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CHAPTER 1 
INTRODUCTION TO THE 80386 

The 80386 is an advanced 32-bit microprocessor optimized for multitasking operating systems 
and designed for applications needing very high performance. The 32-bit registers and data 
paths support 32-bit addresses and data types. The processor can address up to four gigabytes 
of physical memory and 64 terabytes (246 bytes) of virtual memory. The on-chip memory­
management facilities include address translation registers, advanced multitasking hardware, 
a protection mechanism, and paged virtual memory. Special debugging registers provide 
data and code breakpoints even in ROM-based software. 

1.1 ORGANIZATION OF THIS MANUAL 

This book presents the architecture of the 80386 in five parts: 

Part I 
Part II 
Part III 
Part IV 
Appendices 

-Applications Programming 
-Systems Programming 
-Compatibility 
-Instruction Set 

These divisions are determined in part by the architecture itself and in part by the different 
ways the book will be used. As the following table indicates, the latter two parts are intended 
as reference material for programmers actually engaged in the process of developing software 
for the 80386. The first three parts are explanatory, showing the purpose of architectural 
features, developing terminology and concepts, and describing instructions as they relate to 
specific purposes or to specific architectural features. 

Explanation Part I - Applications Programming 
Part II - Systems Programming 
Part III - Compatibility 

Reference Part IV - Instruction Set 
Appendices 

The first three parts follow the execution modes and protection features of the 80386 CPU. 
The distinction between applications features and systems features is determined by the 
protection mechanism of the 80386. One purpose of protection is to prevent applications 
from interfering with the operating system; therefore, the processor makes certain registers 
and instructions inaccessible to applications programs. The features discussed in Part I are 
those that are accessible to applications; the features in Part II are available only to systems 
software that has been given special privileges or in unprotected systems. 
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The processing mode of the 80386 also determines the features that are accessible. The 
80386 has three processing modes: 

1. Protected Mode. 

2. Real-Address Mode. 

3. Virtual 8086 Mode. 

Protected mode is the natural 32-bit environment of the 80386 processor. In this mode all 
instructions and features are available. 

Real-address mode (often called just "real mode") is the mode of the processor immediately 
after RESET. In real mode the 80386 appears to programmers as a fast 8086 with some 
new instructions. Most applications of the 80386 will use real mode for initialization only. 

Virtual 8086 mode (also called V86 mode) is a dynamic mode in the sense that the processor 
can switch repeatedly and rapidly between V86 mode and protected mode. The CPU enters 
V86 mode from protected mode to execute an 8086 program, then leaves V86 mode and 
enters protected mode to continue executing a native 80386 program. 

The features that are available to applications programs in protected mode and to all 
programs in V86 mode are the same. These features form the content of Part I. The additional 
features that are available to systems software in protected mode form Part II. Part III 
explains real-address mode and V86 mode, as well as how to execute a mix of 32-bit and 
16-bit programs. 

Available in All Modes Part I - Applications Programming 

Available in Protected Part II - Systems Programming 
Mode Only 

Compatibility Modes Part III - Compatibility 

1.1.1 Part I-Applications Programming 

This part presents those aspects of the architecture that are customarily used by applications 
programmers. 

Chapter 2-Basic Programming Model: Introduces the models of memory organization. 
Defines the data types. Presents the register set used by applications. Introduces the stack. 
Explains string operations. Defines the parts of an instruction. Explains addressing calcula­
tions. Introduces interrupts and exceptions as they may apply to applications programming. 
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Chapter 3-Application Instruction Set: Surveys the instructions commonly used for appli­
cations programming. Considers instructions in functionally related groups; for example, 
string instructions are considered in one section, while control-transfer instructions are 
considered in another. Explains the concepts behind the instructions. Details of individual 
instructions are deferred until Part IV, the instruction-set reference. 

1.1.2 Part II-Systems Programming 

This part presents those aspects of the architecture that are customarily used by program­
mers who write operating systems, device drivers, debuggers, and other software that supports 
applications programs in the protected mode of the 80386. 

Chapter 4-Systems Architecture: Surveys the features of the 80386 that are used by systems 
programmers. Introduces the remaining registers and data structures of the 80386 that were 
not discussed in Part I. Introduces the systems-oriented instructions in the context of the 
registers and data structures they support. Points to the chapter where each register, data 
structure, and instruction is considered in more detail. 

Chapter 5-Memory Management: Presents details of the data structures, registers, and 
instructions that support virtual memory and the concepts of segmentation and paging. 
Explains how systems designers can choose a model of memory organization ranging from 
completely linear ("flat") to fully paged and segmented. 

Chapter 6-Protection: Expands on the memory management features of the 80386 to include 
protection as it applies to both segments and pages. Explains the implementation of privilege 
rules, stack switching, pointer validation, user and supervisor modes. Protection aspects of 
multitasking are deferred until the following chapter. 

Chapter 7-Multitasking: Explains how the hardware of the 80386 supports multitasking 
with context-switching operations and intertask protection. 

Chapter 8-Input/Output: Reveals the I/O features of the 80386, including I/O instruc­
tions, protection as it relates to I/O, and the I/O permission map. 

Chapter 9-Exceptions and Interrupts: Explains the basic interrupt mechanisms of the 80386. 
Shows how interrupts and exceptions relate to protection. Discusses all possible exceptions, 
listing causes and including information needed to handle and recover from the exception. 

Chapter to-Initialization: Defines the condition of the processor after RESET or power­
up. Explains how to set up registers, flags, and data structures for either real-address mode 
or protected mode. Contains an example of an initialization program. 

Chapter ll-Coprocessing and Multiprocessing: Explains the instructions and flags that 
support a numerics coprocessor and multiple CPUs with shared memory. 

Chapter ll-Debugging: Tells how to use the debugging registers of the 80386. 
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1.1.3 Part III-Compatibility 

Other parts of the book treat the processor primarily as a 32-bit machine, omitting for 
simplicity its facilities for 16-bit operations. Indeed, the 80386 is a 32-bit machine, but its 
design fully supports 16-bit operands and addressing, too. This part completes the picture of 
the 80386 by explaining the features of the architecture that support 16-bit programs and 
16-bit operations in 32-bit programs. All three processor modes are used to execute 16-bit 
programs: protected mode can directly execute 16-bit 80286 protected mode programs, real 
mode executes 8086 programs and real-mode 80286 programs, and virtual 8086 mode 
executes 8086 programs in a multitasking environment with other 80386 protected-mode 
programs. In addition, 32-bit and 16-bit modules and individual 32-bit and 16-bit operations 
can be mixed in protected mode. 

Chapter 13-Executing 80286 Protected-Mode Code: In its protected mode, the 80386 can 
execute complete 80286 protected-mode systems, because 80286 capabilities are a subset of 
80386 capabilities. 

Chapter 14-80386 Real-Address Mode: Explains the real mode of the 80386 CPU. In this 
mode the 80386 appears as a fast real-mode 80286 or fast 8086 enhanced with additional 
instructions. 

Chapter 15-Virtua18086 Mode: The 80386 can switch rapidly between its protected mode 
and V86 mode, giving it the ability to multi program 8086 programs along with "native 
mode" 32-bit programs. 

Chapter 16-Mixing 16-Bit and 32-Bit Code: Even within a program or task, the 80386 can 
mix 16-bit and 32-bit modules. Furthermore, any given module can utilize both 16-bit and 
32-bit operands and addresses. 

1.1.4 Part IV-Instruction Set 

Parts I, II, and III present overviews of the instructions as they relate to specific aspects of 
the architecture, but this part presents the instructions in alphabetical order, providing the 
detail needed by assembly-language programmers and programmers of debuggers, compil­
ers, operating systems, etc. Instruction descriptions include algorithmic description of opera­
tion, effect of flag settings, effect on flag settings, effect of operand- or address-size attributes, 
effect of processor modes, and possible exceptions. 

1.1.5 Appendices 

The appendices present tables of encodings and other details in a format designed for quick 
reference by assembly-language and systems programmers. 
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1.2 RELATED LITERATURE 

The following books contain additional material concerning the 80386 microprocessor: 

• Introduction to the 80386, order number 231252 

• 80386 Hardware Reference Manual, order number 231732 

• 80386 System Software Writer's Guide, order number 231499 

• 80386 High Performance 32-bit Microprocessor with Integrated Memory Management 
(Data Sheet), order number 231630 

1.3 NOTATIONAL CONVENTIONS 

This manual uses special notations for data-structure formats, for symbolic representation 
of instructions, and for hexadecimal numbers. A review of these notations will make it easier 
to read the manual. 

1.3.1 Data-Structure Formats 

In illustrations of data structures in memory, smaller addresses appear at the lower-right 
part of the figure; addresses increase toward the left and upwards. Bit positions are numbered 
from right to left. Figure 1-1 illustrates this convention. 

1.3.2 Undefined Bits and Software Compatibility 

In many register and memory layout descriptions, certain bits are marked as undefined. 
When bits are marked as undefined (as illustrated in Figure 1-1), it is essential for compat­
ibility with future processors that software treat these bits as undefined. Software should 
follow these guidelines in dealing with undefined bits: 

• Do not depend on the states of any undefined bits when testing the values of registers 
that contain such bits. Mask out the undefined bits· before testing. 

• Do not depend on the states of any undefined bits when storing them in memory or in 
another register. 

• Do not depend on the ability to retain information written into any undefined bits. 

• When loading a register, always load the undefined bits as zeros or reload them with 
values previously stored from the same register. 

NOTE 

Depending upon the values of undefined register bits will make software 
dependent upon the unspecified manner in which the 80386 handles these 
bits. Depending upon undefined values risks making software incompatible 
with future processors that define usages for these bits. A VOID ANY 
SOFfWARE DEPENDENCE UPON THE STATE OF UNDEFINED 
80386 REGISTER BITS. 
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When instructions are represented symbolically, a subset of the 80386 Assembly Language 
is used. In this subset, an instruction has the following format: 

label: prefix mnemonic argument1, argument2, argument3 

where: 

• A label is an identifier that is followed by a colon. 

• A prefix is an optional reserved name for one of the instruction prefixes. 

• A mnemonic is a reserved name for a class of instruction opcodes that have the same 
function. 

• The operands argument1, argument2, and argument3 are optional. There may be from 
zero to three operands, depending on the opcode. When present, they take the form of 
either literals or identifiers for data items. Operand identifiers are either reserved names 
of registers or are assumed to be assigned to data items declared in another part of the 
program (which may not be shown in the example). When two operands are present in 
an instruction that modifies data, the right operand is the source and the left operand is 
the destination. 

For example: 

LOADREG: MOV EAX, SUBTOTAL 
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In this example LOADREG is a label, MOY is the mnemonic identifier of an opcode, EAX 
is the destination operand, and SUBTOTAL is the source operand. 

1.3.4 Hexadecimal Numbers 

Base 16 numbers are represented by a string of hexadecimal digits followed by the character 
H. A hexadecimal digit is a character from the set (0, 1,2,3,4,5,6, 7, 8, 9, A, B, C, D, E, 
F). In some cases, especially in examples of program syntax, a leading zero is added if the 
number would otherwise begin with one of the digits A-F. For example, OFH is equivalent 
to the decimal number 15. 
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CHAPTER 2 
BASIC PROGRAMMING MODEL 

This chapter describes the 80386 application programming environment as seen by assembly 
language programmers when the processor is executing in protected mode. The chapter 
introduces programmers to those features of the 80386 architecture that directly affect the 
design and implementation of 80386 applications programs. Other chapters discuss 80386 
features that relate to systems programming or to compatibility with other processors of the 
8086 family. 

The basic programming model consists of these aspects: 

• Memory organization and segmentation 

• Data types 

• Registers 

• Instruction format 

• Operand selection 

• Interrupts and exceptions 

Note that input/output is not included as part of the basic programming model. Systems 
designers may choose to make I/O instructions available to applications or may choose to 
reserve these functions for the operating system. For this reason, the I/O features of the 
80386 are discussed in Part II. 

This chapter contains a section for each aspect of the architecture that is normally visible to 
applications. 

2.1 MEMORY ORGANIZATION AND SEGMENTATION 

The physical memory of an 80386 system is organized as a sequence of 8-bit bytes. Each 
byte is assigned a unique address that ranges from zero to a maximum of 232 - 1 
(4 gigabytes). 

80386 programs, however, are independent of the physical address space. This means that 
programs can be written without knowledge of how much physical memory is available and 
without knowledge of exactly where in physical memory the instructions and data are located. 

The model of memory organization seen by applications programmers is determined by 
systems-software designers. The architecture of the 80386 gives designers the freedom to 
choose a model for each task. The model of memory organization can range between the 
following extremes: 

• A "flat" address space consisting of a single array of up to 4 gigabytes. 

• A segmented address space consisting of a collection of up to 16,383 linear address 
spaces of up to 4 gigabytes each. 
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Both models can provide memory protection. Different tasks may employ different models 
of memory organization. The criteria that designers use to determine a memory organization 
model and the means that systems programmers use to implement that model are covered 
in Part II-Systems Programming. 

2.1.1 The "Flat" Model 

In a "flat" model of memory organization, the applications programmer sees a single array 
of up to 232 bytes (4 gigabytes). While the physical memory can contain up to 4 gigabytes, 
it is usually much smaller; the processor maps the 4 gigabyte flat space onto the physical 
address space by the address translation mechanisms described in Chapter 5. Applications 
programmers do not need to know the details of the mapping. 

A pointer into this flat address space is a 32-bit ordinal number that may range from 0 to 
232 -1. Relocation of separately-compiled modules in this space must be performed by 
systems software (e.g., linkers, locators, binders, loaders). 

2.1.2 The Segmented Model 

In a segmented model of memory organization, the address space as viewed by an applica­
tions program (called the logical address space) is a much larger space of up to 246 bytes 
(64 terabytes). The processor maps the 64 terabyte logical address space onto the physical 
address space (up to 4 gigabytes) by the address translation mechanisms described in 
Chapter 5. Applications programmers do not need to know the details of this mapping. 

Applications programmers view the logical address space of the 80386 as a collection of up 
to 16,383 one-dimensional subspaces, each with a specified length. Each of these linear 
subs paces is called a segment. A segment is a unit of contiguous address space. Segment 
sizes may range from one byte up to a maximum of 232 bytes (4 gigabytes). 

A complete pointer in this address space consists of two parts (see Figure 2-1): 

l. A segment selector, which is a 16-bit field that identifies a segment. 

2. An offset, which is a 32-bit ordinal that addresses to the byte level within a segment. 

During execution of a program, the processor associates with a segment selector the physical 
address of the beginning of the segment. Separately compiled modules can be relocated at 
run time by changing the base address of their segments. The size of a segment is variable; 
therefore, a segment can be exactly the size of the module it contains. 

2.2 DATA TYPES 

Bytes, words, and doublewords are the fundamental data types (refer to Figure 2-2). A byte 
is eight contiguous bits starting at any logical address. The bits are numbered 0 through 7; 
bit zero is the least significant bit. 
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Figure 2-1. Two-Component Pointer 
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Figure 2-2. Fundamental Data Types 

A word is two contiguous bytes starting at any byte address. A word thus contains 16 bits. 
The bits of a word are numbered from 0 through 15; bit 0 is the least significant bit. The 
byte containing bit 0 of the word is called the low byte; the byte containing bit 15 is called 
the high byte. 

Each byte within a word has its own address, and the smaller of the addresses is the address 
of the word. The byte at this lower address contains the eight least significant bits of the 
word, while the byte at the higher address contains the eight most significant bits. 

A doubleword is two contiguous words starting at any byte address. A doubleword thus 
contains 32 bits. The bits of a doubleword are numbered from 0 through 31; bit 0 is the least 
significant bit. The word containing bit 0 of the doubleword is called the low word; the word 
containing bit 31 is called the high word. 
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Each byte within a doubleword has its own address, and the smallest of the addresses is the 
address of the doubleword. The byte at this lowest address contains the eight least signifi­
cant bits of the doubleword, while the byte at the highest address contains the eight most 
significant bits. Figure 2-3 illustrates the arrangement of bytes within words and 
doublewords. 

Note that words need not be aligned at even-numbered addresses and doublewords need not 
be aligned at addresses evenly divisible by four. This allows maximum flexibility in data 
structures (e.g., records containing mixed byte, word, and doubleword items) and efficiency 
in memory utilization. When used in a configuration with a 32-bit bus, actual transfers of 
data between processor and memory take place in units of doublewords beginning at addresses 
evenly divisible by four; however, the processor converts requests for misaligned words or 
doublewords into the appropriate sequences of requests acceptable to the memory interface. 
Such misaligned data transfers reduce performance by requiring extra memory cycles. For 
maximum performance, data structures (including stacks) should be designed in such a way 
that, whenever possible, word operands are aligned at even addresses and doubleword 
operands are aligned at addresses evenly divisible by four. Due to instruction prefetching 
and queuing within the CPU, there is no requirement for instructions to be aligned on word 
or doubleword boundaries. (However, a slight increase in speed results if the target addresses 
of control transfers are evenly divisible by four.) 
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Although bytes, words, and doublewords are the fundamental types of operands, the proces­
sor also supports additional interpretations of these operands. Depending on the instruction 
referring to the operand, the following additional data types are recognized: 

Integer: 

Ordinal: 

Near Pointer: 

Far Pointer: 

String: 

Bit field: 

Bit string: 

BCD: 

A signed binary numeric value contained in a 32-bit doubleword, 
16-bit word, or 8-bit byte. All operations assume a 2's complement 
representation. The sign bit is located in bit 7 in a byte, bit 15 in a 
word, and bit 31 in a doubleword. The sign bit has the value zero for 
positive integers and one for negative. Since the high-order bit is used 
for a sign, the range of an 8-bit integer is -128 through + 127; 16-bit 
integers may range from -32,768 through +32,767; 32-bit integers 
may range from - 231 through + 231 -1. The value zero has a positive 
sign. 

An unsigned binary numeric value contained in a 32-bit doubleword, 
16-bit word, or 8-bit byte. All bits are considered in determining 
magnitude of the number. The value range of an 8-bit ordinal number 
is 0-255; 16 bits can represent values from 0 through 65,535; 32 bits 
can represent values from 0 through 232 -1. 

A 32-bit logical address. A near pointer is an offset within a segment. 
Near pointers are used in either a flat or a segmented model of memory 
organization. 

A 48-bit logical address of two components: a 16-bit segment selector 
component and a 32-bit offset component. Far pointers are used by 
applications programmers only when systems designers choose a 
segmented memory organization. 

A contiguous sequence of bytes, words, or doublewords. A string may 
contain from zero bytes to 232 -1 bytes (4 gigabytes). 

A contiguous sequence of bits. A bit field may begin at any bit position 
of any byte and may contain up to 32 bits. 

A contiguous sequence of bits. A bit string may begin at any bit position 
of any byte and may contain up to 232 -1 bits. 

A byte (unpacked) representation of a decimal digit in the range 
o through 9. Unpacked decimal numbers are stored as unsigned byte 
quantities. One digit is stored in each byte. The magnitude of the 
number is determined from the low-order half-byte; hexadecimal values 
0-9 are valid and are interpreted as decimal numbers. The high-order 
half-byte must be zero for multiplication and division; it may contain 
any value for addition and subtraction. 
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Packed BCD: A byte (packed) representation of two decimal digits, each in the range 
o through 9. One digit is stored in each half-byte. The digit in the high­
order half-byte is the most significant. Values 0-9 are valid in each 
half-byte. The range of a packed decimal byte is 0-99. 

Figure 2-4 graphically summarizes the data types supported by the 80386. 

7 0 
BYTE rJTTTTTTI 
INTEGER u...:....J 

SIGN BIT.J'----.j 

.. AGNITUDE 

7 0 
BYTE I""T""'I 
ORDINAL L....:......J 

L----I 
.. AGNITUDE 

+1 0 
1514 87 0 

:~~8ER II Ii I" 'I' Ii I'" I 
SIGN BIT.J'LL..;;; .. "'SB'--_--' 

MAGNITUDE 

+1 0 
IS 0 

+N +1 o 
7 0 7 07 0 

':~~~L!:] ••• 1'''1 11 '1" 11'''1 
DECI ..... L BCD BCD BCD 

(BCD) DIGIT N DIGIT 1 DIGIT D 

u 
7 0 7 01 0 

PAC:~gL!:] ••• I" 'I iiiI' "I" " 
L...J L...J 
.. OST LEAST 
SIGNIFICANT DIGIT SIGNlriCANT DIGIT 

+N +1 o 
7 7 0 0 

ST:~~L!:] •• _1"'1"'1"11"" 

+2 GIGABITS 

6'~6'i~AL II'il'i'I'ii""1 , , 
-2 GIGABITS 

210 

II \ \ ..... _---!.IIIu.u1ll 
BITO 

MAGNITUDE 

+3 +2 +1 0 +3 +2 +1 o 
31 16 IS 0 31 0 

OOUB~E:g~~ II' 'I" 'I i'Il,i'1 iiil' iil'iii ii'l 
SIGN BIT.J'LL..;::M;::SB:.... ______ ...J 

~::,~ 1"ilii',"""'J"""'I"'I"', 
POINTER ••• , , 

.. AGNITUDE orrSET 

+3 +2 +1 o 
31 0 

OOU85~~~~ Iii iii iii ii' I Ii 'I ii' I Ii iii' , ii' 'I o 
o +5 +4 +3 +2 +1 

48 

P01~~~~ 1"11' "1 "'1' "I' "I "'1'"1' "I" 'I" '1" 'I" 'I , , 
MAGNITUDE SELECTOR orrSET 

+5 +4 +3 +2 +1 0 

Br~~~E~~11 i 'I" 'I" i I Ii' 1'1' i i iii i i 'I i i 'I i Ii I I' i I Ii ii' iii 
I· BITriELD .1 

I TO 32 BITS 

030117 

Figure 2-4. 80386 Data Types 
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2.3 REGISTERS 

The 80386 contains a total of sixteen registers that are of interest to the applications 
programmer. As Figure 2-5 shows, these registers may be grouped into these basic 
categories: 

1. General registers. These eight 32-bit general-purpose registers are used primarily to 
contain operands for arithmetic and logical operations. 

2. Segment registers. These special-purpose registers permit systems software designers to 
choose either a flat or segmented model of memory organization. These six registers 
determine, at any given time, which segments of memory are currently addressable. 

3. Status and instruction registers. These special-purpose registers are used to record and 
alter certain aspects of the 80386 processor state. 

2.3.1 General Registers 

The general registers of the 80386 are the 32-bit registers EAX, EBX, ECX, EDX, EBP, 
ESP, ESI, and ED!. These registers are used interchangeably to contain the operands of 
logical and arithmetic operations. They may also be used interchangeably for operands of 
address computations (except that ESP cannot be used as an index operand). 

As Figure 2-5 shows, the low-order word of each of these eight registers has a separate name 
and can be treated as a unit. This feature is useful for handling 16-bit data items and for 
compatibility with the 8086 and 80286 processors. The word registers are named AX, BX, 
CX, DX, BP, SP, SI, and DI. 

Figure 2-5 also illustrates that each byte of the 16-bit registers AX, BX, ex, and DX has a 
separate name and can be treated as a unit. This feature is useful for handling characters 
and other 8-bit data items. The byte registers are named AR, BR, CR, and DR (high 
bytes); and AL, BL, CL, and DL (low bytes). 

All of the general-purpose registers are available for addressing calculations and for the 
results of most arithmetic and logical calculations; however, a few functions are dedicated 
to certain registers. By implicitly choosing registers for these functions, the 80386 architec­
ture can encode instructions more compactly. The instructions that use specific registers 
include: double-precision multiply and divide, I/O, string instructions, translate, loop, varia­
ble shift and rotate, and stack operations. 

2.3.2 Segment Registers 

The segment registers of the 80386 give systems software designers the flexibility to choose 
among various models of memory organization. Implementation of memory models is the 
subject of Part II-Systems Programming. Designers may choose a model in which appli­
cations programs do not need to modify segment registers, in which case applications 
programmers may skip this section. 
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Complete programs generally consist of many different modules, each consisting of instruc­
tions and data. However, at any given time during program execution, only a small subset 
of a program's modules are actually in use. The 80386 architecture takes advantage of this 
by providing mechanisms to support direct access to the instructions and data of the current 
module's environment, with access to additional segments on demand. 

At any given instant, six segments of memory may be immediately accessible to an executing 
80386 program. The segment registers CS, DS, SS, ES, FS, and GS are used to identify 
these six current segments. Each of these registers specifies a particular kind of segment, as 
characterized by the associated mnemonics ("code," "data," or "stack") shown in 
Figure 2-6. Each register uniquely determines one particular segment, from among the 
segments that make up the program, that is to be immediately accessible at highest speed. 

The segment containing the currently executing sequence of instructions is known as the 
current code segment; it is specified by means of the CS register. The 80386 fetches all 
instructions from this code segment, using as an offset the contents of the instruction pointer. 
CS is changed implicitly as the result of intersegment control-transfer instructions (for 
example, CALL and JMP), interrupts, and exceptions. 

Subroutine calls, parameters, and procedure activation records usually require that a region 
of memory be allocated for a stack. All stack operations use the SS register to locate the 
stack. Unlike CS, the SS register can be loaded explicitly, thereby permitting programmers 
to define stacks dynamically. 

The DS, ES, FS, and GS registers allow the specification of four data segments, each 
addressable by the currently executing program. Accessibility to four separate data areas 
helps programs efficiently access different types of data structures; for example, one data 
segment register can point to the data structures of the current module, another to the 
exported data of a higher-level module, another to a dynamically created data structure, and 
another to data shared with another task. An operand within a data segment is addressed 
by specifying its offset either directly in an instruction or indirectly via general registers. 

CS(CODE) 

SS (STACK) 

DS(DATA) 

ES (DATA) 

FS (DATA) 

GS (DATA) 

G30117 

Figure 2-6. Use of Memory Segmentation 
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Depending on the structure of data (e.g., the way data is parceled into one or more segments), 
a program may require access to more than four data segments. To access additional 
segments, the DS, ES, FS, and GS registers can be changed under program control during 
the course of a program's execution. This simply requires that the program execute an 
instruction to load the appropriate segment register prior to executing instructions that access 
the data. 

The processor associates a base address with each segment selected by a segment register. 
To address an element within a segment, a 32-bit offset is added to the segment's base 
address. Once a segment is selected (by loading the segment selector into a segment regis­
ter), a data manipulation instruction only needs to specify the offset. Simple rules define 
which segment register is used to form an address when only an offset is specified. 

2.3.3 Stack Implementation 

Stack operations are facilitated by three registers: 

1. The stack segment (SS) register. Stacks are implemented in memory. A system may 
have a number of stacks that is limited only by the maximum number of segments. A 
stack may be up to 4 gigabytes long, the maximum length of a segment. One stack is 
directly addressable at a time-the one located by SS. This is the current stack, often 
referred to simply as "the" stack. SS is used automatically by the processor for all stack 
operations. 

2. The stack pointer (ESP) register. ESP points to the top of the push-down stack (TOS). 
It is referenced implicitly by PUSH and POP operations, subroutine calls and returns, 
and interrupt operations. When an item is pushed onto the stack (see Figure 2-7), the 
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ESP 
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Figure 2-7. 80386 Stack 
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processor decrements ESP, then writes the item at the new TOS. When an item is popped 
off the stack, the processor copies it from TOS, then increments ESP. In other words, 
the stack grows down in memory toward lesser addresses. 

3. The stack7frame base pointer (EBP) register. The EBP is the best choice of register for 
accessing data structures, variables and dynamically allocated work space within the 
stack. EBP is often used to access elements on the stack relative to a fixed point on the 
stack rather than relative to the current TOS. It typically identifies the base address of 
the current stack frame established for the current procedure. When EBP is used as the 
base register in an offset calculation, the offset is calculated automatically in the current 
stack segment (Le., the segment currently selected by SS). Because SS does not have to 
be explicitly specified, instruction encoding in such cases is more efficient. EBP can also 
be used to index into segments addressable via other segment registers. 

2.3.4 Flags Register 

The flags register is a 32-bit register named EFLAGS. Figure 2-8 defines the bits within 
this register. The flags control certain operations and indicate the status of the 80386. 

The low-order 16 bits of EFLAGS is named FLAGS and can be treated as a unit. This 
feature is useful when executing 8086 and 80286 code, because this part of EFLAGS is 
identical to the FLAGS register of the 8086 and the 80286. 
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The flags may be considered in three groups: the status flags, the control flags, and the 
systems flags. Discussion of the systems flags is delayed until Part II. 

2.3.4.1 STATUS FLAGS 

The status flags of the EFLAGS register allow the results of one instruction to influence 
later instructions. The arithmetic instructions use OF, SF, ZF, AF, PF, and CF. The SCAS 
(Scan String), CMPS (Compare String), and LOOP instructions use ZF to signal that their 
operations are complete. There are instructions to set, clear, and complement CF before 
execution of an arithmetic instruction. Refer to Appendix C for definition of each status 
flag. 

2.3.4.2 CONTROL FLAG 

The control flag DF of the EFLAGS register controls string instructions. 

DF (Direction Flag, bit 10) 

Setting DF causes string instructions to auto-decrement; that is, to process strings from 
high addresses to low addresses. Clearing DF causes string instructions to auto­
increment, or to process strings from low addresses to high addresses. 

2.3.4.3 INSTRUCTION POINTER 

The instruction pointer register (EIP) contains the offset address, relative to the start of the 
current code segment, of the next sequential instruction to be executed. The instruction pointer 
is not directly visible to the programmer; it is controlled implicitly by control-transfer 
instructions, interrupts, and exceptions. 

As Figure 2-9 shows, the low-order 16 bits of EIP is named IP and can be used by the 
processor as a unit. This feature is useful when executing instructions designed for the 8086 
and 80286 processors. 

16-BIT IP REGISTER 

31 15 o 
EIP (INSTRUCTION POINTER) 

G3011? 

Figure 2-9. Instruction Pointer Register 
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2.4 INSTRUCTION FORMAT 

The information encoded in an 80386 instruction includes a specification of the operation to 
be performed, the type of the operands to be manipulated, and the location of these operands. 
If an operand is located in memory, the instruction must also select, explicitly or implicitly, 
which of the currently addressable segments contains the operand. 

80386 instructions are composed of various elements and have various formats. The exact 
format of instructions is shown in Appendix B; the elements of instructions are described 
below. Of these instruction elements, only one, the opcode, is always present. The other 
elements mayor may not be present, depending on the particular operation involved and on 
the location and type of the operands. The elements of an instruction, in order of occurrence 
are as follows: 

• Prefixes-one or more bytes preceding an instruction that modify the operation of the 
instruction. The following types of prefixes can be used by applications programs: 

1. Segment override-explicitly specifies which segment register an instruction should 
use, thereby overriding the default segment-register selection used by the 80386 for 
that instruction. 

2. Address size-switches between 32-bit and 16-bit address generation. 

3. Operand size-switches between 32-bit and 16-bit operands. 

4. Repeat-used with a string instruction to cause the instruction to act on each element 
of the string. 

• Opcode-specifies the operation performed by the instruction. Some operations have 
several different opcodes, each specifying a different variant of the operation. 

• Register specifier-an instruction may specify one or two register operands. Register 
specifiers may occur either in the same byte as the opcode or in the same byte as the 
addressing-mode specifier. 

• Addressing-mode specifier-when present, specifies whether an operand is a register or 
memory location; if in memory, specifies whether a displacement, a base register, an 
index register, and scaling are to be used. 

• SIB (scale, index, base) byte-when the addressing-mode specifier indicates that an 
index register will be used to compute the address of an operand, an SIB byte is included 
in the instruction to encode the base register, the index register, and a scaling factor. 

• Displacement-when the addressing-mode specifier indicates that a displacement will 
be used to compute the address of an operand, the displacement is encoded in the 
instruction. A displacement is a signed integer of 32, 16, or eight bits. The eight-bit 
form is used in the common case when the displacement is sufficiently small. The 
processor extends an eight-bit displacement to 16 or 32 bits, taking into account the 
sign. 

• Immediate operand-when present, directly provides the value of an operand of the 
instruction. Immediate operands may be 8, 16, or 32 bits wide. In cases where an eight­
bit immediate operand is combined in some way with a 16- or 32-bit operand, the 
processor automatically extends the size of the eight-bit operand, taking into account 
the sign. 
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2.5 OPERAND SELECTION 

An instruction can act on zero or more operands, which are the data manipulated by the 
instruction. An example of a zero-operand instruction is NOP (no operation). An operand 
can be in any of these locations: 

• In the instruction itself (an immediate operand) 

• In a register (EAX, EBX, ECX, EDX, ESI, EDl, ESP, or EBP in the case of 32-bit 
operands; AX, BX, CX, DX, SI, Dl, SP, or BP in the case of 16-bit operands; AH, AL, 
BH, BL, CH, CL, DH, or DL in the case of 8-bit operands; the segment registers; or 
the EFLAGS register for flag operations) 

In memory 

At an I/O port 

Immediate operands and operands in registers can be accessed more rapidly than operands 
in memory since memory operands must be fetched from memory. Register operands are 
available in the CPU. Immediate operands are also available in the CPU, because they are 
prefetched as part of the instruction. 

Of the instructions that have operands, some specify operands implicitly; others specify 
operands explicitly; still others use a combination of implicit and explicit specification; for 
example: 

Implicit operand: AAM 

By definition, AAM (ASCII adjust for multiplication) operates on the contents of the 
AX register. 

Explicit operand: XCHG EAX, EBX 

The operands to be exchanged are encoded in the instruction after the opcode. 

Implicit and explicit operands: PUSH COUNTER 

The memory variable COUNTER (the explicit operand) is copied to the top of the stack 
(the implicit operand). 

Note that most instructions have implicit operands. All arithmetic instructions, for example, 
update the EFLAGS register. 

An 80386 instruction can explicitly reference one or two operands. Two-operand instruc­
tions, such as MOY, ADD, XOR, etc., generally overwrite one of the two participating 
operands with the result. A distinction can thus be made between the source operand (the 
one unaffected by the operation) and the destination operand (the one overwritten by the 
result). 
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For most instructions, one of the two explicitly specified operands--either the source or the 
destination--can be either in a register or in memory. The other operand must be in a regis­
ter or be an immediate source operand. Thus, the explicit two-operand instructions of the 
80386 permit operations of the following kinds: 

• Register-to-register 

• Register-to-memory 

• M emory-to-register 

• Immediate-to-register 

• Immediate-to-memory 

Certain string instructions and stack manipulation instructions, however, transfer data from 
memory to memory. Both operands of some string instructions are in memory and are 
implicitly specified. Push and pop stack operations allow transfer between memory operands 
and the memory-based stack. 

2.5.1 Immediate Operands 

Certain instructions use data from the instruction itself as one (and sometimes two) of the 
operands. Such an operand is called an immediate operand. The operand may be 
32-, 16-, or 8-bits long. For example: 

SHR PATTERN, 2 

One byte of the instruction holds the value 2, the number of bits by which to shift the 
variable PATTERN. 

TEST PATTERN, OFFFFOOFFH 

A doubleword of the instruction holds the mask that is used to test the variable PATTERN. 

2.5.2 Register Operands 

Operands may be located in one of the 32-bit general registers (EAX, EBX, ECX, ED X, 
ESI, EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI, DI, 
SP, or BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, 
or DL). 

The 80386 has instructions for referencing the segment registers (CS, DS, ES, SS, FS, GS). 
These instructions are used by applications programs only if systems designers have chosen 
a segmented memory model. 

The 80386 also has instructions for referring to the flag register. The flags may be stored 
on the stack and restored from the stack. Certain instructions change the commonly modified 
flags directly in the EFLAGS register. Other flags that are seldom modified can be modified 
indirectly via the flags image in the stack. 
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2.5.3 Memory Operands 

Data-manipulation instructions that address operands in memory must specify (either directly 
or indirectly) the segment that contains the operand and the offset of the operand within the 
segment. However, for speed and compact instruction encoding, segment selectors are stored 
in the high speed segment registers. Therefore, data-manipulation instructions need to specify 
only the desired segment register and an offset in order to address a memory operand. 

An 80386 data-manipulation instruction that accesses memory uses one of the following 
methods for specifying the offset of a memory operand within its segment: 

1. Most data-manipulation instructions that access memory contain a byte that explicitly 
specifies the addressing method for the operand. A byte, known as the modRjM byte, 
follows the opcode and specifies whether the operand is in a register or in memory. If 
the operand is in memory, the address is computed from a segment register and any of 
the following values: a base register, an index register, a scaling factor, a displacement. 
When an index register is used, the modRjM byte is also followed by another byte that 
identifies the index register and scaling factor. This addressing method is the most 
flexible. 

2. A few data-manipulation instructions implicitly use specialized addressing methods: 

For a few short forms of MOY that implicitly use the EAX register, the offset of 
the operand is coded as a doubleword in the instruction. No base register, index 
register, or scaling factor are used. 

String operations implicitly address memory via DS:ESI, (MOVS, CMPS, OUTS, 
LODS, SCAS) or via ES:EDI (MOYS, CMPS, INS, STOS). 

• Stack operations implicitly address operands via SS:ESP registers; e.g., PUSH, POP, 
PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF, POPFD, CALL, 
RET, IRET, IRETD, exceptions, and interrupts. 

2.5.3.1 SEGMENT SELECTION 

Data-manipulation instructions need not explicitly specify which segment register is used. 
For all of these instructions, specification of a segment register is optional. For all memory 
accesses, if a segment is not explicitly specified by the instruction, the processor automati­
cally chooses a segment register according to the rules of Table 2-1. (If systems designers 
have chosen a flat model of memory organization, the segment registers and the rules that 
the processor uses in choosing them are not apparent to applications programs.) 

There is a close connection between the kind of memory reference and the segment in which 
that operand resides. As a rule, a memory reference implies the current data segment (i.e., 
the implicit segment selector is in DS). However, ESP and EBP are used to access items on 
the stack; therefore, when the ESP or EBP register is used as a base register, the current 
stack segment is implied (i.e., SS contains the selector). 

2-16 



BASIC PROGRAMMING MODEL 

Table 2-1. Default Segment Register Selection Rules 

Segment 
Memory Reference Needed Register Implicit Segment Selection Rule 

Used 

Instructions Code (CS) Automatic with instruction prefetch 

Stack Stack (SS) All stack pushes and pops. Any 
memory reference that uses ESP or 
EBP as a base register. 

Local Data Data (DS) All data references except when 
relative to stack or string 
destination. 

Destination Strings Extra (ES) Destination of string instructions. 

Special instruction prefix elements may be used to override the default segment selection. 
Segment-override prefixes allow an explicit segment selection. The 80386 has a segment­
override prefix for each of the segment registers. Only in the following special cases is there 
an implied segment selection that a segment prefix cannot override: 

• The use of ES for destination strings in string instructions. 

• The use of SS in stack instructions. 

• The use of CS for instruction fetches. 

2.5.3.2 EFFECTIVE-ADDRESS COMPUTATION 

The modR/M byte provides the most flexible of the addressing methods, and instructions 
that require a modR/M byte as the second byte of the instruction are the most common in 
the 80386 instruction set. For memory operands defined by modR/M, the offset within the 
desired segment is calculated by taking the sum of up to three components: 

• A displacement element in the instruction. 

• A base register. 

• An index register. The index register may be automatically multiplied by a scaling factor 
of 2,4, or 8. 

The offset that results from adding these components is called an effective address. Each of 
these components of an effective address may have either a positive or negative value. If the 
sum of all the components exceeds 232, the effective address is truncated to 32 bits. 
Figure 2-10 illustrates the full set of possibilities for modR/M addressing. 
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SEGMENT ~"- BASE I (INDEX ¥- SCALE) + DISPLACEMENT 

EAX EAX 
CS ECX ECX 
SS EDX EDX 2 NO DISPLACEMENT 
OS + EBX + EBX ¥- + a-BIT DISPLACEMENT 
ES ESP 4 32-BIT DISPLACEMENT 
FS EBP EBP 
GS ESI ESI 8 

EDI EDI 

G30117 

Figure 2-10_ Effective Address Computation 

The displacement component, because it is encoded in the instruction, is useful for fixed 
aspects of addressing; for example: 

• Location of simple scalar operands. 

• Beginning of a statically allocated array. 

e Offset of an item within a record. 

The base and index components have similar functions. Both utilize the same set of general 
registers. Both can be used for aspects of addressing that are determined dynamically; for 
example: 

• Location of procedure parameters and local variables in stack. 

The beginning of one record among several occurrences of the same record type or in 
an array of records. 

• The beginning of one dimension of multiple dimension array. 

The beginning of a dynamically allocated array. 

The uses of general registers as base or index components differ in the following respects: 

• ESP cannot be used as an index register. 

When ESP or EBP is used as the base register, the default segment is the one selected 
by SS. In all other cases the default segment is DS. 

The scaling factor permits efficient indexing into an array in the common cases when array 
elements are 2, 4, or 8 bytes wide_ The shifting of the index register is done by the processor 
at the time the address is evaluated with no performance loss. This eliminates the need for 
a separate shift or multiply instruction. 
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The base, index, and displacement components may be used in any combination; any of these 
components may be null. A scale factor can be used only when an index is also used. Each 
possible combination is useful for data structures commonly used by programmers in high­
level languages and assembly languages. Following are possible uses for some of the various 
combinations of address components. 

DISPLACEMENT 

The displacement alone indicates the offset of the operand. This combination is used to 
directly address a statically allocated scalar operand. An 8-bit, 16-bit, or 32-bit displace­
ment can be used. 

BASE 

The offset of the operand is specified indirectly in one of the general registers, as for 
"based" variables. 

BASE + DISPLACEMENT 

A register and a displacement can be used together for two distinct purposes: 

1. Index into static array when element size is not 2, 4, or 8 bytes. The displacement 
component encodes the offset of the beginning of the array. The register holds the 
results of a calculation to determine the offset of a specific element within the array. 

2. Access item of a record. The displacement component locates an item within record. 
The base register selects one of several occurrences of record, thereby providing a 
compact encoding for this common function. 

An important special case of this combination, is to access parameters in the procedure 
activation record in the stack. In this case, EBP is the best choice for the base register, 
because when EBP is used as a base register, the processor automatically uses the stack 
segment register (SS) to locate the operand, thereby providing a compact encoding for 
this common function. 

(INDEX * SCALE) + DISPLACEMENT 

This combination provides efficient indexing into a static array when the element size is 
2,4, or 8 bytes. The displacement addresses the beginning of the array, the index register 
holds the subscript of the desired array element, and the processor automatically converts 
the subscript into an index by applying the scaling factor. 

BASE + INDEX + DISPLACEMENT 

Two registers used together support either a two-dimensional array (the displacement 
determining the beginning of the array) or one of several instances of an array of records 
(the displacement indicating an item in the record). 
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BASE + (INDEX * SCALE) + DISPLACEMENT 

This combination provides efficient indexing of a two-dimensional array when the elements 
of the array are 2, 4, or 8 bytes wide. 

2.6 INTERRUPTS AND EXCEPTIONS 

The 80386 has two mechanisms for interrupting program execution: 

1. Exceptions are synchronous events that are the responses of the CPU to certain condi­
tions detected during the execution of an instruction. 

2. Interrupts are asynchronous events typically triggered by external devices needing 
attention. 

Interrupts and exceptions are alike in that both cause the processor to temporarily suspend 
its present program execution in order to execute a program of higher priority. The major 
distinction between these two kinds of interrupts is their origin. An exception is always 
reproducible by re-executing with the program and data that caused the exception, whereas 
an interrupt is generally independent of the currently executing program. 

Application programmers are not normally concerned with servicing interrupts. More infor­
mation on interrupts for systems programmers may be found in Chapter 9. Certain excep­
tions, however, are of interest to applications programmers, and many operating systems 
give applications programs the opportunity to service these exceptions. However, the operat­
ing system itself defines the interface between the applications programs and the exception 
mechanism of the 80386. 

Table 2-2 highlights the exceptions that may be of interest to applications programmers. 

A divide error exception results when the instruction DIY or IDlY is executed with a 
zero denominator or when the quotient is too large for the destination operand. (Refer 
to Chapter 3 for a discussion of DIY and IDlY.) 

• The debug exception may be reflected back to an applications program if it results from 
the trap flag (TF). 

• A breakpoint exception results when the instruction INT 3 is executed. This instruction 
is used by some debuggers to stop program execution at specific points. 

• An overflow exception results when the INTO instruction is executed and the OF 
(overflow) flag is set (after an arithmetic operation that set the OF flag). (Refer to 
Chapter 3 for a discussion of INTO). 

A bounds check exception results when the BOUND instruction is executed and the 
array index it checks falls outside the bounds of the array. (Refer to Chapter 3 for a 
discussion of the BOUND instruction.) 

• Invalid opcodes may be used by some applications to extend the instruction set. In such 
a case, the invalid opcode exception presents an opportunity to emulate the opcode. 
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Table 2-2. 80386 Reserved Exceptions and Interrupts 

Vector Number 

o 
1 

Description 

Divide Error 
Debug Exceptions 

········".~Mnt\terrupt .. '!., 
Breakpoint 
INTO Detected Overflow 
BOUND Range Exceeded 
Invalid Opcode 
r.nnr"r""",w Not Available 

The "coprocessor not available" exception occurs if the program contains instructions 
for a coprocessor, but no coprocessor is present in the system. 

• A coprocessor error is generated when a coprocessor detects an illegal operation. 

The instruction INT generates an interrupt whenever it is executed; the processor treats this 
interrupt as an exception. The effects of this interrupt (and the effects of all other excep­
tions) are determined by exception handler routines provided by the application program or 
as part of the systems software (provided by systems programmers). The INT instruction 
itself is discussed in Chapter 3. Refer to Chapter 9 for a more complete description of 
exceptions. 
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CHAPTER 3 
APPLICATIONS INSTRUCTION SET 

This chapter presents an overview of the instructions which programmers can use to write 
application software for the 80386 executing in protected virtual-address mode. The instruc­
tions are grouped by categories of related functions. 

The instructions not discussed in this chapter are those that are normally used only by 
operating-system programmers. Part II describes the operation of these instructions. 

The descriptions in this chapter assume that the 80386 is operating in protected mode with 
32-bit addressing in effect; however, all instructions discussed are also available when 16-bit 
addressing is in effect in protected mode, real mode, or virtual 8086 mode. For any differ­
ences of operation that exist in the various modes, refer to Chapter 13, Chapter 14, or 
Chapter 15. 

The instruction dictionary in Chapter 17 contains more detailed descriptions of all instruc­
tions, including encoding, operation, timing, effect on flags, and exceptions. 

3.1 DATA MOVEMENT INSTRUCTIONS 

These instructions provide convenient methods for moving bytes, words, or doublewords of 
data between memory and the registers of the base architecture. They fall into the following 
classes: 

1. General-purpose data movement instructions. 

2. Stack manipulation instructions. 

3. Type-conversion instructions. 

3. 1. 1 General-Purpose Data Movement Instructions 

MOV (Move) transfers a byte, word, or doubleword from the source operand to the destina­
tion operand. The MOV instruction is useful for transferring data along any of these pathsl: 

• To a register from memory 

• To memory from a register 

• Between general registers 

• Immediate data to a register 

• Immediate data to a memory 

1. There are also variants of MOV that operate on segment registers. These are covered in a later section of this chapter. 
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The MOV instruction cannot move from memory to memory or from segment register to 
segment register are not allowed. Memory-to-memory moves can be performed, however, by 
the string move instruction MOVS. 

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place of 
three MOV instructions. It does not require a temporary location to save the contents of one 
operand while ~ the other is being loaded. XCHG is especially useful for implementing 
semaphores or similar data structures for process synchronization. 

The XCHG instruction can swap two byte operands, two word operands, or two doubleword 
operands. The operands for the XCHG instruction may be two register operands, or a regis­
ter operand with a memory operand. When used with a memory operand, XCHG automat­

. ically activates the 1_Q.9K }ignal, (Refer to Chapter 11 for more information on the bus 
lock.) 

3.1.2 Stack Manipulation Instructions 

PUSH (Push) decrements the stack pointer (ESP), then transfers the source operand to the 
top of stack indicated by ESP (see Figure 3-1). PUSH is often used to place parameters on 
the stack before calling a procedure; it is also the basic means of storing temporary variables 
on the stack. The PUSH instruction operates on memory operands, immediate operands, 
and register operands (including segment registers). 

PUSHA (Push All Registers) saves the contents of the eight general registers on the stack 
(see Figure 3-2). This instruction simplifies procedure calls by reducing the number of 
instructions required to retain the contents of the general registers for use in a procedure. 
The processor pushes the general registers on the stack in the following order: EAX, ECX, 
EDX, EBX, the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. PUSHA 
is complemented by the POP A instruction. 

BEFORE PUSH AFTER PUSH 

• 31 o· • 31 o· 
D 0 
I F 
R 
E E 
C X 
T P 
I A OPERAND 
0 N 

ESP N S 

!~ 

G30117 

Figure 3-1. PUSH 
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BEFORE PUSHA AFTER PUSHA 

·31 o· .31 o. 

D 0 
I F 
R 
E E 

ESP C X 
T P EAX 

I A 
ECX 0 N 

N S 

l~ 
EDX 

EBX 

OLD ESP 

EBP 

ESI 

EDI 
_ESP 

G30117 

Figure 3-2. PUSHA 

POP (Pop) transfers the word or doubleword at the current top of stack (indicated by ESP) 
to the destination operand, and then increments ESP to point to the new top of stack. See 
Figure 3-3. POP moves information from the stack to a general register, or to memory2. 

POPA (Pop All Registers) restores the registers saved on the stack by PUSHA, except that 
it ignores the saved value of ESP. See Figure 3-4. 

3.1.3 Type Conversion Instructions 

The type conversion instructions convert bytes into words, words into doublewords, and 
doublewords into 64-bit items (quad-words). These instructions are especially useful for 
converting signed integers, because they automatically fill the extra bits of the larger item 
with the value of the sign bit of the smaller item. This kind of conversion, illustrated by 
Figure 3-5, is called sign extension. 

There are two classes of type conversion instructions: 

1. The forms CWD, CDQ, CBW, and CWDE which operate only on data in the EAX 
register. 

2. The forms MOVSX and MOVZX, which permit one operand to be in any general regis­
ter while permitting the other operand to be in memory or in a register. 

2. There are also a variant of POP that operates on segment registers. This is covered in a later section of this chapter. 
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BEFORE POP 

·31 o. 

_ESP 

Figure 3-3. POP 

BEFORE POPA 

o· 

~?'~ 
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ECX 

EOX 

EBX 
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EBP 

ESI 

EOI 

AFTER POP 
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Figure 3-4. POPA 
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CWD (Convert Word to Doubleword) and CDQ (Convert Doubleword to Quad-Word) double 
the size of the source operand. CWO extends the sign of the word in register AX throughout 
register OX. COQ extends the sign of the doubleword in EAX throughout EOX. CWD can 
be used to produce a doubleword dividend from a word before a word division, and CDQ 
can be used to produce a quad-word dividend from a doubleword before doubleword division. 

CBW (Convert Byte to Word) extends the sign of the byte in register AL throughout AX. 
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15 7 0 

BEFORESIGNEXTENSION--__ lsIN N N N N N N:N N N N N N N NI 

AFTER SIGN EXTENSION t 
31 23 15 7 0 

1515 5 5 5 5 5 5: 5 5 5 5 5 5 5 5:5 N N N N N N N :N N N N N N N N I 

Figure 3-5. Sign Extension 

G30117 

CWDE (Convert Word to Doubleword Extended) extends the sign of the word in register AX 
throughout EAX. 

MOVSX (Move with Sign Extension) sign-extends an 8-bit value to a 16-bit value and a 
8- or 16-bit value to 32-bit value. 

MOVZX (Move with Zero Extension) extends an 8-bit value to a 16-bit value and an 8- or 
16-bit value to 32-bit value by inserting high-order zeros. 

3.2 BINARY ARITHMETIC INSTRUCTIONS 

The arithmetic instructions of the 80386 processor simplify the manipulation of numeric 
data that is encoded in binary. Operations include the standard add, subtract, multiply, and 
divide as well as increment, decrement, compare, and change sign. Both signed and unsigned 
binary integers are supported. The binary arithmetic instructions may also be used as one 
step in the process of performing arithmetic on decimal integers. 

Many of the arithmetic instructions operate on both signed and unsigned integers. These 
instructions update the flags ZF, CF, SF, and OF in such a manner that subsequent instruc­
tions can interpret the results of the arithmetic as either signed or unsigned. CF contains 
information relevant to unsigned integers; SF and OF contain information relevant to signed 
integers. ZF is relevant to both signed and unsigned integers; ZF is set when all bits of the 
result are zero. 

If the integer is unsigned, CF may be tested after one of these arithmetic operations to 
determine whether the operation required a carry or borrow of a one-bit in the high-order 
position of the destination operand. CF is set if a one-bit was carried out of the high-order 
position (addition instructions ADD, ADC, AAA, and DAA) or if a one-bit was carried (i.e. 
borrowed) into the high-order bit (subtraction instructions SUB, SBB, AAS, DAS, CMP, 
and NEG). 

If the integer is signed, both SF and OF should be tested. SF always has the same value as 
the sign bit of the result. The most significant bit (MSB) of a signed integer is the bit next 
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to the sign-bit 6 of a byte, bit 14 of a word, or bit 30 of a doubleword. OF is set in either 
of these cases: 

• A one-bit was carried out of the MSB into the sign bit but no one bit was carried out of 
the sign bit (addition instructions ADD, ADC, INC, AAA, and DAA). In other words, 
the result was greater than the greatest positive number that could be contained in the 
destination operand. 

• A one-bit was carried from the sign bit into the MSB but no one bit was carried into 
the sign bit (subtraction instructions SUB, SBB, DEC, AAS, DAS, CMP, and NEG). 
In other words, the result was smaller that the smallest negative number that could be 
contained in the destination operand. 

These status flags are tested by executing one of the two families of conditional instructions: 
Jee (jump on condition ee) or SETee (byte set on condition). 

3.2.1 Addition and Subtraction Instructions 

ADD (Add Integers) replaces the destination operand with the sum of the source and desti­
nation operands. Sets CF if ~...:..._ tM-(;l "'/ l' ,-'fi-<.';-v'~ r:;r 
ADC (Add Integers with Carry) sums the operands, adds one if CF is set, and replaces the 
destination operand with the result. If CF is cleared, ADC performs the same operation as 
the ADD instruction. An ADD followed by multiple ADC instructions can be used to add 
numbers longer than 32 bits. 

INC (Increment) adds one to the destination operand. INC doesnot affect CF. Use ADD 
with an immediate value of 1 if an increment that updates carry (C'Ffis·needed. 

SUB (Subtract Integers) subtracts the source operand from the destination operand and 
replaces the destination operand with the result. If a borrow is required, the CF is set. The 
operands may be signed or unsigned bytes, words, or doublewords. 

SBB (Subtract Integers with Borrow) subtracts the source operand from the destination 
operand, subtracts 1 if CF is set, and returns the result to the destination operand. If CF is 
cleared, SBB performs the same operation as SUB. SUB followed by multiple SBB instruc­
tions may be used to subtract numbers longer than 32 bits. If CF is cleared, SBB performs 
the same operation as SUB. 

DEC (Decrement) subtracts 1 from the destination operand. DEC~<!.~ nOL~~!.<?_ Cf.: Use 
SUB with an immediate value of 1 to perform a decrement that affects carry. 

3.2.2 Comparison and Sign Change Instruction 

CMP (Compare) subtracts the source operand from the destination operand. It updates OF, 
SF, ZF, AF, PF, and CF but does not alter the source and destination operands. A subse­
quent Jee or SETee instruction can test the appropriate flags. 
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NEG (Negate) subtracts a signed integer operand from zero. The effect of NEG is to reverse 
the sign of the operand from positive to negative or from negative to positive. 

3.2.3 Multiplication Instructions 

The 80386 has separate multiply instructions for unsigned and signed operands. MUL 
operates on unsigned numbers, while IMUL operates on signed integers as well as unsigned. 

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source operand 
and the accumulator. If the source is a byte, the processor multiplies it by the contents of 
AL and returns the double-length result to AH and AL. If the source operand is a word, the 
processor multiplies it by the contents of AX and returns the double-length result to DX 
and AX. If the source operand is a doubleword, the processor mUltiplies it by the contents 
of EAX and returns the 64-bit result in EDX and EAX. MUL sets CF and OF when the 
upper half of the result is nonzero; otherwise, they are cleared. 

IMUL (Signed Integer Multiply) performs a signed multiplication operation. IMUL has three 
variations: 

1. A one-operand form. The operand may be a byte, word, or doubleword located in memory 
or in a general register. This instruction uses EAX and EDX as implicit operands in the 
same way as the MUL instruction. 

2. A two-operand form. One of the source operands may be in any general register while 
the other may be either in memory or in a general register. The product replaces the 
general-register operand. 

3. A three-operand form; two are source and one is the destination operand. One of the 
source operands is an immediate value stored in the instruction; the second may be in 
memory or in any general register. The product may be stored in any general register. 
The immediate operand is treated as signed. If the immediate operand is a byte, the 
processor automatically sign-extends it to the size of the second operand before perform­
ing the multiplication. 

The three forms are similar in most respects: 

• The length of the product is calculated to twice the length of the operands. 

• The CF and OF flags are set when significant bits are carried into the high-order half 
of the result. CF and OF are cleared when the high-order half of the result is the sign­
extension of the low-order half. 

However, forms 2 and 3 differ in that the product is truncated to the length of the operands 
before it is stored in the destination register. Because of this truncation, OF should be tested 
to ensure that no significant bits are lost. (For ways to test OF, refer to the INTO and 
PUSHF instructions.) 

Forms 2 and 3 of IMUL may also be used with unsigned operands because, whether the 
operands are signed or unsigned, the low-order half of the product is the same. 
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3.2.4 Division Instructions 

The 80386 has separate division instructions for unsigned and signed operands. DIV operates 
on unsigned numbers, while IDIV operates on signed integers as well as unsigned. In either 
case, an exception (interrupt zero) occurs if the divisor is zero or if the quotient is too large 
for AL, AX, or EAX. 

DIV (Unsigned Integer Divide) performs an unsigned division of the accumulator by the 
source operand. The dividend (the accumulator) is twice the size of the divisor (the source 
operand); the quotient and remainder have the same size as the divisor, as the following 
table shows. 

Size of Source Operand Dividend Quotient Remainder (divisor) 

Byte AX AL AH 
Word DX:AX AX DX 
Doubleword EDX:EAX EAX EDX 

Non-integral quotients are truncated to integers toward O. The remainder is always less than 
the divisor. For unsigned byte division, the largest quotient is 255. For unsigned word division, 
the largest quotient is 65,535. For unsigned doubleword division the largest quotient is 232 -1. 

IDIV (Signed Integer Divide) performs a signed division of the accumulator by the source 
operand. IDIV uses the same registers as the DIV instruction. 

For signed byte division, the maximum positive quotient is + 127, and the minimum negative 
quotient is -128. For signed word division, the maximum positive quotient is + 32,767, and 
the minimum negative quotient is - 32,768. For signed doubleword division the maximum 
positive quotient is 2 31 -1, the minimum negative quotient is - 231. Non-integral results are 
truncated towards O. The remainder always has the same sign as the dividend and is less 
than the divisor in magnitude. 

3.3 DECIMAL ARITHMETIC INSTRUCTIONS 

Decimal arithmetic is performed by combining the binary arithmetic instructions (already 
discussed in the prior section) with the decimal arithmetic instructions. The decimal arith­
metic instructions are used in one of the following ways: 

To adjust the results of a previous binary arithmetic operation to produce a valid packed 
or unpacked decimal result. 

To adjust the inputs to a subsequent binary arithmetic operation so that the operation 
will produce a valid packed or unpacked decimal result. 

These instructions operate only on the AL or AH registers. Most utilize the AF flag. 
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3.3.1 Packed BCD Adjustment Instructions 

DAA (Decimal Adjust after Addition) adjusts the result of adding two valid packed decimal 
operands in AL. DAA must always follow the addition of two pairs of packed decimal 
numbers (one digit in each half-byte) to obtain a pair of valid packed decimal digits as 
results. The carry flag is set if carry was needed. 

DAS (Decimal Adjust after Subtraction) adjusts the result of subtracting two valid packed 
decimal operands in AL. DAS must always follow the subtraction of one pair of packed 
decimal numbers (one digit in each half- byte) from another to obtain a pair of valid packed 
decimal digits as results. The carry flag is set if a borrow was needed. 

3.3.2 Unpacked BCD Adjustment Instructions 

AAA (ASCII Adjust after Addition) changes the contents of register AL to a valid unpacked 
decimal number, and zeros the top 4 bits. AAA must always follow the addition of two 
unpacked decimal operands in AL. The carry flag is set and AH is incremented if a carry is 
necessary. 

AAS (ASCII Adjust after Subtraction) changes the contents of register AL to a valid unpacked 
decimal number, and zeros the top 4 bits. AAS must always follow the subtraction of one 
unpacked decimal operand from another in AL. The carry flag is set and AH decremented 
if a borrow is necessary. 

AAM (ASCII Adjust after Multiplication) corrects the result of a multiplication of two valid 
unpacked decimal numbers. AAM must always follow the multiplication of two decimal 
numbers to produce a valid decimal result. The high order digit is left in AH, the low order 
digit in AL. 

AAD (ASCII Adjust before Division) modifies the numerator in AH and AL to prepare for 
the division of two valid unpacked decimal operands so that the quotient produced by the 
division will be a valid unpacked decimal number. AH should contain the high-order digit 
and AL the low-order digit. This instruction adjusts the value and places the result in AC­
AH will contain zero. 

3.4 LOGICAL INSTRUCTIONS 

The group of logical instructions includes: 

• The Boolean operation instructions 

• Bit test and modify instructions 

• Bit scan instructions 

• Rotate and shift instructions 

• Byte set on condition 
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3.4.1 Boolean Operation Instructions 

The logical operations are AND, OR, XOR, and NOT. 

NOT (Not) inverts the bits in the specified operand to form a one's complement of the operand. 
The NOT instruction is a unary operation that uses a single operand in a register or memory. 
NOT has no effect on the flags. 

The AND, OR, and XOR instructions perform the standard logical operations "and", 
"(inclusive) or", and "exclusive or". These instructions can use the following combinations 
of operands: 

• Two register operands 

• A general register operand with a memory operand 

• An immediate operand with either a general register operand or a memory operand. 

AND, OR, and XOR clear OF and CF, leave AF undefined, and update SF, ZF, and PF. 

3.4.2 Bit Test and Modify Instructions 

This group of instructions operates on a single bit which can be in memory or in a general 
register. The location of the bit is specified as an offset from the low-order end of the operand. 
The value of the offset either may be given by an immediate byte in the instruction or may 
be contained in a general register. 

These instructions first assign the value of the "selected bit to CF, the carry flag. Then a new 
value is assigned to the selected bit, as determined by the operation. OF, SF, ZF, AF, PF 
are left in an undefined state. Table 3-1 defines these instructions. 

3.4.3 Bit Scan Instructions 

These instructions scan a word or doubleword for a one-bit and store the index of the first 
set bit into a register. The bit string being scanned may be either in a register or in memory. 
The ZF flag is set if the entire word is zero (no set bits are found); ZF is cleared if a one­
bit is found. If no set bit is found, the value of the destination register is undefined. 

Table 3-1. Bit Test and Modify Instructions 

Instruction Effect on CF 
Effect on 

Selected Bit 

~,~ (Bit Test) CF f. BIT (none) 
BTS (Bit Test and Set) CF f. BIT BIT f. 1 
BTR (Bit Test and Reset) CF f. BIT BIT f. 0 
BTC (Bit Test and Complement) CF f. BIT BIT f. NOT(BIT) 
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BSF (Bit Scan Forward) scans from low-order to high-order (starting from bit index zero). 

BSR (Bit Scan Reverse) scans from high-order to low-order (starting from bit index 15 of a 
word or index 31 of a doubleword). 

3.4.4 Shift and Rotate Instructions 

The shift and rotate instructions reposition the bits within the specified operand. 

These instructions fall into the following classes: 

• Shift instructions 

• Double shift instructions 

• Rotate instructions 

3.4.4.1 SHIFT INSTRUCTIONS 

The bits in bytes, words, and doublewords may be shifted arithmetically or logically. 
Depending on the value of a specified count, bits can be shifted up to 31 places. 

A shift instruction can specify the count in one of three ways. One form of shift instruction 
implicitly specifies the count as a single shift. The second form specifies the count as an 
immediate value. The third form specifies the count as the value contained in CL. This last 
form allows the shift count to be a variable that the program supplies during execution. Only 
the low order 5 bits of CL are used. 

CF always contains the value of the last bit shifted out of the destination operand. In a 
single-bit shift, OF is set if the value of the high-order (sign) bit was changed by the opera­
tion. Otherwise, OF is cleared. Following a multibit shift, however, the content of OF is 
always undefined. 

The shift instructions provide a convenient way to accomplish division or multiplication by 
binary power. Note however that division of signed numbers by shifting right is not the same 
kind of division performed by the IDIV instruction. 

SAL (Shift Arithmetic Left) shifts the destination byte, word, or doubleword operand left by 
one or by the number of bits specified in the count operand (an immediate value or the value 
contained in CL). The processor shifts zeros in from the right (low-order) side of the operand 
as bits exit from the left (high-order) side. See Figure 3-6. 

SHL (Shift Logical Left) is a synonym for SAL (refer to SAL). 

SHR (Shift Logical Right) shifts the destination byte, word, or doubleword operand right by 
one or by the number of bits specified in the count operand (an immediate value or the value 
contained in CL). The processor shifts zeros in from the left side of the operand as bits exit 
from the right side. See Figure 3-7. 
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BEFORE SHL 
OR SAL 

AFTER SHL 
OR SAL BY 1 

AFTER SHL 
OR SAL BY 10 

OF 

x 

x 
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CF OPERAND 

x 10001000100010001000100010001111 

....... __ - 00010001000100010001000100011110 ---- 0 

o ... 00100010001000100011110000000000 ______ 0 

SHL (WHICH HAS THE SYNONYM SAL) SHIFTS THE BITS IN THE REGISTER OR MEMORY OPERAND TO THE LEFT BY THE SPECI· 
FlED NUMBER OF BIT POSITIONS. CF RECEIVES THE LAST BIT SHIFTED OUT OF THE LEFT OF THE OPERAND. SHL SHIFTS IN 
ZEROS TO FILL THE VACATED BIT LOCATIONS. THESE INSTRUCTIONS OPERATE ON BYTE, WORD, AND DOUBLEWORD 
OPERANDS. 

Figure 3-6. SAL and SHL 

OPERAND CF 

BEFORESHR c~10001000100010001000100010001111 X 

AFTER SHR 0 .. • 01000100010001000100010001000111 ... 
BY 1 ~-

AFTER SHR 0 ... 00000000001000100010001000100010 ... 0 
BY10 

SHR SHIFTS THE BITS OF THE REGISTER OR MEMORY OPERAND TO THE RIGHT BY THE SPECIFIED NUMBER OF BIT 
POSITIONS. CF RECEIVES THE LAST BIT SHIFTED OUT OF THE RIGHT OF THE OPERAND. SHR SHIFTS IN ZEROS TO FILL 
THE VACATED BIT LOCATIONS. 

Figure 3-7. SHR 

0+= 

X 

I 

X 

SAR (Shift Arithmetic Right) shifts the destination byte, word, or doubleword operand to 
the right by one or by the number of bits specified in the count operand (an immediate value 
or the value contained in CL). The processor preserves the sign of the operand by shifting 
in zeros on the left (high-order) side if the value is positive or by shifting by ones if the value 
is negative. See Figure 3-8. 

Even though this instruction can be used to divide integers by a power of two, the type of 
division is not the same as that produced by the IDIV instruction. The quotient of IDIV is 
rounded toward zero, whereas the "quotient" of SAR is rounded toward negative infinity. 
This difference is apparent only for negative numbers. For example, when IDIV is used to 
divide -9 by 4, the result is -2 with a remainder of -1. If SAR is used to shift -9 right 
by two bits, the result is - 3. The "remainder" of this kind of division is + 3; however, the 
SAR instruction stores only the high-order bit of the remainder (in CF). 
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BEFORE SAR 

AFTER SAR 
BY 1 

BEFORESAR 

AFTER SAR 
BY 1 
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POSITIVE OPRAND 

01000100010001000100010001000111 .. 00100010001000100010001000100011 

NEGATIVE OPERAND 

11000100010001000100010001000111 .. 11100010001000100010001000100011 

CF 

X .. 
CF 

X ... 
SAR PRESERVES THE SIGN OF THE REGISTER OR MEMORY OPERAND AS IT SHIFTS THE OPERAND TO THE RIGHT 
BY THE SPECIFIED NUMBER OF BIT POSITIONS. CF RECEIVES THE LAST BIT SHIFTED OUT OF THE RIGHT OF THE 
OPERAND. 

a55uming 1'1 i5 in 
; 
eMP 
JGE 
ADD 
DEC 

NoAdju5t: 
SAR 

E A X, 0 
HoAdju5t 
EAX, ECX 
E A X 

EAX, CL 

Figure 3-8. SAR 

ECX, and the dividend i5 in 

to 5et 5ign flag 
jump if 5ign i5 zero 

EAX := EAX • (1'1-1) 

TOTAL CLOCKS 

Figure 3-9. Using SAR to Simulate IDIV 

E A X 
CLOCKS 
2 
3 0 r 9 
2 
2 

3 
12 or 18) 

D,~ 

fJ 

<.".:~,r,-

)>« 

(1) 

The code sequence in Figure 3-9 produces the same result as IDlY for any M = 2N , where 
o < N < 32. This sequence takes about 12 to 18 clocks, depending on whether the jump is 
taken; if ECX contains M, the corresponding IDlY ECX instruction will take about 43 
clocks. 

3.4.4.2 DOUBLE-SHIFT INSTRUCTIONS 

These instructions provide the basic operations needed to implement operations on long 
unaligned bit strings. The double shifts operate either on word or doubleword operands, as 
follows: 

1. Taking two word operands as input and producing a one-word output. 

2. Taking two doubleword operands as input and producing a doubleword output. 

Of the two input operands, one may either be in a general register or in memory, while the 
other may only be in a general register. The results replace the memory or register operand. 
The number of bits to be shifted is specified either in the CL register or in an immediate 
byte of the instruction. 
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Bits are shifted from the register operand into the memory or register operand. CF is set to 
the value of the last bit shifted out of the destination operand. SF, ZF, and PF are set 
according to the value of the result. OF and AF are left undefined. 

SHLD (Shift Left Double) shifts bits of the RIM field to the left, while shifting high-order 
bits from the Reg field into the RIM field on the right (see Figure 3-10). The result is stored 
back into the RIM operand. The Reg field is not modified. 

SHRD (Shift Right Double) shifts bits of the RIM field to the right, while shifting low-order 
bits from the Reg field into the RIM field on the left (see Figure 3-11). The result is stored 
back into the RIM operand. The Reg field is not modified. 

3.4.4.3 ROTATE INSTRUCTIONS 

Rotate instructions allow bits in bytes, words, and doublewords to be rotated. Bits rotated 
out of an operand are not lost as in a shift, but are "circled" back into the other "end" of 
the operand. 

Rotates affect only the carry and overflow flags. CF may act as an extension of the operand 
in two of the rotate instructions, allowing a bit to be isolated and then tested by a conditional 
jump instruction (JC or JNC). CF always contains the value of the last bit rotated out, even 
if the instruction does not use this bit as an extension of the rotated operand. 

31 DESTINATION 0 

~~r-~:::::M:E:M:OR:Y:O:R:RE:G:IS:TE:R::::~I __ J 
SOURCE o 
REGISTER 

G30117 

Figure 3-10. Shift Left Double! 

31 SOURCE /0 
REGISTER 

31 DESTINATION 0 

~ ____ M_E_M_OR_Y_O_R_R_EG_IS_TE_R ____ -J~~ 

G30117 

Figure 3-11. Shift Right Double 
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In single-bit rotates, OF is set if the operation changes the high-order (sign) bit of the desti­
nation operand. If the sign bit retains its original value, OF is cleared. On multibit rotates, 
the value of OF is always undefined. 

ROL (Rotate Left) rotates the byte, word, or doubleword destination operand left by one or 
by the number of bits specified in the count operand (an immediate value or the value 
contained in CL). For each rotation specified, the high-order bit that exits from the left of 
the operand returns at the right to become the new low-order bit of the operand. See 
Figure 3-12. 

ROR (Rotate Right) rotates the byte, word, or doubleword destination operand right by one 
or by the number of bits specified in the count operand (an immediate value or the value 
contained in CL). For each rotation specified, the low-order bit that exits from the right of 
the operand returns at the left to become the new high-order bit of the operand. See 
Figure 3-13. 

RCL (Rotate Through Carry Left) rotates bits in the byte, word, or doubleword destination 
operand left by one or by the number of bits specified in the count operand (an immediate 
value or the value contained in CL). 

This instruction differs from ROL in that it treats CF as a high-order one-bit extension of 
the destination operand. Each high-order bit that exits from the left side of the operand 
moves to CF before it returns to the operand as the low-order bit on the next rotation cycle. 
See Figure 3-14. 

RCR (Rotate Through Carry Right) rotates bits in the byte, word, or doubleword destination 
operand right by one or by the number of bits specified in the count operand (an immediate 
value or the value contained in CL). 

31 OESTINA TION o 

0--r-iL-===:M:E:M:OR:Y:O:R:RE:G:IS:TE:R===-I:J_J 

G30117 

Figure 3-12. ROL 

I ~~31~ ____ ~O~E~ST~IN~A~TI~ON~ ____ ~~ I r:=1CF 

L-.f MEMORY OR REGISTER l---l--l...:::...J 

G30117 

Figure 3-13. ROR 
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31 DESTINATION o 

[EI--I MEMORY OR REGISTER I:J 

G30117 

Figure 3-14. RCL 

DESTINATION 0 

MEMORY OR REGISTER 

G30117 

Figure 3-15. RCR 

This instruction differs from ROR in that it treats CF as a low-order one-bit extension of 
the destination operand. Each low-order bit that exits f.rom the right side of the operand 
moves to CF before it returns to the operand as the high-order bit on the next rotation cycle. 
See Figure 3-15. 

3.4.4.4 FAST "BIT BLT" USING DOUBLE SHIFT INSTRUCTIONS 

One purpose of the double shifts is to implement a bit string move, with arbitrary misalign­
ment of the bit strings. This is called a "bit bIt" (BIT BLock Transfer.) A simple example 
is to move a bit string from an arbitrary offset into a doubleword-aligned byte string. A left­
to-right string is moved 32 bits at a time if a double shift is used inside the move loop. 

MOV 
MOV 
MOV 
MOV 
MOV 
ADD 

BltLoop: 
LDDS 
SHLD 
XCHG 
STOS 
DEC 
JA 

ESI,ScrAddr 
EDI,DutAddr 
EBX,WordCnt 
CL,RelDffset 
EDX,IESIl 
E S I , 4 

EDX,EAX,CL 
EDX,EAS 

E B X 
BltLoop 

relative offset Dest-Src 
load first word of source 
bump source address 

new low order part 
EDX overwritten with ali9ned stuff 
Swap hi9h/low order parts 
Write out next ali9ned chunk 
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This loop is simple yet allows the data to be moved in 32-bit pieces for the highest possible 
performance. Without a double shift, the best that can be achieved is 16 bits per loop itera­
tion by using a 32-bit shift and replacing the XCHG with a ROR by 16 to swap high and 
low order parts of registers. A more general loop than shown above would require some extra 
masking on the first doubleword moved (before the main loop), and on the last doubleword 
moved (after the main loop), but would have the same basic 32-bits per loop iteration as the 
code above. 

3.4.4.5 FAST BIT-STRING INSERT AND EXTRACT 

The double shift instructions also enable: 

• Fast insertion of a bit string from a register into an arbitrary bit location in a larger bit 
string in memory without disturbing the bits on either side of the inserted bits. 

• Fast extraction of a bits string into a register from an arbitrary bit location in a larger 
bit string in memory without disturbing the bits on either side of the extracted bits. 

The following coded examples illustrate bit insertion and extraction under various 
conditions: 

1. Bit String Insert into Memory (when bit string is 1-25 bits long, i.e., spans four bytes 
or less): 

Insert a right-justified bit string from register into 
memory bit string. 

Assumptions: 
1) The base of the string array is dword aligned, and 
2) the length of the bit string is an immediate value 

but the bit offset is held in a register. 

Register E51 holds the right-justified bit string 
to be inserted. 
Register EDI holds the bit offset of the start of the 
substring. 
Registers EAX and ECX are also used by this 
"insert" operation. 

MOV ECX,EDI ; preserve original offset for later use 
5HR EDI,3 ; Signed divide offset by B (byte address) 
AND CL,7H ; isolate low three bits of offset in CL 
MOV EAX,[EDIlstrg_base ; move string dword into EAX 
ROR EAX,CL ; right justify old bit field 
5HRD EAX,E5I,length ; bring in new bits 
ROL EAX,length ; right justify new bit field 
ROL EAX,CL ; bring to final POSition 
M 0 V [E D I 1 s t r g_b a s e , E A X ; rep 1 ace d w 0 r din me m 0 r y 
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2. Bit String Insert into Memory (when bit string is 1-31 bits long, i.e. spans five bytes or 
less): 

, 

Insert a right-justified bit string from register into 
memory bit string. 

Assumptions: 
1) The base of the string array is dword aligned, and 
2) the length of the bit string is an immediate value 

but the bit offset is hold in a register. 

Register E51 holds the right-justified bit string 
to be inserted. 
Register EDI holds the bit offset of the start of the 
substring. 
Registers EAX, EBX, ECX, and EDI are also used by 
this "insert" operation. 

MOV ECX,EDI temp storage for offset 
5HR EDI,S signed divide offset by 32 (dword address) 
5HL EDI,2 multiply by 4 (in byte address format> 
AND CL,1FH j isolate low five bits of offset in CL 
M 0 V E A X , lED I 1st r g_b a s e j m 0 vel 0 w s t r i n 9 d w 0 r din toE A X 
M 0 V ED X , lED I 1st r g_b a s e + 4 jot her s t r i n 9 d w 0 r din toE D X 
MOV EBX,EAX j temp storage for part of string }rotate 
5HRD EAX,EDX,CLj double shift by offset within dword EDX:EAX 
SHRD EAX,EBX,CLj double shift by offset within dword right 
SHRD EAX,ESI,length j bring in new bits 
ROL EAX,lengthj right justify new bit field 
MOV EBX,EAX j temp storage for part of string }rotate 
SHLD EAX,EDX,CLj double shift back by offset within word EDX:EAX 
SHLD EDX,EBX,CLj double shift back by offset within word left 
MOV IEDIIstrg_base,EAX j replace dword in memory 
MOV IEDIIstrg_base+4,EDX j replace dword in memory 

3. Bit String Insert into Memory (when bit string is exactly 32 bits long, i.e., spans five or 
four types of memory): 

Insert right-justified bit string from register into 
memory bit string. 

Assumptions: 
1) The base of the string array is dword aligned, and 
2) the length of the bit string is 32 

but the bit offset is held in a register. 

Register E51 holds the 32-bit string to be inserted. 
Register ED! holds the bit offset of the start of the 
substring. 
Registers EAX, EBX, ECX, and ED! are also used by 
this "insert" operation. 
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MOV EDX,EDI preserve original ofhet for later use 
5 H R 
SHL 
AND 
MOV 
MOV 
MOV 
SHRD 
SHRD 
MOV 
MOV 
SHLD 
SHLD 
MOV 
MOV 

EDI,5 signed divide offset by 32 (dword address) 
EDI,2 multiply by 4 (in byte address format) 
CL,1FH i isolate low five bits of offset in CL 
EAX,[EDIJstrg_base i move low string dword into EAX 
ED X , [ ED I 1st r g_b a s e + 4 i 0 the r s t r i n 9 d w 0 r din toE D X 
E8X,EAX temp storage for part of string }rotate 
EAX,EDX double shift by offset within dword EDX:EAX 
EDX,E8X double shift by offset within dword right 
EAX,ESI move 32-bit bit field into position 
E8X,EAX temp storage for part of string }rotate 
EAX,EDX double shift back by offset within word EDX:EAX 
EDX,E8X i double shift back by offset within word left 
[EDllstrg_base,EAX i replace dword in memory 
[ ED I 1st r g_b a s e , + 4 , ED X ire pIa c e d w 0 r din m e m 0 r y 

4. Bit String Extract from Memory (when bit string is 1-25 bits long, Le., spans four bytes 
or less); 

i 

Extract a right-justified bit string from memory bit 
string into register 

Assumptions: 
1) The base of the string array is dword aligned, and 
2) the length of the bit string is an immediate value 

but the bit offset is held in a register. 

Register EAX hold the right-justified, zero-padded 
bit string that was extracted. 
Register EDI holds the bit offset of the start of the 
substring. 
Registers EDI, and ECX are also used by this "extract." 

MOV ECX,EDI temp storage for offset 
SHR EDI,3 signed divide offset by 8 (byte address) 
AND CL,7H i isolate low three bits of offset 
M 0 V E A X , ( ED I 1st r g_b a s e i m 0 v est r i n g dw 0 r din toE A X 
SHR EAX,CL i shift by offset within dword 
AND EAX,mask i extracted bit field in EAX 

5. Bit String Extract from Memory (when bit string is 1-32 bits long, i.e., spans five bytes 
or less); 

Extract a right-justified bit string from memory bit 
string into register. 

Assumptions: 
1) The base of the string array is dword aligned, and 
2) the length of the bit string is an immediate 

value but the bit offset is held in a register. 

Register EAX holds the right-justified, zero-padded 
bit string that was extracted. 
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Register EOI holds the bit offset of the start of the 
substring. 
Registers EAX, EBX, and ECX are also used by this "extract." 

MDV ECX,EOI temp storage for offset 
SHR EOI,S signed divide offset by 32 (d\llord address) 
SHL EOI,2 multiply by 4 (in byte address format) 
AND CL,1FH ; isolate 10\11 five bits of offset in CL 
M 0 V E A X , [ EO I 1st r g_b a s e ; m 0 vel 0 \II S t r i n g d \II 0 r din toE A X 
M 0 V EO X , [ EO I 1st r g_b a s e + 4 ; 0 the r s t r i n g d \II 0 r din toE 0 X 
SHRO EAX,EOX,CL ; double shift right by offset \IIithin d\llord 
AND EAX,mask ; extracted bit field in EAX 

3.4.5 Byte-Set-On-Condition Instructions 

This group of instructions sets a byte to zero or one depending on any of the 16 conditions 
defined by the status flags. The byte may be in memory or may be a one-byte general regis­
ter. These instructions are especially useful for implementing Boolean expressions in high­
level languages such as Pascal. 

SETcc (Set Byte on Condition cc) set a byte to one if condition cc is true; sets the byte to 
zero otherwise. Refer to Appendix D for a definition of the possible conditions. 

3.4.6 Test Instruction 

TEST (Test) performs the logical "and" of the two operands, clears OF and CF, leaves AF 
undefined, and updates SF, ZF, and PF. The flags can be tested by conditional control 
transfer instructions or by the byte-set-on-condition instructions. The operands may be 
double words, words, or bytes. 

The difference between TEST and AND is that TEST does not alter the destination operand. 
TEST differs from BT in that TEST is useful for testing the value of multiple bits in one 
operations, whereas BT tests a single bit. 

3.5 CONTROL TRANSFER INSTRUCTIONS 

The 80386 provides both conditional and unconditional control transfer instructions to direct 
the flow of execution. Conditional control transfers depend on the results of operations that 
affect the flag register. Unconditional control transfers are always executed. 

3.5.1 Unconditional Transfer Instructions 

JMP, CALL, RET, INT and IRET instructions transfer control from one code segment 
location to another. These locations can be within the same code segment (near control 
transfers) or in different code segments (Jar control transfers). The variants of these instruc­
tions that transfer control to other segments are discussed in a later section of this chapter. 
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If the model of memory organization used in a particular 80386 application does not make 
segments visible to applications programmers, intersegment control transfers will not be used. 

3.5.1.1 JUMP INSTRUCTION 

JMP (Jump) unconditionally transfers control to the target location. JMP is a one-way trans­
fer of execution; it does not save a return address on the stack. 

The JMP instruction always performs the same basic function of transferring control from 
the current location to a new location. Its implementation varies depending on whether the 
address is specified directly within the instruction or indirectly through a register or memory. 

A direct JMP instruction includes the destination address as part of the instruction. An 
indirect JMP instruction obtains the destination address indirectly through a register or a 
pointer variable. 

Direct near JMP. A direct JMP uses a relative displacement value contained in the instruc­
tion. The displacement is signed and the size of the displacement may be a byte, word, or 
doubleword. The processor forms an effective address by adding this relative displacement 
to th~ addres.s contained in EIPZ When the additions have been performed, EIP refers to the 
next Instructlon to be executed. '-artX'!. 1, '!"/""" r 1;:>:", ty-a .. t 7XI \TYlP 

Indirect near JMP. Indirect JMP i~structions specfg an absolute address in one of several 
ways: 

1. The program can JMP to a location specified by a general register (any of EAX, EDX, 
ECX, EBX, EBP, ESI, or ED!). The processor moves this 32-bit value into ElP and 
resumes execution. 

2. The processor can obtain the destination address from a memory operand specified in 
the instruction. 

3. A register can modify the address of the memory pointer to select a destination address. 

3.5.1.2 CALL INSTRUCTION 

CALL (Call Procedure) activates an out-of-line procedure, saving on the stack the address of 
the instruction following the CALL for later use by a RET (Return) instruction. CALL 
places the current value of EIP on the stack. The RET instruction in the called procedure 
uses this address to transfer control back to the calling program. 

CALL instructions, like JMP instructions have relative, direct, and indirect versions. 

Indirect CALL instructions specify an absolute address in one of these ways: 

1. The program can CALL a location specified by a general register (any of EAX, EDX, 
ECX, EBX, EBP, ESI, or ED!). The processor moves this 32-bit value into EIP. 

2. The processor can obtain the destination address from a memory operand specified in 
the instruction. 
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3.5.1.3 RETURN AND RETURN-fROM-INTERRUPT INSTRUCTION 

RET (Return From Procedure) terminates the execution of a procedure and transfers control 
through a back-link on the stack to the program that originally invoked the procedure. RET 
restores the value of ElP that was saved on the stack by the previous CALL instruction. 

RET instructions may optionally specify an immediate operand. By adding this constant to 
the new top-of-stack pointer, RET effectively removes any arguments that the calling program 
pushed on the stack before the execution of the CALL instruction. 

!RET (Return From Interrupt) returns control to an interrupted procedure. IRET differs 
from RET in that it also pops the flags from the stack into the flags register. The flags are 
stored on the stack by the interrupt mechanism. 

3.5.2 Conditional Transfer Instructions 

The conditional transfer instructions are jumps that mayor may not transfer control, 
depending on the state of the CPU flags when the instruction executes. 

3.5.2.1 CONDITIONAL JUMP INSTRUCTIONS 

Table 3-2 shows the conditional transfer mnemonics and their interpretations. The condi­
tional jumps that are listed as pairs are actually the same instruction. The assembler provides 
the alternate mnemonics for greater clarity within a program listing. 

Conditional jump instructions contain a displacement which is added to the ElP register if 
the condition is true. The displacement may be a byte, a word, or a doubleword. The 
displacement is signed; therefore, it can be used to jump forward or backward. 

3.5.2.2 LOOP INSTRUCTIONS 

The loop instructions are conditional jumps that use a value placed in ECX to specify the 
number of repetitions of a software loop. All loop instructions automatically decrement ECX 
and terminate the loop when ECX =0. Four of the five loop instructions specify a condition 
involving ZF that terminates the loop before ECX reaches zero. 

LOOP (Loop While ECX Not Zero) is a conditional transfer that automatically decrements 
the ECX register before testing ECX for the branch condition. If ECX is non-zero, the 
program branches to the target label specified in the instruction. The LOOP instruction 
causes the repetition of a code section until the operation of the LOOP instruction decre­
ments ECX to a value of zero. If LOOP finds ECX = 0, control transfers to the instruction 
immediately following the LOOP instruction. If the value of ECX is initially zero, then the 
LOOP executes 232 times. 
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Table 3-2. Interpretation of Conditional Transfers 

Unsigned Conditional Transfers 

Mnemonic Condition Tested "Jump If ... " 

JA/JNBE (CF or ZF) = 0 above/not below nor equal 
JAE/JNB CF = 0 above or equal/not below 
JB/JNAE CF = 1 below/not above nor equal 
JBE/JNA (CF or ZF) = 1 below or equal/not above 
JC CF = 1 carry 
JE/JZ ZF = 1 equal/zero 
JNC CF = 0 not carry 
JNE/JNZ ZF = 0 not equal/not zero 
JNP/JPO PF = 0 not parity/parity odd 
JP/JPE PF = 1 parity/parity even 

Signed Conditional Transfers 

Mnemonic Condition Tested "Jump If ... " 

JG/JNLE ((SF xor OF) or ZF) = 0 greater/not less nor equal 
JGE/JNL (SF xor OF) = 0 greater or equal/not less 
JL/JNGE (SF xor OF) = 1 less/not greater nor equal 
JLE/JNG ((SF xor OF) or ZF) = 1 less or equal/not greater 
JNO OF = 0 not overflow 
JNS SF = 0 not sign (positive, including 0) 
JO OF = 1 overflow 
J8 SF = 1 sign (negative) 

LOOPE (Loop While Equal) and LOOPZ (Loop While Zero) are synonyms for the same 
instruction. These instructions automatically decrement the ECX register before testing ECX 
and ZF for the branch conditions. If ECX is non-zero and ZF= 1, the program branches to 
the target label specified in the instruction. If LOOPE or LOOPZ finds that ECX=O or 
ZF=O, control transfers to the instruction immediately following the LOOPE or LOOPZ 
instruction. 

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not Zero) are synonyms for 
the same instruction. These instructions automatically decrement the ECX register before 
testing ECX and ZF for the branch conditions. If ECX is non-zero and ZF=O, the program 
branches to the target label specified in the instruction. If LOOPNE or LOOPNZ finds that 
ECX=O or ZF= 1, control transfers to the instruction immediately following the LOOPNE 
or LOOPNZ instruction. 

3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES 

JCXZ (Jump if ECX Zero) branches to the label specified in the instruction if it finds a value 
of zero in ECX. JCXZ is useful in combination with the LOOP instruction and with the 
string scan and compare instructions, all of which decrement ECX. Sometimes, it is desira­
ble to design a loop that executes zero times if the count variable in ECX is initialized to 

3-23 



APPLICATIONS INSTRUCTION SET 

zero. Because the LOOP instructions (and repeat prefixes) decrement ECX before they test 
it, a loop will execute 232 times if the program enters the loop with a zero value in ECX. A 
programmer may conveniently overcome this problem with JCXZ, which enables the program 
to branch around the code within the loop if ECX is zero when JCXZ executes. When used 
with repeated string scan and compare instructions, JCXZ can determine whether the 
repetitions terminated due to zero in ECX or due to satisfaction of the scan or compare 
conditions. 

3.5.3 Software-Generated Interrupts 

The INT n, INTO, and BOUND instructions allow the programmer to specify a transfer to 
an interrupt service routine from within a program. 

INT n (Software Interrupt) activates the interrupt service routine that corresponds to the 
number coded within the instruction. The INT instruction may specify any interrupt type. 
Programmers may use this flexibility to implement multiple types of internal interrupts or 
to test the operation of interrupt service routines. (Interrupts 0-31 are reserved by Intel.) 
The interrupt service routine terminates with an IRET instruction that returns control to 
the instruction that follows INT. 

INTO (Interrupt on Overflow) invokes interrupt 4 if OF is set. Interrupt 4 is reserved for this 
purpose. OF is set by several arithmetic, logical, and string instructions. 

BOUND (Detect Value Out of Range) verifies that the signed value contained in the specified 
register lies within specified limits. An interrupt (INT 5) occurs if the value contained in 
the register is less than the lower bound or greater than the upper bound. 

The BOUND instruction includes two operands. The first operand specifies the register being 
tested. The second operand contains the effective relative address of the two signed BOUND 
limit values. The BOUND instruction assumes that the upper limit and lower limit are in 
adjacent memory locations. These limit values cannot be register operands; if they are, an 
invalid opcode exception occurs. 

BOUND is useful for checking array bounds before using a new index value to access an 
element within the array. BOUND provides a simple way to check the value of an index 
register before the program overwrites information in a location beyond the limit of the 
array. 

The block of memory that specifies the lower and upper limits of an array might typically 
reside just before the array itself. This makes the array bounds accessible at a constant offset 
from the beginning of the array. Because the address of the array will already be present in 
a register, this practice avoids extra calculations to obtain the effective address of the array 
bounds. 

The upper and lower limit values may each be a word or a doubleword. 
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3.6 STRING AND CHARACTER TRANSLATION INSTRUCTIONS 

The instructions in this category operate on strings rather than on logical or numeric values. 
Refer also to the section on I/O for information about the string I/O instructions (also 
known as block I/O). 

The power of 80386 string operations derives from the following features of the architecture: 

1. A set of primitive string operations 

MOVS 
CMPS 
SCAS 
LODS 
STOS 

- Move String 
- Compare string 
- Scan string 
- Load string 
- Store string 

2. Indirect, indexed addressing, with automatic incrementing or decrementing of the indexes. 

Indexes: 

ESI - Source index register 
EDI - Destination index register 

Control flag: 
DF - Direction flag 

Control flag instructions: 
CLD - Clear direction flag instruction 
STD - Set direction flag instruction 

3. Repeat prefixes 

REP 
REPE/REPZ 
REPNE/REPNZ 

- Repeat while ECX not xero 
- Repeat while equal or zero 
- Repeat while not equal or not zero 

The primitive string operations operate on one element of a string. A string element may be 
a byte, a word, or a doubleword. The string elements are addressed by the registers ESI and 
EDI. After every primitive operation ESI and/or EDI are automatically updated to point to 
the next element of the string. If the direction flag is zero, the index registers are incre­
mented; if one, they are decremented. The amount of the increment or decrement is 1, 2, or 
4 depending on the size of the string element. 

3.6.1 Repeat Prefixes 

The repeat prefixes REP (Repeat While ECX Not Zero), REPE/REPZ (Repeat While 
Equal/Zero), and REPNE/REPNZ (Repeat While Not Equal/Not Zero) specify repeated 
operation of a string primitive. This form of iteration allows the CPU to process strings 
much faster than would be possible with a regular software loop. 
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When a primitive string operation has a repeat prefix, the operation is executed repeatedly, 
each time using a different element of the string. The repetition terminates when one of the 
conditions specified by the prefix is satisfied. 

At each repetition of the primitive instruction, the string operation may be suspended tempo­
rarily in order to handle an exception or external interrupt. After the interruption, the string 
operation can be restarted again where it left off. This method of handling strings allows 
operations on strings of arbitrary length, without affecting interrupt response. 

All three prefixes causes the hardware to automatically repeat the associated string primi­
tive until ECX =0. The differences among the repeat prefixes have to do with the second 
termination condition. REPEjREPZ and REPNEjREPNZ are used exclusively with the 
SCAS (Scan String) and CMPS (Compare String) primitives. When these prefixes are used, 
repetition of the next instruction depends on the zero flag (ZF) as well as the ECX register. 
ZF does not require initialization before execution of a repeated string instruction, because 
both SCAS and CMPS set ZF according to the results of the comparisons they make. The 
differences are summarized in the accompanying table. 

Prefix 
Termination Termination 
Condition 1 Condition 2 

REP ECX = 0 (none) 
REPEjREPZ ECX = 0 ZF = 0 
REPNEjREPNZ ECX = 0 ZF = 1 

3.6.2 Indexing and Direction Flag Control 

The addresses of the operands of string primitives are determined by the ESI and EDI regis­
ters. ESI points to source operands. By default, ESI refers to a location in the segment 
indicated by the DS segment register. A segment-override prefix may be used, however, to 
cause ESI to refer to CS, SS, ES, FS, or GS. EDI points to destination operands in the 
segment indicated by ES; no segment override is possible. The use of two different segment 
registers in one instruction allows movement of strings between different segments. 

This use of ESI and DSI has led to the descriptive names source index and destination index 
for the ESI and EDI registers, respectively. In all cases other than string instructions, however, 
the ESI and EDI registers may be used as general-purpose registers. 

When ESI and EDI are used in string primitives, they are automatically incremented or 
decremented after to operation. The direction flag determines whether they are incremented 
or decremented. The instruction CLD puts zero in DF, causing the index registers to be 
incremented; the instruction STD puts one in DF, causing the index registers to be decre­
mented. Programmers should always put a known value in DF before using string instruc­
tions in a procedure. 
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3.6.3 String Instructions 

MOVS (Move String) moves the string element pointed to by ESI to the location pointed to 
by ED!. MOVSB operates on byte elements, MOVSW operates on word elements, and 
MOVSD operates on doublewords. The destination segment register cannot be overridden 
by a segment override prefix, but the source segment register can be overridden. 

The MOVS instruction, when accompanied by the REP prefix, operates as a memory-to­
memory block transfer. To set up for this operation, the program must initialize ECX and 
the register pairs ESI and ED!. ECX specifies the number of bytes, words, or doublewords 
in the block. 

If DF=O, the program must point ESI to the first element of the source string and point 
EDI to the destination address for the first element. If DF = 1, the program must point these 
two registers to the last element of the source string and to the destination address for the 
last element, respectively. 

CMPS (Compare Strings) subtracts the destination string element (at ES:EDI) from the 
source string element (at ESI) and updates the flags AF, SF, PF, CF and OF. lfthe string 
elements are equal, ZF= 1; otherwise, ZF=O. If DF=O, the processor increments the memory 
pointers (ESI and EDI) for the two strings. CMPSB compares bytes, CMPSW compares 
words, and CMPSD compares doublewords. The segment register used for the source address 
can be changed with a segment override prefix while the destination segment register cannot 
be overridden. 

SCAS (Scan String) subtracts the destination string element at ES:EDI from EAX, AX, or 
AL and updates the flags AF, SF, ZF, PF, CF and OF. If the values are equal, ZF= 1; 
otherwise, ZF=O. If DF=O, the processor increments the memory pointer (EDI) for the 
string. SCASB scans bytes; SCASW scans words; SCASD scans doublewords. The desti­
nation segment register (ES) cannot be overridden. 

When either the REPE or REPNE prefix modifies either the SCAS or CMPS primitives, 
the processor compares the value of the current string element with the value in EAX for 
doubleword elements, in AX for word elements, or in AL for byte elements. Termination of 
the repeated operation depends on the resulting state of ZF as well as on the value in ECX. 

LODS (Load String) places the source string element at ESI into EAX for doubleword strings, 
into AX for word strings, or into AL for byte strings. LODS increments or decrements ESI 
according to DF. 

STOS (Store String) places the source string element from EAX, AX, or AL into the string 
at ES:DS!. STOS increments or decrements EDI according to DF. 

3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES 

The instructions in this section provide machine-language support for functions normally 
found in high-level languages. These instructions include ENTER and LEAVE, which 
simplify the programming of procedures. 
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ENTER (Enter Procedure) creates a stack frame that may be used to implement the scope 
rules of block-structured high-level languages. A LEA VE instruction at the end of a proce­
dure complements an ENTER at the beginning of the procedure to simplify stack manage­
ment and to control access to variables for nested procedures. 

The ENTER instruction includes two parameters. The first parameter specifies the number 
of bytes of dynamic storage to be allocated on the stack for the routine being entered. The 
second parameter corresponds to the lexical nesting level (0-31) of the routine. (Note that 
the lexical level has no relationship to either the protection privilege levels or to the I/O 
privilege level.) 

The specified lexical level determines how many sets of stack frame pointers the CPU copies 
into the new stack frame from the preceding frame. This list of stack frame pointers is 
sometimes called the display. The first word of the display is a pointer to the last stack 
frame. This pointer enables a LEAVE instruction to reverse the action of the previous 
ENTER instruction by effectively discarding the last stack frame. 

Example: E N T E R 2 0 4 8 , 3 

Allocates 2048 bytes of dynamic storage on the stack and sets up pointers to two previous 
stack frames in the stack frame that ENTER creates for this procedure. 

After ENTER creates the new display for a procedure, it allocates the dynamic storage 
space for that procedure by decrementing ESP by the number of bytes specified in the first 
parameter. This new value of ESP serves as a starting point for all PUSH and POP 
operations within that procedure. 

To enable a procedure to address its display, ENTER leaves EBP pointing to the beginning 
of the new stack frame. Data manipulation instructions that specify EBP as a base register 
implicitly address locations within the stack segment instead of the data segment. 

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level 
is 0, the non-nested form is used. Since the second operand is 0, ENTER pushes EBP, copies 
ESP to EBP and then subtracts the first operand from ESP. The nested form of ENTER 
occurs when the second parameter (lexical level) is not 0. 

Figure 3-16 gives the formal definition of ENTER. 

The main procedure (with other procedures nested within) operates at the highest lexical 
level, level 1. The first procedure it calls operates at the next deeper lexical level, level 2. A 
level 2 procedure can access the variables of the main program which are at fixed locations 
specified by the compiler. In the case of levell, ENTER allocates only the requested dynamic 
storage on the stack because there is no previous display to copy. 

A program operating at a higher lexical level calling a program at a lower lexical level 
requires that the called procedure should have access to the variables of the calling program. 
ENTER provides this access through a display that provides address ability to the calling 
program's stack frame. 
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The formal definition of the ENTER instruction for all cases is given by the following listing. LEVEL 
denotes the value of the second operand. 

Push EBP 
Set a temporary value FRAME_PTR .= ESP 
If LEVEL) 0 then 

End i f 

Repeat (LEVEL-1) times: 
EBP :=EBP - 4 
Push the doubleword pointed to by EBP 

End repeat 
Push FRAME PTR 

EBP .= FRAME_PTR 
ESP .= ESP - first operand. 

Figure 3-16. Formal Definition of the ENTER Instruction 

A procedure calling another procedure at the same lexical level implies that they are parallel 
procedures and that the called procedure should not have access to the variables of the calling 
procedure. In this case, ENTER copies only that portion of the display from the calling 
procedure which refers to previously nested procedures operating at higher lexical levels. 
The new stack frame does not include the pointer for addressing the calling procedure's 
stack frame. 

ENTER treats a reentrant procedure as a procedure calling another procedure at the same 
lexical level. In this case, each succeeding iteration of the reentrant procedure ean address 
only its own variables and the variables of the calling procedures at higher lexical levels. A 
reentrant procedure can always address its own variables; it does not require pointers to the 
stack frames of previous iterations. 

By copying only the stack frame pointers of procedures at higher lexical levels, ENTER 
makes sure that procedures access only those variables of higher lexical levels, not those at 
parallel lexical levels (see Figure 3-17). Figures 3-18 through 3-21 demonstrate the actions 
of the ENTER instruction if the modules shown in Figure 3-17 were to call one another in 
alphabetic order. 

Block-structured high-level languages can use the lexical levels defined by ENTER to control 
access to the variables of previously nested procedures. Referring to Figure 3-17 for example, 
if PROCEDURE A calls PROCEDURE B which, in turn, calls PROCEDURE C, then 
PROCEDURE C will have access to the variables of MAIN and PROCEDURE A, but not 
PROCEDURE B because they operate at the same lexical level. Following is the complete 
definition of access to variables for Figure 3-17. 
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MAIN PROCEDURE (LEXICAL LEVEL') 

PROCEDURE A (LEXICAL LEVEL 2) 

PROCEDURE B (LEXICAL LEVEL 3) 

PROCEDURE C (LEXICAL LEVEL 3) 

PROCEDURE D (LEXICAL LEVEL 4) 

G30"7 

Figure 3-17. Variable Access in Nested Procedures 

1. MAIN PROGRAM has variables at fixed locations. 

2. PROCEDURE A can access only the fixed variables of MAIN. 

3. PROCEDURE B can access only the variables of PROCEDURE A and 
MAIN. PROCEDURE B cannot access the variables of PROCEDURE C or 
PROCEDURE D. 

4. PROCEDURE C can access only the variables of PROCEDURE A and 
MAIN. PROCEDURE C cannot access the variables of PROCEDURE B or 
PROCEDURE D. 

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A, and 
MAIN. PROCEDURE D cannot access the variables of PROCEDURE B. 

ENTER at the beginning of the MAIN PROGRAM creates dynamic storage space for 
MAIN but copies no pointers. The first and only word in the display points to itself because 
there is no previous value for LEAVE to return to EBP. See Figure 3-18. 

After MAIN calls PROCEDURE A, ENTER creates a new display for PROCEDURE A 
with the first word pointing to the previous value of EBP (BPM for LEAVE to return to the 
MAIN stack frame) and the second word pointing to the current value of EBP. Procedure 
A can access variables in MAIN since MAIN is at level 1. Therefore the base for the dynamic 
storage for MAIN is at [EBP-2]. All dynamic variables for MAIN are at a fixed offset 
from this value. See Figure 3-19. 

After PROCEDURE A calls PROCEDURE B, ENTER creates a new display for PROCE­
DURE B with the first word pointing to the previous value of EBP, the second word pointing 
to the value of EBP for MAIN, and the third word pointing to the value of EBP for A and 
the last word pointing to the current EBP. B can access variables in A and MAIN by fetch­
ing from the display the base addresses of the respective dynamic storage areas. See 
Figure 3-20. 
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After PROCEDURE B calls PROCEDURE C, ENTER creates a new display for PROCE­
DURE C with the first word pointing to the previous value of EBP, the second word pointing 
to the value of EBP for MAIN, and the third word pointing to the EBP value for A and the 
third word pointing to the current value of EBP. Because PROCEDURE B and PROCE­
DURE C have the same lexical level, PROCEDURE C is not allowed access to variables in 
B and therefore does not receive a pointer to the beginning of PROCEDURE B's stack 
frame. See Figure 3-21. 

LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The 
LEA VE instruction does not include any operands. LEA VE copies EBP to ESP to release 
all stack space allocated to the procedure by the most recent ENTER instruction. Then 
LEA VE pops the old value of EBP from the stack. A subsequent RET instruction can then 
remove any arguments that were pushed on the stack by the calling program for use by the 
called procedure. 
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Figure 3-21. Stack Frame for Procedure C at Level 3 Called from B 

3.8 FLAG CONTROL INSTRUCTIONS 

G30117 

The flag control instructions provide a method for directly changing the state of bits in the 
flag register, 

3.8.1 Carry and Direction Flag Control Instructions 

The carry flag instructions are useful in conjunction with rotate-with-carry instructions RCL 
and RCR, They can initialize the carry flag, CF, to a known state before execution of a 
rotate that moves the carry bit into one end of the rotated operand, 
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The direction flag control instructions are specifically included to set or clear the direction 
flag, DF, which controls the left-to-right or right-to-Ieft direction of string processing. If 
DF=O, the processor automatically increments the string index registers, ESI and EDI, 
after each execution of a string primitive. If DF= I, the processor decrements these index 
registers. Programmers should use one of these instructions before any procedure that uses 
string instructions to insure that DF is set properly. 

Flag Control Instruction Effect 

STC (Set Carry Flag) CF +- 1 
CLC (Clear Carry Flag) CF +- 0 
CMC (Complement Carry Flag) CF +- NOT (CF) 
CLD (Clear Direction Flag) OF +- 0 
STD (Set Direction Flag) OF +- 1 

3.8.2 Flag Transfer Instructions 

Though specific instructions exist to alter CF and DF, there is no direct method of altering 
the other applications-oriented flags. The flag transfer instructions allow a program to alter 
the other flag bits with the bit manipulation instructions after transferring these flags to the 
stack or the AH register. 

The instructions LAHF and SAHF deal with five of the status flags, which are used primar­
ily by the arithmetic and logical instructions. 

LAHF (Load All from Flags) copies SF, ZF, AF, PF, and CF to AH bits 7, 6,4, 2, and 0, 
respectively (see Figure 3-22). The contents of the remaining bits (5, 3, and 1) are undefined. 
The flags remain unaffected. 

SAllF (Store All into Flags) transfers bits 7,6,4,2, and ° from AH into SF, ZF, AF, PF, 
and CF, respectively (see Figure 3-22). 

The PUSHF and POPF instructions are not only useful for storing the flags in memory 
where they can be examined and modified but are also useful for preserving the state of the 
flags register while executing a procedure. 

7 6 543 o 

LAHF LOADS FIVE FLAGS FROM THE FLAG REGISTER INTO REGISTER AH. SAHF STORES THESE 
SAME FIVE FLAGS FROM AH INTO THE FLAG REGISTER. THE BIT POSITION OF EACH FLAG IS THE 
SAME IN AH AS IT IS IN THE FLAG REGISTER. THE REMAINING BITS (MARKED UU) ARE RESERVED; 
DO NOT DEFINE. 

Figure 3-22. LAHF and SAHF 
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PUSHF (Push Flags) decrements ESP by two and then transfers the low-order word of the 
flags register to the word at the top of stack pointed to by ESP (see Figure 3-23). The 
variant PUSHFD decrements ESP by four, then transfers both words of the extended flags 
register to the top of the stack pointed to by ESP (the VM and RF flags are not moved, 
however). 

POPF (Pop Flags) transfers specific bits from the word at the top of stack into the low-order 
byte of the flag register (see Figure 3-23), then increments ESP by two. The variant POPFD 
transfers specific bits from the doubleword at the top of the stack into the extended flags 
register (the RF and VM flags are not changed, however), then increments ESP by four. 

3.9 COPROCESSOR INTERFACE INSTRUCTIONS 

A numerics coprocessor (e.g., the 80387 or 80287) provides an extension to the instruction 
set of the base architecture. The coprocessor extends the instruction set of the base architec­
ture to support high-precision integer and floating-point calculations. This extended instruc­
tion set includes arithmetic, comparison, transcendental, and data transfer instructions. The 
coprocessor also contains a set of useful constants to enhance the speed of numeric 
calculations. 

A program contains instructions for the coprocessor in line with the instructions for the 
CPU. The system executes these instructions in the same order as they appear in the instruc­
tion stream. The coprocessor operates concurrently with the CPU to provide maximum 
throughput for numeric calculations. 

The 80386 also has features to support emulation of the numerics coprocessor when the 
coprocessor is absent. The software emulation of the coprocessor is transparent to applica­
tion software but requires more time for execution. Refer to Chapter 11 for more informa­
tion on coprocessor emulation. 

PUSHFD/POPFD 

PUSHF/POPF . 
31 23 

BITS MARKED 0 OR 1 ARE RESERVED BY INTEL. DO NOT DEFINE. 

SYSTEMS FLAGS (INCLUDING THE 10PL FIELD, AND THE VM, RF, AND IF FLAGS ARE PUSHED AND 
ARE VISIBLE TO APPLICATIONS PROGRAMS. HOWEVER, WHEN AN APPLICATIONS PROGRAM POPS 
THE FLAGS, THESE ITEMS ARE NOT CHANGED, REGARDLESS OF THE VALUES POPPED INTO THEM. 

Figure 3-23. Flag Format for PUSHF and POPF 
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ESC (Escape) is a 5-bit sequence that begins the opcodes that identify floating point numeric 
instructions. The ESC pattern tells the 80386 to send the opcode and addresses of operands 
to the numerics coprocessor. The numerics coprocessor uses the escape instructions to perform 
high-performance, high-precision floating point arithmetic that conforms to the IEEE float­
ing point standard 754. 

WAIT (Wait) is an 80386 instruction that suspends program execution until the 80386 CPU 
detects that the BUSY pin is inactive. This condition indicates that the coprocessor has 
completed its processing task and that the CPU may obtain the results. 

3.10 SEGMENT REGISTER INSTRUCTIONS 

This category actually includes several distinct types of instructions. These various types are 
grouped together here because, if systems designers choose an unsegmented model of memory 
organization, none of these instructions is used by applications programmers. The instruc­
tions that deal with segment registers are: 

1. Segment-register transfer instructions. 

MoV SegReg, 
MoV ••• , SegReg 
PUSH SegReg 
POP SegReg 

2. Control transfers to another executable segment. 

JMP far 
CALL far 
RET far 

; direct and indirect 

3. Data pointer instructions. 

LOS 
LES 
L F S 
LGS 
L 5 5 

Note that the following interrupt-related instructions are different; all are capable of trans­
ferring control to another segment, but the use of segmentation is not apparent to the appli­
cations programmer. 

I H T n 
I H T 0 
BoUHD 
IRE T 
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3.10.1 Segment-Register Transfer Instructions 

The MOV, POP, and PUSH instructions also serve to load and store segment registers. 
These variants operate similarly to their general-register counterparts except that one operand 
can be a segment register. MOV cannot move segment register to a segment register. Neither 
POP nor MOV can place a value in the code-segment register CS; only the far control­
transfer instructions can change CS. 

3.10.2 Far Control Transfer Instructions 

The far control-transfer instructions transfer control to a location in another segment by 
changing the content of the CS register. 

Direct far JMP. Direct JMP instructions that specify a target location outside the current 
code segment contain a far pointer. This pointer consists of a selector for the new code 
segment and an offset within the new segment. 

Indirect far JMP. Indirect JMP instructions that specify a target location outside the current 
code segment use a 48-bit variable to specify the far pointer. 

Far CALL. An intersegment CALL places both the value of EIP and CS on the stack. 

Far RET. An intersegment RET restores the values of both CS and EIP which were saved 
on the stack by the previous intersegment CALL instruction. 

3.10.3 Data Pointer Instructions 

The data pointer instructions load a pointer (consisting of a segment selector and an offset) 
to a segment register and a general register. 

LDS (Load Pointer Using DS) transfers a pointer variable from the source operand to OS 
and the destination register. The source operand must be a memory operand, and the desti­
nation operand must be a general register. OS receives the segment-selector of the pointer. 
The destination register receives the offset part of the pointer, which points to a specific 
location within the segment. 

Example: L D 5 E 5 I, 5 T R I N G X 

Loads OS with the selector identifying the segment pointed to by a STRING_X, and 
loads the offset of STRING_X into ESL Specifying ESI as the destination operand is a 
convenient way to prepare for a string operation on a source string that is not in the 
current data segment. 

LES (Load Pointer Using ES) operates identically to LOS except that ES receives the segment 
selector rather than OS. 
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Example: L ESE D I, DES T I HAT I 0 H _ X 

Loads ES with the selector identifying the segment pointed to by DESTINATION_X, 
and loads the offset of DESTINATION_X into ED!. This instruction provides a conven­
ient way to select a destination for a string operation if the desired location is not in the 
current extra segment. 

LFS (Load Pointer Using FS) operates identically to LDS except that FS receives the segment 
selector rather than DS. 

LGS (Load Pointer Using GS) operates identically to LDS except that as receives the 
segment selector rather than DS. 

LSS (Load Pointer Using SS) operates identically to LDS except that SS receives the segment 
selector rather than DS. This instruction is especially important, because it allows the two 
registers that identify the stack (SS:ESP) to be changed in one un interruptible operation. 
Unlike the other instructions which load SS, interrupts are not inhibited at the end of the 
LSS instruction. The other instructions (e.g., POP SS) inhibit interrupts to permit the 
following instruction to load ESP, thereby forming an indivisible load of SS:ESP. Since both 
SS and ESP can be loaded by LSS, there is no need to inhibit interrupts. 

3.11 MISCELLANEOUS INSTRUCTIONS 

The following instructions do not fit in any of the previous categories, but are nonetheless 
useful. 

3. 11. 1 Address Calculation Instruction 

LEA (Load Effective Address) transfers the offset of the source operand (rather than its 
value) to the destination operand. The source operand must be a memory operand, and the 
destination operand must be a general register. This instruction is especially useful for 
initializing registers before the execution of the string primitives (ESl, ED!) or the XLAT 
instruction (EBX). The LEA can perform any indexing or scaling that may be needed. 

Example: LEA E B X, E BCD I C _ TAB L E 

Causes the processor to place the address of the starting location of the table labeled 
EBCDIC_TABLE into EBX. 

3.11.2 No-Operation Instruction 

NOP (No Operation) occupies a byte of storage but affects nothing but the instruction pointer, 
ElP. 
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3.11.3 Translate Instruction 

XLAT (Translate) replaced a byte in the AL register with a byte from a user-coded transla­
tion table. When XLAT is executed, AL should have the unsigned index to the table addressed 
by EBX. XLAT changes the contents of AL from table index to table entry. EBX is 
unchanged. The XLA T instruction is useful for translating from one coding system to another 
such as from ASCII to EBCDIC. The translate table may be up to 256 bytes long. The 
value placed in the AL register serves as an index to the location of the corresponding trans­
lation value. 
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CHAPTER 4 
SYSTEMS ARCHITECTURE 

Many of the architectural features of the 80386 are used only by systems programmers. 
This chapter presents an overview of these aspects of the architecture. 

The systems-level features of the 80386 architecture include: 

Memory Management 
Protection 
Multitasking 
Input/Output 
Exceptions and Interrupts 
Initialization 
Coprocessing and Multiprocessing 
Debugging 

These features are implemented by registers and instructions, all of which are introduced in 
the following sections. The purpose of this chapter is not to explain each feature in detail, 
but rather to place the remaining chapters of Part II in perspective. Each mention in this 
chapter of a register or instruction is either accompanied by an explanation or a reference 
to a following chapter where detailed information can be obtained. 

4.1 SYSTEMS REGISTERS 

The registers designed for use by systems programmers fall into these classes: 

EFLAGS 
Memory-Management Registers 
Control Registers 
Debug Registers 
Test Registers 

4.1.1 Systems Flags 

The systems flags of the EFLAGS register control I/O, maskable interrupts, debugging, 
task switching, and enabling of virtual 8086 execution in a protected, multitasking environ­
ment. These flags are highlighted in Figure 4-1. 

IF (Interrupt-Enable Flag, bit 9) 

Setting IF allows the CPU to recognize external (maskable) interrupt requests. Clearing 
IF disables these interrupts. IF has no effect on either exceptions or nonmaskable exter­
nal interrupts. Refer to Chapter 9 for more details about interrupts. 
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23 

VIRTUAL B086 MODE 
RESUME FLAG 

NESTED TASK FLAG 

15 

1/0 PRIVILEGE LEVEL:==~_-.-J 
INTERRUPT ENABLE 

NOTE: 0 OR 1 INDICATES INTEL RESERVED. DO NOT DEFINE. 

7 

Figure 4-1. Systems Flags of EFLAGS Register 

NT (Nested Task, bit 14) 

o 

G30117 

The processor uses the nested task flag to control chaining of interrupted and called 
tasks. NT influences the operation of the IRET instruction. Refer to Chapter 7 and 
Chapter 9 for more information on nested tasks. 

RF (Resume Flag, bit 16) 

The RF flag temporarily disables debug exceptions so that an instruction can be restarted 
after a debug exception without immediately causing another debug exception. Refer to 
Chapter 12 for details. 

TF (Trap Flag, bit 8) 

Setting TF puts the processor into single-step mode for debugging. In this mode, the 
CPU automatically generates an exception after each instruction, allowing a program 
to be inspected as it executes each instruction. Single-stepping is just one of several 
debugging features of the 80386. Refer to Chapter 12 for additional information. 

VM (Virtual 8086 Mode, bit 17) 

When set, the VM flag indicates that the task is executing an 8086 program. Refer to 
Chapter 14 for a detailed discussion of how the 80386 executes 8086 tasks in a protected, 
multitasking environment. 

4.1.2 Memory-Management Registers 

Four registers of the 80386 locate the data structures that control segmented memory 
management: 

GDTR 
LDTR 

Global Descriptor Table Register 
Local Descriptor Table Register 
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These registers point to the segment descriptor tables GDT and LDT. Refer to 
Chapter 5 for an explanation of addressing via descriptor tables. 

Interrupt Descriptor Table Register 

This register points to a table of entry points for interrupt handlers (the IDT). 
Refer to Chapter 9 for details of the interrupt mechanism. 

TR Task Register 

This register points to the information needed by the processor to define the 
current task. Refer to Chapter 7 for a description of the multitasking features 
of the 80386. 

4.1.3 Control Registers 

Figure 4-2 shows the format of the 80386 control registers CRO, CR2, and CR3. These 
registers are accessible to systems programmers only via variants of the MOV instruction, 
which allow them to be loaded from or stored in general registers; for example: 

MOV EAX, eRO 
MOV CR3, EBX 

CRO contains system control flags, which control or indicate conditions that apply to the 
system as a whole, not to an individual task. 

EM (Emulation, bit 2) 

EM indicates whether coprocessor functions are to be emulated. Refer to Chapter 11 
for details. 

31 23 15 /? /' - 7 o 

PAGE DIRECTORY BASE REGISTER (PDBR) I RESERVED CR3 

PAGE FAULT LINEAR ADDRESS CR2 

RESERVED CRl 

~I RESERVED I ~I~I~I~I~ CRO 

G3011? 

Figure 4-2. Control Registers 
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ET (Extension Type, bit 4) 

ET indicates the type of coprocessor present in the system (80287 or 80387). Refer to 
Chapter 11 and Chapter 10 for details. 

MP (Math Present, bit 1) 

MP controls the function of the WAIT instruction, which is used to coordinate a copro­
cessor. Refer to Chapter 11 for details. 

PE (Protection Enable, bit 0) 

Setting PE causes the processor to begin executing in protected mode. Resetting PE 
returns to real-address mode. Refer to Chapter 14 and Chapter 10 for more information 
on changing processor modes. 

PG (Paging, bit 31) 

PG indicates whether the processor uses page tables to translate linear addresses into 
physical addresses. Refer to Chapter 5 for a description of page translation; refer to 
Chapter 10 for a discussion of how to set PG. 

TS (Task Switched, bit 3) 

The processor sets TS with every task switch and tests TS when interpreting coprocessor 
instructions. Refer to Chapter 11 for details. 

CR2 is used for handling page faults when PG is set. The processor stores in CR2 the linear 
address that triggers the fault. Refer to Chapter 9 for a description of page-fault handling. 

CR3 is used when PG is set. CR3 enables the processor to locate the page table directory 
for the current task. Refer to Chapter 5 for a description of page tables and page translation. 

4.1.4 Debug Register 

The debug registers bring advanced debugging abilities to the 80386, including data break­
points and the ability to set instruction breakpoints without modifying code segments. Refer 
to Chapter 12 for a complete description of formats and usage. 

4.1.5 Test Registers 

The test registers are not a standard part of the 80386 architecture. They are provided solely 
to enable confidence testing of the translation lookaside buffer (TLB), the cache used for 
storing information from page tables. Chapter 12 explains how to use these registers. 
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4.2 SYSTEMS INSTRUCTIONS 

Systems instructions deal with such functions as: 

1. Verification of pointer parameters (refer to Chapter 6): 

ARPL -Adjust RPL 
LAR -Load Access Rights 
LSL -Load Segment Limit 
VERR -Verify for Reading 
VER W -Verify for Writing 

2. Addressing descriptor tables (refer to Chaper 5): 

LLDT -Load LDT Register 
SLDT -Store LDT Register 
LGDT -Load GDT Register 
SGDT -Store GDT Register 

3. Multitasking (refer to Chapter 7): 

L TR -Load Task Register 
STR -Store Task Register 

4. Coprocessing and Multiprocessing (refer to Chapter 11): 

CLTS -Clear Task-Switched Flag 
ESC -Escape instructions 
WAIT -Wait until Coprocessor not Busy 
LOCK -Assert Bus-Lock Signal 

5. Input and Output (refer to Chapter 8): 

IN -Input 
OUT -Output 
INS -Input String 
OUTS -Output String 

6. Interrupt control (refer to Chapter 9): 

CLI -Clear Interrupt-Enable Flag 
STI -Set Interrupt-Enable Flag 
LIDT -Load IDT Register 
SIDT -Store IDT Register 

7. Debugging (refer to Chapter 12): 

MOV -Move to and from debug registers 

8. TLB testing (refer to Chapter 10): 

MOV -Move to and from test registers 

9. System Control: 

SMSW -Set MSW 
LMSW -Load MSW 
HL T -Halt Processor 
MOV -Move to and from control registers 
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The instructions SMSW and LMSW are provided for compatibility with the 80286 
processor. 80386 programs access.the MSW in CRO via variants of the MOV instruc­
tion. HLT stops the processor until receipt of an INTR or RESET signal. 

In addition to the chapters cited above, detailed information about each of these instructions 
can be found in the instruction reference chapter, Chapter 17. 
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CHAPTER 5 
MEMORY MANAGEMENT 

The 80386 transforms logical addresses (i.e., addresses as viewed by programmers) into 
physical address (i.e., actual addresses in physical memory) in two steps: 

• Segment translation, in which a logical address (consisting of a segment selector and 
segment offset) are converted to a linear address. 

• Page translation, in which a linear address is converted to a physical address. This step 
is optional, at the discretion of systems-software designers. 

These translations are performed in a way that is not visible to applications programmers. 
Figure 5-1 illustrates the two translations at a high level of abstraction. 

Figure 5-1 and the remainder of this chapter present a simplified view of the 80386 address­
ing mechanism. In reality, the addressing mechanism also includes memory protection 
features. For the sake of simplicity, however, the subject of protection is taken up in another 
chapter, Chapter 6. 

15 0 31 0 

LOGICAL PI--S-EL-e-CT-O-R-"I PI -----O-F-FS-E-T----""II 
ADDRESS .... _____ ... L. _..,... ________ --'. 

I 

LINEAR 
ADDRESS L... ___ L..._,.... ........... ___ .... 

31 0 

PHYSICAL I I 
ADDRESS L. ___________ ..1_ 

G30117 

Figure 5-1. Address Translation Overview 
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5.1 SEGMENT TRANSLATION 

Figure 5-2 shows in more detail how the processor converts a logical address into a linear 
address. 

To perform this translation, the processor uses the following data structures: 

• Descriptors 

• Descriptor tables 

• Selectors 

• Segment Registers 

5. 1. 1 Descriptors 

The segment descriptor provides the processor with the data it needs to map a logical address 
into a linear address. Descriptors are created by compilers, linkers, loaders, or the operating 
system, not by applications programmers. Figure 5-3 illustrates the two general descriptor 
formats. All types of segment descriptors take one of these formats. Segment-descriptor fields 
are: 

BASE: Defines the location of the segment within the 4 gigabyte linear address space. The 
processor concatenates the three fragments of the base address to form a single 32-bit value. 

LOGICAL 
ADDRESS 

OFFSET 

DESCRIPTOR TABLE 

SEGMENT BASE 
DESCRIPTOR 

ADDRESS 

LINEAR 
ADDRESS DIR I PAGE I OFFSET 

Figure 5-2. Segment Translation 
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DESCRIPTORS USED FOR APPLICATIONS CODE AND DATA SEGMENTS 

31 7 0 

BASE 31..24 BASE 23 •. 16 4 

o 

DESCRIPTORS USED FOR SPECIAL SYSTEM SEGMENTS 

31 o 

BASE 31 .. 24 BASE 23 .. 16 4 

SEGMENT BASE 15 .. 0 SEGMENT LIMIT 15 .. 0 o 

A - ACCESSED 
AVL - AVAILABLE FOR USE BY SYSTEMS PROGRAMMERS 
DPL - DESCRIPTOR PRIVILEGE LEVEL 
G - GRANULARITY 
P - SEGMENT PRESENT 

G30117 

Figure 5-3. General Segment-Descriptor Format 

LIMIT: Defines the size of the segment. When the processor concatenates the two parts of 
the limit field, a 20-bit value results. The processor interprets the limit field in one of two 
ways, depending on the setting of the granularity bit: 

1. In units of one byte, to define a limit of up to 1 megabyte. 

2. In units of 4 Kilobytes, to define a limit of up to 4 gigabytes. The limit is shifted left by 
12 bits when loaded, and low-order one-bits are inserted. 

Granularity bit: Specifies the units with which the LIMIT field is interpreted. When the 
bit is clear, the limit is interpreted in units of one byte; when set, the limit is interpreted in 
units of 4 Kilobytes. 

TYPE: Distinguishes between various kinds of descriptors. 

DPL (Descriptor Privilege Level): Used by the protection mechanism (refer to Chapter 6). 
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Segment-Present bit: If this bit is zero, the descriptor is not valid for use in address trans­
formation; the processor will signal an exception when a selector for the descriptor is loaded 
into a segment register. Figure 5-4 shows the format of a descriptor when the present-bit is 
zero. The operating system is free to use the locations marked AVAILABLE. Operating 
systems that implement segment-based virtual memory clear the present bit in either of 
these cases: 

• When the linear space spanned by the segment is not mapped by the paging mechanism. 

• When the segment is not present in memory. 

Accessed bit: The processor sets this bit when the segment is accessed; i.e., a selector for the 
descriptor is loaded into a segment register or used by a selector test instruction. Operating 
systems that implement virtual memory at the segment level may, by periodically testing 
and clearing this bit, monitor frequency of segment usage. 

Creation and maintenance of descriptors is the responsibility of systems software, usually 
requiring the cooperation of compilers, program loaders or system builders, and the 
rating system. 

5.1.2 Descriptor Tables 

Segment descriptors are stored in either of two kinds of descriptor table: 

• The global descriptor table (GDT) 

• A local descriptor table (LDT) 

A descriptor table is simply a memory array of 8-byte entries that contain descriptors, as 
Figure 5-5 shows. A descriptor table is variable in length and may contain up to 8192 (2 13 ) 

descriptors. The first entry of the GDT (INDEX =0) is not used by the processor, however. 

31 23 15 7 o 

AVAILABLE HOPLH TYPE AVAILABLE 4 

AVAILABLE o 
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Figure 5-4. Format of Not-Present Descriptor 
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GLOBAL DESCRIPTOR TABLE LOCAL DESCRIPTOR TABLE 
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Figure 5-5. Descriptor Tables 
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The processor locates the GDT and the current LDT in memory by means of the GDTR 
and LDTR registers. These registers store the base addresses of the tables in the linear 
address space and store the segment limits. The instructions LGDT and SGDT give access 
to the GDTR; the instructions LLDT and SLDT give access to the LDTR. 

5.1.3 Selectors 

The selector portion of a logical address identifies a descriptor by specifying a descriptor 
table and indexing a descriptor within that table. Selectors may be visible to applications 
programs as a field within a pointer variable, but the values of selectors are usually assigned 
(fixed up) by linkers or linking loaders. Figure 5-6 shows the format of a selector. 

Index: Selects one of 8192 descriptors in a descriptor table. The processor simply mUltiplies 
this index value by 8 (the length of a descriptor), and adds the result to the base address of 
the descriptor table in order to access the appropriate segment descriptor in the table. 

Table Indicator: Specifies towhich descriptor table the selector refers. A zero indicates the 
GDT; a one indicates the current LDT. 
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15 

INDEX 

TI - TABLE INDICATOR 
RPL - REQUESTOR'S PRIVILEGE LEVEL 

Figure 5-6. Format of a Selector 

16-BIT VISIBLE 
SELECTOR HIDDEN DESCRIPTOR 

~--------~------------------, 

~--------~------------------, 

~--------~------------------~ 

~--------~------------------~ 

~------~----------------~ 

Figure 5-7. Segment Registers 

Requested Privilege Level: Used by the protection mechanism. (Refer to Chapter 6.) 

G30117 
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Because the first entry of the GDT is not used by the processor, a selector that has an index 
of zero and a table indicator of zero (i.e., a selector that points to the first entry of the 
GDT), can be used as a null selector. The processor does not cause an exception when a 
segment register (other than CS or SS) is loaded with a null selector. It will, however, cause 
an exception when the segment register is used to access memory. This feature is useful for 
initializing unused segment registers so as to trap accidental references. 

5.1.4 Segment Registers 

The 80386 stores information from descriptors in segment registers, thereby avoiding the 
need to consult a descriptor table every time it accesses memory. 

Every segment register has a "visible" portion and an "invisible" portion, as Figure 5-7 
illustrates. The visible portions of these segment address registers are manipulated by 
programs as if they were simply 16-bit registers. The invisible portions are manipulated by 
the processor. 
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The operations that load these registers are normal program instructions (previously described 
in Chapter 3). These instructions are of two classes: 

1. Direct load instructions; for example, MOV, POP, LDS, LSS, LGS, LFS. These 
instructions explicitly reference the segment registers. 

2. Implied load instructions; for example, far CALL and JMP. These instructions implic­
itly reference the CS register, and load it with a new value. 

Using these instructions, a program loads the visible part of the segment register with a 
16-bit selector. The processor automatically fetches the base address, limit, type, and other 
information from a descriptor table and loads them into the invisible part of the segment 
register. 

Because most instructions refer to data in segments whose selectors have already been loaded 
into segment registers, the processor can add the segment-relative offset supplied by the 
instruction to the segment base address with no additional overhead. 

5.2 PAGE TRANSLATION 

In the second phase of address transformation, the 80386 transforms a linear address into a 
physical address. This phase of address transformation implements the basic features needed 
for page-oriented virtual-memory systems and page-level protection. 

The page-translation step is optional. Page translation is in effect only when the PG bit of 
CRO is set. This bit is typically set by the operating system during software initialization. 
The PG bit must be set if the operating system is to implement multiple virtual 8086 tasks, 
page-oriented protection, or page-oriented virtual memory. 

5.2.1 Page Frame 

A page frame is a 4K-byte unit of contiguous addresses of physical memory. Pages begin on 
liK - byte boundaries and are fixed in size. 

5.2.2 Linear Address 

A linear address refers indirectly to a physical address by specifying a page table, a page 
within that table, and an offset within that page. Figure 5-8 shows the format of a linear 
address. 

Figure 5-9 shows how the processor converts the DIR, PAGE, and OFFSET fields of a 
linear address into the physical address by consulting two levels of page tables. The address­
ing mechanism uses the DIR field as an index into a page directory, uses the PAGE field as 
an index into the page table determined by the page directory, and uses the OFFSET field 
to address a byte within the page determined by the page table. 
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Figure 5-8. Format of a Linear Address 
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Figure 5-9. Page Translation 

5.2.3 Page Tables 

A page table is simply an array of 32-bit page specifiers. A page table is itself a page, and 
therefore contains 4 Kilobytes of memory or at most 1 K 32-bit entries. 

Two levels of tables are used to address a page of memory. At the higher level is a page 
directory. The page directory addresses up to 1 K page tables of the second level. A page 
table of the second level addresses up to I K pages. All the tables addressed by one page 
directory, therefore, can address 1 M pages (220). Because each page contains 4Kbytes 
212 bytes), the tables of one page directory can span the entire physical address space of the 
80386 (220 times 212 = 232). 
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The physical address of the current page directory is stored in the CPU register CR3, also 
called the page directory base register (PDBR). Memory management software has the option 
of using one page directory for all tasks, one page directory for each task, or some combi­
nation of the two. Refer to Chapter 10 for information on initialization of CR3. Refer to 
Chapter 7 to see how CR3 can change for each task. 

5.2.4 Page-Table Entries 

Entries in either level of page tables have the same format. Figure 5-10 illustrates this format. 

5.2.4.1 PAGE FRAME ADDRESS 

The page frame address specifies the physical starting address of a page. Because pages are 
located on 4K boundaries, the low-order 12 bits are always zero. In a page directory, the 
page frame address is the address of a page table. In a second-level page table, the page 
frame address is the address of the page frame that contains the desired memory operand. 

5.2.4.2 PRESENT BIT 

The Present bit indicates whether a page table entry can be used in address translation. P = 1 
indicates that the entry can be used. 

When p=o in either level of page tables, the entry is not valid for address translation, and 
the rest of the entry is available for software use; none of the other bits in the entry is tested 
by the hardware. Figure 5-11 illustrates the format of a page-table entry when p=o. 

If P=O in either level of page tables when an attempt is made to use a page-table entry for 
address translation, the processor signals a page exception. In software systems that support 
paged virtual memory, the page-not-present exception handler can bring the required page 
into physical memory. The instruction that caused the exception can then be reexecuted. 
Refer to Chapter 9 for more information on exception handlers. 

31 

PAGE FRAME ADDRESS 31 .. 12 

P - PRESENT 
R/W - READ/WRITE 
U/S - USER/SUPERVISOR 
A - ACCESSED 
o - DIRTY 
AVAIL - AVAILABLE FOR SYSTEMS PROGRAMMER USE 

NOTE: 0 INDICATES INTEL RESERVED. DO NOT DEFINE. 
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Figure 5-10. Format of a Page Table Entry 
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Figure 5·11. Invalid Page Table Entry 

Note that there is no present bit for the page directory itself. The page directory may be 
not-present while the associated task is suspended, but the operating system must ensure 
that the page directory indicated by the CR3 image in the TSS is present in physical memory 
before the task is dispatched. Refer to Chapter 7 for an explanation of the TSS and task 
dispatching. 

5.2.4.3 ACCESSED AND DIRTY BITS 

These bits provide data about page usage in both levels of the page tables. With the excep­
tion of the dirty bit in a page directory entry, these bits are set by the hardware; however, 
the processor does not clear any of these bits. 

The processor sets the corresponding accessed bits in both levels of page tables to one before 
a read or write operation to a page. 

The processor sets the dirty bit in the second-level page table to one before a write to an 
address covered by that page table entry. The dirty bit in directory entries is undefined. 

An operating system that supports paged virtual memory can use these bits to determine 
what pages to eliminate from physical memory when the demand for memory exceeds the 
physical memory available. The operating system is responsible for testing and clearing these 
bits. 

Refer to Chapter 11 for how the 80386 coordinates updates to the accessed and dirty bits in 
multiprocessor systems. 

5.2.4.4 READ/WRITE AND USER/SUPERVISOR BITS 

These bits are not used for address translation, but are used for page-level protection, which 
the processor performs at the same time as address translation. Refer to Chapter 6 where 
protection is discussed in detail. 
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5.2.5 Page Translation Cache 

For greatest efficiency in address translation, the processor stores the most recently used 
page-table data in an on-chip cache. Only if the necessary paging information is not in the 
cache must both levels of page tables be referenced. 

The existence of the page-translation cache is invisible to applications programmers but not 
to systems programmers; operating-system programmers must flush the cache whenever the 
page tables are changed. The page-translation cache can be flushed by either of two methods: 

1. By reloading CR3 with a MOV instruction; for example: 

MOV CR3, EAX 

2. By performing a task switch to a TSS that has a different CR3 image than the current 
TSS. (Refer to Chapter 7 for more information on task switching.) 

5.3 COMBINING SEGMENT AND PAGE TRANSLATION 

Figure 5-12 combines Figure 5-2 and Figure 5-9 to summarize both phases of the transfor­
mation from a logical address to a physical address when paging is enabled. By appropriate 
choice of options and parameters to both phases, memory-management software can imple­
ment several different styles of memory management. 

5.3.1 "Flat" Architecture 

When the 80386 is used to execute software designed for architectures that don't have 
segments, it may be expedient to effectively "turn off' the segmentation features of the 
80386. The 80386 does not have a mode that disables segmentation, but the same effect can 
be achieved by initially loading the segment registers with selectors for descriptors that 
encompass the entire 32-bit linear address space. Once loaded, the segment registers don't 
need to be changed. The 32-bit offsets used by 80386 instructions are adequate to address 
the entire linear-address space. 

5.3.2 Segments Spanning Several Pages 

The architecture of the 80386 permits segments to be larger or smaller than the size of a 
page (4 Kilobytes). For example, suppose a segment is used to address and protect a large 
data structure that spans 132 Kilobytes. In a software system that supports paged virtual 
memory, it is not necessary for the entire structure to be in physical memory at once. The 
structure is divided into 33 pages, any number of which may not be present. The applications 
programmer does not need to be aware that the virtual memory subsystem is paging the 
structure in this manner. 
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Figure 5-12. 80386 Addressing Mechanism 

5.3.3 Pages Spanning Several Segments 
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On the other hand, segments may be smaller than the size of a page. For example, consider 
a small data structure such as a semaphore. Because of the protection and sharing provided 
by segments (refer to Chapter 6), it may be useful to create a separate segment for each 
semaphore. But, because a system may need many semaphores, it is not efficient to allocate 
a page for each. Therefore, it may be useful to cluster many related segments within a page. 

5.3.4 Non-Aligned Page and Segment Boundaries 

The architecture of the 80386 does not enforce any correspondence between the boundaries 
of pages and segments. It is perfectly permissible for a page to contain the end of one segment 
and the beginning of another. Likewise, a segment may contain the end of one page and the 
beginning of another. 
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5.3.5 Aligned Page and Segment Boundaries 

Memory-management software may be simpler, however, if it enforces some correspondence 
between page and segment boundaries. For example, if segments are allocated only in units 
of one page, the logic for segment and page allocation can be combined. There is no need 
for logic to account for partially used pages. 

5.3.6 Page-Table per Segment 

An approach to space management that provides even further simplification of space­
management software is to maintain a one-to-one correspondence between segment descrip­
tors and page-directory entries, as Figure 5-13 illustrates. Each descriptor has a base address 
in which the low-order 22 bits are zero; in other words, the base address is mapped by the 
first entry of a page table. A segment may have any limit from 1 to 4 megabytes. Depending 
on the limit, the segment is contained in from 1 to 1 K page frames. A task is thus limited to 
lK segments (a sufficient number for many applications), each containing up to 4 Mbytes. 
The descriptor, the corresponding page-directory entry, and the corresponding page table 
can be allocated and deallocated simultaneously. 

PAGE FRAMES 

LDT PAGE DIRECTORY PAGE TABLES I I 
~CJ PTE 

PTE 

PTE r-
DESCRIPTOR r-- POE f-1 

.~ J DESCRIPTOR r-- POE f-

PTE W I 
PTE I-

LOT PAGE DIRECTORY PAGE TABLES -.CJ 
PAGE FRAMES 
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Figure 5-13. Descriptor per Page Table 
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CHAPTER 6 
PROTECTION 

6.1 WHY PROTECTION? 

The purpose of the protection features of the 80386 is to help detect and identify bugs. The 
80386 supports sophisticated applications that may consist of hundreds or thousands of 
program modules. In such applications, the question is how bugs can be found and elimi­
nated as quickly as possible and how their damage can be tightly confined. To help debug 
applications faster and make them more robust in production, the 80386 contains mecha­
nisms to verify memory accesses and instruction execution for conformance to protection 
criteria. These mechanisms may be used or ignored, according to system design objectives. 

6.2 OVERVIEW OF 80386 PROTECTION MECHANISMS 

Protection in the 80386 has five aspects: 

1. Type checking 

2. Limit checking 

3. Restriction of addressable domain 

4. Restriction of procedure entry points 

5. Restriction of instruction set 

The protection hardware of the 80386 is an integral part of the memory management 
hardware. Protection applies both to segment translation and to page translation. 

Each reference to memory is checked by the hardware to verify that it satisfies the protec­
tion criteria. All these checks are made before the memory cycle is started; any violation 
prevents that cycle from starting and results in an exception. Since the checks are performed 
concurrently with address formation, there is no performance penalty. 

Invalid attempts to access memory result in an exception. Refer to Chapter 9 for an expla­
nation of the exception mechanism. The present chapter defines the protection violations 
that lead to exceptions. 

The concept of "privilege" is central to several aspects of protection (numbers 3, 4, and 5 in 
the preceeding list). Applied to procedures, privilege is the degree to which the procedure 
can be trusted not to make a mistake that might affect other procedures or data. Applied to 
data, privilege is the degree of protection that a data structure should have from less trusted 
procedures. 

The concept of privilege applies both to segment protection and to page protection. 
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6.3 SEGMENT-LEVEL PROTECTION 

All five aspects of protection apply to segment translation: 

1. Type checking 

2. Limit checking 

3. Restriction of addressable domain 

4. Restriction of procedure entry points 

5. Restriction of instruction set 

The segment is the unit of protection, and segment descriptors store protection parameters. 
Protection checks are performed automatically by the CPU when the selector of a segment 
descriptor is loaded into a segment register and with every segment access. Segment regis­
ters hold the protection parameters of the currently addressable segments. 

6.3.1 Descriptors Store Protection Parameters 

Figure 6-1 highlights the protection-related fields of segment descriptors. 

A 
AVL 
B 
C 
o 
DPL 

DATA SEGMENT DESCRIPTOR 

EXECUTABLE SEGMENT DESCRIPTOR 

- ACCESSED 
- AVAILABLE FOR PROGRAMMER USE 
- BIG 
- CONFORMING 
- DEFAULT 
- DESCRIPTOR PRIVILEGE LEVEL 

E 
G 
P 
R 
W 

- EXPAND·DOWN 
- GRANULARITY 
- SEGMENT PRESENT 
- READABLE 
- WRITABLE 

4 

o 

Figure 6-1. Protection Fields of Segment Descriptors (part 1 of 2) 
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AVL - AVAILABLE FOR PROGRAMMER USE 
DPL - DESCRIPTOR PRIVILEGE LEVEL 
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Figure 6-1. Protection Fields of Segment Descriptors (part 2 of 2) 

The protection parameters are placed in the descriptor by systems software at the time a 
descriptor is created. In general, applications programmers do not need to be concerned 
about protection parameters. 

When a program loads a selector into a segment register, the processor loads not only the 
base address of the segment but also protection information. Each segment register has bits 
in the invisible portion for storing base, limit, type, and privilege level; therefore, subsequent 
protection checks on the same segment do not consume additional clock cycles. 

6.3.1.1 TYPE CHECKING 

The TYPE field of a descriptor has two functions: 

1. It distinguishes among different descriptor formats. 

2. It specifies the intended usage of a segment. 

Besides the descriptors for data and executable segments commonly used by applications 
programs, the 80386 has descriptors for special segments used by the operating system and 
for gates. Table 6-1 lists all the types defined for system segments and gates. Note that not 
all descriptors define segments; gate descriptors have a different purpose that is discussed 
later in this chapter. 

The type fields of data and executable segment descriptors include bits which further define 
the purpose of the segment (refer to Figure 6-1): 

The writable bit in a data-segment descriptor specifies whether instructions can write 
into the segment. 
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Table 6-1. System and Gate Descriptor Types 

Code Type of Segment or Gate 

0 -reserved 
1 Available 286 TSS 
2 LOT 
3 Busy 286 TSS 
4 Call Gate 
5 Task Gate 
6 286 Interrupt Gate 
7 286 Trap Gate 
8 -reserved 
9 Available 386 TSS 
A -reserved 
B Busy 386 TSS 
C 386 Call Gate 
0 -reserved 
E 386 Interrupt Gate 
F 386 Trap Gate 

The readable bit in an executable-segment descriptor specifies whether instructions are 
allowed to read from the segment (for example, to access constants that are stored with 
instructions). A readable, executable segment may be read in two ways: 

1. Via the CS register, by using a CS override prefix. 

2. By loading a selector of the descriptor into a data-segment register (DS, ES, FS, 
or GS). 

Type checking can be used to detect programming errors that would attempt to use segments 
in ways not intended by the programmer. The processor examines type information on two 
kinds of occasions: 

1. When a selector of a descriptor is loaded into a segment register. Certain segment regis­
ters can contain only certain descriptor types; for example: 

• The CS register can be loaded only with a selector of an executable segment. 

• Selectors of executable segments that are not readable cannot be loaded into data­
segment registers. 

• Only selectors of writable data segments can be loaded into SS. 

2. When an instruction refers (implicitly or explicitly) to a segment register. Certain 
segments can be used by instructions only in certain predefined ways; for example: 

• No instruction may write into an executable segment. 

• No instruction may write into a data segment if the writable bit is not set. 

• No instruction may read an executable segment unless the readable bit is set. 

6-4 



PROTECTION 

6.3.1.2 LIMIT CHECKING 

The limit field of a segment descriptor is used by the processor to prevent programs from 
addressing outside the segment. The processor's interpretation of the limit depends on the 
setting of the G (granularity) bit. For data segments, the processor's interpretation of the 
limit depends also on the E-bit (expansion-direction bit) and the B-bit (big bit) (refer to 
Table 6-2). 

When G= 0, the actual limit is the value of the 20-bit limit field as it appears in the descrip­
tor. In this case, the limit may range from 0 to OFFFFFH (220 - 1 or 1 megabyte). When 
G= 1, the processor appends 12 low-order one-bits to the value in the limit field. In this case 
the actual limit may range from OFFFH (212 - 1 or 4 kilobytes) to OFFFFFFFFH 
(232 - 1 or 4 gigabytes). 

Table 6·2. Useful Combinations of E, G, and B Bits 

Case: 1 2 3 4 

Expansion Direction U U D D 

G-bit 0 1 0 1 

8-bit X X 0 1 

Lower bound is: 
0 X X 
LlMIT+1 X 
shl(LlMIT,12,l)+ 1 X 

Upper bound is: 
LIMIT X 
shl(LlMIT,12,l) X 
64K-1 X 
4G-1 X 

Max seg size is: 
64K X 
64K-1 X 
4G-4K X 
4G X 

Min seg size is: 
0 X X 
4K X X 

shl (X, 12, 1) = shift X left by 12 bits inserting one-bits on the right 
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For all types of segments except expand-down data segments, the value of the limit is one 
less than the size (expressed in bytes) of the segment. The processor causes a general­
protection exception in any of these cases: 

• Attempt to access a memory byte at an address> limit. 

• Attempt to access a memory word at an address :> limit. 

• Attempt to access a memory doubleword at an address :>(limit-2). 

For expand-down data segments, the limit has the same .f.u. n .... ctionbut is inte9ieted differ­
ently. In these cases the range of valid addresses is fromljmit + 1 to either(~ or 232 -1 
(4 Gbytes) depending on the B-bit. An expand-down segment has maximum size when the 
limit is zero. { 's b<;·~ \ 

The expand-down feature makes it possible to expand the size of a stack by copying it to a 
larger segment without needing also to update intrastack pointers. 

The limit field of descriptors for descriptor tables is used by the processor to prevent programs 
from selecting a table entry outside the descriptor table. The limit of a descriptor table 
identifies the last valid byte of the last descriptor in the table. Since each descriptor is eight 
bytes long, the limit value is N * 8 - 1 for a table that can contain up to N descriptors. 

Limit checking catches programming errors such as runaway subscripts and invalid pointer 
calculations. Such errors are detected when they occur, so that identification of the cause is 
easier. Without limit checking, such errors could corrupt other modules; the existence of 
such errors would not be discovered until later, when the corrupted module behaves incor­
rectly, and when identification of the cause is difficult. 

6.3.1.3 Privilege Levels 

The concept of privilege is implemented by assigning a value from zero to three to key 
objects recognized by the processor. This value is called the privilege level. The value zero 
represents the greatest privilege, the value three represents the least privilege. The following 
processor-recognized objects contain privilege levels: 

• Descriptors contain a field called the descriptor privilege level (DPL). 

• Selectors contain a field called the requestor's privilege level (RPL). The RPL is intended 
to represent the privilege level of the procedure that originates a selector. 

An internal processor register records the current privilege level (CPL). Normally the 
CPL is equal to the DPL of the segment that the processor is currently executing. CPL 
changes as control is transferred to segments with differing DPLs. 

The processor automatically evaluates the right of a procedure to access another segment by 
comparing the CPL to one or more other privilege levels. The evaluation is performed at the 
time the selector of a descriptor is loaded into a segment register. The criteria used for 
evaluating access to data differs from that for evaluating transfers of control to executable 
segments; therefore, the two types of access are considered separately in the following sections. 
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Figure 6-2 shows how these levels of privilege can be interpreted as rings of protection. The 
center is for the segments containing the most critical software, usually the kernel of the 
operating system. Outer rings are for the segments of less critical software. 

It is not necessary to use all four privilege levels. Existing software that was designed to use 
only one or two levels of privilege can simply ignore the other levels offered by the 80386. 
A one-level system should use privilege level zero; a two-level system should use privilege 
levels zero and three. 

6.3.2 Restricting Access to Data 

To address operands in memory, an 80386 program must load the selector of a data segment 
into a data-segment register CDS, ES, FS, GS, SS). The processor automatically evaluates 
access to a data segment by comparing privilege levels. The evaluation is performed at the 

TASK C 
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Figure 6·2. Levels of Privilege 
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time a selector for the descriptor of the target segment is loaded into the data-segment regis­
ter. As Figure 6-3 shows, three different privilege levels enter into this type of privilege 
check: 

1. The CPL (current privilege level). 

2. The RPL (requestor's privilege level) of the selector used to specify the target segment. 

3. The DPL of the descriptor of the target segment. 

Instructions may load a data-segment register (and subsequently use the target segment) 
only if the DPL of the target segment is numerically greater than or equal to the maximum 
of the CPL and the selector's RPL. In other words, a procedure can only access data that is 
at the same or less privileged level. 

The addressable domain of a task varies as CPL changes. When CPL is zero, data segments 
at all privilege levels are accessible; when CPL is one, only data segments at privilege levels 
one through three are accessible; when CPL is three, only data segments at privilege level 
three are accessible. This property of the 80386 can be used, for example, to prevent appli­
cations procedures from reading or changing tables of the operating system. 

31 

16·BIT VISIBLE 
SELECTOR INVISIBLE DESCRIPTOR 

cs~I ____________________ I~c~PL~I ____ ~ 

I : TARGET SEGMENT SELECTOR 

INDEX IIRPL ... I-----....; .... PRIVILEGE 
CHECK 
BY CPU 

7 0 

BASE 31 .• 24 BASE 23 .. 16 4 

SEGMENT BASE 15 .. 0 SEGMENT LIMIT 15 .. 0 0 

CPL - CURRENT PRIVILEGE LEVEL 
RPL - REQUESTOR'S PRIVILEGE LEVEL 
DPL - DESCRIPTOR PRIVILEGE LEVEL 

Figure 6-3. Privilege Check for Data Access 
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6.3.2.1 ACCESSING DATA IN CODE SEGMENTS 

Less common than the use of data segments is the use of code segments to store data. Code 
segments may legitimately hold constants; it is not possible to write to a segment described 
as a code segment. The following methods of accessing data in code segments are possible: 

1. Load a data-segment register with a selector of a nonconforming, readable, executable 
segment. 

2. Load a data-segment register with a selector of a conforming, readable, executable 
segment. 

3. Use a CS override prefix to read a readable, executable segment whose selector is already 
loaded in the CS register. 

The same rules as for access to data segments apply to case 1. Case 2 is always valid because 
the privilege level of a segment whose conforming bit is set is effectively the same as CPL 
regardless of its DPL. Case 3 always valid because the DPL of the code segment in CS is, 
by definition, equal to CPL. 

6.3.3 Restricting Control Transfers 

With the 80386, control transfers are accomplished by the instructions JMP, CALL, RET, 
INT, and IRET, as well as by the exception and interrupt mechanisms. Exceptions and 
interrupts are special cases that Chapter 9 covers. This chapter discusses only JMP, CALL, 
and RET instructions. 

The "near" forms of JMP, CALL, and RET transfer within the current code segment, and 
therefore are subject only to limit checking. The processor ensures that the destination of 
the JMP, CALL, or RET instruction does not exceed the limit of the current executable 
segment. This limit is cached in the CS register; therefore, protection checks for near trans­
fers require no extra clock cycles. 

The operands of the "far" forms of JMP and CALL refer to other segments; therefore, the 
processor performs privilege checking. There are two ways a JMP or CALL can refer to 
another segment: 

1. The operand selects the descriptor of another executable segment. 

2. The operand selects a call gate descriptor. This gated form of transfer is discussed in a 
later section on call gates. 

As Figure 6-4 shows, two different privilege levels enter into a privilege check for a control 
transfer that does not use a call gate: 

1. The CPL (current privilege level). 

2. The DPL of the descriptor of the target segment. 
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Figure 6-4. Privilege Check for Control Transfer without Gate 
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Normally the CPL is equal to the DPL of the segment that the processor is currently execut­
ing. CPL may, however, be greater than DPL if the conforming bit is set in the descriptor 
of the current executable segment. The processor keeps a record of the CPL cached in the 
CS register; this value can be different from the DPL in the descriptor of the code segment. 

The processor permits a JMP or CALL directly to another segment only if one of the follow­
ing privilege rules is satisfied: 

• DPL of the target is equal to CPL. 

• The conforming bit of the target code-segment descriptor is set, and the DPL of the 
target is less than or equal to CPL. 

An executable segment whose descriptor has the conforming bit set is called a conforming 
segment. The conforming-segment mechanism permits sharing of procedures that may be 
called from various privilege levels but should execute at the privilege level of the calling 
procedure. Examples of such procedures include math libraries and some exception handlers. 
When control is transferred to a conforming segment, the CPL does not change. This is the 
only case when CPL may be unequal to the DPL of the current executable segment. 

Most code segments are not conforming. The basic rules of privilege above mean that, for 
nonconforming segments, control can be transferred without a gate only to executable 
segments at the same level of privilege. There is a need, however, to transfer control to 
(numerically) smaller privilege levels; this need is met by the CALL instruction when used 
with call-gate descriptors, which are explained in the next section. The JMP instruction may 
never transfer control to a nonconforming segment whose DPL does not equal CPL. 
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6.3.4 Gate Descriptors Guard Procedure Entry Points 

To provide protection for control transfers among executable segments at different privilege 
levels, the 80386 uses gate descriptors. There are four kinds of gate descriptors: 

• Call gates 

• Trap gates 

• Interrupt gates 

• Task gates 

This chapter is concerned only with call gates. Task gates are used for task switching, and 
therefore are discussed in Chapter 7. Chapter 9 explains how trap gates and interrupt gates 
are used by exceptions and interrupts. Figure 6-5 illustrates the format of a call gate. A call 
gate descriptor may reside in the GDT or in an LDT, but not in the IDT. 

A call gate has two primary functions: 

1. To define an entry point of a procedure. 

2. To specify the privilege level of the entry point. 

Call gate descriptors are used by call and jump instructions in the same manner as code 
segment descriptors. When the hardware recognizes that the destination selector refers to a 
gate descriptor, the operation of the instruction is expanded as determined by the contents 
of the call gate. 

The selector and offset fields of a gate form a pointer to the entry point of a procedure. A 
call gate guarantees that all transitions to another segment go to a valid entry point, rather 
than possibly into the middle of a procedure (or worse, into the middle of an instruction). 
The far pointer operand of the control transfer instruction does not point to the segment and 
offset of the target instruction; rather, the selector part of the pointer selects a gate, and the 
offset is not used. Figure 6-6 illustrates this style of addressing. 

31 

OFFSET 31 .. 16 

SELECTOR OFFSET 15 .. 0 

Figure 6-5. Format of 80386 Call Gate 
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Figure 6·6. Indirect Transfer via Call Gate 

As Figure 6-7 shows, four different privilege levels are used to check the validity of a control 
transfer via a call gate: 

1. The CPL (current privilege level). 

2. The RPL (requestor's privilege level) of the selector used to specify the call gate. 

3. The DPL of the gate descriptor. 

4. The DPL of the descriptor of the target executable segment. 

The DPL field of the gate descriptor determines what privilege levels can use the gate. One 
code segment can have several procedures that are intended for use by different privilege 
levels. For example, an operating system may have some services that are intended to be 
used by applications, whereas others may be intended only for use by other systems software. 

Gates can be used for control transfers to numerically smaller privilege levels or to the same 
privilege level (though they are not necessary for transfers to the same level). Only CALL 
instructions can use gates to transfer to smaller privilege levels. A gate may be used by a 
JMP instruction only to transfer to an executable segment with the same privilege level or 
to a conforming segment. 
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Figure 6-7. Privilege Check via Call Gate 

G30ll7 

For a JMP instruction to a nonconforming segment, both of the following privilege rules 
must be satisfied; otherwise, a general protection exception results. 

MAX (CPL,RPL) -< gate DPL 
target segment DPL = CPL 

For a CALL instruction (or for a JMP instruction to a conforming segment), both of the 
following privilege rules must be satisfied; otherwise, a general protection exception results. 

MAX (CPL,RPL) -< gate DPL 
target segment DPL -< CPL 

6.3.4.1 STACK SWITCHING 

If the destination code segment of the call gate is at a different privilege level than the CPL, 
an interlevel transfer is being requested. 

To maintain system integrity, each privilege level has a separate stack. These stacks assure 
sufficient stack space to process calls from less privileged levels. Without them, a trusted 
procedure would not work correctly if the calling procedure did not provide sufficient space 
on the caller's stack. 
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The processor locates these stacks via the task state segment (see Figure 6-8). Each task has 
a separate TSS, thereby permitting tasks to have separate stacks. Systems software is 
responsible for creating TSSs and placing correct stack pointers in them. The initial stack 
pointers in the TSS are strictly read-only values. The processor never changes them during 
the course of execution. 

When a call gate is used to chan~ privilege levels, a new stack is selected by loading a 
pointer value from the Task State Segment (TSS). The processor uses the DPL of the target 
code segment (the new CPL) to index the initial stack pointer for PL 0, PL 1, or PL 2. 

The DPL of the new stack data segmJm1 must equal the new CPL; if it does not, a stack 
exception occurs. Itis the responsibility of systems software to create stacks and stack-segment 
descriptors for all privilege levels that are used. Each stack must contain enough space to 
hold the old SS:ESP, the return address, and all parameters and local variables that may be 
required to process a call. 

As with intralevel calls, parameters for the subroutine are placed on the stack. IQ.JJl~_~ 
~~AtE_!~ll:<I!~gI<?ns . .trl!g~paEen,.! !<?.t.~e.<.s:.alle.dJ2ro.s:~gE!~., ... the proce~~9E.£0.pl~.s)h~J2arametC?r§ 
to the newJll!s.k.. The count field of a call gate tells the processor how many doublewords 
(up to 31) to copy from the caller's stack to the new stack. If the count is zero, no parame­
ters are copied. 

31 15 
I 

EFLAGS 

INSTRUCTION POINTER (EIP) 

CR3 (PDBR) 

00000000 00000000 I SS2 

ESP2 

00000000 00000000 I SSl 

ESP1 

00000000 000000001 sso 

ESPO 

24 

20 

1C 

l10 1 8 

14 

101 1 o INITIAL 
STACK 

OC POINTERS 

1 00 8 

4 

00000000 00000000 I TSS BACK LINK o 

Figure 6-8. Initial Stack Pointers of TSS 
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The processor performs the following stack-related steps in executing an interlevel CALL. 

1. The new stack is checked to assure that it is large enough to hold the parameters and 
linkages; if it is not, a stack fault occurs with an error code of O. 

2. The old value of the stack registers SS:ESP is pushed onto the new stack as two 
doublewords. 

3. The parameters are copied. 

4. A pointer to the instruction after the CALL instruction (the former value of CS:EIP) is 
pushed onto the new stack. The final value of SS:ESP points to this return pointer on 
the new stack. 

Figure 6-9 illustrates the stack contents after a successful interlevel call. 

The TSS does not have a stack pointer for a privilege level 3 stack, because privilege level 3 
cannot be called by any procedure at any other privilege level. 

Procedures that may be called from another privilege level and that require more than the 
31 doublewords for parameters must use the saved SS:ESP link to access all parameters 
beyond the last doubleword copied. 

A call via a call gate does not check the values of the words copied onto the new stack. The 
called procedure should check each parameter for validity. A later section discusses how the 
ARPL, VERR, VERW, LSL, and LAR instructions can be used to check pointer values. 

D 0 
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Figure 6-9. Stack Contents after an InterleveJ Call 
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6.3.4.2 RETURNING FROM A PROCEDURE 

The "near" forms of the RET instruction transfer control within the current code segment 
and therefore are subject only to limit checking. The offset of the instruction following the 
corresponding CALL, is popped from the stack. The processor ensures that this offset does 
not exceed the limit of the current executable segment. 

The "far" form of the RET instruction pops the return pointer that was pushed onto the 
stack by a prior far CALL instruction. Under normal conditions, the return pointer is valid, 
because of its relation to the prior CALL or INT. Nevertheless, the processor performs 
privilege checking because of the possibility that the current procedure altered the pointer 
or failed to properly maintain the stack. The RPL of the CS selector popped off the stack 
by the return instruction identifies the privilege level of the calling procedure. 

An intersegment return instruction can change privilege levels, but only toward procedures 
of lesser privilege. When the RET instruction encounters a saved CS value whose RPL is 
numerically greater than the CPL, an interlevel return occurs. Such a return follows these 
steps: 

1. The checks shown in Table 6-3 are made, and CS:EIP and SS:ESP are loaded with 
their former values that were saved on the stack. 

2. The old SS:ESP (from the top of the current stack) value is adjusted by the number of 
bytes indicated in the RET instruction. The resulting ESP value is not compared to the 
limit of the stack segment. If ESP is beyond the limit, that fact is not recognized until 
the next stack operation. (The SS:ESP value of the returning procedure is not preserved; 
normally, this value is the same as that contained in the TSS.) 

3. The contents of the DS, ES, FS, and GS segment registers are checked. If any of these 
registers refer to segments whose DPL is greater than the new CPL (excluding conform­
ing code segments), the segment register is loaded with the null selector (INDEX = 0, 
TI = 0). The RET instruction itself does not signal exceptions in these cases; however, 
any subsequent memory reference that attempts to use a segment register that contains 
the null selector will cause a general protection exception. This prevents less privileged 
code from accessing more privileged segments using selectors left in the segment regis­
ters by the more privileged procedure. 

6.3.5 Some Instructions are Reserved for Operating System 

Instructions that have the power to affect the protection mechanism or to influence general 
system performance can only be executed by trusted procedures. The 80386 has two classes 
of such instructions: 

1. Privileged instructions-those used for system control. 

2. Sensitive instructions-those used for I/O and I/O related activities. 

6-16 



PROTECTION 

Table 6-3. Interlevel Return Checks 

• SF 
GP 
NP 
N 

Type of Check 

ESP is within current SS segment 

ESP + 7 is within current SS segment 

RPL of return CS is greater than CPL 

Return CS selector is not null 

Return CS segment is within descriptor 
table limit 

Return CS descriptor is a code segment 

Return CS segment is present 

DPL of return nonconforming code 
segment = RPL of return CS, or DPL of 
return conforming code segment ::S RPL 
of return CS 

ESP + N + 15 is within SS segment-· 

SS selector at ESP + N + 12 is not null 

SS selector at ESP + N + 12 is within 
descriptor table limit 

SS descriptor is writable data segment 

SS segment is present 

Saved SS segment DPL = RPL of saved 
CS 

Saved SS selector RPL = Saved SS 
segment DPL 

Stack Fault 
General Protection Exception 
Segment-Not-Present Exception 
Immediate Operand of RET N Instruction 

6.3.5,1 PRIVILEGED INSTRUCTIONS 

Exception' 

SF 

SF 

GP 

GP 

GP 

GP 

NP 

GP 

SF 

GP 

GP 

GP 

SF 

GP 

GP 

Error Code 

0 

0 

Return CS 

Return CS 

Return CS 

Return CS 

Return CS 

Return CS 

Return SS 

Return SS 

Return SS 

Return SS 

Return SS 

Return SS 

Return SS 

The instructions that affect system data structures can only be executed when CPL is zero. 
If the CPU encounters one of these instructions when CPL is greater than zero, it signals a 
general protection exception. These instructions include: 

CLTS 
HLT 
LGDT 
LIDT 
LLDT 
LMSW 
LTR 
MOV to/from CRn 
MOV to/from DRn 
MOV to/from TRn 

-Clear Task-Switched Flag 
-Halt Processor 
-Load GDT Register 
-Load IDT Register 
-Load LDT Register 
-Load Machine Status Word 
-Load Task Register 
-Move to Control Register n 
-Move to Debug Register n 
-Move to Test Register n 
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6.3.5.2 SENSITIVE INSTRUCTIONS 

Instructions that deal with I/O need to be restricted but also need to be executed by proce­
dures executing at privilege levels other than zero. The mechanisms for restriction of I/O 
operations are covered in detail in Chapter 8, "Input/Output". 

6.3.6 Instructions for Pointer Validation 

Pointer validation is an important part of locating programming errors. Pointer validation is 
necessary for maintaining isolation between the privilege levels. Pointer validation consists 
of the following steps: 

1. Check if the supplier of the pointer is entitled to access the segment. 

2. Check if the segment type is appropriate to its intended use. 

3. Check if the pointer violates the segment limit. 

Although the 80386 processor automatically performs checks 2 and 3 during instruction 
execution, software must assist in performing the first check. The unprivileged instruction 
ARPL is provided for this purpose. Software can also explicitly perform steps 2 and 3 to 
check for potential violations (rather than waiting for an exception). The unprivileged 
instructions LAR, LSL, VERR, and VER Ware provided for this purpose. 

LAR (Load Access Rights) is used to verify that a pointer refers to a segment of the proper 
privilege level and type. LAR has one operand-a selector for a descriptor whose access 
rights are to be examined. The descriptor must be visible at the privilege level which is the 
maximum of the CPL and the selector's RPL. If the descriptor is visible, LAR obtains a 
masked form of the second doubleword of the descriptor, masks this value with OOFxFFOOH, 
stores the result into the specified 32-bit destination register, and sets the zero flag. (The x 
indicates that the corresponding four bits of the stored value are undefined.) Once loaded, 
the access-rights bits can be tested. All valid descriptor types can be tested by the LAR 
instruction. If the RPL or CPL is greater than DPL, or if the selector is outside the table 
limit, no access-rights value is returned, and the zero flag is cleared. Conforming code 
segments may be accessed from any privilege level. 

LSL (Load Segment Limit) allows software to test the limit of a descriptor. If the descriptor 
denoted by the given selector (in memory or a register) is visible at the CPL, LSL loads the 
specified 32-bit register with a 32-bit, byte granular, unscrambled limit that is calculated 
from fragmented limit fields and the G-bit of that descriptor. This can only be done for 
segments (data, code, task state, and local descriptor tables); gate descriptors are inaccessi­
ble. (Table 6-4 lists in detail which types are valid and which are not.) Interpreting the limit 
is a function of the segment type. For example, downward expandable data segments treat 
the limit differently than code segments do. For both LAR and LSL, the zero flag (ZF) is 
set if the loading was performed; otherwise, the ZF is cleared. 
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Table 6-4. Valid Descriptor Types for LSL 

Type Code Descriptor Type Valid? 

0 (invalid) NO 
1 Available 286 TSS YES 
2 LDT YES 
3 Busy 286 TSS YES 
4 286 Call Gate NO 
5 Task Gate NO 
6 286 Trap Gate NO 
7 286 Interrupt Gate NO 
8 (invalid) NO 
9 Available 386 TSS YES 
A (invalid) NO 
B Busy 386 TSS YES 
C 386 Call Gate NO 
D (invalid) NO 
E 386 Trap Gate NO 
F 386 Interrupt Gate NO 

6.3.6.1 DESCRIPTOR VALIDATION 

The 80386 has two instructions, VERR and VER W, which determine whether a selector 
points to a segment that can be read or written at the current privilege level. Neither instruc­
tion causes a protection fault if the result is negative. 

VERR (Verify for Reading) verifies a segment for reading and loads ZF with I if that segment 
is readable from the current privilege level. VERR checks that: 

The selector points to a descriptor within the bounds of the GDT or LDT. 

• It denotes a code or data segment descriptor. 

• The segment is readable and of appropriate privilege level. 

The privilege check for data segments and nonconforming code segments is that the DPL 
must be numerically greater than or equal to both the CPL and the selector's RPL. 
Conforming segments are not checked for privilege level. 

VERW (Verify for Writing) provides the same capability as VERR for verifying writ ability. 
Like the VERR instruction, VER W loads ZF if the result of the writability check is positive. 
The instruction checks that the descriptor is within bounds, is a segment descriptor, is writa­
ble, and that its DPL is numerically greater or equal to both the CPL and the selector's 
RPL. Code segments are never writable, conforming or not. 

6.3.6.2 POINTER INTEGRITY AND RPL 

The Requestor's Privilege Level (RPL) feature can prevent inappropriate use of pointers 
that could corrupt the operation of more privileged code or data from a less privileged level. 
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A common example is a file system procedure, FREAD (filcid, n_bytes, buffeLptr). This 
hypothetical procedure reads data from a file into a buffer, overwriting whatever is there. 
Normally, FREAD would be available at the user level, supplying only pointers to the file 
system procedures and data located and operating at a privileged level. Normally, such a 
procedure prevents user-level procedures from directly changing the file tables. However, in 
the absence of a standard protocol for checking pointer validity, a user-level procedure could 
supply a pointer into the file tables in place of its buffer pointer, causing the FREAD proce­
dure to corrupt them unwittingly. 

Use of RPL can avoid such problems. The RPL field allows a privilege attribute to be assigned 
to a selector. This privilege attribute would normally indicate the privilege level of the code 
which generated the selector. The 80386 processor automatically checks the RPL of any 
selector loaded into a segment register to determine whether the RPL allows access. 

To take advantage of the processor's checking of RPL, the called procedure need only ensure 
that all selectors passed to it have an RPL at least as high (numerically) as the original 
caller's CPL. This action guarantees that selectors are not more trusted than their supplier. 
If one of the selectors is used to access a segment that the caller would not be able to access 
directly, i.e., the RPL is numerically greater than the DPL, then a protection fault will result 
when that selector is loaded into a segment register. 

ARPL (Adjust Requestor's Privilege Level) adjusts the RPL field of a selector to become the 
larger of its original value and the value of the RPL field in a specified register. The latter 
is normally loaded from the image of the caller's CS register which is on the stack. If the 
adjustment changes the selector's RPL, ZF (the zero flag) is set; otherwise, ZF is cleared. 

6.4 PAGE-LEVEL PROTECTION 

Two kinds of protection are related to pages: 

1. Restriction of addressable domain. 

2. Type checking. 

6.4.1 Page-Table Entries Hold Protection Parameters 

Figure 6-10 highlights the fields of PDEs and PTEs that control access to pages. 

6.4.1.1 RESTRICTING ADDRESSABLE DOMAIN 

The concept of privilege for pages is implemented by assigning each page to one of two 
levels: 

1. Supervisor level (U IS = 0 )-for the operating system and other systems software and 
related data. 

2. User level (U IS = 1 )-for applications procedures and data. 
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R/W - READ/WRITE 
U/S - USER/SUPERVISOR 

G30117 

Figure 6-10. Protection Fields of Page Table Entries 

The current level (U or S) is related to CPL. If CPL is 0, 1, or 2, the processor is executing 
at supervisor level. If CPL is 3, the processor is executing at user level. 

When the processor is executing at supervisor level, all pages are addressable, but, when the 
processor is executing at user level, only pages that belong to the user level are addressable. 

6.4.1.2 TYPE CHECKING 

At the level of page addressing, two types are defined: 

1. Read-only access (R/W=O) 

2. Read/write access (R/W = 1) 

When the processor is executing at supervisor level, all pages are both readable and writable. 
When the processor is executing at user level, only pages that belong to user level and are 
marked for read/write access are writable; pages that belong to supervisor level are neither 
readable nor writable from user level. 

6.4.2 Combining Protection of Both Levels of Page Tables 

For anyone page, the protection attributes of its page directory entry may differ from those 
of its page table entry. The 80386 computes the effective protection attributes for a page by 
examining the protection attributes in both the directory and the page table. Table 6-5 shows 
the effective protection provided by the possible combinations of protection attributes. 

6.4.3 Overrides to Page Protection 

Certain accesses are checked as if they are privilege-level 0 references, even if CPL = 3: 

• LDT, GDT, TSS, IDT references. 

• Access to inner stack during ring-crossing CALL/INT. 
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6.5 COMBINING PAGE AND SEGMENT PROTECTION 

When paging is enabled, the 80386 first evaluates segment protection, then evaluates page 
protection. If the processor detects a protection violation at either the segment or the page 
level, the requested operation cannot proceed; a protection exception occurs instead. 

For example, it is possible to define a large data segment which has some subunits that are 
read-only and other subunits that are read-write. In this case, the page directory (or page 
table) entries for the read-only subunits would have the U IS and RIW bits set to xO, 
indicating no write rights for all the pages described by that directory entry (or for individ­
ual pages). This technique might be used, for example, in a UNIX-like system to define a 
large data segment, part of which is read only (for shared data or ROMmed constants). 
This enables UNIX-like systems to define a "flat" data space as one large segment, use 
"flat" pointers to address within this "flat" space, yet be able to protect shared data, shared 
files mapped into the virtual space, and supervisor areas. 

Table 6-5. Combining Directory and Page Protection 

Page Directory Entry Page Table Entry Combined Protection 

U/S 

S-O 
S-O 
S-O 
S-O 
S-O 
S-O 
S-O 
S-O 
U-1 
U-1 
U-1 
U-1 
U-1 
U-1 
U-1 
U-1 

S - Supervisor 
R - Read only 
U - User 
W - Read and Write 

R/W 

R-O 
R-O 
R-O 
R-O 
W-1 
W-1 
W-1 
W-1 
R-O 
R-O 
R-O 
R-O 
W-1 
W-1 
W-1 
W-1 

U/S R/W U/S 

S-O R-O S 
S-O W-1 S 
U-1 R-O S 
U-1 W-1 S 
S-O R-O S 
S-O W-1 S 
U-1 R-O S 
U-1 W-1 S 
S-O R-O S 
S-O W-1 S 
U-1 R-O U 
U-1 W-1 U 
S-O R-O S 
S-O W-1 S 
U-1 R-O U 
U-1 W-1 U 

x indicates that when the combined U/S attribute is S, the R/W attribute is not checked. 
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CHAPTER 7 
MULTITASKING 

To provide efficient, protected multitasking, the 80386 employs several special data struc­
tures. It does not, however, use special instructions to control multitasking; instead, it inter­
prets ordinary control-transfer instructions differently when they refer to the special data 
structures. The registers and data structures that support multitasking are: 

• Task state segment 
• Task state segment descriptor 

• Task register 

• Task gate descriptor 

With these structures the 80386 can rapidly switch execution from one task to another, 
saving the context of the original task so that the task can be restarted later. In addition to 
the simple task switch, the 80386 offers two other task-management features: 

1. Interrupts and exceptions can cause task switches (if needed in the system design). The 
processor not only switches automatically to the task that handles the interrupt or 
exception, but it automatically switches back to the interrupted task when the interrupt 
or exception has been serviced. Interrupt tasks may interrupt lower-priority interrupt 
tasks to any depth. 

2. With each switch to another task, the 80386 can also switch to another LDT and to 
another page directory. Thus each task can have a different logical-to-linear mapping 
and a different linear-to-physical mapping. This is yet another protection feature, because 
tasks can be isolated and prevented from interfering with one another. 

7. 1 TASK STATE SEGMENT 

All the information the processor needs in order to manage a task is stored in a special type 
of segment, a task state segment (TSS). Figure 7-1 shows the format of a TSS for executing 
80386 tasks. (Another format is used for executing 80286 tasks; refer to Chapter 13.) 

The fields of a TSS belong to two classes: 

1. A dynamic set that the processor updates with each switch from the task. This set includes 
the fields that store: 

• The general registers (EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI). 

• The segment registers (ES, CS, SS, DS, FS, GS). 

• The flags register (EFLAGS). 

• The instruction pointer (EIP). 

• The selector of the TSS of the previously executing task (updated only when a return 
is expected). 
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Figure 7-1. 80386 32-Bit Task State Segment 
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2. A static set that the processor reads but does not change. This set includes the fields 
that store: 

• The selector of the task's LDT. 

• The register (PDBR) that contains the base address of the task's page directory 
(read only when paging is enabled). 

• Pointers to the stacks for privilege levels 0-2. 

• The T-bit (debug trap bit) which causes the processor to raise a debug exception 
when a task switch occurs. (Refer to Chapter 12 for more information on 
debugging. ) 

• The I/O map base (refer to Chapter 8 for more information on the use of the 
I/O map). 

Task state segments may reside anywhere in the linear space. The only case that requires 
caution is when the TSS spans a page boundary and the higher-addressed page is not present. 
In this case, the processor raises an exception if it encounters the not-present page while 
reading the TSS during a task switch. Such an exception can be avoided by either of two 
strategies: 

1. By allocating the TSS so that it does not cross a page boundary. 

2. By ensuring that both pages are either both present or both not-present at the time of a 
task switch. If both pages are not-present, then the page-fault handler must make both 
pages present before restarting the instruction that caused the task switch. 

7.2 TSS DESCRIPTOR 

The task state segment, like all other segments, is defined by a descriptor. Figure 7-2 shows 
the format of a TSS descriptor. 

The B-bit in the type field indicates whether the task is busy. A type code of 9 indicates a 
non-busy task; a type code of 11 indicates a busy task. Tasks are not reentrant. The B-bit 
allows the processor to detect an attempt to switch to a task that is already busy. 

31 7 

BSE 31 .. 24 BASE 23 .. 16 4 

BASE 15 .. 0 LIMIT 15 .. 0 o 
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Figure 7-2. TSS Descriptor for 32-Bit TSS 

7-3 



inter MULTITASKING 

The BASE, LIMIT, and DPL fields and the G-bit and P-bit have functions similar to their 
counterparts in data-segment descriptors. The LIMIT field, however, must have a value 
equal to or greater than 103. An attempt to switch to a task whose TSS descriptor has a 
limit less that 103 causes an exception. A larger limit is permissible, and a larger limit is 
required if an 1/0 permission map is present. A larger limit may also be convenient for 
systems software if additional data is stored in the same segment as the TSS. 

A procedure that has access to a TSS descriptor can cause a task switch. In most systems 
the DPL fields of TSS descriptors should be set to zero, so that only trusted software has 
the right to perform task switching. 

Having access to a TSS-descriptor does not give a procedure the right to read or modify a 
TSS. Reading and modification can be accomplished only with another descriptor that 
redefines the TSS as a data segment. An attempt to load a TSS descriptor into any of the 
segment registers (CS, SS, DS, ES, FS, GS) causes an exception. 

TSS descriptors may reside only in the GDT. An attempt to identify a TSS with a selector 
that has TI = 1 (indicating the current LDT) results in an exception. 

7.3 TASK REGISTER 

The task register (TR) identifies the currently executing task by pointing to the TSS. 
Figure 7-3 shows the path by which the processor accesses the current TSS. 

The task register has both a "visible" portion (i.e., can be read and changed by instructions) 
and an "invisible" portion (maintained by the processor to correspond to the visible portion; 
cannot be read by any instruction). The selector in the visible portion selects a TSS descrip­
tor in the GDT. The processor uses the invisible portion to cache the base and limit values 
from the TSS descriptor. Holding the base and limit in a register makes execution of the 
task more efficient, because the processor does not need to repeatedly fetch these values 
from memory when it references the TSS of the current task. 

The instructions L TR and STR are used to modify and read the visible portion of the task 
register. Both instructions take one operand, a 16-bit selector located in memory or in a 
general register. 

LTR (Load task register) loads the visible portion of the task register with the selector 
operand, which must select a TSS descriptor in the GDT. LTR also loads the invisible portion 
with information from the TSS descriptor selected by the operand. LTR is a privileged 
instruction; it may be executed only when CPL is zero. LTR is generally used during system 
initialization to give an initial value to the task register; thereafter, the contents of TR are 
changed by task switch operations. 

STR (Store task register) stores the visible portion of the task register in a general register 
or memory word. STR is not privileged. 
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Figure 7-3. Task Register 

7 .4 TASK GATE DESCRIPTOR 

A task gate descriptor provides an indirect, protected reference to a TSS. Figure 7-4 
illustrates the format of a task gate_ 

The SELECTOR field of a task gate must refer to a TSS descriptor. The value of the RPL 
in this selector is not used by the processor. 

The DPL field of a task gate controls the right to use the descriptor to cause a task switch. 
A procedure may not select a task gate descriptor unless the maximum of the selector's RPL 
and the CPL of the procedure is numerically less than or equal to the DPL of the descriptor. 
This constraint prevents untrusted procedures from causing a task switch. (Note that when 
a task gate is used, the DPL of the target TSS descriptor is not used for privilege checking.) 
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Figure 7-4. Task Gate Descriptor 

A procedure that has access to a task gate has the power to cause a task switch, just as a 
procedure that has access to a TSS descriptor. The 80386 has task gates in addition to TSS 
descriptors to satisfy three needs: 

1. The need for a task to have a single busy bit. Because the busy-bit is stored in the TSS 
descriptor, each task should have only one such descriptor. There may, however, be 
several task gates that select the single TSS descriptor. 

2. The need to provide selective access to tasks. Task gates fulfill this need, because they 
can reside in LDTs and can have a DPL that is different from the TSS descriptor's 
DPL. A procedure that does not have sufficient privilege to use the TSS descriptor in 
the GDT (which usually has a DPL of 0) can still switch to another task if it has access 
to a task gate for that task in its LDT. With task gates, systems software can limit the 
right to cause task switches to specific tasks. 

3. The need for an interrupt or exception to cause a task switch. Task gates may also reside 
in the IDT, making it possible for interrupts and exceptions to cause task switching. 
When interrupt or exception vectors to an IDT entry that contains a task gate, the 
80386 switches to the indicated task. Thus, all tasks in the system can benefit from the 
protection afforded by isolation from interrupt tasks. 

Figure 7-5 illustrates how both a task gate in an LDT and a task gate in the IDT can 
identify the same task. 

7.5 TASK SWITCHING 

The 80386 switches execution to another task in any of four cases: 

1. The current task executes a JMP or CALL that refers to a TSS descriptor. 

2. The current task executes a JMP or CALL that refers to a task gate. 

3. An interrupt or exception vectors to a task gate in the IDT. 

4. The current task executes an IRET when the NT flag is set. 
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Figure 7-5. Task Gate Indirectly Identifies Task 

JMP, CALL, IRET, interrupts, and exceptions are all ordinary mechanisms of the 80386 
that can be used in circumstances that do not require a task switch. Either the type of 
descriptor referenced or the NT (nested task) bit in the flag word distinguishes between the 
standard mechanism and the variant that causes a task switch. 

To cause a task switch, a JMP or CALL instruction can refer either to a TSS descriptor or 
to a task gate. The effect is the same in either case: the 80386 switches to the indicated task. 

An exception or interrupt causes a task switch when it vectors to a task gate in the IDT. If 
it vectors to an interrupt or trap gate in the IDT, a task switch does not occur. Refer to 
Chapter 9 for more information on the interrupt mechanism. 

Whether invoked as a task or as a procedure of the interrupted task, an interrupt handler 
always returns control to the interrupted procedure in the interrupted task. If the NT flag 
is set, however, the handler is an interrupt task, and the IRET switches back to the inter­
rupted task. 
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A task switching operation involves these steps: 

1. Checking that the current task is allowed to switch to the designated task. Data-access 
privilege rules apply in the case of JMP or CALL instructions. The DPL of the TSS 
descriptor or task gate must be less than or equal to the maximum of CPL and the RPL 
of the gate selector. Exceptions, interrupts, and IRETs are permitted to switch tasks 
regardless of the DPL of the target task gate or TSS descriptor. 

2. Checking that the TSS descriptor of the new task is marked present and has a valid 
limit. Any errors up to this point occur in the context of the outgoing task. Errors are 
restartable and can be handled in a way that is transparent to applications procedures. 

3. Saving the state of the current task. The processor finds the base address of the current 
TSS cached in the task register. It copies the registers into the current TSS (EAX, 
ECX, EDX, EBX, ESP, EBP, ESI, EDI, ES, CS, SS, DS, FS, GS, and the flag regis­
ter). The EIP field of the TSS points to the instruction after the one that caused the 
task switch. 

4. Loading the task register with the selector of the incoming task's TSS descriptor, marking 
the incoming task's TSS descriptor as busy, and setting the TS (task switched) bit of 
the MSW. The selector is either the operand of a control transfer instruction or is taken 
from a task gate. 

5. Loading the incoming task's state from its TSS and resuming execution. The registers 
loaded are the LDT register; the flag register; the general registers EIP, EAX, ECX, 
EDX, EBX, ESP, EBP, ESI, EDI; the segment registers ES, CS, SS, DS, FS, and GS; 
and PDBR. Any errors detected in this step occur in the context of the incoming task. 
To an exception handler, it appears that the first instruction of the new task has not yet 
executed. 

Note that the state of the outgoing task is always saved when a task switch occurs. If execu­
tion of that task is resumed, it starts after the instruction that caused the task switch. The 
registers are restored to the values they held when the task stopped executing. 

Every task switch sets the TS (task switched) bit in the MSW (machine status word). The 
TS flag is useful to systems software when a coprocessor (such as a numerics coprocessor) 
is present. The TS bit signals that the context of the coprocessor may not correspond to the 
current 80386 task. Chapter 11 discusses the TS bit and coprocessors in more detail. 

Exception handlers that field task-switch exceptions in the incoming task (exceptions due to 
tests 4 thru 16 of Table 7-1) should be cautious about taking any action that might load the 
selector that caused the exception. Such an action will probably cause another exception, 
unless the exception handler first examines the selector and fixes any potential problem. 

The privilege level at which execution resumes in the incoming task is neither restricted nor 
affected by the privilege level at which the outgoing task was executing. Because the tasks 
are isolated by their separate address spaces and TSSs and because privilege rules can be 
used to prevent improper aCCess to a TSS, no privilege rules are needed to constrain the 
relation between the CPLs of the tasks. The new task begins executing at the privilege level 
indicated by the RPL of the CS selector value that is loaded from the TSS. 
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Table 7-1. Checks Made during a Task Switch 

Test Test Description Exception' Error Code Selects 

1 Incoming TSS descriptor is NP Incoming TSS 
present 

2 Incoming TSS descriptor is GP Incoming TSS 
marked not-busy 

3 Limit of incoming TSS is TS Incoming TSS 
greater than or equal to 103 

- All register and selector values are loaded -

4 LOT selector of incoming TS Incoming TSS 
task is valid 

5 LOT of incoming task is TS Incoming TSS 
present 

6 CS selector is valid' TS Code segment 
7 Code segment is present NP Code segment 
8 Code segment OPL matches TS Code segment 

CS RPL 
9 Stack segment is valid' GP Stack segment 

10 Stack segment is present SF Stack segment 
11 Stack segment OPL = CPL SF Stack segment 
12 Stack-selector RPL = CPL GP Stack segment 
13 OS, ES, FS, GS selectors are GP Segment 

valid' 
14 OS, ES, FS, GS segments GP Segment 

are readable 
15 OS, ES, FS, GS segments NP Segment 

are present 
16 OS, ES, FS, GS segment OPL GP Segment 

2: CPL (unless these are 
conforming segments) 

1. NP = Segment-not-present exception, GP = General protection fault, TS = Invalid TSS, SF = Stack 
fault 

2. Validity tests of a selector check that the selector is in the proper table (eg., the LOT selector refers to 
the GOT), lies within the bounds of the table, and refers to the proper type of descriptor (e.g., the LOT 
selector refers to an LOT descriptor). 

7 .6 TASK LINKING 

The back-link field of the TSS and the NT (nested task) bit of the flag word together allow 
the 80386 to automatically return to a task that CALLed another task or was interrupted 
by another task. When a CALL instruction, an interrupt instruction, an external interrupt, 
or an exception causes a switch to a new task, the 80386 automatically fills the back-link of 
the new TSS with the selector of the outgoing task's TSS and, at the same time, sets the NT 
bit in the new task's flag register. The NT flag indicates whether the back-link field is valid. 
The new task releases control by executing an IRET instruction. When interpreting an IRET, 
the 80386 examines the NT flag. If NT is set, the 80386 switches back to the task selected 
by the back-link field. Table 7-2 summarizes the uses of these fields. 
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Table 7-2. Effect of Task Switch on BUSY, NT, and Back-Link 

Effect of JMP Effect of Effect of Affected Field Instruction CALL Instruction IRET Instruction 
or Interrupt 

Busy bit of Set, must be Set, must be 0 Unchanged, 
incoming task o before before must be set 

Busy bit of Cleared Unchanged Cleared 
outgoing task (already set) 

NT bit of Cleared Set Unchanged 
incoming task 

NT bit of Unchanged Unchanged Cleared 
outgoing task 

Back-link of Unchanged Set to outgoing Unchanged 
incoming task TSS selector 

Back-link of Unchanged Unchanged Unchanged 
outgoing task 

7.6.1 Busy Bit Prevents Loops 

The B-bit (busy bit) of the TSS descriptor ensures the integrity of the back-link. A chain of 
back-links may grow to any length as interrupt tasks interrupt other interrupt tasks or as 
called tasks call other tasks. The busy bit ensures that the CPU can detect any attempt to 
create a loop. A loop would indicate an attempt to reenter a task that is already busy; however, 
the TSS is not a reentrable resource. 

The processor uses the busy bit as follows: 

1. When switching to a task, the processor automatically sets the busy bit of the new task. 

2. When switching from a task, the processor automatically clears the busy bit of the old 
task if that task is not to be placed on the back-link chain (i.e., the instruction causing 
the task switch is JMP or IRET). If the task is placed on the back-link chain, its busy 
bit remains set. 

3. When switching to a task, the processor signals an exception if the busy bit of the new 
task is already set. 

By these actions, the processor prevents a task from switching to itself or to any task that is 
on a back-link chain, thereby preventing invalid reentry into a task. 

The busy bit is effective even in multiprocessor configurations, because the processor 
automatically asserts a bus lock when it sets or clears the busy bit. This action ensures that 
two processors do not invoke the same task at the same time. (Refer to Chapter 11 for more 
on multiprocessing.) 
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7.6.2 Modifying Task Linkages 

Any modification of the linkage order of tasks should be accomplished only by software that 
can be trusted to correctly update the back-link and the busy-bit. Such changes may be 
needed to resume an interrupted task before the task that interrupted it. Trusted software 
that removes a task from the back-link chain must follow one of the following policies: 

1. First change the back-link field in the TSS of the interrupting task, then clear the busy­
bit in the TSS descriptor of the task removed from the list. 

2. Ensure that no interrupts occur between updating the back-link chain and the busy bit. 

7.7 TASK ADDRESS SPACE 

The LDT selector and PDBR fields of the TSS give software systems designers flexibility in 
utilization of segment and page mapping features of the 80386. By appropriate choice of the 
segment and page mappings for each task, tasks may share address spaces, may have address 
spaces that are largely distinct from one another, or may have any degree of sharing between 
these two extremes. 

The ability for tasks to have distinct address spaces is an important aspect of 80386 protec­
tion. A module in one task cannot interfere with a module in another task if the modules do 
not have access to the same address spaces. The flexible memory management features of 
the 80386 allow systems designers to assign areas of shared address space to those modules 
of different tasks that are designed to cooperate with each other. 

7.7.1 Task Linear-to-Physical Space Mapping 

The choices for arranging the linear-to-physical mappings of tasks fall into two general classes: 

1. One linear-to-physical mapping shared among all tasks. 

When paging is not enabled, this is the only possibility. Without page tables, all linear 
addresses map to the same physical addresses. 

When paging is enabled, this style of linear-to-physical mapping results from using one 
page directory for all tasks. The linear space utilized may exceed the physical space 
available if the operating system also implements page-level virtual memory. 

2. Several partially overlapping linear-to-physical mappings. 

This style is implemented by using a different page directory for each task. Because the 
PDBR (page directory base register) is loaded from the TSS with each task switch, each 
task may have a different page directory. 

In theory, the linear address spaces of different tasks may map to completely distinct physi­
cal addresses. If the entries of different page directories point to different page tables and 
the page tables point to different pages of physical memory, then the tasks do not share any 
physical addresses. 
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In practice, some portion of the linear address spaces of all tasks must map to the same 
physical addresses. The task state segments must lie in a common space so that the mapping 
of TSS addresses does not change while the processor is reading and updating the TSSs 
during a task switch. The linear space mapped by the GDT should also be mapped to a 
common physical space; otherwise, the purpose of the GDT is defeated. Figure 7-6 shows 
how the linear spaces of two tasks can overlap in the physical space by sharing page tables. 

7.7.2 Task Logical Address Space 

By itself, a common linear-to-physical space mapping does not enable sharing of data among 
tasks. To share data, tasks must also have a common logical-to-linear space mapping; i.e., 
they must also have access to descriptors that point into a shared linear address space. There 
are three ways to create common logical-to-physical address-space mappings: 

1. Via the GDT. All tasks have access to the descriptors in the GDT. If those descriptors 
point into a linear-address space that is mapped to a common physical-address space for 
all tasks, then the tasks can share data and instructions. 

2. By sharing LDTs. Two or more tasks can use the same LDT if the LDT selectors in 
their TSSs select the same LDT segment. Those LDT-resident descriptors that point 
into a linear space that is mapped to a common physical space permit the tasks to share 
physical memory. This method of sharing is more selective than sharing by the GDT; 
the sharing can be limited to specific tasks. Other tasks in the system may have different 
LDTs that do not give them access to the shared areas. 

3. By descriptor aliases in LDTs. It is possible for certain descriptors of different LDTs to 
point to the same linear address space. If that linear address space is mapped to the 
same physical space by the page mapping of the tasks involved, these descriptors permit 
the tasks to share the common space. Such descriptors are commonly called "aliases". 
This method of sharing is even more selective than the prior two; other descriptors in 
the LDTs may point to distinct linear addresses or to linear addresses that are not shared. 
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Figure 7-6. Partially-Overlapping Linear Spaces 
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CHAPTER 8 
INPUT / OUTPUT 

This chapter presents the I/O features of the 80386 from the following perspectives: 

• Methods of addressing I/O ports 

• Instructions that cause I/O operations 

• Protection as it applies to the use of I/O instructions and I/O port addresses. 

8.1 I/O ADDRESSING 

The 80386 allows input/output to be performed in either of two ways: 

• By means of a separate I/O address space (using specific I/O instructions) 

• By means of memory-mapped I/O (using general-purpose operand manipulation 
instructions ). 

8.1.1 1/0 Address Space 

The 80386 provides a separate I/O address space, distinct from physical memory, that can 
be used to address the input/output ports that are used for external 16 devices. The I/O 
address space consists of 216 (64K) individually addressable 8-bit ports; any two consecutive 
8-bit ports can be treated as a 16-bit port; and four consecutive 8-bit ports can be treated as 
a 32-bit port. Thus, the I/O address space can accommodate up to 64K 8-bit ports, up to 
32K 16-bit ports, or up to 16K 32-bit ports. 

The program can specify the address of the port in two ways. Using an immediate byte 
constant, the program can specify: 

256 8-bit ports numbered 0 through 255. 

• 128 16-bit ports numbered 0, 2, 4, ... , 252, 254. 

• 64 32-bit ports numbered 0, 4, 8, ... , 248, 252. 

Using a value in DX, the program can specify: 

• 8-bit ports numbered 0 through 65535 

• 16-bit ports numbered 0, 2, 4, ... , 65532, 65534 

• 32-bit ports numbered 0, 4, 8, ... , 65528, 65532 

The 80386 can transfer 32, 16, or 8 bits at a time to a device located in the I/O space. Like 
doublewords in memory, 32-bit ports should be aligned at addresses evenly divisible by four 
so that the 32 bits can be transferred in a single bus access. Like words in memory, 16-bit 
ports should be aligned at even-numbered addresses so that the 16 bits can be transferred in 
a single bus access. An 8-bit port may be located at either an even or odd address. 
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The instructions IN and OUT move data between a register and a port in the I/O address 
space. The instructions INS and OUTS move strings of data between the memory address 
space and ports in the I/O address space. 

8.1.2 Memory-Mapped I/O 

I/O devices also may be placed in the 80386 memory address space. As long as the devices 
respond like memory components, they are indistinguishable to the processor. 

Memory-mapped I/O provides additional programming flexibility. Any instruction that 
references memory may be used to access an I/O port located in the memory space. For 
example, the MOY instruction can transfer data between any register and a port; and the 
AND, OR, and TEST instructions may be used to manipulate bits in the internal registers 
of a device (see Figure 8-1). Memory-mapped I/O performed via the full instruction set 
maintains the full complement of addressing modes for selecting the desired I/O device 
(e.g., direct address, indirect address, base register, index register, scaling). 

Memory-mapped I/O, like any other memory reference, is subject to access protection and 
control when executing in protected mode. Refer to Chapter 6 for a discussion of memory 
protection. 

8.2 1/0 INSTRUCTIONS 

The I/O instructions of the 80386 provide access to the processor's I/O ports for the transfer 
of data to and from peripheral devices. These instructions have as one operand the address 
of a port in the I/O address space. There are two classes of I/O instruction: 

1. Those that transfer a single item (byte, word, or doubleword) located in a register. 

2. Those that transfer strings of items (strings of bytes, words, or doublewords) located in 
memory. These are known as "string I/O instructions" or "block I/O instructions". 

8.2.1 Register 1/0 Instructions 

The I/O instructions IN and OUT are provided to move data between I/O ports and the 
EAX (32-bit I/O), the AX (I6-bit I/O), or AL (8-bit I/O) general registers. IN and OUT 
instructions address I/O ports either directly, with the address of one of up to 256 port 
addresses coded in the instruction, or indirectly via the DX register to one of up to 64K port 
addresses. 

IN (Input from Port) transfers a byte, word, or doubleword from an input port to AL, AX, 
or EAX. If a program specifies AL with the IN instruction, the processor transfers 8 bits 
from the selected port to AL. If a program specifies AX with the IN instruction, the proces­
sor transfers 16 bits from the port to AX. If a program specifies EAX with the IN instruc­
tion, the processor transfers 32 bits from the port to EAX. 
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Figure 8-1. Memory-Mapped I/O 

OUT (Output to Port) transfers a byte, word, or doubleword to an output port from AL, AX, 
or EAX. The program can specify the number of the port using the same methods as the IN 
instruction. 

8.2.2 Block 1/0 Instructions 

The block (or string) I/O instructions INS and OUTS move blocks of data between I/O 
ports and memory space. Block I/O instructions use the DX register to specify the address 
of a port in the I/O address space. INS and OUTS use DX to specify: 

• 8-bit ports numbered 0 through 65535 

• 16-bit ports numbered 0, 2,4, ... , 65532, 65534 

• 32-bit ports numbered 0, 4, 8, ... ~ 65528, 65532 

Block I/O instructions use either SI or DI to designate the source or destination memory 
address. For each transfer, SI or DI are automatically either incremented or decremented 
as specified by the direction bit in the flags register. 

INS and OUTS, when used with repeat prefixes, cause block input or output operations. 
REP, the repeat prefix, modifies INS and OUTS to provide a means of transferring blocks 
of data between an I/O port and memory. These block I/O instructions are string primitives 
(refer also to Chapter 3 for more on string primitives). They simplify programming and 
increase the speed of data transfer by eliminating the need to use a separate LOOP instruc­
tion or an intermediate register to hold the data. 
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The string I/O primitives can operate on byte strings, word strings, or doubleword strings. 
After each transfer, the memory address in ESI or EDI is updated by 1 for byte operands, 
by 2 for word operands, or by 4 for doubleword operands. The value in the direction flag 
(DF) determines whether the processor automatically increments ESI or EDI (DF=O) or 
whether it automatically decrements these registers (DF = 1). 

INS (Input String from Port) transfers a byte or a word string element from an input port to 
memory. The mnemonics INSB, INSW, and INSD are variants that explicitly specify the 
size of the operand. If a program specifies INSB, the processor transfers 8 bits from the 
selected port to the memory location indicated by ES:EDI. If a program specifies INSW, 
the processor transfers 16 bits from the port to the memory location indicated by ES:EDI. 
If a program specifies INSD, the processor transfers 32 bits from the port to the memory 
location indicated by ES:EDI. The destination segment register choice (ES) cannot be 
changed for the INS instruction. Combined with the REP prefix, INS moves a block of 
information from an input port to a series of consecutive memory locations. 

OUTS (Output String to Port) transfers a byte, word, or doubleword string element to an 
output port from memory. The mnemonics OUTSB, OUTSW, and OUTSD are variants 
that explicitly specify the size of the operand. If a prog~a~cifies OUTSB, the processor 
transfers 8 bits from the memory location indicated by ~pr to the the selected port. If a 
program specifies OUTSW, the processor transfers 16 bits from the memory location 
indicated by ~ to the the selected port. If a prograth~ies OUTSD, the processor 
transfers 32 bits from the memory location indicated by '.~I to the the selected port. 
Combined with tHe REP prefix, OUTS moves a block of infb-rtnation from a series of consec­
utive memory locations indicated by DS:ESI to an output P<.lft. 

- . 
8.3 PROTECTION AND 1/0 

Two mechanisms provide protection for I/O functions: 

1. The IOPL field in the EFLAGS register defines the right to use I/O-related 
instructions. 

2. The I/O permission bit map of a 80386 TSS segment defines the right to use ports in 
the I/O address space. 

These mechanisms operate only in protected mode, including virtual 8086 mode; they do not 
operate in real mode. In real mode, there is no protection of the I/O space; any procedure 
can execute I/O instructions, and any I/O port can be addressed by the I/O instructions. 

8.3.1 I/O Privilege Level 

Instructions that deal with I/O need to be restricted but also need to be executed by proce­
dures executing at privilege levels other than zero. For this reason, the processor uses two 
bits of the flags register to store the 110 privilege level (IOPL). The IOPL defines the privi­
lege level needed to execute I/O-related instructions. 
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The following instructions can be executed only if CPL < 10PL: 

IN 
INS 
OUT 
OUTS 
CLI 
STI 

-Input 
-Input String 
-Output 
-Output String 
-Clear Interrupt-Enable Flag 
-Set Interrupt-Enable Flag 

These instructions are called "sensitive" instructions, because they are sensitive to 10PL. 

To use sensitive instructions, a procedure must execute at a privilege level at least as privi­
leged as that specified by the 10PL (CPL < 10PL). Any attempt by a less privileged proce­
dure to use a sensitive instruction results in a general protection exception. 

Because each task has its own unique copy of the flags register, each task can have a differ­
ent 10PL. A task whose primary function is to perform I/O (a device driver) can benefit 
from having an 10PL of three, thereby permitting all procedures of the task to perform 
I/O. Other tasks typically have 10PL set to zero or one, reserving the right to perform I/O 
instructions for the most privileged procedures. 

A task can change IOPL only with the POPF instruction; however, such changes are privi­
leged. No procedure may alter 10PL (the I/O privilege level in the flag register) unless the 
procedure is executing at privilege level O. An attempt by a less privileged procedure to alter 
10PL does not result in an exception; 10PL simply remains unaltered. 

The POPF instruction may be used in addition to CLI and STI to alter the interrupt-enable 
flag (IF); however, changes to IF by POPF are 10PL-sensitive. A procedure may alter IF 
with a POPF instruction only when executing at a level that is at least as privileged as 10PL. 
An attempt by a less privileged procedure to alter IF in this manner does not result in an 
exception; IF simply remains unaltered. 

8.3.2 I/O Permission Bit Map 

The I/O instructions that directly refer to addresses in the processor's I/O space are IN, 
INS, OUT, OUTS. The 80386 has the ability to selectively trap references to specific I/O 
addresses. The structure that enables selective trapping is the I/O Permission Bit Map in 
the TSS segment (see Figure 8-2). The I/O permission map is a bit vector. The size of the 
map and its location in the TSS segment are variable. The processor locates the I/O permis­
sion map by means of the I/O map base field in the fixed portion of the TSS. The I/O map 
base field is 16 bits wide and contains the offset of the beginning of the I/O permission map. 
The upper limit of the I/O permission map is the same as the limit of the TSS segment. 

In protected mode, when it encounters an I/O instruction (IN, INS, OUT, or OUTS), the 
processor first checks whether CPL < 10PL. If this condition is true, the I/O operation 
may proceed. If not true, the processor checks the I/O permission map. (In virtual 8086 
mode, the processor consults the map without regard for 10PL. Refer to Chapter 15.) 
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Each bit in the map corresponds to an I/O port byte address; for example, the bit for port 
41 is found at I/O map base + 5, bit offset 1. The processor tests all the bits that correspond 
to the I/O addresses spanned by an I/O operation; for example, a doubleword operation 
tests four bits corresponding to four adjacent byte addresses. If any tested bit is set, the 
processor signals a general protection exception. If all the tested bits are zero, the I/O opera­
tion may proceed. 

It is not necessary for the I/O permission map to represent all the I/O addresses. I/O 
addresses not spanned by the map are treated as if they had one bits in the map. For example, 
if TSS limit is equal to I/O map base + 31, the first 256 I/O ports are mapped; I/O 
operations on any port greater than 255 cause an exception. 

If I/O map base is greater than or equal to TSS limit, the TSS segment has no I/O permis­
sion map, and all I/O instructions in the 80386 program cause exceptions when CPL > 
IOPL. 

Because the I/O permission map is in the TSS segment, different tasks can have different 
maps. Thus, the operating system can allocate ports to a task by changing the I/O permis­
sion map in the task's TSS. 
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CHAPTER 9 
EXCEPTIONS AND INTERRUPTS 

Interrupts and exceptions are special kinds of control transfer; they work somewhat like 
unprogrammed CALLs. They alter the normal program flow to handle external events or to 
report errors or exceptional conditions. The difference between interrupts and exceptions is 
that interrupts are used to handle asynchronous events external to the processor, but excep­
tions handle conditions detected by the processor itself in the course of executing 
instructions. 

There are two sources for external interrupts and two sources for exceptions: 

1. Interrupts 

• Maskable interrupts, which are signalled via the INTR pin. 

• Nonmaskable interrupts, which are signalled via the NMI (Non-Maskable 
Interrupt) pin. 

2. Exceptions 

• Processor detected. These are further classified as faults, traps, and aborts. 

• Programmed. The instructions INTO, INT 3, INT n, and BOUND can trigger 
exceptions. These instructions are often called "software interrupts", but the proces­
sor handles them as exceptions. 

This chapter explains the features that the 80386 offers for controlling and responding to 
interrupts when it is executing in protected mode. 

9.1 IDENTIFYING INTERRUPTS 

The processor associates an identifying number with each different type of interrupt or 
exception. 

The NMI and the exceptions recognized by the processor are assigned predetermined identi­
fiers in the range 0 through 31. Not all of these numbers are currently used by the 80386; 
unassigned identifiers in this range are reserved by Intel for possible future 
expansion. 

The identifiers of the maskable interrupts are determined by external interrupt controllers 
(such as Intel's 8259A Programmable Interrupt Controller) and communicated to the 
processor during the processor's interrupt-acknowledge sequence. The numbers assigned by 
an 8259A PIC can be specified by software. Any numbers in the range 32 through 255 can 
be used. Table 9-1 shows the assignment of interrupt and exception identifiers. 
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Table 9-1. Interrupt and Exception ID Assignments 

Identifier Description 

0 Divide error 
1 Debug exceptions 
2 Nonmaskable interrupt 
3 Breakpoint (one-byte INT 3 instruction) 
4 Overflow (INTO instruction) 
5 Bounds check (BOUND instruction) 
6 Invalid opcode 
7 Coprocessor not available 
8 Double fault 
9 (reserved) 
10 Invalid TSS 
11 Segment not present 
12 Stack exception 
13 General protection 
14 Page fault 
15 (reserved) 
16 Coprocessor error 

17-31 (reserved) 
32-255 Available for external interrupts via INTR pin 

Exceptions are classified as faults, traps, or aborts depending on the way they are reported 
and whether restart of the instruction that caused the exception is supported. 

Faults 

Traps 

Aborts 

Faults are exceptions that are reported "before" the instruction causing the 
exception. Faults are either detected before the instruction begins to execute, 
or during execution of the instruction. If detected during the instruction, the 
fault is reported with the machine restored to a state that permits the instruc­
tion to be restarted. 

A trap is an exception that is reported at the instruction boundary immedi­
ately after the instruction in which the exception was detected. 

An abort is an exception that permits neither precise location of the instruc­
tion causing the exception nor restart of the program that caused the excep­
tion. Aborts are used to report severe errors, such as hardware errors and 
inconsistent or illegal values in system tables. 

9.2 ENABLING AND DISABLING INTERRUPTS 

The processor services interrupts and exceptions only between the end of one instruction and 
the beginning of the next. When the repeat prefix is used to repeat a string instruction, 
interrupts and exceptions may occur between repetitions. Thus, operations on long strings 
do not delay interrupt response. 
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Certain conditions and flag settings cause the processor to inhibit certain interrupts and 
exceptions at instruction boundaries. 

9.2.1 NMI Masks Further NMls 

While an NMI handler is executing, the processor ignores further interrupt signals at the 
NMI pin until the next IRET instruction is executed. 

9.2.2 IF Masks INTR 

The IF (interrupt-enable flag) controls the acceptance of external interrupts signalled via 
the INTR pin. When IF=O, INTR interrupts are inhibited; when IF=I, INTR interrupts 
are enabled. As with the other flag bits, the processor clears IF in response to a RESET 
signal. The instructions CLI and STI alter the setting of IF. 

CLI (Clear Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) explicitly alter IF 
(bit 9 in the flag register). These instructions may be executed only if CPL ~ IOPL. A 
protection exception occurs if they are executed when CPL > IOPL. 

The IF is also affected implicitly by the following operations: 

• The instruction PUSHF stores all flags, including IF, in the stack where they can be 
examined. 

• Task switches and the instructions POPF and IRET load the flags register; therefore, 
they can be used to modify IF. 

• Interrupts through interrupt gates automatically reset IF, disabling interrupts. (Inter­
rupt gates are explained later in this chapter.) 

9.2.3 RF Masks Debug Faults 

The RF bit in EFLAGS controls the recognition of debug faults. This permits debug faults 
to be raised for a given instruction at most once, no matter how many times the instruction 
is restarted. (Refer to Chapter 12 for more information on debugging.) 

9.2.4 MOV or POP to SS Masks Some Interrupts and Exceptions 

Software that needs to change stack segments often uses a pair of instructions; for example: 

MOV 55, AX 
MOV ESP, StackTop 

If an interrupt or exception is processed after SS has been changed but before ESP has 
received the corresponding change, the two parts of the stack pointer SS:ESP are inconsis­
tent for the duration of the interrupt handler or exception handler. 
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To prevent this situation, the 80386, after both a MOV to SS and a POP to SS instruction, 
inhibits NMI, INTR, debug exceptions, and single-step traps at the instruction boundary 
following the instruction that changes SS. Some exceptions may still occur; namely, page 
fault and general protection fault. Always use the 80386 LSS instruction, and the problem 
will not occur. 

9.3 PRIORITY AMONG SIMULTANEOUS INTERRUPTS AND EXCEPTIONS 

If more than one interrupt or exception is pending at an instruction boundary, the processor 
services one of them at a time. The priority among classes of interrupt and exception sources 
is shown in Table 9-2. The processor first services a pending interrupt or exception from the 
class that has the highest priority, transferring control to the first instruction of the interrupt 
handler. Lower priority exceptions are discarded; lower priority interrupts are held pending. 
Oiscarded exceptions will be rediscovered when the interrupt handler returns control to the 
point of interruption. 

9.4 INTERRUPT DESCRIPTOR TABLE 

The interrupt descriptor table (lOT) associates each interrupt or exception identifier with a 
descriptor for the instructions that service the associated event. Like the GOT and LOTs, 
the lOT is an array of 8-byte descriptors. Unlike the GOT and LOTs, the first entry of the 
lOT may contain a descriptor. To form an index into the IDT, the processor multiplies the 
interrupt or exception identifier by eight. Because there are only 256 identifiers, the lOT 
need not contain more than 256 descriptors. It can contain fewer than 256 entries; entries 
are required only for interrupt identifiers that are actually used. 

The lOT may reside anywhere in physical memory. As Figure 9-1 shows, the processor 
locates the lOT by means of the lOT register (IDTR). The instructions LIOT and SlOT 
operate on the IOTR. Both instructions have one explicit operand: the address in memory 
of a 6-byte area. Figure 9-2 shows the format of this area. 

LIDT (Load IDT register) loads the lOT register with the linear base address and limit 
values contained in the memory operand. This instruction can be executed only when the 
CPL is zero. It is normally used by the initialization logic of an operating system when 
creating an lOT. An operating system may also use it to change from one lOT to another. 

Table 9-2. Priority Among Simultaneous Interrupts and Exceptions 

Priority Class of Interrupt or Exception 

HIGHEST Faults except debug faults 
Trap instructions INTO, INT n, INT 3 
Debug traps for this instruction 
Debug faults for next instruction 
NMI interrupt 

LOWEST INTR interrupt 
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INTERRUPT DESCRIPTOR TABLE 

G30117 

Figure 9-1. lOT Register and Table 
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Figure 9-2. Pseudo-Descriptor Format for LIDT and SlOT 

SIDT (Store IDT register) copies the base and limit value stored in IDTR to a memory 
location. This instruction can be executed at any privilege level. 

9.5 lOT DESCRIPTORS 

The IDT may contain any of three kinds of descriptor: 

• Task gates 

• Interrupt gates 

• Trap gates 
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Figure 9-3 illustrates the format of task gates and 80386 interrupt gates and trap gates. 
(The task gate in an IDT is the same as the task gate already discussed in Chapter 7.) 

9.6 INTERRUPT TASKS AND INTERRUPT PROCEDURES 

Just as a CALL instruction can call either a procedure or a task, so an interrupt or exception 
can "call" an interrupt handler that is either a procedure or a task. When responding to an 
interrupt or exception, the processor uses the interrupt or exception identifier to index a 
descriptor in the IDT. If the processor indexes to an interrupt gate or trap gate, it invokes 
the handler in a manner similar to a CALL to a call gate. If the processor finds a task gate, 
it causes a task switch in a manner similar to a CALL to a task gate. 

9.6.1 Interrupt Procedures 

An interrupt gate or trap gate points indirectly to a procedure which will execute in the 
context of the currently executing task as illustrated by Figure 9-4. The selector of the gate 
points to an executable-segment descriptor in either the GDT or the current LDT. The offset 
field of the gate points to the beginning of the interrupt or exception handling procedure. 
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9-6 

o 

(NOT 4 
USED) 

o 

o 

(NOT 
USED) 

4 

o 

G30117 



inter EXCEPTIONS AND INTERRUPTS 

INTERRUPT 
10 -

EXECUTABLE 
lOT SEGMENT 

OFFSET 
ENTRY POINT 

TRAP GATE OR ::=:::::: LOT OR GOT 
INTERRUPT GATE 

- SEGMENT 
DESCRIPTOR BASE 

Figure 9-4. Interrupt Vectoring for Procedures 

G30117 

The 80386 invokes an interrupt or exception handling procedure in much the same manner 
as it CALLs a procedure; the differences are explained in the following sections. 

9.6.1.1 STACK OF INTERRUPT PROCEDURE 

Just as with a control transfer due to a CALL instruction, a control transfer to an interrupt 
or exception handling procedure uses the stack to store the information needed for returning 
to the original procedure. As Figure 9-5 shows, an interrupt pushes the EFLAGS register 
onto the stack before the pointer to the interrupted instruction. 

Certain types of exceptions also cause an error code to be pushed on the stack. An exception 
handler can use the error code to help diagnose the exception. 

9.6.1.2 RETURNING FROM AN INTERRUPT PROCEDURE 

An interrupt procedure also differs from a normal procedure in the method of leaving the 
procedure. The IRET instruction is used to exit from an interrupt procedure. IRET is similar 
to RET except that IRET increments EIP by an extra four bytes (because of the flags on 
the stack) and moves the saved flags into the EFLAGS register. The IOPL field of EFLAGS 
is changed only if the CPL is zero. The IF flag is changed only if CPL -< IOPL. 
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Interrupts that vector through either interrupt gates or trap gates cause TF (the trap flag) 
to be reset after the current value of TF is saved on the stack as part of EFLAGS. By this 
action the processor prevents debugging activity that uses single-stepping from affecting 
interrupt response. A subsequent IRET instruction restores TF to the value in the EFLAGS 
image on the stack. 

The difference between an interrupt gate and a trap gate is in the effect on IF (the interrupt­
enable flag). An interrupt that vectors through an interrupt gate resets IF, thereby prevent­
ing other interrupts from interfering with the current interrupt handler. A subsequent IRET 
instruction restores IF to the value in the EFLAGS image on the stack. An interrupt through 
a trap gate does not change IF. 

9-8 



EXCEPTIONS AND INTERRUPTS 

9.6.1.4 PROTECTION IN INTERRUPT PROCEDURES 

The privilege rule that governs interrupt procedures is similar to that for procedure calls: 
the CPU does not permit an interrupt to transfer control to a procedure in a segment of 
lesser privilege (numerically greater privilege level) than the current privilege level. An 
attempt to violate this rule results in a general protection exception. 

Because occurrence of interrupts is not generally predictable, this privilege rule effectively 
imposes restrictions on the privilege levels at which interrupt and exception handling proce­
dures can execute. Either of the following strategies can be employed to ensure that the 
privilege rule is never violated. 

• Place the handler in a conforming segment. This strategy suits the handlers for certain 
exceptions (divide error, for example). Such a handler must use only the data available 
to it from the stack. If it needed data from a data segment, the data segment would 
have to have privilege level three, thereby making it unprotected. 

• Place the handler procedure in a privilege level zero segment. 

9.6.2 Interrupt Tasks 

A task gate in the IDT points indirectly to a task, as Figure 9-6 illustrates. The selector of 
the gate points to a TSS descriptor in the GDT. 

INTERRUPT 
10 

lOT GOT 

TASK GATE 11 DESci~I~TOR n 

Figure 9-6. Interrupt Vectoring for Tasks 
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When an interrupt or exception vectors to a task gate in the lOT, a task switch results. 
Handling an interrupt with a separate task offers two advantages: 

• The entire context is saved automatically. 

• The interrupt handler can be isolated from other tasks by giving it a separate address 
space, either via its LOT or via its page directory. 

The actions that the processor takes to perform a task switch are discussed in C}lapter 7. 
The interrupt task returns to the interrupted task by executing an IRET instruction. 

If the task switch is caused by an exception that has an error code, the processor automati­
cally pushes the error code onto the stack that corresponds to the privilege level of the first 
instruction to be executed in the interrupt task. 

When interrupt tasks are used in an operating system for the 80386, there are actually two 
schedulers: the software scheduler (part of the operating system) and the hardware schedu­
ler (part of the processor's interrupt mechanism). The design of the software scheduler should 
account for the fact that the hardware scheduler may dispatch an interrupt task whenever 
interrupts are enabled. 

9.7 ERROR CODE 

With exceptions that relate to a specific segment, the processor pushes an error code onto 
the stack of the exception handler (whether procedure or task). The error code has the format 
shown in Figure 9-7. The format of the error code resembles that of a selector; however, 
instead of an RPL field, the error code contains two one-bit items: 

1. The processor sets the EXT bit if an event external to the program caused the exception. 

2. The processor sets the I-bit (lOT-bit) if the index portion of the error code refers to a 
gate descriptor in the lOT. 

If the I-bit is not set, the TI bit indicates whether the error code refers to the GOT (value 
0) or to the LOT (value 1). The remaining 14 bits are the upper 14 bits of the segment 
selector involved. In some cases the error code on the stack is null, i.e., all bits in the low­
order word are zero. 

2 1 0 

SELECTOR INOEX 
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Figure 9-7. Error Code Format 
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9.8 EXCEPTION CONDITIONS 

The following sections describe each of the possible exception conditions in detail. Each 
description classifies the exception as a fault, trap, or abort. This classification provides 
information needed by systems programmers for restarting the procedure in which the 
exception occurred: 

Faults 

Traps 

Aborts 

The CS and EIP values saved when a fault is reported point to the instruction 
causing the fault. 

The CS and EIP values stored when the trap is reported point to the instruc­
tion dynamically after the instruction causing the trap. If a trap is detected 
during an instruction that alters program flow, the reported values of CS and 
EIP reflect the alteration of program flow. For example, if a trap is detected 
in a JMP instruction, the CS and EIP values pushed onto the stack point to 
the target of the JMP, not to the instruction after the JMP. 

An abort is an exception that permits neither precise location of the instruc­
tion causing the exception nor restart of the program that caused the excep­
tion. Aborts are used to report severe errors, such as hardware errors and 
inconsistent or illegal values in system tables. 

9.8.1 Interrupt O-Divide Error 

The divide-error fault occurs during a DIY or an IDlY instruction when the divisor is zero. 

9.8.2 Interrupt 1-Debug Exceptions 

The processor triggers this interrupt for any of a number of conditions; whether the excep­
tion is a fault or a trap depends on the condition: 

• Instruction address breakpoint fault. 

• Data address breakpoint trap. 

• General detect fault. 

• Single-step trap. 

• Task-switch breakpoint trap. 

The processor does not push an error code for this exception. An exception handler can 
examine the debug registers to determine which condition caused the exception. Refer to 
Chapter 12 for more detailed information about debugging and the debug registers. 

9.8.3 Interrupt 3-Breakpoint 

The INT 3 instruction causes this trap. The INT 3 instruction is one byte long, which makes 
it easy to replace an opcode in an executable segment with the breakpoint opcode. The 
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operating system or a debugging subsystem can use a data-segment alias for an executable 
segment to place an INT 3 anywhere it is convenient to arrest normal execution so that 
some sort of special processing can be performed. Debuggers typically use breakpoints as a 
way of displaying registers, variables, etc., at crucial points in a task. 

The saved CS:EIP value points to the byte following the breakpoint. If a debugger replaces 
a planted breakpoint with a valid opcode, it must subtract one from the saved EIP value 
before returning. Refer also to Chapter 12 for more information on debugging. 

9.8.4 Interrupt 4-0verflow 

This trap occurs when the processor encounters an INTO instruction and the OF (overflow) 
flag is set. Since signed arithmetic and unsigned arithmetic both use the same arithmetic 
instructions, the processor cannot determine which is intended and therefore does not cause 
overflow exceptions automatically. Instead it merely sets OF when the results, if interpreted 
as signed numbers, would be out of range. When doing arithmetic on signed operands, careful 
programmers and compilers either test OF directly or use the INTO instruction. 

9.8.5 Interrupt 5-Bounds Check 

This fault occurs when the processor, while executing a BOUND instruction, finds that the 
operand exceeds the specified limits. A program can use the BOUND instruction to check a 
signed array index against signed limits defined in a block of memory. 

9.8.6 Interrupt 6-lnvalid Opcode 

This fault occurs when an invalid opcode is detected by the execution unit. (The exception 
is not detected until an attempt is made to execute the invalid opcode; i.e., prefetching an 
invalid opcode does not cause this exception.) No error code is pushed on the stack. The 
exception can be handled within the same task. 

This exception also occurs when the type of operand is invalid for the given opcode. Examples 
include an intersegment JMP referencing a register operand, or an LES instruction with a 
register source operand. 

9.8.7 Interrupt 7-Coprocessor Not Available 

This exception occurs in either of two conditions: 

The processor encounters an ESC (escape) instruction, and the EM (emulate) bit of 
CRO (control register zero) is set. 

The processor encounters either the WAIT instruction or an ESC instruction, and both 
the MP (monitor coprocessor) and TS (task switched) bits of CRO are set. 

Refer to Chapter 11 for information about the coprocessor interface. 

9-12 



EXCEPTIONS AND INTERRUPTS 

9.8.8 Interrupt 8-Double Fault 
Normally, when the processor detects an exception while trying to invoke the handler for a 
prior exception, the two exceptions can be handled serially. If, however, the processor cannot 
handle them serially, it signals the double-fault exception instead. To determine when two 
faults are to be signalled as a double fault, the 80386 divides the exceptions into three classes: 
benign exceptions, contributory exceptions, and page faults. Table 9-3 shows this 
classification. 

Table 9-4 shows which combinations of exceptions cause a double fault and which do not. 

The processor always pushes an error code onto the stack of the double-fault handler; however, 
the error code is always zero. The faulting instruction may not be restarted. If any other 
exception occurs while attempting to invoke the double-fault handler, the processor shuts 
down. 

Table 9-3. Double-Fault Detection Classes 

Class ID Description 

1 Debug exceptions 
2 NMI 
3 Breakpoint 

Benign 4 Overflow 
Exceptions 5 Bounds check 

6 Invalid opcode 
7 Coprocessor not available 

16 Coprocessor error 

0 Divide error 
9 Coprocessor Segment Overrun 

Contributory 10 Invalid TSS 
Exceptions 11 Segment not present 

12 Stack exception 
13 General protection 

Page Faults 14 Page fault 

Table 9-4. Double-Fault Definition 

SECOND EXCEPTION 

Benign Contributory Page 
Exception Exception Fault 

Benign OK OK OK 
Exception 

FIRST Contributory OK DOUBLE OK 
EXCEPTION Exception 

Page OK DOUBLE DOUBLE 
Fault 
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9.8.9 Interrupt 9-Coprocessor Segment Overrun 

This exception is raised in protected mode if the 80386 detects a page or segment violation 
while transferring the middle portion of a coprocessor operand to the NPX. This exception 
is avoidable. Refer to Chapter 11 for more information about the coprocessor interface. 

9.8.10 Interrupt 10-lnvalid TSS 

Interrupt 10 occurs if during a task swifch the new TSS is invalid. A TSS is considered 
invalid in the cases shown in Table 9-5. An error code is pushed onto the stack to help 
identify the cause of the fault. The EXT bit indicates whether the exception was caused by 
a condition outside the control of the program; e.g., an external interrupt via a task gate 
triggered a switch to an invalid TSS. 

This fault can occur either in the context of the original task or in the context of the new 
task. Until the processor has completely verified the presence of the new TSS, the exception 
occurs in the context of the original task. Once the existence of the new TSS is verified, the 
task switch is considered complete; i.e., TR is updated and, if the switch is due to a CALL 
or interrupt, the backlink of the new TSS is set to the old TSS. Any errors discovered by 
the processor after this point are handled in the context of the new task. 

To insure a proper TSS to process it, the handler for exception 10 must be a task invoked 
via a task gate. 

Table 9-5. Conditions That Invalidate the TSS 

Error Code Condition 

TSS id + EXT The limit in the TSS descriptor is less than 103 

LTD id + EXT Invalid LDT selector or LDT not present 

SS id + EXT Stack segment selector is outside table limit 

SS id + EXT Stack segment is not a writable segment 

SS id + EXT Stack segment DPL does not match new CPL 

SS id + EXT Stack segment selector RPL < > CPL 

CS id + EXT Code segment selector is outside table limit 

CS id + EXT Code segment selector does not refer to code segment 

CS id + EXT DPL of non-conforming code segment < > new CPL 

CS id + EXT DPL of conforming code segment> new CPL 

DS/ES/FS/GS id + EXT DS, ES, FS, or GS segment selector is outside table limits 

DS/ES/FS/GS id + EXT DS, ES, FS, or GS is not readable segment 
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9.8.11 Interrupt 11-Segment Not Present 

Exception 11 occurs when the processor detects that the present bit of a descriptor is zero. 
The processor can trigger this fault in any of these cases: 

• While attempting to load the CS, DS, ES, FS, or GS registers; loading the SS register, 
however, causes a stack fault. 

• While attempting loading the LDT register with an LLDT instruction; loading the LDT 
register during a task switch operation, however, causes the "invalid TSS" exception. 

• While attempting to use a gate descriptor that is marked not-present. 

This fault is restartable. If the exception handler makes the segment present and returns, 
the interrupted program will resume execution. 

If a not-present exception occurs during a task switch, not all the steps of the task switch 
are complete. During a task switch, the processor first loads all the segment registers, then 
checks their contents for validity. If a not-present exception is discovered, the remaining 
segment registers have not been checked and therefore may not be usable for referencing 
memory. The not-present handler should not rely on being able to use the values found in 
CS, SS, DS, ES, FS, and GS without causing another exception. The exception handler 
should check all segment registers before trying to resume the new task; otherwise, general 
protection faults may result later under conditions that make diagnosis more difficult. There 
are three ways to handle this case: 

1. Handle the not-present fault with a task. The task switch back to the interrupted task 
will cause the processor to check the registers as it loads them from the TSS. 

2. PUSH and POP all segment registers. Each POP causes the processor to check the new 
contents of the segment register. 

3. Scrutinize the contents of each segment-register image in the TSS, simulating the test 
that the processor makes when it loads a segment register. 

This exception pushes an error code onto the stack. The EXT bit of the error code is set if 
an event external to the program caused an interrupt that subsequently referenced a not­
present segment. The I-bit is set if the error code refers to an IDT entry, e.g., an INT 
instruction referencing a not-present gate. 

An operating system typically uses the "segment not present" exception to implement virtual 
memory at the segment level. A not-present indication in a gate descriptor, however, usually 
does not indicate that a segment is not present (because gates do not necessarily correspond 
to segments). Not-present gates may be used by an operating system to trigger exceptions 
of special significance to the operating system. 
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9.8.12 Interrupt 12-Stack Exception 

A stack fault occurs in either of two general conditions: 

• As a result of a limit violation in any operation that refers to the SS register. This 
includes stack-oriented instructions such as POP, PUSH, ENTER, and LEAVE, as well 
as other memory references that implicitly use SS (for example, MOV AX, [BP+6]). 
ENTER causes this exception when the stack is too small for the indicated local­
variable space. 

• When attempting to load the SS register with a descriptor that is marked not-present 
but is otherwise valid. This can occur in a task switch, an interlevel CALL, an interlevel 
return, an LSS instruction, or a MOV or POP instruction to SS. 

When the processor detects a stack exception, it pushes an error code onto the stack of the 
exception handler. If the exception is due to a not-present stack segment or to overflow of 
the new stack during an interlevel CALL, the error code contains a selector to the segment 
in question (the exception handler can test the present bit in the descriptor to determine 
which exception occurred); otherwise the error code is zero. 

An instruction that causes this fault is restartable in all cases. The return pointer pushed 
onto the exception handler's stack points to the instruction that needs to be restarted. This 
instruction is usually the one that caused the exception; however, in the case of a stack 
exception due to loading of a not-present stack-segment descriptor during a task switch, the 
indicated instruction is the first instruction of the new task. 

When a stack fault occurs during a task switch, the segment registers may not be usable for 
referencing memory. During a task switch, the selector values are loaded before the descrip­
tors are checked. If a stack fault is discovered, the remaining segment registers have not 
been checked and therefore may not be usable for referencing memory. The stack fault 
handler should not rely on being able to use the values found in CS, SS, DS, ES, FS, and 
GS without causing another exception. The exception handler should check all segment 
registers before trying to resume the new task; otherwise, general protection faults may result 
later under conditions that make diagnosis more difficult. 

9.8.13 Interrupt 13-General Protection Exception 

All protection violations that do not cause another exception cause a general protection 
exception. This includes (but is not limited to): 

1. Exceeding segment limit when using CS, DS, ES, FS, or GS 

2. Exceeding segment limit when referencing a descriptor table 

3. Transferring control to a segment that is not executable 

4. Writing into a read-only data segment or into a code segment 

5. Reading from an execute-only segment 

6. Loading the SS register with a read-only descriptor (unless the selector comes from the 
TSS during a task switch, in which case a TSS exception occurs 
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7. Loading SS, DS, ES, FS, or GS with the descriptor of a system segment 

8. Loading DS, ES, FS, or GS with the descriptor of an executable segment that is not 
also readable 

9. Loading SS with the descriptor of an executable segment 

10. Accessing memory via DS, ES, FS, or GS when the segment register contains a null 
selector 

11. Switching to a busy task 

12. Violating privilege rules 

13. Loading eRO with PG= 1 and PE=O. 

14. Interrupt or exception via trap or interrupt gate from V86 mode to privilege level other 
than zero. 

15. Exceeding the instruction length limit of 15 bytes (this can occur only if redundant 
prefixes are placed before an instruction) 

The general protection exception is a fault. In response to a general protection exception, 
the processor pushes an error code onto the exception handler's stack. If loading a descriptor 
causes the exception, the error code contains a selector to the descriptor; otherwise, the error 
code is null. The source of the selector in an error code may be any of the following: 

1. An operand of the instruction. 

2. A selector from a gate that is the operand of the instruction. 

3. A selector from a TSS involved in a task switch. 

9.8.14 Interrupt 14-Page Fault 

This exception occurs when paging is enabled (PG= 1) and the processor detects one of the 
following conditions while translating a linear address to a physical address: 

• The page-directory or page-table entry needed for the address translation has zero in its 
present bit. 

• The current procedure does not have sufficient privilege to access the indicated page. 

The processor makes available to the page fault handler two items of information that aid 
in diagnosing the exception and recovering from it: 

• An error code on the stack. The error code for a page fault has a format different from 
that for other exceptions (see Figure 9-8). The error code tells the exception handler 
three things: 

1. Whether the exception was due to a not present page or to an access rights violation. 

2. Whether the processor was executing at user or supervisor level at the time of the 
exception. 

3. Whether the memory access that caused the exception was a read or write. 
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Field Value Description 

U/S 0 The access causing the fault originated when the 
processor was executing in supervisor mode. 

1 The access causing the fault originated when the 
processor was executing in user mode. 

W/R 0 The access causing the fault was a read. 

1 The access causing the fault was a write. 

p 0 The fault was caused by a not-present page. 

1 The fault was caused by a page-level protection violation. 

G30117 

Figure 9-8. Page-Fault Error Code Format 

• CR2 (control register two). The processor stores in CR2 the linear address used in the 
access that caused the exception (see Figure 9-9). The exception handler can use this 
address to locate the corresponding page directory and page table entries. If another 
page fault can occur during execution of the page fault handler, the handler should push 
CR2 onto the stack. 

9.8.14.1 PAGE FAULT DURING TASK SWITCH 

The processor may access any of four segments during a task switch: 

1. Writes the state of the original task in the TSS of that task. 

2. Reads the GDT to locate the TSS descriptor of the new task. 

3. Reads the TSS of the new task to check the types of segment descriptors from the TSS. 

4. May read the LDT of the new task in order to verify the segment registers stored in the 
new TSS. 

A page fault can result from accessing any of these segments. In the latter two cases the 
exception occurs in the context of the new task. The instruction pointer refers to the next 
instruction of the new task, not to the instruction that caused the task switch. If the design 
of the operating system permits page faults to occur during task-switches, the page-fault 
handler should be invoked via a task gate. 
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31 

:
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o 
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Figure 9-9. CR2 Format 

9.8.14.2 PAGE FAULT WITH INCONSISTENT STACK POINTER 

Special care should be taken to ensure that a page fault does not cause the processor to use 
an invalid stack pointer (SS:ESP). Software written for earlier processors in the 8086 family 
often uses a pair of instructions to change to a new stack; for example: 

MOV SS, AX 
MOV SP, StackTop 

With the 80386, because the second instruction accesses memory, it is possible to get a page 
fault after SS has been changed but before SP has received the corresponding change. At 
this point, the two parts of the stack pointer SS:SP (or, for 32-bit programs, SS:ESP) are 
inconsistent. 

The processor does not use the inconsistent stack pointer if the handling of the page fault 
causes a stack switch to a well defined stack (i.e., the handler is a task or a more privileged 
procedure). However, if the page fault handler is invoked by a trap or interrupt gate and the 
page fault occurs at the same privilege level as the page fault handler, the processor will 
attempt to use the stack indicated by the current (invalid) stack pointer. 

In systems that implement paging and that handle page faults within the faulting task (with 
trap or interrupt gates), software that executes at the same privilege level as the page fault 
handler should initialize a. new stack by using the new LSS instruction rather than an 
instruction pair shown above. When the page fault handler executes at privilege level zero 
(the normal case), the scope of the problem is limited to privilege-level zero code, typically 
the kernel of the operating system. 

9.8.15 Interrupt 16-Coprocessor Error 

The 80386 reports this exception when it detects a signal from the 80287 or 80387 on the 
80386's ERROR# input pin. The 80386 tests this pin only at the beginning of certain ESC 
instructions and when it encounters aWAIT instruction while the EM bit of the MSW is 
zero (no emulation). Refer to Chapter 11 for more information on the coprocessor interface. 
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9.9 EXCEPTION SUMMARY 

Table 9-6 summarizes the exceptions recognized by the 386. 

9.10 ERROR CODE SUMMARY 

Table 9-7 summarizes the error information that is available with each exception. 

Description 

Divide error 

Debug exceptions 

Breakpoint 

Overflow 

Bounds check 

Invalid opcode 

Coprocessor not available 

Double fault 

Coprocessor Segment 
Overrun 

Invalid TSS 

Segment not present 

Stack exception 

General Protection 

Page fault 

Coprocessor error 

Two-byte SW Interrupt 

Table 9-6. Exception Summary 

Interrupt 
Number 

o 
1 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

16 

0-255 

Return Address 
Points to 
Faulting 

Instruction 

YES 
*1 

NO 

NO 

YES 

YES 

YES 

YES 

NO 

YES 

YES 

YES 

YES 

YES 

YES 

NO 

Exception Type 

FAULT 

*1 

TRAP 

TRAP 

FAULT 

FAULT 

FAULT 

ABORT 

ABORT 

FAULT2 

FAULT 

FAULT 

Function That Can Generate 
the Exception 

DIV,IDIV 

Any instruction 

One-byte INT 3 

INTO 

BOUND 

Any illegal instruction 

ESC, WAIT 

Any instruction that can gener­
ate an exception 

Any operand of an ESC 
instruction that wraps around 
the end of a segment. 

JMP, CALL, IRET, any interrupt 

Any segment-register modifier 

Any memory reference thru SS 

FAULT/ABORT" Any memory reference or code 
fetch 

FAULT 

FAULT' 

TRAP 

Any memory reference or code 
fetch 

ESC, WAIT 

INT n 

1. Some debug exceptions are traps and some are faults. The exception handler can determine which has 
occurred by examining DR6. (Refer to Chapter 12.) 

2. An invalid-TSS fault is not restartable if it occurs during the processing of an external interrupt. 
3. All GP faults are restartable. If the fault occurs while attempting to vector to the handler for an external 

interrupt, the interrupted program is restartable, but the interrupt may be lost. 
4. Coprocessor errors are reported as a fault on the first ESC or WAIT instruction executed after the ESC 

instruction that caused the error. 
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Table 9-7. Error-Code Summary 

Description 
Interrupt 

Error Code Number 

Divide error 0 No 
Debug exceptions 1 No 
Breakpoint 3 No 
Overflow 4 No 
Bounds check 5 No 
Invalid opcode 6 No 
Coprocessor not available 7 No 
System error 8 Yes (always 0) 
Coprocessor Segment Overrun 9 No 
Invalid TSS 10 Yes 
Segment not present 11 Yes 
Stack exception 12 Yes 
General protection fault 13 Yes 
Page fault 14 Yes 
Coprocessor error 16 No 
Two-byte SW interrupt 0-255 No 
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CHAPTER 10 
INITIALIZATION 

After a signal on the RESET pin, certain registers of the 80386 are set to predefined values. 
These values are adequate to enable execution of a bootstrap program, but additional initial­
ization must be performed by software before all the features of the processor can be utilized. 

10.1 PROCESSOR STATE AFTER RESET 

The contents of EAX depend upon the results of the power-up self test. The self-test may be 
requested externally by assertion of BUSY # at the end of RESET. The EAX register holds 
zero if the 80386 passed the test. A nonzero value in EAX after self-test indicates that the 
particular 80386 unit is faulty. If the self-test is not requested, the contents of EAX after 
RESET is undefined. 

DX holds a component identifier and revision number after RESET as Figure 10-1 illus­
trates. DH contains 3, which indicates an 80386 component. DL contains a unique identifier 
of the revision level. 

Control register zero (CRO) contains the values shown in Figure 10-2. The ET bit of CRO 
is set if an 80387 is present in the configuration (according to the state of the ERROR# pin 
after RESET). If ET is reset, the configuration either contains an 80287 or does not contain 
a coprocessor. A software test is required to distinguish between these latter two possibilities. 

The remaining registers and flags are set as follows: 

EFLAGS 
IP 
CS selector 
DS selector 
ES selector 
SS selector 
FS selector 
GS selector 
IDTR: 

base 
limit 

= 00000002H 
= OOOOFFFOH 
= OOOH 
= OOOOH 
= OOOOH 
= OOOOH 
= OOOOH 
= OOOOH 

=0 
= 03FFH 

All registers not mentioned above are undefined. 

These settings imply that the processor begins in real-address mode with interrupts disabled. 

10.2 SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE 

In real-address mode a few structures must be initialized before a program can take advan­
tage of all the features available in this mode. 
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10.2.1 Stack 

INITIALIZATION 

EDX REGISTER 

DH 
.DEVICE 10 

3 

7 

DL 
STEPPING 10 

(UNIQUE) 

Figure 10-1. Contents of EDX after RESET 

23 

CONTROL REGISTER ZERO 

15 

UNDEFINED 

7 

L-____ 0 - PAGING DISABLED * _ INDICATES PRESENCE OF 80387 ___ ...J 
o - NOTASKSWITCH-------~ 

o - DO NOT MONITOR COPROCESS;CO~R=====J 
o - COPROCESSOR NOT PRESENT-
o - PROTECTION NOT ENABLED (REAL ADDRESS MODE) 

Figure 10-2. Initial Contents of CRO 

G30117 

CRO 

G30117 

No instructions that use the stack can be used until the stack-segment register (SS) has 
been loaded. SS must point to an area in RAM. 

10.2.2 Interrupt Table 

The initial state of the 80386 leaves interrupts disabled; however, the processor will still 
attempt to access the interrupt table if an exception or nonmaskable interrupt (NMI) occurs. 
Initialization software should take one of the following actions: 

• Change the limit value in the IDTR to zero. This will cause a shutdown if an exception 
or nonmaskable interrupt occurs. (Refer to the 80386 Hardware Reference Manual to 
see how shutdown is signalled externally.) 

• Put pointers to valid interrupt handlers in all positions of the interrupt table that might 
be used by exceptions or interrupts. 

• Change the IDTR to point to a valid interrupt table. 
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10.2.3 First Instructions 

After RESET, address lines A31-20 are automatically asserted for instruction fetches_ This 
fact, together with the initial values of CS:IP, causes instruction execution to begin at physi­
cal address FFFFFFFOR Near (intrasegment) forms of control transfer instructions may 
be used to pass control to other addresses in the upper 64K bytes of the address space_ The 
first far (intersegment) JMP or CALL instruction causes A31-20 to drop low, and the 80386 
continues executing instructions in the lower one megabyte of physical memory. This 
automatic assertion of address lines A31-20 allows systems designers to use a ROM at the 
high end of the address space to initialize the system_ 

10.3 SWITCHING TO PROTECTED MODE 

Setting the PE bit of the MSW in CRO causes the 80386 to begin executing in protected 
mode. The current privilege level (CPL) starts at zero_ The segment registers continue to 
point to the same linear addresses as in real address mode (in real address mode, linear 
addresses are the same physical addresses). 

Immediately after setting the PE flag, the initialization code must flush the processor's 
instruction prefetch queue by executing a JMP instruction. The 80386 fetches and decodes 
instructions and addresses before they are used; however, after a change into protected mode, 
the prefetched instruction information (which pertains to real-address mode) is no longer 
valid. A JMP forces the processor to discard the invalid information. 

10.4 SOFTWARE INITIALIZATION FOR PROTECTED MODE 

Most of the initialization needed for protected mode can be done either before or after 
switching to protected mode. If done in proteCted mode, however, the initialization proce­
dures must not use protected-mode features that are not yet initialized. 

10.4.1 Interrupt Descriptor Table 

The IDTR may be loaded in either real-address or protected mode. However, the format of 
the interrupt table for protected mode is different than that for real-address mode. It is not 
possible to change to protected mode and change interrupt table formats at the same time; 
therefore, it is inevitable that, if IDTR selects an interrupt table, it will have the wrong 
format at some time. An interrupt or exception that occurs at this time will have unpredict­
able results. To avoid this unpredictability, interrupts should remain disabled until interrupt 
handlers are in place and a valid IDT has been created in protected mode. 

10.4.2 Stack 

The SS register may be loaded in either real-address mode or protected mode. If loaded in 
real-address mode, SS continues to point to the same linear base-address after the switch to 
protected mode. 
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10.4.3 Global Descriptor Table 

Before any segment register is changed in protected mode, the GOT register must point to 
a valid GOT. Initialization of the GOT and GOTR may be done in real-address mode. The 
GOT (as well as LOTs) should reside in RAM, because the processor modifies the accessed 
bit of descriptors. 

10.4.4 Page Tables 

Page tables and the POBR in CR3 can be initialized in either real-address mode or in 
protected mode; however, the paging enabled (PG) bit of CRO cannot be set until the proces­
sor is in protected mode. PG may be set simultaneously with PE, or later. When PG is set, 
the PDBR in CR3 should already be initialized with a physical address that points to a valid 
page directory. The initialization procedure should adopt one of the following strategies to 
ensure consistent addressing before and after paging is enabled: 

• The page that is currently being executed should map to the same physical addresses 
both before and after PG is set. 

• A JMP instruction should immediately follow the setting of PG. 

10.4.5 First Task 

The initialization procedure can run awhile in protected mode without initializing the task 
register; however, before the first task switch, the following conditions must prevail: 

• There must be a valid task state segment (TSS) for the new task. The stack pointers in 
the TSS for privilege levels numerically less than or equal to the initial CPL must point 
to valid stack segments. 

• The task register must point to an area in which to save the current task state. After 
the first task switch, the information dumped in this area is not needed, and the area 
can be used for other purposes. 
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10.5 INITIALIZATION EXAMPLE 

$TITLE ('Initial Task') 

NAME INIT 

init_stack SEGMENT Rl'l 
DW 20 DUP(?) 

tos LABEL WORD 
in it stack ENDS 

in it data SEGMENT RW PUBLIC 
DW 20 DUP(?) 

init data ENDS 

init code SEGMENT ER PUBLIC 

ASSUME Ds:init_data 

nop 
nop 
nop 

init_start: 

mov ax, init_stack 
mov ss, ax 
mov esp, offset tos 

mov al,l 
blink: 

xor al,l 
out Oe4h,al 
mov cx,3FFFh 

here: 
dec cx 
jnz here 

jmp SHORT blink 

hlt 
init code ends 

INITIALIZATION 

set up stack 

END init_start, SS:init_stack, DS:init data 
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$TITLE('Protected Mode Transition -- 386 initialization') 
NAME RESET 

;****************************************************************** 

Upon reset the 386 starts executing at address OFFFFFFFOH. The 
upper 12 address bits remain high until a FAR call or jump is 
executed. 

Assume the following: 

- a short jump at address OFFFFFFFOH (placed there by the 
system builder) causes execution to begin at START in segment 
RESET_CODE. 

- segment RESET CODE is based at physical address OFFFFOOOOH, 
i.e. at the-start of the last 64K in the 4G address space. 
Note that this is the base of the CS register at reset. If 
you locate ROlllcode above this address, you will need to 
figure out an adjustment factor to address things within this 
segment. 

;****************************************************************** 
$EJECT ; 

10-6 



INITIALIZATION 

Define addresses to locate GDT and lOT in RAM. 
These addresses are also used in the BLD386 file that defines 
the GDT and IDT. If you change these addresses, make sure you 
change the base addresses specified in the build file. 

GDTbase 
IDTbase 

PUBLIC 
PUBLIC 
PUBLIC 

EQU 
EQU 

GOT EPROM 
lOT-EPROM 
START 

00001000H 
00000400H 

physical address for GOT base 
physical address for lOT base 

OUMMY segment rw 
OW 0 

ONLY for ASM386 main module stack in it 

DUMMY ends 

;****************************************************************** 

Note: RESET CODE must be USE16 because the 386 initally executes 
in real mode. 

RESET_CODE segment er PUBLIC 

ASSUME DS:nothing, ES:nothing 

USE16 

, 
; 386 Descriptor template 

DESC STRUC 
lim 0 15 DW 0 limit bits (0 •• 15) 
bas-0-15 DW 0 base bits (0 .. 15) 
bas-16 23 DB 0 base bits (16 .. 23) 
access DB 0 access byte 
gran DB 0 granularity byte 
bas 24 31 DB 0 base bits (24 .. 31) 

DESC ENDS 

The following is the layout of the real GDT created by BLD386. 
It is located in EPROM and will be copied to RAM. 

GDT[ 0] NULL 
GDT[l] Alias for RAM GOT 
GOT[2] Alias for RAM lOT 
GDT[2] initial task TSS 
GOT[3] initial task TSS alias 
GOT[4] initial task LOT 
GOT[5] initial task LOT alias 
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; define entries in GOT and lOT. 

GOT ENTRIES 
lOT-ENTRIES 

EQU 
EQU 

8 
32 

; define some constants to index into the real GOT 

GOT ALIAS EQU l*SIZE OESC 
lOT-ALIAS EQU 2*SIZE OESC 
INIT TSS EQU 3*SIZE OESC 
INIT-TSS A EQU 4*SIZE OESC 
INIT-LOT- EQU S*SIZE OESC 
INIT-LOT A EQU 6*SIZE OESC 

location of alias in INIT LOT 

INIT LOT ALIAS EQU l*SIZE OESC 

; 
; access rights byte for OATA and TSS descriptors 

OS ACCESS EQU 
TSS ACCESS EQU 

010010010B 
010001001B 

This temporary GOT will be used to set up the real GOT in RAM. 

NULL OES 

FLAT OES 

IOT_eprom 

LABEL BYTE tag for begin of scratch GOT 

OESC <> NULL descriptor 

32-Gigabyte data segment based at 0 
OESC <OFFFFH,0,0,92h,OCFh,0> 

OP 

OP 

? 

? 

Builder places GOT address and limit 
in this 6 byte area. 

Builder places lOT address and limit 
in this 6 byte area. 

Prepare operand for loadings GOTR and LOTR. 

TGDT_pword 
OW 
00 

GOT pword 
- OW 

LABEL PWORO for temp GOT 
end Temp GOT-Temp GOT -1 o - - -

LABEL PWORO for GOT in RAM 
GOT ENTRIES * SIZE OESC -1 
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inter 
DD 

IDT pword 
- DW 

DD 

INITIALIZATION 

GDTbase 

LABEL PWORD 
IDT ENTRIES * SIZE DESC -1 
IDTbase 

LABEL BYTE 

Define equates for addressing convenience. 

GDT DES FLAT 
IDT-DES-FLAT 

IN IT TSS A OFFSET 
INIT=:TSS=:OFFSET 

INIT LDT A OFFSET 
INIT=:LDT=:OFFSET 

EQU DS:GDT ALIAS +GDTbase 
EQU DS:IDT-ALIAS +GDTbase 

EQU DS:INIT TSS A 
EQU DS:INIT-TSS-

EQU OS:INIT LOT A 
EQU OS:INIT=:LOT-

; define pointer for first task switch 

ENTRY POINTER LABEL DWORD 
DW 0, INIT TSS 

for IDT in RAM 

;****************************************************************** 

Jump from reset vector to here. 

START: 

CLI 
CLO 

LIOT NULL des 

;disable interrupts 
;clear direction flag 

;force shutdown on errors 

move scratch GDT to RAM at physical 0 

XOR OI,OI 
MOV ES,DI ;point ES:OI to physical location 0 

MOV SI,OFFSET Temp GOT 
MOV CX,end Temp GOT-Temp GDT 
INC CX - - -

;set byte count 

move table 

REP MOVS BYTE PTR ES:[DI),BYTE PTR CS:[SI) 
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LGDT 

switch to protected mode 

MOV EAX,CRO 
MOV EAX,1 
MOV CRO,EAX 

clear pre fetch queue 

JMP SHORT flush 
flush: 

;load GDTR for Temp. GDT 
; (located at 0) 

;get current CRO 
;set PE bit 
;begin protected mode 

set DS,ES,SS to address flat linear space (0 ••• 4GB) 

MOV BX,FLAT DES-Temp GDT 
MOV DS,BX - -
MOV ES,BX 
MOV SS,BX 

initialize stack pointer to some (arbitrary) RAM location 

copy eprom GDT to RAM 

MOV ESI,DWORD PTR GDT_eprom +2 

MOV EDI,GDTbase 

get base of eprom GDT 
(put here by builder) . 

point ES:EDI to GDT base in RAM. 

MOV CX,WORD PTR gdt_eprom +0 limit of eprom GDT 
INC CX 
SHR CX,1 easier to move words 
CLD 
REP MOVS WORD PTR ES:[EDI],WORD PTR DS:[ESI] 

copy eprom IDT to RAM 

MOV ESI,DWORD PTR lDT_eprom +2 

MOV EDI,IDTbase 

CX,WORD PTR idt_eprom +0 
CX 
CX,1 

get base of eprom IDT 
(put here by builder) 

point ES:EDI to lDT base in RAM. 

limit of eprom IDT MOV 
INC 
SHR 
CLD 
REP MOVS WORD PTR ES:[EDI],WORD PTR DS:[ESl] 
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switch to RAM GDT and IDT 

LIDT IDT 'pword 
LGDT GDT=pword 

MOV BX,GDT ALIAS 
MOV DS,BX -

copy eprom TSS to RAM 

MOV ES,BX 

MOV BX,INIT TSS 
LAR DX,BX -
MOV [BX).access,DS_ACCESS 
MOV FS,BX 

XOR si,si 
XOR di,di 

MOV CX,[BX).lim 0 15 
INC CX - -

move INIT TSS to RAM. 

point DS to GDT alias 

INIT_TSS_A descriptor base 
has RAM location of INIT TSS. 

ES points to TSS in RAM 

get inital task selector 
save access byte 
set access as data segment 
FS points to eprom TSS 

FS:si points to eprom TSS 
ES:di points to RAM TSS 

get count to move 

REP MOVS BYTE PTR ES:[di),BYTE PTR FS:[si) 

MOV [BX).access,DH ; restore access byte 

change base of INIT_TSS descriptor to point to RAM. 

MOV AX,INIT TSS A OFFSET.bas 0 15 
MOV INIT TSS OFFSET.bas 0 15~AX 
MOV AL,INIT TSS A OFFSET.bas 16 23 
MOV INIT TSS OFFSET.bas 16 23,AL 
MOV AL,INIT TSS A OFFSET.bas 24 31 
MOV INIT_TSS_OFFSET.bas_24_3I,AL 

change INIT TSS A to form a save area for TSS on first task 
switch. Use-RAM-at location o. 

MOV BX,INIT TSS A 
MOV WORD PTR [BX).bas 0 15,0 
MOV [BX].bas_16_23,O -­
MOV [BX].bas_24_31,0 
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MOV [BX].access,TSS_ACCESS 
MOV [BX].gran,O 
LTR BX defines save area for TSS 

copy eprom LOT to RAM 

MOV ES,BX 

MOV AH,[BX].bas 24 31 
MOV AL,[BX].bas=16=23 
SHL EAX,16 
MOV AX, [BX].bas_O_15 

MOV BX,INIT LOT 
LAR OX,BX -
MOV [BX].access,OS_ACCESS 
MOV FS,BX 

XOR si,si 
XOR di,di 

MOV CX,[BX].lim ° 15 
INC ex - -

move initial LOT to RAM 

INIT_LOT_A descriptor has 
base address in RAM for INIT LDT. 

ES points LOT location in RAM. 

save INIT_LOT base (ram) in EAX 

get in ita I LOT selector 
save access rights 
set access as data segment 
FS points to eprom LOT 

FS:SI points to eprom LOT 
ES:OI points to RAM LOT 

get count to move 

REP MOVS BYTE PTR ES:[di],BYTE PTR FS:[si] 

MOV [BX].access,OH restore access rights in 
; INIT_LOT descriptor 

change base of alias (of INIT_LOT) to point to location in RAM. 

MOV ES:[INIT LOT ALIAS].bas ° 15,AX 
SHR EAX,16 - - - -
MOV ES:[INIT LDT ALIAS].bas 16 23,AL 
MOV ES:[INIT=LOT=ALIAS].bas=24=31,AH 

now set the base value in INIT_LOT descriptor 

MOV AX,INIT_LOT_A_OFFSET.bas_O_15 
MOV INIT LOT OFFSET.bas ° 15,AX 
MOV AL,INIT LOT A OFFSET.bas 16 23 
MOV INIT LOT OFFSET.bas 16 23,AL 
MOV AL,INIT LOT A OFFSET.bas 24 31 
MOV INIT_LOT_OFFsET.bas_24 31,AL 
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Now GOT, lOT, initial TSS and initial LOT are all set up. 

start the first task! 

JMP ENTRY_POINTER 

RESET CODE ends 
END START, SS:DUMMY,DS:DUMMY 

10.6 TLB TESTING 

The 80386 provides a mechanism for testing the Translation Lookaside Buffer (TLB), the 
cache used for translating linear addresses to physical addresses. Although failure of the 
TLB hardware is extremely unlikely, users may wish to include TLB confidence tests among 
other power-up confidence tests for the 80386. 

NOTE 
This TLB testing mechanism is unique to the 80386 and may not be continued in 
the same way in future processors. Software that uses this mechanism may be 
incompatible with future processors. 

When testing the TLB it is recommended that paging be turned off (PG=O in eRO) to 
avoid interference with the test data being written to the TLB. 

10.6.1 Structure of the TLB 

The TLB is a four-way set-associative memory. Figure 10-3 illustrates the structure of the 
TLB. There are four sets of eight entries each. Each entry consists of a tag and data. Tags 
are 24-bits wide. They contain the high-order 20 bits of the linear address, the valid bit, and 
three attribute bits. The daja portion of each entry contains the high-order 20 bits of the 
physical address. 

10.6.2 Test Registers 

Two test registers, shown in Figure 10-4, are provided for the purpose of testing. TR6 is the 
test command register, and TR 7 is the test data register. These registers are accessed by 
variants of the MOY instruction. A test register may be either the source operand or desti­
nation operand. The MOV instructions are defined in both real-address mode and protected 
mode. The test registers are privileged resources; in protected mode, the MOY instructions 
that access them can only be executed at privilege level O. An attempt to read or write the 
test registers when executing at any other privilege level causes a general protection 
exception. 
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Figure 10-3. TLB Structure 

The test command register (TR6) contains a command and an address tag to use In 

performing the command: 

c This is the command bit. There are two TLB testing commands: write 
entries into the TLB, and perform TLB lookups. To cause an immedi­
ate write into the TLB entry, move a doubleword into TR6 that contains 
a 0 in this bit. To cause an immediate TLB lookup, move a doubleword 
into TR6 that contains a 1 in this hit. 
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INITIALIZATION 

31 23 15 

PHYSICAL ADDRESS TR7 

LINEAR ADDRESS TR6 

NOTE: 0 INDICATES INTEL RESERVED. DO NOT DEFINE. 

G30ll7 

Figure 10-4. Test Registers 

Table 10-1. Meaning of D, U, and W Bit Pairs 

X# Effect during TLB Lookup 
Value of bit X 

after TLB Write 

0 
1 
0 
1 

(undefined) (undefined) 
Match if X=O Bit X becomes 0 
Match if X=1 Bit X becomes 1 
(undefined) (undefined) 

On a TLB write, a TLB entry is allocated to this linear address; the 
rest of that TLB entry is set per the value of TR 7 and the value just 
written into TR6. On a TLB lookup, the TLB is interrogated per this 
value; if one and only one TLB entry matches, the rest of the fields of 
TR6 and TR7 are set from the matching TLB entry. 

The valid bit for this TLB entry. The TLB uses the valid bit to identify 
entries that contain valid data. Entries of the TLB that have not been 
assigned values have zero in the valid bit. All valid bits can be cleared 
by writing to CR3. 

The dirty bit (and its complement) for/from the TLB entry. 

The V/S bit (and its complement) for/from the TLB entry. 

The R/W bit (and its complement) for/from the TLB entry. 

The meaning of these pairs of bits is given by Table 10·1, where X 
represents D, U, or W. 
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The test data register (TR 7) holds data read from or data to be written to the TLB. 

Physical Address This is the data field of the TLB. On a write to the TLB, the TLB 
entry allocated to the linear address in TR6 is set to this value. On a 
TLB lookup, if HT is set, the data field (physical address) from the 
TLB is read out to this field. If HT is not set, this field is undefined. 

HT For a TLB lookup, the HT bit indicates whether the lookup was a hit 
(HT ~ 1) or a miss (HT ~ 0). For a TLB write, HT must be set 
to 1. 

REP For a TLB write, selects which of four associative blocks of the TLB is 
to be written. For a TLB read, if HT is set, REP reports in which of 
the four associative blocks the tag was found; if HT is not set, REP is 
undefined. 

10.6.3 Test Operations 

To write a TLB entry: 

1. Move a doubleword to TR7 that contains the desired physical address, HT, and REP 
values. HT must contain 1. REP must point to the associative block in which to place 
the entry. 

2. Move a doubleword to TR6 that contains the appropriate linear address, and values for 
V, D, U, and W. Be sure C=O for "write" command. 

Be careful not to write duplicate tags; the results of doing so are undefined. 

To look up (read) a TLB entry: 

1. Move a doubleword to TR6 that contains the appropriate linear address and attributes. 
Be sure C = 1 for "lookup" command. 

2. Store TR 7. If the HT bit in TR 7 indicates a hit, then the other values reveal the TLB 
contents. If HT indicates a miss, then the other values in TR 7 are indeterminate. 

For the purposes of testing, the V bit functions as another bit of addresss. The V bit for a 
lookup request should usually be set, so that un initialized tags do not match. Lookups with 
V =0 are unpredictable if any tags are uninitialized. 
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CHAPTER 11 
COPROCESSING AND MULTIPROCESSING 

The 80386 has two levels of support for multiple parallel processing units: 

• A highly specialized interface for very closely coupled processors of a type known as 
coprocessors. 

• A more general interface for more loosely coupled processors of unspecified type. 

11.1 COPROCESSING 

The components of the coprocessor interface include: 

• ET bit of control register zero (CRO) 

• The EM, and MP bits of CRO 

• The ESC instructions 

• The WAIT instruction 

• The TS bit of CRO 

• Exceptions 

11.1. 1 Coprocessor Identification 

The 80386 is designed to operate with either an 80287 or 80387 math coprocessor. The ET 
bit of CRO indicates which type of coprocessor is present. ET is set automatically by the 
80386 after RESET according to the level detected on the ERROR# input. If desired, ET 
may also be set or reset by loading CRO with a MOV instruction. If ET is set, the 80386 
uses the 32-bit protocol of the 80387; if reset, the 80386 uses the 16-bit protocol of the 
80287. 

11.1.2 ESC and WAIT Instructions 

The 80386 interprets the pattern 11011B in the first five bits of an instruction as an opcode 
intended for a coprocessor. Instructions thus marked are called ESCAPE or ESC instruc­
tions. The CPU performs the following functions upon encountering an ESC instruction 
before sending the instruction to the coprocessor: 

• Tests the emulation mode (EM) flag to determine whether coprocessor functions are 
being emulated by software. 

• Tests the TS flag to determine whether there has been a context change since the last 
ESC instruction. 

• For some ESC instructions, tests the ERROR# pin to determine whether the coproces­
sor detected an error in the previous ESC instruction. 
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The WAIT instruction is not an ESC instruction, but WAIT causes the CPU to perform 
some of the same tests that it performs upon encountering an ESC instruction. The processor 
performs the following actions for aWAIt instruction: 

• Waits until the coprocessor no longer asserts the BUSY # pin. 

• Tests the ERROR# pin (after BUSY# goes inactive). If ERROR# is active, the 80386 
signals exception 16, which indicates that the coprocessor encountered an error in the 
previous ESC instruction. 

• WAIT can therefore be used to cause exception 16 if an error is pending from a previous 
ESC instruction. Note that, if no coprocessor is present, the ERROR# and BUSY # pins 
should be tied inactive to prevent WAIT from waiting forever or causing spurious 
exceptions. 

11.1.3 EM and MP Flags 

The EM and MP flags of CRO control how the processor reacts to coprocessor instructions. 

The EM bit indicates whether coprocessor functions are to be emulated. If the processor 
finds EM set when executing an ESC instruction, it signals exception 7, giving the exception 
handler an opportunity to emulate the ESC instruction. 

The MP (monitor coprocessor) bit indicates whether a coprocessor is actually attached. The 
MP flag controls the function of the WAIT instruction. If, when executing a WAIT instruc­
tion, the CPU finds MP set, then it tests the TS flag; it does not otherwise test TS during a 
WAIT instruction. If it finds TS set under these conditions, the CPU signals exception 7. 

The EM and MP flags can be changed with the aid of a MOV instruction using CRO as the 
destination operand and read with the aid of a MOV instruction with CRO as the source 
operand. These forms of the MOV instruction can be executed only at privilege level zero. 

11.1.4 The Task-Switched Flag 

The TS bit of CRO helps to determine when the context of the coprocessor does not match 
that of the task being executed by the 80386 CPU. The 80386 sets TS each time it performs 
a task switch (whether triggered by software or by hardware interrupt). If, when interpret­
ing one of the ESC instructions, the CPU finds TS already set, it causes exception 7. The 
WAIT instruction also causes exception 7 if both TS and MP are set. Operating systems 
can use this exception to switch the context of the coprocessor to correspond to the current 
task. Refer to the 80386 System Software Writer's Guide for an example. 

The CL TS instruction (legal only at privilege level zero) resets the TS flag. 
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11.1.5 Coprocessor Exceptions 

Three exceptions aid in interfacing to a coprocessor: interrupt 7 (coprocessor not available), 
interrupt 9 (coprocessor segment overrun), and interrupt 16 (coprocessor error). 

11.1.5.1 INTERRUPT 7-COPRCiCESSOR NOT AVAILABLE 

This exception occurs in either of two conditions: 

1. The CPU encounters an ESC instruction and EM is set. In this case, the exception 
handler should emulate the instruction that caused the exception. TS may also be set. 

2. The CPU encounters either the WAIT instruction or an ESC instruction when both MP 
and TS are set. In this case, the exception handler should update the state of the copro­
cessor, if necessary. 

11.1.5.2 INTERRUPT 9-COPROCESSOR SEGMENT OVERRUN 

This exception occurs in protected mode under the following conditions: 

• An operand of a coprocessor instruction wraps around an addressing limit (OFFFFH 
for small segments, OFFFFFFFFH for big segments, zero for expand-down segments). 
An operand may wrap around an addressing limit when the segment limit is near an 
addressing limit and the operand is near the largest valid address in the segment. Because 
of the wrap-around, the beginning and ending addresses of such an operand will be near 
opposite ends of the segment. 

• Both the first byte and the last byte of the operand (considering wrap-around) are at 
addresses located in the segment and in present and accessible pages. 

• The operand spans inaccessible addresses. There are two ways that such an operand may 
also span inaccessible addresses: 

1. The segment limit is not equal to the addressing limit (e.g., addressing limit is 
FFFFH and segment limit is FFFDH); therefore, the operand will span addresses 
that are not within the segment (e.g., an 8-byte operand that starts at valid offset 
FFFC will span addresses FFFC-FFFF and 0000-0003; however, addresses FFFE 
and FFFF are not valid, because they exceed the limit); 

2. The operand begins and ends in present and accessible pages but intermediate bytes 
of the operand fall either in a not-present page or in a page to which the current 
procedure does not have access rights. 

The address of the failing numerics instruction and data operand may be lost; an FSTENV 
does not return reliable addresses. As with the 80286/80287, the segment overrun exception 
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should be handled by executing an FNINIT instruction (i.e., an FINIT without a preceding 
WAIT). The return address on the stack does not necessarily point to the failing instruction 
nor to the following instruction. The failing numerics instruction is not restartable. 

Case 2 can be avoided by either aligning all segments on page boundaries or by not starting 
them within 108 bytes of the start or end of a page. (The maximum size of a coprocessor 
operand is 108 bytes.) Case 1 can be avoided by making sure that the gap between the last 
valid offset and the first valid offset of a segment is either no less than 108 bytes or is zero 
(i.e., the segment is of full size). If neither software system design constraint is acceptable, 
the exception handler should execute FNINIT and should probably terminate the task. 

11.1.5.3 INTERRUPT 16-COPROCESSOR ERROR 

The numerics coprocessors can detect six different exception conditions during instruction 
execution. If the detected exception is not masked by a bit in the control word, the copro­
cessor communicates the fact that an error occurred to the CPU by a signal at theERROR# 
pin. The CPU causes interrupt 16 the next time it checks the ERROR# pin, which is only 
at the beginning of a subsequent WAIT or certain ESC instructions. If the exception is 
masked, the numerics coprocessor handles the exception according to on-board logic; it does 
not assert the ERROR# pin in this case. 

11.2 GENERAL MULTIPROCESSING 

The components of the general multiprocessing interface include: 

• The LOCK# signal 

• The LOCK instruction prefix, which gives programmed control of the LOCK# signal. 

• Automatic assertion of the LOCK# signal with implicit memory updates by the 
processor 

11.2.1 LOCK and the LOCK# Signal 

The LOCK instruction prefix and its corresponding output signal LOCK# can be used to 
prevent other bus masters from interrupting a data movement operation. LOCK may only 
be used with the following 80386 instructions when they modify memory. An undefined­
opcode exception results from using LOCK before any instruction other than: 

• Bit test and change: BTS, BTR, BTC. 

• Exchange: XCHG. 

Two-operand arithmetic and logical: ADD, ADC, SUB, SBB, AND, OR, XOR. 

• One-operand arithmetic and logical: INC, DEC, NOT, and NEG. 
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A locked instruction is only guaranteed to lock the area of memory defined by the destina­
tion operand, but it may lock a larger memory area. For example, typical 8086 and 80286 
configurations lock the entire physical memory space. The area of memory defined by the 
destination operand is guaranteed to be locked against access by a processor executing a 
locked instruction on exactly the same memory area, i.e., an operand with identical starting 
address and identical length. 

The integrity of the lock is not affected by the alignment of the memory field. The LOCK 
signal is asserted for as many bus cycles as necessary to update the entire operand. 

11.2.2 Automatic Locking 

In several instances, the processor itself initiates activity on the data bus. To help ensure 
that such activities function correctly in multiprocessor configurations, the processor 
automatically asserts the LOCK# signal. These instances include: 

• Acknowledging interrupts. 

After an interrupt request, the interrupt controller uses the data bus to send the inter­
rupt ID of the interrupt source to the CPU. The CPU asserts LOCK# to ensure that no 
other data appears on the data bus during this time. 

• Setting busy bit of TSS descriptor. 

The processor tests and sets the busy-bit in the type field of the TSS descriptor when 
switching to a task. To ensure that two different processors cannot simultaneously switch 
to the same task, the processor asserts LOCK# while testing and setting this bit. 

• Loading of descriptors. 

While copying the contents of a descriptor from a descriptor table into a segment regis­
ter, the processor asserts LOCK# so that the descriptor cannot be modified by another 
processor while it is being loaded. For this action to be effective, operating-system 
procedures that update descriptors should adhere to the following steps: 

Use a locked update to the access-rights byte to mark the descriptor not-present. 

Update the fields of the descriptor. (This may require several memory accesses; 
therefore, LOCK cannot be used.) 

Use a locked update to the access-rights byte to mark the descriptor present again. 

• Updating page-table A and D bits. 

The processor exerts LOCK# while updating the A (accessed) and D (dirty) bits of 
page-table entries. Also the processor bypasses the page-table cache and directly updates 
these bits in memory. 

• Executing XCHG instruction. 

The 80386 always asserts LOCK during an XCHG instruction that references memory 
(even if the LOCK prefix is not used). 
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11.2.3 Cache Considerations 

Systems programmers must take care when updating shared data that may also lJe stored in 
on-chip registers and caches. With the 80386, such shared data includes: 

• Descriptors, which may be held in segment registers. 

A change to a descriptor that is shared among processors should be broadcast to all 
processors. Segment registers are effectively "descriptor caches". A change to a descrip­
tor will not be utilized by another processor if that processor already has a copy of the 
old version of the descriptor in a segment register. 

• Page tables, which may be held in the page-table cache. 

A change to a page table that is shared among processors should be broadcast to all 
processors, so that others can flush their page-table caches and reload them with up-to­
date page tables from memory. 

Systems designers can employ an interprocessor interrupt to handle the above cases. When 
one processor changes data that may be cached by other processors, it can send an interrupt 
signal to all other processors that may be affected by the change. If the interrupt is serviced 
by an interrupt task, the task switch automatically flushes the segment registers. The task 
switch also flushes the page-table cache if the PDBR (the contents of CR3) of the interrupt 
task is different from the PDBR of every other task. 

In multiprocessor systems that need a cacheability signal from the CPU, it is recommended 
that physical address pin A31 be used to indicate cacheability. Such a system can then 
possess up to 2 Gbytes of physical memory. The virtual address range available to the 
programmer is not affected by this convention. 
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CHAPTER 12 
DEBUGGING 

The 80386 brings to Intel's line of microprocessors significant advances in debugging power. 
The single-step exception and breakpoint exception of previous processors are still available 
in the 80386, but the principal debugging support takes the form of debug registers. The 
debug registers support both instruction breakpoints and data breakpoints. Data breakpoints 
are an important innovation that can save hours of debugging time by pinpointing, for 
example, exactly when a data structure is being overwritten. The breakpoint registers also 
eliminate the complexities associated with writing a breakpoint instruction into a code segment 
(requires a data-segment alias for the code segment) or a code segment shared by multiple 
tasks (the breakpoint exception can occur in the context of any of the tasks). Breakpoints 
can even be set in code contained in ROM. 

12.1 DEBUGGING FEATURES OF THE ARCHITECTURE 

The features of the 80386 architecture that support debugging include: 

Reserved debug interrupt vector 

Permits processor to automatically invoke a debugger task or procedure when 
an event occurs that is of interest to the debugger. 

Four debug address registers 

Permit programmers to specify up to four addresses that the CPU will automat­
ically monitor. 

Debug control register 

Allows programmers to selectively enable various debug conditions associated 
with the four debug addresses. 

Debug status register 

Helps debugger identify condition that caused debug exception. 

Trap bit of TSS (T-bit) 

Permits monitoring of task switches. 

Resume flag (RF) of flags register 

Allows an instruction to be restarted after a debug exception without immedi­
ately causing another debug exception due to the same condition. 
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Single-step flag (TF) 

Allows complete monitoring of program flow by specifying whether the CPU 
should cause a debug exception with the execution of every instruction. 

Breakpoint instruction 

Permits debugger intervention at any point III program execution and aids 
debugging of debugger programs. 

Reserved interrupt vector for breakpoint exception 

Permits processor to automatically invoke a handler task or procedure upon 
encountering a breakpoint instruction. 

These features make it possible to invoke a debugger that is either a separate task or a 
procedure in the context of the current task. The debugger can be invoked under any of the 
following kinds of conditions: 

• Task switch to a specific task. 

• Execution of the breakpoint instruction. 

• Execution of every instruction. 

• Execution of any instruction at a given address. 

• Read or write of a byte, word, or doubleword at any specified address. 

• Write to a byte, word, or doubleword at any specified address. 

• Attempt to change a debug register. 

12.2 DEBUG REGISTERS 

Six 80386 registers are used to control debug features. These registers are accessed by variants 
of the MOV instruction. A debug register may be either the source operand or destination 
operand. The debug registers are privileged resources; the MOV instructions that access 
them can only be executed at privilege level zero. An attempt to read or write the debug 
registers when executing at any other privilege level causes a general protection exception. 
Figure 12-1 shows the format of the debug registers. 

12.2.1 Debug Address Registers (DRO-DR3) 

Each of these registers contains the linear address associated with one of four breakpoint 
conditions. Each breakpoint condition is further defined by bits in DR7. 

The debug address registers are effective whether or not paging is enabled. The addresses in 
these registers are linear addresses. If paging is enabled, the linear addresses are translated 
into physical addresses by the processor's paging mechanism (as explained in Chapter 5). If 
paging is not enabled, these linear addresses are the same as physical addresses. 
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31 23 15 7 o 
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33221100 1 1 o 0 

DR7 

o 0 0 0 0 0 000 0 0 0 0 0 0 0 ~I~ B 000000000 B B B B 
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RESERVED DR5 

RESERVED DR4 

BREAKPOINT 3 LINEAR ADDRESS DR3 

BREAKPOINT 2 LINEAR ADDRESS DR2 

BREAKPOINT 1 LINEAR ADDRESS DRl 

BREAKPOINT 0 LINEAR ADDRESS ORO 

NOTE: 0 MEANS INTEL INTEL RESERVED. DO NOT DEFINE. 

G30117 

Figure 12-1. Debug Registers 

Note that when paging is enabled, different tasks may have different linear-to-physical 
address mappings. When this is the case, an address in a debug address register may be 
relevant to one task but not to another. For this reason the 80386 has both global and local 
enable bits in DR7. These bits indicate whether a given debug address has a global (all 
tasks) or local (current task only) relevance. 

12.2.2 Debug Control Register (DR7) 

The debug control register shown in Figure 12-1 both helps to define the debug conditions 
and selectively enables and disables those conditions. 

For each address in registers DRO-DR3, the corresponding fields R/WO through R/W3 
specify the type of action that should cause a breakpoint. The processor interprets these bits 
as follows: -

OO-Break on instruction execution only 
OI-Break on data writes only 
10-undefined 
II-Break on data reads or writes but not instruction fetches 
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Fields LENO through LEN3 specify the length of data item to be monitored. A length of 1, 
2, or 4 bytes may be specified. The values of the length fields are interpreted as follows: 

OO-one-byte length 
Ol-two-byte length 
10-undefined 
II-four-byte length 

If R W n is 00 (instruction execution), then LEN n should also be 00. Any other length is 
undefined. 

The low-order eight bits of DR7 (LO through L3 and GO through G3) selectively enable the 
four address breakpoint conditions. There are two levels of enabling: the local (LO through 
L3) and global (GO through G3) levels. The local enable bits are automatically reset by the 
processor at eveLLtask switch to aYs>l~!:I:!!.w~ed breakpomtconditioiis.i!1.J,h,~Eew task. The 
globa~its are-not reset by a task switch; "tnerefore, "fhey 'can be used forconrutions 
that are global to all tasks. 

The LE and GE bits control the "exact data breakpoint match" feature of the processor. If 
either LE or GE is set, the processor slows execution so that data breakpoints are reported 
on the instruction that causes them. It is recommended that one of these bits be set whenever 
data breakpoints are armed. The processor clears LE at a task switch but does not clear GE. 

12.2.3 Debug Status Register (DR6) 

The debug status register shown in Figure 12-1 permits the debugger to determine which 
debug conditions have occurred. 

When the processor detects an enabled debug exception, it sets the low-order bits of this 
register (BO thru B3) before entering the debug exception handler, Bn is set if the condition 
described by DRn, LENn, and RjWn occurs. (Note that the.-£rocess()r sets Bn regardless of 
whether Gn or Ln is set. If more than one breakpoint condition occurs at one time and if the 
bfeakPoi~;p-o~clj'rs' due to an enabled coruffiion otherJbann:'jj'~'~~yb,~i~~e~ tho~ 
neither Gn nor Ln isSctT-'--~-'-"-""" ","'-
-'"~-,-,-----"'''''',,,',' .. ''' r1. 

rljl--'1,j,, 

The BT bit is associated with the T-bit (debug trap bit) of the TSS (refer tOl\7 for the 
location of the T-bit). The processor sets the BT bit before entering the debug handler if a 
task switch has occurred and the T-bit of the new TSS is set. There is no corresponding bit 
in DR 7 that enables and disables this trap; !"he T -bit of the TSS"i§ the W..!<. enablt~ bit. 

The BS bit is associated with the TF (trap flag) bit of the EFLAGS register. The BS bit is 
set if the debug handler is entered due to the occurrence of a single-step exception. The 
single-step trap is the highest-priority debug exc,t!p~ion; therefore!.'NhenBS is s,l?l .. JlJJY, of .the 
other debug status bits may'iii'Sobe'set,"" ,," 'w ",.-", .. - _",,'d' 

----".," .. ", .. ,,,,, -",-_.-".-" --- "-""'-"-'" .,,,,,, .. ,,,, ... ,,",,.. .... ,,,,,,,,-_,,,, '. 

The BD bit is set if the next instruction will read or write one of the eight debug registers 
and I~~~~,~,,~ is also using the debug registers at the same time. 
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Note that the bits of DR6 are never cleared by the processor. To avoid any confusion in 
identifying the next debug exception, the debug handler should move zeros to DR6 immedi­
ately before returning. 

12.2.4 Breakpoint Field Recognition 

The linear address and LEN field for each of the four breakpoint conditions define a range 
of sequential byte addresses for a data breakpoint. The LEN field permits specification of a 
one-, two-, or four-byte field. Two-byte fields must be aligned on word boundaries (addresses 
that are multiples of two) and four-byte fields must be aligned on doubleword boundaries 
(addresses that are multiples of four). These requirements are enforced by the processor; it 
uses the LEN bits to mask the low-order bits of the addresses in the debug address registers. 
Improperly aligned code or data breakpoint addresses will not yield the expected results. 

A data read or write breakpoint is triggered if any of the bytes participating in a memory 
access is within the field defined by a breakpoint address register and the corresponding 
LEN field. Table 12-1 gives some examples of breakpoint fields with memory references 
that both do and do not cause traps. 

To set a data breakpoint for a misaligned field longer than one byte, it may be desirable to 
put two sets of entries in the breakpoint register such that each entry is properly aligned and 
the two entries together span the length of the field. 

Table 12-1. Breakpoint Field Recognition Examples 

Address (hex) Length 

ORO OAOO01 1 (LENO = 00) 

Register Contents 
DR1 OAOO02 1 (LEN1 = 00) 
DR2 080002 2 (LEN2 = 01) 
DR3 oeoooo 4 (LEN3 = 11) 

OAOO01 1 
OAOO02 1 
OAOO01 2 

Some Examples of Memory 
OAOO02 2 
080002 2 

References That Cause Traps 
080001 4 
oeoooo 4 
OeOO01 2 
OeOO03 1 

OADOOO 1 
Some Examples of Memory OAOO03 4 
References That Don't Cause Traps 080000 2 

OeOO04 4 
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Instruction breakpoint addresses must have a length specification of one byte (LEN = 00); 
other values are undefined. The processor recognizes an instruction breakpoint address only 
when it points to the first byte of an instruction. If the instruction has any prefixes, the 
brea~Eoint~MI~LmJ.tS.LPQi'!J!~U!t.~Ji!s.t ,p~efix: ---.'.~-.'."--'-' .. '''-- -_. __ .. 

12.3 DEBUG EXCEPTIONS 

Two of the interrupt vectors of the 80386 are reserved for exceptions that relate to debug­
ging. Interrupt 1 is the primary means of invoking debuggers designed expressly for the 
80386; interrupt 3 is intended for debugging debuggers and for compatibility with prior 
processors in Intel's 8086 processor family. 

12.3.1 Interrupt 1-Debug Exceptions 

The handler for this exception is usually a debugger or part of a debugging system. The 
processor causes interrupt 1 for any of several conditions. The debugger can check flags in 
DR6 and DR 7 to determine what condition caused the exception and what other conditions 
might be in effect at the same time. Table 12-2 associates with each breakpoint condition 
the combination of bits that indicate when that condition has caused the debug exception. 

Instruction address breakpoint conditions are faults, while other debug conditions are traps. 
The debug exception may report either or both at one time. The following paragraphs present 
details for each class of debug exception. 

12.3.1.1 INSTRUCTION ADDRESS BREAKPOINT 

The processor reports an instruction-address breakpoint before it executes the instruction 
that begins at the given address; i.e., an instruction- address breakpoint exception is a fault. 

The RF (restart flag) permits the debug handler to retry instructions that cause other kinds 
of faults in addition to debug faults. When it detects a fault, the processor automatically 
sets RF in the flags image that it pushes onto the stack. (It does not, however, set RF for 
traps and aborts.) 

Table 12-2. Debug Exception Conditions 

Flags to Test Condition 

BS=1 Single-step trap 
BO=1 AND (GEO=1 OR LEO=1) Breakpoint ORO, LEND, R/WO 
B1 =1 AND (GE1 =1 OR LE1 =1) Breakpoint DR1, LEN1, R/W1 
B2=1 AND (GE2=1 OR LE2=1) Breakpoint DR2, LEN2, R/W2 
B3=1 AND (GE3=1 OR LE3=1) Breakpoint DR3, LEN3, R/W3 
80=1 Debug registers not available; in use by ICE-3a6. 
BT=1 Task switch 
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When RF is set, it causes any debug fault to be ignored during the next instruction. (Note, 
however, that RF does not cause breakpoint traps to be ignored, nor other kinds of faults.) 

The processor automatically clears RF at the successful completion of every instruction except 
after the IRET instruction, after the POPF instruction, and after a JMP, CALL, or INT 
instruction that causes a task switch. These instructions set RF to the value specified by the 
memory image of the EFLAGS register. 

The processor automatically sets RF in the EFLAGS image on the stack before entry into 
any fault handler. Upon entry into the fault handler for instruction address breakpoints, for 
example, RF is set in the EFLAGS image on the stack; therefore, the IRET instruction at 
the end of the handler will set RF in the EFLAGS register, and execution will resume at 
the breakpoint address without generating another breakpoint fault at the same address. 

If, after a debug fault, RF is set and the debug handler retries the faulting instruction, it is 
possible that retrying the instruction will raise other faults. The retry of the instruction after 
these faults will also be done with RF= 1, with the result that debug faults continue to be 
ignored. The processor clears RF only after sucEe~s[1:!.! £<?!E:p1(!'!!2!l_2L!he.i!l~tr,1l£!ion: 

~ ___ ",. __ ._.n. __ ~ ___ ,_~ _______ " ___ ~~_ ......... _~_~ ____ ~"~" ___ ._ -- . ". 

Real-mode debuggers can control the RF flag by using a 32-bit IRET. A 16-bit IRET 
instruction does not affect the RF bit (which is in the high-order 16 bits of EFLAGS). To 
use a 32-bit IRET, the debugger must rearrange the stack so that it holds appropriate values 
for the 32-bit EIP, CS, and EFLAGS (with RF set in the EFLAGS image). Then executing 
an IRET with an operand size prefix causes a 32-bit return, popping the RF flag into 
EFLAGS. 

12.3.1.2 DATA ADDRESS BREAKPOINT 

A data-address breakpoint exception is a trap; Le., the processor reports a data-address 
breakpoint after executing the instruction that accesses the given memory item. 

When using data breakpoints it is recommended that either the LE or GE bit of DR7 be set 
also. If either LE or GE is set, any data breakpoint trap is reported exactly after completion 
of the instruction that accessed the specified memory item. This exact reporting is accom­
plished by forcing the 80386 execution unit to wait for completion of data operand transfers 
before beginning execution of the next instruction. If neither GE nor LE is set, data break­
points may not be reported until one instruction after the data is accessed or may not be 
reported at all. This is due to the fact that, normally, instruction execution is overlapped 
with memory transfers to such a degree that execution of the next instruction may begin 
before memory transfers for the prior instruction are completed. 

If a debugger needs to preserve the contents of a write breakpoint location, it should save 
the original contents before setting a write breakpoint. Because data breakpoints are traps, 
a write into a breakpoint location will complete before the trap condition is reported. The 
handler can report the saved value after the breakpoint is triggered. The data in the debug 
registers can be used to address the new value stored by the instruction that triggered the 
breakpoint. 
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12.3.1.3 GENERAL DETECT FAULT 

This exception occurs when an attempt is made to use the debug registers at the same time 
that ICE-386 is using them. This additional protection feature is provided to guarantee that 
ICE-386 can have full control over the debug-register resources when required. ICE-386 
uses the debug-registers; therefore, a software debugger that also uses these registers cannot 
run while ICE-386 is in use. The exception handler can detect this condition by examining 
the BD bit of DR6. 

12.3.1.4 SINGLE-STEP TRAP 

This debug condition occurs at the end of an instruction if the trap flag (TF) of the flags 
register held the value one at the beginning of that instruction. Note that the exception does 
not occur at the end of an instruction that sets TF. For example, if POPF is used to set TF, 
a single-step trap does not occur until after the instruction that follows POPF. 

The processor clears the TF bit before invoking the handler. If TF= 1 in the flags image of 
a TSS at the time of a task switch, the exception occurs after the first instruction is executed 
in the new task. 

The single-step flag is normally not cleared by privilege changes inside a task. INT instruc­
tions, however, do clear TF. Therefore, software debuggers that single-step code must recog­
nize and emulate INT n or INTO rather than executing them directly. 

To maintain protection, system software should check the current execution privilege level 
after any single step interrupt to see whether single stepping should continue at the current 
privilege level. 

The interrupt priorities in hardware guarantee that if an external interrupt occurs, single 
stepping stops. When both an external interrupt and a single step interrupt occur together, 
the single step interrupt is processed first. This clears the TF bit. After saving the return 
address or switching tasks, the external interrupt input is examined before the first instruc­
tion of the single step handler executes. If the external interrupt is still pending, it is then 
serviced. The external interrupt handler is not single-stepped. To single step an interrupt 
handler, just single step an INT n instruction that refers to the interrupt handler. 

~Yl.J<f.f:c 

12.3.1.5 TASK SWITCH BREAKPOINT 

The debug exception also occurs after a switch to an 80386 task if the T-bit of the new TSS 
is set. The exception occurs after control has passed to the new task, but before the first 
instruction of that task is executed. The exception handler can detect this condition by 
examining the BT bit of the debug status register DR6. 

Note that if the debug exception handler is a task, the T-bit of its TSS should not be set. 
Failure to observe this rule will cause the processor to enter an infinite loop. 
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12.3.2 Interrupt 3-Breakpoint Exception 

This exception is caused by execution of the breakpoint instruction INT 3. Typically, a 
debugger prepares a breakpoint by substituting the opcode of the one-byte breakpoint 
instruction in place of the first opcode byte of the instruction to be trapped. When execution 
of the INT 3 instruction causes the exception handler to be invoked, the saved value of 
ES:EIP points to the byte following the INT 3 instruction. 

With prior generations of processors, this feature is used extensively for trapping execution 
of specific instructions. With the 80386, the needs formerly filled by this feature are more 
conveniently solved via the debug registers and interrupt 1. However, the breakpoint excep­
tion is still useful for debugging debuggers, because the breakpoint exception can vector to 
a different exception handler than that used by the debugger. The breakpoint exception can 
also be useful when it is necessary to set a greater number of breakpoints than permitted by 
the debug registers. 
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CHAPTER 13 
EXECUTING 80286 PROTECTED-MODE CODE 

13.1 80286 CODE EXECUTES AS A SUBSET OF THE 80386 

In general, programs designed for execution in protected mode on an 80286 execute without 
modification on the 80386, because the features of the 80286 are a subset of those of the 
80386. 

All the descriptors used by the 80286 are supported by the 80386 as long as the Intel­
reserved word (last word) of the 80286 descriptor is zero. 

The descriptors for data segments, executable segments, local descriptor tables, and task 
gates are common to both the 80286 and the 80386. Other 80286 descriptors-TSS segment, 
call gate, interrupt gate, and trap gate-are supported by the 80386. The 80386 also has 
new versions of descriptors for TSS segment, call gate, interrupt gate, and trap gate that 
support the 32-bit nature of the 80386. Both sets of descriptors can be used simultaneously 
in the same system. 

For those descriptors that are common to both the 80286 and the 80386, the presence of 
zeros in the final word causes the 80386 to interpret these descriptors exactly as 80286 does; 
for example: 

Base Address 

Limit 

Granularity bit 

B-bit 

D-bit 

The high-order eight bits of the 32-bit base address are zero, limiting 
base addresses to 24 bits. 

The high-order four bits of the limit field are zero, restricting the value 
of the limit field to 64K. 

The granularity bit is zero, which implies that the value of the 16-bit 
limit is interpreted in units of one byte. 

In a data-segment descriptor, the B-bit is zero, implying that the 
segment is no larger than 64 Kbytes. 

In an executable-segment descriptor, the D-bit is zero, implying that 
16-bit addressing and operands are the default. 

For formats of these descriptors and documentation of their use refer to the iAPX 286 
Programmer's Reference Manual. 
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13.2 TWO WAYS TO EXECUTE 80286 TASKS 

When porting 80286 programs to the 80386, there are two cases to consider: 

1. Porting an entire 80286 system to the 80386, complete with 80286 operating system, 
loader, and system builder. 

In this case, all tasks will have 80286 TSSs. The 80386 is being used as a faster 286. 

2. Porting selected 80286 applications to run in an 80386 environment with an 80386 
operating system, loader, and system builder. 

In this case, the TSSs used to represent 80286 tasks should be changed to 80386 TSSs. 
It is theoretically possible to mix 80286 and 80386 TSSs, but the benefits are slight and 
the problems are great. It is recommended that all tasks in a 80386 software system 
have 80386 TSSs. It is not necessary to change the 80286 object modules themselves; 
TSSs are usually constructed by the operating system, by the loader, or by the system 
builder. Refer to Chapter 16 for further discussion of the interface between 16-bit and 
32-bit code. 

13.3 DIFFERENCES FROM 80286 

The few differences that do exist primarily affect operating system code. 

13.3.1 Wraparound of 80286 24-Bit Physical Address Space 

With the 80286, any base and offset combination that addresses beyond 16M bytes wraps 
around to the first megabyte of the 80286 address space. With the 80386, since it has a 
greater physical address space, any such address falls into the 17th megabyte. In the unlikely 
event that any software depends on this anomaly, the same effect can be simulated on the 
80386 by using paging to map the first 64K bytes of the 17th megabyte of logical addresses 
to physical addresses in the first megabyte. 

13.3.2 Reserved Word of Descriptor 

Because the 80386 uses the contents of the reserved word (last word) of every descriptor, 
80286 programs that place values in this word may not execute correctly on the 80386. 

13.3.3 New Descriptor Type Codes 

Operating-system code that manages space in descriptor tables often uses an invalid value 
in the access-rights field of descriptor-table entries to identify unused entries. Access rights 
values of 80H and OOH remain invalid for both the 80286 and 80386. Other values that 
were invalid on for the 80286 may be valid for the 80386 because of the additional descriptor 
types defined by the 80386. 
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13.3.4 Restricted Semantics of LOCK 

The 80286 processor implements the bus lock function differently than the 80386. Programs 
that use forms of memory locking specific to the 80286 may not execute properly when 
transported to a specific application of the 80386. 

The LOCK prefix and its corresponding output signal should only be used to prevent other 
bus masters from interrupting a data movement operation. LOCK may only be used with 
the following 80386 instructions when they modify memory. An undefined-opcode exception 
results from using LOCK before any other instruction. 

• Bit test and change: BTS, BTR, BTC. 

• Exchange: XCHG. 

• One-operand arithmetic and logical: INC, DEC, NOT, and NEG. 

• Two-operand arithmetic and logical: ADD, ADC, SUB, SBB, AND, OR, XOR. 

A locked instruction is guaranteed to lock only the area of memory defined by the destina­
tion operand, but may lock a larger memory area. For example, typical 8086 and 80286 
configurations lock the entire physical memory space. With the 80386, the defined area of 
memory is guaranteed to be locked against access by a processor executing a locked instruc­
tion on exactly the same memory area, i.e., an operand with identical starting address and 
identical length. 

13.3.5 Additional Exceptions 

The 80386 defines new exceptions that can occur even in systems designed for the 80286. 

• Exception #6-invalid opcode 

This exception can result from improper use of the LOCK instruction. 

• Exception #14-page fault 

This exception may occur in an 80286 program if the operating system enables paging. 
Paging can be used in a system with 80286 tasks as long as all tasks use the same page 
directory. Because there is no place in an 80286 TSS to store the PDBR, switching to 
an 80286 task does not change the value of PDBR. Tasks ported from the 80286 should 
be given 80386 TSSs so they can take full advantage of paging. 
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CHAPTER 14 
80386 REAL-ADDRESS MODE 

The real-address mode of the 80386 executes object code designed for execution on 8086, 
8088,80186, or 80188 processors, or for execution in the real-address mode of an 80286: 

In effect, the architecture of the 80386 in this mode is almost identical to that of the 8086, 
8088, 80186, and 80188. To a programmer, an 80386 in real-address mode appears as a 
high-speed 8086 with extensions to the instruction set and registers. The principal features 
of this architecture are defined in Chapters 2 and 3. 

This chapter discusses certain additional topics that complete the system programmer's view 
of the 80386 in real-address mode: 

• Address formation. 

• Extensions to registers and instructions. 

• Interrupt and exception handling. 

• Entering and leaving real-address mode. 

• Real-address-mode exceptions. 

• Differences from 8086. 

• Differences from 80286 real-address mode. 

14.1 PHYSICAL ADDRESS FORMATION 

The 80386 provides a one Mbyte + 64 Kbyte memory space for an 8086 program. Segment 
relocation is performed as in the 8086: the 16-bit value in a segment selector is shifted left 
by four bits to form the base address of a segment. The effective address is extended with 
four high order zeros and added to the base to form a linear address as Figure 14-1 illus­
trates. (The linear address is equivalent to the physical address, because paging is not used 
in real-address mode.) Unlike the 8086, the resulting linear address may have up to 
21 significant bits. There is a possibility of a carry when the base address is added to the 
effective address. On the 8086, the carried bit is truncated, whereas on the 80386 the carried 
bit is stored in bit position 20 of the linear address. 

Unlike the 8086 and 80286, 32-bit effective addresses can be generated (via the address-size 
prefix); however, the value of a 32-bit address may not exceed 65535 without causing an 
exception. For full compatibility with 80286 real-address mode, pseudo-protection faults 
(interrupt 12 or 13 with no error code) occur if an effective address is generated outside the 
range 0 through 65535. 
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Figure 14-1_ Real-Address Mode Address Formation 

14.2 REGISTERS AND INSTRUCTIONS 

G30117 

The register set available in real-address mode includes all the registers defined for the 8086 
plus the new registers introduced by the 80386: FS, GS, debug registers, control registers, 
and test registers. New instructions that explicitly operate on the segment registers FS and 
GS are available, and the new segment-override prefixes can be used to cause instructions 
to utilize FS and GS for address calculations. Instructions can utilize 32-bit operands through 
the use of the operand size prefix. 

The instruction codes that cause undefined opcode traps (interrupt 6) include instructions 
of the protected mode that manipulate or interrogate 80386 selectors and descriptors; namely, 
VERR, VERW, LAR, LSL, LTR, STR, LLDT, and SLDT. Programs executing in real­
address mode are able to take advantage of the new applications-oriented instructions added 
to the architecture by the introduction of the 80186/80188, 80286 .and 80386: 

• New instructions introduced by 80186/80188 and 80286. 

PUSH immediate data 
Push all and pop all (PUSHA and POPA) 
Multiply immediate data 
Shift and rotate by immediate count 
String I/O 
ENTER and LEAVE 
BOUND 

• New instructions introduced by 80386_ 

LSS, LFS, LGS instructions 
Long-displacement conditional jumps 
Single-bit instructions 
Bit scan 
Double-shift instructions 
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Byte set on condition 
Move with sign/zero extension 
Generalized multiply 
MOV to and from control registers 
MOV to and from test registers 
MOV to and from debug registers 

14.3 INTERRUPT AND EXCEPTION HANDLING 

Interrupts and exceptions in 80386 real-address mode work as much as they do on an 8086. 
Interrupts and exceptions vector to interrupt procedures via an interrupt table. The proces­
sor multiplies the interrupt or exception identifier by four to obtain an index into the inter­
rupt table. The entries of the interrupt table are far pointers to the entry points of interrupt 
or exception handler procedures. When an interrupt occurs, the processor pushes the current 
values of CS:IP onto the stack, disables interrupts, clears TF (the single-step flag), then 
transfers control to the location specified in the interrupt table. An IRET instruction at the 
end of the handler procedure reverses these steps before returning control to the interrupted 
procedure. 

The primary difference in the interrupt handling of the 80386 compared to the 8086 is that 
the location and size of the interrupt table depend on the contents of the IDTR (IDT regis­
ter). Ordinarily, this fact is not apparent to programmers, because, after RESET, the IDTR 
contains a base address of 0 and a limit of 3FFH, which is compatible with the 8086. 
However, the LIDT instruction can be used in real-address mode to change the base and 
limit values in the IDTR. Refer to Chapter 9 for details on the IDTR, and the LIDT and 
SIDT instructions. If an interrupt occurs and the corresponding entry of the interrupt table 
is beyond the limit stored in the IDTR, the processor raises exception 8. 

14.4 ENTERING AND LEAVING REAL-ADDRESS MODE 

Real-address mode is in effect after a signal on the RESET pin. Even if the system is going 
to be used in protected mode, the start-up program will execute in real-address mode tempo­
rarily while initializing for protected mode. 

14.4.1 Switching to Protected Mode 

The only way to leave real-address mode is to switch to protected mode. The processor enters 
protected mode when a MOV to CRO instruction sets the PE (protection enable) bit in CRO. 
(For compatibility with the 80286, the LMSW instruction may also be used to set the 
PE bit.) 

Refer to Chapter 10 "Initialization" for other aspects of switching to protected mode. 
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14.5 SWITCHING BACK TO REAL-ADDRESS MODE 

The processor reenters real-address mode if software clears the PE bit in CRO with a MOY 
to CRO instruction. A procedure that attempts to do this, however, should proceed as follows: 

1. If paging is enabled, perform the following sequence: 

• Transfer control to linear addresses that have an identity mapping; i.e., linear 
addresses equal physical addresses. 

• Clear the PG bit in CRO. 

• Move zeros to CR3 to clear out the paging cache. 

2. Transfer control to a segment that has a limit of 64K (FFFFH). This loads the CS 
register with the limit it needs to have in real mode. 

3. Load segment registers SS, DS, ES, FS, and GS with a selector that points to a descrip­
tor containing the following values, which are appropriate to real mode: 

• Limit = 64K (FFFFH) 

• Byte granular (G = 0) 

• Expand up (E = 0) 

• Writable (W = 1) 

• Present (P = 1) 

• Base = any value 

4. Disable interrupts. A CLI instruction disables INTR interrupts. NMIs can be disabled 
with external circuitry. 

5. Clear the PE bit. 

6. Jump to the real mode code to be executed using a far JMP. This action flushes the 
instruction queue and puts appropriate values in the access rights of the CS register. 

7. Use the LIDT instruction to load the base and limit of the real-mode interrupt vector 
table. 

8. Enable interrupts. 

9. Load the segment registers as needed by the real-mode code. 

14.6 REAL-ADDRESS MODE EXCEPTIONS 

The 80386 reports some exceptions differently when executing in real-address mode than 
when executing in protected mode. Table 14-1 details the real-address-mode exceptions. 

14.7 DIFFERENCES FROM 8086 

In general, the 80386 in real-address mode will correctly execute ROM-based software 
designed for the 8086, 8088, 80186, and 80188. Following is a list of the minor differences 
between 8086 execution on the 80386 and on an 8086. 
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Table 14-1. 80386 Real-Address Mode Exceptions 

Interrupt Function that Can Return Address 
Description Points to Faulting Number Generate the Exception Instruction 

Divide error 0 DIV,IDIV YES 

Debug exceptions 1 All *1 

Breakpoint 3 INT NO 

Overflow 4 INTO NO 

Bounds check 5 BOUND YES 

Invalid opcode 6 Any undefined opcode or LOCK YES 
used with wrong instruction 

Coprocessor not available 7 ESC or WAIT YES 

Interrupt table limit too small 8 INT vector is not within IDTR limit YES 

Reserved 9-12 

Stack fault 12 Memory operand crosses offset YES 
o or OFFFFH 

Pseudo-protection exception 13 Memory operand crosses offset YES 
OFFFFH or attempt to execute 
past offset OFFFFH or instruc-
tion longer than 15 bytes 

Reserved 14,15 

Coprocessor error 16 ESC or WAIT YES2 

Two-byte SW interrupt 0-255 INT n NO 

1. Some debug exceptions point to the faulting instruction, others to the next instruction. The exception 
handler can determine which has occurred by examining DR6. 

2. Coprocessor errors are reported on the first ESC or WAIT instruction after the ESC instruction that 
caused the error. 

1. Instruction clock counts. 

The 80386 takes fewer clocks for most instructions than the 8086/8088. The areas most 
likely to be affected are: 

• Delays required by I/O devices between I/O operations. 

Assumed delays with 8086/8088 operating in parallel with an 8087. 

2. Divide Exceptions Point to the DIV instruction. 

Divide exceptions on the 80386 always leave the saved CS:IP value pointing to the 
instruction that failed. On the 8086/8088, the CS:IP value points to the next 
instruction. 

3. Undefined 8086/8088 opcodes. 

Opcodes that were not defined for the 8086/8088 will cause exception 6 or will execute 
one of the new instructions defined for the 80386. 
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4. Value written by PUSH SP. 

The 80386 pushes a different value on the stack for PUSH SP than the 8086/8088. The 
80386 pushes the value of SP before SP is incremented as part of the push operation; 
the 8086/8088 pushes the value of SP after it is incremented. If the value pushed is 
important, replace PUSH SP instructions with the following three instructions: 

PUSH BP 
MOV BP, s P 
XCHG BP, [ B P 1 

This code functions as the 8086/8088 PUSH SP instruction on the 80386. 

5. Shift or rotate by more than 31 bits. 

The 80386 masks all shift and rotate counts to the low-order five bits. This MOD 32 
operation limits the count to a maximum of 31 bits, thereby limiting the time that inter­
rupt response is delayed while the instruction is executing. 

6. Redundant prefixes. 

The 80386 sets a limit of 15 bytes on instruction length. The only way to violate this 
limit is by putting redundant prefixes before an instruction. Exception 13 occurs if the 
limit on instruction length is violated. The 8086/8088 has no instruction length limit. 

7. Operand crossing offset 0 or 65,535. 

On the 8086, an attempt to access a memory operand that crosses offset 65,535 
(e.g., MOV a word to offset 65,535) or offset 0 (e.g., PUSH a word when SP = 1) 
causes the offset to wrap around modulo 65,536. The 80386 raises an exception in these 
cases---exception 13 if the segment is a data segment (i.e., if CS, DS, ES, FS, or GS is 
being used to address the segment), exception 12 if the segment is a stack segment (i.e., 
if SS is being used). 

8. Sequential execution across offset 65,535. 

On the 8086, if sequential execution of instructions proceeds past offset 65,535, the 
processor fetches the next instruction byte from offset 0 of the same segment. On the 
80386, the processor raises exception 13 in such a case. 

9. LOCK is restricted to certain instructions. 

The LOCK prefix and its corresponding output signal should only be used to prevent 
other bus masters from interrupting a data movement operation. The 80386 always 
asserts the LOCK signal during an XCHG instruction with memory (even if the LOCK 
prefix is not used). LOCK may only be used with the following 80386 instructions when 
they update memory: BTS, BTR, BTC, XCHG, ADD, ADC, SUB, SBB, INC, DEC, 
AND, OR, XOR, NOT, and NEG. An undefined-opcode exception (interrupt 6) results 
from using LOCK before any other instruction. 

10. Single-stepping external interrupt handlers. 

The priority of the 80386 single-step exception is different from that of the 8086/8088. 
The change prevents an external interrupt handler from being single-stepped if the 
interrupt occurs while a program is being single-stepped. The 80386 single-step excep­
tion has higher priority that any external interrupt. The 80386 will still single-step 
through an interrupt handler invoked by the INT instructions or by an exception. 
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11. IDlY exceptions for quotients of 80H or 8000H. 

The 80386 can generate the largest negative number as a quotient for the IDlY instruc­
tion. The 8086/8088 causes exception zero instead. 

12. Flags in stack. 

The setting of the flags stored by PUSHF, by interrupts, and by exceptions is different 
from that stored by the 8086 in bit positions 12 through 15. On the 8086 these bits are 
stored as ones, but in 80386 real-address mode bit 15 is always zero, and bits 14 through 
12 reflect the last value loaded into them. 

13. NMI interrupting NMI handlers. 

After an NMI is recognized on the 80386, the NMI interrupt is masked until an IRET 
instruction is executed. 

14. Coprocessor errors vector to interrupt 16. 

Any 80386 system with a coprocessor must use interrupt vector 16 for the coprocessor 
error exception. If an 8086/8088 system uses another vector for the 8087 interrupt, both 
vectors should point to the coprocessor-error exception handler. 

15 . Numeric exception handlers should allow prefixes. 

On the 80386, the value of CS:IP saved for coprocessor exceptions points at any prefixes 
before an ESC instruction. On 8086/8088 systems, the saved CS:IP points to the ESC 
instruction. 

16. Coprocessor does not use interrupt controller. 

The coprocessor error signal to the 80386 does not pass through an interrupt controller 
(an 8087 INT signal does). Some instructions in a coprocessor error handler may need 
to be deleted if they deal with the interrupt controller. 

17. Six new interrupt vectors. 

The 80386 adds six exceptions that arise only if the 8086 program has a hidden bug. It 
is recommended that exception handlers be added that treat these exceptions as invalid 
operations. This additional software does not significantly affect the existing 8086 
software because the interrupts do not normally occur. These interrupt identifiers should 
not already have been used by the 8086 software, because they are in the range reserved 
by Intel. Table 14-2 describes the new 80386 exceptions. 

18. One megabyte wraparound. 

The 80386 does not wrap addresses at 1 megabyte in real-address mode. On members 
of the 8086 family, it possible to specify addresses greater than one megabyte. For 
example, with a selector value OFFFFH and an offset of OFFFFH, the effective address 
would be 10FFEFH (1 Mbyte + 65519). The 8086, which can form adresses only up 
to 20 bits long, truncates the high-order bit, thereby "wrapping" this address to OFFEFH. 
However, the 80386, which can form addresses up to 32 bits long does not truncate such 
an address. 
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Table 14-2. New 80386 Exceptions 

Interrupt Function Identifier 

5 A BOUND instruction was executed with a register value outside the limit 
values. 

6 An undefined opcode was encountered or LOCK was used improperly before 
an instruction to which it does not apply. 

7 The EM bit in the MSW is set when an ESC instruction was encountered. This 
exception also occurs on a WAIT instruction if TS is set. 

8 An exception or interrupt has vectored to an interrupt table entry beyond the 
interrupt table limit in IDTR. This can occur only if the LlDT instruction has 
changed the limit from the default value of 3FFH, which is enough for all 256 
interrupt IDs. 

12 Operand crosses extremes of stack segment, e.g., MOV operation at offset 
OFFFFH or push with SP=1 during PUSH, CALL, or INT. 

13 Operand crosses extremes of a segment other than a stack segment; or 
sequential instruction execution attempts to proceed beyond offset OFFFFH; 
or an instruction is longer than 15 bytes (including prefixes). 

14.8 DIFFERENCES FROM 80286 REAL-ADDRESS MODE 

The few differences that exist between 80386 real-address mode and 80286 real-address 
mode are not likely to affect any existing 80286 programs except possibly the system initial­
ization procedures. 

14.8.1 Bus Lock 

The 80286 processor implements the bus lock function differently than the 80386. Programs 
that use forms of memory locking specific to the 80286 may not execute properly if trans­
ported to a specific application of the 80386. 

The LOCK prefix and its corresponding output signal should only be used to prevent other 
bus masters from interrupting a data movement operation. LOCK may only be used with 
the following 80386 instructions when they modify memory. An undefined-opcode exception 
results from using LOCK before any other instruction. 

• Bit test and change: BTS, BTR, BTC. 

• Exchange: XCHG. 

• One-operand arithmetic and logical: INC, DEC, NOT, and NEG. 

• Two-operand arithmetic and logical: ADD, ADC, SUB, SBB, AND, OR, XOR. 

A locked instruction is guaranteed to lock only the area of memory defined by the destina­
tion operand, but may lock a larger memory area. For example, typical 8086 and 80286 
configurations lock the entire physical memory space. With the 80386, the defined area of 
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memory is guranteed to be locked against access by a processor executing a locked instruc­
tion on exactly the same memory area, i.e., an operand with identical starting address and 
identical length. 

14.8.2 Location of First Instruction 

The starting location is OFFFFFFFOH (sixteen bytes from end of 32-bit address space) on 
the 80386 rather than OFFFFFOH (sixteen bytes from end of 24-bit address space) as on 
the 80286. Many 80286 ROM initialization programs will work correctly in this new 
environment. Others can be made to work correctly with external hardware that redefines 
the signals on A31-20• 

14.8.3 Initial Values of General Registers 

On the 80386, certain general registers may contain different values after RESET than on 
the 80286. This should not cause compatibility problems, because the content of 8086 regis­
ters after RESET is undefined. If self-test is requested during the reset sequence and errors 
are detected in the 80386 unit, EAX will contain a nonzero value. EDX contains the compo­
nent and revision identifier. Refer to Chapter 10 for more information. 

14.8.4 MSW Initialization 

The 80286 initializes the MSW register to FFFOH, but the 80386 initializes this register to 
OOOOH. This difference should have no effect, because the bits that are different are undefined 
on the 80286. Programs that read the value of the MSW will behave differently on the 
80386 only if they depend on the setting of the undefined, high-order bits. 
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CHAPTER 15 
VIRTUAL 8086 MODE 

The 80386 supports execution of one or more 8086, 8088, 80186, or 80188 programs in an 
80386 protected-mode environment. An 8086 program runs in this environment as part of a 
V86 (virtual 8086) task. V86 tasks take advantage of the hardware support of multitasking 
offered by the protected mode. Not only can there be multiple V86 tasks, each one executing 
an 8086 program, but V86 tasks can be multiprogrammed with other 80386 tasks. 

The purpose of a V86 task is to form a "virtual machine" with which to execute an 8086 
program. A complete virtual machine consists not only of 80386 hardware but also of systems 
software. Thus, the emulation of an 8086 is the result of cooperation between hardware and 
software: 

• The hardware provides a virtual set of registers (via the TSS), a virtual memory space 
(the first megabyte of the linear address space of the task), and directly executes all 
instructions that deal with these registers and with this address space. 

• The software controls the external interfaces of the virtual machine (I/O, interrupts, 
and exceptions) in a manner consistent with the larger environment in which it executes. 
In the case of I/O, software can choose either to emulate I/O instructions or to let the 
hardware execute them directly without software intervention. 

Software that helps implement virtual 8086 machines is called a V86 monitor. 

15.1 EXECUTING 8086 CODE 

The processor executes in V86 mode when the VM (virtual machine) bit in the EFLAGS 
register is set. The processor tests this flag under two general conditions: 

1. When loading segment registers to know whether to use 8086-style address formation. 

2. When decoding instructions to determine which instructions are sensitive to IOPL. 

Except for these two modifications to its normal operations, the 80386 in V86 mode operated 
much as in protected mode. 

15. 1. 1 Registers and Instructions 

The register set available in V86 mode includes all the registers defined for the 8086 plus 
the new registers introduced by the 80386: FS, GS, debug registers, control registers, and 
test registers. New instructions that explicitly operate on the segment registers FS and GS 
are available, and the new segment-override prefixes can be used to cause instructions to 
utilize FS and GS for address calculations. Instructions can utilize 32-bit operands through 
the use of the operand size prefix. 
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8086 programs running as V86 tasks are able to take advantage of the new applications­
oriented instructions added to the architecture by the introduction of the 80186/80188, 80286 
and 80386: 

New instructions introduced by 80186/80188 and 80286. 
PUSH immediate data 
Push all and pop all (PUSHA and POPA) 
Multiply immediate data 
Shift and rotate by immediate count 
String I/O 
ENTER and LEAVE 
BOUND 

• New instructions introduced by 80386. 
LSS, LFS, LGS instructions 
Long-displacement conditional jumps 
Single-bit instructions 
Bit scan 
Double-shift instructions 
Byte set on condition 
Move with sign/zero extension 
Generalized mUltiply 

15.1.2 Linear Address Formation 

In V86 mode, the 80386 processor does not interpret 8086 selectors by referring to descrip­
tors; instead, it forms linear addresses as an 8086 would. It shifts the selector left by four 
bits to form a 20-bit base address. The effective address is extended with four high-order 
zeros and added to the base address to create a linear address as Figure 15-1 illustrates. 

BASE 

+ 

OFFSET 

LINEAR 
ADDRESS 

19 3 0 

16-BIT SEGMENT SELECTOR 10 0 0 01 
19 15 

1 0 0 0 0 I 16-BIT EFFECTIVE ADDRESS 

o 

20 o 
I x x x x x x x x x x x x x x x x x x x x x 

Figure 15-1. V86 Mode Address Formation 
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Because of the possibility of a carry, the resulting linear address may contain up to 21 signif­
icant bits. An 8086 program may generate linear addresses anywhere in the range 0 to 
10FFEFH (one megabyte plus approximately 64 Kbytes) of the task's linear address space. 

V86 tasks generate 32-bit linear addresses. While an 8086 program can only utilize the low­
order 21 bits of a linear address, the linear address can be mapped via page tables to any 
32-bit physical address. 

Unlike the 8086 and 80286, 32-bit effective addresses can be generated (via the address-size 
prefix); however, the value of a 32-bit address may not exceed 65,535 without causing an 
exception. For full compatibility with 80286 real-address mode, pseudo-protection faults 
(interrupt 12 or 13 with no error code) occur if an address is generated outside the range 
o through 65,535. 

15.2 STRUCTURE OF A V86 TASK 

A V86 task consists partly of the 8086 program to be executed and partly of 80386 "native 
mode" code that serves as the virtual-machine monitor. The task must be represented by an 
80386 TSS (not an 80286 TSS). The processor enters V86 mode to execute the 8086 program 
and returns to protected mode to execute the monitor or other 80386 tasks. 

To run successfully in V86 mode, an existing 8086 program needs the following: 

• A V86 monitor. 

• Operating-system services. 

The V86 monitor is 80386 protected-mode code that executes at privilege-level zero. The 
monitor consists primarily of initialization and exception-handling procedures. As for any 
other 80386 program, executable-segment descriptors for the monitor must exist in the GDT 
or in the task's LDT. The linear addresses above lOFFEFH are available for the V86 monitor, 
the operating system, and other systems software. The monitor may also need data-segment 
descriptors so that it can examine the interrupt vector table or other parts of the 8086 program 
in the first megabyte of the address space. 

In general, there are two options for implementing the 8086 operating system: 

1. The 8086 operating system may run as part of the 8086 code. This approach is desirable 
for any of the following reasons: 

• The 8086 applications code modifies the operating system. 

• There is not sufficient development time to reimplement the 8086 operating system 
as 80386 code. 

2. The 8086 operating system may be implemented or emulated in the V86 monitor. This 
approach is desirable for any of the following reasons: 

• Operating system functions can be more easily coordinated among several V86 tasks. 

• The functions of the 8086 operating system can be easily emulated by calls to the 
80386 operating system. 
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Note that, regardless of the approach chosen for implementing the 8086 operating system, 
different V86 tasks may use different 8086 operating systems. 

15.2.1 Using Paging for V86 Tasks 

Paging is not necessary for a single V86 task, but paging is useful or necessary for any of 
the following reasons: 

• To create multiple V86 tasks. Each task must map the lower megabyte of linear addresses 
to different physical locations. 

• To emulate the megabyte wrap. On members of the 8086 family, it is possible to specify 
addresses larger than one megabyte. For example, with a selector value of OFFFFH and 
an offset ofOFFFFH, the effective address would be lOFFEFH (one megabyte + 65519). 
The 8086, which can form addresses only up to 20 bits long, truncates the high-order 
bit, thereby "wrapping" this address to OFFEFH. The 80386, however, which can form 
addresses up to 32 bits long does not truncate such an address. If any 8086 programs 
depend on this addressing anomaly, the same effect can be achieved in a V86 task by 
mapping linear addresses between 100000H and 110000H and linear addresses between 
o and 10000H to the same physical addresses. 

• To create a virtual address space larger than the physical address space. 

To share 8086 OS code or ROM code that is common to several 8086 programs that 
are executing simultaneously. 

• To redirect or trap references to memory-mapped I/O devices. 

15.2.2 Protection within a V86 Task 

Because it does not refer to descriptors while executing 8086 programs, the processor also 
does not utilize the protection mechanisms offered by descriptors. To protect the systems 
software that runs in a V86 task from the 8086 program, software designers may follow 
either of these approaches: 

• Reserve the first megabyte (plus 64 kilobytes) of each task's linear address space for the 
8086 program. An 8086 task cannot generate addresses outside this range. 

• Use the U /S bit of page-table entries to protect the virtual-machine monitor and other 
systems software in each virtual 8086 task's space. When the processor is in V86 mode, 
CPL is 3. Therefore, an 8086 program has only user privileges. If the pages of the 
virtual-machine monitor have supervisor privilege, they cannot be accessed by the 8086 
program. 
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15.3 ENTERING AND LEAVING V86 MODE 

Figure 15-2 summarizes the ways that the processor can enter and leave an 8086 program. 
The processor can enter V86 by either of two means: 

1. A task switch to an 80386 task loads the image of EFLAGS from the new TSS. The 
TSS of the new task must be an 80386 TSS, not an 80286 TSS, because the 80286 TSS 
does not store the high-order word of EFLAGS, which contains the VM flag. A value 
of one in the VM bit of the new EFLAGS indicates that the new task is executing 8086 
instructions; therefore, while loading the segment registers from the TSS, the processor 
forms base addresses as the 8086 would. 

2. An IRET from a procedure of an 80386 task loads the image of EFLAGS from the 
stack. A value of one in VM in this case indicates that the procedure to which control 
is being returned is an 8086 procedure. The CPL at the time the IRET is executed must 
be zero, else the processor does not change VM. 

The processor leaves V86 mode when an interrupt or exception occurs. There are two cases: 

1. The interrupt or exception causes a task switch. A task switch from a V86 task to any 
other task loads EFLAGS from the TSS of the new task. If the new TSS is an 80386 
TSS and the VM bit in the EFLAGS image is zero or if the new TSS is an 80286 TSS, 
then the processor clears the VM bit of EFLAGS, loads the segment registers from the 
new TSS using 80386-style address formation, and begins executing the instructions of 
the new task according to 80386 protected-mode semantics. 

MODE TRANSITION DIAGRAM 

TASK SWITCH I INITIAL I 
~ 

OR IRET I ENTRY 

INTERRUPT, EXCEPTION 

8086 PROGRAM V86 MONITOR 

(V86 MODE) IRET 
(PROTECTED .. MODE) 

I TASK SWITCH 
OTHER 80386 TASKS 

TASK SWITCH I 
(PROTECTED MODE) 

TASK SWITCH TASK SWITCH 

G30117 

Figure 15-2. Entering and Leaving an 8086 Program 
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2. The interrupt or exception vectors to a privilege-level zero procedure. The processor 
stores the current setting of EFLAGS on the stack, then clears the VM bit. The inter­
rupt or exception handler, therefore, executes as "native" 80386 protected-mode code. 
If an interrupt or exception vectors to a conforming segment or to a privilege level other 
than three, the processor causes a general-protection exception; the error code is the 
selector of the executable segment to which transfer was attempted. 

Systems software does not manipulate the VM flag directly, but rather manipulates the 
image of the EFLAGS register that is stored on the stack or in the TSS. The V86 monitor 
sets the VM flag in the EFLAGS image on the stack or in the TSS when first creating a 
V86 task. Exception and interrupt handlers can examine the VM flag on the stack. If the 
interrupted procedure was executing in V86 mode, the handler may need to invoke the V86 
monitor. 

15.3.1 Transitions Through Task Switches 

A task switch to or from a V86 task may be due to any of three causes: 

1. An interrupt that vectors to a task gate. 

2. An action of the scheduler of the 80386 operating system. 

3. An IRET when the NT flag is set. 

In any of these cases, the processor changes the VM bit in EFLAGS according to the image 
of EFLAGS in the new TSS. If the new TSS is an 80286 TSS, the high-order word of 
EFLAGS is not in the TSS; the processor clears VM in this case. The processor updates 
VM prior to loading the segment registers from the images in the new TSS. The new setting 
of VM determines whether the processor interprets the new segment-register images as 8086 
selectors or 80386/80286 selectors. 

15.3.2 Transitions Through Trap Gates and Interrupt Gates 

The processor leaves V86 mode as the result of an exception or interrupt that vectors via a 
trap or interrupt gate to a privilege-level zero procedure. The exception or interrupt handler 
returns to the 8086 code by executing an IRET. 

Because it was designed for execution by an 8086 processor, an 8086 program in a V86 task 
will have an 8086-style interrupt table starting at linear address zero. However, the 80386 
does not use this table directly. For all exceptions and interrupts that occur in V86 mode, 
the processor vectors through the IDT. The IDT entry for an interrupt or exception that 
occurs in a V86 task must contain either: 

• A task gate. 

• An 80386 trap gate (type 14) or an 80386 interrupt gate (type 15), which must point to 
a nonconforming, privilege-level zero, code segment. 
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Interrupts and exceptions that have 80386 trap or interrupt gates in the IDT vector to the 
appropriate handler procedure at privilege-level zero. The contents of all the 8086 segment 
registers are stored on the PL 0 stack. Figure 15-3 shows the format of the PL 0 stack after 
an exception or interrupt that occurs while a V86 task is executing an 8086 program. 

After the processor stores all the 8086 segment registers on the PL 0 stack, it loads all the 
segment registers with zeros before starting to execute the handler procedure. This permits 
the interrupt handler to safely save and restore the DS, ES, FS, and GS registers as 80386 
selectors. Interrupt handlers that may be invoked in the context of either a regular task or a 
V86 task, can use the same prolog and epilog code for register saving regardless of the kind 
of task. Restoring zeros to these registers before execution of the IRET does not cause a 
trap in the interrupt handler. Interrupt procedures that expect values in the segment regis­
ters or that return values via segment registers have to use the register images stored on the 
PL 0 stack. Interrupt handlers that need to know whether the interrupt occurred in V86 
mode can examine the VM bit in the stored EFLAGS image. 

An interrupt handler passes control to the V86 monitor if the VM bit is set in the EFLAGS 
image stored on the stack and the interrupt or exception is one that the monitor needs to 
handle. The V86 monitor may either: 

• Handle the interrupt completely within the V86 monitor. 

• Invoke the 8086 program's interrupt handler. 

SS:ESP 
FROM TSS 

0 0 
o.-J 

I F OlOGS 
R 
E E OLD FS 
C x 
T P OLD OS 
I A 
0 N OLD ES 
N S 

~~ 
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SS:EIP 

OLD EIP I 
1-------4-..1 
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OlOGS 
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Figure 15-3. PL 0 Stack after Interrupt in V86 Task 
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Reflecting an interrupt or exception back to the 8086 code involves the following steps: 

1. Refer to the 8086 interrupt vector to locate the appropriate handler procedure. 

2. Store the state of the 8086 program on the privilege-level three stack. 

3. Change the return link on the privilege-level zero stack to point to the privilege-level 
three handler procedure. 

4. Execute an IRET so as to pass control to the handler. 

5. When the IRET by the privilege-level three handler again traps to the V86 monitor, 
restore the return link on the privilege-level zero stack to point to the originally inter­
rupted, privilege-level three procedure. 

6. Execute an IRET so as to pass control back to the interrupted procedure. 

15.4 ADDITIONAL SENSITIVE INSTRUCTIONS 

When the 80386 is executing in V86 mode, the instructions PUSHF, POPF, INT n, and 
IRET are sensitive to IOPL. The instructions IN, INS, OUT, and OUTS, which are 
ordinarily sensitive in protected mode, are not sensitive in V86 mode. Following is a complete 
list of instructions that are sensitive in V86 mode: 

CLI 
STI 
LOCK 
PUSHF 
POPF 
INT n 
RET 

-Clear Interrupt-Enable Flag 
-Set Interrupt-Enable Flag 
-Assert Bus-Lock Signal 
-Push Flags 
-Pop Flags 
-Software Interrupt 
-Interrupt Return 

CPL is always three in V86 mode; therefore, if IOPL < 3, these instructions will trigger a 
general-protection exceptions. These instructions are made sensitive so that their functions 
can be simulated by the V86 monitor. 

15.4.1 Emulating 8086 Operating System Calls 

INT n is sensitive so that the V86 monitor can intercept calls to the 8086 OS. Many 8086 
operating systems are called by pushing parameters onto the stack, then executing an 
INT n instruction. If IOPL < 3, INT n instructions will be intercepted by the V86 monitor. 
The V86 monitor can then emulate the function of the 8086 operating system or reflect the 
interrupt back to the 8086 operating system in V86 mode. 

15.4.2 Virtualizing the Interrupt-Enable Flag 

When the processor is executing 8086 code in a V86 task, the instructions PUSHF, POPF, 
and IRET are sensitive to IOPL so that the V86 monitor can control changes to the 
interrupt-enable flag (IF). Other instructions that affect IF (STI and CLI) are IOPL sensi­
tive both in 8086 code and in 80386/80386 code. 
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Many 8086 programs that were designed to execute on single-task systems set and clear IF 
to control interrupts. However, when these same programs are executed in a multitasking 
environment, such control of IF can be disruptive. If IOPL is less than three, all instructions 
that change or interrogate IF will trap to the V86 monitor. The V86 monitor can then control 
IF in a manner that both suits the needs of the larger environment and is transparent to the 
8086 program. 

15.5 VIRTUAL 1/0 

Many 8086 programs that were designed to execute on single-task systems use I/O devices 
directly. However, when these same programs are executed in a multitasking environment, 
such use of devices can be disruptive. The 80386 provides sufficient flexibility to control 
I/O in a manner that both suits the needs of the new environment and is transparent to the 
8086 program. Designers may take any of several possible approaches to controlling I/O: 

• Implement or emulate the 8086 operating system as an 80386 program and require the 
8086 application to do I/O via software interrupts to the operating system, trapping all 
attempts to do I/O directly. 

• Let the 8086 program take complete control of all I/O. 

• Selectively trap and emulate references that a task makes to specific I/O ports. 

• Trap or redirect references to memory-mapped I/O addresses. 

The method of controlling I/O depends upon whether I/O ports are I/O mapped or memory 
mapped. 

15.5.1 I/O-Mapped 1/0 

I/O-mapped I/O in V86 mode differs from protected mode only in that the protection 
mechanism does not consult 10PL when executing the I/O instructions IN. INS, OUT, 
OUTS. Only the I/O permission bit map controls the right for V86 tasks to execute these 
I/0 instructions. 

The I/O permission map traps I/0 instructions selectively depending on the I/O addresses 
to which they refer. The I/O permission bit map of each V86 task determines which I/O 
addresses are trapped for that task. Because each task may have a different I/O permission 
bit map, the addresses trapped for one task may be different from those trapped for others. 
Refer to Chapter 8 for more information about the I/O permission map. 

15.5.2 Memory-Mapped 1/0 

In hardware designs that utilize memory-mapped I/O, the paging facilities of the 80386 can 
be used to trap or redirect I/O operations. Each task that executes memory-mapped I/0 
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must have a page (or pages) for the memory-mapped address space. The V86 monitor may 
control memory-mapped I/O by any of these means: 

• Assign the memory-mapped page to appropriate physical addresses. Different tasks may 
have different physical addresses, thereby preventing the tasks from interfering with 
each other. 

• Cause a trap to the monitor by forcing a page fault on the memory-mapped page. Read­
only pages trap writes. Not-present pages trap both reads and writes. 

Intervention for every I/O might be excessive for some kinds of I/O devices. A page fault 
can still be used in this case to cause intervention on the first I/O operation. The monitor 
can then at least make sure that the task has exclusive access to the device. Then the monitor 
can change the page status to present and read/write, allowing subsequent I/O to proceed 
at full speed. 

15.5.3 Special 1/0 Buffers 

Buffers of intelligent controllers (for example, a bit-mapped graphics buffer) can also be 
virtualized via page mapping. The linear space for the buffer can be mapped to a different 
physical space for each virtual 8086 task. The V86 monitor can then assume responsibility 
for spooling the data or assigning the virtual buffer to the real buffer at appropriate times. 

15.6 DIFFERENCES FROM 8086 

In general, V86 mode will correctly execute software designed for the 8086, 8088, 80186, 
and 80188. Following is a list of the minor differences between 8086 execution on the 80386 
and on an 8086. 

1. Instruction clock counts. 

The 80386 takes fewer clocks for most instructions than the 8086/8088. The areas most 
likely to be affected are: 

• Delays required by I/O devices between I/O operations. 

• Assumed delays with 8086/8088 operating in parallel with an 8087. 

2. Divide exceptions point to the DIV instruction. 

Divide exceptions on the 80386 always leave the saved CS:IP value pointing to the 
instruction that failed. On the 8086/8088, the CS:IP value points to the next 
instruction. 

3. Undefined 8086/8088 opcodes. 

Opcodes that were not defined for the 8086/8088 will cause exception 6 or will execute 
one of the new instructions defined for the 80386. 
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4. Value written by PUSH SP. 

The 80386 pushes a different value on the stack for PUSH SP than the 8086/8088. The 
80386 pushes the value of SP before SP is incremented as part of the push operation; 
the 8086/8088 pushes the value of SP after it is incremented. If the value pushed is 
important, replace PUSH SP instructions with the following three instructions: 

PUS H 
MOV 
XCHG 

BP 
B P, 5 P 
BP, [BPl 

This code functions as the 8086/8088 PUSH SP instruction on the 80386. 

5. Shift or rotate by more than 31 bits. 

The 80386 masks all shift and rotate counts to the low-order five bits. This MOD 32 
operation limits the count to a maximum of 31 bits, thereby limiting the time that inter­
rupt response is delayed while the instruction is executing. 

6. Redundant prefixes. 

The 80386 sets a limit of 15 bytes on instruction length. The only way to violate this 
limit is by putting redundant prefixes before an instruction. Exception 13 occurs if the 
limit on instruction length is violated. The 8086/8088 has no instruction length limit. 

7. Operand crossing offset 0 or 65,535. 

On the 8086, an attempt to access a memory operand that crosses offset 65,535 
(e.g., MOV a word to offset 65,535) or offset 0 (e.g., PUSH a word when SP = 1) 
causes the offset to wrap around modulo 65,536. The 80386 raises an exception in these 
cases-exception 13 if the segment is a data segment (i.e., if CS, DS, ES, FS, or GS is 
being used to address the segment), exception 12 if the segment is a stack segment (i.e., 
if SS is being used). 

8. Sequential execution across offset 65,535. 

On the 8086, if sequential execution of instructions proceeds past offset 65,535, the 
processor fetches the next instruction byte from offset 0 of the same segment. On the 
80386, the processor raises exception 13 in such a case. 

9. LOCK is restricted to certain instructions. 

The LOCK prefix and its corresponding output signal should only be used to prevent 
other bus masters from interrupting a data movement operation. The 80386 always 
asserts the LOCK signal during an XCHG instruction with memory (even if the LOCK 
prefix is not used). LOCK may only be used with the following 80386 instructions when 
they update memory: BTS, BTR, BTC, XCHG, ADD, ADC, SUB, SBB, INC, DEC, 
AND, OR, XOR, NOT, and NEG. An undefined-opcode exception (interrupt 6) results 
from using LOCK before any other instruction. 

10. Single-stepping external interrupt handlers. 

The priority of the 80386 single-step exception is different from that of the 8086/8088. 
The change prevents an external interrupt handler from being single-stepped if the 
interrupt occurs while a program is being single-stepped. The 80386 single-step excep­
tion has higher priority that any external interrupt. The 80386 will still single-step 
through an interrupt handler invoked by the INT instructions or by an exception. 
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11. IDIV exceptions for quotients of 80H or 8000H. 

The 80386 can generate the largest negative number as a quotient for the IDIV instruc­
tion. The 8086/8088 causes exception zero instead. 

12. Flags in stack. 

The setting of the flags stored by PUSHF, by interrupts, and by exceptions is different 
from that stored by the 8086 in bit positions 12 through 15. On the 8086 these bits are 
stored as ones, but in V86 mode bit 15 is always zero, and bits 14 through 12 reflect the 
last value loaded into them. 

13. NMI interrupting NMI handlers. 

After an NMI is recognized on the 80386, the NMI interrupt is masked until an IRET 
instruction is executed. 

14. Coprocessor errors vector to interrupt 16. 

Any 80386 system with a coprocessor must use interrupt vector 16 for the coprocessor 
error exception. If an 8086/8088 system uses another vector for the 8087 interrupt, both 
vectors should point to the coprocessor-error exception handler. 

15 . Numeric exception handlers should allow prefixes. 

On the 80386, the value of CS:IP saved for coprocessor exceptions points at any prefixes 
before an ESC instruction. On 8086/8088 systems, the saved CS:IP points to the ESC 
instruction itself. 

16. Coprocessor does not use interrupt controller. 

The coprocessor error signal to the 80386 does not pass through an interrupt controller 
(an 8087 INT signal does). Some instructions in a coprocessor error handler may need 
to be deleted if they deal with the interrupt controller. 

15.7 DIFFERENCES FROM 80286 REAL-ADDRESS MODE 

The 80286 processor implements the bus lock function differently than the 80386. This fact 
mayor may not be apparent to 8086 programs, depending on how the V86 monitor handles 
the LOCK prefix. LOCKed instructions are sensitive to IOPL; therefore, software designers 
can choose to emulate its function. If, however, 8086 programs are allowed to execute LOCK 
directly, programs that use forms of memory locking specific to the 8086 may not execute 
properly when transported to a specific application of the 80386. 

The LOCK prefix and its corresponding output signal should only be used to prevent other 
bus masters from interrupting a data movement operation. LOCK may only be used with 
the following 80386 instructions when they modify memory. An undefined-opcode exception 
results from using LOCK before any other instruction. 

• Bit test and change: BTS, BTR, BTC. 

Exchange: XCHG. 

One-operand arithmetic and logical: INC, DEC, NOT, and NEG. 

• Two-operand arithmetic and logical: ADD, ADC, SUB, SBB, AND, OR, XOR. 
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A locked instruction is guaranteed to lock only the area of memory defined by the destina­
tion operand, but may lock a larger memory area. For example, typical 8086 and 80286 
configurations lock the entire physical memory space. With the 80386, the defined area of 
memory is guaranteed to be locked against access by a processor executing a locked instruc­
tion on exactly the same memory area, i.e., an operand with identical starting address and 
identical length. 
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CHAPTER 16 
MIXING 16-BIT AND 32-BIT CODE 

The 80386 running in protected mode is a 32-bit microprocessor, but it is designed to support 
16-bit processing at three levels: 

1. Executing 8086/80286 16-bit programs efficiently with complete compatibility. 

2. Mixing l6-bit modules with 32-bit modules. 

3. Mixing 16-bit and 32-bit addresses and operands within one module. 

The first level of support for l6-bit programs has already been discussed in Chapter 13, 
Chapter 14, and Chapter 15. This chapter shows how l6-bit and 32-bit modules can cooper­
ate with one another, and how one module can utilize both 16-bit and 32-bit operands and 
addressing. 

The 80386 functions most efficiently when it is possible to distinguish between pure l6-bit 
modules and pure 32-bit modules. A pure 16-bit module has these characteristics: 

• All segments occupy 64 Kilobytes or less. 

• Data items are either 8 bits or 16 bits wide. 

• Pointers to code and data have 16-bit offsets. 

• Control is transferred only among 16-bit segments. 

A pure 32-bit module has these characteristics: 

• Segments may occupy more than 64 Kilobytes (zero bytes to 4 gigabytes). 

• Data items are either 8 bits or 32 bits wide. 

• Pointers to code and data have 32-bit offsets. 

• Control is transferred only among 32-bit segments. 

Pure 16-bit modules do exist; they are the modules designed for 16-bit microprocessors. Pure 
32-bit modules may exist in new programs designed explicitly for the 80386. However, as 
systems designers move applications from 16-bit processors to the 32-bit 80386, it will not 
always be possible to maintain these ideals of pure 16-bit or 32-bit modules. It may be 
expedient to execute old 16-bit modules in a new 32-bit environment without making source­
code changes to the old modules if any of the following conditions is true: 

• Modules will be converted one-by-one from 16-bit environments to 32-bit environments. 

• Older, 16-bit compilers and software-development tools will be utilized in the new 
32-bit operating environment until new 32-bit versions can be created. 

• The source code of 16-bit modules is not available for modification. 

• The specific data structures used by a given module inherently utilize 16-bit words. 

• The native word size of the source language is 16 bits. 

16-1 



MIXING 16-BIT AND 32-BIT CODE 

On the 80386, 16-bit modules can be mixed with 32-bit modules. To design a system that 
mixes 16- and 32-bit code requires an understanding of the mechanisms that the 80386 uses 
to invoke and control its 32-bit and 16-bit features. 

16.1 HOW THE 80386 IMPLEMENTS 16-BIT AND 32-BIT FEATURES 

The features of the architecture that permit the 80386 to work equally well with 32-bit and 
16-bit address and operand sizes include: 

• The D-bit (default bit) of code-segment descriptors, which determines the default choice 
of operand-size and address-size for the instructions of a code segment. (In real-address 
mode and V86 mode, which do not use descriptors, the default is 16 bits.) A code segment 
whose D-bit is set is known as a USE32 segment; a code segment whose D·bit is zero is 
a USE16 segment. The D-bit eliminates the need to encode the operand size and address 
size in instructions when all instructions use operands and effective addresses of the 
same size. 

• Instruction prefixes that explicitly override the default choice of operand size and address 
size (available in protected mode as well as in real-address mode and V86 mode). 

• Separate 32-bit and 16-bit gates for intersegment control transfers (including call gates, 
interrupt gates, and trap gates). The operand size for the control transfer is determined 
by the type of gate, not by the D-bit or prefix of the transfer instruction. 

• Registers that can be used both for 32-bit and 16-bit operands and effective-address 
calculations. 

• The B-bit (big bit) of data-segment descriptors, which determines the size of stack pointer 
(32-bit ESP or 16-bit SP) used by the CPU for implicit stack references. 

16.2 MIXING 32-BIT AND 16-BIT OPERATIONS 

The 80386 has two instruction prefixes that allow mixing of 32-bit and 16-bit operations 
within one segment: 

• The operand-size prefix (66H) 

• The address-size prefix (67H) 

These prefixes reverse the default size selected by the D-bit. For example, the processor can 
interpret the word-move instruction M 0 V m em, r e 9 in any of four ways: 

• In a USE32 segment: 

1. Normally moves 32 bits from a 32-bit register to a 32-bit effective address in 
memory. 

2. If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to 32-bit 
effective address in memory. 

3. If preceded by an address-size prefix, moves 32 bits from a 32-bit register to a 
16-bit effective address in memory. 
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4. If preceded by both an address-size prefix and an operand-size prefix, moves 16 bits 
from a 16-bit register to a 16-bit effective address in memory. 

• In a USE16 segment: 

l. Normally moves 16 bits from a 16-bit register to a 16-bit effective address in 
memory. 

2. If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to 16-bit 
effective address in memory. 

3. If preceded by an address-size prefix, moves 16 bits from a 16-bit register to a 
32-bit effective address in memory. 

4. If preceded by both an address-size prefix and an operand-size prefix, moves 32 bits 
from a 32-bit register to a 32-bit effective address in memory. 

These examples illustrate that any instruction can generate any combination of operand size 
and address size regardless of whether the instruction is in a USE16 or USE32 segment. 
The choice of the USE16 or USE32 attribute for a code segment is based upon these 
criteria: 

l. The need to address instructions or data in segments that are larger than 64 Kilobytes. 

2. The predominant size of operands. 

3. The addressing modes desired. (Refer to Chapter 17 for an explanation of the additional 
addressing modes that are available when 32-bit addressing is used.) 

Choosing a setting of the D-bit that is contrary to the predominant size of operands requires 
the generation of an excessive number of operand-size prefixes. 

16.3 SHARING DATA SEGMENTS AMONG MIXED CODE SEGMENTS 

Because the choice of operand size and address size is defined in code segments and their 
descriptors, data segments can be shared freely among both USE16 and USE32 code 
segments. The only limitation is the one imposed by pointers with 16-bit offsets, which can 
only point to the first 64 Kilobytes of a segment. When a data segment that contains more 
than 64 Kilobytes is to be shared among USE32 and USE16 segments, the data that is to 
be accessed by the USE16 segments must be located within the first 64 Kilobytes. 

A stack that spans addresses less than 64K can be shared by both USE16 and USE32 code 
segments. This class of stacks includes: 

• Stacks in expand-up segments with G=O and B=O. 

• Stacks in expand-down segments with G=O and B=O. 

• Stacks in expand-up segments with G= 1 and B=O, in which the stack is contained 
completely within the lower 64 Kilobytes. (Offsets greater than 64K can be used for 
data, other than the stack, that is not shared.) 
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The B-bit of a stack segment cannot, in general, be used to change the size of stack used by 
a USE16 code segment. The size of stack pointer used by the processor for implicit stack 
references is controlled by the B-bit of the data-segment descriptor for the stack. Implicit 
references are those caused by interrupts, exceptions, and instructions such as PUSH, POP, 
CALL, and RET. One might be tempted, therefore, to try to increase beyond 64K the size 
of the stack used by 16-bit code simply by supplying a larger stack segment with the B-bit 
set. However, the B-bit does not control explicit stack references, such as accesses to param­
eters or local variables. A USE16 code segment can utilize a "big" stack only if the code is 
modified so that all explicit references to the stack are preceded by the address-size prefix, 
causing those references to use 32-bit addressing. 

In big, expand-down segments (B= 1, G= 1, and E= 1), all offsets are greater than 64K, 
therefore USE16 code cannot utilize such a stack segment unless the code segment is modified 
to employ 32-bit addressing. (Refer to Chapter 6 for a review of the B, G, and E bits.) 

16.4 TRANSFERRING CONTROL AMONG MIXED CODE SEGMENTS 

When transferring control among procedures in USE16 and USE32 code segments, 
programmers must be aware of three points: 

• Addressing limitations imposed by pointers with 16-bit offsets. 

• Matching of operand-size attribute in effect for the CALL/RET pair and the 
Interrupt/IRET pair so as to manage the stack correctly. 

• Translation of parameters, especially pointer parameters. 

Clearly, 16-bit effective addresses cannot be used to address data or code located beyond 
64K in a 32-bit segment, nor can large 32-bit parameters be squeezed into a 16-bit word; 
however, except for these obvious limits, most interfacing problems between 16-bit and 
32-bit modules can be solved. Some solutions involve inserting interface procedures between 
the procedures in question. 

16.4.1 Size of Code-Segment Pointer 

For control-transfer instructions that use a pointer to identify the next instruction (Le., those 
that do not use gates), the size of the offset portion of the pointer is determined by the 
operand-size attribute. The implications of the use of two different sizes of code-segment 
pointer are: 

• JMP, CALL, or RET from 32-bit segment to 16-bit segment is always possible using a 
32-bit operand size. 

• JMP, CALL, or RET from 16-bit segment using a 16-bit operand size cannot address 
the target in a 32-bit segment if the address of the target is greater than 64K. 

An interface procedure can enable transfers from USE16 segments to 32-bit addresses beyond 
64K without requiring modifications any more extensive than relinking or rebinding the old 
programs. The requirements for such an interface procedure are discussed later in this 
chapter. 
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16.4.2 Stack Management for Control Transfers 

Because stack management is different for 16-bit CALL/RET than for 32-bit CALL/RET, 
the operand size of RET must match that of CALL. (Refer to Figure 16-1.) A 16-bit CALL 
pushes the 16-bit IP and (for calls between privilege levels) the l6-bit SP register. The 
corresponding RET must also use a 16-bit operand size to POP these 16-bit values from the 
stack into the l6-bit registers. A 32-bit CALL pushes the 32-bit EIP and (for interlevel 
calls) the 32-bit ESP register. The corresponding RET must also use a 32-bit operand size 
to POP these 32-bit values from the stack into the 32-bit registers. If the two halves of a 
CALL/RET pair do not have matching operand sizes, the stack will not be managed correctly 
and the values of the instruction pointer and stack pointer will not be restored to correct 
values. 

When the CALL and its corresponding RET are in segments that have D-bits with the same 
values (i.e., both have 32-bit defaults or both have l6-bit defaults), there is no problem. 
When the CALL and its corresponding RET are in segments that have different D-bit values, 
however, programmers (or program development software) must ensure that the CALL and 
RET match. 
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Figure 16-1. Stack after Far 16-Bit and 32-Bit Calls 
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There are three ways to cause a 16-bit procedure to execute a 32-bit call: 

1. Use a 16-bit call to a 32-bit interface procedure that then uses a 32-bit call to invoke 
the intended target. 

2. Bind the 16-bit call to a 32-bit call gate. 

3. Modify the 16-bit procedure, inserting an operand-size prefix before the call, thereby 
changing it to a 32-bit call. 

Likewise, there are three ways to cause a 32-bit procedure to execute a 16-bit call: 

1. Use a 32-bit call to a 32-bit interface procedure that then uses a 16-bit call to invoke 
the intended target. 

2. Bind the 32-bit call to a 16-bit call gate. 

3. Modify the 32-bit procedure, inserting an operand-size prefix before the call, thereby 
changing it to a 16-bit call. (Be certain that the return offset does not exceed 64K.) 

Programmers can utilize any of the preceding methods to make a CALL in a USE16 segment 
match the corresponding RET in a USE32 segment, or to make a CALL in a USE32 segment 
match the corresponding RET in a USE16 segment. 

16.4.2.1 CONTROLLING THE OPERAND-SIZE FOR A CALL 

When the selector of the pointer referenced by a CALL instruction selects a segment 
descriptor, the operand-size attribute in effect for the CALL instruction is determined by 
the D-bit in the segment descriptor and by any operand-size instruction prefix. 

When the selector of the pointer referenced by a CALL instruction selects a gate descriptor, 
the type of call is determined by the type of call gate. A call via an 80286 call gate (descrip­
tor type 4) always has a 16-bit operand-size attribute; a call via an 80386 call gate (descrip­
tor type 12) always has a 32-bit operand-size attribute. The offset of the target procedure is 
taken from the gate descriptor; therefore, even a 16-bit procedure can call a procedure that 
is located more than 64 kilobytes from the base of a 32-bit segment, because a 32-bit call 
gate contains a 32-bit target offset. 

An unmodified 16-bit code segment that has run successfully on an 8086 or real-mode 80286 
will always have a D-bit of zero and will not use operand-size override prefixes; therefore, it 
will always execute 16-bit versions of CALL. The only modification needed to make a 
16-bit procedure effect a 32-bit call is to relink the call to an 80386 call gate. 

16.4.2.2 CHANGING SIZE OF CALL 

When adding 32-bit gates to 16-bit procedures, it is important to consider the number of 
parameters. The count field of the gate descriptor specifies the size of the parameter string 
to copy from the current stack to the stack of the more privileged procedure. The count field 
of a 16-bit gate specifies the number of words to be copied, whereas the count field of a 
32-bit gate specifies the number of doublewords to be copied; therefore, the 16-bit procedure 
must use an even number of words as parameters. 
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16.4.3 Interrupt Control Transfers 

With a control transfer due to an interrupt or exception, a gate is always involved. The 
operand-size attribute for the interrupt is determined by the type of IDT gate. 

A 386 interrupt or trap gate (descriptor type 14 or 15) to a 32-bit interrupt procedure can 
be used to interrupt either 32-bit or 16-bit procedures. However, it is not generally feasible 
to permit an interrupt or exception to invoke a 16-bit handler procedure when 32-bit code is 
executing, because a 16-bit interrupt procedure has a return offset of only 16-bits on its 
stack. If the 32-bit procedure is executing at an address greater than 64K, the 16-bit inter­
rupt procedure cannot return correctly. 

16.4.4 Parameter Translation 

When segment offsets or pointers (which contain segment offsets) are passed as parameters 
between 16-bit and 32-bit procedures, some translation is required. Clearly, if a 32-bit 
procedure passes a pointer to data located beyond 64K to a 16-bit procedure, the 16-bit 
procedure cannot utilize it. Beyond this natural limitation, an interface procedure can perform 
any format conversion between 32-bit and 16-bit pointers that may be needed. 

Parameters passed by value between 32-bit and 16-bit code may also require translation 
between 32-bit and 16-bit formats. Such translation requirements are application dependent. 
Systems designers should take care to limit the range of values passed so that such transla­
tions are possible. 

16.4.5 The Interface Procedure 

Interposing an interface procedure between 32-bit and 16-bit procedures can be the solution 
to any of several interface requirements: 

• Allowing procedures in 16-bit segments to transfer control to instructions located beyond 
64K in 32·bit segments. 

• Matching of operand size for CALL/RET. 

• Parameter translation. 

Interface procedures between USE32 and USE16 segments can be constructed with these 
properties: 

• The procedures reside in a code segment whose D·bit is set, indicating a default operand 
size of 32-bits. 

• All entry points that may be called by 16-bit procedures have offsets that are actually 
less than 64 K. 

• All points to which called 16-bit procedures may return also lie within 64K. 
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The interface procedures do little more than call corresponding procedures in other segments. 
There may be two kinds of procedures: 

• Those that are called by l6-bit procedures and call 32-bit procedures. These interface 
procedures are called by 16-bit CALLs and use the operand-size prefix before RET 
instructions to cause a l6-bit RET. CALLs to 32-bit segments are 32-bit calls (by default, 
because the D-bit is set), and the 32-bit code returns with 32-bit RET instructions. 

• Those that are called by 32-bit procedures and call 16-bit procedures. These interface 
procedures are called by 32-bit CALL instructions, and return with 32-bit RET instruc­
tions (by default, because the D-bit is set). CALLs to 16-bit procedures use the operand­
size prefix; procedures in the 16-bit code return with 16-bit RET instructions. 
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CHAPTER 17 
80386 INSTRUCTION SET 

This chapter presents instructions for the 80386 in alphabetical order. For each instruction, 
the forms are given for each operand combination, including object code produced, operands 
n~quired, execution time, and a description. For each instruction, there is an operational 
description and a summary of exceptions generated. 

17.1 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES 

When executing an instruction, the 80386 can address memory using either 16 or 32-bit 
addresses. Consequently, each instruction that uses memory addresses has associated with it 
an address-size attribute of either 16 or 32 bits. 16-bit addresses imply both the use of a 
16-bit displacement in the instruction and the generation of a 16-bit address offset (segment 
relative address) as the result of the effective address calculation. 32-bit addresses imply the 
use of a 32-bit displacement and the generation of a 32-bit address offset. Similarly, an 
instruction that accesses words (16 bits) or doublewords (32 bits) has an operand-size attrib­
ute of either 16 or 32 bits. 

The attributes are determined by a combination of defaults, instruction prefixes, and (for 
programs executing in protected mode) size-specification bits in segment descriptors. 

17.1.1 Default Segment Attribute 

For programs executed in protected mode, the D-bit in executable-segment descriptors 
determines the default attribute for both address size and operand size. These default attri­
butes apply to the execution of all instructions in the segment. A value of zero in the D-bit 
sets the default address size and operand size to 16 bits; a value of one, to 32 bits. 

Programs that execute in real mode or virtual-8086 mode have 16-bit addresses and operands 
by default. -

17.1.2 Operand-Size and Address-Size Instruction Prefixes 

The internal encoding of an instruction can include two byte-long prefixes: the address-size 
prefix, 67H, and the operand-size prefix, 66H. (A later section, "Instruction Format," shows 
the position of the prefixes in an instruction's encoding.) These prefixes override the default 
segment attributes for the instruction that follows. Table 17-1 shows the effect of each possi­
ble combination of defaults and overrides. 

17.1.3 Address-Size Attribute for Stack 

Instructions that use the stack implicitly (for example: POP EAX also have a stack address­
size attribute of either 16 or 32 bits. Instructions with a stack address-size attribute of 16 
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Table 17-1. Effective Size Attributes 

Segment Default D = ... 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N Y Y N N Y Y 

Address-Size Prefix 67H N Y N Y N Y N Y 

Effective Operand Size 16 16 32 32 32 32 16 16 

Effective Address Size 16 32 16 32 32 16 32 16 

Y = Yes, this instruction prefix is present 
N = No, this instruction prefix is not present 

INSTRUCTION I ADDRESS· I OPERAND- I SEGMENT 
PREFIX SIZE PREFIX SIZE PREFIX OVERRIDE 

O~1 O~1 O~1 O~1 --------------------------
NUMBER OF BYTES 

OPCODE I MODR/M I SIB I DISPLACEMENT I IMMEDIATE 

10R2 OOR1 OOR1 O,1,20R4 O.1,20R4 

-----------------------
NUMBER OF BYTES 

G30117 

Figure 17-1. 80386 Instruction Format 

use the 16-bit SP stack pointer register; instructions with a stack address-size attribute of 
32 bits use the 32-bit ESP register to form the address of the top of the stack. 

(\-~The stack address-size attribute is controlled by the B-bit of the data-segment descriptor ;-(' 
the SS register. A value of zero in the B-bit selects a stack address-size attribute of 16; a 

I value of one selects a stack address-size attribute of 32. ___ J 
~ -

17.2 INSTRUCTION FORMAT 

All instruction encodings are subsets of the general instruction format shown in 
Figure 17-1. Instructions consist of optional instruction prefixes, one or two primary opcode 
bytes, possibly an address specifier consisting of the ModRJM byte and the SIB (Scale 
Index Base) byte, a displacement, if required, and an immediate data field, if required. 
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Smaller encoding fields can be defined within the primary opcode or opcodes. These fields 
define the direction of the operation, the size of the displacements, the register encoding, or 
sign extension; encoding fields vary depending on the class of operation. 

Most instructions that can refer to an operand in memory have an addressing form byte 
following the primary opcode byte(s). This byte, called the ModRjM byte, specifies the 
address form to be used. Certain encodings of the ModRjM byte indicate a second address­
ing byte, the SIB (Scale Index Base) byte, which follows the ModRjM byte and is required 
to fully specify the addressing form. 

Addressing forms can include a displacement immediately following either the ModRjM or 
SIB byte. If a displacement is present, it can be 8-, 16- or 32-bits. 

If the instruction specifies an immediate operand, the immediate operand always follows 
any displacement bytes. The immediate operand, if specified, is always the last field of the 
instruction. 

The following are the allowable instruction prefix codes: 

F3H REP prefix (used only with string instructions) 
F3H REPEjREPZ prefix {used only with string instructions 
F2H REPNEjREPNZ prefix (used only with string instructions) 
FOH LOCK prefix 

The following are the segment override prefixes: 

2EH CS segment override prefix 
36H SS segment override prefix 
3EH DS segment override prefix 
26H ES segment override prefix 
64H FS segment override prefix 
65H GS segment override prefix 
66H Operand-size override 
67H Address-size override 

17.2.1 ModR/M and SIB Bytes 

The ModRjM and SIB bytes follow the opcode byte{s) in many of the 80386 instructions. 
They contain the following information: 

• The indexing type or register number to be used in the instruction 

• The register to be used, or more information to select the instruction 

The base, index, and scale information 
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The ModRjM byte contains three fields of information: 

• The mod field, which occupies the two most significant bits of the byte, combines with 
the r jm field to form 32 possible values: eight registers and 24 indexing modes 

• The reg field, which occupies the next three bits following the mod field, specifies either 
a register number or three more bits of opcode information. The meaning of the reg 
field is determined by the first (opcode) byte of the instruction. 

• The r jm field, which occupies the three least significant bits of the byte, can specify a 
register as the location of an operand, or can form part of the addressing-mode encoding 
in combination with the mod field as described above 

The based indexed and scaled indexed forms of 32-bit addressing require the SIB byte. The 
presence of the SIB byte is indicated by certain encodings of the ModRjM byte. The SIB 
byte then includes the following fields: 

• The ss field, which occupies the two most significant bits of the byte, specifies the scale 
factor 

• The index field, which occupies the next three bits following the ss field and specifies 
the register number of the index register 

• The base field, which occupies the three least significant bits of the byte, specifies the 
register number of the base register 

Figure 17-2 shows the formats of the ModRjM and SIB bytes. 

The values and the corresponding addressing forms of the ModRjM and SIB bytes are 
shown in Tables 17-2, 17-3, and 17-4. The 16-bit addressing forms specified by the 
ModRjM byte are in Table 17-2. The 32-bit addressing forms specified by ModRjM are in 
Table 17-3. Table 17-4 shows the 32-bit addressing forms specified by the SIB byte. 

MODR/M BYTE 

7 6 5 4 3 2 0 

I MOD I REG/OPCODE I RIM 

SIB (SCALE INDEX BASE) BYTE 

7 6 5 4 3 2 0 

SS INDEX BASE 

030117 

Figure 17-2. ModR/M and SIB Byte Formats 
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Table 17-2. 16-Bit Addressing Forms with the ModR/M Byte 

r8(fr) Al Cl Ol Bl AH CH OH BH 
r16(fr) AX CX OX BX SP BP SI 01 
r32(fr) EAX ECX EOX EBX ESP EBP E51 EOI 
/digit (Opcode) 0 1 2 3 4 5 6 7 
REG = 000 001 010 011 100 101 110 111 

Effective 
Mod R/M ModR/M Values in Hexadecimal Address 

[BX +SI] 000 00 08 10 18 20 28 30 38 
[BX + 01] 001 01 09 11 19 21 29 31 39 
[BP + SI] 010 02 OA 12 1A 22 2A 32 3A 
[BP + 01) 

00 
011 03 OB 13 1B 23 2B 33 3B 

[SI] 100 04 OC 14 1C 24 2C 34 3C 
[01] 101 05 00 15 10 25 20 35 3D 
disp16 110 06 OE 16 1E 26 2E 36 3E 
[BX] 111 07 OF 17 1F 27 2F 37 3F 

[BX + SI] + disp8 000 40 48 50 58 60 68 70 78 
[BX + 01] +disp8 001 41 49 51 59 61 69 71 79 
[BP+SI]+disp8 010 42 4A 52 5A 62 6A 72 7A 
[BP+01]+disp8 01 011 43 4B 53 5B 63 6B 73 7B 
[SI]+disp8 100 44 4C 54 5C 64 6C 74 7C 
[01]+disp8 101 45 40 55 50 65 60 75 7D 
[BP]+disp8 110 46 4E 56 5E 66 6E 76 7E 
[BX]+disp8 111 47 4F 57 5F 67 6F 77 7F 

[BX+SI]+disp16 000 80 88 90 98 AO A8 60 B8 
[BX+01]+disp16 001 81 89 91 99 A1 A9 61 B9 

, __ ~SI]+diSP16 010 82 8A 92 9A A2 AA 62 BA 
IB 01]+disp16 10 

011 83 8B 93 9B A3 AB B3 BB 
[ 1]+disp16 100 84 8C 94 9C A4 AC B4 BC 
[01]+disp16 101 85 80 95 90 A5 AD 85 BO 
[BP]+disp16 110 86 8E 96 9E A6 AE B6 BE 
[BX] + disp16 111 87 8F 97 9F A7 AF 87 BF 

EAX/AX/Al 000 CO C8 DO 08 EO E8 FO F8 
ECX/CX/Cl 001 C1 C9 01 09 E1 E9 F1 F9 
EOX/OX/Ol 010 C2 CA 02 OA E2 EA F2 FA 
EBX/BX/Bl 11 011 C3 CB 03 DB E3 EB F3 FB 
ESP/SP/AH 100 C4 CC 04 DC E4 EC F4 FC 
EBP/BP/CH 101 C5 CD 05 DO E5 ED F5 FD 
ESI/SI/OH 110 C6 CE 06 DE E6 EE F6 FE 
EOI/OI/BH 111 C7 CF 07 OF E7 EF F7 FF 

NOTES: disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and added 
to the index. disp16 denotes a 16-bit displacement following the ModR/M byte, to be added to the 
index. Default segment register is 55 for the effective addresses containing a BP index, 05 for 
other effective addresses. 
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Table 17-3. 32-Bit Addressing Forms with the Mod RIM Byte 

r8(/r) AL CL OL BL AH CH OH BH 
r16(/r) AX CX OX BX SP BP SI 01 
r32(/r) EAX ECX EOX EBX ESP EBP ESI EOI 
/digit (Opcode) 0 1 2 3 4 5 6 7 
REG = 000 001 010 011 100 101 110 111 

Effective Mod R/M ModR/M Values in Hexadecimal Address 

[EAX] 000 00 08 10 18 20 28 30 38 
[ECX] 001 01 09 11 19 21 29 31 39 
[EOX] 010 02 OA 12 1A 22 2A 32 3A 
[E8X] 00 011 03 08 13 1B 23 2B 33 3B 
[--]H 100 04 OC 14 1C 24 2C 34 3C 
disp32 101 05 00 15 10 25 20 35 3D 
[ESI] 110 06 OE 16 1E 26 2E 36 3E 
[EOI] 111 07 OF 17 1F 27 2F 37 3F 

disp8[EAX] 000 40 48 50 58 60 68 70 78 
disp8[ECX] 001 41 49 51 59 61 69 71 79 
disp8[EOX] 010 42 4A 52 5A 62 6A 72 7A 
disp8[EPX]; 01 011 43 4B 53 5B 63 6B 73 7B 
disp8[--] H 100 44 4C 54 5C 64 6C 74 7C 
disp8L~l5.N- ::: p,p 101 45 40 55 50 65 60 75 70 
disp8[ESI] ~"<. 110 46 4E 56 5E 66 6E 76 7E 
disp8[EOI] 111 47 4F 57 5F 67 6F 77 7F 

disp32[EAX] 000 80 88 90 98 AO A8 BO B8 
disp32[ECX] 001 81 89 91 99 A1 A9 B1 B9 
disp32[EOX] 010 82 8A 92 9A A2 AA B2 BA 
disp32[EBX] 10 011 83 8B 93 9B A3 AB B3 BB 
disp32[--] [_oj 100 84 8C 94 9C A4 AC B4 BC 
disp32[EBP] 101 85 80 95 90 A5 AD B5 BO 
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE 
disp32[EOI] 111 87 8F 97 9F A7 AF B7 BF 

EAX/AX/AL 000 CO C8 DO 08 EO E8 FO F8 
ECX/CX/CL 001 C1 C9 01 09 E1 E9 F1 F9 
EDX/OX/OL 010 C2 CA 02 OA E2 EA F2 FA 
EBX/BX/BL 11 011 C3 CB 03 DB E3 EB F3 FB 
ESP/SP/AH 100 C4 CC 04 DC E4 EC F4 FC 
EBP/BP/CH 101 C5 CD 05 DO E5 ED F5 FD 
ESI/SI/OH 110 C6 CE 06 DE E6 EE F6 FE 
EDI/OI/BH 111 C7 CF 07 OF E7 EF F7 FF 

NOTES: [_oj [_oj means a SIB follows the ModR/M byte. disp8 denotes an 8-bit displacement following the 
SIB byte, to be sign-extended and added to the index. disp32 denotes a 32-bit displacement 
following the ModR/M byte, to be added to the index. 
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Table 17-4. 32-Bit Addressing Forms with the SIB Byte 

r32 EAX ECX EOX EBX ESP [*] ESI EOI 
Base = 0 1 2 3 4 5 6 7 
Base = 000 001 010 011 100 101 110 111 

Scaled Index SS Index '3 ..r3-"~B1M:Values in Hexadecimal 

[EAX] 000 00 01 02 03 04 05 06 07 
[ECX] 001 08 09 OA OB OC 00 DE OF 
[EOX] 010 10 11 12 13 14 15 16 17 
[EBX] 00 011 18 19 1A 1B 1C 10 1E 1F 
none 100 20 21 22 23 24 25 26 27 
[EBP] 101 28 29 2A 2B 2C 20 2E 2F 
[ESI] 110 30 31 32 33 34 35 36 37 
[EOI] 111 38 39 3A 3B 3C 30 3E 3F 

[EAX*2] 000 40 41 42 43 44 45 46 47 
[ECX*2] 001 48 49 4A 4B 4C 40 4E 4F 
[ECX*2] 010 50 51 52 53 54 55 56 57 
[EBX*2] 01 011 58 59 5A 5B 5C 50 5E 5F 
none 100 60 61 62 63 64 65 66 67 
[EBP*2] 101 68 69 6A 6B 6C 60 6E 6F 
[ESI*2] 110 70 71 72 73 74 75 76 77 
[EOI*2] 111 78 79 7A 7B 7C 70 7E 7F 

[EAX*4] 000 80 81 82 83 84 85 86 87 
[ECX*4] 001 88 89 8A 8B 8C 80 8E 8F 
[EOX*4] 010 90 91 92 93 94 95 96 97 
[EBX*4] 10 011 98 89 9A 9B 9C 90 9E 9F 
none 100 AO A1 A2 A3 A4 A5 A6 A7 
[EBP*4] 101 A8 A9 AA AB AC AD AE AF 
[ESI*4] 110 BO B1 B2 B3 B4 B5 B6 B7 
[EOI*4] 111 B8 B9 BA BB BC BO BE BF 

[EAX*8] 000 CO C1 C2 C3 C4 C5 C6 C7 
[ECX*8] 001 C8 C9 CA CB CC CO CE CF 
[EOX*8] 010 00 01 02 03 04 05 06 07 
[EBX*8] 11 011 08 09 OA OB DC 00 DE OF 
none 100 EO E1 E2 E3 E4 E5 E6 E7 
[EBP*8] 101 E8 E9 EA EB EC EO EE EF 
[ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7 
[EOI*8] 111 F8 F9 FA FB FC FD FE FF 

NOTES: [*] mea~s a disp32 with no base if MOD is OQ, [~] otherwise. This provides the following 
addressing modes: ~ -: c>,f 

1. • .1-' 
disp32[index] (MOO=OO) 
disp8[EBP][index] (MOD = 01) 
disp32[EBP][index] (MOD = 1 0) 
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17.2.2 How to Read the Instruction Set Pages 

The following is an example of the format used for each 80386 instruction description in 
this chapter: 

CMC-Complement Carry Flag 

Opcode Instruction Clocks Description 

F5 CMC 2 Complement carry flag 

The above table is followed by paragraphs labelled "Operation," "Description," "Flags 
Affected," "Protected Mode Exceptions," "Real Address Mode Exceptions," and, option­
ally, "Notes." The following sections explain the notational conventions and abbreviations 
used in these paragraphs of the instruction descriptions. 

17.2.2.1 OPCODE 

The "Opcode" column gives the complete object code produced for each form of the instruc­
tion. When possible, the codes are given as hexadecimal bytes, in the same order in which 
they appear in memory. Definitions of entries other than hexadecimal bytes are as follows: 

Idigit: (digit is between 0 and 7) indicates that the ModR/M byte of the instruction uses 
only the rim (register or memory) operand. The reg field contains the digit that provides an 
extension to the instruction's opcode. 

Ir: indicates that the ModR/M byte of the instruction contains both a register operand and 
an rim operand. 

cb, cw, cd, cp: a I-byte (cb), 2-byte (cw), 4-byte (cd) or 6-byte (cp) value following the 
opcode that is used to specify a code offset and possibly a new value for the code segment 
register. 

ib, iw, id: a I-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction that 
follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the 
operand is a signed value. All words and doublewords are given with the low-order byte first. 

+rb, +rw, +rd: a register code, from 0 through 7, added to the hexadecimal byte given at 
the left of the plus sign to form a single opcode byte. The codes are-

rb rw rd 

AL = 0 AX = 0 EAX = 0 
CL = I CX = I ECX = I 
DL = 2 DX = 2 EDX = 2 
BL = 3 BX = 3 EBX = 3 
AH=4 SP = 4 ESP = 4 
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rb 

AH=4 
CH= 5 
DH=6 
BH = 7 

rw 

SP = 4 
BP = 5 
SI = 6 
DI = 7 

17.2.2.2 INSTRUCTION 

80386 INSTRUCTION SET 

rd 

ESP = 4 
EBP = 5 
ESI = 6 
EDI = 7 

The "Instruction" column gives the syntax of the instruction statement as it would appear 
in an ASM386 program. The following is a list of the symbols used to represent operands in 
the instruction statements: 

rel8: a relative address in the range from 128 bytes before the end of the instruction to 127 
bytes after the end of the instruction. 

rel16, re132: a relative address within the same code segment as the instruction assembled. 
rel16 applies to instructions with an operand-size attribute of 16 bits; rel32 applies to 
instructions with an operand-size attribute of 32 bits. 

ptrI6:16, ptrI6:32: a FAR pointer, typically in a code segment different from that of the 
instruction. The notation 16:16 indicates that the value of the pointer has two parts. The 
value to the right of the colon is a 16-bit selector or value destined for the code segment 
register. The value to the left corresponds to the offset within the destination segment. 
ptr16:16 is used when the instruction's operand-size attribute is 16 bits; ptr16:32 is used 
with the 32-bit attribute. 

r8: one of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH. 

r16: one of the word registers AX, CX, DX, BX, SP, BP, sr, or DI. 

r32: one of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or ED!. 

imm8: an immediate byte value. imm8 is a signed number between -128 and + 127 inclu­
sive. For instructions in which imm8 is combined with a word or doubleword operand, the 
immediate value is sign-extended to form a word or doubleword. The upper byte of the word 
is filled with the topmost bit of the immediate value. 

imml6: an immediate word value used for instructions whose operand-size attribute is 16 
bits. This is a number between - 32768 and + 32767 inclusive. 

imm32: an immediate doubleword value used for instructions whose operand-size attribute 
is 32-bits. It allows the use of a number between +2147483647 and -2147483648. 

r/m8: a one-byte operand that is either the contents of a byte register (AL, BL, CL, DL, 
AH, BH, CH, DH), or a byte from memory. 

r Im16: a word register or memory operand used for instructions whose operand-size attrib­
ute is 16 bits. The word registers are: AX, BX, CX, DX, SP, BP, sr, D!. The contents of 
memory are found at the address provided by the effective address computation. 

17-9 



80386 INSTRUCTION SET 

r jm32: a doubleword register or memory operand used for instructions whose operand-size 
attribute is 32-bits. The doubleword registers are: EAX, EBX, ECX, EDX, ESP, EBP, ESI, 
ED!. The contents of memory are found at the address provided by the effective address 
computation. 

m8: a memory byte addressed by DS:SI or ES:DI (used only by string instructions). 

m16: a memory word addressed by DS:SI or ES:DI (used only by string instructions). 

m32: a memory doubleword addressed by DS:SI or ES:DI (used only by string instructions). 

mI6:16, mI6:32: a memory operand containing a far pointer composed of two numbers. The 
number to the left of the colon corresponds to the pointer's segment selector. The number to 
the right corresponds to its offset. 

m16 & 32, m16 & 16, m32 & 32: a memory operand consisting of data item pairs whose sizes 
are indicated on the left and the right. side of the ampersand. All memory addressing modes 
are allowed. m16 & 16 and m32 & 32 operands are used by the BOUND instruction to provide 
an operand containing an upper and lower bounds for array indices. m16 & 32 is used by 
LIDT and LGDT to provide a word with which to load the limit field, and a doubleword 
with which to load the base field of the corresponding Global and Interrupt Descriptor Table 
Registers. 

moffs8, moffsl6, moffs32: (memory offset) a simple memory variable of type BYTE, WORD, 
or DWORD used by some variants of the MOV instruction. The actual address is given by 
a simple offset relative to the segment base. No ModRIM byte is used in the instruction. 
The number shown with moffs indicates its size, which is determined by the address-size 
attribute of the instruction. 

Sreg: a segment register. The segment register bit assignments are ES=O, CS= 1, SS=2, 
DS=3, FS=4, and GS=5. 

17.2.2.3 CLOCKS 

The "Clocks" column gives the number of clock cycles the instruction takes to execute. The 
clock count calculations makes the following assumptions: 

• The instruction has been prefetched and decoded and is ready for execution. 

• Bus cycles do not require wait states. 

• There are no local bus HOLD requests delaying processor access to the bus. 

• No exceptions are detected during instruction execution. 

• Memory operands are aligned. 

Clock counts for instructions that have an rim (register or memory) operand are separated 
by a slash. The count to the left is used for a register operand; the count to the right is used 
for a memory operand. 
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The following symbols are used in the clock count specifications: 

• n, which represents a number of repetitions. 

• m, which represents the number of components in the next instruction executed, where 
the entire displacement (if any) counts as one component, the entire immediate data (if 
any) counts as one component, and every other byte of the instruction and prefix(es) 
each counts as one component. 

• pm=, a clock count that applies when the instruction executes in Protected Mode. pm= 
is not given when the clock counts are the same for Protected and Real Address Modes. 

When an exception occurs during the execution of an instruction and the exception handler 
is in another task, the instruction execution time is increased by the number of clocks to 
effect a task switch. This parameter depends on several factors: 

• The type of TS$ used to represent the current task (386 TSS of 286 TSS). 

• The type of TSS used to represent the new task. 

• Whether the current task is in V86 mode. 

• Whether the new task is in V86 mode. 

Table 17-5 summarizes the task switch times for exceptions. 

17 .2.2.4 DESCRIPTION 

The "Description" column following the "Clocks" column briefly explains the various forms 
of the instruction. The "Operation" and "Description" sections contain more details of the 
instruction's operation. 

17.2.2.5 OPERATION 

The "Operation" section contains an algorithmic description of the instruction which uses a 
notation similar to the Algol or Pascal language. The algorithms are composed of the follow­
ing elements: 

Comments are enclosed within the symbol pairs "(*" and "*)". 

Compound statements are enclosed between the keywords of the "if' statement (IF, THEN, 
ELSE, FI) or of the "do" statement (DO, OD), or of the "case" statement (CASE ... OF, 
ESAC). 

A register name implies the contents of the register. A register name enclosed in brackets 
implies the contents of the location whose address is contained in that register. For example, 
ES:[DI] indicates the contents of the location whose ES segment relative address is in regis­
ter DI. [SI] indicates the contents of the address contained in register SI relative to Sl's 
default segment (DS) or overridden segment. 

Brackets also used for memory operands, where they mean that the contents of the memory 
location is a segment-relative offset. For example, [SRC] indicates that the contents of the 
source operand is a segment-relative offset. 
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Table 17-5. Task Switch Times for Exceptions 

New Task 

Old 386 TSS 286 TSS Task VM = 0 

386 VM = 0 
TSS 309 282 

386 VM = 1 
TSS 314 231 

286 307 282 TSS 

A +- B; indicates that the value of B is assigned to A. 

The symbols =, <>, >, and < are relational operators used to compare two values, 
meaning equal, not equal, greater or equal, less or equal, respectively. A relational expres­
sion such as A = B is TRUE if the value of A is equal to B; otherwise it is FALSE. 

The following identifiers are used in the algorithmic descriptions: 

• OperandSize represents the operand-size attribute of the instruction, which is either 16 
or 32 bits. AddressSize represents the address-size attribute, which is either 16 or 32 
bits. For example, 

• 

• 

• 
• 

IF instruction = CMPSW 
THEN OperandSize +- 16; 
ELSE 

FI; 

IF instruction = CMPSD 
THEN OperandSize +- 32; 
FI; 

indicates that the operand-size attribute depends on the form of the CMPS instruction 
used. Refer to the explanation of address-size and operand-size attributes at the begin­
ning of this chapter for general guidelines on how these attributes are determined. 

StackAddrSize represents the stack address-size attribute associated with the instruc­
tion, which has a value of 16 or 32 bits, as explained earlier in the chapter. 

SRC represents the source operand. When there are two operands, SRC is the one on 
the right. 

DEST represents the destination operand. When there are two operands, DEST is the 
one on the left. 

LeftSRC, RightSRC distinguishes between two operands when both are source operands. 

eSP represents either the SP register or the ESP register depending on the setting of 
the B-bit for the current stack segment. 
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The following functions are used in the algorithmic descriptions: 

• Truncate to 16 bits(value) reduces the size of the value to fit in 16 bits by discarding the 
uppermost bits as needed. 

• Addr(operand) returns the effective address of the operand (the result of the effective 
address calculation prior to adding the segment base). 

• ZeroExtend(value) returns a value zero-extended to the operand-size attribute of the 
instruction. For example, if Operand Size = 32, Zero Extend of a byte value of -10 
converts the byte from F6H to doubleword with hexadecimal value OOOOOOF6H. If the 
value passed to Zero Extend and the operand-size attribute are the same size, Zero Extend 
returns the value unaltered. 

• SignExtend(value) returns a value sign-extended to the operand-size attribute of the 
instruction. For example, if OperandSize = 32, SignExtend of a byte containing the 
value -10 converts the byte from F6H to a doubleword with hexadecimal value 
FFFFFFF6H. If the value passed to Sign Extend and the operand-size attribute are the 
same size, Sign Extend returns the value unaltered. 

• Push(value) pushes a value onto the stack. The number of bytes pushed is determined by 
the operand-size attribute of the instruction. The action of Push is as follows: 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 
THEN 

SP +- SP - 2; 
SS:[SP] +- value; (* 2 bytes assigned starting at 

byte address in SP *) 
ELSE (* OperandSize = 32 *) 

FI; 

SP +- SP - 4; 
SS:[SP] +- value; (* 4 bytes assigned starting at 

byte address in SP *) 

ELSE (* StackAddrSize = 32 *) 
IF OperandSize = 16 
THEN 

FI; 

ESP +- ESP - 2; 
SS:[ESP] +- value; (* 2 bytes assigned starting at 

byte address in ESP') 
ELSE (* Operand Size = 32 *) 

FI; 

ESP +- ESP - 4; 
SS:[ESP] +- value; (* 4 bytes assigned starting at 

byte address in ESP*) 

• Pop(value) removes the value from the top of the stack and returns it. The statement 
EAX +- pope ); assigns to EAX the 32-bit value that Pop took from the top of the stack. 
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Pop will return either a word or a doubleword depending on the operand-size attribute. 
The action of Pop is as follows: 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 
THEN 

ret val +- SS:[SP]; (* 2-byte value *) 
SP +- SP + 2; 

ELSE (* OperandSize = 32 *) 

FI; 

ret val +- SS:[SP]; (* 4-byte value *) 
SP +- SP + 4; 

ELSE (* StackAddrSize = 32 *) 
IF OperandSize = 16 
THEN 

FI; 

ret val +- SS:[ESP]; (* 2 bytes value *) 
ESP +- ESP + 2; 

ELSE (* OperandSize = 32 *) 

FI; 

ret val +- SS:[ESP]; (* 4 bytes value *) 
ESP +- ESP + 4; 

RETURN(ret val); (*returns a word or doubleword*) 

• Bit[BitBase, BitOffset] returns the address of a bit within a bit string, which is a sequence 
of bits in memory or a register. Bits are numbered from low-order to high-order within 
registers and within memory bytes. In memory, the two bytes of a word are stored with 
the low-order byte at the lower address. 

If the base operand is a register, the offset can be in the range 0 . .31. This offset addresses 
a bit within the indicated register. An example, II BIT [ E A X, 2 1 I ," is illustrated in 
Figure 17-3. 

If Bit Base is a memory address, BitOffset can range from - 2 gigabits to 2 gigabits. 
The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + 
(BitOffset DIY 8», where DIY is signed division with rounding towards negative infin­
ity, and MOD returns a positive number. This is illustrated in Figure 17-4. 

31 21 0 

tL-..----BITOFFSET ~ 21------' 

G30117 

Figure 17-3. Bit Offset for BIT[EAX, 21] 
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BIT INDEXING (POSITIVE OFFSET) 

7 6 543 2 107 6 543 2 1 0 7 6 5 432 1 0 

I I I I I 
I BITBASE + 1 I BITBASE BITBASE 1 I • OFFSET ~ 13 

BIT INDEXING (NEGATIVE OFFSET) 

76543 2 1 0 7 6 5 4 3 2 107 6 543 2 1 0 

I I I I I 
I BITBASE BITBASE - 1 I BITBASE 2 I 

-OFFSET ~ -11~ 

G30117 

Figure 17-4_ Memory Bit Indexing 

• I-O-Permission(I-O-Address, width) returns TRUE or FALSE depending on the I/O 
permission bitmap and other factors. This function is defined as follows: 

IF TSS type is 286 THEN RETURN FALSE; FI; 
Ptr +- [TSS + 66]; (* fetch bitmap pointer *) 
BitStringAddr +- SHR (I-O-Address, 3) + Ptr; 
MaskShift +- I-O-Address AND 7; 
CASE width OF: 

ESAC; 

BYTE: nBitMask +- 1; 
WORD: nBitMask +- 3; 
DWORD: nBitMask +- 15; 

mask +- SHL (nBitMask, MaskShift); 
CheckString +- [BitStringAddr] AND mask; 
IF CheckString = 0 
THEN RETURN (TRUE); 
ELSE RETURN (FALSE); 
FI; 

• Switch-Tasks is the task switching function described in Chapter 7. 

17 .2.2.6 DESCRIPTION 

The "Description" section contains further explanation of the instruction's operation. 
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17.2.2.7 FLAGS AFFECTED 

The "Flags Affected" section lists the flags that are affected by the instruction, as follows: 

• If a flag is always cleared or always set by the instruction, the value is given (0 or 1) 
after the flag name. Arithmetic and logical instructions usually assign values to the 
status flags in the uniform manner described in Appendix C. Nonconventional assign­
ments are described in the "Operation" section. 

• The values of flags listed as "undefined" may be changed by the instruction in an 
indeterminate manner. 

All flags not listed are unchanged by the instruction. 

17.2.2.8 PROTECTED MODE EXCEPTIONS 

This section lists the exceptions that can occur when the instruction is executed in 80386 
Protected Mode. The exception names are a pound sign (#) followed by two letters and an 
optional error code in parentheses. For example, #GP(O) denotes a general protection excep­
tion with an error code of O. Table 17-6 associates each two-letter name with the correspond­
ing interrupt number. 

Chapter 9 describes the exceptions and the 80386 state upon entry to the exception. 

Application programmers should consult the documentation provided with their operating 
systems to determine the actions taken when exceptions occur. 

17.2.2.9 REAL ADDRESS MODE EXCEPTIONS 

Because less error checking is performed by the 80386 in Real Address Mode, this mode has 
fewer exception conditions. Refer to Chapter 14 for further information on these exceptions. 

Table 17-6. 80386 Exceptions 

Mnemonic Interrupt Description 

#UD 6 Invalid opcode 
#NM 7 Coprocessor not available 
#DF 8 Double fault 
#TS 10 Invalid TSS 
#NP 11 Segment or gate not present 
#SS 12 Stack fault 
#GP 13 General protection fault 
#PF 14 Page fault 
#MF 16 Math (coprocessor) fault 
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17.2.2.10 VIRTUAL-SOS6 MODE EXCEPTIONS 

Virtual 8086 tasks provide the ability to simulate Virtual 8086 machines. Virtual 8086 Mode 
exceptions are similar to those for the 8086 processor, but there are some differences. Refer 
to Chapter 15 for details. 
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AAA -ASCII Adjust after Addition 

Opcode Instruction Clocks Description 

37 AAA 4 ASCII adjust AL after addition 

Operation IF ((AL AND OFH) > 9) OR (AF = 1) 
THEN 

AL ~ (AL + 6) AND OFH; 
AH +- AH + 1; 
AF +- 1; 
CF +- 1; 

ELSE 
CF ~ 0; 
AF +- 0; 

FI; 

Description Execute AAA only following an ADD instruction that leaves a byte result 
in the AL register. The lower nibbles of the operands of the ADD 
instruction should be in the range 0 through 9 (BCD digits). In this case, 
AAA adjusts AL to contain the correct decimal digit result. If the 
addition produced a decimal carry, the AH register is incremented, and 
the carry and auxiliary carry flags are set to 1. If there was no decimal 
carry, the carry and auxiliary flags are set to 0 and AH is unchanged. 
In either case, AL is left with its top nibble set to O. To convert AL to 
an ASCII result, follow the AAA instruction with OR AL, 30H. 

Flags Affected AF and CF as described above; OF, SF, ZF, and PF are undefined 

Protected Mode None 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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AAD - ASCII Adjust AX before Division 

Opcode Instruction Clocks 

05 OA AAD 19 

Operation AL +- AH * 10 + AL; 
AH +- 0; 

Description 

ASCII adjust AX before division 

Description AAD is used to prepare two unpacked BCD digits (the least-significant 
digit in AL, the most-significant digit in AH) for a division operation 
that will yield an unpacked result. This is accomplished by setting AL 
to AL + (10 * AH), and then setting AH to O. AX is then equal to the 
binary equivalent of the original unpacked two-digit number. 

Flags Affected SF, ZF, and PF as described in Appendix C; OF, AF, and CF are 
undefined 

Protected Mode None 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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AAM - ASCII Adjust AX after Multiply 

Opcode Instruction Clocks Description 

D4 OA AAM 17 ASCII adjust AX after multiply 

Operation AH ~ AL / 10; 
AL ~ AL MOD 10; 

Description Execute AAM only after executing a MUL instruction between two 
unpacked BCD digits that leaves the result in the AX register. Because 
the result is less than 100, it is contained entirely in the AL register. 
AAM unpacks the AL result by dividing AL by 10, leaving the quotient 
(most-significant digit) in AH and the remainder (least-significant digit) 
in AL. 

Flags Affected SF, ZF, and PF as described in Appendix C; OF, AF, and CF are 
undefined 

Protected Mode None 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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AAS-ASCII Adjust AL after Subtraction 

Opcode 

3F 

Operation 

Instruction Clocks 

AAS 4 

IF (AL AND OFH) > 9 OR AF = 1 
THEN 

AL ~ AL - 6; 
AL ~ AL AND OFH; 
AH ~ AH - 1; 
AF ~ 1; 
CF ~ 1; 

ELSE 
CF ~ 0; 
AF ~ 0; 

FI; 

Description 

ASCII adjust AL after subtraction 

Description Execute AAS only after a SUB instruction that leaves the byte result in 
the AL register. The lower nibbles of the operands of the SUB instruc­
tion must have been in the range 0 through 9 (BCD digits). In this case, 
AAS adjusts AL so it contains the correct decimal digit result. If the 
subtraction produced a decimal carry, the AH register is decremented, 
and the carry and auxiliary carry flags are set to 1. If no decimal carry 
occurred, the carry and auxiliary carry flags are set to 0, and AH is 
unchanged. In either case, AL is left with its top nibble set to O. To 
convert AL to an ASCII result, follow the AAS with OR AL, 30H. 

Flags Affected AF and CF as described above; OF, SF, ZF, and PF are undefined 

Protected Mode None 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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ADC-Add with Carry 

Opcode 

14 ib 
15 iw 
15 id 
80 /2 ib 
81 /2 iw 
81 /2 id 
83 /2 ib 

83 /2 ib 

10 /r 
11 /r 
11 /r 
12 /r 
13 /r 
13 /r 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction Clocks 

ADCAL,imm8 2 
ADC AX,imm16 2 
ADC EAX,imm32 2 
ADC rlm8,imm8 2/7 
ADC rlml6,imml6 2/7 
ADC rlm32,imm32 2/7 
ADC rlml6,immB 2/7 

ADC rlm32,imm8 2/7 

ADC rlmB,r8 2/7 
ADC rlml6,rl6 217 
ADC rlm32,r32 2/7 
ADC r8,rlm8 2/6 
ADC rl6,rlml6 2/6 
AOC r32,rlm32 2/6 

DEST +- DEST + SRC + CF; 

Description 

Add with carry immediate byte to AL 
Add with carry immediate word to AX 
Add with carry immediate dword to EAX 
Add with carry immediate byte to rim byte 
Add with carry immediate word to rim word 
Add with CF immediate dword to rim dword 
Add with CF sign-extended immediate byte 
to rim word 
Add with CF sign-extended immediate byte into 
rlmdword 
Add with carry byte register to rim byte 
Add with carry word register to rim word 
Add with CF dword register to rim dword 
Add with carry rim byte to byte register 
Add with carry rim word to word register 
Add with CF rim dword to dword register 

ADC performs an integer addition of the two operands DEST and SRC 
and the carry flag, CF. The result of the addition is assigned to the first 
operand (DEST), and the flags are set accordingly. ADC is usually 
executed as part of a multi-byte or multi-word addition 
operation. When an immediate byte value is added to a word or double­
word operand, the immediate value is first sign-extended to the size of 
the word or doubleword operand. 

OF, SF, ZF, AF, CF, and PF as described in Appendix C 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) if page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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ADD-Add 

Opcode 

04 ib 
05 iw 
05 id 
80 /0 ib 
81 /0 iw 
81 /0 id 
83 /0 ib 
83 /0 ib 
00 /r 
01 /r 
01 /r 
02 /r 
03 /r 
03 /r 

Operation 

Description 

80386 INSTRUCTION SET 

Instruction 

ADDAL,immB 
ADD AX,imm16 
ADD EAX,imm32 
ADD rlmB,immB 
ADD rlm16,imm16 
ADD rlm32,imm32 
ADD rlm16,immB 
ADD rlm32,immB 
ADD rlmB,rB 
ADD rlm16,r16 
ADD rlm32,r32 
ADD rB,rlmB 
ADD r16,rlm16 
ADD r32,rlm32 

Clocks 

2 
2 
2 
2/7 
2/7 
2/7 
2/7 
2/7 
2/7 
2/7 
2/7 
2/6 
2/6 
2/6 

DEST +- DEST + SRC; 

Description 

Add immediate byte to AL 
Add immediate word to AX 
Add immediate dword to EAX 
Add immediate byte to rim byte 
Add immediate word to rim word 
Add immediate dword to rim dword 
Add sign-extended immediate byte to rim word 
Add sign-extended immediate byte to rim dword 
Add byte register to rim byte 
Add word register to rim word 
Add dword register to rim dword 
Add rim byte to byte register 
Add rim word to word register 
Add rim dword to dword register 

ADD performs an integer addition of the two operands (DEST and 
SRC). The result of the addition is assigned to the first operand (DEST), 
and the flags are set accordingly. 

When an immediate byte is added to a word or doubleword operand, the 
immediate value is sign-extended to the size of the word or doubleword 
operand. 

Flags Affected OF, SF, ZF, AF, CF, and PF as described in Appendix C 

Protected Mode #GP(O) if the result is in a non writable segment; #GP(O) for an illegal 
Exceptions memory operand effective address in the CS, DS, ES, FS, or GS 

segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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AND-Logical AND 

Opcode 

24 ib 
25 iw 
25 id 
80 /4 ib 
81 /4 iw 
81 /4 id 
83 /4 ib 
83 /4 ib 
20 Jr 
21 jr 
21 /r 
22 jr 
23 jr 
23 jr 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

ANDAL,imm8 
AND AX,imm16 
AND EAX,imm32 
AND rlm8,imm8 
AND rim 16,imm 16 
AND rlm32,imm32 
AND rlm16,imm8 
AND rlm32,imm8 
AND rlm8,r8 
AND rlm16,r16 
AND rlm32,r32 
AND r8,rlm8 
AND r16,rlm16 
AND r32,rlm32 

Clocks 

2 
2 
2 
2/7 
2/7 
2/7 
2/7 
2{7 
2/7 
2/7 
2/7 
2j6 
2/6 
2/6 

DEST f- DEST AND SRC; 
CF f- 0; 
OF f- 0; 

Description 

AND immediate byte to AL 
AND immediate word to AX 
AND immediate dword to EAX 
AND immediate byte to rim byte 
AND immediate word to rim word 
AND immediate dword to rim dword 
AND sign-extended immediate byte with rim word 
AND sign-extended immediate byte with rim dword 
AND byte register to rim byte 
AND word register to rim word 
AND dword register to rim dword 
AND rim byte to byte register 
AND rim word to word register 
AND rim dword to dword register 

Each bit of the result of the AND instruction is a 1 if both correspond­
ing bits of the operands are 1; otherwise, it becomes a O. 

CF = 0, OF = 0; PF, SF, and ZF as described in Appendix C 

#GP(O) if the result is in a non writable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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ARPL-Adjust RPL Field of Selector 

Opcode Instruction Clocks Description 

63 Ir ARPL r/m16,r16 pm~20/21 Adjust RPL of r/ml6 to not less than RPL of r16 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

IF RPL bits(O,1) of DEST < RPL bits(O,1) of SRC 
THEN 

ZF ~ 1; 
RPL bits(0,1) of DEST ~ RPL bits(O,1) of SRC; 

ELSE 
ZF ~ 0; 

FI; 

The ARPL instruction has two operands. The first operand is a 16-bit 
memory variable or word register that contains the value of a selector. 
The second operand is a word register. If the RPL field ("requested 
privilege level" ~bottom two bits) of the first operand is less than the 
RPL field of the second operand, the zero flag is set to 1 and the RPL 
field of the first operand is increased to match the second operand. 
Otherwise, the zero flag is set to 0 and no change is made to the first 
operand. 

ARPL appears in operating system software, not in application programs. 
It is used to guarantee that a selector parameter to a subroutine does 
not request more privilege than the caller is allowed. The second operand 
of ARPL is normally a register that contains the CS selector value of 
the caller. 

ZF as described above 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Interrupt 6; ARPL is not recognized in Real Address Mode 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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BOUND-Check Array Index Against Bounds 

Opcode 

62 Ir 
62 Ir 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction Clocks 

BOUND rI6,mI6&16 10 
BOUND r32,m32&32 10 

Description 

Check if r16 is within bounds (passes test) 
Check if r32 is within bounds (passes test) 

IF (LeftSRC < [RightSRC] OR LeftSRC > [RightSRC + OperandSize/8]) 
(* Under lower bound or over upper bound *) 

THEN Interrupt 5; 
FI; 

BOUND ensures that a signed array index is within the limits specified 
by a block of memory consisting of an upper and a lower bound. Each 
bound uses one word for an operand-size attribute of 16 bits and a 
doubleword for an operand-size attribute of 32 bits. The first operand (a 
register) must be greater than or equal to the first bound in memory 
(lower bound), and less than or equal to the second bound in memory 
(upper bound). If the register is not within bounds, an Interrupt 5 occurs; 
the return EIP points to the BOUND instruction. 

The bounds limit data structure is usually placed just before the array 
itself, making the limits addressable via a constant offset from the begin­
ning of the array. 

None 

Interrupt 5 if the bounds test fails, as described above; #GP(O) for an 
illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

The second operand must be a memory operand, not a register. If 
BOUND is executed with a ModRM byte representing a register as the 
second operand, #UD occurs. 

Real Address Interrupt 5 if the bounds test fails; Interrupt 13 if any part of the operand 
Mode Exceptions would lie outside of the effective address space from 0 to OFFFFH; 

Interrupt 6 if the second operand is a register 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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BSF-Bit Scan Forward 

Opcode 

OF BC 
OF BC 

Notes 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

BSF r16,rlm16 
BSF r32,rlm32 

Clocks 

10+3n 
10+3n 

Description 

Bit scan forward on rim word 
Bit scan forward on rim dword 

n is the number of leading zero bits. 

IF rjm = 0 
THEN 

ZF +- 1; 
register +- UNDEFINED; 

ELSE 
temp +- 0; 
ZF +- 0; 
WHILE BIT[rjm, temeJ= O~ 
DO 

temp +- temp + 1; 
~register +- temp; 
~OD; 
FI; 

BSF scans the bits in the second word or doubleword operand starting 
with bit O. The ZF flag is cleared if the bits are all 0; otherwise, the ZF 
flag is set and the destination register is loaded with the bit index of the 
first set bit. 

ZF as described above 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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BSR-Bit Scan Reverse 

Opcode 

OF SD 
OF SD 

Operation 

Instruction 

SSR r16,rlm16 
BSR r32,rlm32 

IF rjm = 0 
THEN 

ZF +- 1; 

Clocks 

1O+3n 
10+3n 

register +- UNDEFINED; 
ELSE 

temp +- Operand Size - 1; 
ZF +- 0; 
WHILE BIT[rjm, temp] = 0 
DO 

temp +- temp - 1; 
~ register +- temp; 
~OD; 
FI; 

Description 

Bit scan reverse on rim word 
Bit scan reverse on rim dword 

Description BSR scans the bits in the second word or doubleword operand from the 
most significant bit to the least significant bit. The ZF flag is cleared if 
the bits are all 0; otherwise, ZF is set and the destination register is 
loaded with the bit index of the first set bit found when scanning in the 
reverse direction. 

Flags Affected ZF as described above 

Protected Mode #GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
Exceptions memory operand effective address in the CS, DS, ES, FS, or GS 

segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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BT-Bit Test 

Opcode 

OF A3 
OF A3 
OF BA /4 ib 
OF BA /4 ib 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

BT r/m16.r16 
BT r/m32.r32 
BT r/m16,immB 
BT r/m32,immB 

Clocks 

3/12 
3/12 
3/6 
3/6 

CF +- BIT[LeftSRC, RightSRC]; 

Description 

Save bit in carry flag 
Save bit in carry flag 
Save bit in carry flag 
Save bit in carry flag 

BT saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the carry flag. 

CF as described above 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 

Notes The index of the selected bit can be given by the immediate constant in 
the instruction or by a value in a general register. Only an 8-bit immedi­
ate value is used in the instruction. This operand is taken modulo 32,' so 
the range of immediate bit offsets is 0 .. 31. This allows any bit within a 
register to be selected. For memory bit strings, this immediate field gives 
only the bit offset within a word or doubleword. Immediate bit offsets 
larger than 31 are supported by using the immediate bit offset field in 
combination with the displacement field of the memory operand. The 
low-order 3 to 5 bits of the immediate bit offset are stored in the 
immediate bit offset field, and the high-order 27 to 29 bits are shifted 
and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the 80386 may access four bytes start­
ing from the memory address given by: 

Effective Address + (4 * (BitOffset DIV 32)) 
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for a 32-bit operand size, or two bytes starting from the memory address 
given by: 

Effective Address + (2 * (BitOffset DIY 16» 

for a 16-bit operand size. It may do so even when only a single byte 
needs to be accessed in order to reach the given bit. You must therefore 
avoid referencing areas of memory close to address space holes. In 
particular, avoid references to memory-mapped I/O registers. Instead, 
use the MOY instructions to load from or store to these addresses, and 
use the register form of these instructions to manipulate the data. 
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BTC-Bit Test and Complement 

Opcode 

OF BB 
OF BB 
OF BA/7 ib 
OF BA/7 ib 

Instruction 

BTC r/m16,r16 
BTC r/m32,r32 
BTC r/m16,immB 
BTC r/m32,immB 

Clocks 

6/13 
6/13 
6/8 
6/8 

Description 

Save bit in carry flag and complement 
Save bit in carry flag and complement 
Save bit in carry flag and complement 
Save bit in carry flag and complement 

Operation CF +- BIT[LeftSRC, RightSRC]; 
BIT[LeftSRC, RightSRC] +- NOT BIT[LeftSRC, RightSRC]; 

Description BTC saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the carry flag and then complements 
the bit. 

Flags Affected CF as described above 

Protected Mode #GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
Exceptions memory operand effective address in the CS, DS, ES, FS, or GS 

segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 

Notes The index of the selected bit can be given by the immediate constant in 
the instruction or by a value in a general register. Only an 8-bit immedi­
ate value is used in the instruction. This operand is taken modulo 32, so 
the range of immediate bit offsets is 0 .. 31. This allows any bit within a 
register to be selected. For memory bit strings, this immediate field gives 
only the bit offset within a word or doubleword. Immediate bit offsets 
larger than 31 are supported by using the immediate bit offset field in 
combination with the displacement field of the memory operand. The 
low-order 3 to 5 bits of the immediate bit offset are stored in the 
immediate bit offset field, and the high-order 27 to 29 bits are shifted 
and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the 80386 may access four bytes start­
ing from the memory address given by: 

Effective Address + (4 * (BitOffset DIY 32» 

17-31 



80386 INSTRUCTION SET 

for a 32-bit operand size, or two bytes starting from the memory address 
given by: 

Effective Address + (2 * (BitOffset DIY 16» 

for a 16-bit operand size. It may do so even when only a single byte 
needs to be accessed in order to reach the given bit. You must therefore 
avoid referencing areas of memory close to address space holes. In 
particular, avoid references to memory-mapped I/O registers. Instead, 
use the MOY instructions to load from or store to these addresses, and 
use the register form of these instructions to manipulate the data. 
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BTR-Bit Test and Reset 

Opcode 

OF B3 
OF B3 
OF BA /6 ib 
OF BA /6 ib 

Instruction 

BTR r/m16,r16 
BTR r/m32,r32 
BTR r/m16,immB 
BTR r/m32,immB 

Clocks 

6/13 
6/13 
6/8 
6/8 

Description 

Save bit in carry flag and reset 
Save bit in carry flag and reset 
Save bit in carry flag and reset 
Save bit in carry flag and reset 

Operation CF +- BIT[LeftSRC, RightSRC]; 
BIT[LeftSRC, RightSRC] +- 0; 

Description BTR saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the carry flag and then stores 0 in 
the bit. 

Flags Affected CF as described above 

Protected Mode #GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
Exceptions memory operand effective address in the CS, DS, ES, FS, or GS 

segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 

Notes The index of the selected bit can be given by the immediate constant in 
the instruction or by a value in a general register. Only an 8-bit immedi­
ate value is used in the instruction. This operand is taken modulo 32, so 
the range of immediate bit offsets is 0 .. 31. This allows any bit within a 
register to be selected. For memory bit strings, this immediate field gives 
only the bit offset within a word or doubleword. Immediate bit offsets 
larger than 31 (or 15) are supported by using the immediate bit offset 
field in combination with the displacement field of the memory operand. 
The low-order 3 to 5 bits of the immediate bit offset are stored in the 
immediate bit offset field, and the high-order 27 to 29 bits are shifted 
and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the 80386 may access four bytes start­
ing from the memory address given by: 

Effective Address + 4 * (BitOffset DIV 32) 
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for a 32-bit operand size, or two bytes starting from the memory address 
given by: 

Effective Address + 2 * (BitOffset DIV 16) 

for a 16-bit operand size. It may do so even when only a single byte 
needs to be accessed in order to reach the given bit. You must therefore 
avoid referencing areas of memory close to address space holes. In 
particular, avoid references to memory-mapped I/O registers. Instead, 
use the MOV instructions to load from or store to these addresses, and 
use the register form of these instructions to manipulate the data. 
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BTS-Bit Test and Set 

Opcode 

OF AB 
OF AB 
OF BA/5 ib 
OF BA/5 ib 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

BTS r/m16.r16 
BTS r/m32.r32 
BTS r/m16.immB 
BTS r/m32.immB 

Clocks 

6/13 
6/13 
6/8 
6/8 

CF +- BIT[LeftSRC, RightSRC]; 
BIT[LeftSRC, RightSRC] +- 1; 

Description 

Save bit in carry flag and set 
Save bit in carry flag and set 
Save bit in carry flag and set 
Save bit in carry flag and set 

BTS saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the carry flag and then stores 1 in 
the bit. 

CF as described above 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 

Notes The index of the selected bit can be given by the immediate constant in 
the instruction or by a value in a general register. Only an 8-bit immedi­
ate value is used in the instruction. This operand is taken modulo 32, so 
the range of immediate bit offsets is 0 .. 31. This allows any bit within a 
register to be selected. For memory bit strings, this immediate field gives 
only the bit offset within a word or doubleword. Immediate bit offsets 
larger than 31 are supported by using the immediate bit offset field in 
combination with the displacement field of the memory operand. The 
low-order 3 to 5 bits of the immediate bit offset are stored in the 
immediate bit offset field, and the high order 27 to 29 bits are shifted 
and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the processor may access four bytes 
starting from the memory address given by: 

Effective Address + (4 * (BitOffset DIY 32» 
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for a 32-bit operand size, or two bytes starting from the memory address 
given by: 

Effective Address + (2 * (BitOffset DIY 16» 

for a 16-bit operand size. It may do this even when only a single byte 
needs to be accessed in order to get at the given bit. Thus the program­
mer must be careful to avoid referencing areas of memory close to address 
space holes. In particular, avoid references to memory-mapped I/O 
registers. Instead, use the MOY instructions to load from or store to 
these addresses, and use the register form of these instructions to manip­
ulate the data. 
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CALL-Call Procedure 

Opcode 

ES cw 
FF /2 
9A cd 
9A cd 
9A cd 
9A cd 
9A cd 
FF /3 
FF /3 
FF /3 
FF /3 
FF /3 
ES cd 
FF /2 
9A cp 
9A cp 
9A cp 
9A cp 
9A cp 
FF /3 
FF /3 
FF /3 
FF /3 
FF /3 

Instruction 

CALL rel16 
CALL rim 16 
CALL ptr16:16 
CALL ptr16:16 
CALL ptr16:16 
CALL ptr16:16 
CALL ptr16:16 
CALL m16:16 
CALL m16:16 
CALL m16:16 
CALL m16:16 
CALL m16:16 
CALL rel32 
CALL rlm32 
CALL ptr16:32 
CALL ptr16:32 
CALL ptrI6:3? 
CALlq>frff:32:} 
CALL PffTff!32 
CALL m16:32 
CALL m16:32 
CALL m16:32 
CALL m16:32 
CALL m16:32 

Clocks 

7+m 
7+m/10+m 
17+m,pm=34+m 
pm=52+m 
pm=S6+m 
pm=94+4x+m 
ts 
22+m,pm=3S+m 
pm=56+m 
pm=90+m 
pm=9S+4x+m 
5 + ts 
7+m 
7+m/10+m 
17+m,pm=34+m 
pm=52+m 
pm=S6+m 
pm=94+4x+m 
ts 
22+m,pm=3S+m 
pm=56+m 
pm=90+m 
pm==9S+4x+m 
5 + ts 

Description 

Call near, displacement relative to next instruction 
Call near, register indirect/memory indirect 
Call intersegment, to full pOinter given 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 
Call intersegment, address at rim dword 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 
Call near, displacement relative to next instruction 
Call near, indirect 
Call intersegment, to full pointer given 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 
Call intersegment, address al rim dword 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 

NOTE: Values of ts are given by the following table: 

Old 
Task 

386 VM=O TSS 

286 
TSS 

Operation 

386 TSS 
VM = 0 

N y 

300 309 

298 307 

IF rel16 or rel32 type of call 
THEN (* near relative call *) 

IF OperandSize = 16 
THEN 

Push(IP); 

New Task 

386 TSS 
VM = 1 

Via Task Gate? 

N Y 

217 226 

217 226 

EIP +- (EIP + rel16) AND OOOOFFFFH; 
ELSE (* Operand Size = 32 *) 

Push(EIP); 
EIP +- EIP + re132; 

FI; 
FI; 
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IF rjm16 or rjm32 type of call 
THEN (* near absolute call *) 

IF OperandSize = 16 
THEN 

FI; 

Push(IP); 
EIP +- [r/m16] AND OOOOFFFFH; 

ELSE (* OperandSize = 32 *) 
Push(EIP); 
EIP +- [r/m32]; 

FI; 

IF (PE = 0 OR (PE = 1 AND VM = 1)) 
(* real mode or virtual 8086 mode *) 

AND instruction = far CALL 
(* i.e., operand type is m 16: 16, m 16:32, ptr16: 16, ptr16:32 *) 

THEN 
IF OperandSize = 16 
THEN 

Push(CS); 
Push(IP); (* address of next instruction; 16 bits *) 

ELSE 
Push(CS); (* padded with 16 high-order bits *) 
Push(EIP); (* address of next instruction; 32 bits *) 

FI; 
IF operand type is m16:16 or m16:32 
THEN (* indirect far call *) 

IF OperandSize = 16 
THEN 

CS:IP +- [m16:16]; 
EIP +- EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* OperandSize = 32 *) 
CS:EIP +- [m16:32]; 

FI; 
FI; 
IF operand type is ptr16:16 or ptr16:32 
THEN (* direct far call *) 

IF OperandSize = 16 
THEN 

CS:IP +- ptr16:16; 
EIP +- EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* Operand Size = 32 *) 
CS:EIP +- ptr16:32; 

FI; 
FI; 

FI; 
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IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) 
AND instruction = far CALL 

THEN 
If indirect, then check access of EA doubleword; 

#GP(O) if limit violation; 
New CS selector must not be null else #GP(O); 
Check that new CS selector index is within its 

descriptor table limits; else #GP(new CS selector); 
Examine AR byte of selected descriptor for various legal values; 

depending on value: 
go to CONFORMING-CODE-SEGMENT; 
go to NONCONFORMING-CODE-SEGMENT; 
go to CALL-GATE; 
go to TASK-GATE; 
go to TASK-STATE-SEGMENT; 

ELSE #GP(code segment selector); 
FI; 

CONFORMING-CODE-SEGMENT: 
DPL must be ::5 CPL ELSE #GP(code segment selector); 
Segment must be present ELSE #NP(code segment selector); 
Stack must be big enough for return address ELSE #SS(O); 
Instruction pOinter must be in code segment limit ELSE #GP(O); 
Load code segment descriptor into CS register; 
Load CS with new code segment selector; 
Load EIP with zero-extend(new offset); 
IF OperandSize=16 THEN EIP ... EIP AND OOOOFFFFH; FI; 

NONCONFORMING-CODE-SEGMENT: 
RPL must be ::5 CPL ELSE #GP(code segment selector) 
DPL must be = CPL ELSE #GP(code segment selector) 
Segment must be present ELSE #NP(code segment selector) 
Stack must be big enough for return address ELSE #SS(O) 
Instruction pOinter must be in code segment limit ELSE #GP(O) 
Load code segment descriptor into CS register 
Load CS with new code segment selector 
Set RPL of CS to CPL 
Load EIP with zero-extend(new offset); 
IF OperandSize=16 THEN EIP ... EIP AND OOOOFFFFH; FI; 

CALL-GATE: 
Call gate DPL must be 2:: CPL ELSE #GP(call gate selector) 
Call gate DPL must be 2:: RPL ELSE #GP(call gate selector) 
Call gate must be present ELSE #NP(call gate selector) 
Examine code segment selector in call gate descriptor: 

Selector must not be null ELSE #GP(O) 
Selector must be within its descriptor table 

limits ELSE #GP(code segment selector) 
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AR byte of selected descriptor must indicate code 
segment ELSE #GP(code segment selector) 

DPL of selected descriptor must be s CPL ELSE 
#GP(code segment selector) 

IF non-conforming code segment AND DPL < CPL 
THEN go to MORE-PRIVILEGE 
ELSE go to SAME-PRIVILEGE 
FI; 

MORE-PRIVILEGE: 
Get new SS selector for new privilege level from TSS 

Check selector and descriptor for new SS: 
Selector must not be null ELSE #TS(O) 
Selector index must be within its descriptor 

table limits ELSE #TS(SS selector) 
Selector's RPL must equal DPL of code segment 

ELSE #TS(SS selector) 
Stack segment DPL must equal DPL of code 

segment ELSE #TS(SS selector) 
Descriptor must indicate writable data segment 

ELSE #TS(SS selector) 
Segment present ELSE #SS(SS selector) 

IF OperandSize=32 
THEN 

New stack must have room for parameters plus 16 bytes 
ELSE #SS(O) 

EIP must be in code segment limit ELSE #GP(O) 
Load new SS:eSP value from TSS 
Load new CS:EIP value from gate 

ELSE 
New stack must have room for parameters plus 8 bytes ELSE #SS(O) 
IP must be in code segment limit ELSE #GP(O) 
Load new SS:eSP value from TSS 
Load new CS:IP value from gate 

FI; 
Load CS descriptor 
Load SS descriptor 
Push long pointer of old stack onto new stack 
Get word count from call gate, mask to 5 bits 
Copy parameters from old stack onto new stack 
Push return address onto new stack 
Set CPL to stack segment DPL 
Set RPL of CS to CPL 

SAME-PRIVILEGE: 
IF OperandSize=32 
THEN 

Stack must have room for 6-byte return address (padded to 8 bytes) 
ELSE #SS(O) 
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EIP must be within code segment limit ELSE #GP(O) 
Load CS:EIP from gate 

ELSE 
Stack must have room for 4-byte return address ELSE #SS(O) 
IP must be within code segment limit ELSE #GP(O) 
Load CS:IP from gate 

FI; 
Push return address onto stack 
Load code segment descriptor into CS register 
Set RPL of CS to CPL 

TASK-GATE: 
Task gate DPL must be ;:::: CPL ELSE #TS(gate selector) 
Task gate DPL must be ;:::: RPL ELSE #TS(gate selector) 
Task Gate must be present ELSE #NP(gate selector) 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit ELSE #TS(TSS selector) 
Index must be within GDT limits ELSE #TS(TSS selector) 
TSS descriptor AR byte must specify non busy TSS 

ELSE #TS(TSS selector) 
Task State Segment must be present ELSE #NP(TSS selector) 

SWITCH-TASKS (with nesting) to TSS 
IP must be in code segment limit ELSE #TS(O) 

TASK-STATE-SEGMENT: 
TSS DPL must be ;:::: CPL else #TS(TSS selector) 
TSS DPL must be ;:::: RPL ELSE #TS(TSS selector) 
TSS descriptor AR byte must specify available TSS 

ELSE #TS(TSS selector) 
Task State Segment must be present ELSE #NP(TSS selector) 
SWITCH-TASKS (with nesting) to TSS 
IP must be in code segment limit ELSE #TS(O) 

The CALL instruction causes the procedure named in the operand to be 
executed. When the procedure is complete (a return instruction is 
executed within the procedure), execution continues at the instruction 
that follows the CALL instruction. 

The action of the different forms of the instruction are described below. 

Near calls are those with destinations of type r/m16, r/m32, re116, re132; 
changing or saving the segment register value is not necessary. The CALL 
re116 and CALL re132 forms add a signed offset to the address of the 
instruction following CALL to determine the destination. The re116 form 
is used when the instruction's operand-size attribute is 16 bits; re132 is 
used when the operand-size attribute is 32 bits. The result is stored in 
the 32-bit EIP register. With rel16, the upper 16 bits of EIP are cleared, 
resulting in an offset whose value does not exceed 16 bits. CALL r/m16 
and CALL r/m32 specify a register or memory location from which the 
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absolute segment offset is fetched. The offset fetched from rjm is 32 bits 
for an operand-size attribute of 32 (rjm32), or 16 bits for an operand­
size of 16 (rjm16). The offset of the instruction following CALL is 
pushed onto the stack. It will be popped by a near RET instruction within 
the procedure. The CS register is not changed by this form of CALL. 

The far calls, CALL ptr16:16 and CALL ptr16:32, use a four-byte or 
six-byte operand as a long pointer to the procedure called. The CALL 
m16:16 and m16:32 forms fetch the long pointer from the memory 
location specified (indirection). In Real Address Mode or Virtual 8086 
Mode, the long pointer provides 16 bits for the CS register and 16 or 32 
bits for the EIP register (depending on the operand-size attribute). These 
forms of the instruction push both CS and IP or EIP as a return address. 

In Protected Mode, both long pointer forms consult the AR byte in the 
descriptor indexed by the selector part of the long pointer. Depending on 
the value of the AR byte, the call will perform one of the following types 
of control transfers: 

• A far call to the same protection level 

• An inter-protection level far call 

• A task switch 

For more information on Protected Mode control transfers, refer to 
Chapter 6 and Chapter 7. 

Flags Affected All flags are affected if a task switch occurs; no flags are affected if a 
task switch does not occur 

Protected Mode For far calls: #GP, #NP, #SS, and #TS, as indicated in the list above 
Exceptions 

For near direct calls: #GP(O) if procedure location is beyond the code 
segment limits; #SS(O) if pushing the return address exceeds the bounds 
of the stack segment; #PF (fault-code) for a page fault 

For a near indirect call: #GP(O) for an illegal memory operand effective 
address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #GP(O) if the indirect offset obtained is 
beyond the code segment limits; #PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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Any far call from a 32-bit code segment to 16-bit code segments should 
be made from the first 64K bytes of the 32-bit code segment, since the 
operand-size attribute of the instruction is set to 16, thus allowing only 
a 16-bit return address offset to be saved. 
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CBW /CWDE-Convert Byte to Word/Convert Word to Doubleword 

Opcode 

98 
98 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 

Instruction 

CBW 
CWDE 

Clocks 

3 
3 

Description 

AX +- sign-extend of AL 
EAX +- sign-extend of AX 

IF Operand Size = 16 (* instruction = CBW *) 
THEN AX +- SignExtend(AL); 
ELSE (* OperandSize = 32, instruction = CWDE *) 

EAX +- SignExtend(AX); 
FI; 

CBW converts the signed byte in AL to a signed word in AX by extend­
ing the most significant bit of AL (the sign bit) into all of the bits of 
AH. CWDE converts the signed word in AX to a doubleword in EAX 
by extending the most significant bit of AX into the two most significant 
bytes of EAX. Note that CWDE is different from CWD. CWD uses 
DX:AX rather than EAX as a destination. 

None 

None 

None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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CLC-Clear Carry Flag 

Opcode Instruction Clocks Description 

F8 CLC 2 Clear carry flag 

Operation CF +- 0; 

Description CLC sets the carry flag to zero. It does not affect other flags or registers. 

Flags Affected CF = 0 

Protected Mode None 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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CLD-Clear Direction Flag 

Opcode Instruction 

FC CLO 

Operation OF +- 0; 

Clocks 

2 

Description 

Clear direction flag; 81 and 01 will increment during 
string instructions 

Description CLD clears the direction flag. No other flags or registers are affected. 
After CLD is executed, string operations will increment the index regis­
ters (SI and/or 01) that they use. 

Flags Affected D F = 0 

Protected Mode None 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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ell-Clear Interrupt Flag 

Opcode Instruction Clocks Description 

FA 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

CLI 

Real Address 
Mode Exceptions 

Virtual 8086 
Mode Exceptions 

3 Clear interrupt flag; interrupts disabled 

IF +- 0; 

CLI clears the interrupt flag if the current privilege level is at least as 
privileged as 10PL. No other flags are affected. External interrupts are 
not recognized at the end of the CLI instruction or from that point on 
until the interrupt flag is set. 

IF = 0 

#GP(O) if the current privilege level is greater (has less privilege) than 
the 10PL in the flags register. 10PL specifies the least privileged level 
at which I/O can be performed. 

None 

#GP(O) as for Protected Mode 
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CLTS-Clear Task-Switched Flag in CRO 

Opcode Instruction Clocks Description 

OF 06 CLTS 5 Clear task-switched flag 

Operation 

Description 

TS Flag in eRO +- 0; 

CLTS clears the task-switched (TS) flag in register CRO. This flag is 
set by the 80386 every time a task switch occurs. The TS flag is used to 
manage processor extensions as follows: 

• Every execution of an ESC instruction is trapped if the TS flag is 
set. 

• Execution of aWAIT instruction is trapped if the MP flag and the 
TS flag are both set. 

Thus, if a task switch was made after an ESC instruction was begun, 
the processor extension's context may need to be saved before a new 
ESC instruction can be issued. The fault handler saves the context and 
resets the TS flag. 

CLTS appears in operating system software, not in application programs. 
It is a privileged instruction that can only be executed at privilege 
levelO. 

Flags Affected TS = 0 (TS is in CRO, not the flag register) 

Protected Mode #GP(O) if CLTS is executed with a current privilege level other than 0 
Exceptions 

Real Address None (valid in Real Address Mode to allow initialization for Protected 
Mode Exceptions Mode) 

Virtual 8086 
Mode Exceptions 

Same exceptions as in Real Address Mode 
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CMC-Complement Carry Flag 

Opcode Instruction Clocks Description 

F5 CMC 2 Complement carry flag 

Operation CF +- NOT CF; 

Description CMC reverses the setting of the carry flag. No other flags are affected. 

Flags Affected CF as described above 

Protected Mode None 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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CMP-Compare Two Operands 

Opcode 

3C ib 
3D iw 
3D id 
80 /7 ib 
81 /7 iw 
81 /7 id 
83 /7 ib 
83 /7 ib 

38 /r 
39 /r 
39 /r 
3A /r 
38 /r 
38 /r 

Instruction 

CMPAL,immB 
CMPAX,imm16 
CMP EAX,imm32 
CMP rjmB,immB 
CMP rjm16,imm16 
CMP rjm32,imm32 
CMP rjm16,immB 
CMP rjm32,immB 

CMP rjmB,rB 
CMP rjm16,r16 
CMP rjm32,r32 
CMP rB,rjmB 
CMP r16,rjm16 
CMP r32,rjm32 

Clocks 

2 
2 
2 
2/5 
2/5 
2/5 
2/5 
2/5 

2/5 
2/5 
2/5 
2/6 
2/6 
2/6 

Description 

Compare immediate byte to AL 
Compare immediate word to AX 
Compare immediate dword to EAX 
Compare immediate byte to rjm byte 
Compare immediate word to rjm word 
Compare immediate dword to rjm dword 
Compare sign extended immediate byte to rjm word 
Compare sign extended immediate byte to rjm 
dword 
Compare byte register to rjm byte 
Compare word register to rjm word 
Compare dword register to rjm dword 
Compare rjm byte to byte register 
Compare rjm word to word register 
Compare rjm dword to dword register 

Operation LeftSRC - SignExtend(RightSRC); 
(* CMP does not store a result; its purpose is to set the flags *) 

Description CMP subtracts the second operand from the first but, unlike the SUB 
instruction, does not store the result; only the flags are changed. CMP 
is typically used in conjunction with conditional jumps and the SETcc 
instruction. (Refer to Appendix D for the list of signed and unsigned 
flag tests provided.) If an operand greater than one byte is compared to 
an immediate byte, the byte value is first sign-extended. 

Flags Affected OF, SF, ZF, AF, PF, and CF as described in Appendix C 

Protected Mode #GP(O) for an illegal memory operand effective address in the CS, DS, 
Exceptions ES, FS, or GS segments; #SS(O).for an illegal address in the SS segment; 

#PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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CMPS/CMPSB/CMPSW ICMPSD-Compare String Operands 

Opcode 

A6 

A7 

A7 

A6 
A7 
A7 

Operation 

Description 

Instruction Clocks Description 

CMPSmB,mB 10 Compare bytes ES:[(E)DI] (second operand) with 
[(E)SI] (first operand) 

CMPS m16,m16 10 Compare words ES:[(E)DI] (second operand) with 
[(E)SI] (first operand) 

CMPS m32,m32 10 Compare dwords ES:[(E)DI] (second operand) with 
[(E)SI] (first operand) 

CMPSB 10 Compare bytes ES:[(E)DI] with DS:[SI] 
CMPSW 10 Compare words ES:[(E)DI] with DS:[SI] 
CMPSD 10 Compare dwords ES:[(E)DI] with DS:[SI] 

IF (instruction = CMPSO) OR 
(instruction has operands of type OWORO) 

THEN Operand Size +- 32; 
ELSE OperandSize +- 16; 
FI; 
IF AddressSize = 16 
THEN 

use SI for source-index and 01 for destination-index 
ELSE (* AddressSize = 32 *) 

use ESI for source-index and EOI for destination-index; 
FI; 
IF byte type of instruction 
THEN 

[source-index] - [destination-index]; (* byte comparison *) 
IF OF = 0 THEN IncOec +- 1 ELSE IncOec +- -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

[source-index] - [destination-index]; (* word comparison *) 
IF OF = 0 THEN IncOec +- 2 ELSE IncOec +- -2; FI; 

ELSE (* OperandSize = 32 *) 
[source-index] - [destination-index]; (* dword comparison *) 
IF OF = 0 THEN IncOec +- 4 ELSE IncOec +- -4; FI; 

FI; 
FI; 
source-index = source-index + IncOec; 
destination-index = destination-index + IncOec; 

CMPS compares the byte, word, or doubleword pointed to by the source­
index register with the byte, word, or doubleword pointed to by the 
destination-index register. 

If the address-size attribute of this instruction is 16 bits, SI and DI will 
be used for source- and destination-index registers; otherwise ESI and 
EDI will be used. Load the correct index values into SI and DI (or ESI 
and EDI) before executing CMPS. 

17-51 



80386 INSTRUCTION SET 

The comparison is done by subtracting the operand indexed by the 
destination-index register from the operand indexed by the source-index 
register. 

Note that the direction of subtraction for CMPS is [SI] - [DI] or 
[ESI] - [EDI]. The left operand (SI or ESI) is the source and the right 
operand (DI or ED!) is the destination. This is the reverse of the usual 
Intel convention in which the left operand is the destination and the right 
operand is the source. 

The result of the subtraction is not stored; only the flags reflect the 
change. The types of the operands determine whether bytes, words, or 
doublewords are compared. For the first operand (SI or ESI), the DS 
register is used, unless a segment override byte is present. The second 
operand (DI or EDI) must be addressable from the ES register; no 
segment override is possible. 

After the comparison is made, both the source-index register and desti­
nation-index register are automatically advanced. If the direction flag is 
o (CLD was executed), the registers increment; if the direction flag is 1 
(STD was executed), the registers decrement. The registers increment 
or decrement by 1 if a byte is compared, by 2 if a word is compared, or 
by 4 if a doubleword is compared. 

CMPSB, CMPSW and CMPSD are synonyms for the byte, word, and 
doubleword CMPS instructions, respectively. 

CMPS can be preceded by the REPE or REPNE prefix for block 
comparison of CX or ECX bytes, words, or doublewords. Refer to the 
description of the REP instruction for more information on this 
operation. 

Flags Affected OF, SF, ZF, AF, PF, and CF as described in Appendix C 

Protected Mode #GP(O) for an illegal memory operand effective address in the CS, DS, 
Exceptions ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 

#PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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CWO/COQ-Convert Word to Doubleword/Convert Doubleword to 
Quadword 

Opcode 

99 
99 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 

Instruction 

cwo 
coo 

Clocks 

2 
2 

Description 

OX:AX .. sign-extend of AX 
EDX:EAX .. sign-extend of EAX 

IF OperandSize = 16 (* CWD instruction *) 
THEN 

IF AX < 0 THEN DX +- OFFFFH; ELSE DX +- 0; FI; 
ELSE (* OperandSize = 32, CDa instruction *) 

IF EAX < 0 THEN EDX +- OFFFFFFFFH; ELSE EDX +- 0; FI; 
FI; 

CWD converts the signed word in AX to a signed doubleword in DX:AX 
by extending the most significant bit of AX into all the bits of DX. CDQ 
converts the signed doubleword in EAX to a signed 64-bit integer in the 
register pair EDX:EAX by extending the most significant bit of EAX 
(the sign bit) into all the bits of EDX. Note that CWD is different from 
CWDE. CWDE uses EAX as a destination, instead of DX:AX. 

None 

None 

None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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DAA-Decimal Adjust AL after Addition 

Opcode Instruction Clocks Description 

27 DAA 4 Decimal adjust AL after addition 

Operation IF ((AL AND OFH) > 9) OR (AF = 1) 
THEN 

AL +- AL + 6; 
AF +- 1; 

ELSE 
AF +- 0; 

FI; 
IF (AL > 9FH) OR (CF = 1) 
THEN 

AL +- AL + 60H; 
CF +- 1; 

ELSE CF +- 0; 
FI; 

Description Execute DAA only after executing an ADD instruction that leaves a 
two-BCD-digit byte result in the AL register. The ADD operands should 
consist of two packed BCD digits. The DAA instruction adjusts AL to 
contain the correct two-digit packed decimal result. 

Flags Affected AF and CF as described above; SF, ZF, PF, and CF as described in 
Appendix C. 

Protected Mode None 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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DAS-Decimal Adjust AL after Subtraction 

Opcode 

2F 

Operation 

Instruction Clocks 

DAS 4 

IF (AL AND OFH) > 9 OR AF = 1 
THEN 

AL t- AL ~ 6; 
AF t- 1; 

ELSE 
AF t- 0; 

FI; 
IF (AL > 9FH) OR (CF = 1) 
THEN 

AL t- AL ~ 60H; 
CF t- 1; 

ELSE CF t- 0; 
FI; 

Description 

Decimal adjust AL after subtraction 

Description Execute DAS only after a subtraction instruction that leaves a two-BCD­
digit byte result in the AL register. The operands should consist of two 
packed BCD digits. DAS adjusts AL to contain the correct packed two­
digit decimal result. 

Flags Affected AF and CF as described above; SF, ZF, and PF as described III 

Appendix C. 

Protected Mode None 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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DEC-Decrement by 1 

Ope ode 

FE 11 
FF 11 

48+rw 
4S+rw 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction Clocks 

DEC rImS 2/6 
DEC r/m16 2/6 
DEC r/m32 2/6 
DEC r16 2 
DEC r32 2 

DEST +- DEST - 1; 

Description 

Decrement rIm byte by 1 
Decrement rIm word by 1 
Decrement rIm dword by 1 
Decrement word register by 1 
Decrement dword register by 1 

DEC subtracts 1 from the operand. DEC does not change the carry flag. 
To affect the carry flag, use the SUB instruction with an immediate 
operand of 1. 

OF, SF, ZF, AF, and PF as described in Appendix C. 

#GP(O) if the result is a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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DIV - Unsigned Divide 

Opcode 

F6 /6 

F7 /6 

F7 /6 

Operation 

Instruction Clocks 

DIV AL,rjm8 14/17 

DIV AX,rjm16 22/25 

DIV EAX,rjm32 38/41 

temp +- dividend / divisor; 
IF temp does not fit in quotient 
THEN Interrupt 0; 
ELSE 

quotient +- temp; 

Description 

Unsigned divide AX by rjm byte (AL~Quo, 
AH~Rem) 

Unsigned divide DX:AX by rjm word (AX~Quo, 
DX~Rem) 

Unsigned divide EDX:EAX by rjm dword 
(EAX~Quo, EDX~Rem) 

remainder +- dividend MOD (rim); 
FI; 

Note: Divisions are unsigned. The divisor is given by the rim operand. 
The dividend, quotient, and remainder use implicit registers. Refer to 
the table under "Description." 

Description DIV performs an unsigned division. The dividend is implicit; only the 
divisor is given as an operand. The remainder is always less than the 
divisor. The type of the divisor determines which registers to use as 
follows: 

Size Dividend Divisor Quotient Remainder 

byte AX rjm8 AL AH 
word DX:AX rjm16 AX DX 
dword EDX:EAX rjm32 EAX EDX 

Flags Affected OF, SF, ZF, AR, PF, CF are undefined, 

Protected Mode Interrupt 0 if the quotient is too large to fit in the designated register 
Exceptions (AL, AX, or EAX), or if the divisor is 0; #GP(O) for an illegal memory 

operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) 
for an illegal address in the SS segment; #PF(fault-code) for a page fault 

Real Address Interrupt 0 if the quotient is too big to fit in the designated register (AL, 
Mode Exceptions AX, or EAX), or if the divisor is 0; Interrupt 13 if any part of the operand 

would lie outside of the effective address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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ENTER-Make Stack Frame for Procedure Parameters 

Opcode 

C8 iwOO 
C8 iw01 
C8 iwib 

Operation 

Description 

Instruction 

ENTER imm16,0 
ENTER imm16,1 
ENTER imm16,immB 

Clocks 

10 
12 
15+4(n-1) 

level ~ level MOD 32 

Description 

Make procedure stack frame 
Make stack frame for procedure parameters 
Make stack frame for procedure parameters 

IF OperandSize = 16 THEN Push(SP) ELSE Push (ESP) FI; 
(* Save stack pointer *) 

frame-ptr ~ eSP 
IF level> 0 
THEN (* level is rightmost parameter *) 

FOR i ~ 1 TO level - 1 
DO 

IF OperandSize = 16 
THEN 

SP ~ SP - 2; 
Push[SP] 

ELSE (* OperandSize = 32 *) 
ESP ~ ESP - 4; 
Push[ESP]; 

FI; 
00; 
Push(frame-ptr) 

FI; 
IF OperandSize = 16 THEN SP ~ frame-ptr ELSE ESP ~ frame-ptr; FI; 
IF StackAddrSize = 16 
THEN SP ~ SP - First operand; 
ELSE ESP ~ ESP - ZeroExtend(First operand); 
FI; 

ENTER creates the stack frame required by most block-structured high­
level languages. The first operand specifies the number of bytes of 
dynamic storage allocated on the stack for the routine being entered. 
The second operand gives the lexical nesting level (0 to 31) of the routine 
within the high-level language source code. It determines the number of 
stack frame pointers copied into the new stack frame from the preceding 
frame. BP (or EBP, if the operand-size attribute is 32 bits) is the current 
stack frame pointer. 

If the operand-size attribute is 16 bits, the processor uses BP as the frame 
pointer and SP as the stack pointer. If the operand-size attribute is 32 
bits, the processor uses EBP for the frame pointer and ESP for the stack 
pointer. 
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Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

80386 INSTRUCTION SET 

If the second operand is 0, ENTER pushes the frame pointer (BP or 
EBP) onto the stack; ENTER then subtracts the first operand from the 
stack pointer and sets the frame pointer to the current stack-pointer value. 

For example, a procedure with 12 bytes of local variables would have an 
ENTER 12,0 instruction at its entry point and a LEAVE instruction 
before every RET. The 12 local bytes would be addressed as negative 
offsets from the frame pointer. 

None 

#SS(O) if SP or ESP would exceed the stack limit at any point during 
instruction execution; #PF(fauh-code) for a page fault 

None 

Virtual 8086 None 
Mode Exceptions 
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HLT-Halt 

Opcode Instruction Clocks Description 

F4 HLT 5 Halt 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

Virtual 8086 
Mode Exceptions 

Enter Halt state; 

HALT stops instruction execution and places the 80386 in a HALT state. 
An enabled interrupt, NMI, or a reset will resume execution. If an inter­
rupt (including NMI) is used to resume execution after HLT, the saved 
CS:IP (or CS:EIP) value points to the instruction following HLT. 

None 

HLT is a privileged instruction; #GP(O) if the current privilege level is 
not 0 

None 

#GP(O); HLT is a privileged instruction 
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IDIV -Signed Divide 

Opcode 

F6/7 
F7 /7 

F7 /7 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

IDIV rlmB 
IDIV AX,rlm16 

IDIV EAX,rlm32 

Clocks 

19 
27 

43 

temp +- dividend / divisor; 
IF temp does not fit in quotient 
THEN Interrupt 0; 
ELSE 

quotient +- temp; 

Description 

Signed divide AX by rim byte (AL = Quo, AH = Rem) 
Signed divide DX:AX by EA word (AX=Quo, 
DX=Rem) 
Signed divide EDX:EAX by DWORD byte 
(EAX=Quo, EDX=Rem) 

remainder +- dividend MOD (rim); 
FI; 

Notes: Divisions are signed. The divisor is given by the rim operand. The 
dividend, quotient, and remainder use implicit registers. Refer to the table 
under "Description." 

IDlY performs a signed division. The dividend, quotient, and remainder 
are implicitly allocated to fixed registers. Only the divisor is given as an 
explicit rim operand. The type of the divisor determines which registers 
to use as follows: 

Size Divisor Quotient Remainder Dividend 

byte rlmB AL AH AX 
word rlm16 AX OX DX:AX 
dword rlm32 EAX EDX EDX:EAX 

If the resulting quotient is too large to fit in the destination, or if the 
division is 0, an Interrupt 0 is generated. Nonintegral quotients are 
truncated toward O. The remainder has the same sign as the dividend 
and the absolute value of the remainder is always less than the absolute 
value of the divisor. 

OF, SF, ZF, AR, PF, CF are undefined. 

Interrupt 0 if the quotient is too large to fit in the designated register 
(AL or AX), or if the divisor is 0; #GP (0) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an 
illegal address in the SS segment; #PF(fault-code) for a page fault 
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Real Address Interrupt 0 if the quotient is too large to fit in the designated register 
Mode Exceptions (AL or AX), or if the divisor is 0; Interrupt 13 if any part of the operand 

would lie outside of the effective address space from 0 to OFFFFH 

VirtualS086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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IMUL-Signed Multiply 

Opcode Instruction Clocks Description 

F6 /5 IMULrlmB 9-14/12-17 AX ... AL • rim byte 
F7 /5 IMUL rlm16 9-22/12-25 DX:AX ... AX * rim word 
F7 /5 IMULrlm32 9-38/12-41 EDX:EAX ... EAX * rim dword 
OF AF /r IMUL r16,rlm16 9-22/12-25 word register ... word register * rim word 
OF AF /r IMUL r32,rlm32 9-38/12-41 dword register ... dword register * rim dword ~"_ 
68 /r ib IMUL r16,rlm16,immB 9-14/12-17 word register ... rlm16 * sign-extended immediate 

byte 
68 /r ib IMUL r32,rlm32,imm8 9-14/12-17 dword register .. rlm32 * sign-extended immediate 

byte 
-~-

68 /rib IMUL r16,immB 9-14/12-17 word register ... word register' sign-extended 
immediate byte 

68 /rib IMUL r32,immB 9-14/12-17 dword register ... dword register • Sign-extended 
immediate byte li 

69 /riw IMUL r16,rlm16,imm16 9-22/12-25 word register ... rim 16 * immediate word 
69 /r id IMUL r32,rlm32,imm32 9-38/12-41 dword register ... rlm32' immediate dword 
69 /riw IMUL r16;imm16 9-22/12-25 word register ... 'jLIfj~~ i"mmediate word 
69 /r id IMUL r32,imm32 9-38/12-41 dword register ... "~(I7!~!'-immediate dwOr? 

"" 

NOTES: The 80386 uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most 
significant bit in the optimizing multiplier, shown underlined above. The optimization occurs for positive and negative 
values. 8ecause of the early-out algorithm, clock counts given are minimum to maximum. To calculate the actual 
clocks, use the following formula: 

Actual clock ~ if m <> 0 then max(ceiling(log21 m 1),3) + 6 clocks 
Actual clock ~ if m ~ 0 then 9 clocks 
(where m is the multiplier) 

Add three clocks if the multiplier is a memory operand. 

Operation 

Description 

Flags Affected 

result +- multiplicand * multiplier; 

IMUL performs signed multiplication. Some forms of the instruction 
use implicit register operands. The operand combinations for all forms 
of the instruction are shown in the "Description" column above. 

IMUL clears the overflow and carry flags under the following 
conditions: 

Instruction Form Condition for Clearing CF and OF 

rlmB AL ~ Sign-extend of AL to 16 bits 
r/m16 AX ~ Sign-extend of AX to 32 bits 
rlm32 EDX:EAX ~ sign-extend of EAX to 32 bits 
r16,rlm16 Result exactly fits within r16 
rI32,r/m32 Result exactly fits within r32 
r16,rlm16,imm16 Result exactly fits within r16 
r32,r/m32,imm32 Result exactly fits within r32 

OF and CF as described above; SF, ZF, AF, and PF are undefined 
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Protected Mode 
Exceptions 

80386 INSTRUCTION SET 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exeptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 

Notes When using the accumulator forms (IMUL rlmB, IMUL rlm16, or IMUL 
rlm32), the result of the multiplication is available even if the overflow 
flag is set because the result is two times the size of the multiplicand and 
multiplier. This is large enough to handle any possible result. 
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IN-Input from Port 

Opcode Instruction Clocks Description 

E4 ib IN AL,immB 12,pm = 6*/26** Input byte from immediate port into AL 
E5 ib IN AX,immB 12,pm=6*/26** Input word from immediate port into AX 
E5 ib IN EAX,immB 12,pm =6*/26** Input dword from immediate port into EAX 
EC IN AL,OX 13,pm=7*/27** Input byte from port OX into AL 
EO IN AX,OX 13,pm = 7*/27** Input word from port OX into AX 
EO IN EAX,OX 13,pm = 7*/27** Input dword from port OX into EAX 

NOTES: *If CPL :s IOPL 
**If CPL > IOPL or if in virtual 8086 mode 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

IF (PE = 1) AND «VM = 1) OR (CPL > 10PL)) 
THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 

IF NOT I-a-Permission (SRC, width(SRC)) 
THEN #GP(O); 
FI; 

FI; 
DEST +- [SRC]; (* Reads from I/O address space *) 

IN transfers a data byte or data word from the port numbered by the 
second operand into the register (AL, AX, or EAX) specified by the first 
operand. Access any port from 0 to 65535 by placing the port number 
in the DX register and using an IN instruction with DX as the second 
parameter. These I/O instructions can be shortened by using an 8-bit 
port I/O in the instruction. The upper eight bits of the port address will 
be 0 when 8-bit port I/O is used. 

None 

#GP(O) if the current privilege level is larger (has less privilege) than 
IOPL and any of the corresponding ]/0 permission bits in TSS 
equals 1 

None 

Virtual 8086 #GP(O) fault if any of the corresponding I/O permission bits in TSS 
Mode Exceptions equals 1 
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INC-Increment by 1 

Opcode 

FE /0 
FF /0 rl. 
FF ~-r 
40+ rw 
40+ rd 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

INCr/mB 
INC r/m16 
INC r/m32 
INC r16 
INC r32 

Clocks 

DEST +- DEST + 1; 

Description 

Increment r/m byte by 1 
Increment r/m word by 1 
Increment r/m dword by 1 
Increment word register by 1 
Increment dword register by 1 

INC adds 1 to the operand. It does not change the carry flag. To affect 
the carry flag, use the ADD instruction with a second operand of 1. 

OF, SF, ZF, AF, and PF as described in Appendix C 

#GP(O) if the operand is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, OS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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INS/INSB/INSW IINSD-Input from Port to String 

Opcode Instruction Clocks Description 

6C INS rlmB,OX 15,pm=g*j29** Input byte from port OX into ES:(E)OI 
60 INS rlm16,OX 15,pm=g*j29** Input word from port OX into ES:(E)OI 
60 INS rlm32,OX 15,pm = g* j29** Input dword from port OX into ES:(E)DI 
6C INSB 15,pm=g*j29*' Input byte from port OX into ES:(E)OI 
60 INSW 15,pm=g'j29" Input word from port OX into ES:(E)OI 
60 INSO 15,pm=g*j29" Input dword from port OX into ES:(E)DI 

NOTES: *If CPL :::s IOPL 
"If CPL > IOPL or if in virtual 8086 mode 

Operation 

Description 

IF AddressSize = 16 
THEN use 01 for dest-index; 
ELSE (* AddressSize = 32 *) 

use EOI for dest-index; 
FI; 
IF (PE = 1) ANO «VM = 1) OR (CPL > 10PL)) 
THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 

IF NOT I-a-Permission (SRC, width(SRC)) 
THEN #GP(O); 
FI; 

FI; 
IF byte type of instruction 
THEN 

ES:[dest-index] +- [OX]; (* Reads byte at OX from I/O address space *) 
IF OF = 0 THEN IncOec +- 1 ELSE IncOec +- -1; FI; 

FI; 
IF OperandSize = 16 
THEN 

ES:[dest-index] +- [OX]; (* Reads word at OX from I/O address space *) 
IF OF = 0 THEN IncOec +- 2 ELSE IncOec +- -2; FI; 

FI; 
IF OperandSize = 32 
THEN 

ES:[dest-index] +- [OX]; (* Reads dword at OX from I/O address space *) 
IF OF = 0 THEN IncOec +- 4 ELSE IncOec +- -4; FI; 

FI; 
dest-index +- dest-index + IncOec; 

INS transfers data from the input port numbered by the DX register to 
the memory byte or word at ES:dest-index. The memory operand must 
be addressable from ES; no segment override is possible. The destination 
register is DI if the address-size attribute of the instruction is 16 bits, or 
EDI if the address-size attribute is 32 bits. 

INS does not allow the specification of the port number as an immediate 
value. The port must be addressed through the DX register value. Load 
the correct value into DX before executing the INS instruction. 
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The destination address is determined by the contents of the destination 
index register. Load the correct index into the destination index register 
before executing INS. 

After the transfer is made, 01 or EOI advances automatically. If the 
direction flag is 0 (CLO was executed), 01 or EOI increments; if the 
direction flag is 1 (STO was executed), 01 or EOI decrements. 01 incre­
ments or decrements by 1 if a byte is input, by 2 if a word is input, or 
by 4 if a doubleword is input. 

INSB, INSW and INSO are synonyms of the byte, word, and double­
word INS instructions. INS can be preceded by the REP prefix for block 
input of CX bytes or words. Refer to the REP instruction for details of 
this operation. 

Flags Affected None 

Protected Mode #GP(O) if CPL is numerically greater than 10PL and any of the corre­
Exceptions sponding I/O permission bits in TSS equals 1; #GP(O) if the destination 

is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, OS, ES, FS, or GS segments; #SS(O) for an 
illegal address in the SS segment; #PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 #GP(O) fault if any of the corresponding I/O permission bits in TSS 
Mode Exceptions equals 1; #PF(fault-code) for a page fault 
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INT IINTO-call to Interrupt Procedure 

Opcode Instruction Clocks Description 

CC INT3 33 Interrupt 3-trap to debugger 
CC INT3 pm=59 Interrupt 3-Protected Mode, same privilege 
CC INT3 pm=99 Interrupt 3-Protected Mode, more privilege 
CC INT3 pm=119 Interrupt 3-from Va6 mode to PL 0 
CC INT3 ts Interrupt 3-Protected Mode, via task gate 
CD ib INT immB 37 Interrupt numbered by immediate byte 
CD ib INT immB pm=59 Interrupt-Protected Mode, same privilege 
CD ib INT immB pm=99 Interrupt-Protected Mode, more privilege 
CD ib INT immB pm=119 Interrupt-from Va6 mode to PL 0 
CD ib INT immB ts Interrupt-Protected Mode, via task gate 
CE INTO Fail:3,pm=3; Interrupt 4-if overflow flag is 1 

Pass:35 
CE INTO pm=59 Interrupt 4-Protected Mode, same privilege 
CE INTO pm=99 Interrupt 4-Protected Mode, more privilege 
CE INTO pm=119 Interrupt 4-from Va6 mode to PL 0 
CE INTO ts Interrupt 4-Protected Mode, via task gate 

NOTE: Approximate values of ts are given by the following table: 

Old Task 
I 

386 VM=O 
TSS 

386 VM=l 
TSS 

286 
TSS 

Operation 

New Task 

386 TSS 386 TSS 
286 TSS VM = 0 VM = 1 

309 226 282 

314 231 287 

307 224 280 

NOTE: The following operational description applies not only to the 
above instructions but also to external interrupts and exceptions. 

IF PE = 0 
THEN GOTO REAL-ADDRESS-MODE; 
pELSE GOTO PROTECTED-MODE; 
FI; 

REAL-ADDRESS-MODE: 
Push (FLAGS); 
IF +- 0; (* Clear interrupt flag *) 
TF +- 0; (* Clear trap flag *) 
Push(CS); 
Push(IP); 
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(* No error codes are pushed *) 
CS f- IDT[lnterrupt number * 4].selector; 
IP f- IDT[lnterrupt number * 4].offset; 

PROTECTED-MODE: 
Interrupt vector must be within IDT table limits, 

else #GP(vector number * 8+2+EXT); 
Descriptor AR byte must indicate interrupt gate, trap gate, or task gate, 

else #GP(vector number * 8+2+EXT); 
IF software interrupt (* Le. caused by INT n, INT 3, or INTO *) 
THEN 

IF gate descriptor DPL < CPL 
THEN #GP(vector number * 8+2+EXT); 
FI; 

FI; 
Gate must be present, else #NP(vector number * 8+2+EXT); 
IF trap gate OR interrupt gate 
THEN GOTO TRAP-GATE-OR-INTERRUPT-GATE; 
ELSE GOTO TASK-GATE; 
FI; 

TRAP-GATE-OR-INTERRUPT-GATE: 
Examine CS selector and descriptor given in the gate descriptor; 
Selector must be non-null, else #GP (EXT); 
Selector must be within its descriptor table limits 

ELSE #GP(selector+EXT); 
Descriptor AR byte must indicate code segment 

ELSE #GP(selector + EXT); 
Segment must be present, else #NP(selector+EXT); 

IF code segment is non-conforming AND DPL < CPL 
THEN GOTO INTERRUPT-TO-INNER-PRIVILEGE; 
ELSE 

IF code segment is conforming OR code segment DPL = CPL 
THEN GOTO INTERRUPT-TO-SAME-PRIVILEGE-LEVEL; 
ELSE #GP(CS selector + EXT); 
FI; 

FI; 

INTERRUPT-TO-INNER-PRIVILEGE: 
Check selector and descriptor for new stack in current TSS; 

Selector must be non-null, else #GP(EXT); 
Selector index must be within its descriptor table limits 

ELSE #T8(8S selector+ EXT); 
Selector's RPL must equal DPL of code segment, else #TS(SS 

selector+ EXT); 
Stack segment DPL must equal DPL of code segment, else #TS(SS 

selector+ EXT); 
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Descriptor must indicate writable data segment, else #TS(SS 
selector + EXT); 

Segment must be present, else #SS(SS selector+EXT); 
IF 32-bit gate 
THEN New stack must have room for 20 bytes else #SS(O) 
ELSE New stack must have room for 10 bytes else #SS(O) 
FI; 
Instruction pointer must be within CS segment boundaries else #GP(O); 
Load new SS and eSP value from TSS; 
IF 32-bit gate 
THEN CS:EIP t- selector:offset from gate; 
ELSE CS:IP t- selector:offset from gate; 
FI; 
Load CS descriptor into invisible portion of CS register; 
Load SS descriptor into invisible portion of SS register; 
IF 32-bit gate 
THEN 

Push (long pOinter to old stack) (* 3 words padded to 4 *); 
Push (EFLAGS); 
Push (long pOinter to return location) (* 3 words padded to 4*); 

ELSE 
Push (long pointer to old stack) (* 2 words *); 
Push (FLAGS); 
Push (long pointer to return location) (* 2 words *); 

FI; 
Set CPL to new code segment DPL; 
Set RPL of CS to CPL; 
IF interrupt gate THEN IF t- 0 (* interrupt flag to 0 (disabled) *); FI; 
TF t- 0; 
NT t- 0; 

INTERRUPT-FROM-V86-MODE: 
TempEFlags t- EFLAGS; 
VM t- 0; 
TF t- 0; 
IF service through Interrupt Gate THEN IF t- 0; 
TempSS t- SS; 
TempESP t- ESP; 
SS t- TSS.SSO; (* Change to level 0 stack segment *) 
ESP t- TSS.ESPO; (* Change to level 0 stack pointer *) 
Push(GS); (* padded to two words *) 
Push(FS); (* padded to two words *) 
Push(DS); (* padded to two words *) 
Push(ES); (* padded to two words *) 
GS t- 0; 
FS t- 0; 
DS t- 0; 
ES t- 0; 
Push(TempSS); (* padded to two words *) 
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Push(TempESP); 
Push(TempEFlags); 
Push(CS); (* padded to two words *) 
Push(EIP); 
CS:EIP +- selector:offset from interrupt gate; 
(* Starts execution of new routine in 80386 Protected Mode *) 

I NTERR U PT -TO-SAM E-PRIVI LEGE-LEVEL: 
IF 32-bit gate 
THEN Current stack limits must allow pushing 10 bytes, else #SS(O); 
ELSE Current stack limits must allow pushing 6 bytes, else #SS(O); 
FI; 
IF interrupt was caused by exception with error code 
THEN Stack limits must allow push of two more bytes; 
ELSE #SS(O); 
FI; 
Instruction pointer must be in CS limit, else #GP(O); 
IF 32-bit gate 
THEN 

Push (EFLAGS); 
Push (long pOinter to return location); (* 3 words padded to 4 *) 
CS:EIP +- selector:offset from gate; 

ELSE (* 16-bit gate *) 
Push (FLAGS); 
Push (long pOinter to return location); (* 2 words *) 
CS:IP +- selector:offset from gate; 

FI; 
Load CS descriptor into invisible portion of CS register; 
Set the RPL field of CS to CPL; 
Push (error code); (* if any *) 
IF interrupt gate THEN IF +- 0; FI; 
TF +- 0; 
NT +- 0; 

TASK-GATE: 
Examine selector to TSS, given in task gate descriptor; 

Must specify global in the local/global bit, else #TS(TSS selector); 
Index must be within GDT limits, else #TS(TSS selector); 
AR byte must specify available TSS (bottom bits 00001), 

else #TS(TSS selector; 
TSS must be present, else #NP(TSS selector); 

SWITCH-TASKS with nesting to TSS; 
IF interrupt was caused by fault with error code 
THEN 

Stack limits must allow push of two more bytes, else #SS(O); 
Push error code onto stack; 

FI; 
Instruction pointer must be in CS limit, else #GP(O); 
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The INT n instruction generates via software a call to an interrupt 
handler. The immediate operand, from 0 to 255, gives the index number 
into the Interrupt Descriptor Table (IDT) of the interrupt routine to be 
called. In Protected Mode, the IDT consists of an array of eight-byte 
descriptors; the descriptor for the interrupt invoked must indicate an 
interrupt, trap, or task gate. In Real Address Mode, the IDT is an array 
of four byte-long pointers. In Protected and Real Address Modes, the 
base linear address of the IDT is defined by the contents of the IDTR. 

The INTO conditional software instruction is identical to the INT n 
interrupt instruction except that the interrupt number is implicitly 4, 
and the interrupt is made only if the 80386 overflow flag is set. 

The first 32 interrupts are reserved by Intel for system use. Some of 
these interrupts are use for internally generated exceptions. 

INT n generally behaves like a far call except that the flags register is 
pushed onto the stack before the return address. Interrupt procedures 
return via the IRET instruction, which pops the flags and return address 
from the stack. 

In Real Address Mode, INT n pushes the flags, CS, and the return IP 
onto the stack, in that order, then jumps to the long pointer indexed by 
the interrupt number. 

Flags Affected None 

Protected Mode #GP, #NP, #SS, and #TS as indicated under "Operation" above 
Exceptions 

Real Address None; if the SP or ESP = 1, 3, or 5 before executing INT or INTO, 
Mode Exceptions the 80386 will shut down due to insufficient stack space 

Virtual 8086 #GP(O) fault if IOPL is less than 3, for INT n only, to permit emulation; 
Mode Exceptions Interrupt 3 (OCCR) generates Interrupt 3; INTO generates Interrupt 4 

if the overflow flag equals 1 
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IRET IIRETD-Interrupt Return 

Opcode Instruction Clocks Description 

CF IRET 22,pm=38 Interrupt return (far return and pop flags) 
CF IRET pm=82 Interrupt return to lesser privilege 
CF iRET ts Interrupt return, different task (NT = 1) 
CF iRETD 22,pm=38 Interrupt return (far return and pop flags) 
CF iRETD pm=82 Interrupt return to lesser privilege 
CF IRETD pm=60 Interrupt return to V86 mode 
CF IRETD ts Interrupt return, different task (NT = 1) 

NOTE: Values of ts are given by the following table: 

Old Task 

386 VM=Q TSS 

286 
TSS 

Operation 

New Task 

386 TSS 386 TSS 
VM = 0 VM = 1 

275 224 

265 214 

IF PE = 0 
THEN (* Real-address mode *) 

IF Operand Size = 32 (* Instruction = IRETD *) 
THEN EIP +- PopO; 
ELSE (* Instruction = IRET *) 

IP +- PopO; 
FI; 
CS +- PopO; 
IF OperandSize = 32 (* Instruction = IRETD *) 
THEN EFLAGS +- PopO; 
ELSE (* Instruction = IRET *) 

FLAGS +- PopO; 
FI; 

ELSE (* Protected mode *) 
IFVM = 1 
THEN #GP(O); 
ELSE 

IF NT = 1 
THEN GOTO TASK-RETURN; 
ELSE 

IF VM = 1 in flags image on stack 
THEN GO TO STACK-RETURN-TO-V86; 
ELSE GOTO STACK-RETURN; 
FI; 
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FI; 
FI; 

FI;STACK-RETURN-TO-V86: (* Interrupted procedure was in V86 mode *) 
IF return CS selector RPL < > 3 
THEN #GP(Return selector); 
FI; 
IF top 36 bytes of stack not within limits 
THEN #SS(O); 
FI; 
Examine return CS selector and associated descriptor: 

IF selector is null, THEN #GP(O); FI; 
IF selector index not within its descriptor table limits; 
THEN #GP(Return selector); 
FI; 
IF AR byte does not indicate code segment 
THEN #GP(Return selector); 
FI; 
IF code segment DPL not = 3; 
THEN #GP(Return selector); 
FI; 
IF code segment not present 
THEN #NP(Return selector); 
FI; 

Examine return SS selector and associated descriptor: 
IF selector is null THEN #GP(O); FI; 
IF selector index not within its descriptor table limits 
THEN #GP(SS selector); 
FI; 
IF selector RPL not = RPL of return CS selector 
THEN #GP(SS selector); 
FI; 
IF AR byte does not indicate a writable data segment 
THEN #GP(SS selector); 
FI; 
IF stack segment DPL not = RPL of return CS selector 
THEN #GP(SS selector); 
FI; 
IF SS not present 
THEN #NP(SS selector); 
FI; 

IF instruction pointer not within code segment limit THEN #GP(O); 
FI; 
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EFLAGS +- SS:[eSP + 8]; (* Sets VM in interrupted routine *) 
EIP +- PopO; 
CS +- PopO; (* CS behaves as in 8086, due to VM = 1 *) 
throwaway +- PopO; (* pop away EFLAGS already read *) 
ES +- PopO; (* pop 2 words; throwaway high-order word *) 
DS +- PopO; (* pop 2 words; throwaway high-order word *) 
FS +- PopO; (* pop 2 words; throwaway high-order word *) 
GS +- PopO; (* pop 2 words; throwaway high-order word *) 
IF CS.RPL > CPL 
THEN 

TempESP +- Pop(); 
TempSS +- PopO; 
SS:ESP +- TempSS:TempESP; 

FI; 

(* Resume execution in Virtual 8086 mode *) 

TASK-RETURN: 
Examine Back Link Selector in TSS addressed by the current task 

register: 
Must specify global in the local/global bit, else #TS(new TSS selector); 
Index must be within GDT limits, else #TS(new TSS selector); 
AR byte must specify TSS, else #TS(new TSS selector); 
New TSS must be busy, else #TS(new TSS selector); 
TSS must be present, else #NP(new TSS selector); 

SWITCH-TASKS without nesting to TSS specified by back link selector; 
Mark the task just abandoned as NOT BUSY; 
Instruction pOinter must be within code segment limit ELSE #GP(O); 

STACK-RETURN: 
IF OperandSize=32 
THEN Third word on stack must be within stac,k limits, else #SS(O); 
ELSE Second word on stack must be within stack limits, else #SS(O); 
FI; 
Return CS selector RPL must be 2: CPL, else #GP(Return selector); 
IF return selector RPL = CPL 
THEN GOTO RETURN-SAME-LEVEL; 
ELSE GOTO RETURN-OUTER-LEVEL; 
FI; 

R ETU RN-SAM E-LEVEL: 
IF OperandSize=32 
THEN 

Top 12 bytes on stack must be within limits, else #SS(O); 
Return CS selector (at eSP+4) must be non-null, else #GP(O); 

ELSE 
Top 6 bytes on stack must be within limits, else #SS(O); 
Return CS selector (at eSP+2) must be non-null, else #GP(O); 
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FI; 
Selector index must be within its descriptor table limits, else #GP 

(Return selector); 
AR byte must indicate code segment, else #GP(Return selector); 
IF non-conforming 
THEN code segment DPL must = CPL; 
ELSE #GP(Return selector); 
FI; 
IF conforming 
THEN code segment DPL must be ::5 CPL, else #GP(Return selector); 
Segment must be present, else #NP(Return selector); 
Instruction pointer must be within code segment boundaries, else #GP(O); 
FI; 
IF OperandSize=32 
THEN 

Load CS:EIP from stack; 
Load CS-register with new code segment descriptor; 
Load EFLAGS with third doubleword from stack; 
Increment eSP by 12; 

ELSE 
Load CS-register with new code segment descriptor; 
Load FLAGS with third word on stack; 
Increment eSP by 6; 

FI; 

RETURN-OUTER-LEVEL: 
IF OperandSize=32 
THEN Top 20 bytes on stack must be within limits, else #SS(O); 
ELSE Top 10 bytes on stack must be within limits, else #SS(O); 
FI; 
Examine return CS selector and associated descriptor: 

Selector must be non-null, else #GP(O); 
Selector index must be within its descriptor table limits; 

ELSE #GP(Return selector); 
AR byte must indicate code segment, else #GP(Return selector); 
IF non-conforming 
THEN code segment DPL must = CS selector RPL; 
ELSE #GP(Return selector); 
FI; 
IF conforming 
THEN code segment DPL must be > CPL; 
ELSE #GP(Return selector); 
FI; 
Segment must be present, else #NP(Return selector); 
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Examine return SS selector and associated descriptor: 
Selector must be non-null, else#GP(O); 
Selector index must be within its descriptor table limits 

ELSE #GP(SS selector); 
Selector RPL must equal the RPL of the return CS selector 

ELSE #GP(SS selector); 
AR byte must indicate a writable data segment, else #GP(SS selector); 
Stack segment DPL must equal the RPL of the return CS selector 

ELSE #GP(SS selector); 
SS must be present, else #NP(SS selector); 

Instruction pOinter must be within code segment limit ELSE #GP(O); 
IF OperandSize=32 
THEN 

Load CS:EIP from stack; 
Load EFLAGS with values at (eSP+8); 

ELSE 
Load CS:IP from stack; 
Load FLAGS with values at (eSP+4); 

FI; 
Load SS:eSP from stack; 
Set CPL to the RPL of the return CS selector; 
Load the CS register with the CS descriptor; 
Load the SS register with the SS descriptor; 
FOR each of ES, FS, GS, and DS 
DO; 

IF the current value of the register is not valid for the outer level; 
THEN zero the register and clear the valid flag; 
FI; 
To be valid, the register setting must satisfy the following properties: 

Selector index must be within descriptor table limits; 
AR byte must indicate data or readable code segment; 
IF segment is data or non-conforming code, 
THEN DPL must be ::::: CPL, or DPL must be ::::: RPL; 

aD; 

In Real Address Mode, IRET pops the instruction pointer, CS, and the 
flags register from the stack and resumes the interrupted routine. 

In Protected Mode, the action of IRET depends on the setting of the 
nested task flag (NT) bit in the flag register. When popping the new 
flag image from the stack, the IOPL bits in the flag register are changed 
only when CPL equals O. 

If NT equals 0, IRET returns from an interrupt procedure without a 
task switch. The code returned to must be equally or less privileged than 
the interrupt routine (as indicated by the RPL bits of the CS selector 
popped from the stack). If the destination code is less privileged, IRET 
also pops the stack pointer and SS from the stack. 
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JCC-Jump if Condition is Met 

Opcode Instruction Clocks Description 

77 cb JA rel8 7+m,3 Jump short if above (CF=O and ZF=O) 
73 cb JAE rel8 7+m,3 Jump short if above or equal (CF=O) 
72 cb JB rel8 7+m,3 Jump short if below (CF=l) 
76 cb JBE rel8 7+m,3 Jump short if below or equal (CF=l or ZF=l) 
72 cb JC rel8 7+m,3 Jump short if carry (CF=l) 
E3 cb JCXZ rel8 9+m,5 Jump short if CX register is 0 
E3 cb JECXZ rel8 9+m,5 Jump short if ECX register is 0 
74 cb JE rel8 7+m,3 Jump short if equal (ZF=l) 
74 cb JZ rel8 7+m,3 Jump short if 0 (ZF=l) 
7F cb JG rel8 7+m,3 Jump short if greater (ZF=O and SF=OF) 
70 cb JGE rel8 7+m,3 Jump short if greater or equal (SF=OF) 
7C cb JL rel8 7+m,3 Jump short if less (SF<>OF) 
7E cb JLE rel8 7+m,3 Jump short if less or equal (ZF=l and SF<>OF) 
76 cb JNA rel8 7+m,3 Jump short if not above (CF=l or ZF=l) 
72 cb JNAE rel8 7+m,3 Jump short if not above or equal (CF=l) 
73 cb JNB rel8 7+m,3 Jump short if not below (CF=O) 
77 cb JNBE rel8 7+m,3 Jump short if not below or equal (CF=O and ZF=O) 
73 cb JNC rel8 7+m,3 Jump short if not carry (CF=O) 
75 cb JNE rel8 7+m,3 Jump short if not equal (ZF=O) 
7E cb JNG rel8 7+m,3 Jump short if not greater (ZF=l or SF<>OF) 
7C cb JNGE rel8 7+m,3 Jump short if not greater or equal (SF<>OF) 
70 cb JNL rel8 7+m,3 Jump short if not less (SF=OF) 
7F cb JNLE rel8 7+m,3 Jump short if not less or equal (ZF=O and SF=OF) 
71 cb JNO rel8 7+m,3 Jump short if not overflow (OF=O) 
7B cb JNP rel8 7+m,3 Jump short if not parity (PF=O) 
79 cb JNS rel8 7+m,3 Jump short if not sign (SF=O) 
75 cb JNZ rel8 7+m,3 Jump short if not zero (ZF = 0) 
70 cb JO rel8 7+m,3 Jump short if overflow (OF=l) 
7A cb JP rel8 7+m,3 Jump short if parity (PF= 1) 
7A cb JPE rel8 7+m,3 Jump shon if parity even (PF=l) 
7B cb JPO rel8 7+m,3 Jump short if parity odd (PF=O) 
78 cb JS rel8 7+m,3 Jump short if sign (SF=l) 
74 cb JZ rel8 7+m,3 Jump short if zero (ZF = 1) 
OF 87 cw/cd JA re116/32 7+m,3 Jump near if above (CF=O and ZF=O) 
OF 83 cw/cd JAE re116/32 7+m,3 Jump near if above or equal (CF=O) 
OF 82 cw/cd JB re116/32 7+m,3 Jump near if below (CF=l) 
OF 86 cw/cd JBE re116/32 7+m,3 Jump near if below or equal (CF=l or ZF=l) 
OF 82 cw/cd JC re116/32 7+m,3 Jump near if carry (CF=l) 
OF 84 cw/cd JE re116/32 7+m,3 Jump near if equal (ZF=l) 
OF 84 cw/cd JZ re116/32 7+m,3 Jump near if 0 (ZF=l) 
OF 8F cw/cd JG re116/32 7+m,3 Jump near if greater (ZF=O and SF=OF) 
OF 80 cw/cd JGE re116/32 7+m,3 Jump near if greater or equal (SF=OF) 
OF 8C cw/cd JL re116/32 7+m,3 Jump near if less (SF<>OF) 
OF 8E cw/cd JLE re116/32 7+m,3 Jump near if less or equal (ZF=l and SF<>OF) 
OF 86 cw/cd JNA reI16/32 7+m,3 Jump near if not above (CF=l or ZF=l) 
OF 82 cw/cd JNAE re116/32 7+m,3 Jump near if not above or equal (CF=l) 
OF 83 cW/cd JNB re116/32 7+m,3 Jump near if not below (CF=O) 
OF 87 cw/cd JNBE re116/32 7+m,3 Jump near if not below or equal (CF=O and ZF=O) 
OF 83 cw/Cd JNC re116/32 7+m,3 Jump near if not carry (CF=O) 
OF 85 cw/cd JNE re116/32 7+m,3 Jump near if not equal (ZF=O) 
OF 8E cw/cd JNG re116/32 7+m,3 Jump near if not greater (ZF=l or SF<>OF) 
OF 8C cw/cd JNGE re116/32 7+m,3 Jump near if not greater or equal (SF<>OF) 
OF 80 cw/cd JNL re116/32 7+m,3 Jump near if not less (SF=OF) 
OF 8F cw/cd JNLE re116/32 7+m,3 Jump near if not less or equal (ZF=O and SF=OF) 
OF 81 cw/cd JNO re116/32 7+m,3 Jump near if not overflow (OF=O) 
OF 8B cw/cd JNP re116/32 7+m,3 Jump near if not parity (PF=O) 
OF 89 cw/cd JNS re116/32 7+m,3 Jump near if not sign (SF=O) 
OF 85 cw/cd JNZ re116/32 7+m,3 Jump near if not zero (ZF=O) 
OF 80 cw/cd JO re116/32 7+m,3 Jump near if overflow (OF=l) 
OF 8A cw/cd JP re116/32 7+m,3 Jump near if parity (PF = 1) 
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If NT equals 1, IRET reverses the operation of a CALL or INT that 
caused a task switch. The updated state of the task executing IRET is 
saved in its task state segment. If the task is reentered later, the code 
that follows IRET is executed. 

Flags Affected All; the flags register is popped from stack 

Protected Mode #GP, #NP, or#SS, as indicated under "Operation" above 
Exceptions 

Real Address Interrupt 13 if any part of the operand being popped lies beyond address 
Mode Exceptions OFFFFH 

Virtual 8086 #GP(O) fault if IOPL is less than 3, to permit emulation 
Mode Exceptions 
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Opcode 

OF 8A cw/cd 
OF 88 cw/cd 
OF 88 cw/cd 
OF 84 cw/cd 

Instruction 

JPE re116/32 
JPO re116/32 
JS rel16j32 
JZ re116/32 

80386 INSTRUCTION SET 

Clocks 

7+m,3 
7+m,3 
7+m,3 
7+m,3 

Description 

Jump near if parity even (PF ~ 1) 
Jump near if parity odd (PF~O) 
Jump near if sign (SF ~ 1) 

NOTES: The first clock count is for the true condition (branch taken); the second clock count is for the false condition 
(branch not taken). re116/32 indicates that these instructions map to two; one with a 16-bit relative displacement, 
the other with a 32-bit relative displacement, depending on the operand-size attribute of the instruction. 

Operation 

Description 

IF condition 
THEN 

EIP ~ EIP + SignExtend(reIBj16j32); 
IF OperandSize = 16 
THEN EIP ~ EIP AND OOOOFFFFH; 
FI; 

FI; 

Conditional jumps (except JCXZ) test the flags which have been set by 
a previous instruction. The conditions for each mnemonic are given in 
parentheses after each description above. The terms "less" and "greater" 
are used for comparisons of signed integers; "above" and "below" are 
used for unsigned integers. 

If the given condition is true, a jump is made to the location provided as 
the operand. Instruction coding is most efficient when the target for the 
conditional jump is in the current code segment and within -128 to 
+ 127 bytes of the next instruction's first byte. The jump can also target 
- 32768 thru + 32767 (segment size attribute 16) or - 231 thru + 231 -1 
(segment size attribute 32) relative to the next instruction's first byte. 
When the target for the conditional jump is in a different segment, use 
the opposite case of the jump instruction (i.e., JE and JNE), and then 
access the target with an unconditional far jump to the other segment. 
For example, you cannot code-

JZ FARLABELi 

You must instead code-

HZ BEYONDi 
JMP FARLABELi 

BEYOND: 

Because there can be several ways to interpret a particular state of the 
flags, ASM386 provides more than one mnemonic for most of the condi­
tional jump opcodes. For example, if you compared two characters in 
AX and want to jump if they are equal, use JE; or, if you ANDed AX 
with a bit field mask and only want to jump if the result is 0, use JZ, a 
synonym for JE. 
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JCXZ differs from other conditional jumps because it tests the contents 
of the CX or ECX register for 0, not the flags. JCXZ is useful at the 
beginning of a conditional loop that terminates with a conditional loop 
instruction (such as L 0 0 P NET A R GET LAB E L. The JCXZ prevents 
entering the loop with CX or ECX equal to zero, which would cause the 
loop to execute 64K or 32G times instead of zero times. 

Flags Affected None 

Protected Mode #GP(O) if the offset jumped to is beyond the limits of the code segment 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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JMP-Jump 

Opcode Instruction 

EB cb JMP ref8 
E9 cw JMP ref16 
FF /4 JMP rlm16 
EA cd JMP ptr16:16 
EA cd JMP ptr16:16 
EA cd JMP ptr16:16 
EA cd JMP ptr16:16 
FF /5 JMP m16:'16 
FF /5 JMP m16:16 
FF /5 JMP m16:16 
FF /5 JMP m16:16 

E9 cd JMP ref32 
FF /4 JMP rlm32 
EA cp JMP ptr16:32 
EA cp JMP ptr16:32 
EA cp JMP ptr16:32 
EA cp JMP ptr16:32 
FF /5 JMP m16:32 
FF /5 JMP m16:32 
FF /5 JMP m16:32 
FF /5 JMP m16:32 

Clocks 

7+m 
7+m 
7+m/l0+m 
12+m,pm=27+m 
pm=45+m 
ts 
ts 
43+m,pm=31+m 
pm=49+m 
5 + ts 
5 + ts 

7+m 
7+m,10+m 
12+m,pm=27+m 
pm=45+m 
ts 
Is 
43+m,pm=31+m 
pm=49+m 
5 + ts 
5 + ts 

Description 

Jump short 
Jump near, displacement relative to next instruction 
Jump near indirect 
Jump intersegment, 4-byte immediate address 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 
Jump rim 16: 16 indirect and intersegment 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 

Jump near, displacement relative to next instruction 
Jump near, indirect 
Jump intersegment, 6-byte immediate address 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 
Jump intersegment, address at rim dword 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 

NOTE: Values of ts are given by the following table: 

Old Task 

386 VM=O 
TSS 

286 
TSS 

Operation 

New Task 

386 TSS 386 TASK 
VM = 0 VM = 1 

Via Task Gale? 

N y N 

303 312 220 

301 310 218 

IF instruction = relative JMP 
(* i.e. operand is refB, ref16, or ref32 *) 

THEN 
EIP 4- EIP + re1Bj16j32; 
IF OperandSize = 16 
THEN EIP 4- EIP AND OOOOFFFFH; 
FI; 

FI; 

17-83 

Y 

229 

227 

286 TSS 

N Y 

276 285 

274 283 



80386 INSTRUCTION SET 

IF instruction = near indirect JMP 
(* i.e. operand is rjm16 or rjm32 *) 

THEN 
IF OperandSize = 16 
THEN 

EIP +- [rjm16] AND OOOOFFFFH; 
ELSE (* OperandSize = 32 *) 

EIP +- [rjm32]; 
FI; 

FI; 

IF (PE = 0 OR (PE = 1 AND VM = 1)) (* real mode or V86 mode *) 
AND instruction = far JMP 
(* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32 *) 

THEN GOTO REAL-OR-V86-MODE; 
IF operand type = m16:16 or m16:32 
THEN (* indirect *) 

IF OperandSize = 16 
THEN 

CS:IP +- [m16:16]; 
EIP +- EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* OperandSize = 32 *) 
CS:EIP +- [m16:32]; 

FI; 
FI; 
IF operand type = ptr16:16 or ptr16:32 
THEN 

IF OperandSize = 16 
THEN 

CS:IP +- ptr16:16; 
EIP +- EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* Operand Size = 32 *) 
CS:EIP +- ptr16:32; 

FI; 
FI; 

FI; 

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) 
AND instruction = far JMP 

THEN 
IF operand type = m16:160r m16:32 
THEN (* indirect *) 

check access of EA dword; 
#GP(O) or #SS(O) IF limit violation; 

FI; 
Destination selector is not null ELSE #GP(O) 
Destination selector index is within its descriptor table limits ELSE 

#GP(selector) 
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Depending on AR byte of destination descriptor: 
GOTO CONFORMING-CODE-SEGMENT; 
GOTO NONCONFORMING-CODE-SEGMENT; 
GOTO CALL-GATE; 
GOTO TASK-GATE; 
GOTO TASK-STATE-SEGMENT; 

ELSE #GP(selector); (* illegal AR byte in descriptor *) 
FI; 

CONFORMING-CODE-SEGMENT: 
Descriptor DPL must be :::; CPL ELSE #GP(selector); 
Segment must be present ELSE #NP(selector); 
Instruction pOinter must be within code-segment limit ELSE #GP(O); 
IF OperandSize = 32 
THEN Load CS:EIP from destination pointer; 
ELSE Load CS:IP from destination pOinter; 
FI; 
Load CS register with new segment descriptor; 

NON CON FORMI NG-CODE-SEGM ENT: 
RPL of destination selector must be :::; CPL ELSE #GP(selector); 
Descriptor DPL must be = CPL ELSE #GP(selector); 
Segment must be present ELSE # NP(selector); 
Instruction pointer must be within code-segment limit ELSE #GP(O); 
IF OperandSize = 32 
THEN Load CS:EIP from destination pointer; 
ELSE Load CS:IP from destination pointer; 
FI; 
Load CS register with new segment descriptor; 
Set RPL field of CS register to CPL; 

CALL-GATE: 
Descriptor DPL must be 2: CPL ELSE #GP(gate selector); 
Descriptor DPL must be 2: gate selector RPL ELSE #GP(gate selector); 
Gate must be present ELSE #NP(gate selector); 
Examine selector to code segment given in call gate descriptor: 

Selector must not be null ELSE #GP(O); 
Selector must be within its descriptor table limits ELSE 

#GP(CS selector); 
Descriptor AR byte must indicate code segment 

ELSE #GP(CS selector); 
IF non-conforming 
THEN code-segment descriptor, DPL must = CPL 
ELSE #GP(CS selector); 
FI; 
IF conforming 
THEN cOde-segment descriptor DPL must be :::; CPL; 
ELSE #GP(CS selector); 
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Code segment must be present ELSE #NP(CS selector); 
Instruction pOinter must be within code-segment limit ELSE #GP(O); 
IF OperandSize= 32 
THEN Load CS:EIP from call gate; 
ELSE Load CS:IP from call gate; 
FI; 

Load CS register with new cOde-segment descriptor; 
Set RPL of CS to CPL 

TASK-GATE: 
Gate descriptor DPL must be 2:: CPL ELSE #GP(gate selector); 
Gate descriptor DPL must be 2:: gate selector RPL ELSE #GP(gate 

selector); 
Task Gate must be present ELSE #Np(gate selector); 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit ELSE #GP(TSS selector); 
Index must be within GDT limits ELSE #GP(TSS selector); 
Descriptor AR byte must specify available TSS (bottom bits 00001); 

ELSE #GP(TSS selector); 
Task State Segment must be present ELSE #NP(TSS selector); 

SWITCH-TASKS (without nesting) to TSS; 
Instruction pointer must be within code-segment limit ELSE #GP(O); 

T ASK-STATE-SEGMENT: 
TSS DPL must be 2:: CPL ELSE #GP(TSS selector); 
TSS DPL must be 2:: TSS selector RPL ELSE #GP(TSS selector); 
Descriptor AR byte must specify available TSS (bottom bits 00001) 

ELSE #GP(TSS selector); 
Task State Segment must be present ELSE #NP(TSS selector); 
SWITCH-TASKS (without nesting) to TSS; 
Instruction pointer must be within cOde-segment limit ELSE #GP(O); 

The JMP instruction transfers control to a different point in the instruc­
tion stream without recording return information. 

The action of the various forms of the instruction are shown below. 

Jumps with destinations of type r/m16, r/m32, rel16, and rel32 are near 
jumps and do not involve changing the segment register value. 

The JMP rel16 and JMP rel32 forms of the instruction add an offset to 
the address of the instruction following the JMP to determine the desti­
nation. The rel16 form is used when the instruction's operand-size attrib­
ute is 16 bits (segment size attribute 16 only); rel32 is used when the 
operand-size attribute is 32 bits (segment size attribute 32 only). The 
result is stored in the 32-bit EIP register. With rel16, the upper 16 bits 
of EIP are cleared, which results in an offset whose value does not exceed 
16 bits. 
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JMP rjm16 and JMP rjm32 specifies a register or memory location from 
which the absolute offset from the procedure is fetched. The offset fetched 
from rjm is 32 bits for an operand-size attribute of 32 bits (rjm32), or 
16 bits for an operand-size attribute of 16 bits (rjm16). 

The JMP ptr16:16 and ptr16:32 forms of the instruction use a four-byte 
or six-byte operand as a long pointer to the destination. The JMP m16:16 
and m16:32 forms fetch the long pointer from the memory location 
specified (indirection). In Real Address Mode or Virtual 8086 Mode, 
the long pointer provides 16 bits for the CS register and 16 or 32 bits 
for the EIP register (depending on the operand-size attribute). In 
Protected Mode, both long pointer forms consult the Access Rights (AR) 
byte in the descriptor indexed by the selector part of the long pointer. 
Depending on the value of the AR byte, the jump will perform one of 
the following types of control transfers: 

• A jump to a code segment at the same privilege level 

• A task switch 

For more information on protected mode control transfers, refer to 
Chapter 6 and Chapter 7. 

Flags Affected All if a task switch takes place; none if no task switch occurs 

Protected Mode Far jumps: #GP, #NP, #SS, and #TS, as indicated in the list above. 
Exceptions 

Near direct jumps: #GP(O) if procedure location is beyond the code 
segment limits. 

Near indirect jumps: #GP(O) for an illegal memory operand effective 
address in the CS, DS, ES, FS, or GS segments: #SS(O) for an illegal 
address in the SS segment; #GP if the indirect offset obtained is beyond 
the code segment limits; #PF(fault-code) for a page fault. 

Real Address Interrupt 13 if any part of the operand would be outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as under Real Address Mode; #PF(fault-code) for a 
Mode Exceptions page fault 
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LAHF-Load Flags into AH Register 

Opcode Instruction Clocks Description 

9F LAHF 2 Load: AH ~ flags SF ZF xx AF xx PF xx CF 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

Virtual 8086 
Mode Exceptions 

AH +- SF:ZF:xx:AF:xx:PF:xx:CF; 

LAHF transfers the low byte of the flags word to AH. The bits, from 
MSB to LSB, are sign, zero, indeterminate, auxiliarY-1 carry, indetermi­
nate, parity, indeterminate, and carry. 

None 

None 

None 

None 
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LAR-Load Access Rights Byte 

Opcode 

OF 02/r 
OF 02/r 

Description 

Type 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

Instruction 

LAR r16,'r;;;;";/;> 
LAR r32{/m32 " 

pm=15/16 
pm=15/16 

Description 

r16 +- r/m16 masked by FFOO 
r32 +- r/m32 masked by OOFxFFOO 

The LAR instruction stores a marked form of the second doubleword of 
the descriptor for the source selector if the selector is visible at the CPL 
(modified by the selector's RPL) and is a valid descriptor type. The 
destination register is loaded with the high-order doubleword of the 
descriptor masked by OOFxFFOO, and ZF is set to 1. The x indicates that 
the four bits corresponding to the upper four bits of the limit are 
undefined in the value loaded by LAR. If the selector is invisible or of 
the wrong type, ZF is cleared. 

If the 32-bit operand size is specified, the entire 32-bit value is loaded 
into the 32-bit destination register. If the 16-bit operand size is specified, 
the lower 16-bits of this value are stored in the 16-bit destination 
register. 

All code and data segment descriptors are valid for LAR. 

The valid special segment and gate descriptor types for LAR are given 
in the following table: 

Name Valid/ 
Invalid 

Invalid Invalid 
Available 80286 TSS Valid 
LDT Valid 
Busy 80286 TSS Valid 
80286 call gate Valid 
80286/80386 task gate Valid 
80286 trap gate Valid 
80286 interrupt gate Valid 
Invalid Invalid 
Available 80386 TSS Valid 
Invalid Invalid 
Busy 80386 TSS Valid 
80386 call gate Valid 
Invalid Invalid 
80386 trap gate Valid 
80386 interrupt gate Valid 
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Flags Affected ZF as described above 

Protected Mode #GP(O) for an illegal memory operand effective address in the CS, DS, 
Exceptions ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 

#PF(fault-code) for a page fault 

Real Address Interrupt 6; LAR is unrecognized in Real Address Mode 
Mode Exceptions 

Virtual 8086 Same exceptions as in Real Address Mode 
Mode Exceptions 
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LEA-Load Effective Address 

Opcode 

8D/r 
8D/r 
8D/r 
8D/r 

Operation 

Description 

Instruction 

LEA r16,m 
LEAr32,m 
LEA r16,m 
LEAr32,m 

Clocks 

2 
2 
2 
2 

Description 

Store effective address for m in register r16 
Store effective address for m in register r32 
Store effective address for m in register r16 
Store effective address for m in register r32 

IF OperandSize = 16 AND AddressSize = 16 
THEN r16 +- Addr(m); 
ELSE 

IF Operand Size = 16 AND AddressSize = 32 
THEN 

r16 +- Truncate_to_16bits(Addr(m )); (* 32-bit address *) 
ELSE 

IF OperandSize = 32 AND AddressSize = 16 
THEN 

r32 +- Truncate_to_16bits(Addr(m)); 
ELSE 

IF OperandSize = 32 AND AddressSize = 32 
THEN r32 +- Addr(m); 
FI; 

FI; 
FI; 

FI; 

LEA calculates the effective address (offset part) and stores it in the 
specified register. The operand-size attribute of the instruction (repre­
sented by OperandSize in the algorithm under "Operation" above) is 
determined by the chosen register. The address-size attribute (repre­
sented by AddressSize) is determined by the USE attribute of the 
segment containing the second operand. The address-size and operand­
size attributes affect the action performed by LEA, as follows: 

Operand Size Address Size Action Performed 

16 16 16-bit effective address is calculated and 
stored in requested 16-bit register 
destination. 

16 32 32-bit effective address is calculated. The 
lower 16 bits of the address are stored in 
the requested 16-bit register destination. 

32 16 16-bit effective address is calculated. The 
16-bit address is zero-extended and stored 
in the requested 32-bit register destination. 

32 32 32-bit effective address is calculated and 
stored in the requested 32-bit register 
destination. 
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Flags Affected None 

Protected Mode #UD if the second operand is a register 
Exceptions 

Real Address Interrupt 6 if the second operand is a register 
Mode Exceptions 

Virtual 8086 Same exceptions as in Real Address Mode 
Mode Exceptions 
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LEAVE-High Level Procedure Exit 

Opcode 

C9 
C9 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

LEAVE 
LEAVE 

Clocks 

4 
4 

IF StackAddrSize = 16 
THEN 

SP f- BP; 
ELSE (* StackAddrSize = 32 *) 

ESP f- EBP; 
FI; 
IF Operand Size = 16 
THEN 

BP f- Pop{); 
ELSE (* OperandSize = 32 *) 

EBP f- Pop{); 
FI; 

Description 

Set SP to BP, then pop BP 
Set ESP to EBP, then pop EBP 

LEAVE reverses the actions of the ENTER instruction. By copying the 
frame pointer to the stack pointer, LEAVE releases the stack space used 
by a procedure for its local variables. The old frame pointer is popped 
into BP or EBP, restoring the caller's frame. A subsequent RET nn 
instruction removes any arguments pushed onto the stack of the exiting 
procedure. 

None 

#SS( 0) if BP does not point to a location within the limits of the current 
stack segment 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 
Mode Exceptions 

Same exceptions as in Real Address Mode 
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LGDT ILIDT -Load Global/Interrupt Descriptor Table Register 

Opcode 

OF 01 /2 
OF 01 /3 

Operation 

Description 

Instruction 

LGDT m16&32 
LlDT m16&32 

Clocks 

11 
11 

IF instruction = LlDT 
THEN 

IF OperandSize = 16 

Description 

Load minto GDTR 
Load minto IDTR 

THEN IDTR.LimitBase +- m16:24 (* 24 bits of base loaded *) 
ELSE IDTR.Limit:Base +- m16:32 
FI; 

ELSE (* instruction = LGDT *) 
IF OperandSize = 16 
THEN GDTR.Limit:Base +- m16:24 (* 24 bits of base loaded *) 
ELSE GDTR.LimitBase +- m16:32; 
FI; 

FI; 

The LGDT and LIDT instructions load a linear base address and limit 
value from a six-byte data operand in memory into the GDTR or IDTR, 
respectively. If a 16-bit operand is used with LGDT or LIDT, the regis­
ter is loaded with a 16-bit limit and a 24-bit base, and the high-order 
eight bits of the six-byte data operand are not used. If a 32-bit operand 
is used, a 16-bit limit and a 32-bit base is loaded; the high-order eight 
bits of the six-byte operand are used as high-order base address bits. 

The SGDT and SIDT instructions always store into all 48 bits of the 
six-byte data operand. With the 80286, the upper eight bits are undefined 
after SGDT or SIDT is executed. With the 80386, the upper eight bits 
are written with the high-order eight address bits, for both a 16-bit 
operand and a 32-bit operand. If LGDT or LIDT is used with a 16-bit 
operand to load the register stored by SGDT or SIDT, the upper eight 
bits are stored as zeros. 

LGDT and LIDT appear in operating system software; they are not used 
in application programs. They are the only instructions that directly load 
a linear address (i.e., not a segment relative address) in 80386 Protected 
Mode. 

Flags Affected None 
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#GP(O) if the current privilege level is not 0; IUD if the source operand 
is a register; #GP(O) for an illegal memory operand effective address in 
the CS, OS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH; Interrupt 6 if the source operand is a 

register 

Note: These instructions are valid in Real Address Mode to allow power­
up initialization for Protected Mode 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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LGS/LSS/LDS/LES/LFS-Load Full Pointer 

Opcode 

C51r 
C51r 
OF B21r 
OF B21r 
C4lr 
C4lr 
OF B41r 
OF B41r 
OF B51r 
OF B51r 

Operation 

Description 

Instruction 

LOS r16,m16:16 
LOS r32,m16:32 
LSS r16,m16:16 
LSS r32,m16:32 
LES r16,m16:16 
LES r32,m16:32 
LFS r16,m16:16 
LFS r32,m16:32 
LGS r16,m16:16 
LGS r32,m16:32 

Clocks 

7,p=22 
7,p=22 
7,p=22 
7,p=22 
7,p=22 
7,p=22 
7,p=25 
7,p=25 
7,p=25 
7,p=25 

CASE instruction OF 

Description 

Load OS:r16 with pointer from memory 
Load DS:r32 with pointer from memory 
Load SS:r16 with pointer from memory 
Load SS:r32 with pointer from memory 
Load ES:r16 with pOinter from memory 
Load ES:r32 with pOinter from memory 
Load FS:r16 with pointer from memory 
Load FS: r32 with pointer from memory 
Load GS:r16 with pointer from memory 
Load GS:r32 with pOinter from memory 

LSS: Sreg is SS; (* Load SS register *) 
LOS: Sreg is OS; (* Load OS register *) 
LES: Sreg is ES; (* Load ES register *) 
LFS: Sreg is FS; (* Load FS register *) 
LGS: Sreg i~; (* Load GS register *) 

ESAC; -6$ 

IF (OperandSize = 16) 
THEN 

r16 ~ [Effective Address]; (* 16-bit transfer *) 
Sreg ~ [Effective Address + 2]; (* 16-bit transfer *) 
(* In Protected Mode, load the descriptor into the segment register *) 

ELSE (* OperandSize = 32 *) 
r32 ~ [Effective Address]; (* 32-bit transfer *) 
Sreg ~ [Effective Address + 4]; (* 16-bit transfer *) 
(* In Protected Mode, load the descriptor into the segment register *) 

FI; 

These instructions read a full pointer from memory and store it in the 
selected segment register:register pair. The full pointer loads 16 bits into 
the segment register SS, DS, ES, FS, or GS. The other register loads 32 
bits if the operand-size attribute is 32 bits, or loads 16 bits if the operand­
size attribute is 16 bits. The other 16- or 32-bit register to be loaded is 
determined by the r16 or r32 register operand specified. 

When an assignment is made to one of the segment registers, the 
descriptor is also loaded into the segment register. The data for the 
register is obtained from the descriptor table entry for the selector given. 

A null selector (values 0000-0003) can be loaded into DS, ES, FS, or 
GS registers without causing a protection exception. (Any subsequent 
reference to a segment whose corresponding segment register is loaded 
with a null selector to address memory causes a #GP(O) exception. No 
memory reference to the segment occurs.) 
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The following is a listing of the Protected Mode checks and actions taken 
in the loading of a segment register: 

IF SS is loaded: 
IF selector is null THEN #GP(O); FI; 
Selector index must be within its descriptor table limits ELSE 

#GP(selector); 
Selector's RPL must equal CPL ELSE #GP(selector); 
AR byte must indicate a writable data segment ELSE #GP(selector); 
DPL in the AR byte must equal CPL ELSE #GP(selector); 
Segment must be marked present ELSE #SS(selector); 
Load SS with selector; 
Load SS with descriptor; 

IF OS, ES, FS, or GS is loaded with non-null selector: 
Selector index must be within its descriptor table limits ELSE 

#GP(selector); 
AR byte must indicate data or readable code segment ELSE 

#GP(selector); 
IF data or nonconforming code 
THEN both the RPL and the CPL must be less than or equal to OPL in 

AR byte; 
ELSE #GP(selector); 
Segment must be marked present ELSE #NP(selector); 

Load segment register with selector and RPL bits; 
Load segment register with descriptor; 

IF OS, ES, FS or GS is loaded with a null selector: 
Load segment register with selector; 
Clear descriptor valid bit; 

Flags Affected None 

Protected Mode #GP(O) for an illegal memory operand effective address in the CS, DS, 
Exceptions ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 

the second operand must be a memory operand, not a register; #GP(O) 
if a null selector is loaded into SS; #PF(fault-code) for a page fault 

Real Address The second operand must be a memory operand, not a register; Interrupt 
Mode Exceptions 13 if any part of the operand would lie outside of the effective address 

space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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LLDT -Load Local Descriptor Table Register 

Opcode Instruction Clocks Description 

OF 00/2 LLDT rjm16 20 Load selector rjm16 into LDTR 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

LDTR +- SRC; 

LLDT loads the Local Descriptor Table register (LDTR). The word 
operand (memory or register) to LLDT should contain a selector to the 
Global Descriptor Table (GDT). The GDT entry should be a Local 
Descriptor Table. If so, then the LDTR is loaded from the entry. The 
descriptor registers DS, ES, SS, FS, GS, and CS are not affected. The 
LDT field in the task state segment does not change. 

The selector operand can be 0; if so, the LDTR is marked invalid. All 
descriptor references (except by the LAR, VERR, VER W or LSL 
instructions) cause a #GP fault. 

LLDT is used in operating system software; it is not used in application 
programs. 

None 

#GP( 0) if the current privilege level is not 0; #GP(se1ector) if the selec­
tor operand does not point into the Global Descriptor Table, or if the 
entry in the GDT is not a Local Descriptor Table; #NP(selector) if the 
LDT descriptor is not present; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an 
illegal address in the SS segment; #PF(fault-code) for a page fault 

Interrupt 6; LLDT is not recognized in Real Address Mode 

Virtual 8086 Same exceptions as in Real Address Mode (because the instruction is 
Mode Exceptions not recognized, it will not execute or perform a memory reference) 

Note The operand-size attribute has no effect on this instruction. 
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LMSW-Load Machine Status Word 

Opcode 

OF 01 /6 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction Clocks Description 

LMSW rjm16 10/13 Load rjm16 in machine status word 

MSW +- rjm16; (* 16 bits is stored in the machine status word *) 

LMSW loads the machine status word (part of CRO) from the source 
operand. This instruction can be used to switch to Protected Mode; if so, 
it must be followed by an intrasegment jump to flush the instruction 
queue. LMSW will not switch back to Real Address Mode. 
()J.e:~ /1{/S"t rt_J..J,!~! Pt(tJ/:;J/::~et.,'/ /:i~ (.4//:.,~t~ ,t .. ,.., ~ 

LMSW is used only in operating system software. It is not used in appli­
cation programs. 

None 

#GP(O) if the current privilege level is not 0; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

VirtualSOS6 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 

Notes The operand-size attribute has no effect on this instruction. This instruc­
tion is provided for compatibility with the 80286; 80386 programs should 
use MOV CRO, ... instead. 
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LOCK-Assert LOCK# Signal Prefix 

Opcode 

FO 

Description 

Instruction Clocks Description 

LOCK o Assert LOCK# signal for the next instruction 

The LOCK prefix causes the LOCK# signal of the 80386 to be asserted 
during execution of the instruction that follows it. In a multiprocessor 
environment, this signal can be used to ensure that the 80386 has exclu­
sive use of any shared memory while LOCK# is asserted. The read­
modify-write sequence typically used to implement test-and-set on the 
80386 is the BTS instruction. 

The LOCK prefix functions only with the following instructions: 

BT, BTS, BTR, BTC 
XCHG 
XCHG 
ADD, OR, ADC, SBB, AND, SUB, XOR 
NOT, NEG, INC, DEC 

mem, reg/imm 
reg, mem 
mem, reg 
mem, reg/imm 
mem 

An undefined opcode trap will be generated if a LOCK prefix is used 
with any instruction not listed above. 

XCHG always asserts LOCK# regardless of the presence or absence of 
the LOCK prefix. 

The integrity of the LOCK is not affected by the alignment of the 
memory field. Memory locking is observed for arbitrarily misaligned 
fields. 

Locked access is not assured if another 80386 processor is executing an 
instruction concurrently that has one of the following characteristics: 

• Is not preceded by a LOCK prefix 

• Is not one of the instructions in the preceding list 

• Specifies a memory operand that does not exactly overlap the desti­
nation operand. Locking is not guaranteed for partial overlap, even 
if one memory operand is wholly contained within another. 

Flags Affected None 

Protected Mode #UD if LOCK is used with an instruction not listed in the "Description" 
Exceptions section above; other exceptions can be generated by the subsequent 

(locked) instruction 
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;rA'~ 

Real Address ~terruPt 6 if LOCK is used with an instruction not listed in the 
Mode Exceptions "Description" section above; exceptions can still be generated by the 

subsequent (locked) instruction 

Virtual 8086 #UD if LOCK is used with an instruction not listed in the "Description" 
Mode Exceptions section above; exceptions can still be generated by the subsequent (locked) 

instruction 
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LODS/LODSB/LODSW ILODSD-Load String Operand 

Opcode 

AC 
AD 
AD 
AC 
AD 
AD 

Operation 

Description 

Instruction Clocks 

LODS mB 5 
LODS m16 5 
LODS m32 5 
LODSB 5 
LODSW 5 
LODSD 5 

IF AddressSize = 16 
THEN use SI for source-index 
ELSE (* AddressSize = 32 *) 

use ESI for source-index; 
FI; 
IF byte type of instruction 
THEN 

Description 

Load byte [(E)SI] into AL 
Load word [(E)SI] into AX 
Load dword [(E)SI] into EAX 
Load byte DS:[(E)SI] into AL 
Load word DS:[(E)SI] into AX 
Load dword DS:[(E)SI] into EAX 

AL +- [source-index]; (* byte load *) 
IF OF = 0 THEN IncOec +- 1 ELSE IncOec +- -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

AX +- [source-index]; (* word load *) 
IF OF = 0 THEN IncOec +- 2 ELSE IncOec +- -2; FI; 

ELSE (. OperandSize = 32 *) 

EAX +- [source-index]; (* dword load *) 
IF OF = 0 THEN IncOec +- 4 ELSE IncOec +- -4; FI; 

FI; 
FI; 
source-index +- source-index + IncOec 

LODS loads the AL, AX, or EAX register with the memory byte, word, 
or doubleword at the location pointed to by the source-index register. 
After the transfer is made, the source-index register is automatically 
advanced. If the direction flag is 0 (CLD was executed), the source index 
increments; if the direction flag is 1 (STD was executed), it decrements. 
The increment or decrement is 1 if a byte is loaded, 2 if a word is loaded, 
or 4 if a doubleword is loaded. 

If the address-size attribute for this instruction is 16 bits, SI is used for 
the source-index register; otherwise the address-size attribute is 32 bits, 
and the ESI register is used. The address of the source data is deter­
mined solely by the contents of ESIjSI. Load the correct index value 
into SI before executing the LODS instruction. LODSB, LODSW, 
LODSD are synonyms for the byte, word, and doubleword LODS 
instructions. 
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LaDS can be preceded by the REP prefix; however, LaDS is used more 
typically within a LOOP construct, because further processing of the 
data moved into EAX, AX, or AL is usually necessary. 

Flags Affected None 

Protected Mode #GP(O) for an illegal memory operand effective address in the CS, DS, 
Exceptions ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 

#PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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LOOP/LOOPcond-Loop Control with CX Counter 

Opcode 

E2 cb 
E1 cb 
E1 cb 
EO cb 
EO cb 

Operation 

Description 

Instruction 

LOOP re/8 
LOOPE re/8 
LOOPZ re/8 
LOOPNE re/8 
LOOPNZre/8 

Clocks 

11+m 
11+m 
11+m 
11+m 
11+m 

Description 

DEC count; jump short if count <> 0 
DEC count; jump short if count <> 0 and ZF= 1 
DEC count; jump short if count <> 0 and ZF=1 
DEC count; jump short if count <> 0 and ZF=O 
DEC count; jump short if count <> 0 and ZF=O 

IF AddressSize = 16 THEN CountReg is CX ELSE CountReg is ECX; FI; 
CountReg +- CountReg - 1; 

IF instruction <> LOOP 
THEN 

IF (instruction = LOOPE) OR (instruction = LOOPZ) 
THEN BranchCond +- (ZF = 1) AND (CountReg <> 0); 
FI; 
IF (instruction = LOOPNE) OR (instruction = LOOPNZ) 
THEN BranchCond +- (ZF = 0) AND (CountReg <> 0); 
FI; 

FI;--

IF BranchCond 
THEN 

IF OperandSize = 16 
THEN 

IP +- IP + SignExtend(re/B); 
ELSE (* OperandSize = 32 *) 

EIP +- EIP + SignExtend(re/B); 
FI; 

FI; 

LOOP decrements the count register without changing any of the flags. 
Conditions are then checked for the form of LOOP being used. If the 
conditions are met, a short jump is made to the label given by the operand 
to LOOP. If the address-size attribute is 16 bits, the CX register is used 
as the count register; otherwise the ECX register is used. The operand 
of LOOP must be in the range from 128 (decimal) bytes before the 
instruction to 127 bytes ahead of the instruction. 

The LOOP instructions provide iteration control and combine loop index 
management with conditional branching. Use the LOOP instruction by 
loading an unsigned iteration count into the count register, then code the 
LOOP at the end of a series of instructions to be iterated. The destina­
tion of LOOP is a label that points to the beginning of the iteration. 

Flags Affected None 
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Protected Mode #GP(O) if the offset jumped to is beyond the limits of the current code 
Exceptions segment 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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LSL-Load Segment Limit ....... ()J".(~[) "3 '2c £y. -5,£&(1j.·.(' :5USC7tV?' .. 

Opcode 

OF 03/r 

OF 031r 

OF 031r 

OF 031r 

Description 

Type 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

Instruction / Clocks 
' .. -.'-"'/ 

LSL r16,r/m16i pm~20/21 

LSL r32;r/m32 \ pm~20/21 
\ : 

LSL r16,f/m16 ) pm~25/26 

LSL r32,t~~p/ pm~25/26 

Description 

Load: r16 .. segment limit, selector r/m16 (byte 
granular) 
Load: r32 ... segment limit, selector r/m32 (byte 
granular) 
Load: r16 .. segment limit, selector r/m16 (page 
granular) 
Load: r32 .. segment limit, selector r/m32 (page 
granular) 

The LSL instruction loads a register with an unscrambled segment limit, 
and sets ZF to 1, provided that the source selector is visible at the CPL 
weakened by RPL, and that the descriptor is a type accepted by LSL. 
Otherwise, ZF is cleared to 0, and the destination register is unchanged. 
The segment limit is loaded as a byte granular value. If the descriptor 
has a page granular segment limit, LSL will translate it to a byte limit 
before loading it in the destination register (shift left 12 the 20-bit "raw" 
limit from descriptor, then OR with OOOOOFFFH). 

The 32-bit forms of this instruction store the 32-bit byte granular limit 
in the 16-bit destination register. 

Code and data segment descriptors are valid for LSL. 

The valid special segment and gate descriptor types for LSL are given 
in the following table: 

Name Valid/ 
Invalid 

Invalid Invalid 
Available 80286 TSS Valid 
LDT Valid 
Busy 80286 TSS Valid 
80286 call gate Invalid 
80286/80386 task gate Invalid 
80286 trap gate Invalid 
80286 interrupt gate Invalid 
Invalid Valid 
Available 80386 TSS Valid 
Invalid Invalid 
Busy 80386 TSS Valid 
80386 call gate Invalid 
Invalid Invalid 
80386 trap gate Invalid 
80386 interrupt gate Invalid 
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Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

Virtual 8086 
Mode Exceptions 

80386 INSTRUCTION SET 

ZF as described above 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault 

Interrupt 6; LSL is not recognized in Real Address Mode 

Same exceptions as in Real Address Mode 
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LTR-Load Task Register 

Opcode Instruction Clocks Description 

OF 00/3 LTR r/m16 pm=23/27 Load EA word into task register 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

Virtual 8086 
Mode Exceptions 

Notes 

LTR loads the task register from the source register or memory location 
specified by the operand. The loaded task state segment is marked busy. 
A task switch does not occur. 

L TR is used only in operating system software; it is not used in appli­
cation programs. 

None 

#GP{ 0) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS{O) for an illegal address in the SS segment; 
#GP{O) if the current privilege level is not 0; #GP{selector) if the object 
named by the source selector is not a TSS or is already busy; 
#NP{selector) if the TSS is marked "not present"; #PF(fault-code) for 
a page fault 

Interrupt 6; LTR is not recognized in Real Address Mode 

Same exceptions as in Real Address Mode 

The operand-size attribute has no effect on this instruction. 
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MOV-Move Data 

Opcode Instruction Clocks Description 

88 /r MOVrlmB,rB 2/2 Move byte register to rim byte 
89 /r MOV rlm16,r16 2/2 Move word register to rim word 
89 /r MOV rlm32,r32 2/2 Move dword register to rim dword 
8A /r MOVrB,rlmB 2/4 Move rim byte to byte register 
88 /r MOV r16,rlm16 2/4 Move rim word to word register 
88 /r MOV r32,r/m32 2/4 Move rim dword to dword register 
8C /r MOV r/m16,Sreg 2/2 Move segment register to rim word 
80 /r MOV Sreg,r/m16 2/5,pm=18/19 Move rim word to segment register 
AD MOV AL,moffsB 4 Move byte at (seg:offset) to AL 
A1 MOV AX,moffs16 4 Move word at (seg:offset) to AX 
A1 MOV EAX,moffs32 4 Move dword at (seg:offset) to EAX 
A2 MOV moffsB,AL 2 Move AL to (seg:offset) 
A3 MOV moffs16,AX 2 Move AX to (seg:offset) 
A3 MOV moffs32,EAX 2 Move EAX to (seg:offset) 
8D+rb MOV regB,immB 2 Move immediate byte to register 
88+rw MOV reg16,imm16 2 Move immediate word to register 
88+rd MOV reg32,imm32 2 Move immediate dword to register 
C6 MOV rlmB,immB 2/2 Move Immediate byte to rim byte 
C7 MOV rlm16,imm16 2/2 Move immediate word to rim word 
C7 MOV rlm32,imm32 2/2 Move immediate dword to rim dword 

NOTES: moffsB, moffs16, and moffs32 all consist of a simple offset relative to the segment base. The B, 16, and 32 refer 
to the size of the data. The address-size attribute of the instruction determines the size of the offset, either 16 or 
32 bits. 

Operation 

Description 

DEST +- SRC; 

MOV copies the second operand to the first operand. 

If the destination operand is a segment register (OS, ES, SS, etc.), then 
data from a descriptor is also loaded into the register. The data for the 
register is obtained from the descriptor table entry for the selector given. 
A null selector (values 0000-0003) can be loaded into OS and ES regis­
ters without causing an exception; however, use of OS or ES causes a 
#GP(O), and no memory reference occurs. 

A MOV into SS inhibits all interrupts until after the execution of the 
next instruction (which is presumably a MOV into eSP). 

Loading a segment register under 80386 Protected Mode results in special 
checks and actions, as described in the following listing: 

IF SS is loaded; 
THEN 

IF selector is null THEN #GP(O); 
FI; 

Selector index must be within its descriptor table limits else 
#GP(selector); 

Selector's RPL must equal CPL else #GP(selector); 

17-109 



Flags Affected 

Protected Mode 
Exceptions 

80386 INSTRUCTION SET 

AR byte must indicate a writable data segment else #GP(selector}; 
DPL in the AR byte must equal CPL else #GP(selector); 
Segment must be marked present else #SS(selector); 
Load SS with selector; 
Load SS with descriptor. 

FI; 
IF DS, ES, FS or GS is loaded with non-null selector; 
THEN 

Selector index must be within its descriptortable limits 
else #GP(selector); 

AR byte must indicate data or readable code segment else 
#G P( selector); 

IF data or nonconforming code segment 
THEN both the RPL and the CPL must be less than or equal to DPL in 

AR byte; 
ELSE #GP(selector); 
FI; 
Segment must be marked present else #NP(selector); 
Load segment register with selector; 
Load segment register with descriptor; 

FI; 
IF DS, ES, FS or GS is loaded with a null selector; 
THEN 

Load segment register with selector; 
Clear descriptor valid bit; 

FI; 

None 

#GP, #SS, and #NP if a segment register is being loaded; otherwise, 
#GP(O) if the destination is in a nonwritable segment; #GP(O) for an 
illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault . 
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MOV-Move to/from Special Registers 

Opcode 

OF 20lr 
OF 221r 
OF 21 Ir 
OF 21 Ir 
OF 23/r 
OF 23/r 
OF 24/r 
OF 261r 

Operation 

Description 

Instruction Clocks 

Mav r32,CRO/CR2/CR3 6 
MaV CRO/CR2/CR3,r32 1014/5 
MaV r32,DRO - 3 22 
MaV r32,DR6/DR7 14 
MaV DRO - 3,r32 22 
MOV DR6/DR7,r32 16 
MaV r32,TR6/TR7 12 
MaV TR6/TR7,r32 12 

DEST +- SRC; 

Description 

Move (control register) to (register) 
Move (register) to (control register) 
Move (debug register) to (register) 
Move (debug register) to (register) 
Move (register) to (debug register) 
Move (register) to (debug register) 
Move (test register) to (register) 
Move (register) to (test register) 

The above forms of MOY store or load the following special registers in 
or from a general purpose register: 

• Control registers CRO, CR2, and CR3 

• Debug Registers DRO, DRl, DR2, DR3, DR6, and DR7 

• Test Registers TR6 and TR 7 

32-bit operands are always used with these instructions, regardless of the 
operand-size attribute, 

Flags Affected OF, SF, ZF, AF, PF, and CF are undefined 

Protected Mode #GP( 0) if the current privilege level is not ° 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 #GP(O) if instruction execution is attempted 
Mode Exceptions 

Notes The instructions must be executed at privilege level ° or in real-address 
mode; otherwise, a protection exception will be raised, 

The reg field within the ModRM byte specifies which of the special 
registers in each category is involved. The two bits in the mod field are 
always 11. The rjm field specifies the general register involved. 
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MOVS/MOVSB/MOVSW IMOVSD-Move Data from String to 
String 

Opcode 

A4 
AS 
AS 
A4 
AS 
AS 

Operation 

Description 

Instruction 

MOVS mB.mB 
MOVS m16.m16 
MOVS m32.m32 
MOVSB 
MOVSW 
MOVSD 

Clocks 

7 
7 
7 
7 
7 
7 

Description 

Move byte [(E)SI] to ES:[(E)DI] 
Move word [(E)SI] to ES:[(E)DI] 
Move dword [(E)SI] to ES:[(E)DI] 
Move byte DS:[(E)SI] to ES:[(E)DI] 
Move word DS:[(E)SI] to ES:[(E)DI] 
Move dword DS:[(E)SI] to ES:[(E)DI] 

IF (instruction = MOVSD) OR (instruction has doubleword operands) 
THEN Operand Size t- 32; 
ELSE OperandSize t- 16; 
IF AddressSize = 16 
THEN use SI for source-index and DI for destination-index; 
ELSE (* AddressSize = 32 *) 

use ESI for source-index and EDI for destination-index; 
FI; 
IF byte type of instruction 
THEN 

[destination-index] t- [source-index]; (* byte assignment *) 
IF DF = 0 THEN IncDec t- 1 ELSE IncDec +- -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

[destination-index] +- [source-index]; (* word assignment *) 
IF DF = 0 THEN IncDec +- 2 ELSE IncDec +- -2; FI; 

ELSE (* OperandSize = 32 *) 
[destination-index] +- [source-index]; (* doubleword assignment *) 
IF DF = 0 THEN IncDec +- 4 ELSE IncDec +- -4; FI; 

FI; 
FI; 
source-index +- source-index + IncDec; 
destination-index +- destination-index + IncDec; 

MOVS copies the byte or word at [(E)SI] to the byte or word at 
ES:[(E)DI]. The destination operand must be addressable from the ES 
register; no segment override is possible for the destination. A segment 
override can be used for the source operand; the default is DS. 

The addresses of the source and destination are determined solely by the 
contents of (E)SI and (E)DI. Load the correct index values into (E)SI 
and (E)DI before executing the MOVS instruction. MOVSB, MOVSW, 
and MOVSD are synonyms for the byte, word, and doubleword MOVS 
instructions. 
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Flags Affected 

Protected Mode 
Exceptions 

80386 INSTRUCTION SET 

After the data is moved, both (E)SI and (E)DI are advanced automati­
cally. If the direction flag is 0 (CLD was executed), the registers are 
incremented; if the direction flag is 1 (STD was executed), the registers 
are decremented. The registers are incremented or decremented by 1 if 
a byte was moved, 2 if a word was moved, or 4 if a doubleword was 
moved. 

MOVS can be preceded by the REP prefix for block movement of CX 
bytes or words. Refer to the REP instruction for details of this operation. 

None 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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MOVSX-Move with Sign-Extend 

Opcode 

OF BE Ir 
OF BE Ir 
OF BF Ir 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

MOVSX r16,rlm8 
MOVSX r32,rlm8 
MOVSX r32,rlm16 

Clocks 

3/6 
3/6 
3/6 

DEST f- SignExtend(SRC); 

Description 

Move byte to word with sign-extend 
Move byte to dword, sign-extend 
Move word to dword, Sign-extend 

MOVSX reads the contents of the effective address or register as a byte 
or a word, sign-extends the value to the operand-size attribute of the 
instruction (I6 or 32 bits), and stores the result in the destination 
register. 

None 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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MOVZX -Move with Zero-Extend 

Opcode 

OF 66/r 
OF 66/r 
OF 67/r 

Operation 

Description 

Instruction 

MOVZX r16,r/mB 
MOVZX r32,r/mB 
MOVZX r32,r/m16 

Clocks 

3/6 
3/6 
3/6 

DEST ~ ZeroExtend(SRC); 

Description 

Move byte to word with .zero-extend 
Move byte to dword, zero-extend 
Move word to dword, zero-extend 

MOVZX reads the contents of the effective address or register asa byte 
or a word, zero extends the value to the operand-size attribute of the 
instruction (16 or 32 bits), and stores the result in the destination 
register. 

Flags Affected None 

Protected Mode #GP(O) for an illegal memory operand effective address in the CS, DS, 
Exceptions ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 

#PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

VirtualS086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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MUL-Unsigned Multiplication of AL or AX 

Opcode 

F6 /4 
F7 /4 
F7 /4 

Instruction 

MULAL,rlmB 
MUL AX,rlm16 
MUL EAX,rlm32 

Clocks 

9-14/12-17 
9-22/12-25 
9-38/12-41 

Description 

Unsigned multiply (AX .. AL * rim byte) 
Unsigned multiply (DX:AX .. AX • rim word) 
Unsigned multiply (EDX:EAX .. EAX * rim dword) 

NOTES: The 80386 uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most 
significant bit in the optimizing multiplier, shown underlined above. The optimization occurs for positive and negative 
multiplier values. Because of the early-out algorithm, clock counts given are minimum to maximum. To calculate 
the actual clocks, use the following formula: 

Actual clock = if m <> 0 then max(ceiling(log2 1 m 1),3) + 6 clocks; 

Actual clock = if m = 0 then 9 clocks 

where m is the multiplier. 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

IF byte-size operation 
THEN AX +- AL * rlmB 
ELSE (* word or doubleword operation *) 

IF OperandSize = 16 
THEN DX:AX +- AX * rlm16 
ELSE (* OperandSize = 32 *) 

EDX:EAX +- EAX * rlm32 
FI; 

FI; 

MUL performs unsigned multiplication. Its actions depend on the size 
of its operand, as follows: 

• A byte operand is multiplied by AL; the result is left in AX. The 
carry and overflow flags are set to 0 if AH is 0; otherwise, they are 
set to 1. 

• A word operand is multiplied by AX; the result is left in DX:AX. 
DX contains the high-order 16 bits of the product. The carry and 
overflow flags are set to 0 if DX is 0; otherwise, they are set to 1. 

• A doubleword operand is multiplied by EAX and the result is left in 
EDX:EAX. EDX contains the high-order 32 bits of the product. The 
carry and overflow flags are set to 0 if EDX is 0; otherwise, they are 
set to 1. 

OF and CF as described above; SF, ZF, AF, PF, and CF are undefined 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault 
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Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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NEG-Two's Complement Negation 

Opcode 

F6 /3 
F7 /3 
F7 /3 

Operation 

Description 

Instruction 

NEG rlmB 
NEG rlm16 
NEG rlm32 

Clocks 

2/6 
2/6 
2/6 

Description 

Two's complement negate rim byte 
Two's complement negate rim word 
Two's complement negate rim dword 

IF rim = 0 THEN CF +- 0 ELSE CF +- 1; FI; 
rim +- - rim; 

NEG replaces the value of a register or memory operand with its two's 
complement. The operand is subtracted from zero, and the result is placed 
in the operand. 

The carry flag is set to 1, unless the operand is zero, in which case the 
carry flag is cleared to O. 

Flags Affected CF as described above; OF, SF, ZF, and PF as described in 
Appendix C 

Protected Mode #GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
Exceptions memory operand effective address in the CS, DS, ES, FS, or GS 

segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in real-address mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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NOP-No Operation 

Opcode Instruction Clocks Description 

90 NOP 3 No operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

Virtual 8086 
Mode Exceptions 

NOP performs no operation. NOP is a one-byte instruction that takes 
up space but affects none of the machine context except (E)IP. 

NOP is an alias mnemonic for the XCHG (E)AX, (E)AX instruction. 

None 

None 

None 

None 
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NOT -One's Complement Negation 

Opcode 

F6 /2 
F7 /2 
F7 /2 

Instruction 

NOT rlm8 
NOT rlm16 
NOT rlm32 

Clocks 

2/6 
2/6 
2/6 

Operation rim +- NOT rim; 

Description 

Reverse each bit of rim byte 
Reverse each bit of rim word 
Reverse each bit of rim dword 

Description NOT inverts the operand; every 1 becomes a 0, and vice versa. 

Flags Affected None 

Protected Mode #GP(O) if the result is in a non writable segment; #GP(O) for an illegal 
Exceptions memory operand effective address in the CS, DS, ES, FS, or GS 

segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in real-address mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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OR-Logical Inclusive OR 

Opcode 

OC ib 
00 iw 
00 id 
80 11 ib 
81 11 iw 
81 11 id 
83 11 ib 
83 11 ib 
08 Ir 
09 Ir 
09 Ir 
OA Ir 
08 Ir 
08 Ir 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction Clocks 

ORAL,immB 2 
OR AX,imm16 2 
OR EAX,imm32 2 
OR rlmB,immB 2/7 
OR rim 16,imm16 2/7 
OR rlm32,imm32 2/7 
OR rlm16,immB 2/7 
OR rlm32,immB 2/7 
OR rlmB,rB 2/6 
OR rlm16,r16 2/6 
OR rlm32,r32 2/6 
OR rB,rlmB 2/7 
OR r16,rlm16 2/7 
OR r32,rlm32 2/7 

DEST +- DEST OR SRC; 
CF +- 0; 
OF +- 0 

Description 

OR immediate byte to AL 
OR immediate word to AX 
OR immediate dword to EAX 
OR immediate byte to rim byte 
OR immediate word to rim word 
OR immediate dword to rim dword 
OR sign-extended immediate byte with rim word 
OR sign-extended immediate byte with rim dword 
OR byte register to rim byte 
OR word register to rim word 
OR dword register to rim dword 
OR byte register to rim byte 
OR word register to rim word 
OR dword register to rim dword 

OR computes the inclusive OR of its two operands and places the result 
in the first operand. Each bit of the result is 0 if both corresponding bits 
of the operands are 0; otherwise, each bit is 1. 

OF +- 0, CF +- 0; SF, ZF, and PF as described in Appendix C ; AF is 
undefined 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in real-address mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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OUT -Output to Port 

Opcode Instruction Clocks Description 

E6 ib OUTimm8,AL 10,pm=4*/24** Output byte AL to immediate port number 
E7 ib OUTimm8,AX 10,pm=4'/24*' Output word AL to immediate port number 
E7 ib OUT imm8,EAX 10,pm=4*/24" Output dword AL to immediate port number 
EE OUTOX,AL 11,pm=S"/2S"" Output byte AL to port number in OX 
EF OUTOX,AX 11,pm=S"/2S"" Output word AL to port number in OX 
EF OUTOX,EAX 11,pm=S"/2S"" Output dword AL to port number in OX 

NOTES: 'If CPL :5' IOPL 
'"If CPL > IOPL or if in virtual 8086 mode 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

IF (PE = 1) AND «VM = 1) OR (CPL > 10PL» 
THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 

IF NOT I-a-Permission (DEST, width(DEST» 
THEN #GP(O); 
FI; 

FI; 
[DEST] +- SRC; (* I/O address space used *) 

OUT transfers a data byte or data word from the register (AL, AX, or 
EAX) given as the second operand to the output port numbered by the 
first operand. Output to any port from 0 to 65535 is performed by placing 
the port number in the DX register and then using an OUT instruction 
with DX as the first operand. If the instruction contains an eight-bit port 
ID, that value is zero-extended to 16 bits. 

None 

#GP(O) if the current privilege level is higher (has less privilege) than 
IOPL and any of the corresponding I/O permission bits in TSS 
equals 1 

None 

Virtual 8086 #GP(O) fault if any of the corresponding I/O permission bits in TSS 
Mode Exceptions equals 1 
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OUTS/OUTSB/OUTSW IOUTSD-Output String to Port 

Opcode Instruction Clocks Description 

6E OUTS OX,rlm8 14,pm = 8*/28" Output byte [(E)SI] to port in OX 
6F OUTS OX,rlm16 14,pm = 8*/28'* Output word [(E)SI] to port in OX 
6F OUTS OX,rlm32 14,pm=8*/2S** Output dword [(E)SI] to port in OX 
6E OUTSB 14,pm=8*/2S" Output byte OS:[(E)SI] to port in OX 
6F OUTSW 14,pm=8*/2S** Output word OS:[(E)SI] to port in OX 
6F OUTSO 14,pm=S*/2S** Output dword OS:[(E)SI] to port in OX 

NOTES: *If CPL :s IOPL 
"If CPL > IOPL or if in virtual SOS6 mode 

Operation 

Description 

IF AddressSize = 16 
THEN use SI for source-index; 
ELSE (* AddressSize = 32 *) 

use ESI for source-index; 
FI; 

IF (PE = 1) ANO «VM = 1) OR (CPL > 10PL)) 
THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 

IF NOT I-O-Permission (OEST, width(OEST)) 
THEN #GP(O); 
FI; 

FI; 
IF byte type of instruction 
THEN 

[OX] f- [source-index]; (* Write byte at OX I/O address *) 
IF OF = 0 THEN IncOec f- 1 ELSE IncOec f- -1; FI; 

FI; 
IF OperandSize = 16 
THEN 

[OX] f- [source-index]; (* Write word at OX I/O address *) 
IF OF = 0 THEN IncOec f- 2 ELSE IncOec f- -2; FI; 

FI; 
IF Operand Size = 32 
THEN 

[OX] f- [source-index]; (* Write dword at OX I/O address *) 
IF OF = 0 THEN IncOec f- 4 ELSE IncOec f- -4; FI; 
FI; 

FI; 
source-index f- source-index + IncOec; 

OUTS transfers data from the memory byte, word, or doubleword at the 
source-index register to the output port addressed by the DX register. If 
the address-size attribute for this instruction is 16 bits, SI is used for the 
source-index register; otherwise, the address-size attribute is 32 bits, and 
ESI is used for the source-index register. 
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Flags Affected 

Protected Mode 
Exceptions 

80386 INSTRUCTION SET 

OUTS does not allow specification of the port number as an immediate 
value. The port must be addressed through the OX register value. Load 
the correct value into OX before executing the OUTS instruction. 

The address of the source data is determined by the contents of source­
index register. Load the correct index value into SI or ESI before 
executing the OUTS instruction. 

After the transfer, source-index register is advanced automatically. If 
the direction flag is 0 (CLO was executed), the source-index register is 
incremented; if the direction flag is 1 (STO was executed), it is decre­
mented. The amount of the increment or decrement is 1 if a byte is 
output, 2 if a word is output, or 4 if a doubleword is output. 

OUTSB, OUTSW, and OUTSD are synonyms for the byte, word, and 
doubleword OUTS instructions. OUTS can be preceded by the REP 
prefix for block output of CX bytes or words. Refer to the REP instruc­
tion for details on this operation. 

None 

#GP(O) if CPL is greater than IOPL and any of the corresponding I/O 
permission bits in TSS equals 1; #GP(O) for an illegal memory operand 
effective address in the CS, OS, or ES segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 #GP(O) fault if any of the corresponding I/O permission bits in TSS 
Mode Exceptions equals 1; #PF(fault-code) for a page fault 
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POP-Pop a Word from the Stack 

Opcode 

SF 10 
SF 10 
5S+rw 
5S+rd 
1F 
07 
17 
OF A1 
OF A9 

Operation 

Description 

In8tructlon Clock8 

POP m16 5 
POP m32 5 
POP r16 4 
POP r32 4 
POP OS 7,pm=21 
POPES 7,pm=21 
POPSS 7,pm=21 
POPFS 7,pm=21 
POPGS 7,pm=21 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 
THEN 

De8crlptlon 

Pop top of stack into memory word 
Pop top of stack into memory dword 
Pop top of stack into word register 
Pop top of stack into dword register 
Pop top of stack into OS 
Pop top of stack into ES 
Pop top of stack into SS 
Pop top of stack into FS 
Pop top of stack into GS 

OEST ~ (SS:SP); (* copy a word *) 
SP ~ SP + 2; 

ELSE (* OperandSize = 32 *) 
OEST ~ (SS:SP); (* copy a dword *) 
SP ~ SP + 4; 

FI; 
ELSE (* StackAddrSize = 32 * ) 

IF Operand Size = 16 
THEN 

OEST ~ (SS:ESP); (* copy a word *) 
ESP ~ ESP + 2; 

ELSE (* Operand Size = 32 *) 
OEST ~ (SS:ESP); (* copy a dword *) 
ESP ~ ESP + 4; 

FI; 
FI; 

POP replaces the previous contents of the memory, the register, or the 
segment register operand with the word on the top of the 80386 stack, 
addressed by SS:SP (address-size attribute of 16 bits) or SS:ESP 
(addresssize attribute of 32 bits). The stack pointer SP is incremented 
by 2 for an operand-size of 16 bits or by 4 for an operand-size of 32 bits. 
It then points to the new top of stack. 

POP CS is not an 80386 instruction. Popping from the stack into the CS 
register is accomplished with a RET instruction. 

If the destination operand is a segment register (DS, ES, FS, GS, or 
SS), the value popped must be a selector. In protected mode, loading the 

17-125 



Flags Affected 

80386 INSTRUCTION SET 

selector initiates automatic loading of the descriptor information associ­
ated with that selector into the hidden part of the segment register; 
loading also initiates validation of both the selector and the descriptor 
information. 

A null value (0000-0003) may be popped into the DS, ES, FS, or GS 
register without causing a protection exception. An attempt to reference 
a segment whose corresponding segment register is loaded with a null 
value causes a #GP(O) exception. No memory reference occurs. The saved 
value of the segment register is null. 

A POP SS instruction inhibits all interrupts, including NMI, until after 
execution of the next instruction. This allows sequential execution of POP 
SS and POP eSP instructions without danger of having an invalid stack 
during an interrupt. However, use of the LSS instruction is the preferred 
method of loading the SS and eSP registers. 

Loading a segment register while in protected mode results in special 
checks and actions, as described in the following listing: 

IF SS is loaded: 
IF selector is null THEN #GP(O); 
Selector index must be within its descriptor table limits ELSE 

#GP(selector); 
Selector's RPL must equal CPL ELSE #GP(selector); 
AR byte must indicate a writable data segment ELSE #GP(selector); 
OPL in the AR byte must equal CPL ELSE #GP(selector); 
Segment must be marked present ELSE #SS(selector); 
Load SS register with selector; 
Load SS register with descriptor; 

IF OS, ES, FS or GS is loaded with non-null selector: 
AR byte must indicate data or readable code segment ELSE 

#GP(selector); 
IF data or nonconforming code 
THEN both the RPL and the CPL must be less than or equal to OPL in 

AR byte 
ELSE #GP(selector); 
FI; 
Segment must be marked present ELSE #NP(selector); 
Load segment register with selector; 
Load segment register with descriptor; 

IF OS, ES, FS, or GS is loaded with a null selector: 
Load segment register with selector 
Clear valid bit in invisible portion of register 

None 
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Protected Mode #GP, #SS, and #NP if a segment register is being loaded; #SS(O) if the 
Exceptions current top of stack is not within the stack segment; #GP(O) if the result 

is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an 
illegal address in the SS segment; #PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in real-address mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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POPA/POPAD-Pop all General Registers 

Opcode 

61 
61 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

POPA 
POPAO 

Clocks 

24 
24 

Description 

Pop 01, SI, BP, SP, BX, OX, CX, and AX 
Pop EOI, ESI, EBP, ESP, EOX, ECX, and EAX 

IF OperandSize = 16 (* instruction = POPA *) 
THEN 

01 ~ PopO; 
SI ~ PopO; 
BP ~ PopO; 
throwaway ~ Pop 0; (* Skip SP *) 
BX ~ PopO; 
ox ~ PopO; 
CX ~ PopO; 
AX ~ PopO; 

ELSE (* Operand Size = 32, instruction = POPAO *) 
EOI ~ PopO; 
ESI ~ PopO; 
EBP ~ PopO; 
throwaway ~ Pop 0; (* Skip ESP *) 
EBX ~ PopO; 
EOX ~ PopO; 
ECX ~ PopO; 
EAX ~ PopO; 

FI; 

POP A pops the eight 16-bit general registers. However, the SP value is 
discarded instead of loaded into SP. POPA reverses a previous PUSHA, 
restoring the general registers to their values before PUSHA was 
executed. The first register popped is DI. 

POPAD pops the eight 32-bit general registers. The ESP value is 
discarded instead of loaded into ESP. POPAD reverses the previous 
PUSHAD, restoring the general registers to their values before PUSHAD 
was executed. The first register popped is EDI. 

None 

#SS(O) if the starting or ending stack address is not within the stack 
segment; #PF(fault-code) for a page fault 
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Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in real-address mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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POPF /POPFD-Pop Stack into FLAGS or EFLAGS Register 

Opcode 

90 
90 

Operation 

Description 

Instruction 

POPF 
POPFO 

Flags +- PopO; 

Clocks 

5 
5 

Description 

Pop top of stack FLAGS 
Pop top of stack into EFLAGS 

POPF /POPFD pops the word or doubleword on the top of the stack and 
stores the value in the flags register. If the operand-size attribute of the 
instruction is 16 bits, then a word is popped and the value is stored in 
FLAGS. If the operand-size attribute is 32 bits, then a doubleword is 
popped and the value is stored in EFLAGS. 

Refer to Chapter 2 and Chapter 4 for information about the FLAGS 
and EFLAGS registers. Note that bits 16 and 17 of EFLAGS, called 
VM and RF, respectively, are not affected by POPF or POPFD. 

The I/O privilege level is altered only when executing at privilege level 
O. The interrupt flag is altered only when executing at a level at least as 
privileged as the I/O privilege level. (Real-address mode is equivalent to 
privilege level 0.) If a POPF instruction is executed with insufficient 
privilege, an exception does not occur, but the privileged bits do not 
change. 

Flags Affected All flags except VM and RF 

Protected Mode #SS(O) if the top of stack is not within the stack segment 
Exceptions 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 #GP(O) fault if IOPL is less than 3, to permit emulation 
Mode Exceptions 
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PUSH-Push Operand onto the Stack 

Opcode 

FF /6 
FF /6 
50+/r 
50+/r 
6A 
68 
68 
OE 
16 
1E 
06 
OF AO 
OF A8 

Operation 

Description 

Flags Affected 

Instruction Clocks 

PUSH m16 5 
PUSH m32 5 
PUSH r16 2 
PUSH r32 2 
PUSH immB 2 
PUSH imm16 2 
PUSHimm32 2 
PUSH CS 2 
PUSH SS 2 
PUSH OS 2 
PUSH ES 2 
PUSH FS 2 
PUSH GS 2 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 THEN 
SP +- SP - 2; 

Description 

Push memory word 
Push memory dword 
Push register word 
Push register dword 
Push immediate byte 
Push immediate word 
Push immediate dword 
Push CS 
Push SS 
Push OS 
Push ES 
Push FS 
Push GS 

(SS:SP) +- (SOURCE); (* word assignment *) 
ELSE 

SP +- SP - 4; 
(SS:SP) +- (SOURCE); (* dword assignment *) 

FI; 
ELSE (* StackAddrSize = 32 *) 

IF OperandSize = 16 
THEN 

ESP +- ESP - 2; 
(SS:ESP) +- (SOURCE); (* word assignment *) 

ELSE 
ESP +- ESP - 4; 
(SS:ESP) +- (SOURCE); (* dword assignment *) 

FI; 
FI; 

PUSH decrements the stack pointer by 2 if the operand-size attribute of 
the instruction is 16 bits; otherwise, it decrements the stack pointer by 
4. PUSH then places the operand on the new top of stack, which is 
pointed to by the stack pointer. 

The 80386 PUSH eSP instruction pushes the value of eSP as it existed 
before the instruction. This differs from the 8086, where PUSH SP 
pushes the new value (decremented by 2). 

None 
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#SS(O) if the new value of SP or ESP is outside the stack segment limit; 
#GP(O) for an illegal memory operand effective address in the es, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault 

Real Address None; if SP or ESP is 1, the 80386 shuts down due to a lack of stack 
Mode Exceptions space 

Virtual 8086 Same exceptions as in real-address mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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PUSHA/PUSHAD-Push all General Registers 

Opcode 

60 
60 

Instruction 

PUSHA 
PUSHAO 

Clocks 

18 
18 

Description 

Push AX, CX, OX, BX, original SP, BP,SI, and 01 
Push EAX, ECX, EOX, EBX, original ESP, EBP, ESI, 
and EOI 

Operation IF OperandSize = 16 (* PUSHA instruction *) 
THEN 

Temp +- (SP); 
Push(AX); 
Push(CX); 
Push(DX); 
Push(BX); 
Push(Temp); 
Push(BP); 
Push(SI); 
Push(DI); 

ELSE (* OperandSize = 32, PUSHAD instruction *) 
Temp +- (ESP); 
Push(EAX); 
Push(ECX); 
Push(EDX); 
Push(EBX); 
Push(Temp); 
Push(EBP); 
Push(ESI); 
Push(EDI); 

FI; 

Description PUSHA and PUSHAD save the 16-bit or 32-bit general registers, 
respectively, on the 80386 stack. PUSHA decrements the stack pointer 
(SP) by 16 to hold the eight word values. PUSHAD decrements the 
stack pointer (ESP) by 32 to hold the eight doubleword values. Because 
the registers are pushed onto the stack· in the order in which they were 
given, they appear in the 16 or 32 new stack bytes in reverse order. The 
last register pushed is DI or ED!. 

Flags Affected None 

Protected Mode #SS(O) if the starting or ending stack address is outside the stack segment 
Exceptions limit; #PF(fault-code) for a page fault 
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Real Address Before executing PUSHA or PUSHAD, the 80386 shuts down if SP or 
Mode Exceptions ESP equals 1,3, or 5; if SP or ESP equals 7, 9,11, 13, or 15, exception 

13 occurs 

Virtual 8086 Same exceptions as in real-address mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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PUSHF /PUSHFD-Push Flags Register onto the Stack 

Opcode 

9C 
9C 

Instruction 

PUSHF 
PUSHFD 

Clocks 

4 
4 

Operation IF OperandSize = 32 
THEN push(EFLAGS); 
ELSE push(FLAGS); 
FI; 

Description 

Push FLAGS 
Push EFLAGS 

Description PUSHF decrements the stack pointer by 2 and copies the FLAGS regis­
ter to the new top of stack; PUSHFD decrements the stack pointer by 
4, and the 80386 EFLAGS register is copied to the new top of stack 
which is pointed to by SS:eSP. Refer to Chapter 2 and to Chapter 4 for 
information on the EFLAGS register. 

Flags Affected None 

Protected Mode #SS(O) if the new value of eSP is outside the stack segment boundaries 
Exceptions 

Real Address None; the 80386 shuts down due to a lack of stack space 
Mode Exceptions 

Virtual 8086 #GP(O) fault if IOPL is less than 3, to permit emulation 
Mode Exceptions 
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RCL/RCR/ROL/ROR-Rotate 

Opcode 

00/2 
02 /2 
CO /2 ib 
01 /2 
03/2 
Cl /2 ib 
01 /2 
03/2 
Cl /2 ib 
00/3 
02/3 
CO /3 ib 
01 /3 
03/3 
Cl /3 ib 
01 /3 
03/3 
Cl /3 ib 
00/0 
02/0 
CO /0 ib 
01 /0 
03/0 
Cl /0 ib 
01 /0 
03{0 
Cl /0 ib 
00 /1 
02 /1 
CO /1 ib 
01 /1 
03 /1 
Cl /1 ib 
01 /1 
03 /1 
Cl /1 ib 

Operation 

Instruction 

RCL r/mB,l 
RCLr/mB,CL 
RCL r/mB,immB 
RCL r/mI6,1 
RCL r/mI6,CL 
RCL r/mI6,immB 
RCL r/m32,1 
RCL r/m32,CL 
RCL r/m32,immB 
RCR r/mB,l 
RCR r/mB,CL 
RCR r/mB,immB 
RCR r/mI6,1 
RCR r/mI6,CL 
RCR r/mI6,immB 
RCR r/m32,1 
RCR r/m32,CL 
RCR r/m32,immB 
ROL r/mB,l 
ROL r/mB,CL 
ROL r/mB,immB 
ROL r/mI6,1 
ROL r/mI6,CL 
ROL r/mI6,immB 
ROL r/m32,1 
ROL r/m32,CL 
ROL r/m32,immB 
ROR r/mB,l 
ROR r/mB,CL 
ROR r/mB,immB 
ROR r/mI6,1 
ROR r/mI6,CL 
ROR r/mI6,immB 
ROR r/m32,1 
ROR r/m32,CL 
ROR r/m32,immB 

Clocks 

9/10 
9/10 
9/10 
9/10 
9{10 
9/10 
9/10 
9/10 
9/10 
9/10 
9/10 
9/10 
9/10 
9/10 
9/10 
9/10 
9/10 
9/10 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 

(* ROL - Rotate Left *) 
temp +- COUNT; 
WHILE (temp <> 0) 
DO 

Description 

Rotate 9 bits (CF,r/m byte) left once 
Rotate 9 bits (CF,r/m byte) left CL times 
Rotate 9 bits (CF,r/m byte) left immB times 
Rotate 17 bits (CF,r/m word) left once 
Rotate 17 bits (CF,r/m word) left CL times 
Rotate 17 bits (CF,r/m word) left immBtimes 
Rotate 33 bits (CF,r/m dword) left once 
Rotate 33 bits (CF,r/m dword) left CL times 
Rotate 33 bits (CF,r/m dword) left immBtimes 
Rotate 9 bits (CF,r/m byte) right once 
Rotate 9 bits (CF,r/m byte) right CL times 
Rotate 9 bits (CF,r/m byte) right immBtimes 
Rotate 17 bits (CF,r/m word) right once 
Rotate 17 bits (CF,r/m word) right CL times 
Rotate 17 bits (CF,r/m word) right immBtimes 
Rotate 33 bits (CF,r/m dword) right once 
Rotate 33 bits (CF,r/mdword) right CL times 
Rotate 33 bits (CF,r/m dword) right immB times 
Rotate 8 bits rim byte left once 
Rotate 8 bits rim byte left CL times 
Rotate 8 bits rim byte left immB times 
Rotate 16 bits rim word left once 
Rotate 16 bits rim word left CL times 
Rotate 16 bits rim word left immB times 
Rotate 32 bits rim dword left once 
Rotate 32 bits rim dword left CL times 
Rotate 32 bits rim dword left immB times 
Rotate 8 bits rim byte right once 
Rotate 8 bits rim byte right CL times 
Rotate 8 bits rim word right immB times 
Rotate 16 bits rim word right once 
Rotate 16 bits rim word right CL times 
Rotate 16 bits rim word right immB times 
Rotate 32 bits rim dword right once 
Rotate 32 bits rim dword right CL times 
Rotate 32 bits rim dword right immB times 

tmpcf +- high-order bit of (rim ); 
rim +- rim * 2 + (tmpcf); 
temp +- temp - 1; 

OD; 
IF COUNT = 1 
THEN 

IF high-order bit of rim <> CF 
THEN OF +- 1; 
ELSE OF +- 0; 
FI; 

ELSE OF +- undefined; 
FI; 
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(* ROR - Rotate Right *) 
temp +- COUNT; 
WHILE (temp <> 0 ) 
DO 

tmpcf +- low-order bit of (rim); 
rim +- rim / 2 + (tmpcf * 2Widlh(r/m»); 
temp +- temp - 1; 

DO; 
IF COUNT = 1 
THEN 

IF (high-order bit of rim) <> (bit next to high-order bit of rim) 
THEN OF +- 1; 
ELSE OF +- 0; 
FI; 

ELSE OF +- undefined; 
FI; 

Each rotate instruction shifts the bits of the register or memory operand 
given. The left rotate instructions shift all the bits upward, except for 
the top bit, which is returned to the bottom. The right rotate instructions 
do the reverse: the bits shift downward until the bottom bit arrives at 
the top. 

For the RCL and RCR instructions, the carry flag is part of the rotated 
quantity. RCL shifts the carry flag into the bottom bit and shifts the top 
bit into the carry flag; RCR shifts the carry flag into the top bit and 
shifts the bottom bit into the carry flag. For the ROL and ROR instruc­
tions, the original value of the carry flag is not a part of the result, but 
the carry flag receives a copy of the bit that was shifted from one end to 
the other. 

The rotate is repeated the number of times indicated by the second 
operand, which is either an immediate number or the contents of the CL 
register. To reduce the maximum instruction execution time, the 80386 
does not allow rotation counts greater than 31. If a rotation count greater 
than 31 is attempted, only the bottom five bits of the rotation are used. 
The 8086 does not mask rotation counts. The 80386 in Virtual 8086 
Mode does mask rotation counts. 

The overflow flag is defined only for the single-rotate forms of the 
instructions (second operand = 1). It is undefined in all other cases. For 
left shifts/rotates, the CF bit after the shift is XORed with the high­
order result bit. For right shifts/rotates, the high-order two bits of the 
result are XORed to get OF. 

OF only for single rotates; OF is undefined for multi-bit rotates; CF as 
described above 
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#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Il1terrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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REP IREPE/REPZ/REPNE/REPNZ-Repeat Following String 
Operation 

Opcode Instruction Clocks Description 

F3 6C REP INS rlmB, OX 13+6*(E)CX, Input (E)CX bytes from port OX into ES:[(E)OI] 
pm=7+S*(E)CX"/ 
27+6*(E)CX" 

F3 60 REP INS rlm16,OX 13+6*(E)CX, Input (E)CX words from port OX into ES:[(E)OI] 
pm=7+S*(E)CX"j 
27 + S*(E)CX" 

F3 60 REP INS rlm32,OX 13+S*(E)CX, Input (E)CX dwords from pot OX into ES:[(E)OI] 
pm=7+6*(E)CX"j 
27+6*(E)CX" 

F3 A4 REP MOVS mB,mB 5+4*(E)CX Move (E)CX bytes from [(E)SI] to ES:[(E)OI] 
F3 A5 REP MOVS m16,m16 5+4*(E)CX Move (E)CX words from [(E)SI] to ES:[(E)OI] 
F3 A5 REP MOVS m32,m32 5+4*(E)CX Move (E)CX dwords from [(E)SI] to ES:[(E)OI] 
F3 SE REP OUTS OX,rlmB 5+ 12*(E)CX, Output (E)CX bytes from [(E)SI] to port DX 

pm=S+5*(E)CX"j 
2S+5*(E)CX" 

F3 6F REP OUTS OX,rlm16 5+12*(E)CX, Output (E)CX words from [(E)SI] to port OX 
pm=S+5*(E)CX"j 
2S+5*(E)CX" 

F3 6F REP OUTS OX,rlm32 5+ 12*(E)CX, Output (E)CX dwords from [(E)SI] to port OX 
pm=6+5'(E)CX"/ 
2S+5'(E)CX" 

F3 AA REP STOS mB 5+5*(E)CX Fill (E)CX bytes at ES:[(E)OI] with AL 
F3 AB REPSTOS m16 5+5*(E)CX Fill (E)CX words at ES:[(E)OI] with AX 
F3 AB REPSTOS m32 5+5'(E)CX Fill (E)CX dwords at ES:[(E)OI] with EAX 
F3 A6 REPE CMPS mB,mB 5+9'N Find non matching bytes in ES:[(E)OI] and [(E)SI] 
F3 A7 REPE CMPS m16,m16 5+9'N Find nonmatching words in ES:[(E)OI] and [(E)SI] 
F3 A7 REPE CMPS m32,m32 5+9*N Find nonmatching dwords in ES:[(E)OI] and [(E)SI] 
F3 AE REPESCAS mB 5+S'N Find non-AL byte starting at ES:[(E)OI] 
F3 AF REPE SCAS m16 5+S'N Find non-AX word starting at ES:[(E)OI] 
F3 AF REPE SCAS m32 5+S'N Find non-EAX dword starting at ES:[(E)DI] 
F2 A6 REPNE CMPS mB,mB 5+9'N Find matching bytes in ES:[(E)DI] and [(E)SI] 
F2 A7 REPNE CMPS m16,m16 5+9'N Find matching words in ES:[(E)OI] and [(E)SI] 
F2 A7 REPNE CMPS m32,m32 5+9'N Find matching dwords in ES:[(E)OI] and [(E)SI] 
F2 AE REPNE SCAS mB 5+S*N Find AL, starting at ES:[(E)OI] 
F2 AF REPNE SCAS m16 5+S*N Find AX, starting at ES:[(E)OI] 
F2 AF REPNE SCAS m32 5+S'N Find EAX, starting at ES:[(E)OI] 

NOTES: '1 If CPL ::; IOPL 
'2 If CPL > IOPL or if in virtual SOS6 mode 

Operation IF AddressSize = 16 
THEN use CX for CountReg; 
ELSE (* AddressSize = 32 *) use ECX for CountReg; 
FI; 
WHILE CountReg <> a 
DO 

service pending interrupts (if any); 
perform primitive string instruction; 
Count Reg +- CountReg - 1; 
IF primitive operation is CMPB, CMPW, SCAB, or SCAW 
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THEN 
IF (instruction is REP/REPE/REPZ) AND (ZF=1) 
THEN exit WHILE loop 
ELSE 

IF (instruction is REPNZ or REPNE) AND (ZF=O) 
THEN exit WHILE loop; 
FI; 

FI; 
FI; 

00; 

REP, REPE (repeat while equal), and REPNE (repeat while not equal) 
are prefix that are applied to string operation. Each prefix cause the 
string instruction that follows to be repeated the number of times 
indicated in the count register or (for REPE and REPNE) until the 
indicated condition in the zero flag is no longer met. 

Synonymous forms of REPE and REPNE are REPZ and REPNZ, 
respectively. 

The REP prefixes apply only to one string instruction at a time. To repeat 
a block of instructions, use the LOOP instruction or another looping 
construct. 

The precise action for each iteration is as follows: 

1. If the address-size attribute is 16 bits, use CX for the count register; 
if the address-size attribute is 32 bits, use ECX for the count 
register. 

2. Check CX. If it is zero, exit the iteration, and move to the next 
instruction. 

3. Acknowledge any pending interrupts. 

4. Perform the string operation once. 

5. Decrement CX or ECX by one; no flags are modified. 

6. Check the zero flag if the string operation is SCAS or CMPS. If 
the repeat condition does not hold, exit the iteration and move to 
the next instruction. Exit the iteration if the prefix is REPE and ZF 
is 0 (the last comparison was not equal), or if the prefix is REPNE 
and ZF is one (the last comparison was equal). 

7. Return to step I for the next iteration. 

Repeated CMPS and SCAS instructions can be exited if the count is 
exhausted or if the zero flag fails the repeat condition. These two cases 
can be distinguished by using either the JCXZ instruction, or by using 
the conditional jumps that test the zero flag (JZ, JNZ, and JNE). 
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Mode Exceptions 

80386 INSTRUCTION SET 

ZF by REP CMPS and REP SCAS as described above 
/" " ' '7;" . ~f.ot<.oy·,.<:!.~ J #ct 6'<'2.n'.'..c/~".~"' fl. co' ....j .. ~" .-~ 

#UD if a repeat prefix is used 'bef~re an instruction that is not in the list 
above; further exceptions can be generated when the string operation is 
executed; refer to the descriptions of the string instructions themselves 

Interrupt 6 if a repeat prefix is used before an instruction that is not in 
the list above; further exceptions can be generated when the string 
operation is executed; refer to the descriptions of the string instructions 
themselves 

Virtual 8086 #UD if a repeat prefix is used before an instruction that is not in the list 
Mode Exceptions above; further exceptions can be generated when the string operation is 

executed; refer to the descriptions of the string instructions themselves 

Notes Not all input/output ports can handle the rate at which the REP INS 
and REP OUTS instructions execute. 
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RET -Return from Procedure 

Opcode 

C3 
CB 
CB 
C2 iw 
CAiw 
CAiw 

Operation 

Instruction Clocks 

RET 
RET 
RET 

10+m 
18+m,pm=32+m 
pm=68 

RET imm16 
RET imm16 
RET imm16 

10+m 
18+m,pm=32+m 
pm=68 

IF instruction = near RET 
THEN; 

IF OperandSize = 16 
THEN 

IP +- PopO; 
EIP +- EIP AND OOOOFFFFH; 

ELSE (* OperandSize = 32 *) 
EIP +- PopO; 

FI; 

Description 

Return (near) to caller 
Return (far) to caller, same privilege 
Return (far), lesser privilege, switch stacks 
Return (near), pop imm16 bytes of parameters 
Return (far), same privilege, pop imm 16 bytes 
Return (far), lesser privilege, pop imm 16 bytes 

IF instruction has immediate operand THEN eSP +- eSP + imm16; FI; 
FI; 

IF (PE = a OR (PE = 1 AND VM = 1)) 
(* real mode or virtual 8086 mode *) 
AND instruction = far RET 

THEN; 
IF Operand Size = 16 
THEN 

IP +- PopO; 
EIP +- EIP AND OOOOFFFFH; 
CS +- PopO; (* 16-bit pop *) 

ELSE (* Operand Size = 32 *) 
EIP +- PopO; 
CS +- PopO; (* 32-bit pop, high-order 16-bits discarded *) 

FI; 
IF instruction has immediate operand THEN eSP +- eSP + imm16; FI; 

FI; 

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) 
AND instruction = far RET 

THEN 
IF OperandSize=32 
THEN Third word on stack must be within stack limits else #SS(O); 
ELSE Second word on stack must be within stack limits else #SS(O); 
FI; 
Return selector RPL must be ?: CPL ELSE #GP(return selector) 
IF return selector RPL = CPL 

17-142 



80386 INSTRUCTION SET 

THEN GOTO SAME-LEVEL; 
ELSE GOTO OUTER-PRIVILEGE-LEVEL; 
FI; 

FI; 

SAME-LEVEL: 
Return selector must be non-nUll ELSE #GP(O) 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) 
Descriptor AR byte must indicate code segment ELSE #GP(selector) 
IF non-conforming 
THEN code segment DPL must equal CPL; 
ELSE #GP(Selector); 
FI; 
IF conforming 
THEN code segment DPL must be s CPL; 
ELSE #GP(selector); 
FI; 
Code segment must be present ELSE #NP(selector); 
Top word on stack must be within stack limits ELSE #SS(O); 
IP must be in code segment limit ELSE #GP(O); 
iF OperandSize=32 
THEN 

Load CS:EIP from stack 
Load CS register with descriptor 
Increment eSP by 8 plus the immediate offset if it exists 

ELSE (* OperandSize = 16 *) 
Load CS:IP from stack 
Load CS register with descriptor 
Increment eSP by 4 plus the immediate offset if it exists 

FI; 

OUTER-PRIVILEGE-LEVEL: 
IF OperandSize=32 
THEN Top (16+immediate) bytes on stack must be within stack limits 

ELSE #SS(O); 
ELSE Top (8 + immediate) bytes on stack must be within stack limits ELSE 

#SS(O); 
FI; 
Examine return CS selector and associated descriptor: 

Selector must be non-null ELSE #GP(O); 
Selector index must be within its descriptor table limits ELSE 

#G P( selector) 
Descriptor AR byte must indicate code segment ELSE #GP(selector); 
IF non-conforming 
THEN code segment DPL must equal return selector RPL 
ELSE #GP(selector); 
FI; 
IF conforming 
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THEN code segment DPL must be ::; return selector RPL; 
ELSE #GP(selector); 
FI; 
Segment must be present ELSE #NP(selector) 

Examine return SS selector and associated descriptor: 
Selector must be non-null ELSE #GP(O); 
Selector index must be within its descriptor table limits 

ELSE #GP(selector); 
Selector RPL must equal the RPL of the return CS selector ELSE 

#GP(selector); 
Descriptor AR byte must indicate a writable data segment ELSE 

#GP(selector); 
Descriptor DPL must equal the RPL of the return CS selector ELSE 

#GP(selector); 
Segment must be present ELSE #NP(selector); 

IP must be in code segment limit ELSE #GP(O); 
Set CPL to the RPL of the return CS selector; 
IF OperandMode=32 
THEN 

Load CS:EIP from stack; 
Set CS RPL to CPL; 
Increment eSP by 8 plus the immediate offset if it exists; 
Load SS:eSP from stack; 

ELSE (* OperandMode=16 *) 
Load CS:IP from stack; 
Set CS RPL to CPL; 
Increment eSP by 4 plus the immediate offset if it exists; 
Load SS:eSP from stack; 

FI; 
Load the CS register with the return CS descriptor; 
Load the SS register with the return SS descriptor; 
For each of ES, FS, GS, and DS 
DO 

IF the current register setting is not valid for the outer level, 
set the register to null (selector +- AR +- 0); 

To be valid, the register setting must satisfy the following properties: 

OD; 

Selector index must be within descriptor table limits; 
Descriptor AR byte must indicate data or readable code segment; 
IF segment is data or non-conforming code, THEN 

DPL must be 2: CPL, or DPL must be 2: RPL; 
FI; 

RET transfers control to a return address located on the stack. The 
address is usually placed on the stack by a CALL instruction, and the 
return is made to the instruction that follows the CALL. 
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The optional numeric parameter to RET gives the number of stack byte~' 
(OperandMode= 16) or words (OperandMode=32) to be released after 
the return address is popped. These items are typically used as in pur 
parameters to the procedure called. 

For the intra segment (near) return, the address on the stack is a segment 
offset, which is popped into the instruction pointer. The CS register is 
unchanged. For the intersegment (far) return, the address on the stack 
is a long pointer. The offset is popped first, followed by the selector. 

In real mode, CS and IP are loaded directly. In Protected Mode, an 
intersegment return causes the processor to check the descriptor 
addressed by the return selector. The AR byte of the descriptor must 
indicate a code segment of equal or lesser privilege (or greater or equal 
numeric value) than the current privilege level. Returns to a lesser privi­
lege level cause the stack to be reloaded from the value saved beyond 
the parameter block. 

The DS, ES, FS, and GS segment registers can be set to 0 by the RET 
instruction during an interlevel transfer. If these registers refer to 
segments that cannot be used by the new privilege level, they are set to 
o to prevent unauthorized access from the new privilege level. 

Flags Affected None 

Protected Mode #GP, #NP, or #SS, as described under "Operation" above; #PF(fault-
Exceptions code) for a page fault 

Real Address Interrupt 13 if any part of the operand would be outside the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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SAHF -Store AH into Flags 

, Opcode Instruction Clocks Description 

9E SAHF 3 Store AH into flags SF ZF xx AF xx PF xx CF 

Operation SF:ZF:xx:AF:xx:PF:xx:CF +- AH; 

Description SAHF loads the flags listed above with values from the AH register, 
from bits 7, 6, 4, 2, and 0, respectively. 

Flags Affected SF, ZF, AF, PF, and CF as described above 

Protected Mode None 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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SAL I SARI SHLI SHR-Shift Instructions 

Opcode 

DO /4 
02/4 
CO /4 ib 
01 /4 
03/4 
C1 /4 ib 
01 /4. 
03/4 
C1 /4 ib 
DO /7 
02/7 
CO /7 ib 
01 /7 
03/7 
C1 /7 ib 
01 /7 
03/7 
C1 /7 ib 
DO /4 
02/4 
CO /4 ib 
01 /4 
03/4 
C1 /4 ib 
01 /4 
03/4 
C1 /4 ib 
DO /5 
02/5 
CO /5 ib 
01 /5 
03/5 
C1 /5 ib 
01 /5 
03/5 
C1 /5/b 

Instruction 

SALrlmB,1 
SALrlmB,CL 
SAL rlmB,immB 
SAL rlm16,1 
SAL rlm16,CL 
SAL rlm16,immB 
SAL rlm32,1 
SAL rlm32,CL 
SAL rlm32,immB 
SAR rlmB,1 
SAR rlmB,CL 
SAR rlmB,immB 
SAR rlm16,1 
SAR rlm16,CL 
SAR rlm16,immB 
SAR rlm32,l 
SAR rlm32,CL 
SAR rlm32,immB 
SHL rlmB,1 
SHLrlmB,CL 
SHL rlmB,immB 
SHLrlm16,1 
SHL rlm16,CL 
SHL rlm16,immB 
SHL rlm32,1 
SHL rlm32,CL 
SHL rlm32,immB 
SHR rlmB,1 
SHR rlmB,CL 
SHR rlmB,immB 
SHR rlm16,1 
SHR rlm16,CL 
SHR rlm16,immB 
SHR rlm32,1 
SHR rlm32,CL 
SHR rlm32,lmmB 

Clocks 

3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 

Description 

Multiply rim byte by 2, once 
Multiply rim byte by 2, CL times 
Multiply rim byte by 2, immBtimes 
Multiply rim word by 2, once 
Multiply rim word by 2, CL times 
Multiply rim word by 2, immB times 
Multiply rim dword by 2, once 
Multiply rim dword by 2, CL times 
Multiply rim dword by 2, immBtimes 
Signed divide' rim byte by 2, once 
Signed divide' rim byte by 2, CL times 
Signed divide' rim byte by 2, immB times 
Signed divide' rim word by 2, once 
Signed divide' rim word by 2, CL times 
Signed divide' rim word by 2, immBtimes 
Signed divide' rim dword by 2, once 
Signed divide' rim dword by 2, CL times 
Signed divide' rim dword by 2, imm8 times 
Multiply rim byte by 2, once 
Multiply rim byte by 2, CL times 
Multiply rim byte by 2, immB times 
Multiply rim word by 2, once 
Multiply rim word by 2, CL times 
Multiply rim word by 2, imm8 times 
Multiply rim dword by 2, once 
Multiply rim dword by 2, CL times 
Multiply rim dword by 2, immBtimes 
Unsigned divide rim byte by 2, once 
Unsigned divide rim byte by 2, CL times 
Unsigned divide rim byte by 2, imm8times 
Unsigned divide rim word by 2, once 
Unsigned divide rim word by 2, CL times 
Unsigned divide rim word by 2, immB times 
Unsigned divide rim dword by 2, once 
Unsigned divide rim dword by 2, CL times 
Unsigned divide rim dword by 2, ImmB times 

Not the same division as 101V; rounding is toward negative infinity. 

Operation (* COUNT is the second parameter *) 
(temp) ~ COUNT; 
WHILE (temp <> 0) 
DO 

IF instruction is SAL or SHL 
THEN CF ~ high-order bit of rjm; 
FI; 
IF instruction is SAR or SHR 
THEN CF ~ low-order bit of rjm; 
FI; 
IF instruction = SAL or SHL 
THEN rjm ~ rjm * 2; 
FI; 
IF instruction = SAR 
THEN rjm ~ rjm /2 (*Signed divide, rounding toward negative infinity*); 
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FI; 

IF instruction = SHR 

THEN rim ~ rim /2; (* Unsigned divide *); 
FI; 
temp ~ temp - 1; 

00; 

(* Determine overflow for the various instructions *) 
IF COUNT = 1 
THEN 

IF instruction is SAL or SHL 
THEN OF ~ high-order bit of rim <> (CF); 
FI; 
IF instruction is SAR 
THEN OF ~ 0; 
FI; 
IF instruction is SHR 
THEN OF ~ high-order bit of operand; 
FI; 

ELSE OF ~ undefined; 
FI; 

SAL (or its synonym, SHL) shifts the bits of the operand upward. The 
high-order bit is shifted into the carry flag, and the low-order bit is set 
to O. 

SAR and SHR shift the bits of the operand downward. The low-order 
bit is shifted into the carry flag. The effect is to divide the operand by 2. 
SAR performs a signed divide with rounding toward negative infinity 
(not the same as IDIV); the high-order bit remains the same. SHR 
performs an unsigned divide; the high-order bit is set to O. 

The shift is repeated the number of times indicated by the second 
operand, which is either an immediate number or the contents of the CL 
register. To reduce the maximum execution time, the 80386 does not 
allow shift counts greater than 31. If a shift count greater than 31 is 
attempted, only the bottom five bits of the shift count are used. (The 
8086 uses all eight bits of the shift count.) 

The overflow flag is set only if the single-shift forms of the instructions 
are used. For left shifts, OF is set to 0 if the high bit of the answer is the 
same as the result of the carry flag (i.e., the top two bits of the original 
operand were the same); OF is set to 1 if they are different. For SAR, 
OF is set to 0 for all single shifts. For SHR, OF is set to the high-order 
bit of the original operand. 
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Protected Mode 
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OF for single shifts; OF is undefined for mUltiple shifts; CF, ZF, PF, 
and SF as described in Appendix C 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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SBB-Integer Subtraction with Borrow 

Opcode 

1C ib 
1D iw 
1D id 
80 /3 ib 
81 /3 iw 

81 /3 id 

83 /3 ib 

83 /3 ib 

18 /r 
19 /r 
19 /r 
1A /r 
1e /r 
1e /r 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction Clocks Description 

SeeAL,imm8 2 Subtract with borrow immediate byte from AL 
see AX,imm16 2 Subtract with borrow immediate word from AX 
see EAX,imm32 2 Subtract with borrow immediate dword from EAX 
see rjm8,imm8 2/7 Subtract with borrow immediate byte from rjm byte 
see rjm16,imm16 2/7 Subtract with borrow immediate word from rjm 

word 
see rjm32,imm32 2/7 Subtract with borrow immediate dword from rjm 

dword 
see rjm16,imm8 2/7 Subtract with borrow sign-extended immediate byte 

from rjm word 
see rjm32,imm8 2/7 Subtract with borrow sign-extended immediate byte 

from rjm dword 
see rjm8,r8 2/6 Subtract with borrow byte register from rjm byte 
see rjm16,r16 2/6 Subtract with borrow word register from rjm word 
see rjm32,r32 2/6 Subtract with borrow dword register from rjm dword 
see r8,rjm8 2/7 Subtract with borrow byte register from rjm byte 
see r16,rjm16 2/7 Subtract with borrow word register from rjm word 
see r32,rjm32 2/7 Subtract with borrow dword register from rjm dword 

IF SRC is a byte and DEST is a word or dword 
THEN DEST = DEST - (SignExtend(SRC) + CF) 
ELSE DEST t- DEST - (SRC + CF); 

SBB adds the second operand (DEST) to the carry flag (CF) and 
subtracts the result from the first operand (SRC). The result of the 
subtraction is assigned to the first operand (DEST), and the flags are 
set accordingly. 

When an immediate byte value is subtracted from a word operand, the 
immediate value is first sign-extended. 

OF, SF, ZF, AF, PF, and CF as described in Appendix C 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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SCAS/SCASB/SCASW /SCASD-Compare String Data 

Opcode 

AE 
AF 
AF 
AE 
AF 
AF 

Operation 

Description 

Instruction 

SCAS mB 
SCAS m16 
SCAS m32 
SCASB 
SCASW 
SCASO 

Clocks 

7 
7 
7 
7 
7 
7 

IF AddressSize = 16 
THEN use DI for dest-index; 

Description 

Compare bytes AL-ES:[OI). update (E)OI 
Compare words AX-ES:[OI). update (E)OI 
Compare dwords EAX-ES:[OIJ. update (E)OI 
Compare bytes AL-ES:[OI). update (E)OI 
Compare words AX-ES:[OI). update (E)OI 
Compare dwords EAX-ES:[DlJ. update (E)OI 

ELSE (* AddressSize = 32 *) use EDI for dest-index; 
FI; 
IF byte type of instruction 
THEN 

AL - [dest-index]; (* Compare byte in AL and dest *) 
IF DF = 0 THEN IndDec +- 1 ELSE IncDec +- -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

AX - [dest-index]; (* compare word in AL and dest *) 
IF DF = 0 THEN IncOec +- 2 ELSE IncDec +- -2; FI; 

ELSE (* Operand Size = 32 *) 
EAX - [dest-index];(* compare dword in EAX & dest *) 
IF DF = 0 THEN IncDec +- 4 ELSE IncOec +- -4; FI; 

FI; 
FI; 
dest-index = dest-index + IncDec 

SCAS subtracts the memory byte or word at the destination register 
from the AL, AX or EAX register. The result is discarded; only the flags 
are set. The operand must be addressable from the ES segment; no 
segment override is possible. 

If the address-size attribute for this instruction is 16 bits, DI is used as 
the destination register; otherwise, the address-size attribute is 32 bits 
and ED I is used. 

The address of the memory data being compared is determined solely by 
the contents of the destination register, not by the operand to SCAS. 
The operand validates ES segment addressabilityand determines the data 
type. Load the correct index value into DI or EDI before executing 
SCAS. 

After the comparison is made, the destination register is automatically 
updated. If the direction flag is 0 (CLD was executed), the destination 
register is incremented; if the direction flag is 1 (STD was executed), it 
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Protected Mode 
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is decremented. The increments or decrements are by 1 if bytes are 
compared, by 2 if words are compared, or by 4 if doublewords are 
compared. 

SCASB, SCASW, and SCASD are synonyms for the byte, word and 
doubleword SCAS instructions that don't require operands. They are 
simpler to code, but provide no type or segment checking. 

SCAS can be preceded by the REPE or REPNE prefix for a block search 
of CX or ECX bytes or words. Refer to the REP instruction for further 
details. 

OF, SF, ZF, AF, PF, and CF as described in Appendix C 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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SETCC-Byte Set on Condition 

Opcode 

OF 97 
OF 93 
OF 92 
OF 96 
OF 92 
OF 94 
OF 9F 
OF 90 
OF 9C 
OF 9E 
OF 96 
OF 92 
OF 93 
OF 97 
OF 93 
OF 95 
OF 9E 
OF 9C 
OF 90 
OF 9F 
OF 91 
OF 9B 
OF 99 
OF 95 
OF 90 
OF 9A 
OF 9A 
OF 9B 
OF 98 
OF 94 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

SETA rlmB 
SETAErlmB 
SETB rlmB 
SETSErlmB 
SETCrlmB 
SETE rlmB 
SETG rlmB 
SETGErlmB 
SETL rlmB 
SETLE rlmB 
SETNArlmB 
SETNAErlmB 
SETNB rlmB 
SETNBErlmB 
SETNC rlmB 
SETNE rlmB 
SETNG rlmB 
SETNGE rlmB 
SETNL rlmB 
SETNLE rlmB 
SETNO rlmB 
SETNP rlmB 
SETNSrlmB 
SETNZ rlmB 
SETO rlmB 
SETP rlmB 
SETPErlmB 
SETPO rlmB 
SETS rlmB 
SETZ rlmB 

Clocks 

4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 

Description 

Set byte if above (CF=O and ZF=O) 
Set byte if above or equal (CF=O) 
Set byte if below (CF = 1) 
Set byte if below or equal (CF=1 or (ZF=1) 
Set if carry (CF=1) 
Set byte if equal (ZF=1) 
Set byte if greater (ZF=O or SF=OF) 
Set byte if greater or equal (SF=OF) 
Set byte if less (SF<>OF) 
Set byte if less or equal (ZF=1 and SF<>OF) 
Set byte if not above (CF = 1) 
Set byte if not above or equal (CF=1) 
Set byte if not below (CF = 0) 
Set byte if not below or equal (CF=O and ZF=O) 
Set byte if not carry (CF = 0) 
Set byte if not equal (ZF=O) 
Set byte if not greater (ZF=1 or SF<>OF) 
Set if not greater or equal (SF<>OF) 
Set byte if not less (SF=OF) 
Set byte if not less or equal (ZF=1 and SF<>OF) 
Set byte if not overflow (OF=O) 
Set byte if not parity (PF = 0) 
Set byte if not sign (SF=O) 
Set byte if not zero (ZF = 0) 
Set byte if overflow (OF = 1) 
Set byte if parity (PF = 1) 
Set byte if parity even (PF = 1) 
Set byte if parity odd (PF = 0) 
Set byte if sign (SF = 1) 
Set byte if zero (ZF = 1) 

IF condition THEN rjmB +- 1 ELSE rjmB +- 0; FI; 

1· \ 
(j.l::'· 

SETcc stores a byte at the destination specified by the effective address 
or register if the condition is met, or a 0 byte if the condition is not met. 

None 

#GP(O) if the result is in a non-writable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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SGDT /SIDT -Store Global/Interrupt Descriptor Table Register 

Opcode 

OF 01 /0 
OF 01/1 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

SGOTm 
SIOTm 

Clocks 

9 
9 

Description 

Store GOTR to m 
Store IOTR to m 

DEST +- 48-bit BASE/LIMIT register contents; 

SGDT /SIDT copies the contents of the descriptor table register the six 
bytes of memory indicated by the operand. The LIMIT field of the 
register is assigned to the first word at the effective address. If the 
operand-size attribute is 32 bits, the next three bytes are assigned the 
BASE field of the register, and the fourth byte is written with zero. The 
last byte is undefined. Otherwise, if the operand-size attribute is 16 bits, 
the next four bytes are assigned the 32-bit BASE field of the register. 

SGDT and SIDT are used only in operating system software; they are 
not used in application programs. 

None 

Interrupt 6 if the destination operand is a register; #GP(O) if the desti­
nation is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the es, DS, ES, FS, or GS segments; #SS(O) for an 
illegal address in the SS segment; #PF(fault-code) for a page fault 

Real Address Interrupt 6 if the destination operand is a register; Interrupt 13 if any 
Mode Exceptions part of the operand would lie outside of the effective address space from 

o to OFFFFH 

VirtualSOS6 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 

Compatability 
Note 

The 16-bit forms of the SGDT /SIDT instructions are compatible with 
the 80286, if the value in the upper eight bits is not referenced. The 
80286 stores 1 's in these upper bits, whereas the 80386 stores O's if the 
operand-size attribute is 16 bits. These bits were specified as undefined 
by the SGDT /SIDT instructions in the iAPX 286 Programmer's Refer­
ence Manual. 
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SHLD-Double Precision Shift Left 

Opcode 

OF A4 
OF A4 
OF A5 
OF A5 

Operation 

Description 

Instruction Clocks Description 

SHLD r/m16,r16,imm8 
SHLD r/m32,r32,imm8 
SHLD r/m16,r16,CL 
SHLD r/m32,r32,CL 

3/7 
3/7 
3/7 
3/7 

r/m16 gets SHL of r/m16 concatenated with r16 
r/m32 gets SHL of r/m32 concatenated with r32 
r/m16 gets SHL of r/m16 concatenated with r16 
r/m32 gets SHL of r/m32 concatenated with r32 

(* count is an unsigned integer corresponding to the last operand of the 
instruction, either an immediate byte or the byte in register CL *) 
ShiftAmt +- count MOD 32; 
inBits +- register; (* Allow overlapped operands *) 
IF ShiftAmt = 0 
THEN no operation 
ELSE 

IF ShiftAmt 2:: OperandSize 
THEN (* Bad parameters *) 

rim +- UNDEFINED; 
CF, OF, SF, ZF, AF, PF +- UNDEFINEI:)~ 

ELSE (* Perform the shift *) 
CF +- BIT[Base, OperandSize - ShiftAmt]; 

(* Last bit shifted out on exit *) 
FOR i +- Operand Size - 1 DOWNTO ShiftAmt 
DO 

BIT[Base, i] +- BIT[Base, i - ShiftAmt]; 
OF; 
FOR i +- ShiftAmt - 1 DOWNTO 0 
DO 

BIT[Base, i] +- BIT[inBits, i - ShiftAmt + OperandSize]; 
OD; 
Set SF, ZF, PF (rim); 

l ---I-

(* SF, ZF, PF are set according to the value of the result *) 
AF +- UNDEFINED; 

FI; 
FI; 

SHLD shifts the first operand provided by the rim field to the left as 
many bits as specified by the count operand. The second operand (r16 
or r32) provides the bits to shift in from the right (starting with bit 0). 
The result is stored back into the rim operand. The register remains 
unaltered. 

The count operand is provided by either an immediate byte or the 
contents of the CL register. These operands are taken MODULO 32 to 
provide a number between 0 and 31 by which to shift. Because the bits 
to shift are provided by the specified registers, the operation is useful for 
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Flags Affected 

Protected Mode 
Exceptions 
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multiprecision shifts (64 bits or more). The SF, ZF and PF flags are set 
according to the value of the result. CS is set to the value of the last bit 
shifted out. OF and AF are left undefined. 

OF, SF, ZF, PF, and CF as described above; AF and OF are undefined 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, OS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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SHRD-Double Precision Shift Right 

Opcode 

OF AC 
OF AC 
OF AD 
OF AD 

Operation 

Description 

Instruction 

SHRD r/m16,r16,imm8 
SHRD r/m32,r32,imm8 
SHRD r/m16,r16,CL 
SHRD r/m32,r32,CL 

Clocks 

3/7 
3/7 
3/7 
3/7 

Description 

r/m16 gets SHR of r/m16 concatenated with r16 
r/m32 gets SHR of r/m32 concatenated with r32 
r/m16 gets SHR of r/m16 concatenated with r16 
r/m32 gets SHR of r/m32 concatenated with r32 

(* count is an unsigned integer corresponding to the last operand of the 
instruction, either an immediate byte or the byte in register CL *) 

ShiftAmt ... count MOD 32; 
in Bits ... register; (* Allow overlapped operands *) 
IF ShiftAmt = 0 
THEN no operation 
ELSE 

IF ShiftAmt ~ OperandSize---
THEN (* Bad t *) ) StrL.P parame ers ,. ___ py.L 

rim ... UNDEFINED; . 
CF. OF, SF, ZF, AF, PF ... UNDEFINED.~_~. 

ELSE (* Perform the shift *) 
CF ... BIT[rlm, ShiftAmt - 1]; (* last bit shifted out on exit *) 
FOR i ... 0 TO OperandSize - 1 - ShiftAmt 
DO 

BIT[rlm, i] ... BIT[rlm. i - ShiftAmt]; 
00; 
FOR i ... OperandSize - ShiftAmt TO OperandSize-1 
DO 

BIT[rlm,i] ... BIT[inBits.i+ShiftAmt - OperandSize]; 
00; 
Set SF, ZF. PF (rim); 

(* SF, ZF, PF are set according to the value of the result *) 
Set SF, ZF, PF (rim); 
AF ... UNDEFINED; 

FI; 
FI; 

SHRD shifts the first operand provided by the rim field to the right as 
many bits as specified by the count operand. The second operand (r16 
or r32) provides the bits to shift in from the left (starting with bit 31). 
The result is stored back into the rim operand. The register remains 
unaltered. 

The count operand is provided by either an immediate byte or the 
contents of the CL register. These operands are taken MODULO 32 to 
provide a number between 0 and 31 by which to shift. Because the bits 
to shift are provided by the specified register, the operation is useful for 
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multi-precision shifts (64 bits or more). The SF, ZF and PF flags are set 
according to the value of the result. CS is set to the value of the last bit 
shifted out. OF and AF are left undefined. 

Flags Affected OF, SF, ZF, PF, and CF as described above; AF and OF are undefined 

Protected Mode #GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
Exceptions memory operand effective address in the CS, DS, ES, FS, or GS 

segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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SLOT -Store Local Descriptor Table Register 

Opcode Instruction Clocks Description 

OF 00/0 SLOT r/m16 pm=2/2 Store LOTR to EA word 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

r/m16 +- LDTR; 

SLDT stores the Local Descriptor Table Register (LDTR) in the two­
byte register or memory location indicated by the effective address 
operand. This register is a selector that points into the Global Descriptor 
Table. 

SLDT is used only in operating system software. It is not used in appli­
cation programs. 

None 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Interrupt 6; SLDT is not recognized in Real Address Mode 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 

Notes The operand-size attribute has no effect on the operation of the 
instruction. 
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SMSW -Store Machine Status Word 

Opcode 

OF 01 /4 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction Clocks Description 

SMSW r/m16 2/3.pm~2/2 Store machine status word to EA word 

rjm16 +- MSW; 

SMSW stores the machine status word (part of CRO) in the two-byte 
register or memory location indicated by the effective address operand, 

None 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 

Notes This instruction is provided for compatibility with the 80286; 80386 
programs should use MOV .. " CRO, 
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STC-Set Carry Flag 

Opcode InstructIon Clocks DescrIptIon 

F9 STC 2 Set carry flag 

Operation CF +- 1; 

Description STC sets the carry flag to 1. 

Flags Affected CF = 1 

Protected Mode None 
Exceptions 

Real Address None 
Mode Exceptions 

Virtual 8086 None 
Mode Exceptions 
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STO-Set Direction Flag 

Opcode Instruction Clocks Description 

FO STO 2 Set direction flag so (E)SI and/or (E)OI decrement 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

Virtual 8086 
Mode Exceptions 

OF ... 1; 

STO sets the direction flag to 1, causing all subsequent string operations 
to decrement the index registers, (E)SI and/or (E)OI, on which they 
operate. 

OF = 1 

None 

None 

None 
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STI-Set Interrupt Flag 

Opcode Instruction Clocks Description 

F13 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

STI 

Real Address 
Mode Exceptions 

Virtual 8086 
Mode Exceptions 

3 

IF +- 1 

Set interrupt flag; interrupts enabled at the end of 
the next instruction 

ST! sets the interrupt flag to 1. The 80386 then responds to external 
interrupts after executing the next instruction if the next instruction 
allows the interrupt flag to remain enabled. If external interrupts are 
disabled and you code ST!, RET (such as at the end of a subroutine), 
the RET is allowed to execute before external interrupts are recognized. 
Also, if external interrupts are disabled and you code ST!, CLI, then 
external interrupts are not recognized because the CLI instruction clears 
the interrupt flag during its execution. 

IF = 1 

#GP(O) if the current privilege level is greater (has less privilege) than 
the I/O privilege level 

None 

None 

17-163 



80386 INSTRUCTION SET 

STOS/STOSB/STOSW ISTOSD-Store String Data 

Opcode 

AA 
AS 
AS 
AA 
AS 
AS 

Operation 

Description 

Instruction 

STOS roB 
STOS ro16 
STOS ro32 
STOSS 
STOSW 
STOSD 

Clock8 

4 
4 
4 
4 
4 
4 

IF AddressSize = 16 
THEN use ES:DI for DestReg 

De8crlptlon 

Store AL in byte ES:[(E)Dlj. update (E)DI 
Store AX in word ES:[(E)Dlj. update (E)DI 
Store EAX in dword ES:[(E)Dlj. update (E)DI 
Store AL in byte ES:[(E)Dlj. update (E)DI 
Store AX in word ES:[(E)Dlj. update (E)DI 
Store EAX in dword ES:[(E)Dlj. update (E)DI 

ELSE (* AddressSize = 32 *) use ES:EDI for DestReg; 
FI; 
IF byte type of instruction 
THEN 

(ES:DestReg) +- AL; 
IF DF = 0 
THEN DestReg +- DestReg + 1; 
ELSE DestReg +- DestReg - 1; 
FI; 

ELSE IF OperandSize = 16 
THEN 

(ES:DestReg) +- AX; 
IF DF = 0 
THEN DestReg +- DestReg + 2; 
ELSE DestReg +- DestReg - 2; 
FI; 

ELSE (* OperandSize = 32 *) 
(ES:DestReg) +- EAX; 
IF DF = 0 
THEN DestReg +- DestReg + 4; 
ELSE DestReg +- DestReg - 4; 
FI; 

FI; 
FI; 

STOS transfers the contents of all AL, AX, or EAX register to the 
memory byte or word given by the destination register relative to the ES 
segment. The destination register is DI for an address-size attribute of 
16 bits or EDI for an address-size attribute of 32 bits. 

The destination operand must be addressable from the ES register. A 
segment override is not possible. 

The address of the destination is determined by the contents of the desti­
nation register, not by the explicit operand of STOS. This operand is 
used only to validate ES segment addressability and to determine the 
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Protected Mode 
Exceptions 
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data type. Load the correct index value into the destination register before 
executing STOS. 

After the transfer is made, DI is automatically updated. If the direction 
flag is 0 (CLD was executed), D I is incremented; if the direction flag is 
1 (STD was executed), DI is decremented. DI is incremented or decre­
mented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a 
doubleword is stored. 

STOSB, STOSW, and STOSD are synonyms for the byte, word, and 
doubleword STOS instructions, that do not require an operand. They are 
simpler to use, but provide no type or segment checking. 

STOS can be preceded by the REP prefix for a block fill of CX or ECX 
bytes, words, or doublewords. Refer to the REP instruction for further 
details. 

None 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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STR-Store Task Register 

Opcode Instruction Clocks Description 

OF 00/1 STR rlm16 pm=23/27 Load EA word into task register 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Real Address 
Mode Exceptions 

Virtual 8086 
Mode Exceptions 

Notes 

rjm +- task register; 

The contents of the task register are copied to the two-byte register or 
memory location indicated by the effective address operand. 

STR is used only in operating system software. It is not used in appli­
cation programs. 

None 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Interrupt 6; STR is not recognized in Real Address Mode 

Same exceptions as in Real Address Mode 

The operand-size attribute has no effect on this instruction. 
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SUB-Integer Subtraction 

Opcode 

2C ib 
20 iw 
20 id 
80 15 ib 
81 15 iw 
81 15 id 
83 15 ib 

83 15 ib 

28 Ir 
29 Ir 
29 Ir 
2A Ir 
2B Ir 
2B Ir 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

SUBAL,immB 
SUB AX,imm16 
SUB EAX,imm32 
SUB rlmB,immB 
SUB rlm16,imm16 
SUB rlm32,imm32 
SUB rlm16,immB 

SUB rlm32,immB 

SUB rlmB,rB 
SUB rlm16,r16 
SUB rlm32,r32 
SUB rB,rlmB 
SUB r16,rlm16 
SUB r32,rlm32 

Clocks 

2 
2 
2 
2/7 
2/7 
2/7 
2/7 

2/7 

2/6 
2/6 
2/6 
2/7 
2/7 
2/7 

Description 

Subtract immediate byte from AL 
Subtract immediate word from AX 
Subtract immediate dword from EAX 
Subtract immediate byte from rim byte 
Subtract immediate word from rim word 
Subtract immediate dword from rim dword 
Subtract Sign-extended immediate byte from rim 
word 
Subtract sign-extended immediate byte from rim 
dword 
Subtract byte register from rim byte 
Subtract word register from rim word 
Subtract dwordregister from rim dword 
Subtract byte register from rim byte 
Subtract word register from rim word 
Subtract dword register from rim dword 

IF SRC is a byte and DEST is a word or dword 
THEN DEST = DEST - SignExtend(SRC); 
ELSE DEST +- DEST - SRC; 
FI; 

SUB subtracts the second operand (SRC) from the first operand (DEST). 
The first operand is assigned the result of the subtraction, and the flags 
are set accordingly. 

When an immediate byte value is subtracted from a word operand, the 
immediate value is first sign-extended to the size of the destination 
operand. 

OF, SF, ZF, AF, PF, and CF as described in Appendix C 

#GP{O) if the result is in a nonwritable segment; #GP{O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS{O) for an illegal address in the SS segment; #PF{fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF{fault-code) for a page 
Mode Exceptions fault 
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TEST -Logical Compare 

Opcode 

A8 ib 
A9 iw 
A9 id 
F6 /0 ib 
F7 /0 iw 
F7 /0 id 
84 /r 
85 /r 
85 /r 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

TEST AL,immB 
TEST AX,imm16 
TEST EAX,imm32 
TEST rlmB,immB 
TEST rim 16,imm16 
TEST rlm32,imm32 
TEST rlmB,rB 
TEST rlm16,r16 
TEST rlm32,r32 

Clocks 

2 
2 
2 
2/5 
2/5 
2/5 
2/5 
2/5 
2/5 

Description 

AND immediate byte with AL 
AND immediate word with AX 
AND immediate dword with EAX 
AND immediate byte with rim byte 
AND immediate word with rim word 
AND immediate dword with rim dword 
AND byte register with rim byte 
AND word register with rim word 
AND dword register with rim dword 

DEST : = LeftSRC AND RightSRC; 
CF ~ 0; 
OF ~ 0; 

TEST computes the bit-wise logical AND of its two operands. Each bit 
of the result is 1 if both of the corresponding bits of the operands are 1; 
otherwise, each bit is O. The result of the operation is discarded and only 
the flags are modified. 

OF = 0, CF = 0; SF, ZF, and PF as described in Appendix C 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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VERR, VERW -Verify a Segment for Reading or Writing 

Opcode 

OF 00/4 

OF 00/5 

Operation 

Description 

Flags Affected 

Instruction Clocks Description 

VERR r/m16 pm=10/11 Set ZF=1 if segment can be read, selector in 
r/m16 

VERW r/m16 pm=15/16 Set ZF=1 if segment can be written, selector in 
r/m16 

IF segment with selector at (rjm) is accessible 
with current protection level 
AND ((segment is readable for VERR) OR 

(segment is writable for VERW)) 
THEN ZF +- 0; 
ELSE ZF +- 1; 
FI; 

The two-byte register or memory operand of VERR and VERW contains 
the value of a selector. VERR and VERW determine whether the 
segment denoted by the selector is reachable from the current privilege 
level and whether the segment is readable (VERR) or writable (VERW). 
If the segment is accessible, the zero flag is set to 1; if the segment is 
not accessible, the zero flag is set to O. To set ZF, the following condi­
tions must be met: 

• The selector must denote a descriptor within the bounds of the table 
(GOT or LOT); the selector must be "defined." 

• The selector must denote the descriptor of a code or data segment 
(not that of a task state segment, LOT, or a gate). 

• For VERR, the segment must be readable. For VERW, the segment 
must be a writable data segment. 

• If the code segment is readable and conforming, the descriptor 
privilege level (DPL) can be any value for VERR. Otherwise, the 
DPL must be greater than or equal to (have less or the same privi­
lege as) both the current privilege level and the selector's RPL. 

The validation performed is the same as if the segment were loaded into 
DS, ES, FS, or GS, and the indicated access (read or write) were 
performed. The zero flag receives the result of the validation. The selec­
tor's value cannot result in a protection exception, enabling the software 
to anticipate possible segment access problems. 

ZF as described above 
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Faults generated by illegal addressing of the memory operand that 
contains the selector, the selector is not loaded into any segment register, 
and no faults attributable to the selector operand are generated 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault 

Real Address Interrupt 6; VERR and VER W are not recognized in Real Address Mode 
Mode Exceptions 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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WAIT -Wait until BUSY# Pin is Inactive (HIGH) 

Opcode Instruction Clocks Description 

9B WAIT 6 min. Wait until BUSY pin is inactive (HIGH) 

Description WAIT suspends execution of 80386 instructions until the BUSY # pin is 
inactive (high). The BUSY # pin is driven by the 80287 numeric proces­
sor extension. 

Flags Affected None 

Protected Mode #NM if the task-switched flag in the machine status word (the lower 16 
Exceptions bits of register eRO) is set; #MF if the ERROR# input pin is asserted 

(Le., the 80287 has detected an unmasked numeric error) 

Real Address Same exceptions as in Protected Mode 
Mode Exceptions 

Virtual 8086 Same exceptions as in Protected Mode 
Mode Exceptions 
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XCHG-Exchange Register/Memory with Register 

Opcode 

90+r 
90+r 
90+r 
90+r 
86 /r 
86 /r 
87 /r 
87 /r 
87 /r 
87 /r 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

XCHG AX.r16 
XCHG r1B.AX 
XCHG EAX.r32 
XCHG r32.EAX 
XCHG rlmS,rS 
XCHG rS,rlmS 
XCHG rlm16,r16 
XCHG r16,rlm16 
XCHG rlm32,r32 
XCHG r32,rlm32 

temp +- DEST 
DEST +- SRC 
SRC +- temp 

Clocks 

3 
3 
3 
3 
3 
3/5 
3 
3/5 
3 
3/5 

Description 

Exchange word register with AX 
Exchange word register with AX 
Exchange dword register with EAX 
Exchange dword register with EAX 
Exchange byte register with EA byte 
Exchange byte register with EA byte 
Exchange word register with EA word 
Exchange word register with EA word 
Exchange dword register with EA dword 
Exchange dword register with EA dword 

XCHG exchanges two operands. The operands can be in either order. If 
a memory operand is involved, BUS LOCK is asserted for the duration 
of the exchange, regardless of the presence or absence of the LOCK 
prefix or of the value of the IOPL. 

None 

#GP(O) if either operand is in a nonwritable segment; #GP(O) for an 
illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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XLA T / XLA TB-Table Look-up Translation 

Opcode 

D7 
D7 

Operation 

Description 

Flags Affected 

Protected Mode 
Exceptions 

Instruction 

XLAT mB 
XLATB 

Clocks 

5 
5 

IF AddressSize = 16 
THEN 

AL +- (BX + ZeroExtend(AL)) 
ELSE (* AddressSize = 32 *) 

Description 

Set AL to memory byte DS:[(E)BX + unsigned ALl 
Set AL to memory byte DS:[(E)BX + unsigned ALl 

AL +- (EBX + ZeroExtend(AL)); 
FI; 

XLAT changes the AL register from the table index to the table entry. 
AL should be the unsigned index into a table addressed by DS:BX (for 
an address-size attribute of 16 bits) or DS:EBX (for an address-size 
attribute of 32 bits). 

The operand to XLA T allows for the possibility of a segment override. 
XLAT uses the contents of BX even if they differ from the offset of the 
operand. The offset of the operand should have been moved into 
BX/EBX with a previous instruction. 

The no-operand form, XLATB, can be used if the BX/EBX table will 
always reside in the DS segment. 

None 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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XOR-Logical Exclusive OR 

Opcode 

34 ib 
35 iw 
35 id 
80 /6 ib 
81 /6 iw 
81 /6 id 
83 /6 ib 
83 /6 ib 
30 /r 
31 /r 
31 /r 
32 /r 
33 /r 
33 /r 

Instruction 

XOR AL,immB 
XOR AX,imm16 
XOR EAX,imm32 
XOR rlmB,immB 
XOR rlm16,imm16 
XOR rlm32,imm32 
XOR rlm16,immB 
XOR rlm32,immB 
XOR rlmB,r8 
XOR rlm16,rl6 
XOR rlm32,r32 
XOR rB,rlm8 
XOR rl6,rlml6 
XOR r32,rlm32 

Clocks 

2 
2 
2 
2/7 
2/7 
2/7 
2/7 
2/7 
2/6 
2/6 
2/6 
2/7 
2/7 
2/7 

Description 

Exclusive-OR immediate byte to AL 
Exclusive-OR immediate word to AX 
Exclusive-OR immediate dword to EAX 
Exclusive-OR immediate byte to rim byte 
Exclusive-OR immediate word to rim word 
Exclusive-OR immediate dword to rim dword 
XOR sign-extended immediate byte with rim word 
XOR sign-extended immediate byte with rim dword 
Exclusive-OR byte register to rim byte 
Exclusive-OR word register to rim word 
Exclusive-OR dword register to rim dword 
Exclusive-OR byte register to rim byte 
Exclusive-OR word register to rim word 
Exclusive-OR dword register to rim dword 

Operation DEST +- LeftSRC XOR RightSRC 
CF +- 0 
OF +- 0 

Description XOR computes the exclusive OR of the two operands. Each bit of the 
result is 1 if the corresponding bits of the operands are different; each 
bit is 0 if the corresponding bits are the same. The answer replaces the 
first operand. 

Flags Affected CF = 0, OF = 0; SF, ZF, and PF as described in Appendix C; AF is 
undefined 

Protected Mode #GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
Exceptions memory operand effective address in the CS, DS, ES, FS, or GS 

segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Interrupt 13 if any part of the operand would lie outside of the effective 
Mode Exceptions address space from 0 to OFFFFH 

Virtual 8086 Same exceptions as in Real Address Mode; #PF(fault-code) for a page 
Mode Exceptions fault 
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APPENDIX A 
OPCODE MAP 

The opcode tables that follow aid in interpreting 80386 object code. Use the high-order four 
bits of the opcode as an index to a row of the opcode table; use the low-order four bits as an 
index to a column of the table. If the opcode is OFH, refer to the two-byte opcode table and 
use the second byte of the opcode to index the rows and columns of that table. 

KEY TO ABBREVIATIONS 

Operands are identified by a two-character code of the form Zz. The first character, an 
uppercase letter, specifies the addressing method; the second character, a lowercase letter, 
specifies the type of operand. 

CODES FOR ADDRESSING METHOD 

A Direct address; the instruction has no modRJM byte; the address of the operand is 
encoded in the instruction; no base register, index register, or scaling factor can be 
applied; e.g., far JMP (EA). 

C The reg field of the modRJM byte selects a control register; e.g., MOY (OF20, OF22). 

D The reg field of the modRJM byte selects a debug register; e.g., MOY (OF2l,OF23). 

E A modRJM byte follows the opcode and specifies the operand. The operand is either a 
general register or a memory address. If it is a memory address, the address is computed 
from a segment register and any of the following values: a base register, an index regis­
ter, a scaling factor, a displacement. 

F Flags Register. 

G The reg field of the modRJM byte selects a general register; e.g., ADD (00). 

I Immediate data. The value of the operand is encoded in subsequent bytes of the 
instruction. 

J The instruction contains a relative offset to be added to the instruction pointer register; 
e.g., JMP short, LOOP. 

M The modRJM byte may refer only to memory; e.g., BOUND, LES, LDS, LSS, LFS, 
LGS. 

o The instruction has no modRJM byte; the offset of the operand is coded as a word or 
double word (depending on address size attribute) in the instruction. No base register, 
index register, or scaling factor can be applied; e.g., MOY (AO-A3). 
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OPCODE MAP 

R The mod field of the modRJM byte may refer only to a general register; e.g., MOY 
(OF20-0F24,OF26). 

S The reg field of the modRJM byte selects a segment register; e.g., MOY (8C,8E). 

T The reg field of the modRJM byte selects a test register; e.g., MOY (OF24,OF26). 

X Memory addressed by DS:SI; e.g., MOYS, COMPS, OUTS, LODS, SCAS. 

Y Memory addressed by ES:DI; e.g., MOYS, CMPS, INS, STOS. 

CODES FOR OPERAND TYPE 

a Two one-word operands in memory or two double-word operands in memory, depending 
on operand size attribute (used only by BOUND). 

b Byte (regardless of operand size attribute) 

c Byte or word, depending on operand size attribute. 

d Double word (regardless of operand size attribute) 

p 32-bit or 48-bit pointer, depending on operand size attribute. 

s Six-byte pseudo-descriptor 

v Word or double word, depending on operand size attribute. 

w Word (regardless of operand size attribute) 

REGISTER CODES 

When an operand is a specific register encoded in the opcode, the register is identified by its 
name; e.g., AX, CL, or ESI. The name of the register indicates whether the register is 32-, 
16-, or 8-bits wide. A register identifier of the form eXX is used when the width of the 
register depends on the operand size attribute; for example, eAX indicates that the AX 
register is used when the operand size attribute is 16 and the EAX register is used when the 
operand size attribute is 32. 
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OPCODE MAP 

One-Byte Opcode Map 

o 2 3 4 5 6 7 

o 
ADD PUSH POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,Iv ES ES 

ADC PUSH POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv SS SS 

AND SEG DAA 
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv =ES 2 

XOR SEG 
=SS AAA 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,Iv 
3 

INC general register 
4 

eAX eCX eDX eBX eSP eBP eSI eDI 

PUSH general register 
5 

eAX eCX eDX eBX eSP eBP eSI eDI 

PUSHA POPA 
BOUND ARPL SEG SEG Operand Address 
GV,Ma EW,Rw =FS =GS Size Size 

6 

Short-displacement jump on condition (Jb) 
7 

JO JNO JB JNB JZ JNZ JBE JNBE 

Immediate Grpl 6I'p:!.. Grpl TEST XCHG 

Eb,lb EV,lv i ~, - EV,lb Eb,Gb EV,Gv Eb,Gb EV,Gv ......t.-D 
8 

XCHG word or double-word register with eAX 
9 NOP 

eCX eDX eBX eSP eBP eSI eDI 

MOV MOVSB MOVSW/D CMPSB CMPSW/D 

AL,Ob eAX,Ov Ob,AL OV,eAX Xb,Yb XV,Yv Xb,Yb XV,Yv 
A 

MOV immediate byte into byte register 
B 

AL CL DL BL AH CH DH BH 

Shift Grp2 RET near LES LDS MOV 

Eb,lb EV,lb Iw Gv,Mp Gv,Mp Eb,lb EV,lv 
C 

Shift Grp2 
D AAM AAD XLAT 

Eb,1 EV,1 Eb,CL EV,CL 

LOOPNE LOOPE LOOP JCXZ IN OUT 

Jb Jb Jb Jb AL,lb eAX,lb Ib,AL Ib,eAX 
E 

REP Unary Grp3 
LOCK REPNE REPE HLT CMC 

Eb Ev 
F 
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One-Byte Opcode Map 

8 9 A B C o E F 

OR PUSH 2-byte 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,Iv CS escape 
o 

SBB PUSH POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv OS OS 

SUB SEG 
=CS OAS 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv 
2 

CMP SEG 

~i'S 
AAS 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,Iv 
3 

4 
DEC general register 

eAX eCX eOX eBX eSP eBP eSI eOI 

POP into general register 
5 

eAX eCX eOX eBX eSP eBP eSI eOI 

P~~, IMUL PUSH IMUL INSB INSW/O OUTSB OUTSW/O 

W'-L'J GvEvlv Ib GvEvlb Yb,OX YV,OX OX,Xb OX,Xv 
6 

Short-displacement jump on condition (Jb) 
7 

JS JNS JP JNP JL JNL JLE JNLE 

MOV MOV LEA MOV POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev Ew,Sw GV,M SW,Ew Ev 
8 

CBW CWO CALL WAIT PUSHF POPF SAHF LAHF Ap Fv Fv 
9 

TEST STOSB STOSW/O LOOSB LOOSW/O SCASB SCASW/O 

AL,lb eAX,Iv Yb,AL YV,eAX AL,Xb eAX,Xv AL,Xb eAX,Xv 
A 

MOV immediate word or double into word or double register 
B 

eAX eCX eOX eBX eSP eBP eSI eOI 

ENTER RET far INT INT 
IW,lb LEAVE 3 Ib INTO IRET 

Iw 
C 

o ESC (Escape to coprocessor instruction set) 

CALL JMP IN OUT 

Av Jv Ap Jb AL,OX eAX,OX OX,AL OX,eAX 
E 

CLC STC CLI STI CLO STO INC/DEC Indirct 
Grp4 Grp5 

F 
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Two-Byte Opcode Map (first byte is OF H) 

o 2 3 4 5 6 7 

o 
~ 

" "'-". lAR lSl "-
Grp6 Grp7 :> .- ClTS GV,Ew GV,Ew ,- .'- ". ,..- ," ".-. 

I', '-. -... -...... .".' 
' .. : 

,,.,,."".;-< -', 

MOV MOV MOV MOV MOV MOV 

~,~ ~ ~,Ctd ~_d,D$,.I ~~ ~,It" I":;t rf,J 
2 

3 
, 

4 

5 

6 

7 

Long-displacement jump on condition (Jv) 
8 

JO JNO JB JNB JZ JNZ JBE JNBE 

Byte Set on condition (Eb) 
9 

SETO SETNO SETB SETNB SETZ SETNZ SETBE SETNBE 

PUSH POP BT SHlD SHlD 
FS FS EV,Gv EvGvlb EvGvCl A 

lSS BTR lFS lGS MOVZX 

G'$ Mp EV,Gv 
G" 

Mp '-v Mp GV,Eb GV,Ew 
B 

C 

o 

E 

F 
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OPCODE MAP 

Two-Byte Ope ode Map (first byte is OFH) 

8 9 A B C D E F 

o 

2 

3 

4 

5 

6 

7 

Long-displacement jump on condition (Jv) 
8 

JS JNS JP JNP JL JNL JLE JNLE 

9 SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE 

PUSH POP BTS SHRD SHRD IMUL 
GS GS EV,Gv EvGvlb EvGvCL GV,Ev 

A 

Grp-8 BTC BSF BSR MOVSX 

EV,lb EV,Gv GV,Ev GV,Ev GV,Eb GV,Ew 
B 

C 

D 

E 

F 
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G 
r 
o 
u 
p 

2 

3 

4 

5 

G 

o 
u 
p 

6 

7 

8 

000 

ADD 

ROL 

TEST 
Ib/lv 

INC 
Eb 

INC 
Ev 

000 

SLOT 
Ew 

SGDT 
Ms 

OPCODE MAP 

Opcodes determined by bits 5,4,3 of modR/M byte: 

mod nnn RIM 

001 010 011 100 101 

OR ADC SBB AND SUB 

ROR RCL RCR SHL SHR 

NOT NEG MUL IMUL 
AL/eAX AL/eAX 

DEC 
Eb 

DEC CALL CALL JMP JMP 
Ev Ev eP Ev Ep 

Opcodes determined by bits 5,4,3 of modR/M byte: 

mod nnn RIM 

001 010 011 100 101 

STR LLDT LTR VERR VERW 
Ew Ew Ew Ew Ew 

SlOT LGDT LIDT SMSW 
Ms Ms Ms Ew 

BT BTS 
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XOR CMP 

SAR 

DIV IDIV 
AL/eAX AL/eAX 

PUSH 
Ev 

110 111 

LMSW 
Ew 

BTR BTC 
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APPENDIX B 
COMPLETE FLAG CROSS-REFERENCE 

KEY TO CODES 

T instruction tests flag 
M instruction modifies flag 

(either sets or resets depending on operands) 
o instruction resets flag 
1 instruction sets flag 

instruction's effect on flag is undefined 
R instruction restores prior value of flag 
blank instruction does not affect flag 

Instruction OF SF ZF AF PF CF TF IF OF NT RF 

AAA - - - TM - M 
AAD - M M - M -
AAM - M M - M -
AAS - - - TM - M 
ADC M M M M M TM 
ADD M M M M M M 
AND 0 M M - M 0 
ARPL M 
BOUND 
BSFjBSR - - M - - -
BT JBTS/BTR/BTC - - - - - M 
CALL 
CBW 
CLC 0 
CLD 0 
CLI 0 
CLTS 
CMC M 
CMP M M M M M M 
CMPS M M M M M M T 
CWO 
DAA - M M TM M TM 
DAS - M M TM M TM 
DEC M M M M M 
DIV - - - - - -
ENTER 
ESC 
HLT 
IDIV - - - - - -
IMUL M - - - - M 
IN 
INC M M M M M 
INS T 
INT 0 0 
INTO T 0 0 
IRET R R R R R R R R R T 
Jcond T T T T T 

B-1 



COMPLETE FLAG CROSS-REFERENCE 

Instruction OF SF ZF AF PF CF TF IF OF NT RF 

JCXZ 
JMP 
LAHF 
LAR M 
LDS/LES/LSS/LFS/LGS 
LEA 
LEAVE 
LGDT/LiDT/LLDT/LMSW 
LOCK 
LODS T 
LOOP 
LOOPE/LOOPNE T 
LSL M 
LTR 
MOV 
MOV control, debug - - - - - -
MOVS T 
MOVSX/MOVZX 
MUL M - - - - M 
NEG M M M M M M 
NOP 
NOT 
OR 0 M M - M 0 
OUT 
OUTS T 
POP/POPA 
POPF R R R R R R R R R R 
PUSH/PUSHA/PUSHF 
RCL/RCR 1 M TM 
RCL/RCR count - TM 
REP/REPE/REPNE 
RET 
ROLjROR 1 M M 
ROL/ROR count - M 
SAHF R R R R R 
SAL/SAR/SHL/SHR 1 M M M - M M 
SAL/SARjSHL/SHR count - M M - M M 
SBB M M M M M TM 
SCAS M M M M M M T 
SETcond T T T T T 
SGDT /SIDT jSLDT /SMSW 
SHLD/SHRD - M M - M M 
STC 1 
STD 1 
STI 1 
STOS T 
STR 
SUB M M M M M M 
TEST 0 M M - M 0 
VERR/VERRW M 
WAIT 
XCHG 
XLAT 
XOR 0 M M - M 0 
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APPENDIX C 
STATUS FLAG SUMMARY 

STATUS FLAGS' FUNCTIONS 

Bit Name Function 

0 CF Carry Flag - Set on high-order bit carry or borrow; cleared otherwise. 

2 PF Parity Flag - Set if low-order eight bits of result contain an even number of 1 bits; 
cleared otherwise. 

4 AF Adjust flag - Set on carry from or borrow to the low order four bits of AL; cleared 
otherwise. Used for decimal arithmetic. 

6 ZF Zero Flag - Set if result is zero; cleared otherwise. 

7 SF Sign Flag - Set equal to high-order bit of result (0 is positive, 1 if negative). 

11 OF Overflow Flag - Set if result is too large a positive number or too small a negative 
number (excluding sign-bit) to fit in destination operand; cleared otherwise. 

KEY TO CODES 

T instruction tests flag 
M instruction modifies flag 

(either sets or resets depending on operands) 
o instruction resets flag 

instruction's effect on flag is undefined 
blank instruction does not affect flag 
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Instruction OF SF ZF AF PF CF 

AAA - - - TM - M 
AAS - - - TM - M 

AAD - M M - M -
AAM - M M - M -

DAA - M M TM M TM 
DAS - M M TM M TM 

ADC M M M M M TM 
ADD M M M M M M 
SBB M M M M M TM 
SUB M M M M M M 
CMP M M M M M M 
CMPS M M M M M M 
SCAS M M M M M M 
NEG M M M M M M 

DEC M M M M M 
INC M M M M M 

IMUL M - - - - M 
MUL M - - - - M 

RCLjRCR 1 M TM 
RCLjRCR count - TM 
ROLjROR 1 M M 
ROLjROR count - M 
SALjSARjSHLjSHR 1 M M M - M M 
SALjSARjSHLjSHR count - M M - M M 

SHLDjSHRD - M M - M M 
BSFjBSR - - M - - -
BT jBTSjBTRjBTC - - - - - M 

AND 0 M M - M 0 
OR 0 M M - M 0 
TEST 0 M M - M 0 
XOR 0 M M - M 0 
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APPENDIX D 
CONDITION CODES 

Note: The terms "above" and "below" refer to the relation between two unsigned values 
(neither SF nor OF is tested), The terms "greater" and "less" refer to the relation between 
two signed values (SF and OF are tested), 

DEFINITION OF CONDITIONS 

(For conditional instructions Jcond, and SETcond) 

Mnemonic Meaning 
Instruction 

Condition Tested 
Subcode 

0 Overflow 0000 OF = 1 

NO No overflow 0001 OF = 0 

B Below 0010 CF = 1 
NAE Neither above nor equal 

NB Not below 0011 CF = 0 AE Above or equal 

E Equal 0100 ZF = 1 
Z Zero 

NE Not equal 0101 ZF = 0 
NZ Not zero 

BE Below or equal 0110 (CF or ZF) = 1 
NA Not above 

NBE Neither below nor equal 0111 (CF or ZF) = 0 A Above 

S Sign 1000 SF = 1 

NS No sign 1001 SF = 0 

P Parity 1010 PF = 1 
PE Parity even 

NP No parity 1011 PF = 0 
PO Parity odd 

L Less 1100 (SF xor OF) = 1 
NGE Neither greater nor equal 
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Instruction Condition rested Mnemonic Meaning Subcode 

NL Not less 1101 (SF xor OF) = 0 
GE Greater or equal 

LE Less or equal 1110 «SF xor OF) or ZF) = 1 
NG Not greater 

NLE Neither less nor equal 1111 «SF xor OF) or ZF) = 0 
G Greater 
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APPENDIX E 
INSTRUCTION FORMAT AND TIMING 

This appendix is an excerpt from Section 8 of the 80386 Data Sheet. 

8. INSTRUCTION SET 

This section describes the 80386 instruction set. A 
table lists all instructions along with instruction en­
coding diagrams and clock counts. Further details of 
the instruction encoding are then provided in the fol­
lowing sections, which completely describe the en­
coding structure and the definition of all fields occur­
ring within 80386 instructions. 

8.1 80386 INSTRUCTION ENCODING 
AND CLOCK COUNT SUMMARY 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Table 8-1 
below, by the processor clock period (e.g. 62.5 ns 
for an 80386-16 operating at 16 MHz (32 MHz CLK2 
signal». 

For more detailed information on the encodings of 
instructions refer to section 8.2 Instruction Encod­
ings. Section 8.2 explains the general structure of 
instruction encodings, and defines exactly the en­
codings of all fields contained within the instruction. 

Instruction Clock Count Assumptions 

1. The instruction has been prefetched, decoded, 
and is ready for execution. 

E-1 

2. Bus cycles do not require wait states. 

3. There are no local bus HOLD requests delaying 
processor access to the bus. 

4. No exceptions are detected during instruction ex­
ecution. 

5. If an effective address is calculated, it does not 
use two general register components. One regis­
ter, scaling and displacement can be used within 
the clock counts shown. However, if the effective 
address calculation uses two general register 
components, add 1 clock to the clock count 
shown. 

Instruction Clock Count Notation 

1. If two clock counts are given, the smaller refers to 
a register operand and the larger refers to a mem­
ory operand. 

2. n = number of times repeated. 

3. m = number of components in the next instruc­
tion executed, where the entire displacement (if 
any) counts as one component, the entire imme­
diate data (if any) counts as one component, and 
each of the other bytes of the instruction and 
prefix(es) each count as one component. 



INSTRUCTION FORMAT AND TIMING 

Table 8·1. 80386 Instruction Set Clock Count Summary 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

GENERAL DATA TRANSFER 
MOV ~ Move: 

Register to Register/Memory 1000100w mod reg rfm I 2f2 2f2 b h 

Register IMemory to Register 1000101w mod reg rim I 2f4 2f4 b h 

Immediate to Register/Memory 1100011 w modOOO rfm I immediate data 2f2 2f2 b h 

Immediate to Register (short form) 1011 w reg immediate data 2 2 

Memory to Accumulator (short form) 1010000w full displacement 4 4 b h 

Accumulator to Memory (short form) I 1010001w full displacement 2 2 b h 

Register Memory to Segment Register I 10001110 mod sreg3 rIm I 2f5 18/19 b h, i,j 

Segment Register to Register/Memory I 10001100 mod srag3 rfm I 2f2 2f2 b h 

MOVSX ~ Move With Sign ExtenSion 

Register From Register/Memory I 00001111 I 1011111 w I mod reg rfm I 3f6 3f6 b h 

MOVZX ~ Move With Zero Extension 

Register From Register/Memory I 00001111 I 1011011 w I mod reg rim I 3f6 3f6 b h 

PUSH ~ Push: 

Register/Memory I 11111111 I mod 11 0 rIm 1 5 5 b h 

Register (short lorm) 101010 reg 1 2 2 b h 

Segment Register (ES, CS, SS or DS) I 000sreg211 0 I 2 2 b h 
(shortlorm) 

Segment Register ~~ I 00001111 I 105r6g3000 I 2 2 b h 
FSorGS) 

Immediate I 011010s0 1 immediate data 2 2 b h 

PUSHA ~ Push All I 01100000 1 18 18 b h 

POP ~ Pop 

Register/Memory I 10001111 I modOOO rfm 1 5 5 b h 

Register (short form) 101011 reg 1 4 4 b h 

'" I 000Sreg21111 
S6gment Register (ES, cst ss or DS) 7 21 b h, i, j 

(short lorm) . J 
Segment Register (iiS;.~.SS".ElS I 00001111 I 1 Osreg300 1 I 7 21 b h, i,j 

FSorGS) 

POPA ~ PopAIl I 01100001 I 24 24 b h 

XCHG ~ Exchange 

Register/Memory With Register I 1000011w I mod reg rfm I 3f5 3f5 b, I f, h 

Register With Accumulator (short form) 110010 reg I ClkCount 3 3 

Virtual 
IN ~ Inputfrom: 8086 Mode 

Fixed Port I 111001 Ow I port number t26 12 6'126" m 

Variable Port I 1110110w 1 t27 13 7'/27" m 

OUT ~ Output to: 

Fixed Port I 1110011 w I port number t24 10 4'/24" m 

Variable Port I 1110111 w 1 t25 11 5'/25" m 

LEA ~ Load EA to Register I 10001101 I mod reg r/ml 2 2 

• If CPL :S: IOPL •• If CPL > IOPL 
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Table 8·1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Modear Virtual Modear Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

SEGMENT CONTROL 

LOS ~ Load Pointer to OS I 11000101 I mod reg rIm 7 22 b h, i,j 

LES ~ Load Pointer 10 ES I 11000100 I mod reg rIm 7 22 b h,i,j 

LFS ~ Load Pointer 10 FS I 00001111 I 10110100 mod rag rIm I 7 25 b h, i,i 

LGS ~ Load Pointer to GS I 00001111 I 10110101 mod reg r/ml 7 25 b h, i,j 

LSS ~ Load POinter to SS I 00001111 
, 

10110010 mod reg rIm' 7 22 b h, i,j 

FLAG CONTROL 

CLC ~ Clear Carry Flag I 11111000 2 2 

ClD ~ Clear Direction Flag 
, 

11111100 2 2 

Cli ~ Clear Interrupt Enable Flag 
, 

11111010 3 3 m 

CLTS ~ Clear Task Switched Flag I 00001111 00000110 I 5 5 c I 

CMC ~ Complement Carry Flag 
, 

11110101 2 2 

LAHF ~ load AH Into Flag I 100111 11 2 2 

POPF ~ Pop Flags I 10011101 5 5 b h, n 

PUSHF ~ Push Flags I 10011100 I 4 4 b h 

SAHF ~ Siore AH Inlo Flags I 10011110 
, 

3 3 

STC ~ Set Carry Flag I 11111001 I 2 2 

STD ~ Set Direction Flag , 
, 

11111001 
, 

2 2 

STI ~ Set Interrupt Enable Flag I 11111011 
, 

3 3 m 

ARITHMETIC 
ADD ~ Add 

Register to Register OOOOOOdw mod reg rIm' 2 2 

Register to Memory OOOOOOOw mod reg rIm' 7 7 b h 

Memory to Register 0000001w mod reg rIm I 6 6 b h 

Immediate to Register/Memory 100000sw modOOO rIm I immediate data 217 217 b h 

Immediate to Accumulator (short form) 00OO010w immediate data 2 2 

ADC ~ Add With Carry 

Register to Register I 000100dw I mod reg rIm' 2 2 

Register to Memory I 0001000w I mad rag rIm I 7 7 b h 

Memory to Register I 0OO1001w I mad rag rIm' 6 6 b h 

Immediate to Register/Memory I 100000sw ,mod010, ,1m I immediate data 217 217 b h 

Immediate to Accumulator (short form) I 0001010w I immediate data 2 2 

INC ~ Increment 

Register/Memory I 1111111w , modOOO rIm I 216 216 b h 

Register (short lorm) 101000 reg' 2 2 

SUB ~ Subtract 

Register from Register 1 001010dw I mod reg rIm I 2 2 
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T bl 81803861 t f a e . ns rue Ion S tCI kC e oc oun tS ummary (C ontlnue d) 
CLOCK COUNT NOTES 

Real R.al 
INSTRUCTION FORMAT Addre •• Protected Addr ... Protectod 

Mode or Virtual Mode or Virtual 
Virtual Addr ••• Virtual Addr ••• 
8086 Mode 8086 Mod. 
Mode Mode 

ARITHMETIC (Continued) 

Register from Memory 100101 OOw I mod reg r/ml 7 7 b h 

Memory from Register I 001010tIN I mod reg r/ml 6 6 b h 

Immediate from Register/Memory 1100000SW Imodl0l r/mj immediate data 217 217 b h 

Immediate from Accumulator (short torm) 10010110wj immediate data 2 2 

SBB ~ Subtract with Borrow 

Register from Register I 000110dw ImOdreg r/mj 2 2 

Register from Memory I 0001100w ImOdrag r/mj 7 7 b h 

Memory from Register I 0001101 w Imod rag r/mj 6 6 b h 

Immediate from Register/Memory 11 OOOOOsw ImOdOll r/ml immediate data 217 217 b h 

Immediate from Accumulator (short form) 10001110wj immediate data 2 2 

DEC = Decrement 

Register I Memory I 1111 111 w jreg 001 r/mj 216 2/6 b h 

Register (short form) 101001 ra9j 2 2 

CMP ~ Compare 

Register with Register 100111 Odw I mod rag r/mj 2 2 

Memory with Register 100111 OOw I mod reg r/mj 5 5 b h 

Register with Memory I 0011101w ImOdrag r/mj 6 6 b h 

Immediate with Register/Memory 11 OOOOOsw I mod til r/ml immediate data 2/5 2/5 b h 

Immediate with Accumulator (short form) 1001111 Ow t immediate data 2 2 

NEG ~ Change Sign I 1111011w ImOdOll r/mj 2/6 2/6 b h 

AAA ~ ASCII Adjust lor Add I 00110111 j 4 4 

AAS ~ ASCII Adjust lor Subtract I 00111111 I 4 4 

CAA ~ Oecimal Adjust lor Add I 00100111 I 4 4 

CAS ~ Oeclmol Adjust lor Subtract I 00101111 j 4 4 

MUL ~ Multiply (unsigned) 

Accumulator with Register I Memory I 1111011 w Imod1 00 r/mj 

Multiplier-Byte 9-14/12-17 9-14/12-17 b, d d, h 

-Word 9-22/12-25 9-22/12-25 b, d d, h 
-Ooubleword ~-38/12-41 9-38/12-41 b, d d, h 

IMUL ~ Integer Multiply (signed) 

Accumulator with Register 1M emory I 1111011 w jmodl 00 r/mj 
Multiplier-Byte I 9-14/12-17 9-14/12-17 b, d d, h 

-Word 

I 
9-22/12-25 9-22/12-25 b,d d, h 

-Ooubleword 9-38/12-41 9-38/12-41 b,d d, h 

Register with RegisterlMemory I 00001111 I 10101111 I mod reg r/mj 

-Word 9-22/12-25 9-22/12-25 b,d d, h 

-Doubleword 9-38/12-41 9-38/12-41 b,d d,h 

Register/Memory with Immediate to Register I 011010 s 1 I mod reg r/ml immediate data 

-Word 9-22/12-25 9-22/12-25 b, d d, h 
-Doubleword 9-38/12-41 9-38/12-41 b, d d, h 
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INSTRUCTION FORMAT AND TIMING 

a Ie . Tb 81803861 nstructlon et oc S CI kC oun tS umma~ (C ontlnue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Modear Virtual Modeor Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

ARITHMETIC (Continued) 
DIV ~ Divide (Unsigned) 

Accumulator by Register/Memory I 1 1 11 all w Imod 11 a r/mi 

Divisor-Byte 14/17 14/17 b.a e.h 
-Word 22/25 22/25 b •• •• h 
-Doubleword 38/41 38/41 b •• •• h 

IDIV ~ Integer Divide (Signed) 

Accumulator By Register/Memory 111110 11 w I mod 111 r/ml 

Divisor-Byte 19/22 19/22 b,e e.h 
-Word 27/30 27130 b,e 8.h 
-Ooubleword 43/46 43/46 b,e e.h 

AAD ~ ASCII Adjuslfor Divide I 11010101 I 00001010 I 19 19 

AAM ~ ASCII Adjust for Mulliply I 11010100 I 000010101 17 17 

CBW ~ Convert Byte to Word 1100110001 3 3 

CWD ~ Convert Word to Double Word I 10011001 I 2 2 

LOGIC 

Shift Rotate Instructions 

Not Through Carry (ROL. ROR. SAL, SAR, SHL, and SHR) 

Register/Memory by 1 11101 OOOw ImOdTTT rim I 317 317 b h 

Register/Memory by CL 11101001 w ImOdTTT rlml 317 3/7 b h 

Register/Memory by Immediate Count 11 1 0 a 0 0 0 w I mod TTT r/m!immed a-bit data 317 317 b h 

hrough Carry (RCL and RCR) 

Register/Memory by 1 111 01 OOOw ImodTTT rlml 9/10 9/10 b h 

Register IMemory by CL 11101001 w ImOdTTT r/ml 9110 9/10 b h 

Register/MemorybylmmediateCount 111 OOOOOw ImOdTTT r/mlimmed B-bit data 9/10 9/10 b h 

TTT Instruction 
000 ROL 
001 ROR 
a 10 RCL 
all RCR 
100 SHL/SAL 
101 SHR 
111 SAR 

SHLD ~ Shift Left Double 

Register/Memory by Immediate I 00001111 I 10100100 ImOdreg r Iml immed B-bit data 317 317 

Register/Memory by CL I 00001111 I 10100101 I mod reg r/mi 3/7 317 

SHRD ~ Shift Right Double 

Register/Memory by Immediate 100001111 I 10101100 I mod reg r/ml immed S-bit data 317 317 

Register/Memory by CL 100001111 I 101011011mOdreg rlml 3/7 317 

AND ~ And 

Register to Register 1001 OOOdw I mod reg r/mi 2 2 

E-5 



INSTRUCTION FORMAT AND TIMING 

Ta b Ie 8-1. 80386 Instruction S et Clock Count s umm~rv (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addre .. Protected Addr ... Protected 

Modeor Virtual Mode or Virtual 
Virtual Addren Virtual Addren 
8086 Mode 8086 Mode 
Mode Mode 

LOGIC (Continued) 

Register to Memory I OOt OOOOw Imodreg r/ml 7 7 b h 

Memory to Register I 0010001w I mod reg r/ml 6 6 b h 

Immediate to Register/Memory I 1 OOOOOOw Imodl 00 r/ml immediate data 217 217 b h 

Immediate to Accumulator (Short Form) I 00 t 0010 w I immediate data 2 2 

TEST ~ And Function to Flags, No Result 

Register/Memory and Register I 1000010w Imodreg r/ml 2/5 2/5 b h 

Immediate Data and Register/Memory I 1111011w ImodOOO r/ml immediate data 2/5 2/5 b h 

Immediate Data and Accumulator 
(Short Form) I 1 0 1 0 1 0 0 w I immediate data 2 2 

OR ~ Or 

Register to Register I 00001 Odw ImOdreg r/ml 2 2 

Register to Memory I 0000100w ImOdreQ r/ml 7 7 b h 

Memory to Register I 000010lw ImOdreQ r/ml 6 6 b h 

Immediate to Register/Memory I IOOOOOOw ImOdOOI r / m I immediate data 217 217 b h 

Immediate to Accumulator (Short Form) I 000011 Ow I immediate data 2 2 

XOR ~ Exclusive Or 

Register to Register I 0011 OOdw Imodreg r/ml 2 2 

Register to Memory I 0011000w ImOdreg r/ml 7 7 b h 

Memory to Register I 0011001w ImOdreg r/ml 6 6 b h 

Immediate to Register/Memory I I OOOOOOw Imodll 0 r/ml immediate data 217 217 b h 

Immediate to Accumulator (Short Form) I o 0 1 1 0 lOw I immediate data 2 2 

NOT ~ Invert Reglster/Memory I 1111011w ImodOIO r/ml 2/6 2/6 b h 
Clk 

STRING MANIPULATION Count 
Virtual 

CMPS ~ Compare Byte Word I 1010011 wi 
8066 

10 10 b h Mode 

INS ~ Input Byte/Word from DX Port I 011011 Ow I I t29 15 9"/29"" b h,m 

LODS ~ Load BytelWord to ALI AXIEAX I 101011 Ow I 5 5 b h 

MOVS ~ Move Byte Word I 1010010wl 7 7 b h 

OUTS ~ Output BytelWord to DX Port I 0110111 wi I t28 14 8 .. /28 .... b h,m 

SCAS ~ Scan Byte Word I 1010111 wi 7 7 b h 

STOS ~ Store BytelWord from 

AL/AX/EX I 1010101w I 4 4 b h 

XLAT ~ Translate String I 11010111 I 5 5 h 

REPEATED STRING MANIPULATION 
Repeated by Count in CX or ECX 

REPE CMPS ~ Compare String 

(Find Non-Match) I 11110011 11010011 wi 5+9n 5+9n b h 

* If CPL ,;; IOPL ** II CPL > IOPL 
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INSTRUCTION FORMAT AND TIMING 

T bl a e 8-1. 80861 3 nstructon et loc S C kC ount Summar~ (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protecled Address Protected 

Mode or Virtual Mod_or Virtual 
Virtual Addre.s Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

REPEATED STRING MANIPULATION (Continued) 

REPNE CMPS = Compere SIring ClkCoun! 

(Find Match) 1""00'01'0'00"WI 
Virtual 

5+9n 5+9n b h a086 Mode 

REP INS = Input String 1""00'010"0"0wl I t27+6n 13+6n 7+6n*/27+6n** b h,m 

REP LOOS = Load SIring 1""00'01'0'0"0wl 5+6n 5+6n b h 

REP MOVS = Move Siring 1"1'00'01'0'00'0wl 7+4n 7+4n b h 

REP OUTS = Outpul String 1",,00,0 I 0110111 wi I t26+5n 12+5n 6+5n*/26+5n""" b h,m 

REPE SCAS = Scan Siring 

(Find Non-ALI AX/eAX) 1""OO,,1'0'01"WI 5+8n 5+8n b h 

REPNE SCAS = Scan Siring 

(Find AL/ AX/EAX) 1""OO'01'0101"WI 5+8n 5+8n b h 

REP STOS = Siore SIring 1""00'01'0'0'0,wl 5+5n 5+5n b h 

BIT MANIPULATION 

BSF = Scan Bit Forward I 0000 1111 1,0 111 1 a a Imod reg r/mi 10+3n 10+3n b h 

15R = Scan Bit Reve ... I a 0 a a 111 1 1, 0111 1 01 Imod reg r/ml 10+3n 10+3n b h 

IT = Te.tBlt 

Register/Memory, Immediate I 0000111 1 I 1 011101 a Imod 1 00 r/mlimmed 8-bit date! 3/6 3/6 b h 

Register/Memory, Register I 000 a 111 1 11 010 a 01 1 Imod reg r/ml 3112 3/12 b h 

BTC = Teat Bit and Complement 

Register/Memory, Immediate I 0000 1111 I , 0111010 Imod 111 r/mlimmed a-bit date! 6/8 6/8 b h 

Register/Memory, Register I 00001111 11 all 101 1 Imod reg r/ml 6/13 6/13 b h 

BTR = Teat Bit and Re.el 

Register/Memory, Immediate I 0 a a a 1 1 1 1 I 1 a 1 1 1 a 1 a Imod 1 1 0 r/mlimmed a-bit d~~ 6/8 6/8 b h 

Register/Memory, Register I 00 a 01 111 11 01 1 0011 Imod reg r/ml 6/13 6113 b h 

BTS = Te.1 Bit and Sat 

Register/Memory, Immediate I 00 a 0 1 1 1 1 I 1 a 1 1 , 0 1 a Imod 1 0 1 r/mlimmed a-bit dat~ 6/8 6/8 b h 

Register/Memory, Register I a a a all 1 1 11 01 01 all Imod reg r/ml 6/13 6/13 b h 

CONTROL TRANSFER 

CALL = Call 

Direct Within Segment 11 1 1 0 1 0 0 0 I full displacement 7+m 7+m b r 

Register/Memory 

Indirect Within Segment 1, 1 11 1 1 1 1 Imod 0 1 0 r/ml 
7+ml 7+ml b h, r 10+m 10+m 

Direct Intersegment 11 001 1 0 1 a lunsigned full offset, selector 17+m 34+m b j,k,r 

Notes: 
t Clock count shown applies if 1/0 permission allows 1/0 to the port in virtual 8086 mode. If 110 bit map denies permission 
exception 13 fault occurs; refer to clock counts for INT 3 instruction . 
• If CPL S; 10PL •• If CPL > 10PL 
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INSTRUCTION FORMAT AND TIMING 

Table 8-1. 8 8 I 03 6 nstruction Set c lock c ountSummar ( c ontinued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONTROL TRANSFER (Continued) 

Protected Mode Only (Direct Intersegment) 

Via Call Gate to Same Privilege Level 52+m h,j,k,r 

Via Call Gate to Diff,erent Privilege Level, 
(No Parameters) 86+m h,j,k,r 

Via Call Gate to Different Privilege level, 
(x Parameters) 94+4x+m h,j,k,r 

From 266 Task to 2B6 TSS 273 h,j,k,r 

From 266 Task to 386 TSS 298 h,j,k,r 

From 286 Task to Virtual60B6 Task (366 TSS) 217 h,j,k,r 

From 386 Task to 286 TSS 273 h,j,k,r 

From 386 Task to 366 TSS 300 h,j,k,r 

From 366 Task to Virtual 6086 Task (366 TSS) 217 h,j,k,r 

Indirect Intersegment 11111 1 1 11 ImodOll r/ml 22+m 36+m b h,j,k,r 

Protected Mode Only (Indirect Intersegment) 
Via Call Gate to Same Privilege Level 56+m h,j,k,r 

Via Call Gate to Different Privilege Level, 
(No Parameters) 90+m h,j,k,r 

Via Call Gate to Different Privilege level, 
(x Parameters) 98+4x+m h,j,k,r 

From 286 Task to 286 TSS 278 h,j,k,r 

From 266 Task to 386 TSS 303 h,j,k,r 

From 266 Task to Virtual 6066 Task (386 TSS) 221 h,j,k,r 

From 366 Task to 266 TSS 278 h,j,k,r 

From 366 Task to 366 TSS 305 h,j.k,r 

From 366 Task to Virtual 8086 Task (386 TSS) 
10 ," 

221 h,j,k,r 

JMP ~ Unconditional Jump //' 

Short I 1 1 1 0Q'QQbI8-bit displacement I 7+m 7+m r 

Direct within Segment I 11101001 I full displacement 7+m 7+m r 

Register/Memory Indirect within Segment I 11111111 Imodl00 r/ml 7+ml 7+ml 
b h,r 

10+m 10+m 

Direct Intersegment I 11101010 I unsigned full offset, selector 12+m 27+m j,k,r 

Protected Mode Only (Direct Intersegment) 
Via Call Gate to Same Privilege Level 45+m h,j,k,r 

From 286 Task to 266 TSS 274 h,j,k,r 

From 286 Task to 386 TSS 301 h,j,k,r 

From 286 Task to Virtual B086 Task (386 TSS) 218 h,j,k,r 

From 386 Task to 286 TSS 270 h,j,k,r 

From 386 Task to 386 TSS 303 h,j,k,r 

From 386 Task to Virtual B086 Task (366 TSS) 220 h,j,k,r 

Indirect Intersegment 111111111 Imod1 0 1 r/ml 17+m 31+m b h,j,k,r 

Protected Mode Only (Indirect Intersegment) 
Via Call Gate to Same Privilege Level 49+m h,j,k,r 

From 286 Task to 286 TSS 279 h,j,k,r 

From 286 Task to 386 TSS 306 h,j,k,r 

From 286 Task to Virtual 8086 Task (386 TSS) 222 h,j,k,r 

From 386 Task to 286 TSS 275 h,j,k,r 

From 386 Task to 386 TSS 308 h,j,k,r 

From 386 Task to Virtual 8066 Task (386 TSS) 224 h,j,k,r 
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INSTRUCTION FORMAT AND TIMING 

a e . ns rue T bl 81803861 t tl on SetCI kC oe oun tS ummary (C ontinue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addre •• Protected Address Protected 

Mode or Virtual Mode or Vlrtu.1 
Vlrtu.1 Addresa Virtual Addre •• 
8086 Mode 8086 Mode 
Mode Mode 

CONTROL TRANSFER (Continued) 
RET ~ Relurn from CALL: 

Within Segment I 11000011 I 10 + m 10 + m b Q, h,r 

Within Segment Adding Immediate to SP I 11000010 I 16-bit displ I 10+ m 10+ m b Q, h,r 

Intersegment I 11001011 I 18+ m 32+m b g, h,i, ",r 

Intersegment Adding Immediate to SP I 110010 1 a I IS-bit displ I 18+ m 32+m b g, h,i,k, r 

Protected Mode Only (RET): 
to Different Privilege level 

Intersegment 68 h, i, k, r 
Intersegment Adding Immediate to SP 68 h,i, k, r 

CONDITIONAL JUMPS 
NOTE: Time. Are Jump "Taken or Not Taken" 
JO ~ Jump on Overflow 

B-Bit Displacement I 01tl0000 I B-bHdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000000 I full displacement 7 + mor3 7+mor3 r 

JNO ~ Jump on Nol Overflow 

8-Bit Displacement I 01110001 I 8-bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000001 I full displacement 7 + mor3 7 + morS r 

JB/JNAE ~ Jump on Betow/Not Above or Equal 

8-Bit Displacement I 011100 1 0 I 8-bit displ I 7 + morS 7 + morS r 

Full Displacement 100001111110000010 Ifulldi.Placement 7+mor3 7+mor3 r 

JNB/JAE ~ Jump on Not Below/Above or Equal 

8-Bit Displacement I 01110011 I 8-bit displ I 7+mor3 7+mor3 , 
Full Displacement I 00001111 I 10000011 I full displacement 7 + mor3 7+mor3 r 

JEI JZ ~ Jump on EquallZero 

8-Bit Displacement I 01110100 I 8-bH dlspl I 7+mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000100 I full displacement 7 + mor3 7+ mora r 

JNE/JNZ ~ Jump on Not EquallNot Zero 

8-Bit Displacement I 01110 1 a 1 I 8-bitdlspl I 7 + mor3 7+mor3 r 

Full Displacement I 00001111 I 10000101 I full displacement 7 + mor3 7+mor3 r 

JBE/JNA ~ Jump on Below or "quallNot Abov. 

8-Bit Displacement 101110110 I B-bit displ I 7+mor3 7+mor3 r 

Full Displacement 100001111 I 10000110 I full displacement 7+mor3 7 + mor3 r 

JNBEI JA ~ Jump on Not Below or Equell Above 

8-SH Displacement I 01110111 I B-bltdispl I 7+mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000111 I full displacement 7 + mor3 7+mor3 r 

JS ~ Jump on Sign 

B-Sit Displacement I 01111000 I 8-bit dlspl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10001000 I full displacement 7+mor3 7+mor3 r 
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INSTRUCTION FORMAT AND TIMING 

T bl 8 a e -1. 803861 ns ruction S CI kC et oc ount S ummary (C ontlnue d ) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONDITIONAL JUMPS (Continued) 

JNS ~ Jump on Not Sign 

S-Bit Displacement I 01111001 I B-bitdispl I 7 + m or3 7+mor3 r 

Full Displacement I 00001111 I 10001001 I full displacement 7 + mor3 7 + mor3 r 

JP/JPE ~ Jump on Parity/Parity Even 

S-Bit Displacement I 01111010 I B-bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10001010 I full displacement 7+mor3 7 + mor3 , 
JNP / JPO ~ Jump on Not Parity/Parity Odd 

8-Bit Displacement I 01111011 I B-bit displ I 7 + morS 7 + mor3 , 
Full Displacement I 00001111 I 10001011 I full displacement 7 + morS 7 + morS , 

JL/ JNGE ~ Jump on Less/Not Greater or Equal 

8-Bit Displacement I 01111100 I B-bitdispl I 7 + m or3 7 + mo,3 , 
Full Displacement I 00001111 I 10001100 I full displacement 7 + mor3 7+mor3 , 

JNL/JGE ~ Jump on Not Less/Greater or Equal 

8-Bit Displacement I 01111101 I a-bit displ I 7+mor3 7+mor3 , 
Full Displacement I 00001111 I 10001101 I full displacement 7+mor3 7 + mor3 r 

JLE/JNG ~ Jump on Les. or Equal/Not Greater 

8-Bit Displacement I 01111 110 I 8-bitdispl I 7 + m or3 7+morS , 
FuH·Displacement I 00001111 I 10001110 I full displacement 7 + mor3 7 + m or3 , 

JNLE/JG ~ Jump on Not Less or Equal/Greater 

8·Bit Displacement I 0111 1111 I B-bitdispl I 7 + mor3 7 + mor3 , 
Full Displacement I 00001111 I 1000 1111 I full displacement 7 + mor3 7+mor3 , 

JCXZ ~ Jump on CX Zero I 11100011 I B-bit displ I 9 + mar5 9+mor5 , 
JECXZ ~ Jump on ECX Zero I 11100011 I S-bit displ I 9+mor5 9+mor5 , 
(Address Size Prefix Differentiates JCXZ from JECXZ) 

LOOP ~ Loop CX Times I 11100010 I B-brtdispl I 11 + m 11 + m , 

LOOPZ/LOOPE ~ Loop with 
Zero/Equal I 11100001 I 8-bitdispl I 11 + m 11 + m , 

LOOPNZ/LOOPNE ~ Loop While 
Not Zero I 11100000 I 8-bitdispl I 11 + m 11 + m , 

CONDITIONAL BYTE SET 
NOTE: Times Are Register/Memory 

SETO ~ Set Byte on Overflow 

To Register/Memory I 00001111 I 10010000 I modOOO ,1m I 4/5 4/5 h 

SETNO ~ Set Byte on Not Overflow 

To Register/Memory I 00001111 I 10010001 I modOOO '1m I 415 4/5 h 

SETB/SETNAE ~ Set Byte on Below/Not Above or Equal 

To Register/Memory I 00001111 I 10010010 I modOOO 'Iml 415 4/5 h 
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INSTRUCTION FORMAT AND TIMING 

Table 8-1. 80386 Instruction Set Clock Count Summary ( c ontinued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Modear Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONDITIONAL BYTE SET (Continued) 

SETNB ~ Set Byte on Not Below I Above or Equal 

To Register/Memory I 0000 1111 I 100100 11 I modOOO rim I 4/5 4/5 h 

SETE/SETZ ~ Set Byte on Equal/Zero 

To Register/Memory I 0000 1111 I 10010100 I modOOO rim I 4/5 4/5 h 

SETNE/SETNZ ~ Set Byte on Not EqualiNot Zero 

To Register/Memory I 0000 1111 I 10010101 ImodOOO rim I 4/5 4/5 h 

SETBE/SETNA ~ Set Byte on Below or Equal/Not Above 

To Register/Memory I 00001111 I 100 1 0 110 ImodOOO rim I 4/5 4/5 h 

SETNBE/SETA ~ Set Byte on Not Below or Equall Above 

To Register/Memory I 00001111 I 10010111 I modOOO rim I 4/5 4/5 h 

SETS ~ Set Byte on Sign 

To Register I Memory I 00001111 I 10011000 I modOOO rim I 4/5 4/5 h 

SETNS ~ Set Byte on Not Sign 

To Register/Memory I 00001111 I 1001100 1 I modOOO rim I 4/5 4/5 h 

SETP ISETPE ~ Set Byte on Partty IParlty Even 

To Register/Memory I 00001111 I 10011010 I madOOO rim I 4/5 4/5 h 

SETNP ISETPO ~ Set Byte on Not Parity IParity Odd 

To Register I Memory I 00001111 I 10011011 I modOOO rim I 4/5 4/5 h 

SETL/SETNGE ~ Set Byte on LesslNot Greater or Equal 

To Register/Memory I 00001111 I 10011100 ImadOOO rIm I 4/5 4/5 h 

SETNL/SETGE ~ Set Byte on Not Less/Greater or Equal 

To Register I Memory I 00001111 I 01111101 I madOOO rim I 4/5 4/5 h 

SETLE/SETNG ~ Set Byte on Less or EquallNot Greater 

To Register I Memory I 00001111 I 100 11110 ImodOOO ,1m I 4/5 4/5 h 

SETNLE/SETG ~ Set Byte on Not Less or Equal/Greater 

To Register/Memory I 00001111 I 100 11111 I madOOO ,1m I 4/5 4/5 h 

ENTER = Enter Procedure I 1 1 0 0 1 0 0 0 liS-bit displacement, 8-bit level I 
L~O 10 10 b h 
L ~ 1 12 12 b h 

L> 1 15 + 15 + b h 
4(n -1) 4(n -1) 

LEAVE = Leave Procedure I 11001001 I 4 4 b h 
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INSTRUCTION FORMAT AND TIMING 

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Add .... Protected Add .... Protected 

Mode or Vlrtuel Mode or VIrtual 
VIrtual Add .... VlrIuIIl Add .... 
8086 Mode 8086 Mode 
_e Mode 

INTERRUPT INSTRUCTIONS 
~ 

INT = Interrupt: 

Type Specified I 11001101 I type ! 37 b 

Type 3 I 11001100 I 33 b 

INTO = Interrupt 41t Overflow flag Set I 11001110 ! 
II OF = 1 35 b,e 

If OF = 0 3 3 b,e 

Bound = Interrupt 51t Detect Value I 01100010 I mod reg rim! 
Out of Range 

If Out of Range 44 b,e e,g,h,l,k, r 

If In Range 10 10 b,e e, g, h,i, k, r 

Protected Mode Only (INT) 

INT: Type Specified 

Via Interrup1 or Trap Gate 

to Same Privilege Level 59 g,i,k,r 

Via Interrup1 or Trap Gate 

to Different Privilege Level 99 g,l,k,r 

From 286 Task to 286 TSS via Task Gate 282 Q,i,k,r 

From 286 Task to 386 TSS via Task Gate 309 Q,),k,r 

From 268 Task to vir! 8086 md via Task Gate 226 Q,l,k,r 

From 386 Task to 286 TSS via Task Gate 284 g,l,k.r 

From 386 Task to 386 TSS via Task Gate 311 g,l,k,r 

From 368 Task to vir! 8086 md via Task Gate 228 g,l,k,r 

From vir! 8086 md to 286 TSS via Task Gate 289 g,l,k,r 

From vir! 8086 md to 386 TSS via Task Gate 316 g,J,k,r 

From vir! 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119 

INT:TVPE3 

Via Interrupt or Trap Gate 

to Same Privilege Level 59 g,l, k, r 

Via Interrupt or Trap Gate 

to Different Privilege Level 99 g,l,k, r 

From 286 Task to 286 TSS via Task Gate 278 g,l,k,r 

From 286 Task to 386 TSS via Task Gate 305 g,j,k,r 

From 268 Task to Vor! 8086 md via Task Gate 222 g,l,k,r 

From 386 Task to 286 TSS via Task Gate 280 g,l, k,r 

From 386 Task to 386 TSS via Task Gate 307 g,l, k,r 

From 368 Task to Vir! 8086 md via Task Gate 224 g,l,k,r 

From vir! 8086 md to 286 TSS via Task Gate 285 g,l, k,r 

From vir! 8086 md to 386 TSS via Task Gate 312 g,l,k,r 

From vir! 8086 md to priv level 0 via Trap Gate or Interrup1 Gate lt9 

INTO: 

Via Interrupt or Trap Grate 

to Same Privilege Level 59 g,l, k,r 

Via Interrupt or Trap Gate 

to Different Privilege level 99 g,l,k, r 

From 286 Task to 286 TSS via Task Gate 280 g,/,k, r 

From 286 Task to 386 TSS via Task Gate 307 g,l,k, r 

From 268 Task to vir! 8086 md via Task Gate 224 g,l, k, r 

From 386 Task to 286 TSS via Task Gate 282 iI,l,k, r 
From 386 Task to 386 TSS via Task Gate 309 g,l,k.r 
From 368 Task to vir! 8086 md via Task Gate 226 ' g,J,k, r 
From vir! 8086 md to 286 TSS via Task Gate 287 g,I,k, r 

From vir! 8086 md to 388 TSS via Task Gate 314 g,l,k, r 

From vir! 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119 
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INSTRUCTION FORMAT AND TIMING 

a e - ns rue Ion T bl 81803861 t t" SetCI kC oe oun tS ummary (C t' onlnue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addre .. Protected Addre .. Protected 

Mode or Virtual Mode or Virtual 
Virtual Addre .. Virtual Add .... 
8086 Mode 8088 Mode 
Mode Mode 

INTERRUPT INSTRUCTIONS (Continued) 

BOUND: 

Via Interrupt or Trap Gate 

to Same Privilege Level 59 g,i, k, r 

Via Interrupt or Trap Gate 
to Different Privilege Level 99 g,i, k, r 

From 286 Task to 286 TSS via Task Gate 254 g, i, k, r 

From 286 Task to 386 TSS via Task Gate 284 g,i, k, r 

From 268 Task to virt 8088 Mode via Task Gate 231 g,i, k, r 

From 386 Task to 286 TSS via Task Gate 264 g,i, k,r 

From 386 Task to 386 TSS via Task Gate 294 g,i, k, r 

From 368 Task to virt 8086 Mode via Task Gate 243 g,i, k,r, 

From virt 8088 Mode to 286 TSS via Task Gate 264 g, i, k, r 

From virt 8086 Mode to 386 TSS via Task Gate 294 g,i,k, r 

From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119 

INTERRUPT RETURN 

IRET ~ Interrupt Return I 11001111 I 22 g, h,i, k, r 

Protected Mode Only (IRET) 
To the Same Privilege Level (within task) 38 g, h,i, k,r 

To Different Privilege Level (within task) 82 g,h,i, k,r 

From 286 Task to 286 TSS 232 h,i,k, r 

From 286 Task to 386 TSS 265 h, i, k, r 

From 286 Task to Virtual 8086 Task 214 h, i, k, r 

From 286 Task to Virtual 8086 Mode (within task) 60 

From 386 Task to 286 TSS 271 h, i, k, r 

From 386 Task to 386 TSS 275 h,i, k, r 

From 386 Task to Virtual 8086 Task 224 h,i, k, r 

From 386 Task to Virtual 8086 Mode (within task) 60 

PROCESSOR CONTROL 

HLT ~ HALT I 11110100 I 5 5 I 

MOV ~ Move to and From Control/DebuglTest Registers 

CRO/CR2/CR3 from register I 00001111 I 00100010 11 eeareg I 10/4/5 10/4/5 I 

Register From CRO~3 I 00001111 00100000 11 aee reg I 6 6 I 

DRO-3 From Register I 00001111 00100011 11 eee reg I 22 22 I 

DR6-7 From Register I 00001111 00100011 11 see reg I 16 16 I 

Register from DR6-7 I 00001111 00100001 11 eeereg I 14 14 I 

Register from DRO-3 I 00001111 00100001 I 11 eee reg I 22 22 I 

TR6-7 from Register I 00001111 00100110 I 11 eeereg I 12 12 I 

Register from TR6-7 I 00001111 00100100 I 11 eeereg I 12 12 I 

NOP = No Operation I 10010000 3 3 

WArr ~ Walt until BUSY", pin I. negated I 1 0011 011 I 6 6 
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T bl 81 803861 a e - nstruct on S CI kC et DC Dun tS ummary (C ontlnue d) 
CLOCK COUNT NOTES 

R •• I Reel 
INSTRUCTION FORMAT Addr ... Protected Addro •• Protected 

Modo or Virtual Modo or Virtual 
VIrtual Add .... Virtual Addre .. 
8086 Mode 8086 Mode 
Mode Mode 

PROCESSOR EXTENSION INSTRUCTIONS 

Processor Extension Escape I 11011 TTT I modLLL rIm I See h 

TIT and LLL bits are opcode 80287/80387 

information for coprocessor. data sheets for 

clock counts 

PREFIX BYTES 

Addre .. Size Prellx I 01100111 I 0 0 

LOCK ~ Bua Lock Prellx I 11110000 I 0 0 m 

Operand Size Prellx I 01100110 I 0 0 

Segment Override Prefix 

CS: I 00101110 I 0 0 

OS: I 00111110 
, 

0 0 

ES; I 00100110 
, 

0 0 

FS: I 01100100 I 0 0 

GS; I 01100101 I 0 0 

ss: , 
00110110 

, 
0 0 

PROTECTION CONTROL 

ARPL = Adjust Requelted Privilege Level 

From Register/Memory I 01100011 I mod rag rIm' N/A 20/21 a h 

LAR = Load Acceaa Rights 

From Register IMemory 
, 

00001111 
, 

00000010 I mod reg rIm' N/A 15/16 a g,h,i,p 

LGDT = Load Global Descriptor 

Table Register I 00001111 I 00000001 I modOl 0 rIm' 11 11 b,c h,l 

LIDT = Load Interrupt Descriptor 

Table Register I 00001111 I 00000001 I modO 11 rIm I 11 11 b, c h,l 

LLDT = Load Local Deacrlptor 

Table Register to 
Register/Memory I 00001111 I 00000000 I modOl 0 rIm I N/A 20/24 a g,h,i,l 

LMSW = Load Machine Status Word 

From Register/Memory I 00001111 I 00000001 I mod 11 0 rIm' 10/13 10/13 b, C h,l 

LSL = Load Segment Limit 

From Register IMemory I 00001111 I 00000011 I mod reg rIm I 
Byte-Granular Limit N/A 20/21 a g, h,i, P 
Page-Granular Limit N/A 25/26 a g, h,i,p 

LTR = Load Task Register 

From Register/Memory I 00001111 I 00000000 I modOOl rIm' N/A 23/27 a g, h,i,l 

SGDT = Store Global Descriptor 

Table Reglater I 00001111 I 00000001 I modOOO rIm' 9 9 b,c h 
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T bl a 3 e 8·1. 80 86 nstructlon S C et lock c ount S ummary ( c ontinued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addre .. Protected Addre .. Protected 

Mode or Virtual Mode or Virtual 
Virtual Add .... Virtual Addre .. 
8086 Mode 8086 Mode 
Mode Mode 

SlOT - Store Interrupt Descriptor 

Table Reglater I 00001111 I 00000001 ImodOOl rim I 9 9 b,c h 

SLOT - Store Local Descriptor Table Register 

To RegisterlMemory I 00001111 I 00000000 I modOO 0 rim I N/A 2/2 a h 

SMSW - Store Machine 
StatuaWord I 00001111 I 00000001 Imodl00 r/ml 10113 10/13 b,c h, I 

STR - Store Task Register 

To RegisterlMemory I 00001111 I 00000000 ImodOOl r/ml N/A 2/2 a h 

VERR - Verily Read Acc .... 

RegisterlMemory I 00001111 I 00000000 Imodl00 rim I N/A 10/11 a g, h,l, P 

VERW - Verily Write Acceaa. I 00001111 I 00000000 Imodl0l r/ml N/A 15/16 • g,h,j,p 

INSTRUCTION NOTES~FOR TABLE 8-1 

Notes a through c apply to 80386 Real Address Mode only: 
a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully 
extends beyond the maximum CS, OS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not 
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit. 
c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected 
Mode. 

Notes d through g apply to 80386 Real Address Mode and 80386 Protected Virtual Address Mode: 
d. The 80386 uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most 
significant bit in the operand (multiplier). 

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula: 
Actual Clock = if m < > 0 then max (II092 1m II. 3) + 6 clocks: 

if m = 0 then 9 clocks (where m is the multiplier) 
e. An exception may occur, depending on the value of the operand. 
f. LOCK # is automatically asserted, regardless of the presence or absence of the LOCK # prefix. 
g. LOCK # is asserted during descriptor table accesses. 

Notes h through r apply to 80386 Protected Virtual Address Mode only: 
h. Exception 13 fault (general protection violation) will occur if the memory operand in CS. OS, ES. FS or GS cannot be used 
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment 
limit violation or not present) occurs. 
i. For segment load operations, the CPL. RPL. and OPL must agree with the privilege rules to avoid an exception 13 fault 
(general protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, OS, ES, FS, GS not 
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit 
violation or not present) occurs. 
j. All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCKiI' to maintain 
descriptor integrity in multiprocessor systems. 
k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general 
protection violation) if an applicable privilege rule is violated. 
I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
m. An exception 13 fault occurs if CPL is greater than IOPL. 
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are 
updated only if CPL = O. 
o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit. 
p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather. the zero 
flag is cleared. 
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general 
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation 
or not present) will occur if the stack limit is violated by the operand's starting address. 
r. The destination of a JMP. CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 
fault (general protection violation) will occur. 
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8.2 INSTRUCTION ENCODING 

8.2.1 Overview 

All instruction encodings are subsets of the general 
instruction format shown in Figure 8-1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rIm" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rIm 
byte, specifies the address mode to be used. Certain 

encodings of the mod rIm byte indicate a second 
addressing byte, the scale-index-base byte, follows 
the mod rIm byte to fully specify the addressing 
mode. 

Addressing modes can include a displacement im­
mediately following the mod rIm byte, or scaled in­
dex byte. If a displacement is· present, the possible 
sizes are 8, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure S-1 illustrates several of the fields that can 
appear in an instruction, such as the mod field and 
the rim field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table S-2 is a complete list of all fields ap­
pearing in the S03S6 instruction set. Further ahead, 
following Table S-2, are detailed tables for each 
field. 

ITTT T TT TT I TTT T TTT T I mod TTT rim I ss index base Id321161s1 none data32 I 161s1 none 

Z 07 01\7653201\7653201\ 1\ 1 '-------v-----....J. . '---_--..... '---__...---
opcode 

\ 

"mod rim" 
byte 

1 

immediate 
data (one or two bytes) 

(T represents an 
opcode bit.) register and address 

mode specifier 

address 
displacement 
(4, 2, 1 bytes 

or none) 
(4, 2, 1 bytes 

or none) 

Figure 8-1. General Instruction Format 

Table 8-2. Fields within 80386 Instructions 

Field Name Description Number of Bits 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 1 
d Specifies Direction of Data Operation 1 
s Specifies if an Immediate Data Field Must be Sign-Extended 1 
reg General Register Specifier 3 
mod rim Address Mode Specifier (Effective Address can be a General Register) 2 for mod; 

3 for rim 
ss Scale Factor for Scaled Index Address Mode 2 
index General Register to be used as Index Register 3 
base General Register to be used as Base Register 3 
sreg2 Segment Register Specifier for CS, SS, OS, ES 2 
sreg3 Segment Register Specifier for CS, S5, OS, ES, FS, GS 3 
tttn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 4 
Note: Table 8·1 shows encoding of indIVidual instructions. 
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8.2.2 32-Bit Extensions of the 
Instruction Set 

With the 80386, the 86/186/286 instruction set is 
extended in two orthogonal directions: 32-bit forms 
of all 16-bit instructions are added to support the 32-
bit data types, and 32-bit addressing modes are 
made available for all instructions referencing mem­
ory. This orthogonal instruction set extension .is ac­
complished having a Default (D) bit in the code seg­
ment descriptor, and by having 2 prefixes to the in­
struction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the 0 bit in 
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both 0pE:!r­
ands and effective addresses when executing that 
code segment. In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a 0 value of 0 is assumed internally by the 80386 
when operating in those modes (for 16-bit default 
sizes compatible with the 8086/80186/80286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede anyop­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres· 
ence of the Operand Size Prefix toggles the instruc· 
tion to 16·bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32-bit effective address computa­
tions. 

These 32·bit extensions are available in all 80386 
modes, including the Real Address Mode or the Vir­
tual 8086 Mode. In these modes the default is al­
ways 16 bits, so prefixes are needed to specify 32· 
bit operands or addresses. 

Unless specified otherwise, instructions with 8·bit 
and 16·bit operands do not affect the contents of 
the high·order bits of the extended registers. 

8.2.3 Encoding of Instruction Fields 

Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi· 
ately ahead. 
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8.2.3.1 ENCODING OF OPERAND LENGTH (w) 
FIELD 

For any given instruction performing a data opera· 
tion, the instruction is executing as a 32·bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wField During 16-Bit During 32-Bit 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

8.2.3.2 ENCODING OF THE GENERAL 
REGISTER (reg) FIELD 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" byte. 

Encoding of reg Field When w Field 
is not Present in Instruction 

Register Selected Register Selected 
reg Field During 16-Blt During 32-Blt 

000 
001 
010 
011 
100 
101 
101 
101 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Data Operations Data Operations 

AX EAX 
CX ECX 
OX EDX 
BX EBX 
5P ESP 
BP EBP 
SI ESI 
01 EDI 

Encoding of reg Field When w Field 
Is Present in Instruction 

Register Specified by reg Field 
During 16-Bit Data Operations: 

Function of w Field 

(whenw = 0) (whenw = 1) 

AL AX 
CL CX 
DL OX 
BL BX 
AH SP 
CH BP 
DH 51 
BH 01 
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Register Specified by reg Field 
During 32·Bit Data Operations 

reg 
Function of w Field 

(whenw = 0) (whenw = 1) 

000 AL EAX 
001 CL ECX 
010 OL EDX 
011 BL EBX 
100 AH ESP 
101 CH EBP 
110 OH ESI 
111 BH EOI 

8.2.3.3 ENCODING OF THE SEGMENT 
REGISTER (sreg) FIELD 

The sreg field in certain instructions is a 2-bit field 
allowing one of the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3-bit field, allowing the 80386 FS and GS segment 
registers to be specified. 

2·Bit sreg2 Field 

2·Bit 
Segment 

sreg2 Field 
Register 
Selected 

00 ES 
01 CS 
10 SS 
11 OS 

3·Bit sreg3 Field 

3·Bit 
Segment 

sreg3 Field 
Register 
Selected 

000 ES 
001 CS 
010 SS 
011 DS 
100 FS 
101 GS 
110 do not use 
111 do not use 
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8.2.3.4 ENCODING OF ADDRESS MODE 

Except for special instructions, such as PUSH 
POP, where the addressing mode is pre·determinE 
the addressing mode for the current instruction 
specified by addressing by1es following the priml 
opcode. The primary addressing by1e is the "m 
rim" by1e, and a second by1e of addressing inforrr 
tion, the "s-i-b" (scale-index-base) by1e, can I 

specified. 

The s-i-b by1e (scale-index-base by1e) is specifi. 
when using 32-bit addressing mode and the "m. 
rim" by1e has rim = 100 and mod = 00,01 or 1 
When the sib by1e is present, the 32-bit addressi, 
mode is a function of the mod, ss, index, and ba: 
fields. 

The primary addressing by1e, the "mod rim" by1 
also contains three bits (shown as TIT in Figure 8-
sometimes used as an extension of the primary 01 
code. The three bits, however, may also be used ( 
a register field (reg). 

When calculating an effective address, either 16-t 
addressing or 32-bit addressing is used. 16-bit a( 
dressing uses 16-bit address components to calcl 
late the effective address while 32-bit addressin 
uses 32-bit address components to calculate the e 
fective address. When 16-bit addressing is used, th 
"mod rim" by1e is interpreted as a 16-bit addressin 
mode specifier. When 32-bit addressing is used, th 
"mod rim" byte is interpreted as a 32-bit addressin 
mode specifier. 

Tables on the following three pages define all er 
codings of all 16-bit addressing modes and 32-b 
addressing modes. 
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Table 8-1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

SEGMENT CONTROL 

LDS ~ Load Pointer to DS I 11000101 mcdreg rim 7 22 b h.i.i 

LES ~ Load Pointer to ES I 11000100 mod reg rim 7 22 b h. i.i 

LFS ~ Load Pointer to FS I 00001111 10110100 mod reg rim I 7 25 b h,i,j 

LGS ~ Load Pointer to GS I 00001111 10110101 mod reg rim I 7 25 b h.i.i 

LSS ~ Load Pointer to SS I 00001111 10110010 mod reg rim I 7 22 b h.i.i 

FLAG CONTROL 

CLC ~ Clear Carry Flag I 11111000 2 2 

CLD ~ Clear Direction Flag I 11111100 2 2 

CLI ~ Clear Interrupt Enable Flag I 11111010 3 3 m 

ClTS ~ Clear Task Switched Flag I 00001111 00000110 I 5 5 c I 

CMC ~ Complement Carry Flag 11110101 2 2 

LAHF ~ load AH Into Flag 10011111 2 2 

POPF ~ Pop Flags 10011101 5 5 b h. n 

PUSHF ~ Push Flags 10011100 4 <4 b h 

SAHF ~ Store AH Into Flags 10011110 3 3 

STC ~ Set Carry Flag 11111001 2 2 

STD ~ Set Direction Flag 
I I 11111001 2 2 

STI ~ Set Interrupt Enable Flag 1 11111011 3 3 m 

ARITHMETIC 
ADD ~ Add 

Register to Register 1 OOOOOOdw I mod reg rim I 2 2 

Register to Memory I OOOOOOOw I mod reg rim I 7 7 b h 

Memory to Register I 000000lw I mod reg rim I 6 6 b h 

Immediate to Register/Memory I 100000sw ImcdOOO rim I immediate data 2/7 2/7 b h 

Immediate to Accumulator (short form) I 0000010w I immediate data 2 2 

ADC ~ Add With Carry 

Register to Register 000100dw I mod reg rIm I 2 2 

Register to Memory 0001000w I mod reg rim I 7 7 b h 

Memory to Register 0001001w I mod reg rim I 6 6 b h 

Immediate to Register/Memory 100000sw I modOl 0, rim I immediate data 2/7 217 b h 

Immediate to Accumulator (short form) 0001010w I immediate data 2 2 

INC ~ Increment 

Register/Memory I l111111w I modOOO rim I 2/6 2/6 b h 

Register (short form) 101000 reg I 2 2 

SUB ~ Subtract 

Register from Register I 001010dw I mod reg rim I 2 2 
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Table 8-1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Rell 
INSTRUCTION FORMAT Addre •• Protected Addre •• Protected 

Mode or Virtual Mod_or Virtual 
Virtual Addr ••• Virtual Addr ... 
8086 Mode 8086 Mode 
Mode Mode 

ARITHMETIC (Continued) 

Register from Memory I 00 t 0 1 OOw ImOdreg r/ml 7 7 b h 

Memory from Register I Q010101w Imodreg r/ml 6 6 b h 

Immediate from Register/Memory 11 OOOOOsw ImOd 1 0 1 r/ml immediate data 217 217 b h 

Immediate from Accumulator (short form) IOO10110wl immediate data 2 2 

sse = Subtract with Borrow 

Register from Register I 000110dw ImOdrag r/ml 2 2 

Register from Memory I 00011 OOw ImOdrag r/ml 7 7 b h 

Memory from Register 10001101wlmOdrag rim I 6 6 b h 

Iml!lediate from Register/Memory 11 OOOOOsw ImOdO 11 r/ml immediate data 217 217 b h 

Immediate from Accumulator (short form) 10001110wl immediate data 2 2 

DEC = Decrement 

Register/Memory I lllllllWlragOOI r/ml 2/6 2/6 b h 

Register (short form) 101001 re91 2 2 

CMP ~ Compare 

Register with Register 100111 Odw I mod rag r/ml 2 2 

Memory with Register I 00111 OOw ImOdrag r/ml 5 5 b h 

Register with Memory 10011101 w ImOdreg r/ml 6 6 b h 

Immediate with Register/Memory !100000sw ImOdlll r/ml immediate data 2/5 2/5 b h 

Immediate with Accumulator (short form) ! 001111 Ow t immediate data 2 2 

NEG ~ Change Sign ! 1111011wlmodOIl r/ml 2/6 2/6 b h 

AAA ~ ASCII Adjust lor Add I 00110111 I 4 4 

AAS - ASCII Adjust lor Subtract I 00111111 I 4 4 

DAA ~ Decimal Adjust lor Add I 00100111 I 4 4 

DAS ~ Decimal Adjust lor Subtract I 00101111 I 4 4 

MUL ~ Multiply (unsigned) 

Accumulator with Register/Memory I 1111011wlmOdl00 r/ml 

Multiplier-Byte 9-14/12-17 9-14/12-17 b,d d, h 

-Word 9-22112·25 9-22/12-25 b,d d, h 

-Doubleword '9-38/12-41 9-38/12-41 b, d d, h 

IMUL ~ Integer Multiply (signed) 

Accumulator with Register/Memory I 1111011w ImOdl00 r/ml 
Multiplier-Byte I 9-14/12·17 9-14/12-17 b,d d, h 

-Word 

I 
9-22/12·25 9-22/12-25 b, d d, h 

-Doubleword 9-38/12-41 9-38/12-41 b, d d, h 

Register with Register/Memory ! 00001111 I 10101111 I mod reg r/ml 

-Word 9-22/12·25 9-22/12-25 b, d d, h 

-Ooubleword 9-38/12-41 9-38/12-41 b, d d, h 

Register/Memory with Immediate to Register I 01101 Os 1 ImOdreg r!~1 immediate data 

-Word 9-22/12-25 9-22/12-25 b, d d, h 

-Doubleword 9-38/12·41 9-38/12-41 b, d d, h 
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Table 8-1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

ARITHMETIC (Continued) 
DIV - Divide (Unsigned) 

Accumulator by Register/Memory I 1 1 11 01 1 W ImOd 11 0 r/ml 

Divisor-Byte 14/17 14/17 b,e e,h 
-Word 22/25 22/25 b,e e,h 
-Doubleword 38/41 38/41 b,e e,h 

IDIV - Integer Divide (Signed) 

Accumulator By Register/Memory 11 1 11 01 1 W ImOd 111 r/ml 

Divisor-Byte 19/22 19/22 b,e e,h 
-Word 27/30 27/30 b,a e,h 
-Doubleword 43/46 43/46 b,a e,h 

AAD - ASCII Adjust lor Divide I 11010101 I 000010101 19 19 

AAM - ASCII Adjust lor Multiply I 11010100 I 000010101 17 17 

CBW - Convert Byte to Word I 100110001 3 3 

CWD - Convert Word to Double Word I 10011001 1 2 2 

LOGIC 

Shift Rotate Instructions 

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) 

Register/Memory by 1 11101000W ImOdTIT r/ml 3/7 317 b h 

Register/Memory by CL 11101001 w ImOdTIT r/ml 317 3(7 b h 

Register/MemorybylmmediateCount 111 OOOOOw I mod TIT r/m!immed a-bit data 317 3/7 b h 

Through Carry (RCL and RCR) 

Register/Memory by 1 11101 OOOw ImOdTIT r/ml 9(10 9(10 b h 

Register(Memory by CL I 1101001wlmOdTIT r/ml 9(10 9(10 b h 

Register/Memory by Immediate Count \11 a 0 a a a w I mod TTT r/mlimmed 8-bitdata 9(10 9/10 b h 

TTT Instruction 

000 ROL 
001 ROR 
010 RCL 
011 RCR 
100 SHL/SAL 
101 SHR 
111 SAR 

SHLD - Shift Left Double 

Register/Memory by Immediate I 00001111 I 1 01 001 00 I mod reg r/mlimmed a-bit data 317 317 

Register/Memory by CL I 00001111 I 10100101 I mod reg r/ml 317 317 

SHRD ~ Shill Right Double 

Register J Memory by Immediate I 00001111 I 10101100 I mod reg r / ml immed 8-bit data 3(7 3/7 

Register/Memory by CL I 00001111 I 10101101 I mod reg r/ml 3(7 3/7 

AND - And 

Register to Register 1001 OOOdw Imadrag rim I 2 2 

E-5 



INSTRUCTION FORMAT AND TIMING 

T bl a e 8-1. 803861 nstructlon et oc S CI kC ount S ummar (C ontlnue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addr ... Protected Addre .. Protected 

Mocle or Virtual Mocleor Virtual 
Virtual Add .... Virtual Addre .. 
B086 Mocle 8086 Mode 
Mocle Mode 

LOGIC (Continued) 

Register to Memory I 0010000w I mod reg rlml 7 7 b h 

Memory to Register I 0010001 w I mod reg rlml 6 6 b h 

Immediate to Register/Memory I 1 OOOOOOw Imodl00 r/m\ immediate data 217 217 b h 

Immediate to Accumulator (Short Form) I 001001 Ow I immediate data 2 2 

TEST ~ And Function to Flags, No Result 

Register/Memory and Register I 100001 Ow I mod reg rlml 215 215 b h 

Immediate Data and Register/Memory I 1111011w ImodOOO r/ml immediate data 215 215 b h 

Immediate Data and Accumulator 
(Short Form) I 1 0 1 0 1 0 0 w I immediate data 2 2 

OR ~ Or 

Register to Register 000010dw ImOdreg rlml 2 2 

Register to Memory 00001 OOw ImOdreg rlml 7 7 b h 

Memory to Register 0000101w I mod reg rlml 6 6 b h 

Immediate to Register/Memory 1000000w ImodOOl r/ml immediate data 217 217 b h 

I mmediate to Accumulator (Short Form) 000011 Ow I immediate data 2 2 

XOR ~ ExclUSive Or 

Register to Register 0011 OOdw ImOdreg rlml 2 2 

Register to Memory 0011 OOOw ImOdreg rlml 7 7 b h 

Memory to Register 0011001w ImOdreg rlml 6 6 b h 

Immediate to Register/Memory 1 OOOOOOw Imodl1 0 rIm I immediate data 217 217 b h 

Immediate to Accumulator (Short Form) o 0 1 1 0 1 0 w I immediate data 2 2 

NOT ~ Invert Register IMemory I 1111011w ImodOl0 rIm I 
Clk 

216 216 b h 

STRING MANIPULATION Count 
Virtual 

CMPS ~ Compare Byte Word I 1010011 w 8086 
10 10 b h Mode 

INS ~ Input BytelWord from OX Port I 0110110w I t29 15 9-/29" b h,m 

LODS ~ Load BytelWord to ALI AXIEAX I 1010110w 5 5 b h 

MOVS ~ Move Byte Word I 1010010w 7 7 b h 

OUTS ~ Output BytelWord to OX Port I 0110111 w I t28 14 8-/28·· b h,m 

SCAS ~ Scan Byte Word I 1010111 w 7 7 b h 

STOS ~ Store BytelWord from 

ALIAXIEX I 1010101 wi 4 4 b h 

XLAT ~ Translate String I 11010111 I 5 5 h 

REPEATED STRING MANIPULATION 
Repeated by Count in CX or ECX 

REPE CMPS ~ Compare String 

(Find Non-Match) I 11110011 I 1010011 wi 5+9n 5+9n b h 

• If CPL ,;; IOPL •• If CPL > IOPL 
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INSTRUCTION FORMAT AND TIMING 

T bl a e8-1.803 861 nstruct on S CI et ock C ount S ummary (C ontinue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addre .. Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Addre .. Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

REPEATED STRING MANIPULATION (Continued) 

REPNE CMPS ~ Compare String ClkCount 

(Find Match) 11110010 1010011Wl 
Virtual 

5+9n 5+9n b h 8086 Mode 

REP INS ~ Input StrIng 11110010 0110110wI I t27+Sn 13+6n 7 + 6n*/27 + 6n"'· b h.m 

REP LODS ~ Load String 11110010 1010110wl 5+6n 5+6n b h 

REP MOVS ~ Move String 11110010 1010010wl 7+4n 7+4n b h 

REP OUTS ~ OUlput String 11110010 0110111 w I I t26+5n 12+5n 6+5n"'/26+5n"" b h. m 

REPE SCAS ~ SCan String 

(Find Non-ALI AX/EAX) I 11110011 1,0,01" w I 5+6n 5+6n b h 

REPNE SCAS ~ SCan String 

(Find AL/ AX/EAX) 1""00'01'0'0"'WI 5+6n 5+6n b h 

REP STOS ~ Star. String 111'100'01'0'0'01wl 5+5n 5+5n b h 

BIT MANIPULATION 

BSF ~ Scan Bit Forward 100001111 I 10111100lmOdreg r/ml 10+3n 10+3n b h 

lISA = scan BII Re.e, ... 1000011111 1 0 1 1 1 1 0 1 Imod reg rlml 10+3n 10+3n b h 

BT~ Test Bit 

Register/Memory. Immediate I 0 a 0 0 1111 I 1 0 111 0 1 0 Imod 1 00 r/mlimmed 8-bit datal 3/6 3/6 b h 

Register/Memory. Register 10000",,1,0,0001, Imodreg rlml 3112 3/12 b h 

BTC ~ Te .. Bit Ind Complement 

Register/Memory, Immediate I a 0 a 01111 I 1 011 1 01 0 Imod 1 11 r/mlimmed 6-bit datal 6/6 6/6 b h 

Register/Memory. Register I 00001111 I 1 a 1 1 1 0 11 Imod reg r/ml 6/13 6/13 b h 

BTR ~ T •• t Bit Ind Rept 

Register/Memory. Immediate 100001111 I 1 a 1 1 1 0 1 0 Imod 1 1 0 r/mlimmed a-bit datal 6/6 6/6 b h 

Register/Memory. Register 100001111 I 1 0 1 1 00 1 1 Imod reg r/ml S/13 6/13 b h 

BTS ~ Te.t Bit and Set 

Registar/Memory.lmmediate LOOOOIIIII'0"'0'0Imod'0' r/mlimmed 6-bit datal S/8 6/8 b h 

Register/Memory. Register 1000011111,010,0"lmOdreg r/ml 6/13 6/13 b h 

CONTROL TRANSFER 

CALL ~ Call 

Direct Within Segment I 1 1 1 a 1 0 0 0 l,ulI displacement 7+m 7+m b r 

Register/Memory 

Indirect Within Segment 111 111111 Imodo 1 0 r/ml 
7+ml 7+m/ b h. r 10+m 10+m 

Direct Intersegment I 1 00 1 1 0 1 0 IUnSigned full offset. selector 17+m 34+m b i.k.r 

Notes: 
t Clock count shown applies if 1/0 permission allows 110 to the port in virtual 8086 mode. If 110 bit map denies permission 
exception 13 fault occurs; refer to clock counts for INT 3 instruction . 
• If CPL ,;: 10PL •• If CPL > 10PL 
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INSTRUCTION FORMAT AND TIMING 

Table 8-1. 80386 Instruction Set Clock Count Summarlf (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Addre •• Protected 

Mode or Virtual Mode"r Virtual 
Virtual Address Virtual Addre •• 
8086 Mode 8086 Mode 
Mode Mode 

CONTROL TRANSFER (Continued) 

Protected Mode Only (Direct Inters8gment) 

Via Call Gate to Same Privilege Level 52+m h,i,k,r 

Via Call Gate to Diff,erent Privilege Level, 
(No Parameters) 86+m h,i,k,r 

Via Call Gate to Different Privilege level, 
(x Parameters) 94+4x+m h,i,k,r 

From 286 Task to 286 TSS 273 h,i,k,r 

From 286 Task to 386 TSS 298 h,i,k,r 

From 286 Task to Virtual 8086 Task (386 TSS) 217 h,i,k,r 

From 386 Task to 286 TSS 273 h,i,k,r 

From 386 Task to 386 TSS 300 h,i,k,r 

From 386 Task to Virtual 8086 Task (386 TSS) 217 h,i,k,r 

Indirect Intersegment I t1111111 Imod011 r/ml 22+m 38+m b h,i,k,r 

Protected Mode Only (Indirect Intersegment) 

Via Call Gate to Same Privilege Level 56+m h,i,k,r 

Via Call Gate to Different Privilege Level, 
(No Parameters) 90+m h,i,k,r 

Via Call Gate to Different Privilege Level, 
(x Parameters) 98+4x+m h,i,k,r 

From 286 Task to 286 TSS 278 h,i,k,r 

From 286 Task to 386 TSS 303 h,i,k,r 

From 286 Task to Virtual 8086 Task (386 TSS) 221 h,i,k,r 

From 386 Task to 286 TSS 278 h,i,k,r 

From 386 Task to 386 TSS 305 h,i,k,r 

From 386 Task to Virtual 8086 Task (386 TSS) 
10 l,~ 

221 h,i,k,r 

JMP = Unconditional Jump /' 

Short 1 1 11 0~1'18-bitdisPlacementl 7+m 7+m r 

Direct within Segment 1 11101001 I full displacement 7+m 7+m r 

RegisterlMemory Indirect within Segment I 11111111 Imod100 r/ml 7+ml 7+ml 
b h,r 

10+m 10+m 

Direct Intersegment 1 11101010 I unsigned full offset, selector 12+m 27+m j,k,r 

Protected Mode Only (Direct Intersegment) 

Via Call Gate to Same Privilege Level 45+m h,i,k,r 

From 286 Task to 286 TSS 274 h,i.k,r 

From 286 Task to 386 TSS 301 h,i,k,r 

From 286 Task to Virtual 8086 Task (386 TSS) 218 h,i,k,r 

From 386 Task to 286 TSS 270 h,j,k,r 

From 386 Task to 386 TSS 303 h,i,k,r 

From 386 Task to Virtual 8086 Task (386 TSS) 220 h,i.k,r 

Indirect Intersegment 111111111 I mod 1 01 r/ml 17+m 31 +m b h,i,k,r 

Protected Mode Only (Indirect Intersegment) 

Via Call Gate to Same Privilege Level 49+m h,i.k,r 

From 286 Task to 286 TSS 279 h,i.k,r 

From 286 Task to 386 TSS 306 h,i,k,r 

From 286 Task to Virtual 8086 Task (386 TSS) 222 h,i.k,r 

From 386 Task to 286 TSS 275 h,i.k,r 

From 386 Task to 386 TSS 308 h,i,k,r 

From 386 Task to Virtual 8086 Task (386 TSS) 224 h,i,k,r 
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INSTRUCTION FORMAT AND TIMING 

a e - ns rue T bl 81803861 t tl on SetCI kC oe oun tS umm~ (C f on Inue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Addre •• Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONTROL TRANSFER (Continued) 
RET ~ Return from CALL: 

Within Segment I 11000011 I 10 + m 10 + m b g, h, r 

Within Segment Adding Immediate to SP I 11000010 I 16-bit displ I 10 + m 10 + m b g, h, r 

Intersegment I 11001011 I 18 + m 32+m b g, h,j, k, r 

Intersegment Adding Immediate to SP I 11001010 I 16-bit displ I 18 + m 32+m b g, h, j, k, r 

Protected Mode Only (RET): 
to Different Privilege Level 

Intersegment 68 h,j,k, r 
Intersegment Adding Immediate to SP 68 h, j, k, r 

CONDITIONAL JUMPS 
NOTE: Times Are Jump "Taken or Not Taken" 
JO ~ Jump on Overflow 

a-Bit Displacement I 01110000 I 8-bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10000000 I full displacement 7 + mor3 7 + mor3 r 

JNO ~ Jump on Not Overflow 

8-Bit Displacement I 01110001 I 8-bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000001 I full displacement 7 + mor3 7 + mor3 r 

JB/JNAE - Jump on Below/NotAbove Dr Equal 

a .. Bit Displacement 1011100101 8-bltdispl 1 7 + mor3 7 + mor3 r 

Full Displacement lOOOOlllll 1 0 0 0 0 0 1 0 1 full displacement 7 + mor3 7 + mor3 r 

JNB/JAE ~ Jump on Not Below/Above or Equal 

a-Bit Displacement I 01110011 I 8-bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000011 I full displacement 7 + mor3 7 + mor3 r 

JE/JZ ~ Jump on Equal/Zero 

a-Bit Displacement I 01110100 I 8-bitdispl I 7+mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000100 I full displacement 7 + morS 7 + mor3 r 

JNE/JNZ ~ Jump on Not EquallNot Zero 

8-Bit Displacement I 01110101 I 8-Mdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000101 I full displacement 7 + mor3 7 + mor3 r 

JBE/JNA ~ Jump on Below or Eqlllll/Not Abo.e 

8-Bit Displacement I 01110110 I 8-bitdispl I 7+mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000110 I full displacement 7 + mor3 7 + mor3 r 

JNBEI JA ~ Jump on Not Below Dr Eqlllll/ Abov. 

8-Bit Displacement I 01110111 I 8-bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000111 I full displacement 7 + mor3 7 + mor3 r 

JS ~ Jump on Sign 

8-Bit Displacement I 01111000 I 8-bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001000 I full displacement 7 + mor3 7 + mor3 r 
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INSTRUCTION FORMAT AND TIMING 

a e T bl 8 -1. 803861 nstructlon et oc S CI kC ount S ummary (C ontlnue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Addreas Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONDITIONAL JUMPS (Continued) 

JNS ~ Jump on Not Sign 

8-Bit Displacement I 01111001 I 8-bitdispl I 7 + morS 7+mor3 , 
Full Displacement I 00001111 I 10001001 I full displacement 7 + mor3 7 + m or3 , 

JP/JPE ~ Jump on Parlty/Parlty Even 

S-Bit Displacement I 01111010 I 8-bit displ I 7+mor3 7 + m 0,3 , 
Full Displacement I 00001111 I 10001010 I full displacement 7+mor3 7 + mor3 , 

JNP/JPO ~ Jump on Not Parlty/Parlty Odd 

8-Bit Displacement I 01111011 I 8-bit displ I 7+mor3 7 + m or3 , 
Full Displacement I 00001111 I 10001011 I full displacement 7+mor3 7 + m or3 , 

JL/JNGE ~ Jump on Less/Not Greater 0' Equal 

8-Bit Displacement I 01111100 I 8-bitdispl I 7+mor3 7 + m 0,3 , 
Full Displacement I 00001111 I 10001100 I full displacement 7 + morS 7 + m or3 , 

JNL/JGE ~ Jump on Not Less/Greater 0' Equal 

8-Bit Displacement I 01111101 I 8-bitdispl I 7 +- mor3 7 + m or3 , 
Full Displacement I 00001111 I 10001101 I full displacement 7 + mor3 7 + mor3 , 

JLE/JNG ~ Jump on Less or Equal/Not Greater 

8-Bit Displacement I 01111110 I 8-bit displ I 7+mor3 7+ morS , 
Full Displacement I 00001111 I 10001110 I full displacement 7+mor3 7 + m or3 , 

JNLE/JG ~ Jump on Not Less or Equal/Greate, 

8-Bit Displacement I 01111111 I 8-bitdispl I 7 + mor3 7 + mor3 , 
Full Displacement I 00001111 I 10001111 I full displacement 7+mor3 7+ mor3 , 

JCXZ ~ Jump on CX Zero I 11100011 I 8-bitdispl I 9+mor5 9 + mor5 , 
JECXZ ~ Jump on ECX Zero I 11100011 I 8-bitdispl I 9+mor5 9 + mor5 , 
(Address Size Prefix Differentiates JCXZ from JECXZ) 

LOOP ~ Loop CX Times I 11100010 I 8-bit displ I 11 + m 11 + m , 

LOOPZ/LOOPE ~ Loop with 
Ze,o/Equal I 11100001 I 8-bitdispl I 11 + m 11 + m , 

LOOPNZlLOOPNE ~ Loop While 
Not Zero I 11100000 I 8-bit displ I 11 + m 11 + m , 

CONDITIONAL BYTE SET 
NOTE: Times Are Register/Memory 

SETO ~ Set Byte on Overflow 

To Register/Memory I 00001111 I 10010000 I modOOO ,1m I 4/5 4/5 h 

SETNO ~ Set Byte on Not Overflow 

To Register/Memory I 00001111 I 10010001 I modOOO ,1m I 4/5 4/5 h 

SETB/SETNAE ~ Set Byte on BelowlNot Above or Equal 

To Register/Memory I 00001111 I 10010010 I modOOO ,1m I 4/5 4/5 h 
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INSTRUCTION FORMAT AND TIMING 

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONDITIONAL BYTE SET (Continued) 

SETNB ~ Set Byte on Not Below/ Above or Equal 

To Register IMemory I 00001111 I 10010011 I modOOO rim I 4/5 4/5 h 

SETE/SETZ ~ set Byte on Equal/Zero 

To Register/Memory I 00001111 I 10010100 I modOOO rim I 4/5 4/5 h 

SETNE/SETNZ ~ set Byte on Not Equal/Not Zero 

To Register IMemory I 00001111 I 10010101 I modOOO r/ml 4/5 4/5 h 

SETBE/SETNA ~ Set Byte on Below or Equal/Not Above 

To Register/Memory I 00001111 I 10010110 I modOOO r/ml 4/5 4/5 h 

SETNBE/SETA ~ Set Byte on Not Below or Equal/ Above 

To Register/Memory I 00001111 I 10010111 I modOOO rim I 4/5 4/5 h 

SETS ~ Set Byte on Sign 

To Register/Memory I 00001111 I 10011000 I mcdOOO r/ml 4/5 4/5 h 

SETNS ~ set Byte on Not Sign 

To Register/Memory I 00001111 I 10011001 I modOOO r/ml 4/5 4/5 h 

SETP /SETPE ~ Set Byte on Parity/Parity Even 

To Register/Memory I 00001111 I 10011010 I modOOO rim I 4/5 4/5 h 

SETNP/SETPO ~ Set Byte on Not Parlty/Parily Odd 

To Register/Memory I 00001111 I 10011011 I mcdOOO rim I 4/5 4/5 h 

SETL/SETNGE ~ Set Byte on Less/Not Greater Of Equal 

To Register/Memory I 00001111 I 10011100 I modOOO r/ml 4/5 4/5 h 

SETNL/SETGE ~ set Byte on Not Less/Greater or Equal 

To Register/Memory I 00001111 I 01111101 I modOOO rim I 4/5 4/5 h 

SETLE/SETNG ~ set Byte on Less or Equal/Not Greater 

To Register/Memory I 00001111 I 10011110 I modOOO rim I 4/5 4/5 h 

SETNLE/SETG ~ set Byte on Not Les. Dr Equal/Greater 

To Register/Memory I 00001111 I 10011111 I madOOO r/ml 4/5 4/5 h 

ENTER ~ Enter Procedure I 1 1 0 0 1 0 0 0 I 16-bit displacement, B-bitlevel I 
L~O 10 10 b h 
L ~ 1 12 12 b h 

L> 1 15 + 15 + b h 

4(n ~ 1) 4(n ~ 1) 

l.EAVE = Leave Procedure I 11001001 I 4 4 b h 
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INSTRUCTION FORMAT AND TIMING 

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addre •• Prolected Addre .. Prolecled 

Mode or Virtual Mode or Virtual 
Virtual Addre .. Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

INTERRUPT INSTRUCTIONS 
-

INT ~ Inlerrupl: 

Type Specified I 11001101 I type I 37 b 

Type 3 I 11001100 I 33 b 

INTO ~ Inlerrupl411 Overflow Flag Sell 11001110 I 
If OF ~ 1 35 b.e 

IIOF ~ 0 3 3 b. e 

Bound ~ Inlerrupl 5 II Delecl Value I 01100010 I mod reg rim I 
Oulol Range 

II Out of Range 44 b. e e. g. h. I. k. r 

II In Range 10 10 b. e e. g. h.l. k. r 

Prolecled Mode Only (INT) 

INT: Type Specilled 

Via Interrupt or Trap Gate 

to Same Privilege Level 59 g.l. k. r 

Via Interrupt or Trap Gate 
to Different Privilege Level 99 g.l. k. r 

From 286 Task to 286 TSS via Task Gate 282 g.l. k. r 

From 286 Task to 386 TSS via Task Gate 309 g.l. k. r 

From 268 Task to virt 8086 md via Task Gate 226 g.l. k. r 

From 386 Task to 286 TSS via Task Gate 284 g.l. k.r 

From 386 Task to 386 TSS via Task Gate 311 g.l. k.r 

From 368 Task to virt 8086 md via Task Gate 228 g.l. k. r 

From virt 8086 md to 286 TSS via Task Gate 289 g.l. k.r 

From virt 8086 md to 386 TSS via Task Gate 316 9.1. k.r 

From virt B086 md to priv level 0 via Trap Gate or Interrupt Gate 119 

INT: TYPE 3 

Via Interrupt or Trap Gate 
to Same Privilege Level 59 g.l. k.r 

Via Interrupt or Trap Gate 
to Different Privilege Level 99 g.l. k.r 

From 286 Task to 286 TSS via Task Gate 278 g.l. k.r 

From 286 Task to 386 TSS via Task Gale 305 g.l. k. r 

From 268 Task to Virt 8086 md via Task Gate 222 g. I. k. r 

From 386 Task to 286 TSS via Task Gate 280 9.1. k.r 

From 386 Task to 386 TSS via Task Gate 307 9.1. k. r 

From 368 Task to Virt 8086 md via Task Gate 224 9.1. k.r 

From virt 8086 md to 286 TSS via Task Gate 285 g.l. k. r 

From virt 8086 md to 386 TSS via Task Gate 312 9.1. k.r 

From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119 

INTO: 

Via Interrupt or Trap Grate 

to Same Privilege Level 59 g.l. k. r 

Via Interrupt or Trap Gate 

to Different Privilege ievel 99 9.1. k. r 

From 286 Task to 286 TSS via Task Gate 280 g.l. k. r 

From 286 Task to 386 TSS via Task Gate 307 g.l. k. r 

From 268 Task to virt 80B6 md via Task Gate 224 9.1. k. r 

From 386 Task to 286 TSS via Task Gate 282 g.l. k. r 

From 386 Task to 386 TSS via Task Gate 309 g.l. k. r 

From 368 Task to virt 8086 md via Task Gate 226 I g,j, k, r 

From virt 8086 md to 286 TSS via Task Gate 287 9. I. k. r 

From virt 8086 md to 386 TSS via Task Gate 314 9.1. k. r 

From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119 
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INSTRUCTION FORMAT AND TIMING 

a e - .8 38 Tbl81 061 nstructon et oc S CI kC ount S ummary ( c ontinued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8066 Mode 
Mode Mode 

INTERRUPT INSTRUCTIONS (Continued) 

BOUND: 

Via Interrupt or Trap Gate 
to Same Privilege Level 59 g, j, k, r 

Via Interrupt or Trap Gate 
to Different Privilege Level 99 g, j, k, r 

From 286 Task to 286 TSS via Task Gate 254 g,j, k, r 
From 286 Task to 386 TSS via Task Gate 284 g,j, k, r 
From 268 Task to virt 8086 MOde via Task Gate 231 g,j, k,r 
From 386 Task to 286 TSS via Task Gate 264 g,j, k,r 
From 386 Task to 386 TSS via Task Gate 294 g, j, k, r 
From 368 Task tovirt 8086 Mode via Task Gate 243 g, j, k, r, 
From virt 8086 Mode to 286 TSS via Task Gate 264 g,j, k, r 
From virt 8086 Mode to 386 TSS via Task Gate 294 g,j, k, r 
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119 

INTERRUPT RETURN 

IRET ~ Interrupt Return I 11001111 I 22 g, h, j, k, r 

Protected MOde Only (I RET) 
To the Same Privilege Level (within task) 38 g, h,j, k, r 
To Different Privilege Level (within task) 82 g, h, j, k, r 
From 286 Task to 286 TSS 232 h,j, k, r 
From 286 Task to 386 TSS 265 h,j,k,r 
From 286 Task to Virtual80S6 Task 214 h,i, k, r 
From 286 Task to Virtual 80S6 Mode (within task) 60 
From 386 Task to 286 TSS 271 h,j,k, r 
From 386 Task to 386 TSS 275 h,j, k, r 
From 386 Task to Virtual80S6 Task 224 h,j,k,r 
From 386 Task to Virtual 80S6 Mode (within task) 60 

PROCESSOR CONTROL 

HLT ~ HALT I 11110100 I 5 5 I 

MOV ~ Move to and From Control/DebuglTest Reglaters 

CRO/CR2/CR3 from register I 00001111 I 00100010 I 11 eeereg 10/4/5 10/4/5 I 

Register From CRO-3 I 00001111 I 00100000 I 11 eee reg 6 6 I 

DRO-3 From Register I 00001111 I 00100011 I 1 1 eee reg 22 22 I 

DR6-7 From Register I 00001111 I 00100011 I 1 1 eee reg 16 16 I 

Register from DRS-7 I 00001111 I 00100001 I 11 eee reg 14 14 I 

Register from DRO-3 I 00001111 I 00100001 I 11 eeereg I 22 22 I 

TR6-7 from Register I 00001111 I 00100110 I 11 eee reg I 12 12 I 

Register from TR6-7 I 00001111 I 00100100 I 11 eee reg I 12 12 I 

NOP = No Operation I 10010000 I 3 3 

WAIT ~ Walt unlll BUSY # pin 10 negated I 10011011 I 6 6 
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INSTRUCTION FORMAT AND TIMING 

Table 8·1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Rael 
INSTRUCTION FORMAT Add .... Protected Add .... Protected 

Mode or Virtual Mode or Virtual 
Virtual Addre .. Virtual Addre .. 
8086 Mode 8086 Mode 
Mode Mode 

PROCESSOR EXTENSION INSTRUCTIONS 

Processor Extension Escape I 11011TTT ImodLLL rIm I See h 

TIT and LLL bits are opcode 80287/80387 

information for coprocessor. data sheets for 
clock counts 

PREFIX BYTES 

Addre .. Size P .. flx I 01100111 I 0 0 

LOCK ~ Bus Lock Prefix I 11110000 I 0 0 m 

Operand Size Prefix I 01100110 I 0 0 

segment Override Prefix 

CS: I 00101110 I 0 0 

DS: I 00111110 0 0 

ES: I 00100110 0 0 

FS: I 01100100 0 0 

GS: I 01100101 0 0 

ss: I 00110110 0 0 

PROTECTION CONTROL 

ARPL ~ AdJust Reque.ted Privilege Level 

From Register/Memory I 01100011 I mod reg r/ml N/A 20/21 a h 

LAR ~ Load Acce .. Rights 

From Register/Memory I 00001111 I 00000010 I mad reg rIm I N/A 15/16 a g, h,i, P 

LGDT ~ Load Global Descriptor 

Table Register I 00001111 I 00000001 ImodOl0 rIm I 11 11 b,c h, I 

LIDT ~ Load Interrupt DeSCriptor 

Table Register I 00001111 I 00000001 I modO 11 rIm I 11 11 b,c h,1 

LLDT ~ Load Local Descriptor 

Table Register to 
Register/Memory I 00001111 I 00000000 ImodOl0 rIm! N/A 20/24 a g,h,i,1 

LMSW ~ Load Machine Status Word 

From Register IMemory I 00001111 I 00000001 I mod 11 0 rIm! 10/13 10/13 b,c h, I 

LSL ~ Load Segment Limit 

From Register/Memory I 00001111 I 00000011 I mod reg r/ml 

Byte-Granular Limit N/A 20/21 a g,h,i, p 
Page-Granular Limit N/A 25/26 a g, h,i, P 

LTR ~ Load Task Register 

From Register/Memory I 00001111 I 00000000 ImOdOOI rIm! N/A 23/27 a g, h,i, I 

SGDT ~ Store Global D.scrlptor 

Table Register I 00001111 I 00000001 ImodOOO rIm! 9 9 b,c h 
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INSTRUCTION FORMAT AND TIMING 

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addr ... Protected Add .... Protected 

Mode or Virtual Mod_or Virtual 
Virtual Addr ... Virtual Addr ... 
8086 Mod. 8086 Mode 
Mode Mod. 

SIDT - Store Interrupt Descriptor 

Table Regllter I 00001111 I 00000001 ImodOOl rIm I 9 9 b, C h 

SLDT - Stora Local Descriptor Table Reglater 

To RegisterlMemory I 00001111 I 00000000 I modOOO r/ml N/A 2/2 a h 

SMSW - Store Machine 
Statu. Word I 00001111 I 00000001 Imodl00 r/ml 10113 10/13 b,c h, I 

STR -Store Taak Reglater 

To Register/Memory I 00001111 I 00000000 I modOO 1 r/ml N/A 2/2 a h 

VERR - Verify Read Ace.a .. 

Register/Memory I 00001111 I 00000000 Imodl00 r/ml N/A 10/11 a g, h,j,p 

VERW - Verify Write Accessl I 00001111 I 00000000 I modI 0 1 rIm I N/A 15116 a g, h,i,p 

INSTRUCTION NOTES~FOR TABLE 8-1 

Note8 a through C apply to 80386 Real Address Mode only: 
a. This is a Protected Mode instruction, Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
b, Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully 
extends beyond the maximum CS, OS, ES, FS or GS limit, FFFFH, Exception 12 fault (stack segment limit violation or not 
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit. 
c. This instruction may be executed in Real Mode, In Real Mode, its purpose is primarily to initialize the CPU for .Protected 
Mode. 

Notes d through g apply to 80386 Real Address Mode and 80386 Protected Vlrtuel Address Mode: 
d. The 80386 uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most 
significant bit in the operand (multiplier), 

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula: 
Actual Clock = if m < > 0 then max ([Iog2 Imll. 3) + 6 clocks: 

if m = 0 then 9 clocks (where m is the multiplier) 
e. An exception may occur, depending on the value of the operand. 
I. LOCKiI' is automatically asserted, regardless of the presence or absence of the LOCKiI' prefix, 
g. LOCKiI' is asserted during descriptor table accesses. 

Notes h through r apply to 80386 Protected Virtual Address Mode only: 
h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, OS, ES, FS or GS cannot be used 
due to either a segment limit violation or access rights violation, If a stack limit is violated, an exception 12 (stack segment 
limit violation or not present) occurs. 
i. For segment load operations, the CPL, RPL, and OPL must agree with the privilege rules to avoid an exception 13 fault 
(general protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, OS, ES, FS, GS not 
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit 
violation or not present) occurs. 
j, All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCKiI' to maintain 
descriptor integrity in multiprocessor systems. 
k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general 
protection violation) if an applicable privilege rule is violated. 
I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
m, An exception 13 fault occurs if CPL is greater than IOPL. 
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are 
updated only if CPL = O. 
o. The PE bit of the MSW (CRO) cannot be reset by this instruction, Use MOV into CRO if desiring to reset the PE bit. 
p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero 
flag is cleared. 
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general 
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation 
or not present) will occur if the stack limit is violated by the operand's starting address, 
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 
fault (general protection violation) will occur. 
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8.2 INSTRUCTION ENCODING 

8.2.1 Overview 

All instruction encodings are subsets of the general 
instruction format shown in Figure 8-1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rim" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rim 
byte, specifies the address mode to be used. Certain 

encodings of the mod rim byte indicate a second 
addressing byte, the scale-index-base byte, follows 
the mod rim byte to fully specify the addressing 
mode. 

Addressing modes can include a displacement im­
mediately following the mod rim byte, or scaled in­
dex byte. If a displacement is present, the possible 
sizes are 8, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure 8-1 illustrates several of the fields that can 
appear in an instruction, such as the mod field and 
the rim field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 8-2 is a complete list of all fields ap­
pearing in the 80386 instruction set. Further ahead, 
following Table 8-2, are detailed tables for each 
field. 

ITTTTTTTTI TTTTTTTTI modTTTr/m I ssindexbase Id32116181 nonedata32 1 16181 none 

? 07 °1 \76532°/\76532°1\ 1\ I 
'------...------' T T --...... --- .... ---r--ooJ 

opcode 
(one or two bytes) 
(T represents an 

opcode bit.) 

\ 

"mod rim" 
byte 

"s-i-b" 
byte 

register and address 
mode specifier 

1 

address 
displacement 
(4, 2, 1 bytes 

or none) 

Figure 8-1. General Instruction Format 

Table 8-2 Fields within 80386 Instructions 

Field Name Description 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 
d Specifies Direction of Data Operation 
s Specifies if an Immediate Data Field Must be Sign-Extended 
reg General Register Specifier 
mod rim Address Mode Specifier (Effective Address can be a General Register) 

ss Scale Factor for Scaled Index Address Mode 
index General Register to be used as Index Register 
base General Register to be used as Base Register 
sreg2 Segment Register Specifier for CS, SS, OS, ES 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 
tttn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 

Note: Table 8-1 shows encoding of individual instructions. 
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immediate 
data 

(4, 2, 1 bytes 
or none) 

Number of Bits 

1 
1 
1 
3 

2 for mod; 
3 for rim 

2 
3 
3 
2 
3 

4 
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8.2.2 32-81t Extensions of the 
Instruction Set 

With the 80386, the 86/186/286 instruction set is 
extended in two orthogonal directions: 32-bit forms 
of all 16-bit instructions are added to support the 32-
bit data types, and 32·bit addressing modes are 
made available for all instructions referencing memo 
ory. This orthogonal instruction set extension is ac­
complished having a Default (D) bit in the code seg­
ment descriptor, and by having 2 prefixes to the in­
struction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the 0 bit in 
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that 
code segment. In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a 0 value of 0 is assumed internally by the 80386 
when operating in those modes (for 16-bit default 
sizes compatible with the 8086/80186/80286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op­
code by1es and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32-bit effective address computa­
tions. 

These 32-bit extensions are available in all 80386 
modes, including the Real Address Mode or the Vir­
tual 8086 Mode. In these modes the default is al­
ways 16 bits, so prefixes are needed to specify 32-
bit operands or addresses. 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 

~.2.3 Encoding of Instruction Fields 

Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 
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8.2.3.1 ENCODING OF OPERAND LENGTH (w) 
FIELD 

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wField During 16-8it During 32-8it 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

8.2.3.2 ENCODING OF THE GENERAL 
REGISTER (reg) FIELD 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" byte. 

Encoding of reg Field When w Field 
Is not Present In Instruction 

Register Selected Register Selected 
reg Field During 16-8it During 32-81t 

000 
001 
010 
011 
100 
101 
101 
101 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Data Operations Data Operations 

AX EAX 
CX ECX 
OX EDX 
BX EBX 
SP ESP 
BP EBP 
SI ESI 
01 EDI 

Encoding of reg Field When w Field 
Is Present In Instruction 

Register Specified by reg Field 
During 16-81t Data Operations: 

Function of w Field 

(whenw = 0) (whenw = 1) 

AL AX 
CL CX 
DL OX 
BL BX 
AH SP 
CH BP 
DH SI 
BH 01 
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Register Specified by reg Field 
During 32-Blt Data Operations 

Function of w Field 
reg 

(whenw = 0) (whenw = 1) 

000 AL EAX 
001 CL ECX 
010 DL EDX 
011 BL EBX 
100 AH ESP 
101 CH EBP 
110 DH ESI 
111 BH EDI 

8.2.3.3 ENCODING OF THE SEGMENT 
REGISTER (sreg) FIELD 

The sreg field in certain instructions is a 2-bit field 
allowing one of the four 80286 segment registers to 
be specified. The Sleg field in other instructions is a 
3-bit field, allowing the 80386 FS and GS segment 
registers to be specified. 

2-Blt sreg2 Field 

2-Blt 
Segment 

sreg2Fieid 
Register 
Selected 

00 ES 
01 CS 
10 SS 
11 OS 

3-Bit sreg3 Field 

3-Bit 
Segment 

sreg3 Field 
Register 
Selected 

000 ES 
001 CS 
010 SS 
011 DS 
100 FS 
101 GS 
110 do not use 
111 do not use 
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8.2.3.4 ENCODING OF ADDRESS MODE 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rIm" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rIm" byte has rIm = 100 and mod = 00,01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rIm" byte, 
also contains three bits (shown as TTT in Figure 8-1) 
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as 
a register field (reg). 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. l6-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When l6-bit addressing is used, the 
"mod rIm" byte is interpreted as a l6-bit addressing 
mode specifier. When 32-bit addressing is used, the 
"mod rIm" byte is interpreted as a 32-bit addressing 
mode specifier. 

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit 
addressing modes. 
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Encoding of 16-bit Address Mode with "mod rIm" Byte 

mod rIm Effective Address mod rIm Effective Address 

00000 OS:[BX+Slj 10000 OS:[BX+SI+d16) 
00001 OS:[BX+OI] 10001 OS:[BX+01+d16] 
00010 SS:[BP+SI] 10010 SS:[BP + SI+ d16] 
00011 SS:[BP+OI] 10011 SS:[BP+01+d16] 
00100 OS:[SI] 10100 OS:[SI+d16] 
00101 OS: [01] 10101 OS: [01 + di6) 
00110 OS:d16 10110 SS:[BP+d16] 
00111 OS: [BX] 10111 OS:[BX+d16] 

01000 OS: [BX + SI + d8] 11000 register-see below 
01001 OS: [BX + 01 + dB) 11001 register-see below 
01010 SS: [BP + SI + d8] 11010 register-see below 
01011 SS:[BP+01+d8] 11 011 register-see below 
01100 OS:[SI+d8) 11100 register-see below 
01101 OS:[01+d8) 11 101 register-see below 
01110 SS:[BP+d8) 11 110 register-see below 
01 111 OS:[BX+d8) 11 111 register-see below 

Register Specified by rIm 
During i6-Bit Data Operations 

mod rIm 
Function of w Field 

(whenw=O) (when w = 1) 

11000 AL AX 
11001 CL CX 
11010 OL OX 
11 011 BL BX 
11100 AH SP 
11 101 CH BP 
11 110 OH SI 
11 111 BH 01 

Register Specified by rIm 
During 32-Bit Data Operations 

mod rIm 
Function of w Field 

(whenw=O) (when w = 1) 

11000 AL EAX 
11001 CL ECX 
11010 OL EOX 
11 011 BL EBX 
11 100 AH ESP 
11 101 CH EBP 
11 110 OH ESI 
11 111 BH EOI 
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Encoding of 32-bit Address Mode with "mod rIm" byte (no "s-i-b" byte present): 

mod rIm Effective Address mod rIm Effective Address 

00000 DS:[EAX] 10000 DS: [EAX + d32] 
00001 DS:[ECX] 10001 DS: [ECX + d32] 
00010 DS:[EDX] 10010 DS:[EDX+d32] 
00011 DS:[EBX] 10011 DS: [EBX + d32] 
00100 s-i-b is present 10100 s-i-b is present 
00101 DS:d32 10101 SS:[EBP+d32] 
00110 DS:[ESIl 10110 DS: [ESI + d32] 
00111 DS:[EDIl 10 111 DS:[EDI+ d32j 

01000 DS:[EAX+d8] 11000 register-see below 
01001 DS:[ECX+d8] 11 001 register-see below 
01010 DS:[EDX+d8] 11010 register-see below 
01 011 DS:[EBX+d8] 11 011 register-see below 
01100 s-i-b is present 11100 register-see below 
01101 SS:[EBP+d8] 11 101 register-see below 
01 110 DS: [ESI + d8] 11 110 register-see below 
01 111 DS:[EDI+ d8] 11 111 register-see below 

Register Specified by reg or rIm 
during 16-Bit Data Operations: 

mod rIm 
function of w field 

(whenw=O) (whenw=1) 

11000 AL AX 
11001 CL CX 
11010 DL DX 
11 011 BL BX 
11100 AH SP 
11 101 CH BP 
11 110 DH SI 
11 111 BH DI 

Register Specified by reg or rIm 
during 32-Bit Data Operations: 

mod rIm function of w field 

(whenw=O) (whenw=1) 

11000 AL EAX 
11001 CL ECX 
11 010 DL EDX 
11 011 BL EBX 
11 100 AH ESP 
11 101 CH EBP 
11 110 DH ESI 
11 111 BH EDI 
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Encoding of 32-bit Address Mode ("mod rIm" byte and "s-i-b" byte present): 

mod base Effective Address 

00000 DS: [EAX + (scaled index)] 
00001 OS: [ECX + (scaled index)] 
00010 OS:[EDX + (scaled index)] 
00011 DS: [EBX + (scaled index)] 
00100 SS: [ESP + (scaled index)] 
00101 OS: [d32 + (scaled index)] 
00110 OS: [ESI + (scaled index)] 
00111 OS:[EDI + (scaled index)] 

01000 DS: [EAX + (scaled index) + dB] 
01001 DS: [ECX + (scaled index) + dB] 
01010 DS: [EDX + (scaled index) + dB] 
01011 DS:[EBX + (scaled index) + dB] 
01100 SS; [ESP + (scaled index) + dB] 
01 101 SS: [EBP + (scaled index) + dB] 
01110 DS: [ESI + (scaled index) + dB] 
01 111 DS: [EDI + (scaled index) + dB] 

10000 DS: [EAX + (scaled index) + d32] 
10001 DS: [ECX + (scaled index) + d32] 
10010 OS: [EDX + (scaled index) + d32] 
10011 DS: [EBX + (scaled index) + d32] 
10100 SS: [ESP + (scaled index) + d32] 
10101 SS: [EBP + (scaled index) + d32] 
10110 OS: [ESI + (scaled index) + d32] 
10111 DS: [EDI + (scaled index) + d32] 

NOTE: 
Mod field in "mod rim" byte; 55, index, base fields in 
"s-i-b" byte. 
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ss Scale Factor 

00 x1 
01 x2 
10 x4 
11 xB 

index Index Register 

000 EAX 
001 ECX 
010 EOX 
011 EBX 
100 no index reg"' 
101 EBP 
110 ESI 
111 EDI 

"IMPORTANT NOTE: 
When index field is 1 00, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal 00, the effective address is undefined. 
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8.2.3.5 ENCODING OF OPERATION DIRECTION 
(d) FIELD 

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod rIm" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod rIm" or "mod ss index base" Indicates 
Source Operand 

8_2.3.6 ENCODING OF SIGN·EXTEND (8) FIELD 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 16-bit or 32-bit destination. 

Effect on Effect on 
Immediate Data8 Immediate Data 16132 

None None 

1 Sign-Extend Data8 to Fill None 
16·Bit or 32-Bit Destination 

8.2.3.7 ENCODING OF CONDITIONAL TEST 
(tttn) FIELD 

For the conditional instructions (conditional jumps 
and set on condition), tttn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1), 
and ttt giving the condition to test. 

Mnemonic Condition tttn 

0 Overflow 0000 
NO No Overflow 0001 
BINAE Below/Not Above or Equal 0010 
NB/AE Not Belowl Above or Equal 0011 
E/Z Equal/Zero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or Equal/Not Above 0110 
NBE/A Not Below or Equal/ Above 0111 
S Sign 1000 
NS Not Sign 1001 
PIPE Parity/Parity Even 1010 
NP/PO Not Parity/Parity Odd 1011 
LlNGE Less Than/Not Greater or Equal 1100 
NL/GE Not Less Than/Greater or Equal 1101 
LE/NG Less Than or Equal/Greater Than 1110 
NLE/G Not Less or Equal/Greater Than 1111 

8.2.3.8 ENCODING OF CONTROL OR DEBUG 
OR TEST REGISTER (eee) FIELD 

For the loading and storing of the Control, Debug 
and Test registers. 

When Interpreted as Control Register Field 

eeeCode Reg Name 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted a8 Debug Register Field 

eeeCode Reg Name 

000 ORO 
001 DR1 
010 DR2 
011 DR3 
110 DR6 
111 DR7 

Do not use any other encoding 

When Interpreted a8 Test Register Field 

eeeCode Reg Name 

110 TR6 
111 TR7 

Do not use any other encoding 
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