup is enabled, by leaving 06 in the high-impedance state or
driving it high (logic one), the normal overhead required for the MC68851 to acquire the
logical bus and initiate service for the CPU (for example, table search, ... , etc.) is reduced

MOTOROLA
4-4

MC68851 USER'S MANUAL

by six clock periods. If 06 is pulled low (logic zero), the MC68851 does not initialize its
exception processing hardware until it asserts LBGACK. In this case, the worst-case LBGI
to LBGO delay is reduced by seven clock periods, butthe overhead for all MC68851-initiated
operations is increased by six clock periods. The system designer must balance the above
two criterion when selecting this mode of operation.

It is possible to completely avoid the LBGI to LBGO delay imposed by the MC68851 through
the use of external arbitration circuitry. Since the response of the MC68851 to a given
arbitration sequence is defined, external logic may be employed to bypass the MC68851
bus grant circuitry such that the bus request-to-bus grant latency is defined by the bus
arbitor of the CPU as opposed to the latency of the CPU plus that introduced by the
MC68851. Note that this method mandates use of the MC68851 without the early processing
startup mode enabled (i.e., 06 must be driven low during reset). This method is not de
scribed in detail in this manual; however, the operation of the logical bus arbitration
circuitry is explained in detail in 4.4 LOGICAL BUS ARBITRATION.

4.1.2.6 ASSERTION INHIBIT (07). 07 specifies whether or not CLI is to be asserted during
all MC68851-initiated bus cycles. It is unlikely that external caching of MC68851 initiated
accesses would be of value, but this decision is left to the system designer.

If 07 is pulled high (logic one) or left in the high-impedance state, CLI will be asserted for
all MC68851-initiated bus cycles. Otherwise, CLI will not be asserted during these bus cycles.

4.2 ADDRESS TRANSLATION

The translation of logical to physical addresses by the MC68851 involves the following
signals:

1) Logical Address Bus LA8 through LA31,
2) Physical Address Bus PA8 through PA31,
3) Shared Logical/Physical Address Bus AO through A7,
4) Logical Bus Control Signals, and
5) Physical Bus Control Signals.

The following paragraphs explain the operation of the above signals during address trans
lation by the MC68851.

4.2.1 Signal Usage During Address Translation

The following paragraphs describe the MC68851 signals that are functional during address
translation. Signals not discussed (for example, physical bus arbitration circuitry) are not
necessarily inactive, but are not relevant to address translation and are discussed later.

4.2.1.1 ADDRESS BUSES. The MC68851 inputs the logical address to be translated on
'AO through A7 and LA8 through LA31. The shared address lines AO through A7 are always
inputs during address translation. Although the least significant eight bits of the logical
address never take part in the address translation (the minimum page size being 256 bytes),
they are input during each translation in order to supply the register select field should
the cycle attempt to access the MC68851 internal registers (refer to SECTION 9 COPRO·
CESSOR INTERFACE).

The range of the logical address used is determined by the initial shift (IS) field of the
translation control register (TC). This field specifies a number of high-order logical address

MC68851 USER'S MANUAL MOTOROLA
4-5

III

•

bits that are to be ignored for the purposes of address translation and table search oper
ations. Up to fifteen bits of the logical address (starting from bit 31) may be discarded,
allowing adaptation to systems with logical address buses of 17 to 32 bits. However,
regardless of the value specified in the IS field, the MC68851 always monitors at least AD
through LA 19 during all CPU space cycles in order to decode accesses to its internal
registers.

The page size for which the MC68851 is configured also affects the use of some portions
of the logical address for translation purposes. For a page size, N, in a logical address
space, M, LOG2(M)-LOG2(N) bits of the logical address are used to uniquely identify one
of M -;- N pages, and the remaining LOG2(N) bits are used as an index into the page. The
index into the page does not take any part in the translation processes and, hence, is
ignored during address translation. By default, the lower eight bits of the logical address
are always ignored (LOG2(256) = 8) and are routed around the MC68851, directly con
necting the logical and physical buses. If the page size for which the MC68851 is configured
is larger than 256 bytes, additional logical address inputs are ignored during address
translation. However, instead of being routed directly to the physical address bus externally,
the additional signals are passed through the MC68851 and driven unchanged onto the
physical address bus with the same functional timing as the higher order physical address
outputs, although somewhat faster (refer to SECTION 12 ELECTRICAL SPECIFICATIONS).

The physical address bus (PA8 through PA31) outputs the mapped results of the address
translation and remains driven as long as the MC68851 retains ownership of the physical
bus. During address translation, the MC68851 always drives the high-order 24 bits of the
physical address bus and the assertion time always lags that of the logical bus by the
MC68851 translation time. Note, however that physical addresses may become invalid very
shortly after a transition of the logical address bus (i.e., the delay is not related to the
translation time of the MC68851).

4.2.1.2 ADDRESS STROBES. The logical bus master signals to the MC68851 that it has
initiated a bt,ls cycle by driving the logical address strobe (LAS) input low. LAS indicates
that a valid address has been driven onto the logical address bus and it must remain
asserted until the bus master is signaled, by either the MC68851 or an external device, that
the bus cycle should be terminated.

After the logical bus master asserts LAS, the MC68851 responds in one of several manners.
If the requested translation is successful and does not access address space seven (the
CPU space), the MC68851 asserts the physical address strobe (PAS), signaling to the phys
ical devices that there is a valid physical address on the bus.

If the logical access is made to the CPU space, but not to the MC68851 (i.e., not a copro
cessor, breakpoint acknowledge, or access level control access to the MC68851), the logical
address is passed directly through to the physical bus, PAS is not asserted, and cache load
inhibit (CLI) is asserted, which, when gated with a CPU space qualifier, can be used to
generate a CPU space address strobe.

If the target of the CPU space access is the MC68851, neither PAS nor CLI is asserted.

4.2.1.3 BUS CYCLE TERMINATION SIGNALS. Attempts to execute bus cycles that the
MC68851 cannot immediately translate (for example, translation descriptor not resident in
address translation cache) are terminated with the relinquish and retry sequence that

MOTOROLA
4-6

MC68851 US.ER'S MANUAL

! involves the simultaneous assertion of bus error (BERR), halt (HALT), and logical bus
request out (LBRD) by the MC68851 (refer to 4.2.3.2 ADDRESS TRANSLATION TERMINATED
BY RELINQUISH AND RETRY SEQUENCE).

Bus cycles that the MC68851 cannot allow to complete (for example, a write violation) are
terminated by the assertion of BERR. Certain other accesses to MC68851 internal registers
are also terminated with BERR (for example, a breakpoint acknowledge cycle executed
with breakpoints disabled in the MC68851 (refer to 4.2.3.3 ADDRESS TRANSLATION
TERMINATED BY BUS ERROR).

Finally, bus cycles that access the MC68851 registers can be terminated in one of three
ways. Ifthe access does not require execution oftable search operations, then the MC68851
drives (during a read cycle) or latches (during a write cycle) the appropriate portions of
the data bus (DO through D31) and asserts one or both of the DSACKx outputs (as deter
mined by the bus size for which the MC68851 is configured). If the access does require a
table search, the cycle is terminated as above except that LBRD and HALT are asserted
prior to assertion of the DSACKx signal(s). If the access causes the MC68851 to restart a
table search initiated by a PTEST or PLDAD instruction, or an address is written to the
descriptor address ALCR and no corresponding entry is resident in the ATC, the MC68851
asserts the BERR, HALT, and LBRD outputs to force the CPU to relinquish the bus and retry
the cycle after the MC68851 has searched the translation tables and loaded the required
mapping into the ATC. Refer to 4.2.3 Functional Descriptions for further detailed discussion
of these operations.

4.2.2 Synchronous versus Asynchronous Address Translation

In order to offer both maximum performance and flexibility, the MC68851 can operate in
two different translation modes, as determined by the state of the ASYNC input.

The synchronous mode is intended to provide maximum performance and requires that
both the logical bus master and the MC68851 operate in a tightly-coupled manner using
the same clock signal and bus timings. The asynchronous mode is provided to allow
coupling with logical bus masters that operate at different frequencies, either slower or
faster, than the MC68851.

4.2.2.1 SYNCHRONOUS OPERATION. In the synchronous translation mode, the MC68851
is optimized to perform translations for bus masters that present bus timings identical to
those of the MC68020. In this mode of operation, the MC68851 operates with the same
clock that drives the logical master and uses known timing information concerning address,
address strobe, and clock relationships to minimize the delay between the assertions of
the logical and physical address strobes. During synchronous translations, LAS is not
synchronized by the MC68851, and it is gated through to generate PAS one clock period
after the clock edge on which LAS was asserted by the logical master. This is possible
because normal synchronization delays are not imposed.

The critical factor in the synchronous mode of operation is that the logical bus master
must provide bus timings with exactly the characteristics ofthe MC68020. This requirement
includes all signals that are active during address translation as well as all those that are
active during communications between the synchronous master and the MC68851 register
set.

The above restriction requires that there be no intervening delay between the bus control
signals of the synchronous logical bus master and the MC68851 inputs. In addition, no

MC68851 USER'S MANUAL MOTOROLA
4-7

..

delay may be introduced between the address outputs of the synchronous master and the
logical address inputs of the MC68851. Finally, the frequency and phase of the clock driving
the MC68851 must be identical to that of the bus master. System designers must ensure
that the address and control signals do not exceed worst case values specified by the
MC68020 due to signal loading or routing constraints.

4.2.2.2 ASYNCHRONOUS OPERATION. In contrast to the synchronous requirements
outlined above, operation of the MC68851 in the asynchronous mode imposes minimal
restrictions on the bus timing of the logical master, but at the expense of increasing the
logical-to-physical address strobe delay by the time required to internally synchronize the
LAS input.

Operating in the asynchronous mode, the MC68851 makes no assumptions concerning
signal relationships to clock edges or address/data setup times relative to the bus control
strobes (except that they must be non-negative). When operating in the asynchronous
mode, it is assumed, but not required, that the logical master and the MC68851 are op
erating at different clock frequencies.

4.2.3 Functional Descriptions

The following paragraphs provide a functional description of the bus operations of the
MC68851 during address translation.

NOTE
In order to clarify the diagrams that are presented in this manual, different line
widths are used to distinguish the actions of different devices. Signals that are
driven by the MC68851 are drawn using a bold line, signals driven by the CPU
are drawn using a normal width line, and signals driven by other external devices
(for example, a memory controller, alternate bus masters, ... , etc.) are drawn
using a fine line.

4.2.3.1 NORMALLY TERMINATED ADDRESS TRANSLATION (NON-CPU SPACE). An ad
dress translation with normal termination refers to those cycles initiated by the logical
master that have corresponding translation descriptors resident in the MC68851 address
translation cache (ATC) and do not generate any conditions that are detected as exceptions
by the MC68851 (for example, write violation, ... , etc.). This type of bus cycle is terminated
by an external device, and the termination sequence may consist of any of the allowable
M68000 bus conditions (normal, bus error, retry, etc.) without affecting the MC68851.

A normal translation is initiated when the master drives a valid address and function code
onto the logical bus and sets the RIW output to indicate the direction of transfer. The
MC68851 detects the transition in the address bus from its previous state and initiates a
lookup in the ATC. After a period, determined by the worst case translation time, the
MC68851 drives valid address onto the physical bus. When LAS is asserted by the logical
bus master, the MC68851 checks the validity of the access using the status information
stored in the ATC.

After the physical address has been driven, PAS and, if appropriate, CLI is/are asserted
and the physical address bus cycle is validated. As long as LAS remains asserted, the
MC68851 performs no further activity during the bus cycle.

When external hardware determines that the bus cycle should be terminated, some com
bination of the DSACKx signals is/are asserted (or BERR could be asserted with or without

MOTOROLA
4-8

MC68851 USER'S MANUAL

HALT) and the logical bus master negates its bus control strobes. Immediately after the
negation of LAS, the MC68851 negates PAS in order to allow physical devices to prepare
for the next cycle.

In the synchronous mode, as shown in Figure 4-3, the bus cycle is initiated at the rising
edge of (entering into) clock state SO when logical address, function code, and RIW are
driven valid. At the falling edge of SO, the master asserts its address strobe, which is
connected to the LAS input of the MC68851. On the falling edge of 52, one clock after the
master drives the logical address strobe, the MC68851 asserts the physical address strobe
(PAS). Some period after this, as determined by the access time of the referenced device,
the device signals termination of the bus cycle.

so S2 Sw S4 so

CLOCK

LAO-LA31. X _______________ x __ _
FCO-FC3 • • -

R/W X ________________ ~X ___ _
LAS ~ ____________ I '--

\~ ___ __'r_
PA8-PA31)XXXXXX ___________4mzm~ __ M

\~--------------~I
\~ ________ _JI

f.--- SYNCHRONOUS ADORESS TRANSLATION ----I.~I -~;;:E ~
Figure 4-3. Synchronous Mode Translation

With certain system configurations, it is possible that some bus operations can deviate
slightly from the above, particularly in those systems having a high-speed data/instruction
cache. In this case, the CPU can run bus cycles at its maximum bandwidth (three clock
periods for the MC68020) for those cycles whose target operands reside in the cache. In
order to execute such a bus cycle, the MC68020 requires that DSACKx be asserted, with
the proper setup time, prior to the falling edge of clock state 52. Since PAS is generated
from this same edge, it is clearly not possible to include PAS in the qualification equations
for the generation of DSACKx for these cycles. Instead, the cache control circuitry is allowed
to assert DSACKx for appropriate cycles without regard to the state of PAS. Figure 4-4
illustrates a three-cycle access to a local cache.

If the MC68851 determines that the bus cycle should not be allowed to complete, PAS is
not asserted, and a relinquish and retry or a bus error is signaled in time to abort or retry
the bus cycle using the delayed bus error or retry capabilities of the M68000 bus, provided
that additional decision timeout delay has not been enabled (refer to 4.1.2.3 DECISION

Me688S1 USER'S MANUAL MOTOROLA
4-9

so S2 S4 so

CLOCK

LAF~~~F~l:i X ____________ X"-__ _

R/W X _________ ---'X'_ __ _
~S ~'_ __________ I '-

DSACKx \ _ ;---'--, ___ -----'I

PA8-PA31 XXXXXII xxnxw.
\ .. ____ ..1

' SYSTEM ----------------
PAS

\ .. ____ ..11

\"",--_ .. '---
I SYNCHRONOUS CYCLE ACCESSING I NEXT I r- FAST LOGICAL DEVICE -T- CYCLE-1

Figure 4-4. Synchronous Translation Accessing Logical Cache

TIMEOUT DELAY). Refer to APPENDIX B HARDWARE CONSIDERATIONS for further dis
cussion of cache considerations.

In the asynchronous mode of operation, the MC68851 samples LAS on falling edges of the
clock. 'If LAS meets the asynchronous input setup time specification (#47A) relative to the
falling edge of the clock and the translation is successful, PAS is asserted on the next
falling edge of the clock. If LAS does not meet this setup time, an additional one-clock
delay in the assertion of PAS may be imposed. Additionally, if the negation period (high
time) for LAS is less than one clock period, the assertion of PAS by the MC68851 will be
delayed one clock period in addition to the delay described above. Figure 4-5 illustrates
an asynchronous mode address translation.

4.2.3.2 ADDRESS TRANSLATION TERMINATED BY RELINQUISH AND RETRY SE
QUENCE. Certain bus cycles initiated by a logical bus master require that the MC68851
acquire control of the bus and access the address translation tables in physical memory
before that cycle can be successfully completed. Such cases include:

1) Translation descriptor for access not resident in ATC,

2) Modified bit not set in descriptor and pending cycle is a write,

3) Translation descriptor for a module descriptor not resident in ATC during execution
of the CALLM instruction (refer to SECTION 10 ACCESS LEVEL INTERFACE), and

4) Restart of an aborted table search initiated by a PLOAD or PTEST instruction.

MOTOROLA
4-10

MC68851 USER'S MANUAL

CLOCK

LAO-LA31.
FCO-FC3

Riw

LAS

ASYNC

OSACKx

PA8-PA31

PAS

Cli

-< ----------------------->-<==
______ ~X~ ________________________ __JX _____ __

,-------------------1

\'--__ ------1/

xxxxx ux
\~ ______________ __JI
\~ ______________ __J7

14 ~------ASYNCHRONOUS BUS CYCLE -------II .. ~14 .. - NEXT I
CYCLE-1

Figure 4-5. Asynchronous Mode Translation
(LAS Meets Input Setup Time)

In any of the above cases the MC68851 forces the logical bus master into the relinquish
and retry sequence by simultaneously asserting bus error (BERR), halt (HALT), and logical
bus request out (LBRO).

Since the lower eight address lines and several bus control signals are shared between
the logical and physical buses, the MC68851 must control both the logical and physical
buses in order to perform physical bus activity. The MC68851 is the default physical bus
master but it must arbitrate for the logical bus.

The relinquish and retry sequence signals to the logical master that it must abort the current
bus cycle, release mastership of the logical bus to the requesting device, and retry the
aborted cycle when it regains ownership of the bus. Before the master regains control of
the bus, the MC68851 completes the arbitration sequence to take ownership of the logical
bus (refer to 4.4 LOGICAL BUS ARBITRATION), performs all table search operations that
are required, and updates the ATC accordingly.

When the logical master acknowledges termination of the bus cycle by negating LAS, the
MC68851 immediately negates BERR. HALT and LBRO remain asserted until the completion
of the arbitration sequence (assertion of logical bus grant acknowledge (LBGACK) by the
MC68851). If there are no requests for bus mastership by alternate logical bus masters,
HALT is negated one-half clock prior to the assertion of LBGACK and LBRO is negated one
half clock period after the assertion of LBGACK. If, however, the MC68851 is prevented
from assuming mastership of the logical bus by external assertion of LBRI, both HALT and
LBRO are negated one-half clock period prior to the assertion of LBGO.

The MC68851 does not assert PAS for any cycles that are terminated with the relinquish
and retry sequence or for any other fault.

MC68851 USER'S MANUAL MOTOROLA
4-11

..

The following paragraphs discuss the relinquish and retry sequence for the different trans
lation modes. The arbitration phase and subsequent table search operations are discussed
in 4.4 LOGICAL BUS ARBITRATION and 4.3 TABLE SEARCH OPERATIONS, respectively.

Similar to the normal assertion of PAS for a synchronous master and provided that all
relevant setup times are met, the MC68851 asserts BERR, HALT, and LBRO on the falling
edge of the clock one clock period (plus any additional decision timeout delay specified
during reset) after the logical master asserts LAS when operating in the synchronous
translation mode.

The assertions of BERR and HALT occur early enough in the bus cycle to satisfy all timing
requirements of the MC68020 for the late assertion of BERR. Therefore, devices that operate
on the logical bus (for example, a logical cache controller) need not monitor the state of
PAS for cycles that do not access a physical address space device - that is, the validity
of the bus cycle can be correctly implied by the absence of an abort or retry signal from
the MC68851.

Figure 4-6 illustrates the synchronous relinquish and retry sequence.

CLOCK

LA8-LA31

FCO-FC3.
R/W

AO-A7.
SIZO/SIZI

LAS

DSACKx

PA8-PA31

PAS

BERR

HALT

LBRD

LBGI

LBRI

LBGACK

SO S2 S4 SO

~

X ~------------------------~>----
X ~--______________________ -J>---- <
X ~------------------------>---- <
~ ~------_----,I

\'--___ ----'7
x ____________ ~x~ ____ __

c:
\ I

\ --'
\ I

\ _-

---~'-----

I NON-RESIDENT I RELINQUISH AND I I
~ DESCRIPTOR -+ RETRY SIGNALED -"~"I----- LOGICAL MASTER RELEASES BUS TO MC68851 ~

DETECTED

Figure 4-6. Synchronous Relinquish and Retry

MOTOROLA
4-12

MC68851 USER'S MANUAL

In the asynchronous mode, BERR, HALT, and LBRO are asserted on the falling edge of the
MC68851 clock one period (plus any additional decision timeout delay specified during
reset) after LAS is detected as being asserted. If LAS meets the asynchronous input setup
time specified (#47C) relative to the falling edge of the clock and the cycle cannot be
completed for reasons as discussed above, the signals are asserted on the next falling
edge of the clock. If LAS does not meet this setup time, an additional one-clock delay in
the assertion of the relinquish and retry sequence may be imposed.

Normally, when operating in the asynchronous translation mode, the BERR, HALT, and
LBRO signals are not asserted early enough during a bus cycle to allow use of late bus
error or retry features of the logical bus master when coupled with a fast logical data cache
that operates with no wait states. However, this is dependent on the exact bus timing of
the particular master.

Figure 4-7 illustrates the asynchronous relinquish and retry sequence.

CLOCK

FCO-FC3

lA8-LA31

AO-A7

LAS

OSACKx

PA8-PA31

PAS

BERR

HALT

lBRO

lBGI

lBRI

lBGACK

ASYNC

~

< >-- C
< >-
< >- C

\ / '---

X)C

\ I

\ J , r

'----

I NON-RESIOENT DESCRIPTOR DETECTED I RELINQUISH AND RETR S GNA ED I LOGICAL MASTER RELEASES I r- DURING ASYNCHRONOUS CYCLE + Y I l +- BUS TO MCS8851 ---1

Figure 4-7. Asynchronous Relinquish and Retry
(LAS Misses Input Setup Time)

MC68851 USER'S MANUAL MOTOROLA
4-13

..

4.2.3.3 ADDRESS TRANSLATION TERMINATED BY BUS ERROR. Certain bus cycles in
itiated by a logical bus master must not be allowed to be completed due to exceptional
conditions generated by those accesses. Such cycles include:

1) Attempt to write to a write-protected page,
2) An access that exceeds the current access level,
3) An access that references an ATC descriptor, which has its bus error bit set,
4) A breakpoint acknowledge cycle that references a breakpoint acknowledge control

register, which has a skip count equal to zero,
5) A breakpoint acknowledge cycle that references a breakpoint acknowledge control

register, which has its E bit (enable) clear, and
6) A read-modify-write operation is attempted to a page that does not have a corre

sponding descriptor resident in the address translation cache, has its modified bit
clear, or is write-protected.

The MC68851 aborts any of the above types of cycles by asserting bus error (BERR) which
signals the logical master that the cycle can neither be completed nor is it appropriate to
retry the cycle without intervention from the operating system. Bus cycles may also be
terminated by the assertion of BERR by an external device.

The MC68851 does not assert PAS for any bus cycle that it terminates with BERR.

The timing of BERR in each of the translation modes corresponds exactly to the BERR
assertion timing for the relinquish and retry sequence discussed above. Figures 4-8 and
4-9 illustrate the assertion of BERR during address translation.

MOTOROLA
4-14

CLOCK

LA8-LA3l

FCO-FC3,
R/W

AO-A7,
SIZO/SIZl

LAS

DSACKx

PA8-PA3l

PAS

BERR

SO S2 S4 SO

X ______________________ x~ ____ __

X __________________ -JX~ ____ _

X ~ __________________ --JX~ ____ __

~ '----___ ----J/ C

\ '--_____ ---J!

Xilim ~~~ ______ ~UUC

\""' __ --'1

I TRANSLATION I MC68851 ABORTS I NEXT I r- FAULT DETECTED ---,.- CYCLE -T- CYCLE --1
Figure 4-8. Synchronous Cycle Terminated by Bus Error

Me68851 USER'S MANUAL

CLOCK

>--C FCO-FC3 -----« ________________ _

LA8-LA31 >--C ----~(..... ------------------
>--C AO-A7 -----« _________________ _

I _--------------------~ C

PA8-PA31 XXXII XXX
PAS

\~------------~I

~ TRANSLATION FAULT DETECTED +- MC68851 ABORTS CYCLE --! ... ~I --~~;:E ~
Figure 4-9. Asynchronous Cycle Terminated by Bus Error

(LAS Meets Input Setup Time)

4.2.3.4 CPU SPACE ACCESS WITH RELINQUISH REQUEST. The MC68851 PTEST and
PLOAD instructions require that the MC68851 perform table search operations. As part of
the normal dialog between the main processor and the MC68851 during execution of
memory management instructions, the CPU writes requests for action to the MC68851
coprocessor interface command register and then reads the MC68851 response to this
request from the response register (refer to SECTION 9 COPROCESSOR INTERFACE).

When the request written by the main processor requires that the MC68851 perform a table
search operation, the MC68851 initiates this activity by terminating the access of its registers
with an appropriate combination of the DSACKx signals and also asserting the logical bus
request output (LBRO) and the halt signal (HALT). This sequence causes the main processor
to proceed with the next portion of the instruction dialog (reading the response register)
but not without first granting bus mastership to the MC68851. The MC68851 can then
perform the required service before resuming communication with the CPU.

Interprocessor communication between the MC68851 and the logical master does not result
in the assertion of the physical bus control signals (PAS or CLI).

Figure 4-' 0 illustrates the above termination. The asynchronous mode operations differ
from those in the synchronous mode in two ways. First, additional synchronization delay
may be introduced between the assertion of LAS and the MC68851 termination of the cycle.
Second, during a read cycle from an MC68851 register, DSACKx is asserted one clock
period after data is driven onto the data bus instead of being driven on the same clock
edge as data as would occur during synchronous operation.

MC68851 USER'S MANUAL MOTOROLA
4-15

•

so S2

CLOCK~

FC3 A _______ _
FCo-FC2 y

LAo-LA31 X~ ______ _
R/W A~ ______ _

SilO/Sill X~ ______ _

00-031 ----c('-___ _

PA8-PA31 uxxxx"'-___ _

DBDIS ---------------

S4

\"' _____ r.-I

,~----------------
,~------------------

I WRITE TO OPERAND REGISTER I MC68851 TERMINATES CYCLE I
~ PROVIDES SEARCH ADDRESS -+- AND REQUESTS LOGICAL BUS ---.j

Figure 4-10. Synchronous CPU Space Cycle Accessing MC68851 Registers
Terminated by Relinquish Request

When the MC68851 terminates an access to its register set with a relinquish request and
is initialized for early processing startup (refer to 4.1.2.5 EARLY PROCESSING STARTUP),
the logical master must release control of the bus to the MC68851 (which may release it
to an alternate master). Neither the CPU nor any other logical bus master may initiate a
logical bus cycle prior to the assertion of LBGO and the negation of HALT by the MC68851
during this arbitration sequence. Note that the M68000 Family of processors fully satisfy
this requirement. Use of the MC68851 with other processor families may necessitate the
use of additional hardware to satisfy this requirement.

MOTOROLA
4-16

MC68851 USER'S MANUAL

4.2.3.5 TRANSLATION OF CPU SPACE ACCESSES. A CPU space access is any access
to the address space identified by the function code value of seven ($7). The CPU space
accesses are used for special CPU functions, including coprocessor communications, ac
cess level control, breakpoint acknowledge, and interrupt acknowledge operations. The
MC68851 treats these accesses differently than references generated in other address
spaces. The MC68851 response to a CPU space cycle is dependent on whether the access
is being made to the MC68851 or to another device.

CPU space accesses that reference the MC68851 include the breakpoint acknowledge func
tions, coprocessor operations with a Cp-ID of zero, and all access level operations (refer
to Sections 8, 9, and 10). These accesses are decoded by the bus interface unit and are ..
not passed through to the physical address bus. Cycles that access the coprocessor interface ~
or the access level control registers are terminated by the MC68851 with the assertion of
some combination of the bus termination signals after the appropriate action has been
taken (for example, data latched during a write cycle or driven during a read cycle). In
cases where the cycle in progress is requesting an MC68851 configuration change, DSACKx
is not asserted until the reconfiguration is complete in order that the next bus cycle may
be properly translated.

CPU space cycles that access the MC68851 breakpoint hardware may be terminated by the
assertion of either DSACKx or BERR, as appropriate (refer to SECTION 8 BREAKPOINTS).
Figures 4-11 and 4-12 illustrate the functional timing of CPU space cycles that access the
MC68851.

CPU space accesses that do not access the MC68851 are passed directly through to the
physical bus with a unity mapping (i.e., unmapped). However, unlike normal address trans
lations, mappings of CPU space accesses do not result in assertion of physical address
strobe. Instead, CLI is asserted on the first appropriate falling edge of the clock (as deter
mined by the decision timeout delay, if any, specified during reset). The combination of
CLI with a CPU space indicator (FC3-FCO = $7) can be used to generate a CPU space
address strobe. The functional timing for CPU space cycles that do not access the MC68851
is shown in Figure 4-13. Note that the functional timing of CLI may be different from that
of PAS since CLI is asserted only on the falling edge of the clock. If the specified decision
timeout delay would cause PAS to be asserted on the rising edge of the clock during non
CPU space translations, CLI will be asserted one-half clock after that rising edge during
translation of CPU space cycles.

PAS is not asserted for CPU space accesses in order that external controllers for physical
memory devices not be required to monitor the function codes in addition to normal
address decode in order to qualify the accesses. Figure 4-14 shows a typical representation
of the logic required to generate a CPU space address strobe. Logical address strobe (LAS)
is included in order to negate the strobe immediately upon termination of the bus cycle.

Also shown in Figure 4-14 are two alternative (though not mutually exclusive) methods
for generating other required physical address space control strobes. The first method
conditions the data strobe output of the logical bus master with PAS to generate a physical
data strobe (PDS). The second method conditions the R/W signal of the logical master with
PAS to generate a physical R/W signal (PRIW). One or both of these methods should be
employed as dictated by the control requirements for a particular system.

4.2.3.6 CPU SPACE ACCESS WITH RELINQUISH AND RETRY. The MC68851 terminates
accesses to its register set with a relinquish and retry request (assertion of BERR, HALT,

MC68851 USER'S MANUAL MOTOROLA
4-17

so S2

CLOCKILSLJ

FC3 A
FCO-FC2 Y

LAO-LA31 X
Riw y
LAS ~~ ________ __

SIZO/SIZl X _______ _

00-031 --~<~ _____ J"----

PA8-PA31 xmxx

DBDIS J \

I READ CYCLE ACCESSING . I MC68851 PROVIDES DATA I NEXT I
~ MC68851 REGISTER --+ AND TERMINATES TRANSFER -1 CYCLE ~

Figure 4-11. Synchronous CPU Space Read Cycle
Accessing MC68851 Register

and LBRO) under two conditions. The first case occurs when a value is written to the
descriptor address ALCR (refer to SECTION 10 ACCESS LEVEL PROTECTION MECHANISM)
that does not have a corresponding entry resident in the MC68851 ATC. The relinquish
and retry is issued in order that the MC68851 can gain control of the logical bus in order
to load the referenced entry into the ATC prior to being re-queried by the CPU. The second
case occurs when a PLOAD or PTEST instruction is interrupted by the activity of an alternate
logical bus master. Should this event occur, the table search is suspended by the MC68851
until the CPU reads the response register at which time the MC68851 issues a relinquish
and retry and restarts the table search.

The functional timing for this operation is similar to that of a relinquish and retry issued
during an address translation, as shown in Figure 4-6, with the exception that BERR, HALT,
and LBRD are asserted one-half clock period later than shown in this figure.

MOTOROLA
4-18

MC68851 USER'S MANUAL

so S2

CLOCK~

FC3 X
FCO-FC2 Y

LAO-LA31 X
R/W A---------
LAS ~~ __________ _

SIZO/SIZI X~ _______ _

os '--
00-031 <"" ___ _
OSACKx \,, _____ .-..

PA8-PA31 XiiiUX

OBOIS ________ _

I I MC68851 ACCEPTS DATA I NEXT I r- WRITE CYCLE ACCESSING MC68851 REGISTER -+ AND TERMINATES TRANSFER.., CYCLE ~

Figure 4-12. Synchronous CPU Space Write Cycle
Accessing MC68851 Register

4.3 TABLE SEARCH OPERATIONS

The following paragraphs describe the control signal and bus operation of the MC68851
during table search operations. For this discussion, it is assumed that the MC68851 pos
sesses mastership of the logical bus. The operations required to gain this mastership are
discussed in detail in 4.4 LOGICAL BUS ARBITRATION.

During table search operations, the bidirectional signals DSACKO, DSACK1, BERR, and
HALT are always used as bus control inputs. The signals RMC, DS, SIZO, SIZ1, R/W, FC3-FCO,
A7-AO, and LBGACK are used as three-state outputs. The MC68851 drives the data bus
during all write cycles and inputs data from the bus during read cycles.

MC68851 USER'S MANUAL MOTOROLA
4-19

..

MOTOROLA
4-20

so S2 Sw S4 so

CLOCK

FC3 A _______________ /.. ___ _
FCD·FC2 Y '<----
LAO·LA3 X _______________ X ___ _

R/W X X ___ _
LAS ~~ ______________ I '--

\~--------~;---
PA8·PA31 un,« UXXXX

\~ ________________ JI
DBDIS ________________________________ _

i---LOGICAlBUS MASTER ACCESSiNG CPU SPA" -+ ~:~l~ ~
Figure 4-13. Synchronous CPU Space Cycle Accessing

Physical Address Space

FC3

FC2

FCl
CPU SPACE

FCD ADDRESS
STROBE

CD
(CSASI

LAS

BS=lJ---_ PDS
PAS

OR R/W=lJ---_ PR/W
MS .

Figure 4-14. Typical Physical Address Space Strobe
and R/W Generation

MC68851 USER'S MANUAL

4.3.1 Operand Transfer Mechanism

When performing table search operations as the physical bus master, the MC68851 pro
vides a very powerful operand transfer mechanism utilizing parallel, non-multiplexed buses.

The MC68851 architecture supports byte, word, and long word operands and allows 8-,
16-, and 32-bit ports through the use of the data transfer and size acknowledge signals
(DSACKO and DSACK1). The DSACKx signals are controlled by the slave devices currently
being accessed and are discussed further in 4.3.1.1 DYNAMIC BUS SIZING.

The current implementation of the MC68851 utilizes only long word and byte operands .
Address and status information in the translation tables is normally accessed as long words;
the descriptor status bytes containing the used, or used and modified bits (refer to SECTION
5 ADDRESS TRANSLATION) are accessed using byte write or byte read-modify-write cycles
when the MC68851 must update these bits. The MC68851 performs write operations only
to update descriptor status information and, as such, all write cycles are byte operations
as are all read-modify-write cycles.

As opposed to the MC68020, which does not place any alignment restrictions on operands
in memory, the MC68851 always operates on data that is aligned to long word boundaries.
This requires that all entries in the translation table be aligned to long word boundaries.
Although table pointers utilized by the MC68851 for address calculations (root, table, and
page pointers) may contain values that are not long word aligned (i.e., A1/AO =/ 00), the
MC68851 implicitly sets these bits to zero before performing physical address calculations.

4.3.1.1 DYNAMIC BUS SIZING. The MC68851 allows operand transfers to or from 8-,
16-, and 32-bit ports by dynamically determining the port size during each bus cycle. During
an operand transfer cycle, the slave device signals its port size (byte, word, or long word)
and transfer status (complete or not complete) to the MC68851 through the use of the
DSACKx signals. The DSACKx signals perform the same transfer akcnowledge function as
does the DTACK signal of other M68000 Family devices as well as informing the MC68851
of the current port width. Refer to Table 4-3 for DSACKx encodings and assertion results.

Table 4-3. DSACK Codes and Results

DSACK1 DSACKO Result

H H Insert Wait States in Current Bus Cycle

H L Complete Cycle - Data Bus Port is 8 Bits

L H Complete Cycle - Data Bus Port is 16 Bits

L L Complete Cycle - Data Bus Port is 32 Bits

For example, if the MC68851 is executing a table search operation to read a page or table
pointer (a long word operand) it attempts to read 32 bits during the first bus cycle. If the
port responds that it is 32 bits wide, the MC68851 latches all 32 bits of data and continues
with the next operation. If the port responds that it is 16 bits wide, the MC68851 latches
the 16 bits of valid data and initiates another bus cycle to obtain the other 16 bits. An 8-
bit port is handled similarly, but with four read cycles.

Each port is fixed in assignment to particular sections of the data bus. A 32-bit port is
located on data bus bits 0 through 31, a 16-bit port is located on bits 16 through 31, and

Me68851 USER'S MANUAL MOTOROLA
4-21

..

an 8-bit port is located on bits 24 through 31. The MC68851 makes these assumptions in
order to locate valid data and to minimize the number of transfers required to access 8-
and 16-bit ports. The MC68851 always attempts to transfer the maximum amount of data
on all bus cycles; i.e., for a long word operation, it always assumes that the port is 32 bits
wide when beginning the bus cycle.

Figure 4-15 shows the required organization of data ports on the MC68851 bus for 8-, 16-,
and 32-bit devices, and also illustrates the internal organization of operands used by the
MC68851, the internal multiplex and routing hardware, and the operand organization in
memory required to provide this organization regardless of the port size.

The internal multiplexer shown in Figure 4-15 takes the four bytes of the 32-bit bus and
routes them to their required positions. For example, OP3 can be routed to 00-07, as
would be the normal case, or it can be internally routed to 023-016 or 031-024 to support
transfers to 16- or 8-bit ports, respectively.

The positioning of the bytes on the internal data bus is determined by the size (Sll1 and
SilO) and address (A 1 and AO) outputs. The size outputs indicate the number of bytes of
the operand that remain to be transferred.

The number of bytes transferred during a bus cycle is always equal to or less than the
operand size indicated by the SIl1 and SilO outputs, depending on the port width. For
example, during the first bus cycle of a long word transfer from a word port, the size
outputs indicate that four bytes are to be transferred although only two bytes are read on
that cycle. The MC68851 executes another bus cycle to read the remainder of the operand
with the size outputs indicating that a word remains to be read. Table 4-4 shows the
encodings for SIl1 and SilO.

It is important to recognize the distinction between port size and operand size. The port
size is a function of the physical width of the device being accessed and is considered, but

INTERNAL SOURCE/DESTINATION

MULTIPLEXER

EXTERNAL
DATA BUS

ADDRESS

INCREASING xxxxxxxO
32-BIT PORT

MEMORY
ADDRESSES

~
xxxxxxxo BYTE 0

BYTE 2

BYTE I
16-BIT PORT

BYTE 3

xxxxxxxo BYTE 0

BYTE I
a-BIT PORT

BYTE 2

BYTE 3

Figure 4-15. MC68851 Interface to Various Port Sizes

MOTOROLA
4-22

MC68851 USER'S MANUAL

Table 4-4. Size Output Encodings Table 4-5. Address Offset Encodings

SlZ1 SIZO Size A1 AO Offset

0 1 Byte 0 0 + 0 Bytes

1 0 Word 0 1 + 1 Bytes

1 1 3 Byte 1 0 + 2 Bytes

0 0 Long Word 1 1 + 3 Bytes

not required, to be static for any particular device. In contrast, the operand size, as indicated
by the SIZO and SIZ1 signals, provides the size of the operand that remains to be transferred.
The OSACKx signals always indicate port size.

The address lines A 1 and AO also affect the operation of the internal data bus multiplexer.
Ouring an operand transfer, A2-A31 indicate the long word base address of the operand
to be accessed, while A 1 and AO give the byte offset from that base. For example, consider
the transfer of a long word from a word port requiring two bus cycles to complete. For
the first transfer, the MC68851 initiates an aligned long word read (A1/AO = 00, SIZ11
SIZO = 00), accepting OPO and OP1 on 024-031 and 016-023, respectively. To access the
remainder of the operand, the MC68851 increments the access address by one word and
initiates an aligned word read (A 1 lAO = 10, SIZ1/SIZO = 10), accepting OP2 and OP3, again,
on 024-031 and 016-023, respectively. Table 4-5 shows the encodings of A1 and AD and
the corresponding byte offsets from the long word base.

Table 4-6 describes the use of SIZ1, SIZO, A 1, and AO in defining the transfer pattern between
the internal multiplexer of the MC68851 and the external data bus. Transfer patterns that
are not supported by the MC68851 due to operand alignment restrictions are not shown
in this table. To summarize this description, the MC68851 initiates only aligned long word
read, byte write, and byte read-modify-write cycles. All other permutations of alignment
and size are in response to dynamic sizing request from slave devices that do not support
single-cycle 32-bit transfers.

Table 4-6. Me68851 Internal to External Data Bus Multiplexer

Transfer Size Address Source/Destination External Data Bus Connection

Size SlZ1 SIZO A1 AO 031-024 023-016 015-08 07-00

Byte 0 1 1 1 OP3 OP3 OP3 OP3

Word 1 0 1 0 OP2 OP3 OP2 OP3

3 Byte 1 1 0 1 OP1 OP1 OP2 OP3

Long Word 0 0 0 0 OPO OP1 OP2 OP3

Figure 4-16 shows the basic control flow associated with an aligned long word transfer
from a 16-bit port. Refer to Figure 4-17 for timing relationships. The high-order word of
the long word (OPO and OP1) is transferred from the port located on 016-031 during the
first bus cycle. For the first transfer, the size outputs indicate that four bytes remain to be
transferred and the A 1/AO indicate that the transfer is aligned (SIZ1/SIZO/A 1 lAO = 0000).
The port responds to the MC68851 by asserting the OSACKx signals to indicate completion
of a 16-bit transfer (OSACK1/0SACKO = LH). The MC68851 latches the word of data, ter
minates this cycle and begins a second cycle to complete the transfer. For the second
cycle, the size and address lines indicate that a word transfer is to take place on 016-031

Me688S1 USER'S MANUAL MOTOROLA
JI ,..,..

•

III

LONG WORO OPERANO

31

OPO

1
OP1 OP2 OP3

OATA BUS

031 1 016

WORO MEMORY MC68851 MEMORY CONTROL

MSB LSB SIZ1 SIZO Al AO OSACK1 OSACKO

OPO OP1 H

OP2 OP3

Figure 4-16. Example of Long Word Transfer from 16-Bit Port

(SIZ1/SIZO/A 1 lAO = 1010). The base address has been incremented by two (bytes) in order
to access the next highest word location in memory. The slave device places data on
016-031 (OP2 and OP3) and again responds by asserting the OSACKx inputs (OSACK11
OSACKO = LH).

The control flow for a long word transfer from an 8-bit port is shown in Figure 4-18. Four
bus cycles are required to transfer this operand, moving one byte per cycle. Similar to the
previous example, the size outputs indicate a long word transfer during the first cycle,
three bytes during the second, a word during the third, and a byte during the final cycle.
Refer to Table 4-6 for internal multiplexer operation during this transfer. Figure 4-19 shows
timing relationships for these bus cycles.

4.3.1.2 EFFECTS OF DYNAMIC BUS SIZING. The dynamic sizing capabilities of the
MC68851 allow placement of the address translation tables. in 8-, 16-, and 32-bit memories
or any desired mixture of these port widths. However, since the table search operations
access primarily long word operands, residence of the translation tables in memory that
is less than 32 bits wide has detrimental effects on system performance due to the increased
number of bus cycles required to access this information. First, the overall average trans
lation time increases, simply due to the increased number of bus cycles that are required'
to load translation descriptors from memory. Second, since the CPU cannot access the
bus during MC68851 table search operations, any increase in the time required to perform
a table search produces a corresponding increase in interrupt latency (refer to SECTION
11 OPERATION TIMINGS).

4.3.1.3 ADDRESS, SIZE, AND DATA BUS RELATIONSHIPS. The dynamic bus capabilities
of the MC68851 create a very powerful and flexible bus structure. Correct external inter
pretation of bus control signals is critical to ensure valid data transfer operation.

The MC68851 system designer should ensure that data ports are aligned as discussed in
4.3.1.1 DYNAMIC BUS SIZING such that the MC68851 is able to route data to the correct
locations. It is also required that the correct byte data strobes (four, for long word memory)
be generated which enable only those sections of the data port(s) that are active during
the current bus cycle. The MC68851 always drives all portions of the data bus during a
write cycle, so this necessitates careful control of the enable signals for independent bytes

MOTOROLA
4.?4

MC68851 USER'S MANUAL

SO S2 S4 SO S2 S4

CLOCK

FCO-FC3 X SUPERVISOR DATA

PA8-PA31 X
A2-A7 X

Al \ I
AD \

SIZI ~ I
SIZO ~

Riw 7
PAS , I \ ,
OS , I \ ,

OBOIS \ I \ ,
024-031) < OPO) < OP2

016-023) < OPI) < OP3

OSACKO 7
OSACKI / \ / \
LBGACK

i---WDROREAD .1.. WORDREAD~
I---- LONG WORD OPERAND READ FROM 16·BlT PORT---I

Figure 4-17. Long Word Operand Read Timing (16-Bit Data Port)

of a data port. During write operations, those ports that are not active in that transfer must
not be enabled.

The required active bytes of the data bus for any given MC68851 bus transfer are a function
of the size (SIZ1/SIZO) and lower address (AlIAO) outputs and are shown in Table 4-7.

The MC68851 bus interface is a proper subset of the MC68020 bus structure and thus,
coupled with the fact that all bus control strobe signals are wire-ORed with those of the

Me6S851 USER'S MANUAL MOTOROLA
A_,>I:;

E

•

LONG WORO OPERANO

OPO OPl OP2 OP3

31 l
OATA BUS

~
BYTE MEMORY MC68851 MEMORY CONTROL

SIZl SIZO Al AO OSACKl DSACKO

OPO

OP2

OPl H

OP3

Figure 4-18. Example of Long Word Transfer from Byte Port

Table 4-7. Data Bus Activity for Byte, Word, and Long Word Ports

Oata Bus Active Sections

Transfer Size Address Byte (B) - Word (W) - Long Word (L) Ports

Size SlZ1 SIZO A1 AO 032-024 023-016 015-08 07-00

Byte 0 1 1 1 B W - L

Word 1 0 1 0 BW W L L

3 Byte 1 1 0 1 B WL L L

Long Word 0 0 0 0 B W L WL L L

CPU, the MC68851 can directly share all byte data strobe circuitry utilized by the processor.
Refer to the MC68020 32-Bit Microprocessor User's Manual for additional information.

4;3.2 Physical Bus Operation

Transfer oftranslation information between the MC68851 and the translation tables located
in physical memory involves the following signals:

1) Physical address PA8 through PA31,
2) Shared address AO through A7,
3) Data bus DO through 031,
4) Bus control signals, and
5) Transfer size SIZO and SIZ1.

The physical address and data buses are parallel, non-multiplexed buses used to transfer
data using an asynchronous protocol. In all bus cycles the bus master is responsible for
deskewing all signals issued at both the start and the end of the cycle. In addition, the bus
master is responsible for deskewing the acknowledge and data signals from the slave
devices.

The following paragraphs describe the MC68851 data transfer operations.

MOTOROLA
4-26

MC68851 USER'S MANUAL

3:
n
0)

gg
U'1
..".

c:
en
m
:::0
en
3: » z
c: »
r-

~
o
-i o
::XJ

f"O
1'.)' -...I»

so S2 S4 so S2 S4 so S2 S4 so S2 S4

CLOCK

FCO-FC3 X SUPERVISOR DATA

PAS-PA31 X __ __

A2-A7 X==============-------------============== Al\ ~ __________________________ ~r----------------------==::=
- I

AO\ ,r----------------\ ,,---------------------------

SIZI \ ,,---....:. \
~-------

~\ J \ J

R/W 7

PAS~ I \ _ _ J \ __ __ 1 \ ,

os~ I \ I \ ~ I
DBDlS \ I \ J _---1 \ I

024-031 > < OPO > (OPI > (OP2 > < OP3

DSACKI /

OSACKO I \ / \ / \ / \ '-------
LBGACK

I :
BYTE READ .. I ~ BYlEREAD -I~ BYTEREAD -I ~ BYTE READ : I

1-1--'---------------------- LONG WORD OPERAND READ FROM 8-BIT PORT ----------------------I-~-

Figure 4-19. Long Word Operand Read Timing (8-Bit Data Port)

I

•

4.3.2.1 READ CYCLE. During a read cycle the MC68851 receives data from an external
memory device. The MC68851 always reads a byte, or bytes, as determined by the operand
and port sizes (refer to 4.3.1 Operand Transfer Mechanism). If the DSACKx inputs or BERR
are not asserted during the sample window ofthe falling edge of S2, wait states are inserted
in the bus cycle until either DSACK1/DSACKO or BERR is recognized as being asserted.

A flowchart of an MC68851 read cycle is shown in Figure 4-20. At the initiation of the bus
cycle, the MC68851 outputs the operand size on the SIZ1ISIZO signals. If the transfer re
sponse from the accessed device indicates that the port size is smaller than the operand
size, then the MC68851 immediately initiates another transfer to read the remainder of the
operand. During successive cycles required to complete the operand transfer, the size
outputs of the MC68851 indicate the size of the operand remaining to be transferred, that
is, the operand size less the number of bytes previously acquired.

Recalling that the MC68851 performs read cycles only on aligned long word operands, all
multiple cycle transfers are the result of long word accesses to ports that are not 32 bits
wide. The various combinations of read cycles performed by the MC68851 are illustrated
in Figures 4-17, 4-19, and 4-21. The parametric timing information for read cycles is shown
in SECTION 12 ELECTRICAL SPECIFICATIONS.

MC68851 SLAVE

ADDRESS DEVICE

RISING EDGE OF SO
1) . SET R/W TO READ
2) SET FUNCTION CODE TO SUPERVISOR DATA
3) DRIVE ADORESS ON AO-A 7 AND PA8-PA31
4) SET SIZE ISIZ1. SIZO) TO SIZE OF OPERAND REMAINING

UNACCESSED

FAlliNG EDGE OF S 1
5) ASSERT PHYSICAL ADDRESS STROBE WAS)
6) ASSERT DATA STROBE IDS)

RISING EDGE OF S2
7) NEGATE DATA BUFFER DISABLE IDBDIS) r------- PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON APPROPRIATE PORTIONIS) OF DATA BUS

ACQUIRE DATA ~ 3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE IDSACKx)

FAlliNG EDGE OF S2
1) RECOGNIZE DATA TRANSFER AND SIZE ACKNOWLEDGE

FAlliNG EDGE OF S4
2) LATCH DATA
3) NEGATE PAS
4) NEGATE os
5) ASSERT DBDlS

f-----+ TERMINATE CYCLE

~ 1) NEGATE DSACKx

IF ACKNOWLEDGED SIZE IDSACKx) LESS THAN INDICATED SIZE ISIZ1. SIZO),
THEN DECREMENT SIZE OF OPERANO REMAINING UN ACCESSED BY
ACKNOWLEDGED SIZE, INCREMENT ADDRESS, AND GO TO ®
ElSE GO TO CD CD ®

l
START NEXT OPERATION

Figure 4-20. Read Cycle Flowchart

MOTOROLA
4-28

Me68851 US.ER'S MANUAL

SO S2 S4 SO

CLOCK

FCO-FC3 X SUPERVISOR DATA x::
PA8-PA31 X x::

A2-A7 X x::
A1 \ ,--
AO ~

Sill ~ ,--
SilO ~
R/W 7
PAS~ I
liS ~ I

DBDIS \ I
024-031) < OPO >--
016-023) < OP1 >--
08-015) < OP2 >--
00-07) < OP3 >--

OSACKO 7 \ ;-
OSACK1 7 \ ;-
LBGACK

Figure 4-21. Long Word Operand Read Timing (32-Bit Data Port)

4.3.2.2 WRITE CYCLE. During a write cycle, the MC68851 sends data to a memory device.
The function of the operand transfer mechanism during a write cycle is identical to that
during a read cycle (refer to 4.3.1 Operand Transfer Mechanism).

The only write cycles initiated by the MC68851 are byte operations to update the used bit,
modified bit, or both in order to ensure that information contained in the translation tables
is consistent with information stored in the address translation cache (refer to 5.1 ADDRESS
TRANSLATION CACHE).

MC68851 USER'S MANUAL MOTOROLA
4-29

..

A flowchart of the MC68851 write operation is shown in Figure 4-22. The functional timing
for this operation is shown in Figure 4-23. The parametric timing information for write
cycles is shown in SECTION 12 ELECTRICAL SPECIFICATIONS.

MC68851 SLAVE

ADDRESS DEVICE

RISING EDGE OF SO
1) SET R/W TO WRITE
2) SET FUNCTION CODE TO SUPERVISOR DATA
3) DRIVE ADDRESS ON AO-A7 AND PA8-PA31
4) SET SIZE (SIZI. SIZO) TO BYTE

FALLING EDGE OF SI
5) ASSERT PHYSICAL ADDRESS STROBE (PAS)
5) NEGATE DATA BUFFER DISABLE (DBDlS)

RISING EDGE OF S2
7) DRIVE DATA ONTO DATA BUS

FALLING EDGE OF S2
8) ASSERT DATA STROBE (OS) ACCEPT DATA

1) DECODE ADDRESS
2) LATCH DATA FROM APPROPRIATE PORTION(S) OF DATA BUS

TERMINATE OUTPUT TRANSFER 3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

FALLING EDGE OF S2
1) RECOGNIZE DATA TRANSFER AND SIZE ACKNOWLEDGE

FALLING EDGE OF S4
2) NEGATE PAS
3) NEGATE OS

RISING EDGE OF S5
4) ~REMOVE DATA FROM 00-031
5) ASSERT DBDlS TERMINATE CYCLE

j 1) NEGATE DSACKx

START NEXT OPERATION

Figure 4-22. Write Cycle Flowchart

4.3.2.3 READ·MODIFY·WRITE CYCLE. The read-modify-write cycle performs a read,
modifies the data in the EU, and writes the data back to the same address. During the
entire read-modify-write sequence the MC68851 asserts the RMC signal to indicate that an
indivisible operation is occurring. During this operation, the MC68851 will not issue a
physical bus grant (PSG) in response to a physical bus request (PBR) nor will it release
logical bus grant acknowledge (LSGACK) in response to a logical bus request (LBRI).

The read-modify-write sequence is implemented to allow multiple MC68851s, in a multi
processing environment, to utilize the same address translation tables without corrupting
critical status information contained in the tables. For example, consider the case where
the MC68851 is setting the used bit in a page descriptor status byte that has not been
modified (M = 0). The update is accomplished by reading the status byte (as part of the
read of the descriptor), setting the appropriate bit (U = 1), and writing the entire status
byte back to its original location. Effectively, the only bit that is changed is the used bit
although all of the status byte has been overwritten. However, suppose that another
MC68851, using the same page descriptor, initiates a cycle to set the modified bit (M = 1)

MOTOROLA
4-30

MC68851 USER'S MANUAL

SO S2 S4 SO

CLOCK

FCO-FC3 X SUPERVISOR OATA x::
PA8-PA31 X x::

A2-A7 X x::
A17 c:
AO 7 c:

Sill ~ C
SilO 7 c:
R/W \ C
PAS, I
OS \ I

OBDIS ,
,

024-031 > < OP3 >-
016-023) < OP3 >-
08-015 > < OP3 >-
00-07) < OP3 >-

OSACKI 7 \ 7
OSACKO 7 \ 7
LBGACK

~ 8m WRITE CyC,,------.J

Figure 4-23. Byte Write Timing Diagram

and succeeds in setting it while the first MC68851 is still performing the data modification
in its EU. The first MC68851 completes the modification and writes the byte back to memory.
At this point the status byte has been corrupted since the image of the byte originally read
by the first MC68851 had the modified bit clear and this is the value that will be written
back, clearing the bit that had just been set by the second MC68851. The use of read-

Me68851 USER'S MANUAL MOTOROLA
4-31

II

modify-write cycles during transfers that can cause corruption of the modified bit solves
this problem by performing the entire operation in an indivisible sequence that does not
allow alternate physical bus masters concurrent access to the information.

The MC68851 utilizes a read-modify-write sequence to update the descriptor status byte
whenever it is required to set the used bit but not affect the state of the modified bit.
Pointer table descriptors, which do not contain modified bits, are not referenced using
read-modify-write sequences.

The use of read-modify-write cycles prevents multiple MC68851s, that are setting status
bits in shared translation tables, from corrupting status information. However, it does not
prevent alternate bus masters from rendering the table status information inconsistent if
they are capable of accessing the translation tables and clearing the used or modified bits
during an MC68851 table search operation. Devices capable of clearing the used and
modified bits, or otherwise modifying a descriptor, should have their accesses to the
translation tables synchronized with MC68851 table search operations (i.e., they should
not be allowed access to the tables during table search operations).

A flowchart of the read-modify-write operation is shown in Figure 4-24. Figure 4-25 depicts
the functional timing ofthe read-modify-write sequence. The parametric timing information
for the read-modify-write cycle is shown in SECTION 12 ELECTRICAL SPECIFICATIONS.

4.3.2.4 BUS ERROR AND HALT OPERATION. In a bus architecture that requires a hand
shake from an external device to signal that a bus cycle is complete, the possibility exists
that the handshake might not occur. Since different systems require different maximum
response times, a bus error signal is provided; refer to 3.8.3 Bus Error (BERR). External
circuitry must be used to determine the maximum allowable duration between the assertion
of physical address strobe (PAS) and data size and transfer acknowledge (DSACKx), and
it should issue a bus error signal when that time is exceeded. When a BERR signal is
received the MC68851 immediately terminates its table search operation. When both BERR
and HALT are received the MC68851 retries the cycle that was terminated.

4.3.2.4.1 Bus Error Operation. When the bus error signal is issued to terminate a bus
cycle and HALT is not asserted, the MC68851 immediately aborts the table search operation
that was in progress and creates a translation descriptor in the address translation cache
reflecting the error (refer to 5.2 ADDRESS TRANSLATION CACHE).

The bus error signal is recognized during a bus cycle in any of the following cases:

1) DSACKx and HALT are negated and BERR is asserted, or

2) RAIT is negated and DSACKx is asserted, BERR is asserted within one clock cycle
of DSACKx assertion.

When the bus error condition is recognized, the current bus cycle is terminated in the
normal fashion. Figures 4-26 and 4-27 show the timing diagrams for both the normal and
the delayed bus error signals.

4.3.2.4.2 Retry Operation. When, during a bus cycle, the BERR and HALT signals are
both asserted by an external device, the MC68851 enters the retry sequence. A delayed
retry may be used, similar to the delayed bus error described above. Figures 4-28 and 4-
29 show the functional timing of both methods of retrying the bus cycle.

MOTOROLA
4-32

MC68851 USER'S MANUAL

MC68851 SLAVE

LOCK BUS

RISING EDGE OF SO
1) ASSERT RMC

• ADDRESS DEVICE

RISING EDGE OF SO
1) SET R/W TO READ
2) SET FUNCTION CODE TO SUPERVISOR DATA
3) DRIVE ADDRESS ON AO·A7 AND PA8·PA31
4) SET SllE (Sill. SilO) TO BYTE

FALLING EDGE OF Sl
5) ASSERT PHYSICAL ADDRESS STROBE (PAS)
6) ASSERT DATA STROBE (DS)

RISING EDGE OF S2
7) NEGATE DATA BUFFER DISABLE (DBDlS)

--. PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON DATA BUS

ACQUIRE DATA -+-- 3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

FALLING EDGE OF S2
1) RECOGNIZE DATA TRANSFER AND SIZE ACKNOWLEDGE

FALLING EDGE OF S4
2) LATCH DATA
3) NEGATE PAS --. TERMINATE CYCLE
4) NEGATE OS
5) ASSERT DBDlS

+
1) NEGATE DSACKx

ADDRESS DEVICE

RISING EDGE OF SO
1) SET R/W TO WRITE
2) DRIVE ADDRESS ON AO·A7 AND PA8·PA31
3) SET SllE (Sill. SIZO) TO BYTE

FALLING EDGE OF Sl
4) ASSERT PHYSICAL ADDRESS STROBE (PAS)
5) NEGATE DATA BUFFER DISABLE (DBDIS)

RISING EDGE OF S2
6) DRIVE DATA ONTO DATA BUS

FALLING EDGE OF S2
7) ASSERT DATA STROBE (OS) ACCEPT DATA

1) DECODE ADDRESS
2) LATCH DATA FROM DATA BUS

TERMINATE OUTPUT TRANSFER 3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

FALLING EDGE OF S2
1) RECOGNIZE DATA TRANSFER AND SIZE ACKNOWLEDGE

FALLING EDGE OF S4
2) NEGATE PAS
3) NEGATE OS

RISING EDGE OF S5
4) REMOVE DATA FROM 00·031
5) ASSERT DBDlS --. TERMINATE CYCLE

• 1) NEGATE DSACKx
UNLOCK BUS

RISING EDGE OF S5
1) NEGATE RMC ,

START NEXT OPERATION

Figure 4-24. Read-Modify-Write Cycle Flowchart

MC68851 USER'S MANUAL MOTOROLA
4-33

..

SO S2 S4 SO S2 S4

CLOCK

FCO·FC3 X SUPERVISOR DATA

PAS·PA3l X
A2·A7 X

Al 7
AD 7

SIZl 7
SIZo 7
R/W \
RMC \

PAS ~ I , ,
OS ~ I , r-

DBDIS , I ,
00·07) '(OP3 > < OP3

DSACKl 7 \ / \
DSACKo / \ / \
LBGACK

14 INDIVISIBLE CYCLE ~I
Figure 4-25. Read-Modify-Write Cycle Timing Diagram (32-Bit Port)

The MC68851 terminates the bus cycle, places the control signals in their inactive state
and does not initiate further bus activity until both BERR and HALT are negated by external
logic. The MC68851 then retries the previous cycle using the same access information
(address, size, ... , etc.). The BERR signal must be negated before or at the same time as
the HALT signal.

The MC68851 imposes no restrictions on retrying any type of bus cycle. Specifically, any
portion of a read-modify-write operation may be separately retried since the RMC signal
remains asserted during the entire retry sequence.

MOTOROLA
4-34

MC68851 USER'S MANUAL

so S2 Sw Sw S4 ~MAXIMUM1
23 CLOCK
PERIODS

CLOCK

FCO-FC3 X..-. _________ S_UP_E_RV_ISO_R_DA_T_A _____ _ ---,>~---------
PA8-PA31 X~ __________________ _

::::)---
AO-A7 X~ __________________ _ >

SIZl X~ __________________ _ >
SIZO X~ __________________ _ >
R/W 7 ,----------
MS ~~ ________________________ J'--
DS~ r-

~.--------------------~

,
OBDIS \~--------------~,--~

00-031)>------« _______________ >-
DSACKO /

DSACKl /

\'--___ ----'f
LBGACK ______________________ _ ____ ..II

joIIl~~----- READ BUS ERROR DETECTION --------' I.~p:~i:s~~:G --+ :.~~::: ~
Figure 4-26. Bus Error Timing

4.3.2.4.3 Halt Operation. The HALT signal, when used as an input, performs a halt/run/
single-step function. The halt and run modes are somewhat self-explanatory in that when,
during a table search operation, the halt signal is constantly asserted the MC68851 'halts'
(does nothing) and when the halt signal is constantly negated the MC68851 'runs' (does
something).

The single-step mode is derived from correctly timed transitions on the HALT line. If HALT
is asserted when the MC68851 begins a bus cycle (see below) and remains asserted, the
bus cycle will complete, but another bus cycle is not allowed to start. When it is desired
to continue, HALT is then negated and reasserted when the next bus cycle is started. Thus,

MC68851 USER'S MANUAL MOTOROLA
4-35

..

~ ~XlMUM1 23 CLOCK
PERIODS

SO S2 Sw Sw S4

CLOCK ~
FCO-FC3 X SUPERVISOR OATA >

PA8-PA31 X I
AO-A7 X >

SIZl }, I

SIZO Y ,
R/W \ ~

PAS ~ ,-
Os \ ,- ,

DBOIS ~ I ,
00-031) < >

DSACKO 7 \ !
DSACKl 7 \ !

BERR \ r
LBGACK I

I_ WRITE BUS ERROR DETECTION
I INTERNAL -+-MC68851 ~

PROCESSING RELEASES
BUS

Figure 4-27. Delayed Bus Error Timing

the single-step mode allows the user to step through (and debug) MC68851 table search
operations, one bus cycle at a time.

The timing required for correct single-step operation is detailed in Figure 4-30. Some care
must be exercised to avoid harmful interactions between the BERR and HALT signals (refer
to 4.3.2.4.2 Retry Operation) when using the single-step mode as a debugging tool.

When the MC68851 completes a bus cycle after recognizing that the HALT line is active,
all bus control signals are placed in their inactive states, buses remain dr}ven with their
previous values, and the logical and physical bus arbitration circuitry functions normally.

MOTOROLA
4-36

MC68851 USER'S MANUAL

s:
n
0')
(1)
(1)
C1I ...
C
en
m
:J:I
ui
s:
l>
Z
C
l> ,...

s
o
~ o
::n

f"O w,...
~»

so S2 Sw S4 so S2 S4

CLOCK

FCO-FC3 X SUPERVISO~ DATA C
PA8-PA3l X C

AO-A7 X C
Sill X C
SilO X C
~7 C
PAS ~ 1,--------------\ I~--

iiS~ J \ J
DBDIS \. I \. I

00-031 > () (>--
DSACKO I \ ;-
DSACKl I \ I

BERR \ !

HAIT \ I
LBGACK __ _

I. R~D .1· HALT .1. RET~~~:~~
Figure 4-28. Bus Cycle Retry Timing

I

~~ wo
OO-j

o
::0
o
~

s:
(')
0')
co
co
~
c
en m
::tI en
s:
l>
2:
C
l>
r-

so S2 Sw S4 so S2 S4

CLOCK

FCO-FC3 X SUPERYISOR DATA C
PA8-PA31 X C

AO-A7 X C
SIZ1 Xc:::=======-----================= ~==========---------============C SIZO X C
R/W/ C
MS~ Ir---------------------------\ 1"'--

DS~ I \ I
OBDIS '- F '- F

. < >-00-031 > (>r---------------------<~---~

\ r-OSACKO / \ /'----------------~

\ (OSACK1 / \ /'------------------

BERR \ /

HALT \ /
lBGACK

I~ READ ~I~ HALT ~I~ "TRY~;;~I-
Figure 4-29. Delayed Bus Cycle Retry Timing

s:
o
0)
co
co
U'I
..a

c:
(J)
m
::J:I
en
s: »
2
c: »
r-

s:
o
-f o
:0

f"O
w' (,0»

so S2 Sw S4 so S2 S4

CLOCK

FCO-FC3 X SUPERVISOR DATA X c:
PA8-PA31 X X c:

AD-A7 X X c:
SIZ1 X X c:
SIZO X X c:
R/iii 17--------------------====~;::======: , c:
PAS~ J \J
os ~ Ir-------------\ 1'---

OBDIS '- f \. I

00-031) () (>--
OSACKD ;--- \ 1 \ 1
OSACK1 / \ 1'--------------------------------------\ I

BERR

HALT \ /

LBGACK

I. RfAD ~I· HAlT ~I· NEXTCVClE~ ~:~:E ~
Figure 4-30. Halt Operation Timing

I

4.3.2.4.4 The Relationship of DSACKx, BERR, and HALT. In order to properly control
termination of a bus cycle for a retry or a bus error condition, DSACKx, BERR, and HALT
should be asserted and negated on the rising edge of the MC68851 clock. This assures
that when two signals are asserted simultaneously, the required setup time to the falling
edge of the clock (#47A) and hold times (#47B) for both of them will be met during the
same bus state. This, or some equivalent precaution, must be designed external to the
MC68851.

The preferred bus cycle terminations may be summarized as follows (case numbers refer
to Table 4-8).

Normal Termination: DSACKx is asserted, BERR and HALT remain negated (case 1).

Halt Termination: HALT is asserted at the same time as, or before DSACKx and
BERR remains negated (case 2).

Bus Error Termination: l3ERR is asserted in lieu of, at the same time as, or before
DSACKx (case 3) or within one clock cycle after DSACKx (case
4) and HALT remains negated; BERR is negated at the same
time as or after DSACKx.

Retry Termination: HALT and l3ERR are asserted in lieu of, at the same time as, or
before DSACKx (case 5) or within one clock cycle after DSACKx
(case 6); BERR is negated at the same time as or after DSACKx.
HALT may be negated at the same time as or after BERR.

Table 4-8 details the resulting bus cycle terminations under various conditions of control
signal sequences. The correct timing for negation of BERR and HALT must also be used

Case
No.

1

2

3

4

5

6

LEGEND:
N
A

NA
X
X

MOTOROLA
4-40

Table 4-8. DSACK, BERR, and HALT Assertion Results

Asserted on Rising

Control Edge of State

Signal N N+2 Result

DSACKx A S Normal Cycle Terminate and Continue
BERR NA NA
HALT NA X

DSACKx A S Normal Cycle Terminate and Halt
BERR NA NA Continue when HALT Removed
HALT AlS S

DSACKx NAiA X Terminate and Abort Table Search
BERR A S
HALT NA NA

DSACKx A X Terminate and Abort Table Search
BERR NA A
HALT NA NA

DSACKx NAiA X Terminate and Retry when HALT Removed
BERR A S
HALT AlS S

DSACKx A X Terminate and Retry when HALT Removed
BERR NA A
HALT NA A

- The number of the current even bus state (e.g., S2, S4, ... , etc.)
- Signal is asserted in this bus state.
- Signal is not asserted in this state.
- Don't Care
- Signal was asserted in previous state and remains asserted in this state.

MC68851 USER'S MANUAL

to ensure predictable operation. Note that for cases 4 and 6, BERR and/or HALT must meet
the input setup time specified by #27a. For bus cycle retry operation BERR must be negated
prior to, or at the same time as HALT. DSACKx, BERR, and HALT may be negated when
PAS is negated. If DSACKx or BERR remain asserted past the maximum hold time specified
(#47B), the operation of the MC68851 bus is not predictable (i.e., DSACKx or BERR may
or may not be recognized early in the next bus cycle).

4.3.2.5 ASYNCHRONOUS VERSUS SYNCHRONOUS PHYSICAL BUS OPERATION. The
following paragraphs describe the asynchronous and synchronous physical bus operation.

4.3.2.5.1 Asynchronous Operation. To achieve clock frequency independence at a sys- •
tem level, the MC68851 can be used in an asynchronous manner. This requires using only
the bus handshake lines (PAS, DS, DSACKx, BERR, and HALT) to control the data transfer.
Using this method, PAS signals the start of a bus cycle, and DS is used as a condition for
valid data on a write cycle. Decode of the size outputs and lower address lines A 1 and AO
provide strobes that indicate which portion of the data bus is active. The slave device then
responds by placing the requested data on the bus for a read cycle or latching the data
on a write cycle and asserting data transfer and size acknowledge corresponding to the
port size to terminate the cycle. If no slave responds or the access is invalid, external control
logic should assert the BERR or BERR and HALT signal(s) to abort or retry the cycle.

The DSACKx signals are allowed to be asserted before the data from a slave device is valid
on a read cycle. The length of time that DSACKx may precede data is given by parameter
#31, and it must be met in any asynchronous system to ensure that valid data is latched
by the MC68851. Notice that there is no maximum time specified from the assertion of
PAS to the assertion of DSACKx. This is because the MC68851 inserts wait cycles in one
clock period increments until DSACKx is recognized as asserted.

The BERR and HALT signals are allowed to be asserted after DSACKx is asserted. BEAR,
or BERR and HALT must be asserted within the time given by parameter #48 after DSACKx
is asserted in any asynchronous system to ensure proper operation. If this maximum delay
is violated, the MC68851 may exhibit erratic 'behavior.

4.3.2.5.2 Synchronous Operation. To support those systems that use the system clock
as a signal to generate DSACKx and other asynchronous inputs, the asynchronous input
setup time is given by parameter #47A, and the asynchronous input hold time is given by
parameter #47B. If these setup and hold times are met for the assertion or negation of an
input, such as DSACKx, the MC68851 is guaranteed to recognize that signal level on that
specific falling edge of the system clock. However, the canverse is not true - if the input
signal does not meet the setup and/or hold time, that level is not guaranteed not to be
recognized. In addition, if the assertion of DSACKx is recognized on a falling edge of the
clock, valid data will be latched into MC68851 (on a read cycle) on the next falling edge
provided that the data meets the setup time given by parameter #27. Given this situation,
parameter #31 may be ignored. Note that if DSACKx is asserted for the required setup
time before the falling edge of S2, no wait states will be incurred and the bus cycle will
run at its maximum speed of three clock cycles.

In order to assure proper operation in a synchronous system when BERR or BERR and
HALT is/are asserted after DSACKx, BERR, or BERR and HALT must meet the setup time
(parameter #27 A) prior to the falling edge of the clock one clock cycle after DSACKx is
recognized as asserted. This setup time is critical for proper operation, and the MC68851
may exhibit erratic behavior if it is violated.

MC68851 USER'S MANUAL MOTOROLA
4-41

4.3.3 Bus Cycle Sequence

During a table search operation, the MC68851 performs sequences of operand transfers
and address calculations to locate a page descriptor for the referenced logical-to-physical
address mapping (refer to SECTION 5 ADDRESS TRANSLATION for more detail). The
MC68851 uses the information acquired during one operand transfer (or transfers) to gen
erate the address for the next level of the search. In general, two clock periods are required
for this calculation and, therefore, successive operand transfers are separated by two clock
periods.

However, when accessing multiple operands within a single level of the table structure
(for example, when fetching long-format descriptors) additional address calculation is not
required after the fetch of the first operand and, therefore, subsequent operands within
that level may be accessed with consecutive bus cycles (i.e., no intervening idle clock
periods). Successive bus cycles required to fetch a single operand (for example, in response
to a dynamic sizing request from a port that is smaller than the operand width) are also
executed consecutively. Finally, the MC68851 access after the fetch of a table descriptor
that required the update of a status bit (U or M), occurs immediately since the address
calculation for the next level of a search is performed in parallel with the status bit update.

Examples of MC68851 bus cycle sequences are provided in 4.7 BUS OPERATION EXAM
PLES.

4.4 LOGICAL BUS ARBITRATION

Bus arbitration is the technique used by the MC68851 and other bus master-type devices
to request, be granted, and acknowledge bus mastership.

NOTE
The following paragraphs make reference to a 'logical bus arbiter'. This is the
control logic that processes bus mastership requests and issues bus grants in
response to these requests. Normally, the logical bus arbiter is contained in the
bus arbitration circuitry of the CPU. However, there is no constraint that dictates
that this control function cannot be implemented externally. The MC68851 and
other alternate logical bus masters are 'requesting' devices that contain logic to
generate requests for bus access and, in general, are slaves in the arbitration
process (i.e., they cannot initiate grants).

When the MC68851 must initiate a table search in physical memory to complete a service
requested by the logical bus master, it must first arbitrate for the logical bus. This is required
in order to avoid contention between the control signals, data bus, and lower address bus
of the MC68851 and other logical bus masters. The MC68851 arbitrates for mastership of
the logical bus for the following circumstances:

1) The logical address output by the current logical bus master does not have a cor
responding translation descriptor resident in the MC68851 address translation cache,

2) The logical bus master attempts to write (not part of a read-modify-write sequence)
to a previously unmodified page,

3) The CPU executes a module call operation that references a non-resident descriptor,
or

4) The CPU executes any coprocessor instruction that either explicitly requests, or
implicitly requires, that the MC68851 perform table search operations.

MOTOROLA
4-42

Me688S1 USER'S MANUAL

In addition to requesting control of the logical bus for its own requirements, the MC68851
also contains circuitry to monitor arbitration for the logical bus by other alternate bus
masters.

Finally, the MC68851 logical bus arbitration circuitry must resolve conflicts resulting from
higher priority alternate logical bus masters requesting control of the bus coincident with
the initiation of MC68851 requests for the bus to service a current, lower priority master.

In its simplest form, the logical bus arbitration process consists of the following:
1) The MC68851 outputs a bus request to the logical bus arbiter,
2) The logical bus arbiter asserts a bus grant to indicate that the bus will be available

at the end of the current bus cycle, and
3) The MC68851 either acknowledges that it has assumed bus mastership by asserting

logical bus grant acknowledge or it passes the bus grant to another device if a higher
priority request also has been signaled.

Figure 4-31 is a flowchart detailing the logical bus arbitration process for the MC68851.
Figure 4-32 illustrates the functional timing of the arbitration process when the MC68851
is requesting the bus as part of a relinquish and retry sequence.

4.4.1 Requesting the Logical Bus

The MC68851 contains arbitration logic required to request control of the logical bus and
to monitor the requests of other alternate bus masters. Requests for bus mastership are
monitored using the logical bus request input (LBRI) and signaled using the logical bus
request output (LBRO).

The LBRO signal should be logically ORed externally with the LBRI signal to generate a
single 'bus request' to the logical bus arbiter. Requests generated by the MC68851 on LBRO
must not be reflected on LBRI or a dead-lock situation will arise when the MC68851 requests
access to the bus.

Figure 4-33 illustrates the signal connections required for the logical bus arbitration cir
cuitry.

4.4.1.1 ALTERNATE MASTER REQUESTING THE LOGICAL BUS. The LBRI input is used
to signal the MC68851 that a logical master with a higher priority that the current master
is requesting access to the bus.

In systems that employ a single alternate logical bus master (for example, a single DMA
controller) LBRI is a function of the bus request output of that device. It is necessary to
externally condition the bus request output of the alternate master such that after receiving
a relinquish and retry from the MC68851, the alternate master does not again assert LBRI
until the MC68851 has completed the table search required to support the access requested
by the master. An illustration of the circuitry required to provide the above conditioning
is shown in Figure 4-34.

In systems that employ multiple alternate logical bus masters, LBRI should be the output
of an external prioritization arbiter that signals that an alternate device with higher priority
than the current master is requesting access to the bus. The external prioritization also
ensures that table search operations for high priority masters are not interrupted by re
quests from lower priority devices.

MC68851 USER'S MANUAL MOTOROLA
4-43

III

•

MC68851 LOGICAL BUS ARBITER

REQUEST THE BUS

1) ASSERT LOGICAL BUS REQUEST OUT ILBRO) --. GRANT BUS ARBITRATION

1) ASSERT LOGICAL BUS GRANT ILBGI)
ACKNOWLEDGE BUS MASTERSHIP ..--

IF LOGICAL BUS REQUEST IN ILBRI) ASSERTED BEFORE OR WHEN LBGI
ASSERTED. THEN GO TO 0
ELSE PROCEED WITH 11) 0

1) WAIT FOR CURRENT MASTER TO COMPLETE CYCLE
2) ASSERTED LOGICAL BUS GRANT ACKNOWLEDGE ILBGACK)
3) NEGATE LBRO --. TERMINATE ARBITRATION

1) NEGATE BUS GRANT AND WAIT FOR

OPERATE AS BUS MASTER ..-- LBGACK TO BE NEGATED

1) MONITOR LOGICAL BUS REQUEST INPUT ILBRI)
2) IF LBRI ASSERTED

THEN GO TO CD
ELSE PROCEED WITH (3)

3) PERFORM DATA TRANSFER
4) IF BUS OPERATIONS COMPLETE

THEN GO TO ®
ElSE RETURN TO 11)

5) ASSERT LBGO
THEN GO TO CD ®

+
RElEASE BUS MASTERSHIP

1) NEGATE LBGACK -ri RE-ARBITRATE OR RESUME
PROCESSOR OPERATION

RElEASE BUS MASTERSHIP REQUEST

1) NEGATE LBRO f--
2) ASSERT LBGO

Figure 4-31. Logical Bus Arbitration Flowchart for MC68851 Bus Request

In either of the above two system configurations LBRI is routed in parallel to the MC68851
and to the arbiter for the logical bus.

During a table search operation, the MC68851 adopts the priority of the master that it is
currently serving. Any time during the table operations that the MC68851 recognizes LBRI
as being asserted, it aborts the table search in progress and relinquishes the bus, assuming
that a master with higher priority than the one it is currently serving requires access to
the bus. The table search is aborted immediately upon completion of the bus cycle (if any)
in progress, and the MC68851 then negates LBGACK. Some time later, when the lower
priority master regains control of the bus and retries the bus cycle for which the MC68851
was performing the table search, it will again encounter the exception from the MC68851
that originally caused it to initiate the table search. The MC68851 will then either continue
or restart the search that was interrupted by the higher priority master depending on

MOTOROLA
4-44

MC68851 USER'S MANUAL

~ n
Q)
co co
U'I
-II

c
C/)
m
::rJ
en
~
l>
2
C
l>
r-

s:
o
-l o
:0

~O

~~

so S2 S4 so S2

CLOCK

LA8-LA31 X)')..----------------------------
FCo-~~~ X) < X"' ______ _

SIZ~~~~~ X) < X ... _______ _
LAS~ r-'~---------------------------------------

DSACKx \ -----7

PAS-PA31 J X X
PAS \. ---

BERR \. f

HALT , f

LBRo , f

LBGI \ /

LBRI

LBGo

LBGACK \.

PBGACK

I lOGlCAl MASTEROUS CYC~ .14 ARIIITRAno. FOR WGICAL BUS _I_ MC6885l1NlT1ATES I r-- TABLE SEARCH ---+j

Figure 4-32. Logical Bus Arbitration During Relinquish and Retry Sequence

II

LOGICAL BUS ARBITER
ICPU!

LOGICAL BUS REQUESTERIS!
AND/OR EXTERNAL

PRIORITIZATION LOGIC

BR
BG

BGACK

BR

BG --------......
BGACK~---------~

LBRO

LBRI

LBGO

LBGI

LBGACK

Figure 4-33. Logical Bus Arbitration Signal Inter-Connection

LBRO ---~---~

LBGACK ---~~~-~

PR

Q

ol----d------...,

LOGICAL BUS REQUEST IFROM AlTERNATE MASTER! ---------.....1

MC68851

Figur~ 4-34. Single Alternate Logical Master Bus Request Conditioning Logic

whether or not any other table search operations were performed between. attempts to
perform this search (refer to 4.4.1.2 MC68851 REQUESTING THE LOGICAL BUS).

Figure 4-35 illustrates the case of an MC68851 table search operation being aborted by a
higher priority bus request.

4.4.1.2 MC68851 REQUESTING THE LOGICAL BUS. The LBRO output signals to the log
ical bus arbiter that the MC68851 requires control of the bus to perform service for the
current logical master. Since the MC68851 implicitly operates with the priority of the current
bus master, the assertion of LBRO should not cause the external prioritization logic (if
present) to update its current priority level (i.e., bus activity by the MC68851 should be
viewed as an extension of that performed by the master it is currently serving).

The logical bus arbitration capability of the MC68851 allows an alternate logical bus master
(other than the CPU) to request the logical bus at any time and interrupt a table search
operation in progress for the CPU (or any other master). In order to ensure correct operation
of the bus arbitration in this case, an OR gate must be added to the system that has LBGin

MOTOROLA
4-46

MC68851 USER'S MANUAL

3: n en • CLOCK 01)
00
U'I
~

C • LAS-LA31

en
m

I
:Jl FCO-FC3.

en R/W

3: AO-A7. »
Z SIZO/SIZI

C »

I LAS r-

DSACKx

PAS-PA31

PAS

BERR

HALT

LBRD

LBGI

LBRI

LBGD

LBGACK

I
s::
0
-I
0
:0

~O
'r-:!:j»

SO S2 S4 so S2

X) <'--___ _
X) <'--___ _
X > (~ __ _
~ r' ~~ __ __

\ /
r X L X

'-
\ I

\ I

\ I

\ I

\ /
\ ,---

\'--------

I LOGICAL MASTER BUS CYCLE RECEIVES I HIGHER PRIORITY LOGICAL MASTER PREEMPTS MC68851 REQUEST FOR LOGICAL BUS I HIGHER PRIORITY MASTER I r-- RELINOUISH ANO RETRY FROM MC68851 ~ ~ INITIATES BUS CYCLE -+j

Figure 4-35. Relinquish and Retry Operation - MC68851 Arbitration for Logical Bus
Preempted by Bus Request from Higher Priority Logical Master

I

and LBGout signals of the MC68851 as its inputs and drives the system LBGout to the rest
of the system.

If the MC68851 asserts LBRO and some time later, but before it receives a bus grant, LBRI
is asserted (with an appropriate setup and synchronization time), the MC68851 will negate
its bus request output and any other asserted logical bus control signals after ensuring
that the current bus master has correctly recognized the termination sequence. For ex
ample, if during a relinquish and retry sequence, the MC68851 has not received a bus grant
and detects that LBRI is asserted, it will wait until the current logical master has negated
LAS, and it will then negate BERR (LBRO and HALT are negated later). The negation of
LAS ensures that the logical master recognized the relinquish and retry sequence and will
retry its cycle after it regains control of the bus. This sequence is shown in Figure 4-35.

If a relinquish operation (DSACKx, HALT, and LBRO) is interrupted before the MC68851
completes the required table search operations, upon regaining control of the logical bus,
the CPU will query the MC68851 concerning the status of the request. If the MC68851 is
required to perform table search operations before resumption of the interrupted service,
the CPU will receive a relinquish and retry from the MC68851 in order that the aborted
table search may be reinitiated. The relinquish and retry sequence is issued by the MC68851
in order to immediately gain mastership of the logical bus and to cause the CPU to au
tomatically retry its query of the coprocessor interface response register upon regaining
bus mastership. If the MC68851 was not required to perform any table search operations
during the interruption of service, the CPU will receive a relinquish and retry on the read
of the response register, and the interrupted table search will be continued at the point
that it was interrupted. Otherwise, the table search will be restarted from the point that
the relinquish operation was signaled.

Normally, after a table search is aborted by a higher priority logical bus master, the MC68851
must completely restart the search since the internal state information concerning that
search will have been lost while servicing the alternate master. However, in cases where
the MC68851 is not required to perform any table search operations before control is
returned to the master for which the MC68851 was performing the aborted search, the
state information is not lost, and the MC68851 will resume the table search at the point at
which it was interrupted. This is common, for example, with spurious or transient bus
requests or with logical DMA devices that have translation descriptors locked into the
address translation cache and do not require table searches to load descriptors.

4.4.2 Receiving the logical Bus Grant
The LBGI input should be connected to the bus grant output of the logical bus arbiter which
indicates that an alterate master may take control of the logical bus as soon as the bus
cycle in progress (if any) is complete and the bus is free.

This grant output of the logical bus arbiter is connected to the MC68851 and possibly to
an external prioritization arbiter, but is not connected to any other requesting devices. The
MC68851 controls the timing for when the grant may be passed to alternate requesting
devices.

4.4.3 Passing the logical Bus Grant
The LBGO output is generated from a synchronized version of the logical bus grant input
and is asserted when the MC68851 passes a grant from the logical bus arbiter to an alternate
requesting device. The LBGO and LBGI signals must then be logically 'AND'ed to generate
the bus grant signal for other requesting masters as shown in Figure 4-33.

MOTOROLA
4-48

MC68851 USER'S MANUAL

If the MC68851 has requested the bus and LBRI is negated, the MC68851 will not assert
LBGO and will, instead, take control of the bus to perform the required table searches.
Should an alternate higher-priority master request the bus after the MC68851 has deter
mined that it will initiate a table search but has not yet asserted LBGACK, the requesting
device will not receive a bus grant until the table search can be aborted and the MC68851
is ready to perform address translations for the higher priority device. If the MC68851 has
asserted LBGACK when the external request is recognized, LBGO will be asserted as soon
as possible butthe MC68851 will not negate LBGACK until thetable search has been aborted
and the MC68851 is ready to perform address translations.

If LBGI is recognized as asserted and LBRI is also asserted, indicating that a higher priority
master requires control of the bus, the MC68851 passes the grant by asserting LBGO
immediately if the MC68851 has not also requested control of the logical bus or is not
initialized for early processing startup (refer to 4.1.2.5 EARLY PROCESSING STARTUP).
Otherwise, the assertion of LBGO will be delayed until the MC68851 is again ready to
perform address translation.

Finally, if LBGI is asserted and neither LBRI nor the LBRO output are asserted, a grant has
occurred due to a spurious or transient request and the MC68851 does not pass the grant
by asserting LBGO, but instead ignores the grant and continues monitoring LBRI.

Figure 4-36 illustrates the functional timing associated with the MC68851 passing a bus
grant to an alternate bus master.

4.4.4 Acknowledgement of Logical Bus Mastership

Logical bus grant acknowledge (LBGACK) is asserted by an alternate logical bus master
(including the MC68851) whenever it has taken control of the logical bus.

The bus grant acknowledge signals from all alternate logical masters should be directly
connected to the LBGACK line which is also routed in parallel to the logical bus arbiter.

The MC68851 will not accept mastership of the bus until the following conditions are met:
1) The MC68851 has issued a request and the logical bus arbiter has issued a bus grant,
2) At the time the grant is issued, no other device has requested bus mastership,

3) LAS is negated indicating that the previous master has completed its bus activity,

4) DSACKx is negated indicating that the previous slave device has terminated its
connection to the bus, and .

5) LBGACK is not asserted, indicating that no other master is claiming ownership of
the bus.

4.4.5 Read-Modify-Write Cycles

The RMC signal is driven by the logical bus master to indicate that an indivisible operation
is in progress. The MC68020 will not issue a bus grant in response to a bus request during
a read-modify-write operation that it initiated and, thus, will not release control of the bus
to the MC68851, or any other device during this operation.

If the MC68851 observes an asserted level on RMC when it attempts to issue a relinquish
and retry, it will instead assert bus error to force termination of the cycle (refer to 4.2.1.3
ADDRESS TRANSLATION TERMINATED BY BUS ERROR).

Me68851 USER'S MANUAL MOTOROLA
4-49

III

.J::>.~
0,0
0-;

o
::c
o
~

3:
(")
en
co
co
U'I
~

c
C/)
m
:xl en
3: »
2:
c »
r-

II
so S2 S4 so S2

CLOCK

LA8-LA3l x > (~ ______ _
FCO-:;~ X > ('-______ _

AO-A7. X SIZO/SIZl ____________ ~) ('-______ _

LAS ~ I' ~~ __ _
OSACKx \ I ~

PA8-PA3l _____ 011 1 _I

PAS ~

BERR

HALT

LBRO

LBGI \ /

LBRI\ /

lBGO \ (

LBGACK \'-------
I LOGICAL MASTER BUS CYC" I I ~ r-- ALTERNATE MASTER REQUESTING BUS ~.. MC68851 PASSES BUS GRANT TO ALTERNATE MASTER ~ ... ALTERNATE LOGICAL MASTER

INITIATES BUS CYCLE

Figure 4-36. MC68851 Passes Logical Bus Grant to Alternate Master

Ifthe MC68851 is performing a read-modify-write operation (RMC asserted by the MC68851)
during a table search and observes an asserted level on LBRI, it will assert LBGO in response
to an assertion of LBGI. However, the MC68851 will not negate LBGACK until it has com
pleted the read-modify-write operation that was in progress and has idled its exception
processing hardware.

4.5 PHYSICAL BUS ARBITRATION

Physical bus arbitration is the technique used by physical address space bus master-type
devices to request, be granted, and acknowledge mastership of the physical bus. The
MC68851 is the default master of the physical bus and any device that requires access to
the bus must gain mastership through the arbitration process. In its simplest form, the
physical bus arbitration process consists of the following:

1) An external device issues a physical bus request to the MC68851,
2) The MC68851 asserts physical bus grant to indicate that the bus will be available at

the end of the current bus cycle, and
3) The external device acknowledges that it has assumed physical bus mastership by

asserting physical bus grant acknowledge.

Figu re 4-37 is a flowchart showing the details involved in physical bus arbitration for a
single device. Figure 4-38 illustrates the functional timing of the arbitration circuitry when
the MC68851 is performing address translation for the logical bus master. Figure 4-39
illustrates the same process when the MC68851 is performing table search operations.

REQUESTING DEVICE MC68851

REQUEST THE BUS

1) ASSERT PHYSICAL BUS REQUEST (PBR) GRANT BUS ARBITRATION

1) ASSERT PHYSICAL BUS GRANT (PBG)

ACKNOWLEDGE BUS MASTERSHIP ...

1) EXTERNAL ARBITRATION DETERMINES NEXT BUS MASTER
2) NEXT BUS MASTER WAITS FOR CURRENT CYCLE TO COMPLETE
3) NEXT BUS MASTER ASSERTS PHYSICAL BUS GRANT

ACKNOWLEDGE (PBGACK) TO BECOME NEW MASTER
4) REQUESTING DEVICE NEGATES (PBR) TERMINATE ARBITRATION

J 1) NEGATE PHYSICAL BUS GRANT (PBG) AND WAIT FOR

OPERATE AS BUS MASTER
PBGACK TO BE NEGATED

1) PERFORM DATA TRANSFERS (READ OR WRITE) CYCLES

~
RELEASE BUS MASTERSHIP

1) NEGATE PBGACK RE-ARBITRATE OR RESUME
PHYSICAL BUS OPERATION

Figure 4-37. Physical Bus Arbitration Flowchart for Single Request

MC68851 USER'S MANUAL MOTOROLA
4-51

•

~s:
0,0
"->-1

o
::xl
o
s;

3:
n
0)
co co
U1 ...
c
.~
::2l
en
3:
l>
Z
C
l> r-

I

w ~ M W ~ ~ ~ Sw Sw Sw Sw Sw Sw S3

CLOCK

LA8-LA31 X X'-____________ _

FCO-:~~ X X\,, ________________ _

AO-A7. X
SIIOISlll X\,, _______________ _

LAS ~ I \10.... _______ _

DSACKx \ / "--
PA8-PA31 X > (

~-------------- ----------~> <
PAS \ r ~ '-----------

PBR \ /

PBG \ ,-

PBGACK \'-------- ------~/

~ ~C68851 RElEASE~ --+- ~ LOGICAL MASTER BUS CYCLE PHYSICAL BUS . ALTERNATE PHYSICAL MASTER PERFORMS BUS OPERATIONS MC6885.1 REGAINS CONTROL OF PHYSICAL BUS
PHYSICAL MASTER REOUESTING BUS TO ALTERNATE MASTER AND OUTPUTS PHYSICAL ADDRESS

Figure 4-38. Physical Bus Arbitration During Address Translation

s:
o
Q)
CO
CO
U'I
c:
tJ)
m
:JJ
en
s:
l>
Z
c:
l> r-

s:
o
-I
o

~:JJ ,0
0'1rw»

so S2 S4 so

CLOCK

FCO-FC3 X SUPERVISOR OATA > <'--____________ _ => C'-__ _

PA8-PA31 X > <'--____________ _ => <
AO-A7 X > <'-_________ _ => C~ __

SIZ1/~;~ X > <'-__________ _ => C~ __

PAS ~ T" ~~ ____ _ /' '
OS ~ T" ~'__ ____ _ o I

DBOIS \ I
DSACKO / \ / - - -- --- -- _ .. - --c ~
OSACK1 / \ / C ~
LBGACK

PBR \ I

PBG \ I

PBGACK \~--------'--- ~

~ -+ +- *- MC68851 REGAINS ~
MC68851 INITIATED BUS CYCLE, ALTERNATE PHYSICAL BUS ALTERNATE PHYSICAL MASTER PERFORMS BUS OPERATIONS CONTROL OF PHYSICAL .

PHYSICAL MASTER REOUESTS BUS ARBITRATION BUS AND RESUMES TABLE SEARCH

Figure 4-39. Physical Bus Arbitration During MC68851 Table Search

II

•

The timing diagrams show that the bus request (PSR) is negated at the time that bus grant
acknowledge (PBGACK) is asserted. This type of operation is true for a system consisting
of the MC68851 and a single device capable of physical bus mastership. In systems having
a number of devices capable of physical bus mastership, the requst line from each device
is wire-ORed to the MC68851. In such a system, it is possible that there could be more
than one bus request asserted simultaneously.

The timing diagram in Figure 4-38 shows that the bus grant (PSG) signal is negated a few
clocks after the transition of the bus grant acknowledge signal. However, if bus requests
are still pending after the assertion of bus grant acknowledge, the MC68851 will assert
another bus grant within a few clock cycles after the grant is negated. This additional
assertion of bus grant allows external arbitration circuitry to select the next bus master
before the current bus master has completed its use of the bus. The following three par
agraphs provide additional information about the three steps in the arbitration process.
The precise delays between signals are provided in SECTION 12 ELECTRICAL SPECIFI
CATIONS.

4.5.1 Requesting the Physical Bus

External devices that are capable of becoming physical bus masters request the bus by
asserting the physical bus request (PBR) signal. This can be a wire-ORed signal (although
it need not be constructed from open-collector devices) that indicates to the MC68851 that
some external device requires control of the physical bus. The MC68851 is effectively at a
lower bus priority than all external physical devices and always relinquishes the bus after
it has completed its current bus cycle or address translation, if one has started.

If no acknowledge is received before the bus request signal is negated, the MC68851
continues bus operations once it detects that the bus request is negated. This allows
ordinary address translation and table search operations to continue if the arbitration
circuitry inadvertently responded to noise or an external device determines that it no longer
requires use of the bus before it has acknowledged mastership.

4.5.2 Receiving the Physical Bus Grant

The MC68851 asserts physical bus grant (PBG) as soon as possible after the receipt of the
physical bus request. Normally this is immediately following internal synchronization, but
there are two exceptions to this rule. If the MC68851 has made an internal decision to
execute a bus cycle or to output an address translation but has not progressed into the
operation to assert the physical address strobe (PAS) signal, then physical bus grant will
be delayed until PAS is asserted to indicate to external devices that a bus cycle is in progress.
The second exception occurs when a read-modify-write cycle is in progress regardless of
whether that cycle was initiated by the MC68851 or the logical bus master. The MC68851
will not issue a physical bus grant if the RMC signal is driven either by the MC68851 or by
a logical bus master.

The physical bus grant signal may be routed through a daisy-chained network or through
a specific priority-encoded network. The MC68851 is not affected by an external method
of arbitration as long as the protocol is obeyed.

4.5.3 Acknowledgement of Physical Bus Mastership

Upon receiving a physical bus grant, the requesting device waits until PAS, DSACKx, and
PBGACK are negated before asserting its own PBGACK. The negation of the PAS indicates

MOTOROLA
4-54

MC68851 USER'S MANUAL

that the previous master (including the MC68851) has completed its cycle. The negation
of PBGACK indicates that the previous master (if any) has released the bus. The negation
of DSACKx indicates that the previous slave has terminated its connection to the previous
master. Note that in some applications, DSACKx might not enter into this function and
devices are then connected such that they are only dependent on PAS. When physical bus
grant acknowledge is asserted, the device is bus master until it negates PBGACK. Physical
bus grant acknowledge should not be negated until after all bus cycles required by the
alternate bus master are complete. Bus mastership is terminated at the negation of PBGACK.

The bus request from the granted device should be negated after the physical bus grant
acknowledge is asserted. If a bus request is still pending after the assertion of PBGACK,
another bus grant will be issued within a few clocks of the negation of the bus grant. Refer
to 4.5.4 Physical Bus Arbitration Control. Note that the MC68851 does not perform any
external bus cycles before it reasserts the bus grant.

4.5.4 Physical Bus Arbitration Control

The physical bus arbitration control unit in the MC68851 is implemented using a finite state
machine. As discussed previously, all asynchronous inputs to the MC68851 are internally
synchronized in a maximum of two cycles of the system clock.

As shown in Figure 4-40, the inputs labeled R and A are internally synchronized versions
of the physical bus request and physical bus grant acknowledge inputs, respectively. The
physical bus grant output is labeled G and the internal three-state control signal T. If T is
true, the physical address bus, PAS, and other physical control signals are placed in the
high-impedance state after PAS and RMC are negated (refer to 4.6 CONCURRENT DIS
SOCIATE LOGICAL AND PHYSICAL BUS ACTIVITY). All signals are shown in positive logic
(active high) regardless of their true active voltage level.

State changes (valid outputs) occur on the next rising edge of the clock after the internal
signal is valid.

Timing diagrams of the physical bus arbitration sequence during address translation and
table search operations are shown in Figures 4-38 and 4-39, respectively. The physical bus
arbitration sequence while the physical bus is inactive is shown in Figure 4-41.

4.6 CONCURRENT DISSOCIATE LOGICAL AND PHYSICAL BUS ACTIVITY

In systems that utilize alternate physical bus masters, the MC68851 allows independent
operation of both the logical and physical buses while still performing access rights check
ing for logical bus activity. For example, it is possible for the logical master to access
devices resident on the logical bus (a coprocessor, a logical cache, ... , etc.) while the
physical bus has been arbitrated away from the MC68851. This concurrence is obtained
by the correct employment of the logical bus control signals and buffering of the control
signals and buses that are shared between the logical and physical buses.

When the MC68851 does not possess ownership of the physical bus (PBGACK is asserted),
the physical address bus and physical address strobe are in the high-impedance state.
Also, the MC68851 does not drive the lower address AO-A7, size, function codes, data
strobe, RMC or read/write, although these signals may be driven by the logical bus master.
This requires that any of these that are used by external, physical address space devices
must be buffered between the MC68851 and the alternate physical master.

MC68851 USER'S MANUAL MOTOROLA
4-55

..

RA

R - PHYSICAL BUS REQUEST
A - PHYSICAL BUS GRANT ACKNOWLEOGE
G - PHYSICAL BUS GRANT
T - THREE-STATE CONTROL TO PHYSICAL BUS CONTROL LOGIC
X - DON'T CARE

NOTE: The PBG output will not be asserted while RMC is asserted
by the MC68851 or the Logical Bus Master

Figure 4·40. Physical Bus Arbitration State Diagram

If a bU's cycle initiated by the logical master is held up pending the completion of alternate
physical bus master activity, the MC68851 does not assert PAS for that cycle until it regains
ownership of the physical bus. After the negation of PBGACK is detected by the MC68851
(subject to a synchronization delay), physical address will be driven and then PAS will be
asserted on the next appropriate clock edge (as determined by the decision timeout delay).

In order to support logical bus activity, the MC68851 monito'rs logical addresses regardless
of the state of PBGACK and uses the signals LBRD, HALT, BERR, CLI, OSACKx, and 00-
031 to control and respond to accesses on the logical bus. Any of these signals that are
employed by an alterate physical bus master must be buffered. Additionally, in order to
prevent spurious assertions of PAS, some provision must be made to block propagation
of the PAS signal to physical address space devices when the target for a bus cycle resides
on the logical bus. In order to prevent these transient assertions of PAS to physical address
space devices, the logical bus control circuitry must block the propagation of PAS early
enough in the bus cycle to account for the earliest possible assertion of PAS by the MC68851
and must maintain the blocking until the latest possible negation time. In general, the
above requirement also applies to all systems that have memory devices resident on the
logical bus.

MOTOROLA
4-56

MC68851 USER'S MANUAL

3i:
n
0)
co
co
(II
c: en
m
;:g
en
3i: »
2 c: » r-

~

~ o
~~
en' -...I»

CLOCK

FC(]"FC3

PA8-PA31) ('-_________ _

AO-A7

SIZI/SIZO,
R/W

MS ' ~~ __________ _

os

DBDlS

DSACKO /

DSACKI /

LBGACK

PBR \ /

PBG , f

PSGACK \'----------

so

=> <,----

i" I

~

I MC68851 LOGICAL AND PHVS<Al I PHY.CAlBUS I AlTERNATE PHVOCAl MASTER PERFORMSBUS OPERATIONS I MC68851 REGAINS CONTROL I r-- BUSES INACTIVE -+ ARBITRATION -+- -+- OF PHYSICAL BUS --+I

Figure 4-41. Physical Bus Arbitration (Bus Inactive)

II

In addition to proper buffering of signals, logical address space devices (henceforth referred
to as logical devices) that are designed to operate independently of the physical bus must
satisfy several criteria:

1) The address decode for the logical device must operate on only the logical address
and function code,

2) The chip select, or similar function, for the logical device must be based on the state
of the logical address strobe (i.e., independent of PAS),

=-=~~

3) Likewise, the cycle termination response (for example, DSACKx) must be generated
from the logical address strobe, and

4) Any logical bus master capable of accessing the logical devices must be capable of
aborting or retrying the bus cycle in response to a bus error or relinquish and retry
signaled by the MC68851 (for example, referto 4.2.2.1 SYNCHRONOUS OPERATION).

In a suitably configured system, when a logical bus master is accessing a logical device,
the MC68851 still provides access checking for the bus cycle and will assert the appropriate
signals to terminate faulting cycles (bus error), to communicate across its coprocessor
interface (DSACKx and the data bus), or to indicate the need to access the translation tables
in physical memory (relinquish or relinquish and retry).

The above discussion of system configuration and buffering requirements applies only to
those systems desiring to employ concurrent logical and physical bus activity for overall
system performance enhancement, and should not be construed as a general requirement
for all system configurations.

Figure 4-42 provides a simple block diagram of the buffering and control sections required
to implement the above criteria.

Figure 4-43 illustrates several example sequences of concurrent logical and physical bus
activity.

4.7 BUS OPERATION EXAMPLES

The following paragraphs contain several specific examples of MC68851 bus operations
and is' intended to provide better understanding of the MC68851 by demonstrating se
quences of typical bus operations.

4.7.1 Table Search Operations

The bus operations required to initiate and complete a table search operation, inCluding
startup and terminate overhead, are shown in Figure 4-44. This figure demonstrates the
timing for a translation descriptor fetch and address translation cache update assuming
that the MC68851 is operating in the early processing startup and fast table search modes
of, operation (refer to 4.1.2 Bus Interface Initialization) and that physical memory operates
with no wait states. The table structure accessed consists of a function code index and two
levels of long format descriptors.

The startup overhead associated with a table search operation is affected by the table
structure used and operational mode of the MC68851. For example, if the first level of the
table search is not an index by the function codes, the startup overhead is increased by
the two clock periods required to perform a limit check of the root pointer used in the
search. Also, ifthe early processing startup mode is disabled, an additional six clock periods
of overhead is required to initiate a table search.

MOTOROLA
4-58

MCS88S1 USER'S MANUAL

:s:
n
~ co
U1
...&

c
rn m
:g

en
:s: » z
c »
r-

~
o
--I o

~:JJ ,0 (J'lr (0»

CPU

LOGICAL OATA CACHE
ANO CONTROL

00-031 00-031

R/W R/W

Sill/SilO Sill/SilO

os os

THREE-STATE
BUFFERS

I r----
~

~

~

PHYSICAL AOORESS SPACE
OATA BUS

OSACK1/0SACKO OSACK1/0SACKO I ~

}

PHYSICAL AOORESS BUS
CONTROL SIGNALS

RMC

BERR HALT

AO-A7

LA8-LA31

LAS

-

~
RMC IIL-~

SERR. HALT

AO-A7

PA8-PA31

LOGICAL CYCLE IN PROGRESS

PAS
CD

I

MC68851

Figure 4-42. Example of Signal Buffering Requirements for Support of
Concurrent Logical and Physical Bus Activity

} PHYSICAL ADDRESS BUS

PHYSICAL AOORESS SPACE
AOORESS STROBE

I

CLOCK

FCO·FC3.
SilO/Sill

LA8·LA31.
AD-A 7. R/W

LAS

DBDlS

00·031

DSACKx

BERR

PA8·PA31

PAS

PBR

PBG

PBGACK

CPU

ALI PHYSICAL
MASTER

MC68851

MOTOROLA
4-60

SO S2 Sw S4 SO S2 S4 SO S2 Sw S4

LrL-'L-
X X X
X X X
\ 1\ 1\ r

J
() C=> -< >

\ / \ / ,
:::x > < >--

\ f'-/ \ /

\ /

\ I

\
PERFORMS BUS CYCLE ASSESSING + FAST CYCLE ACCESSING + LOGICAL MASTER READS FROM MC68851 ----.

PHYSICAL ADDRESS SPACE LOGICAL CACHE REGISTER SET

ARBITRATES FOR BUS MASTERSHIP "I_ PERFORMS BUS

BUS MASTERSHIP GRANTED ro-+ CONTINUES TO MONITOR+ DECODES ACCESS TO REGISTER SET. SUPPLIES-+-
ALTERNATE PHYSICAL MASTER LOGICAL ACTIVITY DATA. AND ASSERTS OSACKx

Figure 4-43. Example of Concurrent

MC68851 USER'S·MANUAL

SO S2 S4 SO S2 Sw Sw Sw Sw S4 SO

n..IlSLI Ln.JLJ
X :=x x::::
x :=x x::::
~ \ "--
\

--<== >--
I \ 7 \ ;--, r
-< >- < (

~ r- I \ r

~CCESSES PAGE W~TH
BERR BIT SET IN ___ WRITE TO SYSTEM STACK MUST WAIT PENDING COMPlETION J

OF PHYSICAL BUS ACTIVITY ~ CORRESPONDING DESCRIPTOR

INTERNAL
PROCESSING

OPERATIONS ----------------II*'-I---REUNQUISHES CONTROL OF PHYSICAL BUS TO MC68851

ABORTS BUS CYCLE LOGICAL BUS ACTIVITY REGAINS BUS MASTERSHIP AND COMPLETES r- +=ONTINUES TO MONITOR -1
BUT CANNOT PERFORM PHYSICAL ADDRESS SPACE CYCLE CYCLE

PHYSICAL ADDRESS SPACE ACTIVITY

Logical and Physical Bus Activity

MC68851 USER'S MANUAL MOTOROLA
4-61

..

-l,·,t-PERIODS·

SO S2 S4 S5 SO S2 S4 SO S2 S4

CLOCK nJl.JL...JLJL
FCO·FC3 X

LA8·LA31 X
PA8·PA31 X

A2·A7 X
Al·AO X

SIll/SIlO X
R/W Y
lAs \

OS \

OBOIS

00·031

OSACKO/OSACK 1

PAS

BEAR

HALT

LBRO

LBGI

LBRI

LBGACK

ASYNC

MOTOROLA
4-62

>- ---<
>-
(==x x
>- ---< x
>-~
>-~
'- ----'

I '-

I '- --' \ I \ r
--' \ I \ r

C=> c=
\ 7 \ I \

\ I \ r
'----'
\ J
\ --'

\ /

,
RELINQUISH RELEASES BUS TO MC6B851 fiRST LEVEL Of SEARCH CALCULATE ~ LOGICAL MASTER +- --+ +-

AND AND MC68B51 SETS UP (INDEX BY NEXT LONG fORMAT (64·BIT)
RETRY SIGNALED fOR TABLE SEARCH FUNCTION CODE) ADDRESS

• Me68851 Initialized for Fast Table Search and Early Processing Startup - Operating on 32-Bit Bus. This Initial

Figure 4-44. MC68851
(Table Search with Function Code Lookup

MC68851 USER'S MANUAL

1 ""l-CLOCK

SO S2 S4 SO S2 S4 SO S2

S4 PERIOOS

SO

Jl.JL.rt.Sl.SL
SUPERVISOR OATA) c=

c=
)(c

(X)() c=
./ c=
J c=
" c=

~ , I \ " r- " ~

~ I \ I , r-,

~ / \ ;--\ ;-
\, I \ " r-

---------------------------------------'

-+- +- ~
ATCUPOATE ~ ~ ANO
BUS RELEASE

CALCULATE CPU REGAINS
DESCRIPTOR FETCH NEXT LONG FORMAT (64·BIT) DESCRIPTOR FETCH BUS MASTERSHIP

ADDRESS AND RETRIES CYCLE

overhead is Increased by two clock periods if the fIrst level of the table search IS not an index by function code

Table Search Example
and Two Levels of Long Format Descriptors)

MC68851 USER'S MANUAL MOTOROLA
4-63

..

Figures 4-45 and 4-46 demonstrate the bus operat~,ons and timings associated with updating
the used and modified descriptor status bits. The overall time required to perform a table
search operation such as depicted in Figure 4-44 is affected by the number of status bits
that must be updated during the search.

It should be noted that both the used and modified bits may be set in a single operation
that does not require use of a read-modify-write operation. However, if only the used bit
of a page descriptor is to be set and the status of the M bit is not to be changed, the
MC68851 always uses a read-modify-write operation in order to maintain status consistency
in systems that allow multiple MC68851s to share the same translation tables. It should
also be noted that a simple write operation is always used to update the used bit at all
levels of the translation table other than the page descriptor level.

4.7.2 Logical Bus Arbitration

Figure 4-47 illustrates an MC68851 table search operation that is interrupted by an alternate
logical bus master requesting control of the logical bus. The MC68851 continues the table
search until it detects an assertion of logical bus grant in (LBGI) after which it asserts logical
bus grant out (LBGO) to indicate that it will relinquish control of the logical bus at the end
of the current bus cycle. After placing all shared control lines in the high-impedance state,
the MC68851 negates logical bus grant acknowledge (LBGACK).

If the MC68851 was performing a table search to update the ATC as the result of a request
for an address translation that did not have a descriptor resident in the address translation
cache, the interrupted table search will not be resumed when the alternate logical bus
master releases control of the bus; instead, the MC68851 will wait for the bus cycle that
initiated the search to be retried by the logical master. When the master does retry that
cycle, the MC68851 will resume the table search at the point it was terminated if, and only
if, no operations have occurred between interruption of the table search and the retry of
the cycle that require that the MC68851 perform any other internal operations. Otherwise,
the table search will be completely re-executed.

If the MC68851 was performing a table search in response to a PTEST or PLOAD instruction,
the table search will be automatically resumed or restarted (refer to 4.4.1.2 MC68851 RE
QUESTING THE LOGICAL BUS).

MOTOROLA
4-64

MC68851 USER'S MANUAL

3:
(")
en co co
en
...&

c: en
m
::J:I
en
3: »
2
c: »
r-

3::
~
o

f"~
m· <.TI»

so S2 S4

~6CLOCK~ r . PERIOOS ~ I so
S2 S4 SO S2 S4

CLOCK

FCO-FC3 SUPERVISOR OATA --------------------------------'>---
PAS-PA31 x _____________ _

AO-A7.)(
SIZO/SIZI --------------- ~ >-

R/W , r-

RMC , r-

PAS' I ~ I \ I
os, I \ I \ I'-

DBDlS , , \ I \ r-
00-031 c==>-- () < >--

DSACKO/DSACKI \;- . \ / \ ;-

BERR

HALT

LBRO

LBGI

LBRI

LBGACK

ru ____________________ ___

~ --+ M'88851 I I END ~ DESCRIPTOR FETCH DETECTS U BIT OF .. 4 U BIT UPDATE USING INDIVISIBLE CYCLE .. OF
DESCRIPTOR NOT SET SEARCH

Figure 4-45. Page Descriptor U Bit Status Update

I

,t::.~
0,0
0>--1

o
:lJ
o
r »

s:
n
en
Q)
Q)
U'I
~

c
en m
::D en
s: » z
c »
r

1_ 6 CLOCK _I
r-PERIODS ~ SO SO S4 S4 SO S2 -S2 S4 S2 Sw

CLOCK

FCO·FC3 SUPERVISOR DATA

PA8·PA31 X X c:
SIZ~~~~ X X X c:

R/W , I

RMC

PAS, I , I' r-
OS\. I \ --J' r-

OBDIS 'I , I' r-
00-031 <) <) (>--

DSACKO/DSACKI \ / \ / \ ~

BERR

HALT

LBRO

LBGI

LBRI

LBGACK

CD

I I MC68851 DETECTS U I I ~ ~ OESCRIPTOR FETCH • .. (OR U AND M) • .. STATUS BIT UPDATE • .. NEXT TABLE SEARCH OPERATION
BIT(S) FOR ENTRY NOT SET (IF ANY)

Figure 4-46. Table Pointer U Bit or Page Descriptor U and M Bit Status Update

3!:
(')
en co
co
U'I
...a

C
fn
m
::xl
en
3!: » z
c »
r-

s:
o
d
::0

f"O
0)1 --..I»

so S2 S4 so S2 S4 so S2 Sw S4

CLOCK

FCO-FC3 > ('-________________ _
LA8-LA31 -------------------------------~<~----------------------
PA8-PA31 X I
Slz~~~~i X I > C'-________________ _

R~ '(--------------------
lAs r---"\ I
~S ~ I \ I \, ____________________ _

DS~ I \ r-' / \ I

OBOIS
, f ~~ __ _

00-031 ----<) (=> ('----
OSACKO/OSACK 1 ~ / \ / \ /

BERR

HALT

LBRI~ /

iJiRci

LBGI \ I

LBGO \ f

LBGACK --------------------------~~~-------------
~ ARBITRATION FOR LOGICAL BUS DURING MC68851 BUS CYCLE _I .. MC68851 RELEASES BUS +--AlTERNATE MASTER PERFORMS BUS CYCLEISI--.j

Figure 4-47. MC68851 Table Search Operation Interrupted by Alternate Logical Bus Master

I

MOTOROLA
4-68

MC68851 USER'S MANUAL

SECTION 5
ADDRESS TRANSLATION

This section discusses the mapping of addresses from the logical address space to the
physical address space by the MC68851. Included in this section is the description of the
MC68851 translation table structure, formats and uses of translation descriptors, and op
eration of the MC68851 address translation cache (ATC).

5.1 ADDRESS TRANSLATION TABLES

In a paged virtual system, the logical address space is divided into a number of fixed-size
pages and corresponding to each of these 'logical pages' there is (possibly) a unique
mapping into the physical address space. The mapping may translate the logical address
to the address of a page located in physical memory (a page frame), may indicate that the
logical address is temporarily unuseable because the corresponding physical page is res
ident on a secondary storage device, or may indicate that the logical address does not
(currently) have a corresponding physical mapping. The primary task for a memory man
agement unit in such a system is to perform the translation from logical addresses to
physical addresses for bus cycles executed by the logical bus master. Although the memory
management unit performs address translation, it depends on the operating system to
supply it with the information describing the logical-to-physical mapping.

In order to allow each 'logical page' to have a unique mapping into the physical address
space, it is necessary to provide a translation descriptor corresponding to each page in
the logical address space. In a system with a logical address space of size 2n and a page
size 2m, there are 2n-m logical pages. The highest order n-m bits of the logical address
specify the logical page address and the lowest order m bits specify an offset within the
page to address an individual entry in that page. In order to locate a translation for a given
logical address, a memory management unit uses the logical page address as an index
into a table of translation descriptors to select the entry corresponding to that' page address.

The descriptor table containing the logical-to-physical mappings for the system can be
organized in one of two ways. A linear table is the simplest form and would consist of a
single, contiguous table with one entry corresponding to each logical page. In order to
locate a translation for a particular logical address, the memory management unit would
use the logical page address as an index into this table selecting the entry at this location
as the appropriate translation descriptor. Although the structure of this table is very simple
and a translation descriptor could be fetched ina single bus operation, this type of table
is not used since the entire table must always reside in the system's memory (i.e., there
is no way to indicate that a portion of the address space is not (currently) mapped except
by having an entry in the table indicating this). This disadvantage is significant in MC68020-
based systems that are capable of supporting logical address spaces with several million
pages.

Alternately, a tree structure could be used to contain the mapping information. Using this
type of structure, a portion of the logical address space is mapped at each level of the

MC68851 USER'S MANUAL MOTOROLA
5-1

•

translation tree. The higher levels of the tree subdivide the logical address space into
relatively large blocks and the lower levels further subdivide these large blocks until, at
the lowest level, the address space is broken down into individual pages. Compared to the
linear table, a tree structure is somewhat more complex and may require that the memory
management unit perform several bus operations to locate a translation descriptor. How
ever, provided with an address translation cache of sufficiently high hit rate and a very
efficient bus interface, these disadvantages are not significant. The significant advantage
of using a tree structure is the ability to deallocate large portions of the logical address
space with a single entry at the higher levels of the tree. Additionally, portions of the tree
itself may reside on a secondary storage device or may not exist at all until they are required
by the system. These advantages allow a tree structure to efficiently map a very large
logical address space using only a fraction of the memory that would be required by a
linear table.

The mapping of logical to physical addresses for a system is described to the MC68851
using trees of tables in physical memory. The physical addresses of the roots of these
trees are contained in the MC68851 root pointer registers (refer to 6.1.1 Root Pointer
Registers). In addition to mapping information, the tables contain protection information
and usage-history information for both translation tables and pages of physical memory.
When the MC68851 needs to locate a logical-to-physical mapping, it uses the logical address
to index into the translation tables and select the corresponding mapping. The MC68851
searches these tables to locate a logical-to-physical mapping when the ATC does not
contain a translation for a bus cycle executed by a logical bus master, as part of a PTEST
or PLOAD instruction, or when a module call operation references a module descriptor
that does not have a corresponding entry in the ATC.

~

5.1.1 General Translation Table Structure

Address translation tables for the MC68851 are organized as trees of tables located in
physical memory, each table being composed of pointers to other branches of the tree
(table descriptors) or pointers to physical pages (page descriptors). The tables themselves
may be termed to be either 'pointer tables' or 'page tables' depending on whether they
contain table descriptors or page descriptors, respectively. The MC68851 can have as many
as three of these trees active simultaneously, one pointed to by each of the root pointer
registers: SRP, CRP, and DRP corresponding to translations for supervisor, user, or DMA
accesses, respectively (refer to 6.1.1 Root Pointer Registers).

Searching an address translation table tree for the physical address corresponding to a
logical address consists of extracting a field from the logical address or function code,
using the extracted field to select a descriptor in a table identified either by the root pointer
or by a pointertable at a higher level ofthe translation tree, checking protection information,
and using the selected descriptor to locate the next table. This process is repeated with
successive fields in the logical address until a page descriptor is found, indicating the
physical base address of the page frame, or until an error occurs, terminating the table
search. A simplified flowchart of the address translation table search procedure is shown
in Figure 5-1 (a complete flowchart is provided in Figure 5-23).

A translation tree may be composed of up to five levels of tables requiring the use of five
separate index fields to locate a logical-to-physical mapping. Additionally, tables at different
levels of the translation tree may all be of the same size or they may each have different
sizes. The general structure of the translation tree is determined by the translation control
(TC) register (refer to 6.1.3 Translation Control). The IS fie.ld (initial shift) is used to set the

MOTOROLA
5-2

MC68851 USER'S MANUAL

CREATE INVALID
ATC ENTRY (BERR BIT SET)

ENTRY

DT ~ 'PAGE DESCRIPTOR'

OTHERWlS~
FCL SET OR DRP

DT ='INVAlID' OTHERWISE

NO MORE n FIELD.i
(MUST BE INDIRECT) MORE TI FIELDS

INDIRECT DESCRIPTOR:
FETCH DESCRIPTOR POINTED TO

BY PREVIOUS DESCRIPTOR

OT = 'PAGE DESCRIPTOR'

DT = 'PAGE DESCRIPTOR'

CREATE VALID ATC ENTRY
PAGE FRAME ADDRESS = UNUSED LOGICAL PAGE ADDRESS (IF ANY)

+ ADDRESS FiElD FROM LAST DESCRIPTOR FETCHED
(SIGNED ADDITION)

EXIT
"SIZE" IS THE SIZE (IN BYTES) OF THE DESCRIPTOR

AT THE PARTICULAR TABLE LEVEL

Figure 5-1. Simplified Me68851 Table Search Flowchart

MC68851 USER'S MANUAL MOTOROLA
5-3

•

size of the logical address space which is given by 232-IS. The PS field (page size) deter
mines the page size to be used in the system (2PS) and, together with the IS field, specifies
the number of pages in the system (232-IS-PS). Additionally, if the logical address space
is also mapped by the function code signals, there are eight separate logical address spaces
of size 232-IS, one corresponding to each of the M68000 function code assignments, in
creasing the logical address space size to 232-IS + 3 and the number of pages in the system
to 232-IS-PS + 3.

In order to provide for a unique logical-to-physical mapping for each logical page, the
logical page address (32-IS-PS + 3 bits) is used to index into the translation tables to select
the appropriate mapping. The logical page address is divided into one or more fields, as
determined by the FCL bit and the TIA, TIB, TIC, and TID fields of the TC register, to be
used as indices into the tree structure at its various levels. This division of the logical
address is illustrated in Figure 5-2.

FCL IS

·1
+TIA

·1
+TIB

·1
+TIC

·1
+TIO + PS

I I I I A OFFSET

3 2 31

Figure 5-2. Derivation of Table Index Fields

The F field consists of function code bits FC2-FCO (FC3 is used only to select use of the
DMA root pointer (DRP)) and is used when the logical address space is mapped based on
the function codes. Use of the F field is required for address translation trees pointed to
by the DRP register. For address translation trees pointed to by the CRP and SRP registers,
use of the F field is controlled by the FCL bit of the TC register (refer to 6.1.3.3 FUNCTION
CODE LOOKUP). An F level table is always eight entries long (one entry identifying a branch
of the three corresponding to each of the M68000 function code assignments) and is always
the first table accessed during a table search by the MC68851 (provided that function code
lookup is enabled). If the F field is not used, the function codes are used only for protection
purposes, the root pointer register points to the base of the A level table, and the first level
of the address translation tree is indexed using the A field.

The table index fields (TIA, TIB; TIC, TID) specify the number of bits of the logical address
to be used at each level of the translation tree thus specifying the division of the logical
address space at each level. For example, if the TIA field is set to n then the table at the
root level of the translation tree contains 2n entries and the logical address space is sub
divided into 2n regions of equal size, one of these regions corresponding to each of the
entries in this table. Further, if the TIA field is as above and the TIB field is set to m
(m + n ~ 32-IS-PS) then each of the 2n regions defined in the first level of the tree are
further subdivided into 2m regions of equal size. The table index fields are applied to tables
in the sequence A, B, C, D. Use of the F, B, C, and D fields can be suppressed, so that the
minimum number of levels in an address translation tree is one.

The A, B, C, and D fields of the logical address specified by the IS, TIA, TIB, TIC, and TID
fields of the TC register are subject to restrictions as follows:

MOTOROLA
5-4

Me6S851 USER'S MANUAL

Field

A
B
C
D

Starting Bit Position

31-IS
31-IS-TIA
31-IS-TIA-TIB
31-IS-TIA-TIB-TIC

Width Restrictions

1-15 (TIA Must be Non-Zero)
0-15 if TIB=O, then TIC=TID=O is Required
0-15 if TIC=O, then TID=O is Required
0-15

In addition to the restrictions listed above, the fields of the TC register (when treated as
unsigned integers) must satisfy the following relationship:

IS+PS+TIA+TIB+TIC+TID = 32

The logical-to-physical mappings for a system can be described to the MC68851 using two
different formats oftranslation descriptors. The descriptors may be either of the long format
(eight bytes) or the short format (four bytes) and these different formats may be freely
intermixed in different tables of the translation tree. The determination of field widths •
described above does not determine the format (long or short) of descriptors in various
tables of the tree. The format of the descriptors in a table is independent of all index field
widths and the formats of all other tables of the tree. The MC68851 is informed of the
format of descriptors in a table during the table search by the descriptor type fields in the
pointers at the higher levels of the tree, and the MC68851 uses this to scale the index into
the table by four or eight bytes, as appropriate. Thus, tables at the same level in different
branches of the tree may have different format descriptors, although mixing of descriptor
formats within a single table is not allowed.

Figure 5-3 shows an example of a simple address translation table tree and a logical address
translated using this tree. The 32-bit logical address is divided into three fields: A (12 bits),
B (10 bits), and PS (10 bits). The function code lookup is suppressed such that the index
by-function code is not used. This division would be set at system initialization time by
writing the value $80AOCAOO to the TC register (refer to 6.1.3 TRANSLATION CONTROL),
The bold lines indicate the sequence of descriptors used to translate the logical address
($OOA01AOO for this example), The shaded descriptor on the right contains the physical
page address that corresponds to the logical address, At the end of the table search, an
entry will be made in the ATC pairing the logical address with this physical address,
Subsequent references to this logical page, until the ATC is flushed of this entry, will not
require the table search.

Figure 5-4 shows one possible arrangement of this translation tree in main memory, For
convenience, all of the tables are shown as contiguous in physical memory; however, this
is not required since all page frames are equivalent. Note that all addresses in the tables
are physical addresses.

5,1,2 Variations in Translation Table Structure

Many aspects ofthe MC68851 translation tree structure are software configurable, allowing
the system designer a great range of flexibility to optimize the performance of the MC68851
for a particular system. The following paragraphs discuss the variations of the tree structure
from the general structure discussed above.

5,1.2.1 CONTIGUOUS MEMORY, The MC68851 provides the ability to translate a contig
uous range of the logical address space (an integral number of logical pages) to an equiv
alent contiguous physical address range with a single descriptor, This is done by placing
the code for 'page descriptor' ($1) in the descriptor type (DT) field of a descriptor at a level
of the tree that would normally contain a table pointer, thereby deleting a sub-tree of the
table,

MC68851 USER'S MANUAL MOTOROLA
5-5

A B PS

EXAMPLE ADDRESS $OOA01AOO I 0 0 0 0 0 0 0 0 1 0 1 0 I 0 0 0 0 0 0 0 1 1 0 I x x x x x x x x x x I

ROOT POINTER

$A $6

~~~~ EmRYlOO~ ~: ~~....,~ PAGE FMME ADORESS 

A LEVEL TABLES 
(4K ENTRIES) 

B LEVEL TABLES 
(4K TABLES MAXIMUM, lK ENTRIES/TABLE) 

Figure 5-3. Example Translation Table Tree 

TABLE $0 
B LEVEL 

TABLE $OOA 
B LEVEL 

TABLE $FFF 
B LEVEL 

When the MC68851 is performing a table search operation and encounters a descriptor 
with a DT field indicating 'page descriptor' it terminates the search and creates an entry 
in the ATC. In a normal table search, the MC68851 will have exhausted the page address 
field of the logical address (the most significant 32-IS-PS bits) indicating that the descriptor 
resides in a page table at the leaf level of the translation tree. In this case, the page frame 
address is simply the value contained in the 'page address' field of the descriptor. If the 

MOTOROLA 
5-6 

MC68851 USER'S MANUAL 



A PS 

EXAMPLE ADDRESS $OOA01AOO 10 0 0 0 0 0 0 0 1 0 1 0 10 0 0 0 0 0 0 1 1 0 I x x x x x x x x x x I 

ROOT POINTER 

$A $6 

$10000 ...-1-----1 

$13FFC~ 
$14000~ 

$17FFC It------f 

$37000 Ir------I 

A lEVel TABLE 
(4-BYTE ENTRIES) 

B lEVEL TABLE $0 
(4-BYTE ENTRIES) 

B lEVel TABLE $OOA 
(4-BYTE ENTRIES) 

Figure 5-4. Example Translation Tree Layout in Memory 

MC68851 has not exhausted the page address field (i.e., has not encountered a Tlx field 
with a value of zero or has not used the most significant 32-IS-PS bits of the logical address) 
when it encounters the 'page descriptor' encoding, this indicates to the MC68851 that the 
range of the logical page address that was not used in the table search is to be defined as 
a contiguous range of memory. The MC68851 terminates the table search and creates an 
ATCentry. The physical address contained in this entry is the sum of the logical page 
address (bits already used in the table search are set to zero) and the page frame address 
(the most significant 32-PS bits in the page address field of the descriptor). If n bits of the 
logical page address are unused when a page descriptor encoding is encountered, the 
single descriptor creates a mapping of a contiguous region of the logical address space 
starting at the logical page address (with the n unused bits set to zero) to a contiguous 
region in the physical address space starting at the page frame base address with a size 
of 2PS + n bytes. 

MC68851 USER'S MANUAL MOTOROLA 
!=i-7 

• 



• 

This type of descriptor is referred to as a 'type-2 page descriptor' and is characterized by 
having a descriptor type of 'page descriptor' but not being located at the lowest level of 
the translation tree. If the type-2 page descriptor is of the long format, the limit field is 
applied to the next index field. This allows the number of pages mapped contiguously to 
be restricted. Refer to 5.1.5 Descriptor Types for additional information. 

Although the type-2 page descriptor creates a contiguous logical-to-physical mapping with
out having to maintain individual descriptors in the translation tree for each page that is 
a member ofthe contiguous region, the ATC will contain one entry for each page mapped. 
These entries are created internally by the MC68851 each time a page boundary (as de
termined by the page size) is crossed in the contiguous region. Figure 5-5 shows an example 
translation table with a portion of the logical address space translated as a contiguous 
block . 

Note that the DT field may be set to 'page descriptor' at any level of the translation tree 
including the root pointer level. Setting the DT field of a root pointer to 'page descriptor' 
creates a direct mapping from the logical to the physical address space with a constant 
offset as determined by the value in the table address field of the root pointer. 

5.1.2.2 INDIRECTION. The MC68851 provides the ability to replace an entry in a page 
table with a pointer to an alternate entry. The indirection capability of the MC68851 allows 
multiple tasks to share a physical page while maintaining only a single set of history 
information for the page (i.e., the 'modified' indication is maintained only in the single 
descriptor). The indirection capability also allows the page frame to appear at arbitrarily 
different addresses in the logical address spaces of each task. Using the indirection ca
pability, single entries or entire tables may be shared between multiple tasks. Figure 5-6 
shows two tasks sharing a page using indirect descrtiptors. 

When the MC68851 has completed a normal table search (has exhausted all index fields 
of the logical page address), it examines the descriptor type field of the last entry fetched 
from the translation tables. If the DT field contains a 'valid long' ($2) or 'valid short' ($3) 
encoding, this indicates to the MC68851 that the address contained in the highest order 
30 bits of the table address field of the descriptor is a pointer to the page descriptor that 
is to be used to map the logical address. The MC68851 then fetches the type-1 page 
descriptor of the indicated format at this address and uses the page address field of this 
entry as the physical mapping for the logical address. 

The page descriptor located at the address given by the address field of the indirect de
scriptor must not have a DT field with the long or short code (it must either be 'page 
descriptor' or 'invalid'). Otherwise, the descriptor will be treated as invalid, and the MC68851 
will create an ATC entry with an error condition signaled (BERR bit set). 

5.1.2.3 TABLE SHARING BETWEEN TASKS. A page or pointer table may be shared 
between tasks by placing a pointer to the shared table in the address translation tables of 
more than one task. The upper (non-shared) tables may contain different settings of pro
tection bits, allowing different tasks to use the area with different permissions. In Figure 
5-7, two tasks share the memory translated by the table at the B level. Note that task 'A' 
cannot write to the shared area. Task 'B', however, has the WP bit clear in its pointer to 
the shared table, so it can read and write the shared area. Also note that the shared area 
appears at different addresses for each task. 

MOTOROLA 
5-8 

MC68851 USER'S MANUAL 



A B PS 

EXAMPLE ADDRESS $OOAOl AOO I 0 0 0 0 0 0 0 0 1 0 1 0 I 0 0 0 0 0 0 0 1 1 0 I x x x x. x x x x x x 1 

ROOT POINTER 

$A $6 . 

TABLE $0 
B LEVEL 

A B ~ 

10 0 0 0 0 0 0 0 0 0 0 010 0 0 0 0 0 0 1 1 011 0 0 0 0 0 0 0 0 0 I $OOOOlAOO 

+ 

: ..... ........... ... 11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 $80000000 
ENTRY SOOA '!_.i!I~;~11 . = 

: 11 0 0 0 0 0 0 0 0 0 0 010 0 0 0 0 0 0 1 1 011 0 0 0 0 0 0 0 0 0 I $800001AOO 

A LEVEL TABLES 
(4K ENTRIES! 

EARLY TERMINATION OF TABLE SEARCH - PAGE DESCRIPTOR ENCOUNTERED 
(LOGICAL ADDRESS RANGE $OOAOOOOO TO $OOAFFFFF MAPPED 

TO PHYSICAL ADDRESS RANGE $80AOOOOO TO $80AFFFFF! 

B LEVEL TABLES 
(4K TABLES MAXIMUM, 1K ENTRIES/TABLE! 

TABLE $FFF 
B LEVEL 

Figure 5-5. Example Translation Using Contiguous Memory 

5.1.2.4 PAGING OF TABLES. It is not required that the entire address translation tree for 
an active task be resident in main memory at once. In the same way that only the working 
set of pages need be kept in main memory, only the tables needed to describe the resident 
set of pages need be kept. This is done by placing the 'invalid' code ($0) in the DT field of 
the pointer descriptor that points to the absent table(s). When a task attempts to use an 
address that would be translated by an absent table, th~ Me68851 will be unable to locate 

MC68851 USER'S MANUAL MOTOROLA 
5-9 

• 



• 

A B ~ 

EXAMPLE ADDRESS $OOA01AOO 10 0 0 0 0 0 0 0 1 0 1 0 I 0 0 0 0 0 0 0 1 1 0 I x x x x x x x x x x I 

ROOT POINTER 

MOTOROLA 
5-10 

$A $6 

ENTRY$OOA -~-q~ ,~ 

TASK 'A' 
A LEVEL TABLES 

(4K ENTRIES) 

I--____ ~I-

I 

TASK '8' 
A LEVEL TABLES 

(4K ENTRIES) 

ABSOLUTE PHYSICAL ADDRESS OF 
PAGE DESCRIPTOR 

I 
I I 

L._ ............. PAGE FRAME ADDRESS 

I I 

Figure 5-6. Example Translation Tree Using Indirect Descriptors 

MC68851 USER'S MANUAL 



A PS 

EXAMPLE ADDRESS $OOA01AOO 10 0 0 0 0 0 0 0 1 0 1 0 I 0 0 0 0 0 0 0 1 1 0 I x x x x x x x x x x I 

ROOT POINTER 

TASK 'A' 
A LEVEL TABLES 

(4K ENTRIESI 

WP CLEAR 

TASK 'B' 
A LEVEl TABLES 

(4K ENTRIESI 

$A $6 

TASK 'A' 
B LEVEL TABLES 

(4K TABLES MAXIMUM, 1 K ENTRIES/TABLEI 

PAGE FRAME ADDRESS 
ENTRY $061" ~ (SHARED BY 'A' AND 'B'l 

'"". """"'~~~="'il (WRITE· PROTECTED FROM TASK 'A'l 

TASK 'B' 
B LEVEL TABLES 

(4K TABLES MAXIMUM, 1 K ENTRIES/TABLEI 

Figure 5-7. Example Translation Tree Using Shared Tables 

Me68851 USER'S MANUAL MOTOROLA 
5-11 

• 



• 

a translation and asserts the bus error signal when the CPU retries the bus cycle that caused 
the table search to be initiated. 

It is the responsibility of the system software to determine that the 'invalid' code in the 
descriptor indicates non-resident tables. This determination can be facilitated by using the 
descriptor to store status information concerning the 'invalid' encoding. When the MC68851 
encounters an 'invalid' descriptor, it makes no interpretation (or modification) of any fields 
of this descriptor other than the DT field allowing the operating system to store system
defined information in this location. Typical information that might be stored includes the 
reason for the 'invalid' encoding (tables paged-out, region not allocated, ... , etc.) and 
possibly the disk address for non-resident tables. 

Figure 5-8 shows an address translation table in which only a single page table (table n) 
is resident and all other page tables are not resident. 

5.1.2.5 DYNAMIC ALLOCATION OF TABLES. Similar to the case discussed above con
cerning table residence in memory, it is not required that a complete translation tree exist 
for an active task. The translation tree may be dynamically allocated by the operating 
system based on requests for access to particular areas. 

As in the case of demand paging, it is difficult, if not impossible, to predict the areas of 
memory that will be used by a task over any extended period of time. Instead of attempting 
to predict the requirements of the task, the operating system performs no action for a task 
until a 'demand' is made requesting access to a previously unused area or an area that is 
no longer resident in memory. This same technique can be used to efficiently create a 
translation tree for a task. 

For example, consider an operating system that is going to dispatch for execution a pre
viously unexecuted task that has no translation tree. Rather than trying to guess what the 
memory usage requirements of the task will be, the operating system creates a translation 
tree for the task that maps one page corresponding to the initial value of the program 
counter for that task and possibly one page corresponding to the initial stack pointer of 
the task. All other branches of the translation tree for this task remain unallocated until 
the task requests access to the areas mapped by these branches. This technique allows 
the operating system to construct a minimal translation tree for each task conserving 
physical memory utilization and operating system overhead. 

5.1.3 Functions Controlled by Address Translation Tables 

The following paragraphs describe functions that are controlled by fields in the address 
translation tables. These topics are discussed further in 5.1.5 Translation Descriptors. 

5.1.3.1 PROTECTION. Protection information is indicated in the address translation ta
bles. A page or segment is designated non-writable by setting the WP (write protect) bit 
in a descriptor, and a page or segment is restricted to access by only the supervisor by 
setting the S (supervisor) bit. Protections can be assigned based on access levels using 
the RAL (read access level) and WAL (write access level) fields. Finally, a page is permitted 
to contain module descriptors for the MC68020 CALLM instruction by setting the G (gate) 
bit. Refer to SECTION 7 PROTECTION for a complete discussion of the various aspects of 
the MC68851 protection mechanism. 

MOTOROLA 
5-12 

MC68851 USER'S MANUAL 



A B PS 

EXAMPLE ADDRESS $OOA01AOO 10 0 0 0 0 0 0 0 1 0 1 0 I 0 0 0 0 0 0 0 1 1 0 I x x x x x x x x x x I 
$A $6 

ROOT POINTER 

DT = 'INVALID' 
DT = 'INVALID' 

ENTRY $OOA .IDTI=I'INIVAILlID,.t-..J ENTRY $OOSI,@<m.if:r;<\S;;:rPAGEFRAMEADDRESS 

DT = 'INVALID' 
DT = 'INVALID' 

A LEVEL TABLES 
(4K ENTRIESt 

B LEVEL TABLES 
(4K TABLES MAXIMUM, lK ENTRIES/TABLEt 

Figure 5-8. Example Translation Tree with Non-Resident Tables 

TABLE #0 
B LEVEL 
(PAGED OUT OR 
NOT ALLOCATEDt 

TABLE #n 
B LEVEL 

TABLE #m 
B LEVEL 
(PAGED OUT DR 
NOT ALLOCATEDt 

5.1.3.2ATC MANAGEMENT. Certain functions of the ATC are controlled using the ad
dress translation tables. Entries can be made exempt from removal by the ATC replacement 
algorithm by setting the L (lock) bit. Entries can be made exempt from removal by the RPT 
replacement algorithm by setting the SG (shared globally) bit. Setting the SG bit is also 
an indication to the ATC that the same ATC entry is to be used by all tasks (i.e., the task 
alias field is ignored for entries loaded with the SG bit set). ATC entries made with both 

MC68851 USER'S MANUAL MOTOROLA 
5-13 

• 



• 

bits set cannot be removed except by a PFLUSHS or PFLUSHA instruction (or by altering 
the TC register or the corresponding root pointer register). 

5.1.3.3 DATA CACHE INHIBIT. The MC68851 provides the ability to indicate that pages 
should not be cached in external data caches. If the translation descriptor for a page has 
the CI (cache inhibit) bit set, the CLI (cache load inhibit) signal is asserted when that page 
is accessed. Local caches should use this signal to inhibit loading of entries when asserted. 

The cache inhibit function allows system software to determine whether or not a particular 
area in the memory map should be cacheable. For example, interface registers for periph
eral devices should be non-cacheable locations and so, when creating a mapping for these 
registers, the operating system should set the CI bit in the corresponding translation de
scriptor. In mUlti-processor systems, the CI function can be used to prevent caching of 
shared data areas and can resolve cache consistency problems (stale data) by marking all 
shared data areas as non-cacheable. 

5.1.4 Root Pointers 

The MC68851 locates the root of a translation tree by using one of its three root pointer 
registers: the CPU root pointer (CRP), the supervisor root pointer (SRP), or the DMA root 
pointer (DRP). These registers contain the physical address ofthe root ofthe corresponding 
translation tree as well as control information about the trees. 

5.1.4.1 ROOT POINTER FORMAT. The format of the root pointer registers is discussed 
in detail in 6.1.1 Root Pointer Registers. A brief summary is included below and the format 
of these registers is shown in Figure 5-9. 

63 48 

L/U LIMIT 

DT 

TABLE ADDRESS (PA31-PA 161 

TABLE ADDRESS (PA15-PMl UNUSED 

15 

Figure 5-9. Root Pointer Register Format 

5.1.4.1.1 Lower/Upper (L/U). The LlU bit specifies whether the value contained in the 
limit field is to be used as the upper or lower limit of indices into the translation table. If 
LlU equals zero, the limit field contains the unsigned upper limit of indices. If LlU equals 
one, the limit field contains the unsigned lower limit of indices. 

5.1.4.1.2 Limit. The limit field specifies a maximum or minimum value for the index to 
be used at the next level of the tables search operation (with the exception of the function 
code lookup) and is used to limit the size of the translation table at the root level. The limit 
field and LlU bit of the root pointer are ignored if the first level of the table search is a 
lookup by function code. 

MOTOROLA 
5-14 

MC68851 USER'S MANUAL 



5.1.4.1.3 Shared Globally (5G). The SG bit indicates that the entire logical address space 
mapped by the root pointer is shared globally by all tasks within the system. Setting the 
SG bit to one informs the MC68851 that the logical-to-physical mappings identified by this 
root pointer are identical for all tasks and that only a single descriptor for the translation 
needs to be maintained in the ATC. 

The shared globally attribute can significantly effect the performance of the MC68851 ATC 
and, thus, merits further discussion. The MC68851 task aliasing mechanism (refer to 5.3 
ROOT POINTER TABLE) assigns a task alias to all entries that are created in the ATC; this 
includes all supervisor and DMA entries. The value assigned to an entry is the current 
value of the internal task alias. In order for a logical address to match an entry in the ATC, 
the logical page address, function code, and task alias fields must match exactly. Without 
use of the shared globally attribute, this would mean that all supervisor and DMA entries 
in the ATC that are used during the execution of multiple user tasks would require individual 
ATC entries to be created, one corresponding to each user task during which the entry is 
used. The SG attribute allows the task alias compare to be suppressed during address 
translation and thus allows that only a single ATC entry be created regardless ofthe number 
of tasks in which the entry is used. 

It is recommended that the SG bit be set in the DMA root pointer and, either in the supervisor 
root pointer, if enabled, or in one of the higher levels of the translation tree if supervisor 
accesses are translated using the CPU root pointer. 

5.1.4.1.4 Descriptor Type (DT). The DT field specifies the type of descriptor contained 
in either the root pointer or in the first level of the translation field identified by that root 
pointer. The values are defined as follows: 

$0 INVALID 
This value is not allowed for root pointers. 

$1 PAGE DESCRIPTOR 
Indicates that a translation table for this root pointer does not exist and that the 
MC68851 should internally create an ATC entry (page descriptor) for accesses 
using this root pointer. A limit check is performed regardless of the state of the 
FCL bit when the DT field of a root pointer is set to $1. 

$2 VALID 4 BYTE 
This value indicates that the translation table at the root of the translation tree 
contains short format descriptors. 

$3 VALID 8 BYTE 
This value indicates that the translation table at the root of the translation tree 
contains long format descriptors. 

5.1.4.1.5 Table Address. The table address field specifies the physical base address of 
the root-level translation table for that particular root pointer or the constant offset if the 
DT = 1. 

5.1.4.1.6 Unused. These bits of the root pointer are not used by the MC68851 and may 
be used by the operating system for other purposes. 

MC68851 USER'S MANUAL MOTOROLA 
5-15 

• 



• 

5.1.4.2 SELECTION OF ROOT POINTER. The selection of which root pointer to use in 
translating an address is based on the function code of the logical address and the setting 
of the SRE bit in the TC register. 

FC3 FC2 

o 0 
o 0 
o 1 
o 1 
1 x 

SRE 

o 
1 
o 
1 
x 

Root Pointer Used 

CRP 
CRP 
CRP 
SRP 
DRP 

The DRP is used for translating all accesses for which FC3 = 1. It is intended that peripheral 
devices using the MC68851 generate logical addresses with FC3 = 1 so that their address 
spaces may be separate from that of the main processor. Any DMA-type coprocessors 
should generate addresses with FC3 = 0 so that they may share the main processor's 
address space. With the SRE bit of the TC register clear, the CRP is used for translating all 
accesses that have FC3 = O. With the SRE bit of the TC register set, the CRP translates 
logical addresses with FC3/FC2 = 00 (user mode), while the SRP translates logical ad
dresses with FC3/FC2 = 01 (supervisor mode). It is intended that the main processor gen
erate logical addresses with FC3 = O. 

5.1.5 Translation Descriptors 

The MC68851 uses several types of descriptors as described in the paragraphs below. Each 
type of descriptor has a long and a short format. All descriptors share one characteristic: 
the lowest order two bits of the first long word of the descriptor contain a descriptor type 
(DT) field. The value of these bits affect the interpretation of other bits in the descriptor. 
In particular, if the value of the DT field is 'invalid' (refer to 5.1.4 FIELD DEFINITIONS), then 
the descriptor is of one of the 'invalid' types and the other bits are undefined and are 
available for use by the system software. 

The exact interpretation of the bits in a descriptor is determined by three factors: the value 
of the DT field of the descriptor, the state of the table search, and the value of the DT field 
of the previous descriptor used in the search. The value of the previous descriptor deter
mines whether the current descriptor is of the long or short format. The type of a descriptor 
is determined according to the table in Figure 5-10. The table entries marked "illegal" are 
not valid configurations and are treated as the 'invalid' type by the MC68851. 

DT FiElD 

MOTOROLA 
5-16 

TABLE SEARCH STATE 

TI FIELDS NDT TI FIELDS INDIRECT 
EXHAUSTED EXHAUSTED DESCRIPTOR SEEN 

INVALID 
INVALID INVALID INVALID 

($Ol 

PAGE 
PAGE DESCRIPTOR PAGE DESCRIPTOR PAGE DESCRIPTOR 

DESCRIPTOR 
($1l 

TYPE-2 TYPE-l TYPE-l 

SHORT 
TABLE DESCRIPTOR INDIRECT ILLEGAL 

($2l 

LONG 
TABLE DESCRIPTOR INDIRECT ILLEGAL 

($3l 

Figure 5-10. Descriptor Type Determination 

MC6SS51 US.ER'S MANUAL 



5.1.5.1 DESCRIPTOR FORMATS. There are five types of address translation descriptors 
and each descriptor type exists in both a long (64 bits) and a short (32 bits) format. Long 
format descriptors contain all fields that short format descriptors of the same type do and 
(possibly) additional information. The MC68851 features that are controlled only by long 
format descriptors are limit checking on indices (L/U and limit fields), access level protection 
(RAL and WAL fields), supervisor-only protection (5 bit) and sharing of ATC entries (5G 
bit). 

All descriptors in an individual table must be of the same format. The format of the de
scriptors in different tables may be determined individually. There is no requirement that 
all tables at the same level of the address translation tree contain descriptors of the same 
format, or that all descriptors in a table contain DT fields with the same code. An example 
translation tree with different format descriptors is shown in Figure 5-11. 

5.1.5.2 DESCRIPTOR TYPES. The following describes the format of the five basic de
scriptor types supported by the MC68851. Each of the descriptor types exist in a long and 
a short format. 

5.1.5.2.1 Table Descriptors.This descriptor type is used to identify pointer or page tables 
at lower levels of the translation tree. The formats of this type of descriptor are shown in 
Figures 5-12 and 5-13. 

5.1.5.2.2 Type-1 and Type-2 Page Descriptors. This descriptor type is found in the page 
tables and is used to define page frames when a table search terminates having used all 
fields of the logical page address (as specified by the TC register) as indices into the 
translation tree (i.e., the table search was not terminated early due to encountering a 'page 
descriptor' DT field in a pointer table). The formats of this type of descriptor are shown in 
Figures 5-14 and 5-15. 

Note that the only difference in the long format of the type-1 and type-2 page descriptors 
is the presence of the LIMIT field and L/U bit in the long format of the type-2 descriptor. 
The type-1 and type-2 short format descriptors are identical. 

5.1.5.2.3 Indirect Descriptors. This descriptor type is found in the page tables and is 
used to identify a page descriptor in another page table to be used to perform the logical
to-physical mapping. The formats of this type of descriptor are shown in Figures 5-17 and 
5-18. 

5.1.5.2.4 Invalid Descriptors. This descriptor type may be found at any level of the trans
lation tree except at the root. The formats of this type of descriptor are shown in Figures 
5-19 and 5-20. 

5.1.5.3 DESCRIPTOR FIELD DEFINITIONS. The following defines the fields that are found 
in the various types of table and page descriptors discussed in 5.1.5.2 DESCRIPTOR TYPES. 
Not all of these fields are found in all descriptor formats and some fields are mutually 
exclusive of others. 

5.1.5.3.1 Lower/Upper (UU). The L/U bit (bit [63] of a long format table or type-2 page 
descriptor) specifies whether the value contained in the limit field (see below) is to be used 

MC68851 USER'S MANUAL MOTOROLA 
5-17 

• 



• 

A ~ 

EXAMPLE ADDRESS SOOA01AOO 10 0 0 0 0 0 0 0 1 0 1 0 I 0 0 0 0 0 0 0 1 1 0 I x x x x x x x x x x I 

ROOT POINTER 

DT = 'VALID 4 BYTE' 
OT = 'INVALID' 

ENTRY SODA DT:o 'VAllO 8 BYTE' 

DT = 'VALID 4 BYTE' 

A LEVEl TABLES 
(4K ENTRIES) 

SA S6 

ENTRY S006 ... I------Ir PAGE FRAME ADDRESS 

B LEVEL TABLES 
(4K TABLES MAXIMUM, 1 K ENTRIES/TABLE) 

TABLE $0 
B LEVEl 
(SHORT FORMAT 
DESCRIPTORS) 

TABLE $OOA 
B LEVEl 
(LONG FORMAT 
DESCRIPTORS) 

TABLE $FFF 
B LEVEL 
(SHORT FORMAT 
DESCRIPTORS) 

Figure 5-11. Example Translation Tree Using Different Format Descriptors 

MOTOROLA 
5-18 

31 

15 

16 

TABLE ADDRESS (PA31-PA 16) 

TABLE ADDRESS (PA15-PA4) 

4 

Figure 5-12. Short Format Table Descriptor 

MC68851 US.ER'S MANUAL 



63 48 

LlU 

DT 

TABLE ADDRESS (PA31-PA16) 

TABLE ADDRESS (PA 15-PA4) UNUSED 

15 

Figure 5-13. Long Format Table Descriptor 

31 16 

PAGE ADDRESS (PA31-PA 16) 

PAGE ADDRESS (PA 15-PA8) DT 

15 4 

Figure 5-14. Type-1 and Type-2 Short Format Page Descriptors 

63 48 

UNUSED 

RAL DT 

PAGE ADDRESS (PA31-PA 16) 

PAGE ADDRESS (PA 15-PA8) UNUSED 

15 

Figure 5-15. Type-1 Long Format Page Descriptor 

63 48 

LlU 

DT 

PAGE ADDRESS (PA31-PA 16) 

PAGE ADDRESS (PA 15-PA8) UNUSED 

15 

Figure 5-16. Type-2 Long Format Page Descriptor 

MC68851 USER'S MANUAL MOTOROLA 
5-19 

• 



MOTOROLA 
5-20 

31 

15 

63 

15 

31 

15 

16 

DESCRIPTOR ADDRESS (pA31-PAI6) 

DESCRIPTOR ADDRESS (PA 15-PA2) I DT 

Figure 5-17. Short Format Indirect Descriptor 

48 

UNUSED 

UNUSED I DT 

DESCRIPTOR ADDRESS (PA31-PA 16) 

DESCRIPTOR ADDRESS (PA 15-PA2) I UNUSED 

Figure 5-18. Long Format Indirect Descriptor 

16 

UNUSED 

UNUSED 

Figure 5-19. Short Format Invalid Descriptor 

48 

UNUSED 

UNUSED I DT 

UNUSED 

UNUSED 

Figure 5-20. Long Format Invalid Descriptor 

MC68851 USER'S MANUAL 



as the upper or lower limit of indices into the translation table at the next level of the table 
search. If LlU equals zero, the limit field contains the unsigned upper limit of the index 
and all table indices for the next level must be less than or equal to the value contained 
in the limit field or a limit violation will occur. If LlU equals one, the limit field contains 
the unsigned lower limit of the index, and all table indices for the next level must be greater 
than or equal to the value contained in the limit field. Otherwise, a limit violation will occur. 

5.1.5.3.2 Limit. The limit field (bits [62-48] of a long format table or type-2 page descrip
tor) specifies a maximum or minimum value for the table index to be used at the next 
level of the table search and is used to limit the size of the translation tables. The limit 
field may contain any value between 0 and 215 (inclusive). 

The limit function can be effectively suppressed by either setting LlU to zero and setting 
the limit field to all ones ($7FFF) or by setting LlU to one and clearing the limit field ($8000) . 

5.1.5.3.3 Read Access Level (RAL). The RAL field (bits [47-45] of a long format table or 
page descriptor) indicates the maximum value (minimum privilege) that the access level 
field of the logical address can contain to allow a translation for a read or write operation 
using this descriptor (refer to 7.2 ACCESS LEVEL PROTECTION). 

5.1.5.3.4 Write Access Level (WAL). The WAL field (bits [44-42] of a long format table 
or page descriptor) indicates the maximum value (minimum privilege) that the access level 
field of the logical address can contain to allow a translation for a write operation using 
this descriptor (refer to 7.2 ACCESS LEVEL PROTECTION). 

5.1.5.3.5 Shared Globally (SG). The SG bit (bit [41] of a long format table or page de
scriptor) indicates that the portion of the logical address space mapped by the descriptor 
is shared globally by all tasks within the system. Setting the SG bit informs the MC68851 
that the logical-to-physical mappings identified by this descriptor are identical for all tasks 
and that only a single descriptor for the translation needs to be maintained in the ATC (as 
opposed to one descriptor for each task that uses that mapping). 

Clearing the SG bit informs the MC68851 that the logical-to-physical mapping identified 
by the descriptor is unique for a particular task. 

5.1.5.3.6 Supervisor (S). The S bit (bit [40] of long format table and page descriptors) is 
used to specify that a task must be operating in the supervisor mode in order to access 
the portion of the logical address space mapped by the descriptor. If this bit is set, accesses 
using this descriptor are restricted to supervisor-only. If this bit is clear, accesses using 
this descriptor are not restricted to supervisor-only unless the access is restricted at some 
other level of the translation tree. 

5.1.5.3.7 Gate (G). The G bit (bit [39] of long format page descriptors, bit [7] of short 
format page descriptors) is used to indicate whether or not the corresponding page is 
allowed to contain module descriptors (gates) for the MC68020 CALLM instruction. If this 
bit is set, the page is allowed to contain gates. If this bit is clear, the page is not allowed 
to contain gates (refer to 7.2 ACCESS LEVEL PROTECTION). 

5.1.5.3.8 Cache Inhibit (C). The CI bit (bit [38] of long format page descriptors, bit [6] of 
short format page descriptors) is used to indicate whether or not the data contained in the 

Me688S1 USER'S MANUAL MOTOROLA 
5-21 

• 



corresponding page is cacheable by local caches. When CI is set, the MC68851 asserts the 
CLI output during accesses to this page signaling to local caches that the data of the current 
bus cycle should not be placed in the cache. If CI is clear, the MC68851 does not assert 
the CLI output during accesses that reference this descriptor. 

5.1.5.3.9 Lock (L). The L bit (bit [37] of long format page descriptors, bit [5] of short 
format page descriptors) is used to inform the MC68851 that the corresponding page 
descriptor should be made exempt from the actions of the ATC replacement algorithm. 
When set, L indicates that ATC entries formed with this descriptor should be unavailable 
for replacement. When clear, L indicates that ATC entries formed with this descriptor are 
available for replacement. 

Although the action of the L bit is to make the entries exempt from the actions of the ATC 
replacement algorithm, ATC entries with a set L bit may be removed as part of a task 
whose root pointer table entry is being replaced. To avoid this removal for supervisor and 
DMA ATC entries that are not task-specific, the SG bit should also be set (refer to 5.3 ROOT 
POINTER TABLE). Additionally, the L bit will be ignored if the ATC already contains 63 
locked entries (refer to 5.2.1.2 DATA SECTION). 

5.1.5.3.10 Modified (M). The M bit (bit [36] of long format page descriptors, bit [4] of 
short format page descriptors) is used to indicate whether or not the corresponding page 
has been written to by a logical bus master. This bit is set by the MC68851 to indicate that 
the page corresponding to the descriptor has been written to; the MC68851 never changes 
this bit from a one to a zero. Refer to 5.1.5.3.11 Used for information regarding how the 
M bit is set by the MC68851. 

5.1.5.3.11 Used (U). The U bit (bit [35] of long format page or table descriptors, bit [3] 
of short format page or table descriptors) is used to indicate whether or not the corre
sponding descriptor has been used. In a page descriptor table, this bit is set by the MC68851 
to indicate that the page corresponding to the descriptor has been accessed. In a pointer 
table, this bit is set to indicate that the pointer has been fetched by the MC68851 as part 
of a table search. Note that a pointer may be fetched, and its U bit set, for an address to 
which access is denied at another level of the tree. 

Updates of the U and M bits are performed before the MC68851 allows a page to be 
accessed or written. The MC68851 optimizes its activity by examining the U and M bits in 
descriptors as they are fetched, and only performing write cycles to modify these bits are 
required. For a pointer descriptor, a write cycle to set the U bit occurs only if the U bit was 
clear. For page descriptors, the update is done as described below: 

Previous New 
Action by MC68851 U M R/W U' M' 

RMW Cycle to Set U (M Not Changed) a a R 1 X 
Write to Set U and M a a W 1 1 
RMW to Set U a 1 R 1 1 
RMW to Set U a 1 W 1 1 
No Write 1 a R 1 a 
Write to Set M (U Written Set) 1 a W 1 1 
No Write 1 1 R 1 1 
No Write 1 1 W 1 1 

A bus cycle executed by a logical bus master is considered to be a write for updating 
purposes if either R/W or RMC is low. 

MOTOROLA 
5-22 

MC68851 USER'S MANUAL 



5.1.5.3.12 Write Protect (WP). The WP bit (bit [34] of long format page or table descrip
tors, bit [2] of short format page or table descriptors) is used to write-protect a range of 
the logical address space. When WP is set, the MC68851 does not allow the portion of the 
logical address space mapped by that descriptor to be written by any logical bus master 
operating at any privilege level (i.e., this protection is absolute). If the WP bit is clear, the 
MC68851 allows write accesses using this descriptor unless access is restricted at some 
other level of the translation tree. 

Conditional write-protection can be designed by using the WAL (refer to 7.2 ACCESS LEVEL 
PROTECTION). 

5.1.5.3.13 Descriptor Type (DT). The DT field (bits [33-32] of all long format descriptors, 
bits [1-0] of all short format descriptors) specifies the type of descriptor contained in either 
the descriptor itself or in the next level of the translation tree, depending on the value in 
the field and the state of the table search. The values are defined as follows: 

$0 INVALID 
Regardless of the state of the table search, the current descriptor is invalid and 
all other bits are unused. When a descriptor of this type is encountered, the table 
search terminates and an ATC entry for the logical address is made with the BERR 
bit set. 

$1 PAGE DESCRIPTOR 
This value is used to terminate the table search with a valid translation. It indicates 
either a type 1 or type 2 page descriptor, depending on the state of the table search 
(refer to 5.1.5.2 DESCRIPTOR TYPES). 

$2 VALID 4 BYTE 
This value indicates that the translation table at the next level of the translation 
tree contains short format descriptors. The current descriptor is of the table, in
direct, or invalid type depending on the state of the table search. 

$3 VALID 8 BYTE 
This value indicates that the translation table at the next level of the translation 
tree contains long format descriptors. The current descriptor is of the table, in
direct, or invalid type depending on the state of the table search. 

5.1.5.3.14 Table Address. This field (bits [31-4] of all table descriptors) contains the most 
significant 28 bits of the physical base address of a table of descriptors. 

5.1.5.3.15 Page Address. This field (bits [31-8] of all page descriptors) contains the most 
significant 24 bits of the physical address of a page of memory. If the page size is greater 
than 256 bytes, then the least significant bits of this field are unused by the hardware. 
Specifically, [LOG2 (page size)]-8 bits are not used by the MC68851 and may be used by 
system software. 

5.1.5.3.16 Indirect Address. This field (bits [31-2] of all indirect descriptors) contains the 
most significant 30 bits of the physical address of an individual page descriptor. 

5.1.5.3.17 Unused. All fields marked 'unused' do not affect the operation of the MC68851 
and are guaranteed not to be modified by the MC68851. They may be used by software 
for system-specific functions. 

MC68851 USER'S MANUAL MOTOROLA 
5-23 

.. 



5.1.6 Protections 

Some information may be stored in multiple levels of a translation tree. In general, the 
effective protection assigned to a page is the most strict of those indicated at any level. 
The supervisor-only, write-protect, and shared attributes may be specified at any level of 
the translation tree when using long format descriptors. An attribute will be conferred if 
the corresponding bit is set at any level. The effective RAL of a page will be the minimum 
(most privileged) of all RAL fields encountered. The effective WAL of a page will be the 
minimum (most privileged) of all WAL fields encountered, with the exception that if a WP 
bit is set for the page at any level, the page will not be writable for any access level. If 
there are no long format descriptors in the path through the translation tree that is used 
to translate an address, then the shared attribute is as indicated in the root pointer used, 
the page is not restricted to supervisor-only, and the effective RAL and WAL are both $7 
(least privileged). 

5.2 ADDRESS TRANSLATION CACHE 

The address translation cache (ATC) of the MC68851 provides a mechanism for translating 
recently used logical addresses without the table search overhead. It consists of a fully
associative or content addressable memory (CAM) in which information about recently 
used logical addresses (tags) is stored, a RAM for storing the physical address (data) 
corresponding to the logical addresses in the CAM, and circuitry implementing the cache 
replacement algorithm. There are 64 entries in the CAM array and 64 corresponding entries 
in the RAM array. 

5.2.1 Internal Organization 

The information contained in the ATC is not directly accessible to the programmer. The 
following paragraphs provide an overview of the internal cache organization. 

5.2.1.1 TAG SECTION. The tag, or CAM, section of the ATC contains logical addresses 
and control information for use inside the ATC. A diagram of an entry in the tag section 
of the cache is shown in Figure 5-21. The FC and logical address fields are compared with 
the values on the similarly named pins during bus cycles run by the logical bus master 
and the lower order bits of the logical address field are ignored during compare operations 
if the page size is larger than 256 bytes. The TA and SG fields are managed internally by 
the MC68851 to allow ATC entries for more than one task to be resident simultaneously. 
For a CAM entry to match a logical address presented by a logical bus master, both the 
logical address field (exclusive of low order bits representing the page offset) and-the FC 
field must match exactly. In addition, the task alias (TA) field must match the current TA 
value of the MC68851 (refer to 5.3 ROOT POINTER TABLE), or the entry's SG bit must be 
set in order for a match to occur. 

LOGICAL ADDRESS 

Figure 5-21. ATC Tag Entry 

5.2.1.2 DATA SECTION. The data, or RAM, section of the ATC contains the physical 
addresses and control information corresponding to the logical addresses stored in the 
tag section. A diagram of an entry in the data section is shown in Figure 5-22. 

MOTOROLA 
5-24 

MC68851 USER'S MANUAL 



PHYSICAL ADDRESS 

Figure 5-22. ATC Data Entry 

The physical address field contains the physical page frame address corresponding to the 
logical address in the respective tag entry. The lower order bits of this field are unused if 
the page size is larger than 256 bytes. The data in this field of the logical address is not 
interpreted by the MC68851 but is presented on the physical address outputs during an 
address translation. 

The G, L, and CI bits are copies of the similarly named bits extracted from the page 
descriptor in the translation table when the ATC entry is formed. The internal L bit exempts • 
the entry from replacement using the ATC replacement algorithm. However, it will not be 
a copy of the page descriptor L bit if there are already 63 entries with set L bits in the ATC. 
In this case, the L bit for new entries will always be clear (indicating that the entry can be 
replaced). The inverse of the CI bit is presented on the CLI output during address trans-
lations. The WP bit is the effective write protection determined during the translation table 
search. The M bit is a copy of the M bit in the page descriptor in the translation table when 
the ATC entry is loaded. If it is clear and a write is attempted and permitted through the 
ATC entry, both the internal M bit and the M bit in the page descriptor will be set by the 
MC68851. 

The B bit, when set, indicates that no translation should be performed using this ATC entry 
and that a bus error will be signaled to the logical bus master when a logical address 
matches the corresponding entry in the tag array. Primarily, this bit indicates that no 
translation is available for the logical address. This may be because an invalid descriptor 
or bus error was encountered during the table search. The B bit is also used to implement 
supervisor-only protection and access level protection with the RAL translation descriptor 
field. In these cases a task may generate the address of a restricted memory page, and 
instead of maintaining the RAL field and S bit in the ATC, the validity of the access is 
evaluated when the ATC entry is made. If access is to be denied, an ATC entry is made 
with the B bit set. 

5.2.1.3 REPLACEMENT ALGORITHM. The MC68851 contains circuitry to automatically 
determined which tag/data pair to use for a new ATC entry. The algorithm is as follows: 
locate an invalid entry and use it. If no invalid entries are found, use a psuedo least-recently
used (LRU) algorithm to select an entry without its L bit set and replace that entry. 

To implement this replacement algorithm, the ATC contains two additional bits for each 
entry. One is a valid bit to indicate that an entry contains a valid translation. The other is 
a history bit to indicate that the entry has been recently used. 

During an ATC replacement operation when the ATC is full (all entries valid), the LRU 
algorithm attempts to locate the entry that was last used longest ago and, as such, allows 
the ATC to maintain a very close approximation to a proper working set of page descriptors. 
Although cache hit rates are very dependent on the nature of CPU activities, performance 
of the MC68851 ATC with psuedo-LRU replacement algorithm can be expected in the range 
of 95% to 99%. 

MC68851 USER'S MANUAL MOTOROLA 
5-25 



5.2.2 ATC Operation 

The following paragraphs describe the ATC operation. 

5.2.2.1 ADDRESS TRANSLATION BY THE ATC. When the MC68851 is enabled and is 
not itself bus master, it performs an ongoing comparison between the address currently 
on the logical bus and in the ATC tag section. When LAS is asserted, the ATC allows time 
for the circuitry to settle and determines if any of its tag entries indicate a match. There 
are several actions that the ATC may take, depending on the number of entries in the tag 
section that match, the contents of a matching entry, and the state of the physical bus. 

If the bus cycle addresses the MC68851 on-chip registers, the MC68851 peforms the action 
required by the bus cycle. If the bus cycle accesses an address in the CPU space (function 
code = $7) and is not an access to an MC68851 register, then the logical address is placed 
on the physical address outputs and the CLI signal is asserted with the same functional 
timing as PAS would have if an ATC hit had occurred. 

If the cycle is not a CPU space access, there are no ATC entries that match, and the logical 
master does not have the RMC signal asserted, then BERR, HALT, and LBRO signals are 
asserted and the MC68851 initiates a translation table search to load an ATC entry. If the 
cycle does have RMC asserted, only BERR is asserted. The signals are asserted by the 
MC68851 after the time specified by the decision timeout (refer to 4.1.2.3 DECISION TI
MEOUT DELAY). 

If one ATC entry matches, and the MC68851 owns the physical bus, the MC68851 gates 
the PA and CI fields of the data section to the appropriate pins, and the B, W, M, and G 
bits to access checking circuitry. Then the time specified by the decision timeout is allowed 
to elapse (refer to 4.1.2.3 DECISION TIMEOUT DELAY). If the access is to be denied, BERR 
is asserted. If the access is to be granted, PAS is asserted. If the MC68851 does not own 
the physical bus, the MC68851 does not drive PAS, but continues checking protections and 
will assert CLI or BERR as appropriate. This allows the use of a logical data cache with 
protection checking in parallel with other activity on the physical bus. The MC68851 will 
not assert the PAS signal until it regains control of the physical bus (provided that the 
logical bus master is still requesting the translation). 

Care must be taken so that the translation tables do not cause more than one ATC entry 
to match for a particular logical address. This condition may occur through improper use 
of the SG translation descriptor attribute (i.e., not having the SG bit set in all translation 
trees mapping a logical address that is marked as shared in another tree). As long as the 
physical address portions of the entries that match are identical, the MC68851 translates 
correctly. If the physical address portion of the matching entries is different, an erroneous 
translation may result. 

5.2.2.2 TRANSLATION MODES. The MC68851 can perform address translations in one 
of two modes: synchronous or asynchronous. The translation mode is selected on a bus 
cycle-by-bus cycle basis by the state of the ASYNC pin. 

In the synchronous mode, the logical bus master must present bus cycles with the same 
timing as an MC68020 would if running with the same clock as the MC68851. The rela
tionships between the clock, address timing, and LAS assertion are known for the MC68020. 
This allows elimination of synchronization delays in the address translation. The earliest 

MOTOROLA 
5-26 

MC68851 USER'S MANUAL 



that PAS can be asserted in synchronous mode is one clock period from the clock edge 
from which the logical bus master initiates the assertion of LAS. 

In asynchronous mode, no assumptions are made about the relationships of signals to the 
clock. All decisions are delayed until after the internally synchronized version of LAS is 
asserted. The earliest that PAS can be asserted in asynchronous mode is one and one-half 
clock periods after the clock edge on which LAS is asserted at the MC68851 input pin. 

5.3 ROOT POINTER TABLE 

In order to improve ATC utilization, the MC68851 internally maintains eight recently-used 
values of the CRP register in the root pointer table (RPT). These values are associated with 
eight recently active tasks. The MC68851 assigns each of these tasks a task alias for tagging 
ATC entries. The mapping of tasks to task alias values, and re-assignment of task alias 
values, is performed by the MC68851 hardware with no software intervention. When an 
entry is made in the ATC, the RPT index (a three bit value) corresponding to the current 
CRP value is stored in the TA field of the ATC entry. The TA field is then treated as part of 
the logical address to determine if a match has occurred in the ATC. 

5.3.1 loading the RPT 

The RPT is checked whenever ther CRP register is loaded by a PMOVE or PRESTORE 
instruction. If the new CRP value is found in the RPT, the index of the matching entry 
becomes the current task alias. This value is then displayed in the TA field of the PCSR 
register, and the F bit of the PCSR register is cleared. The current task alias is then used 
as part of the logical address for succeeding bus cycles until the CRP is loaded with a new 
value. 

If the new CRP value matches the address field and LlU bit of a value in the RPT, but does 
not match the limit and DT fields, the RTP entry is overwritten with the new value and the 
RPT index becomes the new current task alias. All ATC entries that match the new current 
task alias are invalidated, the current task alias is displayed in the TA field of the PCSR 
register, and the F bit of the PCSR register is set. 

If no RPT entries matching the new CRP value are found, an entry from the R~T is selected 
from the RPT using the same replacement algorithm as the ATC (psuedo-LRU). If there is 
an invalid entry in the RPT, it is selected and its index becomes the current task alias. The 
new CRP value is loaded, the current task alias is displayed in the TA field of the PCSR 
register, and the F bit of the PCSR register is set. If a valid entry must be selected, the RPT 
entry is overwritten with the new value and the RPT index becomes the new current task 
alias. All ATC entries that match the new current task alias are invalidated, the current task 
alias is displayed in the TA field of the PCSR register, and the F bit of the PCSR register is 
set. 

5.3.2 Flushing the RPT 

Entries are normally flushed from the RPT by the replacement algorithm without explicit 
action by system software. When a task is destroyed, software should ensure that all ATC 
entries for it have been invalidated by executing the PFLUSHR instruction giving the CRP 
value of the destroyed task as the operand. This also invalidates the corresponding RPT 
entry thus improving utilization of the RPT. 

MC68851 USER'S MANUAL MOTOROLA 
5-27 

• 



5.4 DETAIL OF TABLE SEARCH OPERATIONS 

Figures 5-23 through 5-27 provide a detailed description of the MC68851 table search 
operations in the form of several flowcharts. These flowcharts document the logical flow 
of control for table search operations and are not intended to convey any timing-related 
information. Refer to SECTION 11 OPERATION TIMING for timing information for table 
search operations. 

The master flowchart for table searches is shown in Figure 5-23, and the detailed description 
of various sub-functions of the table search are provided in the subsequent diagrams. The 
initialization for a table search, creation of an ATC entry, limit check procedure, and de
scriptor fetch detail are shown in Figures 5-24, 5-25, 5-26, and 5-27, respectively. 

MOTOROLA 
5-28 

MC68851 USER'S MANUAL 



ENTRY ROOT POINTER SELECTION TRUTH TABLE 

INITIALIZE FC3 FC2 SRE ROOT 

(REFER TO FIGURE 5-24) 
0 0 0 CRP 

DETERMINE ROOT POINTER TO BE USED 0 0 1 CRP 
(REFER TO TRUTH TABLE AT RIGHT) 0 1 0 CRP 

0 1 1 SRP x 4-- 'A' 
y 4-- 'RP' 

~ (CHECK DESCRIPTOR TYPE OF ROOT POINTER) 
DT = 'PAGE DESCRiPTOR' 1 r---- DT = '4 BYTE' OR'S BYTE' 

1 
1 
1 
1 

0 0 DRP 
0 1 DRP 
1 0 DRP 
1 1 DRP 

TyPE ..... 'EARLY' SIZE..- 4 OR S 

LASLSIZE 4-- 8 

~ (pERFORM FUNCTION CODE LOOKUP IF REQUIRED) 

FCL = 1 OR FC3 = 1 FCL = 0 & FC3 #- 1 

DT = 'PAGE OESCRIPTOR' DT = 'INVALID' r--- DT = '4 BYTE' OR'S BYTE' ----, 

TYPE ~ 'EARLY' LASLSIZE ...- SIZE TYPE"'- 'INVALID' 

(ENTERING A LEVEL TABLE SEARCH) 

y 4-- 'A' 

(REPEAT SEARCH) 

DT = 'PAGE DESCRIPTOR' 

.#0[0 
x ..... NEXTr;: = B, C, D) '1 
~ 

Tlx=O Tlx#-O 

TYPE 4-- 'NORMAL' 

("". --, 
TYPE ...- 'NORMAL' TYPE 4-- 'EARLY' 

DT = 'PAGE DESCRIPTOR' 

" ...-" IS THE ASSIGNMENT OPERATOR 

Figure 5-23. Detailed Flowchart of MC68851 Table Search Operation 

MC68851 USER'S MANUAL MOTOROLA 
5-29 

• 



INITIALIZE FOR TABLE SEARCH (INITIALIZE ACCRUED STATUSI 

ACCj>TATUS [RAL) .- $7 
ACC_STATUS [WAL) .- $7 
ACCjiTATUS [WP) .- 0 
ACCjiTATUS [SG) .- 0 

ACCj>TATUS [S) .- 0 

RETURN 

Figure 5-24. Table Search Initialization Detail 

I TYPE_=_'IN_V_AL_ID __ ' L...-__ T ...... YPE = 'EARLY' TYPE = 'INDIRECT' TYPE = 'NORMAL' 

CREATE ATC ENTRY WITH 
BERR BIT SET 

I PFA ::: LPA + TA FIELD OF 
DESCRIPTOR FETCHED AT 

ABBREVIATIONS USED: 

PFA: = PAGE FRAME ADDRESS 
LPA: = UNUSED FIELDS OF LOGICAL PAGE ADDRESS 
TA: = TABLE ADORESS FIELD OF A TABLE DESCRIPTOR 

I 
PFA = PAGE ADORESS FIELD OF 

DESCRIPTOR FETCHED INDIRECTLY FROM 
TREE LEVEL x 

CREATE ATC ENTRY USING PFA FROM ABOVE 
AND ACCRUED STATUS (REFER TO FIGURE 5-271 

I 
PFA = PAGE ADDRESS FIELD OF 

DESCRIPTOR FETCHED AT 
TREE LEVEL x 

Figure 5-25. Detail of ATC Entry Creation During Table Search 

MOTOROLA 
5-30 

Me6SSS1 USER'S MANUAL 



y = 'RP' OTHERWISE 

FCl = 1 ORORP IS~ 
OTHERWISE 

lASljilZE = 4 LAST SIZE = 8 

(LIMIT CHECK NOT REQUIRED) - ~FORM LIMIT CHECK) 

l/U = 0 l/U = 1 

L l -L' LPA[Th:EL:y::~:<UM" LP:L 
~ ~ 

Figure 5-26. Detail of Limit Check Procedure 

Me688S1 USER'S MANUAL MOTOROLA 
5-31 

.. 



FETCH 4 OR 8 BYTE DESCRIPTOR AT 
PA = TA + (INDEX'SIZE) 

(INOEX = FC, TIA, TIB, TIC, DR TIO) 
OR AT 

PA = DESCRIPTOR AODRESS 
(INDIRECT DESCRIPTOR) 

OTHERWISE 

r--NORMAL TERMINATION OF ALL BUS ACTIVITY 
TYPE -4-- 'INVALID' 

DT = 'PAGE DESCRIPTOR' DT = '4 BYTE' DR '8 BYTE' 
~ DT = 'INVALID' -----.., 

.---6---. ( RET~RN) U BIT SET ~ U BIT CLEAR 
WRITE OPERATION READ OPERATION 

M AND U BITS SET £::: U BIT CLEAR U BIT C~ U BIT SET 

MBiT SETiM 8ITm .. 

OTHERWISE 

~NORMAL TERMINATION OF ALL BUS ACTIVITY 

TYPE -4-- 'INVALlO' I 
CREATE ATC ENTRY ~ 

(REFER TO FIGURE 5-25) SIZE = 4 SIZE = 8 r ~ RAL < ACC_STATUS[RAL] 

ACC.J)TATUS[WP] -4-- ACC_STATUS[WP] V WP I ACC_STAT;rRAL] -4-- RAL 
ACC.J)TATUS[G] -4- G OTHERWISE 
ACC.J)TATUS[CI] -4- CI 
AC~STATUS[L]-4- L 

WAL < ACC STATUS[WAL] 
~-

ACC_STATUS[WAL] -4- WAL 

OTH~ 

ACCj)TATUS[SG] ..- AC~STATUS[SG] V SG 
ACC_STATUS[S] -4-- ACC_STATUS[S] V S 

ACC_STATUS[WP] ..- ACC3TATUS[WP] V WP 
ACC.J)TATUS[G] -4- G 
ACC.J)TATUS[CI] -4- CI 
ACC.J)TATUS[L] -4- L 

WAL < ACC_STATUS[WAL] 
~ 

ACC3TATUS[WAL] -4-- WAL Offip-' 
ACC.J)TATUS[SG] -4-- ACC_STATUS[SG] V SG 

ACC.J)TATUS[S] -4-- AC~STATUS[S] V S 
ACC_STATUS[WP] ..- ACC3TATUS[WP] V WP 

"V" IS THE LOGICAL OR OPERATOR 

MOTOROLA 
5-32 

Figure 5-27. Detailed Flowchart of Descriptor Fetch Operation 

Me6SS51 USER'S MANUAL 



SECTION 6 
INSTRUCTION SET PROCESSOR 

This section describes the instruction set processor for the MC68851. 

6.1 REGISTERS 

The MC68851 contains programmer-visible registers as shown in Figure 1-1. There are ten 
registers that control the translation and protection functions of the MC68851. They are: 
the CPU root pointer register (CRP), the supervisor root pointer register (SRP), the DMA 
root pointer register (DRP)' the PMMU cache status register (PCSR), the translation control 
register (TC)' the access control register (AC), the current access level register (CAL), the 
validate access level register (VAL), the stack change control register (SCC), and the PMMU 
status register (PSR). The other registers control the breakpoint functions. They are: the 
breakpoint acknowledge data registers (BADO-BAD7) and the breakpoint acknowledge 
control registers (BACD-BAC7). 

All MC68851 registers are directly accessible only to programs operating in the supervisor 
state, although certain user mode instructions can access some registers in a limited 
fashion. The MC68020 instructions CALLM and RTM can read and alter CAL and VAL under 
control of the MC68851 access level protection mechanism. The PVALID instruction reads 
the contents of the VAL register to determine if a trap should be taken (refer to SECTION 
7 PROTECTION). 

6.1.1 Root Pointer Registers 

The three MC68851 root pointer registers, CRP, SRP, and DRP contain the physical address 
of the root of the translation tree for user, supervisor, and DMA accesses, respectively. 
The format of these registers is shown in Figu re 6-1. 

63 

L/U 

15 

LIMIT 

TABLE ADDRESS (pA31-PA 16) 

TABLE ADDRESS (PA 15-PA4) 

L/U - LOWER OR UPPER PAGE RANGE 
SG - SHARED GLOBALLY 
DT - DESCRIPTOR TYPE 
LIMIT - LIMIT ON TABLE INDEX FOR THIS TABLE ADDRESS 

DT 

UNUSED 

4 

TABLE ADDRESS - ADDRESS OF TABLE AT NEXT LEVEL OR PAGE OFFSET IF DT = 1 

48 

Figure 6-1. Root Pointer Register (CRP, SRP, DRP) Format 

MC68851 USER'S MANUAL MOTOROLA 
6-1 

• 



The CPU root pointer (CRP) contains the pointer to the root of the translation tree for the 
current user mode task of the CPU. Before the operating system dispatches a new user 
task for execution, it reloads the CRP to point at the root of the translation tree for that 
task. The CRP register works in conjunction with the root pointer table (RPT) and writing 
to the CRP may cause ATC entries to be invalidated and the PCSR register to be updated 
(refer to 5.3 ROOT POINTER TABLE). 

If the SRE bit of the translation control register is set, the supervisor root pointer (SRP) 
register points to the root of the translation table to be used for translating supervisor 
accesses. Writing to this register causes all ATC entries marked as supervisor to be flushed 
(this includes globally shared entries). If the SRE bit of the translation control register is 
clear, this register is unused and the CRP is used to translate supervisor accesses. 

The DMA root pointer (DRP) register points to the root of the translation table to be used 
when FC3 = 1. Writing to this register causes all ATC entries marked as 'DMA' to be flushed 
(this includes globally shared entries). 

6.1.1.1 LOWER/UPPER (L/U). The LlU (bit [63]) specifies whether the value contained in 
the limit field (see below) is to be used as the upper or lower limit of indices into the next 
level of the translation tree. If L/U equals zero, the limit field contains the unsigned upper 
limit of indices and all table indices must be less than or equal to the value contained in 
the limit field or a limit violation will occur (refer to 6.3.1.2 LIMIT FIELD EXCEEDED). If L/ 
U equals one, the limit field contains the unsigned lower limit of indices and all table 
indices must be greater than or equal to the value contained in the limit field. Otherwise, 
a limit violation will occur. 

6.1.1.2 LIMIT. The limit field (bits [62-48]) specifies a maximum or minimum value for 
the index to be used at the next level of the table search with the exception of the function 
code lookup and is used to limit the size of the next level of the translation tree. The limit 
field may limit the size of the next level of the translation tree to any value between a and 
215 (inclusive) in powers of two. 

The limit function can be effectively suppressed by either setting L/U to zero and setting 
the limit field to all ones ($7FFF) or by setting L/U to one and clearing the limit field ($8000). 

If function code lookup is enabled (refer to 6.1.3 Translation Control), the limit field and 
the L/U bit of a root pointer are ignored. 

6.1.1.3 SHARED GLOBALLY (SG). The SG bit (bit [41]) indicates that the logical address 
space mapped by the root pointer is shared globally by all tasks within the system. Setting 
the SG bit to 'one' informs the MC68851 that the logical-to-physical mappings identified 
by this root pointer are identical for all tasks and that only a single descriptor for the 
translation needs to be maintained in the ATC (as opposed to one descriptor for each task 
that uses that mapping). Setting the SG bit to zero informs the MC68851 that the logical
to-physical mapping identified by the root pointer is unique for a particular task (user, 
supervisor, or DMA). 

The shared globally attribute can significantly effect the performance of the MC68851 ATC. 
The MC68851 task aliasing mechanism (refer to 5.3 ROOT POINTER TABLE) assigns a task 
alias to all entries that are created in the ATC; this includes all supervisor and DMA entries. 
The value assigned to an entry is the current value of the internal task alias maintained 

MOTOROLA 
6-2 

MC68851 USER'S MANUAL 



by the MC68851. In order for a logical address to match an entry in the ATC, the logical 
page address, function code, and task alias fields must match exactly. Without use of the 
shared globally attribute, this would mean that all supervisor and DMA entries in the ATC 
that are used during the execution of multiple user tasks would require individual ATC 
entries be created, one corresponding to each user task during which the entry is used. 
The SG attribute allows the task alias compare to be suppressed during address translation 
and thus allows that only a single ATC entry be created regardless of the number of tasks 
in which the entry is used. 

It is recommended that the SG bit be set in the DMA root pointer and, either in the supervisor 
root pointer, if enabled, or in one of the highest levels of the translation tree if supervisor 
accesses are translated using the CPU root pointer. 

6.1.1.4 DESCRIPTOR TYPE (DT). The DTfield (bits [33-32]) specifies the type of descriptor 
contained in either the root pointer or in the first level of the translation table identified 
by that root pointer. The values are defined as follows: 

$0 INVALID 
Indicates that the value contained in the table address field does not point to a 
valid translation table. The MC68851 does not allow the operating system to load 
a root pointer with an 'invalid' descriptor type with the PMOVE instruction. An 
'invalid' descriptor may be loaded by the PRESTORE instruction; however, the 
operation of the MC68851 is undefined should this occur and care must be taken 
to avoid this. 

$1 PAGE DESCRIPTOR 
Indicates that a translation table for this root pointer does not exist and that the 
MC68851 should internally create an ATC entry (page descriptor) for accesses 
using this root pointer. The page descriptor is formed by adding (unsigned) the 
value in the table address field to the incoming logical address. This operation 
yields a direct-mapping of the logical address space with a constant offset (the 
table address field) for all accesses that use this root pointer. If the DT field of a 
mot pointer is set to $1, the MC68851 performs a limit check regardless of the 
state of the FCL bit. 

$2 VALID 4-BYTE 
The value indicates that the translation table at the root of the translation tree 
contains short format descriptors and that the MC68851 must scale the table index 
for this level of the table search by four bytes. 

$3 VALID 8-BYTE 
This value indicates that the translation table at the root of the translation tree 
contains long format descriptors and that the MC68851 must scale the table index 
for this level of the table search by eight bytes. 

6.1.1.5 TABLE ADDRESS. The table address field (bits [31-4]) specifies the physical base 
address of the translation table for that particular root pointer. If the DT field is set to $1 
(page descriptor), the value in the table address field provides a constant offset (may be 
zero) to the logical address when the MC68851 creates a page descriptor. 

6.1.1.6 UNUSED. Bits [3-0] of the root pointer are not used by the MC68851 and may 
be used by the operating system for other purposes. All other unused bits of the root 
pointer registers must be zero. 

MC68851 USER'S MANUAL MOTOROLA 
6-3 

• 



6.1.2 PMMU Cache Status (PCSR) 

The format of this 16-bit read-only register is shown in Figure 6-2. This register contains 
information about the MC68851 ATC to aid the operating system in maintaining a logical 
cache. 

15 14 13 12 11 10 9 8 7 6 5 4 3 

F - FLUSH 
LW - LOCK WARNING 
TA - TASK ALIAS 

Figure 6-2. Cache Status Register (PCSR) Format 

PCSR is updated whenever the CPU root pointer register is written by either the PMOVE 
or PRESTORE instructions. The contents of PCSR reflect the results of the root pointer table 
search (refer to 5.3 ROOT POINTER TABLE), and it can be read with the PMOVE instruction. 

6.1.2.1 TASK ALIAS (TA). The TA field (bits [2-0]) contains the current internal task alias 
maintained by the MC68851 (refer to 5.3 ROOT POINTER TABLE). 

6.1.2.2 FLUSH (F). When the MC68851 flushes entries from the ATC as the result of a 
write to the CRP, bit [15] (F) of PCSR is set to indicate that entries with the task alias shown 
in the TA field have been flushed. Otherwise, this bit is cleared. 

In a system incorporating a logical cache that maintains entries for multiple user tasks, the 
operating system should read PCSR after writing to the CRP and, if F is set, it should flush 
all entries in the logical cache corresponding to the TA encoding. 

6.1.2.3 LOCK WARNING (LW). The lock warning flag (LW) is set when all entries in the 
ATC but one have been locked. When this bit is set, no additional entries will be locked 
into the ATC until others are removed, regardless of the state of L bits in translation 
descriptors. In systems that frequently lock descriptors into the ATC, it is recommended 
that this flag be checked periodically since severe performance degradation will result from 
having only a single entry in the ATC available for replacement. 

6.1.3 Translation Control (TC) 

This register contains control fields to configure the address translation mechanism of the 
MC68851. The format of this 32-bit register is shown in Figure 6-3. All unimplemented 
fields of this register are read as zeros and must always be written as zeros. 

Manipulation of this register has side effects: writing a value with its enable bit clear to 
this register cause a flush of the entire ATC. When written with the E bit '(bit 31) set 
(translation enabled), a consistency check is performed on the values of PS, IS, and Tlx as 
follows. The Tlx fields are added together, and this sum is added to PS and IS. The total 
must be 32, or an MMU configuration exception (refer to 6.3.2.3 CONFIGURATION ERROR) 

MOTOROLA 
6-4 

MC68851 USER'S MANUAL 



31 

E I 0 I 0 I 0 

TIA 

15 12 

25 24 20 

o I 0 I SRE I FCL PS 

TIB TIC 

4 

E - ENABLE 
SRE - SUPERVISOR ROOT POINTER ENABLE 
FCL - FUNCTION CODE LOOKUP ENABLE 
PS - PAGE SIZE 
IS - INITIAL SHIFT 
TIA. TIB. TIC. TID - TABLE INDICES 

IS 

TID 

Figure 6-3. Translation Control Register Format 

16 

is signaled to the processor through the coprocessor interface. If an exception is taken, 
the TC register is updated with the data except that the E bit is cleared. 

6.1.3.1 ENABLE (E). When set, the MC68851 translation mechanism is enabled and ex
ecution of the PLOAD, PTEST, and CALLM instructions is allowed. When clear, the MC68851 
performs no translation operations, terminates all PTEST, PLOAD, and CALLM/RTM (type 
$1) instructions with an exception. Additionally, when the translation mechanism is dis
abled, logical addresses are routed directly from the logical address bus to the physical 
address bus, the physical address strobe (PAS) is asserted for all non-CPU space cycles, 
and CLI is asserted for all CPU space cycles that do not access the MC68851. 

This bit is cleared during reset, and it may also be cleared by software. The E bit must be 
clear before it can be written set (i.e., the MC68851 must be disabled before the TC contents 
can be updated). 

6.1.3.2 SUPERVISOR ROOT POINTER ENABLE (SRE). When SRE is set, all supervisor 
accesses are translated using the translation tree identified by the supervisor root pointer. 
When SRE is clear, use of the supervisor root pointer is disabled, and the CPU root pointer 
is used for supervisor space translations. 

6.1.3.3 FUNCTION CODE lOOKUP (FCl). The function code lookup field determines 
whether or not the top level table in the translation tree should be indexed with the function 
code when using the CRP or SRP. When clear, function code lookup is disabled. If the 
function code lookup is suppressed, then the first lookup is made using the portion of the 
logical address specified by IS and TIA as the index. When set, function code lookup is 
enabled, and the limit field of the root pointer used for translations is ignored. 

A function code lookup is always performed when the MC68851 executes a table search 
using the DMA root pointer. 

6.1.3.4 PAGE SIZE (PS). The page size field indicates the current page size that the 
MC68851 is supporting. Its defined values are: 

$8 - 256 Bytes $C - 4K Bytes 
$9 - 512Bytes $D - 8K Bytes 
$A - 1 K Bytes $E - 16K Bytes 
$B - 2K Bytes $F - 32K Bytes 

MC68851 USER'S MANUAL MOTOROLA 
6-5 

• 



Page size bit [3] must always be one. Writing values of zero to bit [3] of this field will cause 
an MMU configuration exception to be generated (refer to 6.3.2.3 CONFIGURATION ER
ROR). 

6.1.3.5 INITIAL SHIFT (IS). This IS field determines how many upper logical address bits 
are ignored by the MC68851 during table search operations. The value of this field is an 
integer from 0 to 15 indicating the number of bits to discard from the logical address, 
starting with bit [31]. This allows the MC68851 to adapt to systems using logical addresses 
consisting of 17 to 32 bits. 

Although the MC68851 ignores high-order logical address bits during table searches as 
determined by the IS encoding, all bits of the logical address are significant during address 
translation. Therefore, any unused bits should be tied to a constant voltage source (i.e., 
either VCC or GND). 

6.1.3.6 TABLE INDEX (TIA, TIB, TIC, AND TID). The table index fields specify the number 
of bits of the logical address to be used as an index into the translation tables at each level 
during a table search operation. Four fields are provided. The first lookup using logical 
address bits (which will be the second lookup if the function code lookup is enabled) uses 
TIA, the second TIB, ... , etc. 

The value of the field is an unsigned integer from 0 to 15 that represents the number of 
bits to be extracted from the logical address as an index. A zero value in a Tlx field specifies 
that the lookup process is over when that field is encountered during a table search. 

6.1.4 Current Access Level (CAL) 

This register contains the encoded access level of the current user task. The register is 
eight bits wide, but only the upper three bits are implemented. Unimplemented bits always 
read as zeros and are ignored when written. This register is automatically loaded by the 
CALLM and RTM instructions of the MC68020 and can also be loaded with the PMOVE or 
PRESTORE instructions. The format of the CAL register is shown in Figure 6-4. 

I ACCESS LEVEL I 0 I 0 I 0 I 0 I 0 I 
Figure 6-4. CAL and VAL Register Formats 

When the access level protection mechanism is enabled, the value in CAL is compared 
against a field of the high-order logical address to ensure that a user task does not exceed 
the privilege assigned to it by the operating system. If a violation occurs, the MC68851 
aborts the bus cycle in progress preventing the errant access. For a complete description 
of the use of this register refer to SECTION 10 ACCESS LEVEL PROTECTION MECHANISM. 

6.1.5 Validate Access Level (VAL) 

This register contains the access level of the caller of the current routine (called using the 
CALLM instruction). The register is eight bits wide, but only the upper three bits are im
plemented. Unimplemented bits always read as zeros and are ignored when written. This 

MOTOROLA 
6-6 

MC68851 USER'S MANUAL 



register is automatically loaded with the contents of the CAL register by the CALLM in
struction of the MC68020 and can also be loaded with the PMOVE or PRESTORE instruc
tions. The format of the VAL register is shown in Figure 6-4. 

6.1.6 Stack Change Control (SCC) 

SCC is an 8-bit register that determines if a stack change should occur during an MC68020 
CALLM instruction. The format of the SCC register is shown in Figure 6-5. A one in a bit 
position indicates that a stack pointer change will occur on a module call operation to an 
equal or more privileged level. 

I I I I I I I I I 
Figure 6-5. Stack Change Control Register Format 

This register is initialized by the operating system to dictate the requirements for stack 
changes during module call operations. The MC68851 examines this register during exe
cution of the CALLM instruction to determine whether or not the CPU should be instructed 
to change stack pointers before passing program execution control to the called module. 
If the current access level is n and the MC68020 requests a call to a module of privilege 
m where m < n (greater privilege), the MC68851 will instruct the CPU to change stack 
pointers if any bit of SCC between nand m (inclusive) is set. For a complete description 
of the use of this register refer to SECTION 10 ACCESS LEVEL PROTECTION MECHANISM. 

6.1.7 Access Control (AC) 

This 16-bit register is used to configure the various access controls that the MC68851 
supports. The register controls whether or not access levels are enabled, how many upper 
address bits contain access level information (up to a maximum of three), and also des
ignates the size of a module descriptor and consequently the boundary on which a module 
descriptor is allowed to fall. The format of this register is shown in Figure 6-6. 

15 

MC - MODULE CONTROL 
ALC - ACCESS LEVEL CONTROL 
MDS - MODULE DESCRIPTOR SIZE 

Figure 6-6. Access Control Register Format 

6.1.7.1 MODULE CONTROL (MC).When MC is set, module operations are enabled and 
MC68020 module call/return instructions function as described in 7.2 ACCESS LEVEL PRO· 
TECTION. If MC is clear, module operations are disabled, writes to the IAL and DAL access 
level control registers (ALCRs) do not change CAL, and all reads of the access status ALCR 
return the illegal code ($0) causing all MC68020 CALLM and RTM instructions to trap. In 
addition, the PVALID instruction will always cause an exception when MC is clear. 

MC68851 USER'S MANUAL MOTOROLA 
6-7 

• 



6.1.7.2 ACCESS LEVEL CONTROL (ALC). This field determines the number of upper 
logical address bits used as access level information and whether access levels are enabled. 
The field is encoded as: 

$0 - No Address Bits Used: Access Level Checking is Disabled 
$1 - One Address Bit Used: Two Access Levels are Used 
$2 - Two Address Bits Used: Four Access Levels are Used 
$3 - Three Address Bits Used: Eight Access Levels are Used 

This field is initialized to zero during reset. 

6.1.7.3 MODULE DESCRIPTOR SIZE (MDS). This field designates the boundaries on which 
a module descriptor is permitted to fall. The field is encoded as: 

$0 - All Module Descriptors are Invalid 
$1 - Valid Module Descriptors are Aligned to 16-Byte Boundaries 
$2 - Valid Module Descriptors are Aligned to 32-Byte Boundaries 
$3 - Valid Module Descriptors are Aligned to 64-Byte Boundaries 

6.1.8 PMMU Status Register (PSR) 

This 16-bit register contains status information for use by the operating system in deter
mining the cause of system faults. The contents of PSR are affected only by the PTEST, 
PMOVE to PSR, and PRESTORE instructions. The format for this register is shown in Figure 
6-7, and the fields are defined in the following paragraphs. 

15 14 13 12 11 10 9 8 

B - BUS ERROR 
L- LIMIT VIOLATION 
S - SUPERVISOR-ONLY 
A - ACCESS LEVEl VIOLATION 
W - WRITE-PROTECTED 

I-INVALID 
M - MODIFIED 
G - GATE 
C - GLOBALLY SHARABLE 
N - NUMBER OF LEVELS 

Figure 6-7. PMMU Status Register Format 

6.1.8.1 BUS ERROR (B). For the PTEST instruction with a level specification of one through 
seven, this bit is set if a bus error is returned to the MC68851 from physical memory during 
the table search and is cleared otherwise. For the PTEST instruction with a level specification 
of zero, this bit is set if a matching descriptor is found in the ATC with its BERR bit set and 
is 'cleared otherwise. 

6.1.8.2 LIMIT VIOLATION (L). For the PTEST instruction with a level specification of one 
through seven, this bit is set if a table index exceeded a limit field during a table search 
and is cleared otherwise. For the PTEST instruction with a level specification of zero, this 
bit is always clear. 

6.1.8.3 SUPERVISOR VIOLA liON (S). For the PTEST instruction with a level specification 
of one through seven, this bit is set if the tested address had a user function code, and a 

MOTOROLA 
6-8 

MC68851 USER'S MANUAL 



set S bit of a long format descriptor was encountered and is cleared otherwise. For the 
PTEST instruction, with a level specification of zero, this bit is always clear. 

6.1.8.4 ACCESS LEVEL VIOLATION (A). For the PTEST instruction with a level specifi
cation of one through seven, this bit is set if the address tested exceeded RAL for the 
PTESTR instruction, or exceeded WAL or RAL for the PTESTW instruction (refer to SECTION 
7 PROTECTION) and is cleared otherwise. For the PTEST instruction with a level specifi
cation of zero, this bit is always clear. 

6.1.8.5 WRITE PROTECTED (W). For any PTEST instruction, this bit is set if the address 
tested is not writeable. This may occur if any descriptor encountered in the search contained 
a set WP bit, or if the address tested exceeded the WAL field of any long descriptor 
encountered. It is cleared otherwise. 

6.1.8.6 INVALID (I). For the PTEST instruction with a level specification of one through 
seven, this bit is set if the address has no translation in the table (i.e., an 'invalid' descriptor 
type, bus error, or limit violation was encounted during the table search). It is also set if 
the PTEST instruction requested a level zero search (search ATC only) and no corresponding 
entry was found in the ATC or an entry was found in the ATC but had its BERR bit set. The 
I bit is cleared for all other cases. 

6.1.8.7 MODIFIED (M). For the PTEST instruction with a level specification of zero, this 
bit is set if the address is found in the ATC and it has the M bit set. For the PTEST instruction 
with a level specification of one through seven, this bit is set if a translation is located in 
the table and the M bit of the page descriptor is set. It is cleared otherwise. 

6.1.8.8 GATE (G). For the PTEST instruction with a level specification of zero, this bit is 
set if an address is found in the ATC with its G bit set. For the PTEST instruction with a 
level specification of one through seven, this bit is set if a translation for the address is 
found in the table and the G bit of the page descriptor is set. It is cleared otherwise. 

6.1.8.9 GLOBALLY SHARED (C). For any PTEST instruction, this bit is set if a translation 
for the address is found in the table and the SG bit in a long format descriptor is set. It is 
cleared otherwise. 

6.1.8.10 LEVEL NUMBER (N). For the PTEST instruction with a level specification of one 
through seven, this bit is set to the number of tables used in the translation of an address. 
For the PTEST instruction with a level specification of zero, this field is always zero. 

The bits of the PSR are ordered to allow use of the MC68020 'bit field find first one' (BFFO) 
instruction to determine the cause of a fault. An example sequence is: 

PTESTR (fc),(ea),7 *TEST ADDRESS 
PMOVE PSR,DO *GET PMMU STATUS RESULTS 
BFFFO DO{16:6},D1 *LOOK FOR SET BITS 
BEQ NOT_PMMU *NO SET BITS = NOT PMMU (MAYBE) 
JMP ([TABLE,D1.W*4]) *JUMP TO APPROPRIATE CODE TABLE 
DS.L B_CODE 
DS.L LCODE 
DS.L S_CODE 
DS.L A-CODE 
DS.L W_CODE 
DS.L LCODE 

Me68851 USER'S MANUAL MOTOROLA 
6-9 

• 



• 

The code fragment shows a move of the PSR register into a main processor register, 
followed by a 'bit field find first one' operation to determine the cause of the fault. If the 
bit field is entirely clear, then either the MC68851 did not cause the value, the fault was 
caused by a descriptor miss for a TAS, CAS, or CAS2 instruction (refer to 6.3.1.7 RMC 
CYCLE), or a user task attempted to exceed the current access level assigned to it. The 
'BEQ' instruction branches to code to handle these cases. The JMP uses scaled, indexed 
memory indirect addressing implementing a case structure to go immediately to code to 
handle the fault. The different cases typically have these implications: 

B - Bad Pointer in Table or Main Memory Failure 
L - Addressing Error by Task or Request for Stack Extension 
S - Attempt by User to Access Supervisor-Only Information 
A - Attempt to Exceed Access Level 
W - Attempt to Write to Protected Memory 

I - Page Fault 

6.1.9 Breakpoint Acknowledge Data (BADO-BAD7) 

There are eight BADx registers (BAD7-BADD), each of which is 16 bits wide. These registers 
hold the opcodes that are provided to the CPU during a breakpoint acknowledge cycle. 
The format of this register is shown in Figure 6-8. For a complete description of the use 
of these registers refer to SECTION 8 BREAKPOINTS. 

15 

REPLACEMENT apcoaE 

BPE - BREAKPOINT ENABLE 

Figure 6-8. Breakpoint Acknowledge Data Register Format 

6.1.10 Breakpoint Acknowledge Control (BACO-BAC7) 

There are eight BACx registers (BAC7-BACD), each of which is 16 bits wide. They contain 
the enable and count functions for the instruction breakpoint acknowledge mechanism. 
The format of these registers is shown in Figure 6-9. For a complete description of the use 
of these registers refer to SECTION 8 BREAKPOINTS. 

15 

I BPE I a I a I a I a I a I a I a I BREAKPOINT SKIP COUNT 

Figure 6-9. Breakpoint Acknowledge Control Register 

6.1.10.1 BREAKPOINT ENABLE (BPE). When set, this bit enables the breakpoint instruc
tion corresponding to this register. 

6.1.10.2 SKIP COUNT. This field contains an unsigned integer that specifies how many 
times the data from the corresponding BADx register should be returned to the CPU before 
signaling a bus error. When this field is zero and a breakpoint instruction corresponding 

MOTOROLA 
6-10 

MC68851 USER'S MANUAL 



to this register is executed, the MC68851 terminates the breakpoint acknowledge cycle by 
asserting bus error. 

6.2 INSTRUCTIONS 

The MC68851 implements instruction extensions to M68000 Family processors using the 
M68000 Family coprocessor interface. These instructions provide control functions for 
loading and storing of MC68851 registers, testing access rights and conditionals based on 
the results of the tests, and setting the MC68851 control functions. 

The functions provided by these instructions are described briefly below. For detailed 
descriptions, refer to APPENDIX A INSTRUCTION SET DETAILS. For a description of the 
M68000 Family coprocessor interface, refer to SECTION 9 COPROCESSOR INTERFACE. 

All MC68851 instructions are privileged except PVALID. An attempt to execute any other 
MC68851 instruction while the CPU is in user state will cause a privilege exception . 

The MC68851 participates in the execution of the CALLM and RTM instructions of the 
MC68020. These instructions use the CAL, access status, IAL, DAL, and descriptor address 
access level control registers. The MC68851 also provides a breakpoint acknowledge func
tion in support of the MC68020 breakpoint instructions. 

6.2.1 Data Movement (PMOVE) 

The PMOVE instruction is provided to move data to or from MC68851 registers using the 
addressing modes available on the CPU. The operation can be byte, word, long word, or 
double long word, depending on the size ofthe MC68851 register involved. Data movement 
into the MC68851 may cause side effects, depending on the register moved. 

6.2.2 Parameter Validation (PVALlD) 

The PVALID instruction examines the access level bits of its operand and executes an 
unsigned compare against the access level bits of the VAL register or to a surrogate level 
provided by the instruction .. If the operand bits are arithmetically less tha~ the VAL (or 
surrogate VAL) bits, this instruction causes a trap with the access level violation exception. 

The purpose of this instruction is to prevent a routine from passing parameters to a module 
that the calling routine does not have access to but to which the called does (i.e., a module 
can be prevented from requesting that a higher-privilege module operate on data to which 
the lower-privileged module does not have access). 

This instruction is intended for use in systems that use the access level protection mech
anism. It allows a routine to verify that a pointer passed to it can be legally used by its 
caller. The addressing mode specification is the same as a data movement instruction 
would use. For example, if a routine is passed parameters on the stack, the following 
sequence may be used to verify that the calling routine has sufficient privilege to use these 
parameters itself: 

PVALID 
MOVE 

MC68851 USER'S MANUAL 

VAL, ([A7,offset]) 
([A7,offset]),DO 

*VALI DATE ADDRESS 
*USE ADDRESS 

MOTOROLA 
6-11 

• 



• 

If the data will be frequently used, loading the data into a register may be more efficient: 

LEA 
PVALID 
MOVE 

([A7,offset]),AO 
VAL, (AO) 
(AO),DO 

6.2.3 Address Attribute Testing (PTEST) 

*CALCULATE ADDRESS 
*VALIDATE ADDRESS 
*USE ADDRESS 

The PTEST instruction takes an address and function code and searches the ATC and/or 
translation tables for an entry that translates this address. The results of the search are 
available in the PSR. Optionally, the physical address of the last descriptor fetched may 
be returned. 

This instruction is primarily used in bus error handling routines. For example, if a bus error 
has occurred, then the handler can execute an instruction such as: 

PTESTW #1, ([A7,offset]), #7, AO 

This instruction requests that the MC68851 search the translation tables for an address in 
user data space (#1) and to examine protection information as if a write cycle were oc
curring. This particular address is stored at offset from the current stack pointer ([A7,offset]). 
The MC68851 is instructed to search to the bottom of the table (#7 - there cannot be 
more than six levels) and return the physical address of the last table entry used in register 
AO. After executing this instruction, the handler can examine PSR for the source of the 
fault and use AO to access the last descriptor. 

6.2.4 Cache Pre-Loading (PLOAD) 

The PLOAD instruction takes an address and function code, searches the translation table, 
and loads the ATC with an entry to translate the address. Any existing entry in the ATC 
that will translate the specified address is removed. The pre-load can be executed for either 
read or write attributes. If the write attribute is selected (PLOADW), the MC68851 performs 
the table search and updates all history information in the translation tables (used and 
modified bits) as if a write operation to that address had occurred. Similarly, if the read 
attribute is selected (PLOADR), the history information in the translation table (used bit) is 
updated as if a read operation had occurred. 

6.2.5 Cache Flushing 

The following paragraphs describe cache flushing. 

6.2.5.1 PFLUSH/PFLUSHS. The PFLUSH instruction allows ATC entries to be invalidated 
in several ways: by effective address, by function code, or by both effective address and 
function code. Only entries that are associated with the current task alias and that are not 
globally shared may be flushed with the PFLUSH instruction. Entries that are globally shared 
can be flushed from the ATe with the PFLUSHS instruction. 

6.2.5.2 PFLUSHR. The PFLUSHR instruction invalidates an entry in the root pointer table. 
The operand is compared against the values in the root pointer table. If a match is found, 
that entry in the RPT and all ATe entries associated with the matching RPT entry (i.e., that 
task alias) are invalidated. If no entry is found in the RPT that matches the operand for this 
instruction, neither the RPT nor the ATe are flushed. 

MOTOROLA 
6-12 

MC68851 USER'S MANUAL 



6.2.5.3 PFLUSHA. The PFLUSHA instruction unconditionally invalidates all ATC entries. 

6.2.6 Conditionals 

The M68000 Family coprocessor interface provides several conditional instructions that 
are used to test for the following bits in the PSR: B, L, S, A, W, I, G, and C (refer to 6.1.8 
PMMU STATUS REGISTER (PSR)). The negation of these conditions may also be tested. 

6.2.6.1 BRANCH CONDITIONALLY (PBee). This instruction tests a condition based on 
one of the bits listed above and branches if the condition is true. 

6.2.6.2 DECREMENT AND BRANCH (PDBee). This instruction is a looping primitive iden
tical to the DBcc instruction of the M68000 Family. 

6.2.6.3 SET CONDITIONALLY (PSee). This instruction tests a condition and sets the byte 
specified by the effective address to all ones if the condition is true. 

6.2.6.4 TRAP CONDITIONALLY (PTRAPee). This instruction tests a condition and causes 
an exception if the condition is true. 

6.2.7 State Save and Restore 

The following paragraphs describe the state save and restore instructions. 

6.2.7.1 PSAVE. This instruction saves the task-specific state of the MC68851. This con
sists of the CRP, SRP, CAL, VAL, SCC, breakpoint registers (if enabled) and internal state 
information. The saved data also contains additional internal state information if the MC68851 
had an instruction execution in progress at the time of the save. The PSAVE instruction is 
intended for use in context switch operations. Refer to APPENDIX C SOFTWARE CONSID· 
ERATIONS for further implications concerning the use of the PSAVE instruction. 

6.2.7.2 PRESTORE. This instruction restores the internal state of the MC68851 that was 
saved with PSAVE. Refer to SECTION 9 COPROCESSOR INTERFACE for details on the 
restore operation. Refer to 6.3 EXCEPTIONS for information on the format of the data to 
be restored. 

6.2.7.3 STATE FORMATS. Data saved by the PSAVE instruction can have three formats 
as shown in Figures 6-10, 6-11, and 6-12. Note that these figures depict the memory 
organization for the state formats when using the predecrement addressing mode. When 
using other addressing modes, the first word of the state frame (identified by liSP" in 
Figures 6-10 through 6-12) is located at the specified effective address and successive 
words are located in higher memory. 

The idle format is used when there is no coprocessor instruction in progress at the time 
of the PSAVE. The mid-coprocessor format is used when a coprocessor instruction is in 
progress. Both of these formats are used only when there are no breakpoints enabled. If 
there are any breakpoints enabled, the breakpoint enabled format is used regardless of 
the state of any coprocessor or module call/return instructions. 

Me688S1 USER'S MANUAL MOTOROLA 
6-13 

• 



• 

SP--.. 

+$04 

+$08 

+$OC 

+$10 

+$14 

+$18 

+$1C 

+$20 

SP--.. 

+$04 

+$08 

+$OC 

+$10 

+$14 

+$18 

+$1C 

+$20 

+$24 

+$28 

31 

C 1 0 

31 

C I 0 

15 

J 2 I 0 I x I 
PSR I SCC 

SRP LOW 

SRP HIGH 

CRP LOW 

CRP HIGH 

INTERNAL DATA 

INTERNAL DATA 

INTERNAL DATA 

Figure 6-10. Idle Format Frame 

15 

I 2 I 8 I x I 
INTERNAL DATA 

INTERNAL DATA 

PSR I SCC 

SRP LOW 

SRP HIGH 

CRP LOW 

CRP HIGH 

INTERNAL DATA 

INTERNAL DATA 

INTERNAL DATA 

x I x I x 

I CAL I x I VAL I x 

x I x I x 

1 CAL I xl VAL I x 

Figure 6-11. Mid-Coprocessor Format Frame 

All data marked as 'internal' should not be modified by software. Modifying this data may 
result in erroneous behavior of the MC68851. 

If the length field of the restored data is zero (i.e"., the reset format frame), the MC68851 
is reset (i.e., placed in the idle state with no operations in progress). Configuration data 
from the data bus is not read as it is during a hardware reset, and no MC68851 register 
contents are altered. This state frame format is shown in Figure 6-13. 

6.3 EXCEPTIONS 

The following paragraphs describe the exceptions. 

6.3.1 Bus Error 

The bus error exception (vector #8 in M68000 systems) is signaled to the main processor 
by assertion of the BERR signal. Due to the limited number of signals available for error 
reporting, the BERR signal may be asserted for several different reasons. The handler for 

MOTOROLA 
6-14 

Me688S1 USER'S MANUAL 



SP--. 

+$04 

+$08 

+$OC 

+$10 

+$14 

+$18 

+$lC 

+$20 

+$24 

+$28 

+$2C 

+$30 

+$34 

+$38 

+$3C 

+$40 

+$44 

+$48 

31 

31 

C I 
15 

0 I 4 I 8 x I x I x I x 

BACO BADO 

BAC1 BAD1 

BAC2 BAD2 

BAC3 BAD3 

BAC4 BAD4 

BAC5 BAD5 

BAC6 BAD6 

BAC7 BAD7 

INTERNAL DATA 

INTERNAL DATA 

PSR SCC I CAL I x I VAL J x 

SRP lOW 

SRP HIGH 

CRP lOW 

CRP HIGH 

INTERNAL DATA 

INTERNAL DATA 

INTERNAL DATA 

Figure 6-12. Breakpoint Enabled Format Frame 

15 

Figure 6-13. Reset Format Frame 

the bus error exception of the main processor must be prepared to handle all of these 
cases. Normal bus error handler action should be to execute a PTEST instruction (after 
ensuring that no other MC68851 coprocessor instructions are in progress) giving the fault 
address stored by the CPU or returned by the logical bus master (if the CPU was 'not the 
logical bus master). If the MC68851 has denied access to the location due to restrictions 
in the translation table, the reason will be indicated by the bits of the PSR register. The 
following conditions must be detected by software: main memory failure (transient or 
otherwise), access exceeded value of CAL at the time the bus cycle was run, an ATC miss 
during a TAS, CAS, or CAS2 instruction, or an alteration in the translation tables between 
the time the bus cycle was aborted by the MC68851 and time of the PTEST instruction. 

6.3.1.1 BUS ERROR SIGNALED FROM MAIN MEMORY. Main memory may assert the 
BERR signal to the MC68851 during a table search operation. Ifthe table search was initiated 
by a bus cycle run by a logical bus master or by a PLOAD instruction, an ATC entry will 
be made with its internal bus error (B) bit set. When a logical bus master attempts an 
access using this ATC entry, the MC68851 will assert the BERR signal. If the table search 
was initiaited by a PTESTR or PTESTW instruction, the B bit of the PSR register will be set. 

MC68851 USER'S MANUAL MOTOROLA 
6-15 

• 



• 

This error indicates that a bad pointer was loaded into a translation table or that there is 
a main memory failure. If there is a main memory failure, the error may be transient, and 
the PTEST instruction may not indicate any fau!t. 

6.3.1.2 LIMIT FIELD EXCEEDED. If a table index extracted from a logical address exceeds 
the limit field of a corresponding long format descriptor, an ATC entry will be made with 
its internal bus error (B) bit set. When a logical bus master attempts an access using this 
ATe entry, the MC68851 will assert the BERR signal. The PTEST instruction signals that a 
limit violation has occurred by setting the 'L' bit in the PSR. 

6.3.1.3 ATIEMPTED USER ACCESS OF SUPERVISOR ADDRESS. If bit FC[2] of a logical 
address is zero and a set S bit is encountered during the table search in a long format 
descriptor for that address, an ATC entry will be made with its internal bus error (B) bit 
set. When a logical bus master attempts an access using this ATC entry, the MC68851 will 
assert the BERR signal. The PTEST instruction signals that this condition has arisen by 
setting the'S' bit in the PSR. 

6.3.1.4 ACCESS LEVEL VIOLATION. If access levels are enabled, and the access level 
bits of a logical address indicates a higher privilege (numerically less) than the value of 
the CAL register, the MC68851 will assert the BERR signal. Note that the PTEST instruction 
will not detect this condition, and the fault handler of the main processor should compare 
the access level field of the fault address with the value contained in the MC68851 CAL 
register at the time of the fault to determine whether or not this condition caused the fault. 

Additionally, if access levels are enabled and the access level bits of a logical address 
indicate less privilege (numerically greater) than that indicated by the RAL field of a long 
descriptor in the table search path for a read, or less privilege than the RAL or WAL fields 
for a write, an ATC entry will be made with its internal bus error (B) bit set. When a logical 
bus master attempts an access using this ATC entry, the MC68851 will assert the BERR 
signal. The PTEST instruction signals that this condition has arisen by setting the 'A' bit 
in the PSR. 

6.3.1.5 WRITE PROTECTION VIOLATION. If a write cycle is attempted with a logical 
address for which the WP bit is set in any descriptor in the table search path or if access 
levels are enabled and the access level bits of the logical address are less privileged 
(numerically greater) than the value of a WAL field in a long descriptor, an ATC entry will 
be made with its internal bus error (B) bit set. When a logical bus master attempts an 
access using this ATC entry, the MC68851 will assertthe BERR signal. The PTEST instruction 
signals that this condition has arisen by setting the 'w' bit of the PSR. 

6.3.1.6 INVALID ADDRESS. If the DT field of any descriptor in the table search path for 
a logical address contains the valid 'invalid', an ATC entry will be made with its internal 
bus error (B) bit set. When a logical bus master attempts an access using this ATC entry, 
the MC68851 will assert the BERR signal. 

This error indicates that a valid translation is not available to the MC68851. Typical system 
implications would be that the page requested is allocated but paged out, or the page 
requested is currently unallocated. The PTEST signals that this error has occurred by setting 
the 'I' bit in the PSR. . 

MOTOROLA 
6-16 

MC68851 US.ER'S MANUAL 



6.3.1.7 READ-MODIFY-WRITE (RMW) CYCLE. The MC68851 asserts the BERR signal if 
the logical bus master attempts to execute a bus cycle with the RMC signal asserted to an 
address that does not have a descriptor in the ATC, or to an address whose ATC entry 
does not have the modified (M) bit set. The action on the part of the bus error exception 
handler should be to execute a PTESTR or PTESTW instruction giving the faulted address, 
determine that the access should be valid (by examining the '1' bit of the PSR)' execute 
PLOADW instruction giving the faulted address, and return to the faulted instruction with 
the rerun bit of the SSW set (refer to the MC68020 32-Bit Microprocessor User's Manual). 
The MC68020 will return to the beginning of the set of interlocked bus cycles and rerun 
the set. To reduce the average response time for this situation, the following heuristic is 
suggested: maintain the address of the most recent RMW fault in a local static data area. 
If the current fault is an RMW (as indicated by the SSW) and it does not match the stored 
address or there is no stored address, update the stored address with the current address, 
execute a PLOAD and return. Otherwise, search for other causes of the fault. 

This action, by the MC68851, is necessary to allow the uninterrupted sequence of bus 
cycles required by the TAS, CAS, and CAS2 instructions of the MC68020, without increasing 
bus arbitration latency to an unacceptable level. Note that software intervention is not 
required on every instruction execution that asserts RMC, but only on those that require 
a table search. The operating system can reduce the frequency of table searches by main
taining the page descriptors of semaphore areas with their L (lock), M (modified), and U 
(used) bits always set. Preceding sequences of TAS, CAS, and/or CAS2, instructions by 
non-RMW writes to a location in the shared pages also reduces the frequency of table 
searches during RMW cycles. 

Note that it is possible, by locking ATC entries, to create a situation in which there are too 
few unlocked ATC entries to allow an RMW instruction to complete. The minimum number 
of unlocked entries required depends on the system software configuration. It can be 
computed as follows: four entries for the longest RMW instruction itself (CAS2 where both 
operands cross page boundaries), two entries for the supervisor stack, one entry for the 
exception vector table, one entry for each page of the bus error handler routine, and enough 
entries for any interrupt routines that may execute during the bus error handler. The 
MC68851 lock warning facility does not detect the locking of this number of entries. There
fore, the bus error handler must infer the existence of this condition from the fact that the 
same fault address has been processed more than once in succession with no other dis
cernible cause. 

6.3.2 Coprocessor Interface Exceptions 

The MC68851 may return the 'take exception' coprocessor primitive through the copro
cessor interface. The following paragraphs describe the exceptions that may be returned 
and their causes. 

6.3.2.1 F-LiNE EMULATION. The MC68851 returns this exception (exception vector #11 
($OB)) when presented with an unrecognized command or condition. It is returned as a 
pre-instruction exception. 

6.3.2.2 PROTOCOL VIOLATION. The MC68851 returns this exception (exception vector 
#13 ($OD)) when it detects a coprocessor protocol violation. It is returned as a pre-instruc
tion exception. When an RTE is performed by the main processor, the MC68851 will attempt 
to execute the instruction again. This behavior is based on the assumption that the most 

Me688S1 USER'S MANUAL MOTOROLA 
6-17 

• 



• 

likely cause of this error is faulty system software that attempted an MC68851 instruction, 
other than PSAVE, during a fault in another MC68851 instruction. The pre-instruction ex
ception causes the faulted MC68851 instruction to be discarded and the more recent in
struction to be executed after the RTE. 

6.3.2.3 CONFIGURATION ERROR. The MC68851 returns this exception (exception vector 
#56 ($38)) when the data to be loaded into the TC, CRP, SRP, or DRP registers is not valid. 
It is returned as a post-instruction exception. The scanPC (on an MC68020) is moved to 
the next instruction. 

6.3.2.4 ILLEGAL OPERATION ERROR. The MC68851 returns this exception (exception 
vector #57 ($39)) when a PTEST or PLOAD instruction is executed and the E (enable) bit 
of the TC register is clear. It is returned as a post-instruction exception. The scanPC (on 
an MC68020) is moved to the next instruction. 

6.3.2.5 ACCESS VIOLATION. The MC68851 returns this exception vector #58 ($3A) when 
a PVALID instruction check fails. It is returned as a post-instruction exception. The scanPC 
(on an MC68020) is moved to the next instruction. 

MOTOROLA 
6-18 

Me688S1 US.ER'S MANUAL 



SECTION 7 
PROTECTION 

This section discusses the facilities provided by the MC68851 to protect address spaces 
and portions of address spaces. These facilities include protection of the supervisor from 
user tasks, of user tasks from each other, and of user tasks from themselves. In addition, 
the access level protection mechanism and its use with the MC68020 CALLM and RTM 
instructions is discussed. 

The MC68851 provides two protection mechanisms that can be used either independently 
or together, as dictated by the protection requirements for a particular system, to provide 
a comprehensive protection scheme. The primary protection mechanism utilizes the func
tion code outputs of the logical bus master to define address space based on the current 
operating mode of the master and the type of operand that is being accessed. The more 
comprehensive access level protection mechanism subdivides the logical address spaces 
of user mode tasks into discrete regions of distinct privilege with a hierarchical structure. 

7.1 PROTECTION USING ADDRESS SPACE ENCODINGS 

M68000 Family processors and other bus master-type devices (DMA controllers, ... , etc.) 
provide an~indication of the context in which they are operating on a cycle-by-cycle basis 
through the function code outputs. The function codes indicate the current privilege mode 
of the bus master (supervisor or user) and the type of operand that is being accessed 
(program or data). Other distinctions provided by the function code signals (for example, 
CPU space accesses) are used for special purposes and are not of concern in discussion 
of the protection mechanism. 

All mapping and protection information used by the MC68851 is contained in the translation 
tables in physical memory. The basis for the protection mechanism based on address 
space encodings is the structure of these translation tables and how they are <;lccessed by 
the MC68851. Tasks or routines are prevented from gaining access to valid translation 
descriptors mapping those areas. In essence, the translation tables are structured such 
that the MC68851 cannot locate a valid translation ('valid' indicating that the mapping 
exists in the translation tables and that the access status information contained in it results 
in the assertion of the physical address strobe by the MC68851 for that access) for any 
access to an area that should be protected from that access. 

The function code signals provide the basis for the MC68851 protection mechanism by 
forcing different translation tables or branches of a single table to be used to locate logical
to-physical mappings for accesses to different address spaces. 

7.1.1 Supervisor/User and User/Supervisor Protection 

Supervisor mode programs and data can be protected from access by user mode programs 
in one of two ways. The first method uses the function code of the logical address to index 
into the first level of the address translation table. Using this method, a branch of the active 

MC68851 USER'S MANUAL MOTOROLA 
7-1 

• 



translation table (pointed to by the CPU root point register) is dedicated to contain mapping 
information for each of the address spaces (supervisor program and data, user program 
and data). This has the effect of breaking the logical address space of the system into four 
separate address spaces, as shown in Figure 7-1. 

32 

SUPERVISOR 
PROGRAM 

SPACE 

32 

SUPERVISOR 
DATA 

SPACE 

32 

USER 
PROGRAM 

SPACE 

32 

USER 
DATA 

SPACE 

Figure 7-1. Logical Address Map Using Function Code Lookup 

Since a user mode program cannot generate addresses with either the supervisor program 
or supervisor data function codes, supervisor code and data can be protected from any 
user mode accesses by not placing any valid logical-to-physical mappings in the user 
branch of the translation table that references supervisor-only information. Additionally, 
since the supervisor cannot generate user program or data address space references with 
normal effective address calculations (although these spaces are accessible using the MOVES 
(move to alternate address space) instruction of the MC68020), user information is protected 
against all but deliberate supervisor accesses. Figure 7-2 illustrates an example of the 
upper portion of the address translation table for a task using this method. 

If it is desired to separate the supervisor and user address spaces, but to make no distinction 
between program and data, the supervisor root pointer register can be used, and the 
function code lookup can be suppressed. Use of the supervisor root pointer is enabled by 
setting the SRE bit of the translation control (TC) register, and the function code lookup is 
suppressed by clearing the FCL bit of the TC register (refer to 6.1.5 TRANSLATION CON
TROL). When SRE is set, all supervisor mode references are translated using the address 
translation table pointed to by the SRP register, and user mode references are translated 
using the address translation table pointed to by the CRP register. 

If the system requires that the user task and the supervisor share the same address space, 
an alternate method of providing protection for supervisor code and data is provided. The 
CRP is used to map both supervisor and user mode accesses, and individual pages or 
entire sections of memory may be restricted to supervisor-only access by setting the S bit 
in ~he long format page or table descriptors. Additionally, if the function code lookup is 
enabled (in order to provide distinction between program and data references) the cor
responding user and supervisor entries in the function code table (for example, the user 

MOTOROLA 
7-2 

MC68851 USER'S MANUAL 



CPU ROOT ----l~II ••• iI._ 
POINTER 

4~~~~~~--~ 
8 

$C 
$10 

$14_~ $18 
$IC 

ADDRESS OF FIRST TABLE POINTER = 
CPU ROOT POINTER + (FUNCTION COOE-SIZE) 

USER DATA SPACE BRANCH 

USER PROGRAM SPACE BRANCH 

SUPERVISOR DATA SPACE BRANCH 

SUPERVISOR PROGRAM SPACE BRANCH 

TABLE INDEX AT THIS LEVEL USES 
LOGICAL ADORESS FIELO SPECIFIED 

BY TIA FIELD OF TRANSLATION CONTROL 
REGISTER 

Figure 7-2. Example Translation Tree Using Function Code Lookup 

data and supervisor data) should contain the same values such that they point to the same 
sub-branch of the translation table. Finally, each user task may have a different supervisor 
mapping if desired. Figure 7-3 shows an example address space using this structure, and 
Figure 7-4 shows a two level translation table that implements this space. 

7.1.2 User/User Protection 

Similar to the requirements for providing protection of the supervisor, the essential re
quirement for providing protection between multiple user tasks is to prevent a task from 
accessing areas to which it does not have access rights by preventing the Me68851 from 
locating a valid descriptor to translate errant accesses. In order to enforce protection, each 
user mode task must have its own translation table. The recommended method to perform 
this function is to provide each task with a complete address translation table, including 

Me6S8S1 USER'S MANUAL MOTOROLA 
7-3 

• 



32 

SUPERVISOR 
AND 

USER SPACE 

THIS AREA SUPERVISOR-ONLY. 
READ-ONLY 

THIS AREA SUPERVISOR-ONLY. 
READ/WRITE 

THIS AREA SUPERVISOR OR USER. 
READ-ONLY 

THIS AREA SUPERVISOR OR USER. 
READ/WRITE 

Figure 7-3. Example Logical Address Map With Shared Supervisor and User Spaces 

a function code table, duplicating the supervisor program and supervisor data pointers in 
each function code table. Changing the address mapping during a context switch is done 
by loading the CPU root pointer register with the pointer to the address translation table 
of the new task. This method takes advantage of the automatic flushing, task aliasing, and 
other address translation cache management facilities of the MC68851. Figure 7-5 depicts 
an example of the upper portion of the address translation table for tasks using this method. 
When using this table structure, it is recommended that the SG bit be set in all long format 
descriptors in the supervisor branches of the tables (refer to SECTION 5 ADDRESS TRANS
LATION). This allows sharing of supervisor entries among tasks and makes more efficient 
use of the address translation cache. 

It is possible to maintain one function code table for the entire system and alter the address 
mapping on a context switch by replacing the user program and user data entries in the 
function code table. However, this method requires that the address translation tables in 
memory be modified and the MC68851 address translation cache be explicitly flushed at 
each context switch and is therefore not recommended. 

7.1.3 Write Protection 

Another means to protect certain pages or entire areas of memory is to designate them 
write-protected (read-only). There are two ways to accomplish this. The first is to set the 
WP bit in the page or table descriptor for the memory that is to be protected. This write
protection is absolute in that neither user nor supervisor mode programs can write to the 
protected area. In translation table structures with more than one level of tables there may 
be more than one WP bit encountered during the table search for any individual page. A 
page is protected if the WP bit is set in any of the descriptors used in the translation. 

If access levels are being used, individual pages or areas of memory may be write-protected 
based on access level. This protection is indicated using the WAL field of the long page 
and table descriptors and is discussed further in 7.2 ACCESS LEVEL PROTECTION MECH
ANISM, and in SECTION 5 ADDRESS TRANSLATION. Use of the WAL field and WP bits 
may be combined to provide both conditional and absolute write protection. 

MOTOROLA 
7-4 

MeS88S1 USER'S MANUAL 



CPU ROOT 
S=l. WP=l 

POINTER 
S=1. WP=O 

S=O. WP=l 

S=O. WP=O 

TABLE INDEX AT THIS LEVEL USES 
LOGICAL ADDRESS FIELD SPECIFIED 

BY TIA FIELD OF TRANSLATION CONTROL 
REGISTER 

THIS BRANCH SUPERVISoR·ONLY 
READ· ONLY 

THIS BRANCH SUPERVISoR·ONLY 
READ/WRITE 

THIS BRANCH SUPERVISOR/USER 
READ·oNLY 

THIS BRANCH SUPERVISOR/USER 
READ/WRITE 

~ 

~ 

~ 

TABLE INDEX AT THIS LEVEL USES 
LOGICAL ADDRESS FIELD SPECIFIED 

BY TlB FIELD OF TRANSLATION CONTROL 
REGISTER 

Figure 7-4. Example Translation Tree Using Sand WP Bits to Set Protection 

In.addition, ifthe logical address space is separated into program and data spaces through 
the use of function code lookup, the program space is effectively write-protected since 
M68000 Family microprocessors cannot generate writes to program space under normal 
circumstances. The privileged MOVES instruction can be used only by a supervisor mode 
program to perform writes to program space. 

7.1.4 Access (Read and Write) Protection 

A fourth type of access protection for individual pages or areas of memory can be enforced 
by setting the DT (descriptor type) field of a page or table descriptor to 'invalid' (refer to 
5.1.3 Translation Descriptors). When the MC68851 is performing a table search and reads 

Me68851 USER'S MANUAL MOTOROLA 
7-5 

• 



CPU ROOT POINTER --:lai!!!!!illit ___ J FOR TASK 'A' 
4 
8 ~------~~-----. 

$C 
$10 

$14 

$18~ii;;il $IC E:2ij 

ADDRESS OF FIRST TABLE POINTER = 
CPU ROOT POINTER + (FUNCTION CODE -SIZE) 

CPU ROOT POINTER --:i=1lI!!!!'~1-_11J FOR TASK 'B' 

:I~~~~~-t.--l-h 
$C 

$10 
$14 

$18 ~iiiiiil $IC JZ: 

USER DATA SPACE BRANCH 

USER PROGRAM SPACE BRANCH 

USER DATA SPACE BRANCH 

USER PROGRAM SPACE BRANCH 

I--------I~ 

SUPERVISOR DATA SPACE BRANCH 

SUPERVISOR PROGRAM SPACE BRANCH 

I--------I~ 

Figure 7·5. Example Translation Tree Structure for Two Tasks 
Sharing a Common Supervisor Table 

TRANSLATION 
TABLE 
FOR TASK 'A' 

TRANSLATION 
TABLE 
FOR TASK 'B' 

TRANSLATION 
TABLE FOR 
SUPERVISOR 
ACCESSES 

MOTOROLA 
7-6 

Me688S1 USER'S MANUAL 



a page or table descriptor that has an 'invalid' descriptor type, the table search is terminated, 
and an entry for the logical address that caused the table search to be initiated is created 
in the ATC with its BERR bit set. When the logical master retries the bus cycle that caused 
the MC68851 to initiate the table search, the MC68851 aborts the bus cycle by asserting 
the bus error signal. 

When a descriptor is created in the translation tables with an 'invalid' descriptor type, the 
other bits of the descriptor may be used by the operating system to store other information. 
The MC68851 makes no interpretation of the information stored in a descriptor marked 
'invalid'. Typically, information stored in the invalid descriptor might include the reason 
for the invalid setting and any other information that may be required by the operating 
system. Access to a page may be denied because the page is not currently resident in 
memory or because DMA activity that affects that page is in progress. Additionally, the 
invalid descriptor type can be used to deny access to the portion of the logical address 
space that is mapped by the branch (or page) of the translation table for the task whose 
logical-to-physical mappings are contained in that translation table. 

7.1.5 Protection Examples 

Using the facilities described, some of the protection classes that can be created are listed 
below. 

No Access 
Set the descriptor type for all areas of the logical address to which access is to be 
denied to invalid. This protection can be set for individual pages or ranges of the 
logical address by setting the descriptor type fields in the page descriptors or table 
pointers, respectively. 

Supervisor-Only (Read/Write) 
If a single logical address space is shared by the supervisor and the user, set the S 
bit in the status field of all long format descriptors that map areas to be protected. If 
both the supervisor and user have separate logical address spaces (using either func
tion code lookup or the supervisor root pointer), all supervisor information is protected 
if the translation tables for user accesses do not contain logical-to-physical mappings 
that reference areas of physical memory owned by the supervisor. 

Supervisor-Only (Read-Only) 
Similar to the previous example except that the WP bit is set in addition to the S bit. 
The WP bit must also be set in descriptors in the supervisor's translation table for all 
protected areas. 

Supervisor/User (Read/Write) 
No protection is required for these areas. This type of protection (and those discussed 
below) is applicable to those systems in which the supervisor and user share a common 
logical address space. 

Supervisor/User (Read-Only) 
Set the WP bit in the status field of all long format descriptors that map read-only 
areas. 

Supervisor/User Data-Only (Read/Write) 
Function code lookup is enabled. All data-only areas are contained in the branch of 
the translation table pointed to by the user data or supervisor data entries in the 
function code table. 

MC68851 USER'S MANUAL MOTOROLA 
7-7 

• 



Supervisor/User Program-Only (Read-Only) 
Function code lookup is enabled. All program-only areas are contained in the branch 
of the translation table pointed to by the user program or supervisor program entries 
in the function code table. Note that this does not provide execute-only protection if 
the PC-relative effective addressing mode is used for data accesses. 

7.2 PROTECTION USING THE ACCESS LEVEL PROTECTION MECHANISM 

In addition to the user/supervisor distinction provided by M68000 Family microprocessors, 
a system containing an MC68020 and MC68851 can use the access level protection mech
anism to construct up to eight additional levels of protection. These levels subdivide the 
user mode logical address space, pro'viding the ability to restrict read and write accesses 
based on the privilege level assigned to the current task. 'The MC68020 module call and 
return instructions (CALLM and RTM) interface with the MC68851 to allow a task to alter 
its access level in a manner that is controlled by the operating system (refer to SECTION 
10 ACCESS LEVEL CONTROL INTERFACE for further information on the mechanics of these 
instructions). 

7.2.1 Overview of Operation 

The access level protection mechanism provides a hierarchy of two, four, or eight distinct 
privilege levels within the user logical address space. The mechanism is hierarchical in the 
sense that a task operating at a given level of privilege n has access to all areas of the 
logical address space that require a privilege level of n or less but cannot access areas 
corresponding to higher levels of privilege. Figure 7-6 illustrates this concept. In the figure, 
four access levels are in use with lower numbers representing higher levels of privilege. 
The shaded areas in the Figure 7-6 represent areas to which accesses by a task operating 
at level n are allowed while the unshaded 'areas are not accessible to the task except 
through use of the CALLM instruction. 

The MC68020 CALLM (call module) instruction allows a task operating at one level of 
privilegetorequest temporary transfer of program execution control to a module operating 

MOTOROLA 
7-8 

Figure 7·6. Example of Protection Mechanism Privilege Hierarchy 

MC68851 USER'S MANUAL 



at a higher (or same) privilege level and to pass parameters to the called module. The 
calling routine cannot access or otherwise disrupt the higher privilege module since the 
only control the calling routine has over the called module is the value and number of 
parameters that are passed. The MC68020 RTM (return from module) instruction reverses 
the operation of the CALLM instruction and provides a secure means of returning program 
execution control to a routine from a module of higher privilege. 

Note that when the CALLM instruction is used to pass program control to a module op
erating at a higher level of privilege than the calling routine, the called module is effectively 
rendered 'execute-only' since the calling routine cannot access the module through any 
means other than passing program execution control to that module. 

Access levels are useful in any system where more than two levels of privilege are required. 
For example, a system may contain a data base manager that requires access to sensitive 
tables. It may be undesirable to require a task switch in order to invoke a data base manager 
function, or to allow the manager to run in supervisor mode'. Using the access level mech
anism, both the application and data base manager code can reside in the same address 
space. Data base functions can be invoked as module calls from the application code to 
predefined entry points in the data base manager. Data base manager code and data can 
be protected from being read or written by the application code. This allows the data base 
manager to be made execute-only from the application. By structuring the system tables 
properly, the data base manager can be invoked from several tasks simultaneously, and 
each instance can have some shared and some private data areas. 

Another use for the access level mechanism is to create an operating system with an 
interface that appears as an external subroutine call to application programs. In such a 
system, most of the operating system executes in user mode at the most privileged access 
level. The access level mechanism is used to protect system tables and peripheral device 
interface registers. Application code can request operating system services through the 
CALLM instruction in the MC68020. Supervisor mode is then considered to be an extension 
of the processor microcode for functions that are either too complex or too system specific 
to be implemented in the microprocessor itself. Code that must run in supervisor mode 
includes the front end of exception handlers and code that must use privileged instructions 
for context switching and processor control. 

An address map demonstrating an example of the access level mechanism is shown in 
Figure 7-7. In this figure, four access levels (or more if the application code area is further 

OPERATING SYSTEM 
ACCESSIBLE ONLY TO ITSELF 
CALLABLE FROM DBM DR APPLICATION 

DATA BASE MANAGEMENT (DBMI 
ACCESSIBLE TO ITSELF AND OPERATING SYSTEM 
CALLABLE FROM ITSELF OR APPLICATION 

APPLICATION CODE 
ACCESSIBLE TO ITSELF, DBM, AND OPERATING SYSTEM 
CALLABLE FROM ITSELF 

SHARED DATA AREA 
ACCESSIBLE TO OPERATING SYSTEM AND DBM 
READ-ONLY FROM APPLICATION CODE 
NOT-CALLABLE 

} MOST PRIVILEGED AREA 
(ACCESS LEVEL 01 

I 
DECREASING PRIVILEGE 

l 
} 

LEAST PRIVILEGED AREA 
(ACCESS LEVEL 31 

Figure 7-7. Example Logical Address Map for System Using Access Level Mechanism 

MC68851 USER'S MANUAL MOTOROLA 
7-9 

• 



subdivided by several different access levels) are implemented. The most privileged level 
contains the bulk of the operating system code and is directly accessible only to itself; the 
application code or the data base manager can request operating system services by using 
the CALLM instruction. The next most privileged level contains the data base management 
code and is directly accessible by both the data base manager and the operating system 
and is callable by the application code. The application code occupies the next access level 
and, similar to above, is accessible to itself, the data base manager, and the operating 
system. The lowest level of privilege is allocated to a data area that is shared by the data 
base manager and the application code. However, the protection attributes of the shared 
area are set such that the application code has rights only to read from the shared area 
and cannot write to it (refer to 7.2.3.1 Write Protection). Figure 7-8 illustrates one method 
of configuring a translation table to provide this type of function. 

CPU ROOT 
POINTER 

MOTOROLA 
7-10 

RAL=O. WAL=O 

RAL=1. WAL=l 

RAL=2. WAL=2 

RAL=3. WAL= 1 

TABLE INDEX AT THIS LEVEL USES 
LOGICAL ADDRESS FIELD SPECIFIED 

BY TIA FIELD OF TRANSLATION CONTROL 
REGISTER 

OPERATIN,G SYSTEM ADDRESS MAPPINGS 

DATA BASE MANAGER ADDRESS MAPPINGS 

APPLICATION ADDRESS MAPPINGS 

SHARED DATA AREA ADDRESS MAPPINGS 

TABLE INDEX AT THIS LEVEL USES 
LOGICAL ADDRESS FIELD SPECIFIED 

BY TIB FIELD OF TRANSLATION CONTROL 
REGISTER 

Figure 7-8. Translation Table for Example System 

MC68851 USER'S MANUAL 



7.2.2 Access Level Protection Mechanism Operation 

Throughout the system, access levels are one, two, or three bit quantities describing the 
level of privilege possessed or required. The number of bits used for access levels, and 
hence the number of levels, is set by the ALC field of the AC register in the MC68851 (refer 
to 6.1.9 ACCESS CONTROL (AC)). An access level of zero represents the most privileged 
or protected level. Larger numbers indicate lower privilege. The access level mechanism 
is hierarchical; if access to an address is permitted from a given level, it is permitted from 
all levels with greater privilege (smaller values of access level). If access to an address is 
denied from a given level, it is denied from all levels with less privilege (larger values of 
access level). 

Access levels are associated with logical addresses, pages in the logical address space, 
and tasks. The access level of a logical address is contained in the most significant one, 
two, or three bits of the logical address (determined by the ALC field of the AC register). 
It is interpreted as the level of privilege requested by an access using the address. It is not 
directly related to the access level of the page to which it refers, as described below. 

A page in the logical address space (corresponding to a page in physical memory as 
determined by the current logical-to-physical mapping) has two access levels associated 
with it: one for read accesses and one for write accesses. These are interpreted as protection 
information. An access to the page must indicate a privilege of at least the read access 
level to read or write the page, and a privilege of at least the write access level in order 
to write to it. The access levels of a page are determined from information contained in 
the address translation tables. Long format page and table descriptors have read access 
level (RAL) and write access level (WAL) fields. When the address translation tables are 
searched for a translation for a logical address, the access level bits of the logical address 
are compared against the RAL and WAL fields of all long descriptors encountered in the 
search. The effective read access level of the page is the most privileged (numerically least) 
of all RAL fields encountered. The effective write access level is the most privileged (nu
merically least) of all WAL and RAL fields encountered. 

The access level of the current task is contained in the current access level (CAL) register 
of the MC68851. It is interepreted as the level of privilege possessed by the task. A task 
may use only those logical addresses with equal or less privilege than it possesses. That 
is, the access level encoded in the highest-order logical address bits must be greater than 
(less privileged) or equal to the value in CAL; otherwise, the MC68851 aborts the access. 

Before the operating system dispatches a task for execution, the physical address of the 
root for the translation table for that task is loaded into the MC68851 CRP, and the access 
level for the task is written to the CAL register. 

The MC68851 uses the access level information in the following way. Since a task is capable 
of formulating a logical address with any access level, the MC68851 compares the access 
level of each logical address that the task tries to use with the access level of the task 
stored in the CAL register. If the task attempts to use an access level more privileged than 
it is permitted, the MC68851 aborts the access by asserting the bus error signal. If the 
access is permitted, the MC68851 translates it, using the address translation tables if nec
essary. Ifthe access is a read and the logical address indicates an access level less privileged 
(numerically greater) than the effective read access level of the page, the MC68851 aborts 
the access by asserting the bus error signal. Similarly, the MC68851 aborts the cycle if the 
access is a write with an access level less privileged than either the effective write access 
level or read access level of the page. 

MC68851 USER'S MANUAL MOTOROLA 
7-11 

• 



The MC68851 performs the above protection functions as follows. When the access level 
protection mechanism is enabled (refer to 6.1.9 Access Control (AC)), the access level bits 
of the logical address for each bus cycle with FC3/FC2 = 00 (indicating an access to one 
of the user address spaces) are compared (unsigned) with the access level bits of the CAL 
register. If the access level value in the logical address is numerically less than that in CAL, 
the address requests more privilege than the task possesses, and the MC68851 terminates 
the bus cycle by asserting bus error. Otherwise, the access is allowed and the address is 
translated. When the address translation cache is searched, all bits of the logical address, 
including the access level bits and function code bits are significant. If an exact match is 
found, if the BERR bit is set in the entry or the WP bit is set, and if the access is a write 
cycle, the MC68851 terminates the bus cycle by asserting the bus error signal. Otherwise, 
the MC68851 outputs the physical address. If no match is found in the ATC, a search of 
the translation tables is required. 

When a search of the translation tables occurs, the access level bits of the logical address 
are compared (unsigned) against all RAL and WAL fields encountered. If any RAL field 
contains a value less than the access level bits of the logical address, the resulting entry 
in the ATC will have its BERR bit set. If any WAL field contains a value less (greater privilege) 
than the access level bits of the logical address or if any set WP bits are encountered, the 
resulting ATC entry will have its WP bit set. 

When access levels are enabled and a bus cycle has FC2 equal to one (a supervisor space 
reference), the check against the CAL register is not performed. When access levels are 
enabled and a bus cycle has FC3 equal to a one (a DMA access), the check against the CAL 
register is not performed, but the RAL and WAL fields are checked during table search 
operations initiated due to misses in the ATC caused by these accesses. It is the respon
sibility of the operating system to ensure that sensitive areas of the user address space 
are not misused by the supervisor resources. 

7.2.3 Constructing Address Spaces Using Access Levels 

The access level mechanism supports three basic types of address spaces, depending on 
how the MC68851 is instructed to interpret access level bits. In the first of these, the access 
level bits are treated as address information as well as protection information and are used 
to index into the address translation tables during table search operations. This type of 
structure separates objects by both access level and logical address and results in an 
address map as shown in Figure 7-9. Lower levels of privilege are associated with the 
higher ranges of the logical address space and, conversely, higher levels of privile,ge are 
associated with the lower ranges. When using this type of address space, use of the RAL 
and WAL fields in the address translation tables is not required since any access to an area 
more privileged than the access level of executing task fails the check against the CAL 
register and will be aborted by the MC68851. 

The second type of address space uses the access level bits of the logical address as 
protection information only, and they are not used to index into translation tables during 
a table search. This is done by setting the IS field of the TC register to discard them (refer 
to 6.1.5.5 INITIAL SHIFT). When using this type of protection, the logical address space is 
now smaller, since fewer bits are used as addressing information and the resulting logical 
address map is as shown in Figure 7-10. Although the access level bits are not used as 
table indices, they are compared against RAL and WAL fields during table search operations 
and against the CAL register during all bus cycles by the CPU as described above. Using 
this type of address map has several benefits. Code and data need not be arranged in the 

MOTOROLA 
7-12 

MC68851 USER'S MANUAL 



2 
2~1 I-__ --' 

SUPERVISOR ADDRESS 
SPACE 

2 
2~ 1-1 __ --' 

USER ADDRESS 
SPACE 

Figure 7-9. Logical Address Map Using Access Level 
Information as Address Information 

32 
2 

SUPERVISOR ADDRESS 
SPACE 

32 
2 

USER ADDRESS 
SPACES 

J- MOST PRIVILEGED AREA 
(ACCESS LEVEL 01 

I 
DECREASING PRIVILEGE 

! 
)-

LEAST PRIVILEGED AREA 
(ACCESS LEVEL 71 

Figure 7-10. Logical Address Map Using Access Level Information 
as Control Information Only 

address space according to the access level required to use them. This type of organization 
is of particular benefit in systems that allow dynamic loading of memory since the pro
tection attributes are no longer location dependent. It also allows areas of memory to be 
accessible to different parts of a program with different access rights; areas may be read/ 
write to code executing at one access level, read-only to code executing at a less privileged 
level, and inaccessible to code executing at a still less privileged level. 

The third type of address space uses the access level bits of the logical address selectively 
to provide access level and address information for certain accesses while providing only 
access level information for other accesses. To implement such an address space, the 
translation tables are used to provide the necessary distinction. For example, consider a 
system that uses the highest order three bits of the logical address (as determined by the 
TIA field of the translation control register) to index into the first level of the translation 
tree. By manipulating the values in this eight entry table, the operating system can separate 
or merge access level and address information at will. If all entries in this first-level table 
have the same value, then the access level information is effectively not used as address 
information. Similarly, if the entries in the table point to different sub-branches of the 
translation table tree, then the high-order address information is used for both access level 
and addressing information. By using the CRP, SRP, and DRP, the translation tables for 
each type of access (user, supervisor, and DMA) can be configured to either use or to 
ignore the high-order logical address bits for addressing purposes. 

An additional variable in the design of the address space for a system is the treatment of 
supervisor space accesses. Figures 7-9 and 7-10 show supervisor space to be a separate 

MC68851 USER'S MANUAL MOTOROLA 
7-13 

• 



and disjoint space. This is not required as supervisor and user spaces may overlap. Su
pervisor space references are treated specially as described in 7.2.2 Access Level Protection 
Mechanism Operation. 

7.2.3.1 WRITE PROTECTION. The access level protection mechanism allows areas of the 
logical address space to be conditionally write-protected based on the privilege level as

. sociated with the address used to reference the area. 

When using the access level encodings presented by the CPU as protection information 
only, the WAL fields of long format page and table descriptors are used to specify the 
minimum access level that must be used to write to the page or range ofthe logical address, 
respectively. Additionally, since denying a task read access to an area implies that the task 
also does not have sufficient privilege to write to that area, the MC68851 prohibits write 
accesses to all areas to which a task does not have read access. This is true regardless of 
the write access level associated with that area. 

In order to write to an area, a task must have an access level reflecting a privilege of at 
least the most privileged of all RAL and WAL fields encountered in the table search per
formed by the MC68851 when loading the translation descriptor for that access. This 
requires that the access level used by the task to access the protected area be less than 
(more privileged than) or equal to the lowest value (most privileged) of all WAL or RAL 
fields in the branch of the translation table containing the logical-to-physical mapping for 
that access. 

For example, consider a page that has RAL and WAL settings both equal to five (eight 
access levels in use). In order to read or write that area, a task must use an address with 
a privilege level of at least five. An access with a privilege of six or seven would be aborted 
by the MC68851. Now consider a page with a RAL encoding of five and a WAL encoding 
of four; a task may read from this page using a privilege level of five but must use an 
access level of four or lower (more privileged) to write to the page. Finally, consider a page 
with a RAL encoding of five and a WAL encoding of six; a task must use an access level 
of five or lower to read from or write to this page. An attempt to write to this page using 
an access level of six would be aborted by the MC68851 since it is less privileged than the 
read access level of the page. 

If the access level encoding is used both as address and protection information, areas are 
either accessible or not accessible to a task, as described below; there is no distinction 
between read-only and read/write protection except as provided by settings of the WP bit 
in page or pointer descriptors. 

7.2.3.2 ACCESS (READ AND WRITE) PROTECTION. Similar to the case described above 
for write protection in a system that uses access level information as protection information 
only, an area can be protected from all accesses (read and write) by tasks operating at or 
below a particular level of privilege by setting the RAL fields of the page and/or table 
descriptors to the access level of the lowest privilege level from which the area should be 
accessible. 

For example, setting the RAL field of a page descriptor to four prevents access to that page 
from access levels five, six, and seven while allowing access from levels zero through four. 

When using the access level encodings presented by the CPU as both address and pro
tection information, access protection of an area or areas of the logical address space is 

MOTOROLA 
7-14 

MC68851 USER'S MANUAL 



achieved through the use ofthe CAL register. Since areas of different privilege are separated 
by logical address range, the MC68851 prevents a task from gaining access to an area to 
which it does not have sufficient access rights by aborting all accesses to that area by that 
task. All that is required for this protection is that the logical addresses generated by the 
task be compared against the privilege level of that task contained in the CAL register. Any 
time that the access level encoding of a logical address is greater than (less privileged 
than) the value in the CAL register the MC68851 aborts the access by asserting bus error. 

7.2.4 Transfers Between Access Levels 

Transfers between access levels are done in hardware using the MC68020 module call 
instruction (CALLM) and module return instruction (RTM). These instructions provide an 
indivisible transfer of program execution control and change in access level, under the 
control of module descriptors provided by the operating system. A module descriptor 
contains information including the entry point address of the called routine, and the access 
level at which it should execute. For a detailed description of the descriptor formats used 
by the CALLM and RTM instructions refer to the MC68020 32-Bit Microprocessor User's 
Manual. 

The CALLM and RTM instructions communicate with the MC68851 through a special set 
of bus interface registers. During the CALLM or RTM instruction, the MC68851 is responsible 
for verifying that the requested change in access level is legal, for verifying that the address 
given for the module descriptor is legal, for updating its access level registers, and for 
determining whether the stack pointer of the microprocessor should be changed. The 
programmer-visible registers involved in a module call or return are the current access 
level (CAL) register, and the stack change control (SCC) register. 

Routines are only allowed to call modules operating at a privilege level that is greater than 
or equal to the privilege level of the calling routine. Similarly, module return operations 
are allowed only when the return passes program execution control to a routine that is 
operating at a lower or equal level of privilege than the module from which the return is 
being made. This requirement is made because the M68000 Family stores return infor
mation about subroutine calls on the stack where it is accessible to the called routine. In 
the case of module calls, this return information includes the access level of the caller 
which is restored to the CAL register during execution of the RTM instruction. These 
restrictions prevent a routine from obtaining higher privilege through misus~ of the RTM 
instruction (i.e., falsifying the stored value of the CAL register in the module stack frame). 

The protection mechanism used by the MC68851 to ensure validity of all changes in access 
level is described in detail in SECTION 10 ACCESS LEVEL CONTROL INTERFACE, and an 
example usage of the CALLM and RTM instructions is provided in APPENDIX C SOFTWARE 
CONSIDERATIONS. 

7.2.5 Passing Parameters Between Routines at Different Access Levels 

The MC68020/MC68851 combination provides several facilities to ease the passing of pa
rametersbetween routines at different access levels. By selecting the appropriate value in 
the OPT field when creating a module descriptor, the MC68020 can be made to copy stacked 
parameters from the old stack to the new stack in the event a stack pointer change is 
required. In this way, the code for accessing stack arguments can be identical, regardless 
of whether a stack pointer change occurred or whether the caller was running at a different 
access level. 

MC68851 USER'S MANUAL MOTOROLA 
7-15 

• 



Address parameters are given special attention. A routine called with the CALLM instruction 
finds the access level of its caller in the VAL register. Although the VAL register is not 
directly readable by user programs, the MC68851 instruction PVALID allows a routine to 
compare the access level of a pointer with the access level in the VAL register. An exception 
is taken if the access level of the address is more privileged than that in the VAL register 
(refer to 6.3.2.5 ACCESS VIOLATION). This allows a routine to quickly determine if its caller 
would have had permission to use an address. In effect, the PVALID instruction performs 
the check against the CAL register that would have taken place if the calling routine had 
used the address and thus verifies whether or not the calling routine has sufficient privilege 
to use the data areas identified by the pointers. Once this check has been done, the called 
routine is guaranteed that it can use the address with no greater access privileges than 
the calling routine would have had. Note that this instruction can be used with any address, 
so that each link in a chain of pointers can be validated. 

7.2.6 Security 

The security of the access level system is comprised of two separate parts. The first is the 
ability to guarantee that a low privileged routine cannot gain access to areas requiring 
higher privilege. The MC68851 check of addresses against the CAL register ensures that 
low privileged routines will not be able to use entries in the address translation cache that 
may have been left there by more privileged routines. 

The second issue is the ability to forbid low privileged programs from creating, modifying, 
or misusing module descriptors. This is important because one ofthe features ofthe CALLM 
instruction is allowing a general effective address specification to locate the module de
scriptor, and so the module descriptor exists in the address space of the caller. The ability 
to call a routine is in fact granted by allowing its module descriptor to be readable by the 
caller. Unauthroized creation of module descriptors is prevented by the checks on the 
module descriptor address peformed by the MC68851. All module descriptors must reside 
in pages that have the G bit set in their page descriptor in the address translation tables. 
The security of the address translation tables must be guaranteed by the system software 
and, minimally, requires that all pages that have the G bit set in the corresponding page 
descriptors also be write-protected from user accesses. The requirement enforced by the 
MC68851 that module descriptors must fall on specified boundaries prevents a program 
from using data in the middle of a valid module descriptor as a module descriptor, and 
possibly causing an illegal increase in access level. Additionally, the alignment restriction 
prevents a module descriptor from crossing a page boundary which simplifies protection 
checking. 

7.2.7 Relationship Between Access Levels and Supervisor Mode 

The access level mechanism operates in addition to the user/supervisor mode distinction 
of the processor. Supervisor space accesses are treated specially in that they are not subject 
to the check against the CAL register or RAL and WAL during a table search, meaning that 
addresses generated by the supervisor can use any access level. This is similarto a program 
running with a value of zero in the CAL register. Supervisor and access level zero are, 
however, not equivalent. Supervisor mode is entered only via an exception or interrupt, 
and the MC68851 hardware does not update the value of the CAL register on these trans
lations. When using access levels, it is recommended that systems run with most of the 
operating system in user mode, using the access level mechanism to protect code, data, 
and peripheral registers. Supervisor mode should only be used for code that must use 
privileged instructions. 

MOTOROLA 
7-16 

MC68851 USER'S MANUAL 



7.2.8 Considerations for Non-32-Bit Systems 

Since the access level protection information is carried in the highest-order logical address 
bits, there are special considerations that should be taken for those systems that do not 
utilize a 32-bit logical address bus. The access level bits of the logical address must be 
routed to the most significant one, two, or three logical address inputs (depending on the 
number of access levels in use) of the MC68851 in order to utilize the access level protection 
mechanism. Additionally, in order to use the PVALID instruction, the access level bits of 
the PVALID operand must be shifted (in software) to occupy the most-significant bits of 
the operand. 

MC68851 USER'S MANUAL MOTOROLA 
7-17 

• 



MOTOROLA 
7-18 

Me6SS61 USER'S MANUAL 



SECTION 8 
BREAKPOINTS 

The MC68851 provides a breakpoint acknowledgement facility to support software analysis 
and debugging for the MC68020 when used in conjunction with the M68000 breakpoint 
instructions. 

The M68000 instruc~ion set implements eight breakpoint opcodes ($4848 through $484F). 
When one of these opcodes is executed by the MC68020, the processor responds by 
performing a breakpoint acknowledge cycle to inform external hardware that a breakpoint 
instruction has been encountered. The breakpoint acknowledge cycle is executed by read
ing from the specific address in the system CPU space (function code = $7) corresponding 
to the particular breakpoint instruction. The required format for the address generated 
during a breakpoint acknowledge cycle is shown in Figure 8-1. The bits marked as 'x' are 
ignored by the MC68851 and are zero filled by the MC68020. 

FUNCTION 
CODE 

31 

101111 x x x x x x x x x x x x 

19 15 4 

0000000000 

Figure 8-1. Breakpoint Acknowledge Cycle Address Encoding 

1 0 

Upon termination of the breakpoint acknowledge cycle, the MC68020 can proceed with 
one of two sequences. First, if the cycle is terminated by the assertion of bus error, the 
MC68020 immediately begins exception processing for an illegal instruction (M68000 ex
ception vector #4). Alternately, a replacement opcode may be supplied on the processor 
data bus and the DSACK signals asserted. In response to this termination, the MC68020 
replaces the breakpoint opcode in its instruction pipeline with the opcode supplied during 
the acknowledge cycle and continues with normal program execution. 

The MC68851 contains special hardwareto fully control the MC68020 breakpoint instruction 
f,eatures and supply additional capabilities for program debug and analysis. 

8.1 INSTRUCTION BREAKPOINT MECHANISM 

The MC68851 contains eight pairs of breakpoint registers, one pair corresponding to each 
of the breakpoint opcodes, which control the breakpoint operations. The breakpoint register 
set is shown in Figure 8-2. 

The register pair BADO/BACO corresponds to the breakpoint opcode $4848, BADlIBAC1 to 
$4849, ... , etc. 

MC68851 USER'S MANUAL MOTOROLA 
8-1 

• 



15 15 

BADO BACO 

BADI BACI 

BAD2 BAC2 

BAD3 BAC3 

BAD4 BAC4 

BAD5 BAC5 

BAD6 BAC6 

BAD7 BAC7 

Figure 8-2. MC68851 Breakpoint Registers 

8.1.1 Breakpoint Acknowledge Data Registers 

CORRESPONDING 
OPCODE 

$4848 

$4849 

$484A 

$484B 

$484C 

$484D 

$484E 

$484F 

Each of the breakpoint acknowledge data registers, BADO through BAD7, can be loaded 
with an opcode to be transferred to the MC68020 during the breakpoint acknowledge cycle. 
These registers may be loaded with any 16-bit value, but in order to provide useful op
eration, the value should be a recognizable, legal MC68020 opcode. For example, it is 
possible to load BADO with $4848 (breakpoint zero opcode) causing the breakpoint ac
knowledge cycle to be repeated until the skip count, as described below, is exhausted. 
However, the value of this operation is questionable. These registers may be read or written 
using the PMOVE instruction. 

The format of these registers are shown in Figure 8-3. 

15 

Figure 8-3. Breakpoint Acknowledge Data Register Format 

8.1.2 Breakpoint Acknowledge Control Registers 

The operation of each of the breakpoint acknowledge data registers is controlled by the 
corresponding breakpoint acknowledge control register, BACO through BAC7. The format 
of the BACx registers is shown in Figure 8-4. 

15 

BADx REPLACEMENT OPCODE 

Figure 8-4. Breakpoint Acknowledge Control Register Format 

Bit [15] of the BACx register is the breakpoint enable control. If this bit is clear, breakpoint 
acknowledgement for the corresponding breakpoint instruction is disabled and any break-

MOTOROLA 
8-2 

MC68851 USER'S MANUAL 



point acknowledge cycle generated by execution of that opcode is terminated by the MC68851 
with the assertion of bus error. The BPE bit is cleared at reset; the skip count field is not. 

The breakpoint skip count contained in bits [0-7] specifies the number of times that the 
replacement opcode contained in the corresponding BADx register is returned with DSACKx 
in response to a breakpoint acknowledge cycle before the MC68851 signals the MC68020 
to initiate exception processing for the breakpoint by asserting bus error. 

If, at the beginning of a breakpoint acknowledge cycle, the breakpoint skip count is non
zero, the MC68851 will return the corresponding replacement opcode and assert DSACKx. 
During the breakpoint cycle, the skip count is decremented by one. If, at the beginning of 
a breakpoint acknowledge cycle, the breakpoint skip count is zero, the MC68851 terminates 
the cycle by asserting bus error, causing the MC68020 to initiate illegal instruction exception 
processing for the breakpoint. 

The breakpoint acknowledge control registers may be read or written using the PMOVE 
instruction. All unimplemented bits (bits [8-14]) are always read as zeros and must be 
written as zeros. 

A flowchart for the breakpoint operation is shown in Figure 8-5. Figure 8-6 illustrates the 
functional timing for the breakpoint acknowledge cycle when the MC68851 supplies the 
replacement opcode and asserts DSACKx. Figure 8-7 illustrates the functional timing of 
the cycle, when the MC68851 asserts bus error due to either the corresponding enable bit 
being clear or the skip count having been decremented to zero. 

8.2 BREAKPOINT USAGE 

The instruction breakpoint facilities of the MC68020 and MC68851 provided simplified 
program monitoring and debug capabilities without the need for additional hardware. 

The most typical use of the instruction breakpoints is in the monitoring of program exe
cution flow. For example, when it is desired to observe the entry of program execution 
into a particular segment of code, the first instruction in the target segment can be replaced 
with one of the eight breakpoint opcodes, and the original opcode stored in the breakpoint 
acknowledge data register corresponding to the breakpoint opcode used. If the corre
sponding breakpoint acknowledge control register is disabled or the skip count is zero, the 
MC68851 will assert bus error on the first pass through the program segment. At this point 
control is passed to the illegal instruction exception handler that can perform any activities 
required to report or log the breakpoint and, if desired, replace the original opcode in 
memory and allow the program to continue with normal execution. 

In order to resume execution of a program that has been interrupted by a breakpoint 
exception, the breakpoint opcode can be left in memory and the breakpoint skip count set 
to one in the breakpoint acknowledge control register for that opcode. When the MC68020 
executes a return from exception (RTE) instruction from the illegal instruction handler, it 
attempts to re-execute the instruction that caused the fault (the stacked program counter 
points to the instruction that caused the exception). Setting the skip count ot one causes 
the MC68851 to provide the replacement opcode the first time the breakpoint is executed 
(immediately upon completion ofthe RTE) and to force exception processing on subsequent 
accesses. 

In an alternate use, if the MC68851 breakpoint control register is enabled and the skip 
count is non-zero, program execution continues unaffected by the fact that one of the 

MC68851 USER'S MANUAL MOTOROLA 
8-3 

• 



• 

,MC68020 MC68851 

BREAKPOINT ACKNOWLEDGE 

1) SET R/W TO READ 
2) SET FUNCTION CODE TO CPU SPACE 
3) PLACE CPU SPACE TYPE 0 ON A16-A19 
4) PLACE BREAKPOINT NUMBER ON A2-A4 
5) SET SIZE (SIZ1, SIZO) TO WORD 
6) ASSERT LOGICAL ADDRESS STROBE (LAS) 
7) ASSERT DATA STROBE (iiS) ACKNOWLEDGE CYCLE 

IF BREAKPOINTS ENABLED IN BACx CORRESPONDING TO 
BREAKPOINT NUMBER 

THEN PROCEED WITH (1) 
ELSE GO TO (6) 

1) IF SKIP COUNT ¥- 0 THEN PROCEED WITH (2) 
elSE GO TO (6) 

2) PLACE CONTENTS OF BADx REGISTER ON DATA BUS 
3) DECREMENT SKIP COUNT IN BACx BY ONE 
4) ASSERT DSACKx (DETERMINED BY CONFIGURATION AT RESET) 

5) GO TO 0 
6) ASSERT BERR TO INITIATE EXCEPTION PROCESSING 
7) GO TO (£) 0 

IF DSACK ASSERTED 
J 

1) LATCH DATA 
2) NEGATE LAS AND iiS 
3) GOTO ® 

IF BERR ASSERTED 

I I 
1) NEGATE LAS AND iiS MC68851 NEGATES 

2) GOTO CD ® CD DSACK OR BERR 

~ l 

1) PLACE LATCHED DATA FROM BREAKPDlNT ACKNOWLEDGE CYCLE 
IN INSTRUCTION PIPELINE 

2) CONTINUE PROCESSING 

1) INITIATE IlLEGAL INSTRUCTION EXCEPTION PROCESSING r-
Figure 8-5. Instruction Breakpoint Flowchart 

opcodes for the program was supplied by the MC68851 during the breakpoint acknowledge 
cycle. In this manner it is possible to take the breakpoint exception only after n (1 ~ n ~ 255) 
repetitions of a program segment. When the skip count is exhausted and control is passed 
to the illegal instruction exception handler, the occurrence of n passes through the program 
segment can be reported to the user, or the skip count register can be reinitialized, the n 
passes added to a static counter maintained by the exception handling routine and program 
execution resumed for another n passes. 

By using the breakpoint instructions with non-zero skip counts, it is also possible to keep 
a log of the relative frequency of execution of up to eight different sections of code without 
significantly affecting program execution time. To perform this function, an instruction 
from each of the relevant code sections is replaced with a different breakpoint opcode, the 
replaced opcode is placed in the correct breakpoint acknowledge data register and the skip 

MOTOROLA 
8-4 

Me68851 USER'S MANUAL 



so rll CLOCK1 
PERIODS 

Sw Sw S4 SO S2 

CLOCK ILJLJL ~ 
FCO-FC2 Y 

FC3 }. 

LAO-LA19 X 
R/W Y 
LAS~ 

SilO/Sill X 
DS~ 

00-015 

DSACKx 

PA8-PA31 

PAS, CD 

I 

'C 
________ C 

LA16-LA19 = 0, LA2-LA4 = BKPT#, LA5-LA15 = 0 ~ 
------~ 

______ 1 

Sill/SilO = 10 (WORD) ~ ------"--
______ 1 

~,----------,>.-------
''-___ ....... 1 

DBDlS --------', 
I BREAKPOINT AeKNOWLIOGE eyeLI I ."8851 PRO_DES OPCOO£ I NEXT I r- DETECTED AND SKIP COUNT DECREMENTED + AND TERMINATES TRANSFER --1 CYCLE I----

Figure 8-6. Breakpoint Acknowledge Cycle - MC68851 
Supplies Replacement Opcode 

counts set to n. When an illegal instruction exception occurs due to an exhausted skip 
count, a master counter for the particular breakpoint is incremented by n and the skip 
count is reset to n. At the termination of the program, the residual skip counts (n - remainder 
in count register) for each of the breakpoints are added to the corresponding master counts 
providing a history of the relative frequency of execution of each of the code sections. 

Note that the execution of the instruction breakpoints is unaffected by whether the break
points reside in external memory or in the MC68020 on-chip cache. 

Me68851 USER'S MANUAL MOTOROLA 
8-5 

.. 



• 

MOTOROLA 
8-6 

FCO-FC2 Y 
FC3 ~ 

LAO-LA19 X LA16-lA19 = O. lA2-LA4 = BKPT#. lA5-lA15 = 0 ------------------
Riw y 
LAS~ 

SIZO/SIZI X SIZI/SIZO = 10 IW_O_R_OI ________ __ 

iJS~ 

00-015 

BERR '~ ___ --,I 

PA8-PA31 X 
PAS. ill 

OBDIS 

I BREAKPOINT ACKNOWlEDGE CYCLE DETECTED I NEXT I f.-------- AND SKIP COUNT=O OR BPE IS CLEAR -4 CYCLE f.-

Figure 8-7. Breakpoint Acknowledge Cvcle - Bus Error Asserted 

Me688S1 USER'S MANUAL 



SECTION 9 
COPROCESSOR INTERFACE 

This section describes the coprocessor interface with respect to the communication pro
tocol utilized by the MC68851 and MC68020. This communication protocol includes elec
trical and command level mechanisms that allow a coprocessor to act as an extension to 
the main processor. 

9.1 COPROCESSOR INTERFACE SIGNAL CONNECTION 

The connection between the MC68020 and the MC68851 is a simple extension ofthe M68000 
bus interface with the MC68851 directly connected to the MC68020. The selection of the 
MC68851 is based upon an internally generated chip select signal that is decoded from 
the logical address and function code inputs. 

The MC68851 contains a set of coprocessor interface registers (CIRs) by which the main 
processor and coprocessor communicate. These registers are not related to the program
ming model implemented by the MC68851. Rather, they are used as communication ports 
that have specific functions associated with each register. When the MC68851 is used as 
a coprocessor to the MC68020, the programmer is never required to explicitly access these 
interface registers, since the coprocessor interface is implemented in the hardware and 
microcode of the MC68020. When the MC68020 is not used as the main processor, the 
MC68851 CIRs can be explicitly accessed by a software routine that emulates the behavior 
of the MC68020 with respect to the coprocessor interface. 

For more information on the electrical interconnection between the main processor and 
the MC68851, refer to APPENDIX B HARDWARE CONSIDERATIONS. 

9.1.1 Selecting the MC688S1 

The MC68851 does not require any special bus signals, beyond the normal M68000 Family 
bus control signals, for connection to the MC68020. The former MC68000 interrupt ac
knowledge address space (function code $7) is extended in the MC68020 to be the CPU 
address space. A portion of this space, identified by the MC68020 address bus, is dedicated 
to coprocessor devices. Figure 9-1 illustrates the required address bus encoding for co
processor accesses in the CPU address space. The bit positions marked with an 'x' are 
zero-filled by the MC68020 but are ignored by the MC68851. 

FUNCTION 
CDOE 

31 

101 1 11 x x x x x x x x x x x 

19 15 12 

00000000 

Figure 9-1. Coprocessor Interface Address Bus Encoding 

MC68851 USER'S MANUAL 

4 

MOTOROLA 
9-1 

• 



• 

During CPU space cycles, address bits A 16-A 19 indicate the CPU space function that the 
main processor is performing. The MC68020 utilizes four of the possible 16 encodings of 
A16-A19 as listed in Table 9-1. 

Table 9-1. MC68020 CPU Space 
Type Field Encodings 

The coprocessor identification (Cp-ID), 
A 13-A 15, is taken from the coprocessor i n
struction operation word (refer to 9.2 COPRO
CESSOR INSTRUCTIONS and to the MC68020 
32-Bit Microprocessor User's Manual). The 
MC68851 always operates as coprocessor zero 
and, therefore, selects itself for coprocessor 
communications (CPU space type = $2) when 
the Cp-ID is set to zero. The coprocessor in
terface register (CIR select) field, AO-A 12, is 
decoded by the MC68851 to select the appro
priate CIR. 

cPU Space Type Field 
(A19-A16) CPU Space Transaction 

000 0 Breakpoint Acknowledge 

000 1 Access Level Control 

001 0 Coprocessor Communications 

111 1 Interrupt Acknowledge 

Although the MC68851 decodes the full address range specified on AO-A 12, the MC68851 
register set occupies only the lower 32 bytes of this range. Any access above this range 
(AO-A 12 ~ $20) is ignored for a write cycle and returns the null response (all ones) for a 
read (the MC68851 terminates these cycles by asserting DSACKx). For a map of the co
processor interface registers implemented on the MC68851, refer to Figure 9-2. Since 
address bits A20-A31 are not present on all implementations of M68000 processors, these 
bits are not essential for decoding CPU space accesses. 

The internal M68851 chip select decode is therefore based upon the function code signals 
(FCQ-FC3), the CPU space type field (A 16-A 19), and the Cp-ID field (A 13-A 15). The MC68851 
decodes the address bits AO-A4 (A5-A12 must be zero) to determine the CIR involved in 
any coprocessor access. 

9.1.2 Coprocessor Interface Registers 

Table 9-2 identifies the MC68851 coprocessor interface register locations in the CPU space 
that are used for communications between the MC68020 and the MC68851. Figure 9-2 

$20000 

$20002 

$20004 

$20006 

$20008 

$2000A 

$2000C 

$2000E 

$20010 

$20014 

$20018 

$2001C 

MOTOROLA 
9-2 

31 15 

RESPONSE 

CONTROL 

SAVE 

RESTORE 

OPERATION WORD 

COMMAND 

RESERVED 

CONDITION 

OPERAND 

REGISTER SELECT (RESERVED I 

INSTRUCTION ADDRESS 

OPERAND ADDRESS 

Figure 9-2. MC688S1 Coprocessor Interface Register Map 

MC68851 USER'S MANUAL 



Table 9-2. Coprocessor Interface Register Characteristics 

Register A4-AO Offset Width Type 

Response OOOOx $00 16 Read 

Control 0001 x $02 16 Write 

Save 0010 x $04 16 Read 

Restore 0011x $06 16 Read/Write 

Operation Word* 0100x $08 16 Write 

Command 0101 x $OA 16 Write 

(Reserved) 0110x $OC 16 -

Condition 01 1 1 x $OE 16 Write 

Operand 100xx $10 32 Read/Write 

Register Select 1010 x $14 16 Read 

(Reserved) 1011'x $16 16 -

Instruction Address* 1 10 x x $18 32 Read/Write 

Operand Address 1 11 x x $1C 32 Write 

*Unimplemented 

illustrates the memory map ofthe CIRs on a 32-bit bus. When a coprocessor communication 
cycle is executed with a Cp-ID of zero, the MC68851 decodes the CIR select field of the 
address bus, AO-A4 (A5-A 12 = 0), to select the appropriate coprocessor interface register. 

The following paragraphs describe the characteristics of each of the coprocessor interface 
registers as implemented by the MC68851. In these descriptions, the read/write attributes 
of each register are given. If a register is read-only, write accesses to that location are 
ignored; read accesses of a write-only register always return all ones. In all cases, the 
MC68851 asserts DSACKx in response to all CPU space cycles accessing coprocessor zero 
(FCO-FC3 = $7, CPU space type = $2, and Cp-ID = 0) to terminate the bus cycle. 

9.1.2.1 RESPONSE CIR ($00). This 16-bit read-only register is used to communicate serv
ice requests from the MC68851 to the main processor. A read of the response CIR is always 
legal, regardless of the state of an instruction dialog. The format of the response primitives 
that are returned through this register are detailed in 9.2.2 Response Primitives. 

In general, the primitive encoding returned in the response. register is not changed until 
the action requested by the primitive is performed by the processor. For example, if an 
evaluate and transfer effective address primitive is encoded in the response CIR and the 
main processor reads that primitive, the response register will not be updated until the 
processor completes a long-word (32-bit) transfer to the operand address CIR {refer to 
9.1.2.11 OPERAND ADDRESS CIR ($1C)). 

Primitive responses that do not request explicit service from the processor are discarded 
by the MC68851 when the response register is read. The supervisor check primitive is one 
example of such a primitive in that it requires only that the processor perform a check of 
its internal status and either re-read the status register or take an exception (refer to 9.2.2.4 
SUPERVISOR CHECK PRIMITIVE). 

Although a read of the response register is legal at any time, the read may not be the 
access that is expected by the MC68851. In such cases, the MC68851 returns the null done 

MC68851 USER'S MANUAL MOTOROLA 
9-3 

• 



• 

primitive (refer to 9.2.2.1 NULL PRIMITIVE) unless the expected access was to the register 
select CIR in which case an unimplemented response ($0 or $1) is returned (refer to 9.2.2.6 
TRANSFER MAIN PROCESSOR CONTROL REGISTER PRIMITIVE). 

Unexpected accesses are not a normal occurrence but may occur due to either improper 
synchronization of multiple devices accessing the MC68851 or a memory fault generated 
during the execution of an MC68851 instruction. Since the instruction dialog is interrupted 
and program control is passed to the bus error handler, it is possible to initiate another 
coprocessor instruction that will cause an unexpected access or protocol violation due to 
the incomplete state of the previous instruction. A protocol violation will be signaled if the 
dialog for a new MC68851 instruction is initiated (by writing to the command register). 
Unexpected accesses receive either a 'null done' or 'unimplemented' primitive in order to 
prevent potential lockups by signaling the errant device that communication should be 
terminated. 

9.1.2.2 CONTROL CIR ($02). This 16-bit write-only register is utilized by a main processor 
to issue an exception acknowledge or instruction abort to the MC68851. Figure 9-3 illustrates 
the format of this register. Only two of the 16 bits are defined: the exception acknowledge 
(XA) and abort (AB) bits. 

15 

UNDEFINED. RESERVED 

Figure 9-3. Control CIR Register 

The MC68851 does not utilize these two bits; instead, it simply interprets a write to this 
-,CIR address as an abort command, regardless ofthe data pattern written. Thus, an exception 
acknowledge (in response to a take exception primitive) or abort (in response to an illegal 
format word, an invalid request primitive, or a supervisor check violation) issued during 
any MC68851 instruction protocol, or an explicit write (for example, with the MOVES 
instruction) to the control CIR always has the same effect on the MC68851. Also, write 
cycles to this register are never illegal, since the MC68851 always responds in the same 
manner. 

The response of the MC68851 to a write of the control CIR is to: 
1) Immediately terminate processing of any instruction that may be in progress. If an 

operation involving an MC68851 user-visible register is aborted and the abort was 
not requested by the MC68851, the contents of the register is undefined, 

2) Clear any pending exceptions, and 
3) Reset the coprocessor interface state to the idle condition. Thus, the MC68851 is 

ready to begin a new instruction protocol following the write cycle. 

9.1.2.3 SAVE CIR ($04). This 16-bit read-only register is used by the main processor to 
issue a context save command to the MC68851 and to return the format word of the 
MC68851 state frame to the main processor. A read of this register causes the operation 
currently being executed by the MC68851 (except a state save or restore) to be suspended, 
and a state save operation is initiated. 

MOTOROLA 
9-4 

Me68851 USER'S MANUAL 



After the read of the save register, the next expected access is to the operand CIR (to 
transfer the state frame). 

The only time that a read of this register is illegal is when the MC68851 is executing a 
PSAVE or PRESTORE instruction; a read of the save CIR is legal at any other time. If the 
main processor reads the save CIR at an illegal time, the invalid format word is returned. 
In response to the invalid format word, the main processor must issue an abort to the 
MC68851 to return it to the idle state (the MC68020 does this automatically). 

In systems that support multiple devices accessing the MC68851, an external synchroniz
ation protocol (for example software semaphores) must be employed to ensure that the 
coprocessor instruction execution by one device is never interrupted by attempts to access 
MC68851 registers by any other device. 

9.1.2.4 RESTORE CIR ($06). This 16-bit read/write register is used by the main processor 
to issue a context restore command to the MC68851 and to validate the format word of a 
state frame. A write of this register causes the MC68851 to immediately stop any operation 
that may be executing and prepare to load a new internal state context from the memory 
resident state frame. 

After the main processor writes a format word to the restore CIR, it must read the restore 
CIR to receive the results of the format word verification. If the previously written format 
word is valid, that format word will be read back from the restore CIR to indicate the 
successful verification. If the format word is invalid, the 'invalid format take exception' 
value is placed in the restore CIR to indicate the verification failure. After a successful 
verification is signaled, the next expected access is to the operand CIR (to transfer the state 
frame). After a verification failure is signaled, the main processor should write an abort to 
the control CIR in order to return the MC68851 to the idle state (the MC68020 does this 
automatically). 

9.1.2.5 OPERATION WORD CIR ($08). This 16-bit write-only register is not used by the 
MC68851. The only time that this CIR location is used by the M68000 Family coprocessor 
interface is when a coprocessor issues the transfer operation word primitive, in which case 
the main processor writes the F line word of the instruction to the operation word CIR. 
Since the MC68851 never issues the transfer operation word primitive, the operation word 
CIR location should never be written by the main processor. If a write to this location 
occurs, it will be ignored and will not cause a protocol violation. 

9.1.2.6 COMMAND CIR ($OA). This 16-bit write-only register is used by the main pro
cessor to initiate the dialog for a general type coprocessor instruction. When the MC68851 
detects a write to this CIR location, the data value is latched from the data bus. If the 
MC68851 is executing a previous instruction when the command CIR is written, a protocol 
violation pre-instruction exception is signaled to the processor indicating a fault in the 
coprocessor dialog. 

Due to the implications that many MC68851 instructions have on system configuration, 
the MC68851 does not allow concurrent instruction processing (that is, upon initiation of 
an MC68851 instruction, the main processor cannot proceed with the next instruction until 
completion of all MC68851 activities). Normally, synchronization is forced since the MC68851 
does not issue a release primitive until completion of the instruction in progress. However, 
since the MC68851 may request evaluation of effective addresses during the coprocessor 

MC68851 USER'S MANUAL MOTOROLA 
9-5 

• 



• 

instruction dialog, it is possible to generate an exception (for example, a page fault) during 
the communication that would leave the previous instruction incomplete. If, after such an 
error occurs, the processor attempts to initiate another MC68851 instruction, the MC68851 
signals the protocol violation and then aborts the uncompleted instruction that caused the 
fault. This causes a protocol violation exception handler to return and rerun the instruction 
that received the protocol violation. The exception handler must be capable of correcting 
the problem that caused the fault and, additionally, since the entire instruction that was 
aborted must be rerun, the exception handler must be able to correct problems associated 
with the predecrement addressing mode, if employed. 

A write to this CIR location is legal only when the MC68851 is in the idle state (i.e., not 
currently executing an instruction). If a write to the command CIR occurs when it is not 
expected, a protocol violation occurs, the command word that is written is not saved by 
the MC68851, and the previous command word is discarded. 

9.1.2.7 CONDITION CIR ($OE). This 16-bit write-only register is used by the main pro
cessor to initiate the dialog for a conditional type coprocessor instruction. When the MC68851 
detects a write to this CIR location, the data value is latched from the data bus. If the 
MC68851 is executing a previous instruction when the condition CIR is written, a protocol 
violation is signaled. If the MC68851 is in the idle or reset state when a write to the condition 
CIR occurs, it first returns the supervisor check primitive. After a read of the response 
register, the MC68851 then evaluates the selected condition and returns the null (CA = 0, 
TF = '0/1) primitive (where the TF bit indicates whether the conditional evaluation is true 
or false). 

A write to this CIR location is legal only when the MC68851 is in the idle or reset state. If 
a write to the condition CIR occurs when it is not expected, a protocol violation occurs, 
the conditional predicate that is written is not saved by the MC68851, and the operation 
in progress is aborted. 

9.1.2.8 OPERAND CIR ($10). This 32-bit read/write register is used by the main processor 
to transfer data to and from the MC68851. The MC68851 transfers data through this CIR 
location in the following cases: 
. 1) Following an evaluate effective address and transfer data primitive, 
2) Following a transfer single main processor register primimtive, 
3) Following a read of an idle or busy format word from the save CIR, 
4) Following a read of an idle or busy format word to the restore CIR, and 
5) Following the read of the register select CIR in response to a transfer main processor 

control register primitive. 

These five cases are the only times when an access to the operand CIR is legal. At any 
other time, an access to this CIR location causes a protocol violation. 

The MC68851 expects all operands that are to be transferred through this CIR location to 
be aligned with the most-significant byte of the register. Any operand larger than four 
bytes is transferred through this register using a sequence of long-word transfers. Figure 
9-4 illustrates the operand CIR data alignment expected by the MC68851 when transferring 
data through the operand CIR. 

9.1.2.9 REGISTER SELECT CIR ($14). This 16-bit read-only register is read by the main 
processor to transfer the register select code from the MC68851 in response to a transfer 

MOTOROLA 
9-6 

MC68851 USER'S MANUAL 



TRANSFER 
ORDER 31 23 15 

BYTE OPERAND NO TRANSFER 

WORD OPERAND NO TRANSFER 

THREE BYTE OPERAND 

LONG WORD OPERAND 

MSB 
QUAD WORD OPERAND 

Figure 9-4. Operand CIR Data Alignment 

NO TRANSFER 

LSB 

main processor control register primitive. The MC68851 instructions PFLUSH, PLOAD, and 
PTEST may require access to operands residing in the MC68020 source and destination 
function code registers (SFC and DFC). Values returned by the MC68851 in this register 
are $0 and $1 to request transfer of the SFC and DFC, respectively. 

This register may be accessed by the processor only in response to a transfer main pro
cessor control register primitive. Accesses at any other time will cause the MC68851 to 
return a protocol violation on the next read from the response register. 

9.1.2.10 INSTRUCTION ADDRESS CIR ($18). This 32-bit read!write register is used by 
the main processor to transfer the address of a coprocessor instruction being executed 
when the PC bit of any primitive is set. This CIR is used to support concurrent processor! 
coprocessor instruction execution and is not implemented by the MC68851. Primitives 
returned by the MC68851 do not have the PC bit set. 

All writes to this CIR are ignored and reads return all ones. Accessing this register will not 
cause a protocol violation. 

9.1.2.11 OPERAND ADDRESS CIR ($1C). This 32-bit read!write register is used by the 
main processor to transfer an operand address in response to the evaluate and transfer 
effective address primitive issued by the MC68851 during the PFLUSH, PLOAD, PTEST, 
and PVALID instructions. 

Writes to this CIR are legal only in response to the evaluate and transfer effective address 
primitive. Any other write will cause a protocol violation, the faulting cycle will be ignored, 
and the instruction currently being executed (if any) will be aborted. 

Reads from this register are ignored and always return all ones. 

9.1.3 Interprocessor Transfers 

All interprocessor transfers are initiated by the MC68020. During the processing of an 
MC68851 instruction, the MC68020 transfers instruction information and data to the MC68851 
via standard write bus cycles; it receives data, requests for service, and status information 
from the MC68851 via standard read bus cycles. A detailed description of the electrical 
characteristics of the MC68851 bus interface is contained in SECTION 4 BUS OPERATION 
and SECTION 12 ELECTRICAL SPECIFICATIONS. 

MC68851 USER'S MANUAL MOTOROLA 
9-7 

• 



• 

9.2 COPROCESSOR INSTRUCTIONS 

MC68851 instructions are from one to eight words in length. The first word ofthe instruction 
is called the operation word, and the second word of the instruction, for the general 
instruction type, is called the coprocessor command word. Additional words specify the 
operands, and are either extensions to the effective addressing mode specified in the 
operation word, or immediate operands which are part of the instruction. The general 
format of an MC68851 instruction is illustrated in Figure 9-5. 

15 

OPERATION WORD 

COPROCESSOR COMMAND WORD (IF ANY) 

EFFECTIVE ADDRESS EXTENSION WORDS (1 TO 6, IF ANY) 

Figure 9-5. Coprocessor Instruction General Format 

All coprocessor operations are based on the F-line operation codes (i.e., operand words 
with bits [15: 12] = $F) which instruct the MC68020 to call upon a coprocessor for execution 
of the instruction. Figure 9-6 illustrates the format of this word. 

15 14 13 12 11 10 9 4 

1 I Cp-ID TYPE TYPE DEPENDENT 

Figure 9-6. MC68851 Instruction Operation Word 

The Cp-ID field indicates which coprocessor is to be selected. Cp-IDs of 0-$5 are reserved 
by Motorola, and Cp-IDs $6 and $7 are reserved for user definition. The MC68851 always 
corresponds to Cp-ID zero. The type field indicates to the MC68020 which type of copro
cessor operation is selected: general, branch, conditional, save, or restore. The type and 
type-dependent fields and the coprocessor command word for all MC68851 instructions 
are described in 6.2 INSTRUCTION DETAILS. 

9.2.1 Instruction Protocol 

All MC68851 instructions have a typical protocol which the MC68020/MC68851 pair follows. 
This communication protocol is as follows: 

1) When the MC68020 detects an F-line operation word, communication is initiated by 
writing information (a command, condition selector, or restore format word) to the 
appropriate MC68851 coprocessor interface register location (the MC68851 save in
struction is initiated by a read operation). 

2) The MC68020 then reads the coprocessor response to the previous write operation. 
The response may indicate any of the following: 

a) An exception condition exists, and the MC68851 instructs the MC68020 to 
take an exception, using a specific exception vector. The MC68020 acknowl
edges the exception and initiates exception processing. 

MOTOROLA 
9-8 

MC68851 US.ER'S MANUAL 



b) There is an MC68851 service request; for example, to evaluate the effective 
address and transfer data to/from the effective address from/to the MC68851. 
The MC68851 may also request that the MC68020 query the coprocessor 
after the service is performed. 

c) No service is requested but the processor is instructed to read from the 
response register again. 

d) A supervisor check is requested. 

Each MC68851 instruction type has specific requirements based upon this simplified pro
tocol. The main processor service requests required for each MC68851 instruction are 
described in 6.2 INSTRUCTION DETAILS. All MC68851 main processor service requests 
(response primitives) are described in the following paragraphs. In addition, the dialog 
used by the MC68020 and the MC68851 during the execution of each instruction is detailed 
in 9.3 INSTRUCTION DIALOGS. 

9.2.2 Response Primitives 

Data read from the MC68851 coprocessor interface response register is referred to as a 
primitive. Although the M68000 Family coprocessor interface defines 18 response primi
tives, the MC68851 only uses eight of those primitives. For additional information on the 
complete set of response primitives and how they are serviced, refer to the MC68020 32-
Bit Microprocessor User's Manual. The following paragraphs summarize all MC68851 re
sponse primitives and how they are used. 

The M68000 coprocessor response primitives are encoded in a 16-bit word that is trans
ferred to the main processor through the response CIR. Figure 9-7 illustrates the general 
format of a response primitive. 

15 14 13 12 11 10 4 

Figure 9-7. M68000 Coprocessor Response Primitive General Format 

The encoding of bits [0-12] of a coprocessor response primitive is dependent on the 
individual primitive being implemented. Bits [13-15], however, are used to specify partic
ular attributes of the response primitive which can be utilized in most of the primitives 
defined for the M68000 coprocessor interface. 

Bit [15] of the primitive format, denoted by CA, is used to specify the come-again operation 
of the main processor. Whenever the main processor receives a response primitive from 
the MC68851 with the CA bit set to one, it should perform the service indicated by the 
primitive and then return to read the response CIR again. 

Bit [14] of the primitive format, denoted by PC, is used to specify the pass program counter 
operation. The MC68851 never issues a primitive with the PC bit set. 

Bit [13] ofthe primitive format, denoted by DR, is the direction bit; and is used in conjunction 
with operand transfers between the main processor and the MC68851. If DR is zero, the 
direction of the transfer is from the main processor to the MC68851 (a main processor 
write). If DR is one, the direction of the transfer is from the MC68851 to the main processor 

MC68851 USER'S MANUAL MOTOROLA 
9-9 

• 



• 

(a main processor read). If the operation indicated by a given response primitive does not 
involve an explicit operand transfer, the value of this bit is dependent on the particular 
primitive encoding. 

The following paragraphs detail the response primitive encodings used by the MC68851 
and the expected main processor response to each one. 

9.2.2.1 NULL PRIMITIVE. This primitive is used by the MC68851 to indicate completion 
of a coprocessor instruction. The format of the null primitive is shown in Figure 9-8. In 
addition to the bits CA and PC that are discussed above, the null primitive uses three other 
bits to identify the required action to be taken by the main processor. When set to one, 
bit [8], denoted by lA, is used to specify that the main processor may process pending 
interrupts if necessary. The IA bit is never set in any MC68851 primitive. Bit [1], denoted 
by PF, is used to indicate the status of the MC68851 during instruction execution; if PF 
equals zero, then the MC68851 is executing an instruction; otherwise, it is idle. Bit [0], 
denoted by TF, is used to communicate the result of a conditional evaluation. If TF equals 
one, then the condition is true; otherwise, it is false. 

15 14 13 12 11 10 4 

Figure 9-8. Null Primitive Format 

As indicated by the format of this primitive, there are 32 possible null primitive encodings 
of which the MC68851 uses only three. Table 9-3 lists the MC68851 null primitive encodings, 
and the circumstances in which they are used. 

Table 9-3. Null Primitive Encodings 

CA PC IA PF TF Usage 

0 0 0 1 0 Returned when the MC68851 is in the idle state or as the final primitive of an 
instruction dialog. The PF bit indicates that no instruction is being executed; thus, 
there is no expected response to this primitive. 

1 0 0 0 0 Returned when the MC68851 is executing an instruction and requires further 
service from the main processor before the next instruction can be executed. The 
expected response is for the main processor to re-read the response CIR. 

0 0 0 1 0/1 Returned by the MC68851 in response to the write of a conditional predicate to 
the condition CIR. The TF bit indicates the result of the conditional evaluation; 
TF = 1 if the condition is true, TF = 0 if the condition is false. 

The meaning of the CA, PC, and IA bits are as described above. The PF bit is an indicator 
that reflects the processing state of the MC68851 during instruction execution. In normal 
operation, the PF bit is of no concern to the main processor. However, if the main processor 
is in the trace mode, it should wait until the MC68851 has completed execution of an 
instruction before taking the trace exception. This is always enforced since the MC68851 
does not allow the processor to proceed with the next instruction until the coprocessor 
operation is complete. 

The TF bit is utilized only for the conditional instructions. When the main processor writes 
a conditional predicate to the condition CIR, the MC68851 uses the null primitive to return 

MOTOROLA 
9-10 

MC68851 USER'S MANUAL 



the true or false result of the conditional evaluation. If TF equals one, then the condition 
is true; otherwise, it is false. For all reads of the response CIR for other instruction types, 
the TF bit is a don't care. 

9.2.2.2 EVALUATE EFFECTIVE ADDRESS AND TRANSFER DATA PRIMITIVE. This pri
mitive is used by the MC68851 during the execution of the PMOVE instruction to request 
the transfer of a data item between the MC68851 internal registers and an external location 
(either memory or a main processor register). The format of this primitive is shown in 
Figure 9-9. The main processor services this request by evaluating the effective address 
indicated by the F line word ofthe instruction and transferring the number of bytes indicated 
by the length field of the primitive to or from the operand CIR. 

15 14 13 12 11 10 9 4 

I CA 1 0 1 DR 11 0 1 VALID <ea> 1 . LENGTH 

Figure 9-9. Evaluate Address and Transfer Data Primitive Format 

This primitive encoding remains in the response register until the requested data transfer 
is complete. 

The meaning of the CA bit is as described above. The PC bit is always zero. The DR bit 
indicates the direction of data transfer between the effective address location and the 
operand CIR of the coprocessor. If DR equals zero, the operand is transferred from the 
effective address location to the coprocessor. If DR equals one, the operand is transferred 
from the coprocessor to the effective address location. 

The effective address that is to be evaluated is specified in the F-line operation word, and 
any required extension words are fetched by the main processor, as needed. U the prede
crement or postincrement addressing mode is used, the address register is decremented 
or incremented before or after the transfer by the size of the operand, as indicated in the 
length field. 

The 'valid EA' field specifies various classes of address
ing modes with the encodings shown in Table 9-4. If the 
effective address in the operand word is not of the spec
ified class, then the main processor should write an abort 
to the control CIR and take an F-line emulator trap. The 
addressing categories below are as defined for all 
M68000 Family processors. 

The number of bytes transferred to or from an effective 
address location is indicated in the length field. If the 
effective address is a main processor register (register 
direct), only lengths of one, two, or four bytes are used. 
If the effective addressing mode is immediate, the length 
is always one or even, and the transfer is effective ad
dress to coprocessor. If the effective address is a mem-

Table 9-4. Coprocessor Valid 
Effective Address Codes 

$0 Control Alterable 

$1 Data Alterable 

$2 Memory Alterable 

$3 Alterable 

$4 Control 

$5 Data 

$6 Memory 

$7 Any Effective Address. 

ory location, any length is legal (including odd). The PMOVE instruction uses lengths of 
one, two, four, or eight bytes depending on the MC68851 register involved in the transfer. 
If the effective address mode is predecrement or postincrement, with A7 as the specified 

MC68851 USER'S MANUAL MOTOROLA 
9-11 

E 



register and a length of one, the transfer causes the stack pointer to be decremented or 
incremented by two, in order to keep the stack aligned to a word boundary. 

Table 9-5 lists the encodings of the evaluate effective address and transfer data primitive 
that are used by the MC68851 and the cases for which they are used. 

Table 9-5. Evaluate Effective Address and Transfer Data Primitive Encoding 

Usage CA pc DR Valid (ea) Length 

PMOVE PMMUreg,(ea) 
Issued during the PMOVE instruction dialog to request the transfer a a 1 $3 1 
of an operand from the MC68851 to memory or to a main processor a a 1 $3 2 
data register. The length field indicates the size of the operand; byte, a a 1 $3 4 
word, long, or quad word. a a 1 $2 8 

PMOVE (ea),PMMUreg 
Issued during the PMOVE instruction dialog to request the transfer a a a $7 1 
of an operand from memory or a main processor data register to the 1 a a $7 1 
MC68851. The length field indicates the size of the operand; byte, a a a $7 2 
word, long, or quad word. 1 a a $7 2 

a a 0 $7 4 
1 a 0 $7 4 
a a 0 $6 8 
1 a 0 $6 8 

9.2.2.3 TRANSFER SINGLE MAIN PROCESSOR REGISTER PRIMITIVE. This primitive is 
used by the MC68851 to request the transfer of one main processor register. The format 
of this primitive is shown in Figure 9-10. The D/A bit is used to specify whether the register 
is a data or an address register. A value of one for the D/A bit specifies an address register; 
a value of zero specifies a data register. When the DR bit in this primitive is set, the direction 
of transfer is from the MC68851 to the main processor. The main processor services this 
request by reading a long word from the operand CIR and transferring it to the appropriate 
main processor register. When the DR bit is clear, the transfer is from the main processor 
to the MC68851. The main processor services this request by taking the appropriate register 
and writing it to the MC68851 operand CIR. 

15 14 13 12 11 10 9 4 

o I D/A I REGISTER 

Figure 9-10. Transfer Single Main Processor Register Primitive 

Thjs primitive remains in the response CIR until the register transfer is complete. 

9.2.2.4 SUPERVISOR CHECK PRIMITIVE. The supervisor check primitive allows the 
MC68851 to verify that the main processor is operating in the supervisor state during 
MC68851 instruction execution. When this primitive is read, the main processor checks the 
S bit in its status register. If the bit is set, indicating that the processor is operating in the 
supervisor state, the instruction dialog may be continued by again reading the response 
register. Otherwise, the instruction must be aborted and a privilege violation exception 
taken. The MC68020 does this automatically. The format of the supervisor check primitive 
returned by the MC68851 is illustrated in Figure 9-11. 

MOTOROLA 
9-12 

MC68851 USER'S MANUAL 



15 14 13 12 11 10 9 4 

11 1
0 I 0 I 0 1011 1

0
1

0 I 0 I 0 I 0 I 0 I 0 1
0 10 10 I 

Figure 9-11. Supervisor Check Primitive Format 

As with all other primitives returned by the MC68851, the PC bit (bit [15]) is always returned 
clear. 

The supervisor check primitive is always returned during the dialog for a privileged in
struction before any user-visible state is altered. A read of the response register following 
a read of the supervisor check primitive is an indication to the MC68851 that the check 
passed. This primitive is returned only once during an MC68851 instruction. 

9.2.2.5 EVALUATE AND TRANSFER EFFECTIVE ADDRESS PRIMITIVE. This primitive is 
used by the PFLUSH, PLOAD, PTEST, and PVALID instructions to instruct the main processor 
to evaluate the effective address specified by the coprocessor instruction operation word 
and transfer the address to the MC68851 operand address register. The format of this 
primitive is shown in Figure 9-12. 

15 14 13 12 11 10 9 4 

I CA I 0 I 0 I 0 11 I 0 11 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 
Figure 9-12. Evaluate and Transfer Effective Address Primitive Format 

This primitive is retained in the response register until the requested effective address has 
been completely transferred to the MC68851. 

9.2.2.6 TRANSFER MAIN PROCESSOR CONTROL REGISTER PRIMITIVE. This primitive 
is used by the MC68851 to request the transfer of the MC68020 source or destination 
function code registers (SFC or DFC) to the MC68851. The format of this primitive is shown 
in Figure 9-13. 

15 14 13 12 11 10 9 4 

I CA I 0 I 0 I 0 11 11 I 0 11 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 
Figure 9-13. Transfer Main Processor Control Register Primitive Format 

In response to this primitive, the main processor reads the register select field from the 
register select CIR and transfers either the SFC or DFC to the MC68851 operand CIR. This 
primitive is issued only once during the MC68851 instruction dialog. 

After this primitive is read from the response CIR, the next expected access is to the register 
select CIR. If the response register is read when the next expected access is to the register 
select CIR, the MC68851 will return an illegal primitive ($0 or $1) (refer to 9.1.2.1 RESPONSE 
CIR ($00)). 

MC68851 USER'S MANUAL MOTOROLA 
9-13 

• 



• 

9.2.2.7 TAKE EXCEPTION PRIMITIVES. These primitives are used by the MC68851 to 
instruct the main processor to abort the current operation and initiate exception processing. 
The main processor services these requests by writing an exception acknowledge to the 
control CIR (which clears the pending exception in the MC68851), creates the appropriate 
stack frame on the currently active supervisor stack, and begins execution of an exception 
handler. The exception handler is located by using the vector number that is supplied as 
part ofthe take exception primitive. Table 9-6 lists the vector numbers used by the MC68851. 

Table 9-6. MC68851 Vector Numbers 

Vector Number Vector Offset 
(Decimal) (Hexidecimal) Assignment Type 

11 $02C F-Line Emulator Pre-Instruction 

13 $034 Coprocessor Protocol Violation Pre-Instruction 

56 $OEO Configuration Error Post-Instruction 

57 $OE4 Illegal Operation Post-Instruction 

58 $OE8 Access Violation Post-Instruction 

The take exception primitive remains in the response CIR until an abort is signaled through 
the control CIR or a further exception (for example, protocol violation) occurs. 

The MC68851 returns one of these primitives until the control CIR is written. When an 
exception acknowledge is written to the control CIR, the take exception primitive is dis
carded by the MC68851, and the response encoding is changed to the null primitive. By 
doing this, the MC68851 assures that the take exception request is received by the main 
processor. 

While the M68000 coprocessor interface defines three take-exception primitives, the MC68851 
utilizes only two of them. The following paragraphs describe the two take exception pri
mitives that are used by the MC68851. 

9.2.2.7.1 Take Pre-Instruction Exception Primitive. This primitive is used by the MC68851 
if an illegal command word is written to the command CIR or if a protocol violation occurs. 
The format of this primitive is shown in Figure 9-14. 

15 14 13 12 11 10 4 

VECTOR NUMBER 

Figure 9-14. Take Pre-Instruction Exception Primitive Format 

The CA bit is always zero for this primitive since there is an implied protocol preemption 
in this service request. The vector number identifies the type of the exception and is used 
by the main processor to locate the appropriate exception handling routine. 

In response to this primitive, the MC68020 creates a four word stack frame on top of the 
currently active supervisor stack. The format of this stack frame is shown in Figure 9-15. 
The value of the program counter in the stack frame is the address of the F-line operation 

MOTOROLA 
9-14 

MC68851 USER'S MANUAL 



15 o 

SP--. STATUS REGISTER 

+$02 

PROGRAM COUNTER 

o I 
I 

0 0 0 VECTOR OFFSET +$06 

Figure 9-15. Pre-Instruction Exception Stack Frame 

word of the MC68851 instruction that was preempted by the exception. Thus, if no mod
ifications are made to the stack frame within the exception handler, an RTE instruction 
causes the MC68020 to return and reinitiate the instruction that was being attempted when 
the primitive was received. Refer to the MC68020 32-8it Microprocessor User's Manual for 
further details on exception handling by the MC68020. 

9.2.2.7.2 Take Post-Instruction Exception Primitive. This primitive is used by the MC68851 
when an exception occurs during the execution of a PMOVE (ea),reg instruction, an invalid 
operation is requested by the PTEST or PLOAD instructions, or to signal failure of a PVALID 
instruction. The format of this primitive is shown in Figure 9-16. 

15 14 13 12 11 10 9 

VECTOR NUMBER 

Figure 9-16. Take Post-Instruction Exception Primitive Format 

The CA bit is always zero for this primitive, since there is an implied protocol preemption 
in this service request. The vector number identifies the type of the exception and is used 
by the main processor to locate the exception handler routine. 

In response to this primitive, the MC68020 creates a six word stack frame on top of the 
currently active supervisor stack. The format of this stack frame is shown in Figure 9-17. 
The value of the scanPC at the time the take exception primitive was encountered is stored 
in the program counter field of the frame and points to the next instruction after the 
coprocessor instruction that generated the exception. The address of the F-line operation 
word of the MC68851 instruction that caused the exception is stored in the instruction 
address field of the stack frame. 

When the MC68020 receives the take post-instruction exception primitive it assumes that 
the coprocessor either completed or aborted the instruction in progress with an exception. 
The MC68851 always adjusts the MC68020 scanPC to point to the next instruction before 
returning a take post-instruction exception primitive. If no modifications are made to the 
stack frame within the exception handler, an RTE instruction causes the MC68020 to return 
to program execution at the location specified by the program counter field of the stack 
frame, which is the address of the next instruction to be executed. 

MC68851 USER'S MANUAL MOTOROLA 
9-15 

• 



15 

SP ---.. STATUS REGISTER 

+$02 

PROGRAM COUNTER 

+$06 1 0 0 1 I VECTOR OFFSET 

+$08 

INSTRUCTION AODRESS 

Figure 9-17. Post-Instruction Stack Frame 

9.2.2.8 RESPONSE PRIMITIVE SUMMARY. Table 9-7 lists a summary of all primitive 
responses utilized by the MC68851 in numeric order. The utilization of these primitives is 
implementation-dependent and is subject to future change without notice. 

9.3 INSTRUCTION DIALOGS 

The following paragraphs detail the coprocessor communication dialogs that are executed 
by the MC68851 and MC68020 during each memory management instruction. In this dis
cussion, a dialog refers to the sequence of command and data transfers to/from the MC68851, 
and the service request primitives that are returned to control that sequence. Although the 
following discussion assumes that the main processor is an MC68020, information is also 
presented that may be used by designers of systems that utilize a different main processor. 

The diagrams presented in the following paragraphs represent the activity of the MC68020 
and the MC68851 during the execution of an MC68851 instruction. In these diagrams, boxes 
are used to depict periods of time during which a device is actively participating in the 
execution of an instruction; the absence of a box during a period indicates that a device 
is waiting on the other one to complete an operation. 

Each box in the following diagrams is labeled to indicate the activity depicted by that box. 
The labels above or to the right of the boxes identify the actions taken by the main processor, 
while the labels below or to the left of the boxes identify the encoding of the response CIR 
at any time during a dialog. Usually, when a response CIR encoding is indicated, the 
encoding will be received by the main processor any time that the response CIR is read 
until the next primitive encoding is indicated. Additionally, if the MC68020 fails a supervisor 
check performed as the result of the MC68851 supervisor check primitive, the resulting 
trap is the privilege violation exception. 

In all of the following paragraphs, the following assumptions are made: 

1) Before the start of an instruction dialog, except for the PSAVE and PRESTORE in
structions, the MC68851 is in the idle state, 

2) The MC68020 and the MC68851 communicate via a 32-bit data bus, and 

3) The memory width is 32 bits, and all memory operands are long-word aligned. 

MOTOROLA 
9-16 

MC68851 USER'S MANUAL 



Table 9-7. Me68851 Primitive Responses 

Primitive Primitive 
Value Type 

$0802 Null 
$0803 

$OAOO Evaluate and Transfer Effective Address 

$OCOO Transfer Single Main Processor Register 
$OC01 CA = 0, PC = 0, OR = 0 (Main Processor to MC68851) 
$OC02 
$OC03 
$OC04 
$OC05 
$OC06 
$OC07 

$0000 Transfer Main Processor Control Register 

$1608 Evaluate (ea) and Transfer Data 
$1701 CA = 0, PC = 0, DR = 0 (External to MC68851) 
$1702 
$1704 

$1COB Take Pre-Instruction Exception 
$1COO PC = 0 

$1E38 Take Post-Instruction Exception 
$1E39 PC = 0 
$1E3A 

$2C08 Transfer Single Main Processor Register 
$2C09 CA = 0, PC = 0, DR = 1 (MC68851 to Main Processor) 
$2COA 
$2COB 
$2COC 
$2COO 
$2COE 
$2COF 

$3208 Evaluate (ea) and Transfer Oata 
$3301 CA = 0, PC = 0, OR = 1 (MC68851 to External) 
$3302 
$3304 

$8400 Supervisor Check 

$8800 Null 

$8AOO Evaluate and Transfer Effective Address 

$8COO Transfer Single Main Processor Register 
$8C01 CA = 1, PC = 0, OR = ° (Main Processor to MC68851) 
$8C02 
$8C03 
$8C04 
$8C05 
$8C06 
$8C07 
$8C08 
$8C09 
$8COA 
$8COB 
$8COC 
$8COO 
$8COE 
$8COF 

$8DOO Transfer Main Processor Control Register 

MC68851 USER'S MANUAL 

Comments 

CA = 0, PC = 0, IA = 0, PF = 1, TF = 0 
CA = 0, PC = 0, IA = 0, PF = 1, TF = 1 

CA = 0, PC = 0 

00 
01 
02 
03 
04 
05 
06 
07 

CA = 0, PC = 0, DR = 0 

Quad .Word (Memory Only) 
Byte 
Word 
Long Word 

F-Line Emulation 
Protocol Violation 

Configuration Error 
Illegal Operation 
Access Violation 

AD 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

Quad Word (Memory Only) 
Byte 
Word 
Long Word 

CA = 1, PC = 0, IA = 0, PF = 0, TF = 0 

CA = 1, PC = ° 
DO 
01 
D2 
03 
04 
05 
06 
07 
AO 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

CA = 1, PC = 0, DR = 0 

- Continued -

MOTOROLA 
9-17 

• 



Table 9-7. MC68851 Primitive Responses (Continued) 

Primitive Primitive 
Value Type Comments 

$9608 Evaluate (ea> and Transfer Data Quad Word (Memory Only) 
$9701 CA = 1, PC = 0, DR = 0 (External to MC68851) Byte 
$9702 Word 
$9704 Long Word 

9.3.1 General Instructions 

This group of instructions includes the MC68851 instructions: PFLUSH, PFLUSHA, PFLUSHR, 
PFLUSHS, PLOADR, PLOADW, PMOVE, PTESTR, PTESTW, and PVALID. The common factor 
between these instructions is the format ofthe F-Iine operation word, which uses the CpGEN 
format of the M68000 Family coprocessor instruction set (refer to the MC68020 32-Bit 
Microprocessor User's Manual). Th!ls, the initial phase of the communication dialog for 
these instructions is identical, with the MC68020 writing the command word to the MC68851 
and then relying on the MC68851 to control the remainder of the dialog through the use 
of the coprocessor interface response primitive set. 

In general, the dialog for an MC68851 instruction does not advance to the next state until 
all activity has been completed in the current state. The MC68851 enforces this by con
trolling the assertion of the data transfer and size acknowledge (DSACKx) signals and 
through the use of the come-again attribute of the response primitives. 

The following paragraphs discuss the different protocols that are used by the MC68851 for 
this group of instructions. 

9.3.1.1 PFLUSH INSTRUCTIONS. The dialogs for these instructions are initiated by a 
write to the command register and a read of the response register. 

The PFLUSH instruction may require that one of the main processor function code registers 
(SFC of DFC) be transferred if a functi0n code is required for the flush operation and the 
value is not encoded in the coprocessor operation word. If the transfer of SFC or DFC is 
required, the MC68851 issues a transfer main processor control register primitive and 
indicates the required register in the register select CIR. Alternately, the function code may 
reside in one of the main processor data registers. If so, the MC68851 will issue the transfer 
single main processor register primitive to have the appropriate register transferred. After 
the function code transfer is complete (if required), the evaluate and transfer effective 
address primitive is issued requesting the calculation and transfer of an effective address 
from the main processor to the MC68851 for use in the flush operation. The MC68851 
performs the flush operation and releases the processor upon completion. Until the flush 
is complete, the MC68851 does not terminate the write cycle accessing the operand address 
CIR (i.e., the DSACKx signals are not asserted). This ensures that the next cycle is translated 
correctly. 

The supervisor check for these instructions may be returned either before or after the 
function code transfer (if any) but always occurs before any entries are flushed from the 
ATC. 

The dialogs for the PFLUSH instructions are shown in Figures 9-18 and 9-19. The key for 
all instruction dialogs presented in this section are shown in Figure 9-19. 

MOTOROLA 
9-18 

MC68851 USER'S MANUAL 



3: 
C') 
0) 
co co 
~ 
c en m 
:0 
eli 
3: » 
2: 
c » 
r-

s: 
o 
-i o 
:0 

cpO 
....:.r <.0» 

TRANSFER SINGLE MAIN 
PROCESSOR REGISTER 

(CA=1. OR=O. PF=O) 

MC68851 MC68020 

NULL (CA=O. PF=1) cB 
$0802 DECODE INSTRUCTION 

WRITE COMMAND 

~
FLUSH BY LOGICAL ADDRESS &~ FLUSH BY FC ONLY 

FC IN DATA REGISTER 

r FC IN SFC OR DFC 

FC IN COMMAND WORD ------TRANSFER MAIN ~ 
PROCESSOR CONTROL REGISTER 

READ RESPONSE (CA=l. DR=O. PF=O) READ RESPONSE 

REGISTER ILLEGAL ($0 OR $1) CIR 
NULL TRANSFER CONTROL 

REGISTER 

SUPERVISOR CHECK 9j READ RESPONSE 

PERFORM SUPERVISOR CHECK 
(TRAP IF S BIT NOT SET - PRIVILEGE VIOLATION) 

SUPERVISOR CHECK 

EVALUATE ANO TRANSFER EFFECTIVE 
AOORESS (CA=l. DR=O. PF=O) 

FLUSH ATC 

NUll (CA=O. PF=l) 
$0802 

Fe IN DATA REG~N SFe DR DFe 

______ FC IN COMMAND WORD TRANSF~ 
I I PROCESSOR CONTROL REGISTER tE 

(CA=O. DR=O. PF=O) READ RESPONSE 
READ RESPONSE rn MC68851 SPECIFIES REAO REGISTER 

SFC OR DFC (OR ILLEGAL) SElECT CIR 

READ RESPONSE TRANSFER SINGLE MAIN 
PERFORM SUPERVISOR CHECK PROCESSOR REGISTER 
(TRAP IF S BIT NOT SET - (CA=O. DR=O. PF=O) 
PRIVILEGE VIOLATION) 

READ RESPONSE 

EVALUATE <ea> 

~NSflft fl£GISlER -4- ONLY IF FC IN CPU 
AND/ORREAD RESPONSE REGISTER 

TRANSFER EFFECTIVE ADDRESS 

READ RESPONSE ~ L M"8851 FLUSHES ATe W 
~ 

NEXT OPERATION 

Figure 9-18. PFLUSH and PFLUSHS Instruction Dialog 

I 



MC68851 

NULL (CA=O, PF=I) 
$0802 

SUPERVISOR CHECK 

MC68020 

DECODE INSTRUCTION 

WRITE COMMAND 

READ RESPONSE 

PERFORM SUPERVISOR CHECK 
(TRAP IF S BIT NOT SET - PRIVILEGE VIOLATION) 

~ 
PFLUSHR PFLUSHA 

EVALUATE EFFECTIVE ADDRESS ~.-- --, 
AND TRANSFER DATA READ RESPONSE I 

(CA=O, DR=O, LEN = 8) OJ 
EVALUATE <ea> FLUSHATC READ RESPONSE 

FLUSH ATC AND RPT TRANSFER <ea> I 

KEY: 

NEXT OPERATION 

INDICATES AN OPERATION THAT IS PERFORMED ITALICS INDICATES THE ENCODING OF THE RESPONSE CIR 
ONLY FOR CERTAIN CASES OF THE INSTRUCTION OR AT POINTS IN AN INSTRUCTION DIALOG WHERE IT 
OPERATION BEING EXECUTED. THESE OPERATIONS ARE WILL NORMALLY NOT BE READ BY THE MC68020. 
IDENTIFIED EXPLICITLY IN THE DIAGRAMS AS TO THE THIS INFORMATION IS INCLUDED FOR DESIGNERS 
CONDITIONS UNDER WHICH THEY ARE EXECUTED. OF SYSTEMS THAT DO NOT UTILIZE THE MC68020 

AS THE MAIN PROCESSOR. WHEN AN ENCODING 
IS INDICATED FOR THE RESPONSE CIR. IT IS NOT 
CHANGED UNTIL A NEW ENCODING IS GIVEN. 

Figure 9-19. PFLUSHA and PFLUSHR Instruction Dialog 

9.3.1.2 PLOAD INSTRUCTIONS. The dialog for these instructions is similar to that used 
during the PFLUSH instructions. The major difference in the communication required for 
these instructions is that the MC68851 must take control of the logical bus in order to 
perform a search of the address translation tables (refer to 4.2.3.4 NORMALLY TERMI
NATED ADDRESS TRANSLATION WITH RELINQUISH REQUEST). The MC68851 requests 
bus mastership simultaneously with the termination of the effective address transfer ac
cessing the operand address CIR. 

During the table search operation it is possible for an alternate higher priority bus master 
to request and receive control of the logical bus, preempting completion of the MC68851 
operation. The state of the coprocessor instruction is always maintained although the table 
search may have to be restarted. However, unless a PSAVE is executed prior to access and 
a PRESTORE is executed prior to returning control to the main processor, alternate bus 
masters must not be allowed to access the MC68851 coprocessor interface register set 
during instruction execution -as this may cause the context of the instruction in progress 
to be permanently lost. Systems employing multiple devices capable of accessing the 
MC68851 registers must provide for synchronization of instruction execution (refer to AP
PENDIX C SOFTWARE CONSIDERATIONS). 

The only difference between the PLOADR and PLOADWinstructions is that the translation 
tables are updated for a read or a write cycle, respectively, during the table search. The 
dialog for the PLOAD instructions is shown in Figure 9-20. 

MOTOROLA 
9-20 

Me6S8S1 USER'S MANUAL 



TRANSFER SINGLE MAIN 
PROCESSOR REGISTER 

(CA=1. DR=O, PF=O) 

MC68851 MC68020 

NULL (CA=O, PF=1) cB DECODE INSTRUCTION 
$0802 

WRITE COMMAND 

Fe IN DATA REGlST~ IN SFC DR DFe 

_______ FC IN COMMAND WORD .. TRANSFE~ 
I PROCESSOR CONTROL REGISTER ~ 

ill 
READ RESPONSE (CA=1. DR=O, PF=O) 

MC68851 SPECIFIES SFC OR DFC 
TRANSFER DATA ILLEGAL ($0 or $1) CIR 
REGISTER NULL TRANSFER CONTROL 

READ RESPONSE 

READ REGISTER SELECT 

REGISTER 

SUPERVISOR CHECK READ RESPONSE 

PERFORM SUPERVISOR CHECK 
(TRAP IF S BIT NOT SET - PRIVILEGE VIOLATION) 

EVALUATE AND TRANSFER EFFECTIVE 
ADDRESS (CA=l), DR=O, PF=O) 

MC68851 TERMINATES TRANSFER AND 
ARBITRATES FOR BUS MASTERSHIP 

-6-

READ RESPONSE 

EVALUATE EFFECTIVE ADDRESS 

TRANSFER EFFECTIVE ADDRESS 

TABLE SEARCH COMPLETED TABLE SEARCH ABORTED BY 
NORMAllY LOGICAL BUS TRAFFIC 

NULL (CA=O, PF=l) WITH 
RELINQUISH AND RETRY 

READ RESPONSE 

NUll (eA=O. PF=II ~ I READ RESPONSE 
$0802 

I 
NEXT OPERATION 

Figure 9-20. PLOAD Instruction Dialog 

TABLE SEARCH ABORTED 
BY LOGICAL BUS TRAFFIC 

MC68851 USER'S MANUAL MOTOROLA 
9-21 

• 



9.3.1.3 PMOVE INSTRUCTION. The dialogs for this instruction are used for all move 
operations to and from the MC68851 register set. 

The dialog is initiated with the command CIR write and the supervisor check primitive 
response. After performing the supervisor check, the main processor is requested to eval
uate the effective address encoded in the F-line coprocessor instruction word and transfer 
data to or from the MC68851. 

After the data transfer is complete, the main processor is released from the MC68851-to
external instruction dialog as shown in Figure 9-21. For external transfers to the MC68851, 
the protocol is somewhat more complex. Data written to any of the root pointer registers 
must be checked for validity, and the ATC must be updated before the processor can be 
allowed to continue with the next instruction. Data written to the translation control register 
undergoes several consistency checks to ensure that the logical address is completely 
mapped and the requested memory page size is greater than 256 bytes. Before the pro
cessor is allowed to continue, the ATC is flushed. The dialog for a write to the translation 
control register or the root pointer registers is shown in Figure 9-22. 

MC68851 

NULL (CA=o. PF= 1) 

S0802 

SUPERVISOR CHECK 

EVALUATE <ea> AND TRANSFER DATA 
(CA=O, DR=1. LEN = 1. 2, 4, OR 8) 

MC68020 

DECODE INSTRUCTION 

WRITE COMMANO 

READ RESPONSE 

PERFORM SUPERVISOR CHECK 
(TRAP IF S BIT NOT SET - PRIVILEGE VIOLATION) 

READ RESPONSE 

EVALUATE <ea> 

TRANSFER OPERAND 

NEXT OPERATION 

Figure 9-21. PMOVE PMMUreg,(ea) Instruction Dialog 

The instruction dialog for write operations to other MC68851 registers is shown in Figure 
9-23. The only operation that is not entirely straight-forward is the write to the breakpoint 
acknowledge control register. When the write operation enables the breakpoint corre
sponding to the register accessed, the MC68851 sets a save-breakpoint-state flag (if it is 
not 'already set) that indicates that the long format state frame including all the BADx and 
BACx registers must be saved in response to a PSAVE instruction. When the write operation 
disables the corresponding breakpoint, the MC68851 checks the enable bits of all of the 
breakpoint acknowledge control registers to determine if there are any breakpoints still 
enabled. If no breakpoints remain enabled, the MC68851 clears the save-breakpoint-state 
flag indicating that the long format state no longer needs to be saved in response to a 
PSAVE instruction. Otherwise, the flag remains set. 

The PMOVE external-to-MC68851 dialog for accesses to the CAL, VAL, SCC, AC, BADx, 
status, and BACx registers is shown in Figure 9-23. 

MOTOROLA 
9-22 

Me68851 USER'S MANUAL 



EVALUATE <ea> AND TRANSFER 
DATA (CA=l. DR=O. LEN = 81 

RP CONSISTENCY CHECK 
AND ATC UPDATE 

MC68851 MC68020 

WRITE COMMAND 

SUPERVISOR CHECK READ RESPONSE 

PERFORM SUPERVISOR CHECK 

NULL (CA=O. PC=O. IA=O. PF=1) ~ DECODE INSTRUCTION 
$0802 

(TRAP IF S BIT NOT SET - PRIVILEGE VIOLATIONI 

--6--
WRITE TO ROOT POINTER REGISTER WRITE TO TRANSLATION CONTROL REGISTER 

I -, 
READ RESPONSE 

EVALUATE <ea> 

TRANSFER DATA 

EVALUATE <ea> AND TRANSFER ~ READ RESPONSE 
DATA (CA=l. DR=O. LEN = 41 

EVALUATE <ea> 

ACCEPT DATA AND CHECK TRANSFER DATA 
ENABLE BIT (BIT[31]1 

TC ENABLED 

r ONlY. WRITETOC", 1 
VALID ROOT ~NTER VALUE INVALID ROOIT POINTER VALUE PREVIOUS TC DISABLED 

NULL (CA=l. PF=OI CD READ RESPONSE 
uPOATEItPT D.·· TAKE PDST·INSTRUCTIDN EE READ RESPONSE $8800 
AID PCSR .... EXCEPTION $1 E38 

I WRITE CONTROL CIR 

NULL (CA=O. PF=ll CD READ RESPONSE 
$0802 

NULL (CA=l. PF=OI 
$8800 

READ RESPONSE 

PSfIELD;>' ~SAELD<' 
UPDATE TC D 

TAKE POST·INSTRUCTION READ 
UPDATE TC (DiSABLEDI ~ 

EXCEPTION $1 E38 RESPONSE 
WRITE 
CONTROL 

NEXT OPERATION 

Figure 9-22. PMOVE (ea),PMMUreg (Root Pointer or TC Registers) 

MC68851 USER'S MANUAL 

, CIR 

MOTOROLA 
9-23 

II 



MC68851 MC68020 

NULL (CA=O. PC=O. IA=O. PF=1) ~ 
$0802 

SUPERVISOR CHECK 

WRITE TO CAL. VAL. OR SCC REGISTERS 

OECODE INSTRUCTION 

WRITE COMMAND 

READ RESPONSE 

PERFORM SUPERVISOR CHECK 
(TRAP IF S BIT NOT SfT - PRIVILEGE VIOLATION) 

WRITE TO BACx REGISTERS 

EVALUATE 
<ea>AND 

TRANSFER DATA 
(CA=O. DR=O. 

~ WRITE TO AC. BADx. 
OR STATUS REGISTERS ~ 

LEN = 11 

UPDATE 
REGISTER 

READ RESPONSE 

EVALUATE <ea> 

TRANSFER DATA 

EVALUATE <ea> AND TRANSFER DATA 
(CA=O. DR=O. LEN = 2) 

EVALUATE <ea> AND TRANSFER DATA ~ READ RESPONSE 
(CA=l. OR=O. LEN ;= 2) 

EVALUATE <ea> 

TRANSFER DATA 
UPOATE REGISTER 

READ RESPONSE 

"""pOINT ENAB~ol"EAKPOINT OISAB~O ., 
x.- 0 

TEST ENABLE BIT D~ 
INBACx J ~ 

..6- x ~ x+l 

NULL (CA=l. PF=O) CD READ 
$8800 RESPONSE 

EVALUATE <ea> 

x = O. 2. 3. 5. OR 6 x = 1. 4. i 7 ] 

TRANSFER DATA 
x< 7 & BACx[15] = 0 

BACx[15] = 1 

ONLY FOR WRITES TO BACx -. 1IlRI",:"":"""'""','.:,"""'""":,,,,,,,,.:,,,""'.,"",:"',,"',,,"",": ':"':"","'",'.'"""'."',,"',,:"',,',,,",,','","'","'","","'"""',,," -
MOTOROLA 
9-24 

NEXT OPERATION 

Figure 9-23. PMOVE (ea),PMMUreg (CAL, VAL, SCC, AC, 
PSR, PSCR, BADx, and BACx Registers) 

MC68851 USER'S MANUAL 



9.3.1.4 PTEST INSTRUCTIONS. The beginning of the dialog for the PTEST instructions 
is similar to that of the PLOAD instructions described above. However, the MC68851 does 
not perform a table search operation if a level zero test is requested. At the termination of 
a PTEST instruction with a non-zero level specification, the MC68851 may optionally return 
the physical address used to perform the last level of the search. If this is requested, the 
MC658851 issues the transfer main processor register primitive that causes the main pro
cessor to transfer a long word address from the MC68851 operand register into one of the 
address registers of the processor. 

The only difference between the PTESTR and PTESTW variations of this instruction is in 
the examination of access rights for the detection of an access level violation (refer to 
6.1.10.4 ACCESS LEVEL VIOLATION). The dialog of this instruction is shown in Figure 9-
24. 

9.3.1.5 PVALID INSTRUCTION. The PVALID instruction differs from other MC68851 gen
eral instructions in that the supervisor check primitive is not issued during the dialog for 
this instruction. Since this instruction terminates with an exception (access violation) if the 
task executing this instruction does not have sufficient access rights, no further protection 
is required. Furthermore, if the access level protection mechanism is disabled, the dialog 
for this instruction is always terminated with an access violation exception. The dialog for 
this instruction is shown in Figure 9-25. 

9.3.2 Conditional Instructions 

This group of instructions includes the PBcc, PDBcc, PScc, and PTRAPcc instructions. The 
common factor between these instructions is that the execution of each one is defined by 
the M68000 Family coprocessor instruction set, and the dialog used for all of them is the 
same. The dialog consists of only one write cycle and two read cycles; the main processor 
writes the conditional predicate to the MC68851 and then reads the response CIR, first to 
receive a supervisor check and again to receive the result of the evaluation. After the 
supervisor check, the MC68851 always responds immediately with a true or false result, 
and the main processor then proceeds with the appropriate conditional action. This dialog 
is shown in Figure 9-26. 

9.3.3 Context Switch Instructions 

This group of instructions includes the PSAVE and PRESTORE instructions. The common 
factor between these instructions is that the execution of each one is defined by the M68000 
Family coprocessor instruction set, and the coprocessor does not control the dialog in the 
flexible manner available with the general and conditional instruction types. The dialog 
consists of the save and restore command followed by the transfer of the appropriate state 
information. These dialogs are discussed in the following paragraphs. 

9.3.3.1 PSAVE. This dialog is utilized for the context save instruction. The dialog for this 
instruction is shown in Figure 9-27. No response primitives are issued during the dialog 
for the PSAVE instruction. The MC68851 controls the frame transfer to a limited extent 
through the use of the format word encoding. 

The main processor initiates this dialog by reading from the save CIR. During this read 
cycle, the MC68851 returns a format word that indicates the current state of the machine. 
For most cases of this dialog, the first read of the save CIR returns the idle format word, 

MC68851 USER'S MANUAL MOTOROLA 
9-25 

• 



TRANSFER SINGLE 
MAIN PROCESSOR 

REGISTER leA=!. DR=O. PF=O) 

NOT DONE IF LEVEL = 0 
AND PHYSICAL ADDRESS ..... 

IS TO BE RETURNED 

MC6885! MC68020 

NULL (CA=O. = -.-0 DEC. ODE INSTRUCTION 

CD WRITE COMMAND 

FC IN DATA REGISTEn-«---FC IN SFC OR DFC I' FC IN COMMAND WORD TRANSFE~ 
PROCESSOR CONTROL REGISTER ~ READ RESPONSE 

E8 
READ RESPONSE ICA=!. DR=O. PF=O) 

.
. MC6885! SPECIFIES SFC OR DFC. REA.D REG.'STER SELECT 

TRANSFER DATA ILLEGAL ($OORSt) CIR . 
REGISTER NULL TRANSFER CONTROL 

REGISTER 

SUPERVISOR CHECK ~ R. EAD RESPONSE 
PERFORM SUPERVISOR CHECK 

IF S BIT NOT SET - PRIVILEGE VIOLATION) 

'It ~tll 
~ 

LEVEL ! THROUGH 7 TEST LEVEL 0 TEST ,--- ---=0-. 
TERMINATES TRANSFER AND ,---...,-~ 

EVALUATE EFFECTIVE ADDRESS PHYSICAL ADDRESS RET. URNED NO PHYSICAL ADDRESS-RETURNED 

ARBITRATES FOR BUS MASTERSHIP TRANSFER EFFECTIVE ADDRESS I ~ EVALUATE EFFECTIVE 

TAKE F-UNE· ca READ RESPONSE ADDRESS 
TABLE SEARCH EXCEPTION ATC SEARCH TRANSFER EFFECTIVE 

J.. . WRITE CONTROL UPDATE STATUS ADDRESS 
~ CIR 

TABLE SEARCH COMPLETED NORMALLY TABLE SEARCH ABORTED BY LOGICAL BUS TRAFFIC" ~EGIST~R 

UPDATE STATUS REGISTER 

NULL lCA=!. PF=O) WITH .tp READ RESPONSE 
REUNOUISH AND RETRY 

TAO.' SEAJlCH TABlE SEARCH ABORTED 
BY LOGICAL BUS TRAFFIC 

PHYSICAL ADDRESS RETURNED «No-PHYSICAL ADDRESS RETURNED 

NULL lCA=!. PF=O) ~ S8800 . .READ RESPONSE 

TRANSFER SIN .. GLE MAIN PROCESSOR .' . . READ RESPONSE 
REGISTER lCA=o. DR=!. D/A=!) 

TRANSFER REGISTER 

NULL ICA=O. PF=!) OJ' READ RESPONSE 
S0802 

NEXT OPERATION 

NULL ICA-O. PF-1) . READ RESPONSE 
$OB02 

Figure 9-24. PTEST Instruction Dialog 

MOTOROLA 
9-26 

MC68851 USER'S MANUAL 



MC68851 MC68020 

NULL (CA=O. PF=1) cB OECODE INSTRUCTIDN 
$0802 

WRITE COMMAND 

~ 
MC BIT (ACCESS CONTROL REGISTER BIT[7)) SET MC BIT (ACCESS CONTROL REGISTER BIT[7)) CLEAR 

~ 
SURROGATE VALIN An LEVEl IN VAL 

r 
TRANSFER SINGLE MAIN PROCESSOR rn READ RESPONSE 

REGISTER (CA=l. DR=O. D/A=l) 

TRANSFER REGISTER 

EVALUATE AND TRANSFER EFFECTIVE 
ADDRESS (CA=l) 

PERFORM ACCESS RIGHTS CHECK 

EVALUATE <ea> 

TRANSFER <ea> 

-L 
VALID REQUEST INVALID REQUEST 

EVALUATE AND 

TRANSFER EFFECTIVE ~ READ RESPONSE 
ADDRESS (CA=l) 

CALCULATE <ea> 

TRANSFER <ea> 

r-
eo TAKE POST-INSTRUCTION 93 READ RESPONSE 

NULL (CA=O. PF=l) READ RESPONSE EXCEPTION $1 E3A 
$0802 

TAKE EXCEPTION 

NEXT OPERATION 

Figure 9-25. PVALID Instruction Dialog 

and the main processor then proceeds to transfer nine long words from the operand CIR 
to memory. If the MC68851 is busy processing a coprocessor instruction when the PSAVE 
is encountered, a busy format word is returned and an 11 long word, mid-coprocessor 
instruction frame will be saved if all breakpoints were disabled. A 19 long word frame will 
be saved if any breakpoints were enabled. The invalid format word may also be returned, 
as discussed in 9.3.4.6 FORMAT EXCEPTION, PSAVE INSTRUCTION. 

After the MC68020 receives a valid format word, it then evaluates the effective address 
and writes the format word to that address. The appropriate state frame is then transferred 
to the effective address, and the main processor is free to proceed with the execution of 
the next instruction. 

Me68851 USER'S MANUAL MOTOROLA 
9-27 

• 



STORE STATE FRAME 
9, 11, OR 19 LONG·WORO 

TRANSFERS 

MOTOROLA 
9-28 

MC68851 

NULL (CA=O, PF=l) 
$0802 

SUPERVISOR CHECK 

TEST CONDITION 

MC68020 

DECODE INSTRUCTION 

WRITE PREDICATE 

READ RESPONSE 

PERFORM SUPERVISOR CHECK 
(TRAP IF S BIT NOT SET - PRIVILEGE VIOLATIONI 

NULL (CA=O, PF=1. TF=xl 
$0802 OR $0803 

READ RESPONSE 

PERFORM CONDITIONAL ACTION 

Figure 9-26. Conditional Instruction Dialog 

MC68851 MC68020 

(RESPONSE CIR MA Y BE c8 
IN ANY STATE) DECODE INSTRUCTION 

IDLE, BUSY. BREAKPOINT ENABLED, READ SAVE CIR 
OR ILLEGAL FORMAT WORD 

LEGAL FDRMAT WORD -6- ILLEGAL FORMAT WORD 

~tuATE <ea> l 
STORE FORMAT WORD 

READ STATE FROM MC68851 

STORE STATE IN MEMORY c8 

NEXT OPERATION 

Figure 9-27. PSAVE Instruction Dialog 

TAKE FORMAT EXCEPTION 

WRITE CONTROL CIR 

Me68851 USER'S MANUAL 



Since the MC68851 does not return any primitives during execution of the PSAVE instruc
tion, it is the responsibility of the processor to ensure that a PSAVE instruction is executed 
only in the supervisor mode of operation (the MC68020 does this automatically). 

Note that after the state save operation is complete, the MC68851 is in the idle state with 
no pending exceptions. 

9.3.3.2 PRESTORE. This dialog is utilized for the context restore instruction. The dialog 
for this instruction is shown in Figure 9-28. As with the PSAVE instruction, no primitives 
are issued during the dialog for this instruction. The MC68851 controls the frame transfer 
to a limited extent through the use of the format word encoding. 

MC68851 

(RESPONSE CIR MA Y BE 
IN ANY STATE) 

NULL IDLE. BUSY. BREAKPOINT ENABLED, 
OR ILLEGAL FORMAT WORD 

RESTORE STATE FRAME 
0, 9,'11, OR 19 LONG-WORD 

TRANSFERS 

(RESPONSE CIR RESUMES 
SUSPENDED DIALOG) 

MC68020 

DECODE INSTRUCTION 

EVALUATE <ea> 

FETCH FORMAT WORD 

WRITE RESTORE CIR 

NEXT OPERATION 

Figure 9-28. PRESTORE Instruction Dialog 

The main processor initiates the restore dialog by evaluating the effective address, fetching 
a format word from that address, and writing the format word to the restore CIR. The main 
processor then reads the restore CIR to verify that the format word is valid. During this 
read cycle, the MC68851 returns a format word that indicates if the format word that was 
written is valid for the current revision of the device. If the format word is valid, the same 
value that was written is read back from the restore CIR, and the main processor proceeds 

MC68851 USER'S MANUAL MOTOROLA 
9-29 

• 



• 

to transfer the state frame appropriate for the format word. The state frame size is 0, 9, 
11, or 19 long words for the current implementation of the MC68851. The invalid format 
word may also be returned as discussed in 9.3.4.7 FORMAT EXCEPTION, PRESTORE 
INSTRUCTION. Note that after the state restore operation is complete, the MC68851 is in 
the state of the instruction (if any) that was previously suspended with a PSAVE instruction. 

Since the MC68851 does not return any primitives during execution of the PRESTORE 
instruction, it is the responsibility of the processor to ensure that a PRESTORE instruction 
is executed only in the supervisor mode of operation (the MC68020 does this automatically). 

9.3.4 Exception Processing 

This group of dialogs is actually a set of special cases of the dialogs described previously; 
they are grouped here for quick reference and to simplify the preceding discussions. For 
each of the exception processing dialogs, only the differences from the normal instruction 
dialogs shown above are discussed here. Also, it should be noted that these dialogs do 
not include all exception processing sequences that involve the MC68851; they only include 
those exceptions that are directly related to the coprocessor interface operation. For ex
ample, main-processor-detected F-line exceptions are not included since no coprocessor 
interface dialog occurs as part of the exception processing for this type of an exception. 
Also not included in the diagrams below is the dialog for the coprocessor protocol violation 
exception. This is due to the fact that these exceptions are not expected to occur during 
the normal operation of a fu.lly debugged system and that the dialog is not readily pre
dictable (either before or after the protocol violation occurs). For main-processor-detected 
protocol violations, the cause of the exception is, by definition, a hardware failure (since 
the MC68851 can not return an illegal response primitive) . 

For MC68851-detected protocol violations, the cause is most likely a software failure that 
causes a new instruction to be initiated before the previous instruction dialog is completed. 
In this case, both the previous and the new instruction dialogs are aborted immediately. 

9.3.4.1 TAKE PRE-INSTRUCTION EXCEPTION. This dialog is utilized by the MC68851 
when the main processor writes an undefined, reserved command word to the command 
or condition CIR. The take pre-instruction exception dialog consists of two write cycles and 
one read cycle, as shown in Figure 9-29. First, the main processor attempts to initiate a 

MOTOROLA 
9-30 

MC68851 

NULL (CA=O, PF=l) 
$0802 

INVALID COMMANO OR 
PROTOCOL VIOLATION OETECTED 

TAKE PRE·INSTRUCTION 
EXCEPTION (PC=O) 

NULL (CA=O, PF=1) 
$0802 

MC68020 

DECODE INSTRUCTION 

WRITE COMMAND 

READ RESPONSE 

WRITE CONTROL CIR 

PERFORM EXCEPTION 
PROCESSING 

Figure 9-29. Take Pre-Instruction Exception Dialog 

Me68851 USER'S MANUAL 



new instruction by writing to the command CIR; it then reads the response CIR to determine 
the next required action. The MC68851 returns the take pre-instruction exception in this 
case, indicating the appropriate vector number. The main processor services this primitive 
by writing an exception acknowledge to the control CIR and initiates exception processing. 
An exception to this dialog is the F-line exception returned by the PTEST instruction as 
shown in Figure 9-24. 

Note that the write of the exception acknowledge causes the response CIR encoding to be 
changed to the null primitive, thus assuring that the take exception primitive is received 
by the main processor while avoiding spurious request primitives in non-MC68020 based 
systems. 

9.3.4.2 TAKE POST-INSTRUCTION EXCEPTION. This dialog is utilized by the MC68851 
if an exception occurs as the result of execution of any MC68851 instruction that requests 
an illegal configuration, an invalid operation, or an access violation. In this case, the protocol 
for the normal execution of the instruction is followed and then the take post-instruction 
exception is reported as the last primitive (in lieu of the null primitive normally used to 
terminate the dialog). The MC68851 always adjusts the scanPC of the MC68020 to point 
to the next instruction before returning a take post-instruction exception primitives. The 
main processor services this primitive by initiating exception processing. The dialog for 
this operation is shown in Figure 9-30. 

MC68B51 MC6B020 

NULL (CA=O, PF=1) 
DECODE INSTRUCTION 

$0802 

WRITE COMMAND 

MC68851 DETECTS MC BIT 
(AC BIT(7)) IS CLEAR 

EVALUATE AND TRANSFER READ RESPONSE 
EFFECTIVE ADDRESS (CA=1) 

EVALUATE <ea> 

TRANSFER <ea> 
TAKE POST-INSTRUCTION 

READ RESPONSE 
EXCEPTION 

WRITE CONTROL CIR 

NULL (CA=O, PF=1) PERFORM EXCEPTION 
$0802 PROCESSING 

Figure 9-30. Take Post-Instruction Exception Dialog (PVALID Example) 

Note that a read of the response register causes the response CIR encoding to be changed 
to the null primitive, thus assuring that the take exception primitive is received by the main 
processor while avoiding spurious request primitives in non-MC68020 based systems. 

9.3.4.3 F-LiNE EMULATOR EXCEPTION. This dialog is utilized by the MC68851 when a 
general instructon is initiated and the value written to the command CIR is not a legal 
MC68851 command word encoding or an unrecognized condition selector is written to the 

Me6SSS1 USER'S MANUAL MOTOROLA 
9-31 

• 



• 

condition CIR. In this case, this dialog consists of two write cycles and one read cycle, as 
shown in Figure 9-31. First the main processor attempts to initiate a new instruction by 
writing to the command CIR; it then reads the response CIR to determine the appropriate 
action to be taken. In this case, the first read of the response CIR returns a take exception 
primitive with the F-line emulator vector number. The main processor services this primitive 
by writing an exception acknowledge to the control CIR and initiating exception processing. 

MC68851 

NULL (CA=O. PF=1) 
$0802 

INVALID INSTRUCTION DETECTED 

TAKE PRE-INSTRUCTION EXCEPTION 

NULL (CA=o. PF=l) 
$0802 

MC68020 

DECODE INSTRUCTION 

WRITE COMMAND 

READ RESPONSE 

WRITE CONTROl CIR 

PERFORM EXCEPTION 
PROCESSING 

Figure 9-31. Take F-Line Emulation Exception Dialog 

Note that the write of the exception acknowledge causes the response CIR encoding to be 
changed to the null primitive, while avoiding spurious request primitives in non-MC68020 
based systems. 

9.3.4.4 FORMAT EXCEPTION, PSAVE INSTRUCTION. This dialog is utilized by the 
MC68851 when a PSAVE or PRESTORE instruction dialog is interrupted by an attempt to 
initiate a new PSAVE instruction (by reading from the save CIR). In this case, the MC68851 
returns the invalid format word to signal the illegal nesting of the PSAVE instruction. The 
main processor services this format word by writing an abort to the control CIR and initiating 
exception processing. The dialog for this operation is shown in Figure 9-32. 

MC68851 

(RESPONSE CIR MA Y 
BE IN ANY STATE) 

INVALID FORMAT WORD 

NULL (CA=O. PF=l) 
$0802 

MC68020 

DECODE INSTRUCTION 

READ SAVE CIR 

WRITE CONTROL CIR 

PERFORM EXCEPTION PROCESSING 

Figure 9-32. PSAVE Format Exception Dialog 

Since the MC68020 writes an abort to the MC68851 in response to the illegal format word, 
the PSAVE or PRESTORE that was i nterru pted by the nested PSAVE is destructively aborted, 
with no indication to the suspended instruction that this has occurred. Thus, a suspended 

MOTOROLA 
9-32 

MC68851 USER'S MANUAL 



save operation continues to read the frame from the operand CIR if it is resumed, even 
though the data in the operand CIR is not valid. Likewise, a suspended restore operation 
writes the remainder of the frame to the operand CIR if it is resumed, even though the 
data written is ignored and the restore operation is not performed. Due to the destructive 
behavior of a nested PSAVE instruction, programmers must be certain that the MC68851 
is not executing a PSAVE or PRESTORE instruction prior to an attempt to execute a new 
PSAVE instruction. The most likely cause of a nested PSAVE operation is the main processor 
receiving a bus error during a PSAVE or PRESTORE operation. This should not be allowed 
to occur and can be avoided by accessing the top of the system stack and the address 19 
long words beyond it immediately before executing the PSAVE. This ensures that the stack 
area is properly allocated. 

9.3.4.5 FORMAT EXCEPTION, PRESTORE INSTRUCTION. This dialog is utilized by the 
MC68851 when a PRESTORE instruction is initiated by writing an invalid format word value 
to the restore CIR (in this context, the term invalid format value refers to any value that is 
not a null, idle, or busy (mid-instruction, breakpoints enabled or disabled) format word 
value recognized by the MC68851). In this case, the MC68851 returns the explicit invalid 
format word ($02xx) to signal the unrecognized format word value. The main processor 
services this format word by writing an abort to the control CIR and initiating exception 
processing. The dialog for this operation is shown in Figure 9-33. Note that this is a 
destructive exception, since any instruction that was executing is aborted when the PRES
TORE instruction is initiated. 

MC68851 MC68020 

(RESPONSE CIR MA Y 
DECODE INSTRUCTION 

BE IN ANY STATE) 

EVALUATE <ea> 

FETCH FORMAT WORD 

WRITE RESTORE CIR 

INVALID FORMAT WORD READ RESTORE CIR 

WRITE CONTROL CIR 

NULL (CA=O, PF=1) 
$0802 

PERFORM EXCEPTION PROCESSING 

Figure 9-33. PRESTORE Format Exception Dialog 

MC68851 USER'S MANUAL MOTOROLA 
9-33 

III 



• 

MOTOROLA 
9-34 

MC68851 USER'S MANUAL 



SECTION 10 
ACCESS LEVEL CONTROL INTERFACE 

This section describes the access level control interface with respect to the communication 
protocol utilized by the MC68020 and the MC68851 during the type $01 module operations, 
CALLM and RTM. This communications protocol includes electrical and command level 
mechanisms that allow the MC68851 to extend the protection mechanism of the main 
processor (refer to the MC68020 32-8it Microprocessor User's Manual). 

10.1 ACCESS LEVEL CONTROL INTERFACE SIGNAL CONNECTION 

Identical to the case of the coprocessor interface register set, the selection of the MC68851 
access level interface register set is based upon an internally generated chip select signal 
that is decoded from the logical address and function code inputs when the processor 
initiates an access to this register set. 

The MC68851 contains a set of access level control registers (ALCRs) by which the main 
processor and MC68851 communicate during module operations. These registers are not 
part of the programming model implemented by the MC68851. Rather, they are used as 
communication ports that have specific functions associated with each register. The pro
grammer is never required to explicitly access these interface registers, since the access 
level control interface is implemented in the hardware and microcode of the MC68020 and 
the MC68851. When the MC68020 is not used as the main processor, the MC68851 ALCRs 
can be explicitly accessed by a software routine that emulates the behavior of the MC68020 
with respect to the access level control interface. 

For more information on the electrical interconnection between the main processor and 
the MC68851, refer to APPENDIX B HARDWARE CONSIDERATIONS. 

10.1.1 Selecting the MC68851 

A portion of the CPU space, identified by the MC68020 address bus is dedicated to access 
control functions. Figure 10-1 illustrates the required address bus encoding for access level 
control accesses in the CPU address space. The bit positions' marked with an 'x' are zero
filled by the MC68020 but are ignored by the MC68851. 

During CPU space cycles, address bits A16-A19 indicate the CPU space function that the 
main processor is performing. The MC68020 utilizes four of the possible 16 encodings of 
A 16-A 19 as listed in Table 9-1. 

FUNCTION 
CODE 

31 

10 1 1 11 x x x x x x x x x x x x 

19 15 

000000000 MMU REGISTER 

Figure 10-1. Access Level Control Interface Logical Address Bus Encoding 

MC68851 USER'S MANUAL MOTOROLA 
10-1 

IE 



The MMU register (ALCR select) field, AD-A15, is decoded by the MC68851 to select the 
appropriate ALCR. Although the MC68851 decodes the full address range specified on 
AO-A15, the MC68851 ALCRs occupy only the lower 128 bytes of this range. Any access 
above this range (A7-A 15 = 0) is ignored for a write cycle and returns the null value (all 
ones) for a read (the MC68851 terminates these accessses by asserting DSACKx). For a 
map of the implemented MC68851 access control interface registers in the CPU address 
space, refer to Figure 10-2. Since address bits A20-A31 are not present on all implemen
tations of M68000 processors, these bits are not essential for decoding CPU space trans
actions and are ignored for the purposes of decoding CPU space accesses. 

$10000 

$10004 

$10008 

$1000C 

$10040 

$10044 

$10048 

$1004C 

$10050 

$10054 

$10058 

$1005C 

31 

CL 

ACCESS STATUS 

IAL 

DAL 

23 

(UNUSED, RESERVED) 

(UNUSED. RESERVED) 

(UNUSED, RESERVED) 

(UNUSED, RESERVED) 

FUNCTION CODE 0 DESCRIPTOR ADDRESS 

FUNCTION CODE 1 DESCRIPTOR ADDRESS (USER DATA) 

FUNCTION CODE 2 DESCRIPTOR ADDRESS (USER PROGRAM) 

FUNCTION CODE 3 DESCRIPTOR ADDRESS (USER. RESERVED) 

FUNCTION CODE 4 DESCRIPTOR ADDRESS (SUPERVISOR DATA) 

FUNCTION CODE 5 DESCRIPTOR ADDRESS (SUPERVISOR PROGRAM) 

FUNCTION CODE 6 DESCRIPTOR ADDRESS 

FUNCTION CODE 7 DESCRIPTOR ADDRESS (CPU SPACE) 

Figure 10-2. MC688S1 Access Level Control Interface Register Map 

The internal MC68851 chip select decode for the access level control interface is therefore 
based upon the function code signals (FCO-FC3) and the CPU space type field (A 16-A 19). 
The MC68851 decodes the address bits AO-A6 (A7-A 15 must be zero) to determine the 
function of any access level control access. 

10.1.2 Access Level Control Interface Registers 

Table 10-1 identifies the MC68851 access level control interface register locations in the 
CPU space that are used for communications between the MC68020 and the MC68851. 
Figure 10-2 illustrates the memory map of the ALCRs on a 32-bit bus. When an access level 
control cycle is executed, the MC68851 decodes the ALCR select field of the address bus, 
AO-A6 (A7-A 15 = 0), to select the appropriate access level control interface register. 

The access level control interface registers of the MC68851 appear at the logical addresses 
shown in Figure 10-2 and Table 10-1. 

The following paragraphs describe the characteristics of each of the access level control 
interface registers as implemented by the MC68851. In these descriptions, the read/write 
attributes of each register are given. If a register is read-only, write accesses to that location 
are ignored; read accesses of a write-only register always return all ones. In all cases, the 

MOTOROLA 
10-2 

MC68851 USER'S MANUAL 



Table 10-1. Access level' Control Interface 
Register Characteristics 

Register A6-AO Offset Width 

CL 0000000 $00 8 

Access Status 0000100 $04 8 

IAL 0001000 $08 8 

DAL 0001100 $OC 8 

FCO Descriptor Address 10000xx $40 32 

FC1 Descriptor Address 10001xx $44 32 

FC2 Descriptor Address 10010xx $48 32 

FC3 Descriptor Address 10011xx $4C 32 

FC4 Descriptor Address 10100xx $50 32 

FC5 Descriptor Address 10101xx $54 32 

FC6 Descriptor Address 10110xx $58 32 

FC7 Descriptor Address 10111xx $5C 32 

Type 

Read 

Read 

Write 

Write 

Write 

Write 

Write 

Write 

Write 

Write 

Write 

Write 

MC68851 asserts DSACKx in response to all CPU space cycles accessing the access level 
control interface (FCO-FC3 = $7, CPU space type = $1) to terminate the bus cycle. 

10.1.2.1 CURRENT lEVEL (Cl) AlCR ($00). When read by the CPU, this 8-bit read-only 
register supplies the highest-order three bits of the CAL register in the most significant 
three bits ibits [5-7]) and the highest-order three bits of the VAL register in bits [1-3]. This 
register is read by the MC68020 during the execution of a CALLM instruction in order to 
save the access information (CAL and VAL) of the calling module in the saved access level 
field of the module call stack frame. 

10.1.2.2 ACCESS STATUS (AS) AlCR ($04). This 8-bit read-only register contains the 
status of an access level change that has been requested by the MC68020. During the 
execution of a CALLM instruction, the MC68851 uses the information contained in the 
current access level register (CAL), increase access level ALCR (lAL), and the stack change 
control register (SCC) to determine whether or not the requested module call, is valid and 
whether or not a stack change should occur before program control is passed to the called 
module. This information is available in AS and is read by the processor to determine the 
validity of the module operation. 

During the execution of an RTM instruction, the MC68851 uses the information contained 
in the CAL register and the decrease access level ALCR (DAL) to determine whether or not 
the requested module return operation is valid. 

The encodings for the AS ALCR are shown in Table 10-2. The algorithm used to calculate 
the access status encoding for the CALLM instruction is shown in Figure 10-3., 

10.1.2.3 INCREASE ACCESS LEVEL (lAL) AlCR ($08). This 8-bit write-only register is the 
register through which the MC68020 requests increased access rights during a module call 
operation. When this register is written, the MC68851 compares the access level contained 
in the highest-order bits of IAL (1, 2, or 3 bits as determined by the number of access levels 

MC68851 USER'S MANUAL MOTOROLA 
10-3 



Table 10-2. Access Status Register Code 

Value Validity Processor Action 

00 Invalid Format Error 

01 Valid No Change in Access Rights 

02-03 Valid Change Access Rights with No Change of Stack Pointer 

04-07 Valid Change Access Rights and Change Stack Pointer 

Other Undefined Undefined (Take Format Error) 

in use) against the corresponding bits in the CAL register. If the IAL field is less than or 
equal to the CAL field (the call is to a module with equal or greater privilege), the requested 
change is valid, the MC68851 transfers the contents ofthe CAL register to VAL and transfers 
the new access level in IAL to CAL. If IAL is greater than CAL (the call is to a module with 
less privilege), the module operation is invalid, no transfer between registers is made, and 
the contents of the access status ALCR are updated to indicate that a format exception 
should be taken by the CPU. 

10.1.2.4 DECREASE ACCESS LEVEL (DAL) ALCR ($08). This 8-bit write-only register is 
the register through which the MC68020 requests decreased access rights during a module 
return operation. 

When written by the CPU, the MC68851 compares the access level contained in the highest 
order bits of DAL (1, 2, or 3 bits as determined by the number of access levels in use) 
against the corresponding bits in the CAL register. If the DAL field is greater than or equal 
to the CAL field (the return is to a module with equal or less privilege), the requested 
change is valid, the highest-order three bits of DAL (bits [5-7]) are placed in bits [5-7] of 
CAL and bits [1-3] of DAL are placed in bits [5-7] of VAL. If DAL is less than CAL, the return 
operation is invalid, no transfer between registers is made, and the access status ALCR is 
updated to indicate that a format exception should be taken by the CPU. 

During the execution of an RTM instruction, the MC68020 writes the saved access level 
field from the module call stack frame to the DAL register to reverse the operation per
formed by reading the CL ALCR during the CALLM instruction. 

10.1.2.5 DESCRIPTOR ADDRESS ALCRS ($40 THROUGH $5C). These eight 32-bit reg
isters are used by the MC68020 to pass the module descriptor address to the MC68851 
during a type $01 module call (requsting a change in access level). There is one descriptor 
address ALCR corresponding to each of the eight MC68020 address spaces (as defined by 
the function code outputs of the CPU). 

During execution of the CALLM instruction, the MC68020 writes the logical address of the 
module call descriptor to the descriptor address ALCR corresponding to the address space 
in which the descriptor resides. If module operations are enabled (AC [7] = 1) and the 
module de,scriptor size is set to a valid size (AC[0-1] = 0), the MC68851 checks the validity 
of the descriptor. If any of the above conditions are not met, the access status ALCR is 
updated to indicate that a format exception should be taken by the CPU. 

In order to verify that the module descriptor address is valid, the logical address formed 
by the contents of the descriptor address ALCR, and the function code implicitly associated 

MOTOROLA 
10-4 

MC68851 USER'S MANUAL 



MC68851 MC68020 

~ 
DECODE INSTRUCTION AND READ FIRST WORD OF MODULE DESCRIPTOR 
(CONTAINS CALLM OPTION ANI) TYPE) 

CL[5-7] ...-- CAL[5-7] 
CL[1-3] ...-- VAL[5-7] READ CURRENT LEVEL ALCR 

SAVE CL VALUE IN MODULE STACK FRAME 
'SAVED ACCESS LEVEL' FIELD 

CHECK ATC FOR ENTRY m WRITE MODULE DESCRIPTOR ADDRESS TO 
DESCRIPTOR ADDRESS ALCR 

~fOR ADDRESS IN ATe 

ENTRY FOR ADDRESS IN ATC -----., 

ISSUE RELINQUISH AND RETRY ttJ TERMINATE AND 
RELEASE BUS 

PERFORM TABLE SEARCH AND 
CREATE ATC ENTRY 

CHECK G & BERR BITS OF ATC ENTRY W 
AND PERFORM MODULE DESCRIPTOR 

ALIGNMENT CHECK 

DTHERWIS~BERR" 0, ALIGNMENT CHECK 
~. PASSED & AC[7] = 1--.., 

CALLJiTATUS ..- 0 D CALIjiTATUS"'-- 1 D 

COMPARE IAL TO CAL 

CALCULATE ACCESS STATUS 
(REFER TO FIGURE 10-4 FOR DETAIL) 

4 ~ ACCESS STATUS ~ 7 ACCESS STATUS = 1 

~ WRITE NEW ACCESS LEVEL TO IAL 

ttl READ ACCESS STATUS 

ACCESS STATUS = 2 OR 3 ACCESS STATUS = 0 OR > 7 ,--- r ~ ---, 

O 
PROCEED WITH MODULE CALL 
(ACCESS LEVEL CHANGE AND 
STACK POINTER CHANGE) 9J PROCEED WITH MODULE CALL 

(NO ACCESS LEVEL CHANGE, 
NO STACK POINTER CHANGE) 9J PROCEED WITH MODULE CALL 

(ACCESS LEVEL CHANGE, 
NO STACK POINTER CHANGE) 

D 
TAKE FORMAT 
EXCEPTION 

Figure 10-3. CALLM Instruction Dialog Flowchart 

with that register are used by the MC68851 to perform a table search to locate the translation 
descriptor corresponding to that address. As part of the execution of the CALLM instruction, 
the MC68020 reads the first word of the module descriptor prior to writing its address to 
the descriptor address ALCR, so the ATC will usually contain the required entry. However, 
it may be necessary to perform an external search for the translation descriptor. 

Me68851 USER'S MANUAL MOTOROLA 
10-5 



When the MC68851 locates the translation descriptor for the page containing the module 
descriptor (either in the ATC or from a search of the external tables), it first checks to 
ensure that the G bit of the page descriptor is set indicating that the page is allowed to 
contain module descriptors. If this check passes, the MC68851 examines the low-order bits 
of the module descriptor address to ensure that the descriptor begins on an appropriate 
byte boundary as determined by the MDS field of the access control (AC) register (bits 
[0-1]). For module descriptor sizes of 16, 32, and 64 bytes, the lowest order four, five, or 
six bits, respectively, of a module descriptor address must be zero in order for that address 
to be valid. If either of the above two conditions are not met, the access status ALCR is 
updated to indicate that a format exception should be taken by the CPU. 

If the MC68851 cannot locate a translation for the module descriptor (table search termi
nated due to encountering an invalid descriptor or a bus error during the table search) the 
access status ALCR is updated to indicate that a format exception should be taken by the 
CPU. 

10.2 CALLM AND RTM INSTRUCTIONS 

The following paragraphs detail the communication dialog between the MC68020 and the 
MC68851 during execution of the module call and return instructions with the type $01 
attribute (requesting a change in access level). This discussion assumes that the reader is 
familiar with the format of the module descriptors and stack frames. For further details 
concerning the CALLM and RTM instructions refer to Appendix D Advanced Topics of the 
MC68020 32-Bit Microprocessor User's Manual. 

10.2.1 CALLM Instruction 

The MC68020/MC68851 dialog for the CALLM type $01 instruction begins when the MC68020 
reads the current access level information (CAL and VAL) from the MC68851 CL ALCR. The 
value supplied by the MC68851 is placed in the saved access level field of the module call 
stack frame. 

The next operation performed is a verification of the validity of the module descriptor 
address. The MC68020 writes the address ofthe module descriptor to the descriptor address 
ALCR corresponding to the address space in which the descriptor is located .. If a valid 
translation for the descriptor address can be located and module operations are allowed, 
the MC68851 checks to ensure that the page is allowed to contain module descriptors (G 
bit set) and that the module descriptor address resides on a proper byte boundary as 
determined by the value of the access control register. 

The MC68020 then requests that the current access level be updated by writing the new 
access level, taken from the access level field of the module call descriptor, to the increase 
access level ALCR. If the new access level is less than or equal to the current access level 
contained in CAL (the called module has a privilege level that is the same as or higher 
than the calling module), the change is allowed and VAL is updated to contain the privilege 
level of the calling module (the old value of CAL), and CAL is updated with the contents 
of IAL to contain the privilege level of the currently active module. 

After completion of the access level change verification, the MC68851 uses the information 
contained in the stack change control (SCC) register to determine whether or not the CPU 
should change stack pointers before entering the called module. During configuration of 
the MC68851, the operating system informs the MC68851 as to when stack pointer changes 
must occur during module operations by the values set in the SCC register. 

MOTOROLA 
10-6 

MC68851 USER'S MANUAL 



There is one bit in SCC corresponding to each of the eight possible distinct access levels. 
If bit n of SCC is set, all module calls from a less privileged access level m (m > n) to an 
access level g of privilege n or higher (g ::s n) require a change of stack pointers before 
the module call can be completed. Module calls that do not change access levels (m = g) 
do not require stack pointer changes. Thus, the operating system can specify that stack 
pointer changes are required for all module calls that require a change in access level by 
setting SCC to all ones. Alternately, the operating system can specify that stack changes 
are never required by clearing all of SCC or could chose any combination of change 
requirements between these two extremes. For example, setting bit 3 of SCC causes the 
MC68851 to signal the processor that it must perform a stack change before entering a 
module at levels three, two, one, or zero when the calling module has a privilege level of 
four or greater (lower privilege). Similarly, setting bit zero of SCC and leaving all others 
clear dictates that a stack change must occur when a module operating at any lower 
privilege level (zero·indicating highest priority) calls a level zero module. No other module 
operations require a stack change. 

The final action required to complete the module call dialog between the MC68851 and 
the MC68020 is for the MC68020 to read the access status (AS) register to determine if the 
call is valid and to determine whether or not a stack change should occur. The AS encodings 
used by the MC68851 are shown in Table 10-2. 

If any of the validity checks discussed above failed, the CAL and VAL registers are not 
updated, and the access status register returns a format exception encoding. Otherwise, 
one of the valid encodings is returned. 

A flowchart of the MC68851/MC68020 dialog for the CALLM type $01 instruction is shown 
in Figure 10-4. 

ENTRY 

~ 
CALL STATUS = 0 OR IAL > CAL CALL STATUS = 1 CALL STATUS = 1 & IAL < CAL r--- & IALI = CAL -----, 

ACCESS STATUS .- $00 ACCESS STATUS .- $01 n .- IAL 

m .- CAL 

CHANGE..§TACK'- {SCC[n) v SCC[n+1) V ... V SCC[m)~ 

~ 
fGEJ:TACK " 0 CHANGLSTACK~ 

ACCESS STATUS .- $03 ACCESS STATUS .- $07 

"V" IS THE LOGICAL OR OPERATOR 

EXIT 

Figure 10-4. Access Status Computation Flowchart 

MC68851 USER'S MANUAL MOTOROLA 
10-7 



• 

10.2.2 RTM Instruction 

Providing that the MC68851 access level mechanism is enabled and module operations 
are allowed, the MC68020/MC68851 dialog for the RTM instruction begins when the MC68020 
writes the saved access level information (CAL and VAL) to the MC68851 DAL ALCR. The 
value written to the MC68851 was placed in the saved access level field of the module call 
stack frame by the CALLM instruction. 

Following the write operation to DAL, the MC68851 compares the access level contained 
in the highest order bits of DAL (one, two, or three bits as determined by the number of 
access levels in use) against the corresponding bits in the CAL register. If the DAL field is 
greater than or equal to the CAL field (the return is to a module with equal or less privilege), 
the requested change is valid, the highest-order three bits of DAL (bits [5-7]) are placed 
in bits [5--7J of CAL, and bits [1-3J of DAL are placed in bits [5--7J of VAL. If DAL is less 
than CAL, the return operation is invalid, no transfer between registers is made, and the 
access status ALCR is updated to indicate that a format exception should be taken by the 
CPU. Otherwise, AS is set to $01 to indicate that the return operation is valid. 

A flowchart of the MC68851/MC68020 dialog for the RTM instruction is shown in Figure 
10-5. 

MC68851 MC68020 

rR 
DECODE INSTRUCTION AND READ FIRST WORD OF MODULE 
STACK FRAME (CONTAINS SAVED ACCESS lEVElI 

COMPARE DAl TO CAL WRITE 'SAVED ACCESS lEVel FIELD' TO DAl AlCR 

~ 
DAl ;;;. CAL DAl < CAL 

ACCESS STATUS .- $01 ~~ l 
CAl[5·7) ..... DAl[5·7) ACCESS STATUS .-$00 U 
VAl[5·7] ..... DAL[I·3] 

MOTOROLA 
10-8 

IT] READ ACCESS STATUS AlCR 

~ 
ACCESS STATUS = I ACCESS STATUS = 0 

r ~ 
D PROCEED WITH MODULE RETURN D TAKE FORMAT 

EXCEPTION 

Figure 10-5. RTM Instruction Dialog Flowchart 

MC68851 USER'S MANUAL 



SECTION 11 
OPERATION TIMINGS 

This section gives the instruction execution and operations (table searches, ... , etc.) times 
for the MC68851 in terms of external clock cycles. This section provides the user with some 
reasonably accurate execution and operations timing guidelines, not exact timings for every 
possible circumstance. This approach is used since the exact execution time for an instruc
tion or operation is highly dependent on such things as processor/coprocessor timing 
relationships, memory speeds, and external table structures. The timing numbers pre
sented in the following tables allow the assembly language programmer or compiler writer 
to predict worse case timings needed to evaluate the performance of the MC68851. Ad
ditionally, the timings for exception processing, context switching, and interrupt processing 
are included so that designers of multitasking or real-time systems can predict such things 
as task switch overhead and maximum interrupt latency due to the presence of the MC68851. 

11.1 FACTORS AFFECTING EXECUTION TIMES 

When investigating instruction execution timing for the MC68851, it is assumed that a 
system designer requires the following information in order to make informed engineering 
decisions: 

• Best case instruction execution and operating timing for the MC68851, for determining 
whether or not the MC68851-based system can meet certain performance criteria. 

• The effects that an MC68851 might have on system related timings such as context 
switch overhead time in multi-tasking systems or interrupt latency in real-time sys
tems. 

In this manual, instruction execution times are given in clock cycles to remove clock fre
quency dependencies from the times given, and the following assumptions are used to 
define the context of the times given. 

• The main processor is an MC68020, acting as the host to the MC68851, and the two 
devices use the same clock input. 

• All operands in memory, as well as the system stack, are long word aligned. 
• A 32-bit data bus is used for communications between the MC68020 and both the 

MC68851 and system memory. 
• All memory accesses occur with no wait states. 
• No exceptions occur (except as specified). 

11.2 ADDRESS TRANSLATION TABLE SEARCH TIMING 

The time taken for an address translation table search by the MC68851 depends on the 
configuration of the translation tables, the states' of U and M bits in the translation de
scriptors, the length of time that a bus cycle takes, and other factors. Since there are a 
large number of variables involved, a program is provided that calculates the time required 
for the MC68851 to perform a table search. To allow the time to be determined for any 
configuration, the following interactive program may be used. The program is a shell script 
suitable for use with sh(1) on either UNIX® System V or BSD 4.2. To use this program, run 

UNIX is a registered trademark of AT&T Bell Laboratories. 

MC68851 USER'S MANUAL MOTOROLA 
11-1 

• 



.. 

the script and answer questions regarding the system configuration and current state as 
prompted by the program. When the routine prompts the user, the value in square brackets 
at the end of a question line is the default value that will be used if a carriage return is 
entered. 

The shell script assumes that the data bus between the MC68851 and memory is 32 bits 
wide. To calculate the table search time for buses narrower than 32 bits, supply the time 
required for two bus cycles (16-bit data bus) or four bus cycles (8-bit data bus) when 
prompted for the basic bus cycle time. 

The times provided by this procedure include all phases of the table search (bus arbitration, 
... , etc.). 

Timings on various mask versions of the MC68851 may differ slightly from the values 
calculated by the shell script. 

###################################################################### 
# This script is suitable for use with sh(1) on either System Vor 
# BSD 4.2. When run, it will prompt for several parameters, print a 
# configuration message, and then print the number of clocks and bus 
# cycles required for the table search. Questions may be answered with 
# a return, and the default in square brackets will be selected. 
# 
# The following things should be noted by the user: 
# 
# 1. This script gives an approximation of the time taken for a table 
# search and associated overhead for a miss in the ATC. The exact 
# time may vary across different mask versions of the MC68851. 
# 
# 2. It does not give the time for table searches required by the PLOAD 
# and PTEST instructions. These will typically be longer. 
# 
# 3. It does not account for Delay Timeouts (OTOs) other than the default, 
# asyncronous operation with a master, write bus cycles of different 
# length than read bus cycles, or exception conditions that can 
# arise during a table search. 
# 
# 4. It does little error checking. It is possible to describe inconsistent 
# and impossible configurations to the script. 
# 

# Note: On System V, the "-n" flag should be removed from the echo 
# commands 

echo "Enter bus arbitration time (clocks from SO to first T1). " 
echo -n "Minimum is 7 [7]:" 
read busarb 
if test! "$busarb"; then 

busarb=7 
fi 

echo -n "Enter bus cycle time (in clocks) [3]: " 
read bus 
if test! "$bus"; then 

bus=3 
fi 

echo "Enter 1 if bus arb proceeds in parallel" 
echo -n "with startup, a otherwise [1]: II 

read early 
if test! "$early"; then 

early=1 
fi 

MOTOROLA 
11-2 

MC68851 USER'S MANUAL 



echo -n "Enter 1 if there is a function code lookup, a otherwise [0]: " 
read fcl 
if test! "$fcl"; then 

fcl=O 
fi 

echo "Enter number of long descriptors (page and pointer), " 
echo -n "including FCL ones [0]: " 
read long 
if test! "$Iong"; then 

10ng=0 
fi 

echo "Enter number of short descriptors (page or pointer), " 
echo -n "including FCL ones [0]: " 
read short 
if test! "$short"; then 

short=O 
fi 

echo -n "Enter number of short to long transitions [0]: " 
read s to I 
if test !"$5_to_I"; then 

s_to-'=O 
fi 

echo -n "Enter 1 if there is a long indirect descriptor, a otherwise [0]: " 
read lind 
if test! "$Und"; then 

Ul'!d=O 
fi 

echo -n "Enter 1 if there is a short indirect descriptor, a otherwise [0]: " 
read sind 
if test !"$s_ind"; then 

sjnd=O 
fi 

echo -n "Enter number of cleared ubits encountered in long pointers [0]: ., 
read I-pointer_ubits 
if test I "$I-pointer_ubits"; then 

l-pointer_ubits=O 
fi 

echo -n "Enter number of cleared ubits encountered in short pointers [0]: " 
read s-pointer_ubits 
if test! "$s-pointer_ubits"; then 

s-pointer_ubits=O 
fi 

echo -n "Enter 1 if the page descriptor ubit is set, a otherwise [1]: " 
read page_ubit 
if test! "$page_ubit"; then 

page_ubn=1 
fi 

echo -n "Enter 1 if the page descriptor mbit is set, a otherwise [1]: " 
read page_mbit 
if test! "$page_mbit"; then 

page_mbit=1 
fi 

MC68851 USER'S MANUAL MOTOROLA 
11-3 

a 



.. 

echo "Enter 1 if the page descriptor is encountered unexpectedly," 
echo -n "0 otherwise [0]: " 
read et 
if test! "$et"; then 

et=O 
fi 

echo "Enter 1 if the walk occurred due to a" 
echo -n "write to an unmodified page [1]: II 

read unmod 
if test! "$unmod"; then 

unmod=1 
fi 

echo -n "Enter 1 if the page descriptor is long, and not root pointer [0]: " 
read 10ng.J)age 
if test! "$long.J)age"; then 

10ng.J)age=0 
fi 

#################################################################### 
# 
# Variables: 
# 
# overhead - startup and termination overhead (boxes). 
# busarb - the time from lBROUT asserted to first box. 
# bus_accesses - number of bus accesses required. 
# s_to_l.J)enalty- dead time between a short to long transition. 
# 
# 
#################################################################### 

#################################################################### 
# 
# Print Configuration message. 
# 
#################################################################### 

levels='expr $short + $Iong + $Und + $s_ind' 

if test $fcl -eq 1 ; then 
tmp1 =" one for FCl" 

else 
tmp1='"' 

fi 

out1 ="Configuration: $Ievels levels $tmp1 

if test $Iong -ne 0 ; then 
out1 ="$out1 $Iong long descriptors" 
fi 

if test $short -ne 0 ; then 
out1 ="$out1 $short short descriptors" 
fi 

MOTOROLA 
11-4 

MC68851 USER'S MANUAL 



if test $Und -eq 1 ; then 
out1 ="$out1 long indirection" 

elif test $s_ind -eq 1 ; then 
out1 ="$out1 short indirection" 

fi 

out2="+" 

if test $early -eq 0 ; then 
out2="$out2 no early startup, " 

fi 

if test $s_to_1 -ne 0 ; then 
out2="$out2 $s_to-' short to long transitions, " 

fi 

if test $I-pointer_ubits -ne 0 ; then 
out2="$out2 $I-pointer_ubits long pointer ubits clear, " 

fi 

if test $s-pointer_ubits -ne 0 ; then 
out2="$out2 $s-pointer_ubits short pointer ubits clear, ,. 

fi 

if test $page_ubit -eq 0 ; then 
out2="$out2 page ubit clear, " 

fi 

if test $page_mbit -eq 0 ; then 
out2="$out2 page mbit clear, ,. 

fi 

if test $et -eq 1 ; then 
out2="$out2 early termination, ,. 

fi 

if test $unmod -eq 1 ; then 
out2="$out2 write to unmodified page, ,. 

fi 

if test $Iong-page -eq 1 ; then 
out2="$out2 page is long;" 

else 
out2="$out2 page is short;" 

fi 

out3="$bus clock bus cycle time; $busarb clock busarb." 

echo 
echo $out1 
echo" ,. $out2 
echo" ,. $out3 

Me68851 USER'S MANUAL MOTOROLA 
11-5 

III 



.. 

#################################################################### 
# 
# CalaJlate resutt. 
# 
#################################################################### 

# time from BEGINNING of bus cycle which misses to first box, early mode. 
cough=4 

# 3 boxes of startup, when no FCL. 
startup=6 

# 3 boxes of termination. 
termination=6 

# clocks between last box's T4 and SO of the 020's retry (typical?). 
posCbusarb=4 

# Bus accesses begin sooner if FCL - no limit check. 
if test $fcl -eq 1 ; then 

startup='expr $startup - 2' 
fi 

overhead='expr $cough + $startup + $termination' 

if test $early -eq 0 ; then 
overhead='expr \( $overhead + $busarb \) - $cough' 

elif test $busarb -gt 'expr $startup + $cough' ; then 
overhead='expr $busarb + $termination' 

fi 

overhead='expr $overhead + $posCbusarb' 

bus_accesses='expr \( $Iong \* 2 \) + $short + \( $Und \* 2 \) + $s_ind' 

if test $bus_accesses -eq 0 ; then 
if test $et -ne 1 ; then 

echo Error: 0 bus accesses implies unexpected page encountered. 
fi 

# If the page is et, the startup + termination equals 14. 
clocks='expr $overhead - \( $startup + $termination \) + 14' 

else 

# In transnions, DESCHL access is 4 clocks after DESCH access. 
if test $bus -tt 4 ; then 

s_to_l-penalty='expr 4 - $bus' 
else 

s_to J-penalty=O 
fi 

Lpointecubn_delay=2 
if test $bus -tt 4; then 

l-pointer_ubiCdelay='expr \( 4 - $bus \) \* 2' 
fi 

# The next level's read dead time is hidden in the 
# current level's write time. 

Lpointer_ubit_delay='expr $I-pointer_ubit_delay - 2' 

MOTOROLA 
11-6 

MC68851 USER'S MANUAL 



# ET vector parallels last descl fetch if page is long. 
if test $Iong-page -eq 1 ; then 

if test $bus -tt 8 ; then 
eLdelay='expr 8 - $bus' 

fi 
# ET vector occurs after all fetches if page is short. 

else 
et_delay=8 

fi 

# This code decides if a write or RMC needs to be done to set 
# the history bits in the page descriptor 

if test \( $page~ubit -eq 0 -a ! \ 
\( $page_mbit -eq 0 -a $unmod -eq 0 \) \) \ 

-0\ 
\( $page_ubit -eq 1 -a $page_mbit -eq 0 -a $unmod -eq 1 \) ; \ 

then 
write-page=1 

else 

fi 
write-page=O 

if test $page_ubit -eq 0 -a $page_mbit -eq 0 -a $unmod -eq 0 ; then 
rmc-page=1 

else 
rmc-page=O 

fi 

#################################################################### 
# 
# Perform the calculation. 
# 
#################################################################### 
# 

fi 

clocks='expr $overhead 
+ \( $Iong \* \( 2 + 2 \* $bus \) \) 
+ \( $short \* \( 2 + $bus \) \) 
+ \( $s_to_1 \* $s_toJ-penalty \) 

\ 
\ 
\ 
\ 
\ 

+ \( $Und \* \( 5 + \( 2 \* $bus \) + $unmod \* 2 \) \) \ 
+ \( $sjnd \* \( 5 + $bus + $unmod \* 2 \) \) \ 
+ \( $Lpointer_ubits \* \( $1J)ointer_ubit_delay + $bus \) \) \ 

+ \( $sJ)Ointecubits \* \( 4 + $bus \) \) \ 
\ 

+ \( $rmc-page \* \( 3 + \( 2 \* $bus \) + $unmod \* 2 \) \) \ 
+ \( $writeJ)age \* \( 4 + $bus + $unmod \* 2 \) \) \ 

\ 
+ \( $et \* \( $eLdelay + $unmod \* 2 \) \) \ 

\ 
+ \( $unmod \* 8 \)' 

MC68851 USER'S MANUAL MOTOROLA 
11-7 

III 



• 

out=" Clocks required from beginning of missed bus cycle: $clocks" 
echo 
echo $out 

write_accesses='expr $Lpointer_ubits + $s_pointer_ubits + $write_page' 

out="Bus Reads: $bus_accesses" 
echo $out 

prinLtotal=O 
if test $write_accesses -ne 0 ; then 

out="Bus Writes: $write_accesses" 
echo $out 
print_total= 1 

fi 

if test $rmc-page -eq 1; then 
out=" Bus RMCs: 1" 
echo $out 
prinLtotal= 1 

fi 

bus_accesses='expr $bus_accesses + $write_accesses + \( $rmc-page \* 2 \)' 

if test $prinLtotal -eq 1 ; then 
out="Total Bus Cycles: $bus_accesses" 
echo $out 

fi 
###################################################################### 
######## 

The following table gives some sample times obtained using the shell script. Each row of 
the table indicates a translation table configuration. The identifier on each row consists of 
five positions. Each position may have either an "x" meaning that there is no table at the 
level, an "S" meaning that the table at the level is composed of short format descriptors, 
or an "L" meaning that the table at the level is composed of long format descriptors. The 
format of the entries is: 

Function Code Table 

Level A Table 

Level B Table 

Level C Table 

Level D Table 

xx I xxI xxI xxI xx 

T 

Each entry in the table consists of three numbers that give the number of clock cycles, the 
number of bus reads, and the number of bus writes required for a table search. An RMC 
cycle to set the U bit is counted as one read and one write. The format of the entries is: 

MOTOROLA 
11-8 

MC68851 USER'S MANUAL 



xxi xxi xx 

Number of Clocks Cycles 

Number of Read Bus Cycles 

Number of Write Bus Cycles 

The table is calculated based on the following assumptions: 
• Bus Arbitration Time is Seven Clock Cycles 
• Bus Cycle Time is Three Clock Cycles 
• Bus Arbitration Proceeds in Parallel. with MC68851 Startup 
• There are No Indirect Descriptors 
• There are No Page Descriptors Encountered Unexpectedly (i.e., at the pointer table 

level) 
• The Data Bus Between the MC68851 and Memory is 32-Bits Wide 

History Bit Maintenance Required by the Table Search 

Table Format All U and M Bits Page U and M Bits Page U Bit Set No U or M Bits 
Must be Set Only Must be Set with RMC Must be Set 

LlLIx/x/x* 44/4/2 41/4/1 44/5/1 34/4/0 

LlLlLlx/x* 55/6/3 49/6/1 52/7/1 42/6/0 

LlLlLlLlx* 66/8/4 57/8/1 60/9/1 50/8/0 

LlLlLlLlL 77/10/5 65/10/1 68/11/1 58/10/0 

S/S/x/x/x* 42/2/2 35/2/1 38/3/1 28/2/0 

S/S/S/x/x* 54/3/3 40/3/1 43/4/1 33/3/0 

S/S/S/S/x* 66/4/4 45/4/1 48/5/1 38/4/0 

S/S/S/S/SI 78/5/5 50/5/1 53/6/1 43/5/0 

x/S/S/x/x 44/2/2 37/2/1 40/3/1 30/2/0 

x/S/Llx/x 4813/2 41/3/1 44/4/1 34/3/0 

xlLlS/x/x 43/3/2 40/3/1 43/4/1 33/3/0 

x/LlLlx/x 46/4/2 43/4/1 46/5/1 36/4/0 

x/SIS/Six 56/3/3 42/3/1 45/4/1 35/3/0 

x/S/S/Llx 60/4/3 46/4/1 49/5/1 39/4/0 

x/S/LIS/x 56/4/3 46/4/1 49/p/1 39/4/0 

x/S/LlLlx 59/5/3 49/5/1 52/6/1 42/5/0 

x/LIS/S/x 55/4/3 45/4/1 48/5/1 38/4/0 

x/LIS/Llx 59/5/3 49/5/1 52/6/1 42/5/0 

x/LlLlS/x 54/5/3 48/5/1 51/6/1 41/5/0 

x/LlLlLlx 57/6/3 51/6/1 54/7/1 44/6/0 

*For configurations without function code lookup and with one additional level (e.g., x/LlLlx/x instead of LlLlx/x/ 
x), add two clocks. 

11.3 INSTRUCTION TIMING 

In the following paragraphs, timing tables are presented that allow the calculation of worst 
case execution times for any MC68851 instruction. The tables are based on the assumptions 

MC68851 USER'S MANUAL MOTOROLA 
11-9 

• 



.. 

stated above, and include the total execution time for each instruction, from the time when 
an MC68020 begins execution of the coprocessor instruction (when the instruction has 
been prefetched and loaded into the instruction decode register) to the time when the 
MC68851and/or MC68020 completes execution of the instruction (when a read of the 
response CIR indicates a null response, when conditional processing has been completed, 
or when the last transfer to or from the MC68851 is completed). 

Bus cycle activity is also indicated by the tables, and includes all bus cycles generated by 
a particular operation. Note that instruction prefetch and operand write cycles requested 
by the execution of a given instruction may not actually be executed during the execution 
of the instruction, but are queued by the MC68020 bus interface unit for completion as 
soon as the bus is available (refer to MC68020 32-8;t Microprocessor User's Manual for 
more information on bus cycle overlap). When an MC68851 instruction is completed, a 
prefetch request will have been generated by the MC68020 to replace each word of in
struction stream used by the instruction or to refill the instruction pipe in the case of a 
conditional branch taken, a trap taken, or an exception. 

The execution time entries in the following tables contain six numbers. The leftmost number 
is the total execution time for the instruction in clock cycles. In parenthesis is the bus cycle 
activity, which indicates the number of instruction prefetch, operand read, operand write, 
coprocessor read, and coprocessor write bus cycles that will be generated by the execution 
of the instruction. The format of the entries is: 

Total Execution Time 

Number of Prefetch Bus Cycles 

Number of Operand Read Bus Cycles 

Number of Operand Write Bus Cycles 

Number of Coprocessor Read Bus Cycles 

Number of Coprocessor Write Bus Cycles 

xx (xx I xxI xxI xxI xx) 

______ T T 

The set of tables provided in this section allow a quick determination ofthe typical execution 
time for any MC68851 instruction when the MC68020 is used as the main processor. The 
first table presented is for effective address calculations performed by the MC68020. Entries 
from this table are added to the entries in the other tables in this subsection, if necessary, 
to obtain the overall execution time for an operation. The assumptions for the following 
tables are: 

• The main processor is an MC68020 and operates on the same clock as the MC68851. 
Instruction prefetches do not hit in the MC68020 cache (or it is disabled), and the 
instruction is aligned such that a prefetch occurs before the command CIR is written 
by the MC68020. 

• A 32-bit memory interface is used, and memory accesses occur with zero wait states. 
All memory operands, as well as the stack pointers, are long-word aligned. 

• No instruction overlap is allowed, so the coprocessor interface overhead is 11 clocks. 

• No exceptions occur. 

MOTOROLA 
11-10 

Me68851 USER'S MANUAL 



11.3.1 Effective Address Calculation 

For any instruction that requires an operand external to the MC68851, an evaluate effective 
address and transfer data response primitive is issued by the MC68851 during the dialog 
for that instruction. The amount of time that is required by the MC68020 to calculate the 
effective address while processing this primitive for each addressing mode, excluding the 
transfer of the data to the MC68851, is shown below. The times given in this table include 
all bus cycles required to perform the calculation (prefetches and memory indirect fetches). 

The PMOVE, PFLUSHR, PScc, PLOAD, PTEST, PVALlD, PFLUSH, PFLUSHS, PRESTORE, and 
PSAVE instructions require an effective address to be calculated although not all require 
that data be transferred from that effective address. The following table is used for these 
instructions to adjust the basic instruction time to reflect the addressing mode that is used. 

Note that the following table applies only to the MC68020 effective address calculation 
time for coprocessor instructions. The execution times included in this table are not the 
same as the calculate effective address times given in the MC68020 32-Bit Microprocessor 
User's Manual for non-coprocessor instruction execution. 

Addressing Mode 

Dn or An 

(An) 

(An)+ 

-(An) 

(df6,An) or (d16,PC) 

(xxx).w 

(xxx).L 

#(data) 

(d8,An,Xn) or (d8,PC,Xn) 

(d16~An,Xn) or (d16,PC,Xn) 

(B) 

(d16,B) 

(d32,B) 

([B],I) 

([B],I,d16) 

([B]'I,d32) 

([d16,1~),I) 

([d16,B],I,d16) 

([d16,B]'I,d32) 

([d32,B),I) 

([d32,B],I,d16) 

(d[d32,B],I,d32) 

Me68851 USER'S MANUAL 

Best Case Cache Case 

o (010101010) o (010101010) 

0(010101010) 2 (010101010) 

3 (010101010) 6 (010101010) 

3 (010101010) 6 (010101010) 

o (010101010) 2 (010101010) 

o (010101010) 2 (010101010) 

1 (010101010) 4 (010101010) 

o (010101010) 0(010101010) 

1 (010101010) 4 (010101010) 

3 (010101010) 6 (010101010) 

3 (010101010) 6 (010101010) 

5 (010101010) 8 (010101010) 

11 (010101010) 14 (010101010) 

8 (0/1/01010) 11 (0/1/01010) 

8 (0/1/01010) 11 (0/1/01010) 

10 (0/1/01010) 13 (0/1/01010) 

10 (0/1/0/010) 13 (0/1/01010) 

10 (0/1/01010) 13 (0/1/01010) 

12 (0/1/01010) 15 (011/0/0/0) 

16 (0/1 101010) 19 (0/1/0/010) 

16 (0/1 101010) 19 (0/1/01010) 

18 (011101010) 21 (0/1/010/0) 

Worst Case 

o (010101010) 

2 (010101010) 

6 (010101010) 

6 (010101010) 

3 (1/0101010) 

3 (1/0101010) 

5 (1/0101010) 

o (010101010) 

5 (1/0101010) 

7 (1/0101010) 

7 (1/0101010) 

9 (1/0101010) 

16 (2/0101010) 

12 (1/1101010) 

12 (1/1/01010) 

15 (2/1/01010) 

14 (1/1101010) 

15 (2/1/01010) 

17 (2/1/01010) 

21 (2/1101010) 

21 (2/1/01010) 

24 (3/1101010) 

MOTOROLA 
11-11 

a 



• 

11.3.2 General Instructions 

The following tables give the worst-case instruction execution time for each MC68851 
general instruction. This group of instructions includes all MC68851 instructions except 
the conditionals andthe save/restore operations. For memory operands, the timing for the 
appropriate effective addressing mode must be added to the numbers in this table to 
determine the overall instruction execution times. 

Instruction 

PMOVE (to CRP, DRP, SRP)* 

PMOVE (to TC)* 

PMOVE (to CAL, VAL, scc, AC)* 

PMOVE (to BADx, PSR, PCSR)* 

PMOVE (to BACx)* 

PMOVE (from CRP, DRP, SRP)* 

PMOVE (from TC, CAL, VAL, SCC, AC)* 

PMOVE (from BACx, BADx, PSR, PCSR)* 

PFLUSHA 

PFLUSH (fc),#(mask) 

PFLUSH (fc),#(mask),(ea)* 

PFLUSHR* 

PLOAD** 

PTEST (fc),(ea),#level** 

PTEST (fc),(ea),#level,An** 

PVALID VAL,(ea)* 

PVALID An,(ea)* 

*Add the appropriate effective address calculation time. 
**Add the appropriate table search time . 

Worst Case 

108 (2/2/0/3/3) 

155 (2/1/0/5/3) 

54 (2/010/2/2) 

54 (2/010/2/2) 

156 (2/1/0/6/2) 

84 (2/0/2/4/1) 

70 (2/0/1/3/1) 

70 (2/0/1/3/1) 

40 (2/010/2/1) 

76 (2/010/4/2) 

108 (2/010/5/3) 

86 (2/2/0/2/3) 

100 (2/010/5/3) 

110 (2/010/6/3) 

136 (2/010/8/2) 

68 (2/010/2/2) 

78(2/010/3/3) 

The following table gives the execution times for the MC68851 conditional instructions. 
Each entry in this table, except those for the PScc instruction, is complete and does not 
require the addition of values from any other table. For the PScc instruction, the only 
additional factorthat must be included is the calculate effective address time for the operand 
to be modified. 

Since the conditional instructions are intrinsic to the M68000 Family coprocessor interface 
(i.e., they are not defined by the MC68851 through the use of response primitives), the 
MC68020 performs most of the processing associated with these instructions. The only 
part of the instruction that is performed by the MC68851 is the evaluation of the conditional 
predicate written to the condition CIR. Thus, the execution times given in the table below 
are heavily dependent on the environment in which the main processor executes. 

MOTOROLA 
11-12 

MC68851 USER'S MANUAL 



Operation Comments Worst Case 

PBcc.w Branch Taken 28 (2/0/0/2/1) 

Branch Not Taken 24 (1/0/0/2/1) 

PBcc.L Branch Taken 28 (2/0/0/2/1) 

Branch Not Taken 26 (2/0/0/2/1) 

PDBcc True, Not Taken 29 (2/0/0/2/1) 

False, Not Taken 37 (4/0/0/2/1) 

False, Taken 31 (3/0/0/2/1) 

PScc Dn 26 (2/0/0/2/1) 

(An) + or -(An)* 31 (2/0/1/2/1) 

Memory** 28 (2/0/1/2/1) 

PTRAPcc Trap Taken 52 (3/1/4/2/1) 

Trap Not Taken 27 (?10/0/2/1) 

PTRAPcc.w Trap Taken 50 (3/1/4/2/1) 

Trap Not Taken 28 (2/0/0/2/1) 

PTRAPcc.L Trap Taken 57 (4/1/4/2/1) 

Trap Not Taken 32 (3/0/0/2/1) 

*For condition true; subtract one clock for condition false. 
**Add the appropriate effective address calculation time. 

11.3.3 PSAVE and PRESTORE Instructions 

The time required for a context save or restore operation is given in the table below. The 
appropriate calculate effective address times must be added to the values in this table to 
obtain the total execution time for these operations. 

Operation State Frame Worst Case 

PRESTORE Null 22(1/1/0/1/1) 

Idle 76(1/101011/10) 

Mid-Coprocessor 88(1/12/0/1/12) 

Breakpoint Enabled 136( 1/20/011 120) 

PSAVE Null 18(1/0/111/0) 

Idle 72( 1 10/1 011 0/0) 

Mid-Coprocessor 84(1/0f12/12/0) 

Breakpoint Enabled 132 (1/0/20/20/0) 

11.4 INTERRUPT LATENCY 

In real-time systems, a very important factor pertaining to overall system performance is 
the response time required for a processor to handle an interrupt. In the M68000 Family 
of processors, interrupts are allowed to be asserted to the processor asynchronously, and 
they are handled on the next instruction boundary. While the average interrupt latency for 
the MC68020 is quite short, the maximum latency is often of critical importance, since real
time interrupts cannot require servicing in less than the maximum interrupt latency. The 
maximum interrupt latency for the MC68020 alone is approximately 250 clock cycles (for 

MC68851 USER'S MANUAL MOTOROLA 
11-13 

• 



.. 

the MOVEM.L ([d32,An],Xn,d32), DO-07/AO-A7 instruction where the last data fetch is 
aborted with a bus error; refer to the MC68020 32-8it Microprocessor User's Manual for 
more detailed information), but the use of a memory management unit such as the MC68851 
may cause some operations to take several times longer to execute. 

Interrupt latency in systems using the MC68851 will be affected by the length of main 
processor instructions, the address translation table configuration, the number of address 
translation table searches required by the instructions, the access time of main memory, 
and the width of the data bus connecting the MC68851 with main memory. It is important 
to note that the address translation table configuration is under software control and can 
strongly affect the system interrupt latency. The maximum interrupt latency for a given 
system configuration can be computed by adding the length of the longest main processor 
instruction to the time required for the maximum number of address translation table 
searches that the instruction could require. For the MC68020 microprocessor, two instruc
tions are of interest. The first is a memory-to-memory move with memory indirect ad
dressing for both the source and destination, with all of the code and data items crossing 
page boundaries. The assembler syntax for this instruction is: 

MOVE.L (od,[bd,An,Rm]),(od,[bd,An,Rm]) 

This instruction can cause ten address translation table searches (two for the instruction 
stream, two for the source indirect address, two for the destination indirect address, two 
for the source operand fetch, and two for the destination write). System software can 
reduce the maximum number of table searches by placing additional restrictions on gen
erated code. For example, if the language translators in the system only generate long 
words aligned on long word boundaries, then the indirect address and operands can cause 
only one table search each. This will reduce the number of table searches for the instruction 
to a maximum of six. 

In systems that use the MC68020 CALLM instruction: 
CALLM #256,(od[bd,An,Rm]) 

with a stack copy indicated by the MC68851 SCC register can cause nine address translation 
table searches (two for the instruction stream, one for the module descriptor, two for the 
indirect address, and two each for the source and destination stack) and 64 bus cycles of 
stack copying (on a 32-bit data bus) . 

11.5 BUS ARBITRATION LATENCY 

The bus arbitration latency in a system containing an MC68851 is affected by several factors. 
The MC68851 will not arbitrate away either the logical or physical buses while the main 
processor is performing an RMW (read-modify-write) operation (the TAS, CAS, or CAS2 
instructions). The longest period of time that the bus can be locked in this fashion is for a 
CAS2 instruction, which may perform eight bus cycles on a 32-bit bus, 12 bus cycles on a 
16-bit bus, or 16 bus cycles on an 8-bit bus. Note that address translation table search time 
is not added to these times because the MC68851 forces a bus error on an ATC miss for 
these instructions in order to avoid causing a large delay in bus arbitration. 

Bus arbitration may also be delayed by the MC68851 not asserting the OSACKx signals 
during coprocessor instructions while it updates its internal state. The maximum delay 
from this source is 23 clock cycles. 

MOTOROLA 
11-14 

MC68851 USER'S MANUAL 



SECTION 12 
ELECTRICAL SPECIFICATIONS 

This section contains the electrical specifications and associated timing information for the 
MC68851. 

12.1 MAXIMUM RATINGS 

Rating Symbol Value Unit 

Supply Voltage VCC -0.3 to +7.0 V 

Input Voltage Vin -0.5 to +7.0 V 

Operating Temperature TA o to 70 °c 

Storage Temperature Tstg -55 to + 150 °c 

12.2 THERMAL CHARACTERISTICS - PGA PACKAGE 

Characteristic Symbol Value Rating 

Thermal Resistance - Ceramic 
Junction to Ambient 6JA 30* °C/W 
Junction to Case 6JC 15* °C/W 

*Estimated 

12.3 POWER CONSIDERATIONS 

This device contains protective circui
try against damage due to high static 
voltages or electrical fields; however, 
it is advised that normal precautions 
be taken to avoid application of any 
voltages higher than maximum-rated 
voltages to this high-impedance cir
cuit. Reliability of operation is en
hanced if unused inputs are tied to an 
appropriate logic voltage level (e.g., 
either GND or VCC)' 

The average chip junction temperature, T J, in °c can be obtained from: 
T J = T A + (PD· 8JA) 

where: 
TA = Ambient Temperature, °C 
8JA = Package Thermal Resistance, Junction-to-Ambient, °C/W 
PD = PINT + PI/a . 
PINT = ICC x VCC, Watts - Chip Internal Power 
PI/a = Power Dissipation on Input and Output Pins - User Determined 

For most applications PI/a < PINT and can be neglected. 

An appropriate relationship between PD and T J (if PI/a is neglected) is: 
PD = K -;- (TJ + 273°C) 

Solving equations (1) and (2) for K gives: 

(1 ) 

(2) 

K = PD ·(TA + 273°C) + 8JA· P02 (3) 
where K is a constant pertaining to the particular device. K can be determined from equation 
(3) by measuring Po (at equilibrium) for a known T A- Using this value for K the values of 
PD and T J can be obtained by solving equations (1) and (2) iteratively for any value of TA. 

MC68851 USER'S MANUAL MOTOROLA 
12-1 



II 

The total thermal resistance of a package (6JA) can be separated in two components 6JC 
and 6CA, representing the barrier to heat flow from the semiconductor junction to the 
package (case), surface (OJC) and from the case to the outside ambient (6CA). These terms 
are related by the equation: 

SJA = 6JC + SCA (4) 

6JC is device related and cannot be influenced by the user. However, SCA is user determined 
and can be minimized by such thermal management techniques as heat sinks, ambient air 
cooling and thermal convection. Thus, good thermal management on the part of the user 
can significantly reduce SCA so that 6JA approximately equals SJC. Substitution of SJC for 
6JA in equation (1) will result in a lower semiconductor junction temperature. 

Values for thermal resistance presented in this document, unless estimated, were derived 
using the procedur.e described in Motorola Reliability Report 7843, "Thermal Resistance 
Measurement Method for MC68XX Microcomponent Devices," and are provided for design 
purposes only. Thermal measurements are complex and dependent on procedure and 
setup. User derived values for thermal resistance may differ. 

12.4 DC ELECTRICAL CHARACTERISTICS 
(V cc = 5.0 Vdc:t 5%; GNO = 0 Vdc; TA =0 to 70Q C; see Figure 12-1) 

Characteristic 

Input High Voltage 

Input Low Voltage 

Input Leakage Current (II 5.25 V CLK, RESET, LAS-LA31, LAS, 
LBRI, LBGI, PBR. PBGACK, ASYNC 

Hi-Z (Off-State) Input Current ((( 2.4 V/O.4 V OSACKO, OSACK1, 00-031, 
FCO-FC3, SIZo-SIZ1, PAS, OS, RiW, RMC, BERR, HALT, LBGACK 

Output High Voltage Ao-A7, OSACKO, OSACK1, 00-031, 
(lOH == -400 IJ.~ FCo-FC3, SIZO-SIZ1, PAS, OS, R/W, RMC, BERR, 

HALT, LBGACK, PAS-PA31, OBOIS, LBRO, LBGO, PBG, CLI 

Output Low Voltage OSACKO, OSACK1, HALT, PAS, OS, R;W, RMC, 
(lOL == 5.3 rnA) BERR, LBGACK, OBDlS, LBRO, LBGO, PGB, CLI 

Output Low Voltage 00-031, Ao-A7, FCo-FC3, 
(lOL = 3.2 rnA) SIZo-SIZ1, PAS-PA31 

Power Dissipation 

Capacitance* (Vin == 0, T A == 25°C, f == 1 MHz) 

*Capacitar.ce is periodically sampled rather than 100% tested. 

MOTOROLA 
12-2 

Symbol 

VIH 

VIL 

lin 

ITSI 

VOH 

VOL 

VOL 

Po 

Cin 

Min Max Unit 

2.0 VCC V 

GNO-0.5 O.S V 

- 10 IJ.A 

- 20 IJ.A 

2.4 - V 

- 0.5 V 

- 0.5 V 

- 1.50 W 

- 20 pF 

MC68851 USER'S MANUAL 



TEST 
POINT 

CL = 130 pF (includes all parasitics) 
RL = 6.0kO 

+5 V 

MMD7000 
OR EOUIVAlENT 

R 740 n for OSACKO, OSACK 1, 00-031, PAS, OS, R/W, RMC, 
BERR, HALT, LBGACK, OBDlS, LBRO, LBGO, PBG, CLI 

R = 1.22 kO for AO-A 7, FCO-FC3, SIZO/SIZ1, PA8-PA31 

Figure 12-1. Test Loads 

12.5 AC ELECTRICAL SPECIFICATIONS - CLOCK INPUT 
(VCC=5.0 Vdc:t5%; GND=O Vdc; TA=O to 70°C; see Figure 12-2) 

MC68851 RC12 MC68851 RC16 
No. Characteristic Symbol Min Max Min Max 

Frequency of Operation f 8.0 12.5 8.0 16.67 

1 Cycle Time tcyc 80 125 60 125 

2, 3 Clock Pulse Width tCl' tCH 32 87 24 95 

4, 5 Clock Rise and Fall Time tCr' tCf - 5 - 5 

2.0 V 

Figure 12-2. Clock Input Timing Diagram 

Me6SSS1 USER'S MANUAL 

MC68851 RC20 

Min 

10 

50 

19 

-

Max Unit 

20 MHz 

100 ns 

81 ns 

5 ns 

MOTOROLA 
12-3 

IE 



Notes referenced to in the following table have been placed after the final entry (see pages 
12-8 and 12-9). 

The timing diagrams (Figures 12-3 through 12-11) are intended to provide parametric timing 
information for the MC68851. For easy reference, these diagrams have been placed on foldout 
pages at the end of this document. Effort has been made to ensure that the diagrams provide 
correct functional signal relationships. However, not all relationships depicted are valid op
erations for the MC68851. (e.g., during a CPU space access as shown in Figure 12-8, accesses 
to the MC68851 will not cause assertion of CLI). 

12.6 AC ELECTRICAL SPECIFICATIONS - ALL BUS OPERATIONS 
(Vcc = 5.0 Vdc ± 5%; GND = 0 Vdc; TA = 0 to 70°C; see Figures 12-3 through 12-11) 

MC68851 RC12 MC68851RC16 MC68851 RC20 Figure 

No. Characteristic Mode Min Max Min Max Min Max Unit Ref. 

6 Clock High to FC, Size, RMC, Physical Ad- Tb 0 40 0 30 0 25 ns 3,4 
dress, Shared Address Valid (see Note a) 

--
7 Clock High to FC, Size, RMC, T 0 40 0 30 0 25 ns 8 

Data-Out, Physical Address, Shared 
Address High Impedance 

8 Clock High to FC, Size, RMC, Physical T 0 - 0 - 0 - ns 3,4 
Address, Shared Address Invalid 

9 Clock Transition to PAS Asserted T 0 35 0 25 0 20 ns 3,4 

9Ak PAS to DS Assertion (Read) (Skew) T -20 20 -15 15 -10 10 ns 3 
-

9B Clock Transition to DS Asserted T 0 40 0 30 0 25 ns 4 

11P FC, Size, RMC, Physical Address, Shared T 20 - 15 - 10 - ns 3,4 
Address Valid to PAS, DS Asserted 

12 Clock Low to PAS Negated T 0 35 0 25 0 20 ns 3,4 

12A Clock Low to DS Negated T 0 40 0 30 0 25 ns 3,4 

13 PAS, DS Negated to FC, Size, RMC, T 20 - 15 - 10 - ns 3,4 
Physical Address, Shared Address 
Invalid (see Note u) 

14 
~-

T 120 100 85 3,4 PAS, DS (Read) Width Asserted - - - ns 

14A DS Width Asserted (Write) T 50 - 40 - 35 - ns 4 

15 PAS, DS Width Negated T 50 - 40 - 35 - ns 4 

16 Clock High to PAS, DS, R;'W, T 0 40 0 30 0 25 ns 3 
DBDIS High Impedance 

17 PAS, DS Negated to R/W Invalid T 20 - 15 - 10 - ns 3,4 
(Read or Write) 

18 Clock High to R/W High (Read) T 0 40 0 30 0 25 ns 3 

20 Clock High to R/W Low (Write) T 0 40 0 30 0 25 ns 4 

21 R/W High to PAS Asserted T 20 - 15 - 10 0 ns 3 

22 R/W Low to DS Asserted (Write) T 90 - 75 - 60 - ns 4 

23 Clock High to Data-Out Valid T/O 0 40 0 30 0 25 ns 4,9 

25 Os Negated to Data-Out Invalid T/O 20 - 15 - 10 - ns 4, 9 

26 Data-Out Valid to DS Asserted T 20 - 15 - 10 - ns 4 

27 Data-In Valid to Clock Low (Data Setup) T 10 - 5 - 5 - ns 3 

MOTOROLA 
12-4 

MC68851 USER'S MANUAL 



12.6 AC ELECTRICAL SPECIFICATIONS - ALL BUS OPERATIONS (Continued) 

No. Characteristic Mode 

27A BERR-i/HAL T-i Asserted to Clock Low (Late T 
BERR/HAL T Setup Time) (see Note c) 

-
29 DS Negated to Data-In Invalid T 

(Data-In Hold Time) 

29A TIs Negated to Data-In High Impedance T 

31 1 DsAa<x Asserted to Data-In Valid T 

31Am DSACKx Asserted to DSACKx Valid T 
(Assertion Skew) 

32 RESET Input Transition Time X 
-

33 Clock Low to PBG Asserted X 
-

34 Clock Low to PBG Negated X 
- -

35A PBR Asserted to PBG Asserted T 
(RMC Not Asserted) 

35B PBR Asserted to PBG Asserted M 
(RMC Not Asserted) 

- -
36 PBR Negated to PBG Negated X 

(Transient or Spurious Request) 

37 
~ -
PBGACK Asserted to PBG Negated X 
-

39 PBG Width Negated X 
-

39A PBG Width Asserted X 

40A Clock High to DBDIS Negated (Read) T 

40B Clock Low to DBDIS Negated (Write (T)) T/O 
(Read (0)) 

41A Clock Low to DBDIS Asserted (Read (T)) T/O 
(Write (0)) 

41B Clock High to DBDIS Asserted (Write) T 

43 
~ -
PBGACK Negated to PAS, Physical X 

Address Impedance Change (see Note j) 
-

44 R/W Asserted to DBDIS Negated T 
(Read or Write) 

45A DBDIS Width Negated (Read) T 

45Bo DBDIS Width Negated (Write) T 

46 R/W Width Asserted (Read or Write) T 

47A Asynchronous Input Setup Time to T 
Sampling Clock Edge 
--

47B PAS, DS Negated to Asynchronous T 
Input Negated 

48n DSACKx-i Asserted to BERR-i/HAL T-i T 
Asserted (Late Bus Error or Retry) 

53 Data-Out Hold from Clock High T/O 

53A Data-Out Hold from LAS Negated a 
-

55 R/W Low to Data Bus Impedance Change T 

MC68851 USER'S MANUAL 

MC68851RC12 MC68851RC16 

Min Max Min Max 

25 60d 20 45d 

0 - 0 -

0 80 0 60 

- 60 - 50 

- 20 - 15 

- 2 - 2 

0 40 0 30 

0 40 0 30 

1.5 3.5 1.5 3.5 

1.5 5.5 1.5 5.5 

1.5 3.5 1.5 3.5 

1.5 3.5 1.5 3.5 

1.5 - 1.5 -

1.5 - 1.5 -

0 40 0 30 

0 40 0 30 

0 40 0 30 

0 40 0 30 

0.5 2.5 0.5 2.5 

20 - 15 -

80 - 60 -

160 - 120 -

180 - 150 -

10 60d 5 45d 

0 100 0 80 

- 40 - 30 

0 - 0 -

0 - 0 -

40 - 30 -

MC68851 RC20 

Min Max 

15 35 

0 -

0 50 

- 40 

- 10 

- 2 

0 25 

0 25 

1.5 3.5 

1.5 5.5 

1.5 3.5 

1.5 3.5 

1.5 -

1.5 -

0 25 

0 25 

0 25 

0 25 

0.5 2.5 

10 -

50 -

100 -

125 -

5 35 

0 65 

- 25 

0 -

0 -

25 -

Figure 
Unit Ref. 

ns 3 

ns 3 

ns 3 

ns 3 

ns 3,4 

Clk Per 11 

ns 8 

ns 8 

Clk Per 8 

Clk Per 8 

Clk Per 8 

Clk Per 8 

Clk Per 8 

Clk Per 8 

ns 3 

ns 4 

ns 3, 9 

ns 4, 9 

Clk Per 8 

ns 3, 4 

ns 3 

ns 4 

ns 3,4 

ns 3,4,8 

ns 3,4 

ns 3,4 

ns 4 

ns 9 

ns 4 

MOTOROLA 
12-5 

• 



II 

12.6 AC ELECTRICAL SPECIFICATIONS - ALL BUS OPERATIONS (Continued) 

No. Characteristic 

56 DBDIS Asserted to Data Bus Impedance 
Change 

56A Data Bus Impedance Change to 
DB DIS Negated 

59 DBDIS High to Riw Low 

60 SERR-i Negated to HAL T-i Invalid 
(Hold Time for Retry) 

63 55 Negated to DBDIS Asserted (Write) 

64 DBDIS Negated to Data Bus 
Impedance Change (Write) 

65 Clock Low to LBGACK-o, LBGO Asserted 

66 Clock Low to LBGACK-o, LBGO Negated 

67 LBGACK-o Asserted to LBRO Negated 

68 
~ -
LBGACK-o Asserted to CLI Asserted 

69 CLI Negated to LBGACK-o Negated 

70 LBGACK-o Asserted to DBDIS Asserted 

71 
~ --
LBGI Asserted to LBGO Asserted 

72 LBRi Negated to LBGO Negated 

73 IBG5 Width Asserted 

74 IBG5 Width Negated 

75 li3Gi Negated to LBGO Negated 

77 li3Gi Asserted to LBGACK-o Asserted 

79 ~ Width Asserted 
(VCC Active and Stable) 

79A 
~. 

RESET Width Asserted 
(VCC Stable> 512 Clocks) 

80 FfE'SET Asserted to Bus Control 
Signals Negated (V CC Active and Stable) 

81 ~ Negated to LAS Asserted 

82 FfE'SET Negated to Mode Select Data 
Invalid (Hold) 

83 Mode Select Data Valid to RESET 
Negated (Setup) 

84 Clock Transition to HAL T/BERR/LBRO 
Asserted (Logical Master Relinquish 
and Retry) 

86A LAS Asserted to HAL T/BERR/LBRO 
Asserted (Logical Master Relinquish 
and Retry) 

86B lAs Asserted to HAL T/BERR/LBRO 
Asserted (Logical Master Relinquish 
and Retry) 

89 HALf Negated to LBGACK-o Asserted 

MOTOROLA 
12-6 

MC68851 RC12 
Mode Min Max 

0 15 -

0 0 -

T 20 -

T 0 -

T 20 -

T 20 -

X 0 40 

X 0 40 

T 20 60 

T 0 80 

T 0 80 

T -20 20 

X 1.5 12.5h 

X 1.5 3.5 

X 40 -

X 40 -

X 1.5 3.5 

T 1.5 3.5 

X 512 -

X 10 -

X 0 4 

X 4 -

X 0 -

X 2 -

M 0 40 

MS 0.5 1.59 

MA 0.5 3.0f 

M 20 60 

MC68851RC16 MC68851 RC20 Figure 

Min Max Min Max Unit Ref. 

15 - 15 - ns 9 

0 - 0 - ns 9 

15 - 10 - ns 3 

0 - 0 - ns 3 

15 - 10 - ns 4 

15 - 10 - ns 4 

0 30 0 25 ns 6, 7 

0 30 0 25 ns 6, 7 

15 45 10 35 ns 6 

0 60 0 50 ns 6 

0 60 0 50 ns 6 

-15 15 -10 10 ns 6 

1.5 12.5h 1.5 12.5h Clk Per 7 

1.5 3.5 1.5 3.5 Clk Per 7 

30 - 25 - ns 7 

30 - 25 - ns 7 

1.5 3.5 1.5 3.5 Clk Per 7 

1.5 3.5 1.5 3.5 Clk Per 6 

512 - 512 - Clk Per 11 

10 - 10 - Clk Per 11 

0 4 0 4 Clk Per 11 

4 - 4 - Clk Per 11 

0 - 0 - ns 11 

2 - 2 0 Clk Per 11 

0 30 0 25 ns 5 

0.5 1.59 0.5 1.59 Clk Per 6 

0.5 3.0f .5 3.0f Clk Per 6 

15 45 10 35 ns 6 

MC68851 USER'S MANUAL 



12.6 AC ELECTRICAL SPECIFICATIONS - ALL BUS OPERATIONS (Continued) 
MC68851RC12 MC68851RC16TMc68851RC20 Figure 

Ref. No. Characteristic Mode Min Max Min Max Min Max Unit 

90 LAS Negated to BERR-o Negated 
(Termination of Relinquish and Retry) 

M o 

91 Logical Address, FC, RMC, R/V\! Valid to MSOS 40 
Clock High (Setup) 

92A Logical Address, FC, RMC, R/V\!, 
Valid to LAS Asserted 

MS/OS 20 

92B Logical Address, FC, RMC, RIW Valid to LAS MA!OA 0 
Asserted 

93A ill Negated to Logical Address, FC, RMC, MS/OS 20 
R/V\! Invalid (Synch Mode) 

93B LAS Negated to Logical Address, FC, RMC, MAiOA 0 
R/V\! Invalid (Asynch Mode) 

95 Logical Address Valid to Physical Address M 
Valid (Translation Cache Hit or 
CPU Space Cycle) 

96 Size, Shared Address Valid to LAS as 
Asserted (Access to MC68851 Register) 

97 LAS Negated to Size, Shared Address as 
Invalid (Access to MC68851 Register) 

100 LAS Asserted to Clock Low (Setup Time) MS 

103 LAS Width Asserted M 

104 LAS, DS Width Negated MS 

104A LAS, DS Width Negated MA 

105 ASYNC Asserted to LAS, DS Asserted M 

106 LAS, DS Negated to ASYNCH Negated M 

107 AS'1i\i'CH Negated to LAS, DS Asserted (for M 
Synchronous Next Cycle) 

108 Data Valid to DS Asserted (Write Setup Time a 
to MC68851) 

109A DS Negated to Data Invalid (Write Hold Time a 
to MC68851) 

109B LAS Negated to Data High Impedance 

110 ~-o Asserted to DSACKy-o Valid 

111 Clock High to DSACKx-o Asserted 

112A LAS Asserted to DSACKx-o Asserted 

112B LAS Asserted to DSACKx-o Asserted 

113 LAS Negated to DSACKx-o, 
BERR-o Negated 

114 tAs Negated to DSACKx-o, BERR-o 
High Impedance 

a 
a 
a 
as 

OA 

a 

a 

115 Clock Low to PAS Asserted MS 

116 Clock Transition (Rising or Falling Edge) to M 
PAS Asserted 

116A Clock Low to CLI Asserted M 

MC68851 USER'S MANUAL 

o 

20 

20 

40 

1.5 

0.5 

30 

1.5 

o 

1.5 

o 

o 

o 

o 

o 

2.0 

2.0 

o 

o 

Oe 

Oe 

Oe 

40 

50S 

80 

40 

23 

26 

40 

60 

o 30 o 

30 25 

15 10 

o o 

15 10 

o o 

o o 

15 10 

15 10 

30 25 

1.5 1.5 

0.5 0.5 

20 10 

1.5 1.5 

o o 

1.5 1.5 

o o 

o o 

o 60 o 

o o 

o 30 o 

2.0 23 2.0 

2.0 26 2.0 

o 30 o 

o 40 o 

Oe Oe 

oe Oe 

oe Oe 

25 ns 6 

ns 5 

ns 5,9, 10 

ns 7,9,10 

ns 5,9, 10 

ns 7,9,10 

38 ns 5,7,9,10 

ns 9,10 

ns 9,10 

ns 5 

Clk Per 5,7 

Clk Per 5 

ns 7 

Clk Per 7 

ns 5,7 

Clk Per 5 

ns 10 

ns 10 

50 ns 10 

ns 9,10 

25 ns 9,10 

23 Clk Per 9,10 

26 Clk Per 9, 10 

25 

30 

20e 

20e 

ns 9,10 

ns 9 

ns 5 

ns 5, 7 

ns 5,9 

MOTOROLA 
12-7 

• 



II 

12.6 AC ELECTRICAL SPECIFICATIONS - ALL BUS OPERATIONS (Concluded) 

No. Characteristic Mode 

117 LAS Asserted to PAS Asserted MS 
(Synchronous Translation with ATC Hit) 

118 LAS Negated to PAS Negated M 

119 Physical Address Valid to PAS Asserted M 

120A PAS Negated to Physical Address Invalid MS 

1208 PAS Negated to Physical Address Invalid 

121 LAS Asserted to PAS Asserted 
(Asynchronous Operation Only) 

MA 

M 

122 LAS Negated to PAS High Impedance (PBR M 
Asserted by Alternate Physical Master) 

123 Physical Address Valid to CLI Asserted (CPU M 
Space Cycle Not Accessing MC68851) 

124A LAS Asserted to CLI Asserted (CPU MA 
Space Cycle Not Accessing MC68851) 

1248 LAS Asserted to CLI Asserted (CPU Space MS 
Cycle Not Accessing MC68851) 

126 LAS Negated to CLI Negated (CPU Space 
Cycle Not Accessing MC68851) 

M 

127 CLI Negated to Physical Address Invalid MS 
(CPU Space Cycle Not Accessing 
MC68851) 

128 PAS Asserted to CLI Asserted M 
(Not CPU Space Access) 

129 PAS Negated CLI Negated (Not CPU Space M 
Access) 

NOTES: 

MC68851RC12 MC68851RC16 MC68851RC20 Figure 
Ref. Min Max Min Max Min Max Unit 

0.59 1.59 0.59 1.59 0.59 1.59 Clk Per 5 

o 20 o 15 o 10 ns 5, 7 

20 15 10 ns 5 

15 10 10 ns 7 

o o o - ns 7 

3.0i 3.0i 3.0i Clk Per 7 

80 60 50 ns 5,8 

20 15 10 ns 9,10 

3.0v 0.5v 3.0v 0.5v 3.0v Clk Per 9, 10 

1.5v 0.5v 1.5v Clk Per 9,10 

o 40 o 30 o 25 ns 9,10 

10 5 5 ns 9,10 

20 15 10 ns 5 

5 40 5 30 5 25 ns 5 

a) In this specification the terms 'high', 'low', 'asserted', 'negated', 'valid', and 'invalid' are used frequently to describe 
a signal state. For inputs to the MC68851, 'high'indicates that the signal conforms to the VIH voltage specification 
while 'low' indicates that the VIL specification is satisfied. Similarly, a MC68851 output is 'high' if it conforms to the 
VOH specification and 'low' if it conforms to the VOL parameter. An active low input (output) is asserted if it satisfies 
the respective VIL (VoLl requirements and negated if it satisfies the VIH (VOH) specification. A signal is 'valid' if it 
conforms to either the voltage high or the voltage low specifications and is an appropriate value for the current 
operation (for example, R/W should output a valid low during an MC68851 initiated write cycle). A signal is 'invalid' 
if it either does not conform to the VH or VL specifications or is an inappropriate value for the current operation as 
above. 

bl In order to better understand the parameters given, a 'mode' identification is included with each specification: X 
indicates that this specification is valid in any operating mode whatever; T indicates that the MC68851 is the current 
bus master and is performing a table walk operation; M indicates that the MC68851 is mapping translations for the 
current bus master with the designation MS indicating that the master is operating synchronously with the MC68851, 
MA indicating an asynchronous master, and MX indicating that the parameter is valid for any type of logical master; 
o indicates that the parameter is valid for operations which access the internal registers of the MC68851. 

c) Due to the numerous MC68851 signals that are used as inputs in one operating mode and as outputs in another, 
some attempt has been made to clarify whether a particular signal is acting as an input or as an output in cases where 
ambiguity is possible. The suffix "-0" indicates that the signal is an output ofthe MC68851 while the suffix "_i" indicates 
that this signal is acting as an input to the MC68851. 

d) The maximum value for parameter #47A is specified in order that the system designer may deterministically identify 
the clock edge on which an asynchronous input to the MC68851 will be recognized. Any signal that meets the minimum 
specified setup time to an appropriate clock edge (rising/falling) for that signal to be recognized on, and does not 
exceed the maximum time, is guaranteed to be recognized as asserted on that edge. Signals that do not meet the 
minimum setup time mayor may not be recognized; signals that exceed the maximum specified setup time may be 
recognized on the previous rising/falling clock edge. 

MOTOROLA 
12-8 

Me68851 USER'S MANUAL 



e) The actual assertion delay from the low-going clock edge that causes the strobe(s) to assert includes the time specified 
in the parameter plus any additional delay specified on D3/D4 during MC68851 configuration at RESET. 

f) The actual assertion delay from the assertion of LAS when mapping in the asynchronous mode is the time specified 
in the parameter plus any additional delay specified on D3/D4 during MC68851 configuration at RESET. 

g) The actual assertion delay from the assertion of LAS is the time specified in the parameter plus any additional delay 
specified on D31D4 during MC68851 configuration at RESET. This specification has a range of one clock period in order 
to allow for cases in which the CPU exhibits a best-case (minimum) assertion delay for the LAS signal relative to the 
clock while the MC68851 PAS or CLI outputs exhibit worst-case (maximum) assertion delays. When operating in the 
synchronous translation mode, the MC68851 asserts PAS (CLI) on the falling edge ofthe clock (plus additional specified 
delay) one clock period after the CPU drives LAS. 

h) The worst case assertion delay for this specification can be reduced to 5.5 clock periods if the early processing startup 
mode of operation is disabled (refer to 4.1.2.5 EARLY PROCESSING STARTUP (06)). 

i) This maximum can be reduced to 2.5 clock periods if the logical address strobe (LAS) high time (negated period) is 
one clock period or greater. 

j) This specification also applies to the signals AO-A7, FCO-FC3, SIZO-SIZ1, and RMC if the MC68851 is awaiting the 
negation of PBGACK to initiate or complete a table search operation. 

k) This number can be reduced to ± 5 nanoseconds if the strobes have equal load. 

I) If the asynchronous setup time (#47) requirements are satisfied, the DSACKx low to data setup (#31) and DSACKx 
low to BERR low setup time (#48) can be ignored. The data must only satisfy the data-in to clock low setup time (#27) 
for the following clock cycle. BERR must only satisfy the late BERR low to clock low setup time (#27A) for the following 
clock cycle. 

m) This parameter specifies the maximum allowable skew between DSACKO to DSACK1 asserted or DSACK1 to DSACKO 
asserted. Specification #47 must be met by either DSACKO or DSACK1. 

n) In the absence of DSACKx, BERR is an asynchronous input using the asynchronous input setup time (#47). 

0) DBDIS may stay asserted on consecutive write cycles (e.g., a retry of an MC68851 write operation). 

p) Actual value depends on the clock input waveform. 

q) This number can be reduced to 5 nanoseconds if CLI and PAS have equal loading. 

r) This specification is valid only if the loading of the DSACKx outputs are equal (± 50 pF). 

s) This specification can be reduced to 35 ns or 50 ns at 16.67 and 12.5 MHz, respectively for those bits of the logical 
address that are not translated by the MC68851. This includes all bits of the logical address if the MC68851 translation 
mechanism is disabled, and all bits, LAn, of the logical address (page size 2m) such that n ",; m. 

u) This specification also applies to the signals AO-A7, FCO~FC3, and SIZO-SIZ1 if the MC68851 is granting physical bus 
mastership to an alternate device during a table search operation. 

v) The actual assertion delay from the assertion of LAS is the time specified in the parameter plus a delay derived from 
the RESET configuration. Although the RESET configuration allows additional strobe delay in half clock increments, 
CLI will always be asserted relative to the falling edge of the clock and so can only be delayed by full clock increments. 
Therefore, if one or two 1/2 clock delay(s) is (are) specified in the RESET configuration, then CLI assertion will be 
delayed by one full clock. 

Me688S1 USER'S MANUAL MOTOROLA 
12-9 

II 



II 

Table 12-1. AC Electrical Specifications Reference Summary 

Signal Function Signal Name Relevant AC Electrical Specifications 

logical Address Bus lA8-LA31 91,92A, 92B, 93A, 93B, 95 

Physical Address Bus PA8-PA31 6,7,8,11,13,43,95,119, 120A, 120B, 123,127 

Shared Address Bus AD-A7 6,7,8,11,13,43,96,97 

Function Codes FCD-FC3 6, 7, 8, 11, 13, 43, 91, 92A,92B, 93A, 938 

Data Bus DD-D31 7,23,25,26,27,29, 29A, 31,53, 56A, 64,82,83,108, 109A, 
109B 

Size SIZD-SIZ1 6, 7, 8, 11, 13, 43, 96, 97 

Cache load Inhibit CLI 68,69,116,123, 124A, 124B, 126, 127,128,129 

Asynchronous Control ASYNC 105, 106, 107 

Read-Modify-Write Cycle RMC 6,7,8,11,13,43,91, 92A, 92B,93A,93B 

logical Address Strobe LAS 81,86A,86B,90, 92A,92B,93A,938,96,97, 100, 103,104 
104A, 105, 106, 107, 112A, 112B,113, 117, 118, 121,122, 124A, 
124B, 126 

Physical Address Strobe PAS 9,9A,9B, 11,12, 12A, 13, 14, 15, 16,17,21,43,47B, 115, 116, 
117,118,119, 120A, 120B, 121, 122, 128,129 

Data Strobe DS 9A, 13, 14, 14A, 15, 16, 17,22,25,26, 29,29A,47B, 63,104, 
104A, 108,109A, 109B 

-
Read/Write R/W 16,19,20,22,44,46,55,59,91, 92A,92B, 93A, 93B 

Data Transfer and Size Acknowledge DSACKD-DSACK1 31, 31A, 47A, 48,110,111, 112A, 112B, 113, 114 

Data Bus Disable DBDIS 16,40A, 40B,41A,418,44,45A,45B, 56, 56A, 59, 63, 64 

Bus Error BERR 27A,47A, 48, 60,84, 86A,86B,90, 113, 114 

Halt HALT 27A,47A, 48, 60,84, 86A,86B,89 

Reset RESET 32,47A, 79, 79A, 80,81, 82, 83 

Physical Bus Request PBR 35A, 35B, 36, 47 A 

Physical Bus Grant PBG 33,34, 35A, 35B, 36, 37,39, 39A 

Physical Bus Grant Acknowledge PBGACK 37,43,47A 

Logical Bus Request In LBRI 72,47A 

Logical Bus Request Out LBRO 67, 84, 86A, 86B 

Logical 8us Grant In lBGI 47A, 71, 75, 77 

logical Bus Grant Out lBGO 65, 66, 71, 72, 73, 74, 75 

logical Bus Grant Acknowledge LBGACK 47A, 65, 66,67, 68, 69, 70, 77, 89 

Clock ClK 1,2,3,4,5 

Power Supply VCC DC Only 

Ground GND DC Only 

12.7 AC ELECTRICAL SPECIFICATION DEFINITIONS 

The AC specifications presented in the previous sub-section consist of output delays, input 
setup and hold times, and signal skew times. All signals are specified relative to an apro
priate edge of the MC68851 clock input and, possibly, relative to one or more other signals. 

The measurement of the AC specifications is defined by the waveforms in Figure 12-12. 
In order to test the parameters guaranteed by Motorola, inputs must be driven to the 
voltage levels specified in Figure 12-12. Outputs of the MC68851 are specified with mini
mum and/or maximum limits, as appropriate, and are measured as shown. Inputs to the 

MOTOROLA 
12-10 

MC68851 USER'S MANUAL 



MC68851 are specified with minimum and, as appropriate maximum setup and hold times, 
and are measured as shown. Finally, the measurements for signal-to-signal specifications 
are also shown. 

Note that the teting levels used to verify conformance of the MC68851 to the AC specifi
cations does not affect the guaranteed DC operation of the device as specified in 12.4 DC 
ELECTRICAL CHARACTERISTICS. 

DRIVE 

elK 

OUTPUTS 1 VALID 
OUTPUT n 

OUTPUTS 2 

DRIVE --. 

INPUTS 3 
TO 2.4 V 

DRIVE --. 
TO 0.5 V 

INPUTS4 

All SIGNALS 5 

Notes: 

VALID 
OUTPUT n+l 

OUTPUT n 

2.0 V VALID 2.0 V 

0.8 V INPUT 0.8 V 

2.0 V 

0.8 V 

MAX 

2.0 V VALID 
0.8 V OUTPUT n+l 

..- OAIVE 
TO 2.4 V 

..- DRIVE 
TO 0.5 V 

1 - This output timing is applicable to all parameters specified relative to the rising edge of the clock 
2 - This output timing is applicable to all parameters specified relative to the falling edge of the clock 
3 - This input timing is applicable to all parameters specified relative to the rising edge of the clock 
4 - This input timing is applicable to all parameters specified relative to the falling edge of the clock 
5 - This timing is applicable to all parameters specified relative to the assertion/negation of another signal 

Legend: 
A - Maximum output delay specification 
B - Minimum output delay specification 
C - Minimum input setup time specification 
D - Minimum input hold specification 
E - Signal valid to signal valid specification (maximum or minimum) 
F - Signal valid to signal invalid specification (maximum or minimum) 

Figure 12-12. Drive Levels and Test Points for AC Specifications 

Me68851 USER'S MANUAL MOTOROLA 
12-11 

.. 



fI 

MOTOROLA 
12-12 

MC68851 USER'S MANUAL 



SECTION 13 
ORDERING INFORMATION AND MECHANICAL DATA 

This section contains the pin assignments and package dimensions of the MC68851. In 
addition, detailed information is provided to be used when ordering. 

13.1 STANDARD MC68851 ORDERING INFORMATION 

Package Type 

Pin Grid Array 
RC Suffix 

13.2 PIN ASSIGNMENTS 

Frequency 
(MHz) 

12.5 
16.7 

Temperature 

0° to 70°C 
0° to 70°C 

o 0 0 0 000 0 0 0 000 
FCI LA26 LA25 LA22 LA2l LA18 LA17 LA16 LA13 LA12 LA9 LA8 025 

o 0 0 0 0 0 0 0 0 0 000 
Al LA30 LA29 LA27 LA23 LA19 Vcc LA15 LAII 031 029 028 021 

000 0 0 000 0 0 000 
A2 FC2 LA3l LA28 LA24 LA20 GNO LA14 LA10 030 027 024 020 

00000 
A5 AO FC3 FCO GNO 

o 0 0 0 
A6 A4 A3 VCC 

000 
PA9 PA8 A7 

000 
PA 10 VCC GNO 

000 
PAll PA12 PA13 

o 0 0 0 
PA14 PA16 PA17 GNO /' 

BOTTOM 
VIEW 

000>:/0 
PA15 PA20 PA2l" PA24 

o 0 f:/ 0 
PA18 PA22 , eLK PA27 

o p/ 0 0 
__ J'I!.!!!... -1 PA25 PA26 PA28 

1 
0 1 000 

PA23 : PA29 PA30 DiS 
I 

Pin Group 

Physical Address 

VCC 

000 
PA3l LBGO GNO 

000 
PAS lBimR VCC 

000 
LBRO CBGi [Biii 

Logical Address, Internal Logic 

OOr031 

Internal Logic, Clocks 

MC68851 USER'S MANUAL 

o 0 0 0 0 
VCC 026 023 022 017 

o 

o 000 
GNO 019 018 016 

000 
015 014 013 

000 
GNO VCC 012 

000 
09 010 011 

o 000 
VCC 05 06 08 

000 0 
GNO ASYNC 01 02 07 

00000 
BERR OSACK 1 R/W OBOIS 00 

00000 
HALT Piiii SIZO liS RMC 

00000 
EiJ PSG PBGACK OSACKO SIZI 

10 11 12 

Vec GND 

05,G2,J4 E4, G3, K5 

M7 L7 

o 
04 

o 
03 

o 
RESET 

13 

E10, G12, K9 09, G11, J10 

87 C7 

Order 
Number 

MC68851 RC12 
MC68851 RC16 

MOTOROLA 
13-1 

IE 



II 

13.3 MECHANICAL DATA 

RC SUFFIX 
PIN GRID ARRAY 

CASE 7898-01 

11 
-FrK 

A 

14 
~ , 

B J -+ , 
OD 

!.-C . 

NOTES: 
1. A AND B ARE DATUMS AND T IS A DATUM 

SURFACE. 
2. POSITIONAL TOLERANCE FOR LEADS 1132 PLI. 

1+11>0.1310.0051 ®! TIA®IB®I 
3. DIMENSIONING AND TOLERANCING PER Y14.5M, 

1982. 
4. CONTROLLING DIMENSION: INCH. 

MOTOROLA 
13·2 

G 

N @ @)@)@)@) @)@)@)@) @) O~~-.L
M @)@)@)@)@)@)@)@)@)@) o~~-~ 
L @)@)@)@)@)@)@)@)@)@)@) 0 0 

K@)@)@)@)@) @)@)@)@)@) 
J @)@)@)@) @)@)@)@) 
H @)@)@) @)@)@) 
G @)@)@) @)@)@) 
F@)@)@) @)@)@) 
E @)@)@)@) @)@)@)@) 
D @)@)@)@)@) @)@)@)@)@) 
c@)@)@)@)@)@)@)@)@)@)@)@)@) 
B@)@)@)@)@)@)@)@)@)@)@)@)@) 
A@)@)@)@)@)@)@)@)@)@)@)@)@ 

1 2 3 4 5 6 7 8 9 10 11 12 13 

MIWMETERS INCHES 
DIM MIN MAX MIN MAX 
A 34.04 35.05 1.340 1.380 
B 34.04 35.05 1.340 1.380 
C 2.54 3.81 0.100 0.150 
D 0.43 0.55 0.017 0.022 
G 2.54 asc 0.100 asc 
K 4.32 4.95 0.170 0.195 

G 

MC68851 US.ER'S MANUAL 



APPENDIX A 
INSTRUCTION SET 

This appendix details the MC68851 instruction set using the Motorola assembly language 
syntax and notation. The instructions are arranged in alphabetical order with the mnemonic 
heading set in large bold type for easy reference. Also, included at the end of this appendix, 
is a listing of the binary patterns of all the instructions. 

A.1 MC68020/MC68851 ADDRESSING MODES 

Due to the nature of the MC68020/MC68851 coprocessor interface, the MC68851 supports 
all MC68020 addressing modes. The MC68020 effective address modes are categorized by 
the manner in which the modes are used. The following classifications are used in the 
instruction details. 

Data 

Memory 

Alterable 

Control 

If an effective address is used to refer to data operands, it is considered a 
data addressing mode. 

If an effective address is used to refer to memory operands, it is considered 
a memory addressing mode. 

If an effective address is used to refer to alterable (writeable) operands, it is 
considered an alterable addressing mode. 

If an effective address is used to refer to memory operands that do not have 
an associated size, it is considered a control addressing mode. 

Table A-1 shows the various addressing categories of each addressing mode. These cat
egories may be combined so that additional, more restrictive, classifications may be de
fined. For example, the instruction descriptions use such classifications as memory alterable 
or data alterable. The former refers to those addressing modes that are both memory and 
alterable addresses (i.e., the intersection of the two sets of modes), and the latter refers 
to addressing modes that are both data and alterable. 

MC68851 USER'S MANUAL MOTOROLA 
A-1 

• 



• 

Table A-1. Effective Addressing Mode Categories 

Assembler 
Address Modes Mode Register Data Memory Control Alterable Syntax 

Data Register Direct 000 reg. no. X - - X Dn 

Address Register Direct 001 reg. no. - - - X An 

Address Register Indirect 010 reg. no. X X X X (An) 
Address Register Indirect with Postincrement 011 reg. no. X X - X (An)+ 
Address Register Indirect with Predecrement 100 reg. no. X X - X -(An) 
Address Register Indirect with Displacement 101 reg. no. X X X X (d16,An) 

Address Register Indirect with Index 
(S-Bit Displacement) 110 reg. no. X X X X (ds,An,Xn) 

Address Register Indirect with Index 
(S-Bit Displacement) 110 reg. no. X X X X (ds,An,Xn) 

Address Register Indirect with Index 
(Base Displacement) 110 reg. no. X X X X (bd,An,Xn) 

Memory Indirect Post-Indexed 110 reg. no. X X X X ([bd,Anl,Xn,od) 
Memory Indirect Pre-Indexed 110 reg. no. X X X X ([bd,An,Xn],od) 

Absolute Short 111 000 X X X X (xxx).W 
Absolute Long 111 001 X X X X (xxx).L 

Program Counter Indirect with Displacement 111 010 X X X - (d16,PC) 
Program Counter Indirect with Index 

(S-Bit Displacement) 111 010 X X X - (dS,PC,Xn) 
Program Counter Indirect with Index 

(Base Displacement) 111 011 X X X - (bd,PC,Xn) 
PC Memory Indirect Post-Indexed 111 011 X X X - ([bd,PC1,Xn,od) 
PC Memory Indirect Pre-Indexed 111 011 X X X - ([bd,PC,Xn]'od) 

Immediate 111 100 X X - - #(data) 

A.2 OPERATION DESCRIPTION DEFINITIONS 

The following definitions are used for the operation description details of the instruction 
set. 

An 

Dn 

PC 

PSR 

d 

cc 

FC 

(ea) 

PMMU 

(operand) 

- Any Main Processor Address Register 

- Any Main Processor Data Register 

- The Main Processor Program Counter 

- T,he MC68851 Status Register 

- Displacement 

- MC68851 Defined Condition Code 

- Function Code 

- The Operand Identified by the Specified Addressing Mode 

- The MC68851 

- The Contents of the Referenced Location of Register 

#XXX or #data - Immediate Data Located with the Instruction is the Operand 

A.3 INDIVIDUAL INSTRUCTION DESCRIPTIONS 

The individual instruction descriptions are shown on the following pages. 

MOTOROLA 
A-2 

MC68851 USER'S MANUAL 



PBcc 

Operation: 

Assembler 
Syntax: 

Attributes: 

Branch on PMMU Condition 
(Privileged Instruction) 

If Supervisor state 
then if cc true 

then PC + d • PC 
else trap 

PBcc.(size)(label) 

Size = (Word, Long) 

PBcc 

Description: If the specified PMMU condition is met, execution continues at location 
(PC) + displacement. The displacement is a two's complement integer which counts 
the relative distance in bytes. The value in the PC is the address of the displacement 
word(s). The displacement may be either 16 or 32 bits. 

The condition specifier "CC" may specify the following conditions: 

BS B set 000000 BC B clear 000001 

LS L set 000010 LC L clear 000011 

SS S set _000100 SC S clear 000101 

AS A set 000110 AC A clear 000111 

WS W set 001000 WC W clear 001001 

IS I set 001010 IC I clear 001011 

GS G set 001100 GC G clear 001101 

CS C set 001110 CC C clear 001111 

PSR: Not affected 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a 

1 1 1 1 I 0 a 0 1 a 1 I Size I MC68851 Condition 

16-Bit Displacement, or Most Significant Word of 32-Bit Displacement 

Least Significant Word of 32-Bit Displacement' (If Needed) 

Instruction Fields: 
Size field - specifies the size of the displacement. 

0- The displacement is 16 bits. 
1 - The displacement is 32 bits. 

MC68851 Condition field - Specifies the coprocessor condition to be tested. This field 
is passed to the MC68851, which provides directives to the main processor for 
processing this instruction. 

Word Displacement field - The shortest displacement form for MC68851 branches is 
16 bits. 

Long Word Displacement Field - Allows a displacement larger than 16 bits. 

MC68851 USER'S MANUAL MOTOROLA 
A-3 

• 



• 

PDBcc 

Operation: 

Assembler 
Syntax: 

Attributes: 

Test, Decrement, and Branch 
(Privileged Instruction) 

If supervisor state 
then If cc false 

then (On-1 • On; If On( > -1 then PC + d ~ PC) 
else no operation 

else trap 

POBcc On, (label) 

Size = (Word) 

PDBcc 

Description: This instruction is a looping primitive of three parameters: an MC68851 
condition, a counter (an MC68020 data register), and a 16-bit displacement. The in
struction first test the condition to determine if the termination condition for the loop 
has been met, and if so, the main processor proceeds to execute the next instruction 
in the instruction stream. If the termination condition is not true, the low order 16 bits 
of the counter register are decremented by one. If the result is not -1, execution 
continues at the location specified by the current value of the PC plus the sign extended 
16-bit displacement. The value of the PC used in the branch address calculation is the 
address of the POBcc instruction plus two. 

The condition specifier "cc" may specify the following conditions: 

BS B set 000000 BC 

LS L set 000010 LC 

SS S set 000100 SC 

AS A set 000110 AC 

WS W set 001000 WC 

IS I set 001010 IC 

GS G set 001100 GC 

CS C set 001110 CC 

PSR: Not affected 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 

1 

0 

MOTOROLA 
A-4 

1 

0 

1 1 I 
0 0 

0 0 o I 0 0 1 

0 0 0 0 0 0 

16-Bit Displacement 

B clear 000001 

L clear 000011 

S clear 000101 

A clear 000111 

W clear 001001 

I clear 001011 

G clear 001101 

C clear 001111 

5 4 3 2 o 

0 0 1 I Count Register 

MC68851 Condition 

Me6SS51 USER'S MANUAL 



PDBcc 

Instruction Fields: 

Test, Decrement, and Branch 
(Privileged Instruction) 

PDBcc 

Register field - Specifies the data register in the main processor to be used as the 
counter. 
MC68851 Condition field - Specifies the MC68851 condition to be tested. This field 

is passed to the MC68851, which provides directives to the main processor for 
processing this instruction. 

Displacement field - Specifies the distance of the branch (in bytes). 

MC68851 USER'S MANUAL MOTOROLA 
A-5 

• 



• 

PFLUSH 
PFLUSHA 
PFLUSHS Invalidate Entries in the ATC 

(Privileged Instruction) 

PFLUSH 
PFLUSHA 
PFLUSHS 

Operation: If Supervisor state 
then ATC Entries for Destination Address are Invalidated 
else trap 

Assembler 
Syntax: 

PFLUSHA 
PFLUSH (fc),#(mask) 
PFLUSHS (fc),#(mask) 
PFLUSH (fc),#(mask),(ea) 
PFLUSHS (fc),#(mask),(ea) 

Attributes: Unsigned 

Description: PFLUSHA invalidates all entries in the ATC. 

PFLUSH invalidates a set of ATC entries whose function code bits satisfy the relation: 
(ATC function code bits and (mask») = (fc) and (mask») for all entries whose task alias 
matches the task alias currently active when the instruction is executed. With an 
additional effective address argument, PFLUSH invalidates a set of ATC entries whose 
function code satisfies the relation above, and whose effective address field matches 
the corresponding bits of the evaluated effective address argument. In both of these 
cases, ATC entries whose SG bit is set will not be invalidated unless the PFLUSHS is 
specified. 

The function code for this operation may be specified to be: 

PSR: 

1. Immediate - the function code is specified as four bits in the command word. 
'2. Data Register - the function code is contained in the lower four bits in the 

MC68020 data register specified in the instruction. 
3. Source Function Code Register - the function code is contained in the source 

function code (SFC) register in the CPU. Since the SFC of the MC68020 has only 
three implemented bits, only function codes $0 through $7 can be specified in 
this manner. 

4. Destination Function Code Register - the function code is contained in the 
destination function code (DFC) register in the CPU. Since the DFC of the MC68020 
has only three implemented bits, only function codes $0 through $7 can be 
specified in this manner . 

Not affected 

Instruction Format: 

15 14 13 12 11 10 

1 

0 

MOTOROLA 
A-6 

1 1 

0 1 

1 I 0 0 

I Mode 

9 

0 

I 0 

8 7 6 5 4 3 2 o 

0 0 o I Effective
l 
Address 

Mode Register 

Mask J Fe 

MC68851 USER'S MANUAL 



PFLUSH 
PFLUSHA 
PFLUSHS 

Instruction Fields: 

Invalidate Entries in the ATe 
(Privileged Instruction) 

PFLUSH 
PFLUSHA 
PFLUSHS 

Effective Address field - Specifies an address whose page descriptor is to be flushed 
from (invalidated) the ATC. Only control alterable addressing modes are allowed 
as shown: 

Addr. Mode Mode Register Addr. Mode Mode Register 

Dn - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg number:An #(data) - -

(An)+ - -

-(An) - -

(d16,An) 101 reg number:An (d 16,PC) - -

(d8,An,Xn) 110 reg number:An (d8,PC,Xn) - -

(bd,An,Xn) 110 reg number:An (bd,PC,Xn) - -

([bd,An,Xn],od) 110 reg number:An ([bd,PC,Xn]'od) - -

([bd,An],Xn,od) 110 reg number:An ( [bd,PC],Xn,od) - -

Note~ that the effective address field must provide the MC68851 with the effective 
address of the entry to be flushed from the ATC, not the effective address describing 
where the PFLUSH operand is located. For example, in order to flush the ATC entry 
corresponding to a logical address that is temporarily stored on the top of the system 
stack, the instruction 'PFLUSH [(SP)], must be used since 'PFLUSH (SP)' would inval
idate the ATC entry mapping the system stack (i.e., the effective address passed to 
the MC68851 is the effective address of the system stack, not the effective address 
formed by the operand located on the top of the stack). 

Mode field - Specifies how the ATC is to be flushed. 
001 - Flush all entries 
100 - Flush by function code only 
101 - Flush by function code including shared entries 
110 - Flush by function code and effective address 
111 - Flush by function code and effective address including shared entries 

Mask field -Indicates which bits are significant in the function code compare. A zero 
indicates that the bit position is not significant, a one indicates that the bit position 
is significant. If mode = 001 (flush all entries), mask must be 0000. 

FC field - Function code of address to be flushed. If mode = 001 (flush all entries), 
function code m~t be 00000 

Otherwise: 
1 DODD - Function code is specified as four bits DODD 
01 RRR - Function code is contained in CPU data register RRR 
00000 - Function code is contained in CPU SFC register 
00001 - Function code is contained in CPU DFC. register 

MC68851 USER'S MANUAL MOTOROLA 
A-7 

• 



• 

PFLUSHR Invalidate ATC and RPT Entries 
(Privileged Instruction) 

Operation: If Supervisor state 

PFLUSHR 

then the RPT entry (if any) matching the root pointer specified by (ea) 
and corresponding ATC entries are invalidated 

Assembler 
Syntax: 

Attributes: 

else trap 

PFLUSHR(ea) 

Unsized 

Description: The double long word pointed to by (ea) is taken to be a previously used 
value of the CRP register. The RPT entry matching this CRP (if any) is flushed, and all 
ATC entries loaded with this value of CRP (except for those that are globally shared) 
are invalidated. If no entry in the RPT matches the operand of this instruction, then 
no action is taken. 

If the supervisor root pointer is not in use, the operating system should not issue the 
PFLUSHR command to destroy a task identified by the current CRP. It should wait 
until the CPR has been loaded with the root pointer identifying the next task until 
using the PFLUSHR instruction. At any time, execution of the PFLUSHR instruction for 
the current CRP causes the current task alias to be corrupted. 

Instruction Format: 
15 14 13 12 11 10 9 a 7 6 5 4 3 2 0 

1 I 0 0 o I 0 0 0 I Effective, Address 
Mode Register 

0 1 I 0 0 0 0 0 0 0 0 0 0 0 0 0 

Instruction Fields: 
Effective Address field - Specifies the address of a previous value of the CRP register. 

Only memory addressing modes are allowed as shown: 

Addr. Mode Mode Register Addr. Mode Mode Register 

On - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg nurnber:An #(data) 111 100 

(An)+ 011 reg number:An 

-(An) 100 reg number:An 

(d16,An) 101 reg number:An (d16'PC) 111 010 

(da,An,Xn) 110 reg number:An (d9,PC,Xn) 111 011 

(bd,An,Xn) 110 reg nurnber:An (bd,PC,Xn) 111 011 

([bd,An,Xn],od) 110 reg number:An ([bd,PC,Xn],od) 111 011 

([bd,An],Xn,od) 110 reg number:An ([bd,PC],Xn,od) 111 011 

Note that the effective address usage of this instruction is different than that of other 
PFLUSH variants. 

MOTOROLA 
A-8 

Me68851 USER'S MANUAL 



PLOAD 

Operation: 

Load an Entry into the ATC 
(Privileged Instruction) 

If Supervisor state 

PLOAD 

then search translation table and make ATC entry for effective address 
else trap 

Assembler 
Syntax: 

Attributes: 

PLOADR (function code),(ea) 
PLOADW (function code),(ea) 

Unsized 

Description: The translation table is searched for a translation for the specified effective 
address. If one is found, it is flushed from the ATC, and an entry is made in the ATC 
as if a bus master had run a bus cycle. Used and modified bits in the table are updated 
as part of the table search. The MC68851 ignores the logical bus arbitration signals 
during the flush and load phase at the end of this instruction preventing the possibility 
of an entry temporarily disappearing from the ATC and causing a spurious table search. 

This instruction will cause a PMMU illegal operation exception (vector $39) if the E 
bit of the TC register is clear. 

The function code for this operation may be specified to be: 
1. Immediate - the function code is specified as four bits in the command word. 
2. Data Register - the function code is contained in the lower four bits in the 

MC68020 data register specified in the instruction. 
3. Source Function Code - the function code is contained in the source function 

code (SFC) register in the CPU. Since the SFC of the MC68020 has only three 
implemented bits, only function codes $0 through $7 can be specified in this 
manner. 

4. Destination Function Code Register - the function code is contained in the 
destination function code (DFC) register in the CPU. Since the DFC of the MC68020 
has only three implemented bits, only function codes $0 through $7 can be 
specified in this manner. ' 

The effective address field specifies the logical address whose translation is to be 
loaded. 

PLOADR causes U bits in the translation tables to be updated as if a read access had 
taken place. PLOADW causes U and M bits in the translation tables to be updated as 
if a write access had taken place. 

PSR: Not affected 

Instruction Format: 
15 14 13 12 11 10 9 

1 1 1 1 I 0 0 0 

0 0 1 I 0 0 o I Rm 

MC68851 USER'S MANUAL 

8 7 6 5 

0 0 o I 
0 0 0 o I 

4 3 2 o 
Effective, Address 

Mode Register 

Fe 

MOTOROLA 
A-9 

• 



• 

PLOAD 

Instruction Fields: 

Load an Entry into the ATC 
(Privileged Instruction) 

PLOAD 

Effective Address field - Specifies the logical address whose translation is to be loaded 
into the ATC. Only control alterable addressing modes are allows as shown: 

Addr. Mode Mode Register Addr. Mode Mode Register 

Dn - - (xxx).w 111 000 

An - - (xxx).L 111 001 

(An) 010 reg number:An #(data) - -

(An)+ - -

-(An) - -

(d16,An) 101 reg number:An (d 16'PC) - -

(dS,An,Xn) 110 reg number:An (dS,PC,Xn) - -

(bd,An,Xn) 110 reg number:An (bd,PC,Xn) - -

([bd,An,Xn],od) 110 reg number:An ([bd,PC,Xn],od) - -

( [bd,An]'Xn,od) 110 reg number:An ([bd,PC],Xn,od) - -

Note that the effective address field must provide the MC68851 with the effective 
address of the entry to be loaded into the ATC, not the effective address describing 
where the PLOAD operand is located. For example, in order to load an ATC entry to 
map a logical address that is temporarily stored on the system stack, the instruction 
PLOAD [(SP)] must be used since PLOAD (SP) would load an ATC entry mapping the 
system stack (i.e., the effective address passed to the MC68851 is the effective address 
of the system stack, not the effective address formed by the operand located on the 
top of the stack). 

R/W field - Specifies whether the tables should be updated for a read or a write 
1 - Read 
0- Write 

FC field - Function code of address to load 
1 DDDD - Function code is specified as four bits DDDD 
01 RRR - Function code is contained in CPU data register RRR 
00000 - Function code is contained in CPU SFC register 
00001 -:- Function code is contained in CPU DFC register 

MOTOROLA 
A-10 

Me6S8S1 USER'S MANUAL 



PMOVE Move PMMU Register 
(Privileged Instruction) 

PMOVE 

Operation: If Supervisor state 
then MC68851 Register. Destination or Source. MC68851 Register 
else trap 

Assembler 
Syntax: 

PMOVE (PMMU Register),(ea) 
PMOVE (ea),(PMMU Register) 

Attributes: Size = (Byte, Word, Long, Double Long) 

Description: The contents of the MC68851 register is copied to the address specified by 
(ea), or the data at (ea) is copied into the MC68851 register. 

PMOVE is a double long (eight byte) operation for the following registers: CRP, SRP, 
DRP. 

PMOVE is a long (four byte) operation for the following register: TC. 

PMOVE is a word (two byte) operation for the following registers: BAC, BAD, AC, PSR, 
PCSR. 

PMOVE is a byte (one byte) operation for the following registers: CAL, VAL, SCC. 

This instruction has side effects when data is read into certain registers. These effects 
are: 

PSR: 

CRP - Causes the internal root pointer table to be searched for the new value. If 
a matching value is not found, an entry in the root pointer table is selected 
for replacement, and a" ATC entries associated with the replaced entry 
are invalidated. 

SRP - Cause a" entries in the ATC that were formed with the SRP (even globa"y 
shared entries) to be invalidated. 

DRP - Causes a" entries in the ATC that were formed with the DRP (even globa"y 
shared entries) to be invalidated. 

TC - If data written to the TC register attempts to set the E bit (and the E bit 
is currently clear), a consistency check is performed on the IS, TIA, TIB, 
TIC, TID, and PS fields. 

Not affected unless the PSR is written to by the instruction. 

Instruction Format 1 (PMOVE to/from TC, CRP, DRP, SRP, CAL, VAL, SCC, AC): 

15 14 13 12 11 10 9 8 

1 1 1 1 I 0 0 0 0 

0 1 o 1 P Reg l R/W 0 

MC68851 USER'S MANUAL 

7 6 5 

0 o I 
0 0 0 

4 3 2 o 
Effective

l 
Address 

Mode Register 

0 0 0 0 0 

MOTOROLA 
A-11 

-



• 

PMOVE 

Instruction Fields: 

Move PMMU Register 
(Privileged Instruction) 

PMOVE 

Effective Address field - for memory to register transfers, any addressing mode is 
allowed as shown: 

Addr. Mode Mode Register Addr. Mode Mode Register 

Dn* 000 reg number:Dn (xxx).w 111 000 

An* 001 reg number:An (xxx).L 111 011 

(An) 010 reg number:An #(data) 111 100 

(An)+ 011 reg number:An 

-(An) 100 reg number:An 

(d16,An) 101 reg number:An (d16,PC) 111 010 

(dS,An,Xn) 110 reg number:An (dS,PC,Xn) 111 011 

(bd,An,Xn) 110 reg number:An (bd,PC,Xn) 111 011 

([bd,An,Xn),od) 110 reg number:An ([bd,PC,Xn),od) 111 011 

([bd,Anj,Xn,od) 110 reg number:An ([bd,PC),Xn,od) 111 011 

:*PMOVE to CRP, SRP, DRP not allowed with these modes. 

For register to memory transfers, only alterable addressing modes are allowed as 
shown: 

Addr. Mode Mode Register 

Dn* 000 reg number:Dn 

An* 001 reg number:An 

(An) 010 reg number:An 

(An)+ 011 reg number:An 

-(An) 100 reg number:An 

(d16,An) 101 reg number:An 

(dS,An,Xn) 110 reg mimber:An 

(bd,An,Xn) 110 reg number:An 

([bd,An,Xn),od) 110 reg number:An 

([bd,An),Xn,od) 110 reg number:An 

*PMOVE from CRP, SRP, DRP not allowed with these 
modes. 

Addr. Mode 

(xxx).w 

(xxx).L 

#(data) 

(d 16,PC) 

(dS,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xnj,od) 

([bd,PC),Xn,od) 

Register field - Specifies the MC68851 register 
000 - TC 
001 - DRP 
010 - SRP 
011 - CRP 
100 - CAL 
101 - VAL 
110 - SCC 
111 - AC 

MOTOROLA 
A-12 

Mode Register 

111 000 

111 001 

- -

- -

- -

- -
- -

- -

MC68851 USER'S MANUAL 



PMOVE Move PMMU Register 
(Privileged Instruction) 

RIW field - Specifies the direction of transfer 
0- Transfer (ea) to MC68851 register 
1 - Transfer MC68851 register to (ea) 

Instruction Format 2 (PMOVE to/from BADx, BACx): 
15 14 13 12 11 10 9 8 7 

1 1 1 1 I 0 0 0 0 0 

0 1 1 I P Reg I Rm 0 0 

Instruction Fields: 
Effective Address field - Same as above 

6 

o l 
0 

5 

o I 

P Register field - Specifies the type of MC68851 register 
100- BAD 
101 - BAC 

R/W field - Specifies the direction of transfer 
0- Transfer (ea) to MC68851 register 
1 - Transfer MC68851 register to (ea) 

PMOVE 

4 3 2 o 
EffectiVjAdd ress 

Mode Register 

Num I 0 0 

Num field - Specifies the number of the BACx or BADx register to be used 

Instruction Format 3 (PMOVE to/from PSR, from PCSR): 
15 14 13 12 11 10 9 8 7 

1 1 1 1 I 0 0 0 0 0 

0 1 1 I P Reg I RlW 0 0 

Instruction Fields: 
Effective Address field - Same as above 

P Register field - Specifies the MC68851 register 
000 - PSR 
001 - PCSR 

RIW field - Specifies direction of transfer 
0- Transfer (ea) to MC68851 register 

6 

o I 
0 

5 4 3 2 o 
Effective, Add ress 

Mode Register 

0 0 0 0 0 0 

1 - Transfer MC68851 register to (ea) (must be one to access PCSR using this 
format) 

Me688S1 USER'S MANUAL MOTOROLA 
A-13 

• 



,. 

PRESTORE PMMU Restore Function 
(Privileged Instruction) 

PRESTORE 

Operation: 

Assembler 
Syntax: 

Attributes: 

If Supervisor state 
then MC68851 State Frame. Internal State, Programmer Registers 
else trap 

PRESTORE (ea> 

Unsized, Privileged 

Description: The MC68851 aborts execution of any operation it was performing, and a 
new internal state and programmer registers are loaded from the state frame located 
at the effective address. The first word at the specified address is the format word of 
the state frame, which specifies the size of the frame and the revision number. of the 
MC68851 that created it. The MC68020 will write the first word to the MC68851 restore 
coprocessor interface register to initiate the restore operation and then read the re
sponse coprocessor interface register to verify that the MC68851 recognizes the format 
as valid. If the format word is invalid for this MC68851 (either because the size of the 
frame is not recognized, or the revision number does not match the revision of this 
MC68851), then the MC68020 is instructed to take a format exception, and the MC68851 
returns to' the idle state with its user visible registers unchanged. If the format word 
is valid, the appropriate state frame is loaded, starting at the specified location and 
up through higher addresses. 

The PRESTORE instruction restores the non-user visible state of the MC68851 as well 
as the PSR, CRP, SRP, CAL, VAL, and SCC registers of the user programming model. 
In addition, if any breakpoints are enabled, all BACx and BADx registers are restored. 

This instruction is the inverse of the PSAVE instruction. 

The current implementation of the MC68851 supports four state sizes. Refer to 6.2.7.3 
STATE FORMATS for more information on the format of these states. 

NULL: This state frame is four bytes long, with a format word of $0. A PRESTORE 
with this size state frame places the MC68851 in the idle state with no coprocessor 
or module operations in progress. 

IDLE: This state frame is 36 ($24) bytes long. A PRESTORE with this size state frame 
causes the MC68851 to place itself in an idle state with no coprocessor operations 
in progress, and no breakpoints enabled. A module operation mayor may not 
be in progress. The minimal set of MC68851 registers are restored by this state 
frame. 

MID·COPROCESSOR: This state frame is 44 ($2C) bytes long. A PRESTORE with this 
size frame restores the MC68851 to a state with a coprocessor operation in prog
ress, and no breakpoints enabled. 

BREAKPOINTS ENABLED: This state frame is 76 ($4C) bytes long. A PRESTORE with 
this size state frame restores all of the breakpoint registers, along with other state. 
A coprocessor operation mayor may not be in progress. 

MOTOROLA 
A-14 

MC68851 USER'S MANUAL 



PRESTORE PMMU Restore Function 
(Privileged Instruction) 

PSR: Set according to restored data. 

Instruction Format: 
15 14 13 12 11 10 9 s 7 6 

o o o o 

Instruction Fields: 

PRESTORE 

5 4 3 2 o 
Effective Address 

Mode Register 

Effective Address field - Specifies the source location. Only control or postincrement 
addressing modes are allowed as shown: 

Addr. Mode Mode Register 

Dn - -

An - -

(An) 010 reg number:An 

(An)+ 011 reg number:An 

-(An) - -

(d16,An) 101 reg number:An 

(dS,An,Xn) 110 reg number:An 

(bd,An,Xn) 110 reg number:An 

([bd,An,Xn],od) 110 reg number:An 

([bd,An]'Xn,od) 110 reg number:An 

Me688S1 USER'S MANUAL 

Addr. Mode 

(xxx).W 

(xxx).L 

#(data) 

(d16,16) 

(dS,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn],od) 

([bd,PC]'Xn,od) 

Mode 

111 

111 

-

111 

111 

111 

111 

111 

Register 

000 

001 

-

010 

011 

011 

011 

011 

MOTOROLA 
A-15 



• 

PSAVE PMMU Save Function 
(Privileged Instruction) 

PSAVE 

Operation: If Supervisor state 
then MC68851 Internal State, Programmer Registers. State Frame 
else trap 

Assembler 
Syntax: PSAVE (ea> 

Attributes: Unsized, Privileged 

Description: The MC68851 suspends execution of any operation that it was performing 
and saves its internal state and certain programmer registers in a state frame located 
at the effective address. The registers copied are: PSR, CRP, SRP, CAL, VAL, and SCC. 
In addition, if any breakpoints are enabled, all BAC and BAD registers are copied. After 
the save operation, the MC68851 is in an idle state waiting for another operation to 
be requested. Programmer registers are not changed. 

The state frame format saved by the MC68851 depends on its state at the time of the 
PSAVE operation. In the current implementation, three format frames are possible. 
For detailed information on the format of these frames, refer to 6.2.7.3 STATE FOR· 
MATS. 

PSR: 

IDLE: This state frame is 36 ($24) bytes long. A PSAVE ofthis size state frame indicates 
that the MC68851 was in an idle state with no coprocessor operations in progress, 
and no breakpoints enabled. A module call operation mayor may not have been 
in progress when this state frame was saved. 

MID·COPROCESSOR: This state frame is 44 ($2C) bytes long. A PSAVE of this size 
frame indicates that the MC68851 was in a state with a coprocessor or module 
call operation in progress, and no breakpoints enabled. 

BREAKPOINTS ENABLED: This state frame is 76 ($4C) bytes long. A PSAVE of this 
size state frame indicates that one or more breakpoints were enabled. A copro
cessor or module call operation mayor may not have been in progress. 

Not affected 

Instruction Format: 
15 14 13 12 11 10 9 

MOTOROLA 
A-16 

o o o 

8 7 6 

p o 

5 4 3 2 o 
Effective Address 

Mode Register 

MC68851 USER'S MANUAL 



PSAVE 

Instruction Fields: 

PMMU Save Function 
(Privileged Instruction) 

PSAVE 

Effective Address field - Specifies the destination location. Only control or predecre
ment addressing modes are allows as shown: 

Addr. Mode Mode Register 

Dn - -

An - -

(An) 010 reg number:An 

(An)+ - -

-(An) 100 reg number:An 

(d 16,An) 101 reg number:An 

(dS,An,Xn) 110 reg number:An 

(bd,An,Xn) 110 reg number:An 

([bd,An,Xn),od) 110 reg number:An 

([bd,An)'Xn,od) 110 reg number:An 

MC68851 USER'S MANUAL 

Addr. Mode 

(xxx).w 

(xxx).L 

#(data) 

(d16,PC) 

(dS,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn),od) 

([bd,PC),Xn,od) 

Mode 

111 

111 

-

-
-

-
-
-

Register 

000 

001 

-

-
-
-
-
-

MOTOROLA 
A-17 

• 



• 

PScc 

Operation: 

Assembler 
Syntax: 

Attributes: 

Set on PMMU Condition 
(Privileged Instruction) 

If Supervisor state 
then ifcc true 

then 1 s • Destination 
else Os • Destination 

else trap 

PScc <ea) 

Size = (Byte) 

PScc 

Description: The specified MC68851 condition code is tested. If the condition is true, 
the byte specified by the effective address is set to TRUE (all ones); otherwise, that 
byte is set to FALSE (all zeros). 

The condition code specifier "cc" may specify the following conditions: 

BS B set 

LS L set 

SS S set 

AS A set 

WS Wset 

IS I set 

GS G set 

CS C set 

PSR: Not affected 

Instruction Format: 
15 14 13 12 11 

1 

0 

MOTOROLA 
A-18 

1 

0 

1 1 J 0 

0 0 0 

000000 

000010 

000100 

00110 

001000 

001010 

001100 

001110 

10 9 

0 o I 
0 0 

BC B clear 000001 

LC L clear 000011 

SC S clear 000101 

AC A clear 000111 

WC W clear 001001 

IC I clear 001011 

GC G clear 001101 

CC C clear 001111 

8 7 6 5 4 3 2 o 

0 0 1 Effective
l 
Address 

Mode Register 

0 0 0 MC68851 Condition 

MC68851 USER'S MANUAL 



PScc 

Instruction Fields: 

Set on PMMU Condition 
(Privileged Instruction) 

PScc 

Effective Address field - Specifies the destination location. Only data alterable ad
dressing modes are allows as shown: 

Addr. Mode Mode Register Addr. Mode Mode Register 

Dn 000 reg number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg number:An #(data) - -

(An)+ all reg number:An 

-(An) 100 reg number:An 

(d16,An) 101 reg number:An (d16,PC) - -
(d8,An,Xn) 110 reg number:An (d8,PC,Xn) - -

(bd,An,Xn) 110 reg number:An (bd,PC,Xn) - -

([bd,An,Xn],od) 110 reg number:An ([bd,PC,Xn]'od) - ~ 

([bd,An]'Xn,od) 110 reg number:An ([bd,PC]'Xn,od) - -

MC68851 Condition field - Specifies the coprocessor condition to be tested. This field 
is passed to the MC68851, which provides directives to the main processor for 
processing this instruction. 

MC68851 USER'S MANUAL MOTOROLA 
A-19 



• 

PTEST 

Operation: 

Assembler 
Syntax: 

Attributes: 

Get Information About Logical Address 
(Privileged Instruction) 

If Supervisor state 
then Information about Logical Address. PSTATUS 
else trap 

PTESTR (function code),(ea),#(level)[,An] 
PTESTW (function code),(ea),#(level)[,An] 

Unsized 

PTEST 

Description: If Hie E bit of the TC register is set, information about the logical address 
specified by (fc) and (ea) is placed in the PSR register. If the E bit of the TC register 
is clear this instruction will cause a PMMU Illegal Operation Exception (vector $39). 

The function code for this operation may be specified to be: 
1. Immediate - the function code is specified as four bits in the command word. 
2. Data Register - the function code is contained in the lower four bits in the 

MC68020 data register specified in the instruction. 
3. Source Function Code Register - the function code is contained in the source 

function code (SFC) register in the CPU. Since the SFC of the MC68020 has only 
three implemented bits, only function codes $0 through $7 can be specified in 
this manner. 

4. Destination Function Code Register - the function code is contained in the 
destination function code (DFC) register in the CPU. Since the DFC of the MC68020 
has only three implemented bits, only function codes $0 through $7 can be 
specified in this manner. 

The effective address field specifies the logical address to be tested. 

The (level) parameter specifies the depth to which the translation table is to be searched. 
A value of zero specifies a search of the ATC only. Values one through seven cause 
the ATC to be ignored and specify the maximum number of descriptors to fetch. Note 
that finding an ATC entry with (level) set to zero may result in a different value in the 
PSR register than forcing a table search. Only the I, W, G, M, and C bits of the PSR 
register are always the same in both cases. 

Either PTESTR or PTESTW must be specified. The two instructions differ in the setting 
of the A bit of the PSR (refer to 6.1.8.4 ACCESS LEVEL VIOLATION). For systems where 
access levels are not in use, either PTESTR or PTESTW may be used. U and M bits in 
the translation table are not modified by this instruction. 

If an address register parameter is specified, the physical address of the last descriptor 
successfully fetched is loaded into the address register. A descriptor is 'successfully' 
fetched if, and only if, all portions of the descriptor can be read by the MC68851 
without abnormal termination of the bus cycle. If the DT field of the root pointer used 
indicates 'page descirptor', the returned address is $0. 

MOTOROLA 
A-20 

MC68851 USER'S MANUAL 



PTEST Get Information About Logical Address 
(Privileged Instruction) 

PTEST 

The PTEST instruction continues searching the translation tables until the requested 
level is reached or until a condition occurs that makes further searching impossible 
(i.e., a DT field set to 'invalid', a limit violation, or a bus error from memory). The 
information in the PSR register reflects the accumulated values. 

PSR Register: Set as follows: 
B Set if a bus error was received during a descriptor fetch, or if, (level) = 0 and an 

entry was found in the ATC with its BERR bit set. Cleared otherwise. 
L Set if the limit field of a long descriptor was exceeded. Cleared otherwise. 
S Set if a long descriptor indicated supervisor-only access and the (fc) parameter 

did not have bit [2] set. Cleared otherwise. 
A If PTESTR was specified, set if the RAL field of a long descriptor would deny 

access. If PTESTW was specified, set if a WAL or RAL field of a long descriptor 
would deny access. Cleared otherwise. 

W Set if the WP bit of a descriptor was set, or if a WAL field of a long descriptor 
would deny access. 

I Set if a valid translation was not available. Cleared otherwise. 
M If the tested address is found in the ATC, then set to the value of the M bit in the 

ATC. If the tested address is found in the translation table, set if the M bit of the 
page descriptor is set, and cleared otherwise. 

G If the tested address is found in the ATC, then set to the value of the G bit in the 
ATC. If the tested address is found in the translation table, set if the G bit of the 
page descriptor is set, and cleared otherwise. 

C Set if the address is globally shared. Cleared otherwise. 
N Set to the number of levels searched. A value of zero indicates an early termination 

of the table search in the root pointer (DT = 'page descriptor') if the level spec
ification was not zero. If the level specification was zero, N is always set to zero. 

Instruction Format: 

15 14 13 12 11 10 9 

1 1 1 1 I 0 0 0 

1 0 0 I Level I RIW 

MC68851 USER'S MANUAL 

8 7 6 5 

0 0 o I 
A Reg I 

4 3 2 o 
Effective

l 
Address 

Mode Register 

Fe 

MOTOROLA 
A-21 

• 



• 

PTEST 

Instruction Fields: 

Get Information About Logical Address 
(Privileged Instruction) 

PTEST 

Effective Address field - Specifies the logical address about which information is 
requested. Only control alterable addressing modes are allowed as shown: 

Addr. Mode Mode Register Addr. Mode Mode Register 

On - - (xxx).w 111 000 

An _. - (xxx).L 111 001 

(An) 010 reg number:An #(data) - -

(An)+ - -

-(An) - -

(d 16,An) 101 reg number:An (d 16,PC) - -

(d8,An,Xn) 110 reg number:An (dS,PC,Xn) - -

(bd,An,Xn) 110 reg number:An (bd,PC,Xn) - -

( [bd,An,Xn]'od) 110 reg number:An ([bd,PC,Xn]'od) - -

([bd,An],Xn,od) 110 reg number:An ([bd,PC]'Xn,od) - -

Note that the effective address field must provide the MC68851 with the effective 
address of the logical address to be tested, not the effective address describing where 
the PTEST operand is located. For example, in order to test a logical address that is 
temporarily stored on the system stack, the instruction PTEST [(SP)] must be used 
since PTEST (SP) would test the mapping of the system stack (i.e., the effective address 
passed to the MC68851 is the effective address of the system stack, not the effective 
address formed by the operand located on the top of the stack. 

Level - Specifies the depth to which the translation table should be searched 

R/W field - Specifies whether the A bit should be updated for a read or a write 
1 - Read 
0- Write 

Areg - Specifies the address register in which to load the last descriptor address 
Oxxx - Do not return the last descriptor address to an address register 
1 RRR - Return the last descriptor address to address register RRR 

NOTE 
When the PTEST instruction specifies a level of zero, the Areg field must be 0000. 
Otherwise, an F-line exception is generated . 

FC field - Function code of address to test 
1 DODD - Function code is specified as four bits DODD 
01 RRR - Function code is contained in CPU data register RRR 
00000 - Function code is contained in CPU SFC register 
00001 - Function code is contained in CPU DFC register 

MOTOROLA 
A-22 

MC68851 USER'S MANUAL 



PTRAPcc Trap on PMMU Condition 
(Privileged Instruction) 

PTRAPcc 

Operation: 

Assembler 
Syntax: 

Attributes: 

If Supervisor state 
then if cc true then trap 
else trap 

PTRAPcc 
PTRAPcc.W 
PTRAPcc.L 

#(data) 
#(data) 

Unsized or Size = (Word, Long) 

Description: If the selected MC68851 condition is true, the processor initiates exception 
processing. The vector number is generated to reference the cpTRAPcc exception 
vector, the stacked program counter is the address of the next instruction. If the 
selected condition is not true, no operation is performed, and execution continues 
with the next instruction. The immediate data operand is placed in the next word(s) 
following the MC68851 condition and is available for user definition for use within the 
trap handler. Following the condition word may be a user-defined data operand spec
ified as immediate data, to be used by the trap handler. 

The condition specifier "cc" may specify the following conditions: 

_BS B set 000000 BC B clear 000001 

LS L set 000010 LC L clear 000011 

SS S set 000100 SC S clear 000101 

AS A set 000110 AC A clear 000111 

WS Wset 001000 WC W clear 001001 

IS I set 001010 IC I clear 001011 

GS G set 001100 GC G clear 001101 

CS C set 001110 CC C clear 001111 

PSR: Not affected 

Instruction Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

1 1 1 1 J 0 0 0 l 0 0 1 1 1 1 I Op-Mode 

0 0 0 0 0 0 0 0 0 0 MC68851 Condition 

16-Bit Operand or Most Significant Word of 32-Bit Operand (If Needed) 

Least Significant Word of 32-Bit Operand (If Needed) 

MC68851 USER'S MANUAL MOTOROLA 
A-23 

• 



,. 

PTRAPcc Trap on PMMU Condition 
(Privileged Instruction) 

PTRAPcc 

Instruction Fields: 
Op-Mode Field - Selects the instruction form 

010 - Instruction is followed by one operand word 
011 - Instruction is followed by two opearnd words 
100 - Instruction has no following operand words 

MC68851 Condition field - Specifies the coprocessor condition to be tested. This field 
is passed to the MC68851, which provides directives to the main processor for 
processing this instruction. 

MOTOROLA 
A-24 

Me6SSS1 USER'S MANUAL 



PVALID Validate a Pointer PVALID 

Operation: If (source AL bits) > (destination AL bits) then Trap 

Assembler 
Syntax: 

Attributes: 

PVALID VAL,<ea) 
PVALID An,<ea) 

Size = (Long) 

Description: The upper bits of the source (VAL or An) are compared with the upper bits 
of the destination <ea). The number of bits compared is defined by the ALC field of 
the AC register. If the upper bits of the source are numerically greater than (less 
privileged than) the destination, they cause an MMU access level exception. Otherwise, 
execution continues with the next instruction. If the MC field of the AC register is zero, 
then this instruction always causes a PMMU access level exception. 

PSR: Not affected. 

Instruction Format 1 (VAL Contains Access Level to Test Against): 

15 14 13 12 11 10 9 a 7 6 5 4 3 2 0 

1 I 0 0 o I 0 0 o J Effective, Address 
Mode Register 

0 0 1 I 0 o I 0 0 0 0 0 0 0 0 0 0 

Instruction Fields: 
Effective Address field - Specifies the logical address to be evaluated and compared 

against the VAL register. Only control alterable addressing modes are allowed as 
shown: 

Addr. Mode Mode Register 

Dn - -

An - -

(An) 010 reg number:An 

(An)+ - -

-(An) - -

(d16.An) 101 reg number:An 

(da.An,Xn) 110 reg number:An 

(bd.An,Xn) 110 reg number:An 

([bd.An,Xn]'od) 110 reg number:An 

([bd.An],Xn,od) 110 reg number:An 

MC68851 USER'S MANUAL 

Addr Mode 

(xxx).W 

(xxx).L 

#(data) 

(d16,PC) 

(dS,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn),od) 

([bd,PC]'Xn,od) 

Mode 

111 

111 

-

-
-
-
-
-

Register 

000 

001 

-

-

-
-

-

-

MOTOROLA 
A-25 

., 



• 

PVALID Validate a Pointer PVALID 

Instruction Format 2 (Main Processor Register Contains Access Level to Test Against): 

15 14 13 12 11 10 9 S 7 6 5 4 3 2 0 

1 I 0 0 01 0 0 o I Effective
l 
Address 

Mode Register 

0 0 1 I 0 1 I 0 0 0 0 0 0 o I Reg 

Instruction Fields: 
Effective Address field - Specifies the logical address to be evaluated and compared 

against the specified main processor address register. Only control alterable ad-
dressing modes are allowed as shown: . 

Addr. Mode Mode Register Addr. Mode Mode Register 

Dn - - (xxx).w 111 000 

An - - (xxx).L 111 001 

(An) 010 reg number:An #(data) - -

(An)+ - -

-(An) - -

(d16,An) 101 reg number:An (d16,PC) - -

(ds,An,Xn) 110 reg number:An (dS,PC,Xn) - -

(bd,An,Xn) 110 reg number:An (bd,PC,Xn) - -

([bd,An,Xn),od) 110 reg number:An ([bd,PC,Xn),od) - -

([bd,An),Xn,od) 110 reg number:An ([bd,PC),Xn,od) - -

Note that the effective address field must provide the MC68851 with the effective 
address of the logical address to be validated, not the effective address describing 
where the PVALID operand is located. For example, in order to validate a logical 
address that is temporarily stored on the system stack, the instruction PVALID VAL,[(SP)] 
must be used since PVLAID VAL,(SP) would validate the mapping on the system stack 
(i.e., the effective address passed to the MC68851 is the effective address of the system 
stack, not the effective address formed by the operand located on the top of the stack). 

Reg field - Specifies the main processor address register to be used in the compare 

MOTOROLA 
A-26 

MC68851 USER'S MANUAL 



A.4 INSTRUCTION FORMAT DIAGRAMS 

The instruction formats are summarized below. 

PBcc 

15 14 13 12 11 10 9 8 7 6 5 4 2 o 

1 1 1 1 I 0 0 0 I 0 1 I Size I MC68851 Condition 

16-Bit Displacement, or Most Significant Word of 32-Bit Displacement 

PDBcc 

15 14 13 12 

1 1 1 1 

0 0 0 0 

PFLUSH 

15 14 13 12 

1 1 1 1 

0 0 1 I 

PFLUSHR 

15 14 13 12 

0 1 I 0 

PLOAD 

15 14 13 12 

1 1 1 1 

0 0 1 I 0 

PMOVE (FORMAT 1) 

15 14 13 12 

1 1 1 1 

0 1 0 I 

MC68851 USER'S MANUAL 

Least Significant Word of 32-Bit Displacement (If Needed) 

11 10 9 8 7 6 

I 0 0 0 1 0 0 1 

0 0 0 0 0 0 

16-Bit Displacement 

11 10 9 8 7 6 

I 0 0 0 0 0 0 

Mode I 0 Mask 

11 10 9 8 7 6 

I 0 0 0 I 0 0 0 

0 0 0 0 0 0 

11 10 9 8 7 6 

I 0 0 0 0 0 0 

0 0 I R/W 0 0 0 

11 10 9 8 7 6 

I 0 0 0 0 0 0 

P Reg I R/W 0 0 0 

5 

0 

5 

I 
I 

5 

I 
0 

5 

I 
0 I 

5 

I 
0 

4 2 o 

0 1 I Count Register 

MC68851 Condition 

4 3 2 o 
Effective, Address 

Mode Register 

FC 

4 3 2 0 

Effective, Address 
Mode Register 

0 0 0 0 0 

4 3 2 0 

Effective, Address 
Mode Register 

FC 

4 3 2 o 
Effective, Address 

Mode Register 

0 0 0 0 0 

MOTOROLA 
A-27 

., 



• 

PMOVE (FORMAT 2) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

1 1 1 1 I 0 0 0 0 0 0 I 
Effective

l 
Address 

Mode Register 

0 1 1 I P Reg I R/W 0 0 0 0 I Num I 0 0 

PMOVE (FORMAT 3) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

1 1 1 1 I 0 0 0 0 0 0 I 
Effective

l 
Address 

Mode Register 

0 1 1 I P Reg I RtW 0 0 0 0 0 0 0 0 0 

PRESTORE 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 Effective Address 
Mode Register 

PSAVE 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 0 Effective Address 
Mode Register 

PSCC 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 1 1 1 I 0 0 0 I 0 0 1 Effective
l 
Address 

Mode Register 

0 0 0 0 0 0 0 0 0 0 MC68851 Condition 

PTEST 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

1 1 1 1 I 0 0 0 0 0 0 I Effective, Address 
Mode Register 

1 0 0 I Level I RtW A Reg I FC 

PTRAPcc 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

1 1 1 1 I 0 0 0 I 0 0 1 1 1 1 I Op-Mode 

0 0 0 0 0 0 0 0 0 0 MC68851 Condition 

16-Bit Operand or Most Significant Word of 32-Bit Operand (If Needed) 

MOTOROLA 
A-28 

Least Significant Word of 32-Bit Operand (If Needed) 

Me688S1 USER'S MANUAL 



PVALID (FORMAT 1) 

15 14 13 12 11 10 9 8 

1 I 0 o 01 0 
o o 1 I 0 01 0 o 

PVALID (FORMAT 2) 

15 14 13 12 11 10 9 8 

1 I 0 o 0 I 0 

o o 1 I 0 1 I 0 0 

MC68851 USER'S MANUAL 

7 6 5 

o o I 
o o o 

7 6 5 

o o I 
o o 0 

4 3 2 o 
Effective, Address 

Mode I Register 

o o o o 

4 3 2 o 
Effective, Address 

Mode I Register 

o 0 I Reg 

MOTOROLA 
A-29 

• 



• 
MOTOROLA 
A-30 

Me68851 USER'S MANUAL 



APPENDIX B 
HARDWARE CONSIDERATIONS 

This appendix discusses several aspects of the MC68851 that can simplify the task of the 
system hardware designer. 

B.1 SIMPLE SYSTEM CONFIGURATION 

In this context, 'simple system' refers to a system composed of the MC68020, MC68851, 
and any number of explicitly addressed physical address space devices (up to 2n devices, 
where n is the number of physical address bits used). This system may include alternate 
physical bus masters but, unless control signals shared between the logical and the physical 
buses are buffered, concurrent logical and physical bus activity is not allowed. This system 
may be considered to be a 'minimum configuration' since it includes only the circuitry 
required to support basic MC68851 operations. 

Figure B-1 illustrates the implementation of a simple system showing the connections 
between the MC68020, MC68851, and the physical address space devices. In this figure, 
several areas ofthe circuitry are labeled alphabetically to point out devices discussed below. 

The circuitry in (A) provides a decode and strobe generation for CPU space accesses as 
discussed in 4.2.3.5 TRANSLATION OF CPU SPACE ACCESSES. The active low output of 
this logic is used to validate CPU space accesses. If coprocessors reside in the physical 
address space of the system, address bits [13-15] and [16-19] (logical or physical) must 
be further decoded to select an individual coprocessor or to signal an interrupt acknowledge 
(refer to SECTION 9 COPROCESSOR INTERFACE). If no coprocessors reside in the physical 
address space, the output of (A) can be used as an interrupt acknowledge signal without 
fu rther decoae. 

The inclusion or exclusion of latch (B) is dependent on the required hold time for the low
order address bits of a particular system. During an address translation the MC68851 drives 
the high-order physical address bits (PA8-PA31) and can guarantee a minimum hold time 
for these outputs from the negation of PAS. However, the MC68851 does not drive the 
low-order, shared address bits (AO-A7) during a translation and thus cannot provide a hold 
time relative to PAS. The logical master drives these signals a'nd specifies a hold time from 
the negation of its own address strobe (LAS). Since PAS is negated some time after LAS 
(as given by AC specification #118) it is possible that insufficient hold time may be provided. 
When LAS is negated, the low-order address bits are latched and held until LAS is again 
driven low during the next bus cycle. 

The data and address buffering (C) is typically required in a system in order to provide 
increased current drive capability for a large number of physical address space devices. 
In systems that do not load these buses in excess of the specified maximums, (C) may be 
excluded. Note, however, that increased noise immunity and a reduction in transient current 
requirements for the MC68851 can be obtained by reducing the capacitive loading on the 
physical address and data buses and, therefore, sufficient buffering of these buses is highly 
recommended. 

Me688S1 USER'S MANUAL MOTOROLA 
8-1 



cps: 
NO 

-I o 
::0 
o 
£: 

:s: 
n 
0) 
CO 
CO 
U'I 
...a 

c en 
m 
:a 
en 
:s: » 
2 
C » r-

iii 

.: 
MC6802li 

FCO-FC2 
SllO/SIZl 

AO-A31 

R/W 
RMC 

AS 
OS 

OSACKO/OSACK 1 
BERR 
HALT 

RESET -
CLK 

00-031 

iiii 
BIT 

BGACK 

~ 

SYSTEM --
RESET 

CD """ 

1 I » 
OV T_ 

SEE NOTE l. lJP~ 
CPU SPACE ADDRESS STROBE 

MC68851 
-'- ~ 

+5V - ASYNC 
OV - FC3 , 0 74X373 

FCO-FC2 .-- '--
SIZO/Slll 

G® 

I---.-
LA8-LA31 PA8-PA31 ... 8 fi PAO-PA7 
AO-A7 , 

R/W 
~r - 74X244 

RMC 

I 
" 24 PA8-PA31 

C> C[j ~ 

LAS PAS 
... 

PHYSICAL 
OS D) 1+ 1 DEVICES 

OBOIS - r PHYSICAL ADDRESS DECODE, (MEMORY, OSACKO/OSACK 1 

0~ BERR STROBE GENERATION, +. 74X245 
OMA, 

1 HALT I AND BUS TIMING CONTROL I/O, 

r---+- . RESET - I ~~ 
ETC,) 

CLK I L r 
00-031 + 0 

+5V - LBRI PBR 
LBRO PBG 
LBGI PBGACK 

NC- LBGO , 8 
LBGACK o 00-07 ~ 74X244 

<' -
~ J EN6 
? 

~ 
-

V I 
? BUS INTERFACE 

COPROCESSOR RESET ~ INITIALIZATION DATA ? 

ysy thatt 9 
is routed 'under' the MC68851 to the physical address space. 

Figure 8-1. Example Simple MC68020/MC68851 Hardware Configuration 



Logic block (0) contains the address decode, memory timing signal generation, and other 
various system dependent devices (for example, watchdog timers, parity generator/check
ers, ... , etc.) that are required by the system. This block also contains buffering for any 
of the bus control signals that are heavily loaded. Additionally, (0) includes buffering for 
any control signals that may be driven by an alternate physical bus master since gaining 
control of the physical bus through arbitration does not imply that control signals shared 
between the CPU and the MC68851 will be in the high-impedance state (i.e., they may be 
driven by the CPU since it is not affected by physical bus arbitration). 

The two gates marked (E) in the diagram are used to place buffers (B) and (C) in the high
impedance state when an alternate physical bus master is active on the low-impedance 
(output) side of these buffers. When the MC68851 completes a bus cycle and the physical 
bus grant (PBG) output indicates that an alternate master will take control of the bus before 
the MC68851 performs another cycle, these gates place the buffers in the high-impedance 
state and maintain this state as long as PBGACK is asserted. If no alternate physical bus 
master is present in the system, (E) is not required and the output of the buffers can always 
remain in the low-impedance state. It is possible for an alternate physical master to share 
the buffers for the high-order physical addresses (PA8-PA31) since these lines are placed 
in the high-impedance state as a result of arbitration for the physical bus, in which case 
the buffers can permanently remain in the low-impedance state. However, direct (unbuf
fered) sharing of the low-order address, data, and control signal buses by an alternate 
physical master is not allowed unless some provision is made to force the logical master 
to also relinquish control of the bus in response to physical bus arbitration (for example, 
arbitrating for both the logical and physical buses simultaneously). 

Circuit (F) is used to gate configuration information into the MC68851 during reset as 
described in 4.1.2 Bus Interface Initialization. This buffer is allowed to drive the MC68851 
only during reset and only after the MC68851 is properly powered-up and asserts the 
OBDIS signal. Both RESET and OBOIS must be used to control the impedance of this buffer 
in order to avoid bus contention between (F) and any other data bus buffers during reset. 
Note that this buffer is required only if a reset configuration other than the default config
uration is necessary. 

Finally, circuit (G) is presented to illustrate the recommended means of distributing the 
RESET signal throughout a system. Since a coprocessor provides an integral part of the 
system programming model (and state)' it is necessary to reset the coprocessor when, and 
only when, the CPU itself is reset and not when the RESET signal is driven by the CPU 
during a reset instruction. Additionally, resetting the MC68851 disables the translation, 
breakpoint, and access level mechanisms; this is not typically desirable during instruction 
execution. 

B.2 ALTERNATE LOGICAL BUS MASTERS 

An example of the inclusion of a logical address space DMA controller is presented in 
Figure B-2. In this example, an MC68442 dual-channel OMA controller with a 32-bit address 
bus is configured to provide low-latency 8- or 16-bit transfers. In Figure B-2, logic and 
buffering described previously is included but has been reduced to blocks to simplify 
discussion of additional circuitry. 

Circuit (H), shown in detail in Figure B-3, demultiplexes the address/data outputs of the 
MC68442 and also provides the multiplex control and routing required to allow the 16-bit 
data bus of the MC68442 to interface to the 32-bit system bus. When an even word address 

MC68851 USER'S MANUAL MOTOROLA 
8-3 

• 



tps: 
~O 

--l o 
:JJ 
o 
s;: 

s: 
C') 
(7) 
CC) 
CC) 

~ 
c 
CJ) 
m 
:::D en 
s: 
l> 
2: 
C 
l> 
r-

iii 
MC68020 

FCO-FC2 
SilO/Sill 

AO-A31 

R/W 
RMC 

AS 
OS 

OSACKO/oSACK I 
BERR 
HALT 

RESET 

ClK 

00-031 

SA 
1iG 

BGACK 

MC68442 

FC3 
FCO-FC2 
A24-A31 

A8-A23/DO-DI6 
AI-A7 

cs 
AS 

RiW 
UoS/AO 
I'iiS/DS 

oTACK 

BECO-BEC2 

OWN 
UAS 

OBEN 
ODiR 

HIBYTE -DEVICE ClK 
CONTROL -INTERRUPT BR 
CONTROL BG 
~ 

BGACK 

~ MC68851 =r@ FC3 (FROM MC684421 
FC3 CPU SPACE ADDRESS STROBE 

0 ASYNC _I 
FCO-FC2 OWN (FROM MC684421 
SilO/Sill 

~ 
lA8-lA31 PA8-PA31 8 

CD 
PAO-PA 7 

AO-A7 ... 

RiW 

~ 
RMC 

III 
24 PA8-PA31 

CO ... 
ViS PAS 
OS 

oBOIS -
DSACKO/OSACK 1 PHYSICAL ADDRESS DECODE. I ® 
BERR STROBE GENERATION, 0 
HALT I AND BUS TIMING CONTROL 

-+- RESET -

~ ~ ClK 

00-031 

;-- - lBRI PBR 
lBRO PSG 
lBGI PBGACK 

00-07" 8 I lBGO 

II 
lBGACK 

~ ® CWJ ------ ADDRESS/DATA 
REQUEST - CONDITIONING SYSTEM - DEMULTIPLEXER 

lOGIC RESET --- (SEE FIGURE 
(SEE FIGURE - B-31 

4-341 CD 

~ 
? 

BUS EXCEPTION I r-4-ENCODING I ~~ lBGO_ 0 PR Q 

.v,v 
PMMU.MASTER 

,vA 
_v.v.y 

ClR _v.v. v lAS 
vv 

~ 
LBGA".~ 

lBRO 

RESET 

Figure B-2. Example MC68020/MC68851 Hardware Configuration 
with Single Alternate Logical Bus Master (MC68442) 

----1-

PHYSICAL 
DEVICES 

(MEMORY, 
DMA, 
I/O, 
ETC, 

T 

373.G 

@ 



LAO-LA31 

00-031 

AO-A7 

024-031 

016-023 

08-015 

00-07 

Figure B-3. AddresslData Bus Demultiplex Logic for Figure B-2 

(A 1 = 0) is accessed by the MC68442, the multiplex logic routes the high-order (even) word 
of the system data bus to the MC68442 shared address/data bus. Similarly, when an odd 
word address is accessed (A 1 = 1) the low-order (odd) word of the system data bus is 
routed to the MC68442. Although the additional hardware required to provide 8-bit single
address transfers is not shown in this figure, it can be included easily (refer to Motorola 
publication ADI-l002 MC68440 Dual-Channel Direct Memory Access Controller). 

Circuit (I) provides the bus request conditioning logic as described in 4.4.1.1 ALTERNATE 
MASTER REQUESTING THE LOGICAL BUS and prevents deadlocks ofthe logical bus should 
the MC68851 be required to perform a table search operation from the DMA controller. In 
a system incorporating multiple alternate logical masters, similar circuitry to perform this 
same function must be included. 

Circuit (J) demonstrates the use of the asynchronous control input (ASYNC). When the 
alternate logical master asserts LBGACK indicating that it is going to perform bus activity, 
ASYNC is asserted to indicate that the master does not present the same bus timings as 
the MC68020. Note that this circuit also drives ASYNC low when the MC68851 is performing 
table search operations. However, ASYNC is monitored only during address translation 
and accesses to the MC68851 register set and is ignored during table search operations. 

MC68851 USER'S MANltAL MOTOROLA 
8-5 

E 



The only other major modifications required to include an alternate logical master are to 
the p,hysical address space strobe generation and bus timing control circuitry (D). Since 
the bus control signals for the MC68442 are different than those of the MC68020 and 
MC68851, some provision must be made to incorporate these signals. Additionally, any 
control signals not driven by the alternate master (e.g., RMC and DS) must be held inactive 
with resistive pullups while the CPU signal buses are in the high-impedance state. 

Note thatthe cont'rol circuitry for (8) is modified to account for the presence ofthe MC68442. 
If an alternate logical bus master is employed that does not present an OWN signal, a 
control circuitas shown in (Z) should be used to replace the G input control circuitry for 
(8). 

It is important to note that, while the inclusion of DMA hardware potentially provides for 
low-latency response to external events, a DMA controller generating logical addresses 
may not provide satisfactory response time unless certain conventions are adhered to by 
the software controlling the DMA setup. First, both the source and destination of the 
transfers should physically reside in the system (i.e., both should be currently allocated to 
and reside in the physical address space and neither can be removed until the DMA 
operation is complete). Second, translation descriptors for both the source and destination 
operands should be pre-loaded into the MC68851 address translation cache using the 
PLOAD instruction. Third, the translation descriptors should be locked into the ATC to 
prevent their removal by the ATC replacement mechanism. Finally, the descriptors locked 
into the ATC by previous DMA operations should be flushed from the ATC in order to 
ensure that enough descriptors remain free to provide sufficient ATC performance for other 
tasks. 

B.3 LOGICAL ADDRESS SPACE DEVICES 

Hardware devices are normally located in and accessed via the system's physical address 
space. However, certain devices may reside in the logical address space and be accessed 
using only logical address information. 

The general class of device that qualifies for this type of organization is one that is accessed 
via one of the address spaces that are unmapped by the MC68851. An 'unmapped' address 
space.is one for which the MC68851 always provides a unity mapping (i.e., the physical 
address is always equal to the logical address) and does not enforce any protection checking 
on the accesses in this address space. Additionally, accesses via an unmapped address 
space are passed directly through the MC68851 and thus do not require any intervention 
from the ATC (i.e., translation descriptors for these accesses are neither created nor main
tained). The only address space that is unmapped by the MC68851 is the CPU space 
(FC = 7). 

It is possible to create other address spaces that haye a unity mapping by setting the 
descriptor type field of a root pointer register to 'page descriptor' (refer to SECTION 5 
ADDRESS TRANSLATION). However, as opposed to the 'unmapped' address spaces men
tioned above, accesses to other 'unity-mapped' address spaces are always monitored by 
the MC68851 protection mechanism and do involve the creation and maintenance of ATC 
entries although the entries (with one-to-one mappings) may be created by the MC68851 
without reference to the external translation tables. 

B.3.1 Logical Address Space Coprocessors 

The MC68851 response to CPU space accesses differs from accesses to other address 
spaces in that the accesses are always allowed (i.e., are never terminated by the MC68851 

MOTOROLA 
8-6 

Me6SS51 USER'S MANUAL 



except for accesses to the MC68851 register set) and the CLI signal, instead of the physical 
address strobe (PAS), is used to validate these accesses on the phsyical address bus. Since 
the logical address is always equal to the physical address, the logical address can be used 
equivalently to access devices residing in these address spaces. Using the logical address 
provides a performance benefit in that accesses are not subject to the translation overhead 
of the MC68851 and, with sufficient buffering, also allows accesses to the logical address 
space coprocessor to be performed while the physical bus is being used by an alternate 
physical bus master. 

Devices residing in the logical address space are accessed using only information from 
the logical buses (address and control). The only further provisions that must be made are 
to block propagation of the cycle to physical address space devices by forcing the CPU 
space address strobe to remain negated and to ensure that transceivers on the system 
data bus do not conflict with the bus drivers of the logical address space device. 

Figure 8-4 illustrates the simplest method by which the MC68881 can be included in the 
logical address space of an MC68020/MC68851 system. The chip-select for the MC68881 
(L) is decoded directly from the logical address bus, and the bus control strobes of the 
MC68020 are connected directly to the corresponding MC68881 signals. In this example, 
the MC68881 is accessed using Cp-ID $2 (A15/A14/A13 = 010). The gate (K) is used to 
block propagation of the CPU space address strobe to other devices when the MC68881 
is accessed. Circuit (M) isolates the local data bus from the external bus transceivers by 
forcing the transceivers into the high-impedance state unless either the physical or CPU 
space address strobe is asserted. 

B.3.2 Other Logical Address Space Devices 

A more restricted class of devices can be considered that consists of those devices that 
are accessed via an address space with a unity mapping. In these cases, the same general 
criteria remain valid as discussed above but, additionally, the hardware designer must take 
into account the possible MC68851 responses to accesses in these address spaces. Since 
there is no provision for preventing the MC68851 from monitoring all logical bus activity 
on a cycle-by-cycle basis (i.e., the synchronous timing specifications do not allow for 
intervening logic between the CPU and the MC68851), any device that is accessed in a 
logical address space other than the CPU space must be able to correctly respond to 
MC68851 bus control signals (bus error or relinquish and retry). 

The above requirement does not, in general, place any constraints on synchronous logical 
devices since the MC68851 provides sufficiently fast assertion of the bus control strobes 
to properly terminate any MC68020 bus cycle. However, due to extra synchronization 
delays, the MC68851 may not be able to correctly terminate a minimum-period bus cycle 
executed by an asynchronous logical bus master. 

As an example of the application of logical address space devices, consider an operating 
system that runs all supervisor code with a unity mapping. For this type of operation, the 
MC68851 supervisor root pointer register is initialized with a value of $0000020100000000 
(zero base offset, page descriptor, globally shared), and the SRE bit is set in the translation 
control register (the SRP is used to translate all supervisor references). This setup provides 
unity mapping of all supervisor references. 

As above, since the physical address is always equal to the logical address, the logical 
address can be used equivalently to access devices during supervisor bus cycles. The 

MC68851 USER'S MANUAL MOTOROLA 
8-7 



CPS: 
000 

-l o 
::0 
o 
r » 

s: 
(') 
g, 
co co 
(11 .-
c 
C/) 
m 
::0 en 
s: » 
2: 
c » r-

I 
MC68881 

AO 
Al-A4 

00-031 

AS 
R/W 

liS 
CS 

OSACKO/OSACK 1 

SIZE 
RESET 

elK 

MCB8020 

FCO-FC2 
SilO/Sill 

AO-A31 

R/W 
RMC 

AS 
liS 

OSACKO/OSACKI 
BERR 
HALT 

RESET 

ClK 

00-031 

liii 
BG 

BGACK 

+5 V 

~ 

-
CHIP-SElECT I 
lOGIC (SEE 

DETAil) 

• 
"T 

A19 
Al8 
A17 
AlB L~ ~1~3 "\ 
A13 ~ ] CP_CHIP SELECT 

o V-
+5 V -

L.....e-

+5V -

NC -

I LL0] 
SYSTEM 

RESET 

MC68851 

U FC3 
ASYNC 
FCO-FC2 
SilO/Sill 
LA8-LA31 PA8-PA31 
AO-A7 

R/W 
RMC 

CIT 
LAS PAS 
liS 

OBDIS I---
OSACKO/OSACKI 
BERR 
HALT 
RESET -
ClK 

00-031 

lBRI PBR 
lBRO PBG 
IifGI PBGACK 
LBGO 
lBGACK 

FC2~ 
FCI 
FCO 

COPROCESSOR CHIP SELECT DETAil 

{>c>-

r& CPU SPACE ADDRESS STROBE 

»T 
8 PAO-PA 7 

"' 0 

III 
... 24 PA8-PA31 

®-"' 

I I PHY~CAl ADDRESS DECDDE'lev -STROBE GENERATION. 0 

~ 1 AND BUS TIMING CONTROL 

~ 
I 0) I "C -

® 

00-07" ~ 

~ 

Figure 8-4. Example MC68020/MC68851 Hardware Configuration with Logical 
Address Space Device (MC68881 FPCP) 

0 

PHYSICAL 
DEVICES 

(MEMORY. 
OMA. 
I/O. 
ETC) 



hardware considerations are similar to those of placing a coprocessor on the logical bus: 
the selection of the logical device (for example, ROM, RAM, ... , etc.) is based on a decode 
of the logical address information, and this decode is used to block propagation of the 
cycle to the physical address space (PAS must be blocked in this case). 

The primary difference between the two cases is that the MC68851 does monitor all ac
cesses in this case and the logical address space is sub-divided into logical pages each of 
which must have a translation descriptor resident in the MC68851 ATC in order to be 
referenced. Otherwise, the MC68851 issues a relinquish and retry (8ERR, HALT, and L8RO) 
and internally generates a translation descriptor with a unity mapping for the referenced 
page (the relinquish and retry is issued to allow the MC68851 time to create the ATC entry). 

B.4 ACCESS TIME COMPUTATIONS 

The following paragraphs discuss the various timing parameters that are useful in deter
mining critical paths when designing interfaces between the logical bus master, the MC68851, 
and memory devices. 

B.4.1 CPU-to-Memory Access Time Computations 

The paths that are typically critical in any memory interface are illustrated and defined in 
Figure 8-5. 

The type of device that is being interfaced to the bus master determines exactly which of 
the paths is most critical. In general, the strobe asserted to DSACKx asserted path is most 
critical for very fast devices since little time is available between the assertion of the strobe 
and the point at which DSACKx must be asserted to terminate the bus cycle. The address
to-data paths are typically the critical paths for static devices since there is no penalty for 
initiating a cycle to these devices and later validating that access with the appropriate bus 
control signal (LAS or PAS). Conversely, the address strobe-to-data valid path is usually 
most critical for dynamic devices since the cycle must be validated before an access can 
be initiated. For devices that signal termination of a bus cycle before data has been validated 
(e.g., error detection and correction hardware) in order to improve performance, the critical 
path may be from the address or strobes to the assertion of 8ERR (or 8ERR and HALT). 
Finally, the use of the logical or physical assertion delays is usually governed by whether 
the device resides on the logical or physical bus. 

For the case of a synchronous master, the equations for determining the address times 
presented in Figure 8-5 are shown in Table 8-1. 

Example access time calculations for an MC68020 and an IViC68851 operating synchron
ously at 16.67 MHz are shown in Table 8-2. 

The access times for an asynchronous logical master can be calculated in a fashion similar 
to the above case for synchronous masters. However, because the logical strobe to physical 
strobe assertion delay is non-deterministic (dependent on whether or not setup times are 
met) in the general, asynchronous case, the exact equations for the access times depends 
on the particular asynchronous master. 

B.4.2 MC68851-to-Memory Access Time Computations 

Similar to the access paths evaluated above, the access times for MC68851 initiated-bus 
cycles during table search operations can be calculated. As shown in Figure 8-6, there are 

Me68851 USER'S MANUAL MOTOROLA 
8-9 

• 



so S2 Sw S4 so 

CLOCK 

LAO·LA31. SilO/Sill. 
FCO·FC3. R/W 

PA8·PA31 

00·031 

Paramater Description Symbol Equation 

-a Logical Address Valid to DSACKx Asserted tLAVDL 8-1 

b Logical Address Strobe Asserted to DSACKx Asserted tLSADL 8-2 

c Physical Address Valid to DSACKx Asserted tpAVDL 8-3 

d Physical Address Strobe Asserted to DSACKx Asserted tpSADL 8-4 

e Logical Address Valid to BERR/HALT Asserted (Late Termination) tLAVBHL 8-5 

f Logical Address Strobe Asserted to BERR/HALT Asserted tLSABHL 8-6 

g Physical Address Valid to 8ERR/HALT Asserted tpAVBHL 8-7 

h Physical Address Strobe Asserted to BERR/HALT Asserted tpSABHL 8-8 

i Logical Address Valid to Data Valid tLAVDV 8-9 

j Logical Address Strobe Asserted to Data Valid tLSADV 8-10 

k Physical Address Valid to Data Valid tpAVDV 8-11 

I Physical Address Strobe Asserted to Data Valid tpSADV 8-12 

Figure B-5. Access Time Computation Diagram 

six parameters that are of interest in determining the critical paths to memory. Table 8-3 
provides the equations required to calculate the MC68851-to-memory access times, and 
Table 8-4 illustrates example calculations for these equations. 

B.5 EXTERNAL CACHES 

In order to provide lower average access times to memory, many systems implement 
caches local to the main processor to store recently used instructions and/or data. With 
reference to the MC68851, the primary decisions in determining a particular cache archi
tecture are whether to place the cache in the logical or the physical address space and 

MOTOROLA 
8-10 

Me68851 USER'S MANUAL 



Table 8-1. CPU-to-Memory Access Time Equations 

tLAVDL = tCYC + tCH - tCHAV - tAIST + n • tCYC 

tLSADL = tCYC - tCLSA - tAIST + n • tCYC 

tpAVDL = tCYC + tCH - tCHAV - tLAVPAV - tAIST + n. tCYC 

tpSADL = n • tCYC - tCLPSL - tAIST 

tLAvBHL = 2. tCYC + tCH - tCHAV - tBELCL + n. tCYC 

tLSABHL = 2 • tCYC - tCLSA - tBELCL + n. tCYC 

tpAVBHL = 2. tCYC + tCH - tCHAV - tLAVPAV - tBELCL + n • tCYC 

tpSABHL = tCYC - tCLPSL - tBELCL + n • tCYC 

tLAVDV = 2. tCYC + tCH - tCHAV - tDICL. + n • tCYC 

tLSADV = 2 • tCYC - tCLSA - tDICL + n • tCYC 

tpAVDV = 2. tCYC + tCH - tCHAV - tLAVPAV - tDICL + n. tCYC 

tpSADV = tCYC - tCLPSL - tDICL + n • tCYC 
Where: 

tCYC = The Clock Period 

tCH = The Clock High Time 

tCHAV = The Clock High to Address Valid Delay 

tAIST = The Asynchronous Input Setup Time 

tCLSA = The Clock Low to Strobe Low Delay 

tLAVPAV = The Logical Address to Physical Address Translation Time 

tCLPSL = The Clock Low to PAS Low Assertion Delay 

(MC68851 - #1) 

(MC68851 - #3) 

(MC68020 - #6) 

(MC68020 - #47A) 

(MC68020 - #9) 

(MC68851 - #95) 

(MC68851 - #115) 

(MC68020 - #27A) 

(MC68020 - #27) 

tBELCL = The BERR/HAL T to Clock Low Setup Time 

tDICL = The Data-In to Clock Low Setup Time 

n = The Number of Wait States 

Table 8-2. Example CPU-to-Memory Access Time Calculations 
(MC68020 and MC68851 at 16.67 MHz, tCH = 30 ns, 

Zero and One Wait State) 

n = 0 n = 1 

tLAVDL = 60 + 30 - 30 - 5 + n • 60 55 ns 115 ns (1 ) 

tLSADL = 60 - 30 - 5 + n. 60 25 ns 85 ns (2) 

tpAVDL = 60 + 30 - 30 - 45 - 5 + n. 60 10 ns 70 ns (3) 

tpSADL = 0 - 25 - 5 + n. 60 30 ns (4) 

tLAVBHL = 120 + 30 - 30 - 20 + n • 60 100 ns 160 ns (5) 

tLSABHL = 120 - 30 - 20 + n .60 70 ns 130 ns (6) 

tpAVBHL = 120 + 30 - 30 - 45 - 20 + n. 60 55 ns 115 ns (7) 

tpSABHL = 60 - 25 - 20 + n ~ 60 15 ns 75 ns (8) 

tLAVDV = 120 + 30 - 30 - 5 + n. 60 115 ns 175 ns (9) 

tLSADV = 120 - 30 - 5 + n. 60 85 ns 145 ns 

tpAVDV = 120 + 30 - 30 - 45 - 5 + n • 60 70 ns 130 ns (11 ) 

tpSADV = 60 - 25 - 5 + n. 60 30 ns 90 ns (12) 

MC68851 USER'S MANUAL 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11 ) 

(12) 

MOTOROLA 
8-11 

• 



so S2 Sw S4 so 

CLOCK 

PA8-PA31. ,,---------------..... ~---
AO-A7 1Jii----------------..J"----

BERR. --------------------------1 
HALT 

00-031 ----------------------<, 

Para mater Description Symbol Equation 

a Physical Address Valid to DSACKx Asserted tpAVDL B-13 

b Physical Address Strobe Asserted to DSACKx Asserted tPSADL B-14 

c Physical Address Valid to BERR/HAL T Asserted tpAVBHL B-15 

d Physical Address Strobe Asserted to BERR/HALT Asserted tPSABHL B-16 

e Physical Address Valid to Data Valid tpAVDV B-17 

f Physical Address Strobe Asserted to Data Valid tpSADV B-18 

Figure 8-S. Access Time Computation Diagram - MCS8851 Initiated Accesses 

whether the cache accesses are terminated early (before the cache look-up is complete) 
or only after validation. 

The MC68020 late BERR/HAIT facility allows an external device to signal completion of a 
bus cycle by asserting DSACKx and later (approximately one clock period) aborting or 
retrying that cycle if an error condition is detected. As one critical access path in many 
memory structures is asserting DSACKx in sufficient time to avoid additional wait states, 
the late termination capability allows the memory controller to terminate a bus cycle before 
data has been validated with the expectation that the data will be valid before it is latched 
by the processor. If the data validation fails, the memory controller can then abort (BERR) 
or retry (BERR/HAL T) the cycle. This technqiue is useful in memory error detection schemes 
where the cycle can be terminated as soon as data becomes available and the error checking 
can take place during the period between the signaling of termination of the cycle and the 
latching of data by the processor with a late retry or abort signaled upon error indication. 
Likewise, this technique can be used in cache implementations where the cache tag vali
dation cannot be completed before termination of the cycle must be signaled but can be 
completed before late termination must be indicated. 

The major consideration that must be evaluated in choosing whether or not to utilize late 
cycle termination is the overhead involved in retrying a bus cycle after the cycle has missed 
in the cache. The minimum penalty is the three clock periods required to retry the cycle 
plus the two idle clocks before the retry, assuming that the bus control strobes (BERR and 
HALT) are negated soon enough after the completion of the aborted cycle that the next 
cycle can begin immediately. In evaluating this overhead, the projected cache miss rate 

MOTOROLA 
8-12 

MC68851 USER'S MANUAL 



Table 8-3. MC68851-to-Memory Access Time Equations 

tpAVDL = tCYC + tCH - tCHAV - tAIST + n. tCYC 

tpSADL = - tCLSA - tAIST + n. tCYC 

tpAVBHL = 2. tCYC + tCH - tCHAV - tBELCL + n • tCYC 

tpSABHL = 2. tCYC - tCLSA - tBELCL + n. tCYC 

tpAVDV = 2. tCYC + tCH - tCHAV - tDICL + n. tCYC 

tpSADV = 2 • tCYC - tCLSA - tDICL + n • tCYC 
Where: 

tCYC 

tCH 

tCHAV 

tAIST 

tCLSA 

tBELCL 

tDICL 

= The Clock Period 

= The Clock High Time 

= The Clock High to Physical Address Valid Delay 

= The Asynchronous Input Setup Time 

= The Clock Low to PAS Low Delay 

= The BERR/HAL T to Clock Low Setup Time 

= The Data-In to Clock Low Setup Time 

n = The Number of Wait States 

(MC68851 - #1) 

(MC68851 - #3) 

(MC68851 - #6) 

(MC68851 - #47A) 

(MC68851 - #9) 

(MC68851 - #27A) 

(MC68851 - #27) 

Table 8-4. Example MC68851-to-Memory Access Time 
Calculations 

(MC68851 at 16.67 MHz, tCH = 30 ns, 
Zero and One Wait State) 

n=O n = 1 

tpAVDL = 60 + 30 - 30 - 5 + n • 60 55 ns 115 ns 

tpSADL = 60 - 25 - 5 + n • 60 30 ns 90 ns 

tpAVBHL = 120 + 30 - 30 - 20 + n. 60 100 ns 160 ns 

tpSABHL = 120 ~ 25 - 20 + n • 60 75 ns 135 ns 

tpAVDV = 120 + 30 - 30 - 5 + n. 60 115 ns 175 ns 

tpSADV = 120 - 25 - 5 + n. 60 90 ns 150 ns 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

determines the percentage of cycles that must be retried. Additionally, the degree of par
allelism in the system should be considered. If, after a cache miss, it is possible to continue 
the memory cycle to main memory while the processor is retrying the cycle, it is possible 
to avoid some, or all, of the performance penalty associated with late termination (although 
the control circuitry required becomes more complex). 

The logical versus physical decision should be based on several design considerations. As 
shown by the access time calculations in Table B-2, for the same performance on a cycle
by-cycle basis (as measured by the number of wait states), use of logical information 
provides significantly more access time for performing the tag lookup, compare and cycle 
termination than is available with physical address information. Thus, for the same cycle
by-cycle performance, the logical cache can utilize slower, lower-cost components; or, with 
the increased access time available, can tolerate increased buffering delays and, hence, 
construct a larger cache. Additionally, in systems that employ physical address space DMA 
controllers, a logical cache significantly reduces the physical bus bandwidth requirements 
of the processor and thus can reduce the performance degradation associated with multiple 
bus masters sharing a common bus. 

The primary benefit of a physical cache over a logical cache is the ability to easily maintain 
entries for multiple tasks simultaneously and the removal of the requirement to flush the 
cache on each context switch. Since each task in a system may have its own unique mapping 
of the logical address space, a logical cache (except as described below) must be flushed 

MC68851 USER'S MANUAL MOTOROLA 
B-13 

• 



of all entries whenever the logical-to-physical mapping of the system changes as occurs 
during a context switch. Since there is only a single physical address space, this problem 
does not occur with a physical cache as all references to a particular operand must utilize 
the same physical address. However, the intended cache size should be evaluated when 
considering the utility of allowing mutliple tasks to maintain cache entries. If the cache 
size is relatively small, and the time between context switches is large, each task will tend 
to fill the cache and to remove all entries created during the execution of previous tasks. 
Conversly, if the cache size is relatively large and the period between context switches is 
relatively small, the cache may provide an efficient sharing of entries. 

The MC68851 provides the system designer with the ability to construct a logical cache 
that maintains entries for multiple tasks simultaneously by using the task alias of the 
MC68851. To implement this type of logical cache, the current value of the task alias is 
stored in the tag field of each entry loaded into the cache. The current task alias is also 
stored in a hardware register and is compared, during each bus cycle, against the value 
stored in the tag array. Only entries that are associated with the current task alias generate 
valid cache hits. In order to maintain cache consistency, the TA field of the MC68851 PCSR 
is checked after each write to the CRP register, and, if the MC68851 indicates that entries 
with the current task alias have been flushed, then the logical cache is also flushed of 
entries with that task alias. 

B.5.1 Logical Cache Implementation 

An example organization of a logical data cache is shown in Figure 8-7. As with the 
coprocessor example discussed in B.3.1 Logical Address Space Coprocessors, the cache 
uses only logical address information to identify an element in its tag or data stores. 

When a bus cycle is initiated, a cache lookup begins in parallel with address translation 
by the MC68851. Thisis done in order to reduce the penalty for cache misses by overlapping 
the MC68851 translation time with the cache lookup. With this organization, the cache 
timing controller does not terminate a bus cycle until the cache has had sufficient time to 
validate the access as a 'hit' or a 'miss'; When a 'hit' decision is made, the cache controller 
asserts the DSACKx signals and also blocks propagation of the physical address strobe 
(0). If the cache decision cannot be completed before PAS would normally be asserted by 
the MC68851, some provision must be made to delay the propagation of PAS until the 
decision is valid. Otherwise, spurious assertions of the PAS signal are likely to occur. 

The cache control circuit (N) contains all logic required to clear or create cache entries. 
Also contained in (N) is the decision logic requi~ed to determine whether a hit or miss has 
occurred and the timing logic that is required to prevent propagation of the 'hit' signal 
until the lookup and compare circuitry has had sufficient time to generate a valid decision. 
The critical path in the design of this cache is from the output of valid address by the CPU 
to the assertion of DSACKx by the cache controller (equation 8-1). After the decision has 
been made that a cache-hit has occurred, the hit signal propagates through a single level 
of open-collector logic (P) to drive the DSACKx signals (assuming that the cache is always 
organized as a 32-bit port). Operating at 16.67 MHz, 55 nanoseconds are available from 
the presentation of valid address by the CPU to the assertion of DSACKx by the cache 
controller while 115 nanoseconds are available from valid address to data valid at the 
processor inputs. 

If the access times cannot be met due to the particular cache architecture, size, cost, or 
other consideration, the system designer may chose to utilize an early termination ap
proach, as discussed above, that increases the decision time available to the cache con
troller by making the critical path from address valid to 8ERR/HAL T low (Equation 8-5). 

MOTOROLA 
B-14 

MC68851 USER'S MANUAL 



3: 
n 
~ 
~ 
~ 

c 
(J) 
m 
:xJ 
en 
3: » 
:2 
C » 
r-

s: 
o 
-I o 
::0 roo 

~~ 

OATA 
STORE 

I l 

MC68020 

FCO-FC2 
SIZO/SIZl 

AO-A31 

R/W 
RMC 

AS 
OS 

OSACKO/OSACK 1 
BERR 
HALT 

RESET 

CLK 

00-031 

BR 
iiG 

BGACK 

I 

OUTPUT U,,"," VI 

ENABLE TAG STORE. 
COMPARE. 

WRITE AND 
CONTROL 0 

LAS -c>o- 0 
~ 
> ~ 

--~ ~ OSACKl ~ ;\CH J. 
.> 

.• > 
OSACKO .> D-

OV -
+5V -

L-...-

0 1 

SYSTEM 
RESET 

+5 V -

NC -

CACHE HIT (ACTIVE HIGH) 
~AS_OUT - -PAS IN - 0 

MC68851 

FC3 
ASYNC 
FCO-FC2 
SIZO/SIZl 
LA8-LA31 PA8-PA31 
AO-A7 

R/W 
RMC 

Cil 
LAS PAS ~ ~ 

TIS 
OBDIS PHYSICAL ADDRESS SPACE 

OSACKO/OSACK 1 DEVICES. CONTROL. AND BUFfERING 
BERR (REFER TO FIGURES B-1 THROUGH 
HALT 

B-4 FOR DETAIL) RESET 

CLK 

00-031 

LBRI PBR 
LBRO PBG 
LBGI PBGACK 
LBGO . 
LBGACK 

I 

Figure 8-7. Example MC68020/MC68851 Hardware Configurtion with Logical Data Cache 



The only required changes to the cache structure shown in Figure B-7 is to the cycle 
termination logic (P). Figure B-8 shows an example circuit that could replace (P) to provide 
the early-termination/late-retry function. 

Normally, as soon as LAS is asserted, circuit (Q) immediately asserts the DSACKx signals 
to terminate the bus cycle assuming that the cache will produce a valid 'hit' later in the 
cycle. Circuit (R) prevents the early termination from occurring from those cycles that access 
operands that are non-cacheable or had missed in the cache on the previous cycle (and 
have already been retried). In this example, (R) prevents early termination of all CPU space 
accesses, all write cycles (assuming a write through cache is implemented), and all cycles 
that missed in the cache on the previous cycle and were not accesses to non-cacheable 
locations. The flip-flop (V) latches the termination condition of the current bus cycle at the 
falling edge of bus state 54 to be used during the next cycle. Other conditions to suppress 
early termination may be included as required by a particular system but propagation 
delays must be carefully considered in order that the output of (R) be valid when LAS is 
asserted in order to avoid spurious assertions of the DSACKx signals. Alternately, LAS 
could be delayed to allow more time for address decode but the combination of these 
signals must be valid before the DSACKx signals are sampled (see Equation 4-2). 

The late-termination timing chain is formed by the flip-flop (5) and gate (T). After the falling 
edge of bus state 52, the first clock edge on which BERR or HALT is sampled, the Q output 
of (5) is driven high to enable the late cycle termination by (T). If the current cycle is 
accessing a cacheable location, as determined by the output of (R), if a cache hit has not 
occurred, and if the Q output of (5) is high, then the BERR and HALT signals are driven 
low (U). 

Note that the logic depicted in Figure B-8 is designed to support a cache o'perating with 
no wait states. A provision for generating wait states may be included by placing additional 
timing stages in (5) to delay propagation of this output by the required number of clock 
periods. 

R/W 

CLK 

MOTOROLA 
8-16 

CACHE HIT 
(ACTIVE LOW) 

FC3 
FC2 
FC1 
FCO 

CACHE HIT 
(ACTIVE LOW) 

Figure B-8. Example Early-Termination Control Circuit 

Me688S1 USER'S MANUAL 



In order to minimize the potential for delays in retrying a bus cycle, the negation path of 
the bus error and halt signals should be carefully controlled. Light capacitive loading of 
these signal lines as well as use of a properly sized pullup resistor for the open-collector 
drivers, or some equivalent method, is recommended. 

The available cache tag lookup, compare, and logic delay (T and U) time for this imple
mentation is given by Equation 4-5 (100 nanoseconds at 16.67 MHz). 

A further design consideration for implementation of an early termination cache controller 
is the response of the controller to bus cycles that satisfy the MC68851 conditions for 
signaling either a bus error or a relinquish and retry. The cache controller must allow the 
MC68851 to correctly terminate those bus cycles. The controller depicted in Figure 8-8 
allows the processor to accept a relinquish and retry from the MC68851 on the first bus 
cycle of any access and to accept a bus error from the MC68851 on the first cycle of an 
access that hits in the logical cache or on the retry of an access that misses in the logical 
cache (the bus error asserted by the MC68851 is initially masked by the retry signaled by 
the cache controller). 

Finally, the system designer should consider the response of the physical memory con
troller to accesses that miss in the logical cache (and hit in the MC68851 ATC) and are 
retried by the CPU. During a retry operation, and in the absence of arbitration for the logical 
bus, the MC68020 continuously drives the address bus with the address that caused the 
retry to be signaled. Likewise, as long as the logical master is continuously driving the 
logical address bus, the MC68851 continuously drives the physical address bus with the 
logical-to-physical mapping corresponding to the logical address (provided that there is 
no arbitration for the physical bus). This presents the designer with the opportunity to 
utilize this information in order to continue (or initiate) the access in the physical address 
space (by latching the state of the PAS signal during the initial bus cycle and holding it 
asserted for the duration of the retry) and thus decreasing the overhead associated with 
retrying the cycle. 

B.S.2 Physical Cache Implemtation 

The general design considerations for a physical address space cache are similar to those 
of a logical cache except that the primary control signal is the physical address strobe 
(PAS). 

Figure 8-9 illustrates a block diagram of a physical cache similar to the logical cache shown 
in Figure 8-7. The major differences in the two implementations is the removal of the 
function code signals from the cache tag compare circuitry (X) (they do not provide mean
ingful address information in the physical address space) and the use of PAS to condition 
the termination of bus cycles instead of LAS (V). 

Similar to the case discussed for the logical cache, the 'cache hit' signal must be conditioned 
by timing control logic to prevent assertion of the hit signal before the tag compare circuitry 
has had adequate time to generate a valid decision. Otherwise, spurious assertions of the 
conditioned PAS signal at (W) are likely to occur. For this cache configuration, the critical 
path is from the presentation of valid physical address to the assertion of DSACKx by the 
cache controller. This time is given by Equation 8-3 (70 nanoseconds at 16.67 MHZ with 
one wait state). 

MC68851 USER'S MANUAL MOTOROLA 
8-17 

• 



In general, a physical cache does not exhibit as high a degree of parallelism of activity as 
does a logical cache since the tag lookup and compare for a physical cache does not begin 
until the address translation has been completed by the MC68851 (while the logical cache 
performs these two activities simultaneously). However, certain cache implementations 
can regain this parallelism if the size of the cache is equal to or less than the physical page 
size. 

With a physical address space of 2m bytes and a page size of 2n bytes, m-n bits of the 
physical address are used to uniquely identify one of 2m-n pages and n bits are used as 
an index within the page. The n index bits are not translated by the MC68851 and, if the 
size of the physical address space cache (or the size of the sets in the cache for a semi
associative cache) is equal to or less than the page size, these n bits can be routed directly 
from the CPU to the cache; allowing the index into the tag array to occur simultaneously 
with the address translation. Immediately upon completion of the address translation, the 
physical address can be compared against the tag(s) to determine whether or not the 
required entry is contained in the cache. This type of implementation removes the tag 
retrieval time from the critical decision path and provides a potential performance benefit 
or cost reduction. 

Identical to the case discussed for the early-termination of logical cache accesses, the same 
technique shown in Figure 8-8 can be used with a physical cache in order to change the 
critical path from the address valid to DSACKx asserted to address valid to 8ERR/HALT 
asserted. In this case the critical path time is given by Equation 8-7 (55 nanoseconds at 
16.67 MHz, no wait states). 

The design considerations discussed previously concerning bus cycle retry control are 
equally vand for both logical and physical caches. 

B.5.3 A Note on "Instruction-Only" Cache Implementations 

In some cases, particularly in multi-processing systems where cache coherence is a con
cern, it is desirable to store only instruction operands since they are not considered to be 
alterable and, hence, do not contribute to the coherence problem. In general, this is not 
feasible with the M68000 architecture since the M68000 Family processors do not provide 
a clear distinction between instruction fetches and data accesses to the program space. 

The ability to generate program counter (PC) relative data accesses makes distinguishing 
between data accesses and instruction fetches impossible. For example, consider the in
struction: 

MOVE.L 8(PC),DO 

This instruction uses an offset of eight bytes from the program counter to access a data 
operand in the program space (i.e., the function code used for the operand read cycle is 
either one or five, indicating one of the program spaces) and loads it into data register DO. 
An "instruction-only" cache would load this operand into the cache creating the potential 
that another processor might modify this data in the main memory and cause the cached 
value to become inconsistent (which may not be detectable by the cache controller). 

The only method by which a true instruction-only cache can be implemented is to disallow 
all forms of PC relative data addressing, requiring that all code generators for the system 
and all ported software not use that addressing mode. 

MOTOROLA 
8-18 

MeSSS51 USER'S MANUAL 



s: 
(") 
en co co c.n 
...;a 

c 
en 
m 
::J:I en 
3: » 
:2 
C » 
r-

s: 
o 
~ o 
::XI roo 

~r(,0» 

MC68020 

FCO-FC2 
SllO/Slll 

AO-A31 

R/W 
RMC 

AS 
liS 

DSACKO/DSACKI 
BERR 
HALT 

RESET 

eLK 

00-031 

Bii 
BG 

BGACK 

II 

~ 

ov -
+5V -

L-e. 

+5 V-

NC -

~ 
SYSTEM 

RESET 

u-®( 1 
'l) 

PASjlUT 

MC68851 

FC3 
ASYNC 
FCO-Fe2 
SllO/Slll 
LA8-LA31 PA8-PA31 
AO-A7 

R/W 
RMC 

CD 
LAS PAS 
os 

DBDlS 
DSACKO/DSACK 1 
BERR 
HALT 
RESET 

eLK 

00-031 

LBRI PBR 
LBRO PBG 
LBGI PBGACK 
LBGO 
lBGACK 

uUlrul 

TAG STORE, ENABLE 
CACHE HIT (ACTIVE HIGH) COMPARE, DATA 

AND WRITE STORE 
CONTROL 0 

PAS 

H ~ t o :> DSACKI - - ~ 
~ n ~ DSACKO 

- 0 

PHYSICAL ADDRESS SPACE 
DEVICES, CONTROL. AND BUFFERING 

(REFER TO FIGURES B-1 THROUGH 
B-4 FOR DETAIL) 

' \ 

J 

Figure 8-9. Example MC68020/MC68851 Hardware Configuration with Physical Data Cache 



II 

8.6 POWER AND GROUND CONSIDERATIONS 

The MC68851 is fabricated in Motorola's advanced HCMOS processor, contains approxi
mately 115,000 transistors, and is capable of operating at clock frequencies of 20 MHz. 
While the use of CMOS for a device containing such a large number of transistors allows 
significantly reduced power consumption in comparison to an equivalent NMOS device, 
the high clock speed makes the characteristics of power supplied to the part quite important. 
The power supply must be able to supply large amounts of instantaneous current when 
the MC68851 performs certain operations, and it must remain within the rated specifications 
at all times. In order to meet these requirements, more detailed attention must be given 
to the power supply connection to the MC68851 than is required for NMOS devices that 
operate at slower clock rates. 

In order to supply a solid power supply interface, eight VCC pins and eight GND pins are 
provided. This allows three VCC and GND pins to supply the power for the physical address 
bus, three VCC and GND pins to supply the data bus, while the remaining two VCC and 
GND pins are used by the internal logic, the logical address input buffers, and the clock 
generation circuitry. Table 8-5 lists the VCC and GND pin assignments. 

Table 8-5. VCC and GND Pin Assignments 

Pin Group vcc GND 

Physical Address D5, G2, J4 E4, G3, K5 

Logical Address, Internal Logic M7 L7 

OOrD31 E10, G12, K9 09, G11, J10 

Internal Logic, Clocks B7 C7 

In order to reduce the amount of noise in the power supplied to the MC68851 and to provide 
for instantaneous current requirements, common capacitive decoupling techniques should 
be observed. 'While there is no recommended layout for this capacitive decoupling, it is 
essential that the inductance between these devices and the MC68851 be minimized in 
order to provide sufficiently fast response time to satisfy momentary current demands and 
to maintain a constant supply voltage. It is suggested that a combination of low, middle, 
and high frequency, high quality capacitors be placed as close to the MC68851 as possible 
(for example, a set of 10 microfarad, 0.1 microfarad, and 330 picofarad capacitors in parallel 
provides filtering for most frequencies prevalent in a digital system). These decoupling 
techniques should also be observed for other VLSI devices in the system. 

In addition to the capacitive decoupling of the power supply, care must be taken to ensure 
a low-impendace connection between all MC68851 VCC and GND pins and the system 
power supply planes. Failure to provide connections of sufficient quality between the 
MC68851 power supply pins and the system supplies will result in increased assertion 
delays for external signals, decreased voltage noise margins, and potential faults in internal 
logic. 

8.7 TEST EQUIPMENT CONSIDERATIONS 

A final factor that system designers should consider when observing the operation of the 
MC68851 in a system is that appropriate test equipment must be used in order to avoid 

MOTOROLA 
8-20 

MC68851 USER'S MANUAL 



adversely affecting the operation of the MC68851 by altering critical system characteristics 
(for example, load capcitance on signal lines and buses). 

Low-capacitance oscilloscope and logic analyzer probes should be used when observing 
signals that exhibit fast rise and fall times or that have loads approaching the specified 
maximums. 

When using invasive test equipment (for example, logic analyzer probes that are placed 
between the MC68851 and the system under test), care must be taken to minimize the 
capacitive loading of signal lines and buses and also to minimize the addition of inductance 
between the power and ground pins of the MC68851 and the system power supply. 

Me6SSS1 USER'S MANUAL MOTOROLA 
8-21 

lEI 



MOTOROLA 
8-22 

MC68851 USER'S MANUAL 



APPENDIX C 
SOFTWARE CONSIDERATIONS 

This appendix provides a discussion of several considerations for operating system pro
grammers using the MC68851. This Appendix assumes that the reader is familiar with the 
MC68851 as discussed in previous sections of this manual and is also familiar with the 
MC68020. 

C.1 CONTEXT SAVE AND RESTORE CONSIDERATIONS 

The state of the MC68851 can be saved using the PSAVE and PRESTORE instructions. 
These instructions save/restore the internal state of the MC68851 and the state of the 
coprocessor interface, the breakpoint registers (if any are enabled), and the MC68851 root 
pointer registers. 

In the general case, all exception handlers that can modify the state of the MC68851 or 
that can pass program execution control to a routine which can alter the MC68851 state, 
must save the state of the MC68851 prior to performing any MC68851 instruction and must 
restore the saved state before returning program control to the routine that generated the 
exception. If this protocol is not followed, it is possible to permanently lose the state of 
an MC68851 instruction that has been temporarily suspended (for example, has experi
enced a page fault) resulting in a nonrecoverable error. Additionally, performing the state 
save and restore obviates operating system maintenance ofthe breakpoint and root pointer 
(SRP and CRP) registers during context switch operations. 

To summarize, there are three major reasons for saving the state of the MC68851: 

• To prevent losing the state of faulted MC68851 coprocessor instructions (applies to 
all exception handlers that may be invoked during coprocessor communication and 
that may cause execution of an MC68851 instruction), 

• To maintain breakpoints that have been setup for a user task (applies only to context 
switch operations), and 

• To maintain CRP and SRP registers associated with a particular user task (applies 
only to context switch operations). 

In certain system implementations, the requirement for performing the save and restore 
operations can be removed. This is possible if, and only if, constructs of the operating 
system prevent the possibility of abnormal termination of any MC68851 instruction (for 
example, an instruction aborted by a bus error or a protocol violation) and the operating 
system also explicitly maintains breakpoints set up for user tasks during context switch 
operations. 

The potential for having MC68851 instructions aborted due to a bus error can be avoided 
if the operating system ensures that several constraints are followed. First, the code con-
taining the MC68851 instructions must be completely resident in memory priorto execution E 
in order to prevent multi-word instructions that cross page boundaries from being partially 
paged out. Second, the operating system either must not page out its system tables and 

MC68851 USER'S MANUAL MOTOROLA 
C-l 



• 

stacks (i.e., the memory areas containing data operands to be loaded into the MC68851) 
or must validate the residence of these areas prior to use. Third, the operating system 
must not attempt to write to write-protected areas while executing MC68851 instructions 
as this results in the assertion of the bus error signal by the MC68851. Finally, while the 
above constraints prevent the operating system from causing faults during execution of 
MC68851 instructions, some provision must be made to account for faults generated by 
execution of the PVALID instruction in the user mode. If module operations are allowed 
(bit [7] of AC register set), the PSAVE and PRESTORE instructions must be used as described 
above. If module operations are not enabled, execution of the PVALID instruction by a user 
task is terminated by an access violation exception. However, the MC68851 does not signal 
this exception until after the 'evaluate and transfer effective address' primitive has been 
issued which makes it possible for a page fault to occur during execution of this instruction. 
The operating system can perform one of several actions to circumvent this situation, it 
can prevent all code generators from generating the PVALID opcode, or it can treat faults 
of the PVALID instruction in the user mode as access violations resulting in a fatal termi
nation ofthe user task that attempted execution ofthe instruction. Alternately, the operating 
system could allow module operations (nc bit of AC register set and the ALC field clear), 
thus making all PVALID instructions legal (i.e., no traps will be generated). 

C.2 LOGICAL DMA CONSIDERATIONS 

When employing a DMA controller that generates logical addresses, there are several 
factors that the operating system programmer should consider in order to optimize DMA 
performance. 

C.2.1 Use of the Land SG Bits 

In applications requiring very fast response time from the logical DMA device, it is necessary 
for the translation descriptors that map the source and destination of the DMA operation 
be preloaded into the MC68851 ATC prior to initiation of the channel operation. The MC68851 
PLOAD instruction provides an easy means for these entries to be loaded. Additionally, 
these entries should be locked into the ATC to prevent removal by the MC68851 replacement 
algorithms. This can be accomplished by setting the Land SG bits in the descriptors that 
map the channel operation. Setting the L bit prevents removal of the entry by the ATC 
replacement circuitry and setting the SG bit prevents removal of the entry by the RPT 
replacement algorithm (refer to 5.2 ADDRESS TRANSLATION CACHE). Finally, in order to 
maintain maximum performance of the MC68851 ATC, the operating system must take 
care to explicitly flush locked entries from the ATC after a channel operation is complete 
by using the PFLUSHS instruction. Otherwise, it is very likely that locked entries will pre
dominate in the ATC leaving only a small number of entries available for mapping of other 
activities. 

The 'shared globally' attribute can be assigned to a single page or to a contiguous logical 
address range while the 'locked' attribute can be assigned only at the page level. 

C.2.2 Mapping of DMA Activities 

The DMA root pointer is used to map address translations whenever the MC68851 observes 
a high level (logical one) on the FC3 input. In this manner, the translation tables for DMA 
activity may be maintained separately from, and selectively intermixed with, those of user 
and supervisor tasks for the CPU . 

As an example of the use of the DRP register, consider a system using four channels of 
logical DMA with each channel assigned its own 16 megabyte virtual address space. The 

MOTOROLA 
C-2 

MC68851 USER'S MANUAL 



top level of the DMA translation tree (indexed by the function codes) is used to distinguish 
between user and supervisor activities (there is no distinction between program and data 
spaces in this example). When a process issues an liD request to a channel, the upper 
portion of the DMA translation tree corresponding to the selected channel can simply point 
to the translation table of the requester and the data transfer can begin with minimal 
overhead. 

To further develop this example, consider a situation in which a DMA operation is requested 
by a process that wishes to transfer 20,000 bytes from an liD device with a starting virtual 
address of $1000 in the requester's buffer. Channel two of the DMA controller, occupying 
the DMA virtual slot from 16 to 32 megabytes, is currently idle and is selected for the 
operation. The operating system alters the portion of the translation tree corresponding 
to the channel two's virtual slot to simply point to the same tables that map the first 16 
megabytes of the requester's memory. This causes memory references generated by chan
nel two to be identical to those generated by the requester but having a 16 megabyte 
offset, allowing each DMA channel to, in effect, have is own mapping. Thus, channel two 
will be instructed to transfer 20,000 bytes starting at address $10010000 and the physical 
memory will be that of the requester's buffer. In order to perform this operation, the liD 
handler of the operating system only needs to set up one (or a small number) of pointers 
in the top level DMA translation table. 

C.3 CAllM/RTM PROGRAMMING EXAMPLE 

The following paragraphs provide a simple example of the CALLM and RTM instructions 
when utilizing the access level control interface (CALLM type one). 

In this example a user task operating at access level three (four access levels in use) calls 
a sorting routine that operates at access level one (a type one call). The stack change 
control register is set to $FF indicating that stack pointers must be changed before any 
change in access level can occur during a module call. 

The sort module requires three parameters to be passed on the stack below the module 
stack frame': the starting address of the list to be sorted, the number of items in the list, 
and the length of each item. Prior to executing the module call, the calling routine pushes 
these arguments onto the stack and, after completion of the sort operation, the three 
parameters are returned to the calling routine. The location of the list is not altered, and 
the called module does not require its own data area (the module data area field of the 
module descriptor is not used). 

The module descriptor location is specified by the label 'SORT', and the module entry word 
is specified by the label 'SORT_IT'. The following code illustrates how the module call 
could be accomplished. 

MC68851 USER'S MANUAL MOTOROLA 
C-3 



II 

*********************************************************************************************************.****** 
* THIS CODE PROVIDES AN EXAMPLE USAGE OF THE MC68020/MC68851 MODULE CALL 
* OPERATIONS. 

ENTRY: CAL = $3 
VAL =$3 
SCC =$FF 
MODULE DESCR "SORT": OPT = 0 

TYPE = 1 
ACCESS LEVEL = 1 
ENTRY WORD POINTER = SORT IT 
DATA AREA POINTER = XX -
MODULE STACK POINTER = NEW STACK 

MODULE ENTRY WORD = $FOOO -
SP = $10000 
PC = $40000 

****.* * ** ** * ******* ** *** *** ** .*** *** * ** ** * ** ** * ** ** * ** ** * ** **. ** ** * ** ** *** ** * ** ** * ** ** * *** * * ** ** * ** ** * ** * * * * * ** * 
* USER TASK IS PREPARING FOR THE MODULE CALL 

PEA LIST 
MOVE.L LIST _LEN,-(SP) 

PUSH LIST ADDRESS ONTO THE STACK (1) 
PUT NBR OF LIST ENTRIES ON THE STACK 

(2) 

(3) 
MOVE.L ITEM_LEN,-(SP) PUT NBR OF BYTES/ITEM ON THE STACK 

CALLM 12,SORT PASS 12 BYTES TO MODULE "SORT" (4) 

*THE CALL IS COMPLETE AND THE ROUTINE PROCEEDS WITH THE NEXT INSTRUCTION 

ADDI.L #12,SP THROW AWAY OLD PARAMETERS (5) 

* ** *** * ** * * * ** ** 'I' *** ****** *** *** ** ** *** *** ** ** * **** *** ** * ** ** * ** *** ** ** ****** **** *** ** * **** * ** ** * ** * * * ** ** * ** ** * 
THE FOLLOWING IS A FRAGMENT SECTION OF THE CALLED MODULE "SORT IT" 
* ** *** * ** *** ** **. ** ***** ** * ** ** * ** ** *** *. * ** ** * **** *** ** * **** * ** ** * ** ** * ** *** ** ** * **** * ** ** *** ** * * * ** * ** ** * ** ** * 
SORT IT DC.L $FOOO 

PVALID VAL,([20,SP]) 
THIS IS THE MODULE ENTRY WORD 
VALIDATE THE LIST POINTER 

PERFORM THE SORT OPERATION 

RTM A7 RETURN TO CALLING ROUTINE (6) 

* ** * 'I' * * ** ** *.* ** * ** ** * ** ** * **** * ***. * ** ** * ** ** * *. **. ** ** ***** * ** ** *.* ***** * * * ** ** * ** ** * ** * * * ** * * * •• * * * *. **. ** ••• 
NOTES FOR EXAMPLE EXECUTION: 

(1) SP'" SP-4 

(2) SP'" SP-4 

(3) SP'" SP-4 

(4) SP'" SP - $18 
VAL'" $3 
CAL'" $1 
PC ... SORT_IT + 2 

(5) SP'" SP+12 

(6) SP'" SP + $18 
VAL'" $3 
CAL'" $3 
PC ... RET 

*************************************.************************************************************************** 

MOTOROLA 
C-4 

Me688S1 USER'S MANUAL 



C.4 MULTIPROCESSING CONSIDERATIONS 

The following paragraphs discuss several aspects of multiprocessing pertaining to the use 
of the MC68851. 

C.4.1 Sharing of Translation Table Structures 

In a multiprocessing environment it may be desirable to have two or more processing 
elements (processor and memory management unit pair) share the same translation tables. 
The protocol employed by the MC68851 when searching translation tables (refer to 4.3.2.3 
READ-MODIFY-WRITE CYCLE) allows multiple MC68851s to share the same table structure 
and prevents the devices from potentially corrupting status information maintained in the 
tables (used and modified indicators). However, it is possible to cause loss of coherency 
between the MC68851 ATC and the translation tables in physical memory if a remote bus 
master (other than an MC68851) is allowed to access and modify the translation tables. 

In order to avoid problems with ATC coherence, any time that any alteration is made to 
the translation tables utilized by the MC68851 (whether by local or remote master), the 
ATC of all MC68851s sharing that table must be explicitly flushed of the mapping that was 
altered. 

C.4.2 Globally Shared Data Areas 

The MC68851 'cache inhibit' function allows multiprocessing systems to share data (read/ 
write) areas among several different processing elements without causing coherency prob
lems with local data caches. 

When the operating system allocates an area of shared data, the descriptor mapping that 
area in each translation table (if there are more than one) should have its CI bit set to 
indicate to local hardware that the data associated with that particular address is non
cacheable. When the MC68851 observes an access to the shared area, the CLI (cache load 
inhibit) signal is asserted and local caches can be forced to allow the access to proceed to 
the main store. 

C.4.3 Remote Manipulation of MC688S1 

In multiprocessing systems, it is not uncommon for a remote master (or even an alternate 
logical master) to require access to the instruction processing capabilities of an MC68851 
for which it is not the main processor. For example, if the remote master has altered an 
entry in a shared table structure, then the master must instruct all MC68851 s sharing this 
table structure to flush the corresponding entry from their ATCs. 

Care must be exercised in the design of this type of system if multiple devices are capable 
of accessing the MC68851 via the coprocessor, access level control, or breakpoint interfaces. 
For such systems, there are two primary restrictions. First, all interleaved communications 
must be bounded by PSAVE and PRESTORE instructions. Second, the PSAVE and PRES
TORE instructions themselves may not be interleaved and, thus, some other form of in
terprocessor communication must exist to properly synchronize these instructions. Note 
that, for the case of the coprocessor interface alone, adhering to the second criterion for 
all MC68851 instructions (rather than just the context save and restore instructions) re
moves the requirement for the first restriction. Thus, if the breakpoint and access level 
control interfaces are not in use, then synchronizing coprocessor interface accesses by 
multiple processors to instruction boundaries provides sufficient protection to avoid spu- .s 
rious processor/coprocessor protocol violations. ... 

MC68851 USER'S MANUAL MOTOROLA 
C-5 



In order to prevent the operations by a remote master from causing a protocol violation 
(refer to 6.3.2.2 PROTOCOL VIOLATION), some external means for synchronization of in
structions must be enforced. Synchronizing accesses to the MC68851 on instruction bound
aries is one simple way to implement this function. For example, associated with each 
MC68851 there can be a 'PMMU_Busy' flag in shared memory. Prior to execution of any 
MC68851 instruction, the CPU (whether remote or local) must check this flag to ensure 
that the MC68851 is not currently processing an instruction. If the flag is set, the CPU waits 
until it is clear. If the flag is clear, the CPU sets the flag, performs the MC68851 instruction, 
and then clears the flag indicating that the MC68851 isnow available. One example of this 
protocol is as follows: 

P_INSTR TAS 
BNE.S 
PFLUSH 
CLR.B 

PMMU_BUSY 
P_INSTR 
(ea) 
PMMU_BUSY 

TEST THE FLAG, SET IF CLEAR 
IF WAS SET, TRY AGAIN 
DO THE INSTRUCTION 
RESET THE FLAG 

By ensuring that all MC68851 instructions are enveloped by a synchronizing protocol, the 
operating system can guarantee that spurious processor/coprocessor communication er
rors do not occur. 

Additionally, operating system designers should give consideration to sequences of MC68851 
instructions that must operate uninterrupted. For example, if a logical cache utilizes the 
task alias maintained by the MC68851, then a change of root pointers (via a PMOVE xxx,CRP) 
is usually followed by a read of the cache status register (with a PMOVE PCSR,xxx) to 
obtain the next task alias. This type of system should force both PMOVE instructions to 
operate without interruption in order that the task alias not be altered by some alternate 
master between the update of the root pointer register and the read of the task alias. The 
following code sequence could be used to protect these instructions: 

P_INSTR TAS 
BNE.S 
PMOVE 
PMOVE 

CLR.B 

PMMU_BUSY 
P_INSTR 
(ea),CRP 
PCSR,(ea) 

TEST THE FLAG, SET IF CLEAR 
IF WAS SET, TRY AGAIN 
UPDATE CPU ROOT POINTER 
GET THE NEW TASK ALIAS 
UPDATE TA OF LOGICAL CACHE AND FLUSH 
IF NEEDED 
RESET THE FLAG 

C.5 DEFINING AND USING PAGE TABLES IN AN OPERATING SYSTEM 

There are numerous factors to consider when determining how the MC68851 is to be used 
by an operating system. The MC68851 provides the system programmer with great flex
ibility such that the O.S. can be optimized for a particular system implementation. Some 
of the important issues are presented in the example implementation of an MC68851 system 
described in C.6 EXAMPLE MC68851 PAGING SYSTEM IMPLEMENTATION. 

C.5.1 CPU and Supervisor Root Pointer Registers 

The decision whether to use both the supervisor and the CPU root pointers or only the 
CPU root pointer is dependent on the complexity of the memory layout by the O.S. If the 
supervisor root pointer is not used, then the tables pointed to be all CPU root pointers 
must also map all supervisor references. 

MOTOROLA 
C-6 

MeS8851 USER'S MANUAL 



The function of separating supervisor and user translation tables can be realized by using 
both the supervisor and CPU root pointers or, alternately, by using the CPU root pointer 
alone with a function code lookup as the first index into the translation tables. With proper 
structuring of the translation tables, both of these methods can provide the same func
tionality although there are separate advantages for both approaches. 

Using the CPU root pointer together with function code lookup separates supervisor and 
user accesses at the first (highest) level of the translation tree and allows a different 
supervisor/user mapping for each task in the system. Alternately, the entries in the function 
code table corresponding to the supervisor spaces for each task can all point to the same 
tables thus providing a common mapping for all supervisor references. 

If the mapping of the supervisor address space is identical for all tasks, then the supervisor 
root pointer can be used in conjunction with the CPU root pointer to provide a more simple 
and efficient way to describe the mapping. Using this method, the function code lookup 
is suppressed (unless distinct mappings are required for the program and data spaces) 
and user and supervisor accesses are separated at the root pointer level of the translation 
tables. This allows a single translation table to be defined that maps all supervisor accesses 
without maintaining a large number of pointers in the translation tables for each task. 

Note that the use of the 'shared globally' attribute (refer to 6.1.1.3 SHARED GLOBALLY 
(SG)) can significantly effect the performance ofthe MC68851 ATC for both cases described 
above. 

C.S.2 Task Memory Map Definition 

The MC68851 provides several different means by which the supervisor can access the 
user address space. The M68000 Family MOVES (move space) instruction can be used by 
the supervisor to access any user address regardless of how the virtual space is partitioned. 
Some systems may wish to give each user task the image of a complete virtual memory 
map ranging from zero to four gigabytes. Indeed, for operating systems that run other 
operating systems in a virtual machine environment, this must be done since the full 
addressing range must be accurately emulated for the subordinate O.S. 

On the other hand, the extremely wide address space of the M68000 Family easily allows 
for each individual or all user tasks to appear within the same memory space as the O.S. 
itself. This can be done in several ways, and one of these methods is chosen for the 
comprehensive example presented later. One advantage to sharing a common address 
space is that the O.S. has direct access to user data items since they may appear as part 
of the supervisor address space. Another advantage in providing a shared virtual space is 
the ease with which code can be shared. Common routines such as file I/O handlers and 
arithmetic conversion packages could be written reentrently and restricted to read-only 
access from all tasks in the system. Another advantage to the system-wide sharing of 
selected code and data areas is the fact that translation table entries can indicate this 
shared status, and, once these entries are loaded into the ATC, the MC68851 automatically 
uses the same entries for all tasks in the system. 

The simplest example of a shared virtual space system 'is that in which each user and 
supervisor process is given a unique virtual address range within a single large virtual 
space ranging from zero to four gigabytes. In other words, there is only one linear virtual 
address space in the system with all processes running somewhere in that space. This 
requires only a single translation table for the entire system, but individual tables could 

Me688S1 USER'S MANUAL MOTOROLA 
C-7 

IE 



• 

be assigned for each task, if desired. The advantage of a common table is that the 0.5. 
has easy and immediate access to any item owned by any task in the system without 
having to modify the root pointer register. Otherwise, only the currently active task is 
immediately accessible (although this may be totally adequate). Task switching requires 
only updating of the user program and user data pointers in the highest level translation 
table indexed by the function code so that tasks can have access only to their own data. 
The advantages with this basic scheme are the simplicity of table management and the 
ease of sharing common items (for example, shared items would all have the same virtual 
address for all tasks in the system). Operating systems that do not require a great deal of 
complexity in memory management facilities, such as real-time systems, might find this 
scheme ideal. 

The next logical step towards increased 0.5. complexity, with shared user and supervisor 
virtual memory maps, is to keep the supervisor addresses separate as before, but to give 
each and every user task its own use of the rest of the virtual space. For example, each 
user task could have the virtual memory space from zero to 512 megabytes, and the 0.5. 
would occupy the remainder of the space with its program and data residing at virtual 
addresses from 512 megabytes up to four gigabytes. This example requires that each user 
task have its own set of translation tables, although the supervisor root pointer mayor 
may not be used depending on whether the user tables also map the supervisor. Similar 
to the previous example, when this approach is used the user would not see the 0.5. 
extension to its space unless the 0.5. desired it or wanted to share common routines. The 
advantages of this scheme is that a much larger virtual space is available for anyone user 
task and no 'virtual fragmentation' problems will ever develop. The disadvantage of this 
approach is a slightly more complex table management. Also, the fact that the 0.5. has 
direct access only to the current user task. 

In order to demonstrate that there are very few absolute rules when using the MC68851, 
re-examine the last statement above. As a general case it is true, however, that a capable 
0.5. designed may actually allow the supervisor to 'see' each user task space as a distinct 
portion of its own supervisor map. This can be accomplished by use of the tremendously 
large M68000 Family linear addressing space and, similar to the DMA scheme discussed 
in C.2.2 Mapping of DMA Activities, cross mapping address space. If each user task is 
limited to a 16-megabyte virtual space and the supervisor only requires a 16-megabyte 
space of its own, then there are 256 s.uch spaces that can be simultaneously mapped. The 
supervisor translation table could 'see' each of these spaces within its own and, by using 
the indexed addressing mode with a register that contains the proper 16-megabyte constant 
for a particular task, the supervisor can readily use addresses of that task. The constant 
used as index provides a supervisor-to-user virtual address conversion. With a little imag
ination, the flexibility of the MC68851 can be used to provide some very sophisticated 
functions. 

The most complex systems (including those implementing virtual machine capability) sup
port complete virtual address separation between the supervisor and all user tasks or even 
between individual supervisor tasks running in the same 0.5. This scenario has each task, 
whether supervisor or user, seeing its own virtual memory space starting at zero and going 
up to four gigabytes. The M68000 Family separation of program and data space via the 
function code mechanism may be further exploited to provide a 4-gigabyte space for 
program code and another 4-gigabyte space for data for all supervisor and user tasks. 
Distinct CPU and supervisor root pointers would most likely be used in this case since 
there is no sharing between the various spaces. The 0.5. would exclusively use the MOVES 
instruction to interact with the user space. The advantages of this implementation are the 

MOTOROLA 
C-8 

MC68851 USER'S MANUAL 



maximum availability of the virtual space (required for virtual machine implementations) 
and a complete logical separation of addresses (i.e., supervisor as well as user programs 
need not be concerned with unavailable 'holes' in the virtual address space that effect such 
things as program linkage conventions). The disadvantages of this approach are the more 
complex table management and more restrictive accesses to other address spaces. 

In deciding how task memory spaces are to be arranged, the hierarchical protection mech
anism must be considered. The MC68020 and the MC68851 provide an extension to the 
normal user mode of execution that allows partitioning of code and data into eight distinct 
access levels. Instructions for module call and return (CALLM and RTM) are provided that 
allow a lower privilege level routine to call a higher level routine. Each level is nested 
outside of the other higher levels such that all items owned by one level are available to 
routines at the higher levels. To accomplish this all virtual addresses must be distinct for 
each and every task and data item. 

The hierarchical protection mechanism is discussed in detail in SECTION 7 PROTECTION 
and in C.3 CALLM/RTM PROGRAMMING EXAMPLE. 

C.5.3 MC68851 Features and Their Impact on Table Definition 

There are several features provided by the MC68851 that impact table definition and these 
are usually considered after the method for describing task memory maps has been de
cided. However, for a few systems, these features may make a significant impact on the 
major mapping decision and so should be included in that analysis. 

C.5.3.1 NUMBER OF TABLE LEVELS. The MC68851 provides the ability to use from zero 
to five levels of indexing for the translation tables. Zero levels imply that, for the root 
pointer signaling early termination, the virtual address is taken to be the literal physical 
address (plus a constant offset, if any). The primary use of this function is in systems that 
need to provide for limit checks on the ranges of physical addresses generated. 

Single level tables are appropriate for systems that either support large page sizes or 
require only limited amounts of virtual memory space. For systems that are primarily 
numerically intensive (j.e., primarily involved in arithmetic manipulations as oppposed to 
data movement operations), where the overhead of virtual managed page faults and paging 
liD must be minimized, a single level table with 32K page sizes may be the best choice. 
Such a system can map a 16-megabyte virtual address space with just 2K bytes of page 
table space. Additionally, the 64 entries maintained in the MC68851 ATC directly map two 
megabytes of active virtual memory space. With this wide range of mapped address space, 
MC68851 table search time becomes increasingly insignificant.' 

At another extreme, consider a single-user business system that only needs to provide for 
a virtual address space of two megabytes. In this case, a 512-byte page size might be quite 
appropriate, especially since this exactly matches the standard block size formats of several 
Winchester hard disk file systems. A page table that completely maps the entire two 
megabytes is only 16K bytes in size, and the ATC entries directly map 32K of virtual space 
at anyone time. For both this and the example discussed above, the page tables are so 
small that they would be permanently allocated in the supporting O.S. data areas and thus 
would incur no management or swapping overhead. 

Two level translation tables provide a lower page level to map the ranges as described in 
the previous two examples and, in addition, provide a second level of direction at the 

MC68851 USER'S MANUAL MOTOROLA 
C-9 

E 



higher level. For example, in a system using 32K-byte pages and 512-entry page tables, 
the upper level translation table contains 256 entries (1 K bytes for the pointer table) and 
each of the entries at the upper level maps a 16-megabyte region of the virtual address 
space. The real advantage of this type of approach for a large 'number-crunching' system 
is that it allows the O.S. designer to make a trade-off between page size and table size. 
The system designer may choose to go to a smaller page size to more accurately fit the 
block sizes on available 110 devices, yet keep the tables manageable. At the same time, 
the designer must also consider the performance penalty associated with smaller page 
sizes due to higher frequency of descriptor faults (and resultant table search time) and 
increased paging 110. The MC68851 allows the designer to strike a balance rather than 
forcing only one page size and table structure on the system architecture. 

Three level translation tables are useful when the operating system makes heavy use of 
shared memory spaces andlor shared page tables. Sophisticated systems very frequently 
need to share translation tables or program and data areas pointed to at the page table 
level. The fact that a table entry can point to another translation table used by a different 
task enables efficient sharing. The discussion presented in 6.1.2 Task Memory Map Defi
nition concerning sharing the virtual memory of a task with DMA or supervisor space 
provides one example of a system in which table sharing is implemented. The direct access 
by the supervisor or user address spaces is another case. 

Some artificial intelligence (AI) systems have the characteristic that a very large virtual 
address space is required, and yet only small fragments of memory are normally allocated 
among these widely differing addresses. The fragmentation occurs because very complex 
and recursive actions are performed on lists of data that require sophisticated pointers and 
linked lists to be constantly allocated and freed in the memory map. The fragmentation 
indicates that a small page size should be used so that large amounts of real physical 
memory pages are not wasted. However, the need for a large virtual map when coupled 
to small pages produces relatively large translation table requirements. For example, the 
page table alone to map four gigabytes of virtual address space with 256 byte pages (the 
smallest that the MC68851 will support) would be 64 megabytes in size! By going to a 
three or four level table structure, the amount of actual translation table entries required 
would be drastically reduced. One reason for this compression is the limit function allowed 
on table entries (refer to C.S.3.4 LIMIT FIELDS). The above factors, combined with the fact 
that the tables themselves can be paged, provides a reasonable tradeoff in table manage
ment overhead. 

C.S.3.2 INITIAL SHIFT COUNT. The IS field of the translation control (TC) register is pri
marily used to strip off the high-order bits of logical addresses when the hierarchical 
protection mechanism is in use since the upper one to three bits determine a protection 
level instead of a true address (although these bits can be used to provide both). Another 
use of the IS field is to decrease the size requirement for translation tables if it is known 
that a full 32 bits of virtual address space is not needed. This is particularly true in systems 
that could save space by leaving out the extra address lines in a board design. However, 
it is recommended that such a system still translate the full 32-bit logical address and set 
up the root pointers such that the limit fields are used to restrict all addresses to the 
maximum value desired. In this way, if any large (illegal) addresses are generated, they 
can be properly faulted. 

C.5.3.3 LOCKING ENTRIES IN THE ATC. By setting the lock bit (L) in a page descriptor, 
the O.S. can insure that, once loaded, the descriptor remains in the ATC and any access 

MOTOROLA 
C-10 

MC68851 USER'S MANUAL 



to that page will never require a table search (assuming that the SG bit is also set). This 
can be very important for real-time systems that must guarantee minimum latency for I/O 
exception handlers or other special-purpose code that must be executed without delay. 
Another example where locked descriptors are useful is where an extremely high-speed 
DMA-type transfer is to be executed that cannot afford any interruption caused by a table 
search. 

With 64 descriptor entries in the MC68851 ATC, a few can be allocated for less critical 
entries than discussed above, but locking them can greatly improve system efficiency. For 
example, by default an O.S. may decide to 'lock down' the entries to its primary exception 
routines. Or, if there is a table or area of memory that is widely accessed for one reason 
or another, then it may have a descriptor locked in the ATC as well. 

C.5.3.4 LIMIT FIELDS. The fact that the MC68851 allows lower level tables to be only 
partially present provides for considerable flexibility and memory savings by the O.S. When 
a limit field is used in a descriptor, the next lower table may have its high- or low-order 
portions deleted (i.e., non-resident or unallocated) since the limit values can apply to either 
a maximum or minimum value for the table index at the next level. This saves considerable 
memory for table storage for most operating systems since seldom are the maximum 
number of virtual pages possible allocated to a task. 

For example, consider an O.S. using a page size of 4K running numerous small tasks, each 
averaging 80K bytes in size. A 20-entry page table is required to map each task. This means 
that only 80 bytes are required for the task's page table entries if the upper level tables 
utilize the limit feature. Without the limit feature, such an O.S. running only ten such tasks 
would require 40K bytes of space just for the page tables! If the limit feature is used, 
however, a total of only 800 bytes of page table entries are required. 

The decrease in memory required for translation table storage when using limit fields is 
especially significant for artificial intelligence applications where a massive virtual memory 
map is usually required. As the virtual space grows, each page table need only be as large 
as the number of entries being used within it. And, as each higher level table grows, it 
need only be expanded by the size of the entries being used within it, facilitating the use 
of three and four level tables that would otherwise be difficult to manage. 

C.5.3.S PAGE TABLES AT OTHER THAN THE LOWEST THREE LEVEL. When the MC68851 
encounters an early page descriptor in a table search, this descriptor maps an entire block 
of pages as a consecutive reference (a contiguous virtual a-ddress range). For example, 
consider an O.S. that has a 32K byte area reserved for special supervisor liD peripheral 
devices. This area can be mapped using a single upper level descriptor saving translation 
table space and table search overhead. Note that the limit fields mentioned previously can 
also be used such that the block of pages referenced can be less than the total of the virtual 
space represented by descriptors at that level of the translation tree. Note also that multiple 
ATC entries may be created for a single descriptor with it's DT field set to 'page descriptor' 
if that descriptor maps a range of pages. 

Additionally, there is another way that early page descriptors can be used to impact the 
system memory model. Since such descriptors map contiguous blocks of memory, they 
can be matched one-for-one to all program and data blocks or segments in the environment. 
Thus each program and data segment can be treated as a block of contiguous memory 

MC68851 USER'S MANUAL MOTOROLA 
C-11 

E 



II 

mapped by a single descriptor with each block being relocatable (via the logical-to-physical 
base address in the descriptor). This scheme is useful in systems where tasks consist of 
only one or a few sequential blocks of memory. The blocks could be swapped as a complete 
group, and the 0.5. memory map could treat the entire address space within these blocks 
as a uniform virtual space common to all tasks. This requires only one translation table 
for the whole system. In effect, instead of a two-level translation table, only the upper level 
is present and, by use of the limit fields and early page descriptors, complete segments 
of memory are mapped. 

C.S.3.6 INDIRECT DESCRIPTORS. If, at the page descriptor level, the descriptor type of 
an entry indicates a pointer instead of a page descriptor, this is treated as an additional 
memory indirection to the primary page descriptor. It is in this fashion that page descriptors 
for common program and data areas used by several tasks in the system are made 'com
mon'. An access by any task to a shared common page automatically insures that only the 
primary used bit(U) is set, and any write to a common page also sets one and only one 
modified (M) bit. Thus, the 0.5. need only peruse the primary descriptors when dealing 
with page swapping heuristics. If this page descriptor sharing was not permitted, the O.S. 
would face a formidable undertaking in determining shared page status. In essence, the 
0.5. would have to scan most or all of the page tables of all tasks sharing the common 
pages before it could determine the used or modified status of any such pages. 

The MC68851 affords yet another shared memory efficiency. Recalling that, for system
wide common program and data areas, the MC68851 can cache non-task-specific trans
lation entries with the 'shared globally' (SG) attribute. This indicates that the logical-to
physical address translation for a particular address range is identical for all tasks in the 
system and thus only a single descriptor for each page in this range need to be kept in 
the ATC. 

C.S.3.7 UNUSED DESCRIPTOR BITS. For almost all descriptor types there are bits that 
are never used by the MC68851 that can be used for any purpose by the 0.5. Additionally, 
when the descriptor is set to a type of 'invalid', all but two bits can be used by the 0.5. A 
very common example is the use of the address field of a non-resident (paged-out) page 
to hold the disk block address of the page image. Then, the next time a task faults on the 
page, the supervisor has ready access to the disk location. 

One important 0.5. use of the unused bits of a valid page entry (resident page) is for 
determining page residency status, be it frequency of use or time since last use. Since a 
paging 0.5. must occasionally 'steal' pages from one task for use by another, it is prudent 
to try to take pages whose removal will have the least impact on system efficiency. Pages 
taken first would, of course, be real page frames that are not in use by any other task. The 
next group would be pages that have aged the most time since their last use. If a page 
has the modified (M) bit set then, before it is re-used, its image must be written to a paging 
store on auxiliary memory. Thus, when stealing pages, it is usually better to take a write
protected page or a page that has not been modified since it can be re-used without delay. 

One way for an 0.5. to determine the 'age' of a page is for the 0.5. to periodically go 
through the page tables (for example, once every 10 seconds) and increment a few of the 
unused bits kept as an age clock. If the page has been referenced since the last 'tick' then 
the bits are reset. Otherwise, once a page descriptor's bits overflow, that page could be 
put on a special queue indicating that it is ripe for removal when another page is required 

MOTOROLA 
C-12 

MC68851 USER'S MANUAL 



by the system. Some operating systems may have several such queues with one queue, 
for example, containing pointers to unused page frames, the next to unmodified (write
protected) pages, ... , etc. 

The O.S. designer has great leeway in deciding the page reclamation heuristics. One op
erating system may simply scan the page tables starting at the lowest priority task and 
'steal' aged pages as they are found. Another may keep a system-wide list of all page 
frames as they are used and then simply scan starting at the oldest and steal aged pages 
as they are encountered. A sophsiticated system may keep a special 'working set' model 
of the active pages for each individual task such that it can swap in and out complete 
blocks of pages en-mass with a single I/O operation. Page reclamation heuristics can have 
a dramatic impact on limiting the page faulting overhead of a very heavily used multi-user 
system. 

C.6 EXAMPLE MC68851 PAGING SYSTEM IMPLEMENTATION 

In order to illustrate some of the MC68851 features useful for operating systems a sample 
design of one such implementation is developed in the following paragraphs. This example 
demonstrates several features in order that potential variations of the design can be easily 
understood. In particular, by illustrating the algorithms to allocate a block of memory for 
a task, the basic code for the memory management services of an O.S. can be derived. 
The MC68851 access level protection mechanism is not used in this example. 

Assume that the target system requires execution of predominantly numerically intensive 
processing tasks, and towards that end, the ability to map a large virtual memroy task 
space is required. Average tasks do not need more than 16 megabytes of memory, but 
occasionally a larger virtual space is needed - up to a maximum of 496 megabytes. In 
order to minimize thrashing and translation table searches, a relatively large page size of 
8K bytes is used. The larger page size allows a smaller number of descriptors to map a 
larger area of virtual space and, for any given amount of CPU time, results in fewer der-

'scriptor misses in the ATC (and therefore fewer MC68851 table searches). Of course, with 
larger pages, the paging liD will be transferring larger blocks of data (equal to the page 
size) and, at times, only a fraction of a page may be actually used by the task. However, 
having performed preliminary software model simulations it has been found that for the 
type of processing required for this example system, 8K pages provide the optimum per
formance. 

For this system, although very large tasks may occasionally be run, the average task is a 
compiler or text editor that only requires 192K of memory. Thus, only 24 short page 
descriptors (96 bytes) are required to map the average task. This allows the operating 
system to take advantage of a unique MC68851 feature (limit fields) that allows sub-tables 
to reside at the start of any 16-byte boundary and take no more room than required. Because 
of this, the translation tables are very small, and the O.S. does not need to be concerned 
with the paging of table areas (i.e., they are small enough to be completely resident in 
physical memory). 

The paging hardware of many computer systems requires that pointers to lower level 
tables always point to a page boundary, meaning that each of those tables must occupy 
at least a complete page. However, with the MC68851, the O.S. can provide table storage 
with an address granularity of 16 bytes and, any memory obtained in this manner can be 
used for memory management tables. The savings in memory utilization are dramatic 
since, instead of needing 80K of page tables for 10 average tasks (10 tasks times the 8K 

MC68851 USER'S MANUAL MOTOROLA 
C-13 

E 



minimal page table size), only 960 byte (10 times 96 bytes) is needed. Of course, there may 
be some fragmentation in allocating the ten small blocks, but that is insignificant to the 
80K byte otherwise required (this 80K does not take into account the memory used by 
tables at higher levels). If each level of a two-level tree required a minimum of one page 
then the ten average tasks would require a minimum of 160K bytes of table area. 

The translation tree for the example system consists of an upper and a lower table level. 
The upper level is a fixed table with 32 entries, with each of these entries consisting of a 
long descriptor optionally pointing to a lower level page table. Each lower level table maps 
up to 16 megabytes of the virtual address space. Since the upper level table is so small, 
it is convenient to let it reside entirely in the main control block of the task. When a new 
task is dispatched, the MC68851 CRP register is loaded with a pointer to the upper level 
table corresponding to that task. Each lower level page table consists of from zero to 2048 
short-format page descriptors. The first level entries use limit fields to determine the size 
of each page table. Thus, the average task of 192K usually has only one entry of its upper 
level table valid for user access, and this entry points to a lower level table with an average 
size of 96 bytes. Tasks that require over 16 megabytes of memory have more than one of 
the high-level table entries in use for user memory. 

One type of memory allocation that the O.S. must control is that for physical memory (a 
page frame) to hold a virtual memory page. The entire physical memory available in a 
system is divided into page size pieces or frames. A system with four megabytes of real 
memory could therefore be divided into 512 8K frames and could theoretically hold 512 
pages of active virtual memory at anyone time. Usually though, parts of the O.S. such as 
the exception handlers, kernel code, and the O.S. private memory pool are permanently 
resident and non-pageable. Only the remaining frames can be considered to be available 
for holding virtual pages. 

An O.S. keeps a linked list of all free unallocated frames. This is simple since a free frame 
can contain the pointer within itself to the next free frame on the list. Therefore, when a 
page frame needs to be allocated, the first one on the list is taken (all frames being treated 
alike). The function GetFrame is now defined, and later expanded, as the O.S. primitive 
that returns the physical real address of a free frame. If there are no free frames, GetFrame 
obtains one by stealing one from another task. GetFrame first looks for an unmodified 
frame to steal, since these can be stolen without waiting for them to be written back to an 
external storage device that holds all non-resident virtual page images (normally called 
the paging device or backing store). If no unmodified pages are available, a frame must 
be stolen that must be swapped out before it is returned. It is assumed that GetFrame can 
wait on behalf of the caller and let other tasks execute until a frame is free to be passed 
back. 

Next, the second type of physical memory management (that used to allocate and free 
supervisor pieces of work memory) is developed. GetReal and ReturnReal are the routines 
to request and return supervisor memory utilizing physical (non-virtual) addresses. The 
allocation routine must return pieces of memory with addresses on a boundary of at least 
modulo 16 due to the fact that all MC68851 tables must start on such an offset. Usually, 
supervisor work memory is parcelled out in minimum chunks of some multiple bytes in 
order to fight fragmentation problems. 

The above routines handle the allocation of physical memory. The next development for 
the example system is to handle allocation of virtual memory for all tasks. The first step 
in this process is to determine the system's view of the virtual memory map of a task and 

MOTOROLA 
C-14 

MC68851 USER'S MANUAL 



how such memory is to be accounted for since there must be some way of keeping track 
of which virtual memory addresses are free to be assigned to the task. Each system hard
ware design has two views - the physical map view and the virtual map view. The physical 
view represents actual physical addresses of all hardware components (64K boot/diagnostic 
ROM, 64K liD area, 1 megabyte of RAM) in the system and is as follows: 

Low Memory 

o I BOOT AND DIAGNOSTICS ROM 
64 K ... -----------..... 

UNMAPPED 

1 M r--------------, 
HARDWARE I/O 

2 M I------------~ 

SYSTEM RAM 

3 M '---------------.1 

The virtual memory map is what all programs see after the MC68851 has been initialized 
and it is as follows: 

Low Memory 
0 

O.S. KERNEL 

1M 

HARDWARE I/O 

2M 

DIRECT MAPPED 
(LOGICAL = PHYSICAL) 

3M 

UNUSED 

16M 

USER PROGRAM / DATA I STACK 
(496 M) 

528 M 

Note that user programs can only 'see' virtual addresses starting at 16 megabytes and 
higher. This is the area where the code, data and stack areas for the user tasks are allocated 
in virtual memory. Supervisor programs 'see' the entire virtual map that directly accesses 
the 1/0 ports as well as the entire physical memory at untranslated addresses (in other 
words, the tables are set up such that virtual addresses equal physical addresses for the 

MC68851 USER'S MANUAL MOTOROLA 
C-15 

IE 



II 

supervisor between one and three megabytes). This 'folding' of the physical space into 
the virtual space allows for greatly simplified operation when the physical addresses must 
be handled (such as with page frames). Note that the folding does not necessarily keep 
the virtual addresses the same as the physical. For example, the boot/diagnostic ROM at 
physical address zero could easily appear in the virtual address space starting at three 
megabytes. However, any external bus masters or circuitry (such as breakpoint registers) 
resident on the physical side of the bus must be provided with physical addresses (re
introducing the overhead of O.S. code handling address translation). 

An additional advantage of the virtual mapping presented in this example is that all ad
dresses are unique between the supervisor and user maps, and thus all supervisor routines 
can directly access any user area with no restrictions as to instructions or addressing modes. 
The separate maps at first suggest that two MC68851 root pointers be used, one for the 
supervisor map anq one for the user map. However, a closer look shows that the supervisor 
must be provided with access to the user translation tables for proper access of user data 
items. With separate root pointers, the supervisor table structure must be linked to that of 
the user. This can be done but only at the expense of forcing an extra level of table lookup 
(such as including the function code lookup). 

Instead, a simpler scheme is used for this example. The CPU root pointer alone is used, 
however, and the first entry of the upper level table (representing the first 16 megabytes 
of the virtual map - the supervisor portion) for each task (each task having its own 
translation tree) points to the same lower level table. This common lower table indicates 
supervisor-only access and maps the entire virtual O.S., and physical 110 and real memory 
areas. Also, each entry in the common table is marked as 'globally shared' so that task 
switches do not invalidate any ATC-resident descriptors used by the O.S. This scheme 
conveniently avoids the requirement for extra lookup levels or pointer manipulations during 
a task switch to furnish correct access across the user/supervisor boundary. The only 
overhead is the simple setting of the first upper-level table entry to point to the common 
page table of the supervisor whenever the translation tree for a new task is created. 

Returning to the problem of how to account for the virtual memory areas that have been 
assigned to a user task, the technique used is to simply let the existing translation tables 
for the task be the indication of what virtual memory has already been assigned. In other 
words, if a valid table entry exists for a given virtual address (page), then that 8K of virtual 
memory has been allocated. Certainly, if tasks continuously obtain and free virtual memory 
space during their lifetimes this would be inefficient due to the 8K granularity and some 
other scheme would be used (such as the creation of auxiliary tables to indicate virtual 
space availability). The allocation scheme used here provides only 'chunks' of memory in 
multiples of the page size (8K) but, the tasks in this system rarely, if at all, request any 
extensions to their memory space and when they do it is for large chunks, so this scheme 
suffices. Note that this is similar to most kinds of applications and utilities running in the 
UNIX@) environment. 

The O.S. primitive GetVirtual is now defined which is passed a block size, in bytes, and 
returns the virtual address of the new block for the task. GetVirtual first checks to insure 
the request isn't too large. It then starts scanning the translation tables looking for a virtual 
'hole' big enough to hold the block requested. If none is found, an attempt is made to 
'grow' the page table to its maximum size. Still, if no virtual space is found, an error is 
returned. If virtual space for the block is found, the new page entries are set to virgin status 
('page invalid but allocated') so that when the pages are first used, a page fault is generated. 
This indicates to the O.S. that no page images exist on backing store to be read in (most 

MOTOROLA 
C-16 

Me68851 USER'S MANUAL 



page faults do require that a page image be read from the backing store). Only a page 
frame would need to be allocated for that page entry, and the task can then be continued 
with the now present page in place. 

When SwapinPage is called, it points to the MC68851 table entry that contains the disk 
address of the page to be read in and restored. After reading in the page (and before 
returning), the routine replaces the disk address with the physical page address and sets 
the appropriate flags so that the entry is immediately ready for use by the MC68851. 

Although this example provides many of the functions required by an O.S., a complete 
operating system must have a complement function for each of the routines mentioned 
to perform the opposite action. These routines usually perform the same steps but in 
reverse order and meaning. GetVirtual would have a ReturnVirtual and SwapinPage would 
have the partner SwapOutPage. These counterparts are easily derived since they normally 
perform identical steps but in reverse order. 

A loose high-level language syntax is used for the code presented in subsequent descrip
tions and many liberties are taken to enhance readability. For example, return status values 
are assigned descriptive strings instead of a binary value as would be the normal. Since 
loops that scan tables have obvious subscripts these are abbreviated to empty brackets U. 
For example: 

for Upper_Table_Index = 1 to 31 do 
if Upper_Table [Upper_Table_Index]. Status = Invalid then ... 

the second line becomes: 
if Upper_Table_Index U. Status = Invalid then ... 

Flag operations are assumed to be system-defined and may imply more complex opera
tions than simple bit manipulations. For example, the page table status of 'invalid_virgin' 
can be implemented with the MC68851 page table entry DT field indicating 'invalid' and a 
software flag bit showing that it is allocated but not swapped out (has never been used). 

The virtual address for the example system is sub-divided as follows: 

31 0 
xxxu uuuu 111111111110 0000 0000 0000 

3 bits x = ignored 
5 bits u = upper level table index - [maps 32 long table entries] 

11 bits I = lower level table index - [maps 2048 short page entries] 
13 bits a = page offset 

The translation table structure for the system is described as follows: 
CRP. upper level table area in task control block of 32 long pointers 

[0] • lower level table common to all tasks and mapping all O.S. areas (first four 
megabytes of virtual space). This common table is 512 short page entries in 
size (2K bytes). 

[1] • lower level table for first 16 megabytes of user program/data/stack area 
[2] • lower level table for second 16 megabytes of user program/data/stack area 

[31] • lower level table for last 16 megabytes (of 496 total) of user program/datal 
stack area 

MC68851 USER'S MANUAL MOTOROLA 
C-17 

IE 



II 

C.6.1 O.S. Allocation Modules for Example System 

The following paragraphs detail the routine 'Vallocate' which is the central module and is 
used by all user programs to obtain memory. The required memory size in bytes is an 
input parameter for Vallocate. Status information and the user's virtual address to the start 
of the area (if the allocation was successful) are the outputs. 

The code for Vallocate is simplified in that the amount of memory returned is always a 
mUltiple ofthe system page size and blocks are never allocated across 16-megabyte bound
aries. The first restriction could be removed if a control structure that subdivides pages 
was implemented but care would have to be taken since the user could corrupt such 
structures if they resided within the allocated pages themselves. The second restriction 
could be circumvented by adding code that keeps track of consecutive free blocks found 
when scanning the low level tables (each block representing 16 megabytes of address 
space). Once the total area is found, each block is allocated in order returning only the 
address of the first (lowest) block). 

The 32 upper-level table entries are long pointer types and each represent 16 megabytes 
of virtual space. They are either 'Invalid' meaning they have no lower page tables or 
'Allocated' meaning they do have lower tables and that the limit field indicates how large 
these tables are. The first entry always exists since, by convention, it maps the supervisor 
address space and is always restricted to supervisor-only references. The first entry is 
never touched by this routine. The 31 entries after that are available for user space allo
cation. 

Note that a routine similarto this could be written that grows or linearly extends a previously 
allocated memory block. Since the M68000 supports stack notions, the O.S. can allocate 
the top of memory (the thirty-second upper level table entry) as a stack and always grow 
it in the reverse direction. Such a system can support mUltiple large stacks by allocating 
each at a different upper level (16 megabyte) boundary and setting software flags indicating 
that it is a stack that grows downward. 

The logic of Vallocate is as follows: 
1) Validate the request and find number of pages required. 
2) Scan each upper table entry's lower page tables (where they exist) looking for an 

unallocated group of pages large enough. 
3) If no space found, see if the lower table is less than its maximum size and if the block 

can be allocated by expanding it at the end. 
4) If still no space found, use the next free upper table entry and initialize its new lower 

level page table to allocate the block here. 
5) Set allocated page entries to indicate virgin status (not swapped out, allocated, and 

invalid). 
6) Return status and virtual address (if OK). 

MOTOROLA 
C-18 

MC68851 USER'S MANUAL 



The procedure is defined as follows: 

Vallocate (SizelnBytes, VirtualAddressReturned, Status); 

1* The following are global to all routines 

1* Symbolically define the upper level pointer table 

Declare Upper_ Table[32] Record of 
Status=(unallocated, allocated), 
LimiCField=(O to 4k), 
Pointer; 

1* Symbolically define the lower level page table 

Declare Lower_ Table[O to LimiCField] Record of 
Status=(invalid_unallocated, 

invalid_paged_out, 
invalid_virgin, 
valid_in_memory) , 

Pointer; 

Declare NumPages; 

Status = "Out of virtual Memory"; 

if SizelnBytes > 16 megabytes then exit Vallocate; 

/* lower table here or not 
/* limit for lower page table 
I*address of lower page table if allocated 

*j 

*j 

*j 
*j 
*j 

*j 

/*not allocated to User *j 
I*allocated but paged out *j 
/*allocated but not yet used *j 
/*allocated and in memory *j 
/*physical address or disk address of page *j 

I*table indexes *j 

1* number of pages required to hold request *j 

/* default result status to this error *j 

NumPages = (SizelnBytes+PageSize-1 )jPageSize; 1* Pages needed *j 

1* Scan User eligible page tables 

for Upper_Table_Index = 1 to 31 do 
If Uppec Table[].Status = allocated then call SearchPageTable; 
If Status = "OK" then Exit Vallocate; 
end; 

*j 

1* Block not found so find upper level entry unallocated and call SearchPageTable that will 'expand' *j 
1* the null table to hold the block. *j 

for Upper_Table_Index = 1 to 31 
If Upper_Table[].Status = unallocated then call SearchPage1able; 

1* No more virtual space, exit leaving Status = "out of virtual memory" 

exit Vallocate; 

Procedure SearchPageTable; 

*j 

1* Scan table pointed to by upper level index to see if it can hold the block. If not, see if it can be *j 
1* be expanded. If successful then set flags in the page entries, set status to "OK" and return *j 
1* User's virtual address *j 

Declare Maxfound; 

MC68851 USER'S MANUAL 

/* Count of consecutive free blocks found *j 

MOTOROLA 
C-19 



Maxfound = 0; 
For LowecLeveUndex = 0 to Upper_Table[].Limit_Field 

/* count consecutive free pages until Maxfound met or not */ 
If Lower_ Table[].Status = invalid_unallocated then do 

Maxfound = Maxfound+ 1 ; 
if Maxfound >= NumPages then do 
/* Go Back and Allocate Found Pages */ 

/* Found! Now flag the page entries, update the MC68851 and */ 
/* return the User's virtual address */ 

end; 

end; 

while (Maxfound > 0) do 
Lower_ Table[].Status = invalid_virgin; 
Lower_LeveUndex = Lower_LeveUndex-1 ; 
Decrement Maxfound; 

Status = "OK"; 
VirtualAddressReturned = 

Upper_LeveUndex*16Meg + 
Lower Level Index*8k; 

exit SearchPageTables; 
end; 

/* allocated page hit so start counting from zero again */ 
else Maxfound = 0; 

/* If we get here there was not enough room. See if we can expand the page table to hold the 
new block */ 
/* If so grow it and set the new page entries as virgin * / 

If Upper_ Table[J.Limit + NumPages < 4k· then do 
NewLimit = Upper_Table[].Limit + NumPages; 

/* We can grow the page table! First get area for new table 
Call GetReal(4·NewLimit, NewPageTable); 

/* Now copy the first part of the old table into the new 
(poir'lter use indicated by "->" symbol) 
for Lower_Table_Index = 0 to Upper_ Table[].Limit 

NewPage Table->Lower_ Table[] = Lower_ Table[] 

/* Return the old table and install the new table pointer 
Call ReturnReal(4·Upper_Table[].Limit, Upper_ Table[].Pointer}; 

Upper_Table[].Pointer = NewPageTable; 

./ 

./ 

*/ 

/* Set returned virtual address and load it replacing the old ./ 
VirtualAddressReturned = Upper_LeveUndex·16Meg + Lower_LeveUndex·8k; 

/* Set all the new entries at the end to virgin status ./ 
While (Lower_Table_Index < NewLimit) do 

Lower Table Index = Lower Table Index + 1; 
Lower~)ableIT.Status = invalkCvirgin; 
end; 

r Set OK status and return with it */ 
Status = "OK"; 
exit SearchPageTables; 
end; 

/* cannot expand the table. retum with status unchanged (failed) */ 
end SearchPageTables; 

MOTOROLA 
C-20 

MC68851 USER'S MANUAL 



C.6.2 0.5. Paging System Bus Error Handler Example 

The most critical part of an O.S. supporting demand-paged memory is the page-fault 
handling portion of the supervisor program. The major activity of this handler is to deter
mine the validity of the page fault and perform necessary processing. The MC68851 PTEST 
instruction provides the facility for investigating the cause of a bus fault by reflecting the 
status of an address in the PSR register (refer to 6.1.8 PMMU Status Register (PSR)). 

The PTEST instruction may signal that no error was detected for the tested address indi
cating that the system most likely had a true bus error (for example, a transient memory 
failure occurred) and it is up to the O.S. to handle this case. 

The table search performed by the MC68851 during the PTEST instruction may cause a 
bus error implying that the MC68851 tables are not properly setup or main memory has 
hada failure (either transient or permanent). 

Three types of return status from the PTEST instruction: 'supervisor violation', 'access level 
violation', and 'write protected' usually indicate that the interrupt task has attempted to 
access an area of the virtual space that is not a legal part of the address space of the task. 
The O.S. usually recovers from such an error by terminating (aborting) the task. 

The 'invalid' status indicates that a page fault has indeed occurred. The O.S., at this point, 
must decide more specifically what the page fault means. If the 'limit violation' bit is also 
set, this indicates that there was no descriptor representing the faulted address (since it 
was outside of the tables representing the valid virtual space). In this O.S. example system, 
encountering an 'limited violation' error forces the task to terminate since it is trying to 
access beyond the allocated portion of one of the existing lower page tables. However, 
other operating systems may very well take this to mean an implicit request for more 
memory, particularly if the memory reference is considered to be within a stack area. 

If the limit violation bit is not set, then there is a descriptor that had its DT type set to 
'invalid'. Again, it is up to O.S. conventions, but typically the descriptor will contain software 
flags indicating further disposition. The example O.S. first checks to see if the invalid 
descriptor was in the upper or lower level of tables. If the descriptor is in the upper table, 
then it was a long pointer descriptor that was unallocated on behalf of the task. This 
indicates that the address used is a non-existent virtual address and that the task should 
be terminated. If the invalid descriptor was a page descriptor then software flags further 
indicate what action should be taken by the O.S. 

One of the indications provided by the 'invalid' page descriptor is an unallocated page. 
This is yet another method of indicating that the address was invalid for the task. Next, it 
could be an allocated but virgin page which means it has been assigned to the task but 
has not yet been accessed. Note that if this is a read request, the O.S., may still consider 
this invalid since it would be abnormal for a task to access virgin memory with a read of 
data that has an unknown value. The duties for theO.S. in this case areto find a physical 
page frame and assign it to the task for use. Some systems may automatically clear (zero) 
virgin pages when they are first used and, in this case, it may be valid to let the first access 
to such pages be a read instead of a write. 

The software flags can also indicate that the page is allocated but paged-out and residing 
on an external storage medium (such as a disk). In this case, not only must the O.S. find 
a page frame, but it must read in the page (swap it in) before returning to the interrupted 
task. Finally, software flags may indicate unique handling such as treating the memory in ~ 
the page as a virtual I/O device area for virtual machine simulation. ~ 

MC68851 USER'S MANUAL MOTOROLA 
C-21 



The fetching of a physical page frame to hold the virtual page for a task may seem like an 
obvious and simple operation. However, what happens if there are no idle physical memory 
frames left to assign? The answer is that one must be found and stolen from another (or 
the same) task. The task from which it is stolen must have its translation table page entry 
altered to reflect that it is now missing (invalid) and swapped out. Typically, in the entry, 
there is a pointer left in place of the old physical address that indicates where the old page 
image resides in external storage. 

The method by which an O.S. selects a page to 'steal' is very dependent on the particular 
system implementation. A very simple system may simply 'steal' a page from the lowest 
priority task. More advanced systems attempt to keep track of page frame aging; they try 
to keep track of which frames have been idle (not used) the longest time. This can be done 
in a variety of ways. One method to 'age' pages is to dedicate some software-reserved 
bits in the page entries as an aging counter. Every so often (say once every five or ten 
seconds), the O.S. can run through all page tables and, by examining the U (used) bits, 
increment those entries that have not been used. When entries reach the maximum count 
or overflow they can be remembered by building a queue of pointers to them. The queue 
can then be used by the routine GetFrame when there are no free page frames available. 

Some systems may even keep more than one queue. It is obvious that once a page of 
memory that is read-only (no task can write to it) is swapped out (copied) to external 
memory then that external image always represents the data in the virtual page. Therefore, 
if that page is in memory and stolen for use by another task, it does not need to be written 
out before it is taken. An operating system that supports read-only page swaps can have 
a queue with just read-only pages that are more efficient to steal. 

The design of page stealing heuristics is more of an art than a craft and depends widely 
on the nature of the tasks in execution and other dynamics of a system such as I/O activity. 
Consideration can be given to task priority, read-only page status, working-set determi
nations, number of tasks executing, thrashing level, and other factors. 

The code presented below is much more general than Vall ocate since it relies on several 
O.S.-dependent items. The variable pointer VictimTask is assumed to point to a table from 
the task that is having a page stolen. This must be done since it cannot be assumed that 
the control block layout or method of searching and finding other tasks in an operating 
system is known. Another simplification is the ignoring of the function code value and 
read/write status of the address given to the bus error procedure since they don't effect 
the basic logic of the program. 

MOTOROLA 
C-22 

MC68851 USER'S MANUAL 



1* Paging Bus Error Handler for example O.S. 

Procedure BusErrorHandler (BusErrAddress); 

1* Global Variables to all code 

Declare TableEntry; I*Pointer returned by PTEST instruction 
1* pointing to the lowest level entry in the 
1* translation tables. 

*/ 

*/ 

*/ 
*/ 
*/ 

1* Use MC68851 PTEST instruction to get fault status and table entry */ 
case PTEST (BusErrAddress,TableEntry) of 

/* Bus Error - translation table is invalid or memory hardware problems. Terminate the task. */ 
B: AbortTask("lnvalid table or memory hardware error"); 

/* Supervisor Violation - task tried accessing restricted memory */ 
S: AbortTask("Attempted access of Supervisor-only memory"); 

/* Access Level Violation - task tried accessing higher privilege level. Note that for our example */ 
/* O.S. this should never occur. */ 
A: AbortTask("Attempted access of higher privileged memory"); 

1* Write Protected - tried writing into read-only memory */ 
W: AbortTask("Attempted write into read-only memory"); 

/* Limit Violation - tried accessing unmapped virtual space. This happens in our example */ 
/* O.S. when accessing within a 16 megabyte segment in User memory beyond what is */ 
/* currently allocated for the lower page table as determined by the upper level limit field. */ 
L: AbortTask("lnvalid address"); 

/* Invalid - pointer indicates invalid. Must determine status. */ 
I: begin 

1* If upper level entry then that 16 Meg chunk of the virtual space is unallocated */ 
/* and has no page tables. */ 
If TableEntry is upper level then AbortTask("lnvalid address"); 

1* We are at a page table entry. Look at software flags. */ 

/* If this page unallocated to the User then abort task */ 
If EntryStatus=invalid_unallocated then 

AbortTask("lnvalid Address"); 

1* If this page is virgin then assign to it a physical frame */ 
if EntryStatus = invalid_virgin then do 

GetFrame(TableEntry); /* a,ddress returned in entry */ 
PLOAD (BusErrAddress); /* update MC68851 entry */ 
exit BusErrorHandler; /* done so continu~ task */ 
end do; 

1* If this page is swapped out then read it back in 
if EntryStatus = invalid_swapped_out then do 

/* first get a frame to hold the new page 
DiskAddress = Table Entry.Pointer; 

GetFrame(TableEntry) ; 

/* disk location 

/* address returned in entry 

*/ 

*/ 
*/ 

*/ 

MC68851 USER'S MANUAL MOTOROLA 
C-23 



II 

1* Now read in the virtual page image */ 
call SwapPage I n(Table Entry, DiskAddress); 
PLOAD (BusErrAddress); 1* update MC68851 entry */ 
exit BusErrorHandler; 1* done so continue task */ 
end do; 

end begin; 

1* No MC68851 status bits on. Must be memory malfunction or RMW cycle with no */ 
I*ATC entry */ 

Otherwise: If Stack_Frame shows RMW instruction (SSW) then 

end case; 

MOTOROLA 
C-24 

I*ATC did not have descriptor loaded and MC68851 cannot */ 
I*search tables to load it. Explicitly load it and allow the task to */ 
I*continue normally */ 

Begin 
PLOAD (BusErrAddress); I*update ATC */ 
exit BusErrorHandler; I*done so re-execute instruction */ 
end Begin 

Else: AbortTask ("Memory Malfunction"); 

MC68851 USER'S MANUAL 



Procedure GetFrame(FrameTableEntry); 

r This module returns the address of a physical frame in the passed table entry. It obtains one */ 
r from the free frame list. If none there, ~ scans a queue pointing to pages that have been */ 
r recorded as having aged by not being accessed frequently. It first tries to find a read-only */ 
/* page in the queue but if none, it returns the first (oldest) entry after swapping the page out */ 
/* to disk and altering the translation tables of the owning task. If nothing in the queue it waits */ 
/* for some other task to free a frame by terminating or deallocating memory */ 

Restart: 
if Free Frame Queue NOT null then 

- Dequeue first entry and return its value. 

if Aged_Frame_Queue NOT null then begin 

/* First try to find a read-only page 
If scanning finds read-only page then use and dequeue it 

else dequeue the first entry (which is the oldest); 

Find owning task and the frame's current page entry; 

*/ 

r Invalidate owning task's page */ 
PFLUSH (User_Space, VictimTask.VirtuaIAddress); 

/* If modified page, swap it out. SwapPageOut either gives control to other tasks */ 
/* during the I/O or copies the page returning immediately. */ 
If modified then call SwapPageOut(VictimTask.TableEntry); 
r Disk address now in Victim's page entry */ 

/* Now set the old task's page status and return the frame */ 
VictimTask.TableEntry.Status = invalid_swapped_out; 
return physical frame value; 
end do; 

/* At this point we can use some other stealing method but we just wait until another task frees */ 
/* a frame by terminating or freeing memory. */ 
call wait (Free_Frame); 
go to Restart; 

end GetFrame; 

Procedure SwapPageln (SwapinTableEntry,DiskAddress); 
/* This procedure takes the disk address and reads the page from the paging external media */ 
/* into the physical address residing in the table entry painter. */ 
end SwapPageln; 

Procedure SwapPageOut(SwapoutTableEntry); 
/* This procedure performs output on the external paging device and then replaces the */ 
/* physical page frame address in the page entry pointer field with the disk address of the */ 
/* block holding the image of the page. */ 
end SwapPageOut; 

Procedure AbortTask(TerminationMsg); 
/* This procedure terminates the current task and issues a diagnostic message. */ 
end AbortTask; 

end BusErrorHandler; 

MC68851 USER'S MANUAL MOTOROLA 
C-25 



Introd uction 

Overview of System Operation 

Signal Description 

Bus Operation Description 

Address Translation 

Instruction Set Processor 

Protection 

Breakpoints 

Coprocessor Interface 

• Access Level Control Interface 

.. Operation Timings 

fill Electrical Specifications 

• Ordering Information and Mechanical Data 

• Instruction Set 

• Hardware Considerations 

II Software Considerations 

1ATX31318-0 Printed in USA 4/93 COURIER USER'S MANUALS 650761,000 MPU YGABAA MC68851 USER'S MANUAL 



SO S2 S4 SO 

CLOCK 

PA8-PA31. AO-A 7. 
SIZO/SIZI. FCO-FC3 

RMC 

CLI 

PAS 

OS 

Riw 

DBDIS 

DSACKx 

DSACKx 

DATA 

BERR 

HALT 

ALL ASYNC 
INPUTS 

Key: Indicates that the signal is driven by the MC68851 
Indicates that the signal is driven by the Main Processor 
Indicates that the signal is driven by an external device or 
alternate bus master 

Note: The Clock Signal is always depicted with a normal width line 

Figure 12-3. MC68851 Initiated Read Cycle 

Foldout-1 





I SO S2 S4 SO 

~ CLOCK 

:1. 

~ ) PAO-PA31, LAO-LAS, 
SIZO/SIZI. FCO-FC3 

II 

,il RMC 

PAS 

Os 

R/W 

DBDlS 

DSACKx 

DSACKx 

DATA 

BERR 

HALT 

ALL ASYNC 
INPUTS 

Figure 12-4. MC68851 Initiated Write Cycle 

Foldout-2 





SO S2 S4 SO 

CLOCK 

LA8-LA31. FCO-FC3. 
SIZO/SIZl. RMC. R/iii 

LAS 

DSACKx 

PA8-PA31 

PAS 

I, ASYNC 

I :1 

I 
BERR. HALT I,' 

LBRO 

11(' 

I Ct:i 
:1 

Figure 12-5. Synchronous Mode Translation 

,I 

I
'll'; 

I:, 

I 
1-............................. ·F·OI·dO·U·t-·3 .......................... .. 





SO S2 S4 SO 
,.---... r----"'\. I r---.. ,--

CLOCK 

LA8-LA3l, FCO-FC3, 
SilO/Sill, RMC, R/W 

LAS 

PA8-PA3l 

PAS 

CD 

'TI - OBOIS 
0 
c:: 
0 s. 

I BERR 
~ 

HALT 

LBRO 

LBGO 

LBRI 

I- G 
LBGI 

LBGACK 

Figure 12-6. Logical Master Relinquish and Retry Timing Diagram 





"'=;c -----=_~ ~~=~- =----___ 
.... --:--:'~!tp~...: -,-~-- ~. 

SO S2 S4 

CLOCK 

LA8·LA3l. AD·A7. 
FCO·FC3. SIZO/SIZ1. R/Vi. RMC 

LAS 

DBDIS 

DSACKx 

PA8·PA3l 

" I 0 
0: PAS 
0 
c: 
'1 
(11 

LBRI 

LBRO 

LBGI 

LBGO 

LBGACK 

,- @ 
ASYNC 

Figure 12-7. Logical Bus Arbitration by Asynchronous Master Timing Diagram 





." o 
c: 
o 
S
a, 

~~~~--~~,c.~- -~ 
.,,--::~.:--~-~--=;,-.

SO SI S2 S3 S4 S5

CLOCK

PAO·PA3]' AD·A 7. R/Vii.
SIZO/SIZ 1. RMC

LAS (SEE NOTE 1)

PAS

liS

R/W

DSACKx

DBOIS

DATA

PBR

PBG

PBGACK

Note 1. This depiction of LAS is inconsistent with the MC68851 bus c:ycle depicted but is included to show signal relationships
when the MC68851 is performing a translation.

Figure 12-8. Physical Bus Arbitration Timing Diagram

~""",",~~-:~~~'--.-

SO

CLOCK

LA8-LA31. AO-A7,
SilO/Sill

FCO-FC2
(FC3=0)

Riw

LAS

OS

DBDIS

DATA

DSACKx

DSACKx

PA8-PA31

ftj

I

SO S2 Sw Sw S4 SO

Figure 12-9. CPU Space Read From MC68851 or From Other Coprocessor
(CLI Asserted by MC68851) Timing Diagram

Foldout-7

." o
c:
o
c::
.-+

00

CLOCK

LA8·LA3l. AO·A 7.
SIZO/SIZl

FCO-FC2
(FC3=O)

Riw

LAS

os

DBDIS

DATA

DSACKx

DSACKx

PA8·PA3l

Cij

:.~ .-~~-~~-~

so S2 Sw Sw Sw S4 so

Figure 12-10. CPU Space Write To MC68851 or To Other Coprocessor
(CLI Asserted by MC68851) Timing Diagram

'II

11

E
m ..
C)
m
C
C)
c
's
t=
~
(,)
Q)

Q)
en
Q)

"'C
0
~
"'C
C
m
~
Q)
tn
Q)

a:
....: .-
N .-
Q) ..
:::s
C)

i.i:

>
'" +

~ u

Ii
U) U) 5 Is u c :::>

9 > co co ex:
f-

u 0 ~ 2:
<t 8 0

U)
:::> co

Foldout-9

PRENTICE HALL, Englewood Cliffs, N.J. 07632

ISBN 0-13-566993-

MC68851 UM/,

111

