
Intel
Architecture

MMXTM
Technology

Programmer's Reference Manual

March 1996
Order No. 243007-002

Subject to the terms and conditions set forth below, Intel hereby grants you a nonexclusive, nontransferable license, under
its patents and copyrights on the example code sequences contained in Chapters 3, 4 and 5 of the Programmer's
Reference Manual, to use, reproduce and distribute such example code sequences solely as part of your computer
program(s) and solely in order to allow your computer program(s) to implement the multimedia instruction extensions
contained in such sequences solely with respect to the Intel instruction set architecture. No other license, express, implied,
statutory, by estoppel or otherwise, to any other intellectual property rights is granted herein.

THIS DOCUMENT AND ALL INFORMATION, PROPOSALS, SAMPLES AND OTHER MATERIALS PROVIDED IN
CONNECTION WITH OR IN RELATION TO THIS DOCUMENT (INCLUDING, WITHOUT LIMITATION, THE EXAMPLE
CODE SEQUENCES) ARE PROVIDED "AS IS" WITH NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY OR
OTHERWISE, AND INTEL SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT OR FITNESS FOR ANY PARTICULAR PURPOSE.

Any use or distribution of this document or the materials contained herein must fully comply with all then current laws of the
United States including, without limitation, rules and regulations of the United States Office of Export Administration and other
applicable U.S. governmental agencies.

THIS DOCUMENT AND THE MATERIALS PROVIDED HEREIN ARE PROVIDED WITHOUT CHARGE. THEREFORE, IN
NO EVENT WILL INTEL BE LIABLE FOR ANY DAMAGES OF ANY KIND, INCLUDING DIRECT OR INDIRECT DAMAGES,
LOSS OF DATA, LOST PROFITS, COST OF COVER OR SPECIAL, INCIDENTAL, CONSEQUENTIAL, DAMAGES
ARISING FROM THE USE OF THE MATERIALS PROVIDED HEREIN, INCLUDING WITHOUT LIMITATION THE
EXAMPLE CODE SEQUENCES, HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY. THIS LIMITATION WILL
APPLY EVEN IF INTEL OR ANY AUTHORIZED AGENT OF INTEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Information in this document is provided in connection with Intel products. No license under any patent or copyright is
granted expressly or impliedly by this publication. Intel assumes no liability whatsoever, including infringement of any patent
or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer Products may
have minor variations to their specifications known as errata.

·Other brands and names are the property of their respective owners.

Copyright © Intel Corporation 1996

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing product orders.

Copies of documents which have an ordering number and are referenced in this document. or other Intel literature. may be obtained from:

Intel Corporation

P.O. Box 7641

MI. Prospect IL 60056·764

or call 1·800·879·4683

IMPORTANT INFORMATION ABOUT THIS DOCUM'ENT

Following are changes to the text in this manual that were not available until press time.
Please note these changes when using the information contained in this manual.

Documentation Changes

Location in Document Document Currently Reads Change to Document

Page 5-34: The PCMPGTD instruction The PCMPGTD instruction
PCMPGTB/PCMPGTW/PCMPGT compares the signed words in the compares the signed
D-Packed Compare for Greater destination operand to the doublewords in the destination
Than corresponding signed words in the operand to the corresponding
Heading: Description source operand. signed doublewords in the source
Paragraph: Four operand.

Page 5-51: The PSLLD instruction shifts each The PSRLD instruction shifts each
PSRLW/PSRLD/PSRLQ-Packed of the two doublewords in the of the two doublewords in the
Shift Right Logical, destination register to the right by destination register to the right by
Heading: Description the number of bits specified in the the number of bits specified in the
Paragraph: Four count operand. count operand.

Page 5-56: PSUBSB/PSUBSWI The PSUBB instruction subtracts The PSUBSB instruction subtracts
Packed Subtract with Saturation the signed bytes of the source the signed bytes of the source
Heading: Description operand from the signed bytes of operand from the signed bytes of
Paragraph: Three the destination operand, and writes the destination operand, and writes

the results to the destination the results to the destination
register. register.

Page 5-56: PSUBSB/PSUBSWI The PSUBW instruction subtracts The PSUBSW instruction
Packed Subtract with Saturation the signed words of the source subtracts the signed words of the
Heading: Description operand from the signed words of source operand from the signed
Paragraph: Four the destination operand and writes words of the destination operand

the results to the destination and writes the results to the
register. destination register.

I

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION TO THE INTEL ARCHITECTURE MMXTM TECHNOLOGY
1.1. ABOUT THE INTEL ARCHITECTURE MMXTM TECHNOLOGY 1-1
1.1.1. Single Instruction, Multiple Data (SIMD) Technique : 1-1
1.1.2. Performance Improvement ... 1 -2
1.2. ABOUT THIS MANUAL .. 1-2
1.3. RELATED DOCUMENTATION ... 1-3

CHAPTER 2
INTEL ARCHITECTURE MMXTM TECHNOLOGY FEATURES
2.1. NEW FEATURES ... 2-1
2.2. NEW DATA TYPES ... 2-1
2.3. MMXTM REGISTERS ... 2-2
2.4. EXTENDED INSTRUCTION SET ... 2-3
2.4.1. Packed Data .. 2-3
2.4.2. Saturation Arithmetic Vs. Wrap Around .. 2-4
2.4.3. Instruction Group Overview .. 2-5
2.4.3.1. ARITHMETIC INSTRUCTIONS .. ,.2-5
2.4.3.2. COMPARISON INSTRUCTIONS .. 2-6
2.4.3.3. CONVERSION INSTRUCTIONS .. 2-6
2.4.3.4. LOGICAL INSTRUCTIONS .. 2-6
2.4.3.5. SHIFT INSTRUCTIONS .. 2-7
2.4.3.6. DATA TRANSFER INSTRUCTIONS ... 2-7
2.4.3.7. EMMS (EMPTY MMXTM STATE) INSTRUCTION .. 2-7
2.4.4. Instruction Operand ... 2-7
2.5. COMPATIBILITY ... 2-8

I
iii

CONTENTS inlel.,

CHAPTER 3
APPLICATION PROGRAMMING MODEL
3.1. DATA FORMATS ... 3-1
3.1.1. Memory Data Formats ... 3-1
3.1.2. IA MMXTM Register Data Formats .. 3-2
3.1.3. IA MMXTM Instructions and the Floating-Point Tag Word ; 3-2
3.2. PREFiXES ; ... 3-3
3.3. WRITING APPLICATIONS WITH IA MMXTM CODE ... 3-3
3.3.1. Detecting IA MMXTM Technology Existence Using the CPUID Instruction 3-3
3.3.2. The EMMS Instruction ... 3-4
3.3.3. InterfaCing with IA MMXTM Technology Procedures and Functions 3-5
3.3.4. Writing Code with IA MMXTM and Floating-Point Instructions 3-5
3.3.4.1. RECOMMENDATIONS AND GUIDELINES .. 3-6
3.3.5. Multitasking Operating System Environment .. 3-7
3.3.5.1. COOPERATIVE MULTITASKING OPERATING SYSTEM 3-7
3.3.5.2. PREEMPTIVE MULTITASKING OPERATING SYSTEM 3-7
3.3.6. Exception Handling in IA MMXTM Application Code ... 3-8
3.3.7. Register Mapping ... 3-8

CHAPTER 4
SYSTEM PROGRAMMING MODEL
4.1. CONTEXT SWITCHING .. 4-1
4.1.1 . Cooperative Multitasking Operating System ... 4-1
4.1.2. Preemptive Multitasking Operating System .. 4-1
4.2. EXCEPTIONS ... 4-3
4.3. COMPATIBILITY WITH EXISTING SOFTWARE ENVIRONMENTS 4-4
4.3.1 . Register Aliasing .. 4-4
4.3.2. The Effect of Floating-Point and MMXTM Instructions on the Floating-Point

4.3.2.1.
4.3.3.
4.3.4.
4.3.5.
4.3.6.
4.3.7.

iv

Tag Word .. 4-7
ALIASING SUMMARY ... 4-8

Context Switch Support .. 4-8
Floating-Point Exceptions ... 4-8
Debugging ... 4-9
Emulation of the Instruction Set ... 4-9
Exception handling in Operating Systems ... 4-9

I

intel., CONTENTS

CHAPTER 5
INTEL ARCHITECTURE MMXTM INSTRUCTION SET
5.1. INSTRUCTION SyNTAX .. 5-1
5.2. INSTRUCTION FORMAT ... 5-2
5.3. NOTATIONAL CONVENTIONS .. 5-3
5.4. HOW TO READ THE INSTRUCTION SET PAGES .. 5-4
EMMS-Empty MMX State ... 5-8
MOVD-Move 32 Bits ... 5-10
MOVQ-Move 64 Bits ... 5-12
PACKSSWB IPACKSSDW-Pack with Signed Saturation .. 5-14
PACKUSWB-Pack with UnSigned Saturation ... 5-16
PADDB/PADDW/PADDD-Packed Add ... 5-18
PADDSB/PADDSW-Packed Add with Saturation ... 5-21
PADDUSB/PADDUSW-Packed Add Unsigned with Saturation ... 5-23
PAND-Bitwise Logical And .. 5-26
PANDN-Bitwise Logical And Not.. .. 5-28
PCMPEQB/PCMPEQW/PCMPEQD-Packed Compare for Equal 5-30
PCMPGTB/PCMPGTW/PCMPGTD-Packed Compare for Greater Than 5-33
PMADDWD-Packed Multiply and Add .. 5-36
PMULHW-Packed Multiply High .. 5-38
PMULLW-Packed Multiply Low .. 5-40
POR-Bitwise Logical Or ... 5-42
PSLLW/PSLLD/PSLLQ-Packed Shift Left Logical .. 5-44
PSRAW/PSRAD-Packed Shift Right Arithmetic .. 5-47
PSRLW/PSRLD/PSRLQ-Packed Shift Right Logical .. 5-50
PSUBB/PSUBW/PSUBD-Packed Subtract .. 5-53
PSUBSB/PSUBSW-Packed Subtract with Saturation ... 5-56
PSUBUSB/PSUBSW-Packed Subtract Unsigned with Saturation 5-58
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ-Unpack High Packed Data 5-60
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ-Unpack Low Packed Data 5-63
PXOR-Bitwise Logical Exclusive OR .. 5-66

APPENDIX A
IA MMXTM INSTRUCTION SET SUMMARY

APPENDIX B
IA MMXTM INSTRUCTION FORMATS AND ENCODINGS .

APPENDIXC
ALPHABETICAL LIST OF IA MMXTM INSTRUCTION SET MNEMONICS

APPENDIX D
IA MMXTM INSTRUCTION SET OPCODE MAP

I v

CONTENTS inlet

Figure
2-1.
2-2.
3-1.
4-1.
4-2.
4-3.
5-1.
8-1.

Figures

Title Page
Packed Data Types .. 2-2
MMXTM Register Set .. 2-3
Eight Packed 8ytes in Memory (at address 1 OOOH) .. 3-2
Example of FP and MMX State Saving in Operating System 4-2
Aliasing of MMXTM to Floating-Point Registers .. 4-5
Mapping of MMXTM Registers to Floating Point Registers 4-6
Floating Point Tag Word Format .. 5-8
Key to Codes for Datatype Cross-Reference .. 8-3

Tables

Table Title Page
2-1. Data Range Limits for Saturation ... 2-4
3-1. IA MMXTM Instruction 8ehavior with Prefixes Used by Application Programs 3-3
4-1. Effect of the FP and MMX Instructions on the FP Tag Word 4-7
4-2. Effects of MMXTM Instruction on FP State4-8
A-1. IA MMX Instruction Set Summary, Grouped into Functional Categories A-2
8-1. Encoding of Granularity of Data (gg) Field .. 8-1
8-2. Encoding of 32-bit General Purpose (reg) Field for Register-to-Register

Operations ... 8-2
8-3. Encoding of 64-bit MMXTM Register (mmxreg) Field ... 8-2
8-4. IA MMX Instruction Formats and Encodings ... 8-3
C-1. IA MMXTM Instruction Set Mnemonics ... C-1
D-1. Opcode Map (First 8yte is (OFH) ... D-3
D-2. Opcodes Determined by 8its 5, 4, 3 of Mod RIM 8yte ... D-5

Examples

Example Title Page
3-1. Partial sequence of IA MMXTM technology detection by CPUID 3-4
3-2. Floating-point and MMXTM Code .. 3-7

vi

I

Introduction to the
Intel Architecture
MMXTM Technology

I

1

CHAPTER 1
INTRODUCTION TO THE INTEL ARCHITECTURE

MMXTM TECHNOLOGY

1.1. ABOUT THE INTEL ARCHITECTURE MMXTM TECHNOLOGY

The media extensions for the Intel Architecture CIA) were designed to enhance performance
of advanced media and communication applications. The MMXTM technology provides a
new level of performance to computer platforms by adding new instructions and defining
new 64-bit data types, while preserving compatibility with software and operating systems
developed for the Intel Architecture.

The MMX technology introduces new general-purpose instructions. These instructions
operate in parallel on multiple data elements packed into 64-bit quantities. They perform
arithmetic and logical operations on the different data types. These instructions accelerate the
performance of applications with compute-intensive algorithms that perform localized,
recurring operations on small native data. This includes applications such as motion video,
combined graphics with video, image processing, audio synthesis, speech synthesis and
compression, telephony, video conferencing, 2D graphics, and 3D graphics

The IA MMX instruction set has a simple and flexible software model with no new mode or
operating-system visible state. The MMX instruction set is fully compatible with all Intel
Architecture microprocessors. All existing software continues to run correctly, without
modification, on microprocessors that incorporate the MMX technology, as well as in the
presence of existing and new applications that incorporate this technology.

1.1.1. Single Instruction, Multiple Data (SIMD) Technique

The MMX technology uses the Single Instruction, Multiple Data (SIMD) technique. This
technique speeds up software performance by processing multiple data elements in parallel,
using a single instruction. The MMX technology supports parallel operations on byte, word,
and doubleword data elements, and the new quadword (64-bit) integer data type.

I
1-1

INTRODUCTION TO THE INTEL ARCHITECTURE MMXTM TECHNOLOGY intet
1.1.2. Performance Improvement
Modern media, communications, and graphics applications now include sophisticated
algorithms that perform recurring operations on small data types. The MMX technology
directly addresses the need of these applications. For example, most audio data is represented
in 16-bit (word) quantities. The MMX instructions can operate on four of these words
simultaneously with one instruction. Video and graphics information is commonly
represented as palletized 8-bit (byte) quantities; one MMX instruction can operate on eight of
these bytes simultaneously.

1.2. ABOUT THIS MANUAL

It is assumed that the reader is familiar with the Intel Architecture software model and
Assembly language programming.

This manual describes the IA MMX instruction set and introduces the architectural features,
instruction set, data types, data formats, application programming model, and system
programming model of the MMX technology. It also explains how to use the new
instructions to significantly increase the performance of applications.

In this context, architecture refers to the conceptual structure and functional behavior of
MMX technology as seen by a programmer, but not the logical organization or performance
aspects of the actual implementation.

This manual is organized into five chapters, including this chapter (Chapter 1), and four
appendices:

Chapter 1-Introduction to the Intel Architecture MMXTM Technology

Chapter 2--Intel Architecture MMXTM Technology Features: This chapter provides an
overview of the IA MMX technology and its new features.

Chapter 3-Application Programming Model: This chapter describes the software
conventions and architecture of the IA MMX technology. It defines the steps for writing
MMXcode.

Chapter 4-System Programming Model: This chapter discusses interfacing with the
operating system and compatibility with Intel Architecture.

Chapter 5-Intel Architecture MMXTM Instruction Set: This chapter details the
instructions, mnemonics, and instruction notations. A full description including graphical
representations of the new instructions is presented.

Appendix A-IA MMXTM Instruction Set Summary: This appendix summarizes the
instructions by functional groups.

1-2 I

INTRODUCTION TO THE INTEL ARCHITECTURE MMXTM TECHNOLOGY

Appendix B-IA MMXTM Instruction Formats and Encodings: This appendix lists the
instruction formats and encodings. It also lists a detailed break-down of the instruction
operations and the supported data types.

Appendix C-Alphabeticallist of IA MMXTM Instruction Set Mnemonics: This appendix
summarizes operand types, encodings in hexadecimal, and the formats used.

Appendix D-IA MMXTM Instruction Set Opcode Map: This appendix provides a detailed
encoding table of opcode mappings.

1.3. RELATED DOCUMENTATION

Refer to the following documentation for more information related to Intel Architecture:

Pentium® Processor Family Developer's Manual, Volume 3: Architecture and Programming
Manual. Intel Corporation, Order Number 240897.

Pentium® Pro Processor Developer's Manual, Volumes 2 and 3. Intel Corporation, Order
Numbers 242691 and 242692.

Intel Architecture MM)(fM Technology Developers' Manual - Intel Corporation, Order
Number 243010.

Refer to Intel's corporate website for the latest information on related documentation:

http://www.intel.com

I
1-3

Intel Architecture
MMXTM Technology
Features

I

2

int'el.,
CHAPTER 2

INTEL ARCHITECTURE MMXTM TECHNOLOGY
FEATURES

This chapter provides a general overview of the architectural features of the Intel
Architecture MMXTM technology.

2.1. NEW FEATURES
MMX technology provides the following new features, while maintaining backward
compatibility with all existing Intel Architecture microprocessors, IA applications, and
operating systems.

• New data types

• Eight MMX registers

• Enhanced instruction set

The performance of applications which use these new features of MMX technology can be
enchanced.

2.2. NEW DATA TYPES
The principal data type of the IA MMX technology is the packed fixed-point integer. The
decimal point of the fixed-point values is implicit and is left for the user to control for
maximum flexibility.

The IA MMX technology defines the following four new 64-bit data types (See Figure 2-1):

Packed byte Eight bytes packed into one 64-bit quantity

Packed word

Packed doubleword

Quadword

I

Four words packed into one 64-bit quantity

Two doublewords packed into one 64-bit quantity

One 64-bit quantity

2-1

INTEL ARCHITECTURE MMXTM TECHNOLOGY FEATURES inlel.,
Packed bytes (8x8 bits)

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

I I I I I I I I I

Packed word (4x16 bits)

63 48 47 32 31 16 15 0

I I I I I

Packed doublewords (2x32 bits)

63 32 31 0

I I I

Quadword (64 bits)

63 0

I I
3000002

Figure 2-1. Packed Data Types

2.3. MMXTM REGISTERS

The IA MMX technology provides eight 64-bit, general-purpose registers. These registers are
aliased on the floating-point registers. The operating system handles the MMX technology as
it would handle floating-point. (See Section 4.3 for more details on register aliasing.)

The MMX registers can hold packed 64-bit data types. The MMX instructions access the
MMX registers directly using the register names MMO to MM7 (See Figure 2-2).

MMX registers can be used to perform calculations on data. They cannot be used to address
memory; addressing is accomplished by using the integer registers and standard IA
addressing modes.

2-2 I

i ntel ® INTEL ARCHITECTURE MMXTM TECHNOLOGY FEATURES

63 0

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MMO

3006044

Figure 2-2. MMXTM Register Set

2.4. EXTENDED INSTRUCTION SET

The IA MMX instruction set supplies a rich set of instructions that operate on all data
elements of a packed data type, in parallel. The MMX instructions can operate on either
signed or unsigned data elements.

The MMX instructions implement two new principles (discussed in section 2.4.2.):

• Operations on packed data

• Saturation arithmetic

2.4.1. Packed Data

The MMX instructions can operate on groups of eight bytes, four words, and two
doublewords. These groups of 64 bits are referred to as packed data. The same 64 bits of data
can be treated as anyone of the packed data types. Data is cast by the type specified by the
instruction.

For example, the PADDB (Add Packed Bytes) instruction adds two groups of eight packed
bytes. The PADDW (Add Packed Words) instruction, which adds packed words, could

I 2-3

INTEL ARCHITECTURE MMXTM TECHNOLOGY FEATURES in1:et
operate on the same 64 bits as the PADDB instruction treating the 64 bits as four 16-bit
words.

2.4.2. Saturation Arithmetic and Wrap Around

The MMX technology supports a new arithmetic capability known as saturating arithmetic.
Saturation is best defined by contrasting it with wraparound mode.

In wraparound mode, results that overflow or underflow are truncated and only the lower
(least significant) bits of the result are returned. That is, the carry is ignored.

In saturation mode, results of an operation that overflow or underflow are clipped (saturated)
to a data-range limit for the data type (see Table 2-1). The result of an operation that exceeds
the range of a data-type saturates to the maximum value of the range. A result that is less
than the range of a data type saturates to the minimum value of the range. This is useful in
many cases, such as color calculations.

For example, when the result exceeds the data range limit for signed bytes, it is saturated to
Ox7F (OxFF for unsigned bytes). If a value is less than the data range limit, it is saturated to
Ox80 for signed bytes (OxOO for unsigned bytes).

Saturation provides a useful feature of avoiding wraparound artifacts. In the example of color
calculations, saturation causes a color to remain pure black or pure white without allowing
for an inversion.

Table 2-1. Data Range Limits for Saturation

Lower Limit Upper Limit

Signed Hexadecimal Decimal Hexadecimal Decimal

Byte 80H -128 7FH 127

Word 8000H -32,768 7FFFH 32,767

Unsigned

Byte OOH 0 FFH 255

Word OOOOH 0 FFFFH 65,535

MMX instructions do not indicate overflow or underflow occurrence by generating
exceptions or setting flags.

2-4 I

int:et INTEL ARCHITECTURE MMXTM TECHNOLOGY FEATURES

2.4.3. Instruction Group Overview

This section provides an overview of the MMX instruction groups. See Chapter 5 for detailed
information on the instructions, including information on encoding, operation, and
exceptions.

The fifty-seven new MMX instructions are grouped into these categories:

• Arithmetic Instructions

• Comparison Instructions

• Conversion Instructions

• Logical Instructions

• Shift Instructions

• Data Transfer Instructions

• Empty MMX State (EMMS) Instruction

2.4.3.1. ARITHMETIC INSTRUCTIONS

Packed Addition and Subtraction

The PADD (Packed Add) and PSUB (Packed Subtract) instructions add or subtract the signed
or unsigned data elements of the source operand to or from the destination operand in wrap
around mode. These instructions support packed byte, packed word, and packed doubleword
data types.

The P ADDS (Packed Add with Saturation) and PSUBS (Packed Subtract with Saturation)
instructions add or subtract the signed data elements of the source operand to or from the
signed data elements of the destination operand and saturate the result to the limits of the
signed data-type range. These instructions support packed byte and packed word data types.

The PADDUS (Packed Add Unsigned with Saturation) and PSUBUS (Packed Subtract
Unsigned with Saturation) instructions add or subtract the unsigned data elements of the
source operand to or from the unsigned data elements of the destination operand and saturate
the result to the limits of the unsigned data-type range. These instructions support packed
byte and packed word data types.

Packed Multiplication

Packed multiplication instructions perform four multiplications on pairs of signed 16-bit
operands, producing 32-bit intermediate results. Users may choose the low-order or high
order parts of each 32-bit result.

I 2-5

INTEL ARCHITECTURE MMXTM TECHNOLOGY FEATURES inlel.,
The PMULHW (Packed Multiply High) and PMULL W (Packed Multiply Low) instructions
multiply the signed words of the source and destination operands and write the high-order or
low-order 16 bits of each of the results to the destination operand.

Packed Multiply Add

The PMADDWD (Packed Multiply and Add) instruction calculates the products of the signed
words of the source and destination operands. The four intermediate 32-bit doubleword
products are summed in pairs to produce two 32-bit doubleword results.

2.4.3.2. COMPARISON INSTRUCTIONS

The PCMPEQ (Packed Compare for Equal) and PCMPGT (Packed Compare for Greater
Than) instructions compare the corresponding data elements in the source and destination
operands for equality or value greater than, respectively. These instructions generate a mask
of ones or zeros which are written to the destination operand. Logical operations can use the
mask to select elements. This can be used to implement a packed conditional move operation
without a branch or a set of branch instructions. No flags are set.

These instructions support packed byte, packed word and packed doubleword data types.

2.4.3.3. CONVERSION INSTRUCTIONS

Pack and Unpack

The Pack and Unpack instructions perform conversions between the packed data types.

The PACKSS (Packed with Signed Saturation) instruction converts signed words into signed
bytes or signed doublewords into signed words, in signed saturation mode.

The PACKUS (Packed with Unsigned Saturation) instruction converts signed words into
unsigned bytes, in unsigned saturation mode.

The PUNPCKH (Unpack High Packed Data) and PUNPCKL (Unpack Low Packed Data)
instructions convert bytes to words, words to doublewords, or doublewords to quadwords.

2.4.3.4. LOGICAL INSTRUCTIONS

The PAND (Bitwise Logical And), P ANDN (Bitwise Logical And Not), POR (Bitwise
Logical OR), and PXOR (Bitwise Logical Exclusive OR) instructions perform bitwise logical
operations on 64-bit quantities.

2-6 I

i ntel ® INTEL ARCHITECTURE MMXTM TECHNOLOGY FEATURES

2.4.3.5. SHIFT INSTRUCTIONS

The logical shift left, logical shift right and arithmetic shift right instructions shift each
element by a specified number of bits. The logical left and right shifts also enable a 64-bit
quantity (quadword) to be shifted as one block, assisting in data type conversions and
alignment operations.

The PSLL (Packed Shift Left Logical) and PSRL (Packed Shift Right Logical) instructions
perform a logical left or right shift, and fill the empty high or low order bit positions with
zeros. These instructions support packed word, packed doubleword, and quad word data
types.

The PSRA (Packed Shift Right Arithmetic) instruction performs an arithmetic right shift,
copying the sign bit into empty bit positions on the upper end of the operand. This instruction
supports packed word and packed doubleword data types.

2.4.3.6. DATA TRANSFER INSTRUCTIONS

The MOVD (Move 32 Bits) instruction transfers 32 bits of packed data from memory to
MMX registers and visa versa, or from integer registers to MMX registers and visa versa.

The MOVQ (Move 64 Bits) instruction transfers 64-bits of packed data from memory to
MMX registers and vise versa, or transfers data between MMX registers.

2.4.3.7. EMMS (EMPTY MMXTM STATE) INSTRUCTION

The EMMS instruction empties the MMX state. This instruction must be used to clear the IA
MMX state (empty the floating-point tag word) at the end of an MMX routine before calling
other routines that can execute floating-point instructions.

2.4.4. Instruction Operand

All MMX instructions, except the EMMS instruction, reference and operate on two operands:
the source and destination operands. The right operand is the source and the left operand is
the destination. The destination operand may also be a second source operand for the
operation. The instruction overwrites the destination operand with the result.

For example, a two-operand instruction would be decoded as:

DEST(left operand) f-- DEST (left operand) OP SRC (right operand)

The source operand for all the MMX instructions (except the data transfer instructions), can
reside either in memory or in an MMX register. The destination operand resides in an MMX
register.

I
2-7

INTEL ARCHITECTURE MMXTM TECHNOLOGY FEATURES intel ..
For data transfer instructions, the source and destination operands can also be an integer
register (for the MOVD instruction) or memory location (for both the MOVD and MOVQ
instructions).

2.5. COMPATIBILITY
The IA MMX state is aliased upon the IA floating-point state. No new state or mode is added
to support the MMX technology. The same floating-point instructions that save and restore
the floating-point state also handle the IA MMX state (for example, during context
switching).

MMX technology uses the same interface techniques between the floating-point architecture
and the operating system (primarily for task switching purposes). For more detail, see
Section 4.1.

2-8 I

Application
Programming Model

I

3

CHAPTER 3
APPLICATION PROGRAMMING MODEL

This chapter describes the application programming environment as seen by compiler writers
and assembly-language programmers. It also describes the architectural features which
directly affect applications.

3.1. DATA FORMATS

3.1.1. Memory Data Formats
The Intel Architecture MMXTM technology introduces new packed data types, each 64 bits
long. The data elements can be:

• eight packed, consecutive 8-bit bytes

• four packed, consecutive 16-bit words

• two packed, consecutive 32-bit doublewords

The 64 bits are numbered 0 through 63. Bit 0 is the least significant bit (LSB), and bit 63 is
the most significant bit (MSB).

The low-order bits are the lower part of the data element and the high-order bits are the upper
part of the data element. For example, a word contains 16 bits numbered 0 through 15, the
byte containing bits 0-7 of the word is called the low byte, and the byte containing bits 8-15
is called the high byte.

Bytes in a multi-byte format have consecutive memory addresses. The ordering is always
little endian. That is, the bytes with the lower addresses are less significant than the bytes
with the higher addresses.

I
3-1

APPLICATION PROGRAMMING MODEL inleL

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Byte 7 I Byte 6 I Byte 5 I Byte 4 I Byte 3 I Byte 2 I Byte 1 I Byte 0

.. ~

Memory Address 1008h Memory Address 1000h

300G045

Figure 3-1. Eight Packed Bytes in Memory (at address 1000H)

3.1.2. IA MMXTM Register Data Formats

Values in IA MMX registers have the same format as a 64-bit quantity in memory. MMX
registers have two data access modes: 64-bit access mode and 32-bit access mode.

The 64-bit access mode is used for 64-bit memory access, 64-bit transfer between MMX
registers, all pack, logical and arithmetic instructions, and some unpack instructions.

The 32-bit access mode is used for 32-bit memory access, 32-bit transfer between integer
registers and MMX registers, and some unpack instructions.

3.1.3. IA MMXTM Instructions and the Floating-Point Tag Word

After each MMX instruction, the entire floating-point tag word is set to Valid (OOs). The
Empty MMX State (EMMS) instruction sets the entire floating-point tag word to Empty
(11s).

Section 4.3.2. describes the effects of floating-point and MMX instructions on the floating
point tag word. For details on floating-point tag word, refer to the Pentium® Processor
Family Developer's Manual, Volume 3, Section 6.2.1.4.

3-2 I

in1:el® APPLICATION PROGRAMMING MODEL

3.2. PREFIXES

Table 3-1 details the effect of a prefix on IA MMX instructions.

Table 3-1. IA MMXTM Instruction Behavior with Prefixes Used by Application Programs

Prefix Type The Effect of Prefix on IA MMXTM Instructions

Address size (67H) Affects IA MMX instructions with a memory operand.

Ignored by IA MMX instructions without a memory operand.

Operand size (66H) Ignored.

Segment override Affects IA MMX instructions with a memory operand.

Ignored by IA MMX instructions without a memory operand.

Repeat Ignored.

Lock (FOH) Generates an invalid opcode exception.

See the Pentium® Processor Family Developer's Manual, Volume 3, Section 3.4. for
information related to prefixes.

3.3. WRITING APPLICATIONS WITH IA MMXTM CODE

3.3.1. Detecting IA MMXTM Technology Existence Using the
CPUID Instruction

Use the CPUID instruction to determine whether the processor supports the IA MMX
instruction set (refer to the Pentium® Processor Family Developer's Manual, Volume 3,
Chapter 25, for more detail on the CPUID instruction). When the IA MMX technology
support is detected by the CPUID instruction, it is signaled by setting bit 23 (lA MMX
technology bit) in the feature flags to 1. In general, two versions of the routine can be
created: one with scalar instructions and one with MMX instructions. The application will
call the appropriate routine depending on the results of the CPUID instruction. If MMX
technology support is detected, then the MMX routine is called; if no support for the MMX
technology exists, the application calls the scalar routine.

I

NOTE

The CPUID instruction will continue to report the existence of the IA MMX
technology if the CRO.EM bit is set (which signifies that the CPU is
configured to generate exception Int 7 that can be used to emulate floating

3-3

APPLICATION PROGRAMMING MODEL int:et
point instructions). In this case, executing an MMX instruction results in an
invalid opcode exception.

Example 3-1 illustrates how to use the CPUID instruction. This example does not represent
the entire CPUID sequence, but shows the portion used for IA MMX technology detection.

Example 3-1. Partial sequence of IA MMXTM technology detection by CPUID

; identify existence of CPUID instruction

; identify Intel processor

mov EAX, 1 ; request for feature flags
CPUID ; OFh, OA2h CPUID instruction
test EDX, 00800000h ; Is IA MMX technology bit (Bit 23 of EDX) in feature flags set?
jnz MMX_ Technology_Found

3.3.2. The EMMS Instruction

When integrating the MMX routine into an application running under an existing operating
system (OS), programmers need to take special precautions, similar to those when writing
floating-point (FP) code.

When an MMX instruction executes, the floating-point tag word is marked valid (OOs).
Subsequent floating-point instructions that will be executed may produce unexpected results
because the floating-point stack seems to contain valid data. The EMMS instruction marks
the floating-point tag word as empty. Therefore, it is imperative to use the EMMS instruction
at the end of every MMX routine.

The EMMS instruction must be used in each of the following cases:

• Application utilizing FP instructions calls an MMX technology library/DLL

• Application utilizing MMX instructions calls a FP library/DLL

• Switch between MMX code in a task/thread and other tasks/threads in cooperative
operating systems.

If the EMMS instruction is not used when trying to execute a floating-point instruction, the
following may occur:

• Depending on the exception mask bits of the floating-point control word, a floating
point exception event may be generated.

3-4 I

APPLICATION PROGRAMMING MODEL

• A "soft exception" may occur. In this case floating-point code continues to execute, but
generates incorrect results. This happens when the floating-point exceptions are masked
and no visible exceptions occur. The internal exception handler (microcode, not user
visible) loads a NaN (Not a Number) with an exponent of 11 .. 11B onto the floating-point
stack. The NaN is used for further calculations, yielding incorrect results.

• A potential error may occur only if the operating system does NOT manage floating
point context across task switches. These operating systems are usually cooperative
operating systems. It is imperative that the EMMS instruction execute at the end of all
the MMX routines that may enable a task switch immediately after they end execution
(explicit yield API or implicit yield API).

3.3.3. Interfacing with IA MMXTM Technology Procedures and
Functions

The MMX technology enables direct access to all the MMX registers. This means that all
existing interface conventions that apply to the use of other general registers such as EAX,
EBX will also apply to the MMX register usage.

An efficient interface might pass parameters and return values via the pre-defined MMX
registers, or a combination of memory locations (via the stack) and MMX registers. This
interface would have to be written in assembly language since passing parameters through
MMX registers is not currently supported by any existing C compilers. Do not use the EMMS
instruction when the interface to the MMX code has been defined to retain values in the
MMX register.

If a high-level language, such as C, is used, the data types could be defined as a 64-bit
structure with packed data types.

When implementing usage of IA MMX instructions in high level languages other approaches
can be taken, such as:

• Passing MMX type parameters to a procedure by passing a pointer to a structure via the
integer stack.

• Returning a value from a function by returning the pointer to a structure.

3.3.4. Writing Code with IA MMXTM and Floating-Point
Instructions

The MMX technology aliases the MMX registers on the floating-point registers. The main
reason for this is to enable MMX technology to be fully compatible and transparent to

I
3-5

APPLICATION PROGRAMMING MODEL inlet
existing software environments (operating systems and applications). This way operating
systems will be able to include new applications and drivers that use the IA MMX
technology.

An application can contain both floating-point and MMX code. However, the user is
discouraged from causing frequent transitions between MMX and floating-point instructions
by mixing MMX code and floating-point code.

3.3.4.1. RECOMMENDATIONS AND GUIDELINES

Do not mix MMX code and floating-point code at the instruction level for the following
reasons:

• The TOS (top of stack) value of the floating-point status word is set to 0 after each MMX
instruction. This means that the floating-point code loses its pointer to its floating-point
registers if the code mixes MMX instructions within a floating-point routine.

• An MMX instruction write to an MMX 64-bit register writes ones (11s) to the exponent
part of the corresponding floating-point register.

• Floating-point code that uses register contents that were generated by the MMX
instructions may cause floating-point exceptions or incorrect results. These floating-point
exceptions are related to undefined floating-point values and floating-point stack usage.

• All MMX instructions (except EMMS) set the entire tag word to the valid state (OOs in
all tag fields) without preserving the previous floating-point state.

• Frequent transitions between the MMX and floating-point instructions may result in
significant performance degradation in some implementations.

If the application contains floating-point and MMX instructions, follow these guidelines:

• Partition the MMX technology module and the floating-point module into separate
instruction streams (separate loops or subroutines) so that they contain only instructions
of one type.

• Do not rely on register contents across transitions.

• When the MMX state is not required, empty the MMX state using the EMMS instruction.

• Exit the floating-point code section with an empty stack.

3-6 I

intet APPLICATION PROGRAMMING MODEL

Example 3-2. Floating-point and MMXTM Code

FP _code:

(*Ieave the FP stack empty*)

EMMS (*mark the FP tag word as empty*)
FP _code 1:

(*Ieave the FP stack empty*)

3.3.5. Multitasking Operating System Environment
An application needs to identify the nature of the multitasking operating system on which it
runs. Each task retains its own state which must be saved when a task switch occurs. The
processor state (context) consists of the integer registers and floating-point and MMX
registers.

Operating systems can be classified into two types:

• Cooperative multitasking operating system

• Preemptive multitasking operating system

The behavior of the two operating system types in context switching is described in
Section 4.1.1.

3.3.5.1. COOPERATIVE MULTITASKING OPERATING SYSTEM

Cooperative multitasking operating systems do not save the FP or MMX state when
performing a context switch. Therefore, the application needs to save the relevant state
before relinquishing direct or indirect control to the operating system.

3.3.5.2. PREEMPTIVE MULTITASKING OPERATING SYSTEM

Preemptive multitasking operating systems are responsible for saving and restoring the FP
and MMX state when performing a context switch. Therefore, the application does not have
to save or restore the FP and MMX state.

I
3-7

APPLICATION PROGRAMMING MODEL

3.3.6. Exception Handling in IA MMXTM Application Code

MMX instructions generate the same type of memory-access exceptions as other Intel
Architecture instructions. Some examples are: page fault, segment not present, and limit
violations. Existing exception handlers can handle these types of exceptions. They do not
have to be modified.

Unless there is a pending floating-point exception, MMX instructions do not generate
numeric exceptions. Therefore, there is no need to modify existing exception handlers or add
new ones.

If a floating-point exception is pending, the subsequent MMX instruction generates a
numeric error exception (lnt 16 and/or FERR#). The MMX instruction resumes execution
upon return from the exception handler.

3.3.7. Register Mapping

The IA MMX registers and their tags are mapped to physical locations of the floating-point
registers and their tags. Register aliasing and mapping is described in more detail in
Section 4.3.1.

3-8 I

System Programming
Model

I

4

inlet
CHAPTER 4

SYSTEM PROGRAMMING MODEL

This chapter presents the interface of the Intel Architecture MMXTM technology to the
operating system.

4.1. CONTEXT SWITCHING
This section describes the behavior of operating systems during context switching.

Different operating systems take different approaches for state-saving:

• Some operating systems save the entire floating-point state.

• Some save the floating-point state only when it is required.

• Some may save a partial floating-point state.

The existing task switch code for IA implementations (including floating-point code) does
not change for systems that include MMX code.

4.1.1. Cooperative Multitasking Operating System

In a cooperative operating system, application tasks can predetermine when it is about to be
switched out. Tasks can prepare in advance for the switch.

Application programmers must know whether the operating system performs a state save or
whether it is their responsibility to perform a state save.

4.1.2. Preemptive Multitasking Operating System

In a preemptive multitasking operating system, the application cannot know when it is
preempted. Applications cannot prepare in advance for task switching. The operating system
is responsible for saving and restoring the state when necessary.

The IA MMX technology was defined to support the same state-saving and restoring
techniques as the floating-point state-saving and restoring techniques. Existing operating
systems can continue to run without modifications.

I 4-1

SYSTEM PROGRAMMING MODEL

Figure 4-1 illustrates an example of an operating system implementing floating-point or
MMX state saving.

Detecting when to save the FP or MMX state needs to be saved is the same process used for
detecting when the floating-point state needs to be saved. If CRO.TS=1 (task switch bit in
control register 0), then the next ~ or MMX instruction generates exception Int 7.

1. The operating system maintains a save area for each task (Save Areas A and B in
Figure 4-1).

2. It defines a variable that indicates which task "owns" the FP or MMX state.

3. On a task switch, the OS sets the CRO.TS to 1 if the incoming task does not own the FP
or MMX state. Otherwise, it sets it to O.

4. If a new task attempts to use an MMX instruction, (while CRO.TS=1), exception Int 7 is
generated. The Int 7 handler ("owned" by the operating system) saves the FP or MMX
state to the save area of the FP or MMX state owner and restores the FP or MMX state
from the save area of the current task.

5. The ownership of the FP or MMX state then changes to the current task and CRO.TS=O.

4-2

Application
Operating System

FP and MMX state
Save Area A

FP and MMX state
Save Area B

CRO. TS = 1 and FP or MMX Inst.

INT7

If incoming task !="FP and FSAVE HFP and MMX state owner" task are
MMX state owner" "FP and

MMX
state

owner"

CRO.TS = 1

Else

CRO.TS = 0

Task Switch Code

FRESTOR current-task-area

CRO.TS = 0

"FP and MMX state owner" = current task

INT 7 Handler

Figure 4-1. Example of FP and MMX State Saving in Operating System

3006008

I

int'et SYSTEM PROGRAMMING MODEL

4.2. EXCEPTIONS
MMX instructions do not generate numeric exceptions or affect the processor architecture
status flags. Previously pending floating-point numeric errors are reported.

The MMX instructions can generate the following exceptions:

• Memory access exceptions:

#SS Interrupt 12 - Stack exception

#GP Interrupt 13 - General Protection

#PF Interrupt 14 - Page Fault

#AC Interrupt 17 - Alignment Check, if enabled by CPU configuration.

• System exceptions:

#UD Interrupt 6 - Invalid Opcode

Executing an MMX instruction when CRO.EM=1 generates an Invalid Opcode exception.

#NM Interrupt 7 - Device not available. The TS bit in CRO is set.

• Pending floating-point error:

#MF Interrupt 16 - Pending floating-point error

• Other exceptions that occur indirectly due to faulty execution of the above exceptions.
For example: Interrupt 12 occurs due to MMX instructions, and the interrupt gate directs
the processor to invalid TSS (task state segment).

The MMX instructions are accessible from all operation modes of IA: Protected mode, Real
address mode, and Virtual 8086 mode.

I
4-3

SYSTEM PROGRAMMING MODEL

4.3. COMPATIBILITY WITH EXISTING SOFTWARE
ENVIRONMENTS

4.3.1. Register Aliasing
The MMX state is aliased on the floating-point state:

int'et

• MMX registers MMO-MM7 are aliased on the 64-bit mantissas of the floating-point
register (See Figure 4-2).

• A value written to an MMX register using MMX instructions also appears in one of the
eight floating-point registers (bits 63-0). The exponent field of the corresponding
floating-point register (bits 78-64) and its sign bit (bit 79) are set to ones (lIs).

• The mantissa of a floating-point value written to a floating-point register by floating
point instructions also appears in an MMX register.

4-4 I

int:et

'00 I

I

I
FPTag

,
,

,
, ,

,
, , ,

,
,

,

13

I TOS

I

, , , ,
,

I

I

I , ,
, ,
,

,

,

, ,
, ,

, ,

,

MM7

MMO

,

11

I
63

SYSTEM PROGRAMMING MODEL

I Status
Word

0

ST7 I

I
,

, ,
,
~ , ,

,
, ,

, ,
, , , ,

,
, ,

,
, ,

, ,
, , ,

ST9' ,

,
,

,
,

,

~ TOS=O

3006046

Figure 4-2. Aliasing of MMXTM to Floating-Point Registers

4-5

SYSTEM PROGRAMMING MODEL intel®
MMX registers map to the physical locations of floating-point registers. MMX register
mapping is fixed and does not change when the TOS (Top Of Stack field in the floating-point
status word, bits 11-13) changes.

The value of the TOS is set to 0 after each MMX instruction.

In the floating-point context, STn refers to the relative location of a FP register, n, to the
TOS. However, the FP tag bits refer to the physical locations of the FP register. The MMX
registers always refer to the physical location.

In Figure 4-3, the inner circle refers to the physical location of the FP and MMX registers.
The outer circle refers to FP register's relative location to the current TOS.

When the TOS=O (case a in Figure 4-3), STO points to the physical location 0 on the floating
point stack. MMO maps to STO, MMI maps to ST1, and so on.

When the TOS=2 (case b in Figure 4-3), STO points to the physical location 2. MMO maps to
ST6, MMI maps to ST7, MM2 maps to STO, and so on.

ST=STO

ST2

Case a: TOS=O Case b: TOS=2

Outer circle = FP register's logical location relative to TOS
Inner circle = FP tags = MMX register's location = FP register's physical location

Figure 4-3. Mapping of MMXTM Registers to Floating Point Registers

4-6 I

intet® SYSTEM PROGRAMMING MODEL

4.3.2. The Effect of Floating-Point and MMXTM Instructions on
the Floating-Point Tag Word

Using an MMX instruction (except EMMS) validates (sets to OOs) the entire floating-point
tag word.

The EMMS instruction sets the entire FP tag bits register to empty (lIs in each tag field).

FSA VE and FSTENV instructions read the FP tag word and store the contents of the FP tag
word in memory. Executing these instructions calculates the precise values of the FP tag
word fields based on the current contents of the registers. After executing these instructions,
all tag bit values are valid for MMX instructions: Valid, Zero, Special, Empty. The value of
the FP tag word does not affect the MMX registers or execution of MMX instructions.

Table 4-1 summarizes the effect of FP or MMX instructions and FSA VEl FSTENV
instructions on the tag bit fields in an FP or MMX register and defines their value in memory.

Table 4-1. Effect of the FP and MMX Instructions on the FP Tag Word

Calculated FP Tag

Word in Memory After

Instruction Type Instruction Tag Bits FSAVEIFSTENV

MMXTM All (except EMMS) All registers' tags are 00,01,10
set to zeros (00).

MMX EMMS All registers' tags are 11
set to ones (11).

FP All (except FRSTOR, Individual register tag is Each register's tags are
FLDENV) set to 00 or 11. set to 00, 11, 01 or 10.

FP FRSTOR, FLDENV All registers' tags are Each register's tags are
set to 00 or 11 or 01 or setto 00, 11,01 or 10.
10.

I
4-7

SYSTEM PROGRAMMING MODEL inlet
4.3.2.1. ALIASING SUMMARY

Table 4-2 summarizes the effects of the MMX instructions on the floating-point state.

Table 4-2. Effects of MMXTM Instruction on FP State

Other FP
Environment

(CW, Data Ptr, Exponent Bits +
Instruction TOS Code Ptr, Other Signed Bit of Mantissa Part

Type FPTag Word (SW13 .. 11) Fields) MMn (r9 .. 64) of MMn (63 .. 00)

MMX register All fields set to 000 Unchanged Unchanged Unchanged
read from MMX 00 (Valid)
register (MMn)

MMX register All fields set to 000 Unchanged Set to ones (11) Overwritten
write to MMX 00 (Valid)
register (MMn)

EMMS All fields set to 000 Unchanged Unchanged Unchanged
11 (Empty)

Note: MMn refers to one MMX register.

4.3.3. Context Switch Support
If the task switch bit (TS) in control register 0 (CRO) is set (CRO.TS=I), the first FP or MMX
instruction that executes will trigger Int 7, Device not available (DNA). Causing a DNA fault
enables an operating system to save the context of the FP or MMX registers with the same
code currently used to save the FP state. Both the FSAVE (Store FP state) and FRS TOR
(Restore FP state) instructions are used to save and restore either the FP or MMX state.

See Section 4.1. for more details on context switching.

4.3.4. Floating-Point Exceptions

When floating-point exceptions are enabled and a FP exception is pending, subsequent MMX
instruction execution reports an FP error (Int 16 and/or FERR# signal). The pending
exception is handled by the FP exception handler. Execution resumes at the interrupted
MMX instruction.

Before the MMX instruction is executed, the FP state is maintained and is visible to the FP
exception handler.

See Section 3.3.6 for more detail.

4-8 I

intel® SYSTEM PROGRAMMING MODEL

4.3.5. Debugging

The debug features for Intel Architecture implementations operate in the same manner on the
MMX instruction set. This enables debuggers to debug code that uses the MMX technology.

4.3.6. Emulation of the Instruction Set

There is no emulation support for microprocessors that support the MMX technology.

The eRG.EM bit used to emulate floating-point instructions cannot be used in the same way
for MMX instruction emulation. If an MMX instruction executes when the eRG.EM bit is
set, an invalid opcode exception (Int 6) is generated.

4.3.7. Exception handling in Operating Systems

This section specifies system exceptions. Exception handling in MMX code is discussed in
Section 3.3.6.

An invalid opcode exception (Int 6) can occur due to MMX instruction execution two cases:

• On implementations that do not support IA MMX technology.

• When eRG.EM= 1 and an MMX instruction is executed.

The eRG.EM bit is used to emulate the FP instructions in software. In this case, the operating
system does not save the FP hardware state on task switches and does not save the MMX
state. An invalid opcode exception is generated to flag this event to the operating system,
and prevent application errors from occurring.

I 4-9

Intel Architecture
MMXTM Instruction
Set

I

5

CHAPTER 5
INTEL ARCHITECTURE MMXTM INSTRUCTION

SET

This chapter presents the Intel Architecture MMXTM instructions in alphabetical order, with a
full description of each instruction.

The IA MMX technology defines fifty-seven new instructions. The instructions are grouped
into the following functional categories:

• Arithmetic Instructions

• Comparison Instructions

• Conversion Instructions

• Logical Instructions

• Shift Instructions

• Data Transfer Instructions

• Empty MMX State (EMMS) Instruction

Appendix A summarizes the MMX instructions grouped by categories of related functions.
Appendix B provides instruction formats and encodings, and Appendix C provides an
alphabetical list of instruction mnemonics, their source data types, encodings in hexadecimal,
and format. Appendix D provides an Opcode Map of the MMX instructions.

Many of the instructions have multiple variations depending on the data types they support.
Each variation has a different suffix. For example the PADD instruction has three variations:
PADDB, PADDW, and PADDD, where the letters B, W, and D represent byte, word, and
doubleword.

5.1. INSTRUCTION SYNTAX
Instructions vary by:

• Data type: packed bytes, packed words, packed doublewords or quadwords

• Signed - Unsigned numbers

• Wraparound - Saturate arithmetic

I
5-1

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

A typical MMX instruction has this syntax:

• Prefix: P for Packed

• Instruction operation: for example - ADD, CMP, or XOR

• Suffix:
US for Unsigned Saturation

S for Signed saturation

B, W, D, Q for the data type: packed byte, packed word, packed doubleword, or
quadword.

Instructions that have different input and output data elements have two data-type suffixes.
For example, the conversion instruction converts from one data type to another. It has two
suffixes: one for the original data type and the second for the converted data type.

This is an example of an instruction mnemonic syntax :

PADDUSW (Packed Add Unsigned with Saturation for Word)

P = Packed

ADD = the instruction operation

US = Unsigned Saturation

W = VVord

5.2. INSTRUCTION FORMAT

The IA MMX instructions use the existing IA instruction format. All instructions, except the
EMMS instruction, use the ModRIM format. All are preceded by the OF prefix byte. For
more details about the ModRIM format refer to Pentium® Processor Family Developer's
Manual Volume 3, Section 25.2.1.

For data-transfer instructions, the destination and source operands can reside in memory,
integer registers, or MMX registers. For all other IA MMX instructions, the destination
operands reside in MMX registers, and the source operands reside in memory, MMX
registers, or immediate operands.

All existing address modes are supported using the SIB (Scale Index Base) format.

5-2 I

inlet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

5.3. NOTATIONAL CONVENTIONS
The following conventions apply to all MMX instructions (except the EMMS instruction):

• The instructions reference and operate on two operands: the source and destination
operands. The right operand is the source and the left operand is the destination. The
destination operand may also supply one of the inputs for the operation. The instruction
overwrites the destination operand with the result.

• When one of the operands is a memory location, the linear address corresponds to the
address of the least significant byte of the referenced memory data.

• The MMX instructions do not affect the condition flags.

I 5-3

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlet
5.4. HOW TO READ THE INSTRUCTION SET PAGES
The following is an example of the format used for each MMX instruction description in this
chapter:

PSLL-Packed Shift Left Logical
Opcode

OF F1/r

Instruction

PSLLW mm, mmlm64

Description

Shift all words in MMX register to left by an amount
specified in MMX register/memory. while shifting in
zeros.

The above table gives the instruction mnemonic and a brief description of the mnemonic.
The columns content are explained below.

5-4

Opcode Column

The "Opcode" column provides the complete opcode produced for each form of the
instruction.

The codes are defined as hexadecimal bytes, in the same order in which they appear in
memory. Definitions of entries other than hexadecimal bytes are as follows:

• Idigit: (digit is between 0 and 7) indicates that the ModRIM byte of the instruction
uses only the rIm (register or memory) operand. The reg field contains the digit that
provides a technology to the instruction's opcode.

• Ir: indicates that the ModRIM byte of the instruction contains both a register
operand and an rIm operand.

• ib: a I-byte, immediate operand to the instruction that follows the opcode, ModRIM
bytes, and scale-indexing bytes. The opcode determines if the operand is a signed
value.

Instruction Column

The "Instruction" column contains the instruction syntax. The following is a list of the
symbols used to represent operands in the instruction statements:

•
•

imm8: an immediate byte value, imm8 is a signed number between -128 and +127
inclusive.

r/m32: a doubleword register or memory operand used for instructions whose
operand-size attribute is 32 bits.

I

inleL INTEL ARCHITECTURE MMXTM INSTRUCTION SET

• mmlm32: indicates the lowest 32 bits of an MMX register or a 32-bit memory
location.

• mmlm64: indicates a 64-bit MMX register or a 64-bit memory location.

Description Column

The "Description" column briefly explains the instruction activity.

Operation

The "Operation" section contains an algorithmic description of the operation performed by
the instruction.

The register name or memory location implies the contents of the register or memory.

The bit values are written from high-order to low-order and indicate the address within the
register or memory. The bit addresses are specified along with the register name or memory
location in brackets. For example mm(7 .. 0) represents the low-order 8 bits in an MMX
register.

The algorithms are composed of the following elements:

• Comments are enclosed with the symbol pairs "(*" and "*)".

• Compound statements are enclosed between the keywords of the "if' statement (IF,
THEN, ELSE).

• A f- B; indicates that the value of B is assigned to A.

• The symbols =, <>, >, <, ~,and::; are relational operators used to compare two values,
meaning equal, not equal, greater or equal, less or equal, respectively. A relational
expression such as A=B is TRUE if the value for A is equal to B; otherwise it is FALSE.

The following functions are used in the algorithmic descriptions:

•

•

I

ZeroExtend (value) returns a value zero-extended to the operand-size attribute of the
instruction. For example, if OperandSize = 32, ZeroExtend of a byte value of -10
converts the byte from F6H to double word with hexadecimal value OOOOOOF6H. If the
value passed to ZeroExtend and the operand-size attribute are the same size, ZeroExtend
returns the value unaltered.

SignExtend (value) returns a value sign-extended to the operand-size attribute of the
instruction. For example, if OperandSize = 32, SignExtend of a byte containing the
value -10 converts the byte from F6H to doubleword with hexadecimal value
FFFFFFF6H. If the value passed to SignExtend and the operand-size attribute are the
same size, SignExtend returns the value unaltered.

5-5

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlet
• SaturateSignedWordToSignedByte converts a signed 16-bit value to a signed 8-bit

value. If the signed 16-bit value is less than -128, it is represented by the saturated value
-128 (Ox80). If it is greater than 127, it is represented by the saturated value 127 (Ox7F).

• SaturateSignedDwordToSignedWord converts a signed 32-bit value to a signed 16-bit
value. If the signed 32-bit value is less than -32768, it is represented by the saturated
value -32768 (Ox8000). If it is greater than 32767, it is represented by the saturated value
32767 (Ox7FFF).

• SaturateSignedWordToUnsignedByte converts a signed 16-bit value to an unsigned
8-bit value. If the signed 16-bit value is less than zero it is represented by the saturated
value zero (OxOO).If it is greater than 255 it is represented by the saturated value 255
(OxFF).

• SaturateToSignedByte represents the result of an operation as a signed 8-bit value. If
the result is less than -128, it is represented by the saturated value -128 (Ox80). If it is
greater than 127, it is represented by the saturated value 127 (Ox7F).

• SaturateToSignedWord represents the result of an operation as a signed 16-bit value. If
the result is less than -32768, it is represented by the saturated value -32768 (Ox8000).If
it is greater than 32767, it is represented by the saturated value 32767 (Ox7FFF).

• SaturateToUnsignedByte represents the result of an operation as a signed 8-bit value. If
the result is less than zero it is represented by the saturated value zero (OxOO). If it is
greater than 255, it is represented by the saturated value 255 (OxFF).

• SaturateToUnsignedWord represents the result of an operation as a signed 16-bit value.
If the result is less than zero it is represented by the saturated value zero (OxOO).! If it is
greater than 65535, it is represented by the saturated value 65535 (OxFFFF).

Description

The "Description" section describes the operation for all variations of the instruction.

Example

The "Example" section contains a graphical representation of the instruction's functional
behavior.

Exceptions

The "Exceptions" section lists the exceptions in the three different modes: Protected mode,
Real Address mode, and Virtual-8086 mode.

5-6 I

inlet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Refer to Section 4.2 of this document for more detail on these exceptions. See also the
Pentium® Processor Family Manual, Volume 3, Section 9.4 and Chapter 14.

I
5-7

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlet
EMMS-Empty MMXTM State
Opcode

OF 77

Operation

TW f- OxFFFF;

Description

Instruction

EMMS

Description

Set the FP ta

The EMMS instruction sets the values of the floating-point (FP) tag word to empty (all ones).
EMMS marks the registers as available, so they can subsequently be used by floating-point
instructions.

If a floating-point instruction loads into one of the registers before it has been reset by the
EMMS instruction, a floating-point stack overflow can occur, which results in an FP
exception or incorrect result.

All other MMX instructions validate the entire FP tag word (all zeros).

NOTE

This instruction must be used to clear the MMX state at the end of all MMX
routines, and before calling other routines that may execute floating-point
instructions.

Figure 5-1 shows the format of the FP Tag Word.

Flags Affected

None.

5-8

Tag values: 00 = Valid
01 = Valid

Figure 5-1. Floating Point Tag Word Format

10 = Valid
11 = Empty

3006047

I

in1:el" INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Protected Mode Exceptions

#UD if eRO.EM = 1; #NM if TS bit in eRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

#UD if eRO.EM = 1; #NM if TS bit in eRO is set; #MF if there is a pending FPU exception.

Virtual 8086 Mode Exceptions

#UD if eRO.EM = 1; #NM if TS bit in eRO is set; #MF if there is a pending FPU exception.

I 5-9

INTEL ARCHITECTURE MMXTM INSTRUCTION SET intel ..
MOVD-Move 32 Bits
Opcode

OF 6E/r
OF7E/r

Operation

IF destination = mm
THEN

Instruction

MOVD mm, r/m32
MOVD r/m32 mm

mm(63 .. 0) ~ ZeroExtend(r/m32);
ELSE

r/m32 f- mm(31 .. 0);

Description

Description

Move 32 bits from integer register/memory to MMX register.
Move 32 bits from MMX reqister to inteqer reqister/memorv.

The MOVD instruction copies 32 bits from the source operand to the destination operand.

The destination and source operands can be either MMX registers, 32-bit memory operands,
or 32-bit integer registers. The MOVD cannot transfer data from an MMX register to an
MMX register, from memory to memory, or from an integer register to an integer register.

When the destination operand is an MMX register, the 32-bit source operand is written to the
low-order 32 bits of the 64-bit destination register. The destination register is zero-extended
to 64 bits.

When the source operand is an MMX register, the low-order 32 bits of the MMX register are
written to the 32-bit integer register or 32-bit memory location.

5-10 I

int'eL
Example

MOVD m32, mm

MOVD mm, r32

Flags Affected

None.

r-
31 0

I b3 b2: b 1 bol r32

Protected Mode Exceptions

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

63 32 31 0
~ I 00000000 I b3 b2; b1 bo I

mm

:J006010

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is
a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I 5-11

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlel..
MOVQ-Move 64 Bits
Opcode

OF 6F /r
OF7F /r

Operation

I F destination = mm
THEN

mm ~mm/m64;
ELSE
mm/m64~mm;

Description

Instruction

MOVa mm, mm/m64
MOVa mm/m64 mm

Description

Move 64 bits from MMX register/memory to MMX register.
Move 64 bits from MMX register to MMX register/memory.

The MOVQ instruction copies 64 bits from the source operand to the destination operand.

The destination and source operands can be either MMX registers or 64-bit memory
operands. The MOVQ instruction cannot transfer data from memory to memory.

When the destination is an MMX register and the source is a 64-bit memory operand, the
64 bits of data at the memory location are copied into the MMX register.

When the destination is a 64-bit memory operand and the source is an MMX register, the
64 bits of data are copied from the MMX register into the memory location.

When the destination and source are both MMX registers, the contents of the MMX register
(source) are copied into an MMX register (destination).

Example

5-12

MOVQ mm, m64

___ ---.~ 63 4847 3231 1615 0
15 rQ"""" I b71 b61 b51 b41 b31 b21 b11 bol

b7 b6

b5 b4

b3 b2

b1 bO

WN+3

WN+2

WN+1

W N+04~--- m64

mm

3006013

I

inlet
Flags Affected

None.

Protected Mode Exceptions

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

#GP(O) if the destination is in a non writable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is
a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I 5-13

INTEL ARCHITECTURE MMXTM INSTRUCTION SET in1:el®
PACKSSWB IPACKSSDW-Pack with Signed Saturation
Opcode

OF 63/r

OF 68 /r

Operation

Instruction Description

PACKSSWB mm, mrnlm64 Pack and saturate signed words from MMX register and MMX
register/memory into signed bytes in MMX register.

PACKSSDW mm, mrnlm64 Pack and saturate signed dwords from MMX register and MMX
reQister/memory into siQned words in MMX reQister.

IF instruction is PACKSSWB
THEN {

mm{7 .. 0) ~ SaturateSignedWordToSignedByte mm(15 .. 0);
mm(15 .. 8) ~ SaturateSignedWordToSignedByte mm(31 .. 16);
mm(23 .. 16) ~ SaturateSignedWordToSignedByte mm(47 .. 32);
mm{31 .. 24) ~ SaturateSignedWordToSignedByte mm(63 . .48);
mm(39 .. 32) ~ SaturateSignedWordToSignedByte mm/m64(15 .. 0);
mm{47 . .40) ~ SaturateSignedWordToSignedByte mm/m64{31 .. 16);
mm{55 . .48) ~ SaturateSignedWordToSignedByte mm/m64{47 .. 32);
mm{63 .. 56) ~ SaturateSignedWordToSignedByte mm/m64(63 . .48);
}

ELSE {(* instruction is PACKSSDW *)
mm(15 .. 0) ~ SaturateSignedDwordToSignedWord mm(31 .. 0);
mm{31 .. 16) ~ SaturateSignedDwordToSignedWord mm(63 .. 32);
mm{47 .. 32) ~ SaturateSignedDwordToSignedWord mm/m64{31 .. 0);
mm{63 . .48) ~ SaturateSignedDwordToSignedWord mm/m64(63 .. 32);
}

Description

The PACKSS instruction packs and saturates the signed data elements from the source and
the destination operands and writes the signed results to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The P ACKSSWB instruction packs four signed words from the source operand and four
signed words from the destination operand into eight signed bytes in the destination register.
If the signed value of a word is larger or smaller than the range of a signed byte, the value is
saturated (in the case of an overflow - to Ox7F, and in the case of an underflow - to Ox80).

The PACKSSDW instruction packs two signed doublewords from the source operand and
two signed doublewords from the destination operand into four signed words in the
destination register. If the signed value of a doubleword is larger or smaller than the range of

5-14 I

inlet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

a signed word, the value is saturated (in the case of an overflow - to Ox7FFF, and in the case
of an underflow - to Ox8000).

Example

Flags Affected

None.

Protected Mode Exceptions

PACKSSDW mm, mm/m64
mm/m64 mm

3006012

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I 5-15

INTEL ARCHITECTURE MMXTM INSTRUCTION SET int:eL
PACKUSWB-Pack with Unsigned Saturation
Opcode

OF 67/r

Operation

Instruction Description

PACKUSWB mm, mmim64 Pack and saturate signed words from MMX register and MMX
register/memory into unsianed bytes in MMX reqister.

mm(7 .. 0) ~ SaturateSignedWordToUnsignedByte mm(15 .. 0);
mm(15 .. 8)~ SaturateSignedWordToUnsignedByte mm(31 .. 15);
mm(23 .. 16) ~ SaturateSignedWordToUnsignedByte mm(47 .. 32);
mm(31 .. 24) ~ SaturateSignedWordToUnsignedByte mm(63 . .48);
mm(39 .. 32) ~ SaturateSignedWordToUnsignedByte mm/m64(15 .. 0);
mm(47 . .40) ~ SaturateSignedWordToUnsignedByte mm/m64(31 .. 16);
mm(55 . .48) ~ SaturateSignedWordToUnsignedByte mm/m64(47 .. 32);
mm(63 .. 56) ~ SaturateSignedWordToUnsignedByte mm/m64(63 . .48);

Description:

The P ACKUSWB packs and saturates four signed words of the source operand and four
signed words of the destination operand into eight unsigned bytes. The result is written to the
destination operand

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

If the signed value of the word is larger or smaller than the range of an unsigned byte, the
value is saturated (in the case of an overflow - to OxFF and in the case of an underflow - to
OxOO).

5-16 I

inlet
Example

Flags Affected

None.

Protected Mode Exceptions

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

3000014

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I
5-17

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlel.,

PADDB/PADDW/PADDD-Packed Add
Opcode

OF Fe /r

OF FD /r

OF FE/r

Operation

Instruction

PADDB mm, mmlm64

PADDW mm, mmlm64

PADDD mm, mmlm64

IF instruction is PADDB
THEN {

Description

Add packed byte from MMX register/memory to packed byte in
MMX register.
Add packed word from MMX register/memory to packed word in
MMX register.
Add packed dword from MMX register/memory to packed dword in
MMX reqister.

mm(7 .. 0} ~ mm(7 .. 0} + mm/m64(7 .. 0};
mm(15 .. 8} ~ mm(15 .. 8} + mm/m64(15 .. 8};
mm(23 .. 16) ~ mm(23 .. 16}+ mm/m64(23 .. 16};
mm(31 .. 24} ~ mm(31 .. 24} + mm/m64(31 .. 24};
mm(39 .. 32) ~ mm(39 .. 32} + mm/m64(39 .. 32};
mm(47 . .40) ~ mm(47 . .40}+ mm/m64(47 . .40};
mm(55 . .48} ~ mm(55 . .48} + mm/m64(55 . .48};
mm(63 .. 56} ~ mm(63 .. 56} + mm/m64(63 .. 56};
}

IF instruction is PADDW
THEN {

mm(15 .. 0} ~ mm(15 .. 0) + mm/m64(15 .. 0};
mm(31 .. 16) ~ mm(31 .. 16} + mm/m64(31 .. 16};
mm(47 .. 32} ~ mm(47 .. 32) + mm/m64(47 .. 32};
mm(63 . .48} ~ mm(63 . .48) + mm/m64(63 . .48};
}

ELSE { (* instruction is PADDD *)
mm(31 .. 0} ~ mm(31 .. 0) + mm/m64(31 .. 0);
mm(63 .. 32) ~ mm(63 .. 32) + mm/m64(63 .. 32);
}

Description

The PADD instructions add the data elements of the source operand to the data elements of
the destination register. The result is written to the destination register. If the result exceeds
the data-range limit for the data type, it wraps around.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

5-18 I

inlet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

The PAD DB instruction adds the bytes of the source operand to the bytes of the destination
operand and writes the results to the MMX register. When the result is too large to be
represented in a packed byte (overflow), the result wraps around and the lower 8 bits are
written to the destination register.

The PADDW instruction adds the words of the source operand to the words of the destination
operand and writes the results to the MMX register. When the result is too large to be
represented in a packed word (overflow), the result wraps around and the lower 16 bits are
written to the destination register.

The P ADDD instruction adds the doublewords of the source operand to the doublewords of
the destination operand and writes the results to the MMX register. When the result is too

. large to be represented in a packed doubleword (overflow), the result wraps around and the
lower 32 bits are written to the destination register.

Example

PADDW mm, mm/m64

mm 11000000000000000 1 0111111100111000 1

+ + + +
mm/m64~1 __________ ~ ________ ~11_1_11_1_11_1_1_11_1_11_1_1~lo_o_01_0_1_11_0_00_0_0_11_1~1

mm

Flags Affected

None.

I

10111111111111111 11001011000111111 1

3006015

5-19

INTEL ARCHITECTURE MMXTM INSTRUCTION SET in1:e1.,
Protected Mode Exceptions

#OP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or OS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

5-20 I

inlet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

PADDSB/PADDSW-Packed Add with Saturation
Opcode

OF EC /r

OF ED/r

Operation

Instruction Description

PADDSB mm, mmim64 Add signed packed byte from MMX register/memory to signed
packed byte in MMX register and saturate.

PADDSW mm, mmim64 Add signed packed word from MMX register/memory to signed
packed word in MMX register and saturate.

IF instruction is PADDSB
THEN{

mm(7 .. 0) ~ SaturateToSignedByte (mm(7 .. 0) + mm/m64 (7 .. 0)) ;
mm(15 .. 8) ~ SaturateToSignedByte (mm(15 .. 8) + mm/m64(15 .. 8));
mm(23 .. 16) ~ SaturateToSignedByte (mm(23 .. 16)+ mm/m64(23 .. 16));
mm(31 .. 24) ~ SaturateToSignedByte (mm(31 .. 24) + mm/m64(31 .. 24));
mm(39 .. 32) ~ SaturateToSignedByte (mm(39 .. 32) + mm/m64(39 .. 32));
mm(47 . .40) ~ SaturateToSignedByte (mm(47 . .40)+ mm/m64(47 . .40));
mm(55 . .48) ~ SaturateToSignedByte (mm(55 .. 48) + mm/m64(55 . .48));
mm(63 .. 56) ~ SaturateToSignedByte (mm(63 .. 56) + mm/m64(63 .. 56));
}

ELSE { (* instruction is PADDSW *)
mm(15 .. 0) ~ SaturateToSignedWord (mm(15 .. 0) + mm/m64(15 .. 0));
mm(31..16) ~ SaturateToSignedWord (mm(31 .. 16) + mm/m64(31 .. 16));
mm(47 .. 32) ~ SaturateToSignedWord (mm(47 .. 32) + mm/m64(47 .. 32));
mm(63 . .48) ~ SaturateToSignedWord (mm(63 . .48) + mm/m64(63 . .48));
}

Description

The PADDS instructions add the packed signed data elements of the source operand to the
packed signed data elements of the destination operand and saturate the result. The result is
written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PADDSB instruction adds the signed bytes of the source operand to the signed bytes of
the destination operand and writes the results to the MMX register. If the result is larger or
smaller than the range of a signed byte, the value is saturated (in the case of an overflow - to
Ox7F, and in the case of an underflow - to Ox80).

The PADDSW instruction adds the signed words of the source operand to the signed words
of the destination operand and writes the results to the MMX register. If the result is larger or

I 5-21

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

smaller than the range of a signed word, the value is saturated (in the case of an overflow - to
Ox7FFF, and in the case of an underflow - to Ox8000) .

Example

PADDSW mm, mm/m64

mm 11000000000000000 1 0111111100111000 ,

+ + + +
mm/m641~ ________ ~ __________ ~1_11_1_1_11_1_1_11_1_1_11_1_1~'~0_0_01_0_1_11_0_0_00_0_1_11~1

mm

Flags Affected

None.

Protected Mode Exceptions

11000000000000000 1 0111111111111111 1

3006016

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

5-22 I

inlet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

PADDUSB/PADDUSW-Packed Add Unsigned with
Saturation

Instruction Description Opcode

OF DC /r PADDUSB mm, mmlm64 Add unsigned packed byte from MMX register/memory to unsigned
packed byte in MMX register ana saturate.

OF DD /r PADDUSW mm, mmlm64 Add unsigned packed word from MMX register/memory to unsigned
packed word in MMX reqister and saturate.

Operation

IF instruction is PADDUSB
THEN{

mm(7 .. 0) r SaturateToUnsignedByte (mm(7 .. 0) + mm/m64 (7 .. 0));
mm(15 .. 8) r SaturateToUnsignedByte (mm(15 .. 8) + mm/m64(15 .. 8));
mm(23 .. 16) r SaturateToUnsignedByte (mm(23 .. 16)+ mm/m64(23 .. 16));
mm(31 .. 24) r SaturateToUnsignedByte (mm(31 .. 24) + mm/m64(31 .. 24));
mm(39 .. 32) r SaturateToUnsignedByte (mm(39 .. 32) + mm/m64(39 .. 32));
mm(47 . .40) r SaturateToUnsignedByte (mm(47 .. 40)+ mm/m64(47 . .40));
mm(55 . .48) r SaturateToUnsignedByte (mm(55 . .48) + mm/m64(55 . .48));
mm(63 .. 56) r SaturateToUnsignedByte (mm(63 .. 56) + mm/m64(63 .. 56));
}

ELSE { (* instruction is PADDUSW *)
mm(15 .. 0) r SaturateToUnsignedWord (mm(15 .. 0) + mm/m64(15 .. 0));
mm(31 .. 16) r SaturateToUnsignedWord (mm(31 .. 16) + mm/m64(31 .. 16));
mm(47 .. 32) r SaturateToUnsignedWord (mm(47 .. 32) + mm/m64(47 .. 32));
mm(63 . .48) r SaturateToUnsignedWord (mm(63 . .48) + mm/m64(63 . .48));
}

Description

The PADDUS instructions add the packed unsigned data elements of the source operand to
the packed unsigned data elements of the destination operand and saturate the results. The
results are written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PADDUSB instruction adds the unsigned bytes of the source operand to the unsigned
bytes of the destination operand and writes the results to the MMX register. When the result
is larger than the range of an unsigned byte (overflow), the value is saturated to OxFF. When
the result is smaller than the range of an unsigned byte (underflow), the value is saturated to
OxOO.

I 5-23

INTEL ARCHITECTURE MMXTM INSTRUCTION SET int:eL
The PADDUSW instruction adds the unsigned words of the source operand to the unsigned
words of the destination operand and writes the results to the MMX register. When the result
is larger than the range of an unsigned word (overflow), the value is saturated to OxFFFF.
When the result is smaller than the range of an unsigned word (underflow), the value is
saturated to OxOOOO.

Example

PADDUSB mm, mm/m64

mm 110000000 1 011111111 00111000 1

+ + + + + + + +
mm/m64~1 ____ ~ ____ ~ ____ ~ __ ~~ __ ~11_1_11_1_1_11~1~0_O_O_10_1_1_1~1 _OO_O_00_1_1~1 I

mm

Flags Affected

None.

Protected Mode Exceptions

..
111111111110010110 1 00111111 1

3006017

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or as
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

5-24 I

inlet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I
5-25

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlet
PAND-Bitwise Logical And

Opcode

OF DB Ir

Operation

Instruction

PAND mm mmlm64

mm f-mm AND mm/m64;

Description

The PAND instruction performs a bitwise logical AND on 64 bits of the source and
destination operands, and writes the result to the destination operand.

Each bit of the result of the PAND instruction is set to 1 if the corresponding bits of the
operands are 1. Otherwise, it is set to O.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

PAND mm, mm/m64

mm I 1111111111111000000000000000010110110101100010000111011101110111

&
mm/m641 0001000011011001010100000011000100011110111011110001010110010101

mm I 0001000011011000000000000000000100010100100010000001010100010101

Flags Affected

None.

Protected Mode Exceptions

3006019

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;

5-26 I

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I
5-27

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlet
PANDN-Bitwise Logical And Not

Instruction Description Opcode

OF DF /r PANDN mm, mmlm64 Invert the 64 bits in MMX register, AND inverted MMX register
with MMX register/memory.

Operation

mm (-(NOT mm) AND mm/m64;

Description

The P ANDN instruction performs a bitwise logical NOT on the 64 bits of the destination
operand. The NOT inverts each of the 64 bits of the destination register so that every 1
becomes a 0, and visa versa.

The instruction then performs a bitwise logical AND on the inverted 64 bits of the
destination operand and on the source operand. Each bit of the result of the AND instruction
is set to 1 if the corresponding bits are 1. Otherwise, it is set to 0. The result is written to the
destination register.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

PANDN mm, mm/m64

mm /1111111111110000000000000000101101101010011101111000100010001000

&
mm/m64 /0100100101101010110001111000110110101111100010111111011011111100

mm /0000000000001010110001111000010010000101100010000111011001110100

Flags Affected

None.

5-28 I

inlet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I 5-29

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlel.,
PCMPEQB/PCMPEQW/PCMPEQD-Pacl<ed Compare for
Equal

Instruction Description Opcode

OF 74/r PCMPEQB mm, mmlm64 Compare packed byte in MMX register/memory with packed byte in
MMX register for equality.

07,75, /r

07,76, /r

Operation

PCMPEQW mm, mmlm64 Compare packed word in MMX register/memory with packed word
in MMX register for equality.

PCMPEQD mm, mmlm64 Compare packed dword in MMX register/memory with packed
dword in MMX register for equalitv.

IF instruction is PCMPEQB
THEN {

IF mm(7 .. 0) = mm/m64(7 .. 0)
THEN mm(7 0) ~ OxFF;
ELSE mm(7 .. 0) ~ 0;
IF mm(15 .. 8) = mm/m64(15 .. 8)
THEN mm(15 .. 8) ~ OxFF;
ELSE mm(15 .. 8) ~ 0;

IF mm(63 .. 56) = mm/m64(63 .. 56)
THEN mm(63 .. 56) ~ OxFF;
ELSE mm(63 .. 56) ~ 0;
}

ELSE IF instruction is PCMPEQW
THEN {

IF mm(15 .. 0) = mm/m64(15 .. 0)
THEN mm(15 .. 0) ~ OxFFFF;
ELSE mm(15 .. 0) ~ 0;
IF mm(31 .. 16) = mm/m64(31 .. 16)
THEN mm(31 .. 16) ~ OxFFFF;
ELSE mm(31 .. 16) ~ 0;

IF mm(63 . .48) = mm/m64(63 . .48)
THEN mm{63 . .48) ~ OxFFFF;
ELSE mm{63 . .48) ~ 0;
}

5-30 I

inlet
ELSE { (* instruction is PCMPEQD *)

IF mm(31 .. 0) = mm/m64(31 .. 0)
THEN mm(31 .. 0} f- OxFFFFFFFF;
ELSE mm(31 .. 0} f- 0;
IF mm(63 .. 32) = mm/m64(63 .. 32)
THEN mm(63 .. 32} f- OxFFFFFFFF;
ELSE mm(63 .. 32} f- 0;
}

Description

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

The PCMPEQ instructions compare the data elements in the destination operand to the
corresponding data elements in the source operand. If the data elements are equal, the
corresponding data element in the destination register is set to all ones. If they are not equal,
the corresponding data element is set to all zeros.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PCMPEQB instruction compares the bytes in the destination operand to the bytes in the
source operand. The bytes in the destination operand are set accordingly.

The PCMPEQW instruction compares the words in the destination operand to the words in
the source operand. The words in the destination operand are set accordingly.

The PCMPEQD instruction compares the doublewords in the destination operand to the
doublewords in the source operand. The doublewords in the destination operand are set
accordingly.

I
5-31

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlet
Example

PCMPEQW mm, mm/m64

mm I 0000000000000000100000000000000011 0000000000000111101110001110001111

mm/m64100000000000000001000000000000000010111000111000111101110001110001111

True False False True
...

mm '111111111111111111 000000000000000010000000000000000111111111111111111

Flags Affected

None:

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

5-32 I

in1:el® INTEL ARCHITECTURE MMXTM INSTRUCTION SET

PCMPGTB/PCMPGTW/PCMPGTD-Packed Compare for
Greater Than

Instruction Description Opcode

OF 64/r PCMPGTB mm, mmlm64 Compare packed byte in MMX register with packed byte in MMX
register/memory for greater value.

OF 65/r PCMPGTW mm, mmlm64 Compare packed word in MMX register with packed word in MMX
register/memory for greater value.

OF 66/r PCMPGTD mm, mmlm64 Compare packed dword in MMX register with packed dword in MMX
reqister/memorv for qreater value.

Operation

IF instruction is PCMPGTB
THEN {

IF mm(7 .. 0) > mm/m64(7 .. 0)
THEN mm(7 0) f- OxFF;
ELSE mm(7 .. 0) f- 0;
IF mm(15 .. 8) > mm/m64(15 .. 8)
THEN mm(15 .. 8) f- OxFF;
ELSE mm(15 .. 8) f- 0;

IF mm(63 .. 56} > mm/m64(63 .. 56)
THEN mm(63 .. 56) f- OxFF;
ELSE mm(63 .. 56} f- 0;
}

ELSE IF instruction is PCMPGTW
THEN {

IF mm(15 .. 0) > mm/m64(15 .. 0)
THEN mm(15 .. 0} f- OxFFFF;
ELSE mm(15 .. 0) f-O;
IF mm(31..16} > mm/m64(31 .. 16}
THEN mm(31 .. 16} f- OxFFFF;
ELSE mm(31 .. 16} f- 0;

IF mm(63 . .48} > mm/m64(63 . .48}
THEN mm(63 . .48) f- OxFFFF;
ELSE mm(63 . .48} f- 0;
}

ELSE { (* instruction is PCMPGTD *)
IF mm(31 .. 0} > mm/m64(31 .. O}
THEN mm(31 .. 0} f- OxFFFFFFFF;
ELSE mm(31 .. 0} f- 0;
IF mm(63 .. 32) > mm/m64(63 .. 32)

I
5-33

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

THEN mm{63 .. 32) f- OxFFFFFFFF;
ELSE mm{63 .. 32) f- 0;
}

Description

inlel.,

The PCMPGT instructions compare the signed data elements in the destination operand to
the signed data elements in the source operand. If the signed data elements in the destination
register are greater than those in the source operand, the corresponding data element in the
destination operand is set to all ones. Otherwise, it is set to all zeros.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PCMPGTB instruction compares the signed bytes in the destination operand to the
corresponding signed bytes in the source operand. The bytes in the destination register are set
accordingly.

The PCMPGTW instruction compares the signed words in the destination operand to the
corresponding signed words in the source operand. The words in the destination register are
set accordingly.

The PCMPGTD instruction compares the signed doublewords in the destination operand to
the corresponding signed words in the source operand. The doublewords in the destination
register are set accordingly.

5-34 I

inlet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Example

PCMPGTW mm, mm/m64

mm 1000000000000000010000000000000001 1 0000000000000111 10111000111000111 1

> > > >
mm/m6410000000000000000 10000000000000000 10111000111000111 10111000111000111 1

False True False False
+ +

mm

Flags Affected

None.

Protected Mode Exceptions

0000000000000000

3006021

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I
5-35

INTEL ARCHITECTURE MMXTM INSTRUCTION SET in1:el®
PMADDWD-Packed Multiply and Add

Instruction Description Opcode

OF F5/r PMADDWD mm, mrnlm64 Multiply the packed word in MMX register by the packed word in
MMX reg/memory. Add the 32-bit results pairwise and store in MMX
register as dword

Operation

mm(31 .. 0) ~ mm(1S .. 0) * mm/m64(1S .. 0) + mm(31 .. 16) * mm/m64(31 .. 16);
mm(63 .. 32) ~ mm(47 .. 32) * mm/m64(47 .. 32) + mm(63 . .48) * mm/m64(63 . .48);

Description

The PMADDWD instruction multiplies the four signed words of the destination operand by
the four signed words of the source operand. The result is two 32-bit doublewords. The two
high-order words are summed and stored in the upper doubleword of the destination operand.
The two low-order words are summed and stored in the lower doubleword of the destination
operand. This result is written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PMADDWD instruction wraps around to Ox80000000 only when all four words of both
the source and destination operands are Ox8000.

5-36

I

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Example

PMADDWD mm, mm/m64

mm 1011100011100011110111000111000111 1

* * * *
mm/m64~1 __________ ~ ________ ~11_0_00_0_00_0_00_0_0_00_0~01~00_0_0_01_0_00_0_00_0_0~001

mm

Flags Affected

None.

Protected Mode Exceptions

'---v----'
+

11100100011100011 10011100000000001

3006023

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I
5-37

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

PMULHW-Packed Multiply High
Instruction Description Opcode

OF E5/r PMULHW mm, mmlm64 Multiply the signed packed word in MMX register with the signed
packed word in MMX reg/memory, then store the high-order 16 bits of
the results in MMX reQister.

Operation

mm(15 .. 0) f- (mm(1.5 .. 0) * mm/m64(15 .. 0)) (31..16);
mm(31 .. 16}f- (mm(31 .. 16) * mm/m64(31 .. 16} } (31 .. 16);
mm(47 .. 32) f- (mm(47 .. 32) * mm/m64(47 .. 32)) (31 .. 16);
mm(63 . .48) f- (mm(63 . .48) * mm/m64(63 . .48)) (31 .. 16);

Description

The PMULHW instruction multiplies the four signed words of the destination operand with
the four signed words of the source operand. The high-order 16 bits of the 32-bit intermediate
results are written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

PMULHW mm, mm/m64

mm /0111000111000111 /01110001110001111

* * * *
mm/m64~1 __________ ~ ________ ~1_10_0_00_0_0_00_0_0_00_0_00~lo_oo_o_o_10_0_0_00_0_0_00~9

mm

Flags Affected

None.

5-38

High Order High Order High Order High Order
/1100011100011100100000001110001111

I

inlet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I 5-39

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlel.,
PMULLW-Packed Multiply Low

Instruction Description Opcode

OF D5/r PMULLW mm, mmlm64 Multiply the packed word in MMX register with the packed word in
MMX reg/memory, then store the low-order 16 bits of the results in
MMX register.

Operation

mm(15 .. 0) f- (mm(15 .. 0) * mm/m64(15 .. 0)) (15 .. 0);
mm(31 .. 16) f- (mm(31 .. 16) * mm/m64(31 .. 16)) (15 .. 0);
mm(47 .. 32) f- (mm(47 .. 32) * mm/m64(47 .. 32)) (15 .. 0);
mm(63 .. 48) f- (mm(63 .. 48) * mm/m64(63 .. 48)) (15 .. 0);

Description

The PMULL W instruction multiplies the four signed or unsigned words of the destination
operand with the four signed or unsigned words of the source operand. The low-order 16 bits
of the 32-bit intermediate results are written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

PMULLW mm, mm/m64

mm 10111000111000111 101110001110001111

* * * *
mm/m64~1 ____ ~----~~--~~~11-0-00-0-00-0~0-00-0-0-00-0~I-o-oo-o-o_10~0~00~0_0_00_0~01

Low Order Low Order Low Order Low Order
mm 110000000000000001 00011100000000001

:lOO6025

Flags Affected

None.

5-40 I

intel® INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I
5-41

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlet
POR-Bitwise Logical Or

Opcode

OF EB/r

Operation

Instruction

POR mm mrn/m64

mm ~mm OR mm/m64;

Description

The POR instruction performs a bitwise logical OR on 64 bits of the destination and source
operands, and writes the result to the destination register.

Each bit of the result is set to 0 if the corresponding bits of the two operands are O.
Otherwise, the bit is 1.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

POR mm, mm/m64

mm 1111111111111100000000000000001011011010110001 0000111011101110111 I
I

mm/m64100010000110110010101000000110001000111101110111100010101100101011

mm 1111111111111001010100000011010110111111111011110111011111110111

3006024

Flags Affected

None.

5-42 I

inlet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I
5-43

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlet
PSLLW/PSLLD/PSLLQ-Packed Shift Left Logical
Opcode

OF F1/r

OF 71/6, ib
OF F2/r

OF72/6 ib
OF F3/r

OF 73/6 ib

Operation

Instruction

PSLLW mm, mrnlm64

PSLLW mm, immB
PSLLD mm, mrnlm64

PSLLD mm, immB
PSLLQ mm, mrnlm64

PSLLQ mm, immB

IF the second operand is imm8
THEN

temp ~ imm8;
ELSE (* second operand is mm/m64 *)

temp ~ mm/m64;
IF instruction is PSLLW
THEN {

mm(1S .. 0) ~ mm(1S .. 0) « temp;
mm(31 .. 16) ~ mm(31 .. 16) « temp;
mm(47 .. 32) ~ mm(47 .. 32) « temp;
mm(63 . .48) ~ mm(63 . .48) « temp;
}

ELSE IF instruction is PSLLD
THEN {

mm(31 .. 0) ~ mm(31 .. 0) « temp;
mm(63 .. 32) ~ mm(63 .. 32) « temp;
}

ELSE (* instruction is PSLLQ *)
mm ~ mm « temp;

Description

Description

Shift words in MMX register left by amount specified in MMX
reg/memory, while shifting in zeros.
Shift words in MMX register left by Imm8, while shifting in zeros.
Shift dwords in MMX register left by amount specified in MMX
reg/memory, while shifting in zeros.
Shift dwords in MMX register by Imm8, while shifting in zeros ..
Shift MMX register left by amount specified in MMX reg/memory,
while shifting in zeros.
Shift MMX register left by Imm8 while shifting in zeros.

The PSLL instructions shift the bits of the first operand to the left by the amount of bits
specified in the count operand. The result of the shift operation is written to the destination
register. The empty low-order bits are cleared (set to zero). If the value specified by the
second operand is greater than 15 (for words), 31 (for doublewords), or 63 (for quadwords),
then the destination is set to all zeros.

The destination operand is an MMX register. The count operand (source operand) can be
either an MMX register, a 64-bit memory operand, or an immediate 8-bit operand.

5-44 I

inleL INTEL ARCHITECTURE MMXTM INSTRUCTION SET

The PSLL W instruction shifts each of the four words of the destination register to the left by
the number of bits specified in the count operand. The low-order bit positions (of each word)
are filled with zeros.

The PSLLD instruction shifts each of the two doublewords of the destination register to the
left by the number of bits specified in the count operand. The low-order bit positions (of each
doubleword) are filled with zeros.

The PSLLQ instruction shifts the 64-bit quadword in the destination register to the left by the
number of bits specified in the count operand. The low-order bit positions are filled with
zeros.

Example

PSLLWmm,2

mm

shift left

mm

Flags Affected

None.

Protected Mode Exceptions

1111111111111100 0001000111000111

shift left shift left shift left

11111111111110000101000111000111001

3006026

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

I 5·45

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlet
Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

5-46 I

in1:el® INTEL ARCHITECTURE MMXTM INSTRUCTION SET

PSRAW/PSRAD-Packed Shift Right Arithmetic
Opcode

OF E1/r

Instruction

PSRAW mm, mmlm64

Description

Shift words in MMX register right by amount specified in MMX
reg/memory while shifting in sign bits.

OF 71/4 ib
OF E2/r

PSRAW mm, immB
PSRAD mm, mmlm64

Shift words in MMX register right by ImmB while shifting in sign bits
Shift dwords in MMX register right by amount specified in MMX
reg/memory while shifting in sign bits.

OF 72 14 ib PSRAD mm immB Shift dwords in MMX reQister riQht by ImmB while shiftinq in siqn bits.

Operation

IF the second operand is imm8
THEN

temp f- imm8;
ELSE (* second operand is mm/m64 *)

temp f- mm/m64;
IF instruction is PSRAW
THEN {

mm(1S .. 0) f- SignExtend (mm(1S .. 0) »temp);
mm(31 .. 16) f- Sign Extend (mm(31 .. 16»> temp);
mm(47 .. 32) f- Sign Extend (mm(47 .. 32) » temp);
mm(63 .. 48) f- SignExtend (mm(63 .. 48) » temp);
}

ELSE { (*instruction is PSRAD *)
mm(31 .. 0) f- SignExtend (mm(31 .. 0) » temp);
mm(63 .. 32) f- SignExtend (mm(63 .. 32) » temp);
}

Description

The PSRA instructions shift the bits of the first operand to the right by the amount of bits
specified in the count operand. The result of the shift operation is written to the destination
register. The empty high-order bits of each element are filled with the initial value of the sign
bit of the data element. If the value specified by the second operand is greater than 15 (for
words), or 31 (for doublewords), each destination element is filled with the initial value of
the sign bit of the element.

The destination operand is an MMX register. The count operand (source operand) can be
either an MMX register, a 64-bit memory operand, or an immediate 8-bit operand.

I
5-47

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlel.,
The PSRA W instruction shifts each of the four words in the destination register to the right
by the number of bits specified in the count operand. The initial value of the sign bit of the
data elements in the destination operand is copied into the most significant bits of the data
element.

The PSRAD instruction shifts each of the two doublewords in the destination register to the
right by the number of bits specified in the count operand. The initial value of the sign bit of
the data elements in the destination operand is copied into the most significant bits of the
data element.

Example

PSRAWmm,2

mm

mm

Flags Affected

None.

shift right

Protected Mode Exceptions

1111111111111100 1101000111000111

shift right shift right shift right

11111111111111111 11111010001110001 1

3006048

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

5-48 I

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I
5-49

INTEL ARCHITECTURE MMXTM INSTRUCTION SET in1:et
PSRLW/PSRLD/PSRLQ-Packed Shift Right Logical
Opcode

OF D11r

OF 71/2 ib
OF D2/r

OF72/2 ib
OF D3/r

OF 73/2 ib

Operation

Instruction

PSRLW mm, mrnlm64

PSRLW mm, immB
PSRLD mm, mrnlm64

PSRLD mm, immB
PSRLQ mm, mrnlm64

PSRLQ mm immB

IF the second operand is immB
THEN

temp f- immB;
ELSE (* second operand is mm/m64 *)

temp f- mm/m64;
IF instruction is PSRLW
THEN {

mm(15 .. 0) f- mm(15 .. 0) » temp;
mm(31 .. 16) f- mm(31 .. 16) »temp;
mm(47 .. 32) f- mm(47 .. 32) »temp;
mm(63 . .4B) f- mm(63 . .4B) » temp;
}

ELSE IF instruction is PSRLD
THEN {

mm(31 .. 0) f- mm(31 .. 0) » temp;
mm(63 .. 32) f- mm(63 .. 32) » temp;
}

ELSE (* instruction is PSRLQ *)
mm f- mm » temp;

Description

Description

Shift words in MMX register right by amount specified in MMX
reg/memory while shifting in zeros.
Shift words in MMX register right by ImmB.
Shift dwords in MMX register right by amount specified in MMX
reg/memory while shifting in zeros.
Shift dwords in MMX register right by ImmB .
Shift MMX register right by amount specified in MMX reg/memory while
shifting in zeros.
Shift MMX reqister riqht by ImmB while shiftinq in zeros.

The PSRL instructions shift the bits of the first operand to the right by the amount of bits
specified in the count operand. The result of the shift operation is written to the destination
register. The empty high-order bits are cleared (set to zero). If the value specified by the
second operand is greater than 15 (for words), or 31 (for doublewords), or 63 (for
quadwords), then the destination is set to all zeros.

The destination operand is an MMX register. The count operand (source operand) can be
either an MMX register, a 64-bit memory operand, or an immediate 8-bit operand.

5-50 I

in1:el® INTEL ARCHITECTURE MMXTM INSTRUCTION SET

The PSRL W instruction shifts each of the four words in the destination register to the right
by the number of bits specified in the count operand. The empty high-order bits (of each
word) are filled with zeros.

The PSLLD instruction shifts each of the two doublewords in the destination register to the
right by the number of bits specified in the count operand. The empty high-order bits (of
each doubleword) are filled with zeros.

The PSLLQ instruction shifts the 64-bit quadword in the destination register to the right by
the number of bits specified in the count operand. The empty high-order bits are filled with
zeros.

Example

PSRLWmm,2

mm 1111111111111100 0001000111000111

shift right shift right shift right shift right

mm 10011111111111111100000100011100011

:lOO6027

Flags Affected

None.

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

I
5-51

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

5-52 I

inlet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

PSUBB/PSUBW/PSUBD-Packed Subtract
Opcode

OF Fa/r

Instruction

PSUBB mm, mrnlm64

Description

Subtract packed byte in MMX reg/memory from packed byte in
MMX register.

OF F9/r PSUBW mm, mrnlm64 Subtract packed word in MMX reg/memory from packed word in
MMX register.

OF FA/r PSUBD mm, mrnlm64 Subtract packed dword in MMX reg/memory from packed dword in
MMX reqister.

Operation

IF instruction is PSUBB
THEN {

mm(7 .. 0) ~ mm(7 .. 0) - mm/m64(7 .. 0);
mm(15 .. 8) ~ mm(15 .. 8) - mm/m64(15 .. 8);
mm(23 .. 16) ~ mm(23 .. 16) - mm/m64(23 .. 16);
mm(31 .. 24) ~ mm(31 .. 24) - mm/m64(31 .. 24);
mm(39 .. 32) ~ mm(39 .. 32) - mm/m64(39 .. 32);
mm(47 . .40) ~ mm(47 . .40) - mm/m64(47 . .40);
mm(55 . .48) ~ mm(55 . .48) - mm/m64(55 . .48);
mm(63 .. 56) ~ mm(63 .. 56) - mm/m64(63 .. 56);
}

IF instruction is PSUBW
THEN {

mm(15 .. 0) ~ mm(15 .. 0) - mm/m64(15 .. 0);
mm(31 .. 16) ~ mm(31 .. 16) - mm/m64(31 .. 16);
mm(47 .. 32) ~ mm(47 .. 32) - mm/m64(47 .. 32);
mm(63 . .48) ~ mm(63 . .48) - mm/m64(63 . .48);
}

ELSE { (* instruction is PSUBD *)
mm(31 .. 0) ~ mm(31 .. 0) - mm/m64(31 .. 0);
mm(63 .. 32) ~ mm(63 .. 32) - mm/m64(63 .. 32);
}

Description

The PSUB instructions subtract the data elements of the source operand from the data
elements of the destination operand. The result is written to the destination register. If the
result is larger or smaller than the data-range limit for the data type, it wraps around.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

I
5-53

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

The PSUBB instruction subtracts the bytes of the source operand from the bytes of the
destination operand. The result is written to the MMX register. When the result is too large
or too small to be represented in a byte, the result wraps around and the lower 8 bits are
written to the destination register.

The PSUBW instruction subtracts the words of the source operand from the words of the
destination operand. The result is written to the MMX register. When the result is too large
or too small to be represented in a word, the result wraps around and the lower 16 bits are
written to the destination register.

The PSUBD instruction subtracts the doublewords of the source operand from the
doublewords of the destination operand. The result is written to the MMX register. When the
result is too large or too small to be represented in a doubleword, the result wraps around and
the lower 32 bits are written to the destination register.

Example

PSUBW mm, mm/m64

mm 11000000000000000101111111001110001

mm/m641~ ________ ~ __________ ~lo_o_oo_0_00_0_0_00_0_00_0_1~1_11_1_01_0_0_01_1_1_11_0~011

mm

Flags Affected

None.

Protected Mode Exceptions

... ...
10111111111111111110010110001111111

3006028

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

5-54 I

inleL INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory.

I
5-55

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlet
PSUBSB/PSUBSW-Packed Subtract with Saturation

Instruction Description Opcode

OF E8/r PSUBSB mm, mmlm64 Subtract signed packed byte in MMX reg/memory from signed packed
byte in MMX register and saturate.

OF E9/r PSUBSW mm, mmlm64 Subtract signed packed word in MMX reg/memory from signed

Operation

IF instruction is PSUBSB
THEN{

J)acked word in MMX rEmister and saturate.

mm(7 .. 0) f- SaturateToSignedByte (mm(7 .. 0) - mm/m64 (7 .. 0));
mm(15 .. 8) f- SaturateToSignedByte (mm(15 .. 8) - mm/m64(15 .. 8));
mm(23 .. 16) f- SaturateToSignedByte (mm(23 .. 16) - mm/m64(23 .. 16));
mm(31 .. 24) f- SaturateToSignedByte (mm(31 .. 24) - mm/m64(31 .. 24));
mm(39 .. 32) f- SaturateToSignedByte (mm(39 .. 32) - mm/m64(39 .. 32));
mm(47 . .40) f- SaturateToSignedByte (mm(47 . .40) - mm/m64(47 . .40));
mm(55 . .48) f- SaturateToSignedByte (mm(55 . .48) - mm/m64(55 . .48));
mm(63 .. 56) f- SaturateToSignedByte (mm(63 .. 56) - mm/m64(63 .. 56))
}

ELSE { (* instruction is PSUBSW *)
mm(15 .. 0) f- SaturateToSignedWord (mm(15 .. 0) - mm/m64(15 .. 0));
mm(31 .. 16) f- SaturateToSignedWord (mm(31 .. 16) - mm/m64(31 .. 16));
mm(47 .. 32) f- SaturateToSignedWord (mm(47 .. 32) - mm/m64(47 .. 32));
mm(63 . .48) f- SaturateToSignedWord (mm(63 . .48) - mm/m64(63 . .48));
}

Description

The PSUBS instructions subtract the data elements of the source operand from the data
elements of the destination operand. The results are saturated to the limits of a signed data
element and written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PSUBB instruction subtracts the signed bytes of the source operand from the signed
bytes of the destination operand, and writes the results to the destination register. If the result
is larger or smaller than the range of a signed byte, the value is saturated; in the case of an
overflow - to Ox7F, and in the case of an underflow - to Ox80.

The PSUBW instruction subtracts the signed words of the source operand from the signed
words of the destination operand and writes the results to the destination register. If the result

5-56 I

intet INTEL ARCHITECTURE MMXTM INSTRUCTION SET

is larger or smaller than the range of a signed word, the value is saturated; in the case of an
overflow to Ox7FFF, and in the case of an underflow to Ox8000.

Example

PSUBSW mm, mm/m64

mm 11000000000000000101111111001110001

mm/m641~ __________ ~ ________ ~I_oo_o_0_00_0_0_00_0_0_00_0_1~11_1_10_1_0_00_1_1_11_1_0~011

mm

Flags Affected

None.

Protected Mode Exceptions

11000000000000000101 11 1111111111111

3006029

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I
5-57

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlet
PSUBUSB/PSUBSW-Packed Subtract Unsigned with
Saturation

Instruction Description Opcode

OF D8/r PSUBUSB mm, mrnlm64 Subtract unsigned packed byte in MMX reg/memory from unsigned
packed byte in MMX register and saturate.

OF D9/r PSUBUSW mm, mrnlm64

Operation

IF instruction is PSUBUSB
THEN{

Subtract unsigned packed word in MMX reg/memory from
unsigned~acked word in MMX reqister and saturate.

mm(7 .. 0) f- SaturateToUnsignedByte (mm(7 .. 0) - mm/m64 (7 .. 0));
mm(15 .. 8) f- SaturateToUnsignedByte (mm(15 .. 8) - mm/m64(15 .. 8»;
mm(23 .. 16) f- SaturateToUnsignedByte (mm(23 .. 16) - mm/m64(23 .. 16));
mm(31 .. 24) f- SaturateToUnsignedByte (mm{31 .. 24) - mm/m64{31 .. 24));
mm{39 .. 32) f- SaturateToUnsignedByte (mm{39 .. 32) - mm/m64{39 .. 32));
mm{47 . .40) f- SaturateToUnsignedByte (mm{47 . .40) - mm/m64{47 . .40));
mm{55 . .48) f- SaturateToUnsignedByte (mm{55 . .48) - mm/m64(55 . .48));
mm{63 .. 56) f- SaturateToUnsignedByte (mm(63 .. 56) - mm/m64(63 .. 56));
}

ELSE { (* instruction is PSUBUSW *)
mm{15 .. 0) f- SaturateToUnsignedWord (mm{15 .. 0) - mm/m64{15 .. 0));
mm{31 .. 16) f- SaturateToUnsignedWord (mm{31 .. 16) - mm/m64(31 .. 16));
mm{47 .. 32) f- SaturateToUnsignedWord (mm{47 .. 32) - mm/m64(47 .. 32));
mm{63 . .48) f- SaturateToUnsignedWord (mm{63 . .48) - mm/m64{63 . .48));
}

Description

The PSUBUS instructions subtract the data elements of the source operand from the data
elements of the destination register. The results are saturated to the limits of an unsigned data
element and written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PSUBUSB instruction subtracts the bytes of the source operand from the bytes of the
destination operand and writes the results to the destination register. If the result element is
less than zero (a negative value), it is saturated to OxOO.

The PSUBUSW instruction subtracts the words of the source operand from the words of the
destination operand and writes the results to the destination register. If the result element is
less than zero (a negative value), it is saturated to OxOOOO.

5-58 I

int:et INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Example

PSUBUSB mm, mm/m64

mm 1100000001011111111111110001

mm/m641~ ____ ~ ____ ~ ____ ~ __ ~~ __ ~1_11_1_11_1_1~11_00_0_1_01_1~11~00_0_0_01_1~11

mm

Flags Affected

None.

Protected Mode Exceptions

..
I oooooooq 011 01 00011111 00011

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I
5-59

INTEL ARCHITECTURE MMXTM INSTRUCTION SET in1:el"
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ-Unpack High
Packed Data

Opcode

OF 68/r

OF 69/r

OF 6A/r

Operation

Instruction Description

PUNPCKHBW mm, mrnlm64 Interleave bytes from the high halves of MMX register and MMX
reg/memory into MMX register.

PUNPCKHWD mm, mrnlm64 Interleave words from the high halves of MMX register and MMX
reg/memory into MMX register.

PUNPCKHDQ mm, mrnlm64 Interleave dwords from the high halves of MMX register and MMX
req/memorv into MMX reqister.

IF instruction is PUNPCKHBW
THEN {

mm{63 .. 56) ~ mm/m64{63 .. 56);
mm{55 . .48) ~ mm{63 .. 56);
mm{47 . .40) ~ mm/m64{55 . .48);
mm{39 .. 32) ~ mm{55 . .48);
mm{31 .. 24) ~ mm/m64{47 . .40);
mm{23 .. 16) ~ mm{47 . .40);
mm{15 .. 8) ~ mm/m64{39 .. 32);
mm{7 .. 0) ~ mm{39 .. 32);

ELSE IF instruction is PUNPCKHW
THEN {

mm{63 . .48) ~ mm/m64{63 . .48);
mm{47 .. 32) ~ mm{63 . .48);
mm{31 .. 16) ~ mm/m64{47 .. 32);
mm{15 .. 0) ~ mm{47 .. 32);
}

ELSE { (* instruction is PUNPCKHDQ *)
mm{63 .. 32) ~ mm/m64{63 .. 32);
mm{31 .. 0) ~ mm{63 .. 32)
}

Description

The PUNPCKH instructions unpack and interleave the high-order data elements of the
destination and source operands into the destination operand. The low-order data elements
are ignored.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

5-60 I

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

When unpacking from a memory operand, the full 64-bit operand is accessed from memory.
The instruction uses only the high-order 32 bits.

The PUNPCKHBW instruction interleaves the four high-order bytes of the source operand
and the four high-order bytes of the destination operand and writes them to the MMX
register.

The PUNPCKHWD instruction interleaves the two high-order words of the source operand
and the two high-order words of the destination operand and writes them to the MMX
register.

The PUNPCKHDQ instruction interleaves the high-order 32 bits of the doubleword of the
source operand and the high-order 32-bits of the doubleword of the destination operand and
writes them to the MMX register.

Note

If the source operand is all zeros, the result is a zero extension of the high order elements of
the destination operand. When using the PUNPCKHBW instruction the bytes are zero
extended, or unpacked into unsigned words. When using the PUNPCKHWD instruction, the
words are zero exended, or unpacked into unsigned doublewords.

Example

Flags Affected

None.

I

PUNPCKHBW mm, mm/m64
mm/m64

3006031

5-61

INTEL ARCHITECTURE MMXTM INSTRUCTION SET inlet
Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

5-62 I

in1:et INTEL ARCHITECTURE MMXTM INSTRUCTION SET

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ-Unpack Low
Packed Data

Opcode

OF 60/r

Instruction Description

PUNPCKLBW mm, mmlm32 Interleave bytes from the low halves of MMX register and MMX
reg/memory into MMX register.

OF 61 /r

OF 62 /r

PUNPCKLWD mm, mmlm32 Interleave words from the low halves of MMX register and MMX
reg/memory into MMX register.

PUNPCKLDQ mm, mmlm32 Interleave dwords from the low halves of MMX register and MMX
reg/memory into MMX register.

Operation

IF instruction is PUNPCKLBW
THEN {

mm(63 .. 56) ~mm/m32(31 .. 24);
mm(55 . .48) ~ mm(31 .. 24);
mm(47 .. 40) ~ mm/m32(23 .. 16);
mm(39 .. 32) ~ mm(23 .. 16);
mm(31 .. 24) ~ mm/m32(15 .. 8);
mm(23 .. 16) ~mm(15 .. 8);
mm(15 .. 8) ~ mm/m32(7 .. 0);
mm(7 .. 0) ~ mm(7 .. 0);
}

ELSE IF instruction is PUNPCKLWD
THEN {

mm(63 . .48) ~ mm/m32(31 .. 16);
mm(47 .. 32) ~ mm(31 .. 16);
mm(31 .. 16) ~ mm/m32(15 .. 0);
mm(15 .. 0) ~ mm(15 .. 0);
}

ELSE{ (* instruction is PUNPCKLDQ *)
mm(63 .. 32) ~ mm/m32(31 .. 0);
mm(31 .. 0) ~ mm(31 .. 0);
}

Description

The PUNPCKL instructions unpack and interleave the low-order data elements of the
destination and source operands into the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 32-bit memory operand. When the source data comes from 64-bit registers, the
upper 32 bits are ignored.

I
5-63

INTEL ARCHITECTURE MMXTM INSTRUCTION SET

When unpacking from a memory operand, only 32 bits are accessed. The instruction uses all
32 bits.

The PUNPCKLBW instruction interleaves the four low-order bytes of the source operand and
the four low-order bytes of the destination operand and writes them to the MMX register.

The PUNPCKL WD instruction interleaves the two low-order words of the source operand
and the two low-order words of the destination operand and writes them to the MMX
register.

The PUNPCKLDQ instruction interleaves the low-order doubleword of the source operand
and the low-order doubleword of the destination operand and writes them to the MMX
register.

Note

If the source operand has a value of all zeros, the result is a zero extension of the low order
elements of the destination operand. When using the PUNPCKLBW instruction the bytes are
zero extended, or unpacked into unsigned words. When using the PUNPCKL WD instruction,
the words are zero extended, or unpacked into unsigned doublewords.

Example

Flags Affected

None.

5-64

PUNPCKLBW mm, mm/m32
mm/m32

I

in1:el® INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I
5-65

INTEL ARCHITECTURE MMXTM INSTRUCTION SET in1:el ..
PXOR-Bitwise Logical Exclusive OR
Opcode

OF EF Ir

Operation

Instruction

PXOR mm mmlm64

mm ~mm XOR mm/m64;

Description

The PXOR instruction performs a bitwise logical XOR on the 64 bits of the destination with
the source operands and writes the result to destination register.

Each bit of the result is 1 if the corresponding bits of the two operands are different. Each bit
is 0 if the corresponding bits of the operands are the same.

The source operand can either be an MMX register or a 64 bit memory operand.

Example

PXOR mm, mm/m64

mm 1111111111111100000000000000001011011010110001 0000111 0111 0111 0111 I
1\

mm/m641 000100001101100101010000001100010001111011101111 0001 01 011 001 01 01 1

mm 1110111100100001010100000011010010101011011001110110001011100010

Flags Affected

None.

5-66

I

int:et INTEL ARCHITECTURE MMXTM INSTRUCTION SET

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CRO.EM = 1;
#NM if TS bit in CRO is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
OFFFFH; #UD if CRO.EM = 1; #NM if TS bit in CRO is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

I
5-67

int:eL

IAMMXTM
Instruction Set
Summary

I

A

inlet
APPENDIX A

IA MMXTM INSTRUCTION SET SUMMARY

Table A-I summarizes the IA MMXTM instruction set base mnemonics. The instructions are
grouped by categories of related functions.

Most of the instructions have multiple variations that are not listed in Table A-I. For
example, PADD has the following variatio'ns: PADDB, PADDW, and PADDD. The
instruction variations and mnemonics are detailed in the Instruction description section of
Chapter 5.

I
A-1

IA MMXTM INSTRUCTION SET SUMMARY inleL
Table A-1. IA MMX Instruction Set Summary, Grouped into Functional Categories

CATEGORY

Arithmetic

Comparison

Conversion

Logical

Shift

addition

subtraction

multiplication

multiply and add

compare

pack

unpack

and

and not

or

exclusive or

shift left logical

shift right logical

shift right arithmetic

Data Transfer Operations

registerf-register

load from memory

store to memory

FP and MMXTM State Management

A-2

PADD

PSUB

PMULUH

PMADD

PCMPEQ

PCMPGT

PUNPCKUH

PSLL

PSRL

PSRA

MOVD

MOVD

MOVD

EMMS

PADDS

PSUBS

PACKSS

PAND

PANDN

POR

PXOR

PSLL

PSRL

MOVQ

MOVQ

MOVQ

PADDUS

PSUBUS

PACKUS

I

in1:el®

IAMMXTM
Instruction Formats
and Encodings

I

B

inlet
APPENDIX B

IA MMXTM INSTRUCTION FORMATS AND
ENCODINGS

B.1. INSTRUCTION FORMATS
All MMX instructions, except the EMMS instruction, use the same format similar as the two
byte Intel Architecture integer operations. Details of subfield encodings within these formats
are presented below.

Table 8-1. Encoding of Granularity of Data (gg) Field

99 Granularity of Data

00 packed bytes

01 packed words

10 packed doublewords

11 quadword

I
8-1

IA MMXTM INSTRUCTION FORMATS AND ENCODINGS

Table 8-2. Encoding of 32-bit General Purpose (reg) Field for Register-to-Register
Operations

reg Field Register Selected

000 EAX

001 ECX

010 EDX

011 EBX

100 ESP

101 EBP

110 ESI

111 EDI

NOTE: For register-to-register operations, the decoding of integer registers is independent of processor
mode. For register-to-memory operations, the effective address is calculated based on the processor mode in
effect.

Table 8-3. Encoding of 64-bit MMXTM Register (mmxreg) Field

mmxreg Field MMX Register Selected

000 mmO

001 mm1

010 mm2

011 mm3

100 mm4

101 mm5

110 mmS

111 mm7

For more details, see Table 25-2, Table 25-3, and Appendix F of the Pentium® Processor
Family Developer's Manual.

B-2 I

inlel.. IA MMXTM INSTRUCTION FORMATS AND ENCODINGS

B.2. INSTRUCTION ENCODINGS AND DATATYPE CROSS·
REFERENCE

For each MMX instruction, Table B-4 lists instruction encodings and the datatypes
supported-byte (B), word rN), doubleword (DW), and quadword (QW).

o

s
U

nla

= output

= input

= signed saturation

= unsigned saturation

= not applicable

Figure 8-1. Key to Codes for Datatype Cross-Reference

Table 8-4. IA MMXTM Instruction Formats and Encodings

Instruction Format B W

EMMS - Empty 0000 1111 :01110111 nla nla
MMX state

MOVO- Move N N
doubleword

reg to mmxreg 0000 1111 :01101110: 11 mmxreg reg

reg from mmxreg 0000 1111 :01111110: 11 mmxreg reg

mem to mmxreg 0000 1111 :011 0111 0: mod mmxreg rim

mem from 0000 1111 :01111110: mod mmxreg rim
mmxreg

MOVQ - Move N N
quadword

mmxreg2 to 0000 1111 :011 01111: 11 mmxreg1 mmxreg2
mmxreg1

mmxreg2 from 0000 1111 :01111111: 11 mmxreg1 mmxreg2
mmxreg1

mem to mmxreg 00001111:01101111: mod mmxreg rim

mem from 0000 1111 :01111111: mod mmxreg rim
mmxreg

I

OW OW

nla nla

Y N

N Y

B-3

IA MMXTM INSTRUCTION FORMATS AND ENCODINGS inlet
Table 8-4. IA MMXTM Instruction Formats and Encodings (Contd.)

Instruction Format B W OW QW

PACKSSOW1. n/a 0 I n/a
Pack dword to
word data
(signed with
saturation)

mmxreg2 to 0000 1111 :011 01 011: 11 mmxreg1 mmxreg2
mmxreg1

memory to 0000 1111 :011 01011: mod mmxreg rIm
mmxreg

PACKSSWB1. 0 I n/a n/a
Pack word to
byte data (signed
with saturation)

mmxreg2 to 0000 1111 :011 00011: 11 mmxreg1 mmxreg2
mmxreg1

memory to 0000 1111 :011 00011: mod mmxreg rIm
mmxreg

PACKUSWB1. 0 I n/a n/a
Pack word to
byte data
(unsigned with
saturation)

mmxreg2 to 0000 1111 :011 00111: 11 mmxreg1 mmxreg2
mmxreg1

memory to 0000 1111 :011 00111: mod mmxreg rIm
mmxreg

PAOO • Add with y y y N
wrap·around

mmxreg2 to 00001111: 111111gg: 11 mmxreg1 mmxreg2
mmxreg1

memory to 0000 1111: 111111 gg: mod mmxreg rIm
mmxreg

8-4 I

inlet IA MMXTM INSTRUCTION FORMATS AND ENCODINGS

Table 8-4. IA MMXTM Instruction Formats and Encodings (Contd.)

Instruction Format B W DW OW

PADDS - Add Y Y N N
signed with
saturation

mmxreg2 to 0000 1111: 111011 gg: 11 mmxreg1 mmxreg2
mmxreg1

memory to reg 0000 1111: 111011 gg: mod reg rIm

PADDUS-Add y Y N N
unsigned with
saturation

mmxreg2 to 0000 1111: 110111 gg: 11 mmxreg1 mmxreg2
mrnxreg1

memory to 0000 1111: 110111gg: mod mmxreg rIm
mmxreg

PAND - Bitwise N N N Y
And

mmxreg2 to 0000 1111 :11 011 011: 11 mmxreg1 mmxreg2
mmxreg1

memory to 0000 1111:11011011: mod mmxreg rIm
mmxreg

PANDN - Bitwise N N N Y
AndNot

mmxreg2 to 0000 1111:11011111: 11 mmxreg1 mmxreg2
mmxreg1

memory to 0000 1111: 11 a 11111: mod mmxreg rIm
mmxreg

PCMPEO - Y Y Y N
Packed compare
for equality

mmxreg2 with 0000 1111:011101gg: 11 mmxreg1 mmxreg2
mmxreg1

memory with 0000 1111 :0111 01 gg: mod mmxreg rIm
mmxreg

I
8-5

IA MMXTM INSTRUCTION FORMATS AND ENCODINGS inlel.,
Table 8-4. IA MMXTM Instruction Formats and Encodings (Contd.)

Instruction Format B W OW QW

PCMPGT- Y Y Y N
Packed compare
greater (signed)

mmxreg2 with 0000 1111:011001gg: 11 mmxreg1 mmxreg2
mmxreg1

memory with 0000 1111 :011 001 gg: mod mmxreg rIm
mmxreg

PMAOO - Packed nla I a nla
multiply add

mmxreg2 to 0000 1111 :1111 01 01: 11 mmxreg1 mmxreg2
mmxreg1

memory to 00001111:11110101: mod mmxreg rIm
mmxreg

PMULH - Packed N Y N N
multiplication

mmxreg2 to 0000 1111 :11100101: 11 mmxreg1 mmxreg2
mmxreg1

memory to 00001111:11100101: mod mmxreg rIm
mmxreg

PMULL - Packed N Y N N
mu ltiplication

mmxreg2 to 00001111:11010101: 11 mmxreg1 mmxreg2
mmxreg1

memory to 00001111:11010101: mod mmxreg rIm
mmxreg

POR - Bitwise Or N N N Y

mmxreg2 to 0000 1111 :11101011: 11 mmxreg1 mmxreg2
mmxreg1

memory to 00001111:11101011: mod mmxreg rIm
mmxreg

8-6 I

in1:el® IA MMXTM INSTRUCTION FORMATS AND ENCODINGS

Table 8-4. IA MMXTM Instruction Formats and Encodings (Contd.)

Instruction Format B W OW QW

PSLL2 - Packed N Y Y Y
shift left logical

mmxreg2 by 00001111 :111100gg: 11 mmxreg1 mmxreg2
mmxreg1

mmxreg by 0000 1111 :1111 OOgg: 11 mmxreg rim
memory

mmxreg by 0000 1111 :0111 OOgg: 11 110 mmxreg: immB data
immediate

PSRA2 - Packed N y y N
shift right
arithmetic

mmxreg2 by 00001111 :111000gg: 11 mmxreg1 mmxreg2
mmxreg1

mmxreg by 0000 1111: 111 OOOgg: 11 mmxreg rim
memory

mmxreg by 0000 1111 :0111 OOgg: 11 100 mmxreg: immB data
immediate

PSRL2 - Packed N y y y
shift right logical

mmxreg2 by 0000 1111:110100gg: 11 mmxreg1 mmxreg2
mmxreg1

mmxreg by 0000 1111 :11 01 OOgg: 11 mmxreg rim
memory

mmxreg by 0000 1111 :0111 OOgg: 11 010 mmxreg: immB data
immediate

PSUB - Subtract y y y N
with wrap-
around

mmxreg2 to 0000 1111 :11111 Ogg: 11 mmxreg1 mmxreg2
mmxreg1

memory to 0000 1111 :11111 Ogg: mod mmxreg rim
mmxreg

I
8-7

IA MMXTM INSTRUCTION FORMATS AND ENCODINGS inlel.,
Table 8-4. IA MMXTM Instruction Formats and Encodings (Contd.)

Instruction Format B W OW QW

PSUBS - Y Y N N
Subtract signed
with saturation

mmxreg2 to 0000 1111 :111 01 Ogg: 11 mmxreg1 mmxreg2
mmxreg1

memory to 0000 1111 :11101 Ogg: mod mmxreg rim
mmxreg

PSUBUS - Y Y N N
Subtract
unsigned with
saturation

mmxreg2 to 0000 1111:110110gg: 11 mmxreg1 mmxreg2
mmxreg1

memory to 0000 1111 :11 011 Ogg: mod mmxreg rim
mmxreg

PUNPCKH - Y Y Y N
Unpack high
data to next
larger type

mmxreg2 to 0000 1111 :01101 Ogg: 11 mmxreg1 mmxreg2
mmxreg1

memory to 0000 1111 :01101 Ogg: mod mmxreg rim
mmxreg

PUNPCKL- y Y Y N
Unpack low data
to next larger
type

mmxreg2 to 0000 1111 :011 OOOgg: 11 mmxreg1 mmxreg2
mmxreg1

memory to 0000 1111 :011 OOOgg: mod mmxreg rim
mmxreg

B-8 I

intel® IA MMXTM INSTRUCTION FORMATS AND ENCODINGS

Table 8-4. IA MMXTM Instruction Formats and Encodings (Contd.)

Instruction Format B W OW QW

PXOR - Bitwise N N N Y
Xor

mmxreg2 to 0000 1111 :11101111: 11 mmxreg1 mmxreg2
mmxreg1

memory to 0000 1111:11101111: mod mmxreg rim
mmxreg

NOTE:

1. The PACK instructions perform saturation from signed packed data of one type to signed or unsigned data
of the next smaller type.

2. The format of shift instructions has one additional format to support shifting by immediate shift-counts.
The shift operations are not supported equally for all data types.

I
8-9

in1et

I

Alphabetical list of
IAMMXTM
Instruction Set
Mnemonics·

c

APPENDIX C
ALPHABETICAL LIST OF IA MMXTM

INSTRUCTION SET MNEMONICS

The following table lists the mnemonics of the IA MMXTM instructions in alphabetical order.
For each mnemonic, it summarizes the type of source data, the encoding of the first and
second bytes in hexadecimal, and the format used.

Table C-1. IA MMXTM Instruction Set Mnemonics

MNEMONIC OPERAND TYPES Byte 1 Byte 2 Byte 3, [4]

EMMS None OF n mod-rm, [sib]

MOVD register, memoryliregister OF 6E mod-rm, [sib]

MOVD memoryliregister, register OF 7E mod-rm, [sib]

MOVQ register, memory/register OF 6F mod-rm, [sib]

MOVQ memory/register, register OF 7F mod-rm, [sib]

PACKSSDW register, memory/register OF 6B mod-rm, [sib]

PACKSSWB register, memory/register OF 63 mod-rm, [sib]

PACKUSWB register, memory/register OF 67 mod-rm, [sib]

PADDB register, memory/register OF FC mod-rm, [sib]

PADDD register, memory/register OF FE mod-rm, [sib]

PADDSB register, memory/register OF EC mod-rm, [sib]

PADDSW register, memory/register OF ED mod-rm, [sib]

PADDUSB register, memory/register OF DC mod-rm, [sib]

PADDUSW register, memory/register OF DD mod-rm, [sib]

PADDW register, memory/register OF FD mod-rm, [sib]

PAND register, memory/register OF DB mod-rm, [sib]

PANDN register, memory/register OF DF mod-rm, [sib]

PCMPEQB register, memory/register OF 74 mod-rm, [sib]

PCMPEQD register, memory/register OF 76 mod-rm, [sib]

I C-1

Table C-1. IA MMXTM Instruction Set Mnemonics (Contd.)

MNEMONIC OPERAND TYPES Byte 1 Byte 2 Byte 3, [4]

PCMPEQW register, memory/register OF 75 mod-rm, [sib]

PCMPGTB register, memorylregister OF 64 mod-rm, [sib]

PCMPGTO register, memory/register OF 66 mod-rm, [sib]

PCMPGTW register, memorylregister OF 65 mod-rm, [sib]

PMAOOWO register, memory/register OF F5 mod-rm, [sib]

PMULHW register, memory/register OF E5 mod-rm, [sib]

PMULLW register, memory/register OF 05

mod-rm, [sib]

PCR register, memorylregister OF EB mod-rm, [sib]

PSHIMO* register, immediate OF 72 mod-rm, imm

PSHIMQ* register, immediate OF 73 mod-rm, imm

PSHIMW* register, immediate OF 71 mod-rm, imm

PSLLO register, memory/register OF F2 mod-rm, [sib]

PSLLQ register, memory/register OF F3 mod-rm, [sib]

PSLLW register, memory/register OF F1 mod-rm, [sib]

PSRAO register, memory/register OF E2 mod-rm, [sib]

PSRAW register, memory/register OF E1 mod-rm, [sib]

PSRLO register, memorylregister OF 02 mod-rm, [sib]

PSRLQ register, memorylregister OF 03 mod-rm, [sib]

PSRLW register, memorylregister OF 01 mod-rm, [sib]

PSUBB register, memorylregister OF Fa mod-rm, [sib]

C-2 I

Table C-1. IA MMXTM Instruction Set Mnemonics (Contd.)

MNEMONIC OPERAND TYPES Byte 1 Byte 2 Byte 3, [4]

PSUBD register, memory/register OF FA mod-rm, [sib]

PSUBSB register, memory/register OF E8 mod-rm, [sib]

PSUBSW register, memory/register OF E9 mod-rm, [sib]

PSUBUSB register, memory/register OF D8 mod-rm, [sib]

PSUBUSW register, memory/register OF D9 mod-rm, [sib]

PSUBW register, memory/register OF F9 mod-rm, [sib]

PUNPCKHBW register, memory/register OF 68 mod-rm, [sib]

PUNPCKHDQ register, memory/register OF 6A mod-rm, [sib]

PUNPCKHWD register, memory/register OF 69 mod-rm, [sib]

PUNPCKLBW register, memory/register OF 60 mod-rm, [sib]

PUNPCKLDQ register, memory/register OF 62 mod-rm, [sib]

PUNPCKLWD register, memory/register OF 61 mod-rm, [sib]

PXOR register, memory/register OF EF mod-rm, [sib]

Notes:

.. These are not the actual mnemonics:

PSHIMD represents the PSLLD, PSRAD and PSRLD instructions when shifting by immediate shift counts.

PSHIMW represents the PSLLW, PSRAW and PSRLW instructions when shifting by immediate shift counts.

PSHIMQ represents the PSLLQ and PSRLQ instructions when shifting by immediate shift counts.

The instructions that shift by immediate counts are differentiated by the ModRlM bytes (See Appendix B).

I
C-3

inteJ®

IAMMXTM
Instruction Set
OpcodeMap

I

D

inlet.
APPENDIX D

IA MMXTM INSTRUCTION SET OPCODE MAP

The detailed encodings of the Intel Architecture MMXTM instructions are listed in the shaded
boxes of the Opcode Map tables below. All MMX instructions, except the EMMS
instruction, use the same format as the two-byte Intel Architecture integer operations.

All blanks in the Opcode Map are reserved and should not be used. Do not depend on
the operation of unspecified opcodes. OFOBh or OFB9h should be used when deliberately
generating an illegal opcode exception.

Key to Abbreviations

Operands are identified by a two-character code of the form Zz. The first character, an
uppercase letter, specifies the addressing method; the second character, a lowercase letter,
specifies the type of operand. For opcodes with two operands, the left code refers to the
destination operand and the right code refers to the source operand. All MMX instructions,
except the EMMS instruction, reference and operate on two operands.

Codes for Addressing Method

C The reg field of the ModRIM byte selects a control register; e.g., MOV (OF20, OF22).

D The reg field of the ModRIM byte selects a debug register; e.g., MOV (OF21 , OF23).

E A ModRIM byte follows the opcode and specifies the operand. The operand is either a
general register or a memory address. If it is a memory address, the address is computed
from a segment register and any of the following values: a base register, an index
register, a scaling factor, a displacement.

G The reg field of the ModRIM byte selects a general register; e.g., AX(OOO).

I Immediate data. The value of the operand is encoded in subsequent bytes of the
instruction.

M The ModRIM byte may refer only to memory; e.g., LSS, LFS, LGS, CMPXCHG8B.

P The reg field of the ModRIM byte selects a packed quadword MMX register.

Q A ModRIM byte follows the opcode and specifies the operand. The operand is either an
MMX register or a memory address. If it is a memory address, the address is computed

I D-1

IA MMXTM INSTRUCTION SET OPCODE MAP inlel..
from a segment register and any of the following values: a base register, an index
register, a scaling factor, a displacement.

R The mod field of the ModRIM byte may refer only to a general register; e.g., MOV
(OF20-0F24, OF26).

Codes for Operand Type

b Byte (regardless of operand size attribute).

d Doubleword (regardless of operand size attribute).

p 32-bit or 48-bit pointer, depending on operand size attribute.

q Quadword (regardless of operand size attribute).

s Six-byte pseudo-descriptor.

v Word or doubleword, depending on operand size attribute.

w Word (regardless of operand size attribute).

Register Codes

When an operand is a specific register encoded in the opcode, the register is identified by its
name, for example: AX, CL, or ESI. The name of the register indicates whether the register
is 32-bits, 16-bits, or 8-bits wide. A register identifier of the form eXX is used when the
width of the register depends on the oeprand size attribute; for example, eAX indicates that
the AX register is used when the operand size attribute is 16 and the EAX register is used
when the operand size attribute is 32.

0-2 I

inlet

o

o GRP6

2 MOV

3 WRMSR

4

5

6

7

8

JO

9

A PUSH

FS

B CMPXCH

Gb

C XADD

0

E

F

I

IA MMXTM INSTRUCTION SET OPCOOE MAP

Table 0-1. Opcode Map (First Byte is OFH)

MOV

RDTSC

POP

FS

CMPXCH

Ev Gv

XADD

2

LAR

MOV

RDMSR

3

LSL

Ew

MOV

Rd

4 5

Long-displacement jump on condition (Jv)

Byte Set on condition (Eb)

CPUID BT SHLD SHLD

Ev Gv Ev CL

LSS BTR LFS LGS

Ev Gv M

6 7

CLTS

JNBE

MOVZX MOVZX

Ew

GRP9

D-3

IA MMXTM INSTRUCTION SET OPCOOE MAP intet
Table 0-1. Opcode Map (First Byte is OFH) (Contd)

8 9 A B c o E F

o INVD WB INVD Illegal

2

3

4

5

6

7

8 Long-displacement jump on condition (Jv)

JS JNLE

Byte Set on condition Uv)

9 SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE

Eb Eb Eb Eb Eb Eb Eb Eb

A PUSH POP RSM BTS SHRD SHRD IMUL

GS GS Ev Gv

B Illegalopcode GRPS BTC

Ib Ev Gv

c BSWAP BSWAP BSWAP BSWAP

o

E

F

0-4 I

inleL IA MMXTM INSTRUCTION SET OPCODE MAP

Table 0-2. Opcodes Determined by Bits 5, 4, 3 of Mod RIM Byte

mod I nnn I RIM

Group 000 001 010 011 100 101 110 111

ADD OR ADC SBB AND SUB XOR CMP

2 ROL ROR RCL RCR SHLSAL SHR SAR

3 TEST NOT NEG MUL IMUL DIV IDIV
Ib/lv AUeAX AUeAX AUeAX AUeAX

4 INC DEC
Eb Eb

5 INC DEC CALL CALL JMP JMP PUSH

Ev Ev Ev Ev Pv

6 SLDT STR LLDT LTR VERR VERW

Ew Ew Ew Ew Ew Ew

7 SGDT SIDT LGDT LlDT SMSW LMSW INVLPG

Ms Ms Ms Ms Ew Ew

8 BT BTS BTR BTC

9 CMPXCH

A

I
D-5

infel~

NORTH AMERICAN SALES OFFICES
ARIZONA Intel Cor!'. Intel Corp. TEXAS

Intel Corp.
2250 Lucien Way Lincroft Center
Suite 100 125 Half Mile Road Intel Corp.

410 North 44th Street Suite 8 Red Bank 07701 8911 Capital of Texas Hwy
Suite 470 Maitland 32751 Tel: (800) 628·8686 Suite 4230
Phoenix 85008

~~~~~gh6~~o~~~~ FAX: (908) 747·0983 Austin 78759 
Tel: (800) 628·8686 Tel: (800) 628·8686 
FAX: (602) 244·0446 NEW YORK FAX: (512) 338·9335 

GEORGIA 
CALIFORNIA Intel Corp. Intel Corp. 

Intel Corp. ~~?rp~~;s4~~~s Office Pk 
5000 Quorum Drive 

Intel Corp. 20 Technology Park Suite 750 
26707 W. Agoura Road Suite 150 Tel: (800) 628·8686 Dallas 75240 
Suite 203 Norcross 30092 TWX: 51 ()'253·7391 Tel: (800) 628·8686 
Calabasas. CA 91302 Tel: (800) 628·8686 FAX: (716) 223-2561 FAX: (214) 233·1325 
Tel: (800) 628·8686 FAX: (404) 448-0875 

Intel Corp. Intel Corp. FAX: (818)-880·1820 

Intel Corp. 
IDAHO 2950 Expressway Drive 20405 Slate Hwy 249 

Islandia 11722 Suite 880 
3550 Watt Avenue 

~~t~I~.°tTa"in Street 
Tel: (800) 628-8686 Houston 77070 

Suite 140 TWX: 510-227·6236 Tel: (800) 628·8686 
Sacramento 95821 Suite 236 FAX: (516) 348-7939 TWX: 91 ()'881-2490 
Tel: (800) 628-8686 Boise 83702 FAX: (713) 376-2891 
FAX: (916) 979·7011 Tel: (800) 628·8686 OHIO 

Intel Corp. FAX: (208) 331·2295 UTAH 
Intel Corp. 

9655 Granite Ridge Drive 56 Milford Drive Intel Corp. 
3rd Floor ILLINOIS Suite 205 428 East 6400 South 
Suite4A Hudson 44236 Suite 135 
San Diego 92123 Intel Corp. Tel: (800) 628-8686 Murray 84107 
Tel: (800) 628-8686 300 North Martingale Road FAX: (216) 528·1026 Tel: (800) 628-8686 
FAX: (619) 467-2460 Suite 400 

;~~~e~;r~r~enter Drive 

FAX: (801) 268-1457 

Intel Corp. Schaumburg 60173 WASHINGTON Tell: (800) 628-8686 1781 Fox Drive FAX: (708) 605-9762 Suite 220 
San Jose 95131 Dayton 45414 Intel Corp. 
Tel: (800) 628-8686 INDIANA Tel: (800) 628-8686 2800 156th Avenue SE 
FAX: (408) 441-9540 TWX: 810-45()'2528 Suite 105 

Intel Corp. Intel Corp. FAX: (513) 890-8658 Bellevue 98007 

1551 North Tustin Avenue 8041 Knue Road Tel: (800) 628-8686 

Suite 800 Indianapolis 46250 OKLAHOMA FAX: (206) 746-4495 

Santa Ana 92701 ~~~~g~~fg~7~!g~9 Intel Corp. WISCONSIN 
Tel: (800) 628·8686 6801 North Broadway 

~:(~I~~)~ll~9W74 MARYLAND Suite 115 Intel Corp. 
Oklahoma C~y 73162 400 North Executive Drive 

~t:lv~:~~ la Valle 
Intel Corp. Tel: (800) 628-8686 Suite 401 
131 National Bus. Pkwy FAX: (405) 840-9819 Brookfield 53005 

Su~e 208-RCO Suite 200 Tel: (800) 628-8686 

Solana Beach 92075 Annapolis Junction 20701 OREGON FAX: (414) 789-2746 
Tel: (800) 628-8686 

~~~~fN\!i· Greenbrier ~~t~b ~~~;and Avenue 
FAX: (301) 206-3678 CANADA

Suite 150 MASSACHUSETTS Pkwy

EI Segundo, CA 90245 Building B BRITISH COLUMBIA
Tel: (800) 628-8686 Intel Corp. Beaverton 97006

FAX: (310) 640·7133 ~~g~a~~~k Park ~~~gn-~~~-~~~~
Intel of Canada, Ltd.
999 Canada Place

COLORADO Acton 01720 FAX: (503) 645-8181 Suite 404
Tel: (800) 628·8686 Suite 11

~~ls~~r~'Cherry Street
FAX: (508) 266-3867 PENNSYLVANIA Vancouver V6C 3E2

MICHIGAN Intel Corp.
Tel: (800) 628-8686

Suite 700 FAX: (604) 844-2813
Denver 80222 925 Harvest Drive

Tel: (800) 628-8686 Intel Corp. Suite 200 ONTARIO
TWX: 910·931·2289 32255 North Western Hwy. Blue Bell 19422

FAX: (303) 322-8670 Suite 212. Tri Atria Tel: (800) 628-8686 Intel of Canada, Ltd.
Farmington Hills 48334 FAX: (215) 641-0785 2650 Queens view Drive

CONNECTICUT Tel: (800) 628·8686 Suite 250
FAX: (313) 851-8770 SOUTH CAROLINA Ottawa K2B 8H6

Intel Corp.
MINNESOTA ~r::~ ~~~iane Road

Tel: (800) 628·8686
40 Old Rldgebury Road FAX: (613) 820-5936
Suite 311
Danbury 06811 Intel Corp. Suite 4 Intel of Canada, Ltd.

Tel: (800) 628-8686 3500 West 80th Street Columbia 29223 190 Attwell Drive

FAX: (203) 778-2168 Suite 360 Tel: (800) 628-8686 Suite 500
Bloomington 55431 FAX: (803) 788-7999 Rexdale M9W 6H8

FLORIDA Tel: (800) 628-8686
Intel Corp.

Tel: (800) 628·8686
TWX: 91 ().576-2867 FAX: (416) 675-2438

Intel Corp. FAX: (612) 831·6497 100 Executive Center Dr

600 West Hillsboro Blvd. Suite 109. BI83 QUEBEC
Suite 348 NEW JERSEY Greenville 29615

Deerfield Beach 33441 Tel: (800) 628·8686 Intel of Canada, Ltd.

Tel: (800) 628·8686 Intel Corp. FAX: (803) 297·3401 1 Rue Holiday. Tour West

FAX: (305) 421·2444 2001 Route 46 Suite 320
Suite 310 Pt. Claire H9R 5N3
Parsippany 07054
Tel: (800) 628·8686
FAX: (201) 402·4893

Tel: (800) 628·8686
FAX: 514·694·0064

infel~

NORTH AMERICAN SERVICE OFFICES

Computervision
Intel Corporation's North American Preferred SeNice Provider

Central Dispatch: 1-800-876-SERV (1-800-876-7378)

ALABAMA GEORGIA MICHIGAN NORTH CAROLINA UTAH
Birmingham Allanta Detroit Ashville Sail Lake City
Huntsville

HAWAII
Flint Charlotte

VERMONT
ALASKA

Grand Rapids Greensboro
White River Junction Honolulu Lansing Raleigh

Anchorage
ILLINOIS Troy Wilmington VIRGINIA

ARIZONA Chicago MINNESOTA OHIO Charlottesville
Phoenix Wood Dale Minneapolis Cincinnati Richmond
Tucson

INDIANA Cleveland Roanoke
MISSOURI Virginia Beach

ARKANSAS Carmel Columbus

North lillie Rock Evansville
Springfield Dayton WASHINGTON
Street Louis

CALIFORNIA
Ft. Wayne OKLAHOMA Renton
South Bend MISSISSIPPI Oklahoma City Richland

Concord Jackson
Los Angeles IOWA Tulsa WASHINGTON D.C!
Ontario Cedar Rapids NEW HAMPSHIRE OREGON WEST VIRGINIA
Orange Davenport Manchester' Beaverton Charleston Redwood City West Des Moines
Sacramento MONTANA PENNSYLVANIA WISCONSIN
San Diego KANSAS Butte Camp Hill

Kansas C~y Milwaukee
San Francisco NEBRASKA Erie
Van Nuys Wichita Pittsburgh CANADA

Omaha
COLORADO KENTUCKY Wayne Calgary

NEW JERSEY Edmonton
Colorado Springs Louisville SOUTH CAROLINA

Madisonville Cherry Hill Fredericton
Denver Hamilton Township Charleston Halifax

CONNECTICUT LOUISIANA Westfield Columbia Mississauga
Baton Rouge Greenville Montreal E. Windsor NEW MEXICO

Middlebury New Orleans TENNESSEE Ottawa

MAtNE
Albuquerque

Chattanooga Toronto
FLORIDA NEW YORK Knoxville Vancouver, BC'

Ft. Lauderdale Auburn Winnipeg Albany Memphis
Jacksonville MARYLAND Binghampton Nashville Quebec City
Miami Battimore Buffalo Regina
Orlando Farmingdale

TEXAS St.John's
Pensacola MASSACHUSETTS

New York City Austin
Tampa Bedfoird Rochester Houston

S. Easton Dryden Dallas
Tyler

infel®

UNITED STATES, Intel Corporation
2200 Mission College Blvd., P.O. Box 58119, Santa Clara, CA 95052-8119

Tel: +1 408765-8080

JAPAN, Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi, Ibaraki-ken 300-26

Tel: + 81-29847-8522

FRANCE, Intel Corporation S.A.R.L.
1, Quai de Grenelle, 75015 Paris

Tel: +33 1-45717171

UNITED KINGDOM, Intel Corporation (U.K.) Ltd.
Pipers Way, Swindon, Wiltshire, England SN3 1 RJ

Tel: +441-793-641440

GERMANY, Intel GmbH
Dornacher Strasse 1

85622 Feldkirchenl Muenchen
Tel: +4989/99143-0

HONG KONG, Intel Semiconductor Ltd.
321F Two Pacific Place, 88 Queensway, Central

Tel: +8522844-4555

CANADA, Intel Semiconductor of Canada, Ltd.
190 Attwell Drive, Suite 500
Rexdale, Ontario M9W 6H8

Tel: +416675-2438

Printed in USAl5K10396INCGIPMG

