

M

AN591

Apple

®

 Desktop Bus (ADB



)

INTRODUCTION

The purpose of this application note is to introduce a
PIC16CXXX based ADB interface which can be used
as a basis for the development of custom ADB devices.
This application note describes; the hardware involved,
a general purpose ADB protocol handler, and an
example application task. The example software
application supports a single key keyboard to the
Macintosh computer (Figure 1).

OVERVIEW

ADB licensing from Apple Computer.

Described as a peripheral bus used on almost all
Macintoshes (except for the Macintosh 128, 512K, and
Plus) for keyboards, mice, etc.

Communication between the ADB task and the
application task takes place using several flags. The
flags indicate whether there is data received that needs
to be sent to the Macintosh, or if data from the
Macintosh needs to be sent by the application.

Author: Rob McCall
WFT Electronics

Support: Gus Calabrese
Dave Evink
Curt Apperson
WFT Electronics
 1997 Microchip Technology Inc.

Macintosh‚ and ADB (Apple Desktop Bus) are trademarks/registered tradema
EXPLANATION OF ADB
TECHNOLOGY

ADB is an asynchronous pulse-width communication
protocol supporting a limited number of devices. All
devices share a single I/O wire in a multi-drop mas-
ter/slave configuration in which any slave device may
request service. This is accomplished through a
wired OR negative logic arrangement.

The ADB cable is composed of four wires: +5V, gnd,
ADB signal, and power-on (of the Macintosh). The
signal wire communicates ADB input and output using
an open collector type signal. The number of devices is
limited by the addressing scheme and a maximum
current draw of 500 mA.

Every ADB device has a default address at start-up
assigned by Apple. If there are device address
conflicts, the protocol supports the reassignment of
device addresses at start-up. The software in the
PIC16CXXX discussed here is designed to easily mod-
ify the device address to make the PICmicro™ appear
as another ADB device for testing and development.
FIGURE 1: BLOCK DIAGRAM OF FUNCTIONALITY

PIC16CXXX PROGRAM

ADB Communication Task

Application Task

Single Key
“keyboard”

PIC16CXXX Interface Board

ADB Cable

Macintosh
DS00591B-page 1

rks of Apple Computer, Inc.

AN591

No device issues commands, except the host.
However, devices are permitted to request service
during specific time intervals in the signal/Command
protocol. A Service Request is referred to as an “Srq”
The signal protocol communication is accomplished by
pulling the ADB line low for various time intervals.

The host controls the flow of data through issuance of
specific signal sequences and by issuing several types
of Commands. The basic command types are Talk,
Listen, Flush, and Reserved. Each command has a
component called a “Register” indicator which specifies
the storage area affected by the command type. The
following is a summary explanation of the each of the
commands. The complete specifications are available
from Apple, as listed in the Resources section of this
application note.

PROTOCOL ASSUMPTIONS

The ADB protocol is defined with a number of general
assumptions about its use. These assumptions have
driven the general philosophy of the communication
sequences. It is assumed that the devices on the ADB
are used for human input and each are used one at a
time, such as a keyboard and a mouse. It is also
assumed that the user’s transfer time from one device
to another is relatively slow. This does not mean that
the protocol is limited to these assumptions but rather
that the protocol is optimized towards this type of use.
This is made very evident in the host polling logic,
where the host continues to poll the last device commu-
nicated with until another device issues an Srq. Conse-
quently, if another device issues an Srq, the device
being communicated with (or the host) may need
to retransmit.
DS00591B-page 2
ADB Elements:

The ADB protocol has two components, a Signal
protocol and a Command/Data protocol. These two
elements are intertwined. The Signal protocol is
differentiated in most cases by timing periods during
which the ADB signal is low. The Apple ADB
specification allows ± 3% tolerance timing of the signals
from the host and ± 30% by the devices. The signals
are:

• Reset: signal low for 3 ms.
• Attention: signal low for 800 µs.
• Sync: signal high for 70 µs.
• Stop-to-Start-Time (Tlt): signal high for between

65 and 160 µs.
• Service Request (Srq): signal low for 300 µs.

After device initialization, in general, all communication
through the ADB is accomplished through the following
event sequence initiated by the host:

1. Attention signal
2. Sync signal
3. command packet
4. Tlt signal
5. data packet transfer

Depending upon the command, the device may or may
not respond with a data packet. Service requests are
issued by the devices during a very specific time at the
end of the reception of the command packet.
FIGURE 2: TYPICAL TRANSACTION WITH COMMAND AND DATA

Attention Signal
800 µs

Sync
70 µs

Command Byte -
Eight 100 µs

Bit Cells

65 µs

'0' Stop bit

Srq
300 µs

If a device in need of service issues a service
request, it must do so within the 65 µs of the
Stop Bit’s low time and maintain the line low for
a total of 300 µs.
 1997 Microchip Technology Inc.

AN591

The command packets and the data packets are the
constructs used to communicate the digital information.
The method of representing data bits is accomplished
in a signal timing construct called a bit cell. Each bit
cell is a 100 µs period. Data '1's and '0's are defined by
the proportions of the bit cell time period when the line
is low and then high. A '1' bit is represented by the line
low for 35 µs, and high for 65 µs. Conversely, A '0' bit is
represented by the line low for 65 µs, and high for
35 µs (Figure 3).

FIGURE 3: BIT CELLS

The Command Packet, received from the host, follows
an Attention signal and a Sync signal. It consists of an
8-bit command byte and a '0' command stop bit. The
command byte may be broken down into two nibbles.
The upper nibble is a 4-bit unique device address. The
lower nibble is defined as a Global or Reserved
command for all devices, or a Talk, Listen, or Flush
Command for a specific device. Also contained in the
lower nibble is a “Register” designator which further
details the Command. The importance of the
Command Stop Bit Cell is that Srqs’ can only be issued
by a device to the host during the Command Stop Bit
Cell low time if the device address is not for the device
wishing service. The Host controls when Srq’s are
allowed through the Command protocol. The Tlt signal
and Data Packet transfer, which are part of every
Command packet signal sequence, are overridden if an
Srq is issued by any device.

A Data Packet is the data sent to, or received from, the
host. Its length is variable from 2 to 8 bytes. The
structure is a '1' start bit, followed by 2 to 8 bytes,
ending with a '0' stop bit. The Apple ADB
documentation refers to the data packet sent or
requested as Device Data “Registers”. This does not
necessarily indicate a specific place in memory. In this
PIC16CXXX implementation, each Data Register has
been limited to two PIC16CXXX register bytes. The
ADB specification allows each Data Register to hold
between two and eight bytes. They are referenced in
the Command byte as “register” 0, 1, 2, or 3. Data Reg-
ister 3 has special significance. It holds the special sta-
tus information bits (such as whether Srq’s are
allowed), the Device Address, and the Device Handler
ID. Commands are further defined by the “register id”
sent in the Command data packet.

'0' bit

35 µs

65 µs

100 µs

'1' bit

65 µs

35 µs

100 µs
 1997 Microchip Technology Inc.
For example, if the Host issues the Command in binary
of 0010 1100 , it would be interpreted as “Device 2,
Talk Register 0”. The complete definition of the Com-
mands and data registers are described in detail in the
ADB specifications supplied by Apple.

PIC16CXXX ADB PROTOCOL
PROGRAM EVENT SEQUENCE

Overview

At power-on the host will generate a Reset signal. The
purpose of Reset is to initialize the devices on the ADB
line. This includes determining the addresses of each
device, and resolving device address conflicts if there
are any. Once the device addresses are determined,
each device waits to be commanded or issues an Srq
if it requires service from the host and is not being
addressed by the host. After Reset processing, the
ADB Protocol Task monitors the ADB line for the
Attention/Sync/Command signal sequence. The
PIC16CXXX program differentiates the signal timing.

Command interpretation is accomplished during the
low signal time of the Stop Bit cell of the Command
packet. Response to the Command must occur after
the minimum time of the Stop to Start time period (Tlt),
which is 160 µs. but before the max Tlt time of 240 µs.
When a device has issued an Srq, it waits to be
addressed by the host. If the next Command received
is not for that device, it issues the Srq again. The nor-
mal response to an Srq will be a Talk Command from
the host.

Detailed Description

Start-up

Upon start-up, the Reset routine is executed, looking
for the ADB line to be high. When the line is high, an
initialization routine is executed during which registers
are cleared or loaded with default values. The only
exception is a register for generating a random address
used in the address conflict resolution process.

Reset

During a Reset condition, default values are loaded,
such as the Default Device Address and Handler ID (a
piece of information used by the host to identify the type
of device). If more than one device has the same
address, there is a sequence of events to resolve
address conflicts described in the Implementation sec-
tion. The host assigns a unique address to each device.
The Reset condition only takes place once, during
start-up, except under unusual conditions, such as test-
ing this program.

Note: The signal detection routines check to see
if the Application Task needs service after
each event and after the falling edge of
the Attention signal is detected.
DS00591B-page 3

AN591

Attention Routine

When the Reset routine is complete, the Attention
Signal routine is executed, looking for the line to go low
and then high. This low time is monitored to be within
range of the Attention Signal Timing. If the timing is
below the minimum threshold, the routine aborts to
start over again looking for the line to go low at the
beginning of the Attention Signal. If the low time is
exceeded, the routine aborts to the Reset
Signal routine.

Sync Signal Routine

When the line transitions to high, the Sync Signal
routine looks for the line to go low at the start of the first
bit of the Command Byte. If the Sync high time is
exceeded, the routine aborts to the Attention Signal.

Command Routine

The Command routine detects and decodes the next 8
bit-cells as the Command Byte. The routine must first
determine if the device address given is for itself. If the
routine determines that the device address in the
Command matches the stored device addresses, then
it may do one of two things; issue an Srq to the host by
holding the line low, or go on to check if the Command
is Global to all devices. If the command is Global, the
routine determines the specific Command and exe-
cutes the routine for that Global Command. After exe-
cution of the Command routine it then goes back to
look for the Attention Signal.
DS00591B-page 4
When a device is addressed, it determines whether the
Command is to Talk, Listen, or Flush data, for the
specified Data Register number. If the Command is for
Data Register 3, there are special considerations
described for this program in the Implementation
section later in this application note. If the Command is
to Flush, the routine clears the data in the specified reg-
ister. The ADB specification defines the action of the
Flush Command to be device specific. For a Talk Com-
mand or Listen Command, the device then waits for the
Tlt signal. When the Command is to Talk, the device
sends the data bytes from the specified register and a
Data Stop Bit after the Tlt minimum time. For a Listen
Command, the device receives data for the specified
register.

When the data has been Flushed, Sent, or Received,
the device then returns to monitoring for the Attention
signal again.

Sending Data to the Host

Data is sent only in response to a Talk Command. For
every data bit cell, the line is tested to go high at the
proper time. If the line is still low, a collision has
occurred. When a collision is detected, a collision flag
is set, and the program aborts to look for a Command
signal sequence.

Note 1: In this PIC16CXXX program, the
Application Task is serviced before
looking for the Attention signal.

Note 2: If at any time the line is low or high
outside of the timing ranges, the pro-
gram aborts to check if an Attention or
Reset signal has been issued by the
Host. In the case of sending Data, the
program goes first to the Collision rou-
tine.
FIGURE 4: TYPICAL TRANSACTION WITH SERVICE REQUEST

Attention
signal
800 µs

Command Byte
eight 100 µs

Bit Cells

Sync
70 µs

160-240 µs

65 µs
'0' Stop Bit

'1' Data
Start Bit

2 to 8
Data Bytes

'0' Data
Stop Bit

Tlt
 1997 Microchip Technology Inc.

AN591

IMPLEMENTATION

Hardware

The hardware of this circuit is fairly simple. The circuit
is powered via the +5V and GND wires of the ADB
cable. The ADB I/O wire is connected to pin RA0 with a
pull-up resistor to 5V. The T0CKI pin is tied to GND. The
Master Clear (MCLR) pin is tied to 5V.

This circuit uses a 4 MHz crystal as a timing reference,
but higher values may be substituted. The software is
designed to accommodate higher frequencies.

A pushbutton switch is used as the single key of the
“keyboard.” One side is connected to port RB1 with a
pull-up resistor to 5V, and the other side to GND. An
LED is used to indicate that the ‘key’ has been pressed,
with the positive side connected to pin RB0 and the
negative side to GND.

Software

The program designated as “Application Tasks,” has
two sections, one is setup to switch between a protocol
support task for the ADB signal decode and
processing, and the other section is the Application
Task, in this case a single key “keyboard” routine. The
ADB protocol task has priority. The first section of the
code is the ADB protocol task, the second section is the
Application Task, “Keyboard.” The two tasks
communicate through flags which indicate that data
needs to be sent, or that data has been received.

The Keyboard Task is run at two times; 1) during the
Attention Signal, 2) between the end of the Data Stop
Bit and the beginning of the Attention Signal. The
Keyboard Tasks is given up to 500 µs during the
Attention Signal, and 900 µs during the time between
the end of the Data Stop Bit and the beginning of the
Attention Signal. It is important to note here that the
other tasks MUST NOT AFFECT TMR0 or the ADB
time variable that the Attention Signal is using to keep
track of the RTCC.

Timing

Timing is accomplished by first loading a constant into
a time variable. This constant represents the maximum
limit for the current routine, which may not necessarily
be the maximum timing range for the current Signal.
The TMR0 value is loaded into the working register,
and subtracted from the time variable. The Carry bit of
the STATUS register is tested to see if it is set or clear.
If the bit is clear, the current timing limit has been
exceeded. Further action is taken based on this status.
It is important to keep the constant away from 255, or
rollover may occur, giving inaccurate results. The pres-
caler is applied to the TMR0 as necessary.
 1997 Microchip Technology Inc.
The following are the timing ranges used by this
program for ADB signals:

Reset > 824 µs
Attention 776-824 µs
Sync 72 µs
Bit Cell Up to 104 µs
'1' Bit low time < 50 µs
'0' Bit low time > 50 < 72 µs
Stop bit 0 Bit
Stop to Start (Tlt) 140-260 µs
Service Request (Srq) 300 µs

How Address Conflicts are Resolved

During the start-up process the host sends a “Talk
Register 3” command to each device address, and
waits for a response. When a device recognizes that
the Host issued a “Talk Register 3” command, it
responds by sending a random address. During the
transfer of each Bit Cell of the random address the
signal line is monitored for the expected signal level. If
the signal is not what is expected there is an address
conflict. If the address is sent successfully, the host will
respond with a Listen Command to that device. The
command will have a new Device Address to which that
device will move. The device then only responds to
commands at the new address.

If there is a conflict, where two devices have the same
default address, and respond at the same time, the
device that finds the line low when it expects it to be
high, immediately stops transmitting because it has
determined that a collision has occurred. The device
which detected the collision marks its address as
unmovable and therefore ignores the address move
Command, a Listen Register 3 Command. The device
maintains the unmovable address condition until it has
executed a successful response to the Talk Register
3 Command.

The host continues sending a Talk Register 3 Command
at the same address until there is a time-out and no
device responds. This is how conflicts are resolved
when more than one device has the same address; for
example, if two keyboards are connected.

Note: The range of values given for 0 Bit, 1 Bit
and Tlt timing are slightly wider than those
given in the ADB specification.
DS00591B-page 5

AN591

Program Sequence:

Words in parenthesis, (), accompanying the TITLES
are Labels of procedures in the corresponding code.

Start-up / IDLE (Start)

Start by configuring the ADB pin on PORTA and the
Switch Pin on PORTB as inputs, and tri-stating the rest
of PORTA and PORTB as outputs.

INITIALIZE DEFAULT VALUES WHEN THE LINE IS
HIGH (Reset)

Look for the line to be high, and when it is, clear or
initialize registers to default values.

LOOK FOR ATTENTION OR RESET (AttnSig)

Look for the line to go low, when it does, clear TMR0
and time how long it is low. An Attention Signal has
occurred if the line went high between 776 and 824 µs.
If the low time is measured to less than 776 µs, another
signal has occurred and the program aborts, looking for
the Attention Signal again. When the low time is mea-
sured to greater than 824 µs, the program interprets
this timing as a Reset Signal. The program starts over
again, waiting for the line to be high, and when it is, per-
forms a Reset initialization.

LOOK FOR SYNC SIGNAL (SyncSig ; calls Srq)

The Sync Signal is the high time between the rising
edge of the Attention Signal and the falling edge of the
first bit of the Command.

GET THE COMMAND (Command; calls Get_Bit)

Look for the Command; a combination of eight '0' and
'1' bits. The MSb is sent first. This is achieved by calling
the Get_Bit routine, which checks whether the
maximum Bit Cell time is exceeded, if not, it looks for
the rising edge at the end of the bit. When the bit is
received, it is rotated into a variable, and the end of the
bit cell is expected. When the falling edge of the next bit
is detected, the routine clears TMR0 and returns to
Command, which calls Get_Bit again until all 8-bits of
the Command have been received.

ISSUE A SERVICE REQUEST IF NECESSARY (Srq)

If data needs to be sent to the Host, a Service Request
(Srq) is issued by holding the line low while the Stop Bit
is being received during the Stop-to-Start time (Tlt)
which is between the end of the Command Stop Bit and
the beginning of the Data Start Bit.

Note: The keyboard task is performed during the
Attention Signal (Task_2).
DS00591B-page 6
LOOK FOR STOP BIT (CmdStop)

Look for the Stop Bit (a '0' bit of 65 µs) that comes after
the last Command Byte.

INTERPRET THE COMMAND (AddrChk)

After the command has been received, determine if the
address belongs to this device. If the address is not for
this device, determine if the command is global for all
devices and if so, do that command. If this is not a
Global/Reserved Command, call the Service Request
(Srq) Routine to see if an Srq should to be issued to the
Host, and do so if necessary, then return to get the Attn
Signal. If the Address is for this device determine
whether it is a Talk, Listen, or Flush Command, and go
to the specified Command routine.

SENDING DATA (Talk; calls Tlt)

If the command was interpreted to be a Talk Command
addressed to this device, call the Stop-to-Start Time
(Tlt) routine. When the Tlt routine has completed,
determine if this is a Talk Register 3 Command. If so,
return a Random Address as part of the two bytes sent
to the Host. If this is not a Talk Register 3 Command,
determine if data needs to be sent. If so, send the Data
Start Bit (a ‘1’), two bytes of data from the indicated
register, and a Stop Bit (a ‘0’). If not, abort to the
Attention Signal. If at any time the transmission of Data
is interrupted, abort to the Collision routine. Only after
a complete transmission should the flags be cleared
indicating a successful transmission.

RECEIVING DATA (Listen; calls Tlt)

If the command was interpreted to be a Listen
Command addressed to this device, call the
Stop-to-Start Time (Tlt) routine. When the Tlt routine
has completed, receive the rest of the Data Start Bit, 2
Data Bytes, and Data Stop Bit. When the data has been
received, determine whether this is a Listen Register 3
Command. If this is a Listen Register 3 Command,
interpret what the command is. If this is a conditional
Address Change Command, determine if this Device’s
Address is moveable at this time. If not, abort to the
Attention Signal. If so, change the device to the new
address and go run the Second Application Task. If this
is not a Listen Register 3 Command, move the data into
the specified register and go run the Second Applica-
tion Task.

Note: The ADB Specification indicates data may
be between two and eight bytes long. The
limitations of the PIC16C54/55/56 parts
allow only two bytes of data to be sent by
this program due to limited register space.
If more than two bytes of data must be
sent, use the PIC16C57.
 1997 Microchip Technology Inc.

AN591
LOOK FOR THE STOP TO START TIME (Tlt)

After the Command and Stop Bit, the Talk or Listen
routines call the Tlt routine. Tlt looks for the line to go
low. If the line went low before the minimum Tlt Time,
see if this is a Talk Command. If this is a Talk
Command, abort to the Collision routine. If this is a
Listen Command, abort to the Attention Signal.

If the minimum Tlt time passes and the line is high, see
if the Talk routine called the Tlt, if so, go wait for until the
middle of the Tlt, then return to the Talk routine to send
the Data Start Bit, Data Bytes, and Stop Bit. If at any
time the line goes low during the Tlt and the Talk routine
called it, abort to the Collision routine.

If the Listen routine did call Tlt, look for the line to go low
at the beginning of the Data Start Bit. When the line
goes low, return for the rest of the Start Bit. If the line
doesn’t go low before the maximum Tlt time is up, abort
to the Attention Signal.
 1997 Microchip Technology Inc.
THE KEYBOARD TASK IS PERFORMED BETWEEN
THE END OF THE DATA STOP BIT AND THE
ATTENTION SIGNAL (Task_2)

The Keyboard Task checks to see if the key has been
pressed. When the key is pressed, indication flags are
set and an LED is turned on until the key has been
debounced. The flags allow the key to be debounced,
Srq(s) to be sent to the Host, and indicate to the Talk
routine that Data needs to be sent. Two bytes of data
are loaded into Register 0 representing a key-down
code and a flag is set indicating to the ADB task that
data needs be sent to the host. When the key-down
codes have been sent, the key-up codes are loaded
into Register 0. When the key-up codes have been sent
and the key has been debounced, the flags are
cleared. The final routine of Task_2 decides whether to
return to the beginning or middle of the
Attention Signal.
DS00591B-page 7

AN591
FIGURE 5: APPLE DESKTOP BUS PIC16CXXX FLOWCHART

Start

Is the ADB line high?

Initialize registers

Get the Attention signal

Did the line go low?

Set the Attention flag

Do the key-up codes
need to be sent?

Set the key-up code bits

Debounce the key

Is the key pressed?

Is the Attention
flag set?

Has the Attention

Get the
Sync Signal

Receive the
Command Byte

Has the line gone high?

Is the command for

Is the command for
Data Register 3?

Set the Register 3 flag A

Signal maximum range
been exceeded?

this Device address?

No

Yes

No

No

Yes

Yes

Load the Data
registers bytes
with key codes

Yes

No

Load the Data
registers bytes
with key codes

Yes

No

Yes

Yes

Yes

Yes

No

No
DS00591B-page 8  1997 Microchip Technology Inc.

AN591
FIGURE 5 (CONT.): APPLE DESKTOP BUS PIC16CXXX FLOWCHART

Is this a Global/
Reserved Command?

Determine which
Global/Reserved

Command and run
the appropriate routine

Is this a
Listen Command?

Receive the Data from
the host into temporary

register bytes

Is this a
Talk Command?

Move the data from the
temporary registers into

the indicated register bytes
and set the data received flag

Is this a
Flush Command?

Clear the indicated
register bytes

Is this a Command to
update Data Register 3

unconditionally?

Update the first byte
Data Register 3,

including the status bits

Is the Srq
flag set?

Is the bit set in
Data Register 3
allowing Srqs?

Hold the line low to
issue a Srq to the Host

Is this a “Talk
Register 3” Command?Is this a

Register 3 flag set?

Send bytes from Data
Register 3 with the value

from the Random

Does the flag set
indicating Data need

to be sent?

Send Data to the Host
from the indicated

Data Register bytes

Was a Collision
detected?

Set the
Collision flag

Clear the flag indicating
Data needs to be sent

Is the Collision
flag set?

Change to new
device address received

by the host

Goto “Get the
Attention Signal”

No

Yes

No

Yes

No

Yes

Yes

No

No

Address Register

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

A

No

Yes

Yes
 1997 Microchip Technology Inc. DS00591B-page 9

AN591
SUGGESTIONS ABOUT MODIFYING
THE CODE

1. If high crystal frequencies are used, a divider
equate (equ) at the beginning of the timing sec-
tion of the equates allows an easy adaptation for
all established timing definitions.
DS00591B-page 10
2. The second application task may occur as a
communication task with another PIC16CXXX
device by using the three other I/O lines on
PORTA, although test code for this has not yet
been written. Two of the lines would be used as
ready-to-send (one for each PIC16CXXX). The
third would be used as a data line, using low sig-
nals as '0' bits, and high signals as '1' bits. Addi-
tionally, all eight lines on PORTB may be used
as well.
FIGURE 6: SIMPLE SCHEMATIC OF THE TEST BOARD

4 MHz XTAL
and Caps

5V
5V

5V

5V

Optional LED

Single Key
“keyboard”

10 kΩ

ADB connector

5V VCC

MCLR

T0CKI

PIC16CXXX

GND

RB0

RB1

RA0 10 kΩ
 1997 Microchip Technology Inc.

AN591
RESOURCES

Apple Publications and Support Software

MacTech Magazine (formerly MacTutor) is a publication
dedicated to supporting the Macintosh. They have had
several articles regarding the Apple Desktop Bus. They
publish a CD-ROM that contains all of their articles
from 1984 to 1992. Also, single disks are available (ask
for #42).

MacTech Magazine can be contacted at:

P.O. Box 250055
Los Angeles, CA 90025-9555
310 575-4343 FAX 310 575-0925
Applelink: MACTECHMAG
Internet: info@xplain.com

Apple licenses the ADB technology. They can be
contacted at:

20525 Mariani Ave.
Cupertino, CA 95014
Attn: Software Licensing

• Apple Keyboard, extended, specification
drawing #062-0168-A.

• Apple Desktop specification drawing #
062-0267-E.

• Apple Desktop connector, plug, Mini DIN
drawing #519-032X-A.

• Engineering Specification, Macintosh transceiver
interface, ADB drawing #062-2012-A.

• Apple keyboard, specification drawing
#062-0169-A.

• Developer CD series, Tool Chest Edition, August
1993 contains:
- Folder = Tool Chest: Devices and Hardware:

Apple Desktop Bus
- ADB Analyzer
- ADB Parser (most complete environment)
- ADB Lister
- ADB ReInit
- ADB Tablet code samples
 1997 Microchip Technology Inc.
WFT Electronics offers free assistance in procuring
necessary ADB info. Contact Gus Calabrese, Rob
McCall, Dave Evink at:

4555 E. 16th Ave.
Denver, CO 80220
303 321-1119 FAX 303-321-1119 Applelink:
WFT
Internet: Gus_Calabrese@onenet-bbs.orgA

AUTHOR / CREDITS

Rob McCall developed the majority of the PIC16CXX
ADB code. He also wrote most of the application note.
Gus Calabrese, Dave Evink, and Curt Apperson
supported this effort. Dave works with Gus, Rob, and
Curt in developing a variety of embedded processor
products.

Contact Gus Calabrese, Rob McCall, Dave Evink, Curt
Apperson at:

WFT Electronics
4555 E. 16th Ave.
Denver, CO 80220
303 321-1119 FAX 303-321-1119 Applelink:
WFT
Internet: Gus_Calabrese@onenet-bbs.org
DS00591B-page 11

AN591
APPENDIX A: ADB.ASM
MPASM 01.40 Released ADB.ASM 1-16-1997 17:26:35 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 LIST P = 16C56, n = 66, c=132, E=0, N=60
 00002 ;
 00003 ;***A113-0004
 00004 ;
 00005 ; ADB.ASM *** This program is for PIC16C5x microcontrollers:
 00006 ;
 00007 ; Program: ADB.ASM
 00008 ; Revision Date:
 00009 ; 1-16-97 Compatibility with MPASMWIN 1.40
 00010 ;
 00011 ;**
 00012 ;
 00013 ;**TESTING - The purpose of this program is to emulate a keyboard that
 00014 ; is Apple Desktop Bus (ADB) based. The program allows the PIC to
 00015 ; appear to the Macintosh computer as a keyboard with a single key.
 00016 ; The code isdesigned to easily modify the device address to make the
 00017 ; PIC appear as another ADB device,which has its own proprietary
 00018 ; functions.
 00019 ;**
 00020 ;
 00021 ; OVERVIEW OF ENTIRE PROGRAM:
 00022 ; This program is setup to switch between a communication task with the
 00023 ; the Apple Desktop Bus (ADB), and another application task.
 00024 ; The ADB communication task has priority.
 00025 ; All communication with the ADB is done using a single i/o line to
 00026 ; the PIC, line RA0 on Port A.
 00027 ; The second application may occur as a communication task with
 00028 ; another PIC chip as follows:
 00029 ; Communication with the second PIC may be achieved by using the three
 00030 ; other i/o lines on Port A. Two of the lines would be used as
 00031 ; ready-to-send (one for each PIC). The third would be used as a data
 00032 ; line, using low signals as 0 bits, and high signals as 1 bits.
 00033 ; Additionally, all eight lines on PORTB may be used as well.
 00034 ;
 00035 ;************************ ADB COMMUNICATION TASK *******************
 00036 ;
 00037 ;**** A BRIEF DESCRIPTION OF THE ADB COMMUNICATION SEQUENCE:
 00038 ;
 00039 ; STARTUP ------- initialize the TMR0 prescaler & Tri-States PORTA
 00040 ;
 00041 ; Look for the following signals and/or take appropriate actions:
 00042 ; RESET ----------- a high line, then initialize default register values
 00043 ; ATTENTION ------- Attention signal, (there is enough time during this
 00044 ; signal to allow other tasks to be performed)
 00045 ; COMMAND --------- 8 Command bits followed by a Stop Bit
 00046 ; INTERPRET ------- Decide whether the Host is addressing this Device,
 00047 ; if so, decide what Command the Host issued
 00048 ; if not, see if the Command is global to all Devices,
 00049 ; also determine if the other Application needs to
 00050 ; issue a Service to the Host.
 00051 ; Tlt ------------ The time between the Stop bit of the Command byte and
 00052 ; the Start Time of the data being received/sent. Also
 00053 ; referred to as Stop to Start Time.
 00054 ; SERVICE REQUEST - in order for a Device to alert the Host that it has

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not
required).
DS00591B-page 12  1997 Microchip Technology Inc.

AN591
 00055 ; data to send, the line is held down after the Command Stop
 00056 ; Bit (continuing on from the Tlt).
 00057 ; DATA -- a Data Start Bit, followed by 2 Data Bytes (up to as
 00058 ; many as 8 Bytes), and a final Stop Bit
 00059 ;
 00060**
 00061 ;
 00062 ; THE FOLLOWING IS A MORE DETAILED DESCRIPTION OF THE PROGRAM SEQUENCE:
 00063 ;
 00064 ; NOTE: words in parenthesis accompanying the TITLES are Labels of
 00065 ; procedures corresponding in the code below.
 00066 ;
 00067 ;*** STARTUP / IDLE *** (Start) ***
 00068 ; Startup by setting the ADB pin on PORTA as an input and tri-stating the
 00069 ; rest as outputs. The routine then goes to the Reset routine.
 00070 ; NOTE: For testing, pin RB1 is is set as an input, and the rest of PORTB
 00071 ; is tri-stated as an output.
 00072 ;
 00073 ;*** INITIALIZE DEFAULT VALUES WHEN THE LINE IS HIGH *** (Reset) ***
 00074 ; Look for the line to be high, and when it is, initializes the
 00075 ; registers to default values.
 00076 ;
 00077 ;*** LOOK FOR ATTENTION OR RESET *** (AttnSig) ***
 00078 ; Look for the line to go low, when it does, clear the TMR0 and time how
 00079 ; long it’s low.
 00080 ; An Attention Signal has occurred when the line goes high between 776 and
 00081 ; 824 usecs.
 00082 ; If the low time is measured less than 776 usecs, another signal has
 00083 ; occurred and the program aborts, looking for the Attention Signal
 00084 ; again. When the low time is measured greater than 824 usecs, the program
 00085 ; interprets this timing as a Reset Signal. The program starts over
 00086 ; again, waiting for the line to be high, and when it is, performs a
 00087 ; Reset initialization.
 00088 ;*** OTHER APPLICATION TASKS MAY BE PERFORMED DURING
 00089 ; THE ATTENTION SIGNAL *** (Task_2) ***
 00090 ; The time during which the Attention signal takes place allows a second
 00091 ; state to occur. The other task(s) is/are given up to 500 usecs during
 00092 ; the Attention Signal (900 usecs are given to the 2nd Task during the
 00093 ; time between the end of the Data Stop Bit and the beginning of
 00094 ; the Attention Signal.
 00095 ; It is important to note here that the other task(s) MUST NOT AFFECT
 00096 ; THE Timer0 or the time variable (TimeVar) that the Attention Signal is
 00097 ; using to keep track of the TMR0.
 00098 ;
 00099 ;********** NOTE:
 00100 ; If at any time during the detection of the Signals below, the line is
 00101 ; low or high outside of timing ranges, the routine aborts to see if an
 00102 ; Attention or Reset signal has been issued by the Host, or, in the
 00103 ; case of sending Data, to the Collision routine.
 00104 ;
 00105 ;*** LOOK FOR SYNC SIGNAL *** (SyncSig) ***
 00106 ; The Sync Signal is the high time between the rising edge of the
 00107 ; Attention Signal and the falling edge of the first bit of the Command.
 00108 ;
 00109 ;*** GET THE COMMAND *** (Command; calls GetBit) ***
 00110 ; Look for the Command, a combination of eight 0 and 1 bits, MSB sent
 00111 ; first. This is achieved by calling a the GetBit routine which checks
 00112 ; whether the maximum time is exceeded, if not, looks for the rising edge
 00113 ; at the end of the bit. When the bit is received, it is rotated into a
 00114 ; variable, and the end of the bit cell is expected. When the falling
 00115 ; edge of the next bit is detected, the routine clears TMR0 and
 00116 ; returns to Command, which calls GetBit again until all 8 bits of the
 00117 ; Command have been received.
 00118 ;*** ISSUE A SERVICE REQUEST IF NECESSARY *** (Srq) ***
 00119 ; If data needs to be sent to the Host, issue a Service Request (Srq) by
 00120 ; holding the line low while the Stop Bit is being recieved, during the
 1997 Microchip Technology Inc. DS00591B-page 13

AN591
 00121 ;Stop-to-Start time (Tlt) between the end of the Command Stop bit and
 00122 ;the beginning of the Data Start Bit.
 00123 ;
 00124 ;*** LOOK FOR STOP BIT *** (CmdStop)
 00125 ;Look for the Stop Bit (a 0 bit of 65 usecs) that comes after the last
 00126 ;Command Byte.
 00127 ;
 00128 ;*** INTERPRET THE COMMAND *** (AddrChk) ***
 00129 ;After the Command has been received, determine if the Address belongs to
 00130 ;this Device.
 00131 ;If the Address is not for this Device determine if the command is
 00132 ;global for all Devices and if so, do that command.
 00133 ;If this is not a Global/Reserved command, call the Service Request (Srq)
 00134 ;routine to see if an Srq should to be issued to the Host, and do so if
 00135 ;necessary, then return to get the Attn Signal.
 00136 ;If the Address is for this Device determine whether it is a Talk,
 00137 ;Listen, or Flush Command, and go to the specified command routine.
 00138 ;
 00139 ;**IF COMMAND IS TALK OR LISTEN, LOOK FOR STOP TO START TIME ** (Tlt) **
 00140 ;After the Command and Stop Bit (a 0 bit) the Talk or Listen routine
 00141 ;calls the Tlt routine:
 00142 ;look for the line to go low,
 00143 ;if the line went low before the Min. Tlt Time, see if this is a Talk
 00144 ;Command if this is a Talk Command, abort to the Collision routine
 00145 ;if this is a Listen Command, abort to the Attention Signal
 00146 ;if the Min. Tlt time passes & the line is high,
 00147 ;see the Talk routine called the Tlt,
 00148 ;if so, go wait for until the middle of the Tlt, then return to
 00149 ;Talk to send the Data Start Bit, Data Bytes, and Stop Bit.
 00150 ;if at any time the line goes low during the Tlt, abort to the
 00151 ;Collision routine
 00152 ;if Listen called the Tlt,
 00153 ;look for the line to go low as the beginning of the Data Start Bit
 00154 ;if the line goes low, return for the rest of the Start Bit
 00155 ;if the line doesn’t go low before the Max. Tlt time,
 00156 ;abort to the Attention Signal
 00157 ;
 00158 ;*** SENDING DATA *** (Talk) ***
 00159 ;If the Command was interpreted to be a Talk Command addressed to this
 00160 ;Device, call the Stop-to-Start Time (Tlt) routine.
 00161 ;When the Tlt routine has completed, determine if this is a Talk Register
 00162 ;3 Command. If so, and if so, return a Random Address as part of the
 00163 ;two bytes sent to the Host.
 00164 ;if this is not a Talk Register 3 Command, determine if Data needs to be
 00165 ;sent. If so, send the Data Start Bit (a ‘1’), two bytes of Data,
 00166 ;and a Stop Bit (a ‘0’). If not, abort to the Attention Signal
 00167 ;If at any time the transmission of Data is interrupted, abort to the
 00168 ;Collision routine. Only after a complete transmission should the
 00169 ;flags be cleared indicating a successful transmission.
 00170 ;NOTE: The ADB Spec. indicates data may be between 2 and 8 bytes long.
 00171 ;The limitations of the PIC 16C54/55/56 parts allow only 2 bytes of data
 00172 ;to be sent by this program due to limited register space. If more than
 00173 ;2 bytes of data must be sent, use the PIC16C57.
 00174 ;
 00175 ;*** RECEIVING DATA *** (Listen) ***
 00176 ;If the Command was interpreted to be a Listen Command addressed to this
 00177 ;Device, call the Stop-to-Start Time (Tlt) routine.
 00178 ;When the Tlt routine has completed, receive the rest of the Data
 00179 ;Start Bit, 2 Data Bytes, and Data Stop Bit.
 00180 ;When the Data has been received, determine whether this is a Listen
 00181 ;Register 3 Command.
 00182 ;if this is a Listen Register 3 Command, interpret what the Command
 00183 ;is. If this is a conditional Address change command, determine if
 00184 ;this Device’s Address is moveable at this time. If not, abort to the
 00185 ;Attention Signal. If so, change the Device to the new Address and
 00186 ;go run the Second Application Task.
DS00591B-page 14  1997 Microchip Technology Inc.

AN591
 00187 ; if this is not a Listen Register 3 Command, move the Data into the
 00188 ; specified register and go run the Second Application Task.
 00189 ;
 00190 ;**
 00191 ;
 00192 ;*** TIMING ALGORITHM ***
 00193 ; Timing for ADB signals is done by clearing the TMR0, loading a constant
 00194 ; into a time variable, subtracting the TMR0 from the variable,
 00195 ; This process is looped until the either the Carry Bit in the Status
 00196 ; Register is clear, indicating the amount of time in the time variable
 00197 ; has elapsed, or the condition of the data line has been met.
 00198 ; If the line goes high or low at an inappropriate time, an error has
 00199 ; occurred, and the current operation should be aborted.
 00200 ;
 00201 ; NOTE: The minimum and maximum values given below for 0 bit, 1 bit, and
 00202 ; Tlt timing are slightly shorter and longer than those given in
 00203 ; the ADB specification.
 00204 ; The following are the timing ranges used
 00205 ; by this program for ADB signals:
 00206 ; ResetGreater Than 824 usecs
 00207 ; Attention..............776-824 usecs
 00208 ; Sync.......................72 usecs
 00209 ; Bit Cell.............Up to 104 usecs
 00210 ; 1 Bit...............32-40 usecs
 00211 ; 0 Bit...............60-72 usecs
 00212 ; Stop bit................60-72 usecs
 00213 ; Stop to Start (Tlt)....140-260 usecs
 00214 ; Service Request (Srq)......300 usecs
 00215 ;
 00216 ;
 00217 ; A SOMEWHAT GRAPHICAL REPRESENTATION OF THE TIMING SIGNAL RANGES (in
 00218 ; usecs):
 00219 ; |-------|--------|--------|
 00220 ; 30-40 60-70 100
 00221 ; 1 Bit 0 Bit End of Bit Cell
 00222 ;
 00223 ; |--------------|----------|
 00224 ; 140-260 300
 00225 ; Tlt Srq1
 00226 ;
 00227 ; |----------------------------------|--------|---|--------------->
 00228 ; 0 776 824 Greater than 824....
 00229 ; Signal invalid in this area--------| AttnSig Reset
 00230 ;
 00231 ;**
 00232 ;
 00233 ;******************** THE PROGRAM BEGINS HERE **********************
 00234
 00235 include “p16c5X.inc” ; default EQUates for the PIC registers
 00001 LIST
 00002 ; P16C5X.INC Standard Header File, Version 3.30 Microchip Technology
 00224 LIST
 00236
 000001FF 00237 PIC54 equ 1FFh ; Define the Reset Vector for 16c54.
 00238
 00000000 00239 NULL equ 00h ; used for returning nothing from a called routine
 00240
 00000000 00241 LSB equ 00h ; Least Significant Bit
 00000007 00242 MSB equ 07h ; Most Significant Bit
 00243
 00000000 00244 FALSE equ 00h ; For Boolean tests
 00000001 00245 TRUE equ 01h
 00246
 00247 include “adb.equ” ; ADB EQUates
 00001 ;************************** ADB.EQU Header-sets up EQUates *************
 00002
 1997 Microchip Technology Inc. DS00591B-page 15

AN591
 00003 ;*** TESTING *** BITS USED IN TESTING FOR I/O
 00004
 00005 ; *** BOOLEANS USED TO SELECT PART BEING USED
 00006 ; Only One Part May Be selected at a time
 00000000 00007 C54 equ FALSE ;TRUE
 00000000 00008 C55 equ FALSE
 00000001 00009 C56 equ TRUE ;FALSE
 00000000 00010 C57 equ FALSE
 00011
 00000000 00012 LED equ 00h ; ***AN LED ON LINE RB0 INDICATES SWITCH PRESSED
 00000001 00013 Switch equ 01h ; ***‘Switch’ USED FOR A SWITCH ON LINE RB1 AND
 00014 ; *** AS A FLAG IN FLAGS2 FOR DEBOUNCING
 00015
 00000038 00016 SHIFT equ 38h
 00000012 00017 BANG equ 12h
 00018
 00000008 00019 DEBOUNC equ 08h ; *** #OF TIMES TO LOOP TO ALLOW DEBOUNCE OF SWITCH
 00020
 00021
 00022
 00023
 00024 ; *** BIT ASSIGNMENTS FOR I/O LINES & TRI-STATING
 00025
 00000000 00026 ADB equ 00h ; Line used for ADB - pin XX (16C54)
 00000001 00027 RA1 equ 01h ; May be used as a Clock line TO another PIC
 00000002 00028 RA2 equ 02h ; May be used as a Clock line FROM another PIC
 00000003 00029 RA3 equ 03h ; May be used as a Data line between two PICs
 00030
 00000001 00031 TRI_IN equ 01h ; tri-state for ADB pin as input
 00000000 00032 TRI_OUT equ 00h ; tri-state for ADB pin as output
 00033
 00034
 00035 ;*** MISC. CONSTANTS
 00036
 00000008 00037 BYTE equ 08h ; Receive 8 bits in Command; count from 8 to 0
 00000002 00038 DEF_ADD equ 02h ; default device address to start with (kybd)
 00000003 00039 DEF_HND equ 03h ; default Handler Id. to start with (std. kybd)
 00000008 00040 OFFSET equ 08h ; offset to RAM address of the array of ADB
 00041 ; Data storage registers
 00042
 00043
 00044 ;*** COMMAND MASKS: MASK BITS FROM COMMAND REGISTER FOR:
 00045
 0000000F 00046 DEVMASK equ 0Fh ;lower nibble holds Command (Talk, etc.) & Reg. #
 000000F0 00047 ADDRMSK equ 0F0h ;upper nibble holds the Device Address Number
 0000000F 00048 CMDNIBL equ 0Fh ;Command nibble from the address
 0000000C 00049 CMDTYPE equ 0Ch ;Upper 2 Command bits indicate Talk, Listen, etc.
 00000003 00050 REGMASK equ 03h ;Data Register Number bits from Command Nibble
 0000001F 00051 FSRMASK equ 1Fh ;FSR bits from the Command Nibble for RAM Address
 00052
 00053
 00054 ;*** DATA COMMAND MASKS: MASK DATA REGISTER 3a FOR:
 00055
 0000000F 00056 LOW_NBL equ 0Fh ; Lower nibble from the 1st Data byte
 000000F0 00057 HI_NIBL equ 0F0h ; Upper nibble from the 1st Data byte
 00058
 00059
 00060 ;*** CONSTANTS FOR MASKING OUT COMMAND NIBBLES (C_ indicates Command)
 00061
 00062 ; used to XOR if this is a:
 0000000C 00063 C_TALK equ 0Ch ; Talk Command
 00000008 00064 C_LISTN equ 08h ; Listen Command
 00000000 00065 C_RESET equ 00h ; Reset Command
 00000001 00066 C_FLUSH equ 01h ; Flush Command
 00000004 00067 C_RES_1 equ 04h ; Reserved Command 1
 00000002 00068 C_RES_2 equ 02h ; Reserved Command 2
DS00591B-page 16  1997 Microchip Technology Inc.

AN591
 00000003 00069 C_RES_3 equ 03h ; Reserved Command 3
 00070
 00071
 00072 ;*** DATA HANDLER ID MASKS: MASK DATA REGISTER 3b FOR:
 00073
 000000FF 00074 SELFTST equ 0FFh ; Self-Test mode
 00000000 00075 LISTEN1 equ 0h ; unconditional address change
 000000FE 00076 LISTEN2 equ 0FEh ; address change if no collision detected
 000000FD 00077 DEV_ACT equ 0FDh ; address change if device activator is depressed
 00078
 00079
 00080 ;BITS USED IN THE UPPER NIBBLE OF REGISTER 3a FOR SPECIAL ADB STATUS BITS
 00081
 00000004 00082 Resrvd3 equ 04h ; reserved (Always 0)
 00000005 00083 Srq_Bit equ 05h ; determines if Host will accept Service Requests
 00000006 00084 ExpEvnt equ 06h ; indicates an Exceptional Event should take place
 00000007 00085 Always0 equ 07h ; always set to 0
 00086
 00087
 00088 ;ADB FLAG BITS IN THE “FLAGS1” REGISTER (F1 indicates 1st Flags register)
 00089
 00000000 00090 F1Attn equ 00h ; set to know if 2nd Task taking place during Attn
 00000001 00091 F1Reg3 equ 01h ; Register 3 is being addressed
 00000002 00092 F1Talk equ 02h ; indicates to Tlt routine this is a Talk Command
 00000003 00093 F1Stop equ 03h ; set to indicate the Data Stop Bit is being sent
 00000004 00094 F1Lstn equ 04h ; indicates to Tlt routine this is a Listen Command
 00000005 00095 F1Sent1 equ 05h ; 1st byte of Data Register has been sent
 00000006 00096 F1Rcvd1 equ 06h ; 1st byte of Data Register has been received
 00000007 00097 F1Cllsn equ 07h ; set to indicate that a collision occurred
 00098
 00099
 00100 ;*** FLAG BITS IN THE “FLAGS2” REGISTER (F2 indicates 2nd Flags register)
 00101
 00000000 00102 F2Srq equ 00h ; indicate that Srq should be issued
 00103 ; 01h Switch, defined above for PORT_B, also used as a Flag
 00000002 00104 F2DActv equ 02h ; change address if Device Activator is Depressed
 00000003 00105 F2STest equ 03h ; set to indicate a device Self Test to be performed
 00000004 00106 F2SFail equ 04h ; set to indicate that the Device Self-Test Failed
 00000005 00107 F2DRcvd equ 05h ; set when data is received for 2nd Application Task
 00000006 00108 F2DSend equ 06h ; set to indicate to Talk that Data needs to be sent
 00000007 00109 F2DMore equ 07h ;set in 2nd Task to indicate Data remains to be sent
 00110
 00111
 00112 ;*** TIMING DEFINITIONS
 00113 ; These values currently used for clock at 4Mhz:
 00000004 00114 PrSclr1 equ .4 ; this is used when TMR0 is being prescaled
 00000001 00115 PrSclr2 equ .1 ; this is used when TMR0 is not prescaled
 00116
 000000C2 00117 ATT_MIN equ .776/PrSclr1 ; Attn lower limit:800 - 3% tolerance=776 usecs
 000000CE 00118 ATT_MAX equ .824/PrSclr1 ; Attn upper limit:800 + 3% tolerance=824 usecs
 0000007D 00119 TSK2MIN equ .500/PrSclr1 ; time given to 2nd Task during Attn Signal
 000000E1 00120 TSK2MAX equ .900/PrSclr1 ;time given to 2nd Task after Data Sent/Received
 00000048 00121 SYNC equ .72/PrSclr2 ;Sync with extra tolerance after Attn detect
 00000032 00122 BIT_TST equ .50/PrSclr2 ; if time is < 50 = 1 bit, & > 50 = 0 bit
 00000048 00123 MAX_BIT equ .72/PrSclr2 ; Maximum time line can be low for a bit
 00000068 00124 BITCELL equ .104/PrSclr2 ; Maximum time for a bit cell = 104 usecs
 0000008C 00125 TLT_MIN equ .140/PrSclr2 ; Stop to Start minimum time = 140 usecs
 000000FA 00126 TLT_MAX equ .250/PrSclr2 ; Stop to Start maximum time = 260 usecs
 000000B4 00127 TLT_MID equ .180/PrSclr2 ; Stop to Start median time = 208 usecs
 0000004A 00128 SRQ_MAX equ .296/PrSclr1 ; amount of time to hold for a Service ReQuest
 00129
 00130 ;NOTE: for Timer0 timing of sending bits, some extra time is allowed for
 00131 ;instruction cycles between the end of the bit and the start of the next
 00132 ; bit
 00000016 00133 LOW1BIT equ .22/PrSclr2 ; low time for a 1 bit
 00000032 00134 HI_1BIT equ .50/PrSclr2 ; hi time for a 1 bit
 1997 Microchip Technology Inc. DS00591B-page 17

AN591
 00000038 00135 LOW0BIT equ .56/PrSclr2 ; low time for a 0 bit
 00000014 00136 HI_0BIT equ .20/PrSclr2 ; hi time for a 0 bit
 00137
 00138
 00139 ;*** ADB DATA REGISTERS - 2 BYES FOR EACH OF REGISTERS 0, 1, 2, and 3
 00140
0008 00141 ADB_REG ORG 08h ; ORIGIN FOR ADB DATA REGISTERS
0008 00142 Reg0a RES 01h ; 8
0009 00143 Reg0b RES 01h ; 9
000A 00144 Reg1a RES 01h ; A
000B 00145 Reg1b RES 01h ; B
000C 00146 Reg2a RES 01h ; C
000D 00147 Reg2b RES 01h ; D
000E 00148 Reg3a RES 01h ; E
000F 00149 Reg3b RES 01h ; F
 00150
 00151
 00152 ;* VARIABLE REGISTERS FOR STORAGE, FLAGS, THE TIME VARIABLE,
 00153 ; THE COUNTER, & RANDOM VALUES
 00154
0010 00155 STORAGE ORG 10h ; ORIGIN FOR MISC. DATA VARIABLES
0010 00156 TmpReg1 RES 01h ; 10 - temporary registers where Data is sent from &
0011 00157 TmpReg2 RES 01h ; 11 - received; NOTE: THESE 2 MUST BE IN THIS ORDER
0012 00158 RegNum RES 01h ; 12 - holds current ADB Data Reg.#-NOT a RAM address
0013 00159 RAMaddr RES 01h ; 13 - holds RAM address of ADB Data Reg.#
0014 00160 Flags1 RES 01h ; 14 - two Flags registers used by ADB & 2nd
0015 00161 Flags2 RES 01h ; 15 - Application Task
0016 00162 CmdByte RES 01h ; 16 - holds the Command Byte
0017 00163 BitCntr RES 01h ; 17 - counts down when sending or receiving bits
0018 00164 Random RES 01h ; 18 - stores Random Address sent in Talk routine
0019 00165 TimeVar RES 01h ; 19 - used with TMR0 for all ADB timing
001A 00166 Tsk2Var RES 01h ; 1A - used with TMR0 for timing during 2nd Task
 00167
 00168
 00169 ;*** REGISTERS STILL AVAILABLE
 00170
001B 00171 TmpCtr1 RES 01h ; 1B
001C 00172 TmpFlg1 RES 01h ; 1C
001D 00173 TmpFlg2 RES 01h ; 1C
001E 00174 TmpFlg3 RES 01h ; 1D
001F 00175 TmpFlg4 RES 01h ; 1E
 00176
 00177
0000 00178 PROGRAM ORG 00h ; origin for program
 00248 include “adb.sub” ; ADB Sub-Routines - these must be included
 00001 ;***
 00002 ;***
 00003 ; ****** THE FOLLOWING ARE SUB-ROUTINES *******
 00004 ; ****** CALLED BY THE MAIN PROGRAM *******
 00005 ;***
 00006 ;***
 00007
 00008 ;*** SWITCH PRESCALER BETWEEN WDT AND Timer0 *** (PrScale, NoPrScl) ***
 00009 ;*** THIS PROCEDURE, DOCUMENTED IN SPEC. SHEET SECTION 9.1, IS INTENDED
 00010 ;*** TO PREVENT UNEXPECTED RESET CONDITION
 00011
 00012 ;*** PrScale ROUTINE CALLED AT END OF AttnSig AND Srq SIGNALS
0000 0004 00013 PrScale clrwdt ; Change prescaler from WDT to TMR0
0001 0C01 00014 movlw b’00000001’ ; BINARY - set to prescale TMR0
0002 0002 00015 option ; Clear 4th bit from right to select TMR0
0003 0061 00016 clrf TMR0 ; last 3 bits set prescale value as 1:4
0004 0800 00017 retlw NULL ; this gives a good ratio to monitor the
 00018 ; timing for Reset and Attention signals and
 00019 ; the 2nd Application Task
 00020
 00021 ;***NoPrScl ROUTINE CALLED AT BEGINNING OF SyncSig AND END OF Srq SIGNALS
DS00591B-page 18  1997 Microchip Technology Inc.

AN591
0005 0061 00022 NoPrScl clrf TMR0 ; Change prescaler from TMR0 to WDT
0006 0C08 00023 movlw b’00001000’ ; Set 4th bit from right to select WDT
0007 0002 00024 option
0008 0004 00025 clrwdt
0009 0C08 00026 movlw b’00001000’
000A 0002 00027 option
000B 0800 00028 retlw NULL
 00029
 00030 ;***
 00031
 00032 ;*GET INCOMING BIT & INTERPRET WHETHER IT’S A ‘1’ OR A ‘0’ *** (Get_Bit)*
 00033 ;*** Get_Bit CALLED BY COMMAND AND LISTEN ROUTINES
 00034 ; Get the bit, find out whether it’s less than or greater than 50 usecs,
 00035 ; if < than 50 usecs, it’s a ‘1’ bit
 00036 ; if > than 50 usecs, it’s a ‘0’ bit
 00037 ; if it’s a ‘1’ bit, set LSB in the reg. pointed to by the FSR (Command
 00038 ; Byte) if it’s a ‘0’ bit, do nothing to the LSB
 00039 ; then look for the end of the Bit Cell (104 usecs max.)
 00040 ; if the maximum Bit time of (72 usecs) or maximum Bit Cell time is
 00041 ; exceeded, abort to the Attn Signal
 00042
000C 0201 00043 Get_Bit movf TMR0,W ; Check the time, then check if the line went high:
000D 0099 00044 subwf TimeVar,W ; See if more than BIT_TST usecs have passed
000E 0703 00045 btfss STATUS,C ; if not, check whether the line went high
000F 0AAB 00046 goto AttnSig ; if so, abort to the Attn Signal
0010 0705 00047 btfss PORTA,ADB ; Check whether the line went high
0011 0A0C 00048 goto Get_Bit ; if line is still low, loop again
0012 0C32 00049 movlw BIT_TST ; if line went high, see if it’s a ‘1’ or a ‘0’
0013 0039 00050 movwf TimeVar ; as the bit has not yet been determined yet,
0014 0400 00051 bcf INDF,LSB ; ensure the LSB in the indirect address is ‘0’
0015 0201 00052 movf TMR0,W ; Get the time
0016 0099 00053 subwf TimeVar,W ; if time < 50 usecs, it’s a ‘1’ bit
0017 0603 00054 btfsc STATUS,C ; if time > 50 usecs and < 72, it’s a ‘0’ bit
0018 0500 00055 bsf INDF,LSB ; if it’s a 1, set LSB in the address FSR points
0019 0C68 00056 movlw BITCELL ; to Check whether the Max. Bit Cell time of
001A 0039 00057 movwf TimeVar ; 104 usecs has been exceeded
001B 0201 00058 CellChk movf TMR0,W ; Check the time, then check the line
001C 0099 00059 subwf TimeVar,W ; See if more than Max. Bit Cell usecs have
001D 0703 00060 btfss STATUS,C; passed if not, look for the line to go low again
001E 0AAB 00061 goto AttnSig ; if so, abort to the Attn Signal or Reset
001F 0605 00062 btfsc PORTA,ADB ; Check the line for the start of another bit
0020 0A1B 00063 goto CellChk ; if the line is still high, loop CelChk1 again
0021 0061 00064 clrf TMR0 ; if the line went low, clear the TMR0 & return
0022 0800 00065 retlw NULL ; for another bit or to interpret the Command
 00066
 00067 ;***
 00068 ;* DETERMINE IF THIS IS A GLOBAL COMMAND TO ALL DEVICES *** (Globals) *
 00069 ;*** Globals CALLED BY AddrChK
 00070
0023 0211 00071 Globals movf TmpReg2,W ; Check whether the Command is for all devices
0024 0F04 00072 xorlw C_RES_1 ; retrieve the Command Type (the upper 2 bits
0025 0643 00073 btfsc STATUS,Z ; of the Command nibble)
0026 0BC4 00074 goto Reserv1 ; test for this being the first Reserved
0027 0210 00075 movf TmpReg1,W ; Command retrieve the whole Command Nibble
0028 0F02 00076 xorlw C_RES_2 ; test for this being the second Reserved Command
0029 0643 00077 btfsc STATUS,Z
002A 0BC5 00078 goto Reserv2
002B 0210 00079 movf TmpReg1,W ; retrieve the whole Command Nibble
002C 0F03 00080 xorlw C_RES_3 ; test for this being the third Reserved Command
002D 0643 00081 btfsc STATUS,Z
002E 0BC6 00082 goto Reserv3
002F 0F00 00083 xorlw C_RESET ; test for this being Reset Command
0030 0643 00084 btfsc STATUS,Z
0031 0A96 00085 goto Reset
0032 0800 00086 retlw NULL
 00087
 1997 Microchip Technology Inc. DS00591B-page 19

AN591
 00088 ;***
 00089
 00090 ;* MASK OUT COMMAND NIBBLE AND REG.# BITS FROM THE COMMAND *** (MaskCmd)*
 00091 ; NOTE: This routine should only be called once during any single ADB
 00092 ; transaction, from either AddrChk or CmmdChk
 00093
0033 0216 00094 MaskCmd movf CmdByte,W ; Mask the Command to save the Data Reg. # bits &
0034 0E0F 00095 andlw CMDNIBL ; the Command Type bits (Listen, Talk, etc.):
0035 0030 00096 movwf TmpReg1 ; save the Command nibble
0036 0E0C 00097 andlw CMDTYPE ; mask the upper 2 Command Type bits (Talk, etc.)
0037 0031 00098 movwf TmpReg2 ; save the upper 2 Command Type bits
0038 0216 00099 movf CmdByte,W : extract the Data Register number:
0039 0E03 00100 andlw REGMASK ; mask out Data Reg. number from Command Nibble
003A 0032 00101 movwf RegNum ; save the Data Reg. bits
003B 0024 00102 movwf SR ; save pointer to Data Reg. in File Select Reg.
 00103 ; in order to setup RAM address where start
 00104 ; of Data for this Reg. will be stored
003C 0403 00105 SaveRAM bcf STATUS,C; clear Carry bit so it doesn’t wrap around
003D 0364 00106 rlf FSR,F ; multiply by 2 to get 1st Byte of RAM addr
003E 0564 00107 bsf FSR,03h ; add array offset for Send/Receive/Flush Reg.
003F 0204 00108 movf FSR,W ; by setting bit of 1st RAM address, which
0040 0E1F 00109 andlw FSRMASK ; is ORG’d in ADB.EQU equates
0041 0033 00110 movwf RAMaddr ; mask out the RAM address of Data Reg. Number
0042 0800 00111 retlw NULL ; save RAM address of Data Reg. and return
 00112
 00113 ;**
 00114
 00115 ;*** ISSUE A SERVICE REQUEST IF NECESSARY *** (Srq; may call LineLow) ***
 00116 ;*** CALLED BY AddrChk
 00117 ; see if the Srq Flag is set, if not, return, otherwise:
 00118 ; change the prescaler to TMR0 since this takes longer than 255 usecs,
 00119 ; load the SRQTIME of 300 usecs into the TimeVariable,
 00120 ; call LineLow to:
 00121 ; keep checking the time to see if 300 usecs have passed,
 00122 ; let the line go high again,
 00123 ; and see if the line is high, and if not, abort, if it is,
 00124 ; change the prescaler back to WDT, and return
 00125
0043 0715 00126 Srq btfss Flags2,F2Srq ; see if the Srq flag is set,
0044 0800 00127 retlw NULL ; if not, return
0045 0900 00128 call PrScale ; switch the prescaler to TMR0
0046 0C00 00129 movlw TRI_OUT ; tri-state PORTA to make the ADB an output
0047 0005 00130 tris PORTA
0048 0C4A 00131 movlw SRQ_MAX
0049 0976 00132 call LineLow
004A 0905 00133 call NoPrScl ; change the prescaler back to WDT
004B 0800 00134 retlw NULL
 00135
 00136 ;**
 00137
 00138 ;*** Tlt - TIME FROM STOP BIT TO START BIT *** (Tlt) ***
 00139 ;*** CALLED BY EITHER Talk OR Listen ROUTINES
 00140 ; Loop checking the time, then checking the line to see if it went low
 00141 ; if at any time the line goes low,
 00142 ; see if this is a Talk Command,
 00143 ; if it is a Talk Commmand, go to the Collision routine
 00144 ; if the line goes low before the minimum Tlt time, abort to Attn Signal
 00145 ; if the line is high longer than TLT_Min usecs,
 00146 ; see if this is a Talk Command, and if it is, wait for the mid-point,
 00147 ; and return to Send the Start Bit, Data Bytes, & the Stop Bit
 00148 ; if it’s not a Talk Command, see if it’s a Listen Command, and if so,
 00149 ; load Tlt_Max for TimeVariable, and look for the line to go
 00150 ; low as the beginning of the Start Bit,
 00151 ; if more than Tlt_Max usecs pass, abort to Attn Signal
 00152 ; if the line goes low and this is a Listen Command,
 00153 ; clear the TMR0 & return to get the rest of the Start Bit
DS00591B-page 20  1997 Microchip Technology Inc.

AN591
 00154
004C 0C8C 00155 Tlt movlw TLT_MIN ; Look for Stop-to-Start-Time, Tlt
004D 0039 00156 movwf TimeVar ; Check the time, then check the line
004E 0201 00157 TltChk1 movf TMR0,W ; See if more than TLT_MIN usecs have passed
004F 01B8 00158 xorwf Random,F ; (ensure the Talk R3 address is Random with
0050 0099 00159 subwf TimeVar,W ; XOR) by checking whether Carry bit is set
0051 0703 00160 btfss STATUS,C ; after subtraction
0052 0A5D 00161 goto ChkFlag ; if TLT_MIN usecs passed, see what Command
0053 0605 00162 btfsc PORTA,ADB ; this is if not, check whether the line went
0054 0A4E 00163 goto TltChk1 ; low if the line is still high, keep looping
0055 0654 00164 btfsc Flags1,F1Talk; if line went low, see if this is a Talk
0056 0B5A 00165 goto Collisn ; Command if it is, there was a Collision,
0057 0201 00166 movf TMR0,W ; abort otherwise, check the time
0058 0099 00167 subwf TimeVar,W ; see if TLT_MIN usecs passed,
0059 0703 00168 btfss STATUS,C ; if not, abort to Attn Signal, too little
005A 0AAB 00169 goto AttnSig ; time passed when the line went low
005B 0061 00170 clrf TMR0 ; if it’s not a Talk Command, clear the TMR0
005C 0800 00171 retlw NULL ; and return for the rest of the Start Bit
 00172
005D 0654 00173 ChkFlag btfsc Flags1,F1Talk ; Check whether to Talk or Listen
005E 0A6D 00174 goto TltTalk ; if Talk, wait for mid-point of Tlt time
005F 0794 00175 btfss Flags1,F1Lstn ; if Listen, continue to look for Start Bit
0060 0800 00176 retlw NULL ; if neither flag is set, abort, something’s
0061 0CFA 00177 movlw TLT_MAX ; wrong Load TimeVariable to check for
0062 0039 00178 movwf TimeVar ; upper limit of Tlt time
0063 0201 00179 TltChk2 movf TMR0,W ; See if TLT_MAX usecs have been exceeded
0064 0099 00180 subwf TimeVar,W ; by checking whether Carry bit is set
0065 0703 00181 btfss STATUS,C ; after subtraction
0066 0AAB 00182 goto AttnSig ; if so, abort to Attn Signal
0067 0605 00183 btfsc PORTA,ADB ; if not, check whether the line went low
0068 0A63 00184 goto TltChk2 ;if line is still high, check the time again
0069 0654 00185 btfsc Flags1,F1Talk ;if line went low, see if this is a Talk
006A 0B5A 00186 goto Collisn ; Command if so, there was a Collision
006B 0061 00187 clrf TMR0 ; if it’s not a Talk Command, return to get
006C 0800 00188 retlw NULL ; the rest of the Start Bit from Host
 00189
006D 0CB4 00190 TltTalk movlw TLT_MID ; Load TimeVariable so Talk will send Start
006E 0039 00191 movwf TimeVar ; Bit at about the mid-point of the Tlt
006F 0201 00192 TltChk3 movf TMR0,W ; See if TLT_MID usecs have been exceeded
0070 0099 00193 subwf TimeVar,W ; by checking whether Carry bit is set
0071 0703 00194 btfss STATUS,C ; after subtraction
0072 0800 00195 retlw NULL ; if time was exceeded, return to send Start Bit
0073 0605 00196 btfsc PORTA,ADB ; if not, check whether the line went low
0074 0A6F 00197 goto TltChk3 ; if line is still high, check the time again
0075 0B5A 00198 goto Collisn ; if the line went low, abort to Collision
 00199
 00200 ;***
 00201
 00202 ;*** MAKE LINE GO LOW TIME IN TimeVar AS A ‘1’ OR ‘0’ BIT***(LineLow)***
 00203 ;*** CALLED BY Talk OR Srq
 00204
0076 0039 00205 LineLow movwf TimeVar ;
0077 0201 00206 Low_Tmp movf TMR0,W ; Check the clock,
0078 0099 00207 subwf TimeVar,W ; loop until TimeVar usecs have passed
0079 0603 00208 btfsc STATUS,C;
007A 0A77 00209 goto Low_Tmp ;
007B 0C01 00210 movlw TRI_IN ; Tri-state PORTA to make ADB line an input
007C 0005 00211 tris PORTA ; again and let the line go high
007D 0061 00212 clrf TMR0 ; and clear TMR0
007E 0000 00213 nop ; Allow the ADB Port line to stabilize
007F 0000 00214 nop ; Allow the ADB Port line to stabilize
0080 0705 00215 btfss PORTA,ADB ; check if the line is still low, if so, a
0081 0B5A 00216 goto Collisn ; Collision occurred
0082 0800 00217 retlw NULL ; if not, return to load high time for rest of bit
 00218
 00219 ;* MAKE LINE GO HIGH FOR REST OF BIT CELL TIME IN TimeVar *** (LineHi)*
 1997 Microchip Technology Inc. DS00591B-page 21

AN591
 00220 ;*** CALLED BY Talk
 00221
0083 0039 00222 LineHi movwf TimeVar ; Let the line go high for a pre-designated time
0084 0201 00223 Hi_Tmp movf TMR0,W ; Check the clock,
0085 0099 00224 subwf TimeVar,W; loop until TimeVar usecs have passed
0086 0603 00225 btfsc STATUS,C ;
0087 0A84 00226 goto Hi_Tmp ;
0088 0705 00227 btfss PORTA,ADB; check if the line is still high,
0089 0B5A 00228 goto Collisn ; if not, a Collision occurred, Abort
008A 0674 00229 btfsc Flags1,F1Stop; if this is the end of the Data Stop Bit,
008B 0800 00230 retlw NULL ; don’t let the line go low again, just return
008C 0C00 00231 movlw TRI_OUT ; if still high, start sending a bit to the Host
008D 0005 00232 tris PORTA ; tri-state PORTA to make the ADB an output and
008E 0061 00233 clrf TMR0 ; return
008F 0800 00234 retlw NULL ;
 00235
 00236 ;**
 00237 ;**
 00238 ; ****** END OF SUB-ROUTINES *******
 00239 ;**
 00240 ;**
 00249 ; here to ensure being in the first
 00250 ; half of the memory page when called.
 00251
 00252 IntData macro DataCmd,Routine ; Macro goes to an appropriate Listen Reg.3
 00253 movf TmpReg2,W ; interprets the Data Command received by
 00254 xorlw DataCmd ; comparing the 2nd byte to a Data
 00255 btfsc STATUS,Z ; Command constant
 00256 goto Routine ; it then goes to the appropriate routine
 00257 endm
 00258
 00259 ;
 00260 ;*** CONDITIONAL ASSEMBLY DETERMINED BY LIST DIRECTIVE
 00261 ;
 00262 ifdef __16C56
 00263 include “5657mcro.mod” ; macros for the 2nd Application Task
 00001 ;
 00002 ;*** LoadEm MACRO USED FOR TESTING DURING 2ND APPLICATION TASK
 00003 ;*** ONLY FOR PART 16c56/57
 00004 ;
 00000004 00005 H equ 04h ; *** THESE ARE USED AS KEYS PRESSED WHEN PART
 0000000E 00006 E equ 0Eh ; *** IS SELECTED FOR 16C56/57
 00000025 00007 L equ 25h
 0000001F 00008 O equ 1Fh
 00000031 00009 SP equ 31h
 0000000D 00010 WW equ 0Dh ; W is already defined in the PICREG5X.EQU file
 0000000F 00011 R equ 0Fh
 00000002 00012 D equ 02h
 00000024 00013 RETRN equ 24h
 000000FF 00014 FILLCHR equ 0FFh ; ‘fill character’ as described in spec.
 00015 ;
 00016 ;
 00017 LoadEm macro Ctr,Bit,Dest,RegA,RegB; Macro used to load registers and
 00018 btfss Ctr,Bit ; set flags for Key-Up Transition Codes
 00019 goto Dest ; Bits are cleared as the data is sent
 00020 movlw Reg0a
 00021 movwf FSR
 00022 movlw RegA ; load data to be sent from register A
 00023 movwf INADDR
 00024 incf FSR,F
 00025 movlw RegB ; load data to be sent from register B
 00026 movwf INADDR ; load data to be sent from register B
 00027 bsf Flags2,F2DSend; Data now needs to be sent to the host
 00028 bsf Flags2,F2Srq ; Until all data has been sent, Srq’s may
 00029 btfsc Flags2,F2STest; be sent. See if Key Transition Codes
 00030 goto KeyUp ; should be sent if so, go set the bits
DS00591B-page 22  1997 Microchip Technology Inc.

AN591
 00031 bsf Flags2,F2STest; if not, set bits so they’ll be next time
 00032 bcf Ctr,Bit ; clear the bit so next data will be sent
 00033 goto DBounce ; and go debounce the switch
 00034 endm
 00035
 00036
 00037
 00264 endif ; the program is for a 16C56
 00265 ifdef __16C57 ; or 16C57 part
 00266 include “5657mcro.mod”
 00267 endif
 00268
 00269 ;***
 00270 ;***
 00271 ; THE MAIN PROGRAM STARTS BELOW
 00272 ;***
 00273 ;***
 00274
0090 0C01 00275 Start movlw TRI_IN ; Start off by making the ADB pin an
0091 0005 00276 tris PORTA ; input on PORTA
0092 0405 00277 bcf PORTA,ADB ; make line will go low when tris’d as an output
 00278
 00279 ; *** THIS I/O SETUP ROUTINE IS USED FOR TESTING WITH AN LED ON RB0
 00280 ; *** AND A SWITCH ON RB1
0093 0C02 00281 TSTING1 movlw b’00000010’; Make RB0 an output (for the LED) and
0094 0006 00282 tris PORTB ; RB1 an input (for the normally open switch)
0095 0406 00283 bcf PORTB,LED ; Make sure the LED is off to begin with
 00284
 00285 ;***
 00286
0096 0705 00287 Reset btfss PORTA,ADB ; Reset Signal - loop until the line is high,
0097 0A96 00288 goto Reset ; then initialize Registers
 00289
0098 0070 00290 Init clrf TmpReg1 ; Initialization routine
0099 0071 00291 clrf TmpReg2 ; Clear variables
009A 0072 00292 clrf RegNum ; NOTE: No need to clear variable register
009B 0073 00293 clrf RAMaddr ; ‘Random’ as it is XOR’d in other routines
009C 0074 00294 clrf Flags1 ; to produce a random Address for the ‘Talk
009D 0075 00295 clrf Flags2 ; Reg. 3’ Command
009E 0077 00296 clrf BitCntr
009F 0068 00297 clrf Reg0a ; Clear ADB Storage Data Register Variables
00A0 0069 00298 clrf Reg0b
00A1 006A 00299 clrf Reg1a
00A2 006B 00300 clrf Reg1b
00A3 006C 00301 clrf Reg2a
00A4 006D 00302 clrf Reg2b
 00303
00A5 0C02 00304 movlw DEF_ADD ; Register 3 has special Default Data set at
00A6 002E 00305 movwf Reg3a ; Reset: load Register 3a with Default Device
00A7 05AE 00306 bsf Reg3a,Srq_Bit; Address allow Service Requests of Host
00A8 05CE 00307 bsf Reg3a,ExpEvnt; include the Exceptional Event bit as
 00308 ;default * NOTE: at this time, this Device
 00309 ; doesn’t process for Exceptional Events
00A9 0C03 00310 movlw DEF_HND ;
00AA 002F 00311 movwf Reg3b ; load Register 3b with Default Device Handler ID
 00312
 00313 ;***
 00314
 00315 ;*** LOOK FOR ATTENTION OR RESET *** (AttnSig) ***
 00316 ; Look for the line being low, when it is, see if the line went high.
 00317 ; During that time, allow the 2nd Application Task to be performed for a
 00318 ; limited amount of time, then return to Attn Signal
 00319 ; if the line went high, did it go high within the 776-824 usec range?
 00320 ; if so, go on to get the Command
 00321 ; if not, goto the Reset routine
 00322 ; IN DETAIL:
 1997 Microchip Technology Inc. DS00591B-page 23

AN591
 00323 ; look at the line
 00324 ; if the line is not yet low,
 00325 ; loop until it goes low, & clear the TMR0
 00326 ; Loop with Minimum Time: check the time
 00327 ; if the time is less than the Attention Minimum usecs,
 00328 ; check whether the line has gone high,
 00329 ; if the line has not gone high,
 00330 ; loop again checking the time
 00331 ; if the line has gone high,
 00332 ; check whether the Min. usecs have passed
 00333 ; if not, Abort; too little time went by.
 00334 ; if so, go on to look for the Sync signal
 00335 ; Loop with Maximum Time: load the Maximum Time Variable & check
 00336 ; the time if the time is less than the Attention Maximum usecs,
 00337 ; check whether the line has gone high,
 00338 ; if the line has not gone high,
 00339 ; loop again checking the time
 00340 ; if the line has gone high before Max. Attention usecs have passed,
 00341 ; go on to look for the Sync signal
 00342 ; if the time is greater than the Attention Maximum usecs,
 00343 ; abort to Reset
 00344
 00345 ;***
 00346
00AB 0201 00347 AttnSig movf TMR0,W ; Look for Attn between ATT_MIN - ATT_MAX usecs
00AC 07F4 00348 btfss Flags1,F1Cllsn; this is a good time to use the TMR0 and
00AD 01B8 00349 xorwf Random,F ; Pseudo-Random Address
00AE 0605 00350 btfsc PORTA,ADB ; See if the line went low
00AF 0AAB 00351 goto AttnSig ; Loop to AttnSig until the line goes low
00B0 0900 00352 call PrScale ; Switch prescaler to TMR0 for > 250 usec count
 00353 ; during Attn Signal
00B1 0CC2 00354 movlw ATT_MIN ;
00B2 0039 00355 movwf TimeVar ; use TimeVariable to subtract from ATT_MIN usecs
 00356
00B3 0076 00357 CleanUp clrf CmdByte ; Clear the Command Byte
00B4 0070 00358 clrf TmpReg1 ; Clear the temporary Data registers
00B5 0071 00359 clrf TmpReg2 ; NOTE: No need to clear variable register
00B6 0072 00360 clrf RegNum ; ‘Random’ clear the current Register Number
00B7 0073 00361 clrf RAMaddr ; register clear the register holding the RAM
 00362 ; Address of the 1st byte of where Data is stored
00B8 0514 00363 bsf Flags1,F1Attn; Set this bit to indicate to the 2nd Task
 00364 ; that it should Return to the AttnMin routine
00B9 0434 00365 bcf Flags1,F1Reg3 ; Clear Flags: Data-for-Register 3
00BA 0454 00366 bcf Flags1,F1Talk ; Talk
00BB 0474 00367 bcf Flags1,F1Stop ; Data-Stop-Bit-is-being-sent
00BC 0494 00368 bcf Flags1,F1Lstn ; Listen
00BD 04B4 00369 bcf Flags1,F1Sent1 ; Sent-1st-Byte
00BE 04D4 00370 bcf Flags1,F1Rcvd1 ; Received-1st-Byte
 00371
00BF 0C7D 00372 movlw TSK2MIN ; load Task 2 Time Variable with amount allowed
00C0 003A 00373 movwf Tsk2Var ; during Attn Signal
00C1 0BCB 00374 goto Task_2 ; This space allows running a second application
 00375 ; NOTE: BE SURE TO RETURN TO ATTNMIN BEFORE 750
 00376 ; usecs HAVE PASSED, AND DON’T LET THE OTHER
 00377 ; APPLICATION AFFECT THE Timer0 or TimeVar.
 00378
00C2 0201 00379 AttnMin movf TMR0,W ; Check the time, then check the line
00C3 0099 00380 subwf TimeVar,W ; See if more than ATT_MIN usecs have passed
00C4 0703 00381 btfss STATUS,C ; if not, check the line
00C5 0ACD 00382 goto AttnMax ; if so, go check time/line again in AttnMax
00C6 0705 00383 btfss PORTA,ADB ; Check for line being high & if so, check time
00C7 0AC2 00384 goto AttnMin ; if line is still low, loop again
00C8 0201 00385 movf TMR0,W ; if line is high, see if time is in range
00C9 0099 00386 subwf TimeVar,W ; by checking whether Carry bit is
00CA 0703 00387 btfss STATUS,C ; set after subtraction
00CB 0AAB 00388 goto AttnSig ; If time <= Min, look for Attn Signal again
DS00591B-page 24  1997 Microchip Technology Inc.

AN591
00CC 0AD6 00389 goto SyncSig ; If time > Min, go get Sync signal
 00390
00CD 0CCE 00391 AttnMax movlw ATT_MAX ; Load the TimeVariable to check for the
00CE 0039 00392 movwf TimeVar ; maximum amount of time for Attn Signal
00CF 0201 00393 AttnTmp movf TMR0,W ; Check the time, then check the line
00D0 0099 00394 subwf TimeVar,W ; See if more than ATT_MAX usecs have passed
00D1 0703 00395 btfss STATUS,C ; if not, check the line
00D2 0A96 00396 goto Reset ; if so, Abort to Reset;too much time has passed
00D3 0705 00397 btfss PORTA,ADB ; Check for the line to going high
00D4 0ACF 00398 goto AttnTmp ; if the line isn’t high, loop AttnMax again
00D5 0061 00399 clrf TMR0 ; if the went high, go get the Sync signal
 00400
 00401 ;***
 00402
 00403 ;*** LOOK FOR SYNC SIGNAL *** (SyncSig) ***
 00404 ; This routine checks the timing between the rising edge of the Attention
 00405 ; Signal & a falling edge indicating the start of the 1st Command bit.
 00406 ; At the end of the Attn Signal routine, the line went high, and
 00407 ; the TMR0 was cleared.
 00408 ; Check the TMR0,
 00409 ; if the 72 usec limit is exceeded,
 00410 ; abort to the Attn Signal
 00411 ; if the 72 usec limit is not exceed,
 00412 ; check the line
 00413 ; if the line went low (as the first bit of the Command),
 00414 ; go on to get the 8 Command Bits
 00415 ; if the line is still high,
 00416 ; loop to check TMR0 again
 00417
 00418 ;***
 00419
00D6 0905 00420 SyncSig call NoPrScl ; Get the Sync Signal which follows the Attn
00D7 0C48 00421 movlw SYNC ; Signal Turn off prescaler; timing counts are
00D8 0039 00422 movwf TimeVar ; < 255 usecs and load the timing the for the
00D9 0099 00423 SyncTmp subwf TimeVar,W ; Sync Signal See if more than SYNC usecs
00DA 0703 00424 btfss STATUS,C ; have passed if not, go check the line
00DB 0AAB 00425 goto AttnSig ; if so, Abort to Attn Signal
00DC 0605 00426 btfsc PORTA,ADB ; Check for the line to go low
00DD 0AD9 00427 goto SyncTmp ; if the line is still high, loop again
00DE 0061 00428 clrf TMR0 ; if low, clear TMR0 & go on to get the Command
 00429
 00430 ;***
 00431
 00432 ;*** GET THE COMMAND: 8 BITS & STOP BIT *** (Command) ***
 00433 ; The Sync Signal was detected when the line went low after approximately
 00434 ; 70 usecs. This low line is the first bit of the Command. This
 00435 ; routine receives 8 bits, followed by a ‘1’ Stop bit.
 00436
 00437 ; IN DETAIL:
 00438 ; initialize a counter for counting down as the bits come in
 00439 ; call Get_Bit to receive each bit, MSB first, & rotate it into the
 00440 ; CmdByte register, where the Command Byte is stored.
 00441 ; After returning from GetBit, decrement the counter.
 00442 ; when all 8 bits have been received, clear TMR0 (to allow looking
 00443 ; for the Stop bit, or holding down the line for an SRQ), and go on to
 00444 ; Interpret the Command.
 00445
 00446 ; In GetBit, get the time,
 00447 ; if the time is greater than 72 usecs,
 00448 ; abort to the Attn Signal
 00449 ; if the time is less than 72 usecs,
 00450 ; check if the line went high
 00451 ; if line is still low,
 00452 ; loop to check the time again
 00453 ; if the line went high,
 00454 ; determine whether the line went high before or after 50 usecs
 1997 Microchip Technology Inc. DS00591B-page 25

AN591
 00455 ; if the line went high before 50 usecs, rotate a 1 bit into CmdByte reg.
 00456 ; if the line went high after 50 usecs, rotate a 0 bit into CmdByte reg.
 00457 ; after getting a bit, check if the line went low (the start of the next
 00458 ; bit) if the max. Cell Bit time (104 usecs) is exceeded, abort to Attn
 00459 ; Signal when the line goes low, clear TMR0 and return to get another
 00460 ; bit or interpret the Command if all 8 bits have been been received
 00461
 00462 ;**
 00463
00DF 0C08 00464 Command movlw BYTE ; Get the 8 Command Bits - 1st bit already
00E0 0037 00465 movwf BitCntr ; started, so count down from 8 to 0
00E1 0C16 00466 movlw CmdByte ; rotate bits into CmdByte with indirect
00E2 0024 00467 movwf FSR ; address
00E3 0C48 00468 CmdLoop movlw MAX_BIT ; Get & rotate a 1 or 0 bit into CmdByte, or
00E4 0039 00469 movwf TimeVar ; see if the maximum time is exceeded & abort
00E5 0403 00470 bcf STATUS,C ; clear Carry bit to ensure it won’t wrap around
00E6 0376 00471 rlf CmdByte,F ; rotate in the last bit
00E7 090C 00472 call Get_Bit ; and get another one
00E8 02F7 00473 decfsz BitCntr,F ; keep looping until 8 bits are received &
00E9 0AE3 00474 goto CmdLoop ; rotated when the Command has been received,
 00475 ; interpret it
 00476 ;**
 00477
 00478 ;*** CHECK THE ADDRESS *** (AddrChk; may call MaskCmd, Globals, Srq) ***
 00479 ; The Command Stop Bit is a good time to determine if the Host is
 00480 ; addressing this Device:
 00481 ; test the left nibble of the received byte against the current Address
 00482 ; if the Address belongs to this Device,
 00483 ; mask out the command and register nibble of the received byte,
 00484 ; test it to see whether the Command is to Listen, Talk, or Flush
 00485 ; and go to the routine that looks for the end of the Stop Bit
 00486 ; if the Command is for another Device,
 00487 ; mask the command nibble
 00488 ; see if the Command is a global/reserved Command
 00489 ; if so, go do the Command
 00490 ; if the Command is not global,
 00491 ; check the Srq flag to see if another application needs service
 00492 ; if the Srq flag is set,
 00493 ; go issue a Service Request (Srq)
 00494 ; if the Srq flag is not set,
 00495 ; go get the Attn Signal
 00496
00EA 020E 00497 AddrChk movf Reg3a,W ; See if the Command received is for this Device
00EB 0E0F 00498 andlw DEVMASK ; by masking off this Device’s Address
00EC 0031 00499 movwf TmpReg2 ; and saving it in a temporary register
00ED 03B1 00500 swapf TmpReg2,F ; (received nibbles in Command are reversed)
00EE 0216 00501 movf CmdByte,W ; Test if the received Address is for Device,
00EF 0EF0 00502 andlw ADDRMSK ; by masking out the Command nibble,
00F0 0191 00503 xorwf TmpReg2,W ; compare received Address to current Address
00F1 0643 00504 btfsc STATUS,Z ; if Address is for this Device, go get the Stop
00F2 0AF7 00505 goto CmdStop ; Bit & see what the Command is for this Device.
 00506
00F3 0933 00507 call MaskCmd ; Mask the Command Nibbles from the Address
00F4 0923 00508 call Globals ; and go see if it was a Global Command
00F5 0943 00509 call Srq ; if not, go see if Srq needs to be asserted
00F6 0AAB 00510 goto AttnSig ; if not, go get the Attn Signal
 00511
 00512 ;***
 00513
 00514 ;*** LOOK FOR THE COMMAND STOP BIT *** (CmdStop) ***
 00515 ; Look for the Stop Bit following the Command Byte. This is not executed
 00516 ; if Srq is asserted by this Device.
 00517
00F7 0C48 00518 CmdStop movlw MAX_BIT ; load the maximum time for a bit low time
00F8 0039 00519 movwf TimeVar ;
00F9 0099 00520 subwf TimeVar,W ; See if more than the max. # of usecs have
DS00591B-page 26  1997 Microchip Technology Inc.

AN591
00FA 0703 00521 btfss STATUS,C ; passed if not, go check for the line to go
00FB 0AAB 00522 goto AttnSig ; high if so, abort to the Attn Signal
00FC 0705 00523 btfss PORTA,ADB ; Check for the line to go high
00FD 0AF7 00524 goto CmdStop ; if the line is still low, loop CmdStop
00FE 0061 00525 clrf TMR0 ; again if high, clear TMR0 as the beginning
 00526 ; of the Tlt and go on to interpret Command
 00527 ; as Talk, Listen, or Flush.
 00528
 00529 ;**
 00530
 00531 ;*** INTERPRET THE COMMAND *** (CmmdChk) ***
 00532 ; Determine first if the command is for Register 3, and set the Reg3 flag
 00533 ; if so, then see if the Command is to Talk, Listen, or Flush and go to
 00534 ; that routine.
 00535
00FF 0933 00536 CmmdChk call MaskCmd ; Separate the Command Nibbles into temp. regs.
0100 0712 00537 btfss RegNum,00h ; (MaskCmd put Command Type bits into TmpReg1)
0101 0B04 00538 goto CmdChk2 ; see if the Command is for Register 3
0102 0632 00539 btfsc RegNum,01h ; if not, go continue interpreting the Command
0103 0534 00540 bsf Flags1,F1Reg3; if so, set the Reg. 3 flag indicating this
 00541 ; condition for the Talk or Listen routines
 00542
0104 0211 00543 CmdChk2 movf TmpReg2,W ; Test what Command was received &
0105 0F0C 00544 xorlw C_TALK ; branch accordingly
0106 0643 00545 btfsc STATUS,Z ; test for this being a Talk Command
0107 0B11 00546 goto Talk
0108 0211 00547 movf TmpReg2,W
0109 0F08 00548 xorlw C_LISTN
010A 0643 00549 btfsc STATUS,Z ; test for this being a Listen Command
010B 0B5D 00550 goto Listen
010C 0211 00551 movf TmpReg2,W
010D 0F01 00552 xorlw C_FLUSH
010E 0643 00553 btfsc STATUS,Z ; test if the Command is to Flush a Register
010F 0BBE 00554 goto Flush ; if the Command isn’t a Flush, go get
0110 0AAB 00555 goto AttnSig ; the Attn Signal
 00556
 00557 ;**
 00558
 00559 ;*** SEND DATA TO THE HOST *** (Talk; calls Tlt, LineLow, LineHi) ***
 00560 ; Data is sent to Host from ADB Data Registers using indirect addressing.
 00561 ; (TMR0 was cleared in CmmdChk, and timing for Tlt began there)
 00562 ; Call the Tlt (Stop to Start Time), which waits for the middle of the
 00563 ; Tlt, when the Tlt returns, send a ‘1’ Start Bit,
 00564 ; load the first byte of the Data Register into temporary register,
 00565 ; send the 1st 8 bits,
 00566 ; load the second byte of the Data Register into temporary register,
 00567 ; send the 2nd 8 bits,
 00568 ; and send a ‘0’ Stop Bit
 00569 ; if at anytime during the Tlt, LineLow, or LineHi the ADB line is
 00570 ; inappropriately high or low, the routine aborts to the Collision
 00571 ; routine. The Collision routine only sets a flag if this is a Talk Reg.
 00572 ; 3 Command, indicating a Collision occurred when sending Data for Reg.
 00573 ; 3, and goes to get the Attention Signal.
 00574 ; Using temporary registers ensures the Data doesn’t get cleared until
 00575 ; all of it has been sent.
 00576
0111 0634 00577 Talk btfsc Flags1,F1Reg3 ; if the talk command is for Register 3,
0112 0B1D 00578 goto SetRndm ; go create a Random Address and load it into
0113 07D5 00579 btfss Flags2,F2DSend ; TmpReg1 Check whether there is data to
0114 0AAB 00580 goto AttnSig ; send if not, let the bus timeout & get Attn
 00581
0115 0213 00582 SetTmps movf RAMaddr,W ; Signal Load the temporary registers with Data
0116 0024 00583 movwf FSR ; stored at the appropriate RAM Address for the
0117 0200 00584 movf INDF,W ; Register indicated in the Command Byte
0118 0030 00585 movwf TmpReg1
0119 02A4 00586 incf FSR,F
 1997 Microchip Technology Inc. DS00591B-page 27

AN591
011A 0200 00587 movf INDF,W ;Load 2nd temporary register from 2nd RAM
011B 0031 00588 movwf TmpReg2 ;Address where Data is stored
011C 0B29 00589 goto CallTlt
 00590
011D 0201 00591 SetRndm movf TMR0,W ;The Address sent to the Host for a Talk Reg.3
011E 0198 00592 xorwf Random,W ;Command must be random to avoid collisions
011F 0E0F 00593 andlw LOW_NBL ;with other Device Addresses during
0120 0030 00594 movwf TmpReg1 ;initialization
0121 020E 00595 movf Reg3a,W ;
0122 0EF0 00596 andlw HI_NIBL ;
0123 0130 00597 iorwf TmpReg1,F ;
0124 0634 00598 SetHndl btfsc Flags1,F1Reg3 ; if this is a Talk R3 Command,
0125 020F 00599 movf Reg3b,W ; send the Device Handler ID
0126 0695 00600 btfsc Flags2,F2SFail ; if a Device Self-Test was performed and it
0127 0040 00601 clrw ; failed, send the reserved Handler ID of
0128 0031 00602 movwf TmpReg2 ; ‘00h’ to indicate the Failed condition
 00603
0129 0554 00604 CallTlt bsf Flags1,F1Talk ; Set the Talk Flag to indicate to the Tlt
012A 094C 00605 call Tlt ; routine to return for the end of Talk Start Bit
 00606
012B 0C10 00607 SndStrt movlw TmpReg1 ; Send a ‘1’ bit as the Start Bit
012C 0024 00608 movwf FSR ; Use the indirect addressing of the temporary
012D 0C00 00609 movlw TRI_OUT ; registers from which Data will be sent
012E 0005 00610 tris PORTA ; tri-state PORTA to make the ADB an output
012F 0061 00611 clrf TMR0 ; clear TMR0 as the beginning of a bit
0130 0C16 00612 movlw LOW1BIT
0131 0976 00613 call LineLow ; hold the line low for 1/3rd of a Bit Cell
0132 0C32 00614 movlw HI_1BIT
0133 0983 00615 call LineHi ; let the go line high for rest of the Bit Cell
 00616
0134 0C08 00617 SetSend movlw BYTE ; Send the data bytes
0135 0037 00618 movwf BitCntr ; Load the counter to send 8 Bits
0136 06E0 00619 SndBits btfsc INDF,MSB ; determine whether to complete the send of
0137 0B3D 00620 goto Send1 ; a ‘1’ or ‘0’ bit
 00621
0138 0C38 00622 Send0 movlw LOW0BIT ; Send a ‘0’ bit
0139 0976 00623 call LineLow ; hold the line low for 2/3rd of a Bit Cell
013A 0C14 00624 movlw HI_0BIT
013B 0983 00625 call LineHi ; let the line high for the rest of the Bit Cell
013C 0B41 00626 goto Rotate
 00627
013D 0C16 00628 Send1 movlw LOW1BIT ; Send a ‘1’ bit
013E 0976 00629 call LineLow ; hold the line low for 1/3rd of a Bit Cell
013F 0C32 00630 movlw HI_1BIT
0140 0983 00631 call LineHi ; let the line high for the rest of the Bit Cell
 00632
0141 0403 00633 Rotate bcf STATUS,C ; Rotate out the MSB bit just sent from
0142 0360 00634 rlf INDF,F ; the Temporary Data Register
0143 02F7 00635 decfsz BitCntr,F ; count down as bits are sent
0144 0B36 00636 goto SndBits ; loop until 8 bits are sent
0145 06B4 00637 btfsc Flags1,F1Sent1 ; see whether all data has been sent
0146 0B4A 00638 goto SndStop ; if so, go send the Stop Bit
0147 05B4 00639 bsf Flags1,F1Sent1 ; if not, set the Sent Flag,
0148 02A4 00640 incf FSR,F ; Then go prepare to send the next 8 bits,
0149 0B34 00641 goto SetSend ; and send the data from the next Data register
 00642
014A 0C38 00643 SndStop movlw LOW0BIT ; Send a ‘0’ bit to the Host
014B 0976 00644 call LineLow
014C 0C14 00645 movlw HI_0BIT
014D 0574 00646 bsf Flags1,F1Stop ; indicate to LineHi that this is the Stop
014E 0983 00647 call LineHi ; Bit let the line go high for 2/3rd of a Bit Cell
014F 04F4 00648 bcf Flags1,F1Cllsn ; a Collision did not occur, clear the flag
0150 0415 00649 bcf Flags2,F2Srq ; an Srq is no longer needed
0151 04D5 00650 bcf Flags2,F2DSend ; the Data has been sent
0152 0634 00651 btfsc Flags1,F1Reg3 ; If current Data Reg. is 3, don’t allow
0153 0BC7 00652 goto RunTsk2 ; Reg. 3 to be cleared (or at least the 1st 2
DS00591B-page 28  1997 Microchip Technology Inc.

AN591
0154 0213 00653 movf RAMaddr,W ; bytes) clear the Data Registers from which
0155 0024 00654 movwf FSR ; the Data was sent via temporary registers
0156 0060 00655 clrf INDF ; Clear the registers holding the originalData
0157 02A4 00656 incf FSR,F ; which was just sent via the temporary regs.
0158 0060 00657 clrf INDF ; Go setup to run the 2nd Application Task for
0159 0BC7 00658 goto RunTsk2 ; the time between the end of data sent, and
 00659 ; the beginning of the next Attention Signal
 00660
015A 0634 00661 Collisn btfsc Flags1,F1Reg3 ; if there was a collision during a Talk
015B 05F4 00662 bsf Flags1,F1Cllsn ; Reg. 3 Command, then set the Collision
015C 0AAB 00663 goto AttnSig ; Flag, otherwise, just abort to Attn Signal
 00664
 00665 ;**
 00666
 00667 ;*** RECEIVE DATA FROM THE HOST *** (Listen; calls Tlt, GetBit) ***
 00668 ; Get the Tlt Signal (Stop to Start Time)
 00669 ; Tlt recognizes the beginning of the Start Bit
 00670 ; Load indirect address of temporary Data register
 00671 ; Get the rest of the Start Bit
 00672 ; Receive the first Data byte from the Host into the temporary Data
 00673 ; register by calling GetBit - GetBit uses indirect address
 00674 ; Set indirect address to 2nd temporary Data register
 00675 ; Receive the second Data byte from the Host into the temporary Data
 00676 ; register And then receive the Data Stop Bit if the
 00677 ; data was not for Reg. 3, move the Data now stored in the temporary
 00678 ; Data registers into the RAM locations of the Data register designated
 00679 ; in RAMaddr, and go run the 2nd Application Task.
 00680 ; if the data was for Reg. 3, go interpret what the Data Command was
 00681 ; and take appropriate action.
 00682
015D 0594 00683 Listen bsf Flags1,F1Lstn ; Set Listen Flag to tell Tlt (Stop to Start Time)
015E 094C 00684 call Tlt ; to look for the beginning of the Start Bit
015F 0C10 00685 movlw TmpReg1 ; receive bits into temporary registers
0160 0024 00686 movwf FSR ; use indirect addressing to store received Data
0161 0060 00687 clrf INDF ; in temporary registers
0162 02A4 00688 incf FSR,F ;
0163 0060 00689 clrf INDF ; clear any data currently in temporary registers
0164 00E4 00690 decf FSR,F ;
0165 0C32 00691 movlw BIT_TST ; load the TimeVariable to look for the rest of
0166 0039 00692 movwf TimeVar ; the Start Bit
0167 0403 00693 bcf STATUS,C ; clear the Carry bit so it doesn’t wrap around
0168 090C 00694 call Get_Bit ; get the rest of the Start bit
0169 0700 00695 btfss INDF,LSB ; it should be a ‘1’ bit
016A 0AAB 00696 goto AttnSig ; if not, abort to the Attn Signal
016B 0400 00697 bcf INDF,LSB ; don’t let the Start Bit be the 1st bit of Data
016C 0C08 00698 SetRecv movlw BYTE ; setup to receive 8 bits at a time into the reg.
016D 0037 00699 movwf BitCntr ; count down as bits come in
016E 0C48 00700 RcvData movlw MAX_BIT ; get & rotate a 1 or 0 bit into Data Reg., and
016F 0039 00701 movwf TimeVar ; see if MAX_BIT time is exceeded & if so, abort
0170 0403 00702 bcf STATUS,C ; clear Carry bit so it doesn’t wrap around
0171 0360 00703 rlf INDF,F ; rotate the bit into the Register (the 1st
0172 090C 00704 call Get_Bit ; rotation doesn’t count)
0173 02F7 00705 decfsz BitCntr,F ;decrement the counter each time a bit is
0174 0B6E 00706 goto RcvData ;received loop until 8 bits are received
0175 06D4 00707 btfsc Flags1,F1Rcvd1 ; see whether the 2nd Data byte was just
0176 0B7A 00708 goto RcvStop ;received if so, go get the Stop Bit
0177 05D4 00709 bsf Flags1,F1Rcvd1 ; if not, set the Received-1st-Byte Flag,
0178 02A4 00710 incf FSR,F ;increment FSR to receive 2nd Byte of the Data
0179 0B6C 00711 goto SetRecv ;Reg. & go prepare to receive the next byte
 00712
017A 0C48 00713 RcvStop movlw MAX_BIT ;Get the ‘0’ Stop Bit
017B 0039 00714 movwf TimeVar ;
017C 0201 00715 RecvTmp movf TMR0,W ;Check the time, then check if the line went high
017D 0099 00716 subwf TimeVar,W ;See if more than MAX_BIT usecs have passed
017E 0703 00717 btfss STATUS,C ;if so, abort to Attn Signal
017F 0AAB 00718 goto AttnSig ;
 1997 Microchip Technology Inc. DS00591B-page 29

AN591
0180 0705 00719 btfss PORTA,ADB ; if not, check whether the line went high
0181 0B7C 00720 goto RecvTmp ; if still low, loop to check the time again
0182 0C32 00721 movlw BIT_TST ; if high, make sure the Stop Bit was ‘0’
0183 0039 00722 movwf TimeVar ; if the time was < BIT_TST, abort to
0184 0201 00723 movf TMR0,W ; the Attn Signal
0185 0099 00724 subwf TimeVar,W ; if the time was > BIT_TST, the ‘0’ Stop
0186 0603 00725 btfsc STATUS,C ; Bit was received
0187 0AAB 00726 goto AttnSig ; clear TMR0 so second Task may use idle time
 00727
0188 0061 00728 RcvdDat clrf TMR0 ; Move Data to registers (unless for Reg 3.)
0189 0634 00729 btfsc Flags1,F1Reg3 ; see if Data was received for Register 3,
018A 0B94 00730 goto DataChk ; if so, go interpret the Listen Reg. 3
018B 0213 00731 movf RAMaddr,W ; Command if not, move the received Data bytes
018C 0024 00732 movwf FSR ; to their indicated registers using indirect
018D 0210 00733 movf TmpReg1,W ; address,
018E 0020 00734 movwf INDF
018F 02A4 00735 incf FSR,F
0190 0211 00736 movf TmpReg2,W
0191 0020 00737 movwf INDF
0192 05B5 00738 bsf Flags2,F2DRcvd; set the Data-has-been-received flag,
0193 0BC7 00739 goto RunTsk2 ; and go prepare to run the 2nd Application Task
 00740
 00741 ;**
 00742
 00743 ;* INTERPRET THE LISTEN REG. 3 COMMAND SENT BY THE HOST *** (DataChk) *
 00744 ; This interprets the Data received for Register 3 as one of the
 00745 ; following Commands and runs the corresponding routine:
 00746 ;
 00747 ; Mask the Data Command received using the following Constants passed
 00748 ; to the IntData (Interpret Data Command) macro:
 00749 ; SELFTST (FF) - the Device is instructed to do a Self-Test
 00750 ; LISTEN1 (00) - unconditionally change Device Address and/or Status bits
 00751 ; LISTEN2 (FE) - change only the Device Address, and only change it
 00752 ; if the Device Address is marked as movable
 00753 ; DEV_ACT (FD) - change Device Address only if the Device Activator is
 00754 ; pressed (as defined in Device specification)
 00755
 00756 DataChk IntData SELFTST,SlfTest ; see if Data Command is for Self Test
0194 0211 M movf TmpReg2,W ; interprets the Data Command received by
0195 0FF M xorlw SELFTST ; comparing the 2nd byte to a Data
0196 0643 M btfsc STATUS,Z ; Command constant
0197 0BA7 M goto SlfTest ; it then goes to the appropriate routine
 00757 IntData LISTEN1,UpDat3a ; update bits Address and Status Bits (8
0198 0211 M movf TmpReg2,W ; to 13) interprets the Data Command
0199 0F00 M xorlw LISTEN1 ; received by comparing the 2nd byte to a Data
019A 0643 M btfsc STATUS,Z ; Command constant
019B 0BA9 M goto UpDat3a ; it then goes to the appropriate routine
 00758 IntData LISTEN2,NewAddr ; change the Device Address (Bits 8 to 12)
019C 0211 M movf TmpReg2,W ; interprets the Data Command received by
019D 0FFE M xorlw LISTEN2 ; comparing the 2nd byte to a Data
019E 0643 M btfsc STATUS,Z ; Command constant
019F 0BAF M goto NewAddr ; it then goes to the appropriate routine
 00759 IntData DEV_ACT,DevActv ; change the Device Address if the Device
01A0 0211 M movf TmpReg2,W ; interprets the Data Command received by
01A1 0FFD M xorlw DEV_ACT ; comparing the 2nd byte to a Data
01A2 0643 M btfsc STATUS,Z ; Command constant
01A3 0BAD M goto DevActv ; it then goes to the appropriate routine
 00760 ; Activator was pressed
01A4 0211 00761 movf TmpReg2,W ; if none of these Commands were given, put
01A5 002F 00762 movwf Reg3b ; received Data into Reg. 3b as a new Device the
01A6 0BC7 00763 goto RunTsk2 ; Handler ID and go prepare to run the 2nd Task
 00764
01A7 0575 00765 SlfTest bsf Flags2,F2STest ; Tell Device to do a Self-Test during 2nd
01A8 0BC7 00766 goto RunTsk2 ; Task, and go prepare to run the 2nd Task
 00767
01A9 0210 00768 UpDat3a movf TmpReg1,W ; Unconditionally change the Device Address
DS00591B-page 30  1997 Microchip Technology Inc.

AN591
 00769 ; and/or the Status Bits of Reg. 3a
01AA 05C0 00770 bsf W,ExpEvnt ; NOTE: Exceptional Event should remain as
01AB 002E 00771 movwf Reg3a ; set to a ‘1’ unless otherwise indicated
01AC 0BC7 00772 goto RunTsk2 ; Go prepare to run the 2nd Application Task
 00773
01AD 0755 00774 DevActv btfss Flags2,F2DActv; if the Device Activator was NOT pressed,
01AE 0BC7 00775 goto RunTsk2 ; go run the 2nd Application Task,
 00776 ; if it was, change Device Address, if movable
01AF 06F4 00777 NewAddr btfsc Flags1,F1Cllsn; If a collison occurred during the last
01B0 0AAB 00778 goto AttnSig ; Talk Reg. 3, the Address was marked unmov
01B1 0210 00779 movf TmpReg1,W ; able, abort to the Attention Signal.
01B2 0F00 00780 xorlw FALSE ;
01B3 0643 00781 btfsc STATUS,Z
01B4 0AAB 00782 goto AttnSig
01B5 020E 00783 movf Reg3a,W ; Create the new Device Address by masking in
01B6 0EF0 00784 andlw HI_NIBL ; the Address received by the host, not allowing
01B7 0031 00785 movwf TmpReg2 ; the upper nibble Status Bits in Reg. 3a to
01B8 0210 00786 movf TmpReg1,W ; be affected.
01B9 0E0F 00787 andlw LOW_NBL ;
01BA 0111 00788 iorwf TmpReg2,W ; NOTE: Exceptional Event should remain as
01BB 05C0 00789 bsf W,ExpEvnt ; set to a ‘1’ unless otherwise indicated
01BC 002E 00790 movwf Reg3a ; when the new Device Address is in place,
01BD 0BC7 00791 goto RunTsk2 ; go prepare to run the 2nd Application Task
 00792
 00793 ;***
 00794 ;*** FLUSH THE REGISTER SPECIFIED BY THE COMMAND BYTE *** (Flush) ***
 00795
01BE 0213 00796 Flush movf RAMaddr,W ; Clear the Data in the specified Register
01BF 0024 00797 movwf FSR ; use indirect address to clear the RAM
01C0 0060 00798 clrf INDF ; locations holding the Data
01C1 02A4 00799 incf FSR,F
01C2 0060 00800 clrf INDF
01C3 0BC7 00801 goto RunTsk2
 00802
 00803 ;**
 00804
01C4 0AAB 00805 Reserv1 goto AttnSig ; No action until Reserved Command 1 is defined
 00806
 00807 ;***
 00808
01C5 0AAB 00809 Reserv2 goto AttnSig ; No action until Reserved Command 2 is defined
 00810
 00811 ;***
 00812
01C6 0AAB 00813 Reserv3 goto AttnSig ; No action until Reserved Command 3 is defined
 00814
 00815 ;***
 00816
 00817 ;*** PUT THE CODE FOR OTHER APPLICATION HERE *** (RunTsk2, Task_2) ***
 00818
 00819 ; bsf Flags2,F2SFail ; code would go before here if a Self Test
 00820 ; bcf Flags2,F2SFail ; was performed and it failed or passed
 00821
01C7 0070 00822 RunTsk2 clrf TmpReg1 ; When finished with Data interpretation,
01C8 0071 00823 clrf TmpReg2 ; clear the temporary Data registers, and
01C9 0CE1 00824 movlw TSK2MAX ; load Task 2 TimeVariable with amount allowed
01CA 003A 00825 movwf Tsk2Var ; between end of Data and Attention Signal. If
 00826
01CB 0615 00827 Task_2 btfsc Flags2,F2Srq ; the Srq Flag has not been cleared, then data
01CC 0BF7 00828 goto AttnTst ; must still be sent from 1st Service Request
01CD 0900 00829 call PrScale ; Turn on the TMR0 prescale for >250usec count
 00830
01CE 0675 00831 Tests btfsc Flags2,F2STest ; See if Key-Up transition codes should be
01CF 0BDC 00832 goto LoadDat ; sent
01D0 0635 00833 btfsc Flags2,Switch ; Determine if the Switch has been
01D1 0BED 00834 goto DBounce ; de-bounced if not, go timeout
 1997 Microchip Technology Inc. DS00591B-page 31

AN591
01D2 0626 00835 btfsc PORTB,Switch ; Check if Switch is pressed,
01D3 0BF3 00836 goto Tsk2Tmp ; if not, go timeout
01D4 05F5 00837 bsf Flags2,F2DMore; data needs to be sent to the host
01D5 0515 00838 bsf Flags2,F2Srq ; and issue a Service Request
01D6 0535 00839 bsf Flags2,Switch ; set the flag for de-bouncing switch
01D7 0506 00840 bsf PORTB,LED ; Turn on LED when Switch is pressed
01D8 0C08 00841 movlw DEBOUNC
01D9 003B 00842 movwf TmpCtr1
01DA 06D5 00843 btfsc Flags2,F2DSend; The last Data was sent correctly if Talk
01DB 0BF3 00844 goto Tsk2Tmp ; cleared the DSend flag, if set, goto
 00845 ; Attn Test to re-send Data
 00846
01DC 07F5 00847 LoadDat btfss Flags2,F2DMore; If all the Data has been sent, DMore is
01DD 0BF3 00848 goto Tsk2Tmp ; clearif DMore is clear, go time out
01DE 0C38 00849 movlw SHIFT ; if DMore is set, Data remains to be sent
01DF 0028 00850 movwf Reg0a ; if not, load the Data bytes
01E0 0C12 00851 movlw BANG
01E1 0029 00852 movwf Reg0b
01E2 05D5 00853 bsf Flags2,F2DSend; Data now needs to be sent to the host
01E3 0515 00854 bsf Flags2,F2Srq ; Until all data has been sent, Srq’s may
01E4 0675 00855 btfsc Flags2,F2STest; be sent See if Key-Up Transition Codes
01E5 0BE8 00856 goto KeyUp ; should be sent if so, go set the bits
01E6 0575 00857 bsf Flags2,F2STest; if not, set bit so they will be next time
01E7 0BED 00858 goto DBounce ; and go debounce the switch
 00859
01E8 05E8 00860 KeyUp bsf Reg0a,07h ; Set the 7th bit in each register to
01E9 05E9 00861 bsf Reg0b,07h ; indicate the Key is up
01EA 0475 00862 bcf Flags2,F2STest; The Key-Up Transition Code bits have been
01EB 04F5 00863 bcf Flags2,F2DMore; set All data will have been sent to the
01EC 0BED 00864 goto DBounce ; host after this transaction
 00865
01ED 0726 00866 DBounce btfss PORTB,Switch ; Check if Switch has been released,
01EE 0BF3 00867 goto Tsk2Tmp ; if not, go timeout
01EF 02FB 00868 decfsz TmpCtr1,F ; if so, start timed debounce of several
01F0 0BF3 00869 goto Tsk2Tmp ; millisecs. before switch is tested again
01F1 0406 00870 bcf PORTB,LED ; Turn off LED when Switch is released
01F2 0435 00871 bcf Flags2,Switch ; clear de-bounce flag
 00872
01F3 0201 00873 Tsk2Tmp movf TMR0,W ; Check the time to see if more than the maximum
01F4 009A 00874 subwf Tsk2Var,W ; time limit has been exceeded
01F5 0603 00875 btfsc STATUS,C ; if so, go determine what part of Attn Signal
01F6 0BF3 00876 goto Tsk2Tmp
 00877
01F7 0714 00878 AttnTst btfss Flags1,F1Attn ; After this portion of the 2nd Task is
01F8 0AAB 00879 goto AttnSig ; complete,If 2nd Task is NOT run during
01F9 0414 00880 bcf Flags1,F1Attn ; Attn Signal, go get the start of the Attn
01FA 0AC2 00881 goto AttnMin ; Signal otherwise, go get the rest of the
 00882 ; Attn Signal
 00883 ;**
 00884
01FF 00885 ORG PIC54
01FF 0A90 00886 RESETV goto Start
 00887
 00888 END
DS00591B-page 32  1997 Microchip Technology Inc.

AN591
MEMORY USAGE MAP (‘X’ = Used, ‘-’ = Unused)

0000 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0080 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
00C0 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0100 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0140 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0180 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
01C0 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXX----X

All other memory blocks unused.

Program Memory Words Used: 508
Program Memory Words Free: 516

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 0 reported, 0 suppressed
 1997 Microchip Technology Inc. DS00591B-page 33

 2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

y Aust
 Stree

Fax: 6

y Co
son O

.
 Beida
China
 Fax:

y Co
iaison
r,
ower

ina
Fax: 8

y Co
ison O
e Plaz

a
 Fax:

y Co

l Plaz
ad

 Fax

y Co
Liaiso
nzhen

hina
 Fax:

y Hon
Metro

g Kon
Fax: 8

y Inc.

4)
ey Ro
India
ax: 9

LE
M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technolog
Suite 22, 41 Rawson
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
China - Beijing
Microchip Technolog
Co., Ltd., Beijing Liai
Unit 915
Bei Hai Wan Tai Bldg
No. 6 Chaoyangmen
Beijing, 100027, No.
Tel: 86-10-85282100
China - Chengdu
Microchip Technolog
Co., Ltd., Chengdu L
Rm. 2401, 24th Floo
Ming Xing Financial T
No. 88 TIDU Street
Chengdu 610016, Ch
Tel: 86-28-6766200
China - Fuzhou
Microchip Technolog
Co., Ltd., Fuzhou Lia
Unit 28F, World Trad
No. 71 Wusi Road
Fuzhou 350001, Chin
Tel: 86-591-7503506
China - Shanghai
Microchip Technolog
Co., Ltd.
Room 701, Bldg. B
Far East Internationa
No. 317 Xian Xia Ro
Shanghai, 200051
Tel: 86-21-6275-5700
China - Shenzhen
Microchip Technolog
Co., Ltd., Shenzhen
Rm. 1315, 13/F, She
Renminnan Lu
Shenzhen 518001, C
Tel: 86-755-2350361
Hong Kong
Microchip Technolog
Unit 901-6, Tower 2,
223 Hing Fong Road
Kwai Fong, N.T., Hon
Tel: 852-2401-1200
India
Microchip Technolog
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A
No. 11, O’Shaugness
Bangalore, 560 025,
Tel: 91-80-2290061 F

WORLDWIDE SA
ralia Pty Ltd
t

1-2-9868-6755

nsulting (Shanghai)
ffice

jie

86-10-85282104

nsulting (Shanghai)
 Office

6-28-6766599

nsulting (Shanghai)
ffice
a

 86-591-7503521

nsulting (Shanghai)

a

: 86-21-6275-5060

nsulting (Shanghai)
n Office
 Kerry Centre,

 86-755-2366086

gkong Ltd.
plaza

g
52-2401-3431

ad

1-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

S AND SERVICE
 2002 Microchip Technology Inc.

	Introduction
	Overview
	Explanation of ADB technology
	Protocol Assumptions
	ADB Elements:

	PIC16CXXX ADB Protocol Program Event Sequence
	Overview
	Detailed Description
	Start-up
	Reset
	Attention Routine
	Sync Signal Routine
	Command Routine
	Sending Data to the Host

	Implementation
	Hardware
	Software
	Timing
	How Address Conflicts are Resolved
	Program Sequence:

	Suggestions about modifying the code
	Resources
	Apple Publications and Support Software

	Author / Credits
	Appendix A: ADB.ASM
	WORLDWIDE SALES & SERVICE

