intal 80386 Programmer’s
'Reference Manual

L GG ARV
‘nnnnnnnnq

)
WLl LI L L

TSN

N | Vi

) NSNS

h A V SN

/ ,./

e e

" AHEARN-WAHLSTR

ji
J ! {
Order Nuw:;qsas-om
P o S . 4

intel

LITERATURE
To order Intel literature write or call:
Intel Literature Sales Toll Free Number:
P.O. Box 58130 (800) 548-4725*

Santa Clara, CA 95052-8130
Use the order blank on the facing page or call our Toll Free Number listed above to order literature.

Remember to add your local sales tax and a 10% postage charge for U.S. and Canada customers, 20% for
customers outside the U.S. Prices are subject to change.

1988 HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design information.

**PRICE IN

NAME ORDER NUMBER U.S. DOLLARS
COMPLETE SET OF 8 HANDBOOKS 231003 $125.00
Save $50.00 off the retail price of $175.00
AUTOMOTIVE HANDBOOK 231792 $20.00
(Not included in handbook Set)
COMPONENTS QUALITY/RELIABILITY HANDBOOK 210997 $20.00
(Available in July)
EMBEDDED CONTROLLER HANDBOOK 210918 $23.00
(2 Volume Set)
MEMORY COMPONENTS HANDBOOK 210830 $18.00
MICROCOMMUNICATIONS HANDBOOK 231658 $22.00
MICROPROCESSOR AND PERIPHERAL HANDBOOK 230843 $25.00
(2 Volume Set)
MILITARY HANDBOOK 210461 $18.00
(Not included in handbook Set)
OEM BOARDS AND SYSTEMS HANDBOOK 280407 $18.00
PROGRAMMABLE LOGIC HANDBOOK 296083 $18.00
SYSTEMS QUALITY/RELIABILITY HANDBOOK 231762 $20.00
PRODUCT GUIDE 210846 N/C
Overview of Intel’s complete product lines
DEVELOPMENT TOOLS CATALOG 280199 N/C
INTEL PACKAGING OUTLINES AND DIMENSIONS 231369 N/C
Packaging types, number of leads, etc.
LITERATURE PRICE LIST 210620 N/C

List of Intel Literature

*Good in the U.S. and Canada

**These prices are for the U.S. and Canada only. In Europe and other international locations, please contact
your local Intel Sales Office or Distributor for literature prices.

intel

LITERATURE SALES ORDER FORM

NAME:

COMPANY:

ADDRESS:

CITY: STATE: ZIP:
COUNTRY:

PHONE NO.:)

ORDER NO. TITLE QTY. PRICE TOTAL
HEEEEE x
LIT T X
LITTTT] x
LI TP X
LIT T[] X
LI TT] X
HEEEEE x
LIT T X
LITT T X
LI T[T T] X

Subtotal

Must Add Your

Local Sales Tax

ue e approprinte posiago o bl — Postage
Total

Pay by Visa, MasterCard, American Express, Check, Money Order, or company purchase order pe

to Intel Literature Sales. Allow 2-4 weeks for delivery.

[vVisa [MasterCard [J American Express Expiration Date

Account No.

Signature:

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA

95052-8130

Call Toll Free: (800) 548-4725 for phone orders

Prices good until 12/31/88.
Source HB

International Customers outside the U.S
should contact their local Intel Sales Offic

listed in the back of most Intel literature.
European Literature Order Form in back

Mail To: Intel Literature Sales
PO. Box 58130
Santa Clara, CA 95052-8130

intel

80386
PROGRAMMER’S
REFERENCE MANUAL

1986

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH, Genius, i,?,
ICE, iCEL, iCS, iDBP, iDIS, RICE, iLBX, i, iMDDX, iMMX, Inboard, Insite, Intel,
intgl, intglBOS, Intel Certified, Intelevision, intgligent Identifier, intgligent
Programming, Intellec, Intellink, iOSP, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX,
iSDM, iSXM, KEPROM, Library Manager, MAPNET, MCS, Megachassis,
MICROMAINFRAME, MULTIBUS, MULTICHANNEL, MULTIMODULE,
MultiSERVER, ONCE, OpenNET, OTP, PC BUBBLE, Piug-A-Bubble, PROMPT,
Promware, QUEST, QueX, Quick-Pulse Programming, Ripplemode, RMX/80,
RUPI, Seamless, SLD, SugarCube, SupportNET, UPI, and VLSIiCEL, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical
suffix, 4-SITE.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Sales

P.O. Box 58130
Santa Clara, CA 95052-8130

©INTEL CORPORATION 1988 CG-1/18/88

TABLE OF CONTENTS

CHAPTER 1 Page
INTRODUCTION TO THE 80386
1.1 Organization of This Manualcccccoeviiinii s 1-1
1.1.1 Part I—Applications Programmingcccviiniiiiiiiinincseee e 1-2
1.1.2 Part ll—Systems Programmingcccceooiiiiiiiiiiiii e 1-3
1.1.8 Part ll—Compatibilitycccoririieiieeee e 1-4
1.1.4 Part IV—Instruction Set ..o e 1-4
1.1.5 APPENAICES ..eeiiiiie ettt e ea e e b e 1-4
1.2 Related Literatureooooeiiiiini e 1-5
1.3 Notational CONVENLIONS ccuiiiiieiiiiee ettt aae s 1-5
1.3.1 Data-Structure FOrmatscccceriiiiieriiiece e 1-5
1.3.2 Undefined Bits and Software Compatibilityccccoeviriiiiiniiiiniiiieeenn. 1-5
1.3.3 Instruction OPEerandscccccoevivriieiie i e e 1-6
1.3.4 Hexadecimal NUMDEISccccciiiiiiiiiecieieee et ee s ee e 1-7

PART I—APPLICATIONS PROGRAMMING

CHAPTER 2
BASIC PROGRAMMING MODEL

2.1 Memory Organization and Segmentationccccccceiiiiiinin e, 21
2.1.1 The “Flat” MOEIcccociiiiieeieiee et 2-2
2.1.2 The Segmented Modelc.ccoiiiiiiiiin e e 2-2
2.2 DAta TYPES ..eeeeieiriiiieie it s 2-2
2.3 REQISTOrS ...eoieiiiiceee e s 2-7
2.3.1 General RegiSterscccccciiiiriiiiiiiinc e 2-7
2.3.2 Segment REgIStErscccooiiiiiiiicriceeeec e 2-7
2.3.3 Stack Implementationcceocoiiiiiirie e 2-10
2.3.4 Flags REGIStErcccooiiiiiiiiiceii e e s 2-11
2.3.4.1 Status FIAgS ...coooeerriiiiiiieeeie ettt e 2-12
2.3.4.2 CONtrol FIag ...cceeeiuieiiieeeeieen et s e e 212
2.3.4.3 Instruction POINEErccoociiiiiii e 2-12
2.4 InStruction FOMMALcoooiiiiiiiiiie e s 2-13
2.5 Operand SEIECHONccocieeeriieiereeteee et et 2-14
2.5.1 Immediate OPerandsccceociieieireeeriierreer e ereee e et ne e e neeaas 2-15
2.5.2 Register OPErandsccceiireeririeriieiieneeesete e e s s e e e e nenens 2-15
2.5.3 MemOory OPerandscccccocceceeererirsiennesiceee e e ee e st se e en s e e e 2-16
2.5.3.1 SEgMENt SEIBCHONcvuumeimriesreiiienesiesesiesesssssssssssseeeasessssss e 2-16
2.5.3.2 Effective-Address Computationcccccceeeiiiciiiiiiiieenesinenn e 2-17
2.6 Interrupts and EXCEPLONSccccieviiiiieeriiirieeeie ettt 2-20

Intel TABLE OF CONTENTS

CHAPTER 3 Page
APPLICATIONS INSTRUCTION SET
3.1 Data Movement INStrUCtIONS ccccciiiiiiriieccr e 3-1
3.1.1 General-Purpose Data Movement Instructionsccccoceevveeecccieieeccnnnnn, 3-1
3.1.2 Stack Manipulation INStruCtionsc..cccceiiieiisiinnie e, 3-2
3.1.3 Type Conversion INStruCtionsccccccvvieiiiiiiiii e, 3-3
3.2 Binary Arithmetic INStructionsccccviiiiiiiiii e 3-5
3.2.1 Addition and Subtraction INStructionscccccccviiiiiiiireccineeicr e, 3-6
3.2.2 Comparison and Sign Change Instructioncccocovvvieisiciccenrcnnenneens 3-6
3.2.3 Multiplication INStrUCtIONSccoccuiiiiiice e 3-7
3.2.4 DiviSion INSIrUCLIONS c.eeiieiieeeetereer et n e eaeas 3-8
3.3 Decimal Arithmetic INStruCtionsccceeeciiieiicieecce e 3-8
3.3.1 Packed BCD Adjustment INStructionscccccccevvcereiiinrinienseee e, 39
3.3.2 Unpacked BCD Adjustment INStructionsccecceveeinienincnccnnrinneenens 39
3.4 Logical INSTTUCHONS c..eiiiiie e e e 3-9
3.4.1 Boolean Operation INSrUCHONSccccveieiireirierreecie e seree s e ee e 3-10
3.4.2 Bit Test and Modify InStructionscccoovivevieiniciiiieeccce e, 3-10
3.4.3 Bit Scan INStrUCtIONS c.cccimiiiiieee e 3-10
3.4.4 Shift and Rotate INStruCtionsccccevvviviieiiiiceeeeee e 3-11
3.4.4.1 Shift INStrUCHIONS eiiii e e 3-11
3.4.4.2 Double-Shift INSIrUCHIONScoiiiiiiirer e e 3-13
3.4.4.3 Rotate INSIrUCIONScceviiiiiiiieieerie ettt e 3-14
3.4.4.4 Fast “bit-blt” Using Double Shift Instructionsccoceeeciiiniininnenne 3-16
3.4.4.5 Fast Bit-String Insert and EXractc.cccoooveeiiiiniciieniiieee e 3-17
3.4.5 Byte-Set-On-Condition INStructionsccooeevininiiiiriincniecee e 3-20
3.4.6 TeSt INSIrUCIONoooiiiiieiiee et s e e e e 3-20
3.5 Control Transfer INStruCtioNScccevrieririiinreee e 3-20
3.5.1 Unconditional Transfer INStructionsccoeveeeeviiniceenneieecee e 3-20
3.5.1.1 Jump INSTFUCHONeeviiiiii it e 3-21
3.5.1.2 Call INStrUCLION ooiiiiiie et ce e e e e 3-21
3.5.1.3 Return and Return-From-Interrupt Instructionccooevveiiiiineceneeen. 3-22
3.5.2 Conditional Transfer INStructionscccocccoriiiiniiniiiie e 3-22
3.5.2.1 Conditional Jump INStrUCtionsccceiiiiieiiierece e, 3-22
3.5.2.2 LOOP INSTIUCLIONS ...ooiiniiiiiiiii et st s 3-22
3.5.2.3 Executing a Loop or Repeat Zero TiMEScecceeeeeceerecrereeriecrieneeseeeans 3-23
3.5.3 Software-Generated INtEITUPESc.covveeiieiceeeceee e, 3-24
3.6 String and Character Translation Instructionscccoocorieiiiiiiiinieecee 3-25
3.6.1 Repeat PrefiXes ...t e s 3-25
3.6.2 Indexing and Direction Flag Controlc.cccoocmeieeiirirenieeee e 3-26
3.6.3 String INSTIUCHIONS ...c..eeiicieiie ettt e e s 3-27
3.7 Instructions for Block-Structured Languagescccceveeeeeeeninninncieneecnnen 3-27
3.8 Flag Control INSrUCIONS cociiiiierceirer et e 3-33
3.8.1 Carry and Direction Flag Control Instructionsccccceeiiieniniieniicnicenne. 3-33
3.8.2 Flag Transfer INStructions ... 3-34
3.9 Coprocessor Interface INStructionscccecveiiiiieninniicrir e 3-35

Intel TABLE OF CONTENTS

Page
3.10 Segment Register INSrUCHIONSccoeveiiiiiiiiereee e 3-36
3.10.1 Segment-Register Transfer INStructionsccoceeiimniiiiiiiicniccienen, 3-37
3.10.2 Far Control Transfer INStructionsccccooveiiiiiiciiinnenceee e 3-37
3.10.3 Data Pointer INStruCtionsSccccoveeiiiiiiiiinee e 3-37
3.11 Miscellaneous INStruCtioNSccceeeviiiiiiieie et 3-38
3.11.1 Address Calculation INStructioncccceeecimniiriiiieeceee e 3-38
3.11.2 No-Operation INStruCtionccooeeieiiiriiiier e 3-38
3.11.3 Translate INSrUCHONccccoriiriiice e e 3-39

PART ll—SYSTEMS PROGRAMMING
CHAPTER 4
SYSTEMS ARCHITECTURE
4.1 Systems REQISIErScooiiiiiiiiiiieeceeee ettt 4-1
4.1.1 SYSEMS FIAQS ...eoeiiieieeii ittt et 4-1
4.1.2 Memory-Management RegiStErsc.cccciiceiriieiesinneeesee e 4-2
4.1.3 Control REGISIEIS ...ccooiiieiiee et e 4-3
4.1.4 Debug REQISterccccooiiiiiiiici e 4-4
4.1.5 Test Registers ... e 4-4
4.2 Systems INSrUCLIONScccocceeiiiiiiiiiiic e 4-5
CHAPTER 5
MEMORY MANAGEMENT

5.1 Segment Translationccccoocoeiiiiieieiie e 5-2
LT I T B =TT ¢ o (o) - T PRSP 5-2
5.1.2 DesCriptor TADIESccccceieiiieeccie sttt e e 5-4
B5.1.3 SEIBCIOIS ...ttt et ettt e e b e e e raaeans 5-5
5.1.4 Segment REIStErsccooiiiviiiiiiiiiiic s 5-6
5.2 Page Translationcccccoeiiiiriiinie et 5-7
5.2.1 Page Frame ..ottt ettt s 5-7
5.2.2 LiNEar AQAreSScccccieiiiririiereceereie s st e e s e e e e s e emesnnee s 5-7
5.2.3 Page TabIEScoeeieiiiiieie ettt e 5-8
5.2.4 Page-Table ENrESccoiiiiiiiiie et seee e 5-9
5.2.4.1 Page Frame AdAressccoeviimiiminiiniincincieisceese e 5-9
5.2.4.2 Present Bitcccccoieiiiiniiieiie et 5-9
5.2.4.3 Accessed and Dirty BitScccoooiiiiiiiiceee e 5-10
5.2.4.4 Read/Write and User/Supervisor BitScc..cccoovveiniminnimnnneercneeeenns 5-10
5.2.5 Page Translation Cachecccoiniiiiiiiiiiiiic s 5-11
5.3 Combining Segment and Page Translationcccccocvriiiicnennnccnsecnnenen. 5-11
5.3.1 “Flat” ArchiteCture ... e 5-11
5.3.2 Segments Spanning Several Pagesccccccoeceiiiiiiinennnin e 5-11
5.3.3 Pages Spanning Several SEgmMeNntsc...cccovviiiiiiiiiiiiici e 5-12

Intel TABLE OF CONTENTS

Page
5.3.4 Non-Aligned Page and Segment Boundariescccecverrcerensineenccnnnnnnn, 5-12
5.3.5 Aligned Page and Segment Boundariescccccevveininienciniscinnnicnns .. 5-13
5.3.6 Page-Table per SEgmentccccovviiniininiiinniine e 5-13
CHAPTER 6

PROTECTION
6.1 Why ProteCtion? ..ottt 6-1
6.2 Overview of 80386 Protection Mechanismscccccccvrcverennrnnnneensincsssenan. 6-1
6.3 Segment-Level Protectionccvviniiniiniciennini s 6-2
6.3.1 Descriptors Store Protection Parametersccccccvvvvevcininiiinnnincenneenn. 6-2
6.3.1.1 Type Checkingccccoeviiniiiniiiiicc e 6-3
6.3.1.2 Limit CheCKiNgcooiiiiiiiiciiiniti st 6-5
6.3.1.3 Privilege LEVEIS ..ottt 6-6
6.3.2 Restricting ACCESS 10 Datacccccceiiiiciiniiiieere et 6-7
6.3.2.1 Accessing Data in Code Segmentsc..ccocvvmiimcnreccncneennrccnsneneenes 6-9
6.3.3 Restricting Control Transfersccocoviiiiiiiciiere e 6-9
6.3.4 Gate Descriptors Guard Procedure Entry Pointscccccoeeeievicceeneciennnns 6-11
6.3.4.1 Stack SWItChINGccceiiiiieerece e s e 6-13
6.3.4.2 Returning from a ProCedurecccccoocerveriereneenneecniensesneessceeseesseessnns 6-16
6.3.5 Some Instructions are Reserved for Operating Systemccceccceeecinnnns 6-16
6.3.5.1 Privileged INStrUCtIONSceeiiiviiiccreircen e e s e 6-17
6.3.5.2 Sensitive INSIrUCLIONS ccocciiiii e 6-18
6.3.6 Instructions for Pointer Validationcccceveerreenieeeiinnenceeee e, 6-18
6.3.6.1 Descriptor Validationcccocceriiiminiiieniiiiciee e s 6-19
6.3.6.2 Pointer Integrity and RPLc.ccoviiiiiniiniiicir e 6-19
6.4 Page-Level ProteCtion ... 6-20
6.4.1 Page-Table Entries Hold Protection Parameterscccoviiiiiniinnns 6-20
6.4.1.1 Restricting Addressable DOMainccccoveecieiiiniiciccceecrenre s 6-20
6.4.1.2 Type CheCKING ...occcoerieieriieiereeee ettt r et ettt e nnas 6-21
6.4.2 Combining Protection of Both Levels of Page Tablescccccceevceriuennen. 6-21
6.4.3 Overrides to Page ProteCtionccccovvirirviiccenrcnrcrinncsescsse s see e 6-21
6.5 Combining Page and Segment Protectionccccoceiiiiiiiccccvcnnncnininineee 6-22
CHAPTER 7
MULTITASKING

7.1 Task State SEgMENt ..ot 7-1
7.2 TSS DESCHPIOr ..eeeeiiiieicieceeteerr s et s s s s s e se e se e sne e s an s snaeennean 7-3
7.3 Task REGISIErcooeeieeeeee e e e e 7-4
7.4 Task Gate DESCIIPLOrccccccvieiirrcercrrecs sttt ce s e st e e e ar e ae e e rre e e e e e e ennees 7-5
7.5 Task SWItChINGccociiriiiiiiicece e s sae e e sne s snnesane s 7-6
7.6 Task LINKINGooiiieeeimiiecee ettt st en e s n e s nneenne s 7-9
7.6.1 Busy Bit Prevents LOOPSccocerviriienrirrsnesssie e s e eseessae e srssennesnnens 7-10
7.6.2 Modifying Task LINKagescccocceeirrriernieceinreesee s s e eeee e 7-11

vi

|nte| TABLE OF CONTENTS

7.7 Task ADAress SPACEc.cccceveeriieriieiiisiterireeeer et s e s st esseesan e st e s re e sreenanes
7.7.1 Task Linear-to-Physical Space Mappingcccccovevricinniennersiee s e,
7.7.2 Task Logical AAAress SPaceccccccciiriiiinerisienineenresieesen e ssin s sressanas

CHAPTER 8
INPUT/OUTPUT

8.1 1/O AdAreSSINGcovereiriiciiiiriire ettt a e s rn e st
8.1.1 1/O AdAress SPacCecccciiiiiiiiiiiiiie et s s
8.1.2 Memory-Mapped I/O ...
8.2 1/O INSLIUCLIONScovicueiriiieiiiiiercrr et see s st re e ane e
8.2.1 Register I/O INStrUCtioNScccoeiviviiiniiniiicni e
8.2.2 Block I/O INStrUCtiONScccvviiiiiiciiin e
8.3 Protection and I/Oeecriecieinerrter e e e e
8.3.1 /O Privilege Level ...
8.3.2 1/O Permission Bit Mapccccevviiniiiiiicicrin e

CHAPTER 9
EXCEPTIONS AND INTERRUPTS

9.1 Identifying INtErruptscccomimnriiicc s
9.2 Enabling and Disabling INterruptsccoeveieiin i e
9.2.1 NMI Masks Further NMISccccociiiiiiininee e nseee s e
9.2.2 IF MasSks INTR ...ttt s es e e
9.2.3 RF Masks Debug Faultsccciiiiiniiniine e
9.2.4 MOV or POP to SS Masks Some Interrupts and Exceptions
9.3 Priority Among Simultaneous Interrupts and Exceptionsccccooceeeennncen.
9.4 Interrupt Descriptor Tableccccviiiiiieciiiee e
9.5 IDT DESCHPLOIS ...eoeicceieiiiiierecieeesereeeseenssnr e ee e senneesanassssneeseneessesesess smeeeaneens
9.6 Interrupt Tasks and Interrupt Proceduresccccocveviiimrcciencccennneeceen,
9.6.1 Interrupt ProCedurescccceeeviiiieiiiiitinnirie et ssee s e e
9.6.1.1 Stack of Interrupt Procedurecccoovvieeiiciciieni e,
9.6.1.2 Returning from an Interrupt Procedurecccoviiiniiineniiensicncceee
9.6.1.3 Flags Usage by Interrupt Procedurec..ccoviininnieciineennecsensinneeenne
9.6.1.4 Protection in Interrupt Proceduresccceiveevieerieniienn e
9.6.2 INterrupt TASKScccciiiiiiiiiece it et sr e san e
9.7 ErrOr GO ..ottt eses s e s s e e nae e
9.8 Exception ConditionSccccceeiiiiiniiieecie e e
9.8.1 Interrupt 0—Divide Errorooo oo
9.8.2 Interrupt 1—Debug EXCEPLiONSccciiiiiierimrinieec b
9.8.3 Interrupt 3—Breakpoint ...
9.8.4 Interrupt 4—OVerfIOWooiiieriirce e e
9.8.5 Interrupt 5—Bounds Checkcociiiieiiiiei e
9.8.6 Interrupt 6—Invalid OpPCOdecccocieriiiiiiicinn e
9.8.7 Interrupt 7—Coprocessor Not Availablecccccovevveeciiiiesinee,

vii

8-1
8-1
8-2
8-2
8-2
8-3
8-4
8-4
8-5

Intel TABLE OF CONTENTS

Page
9.8.8 Interrupt 8—Double Faultccooiiiiiii e, 9-13
9.8.9 Interrupt 9—Coprocessor Segment OVEITUNcccoecveeeeeereeeceeceee e 9-14
9.8.10 Interrupt 10—Invalid TSSccocoiiiiiieece e, 9-14
9.8.11 Interrupt 11—Segment Not Presentccccoviiiiiiiennieecie e, 9-15
9.8.12 Interrupt 12—Stack EXCEPioNccccveiviiiiiiiicieieeeee e, 9-16
9.8.13 Interrupt 13—General Protection Exceptionccccevviviviiieciceecciee e, 9-16
9.8.14 Interrupt 14—Page Faultcccoiiiiiiii e 9-17
9.8.14.1 Page Fault during Task SWItChccccciiiiiiiiiiicceee, 9-18
9.8.14.2 Page Fault with Inconsistent Stack Pointerc.ccccceeiiiiniiiiecieenn. 9-19
9.8.15 Interrupt 16—CoOprocessor Errorccoceeeviceeniieeisiirs e ceeeeesee e, 9-19
9.9 EXCEption SUMMAIYcooiiiiiiiiiiiieee ettt e 9-20
9.10 Error Code SUMMANYccociiiiiiiieeiee ettt ettt st s ae e e e eaenaesneaas 9-20
CHAPTER 10

INITIALIZATION .
10.1 Processor State after ReSetccoceiiiiiiiii it 10-1
10.2 Software Initialization for Real-Address Modecccccevviiiiiiiieercieeceeeee. 10-1
10.2.1 STACK weiiiiieiiie ettt e et ettt ee e e et e e eneeeneeennas 10-2
10.2.2 INterrupt TabIeooiiiiie e 10-2
10.2.3 First INStrUCLIONSoiiiiiiiiiiee e e 10-3
10.3 Switching to Protected MOdecoceociiiiiiiiiiinieee e 10-3
10.4 Software Initialization for Protected Modeccccccoiiiiiiiiiiiinicieciee, 10-3
10.4.1 Interrupt Descriptor Tableccoooriiiiiiiee e 10-3
10.4.2 STACK weiiieiiee ettt et aeeeate et e e eneeeneeenaas 10-3
10.4.3 Gilobal Descriptor Tableccccoeiiiiiiiiii e 10-4
10.4.4 Page TabIes ..o 10-4
10.4.5 First TASK ..eeeiiiiieeiii ittt ettt s 10-4
10.5 Initialization EXamPpIEooiiiiiiiiii e 10-5
10.6 TLB TESHNG .eeveiiiiiieiee et ettt et s st ae e 10-13
10.6.1 Structure of the TLBcooiiiiieeee et 10-13
10.6.2 TeSt REGISIErSooiiiiiie e e 10-13
10.6.3 TesSt OPErationsooooooiiiiiiiiiiee ettt e e e e e e et ee e e 10-16
CHAPTER 11
COPROCESSING AND MULTIPROCESSING

11.1 COPrOCESSING ...coveiiiiiiiiiiii ettt e s s e et eenae s 11-1
11.1.1 Coprocessor Identificationcccoooiiiiiiiii e 111
11.1.2 ESC and WAIT INSTrUCIONScoiiiiiiiiiiieie et 111
11.1.3 EM @nd MP FIAQSuceciiiiieeiieee ettt e st e an e enae e 11-2
11.1.4 The Task-Switched Flagccccooiiiiiiii e, 11-2
11.1.5 Coprocessor EXCEPLioNSccoiiiiiiiiiiiiii e e 11-3
11.1.5.1 Interrupt 7—Coprocessor Not Availableccccceeeiiieeiiiiiine, 11-3
11.1.5.2 Interrupt 9—Coprocessor Segment Overruncccecceceeeeeeceeeennnee. 11-3

viii

Intel TABLE OF CONTENTS

Page

11.1.5.3 Interrupt 16—Coprocessor Errorcccveveveecieieviiee e 11-4
11.2 General MUHIPrOCeSSINGceviiiiiiiiiieciee e e 11-4
11.2.1 LOCK and the LOCK# Signalccccccvmiiiieiiie e, 11-4
11.2.2 Automatic LOCKING oeiiiiiiiiii ettt 11-5
11.2.3 Cache Considerationsccc.cccoeviiiiiciiiiee e 11-6
CHAPTER 12

DEBUGGING
12.1 Debugging Features of the Architectureccocoiiniiiiiiiiiee 12-1
12.2 Debug RegiSters ... 12-2
12.2.1 Debug Address Registers (DRO-DR3)ccccceriieiiininiresieeesieeseeeneeeeenne 12-2
12.2.2 Debug Control Register (DR7)cccccoeviiiiiiiiriien et e 12-3
12.2.3 Debug Status Register (DRB)ccocceriiiiricirir et e srve e 12-4
12.2.4 Breakpoint Field Recognitionc.cccccoviiiiiiiiiiiiciniiicie e 12-5
12.3 Debug EXCEPHONScoocueiiiiieeiiie ettt 12-6
12.3.1 Interrupt 1—Debug EXCEPIONScooiiiiiiiiiiieececetrie e 12-6
12.3.1.1 Instruction Address Breakpointc.ccccceeeiieiiiiicviiee e 12-6
12.3.1.2 Data Address Breakpointcccoiiiiiriiiiiieen et 12-7
12.3.1.3 General Detect Faultcccooiiiiiiiiiie it 12-8
12.3.1.4 SiNGIe-StEP Trapocccieiieiicice et e e 12-8
12.3.1.5 Task Switch Breakpointccccccciiiiiiiiiiiieicceeeeeeeeeeeerre e 12-8
12.3.2 Interrupt 3—Breakpoint EXCEptioncocciiiieiiiciiireee e 12-9

PART lll—COMPATIBILITY

CHAPTER 13

EXECUTING 80286 PROTECTED-MODE CODE
13.1 80286 Code Executes as a Subset of the 80386cccoeviriveiiennen, 13-1
13.2 Two Ways to Execute 80286 Tasksccccovvereieiimiiciciiieceieen e 13-2
13.3 Differences from 80286cccoriiiiieiiiiiicee e 13-2
18.3.1 Wraparound of 80286 24-Bit Physical Address Spacec.cccccevrieeeenn. 13-2
13.3.2 Reserved Word of DeSCrPtOrcocceeiieieiriie et e 13-2
13.3.3 New Descriptor Type COAeSc.cccriiiimreiiiireee et e 13-2
13.3.4 Restricted Semantics 0f LOCKccooiiiiiiniireescerenseee e 13-3
13.3.5 Additional EXCEPHONScooiriiiiiiiiiieeeee et 13-3
CHAPTER 14

80386 REAL-ADDRESS MODE
14.1 Physical Address Formationccccceiieiiiiininii 14-1
14.2 Registers and INSruCtions ..o 14-2
14.3 Interrupt and Exception Handlingccoovrriieiiicien e 14-3
14.4 Entering and Leaving Real-Address Modecccccormiriieniniennciecnccsnennnn 14-3
14.4.1 Switching to Protected Modeccciiciiiiiiicciiiniin e 14-3

lntel TABLE OF CONTENTS

Page
14.5 Switching Back to Real-Address Modecccceviinininniiiicinicniceceecen, 14-4
14.6 Real-Address Mode EXCEPLIONScccociriciiiriiiiiieesiiiiieeee e e s s ssnree e e ee e 14-4
14.7 Differences from 8086cooiiciiiiiiiiiiciie it 14-4
14.8 Differences from 80286 Real-Address Modecccccevveiiienncennnienvnen s, 14-8
14.8.1 BUS LOCK ...ttt sttt e e s s tae s s e mnneaean 14-8
14.8.2 Location of First INStructioncccccceiviiinnvieeneeree e, 14-9
14.8.3 Initial Values of General RegiStersccoviiiiviiiieeeccccreeccer e 14-9
14.8.4 MSW INtIalizationccooeiereiiriieee ettt 149
CHAPTER 15

VIRTUAL 8086 MODE
15.1 Executing 8086 COdeccoiiiiiiiiiiiii i 15-1
15.1.1 Registers and INSruCtionsccoccueviieiiiiiiiiiiiiitne e 15-1
15.1.2 Linear Address FOrmationcoceirivcenriiinne e s 15-2
15.2 Structure of @ V86 TasKcccovciiiiriiiiiriccee et e 15-3
15.2.1 Using Paging for V86 Tasksccccccereerirriiniiienieeeeseieeeeeeeseeesnnaeea 15-4
15.2.2 Protection within @ V86 Taskc.cccccviiieiiiiiiiiirreccee e, 15-4
15.3 Entering and Leaving V86 Modeccociiiiiiiiiiinie e 15-5
15.3.1 Transitions Through Task SWItChescccccvrriiiirinnicerire e 15-6
15.3.2 Transitions Through Trap Gates and Interrupt Gatescccccevvriuneenee 15-6
15.4 Additional Sensitive INStrUCtiONScccoiiviiiiiiir e, 15-8
15.4.1 Emulating 8086 Operating System Callsc..cccccvviriinririenicccrreeccnieee, 15-8
15.4.2 Virtualizing the Interrupt-Enable Flagc.ccccevviiiiiiiiicicececrcie e 15-8
155 VIRtUAL [/O oottt e e e e e nae et e e enns 15-9
15.5.1 1/O-MappPed /O ..ottt ettt e s e nne e e e e 15-9
15.5.2 Memory-Mapped 1/O ...t 15-9
15.5.3 Special I/O BUfersooiiiiiieee e nae s 15-10
15.6 Differences from 8086ccoooiiiiier it 15-10
15.7 Differences from 80286 Real-Address Modeccccceevviieerrieeeccernsieneennae 156-12
CHAPTER 16
MIXING 16-BIT AND 32-BIT CODE

16.1 How the 80386 Implements 16-Bit and 32-Bit Featurescccccccueennne 16-2
16.2 Mixing 32-Bit.and 16-Bit Operationsccccccoirirriiicnieiieece e 16-2
16.3 Sharing Data Segments among Mixed Code Segmentsccccceeeceeennne 16-3
16.4 Transferring Control among Mixed Code Segmentsccccceecivricnrccnnnne. 16-4
16.4.1 Size of Code-Segment POINTErc.ccoiiiiiirriinierce et 16-4
16.4.2 Stack Management for Control Transferscccccccovvcrenirecevennccenncnnnn, 16-5
16.4.2.1 Controlling the Operand-Size for @ CALLccccoceivvieineninneeceeeee 16-6
16.4.2.2 Changing Size of Callcccociiiiiieeee et 16-6
16.4.3 Interrupt Control Transfersccvvceieieiiiciee e, 16-7
16.4.4 Parameter Translationc.cccccoiiiiiiiiiniiinie e 16-7
16.4.5 The Interface Procedurecccooiiiiiiinsiiniceesieeeeeee e eaessae e ee s 16-7

Intel TABLE OF CONTENTS

PART IV—INSTRUCTION SET

CHAPTER 17 Page
80386 INSTRUCTION SET
17.1 Operand-Size and Address-Size Attributescccocovvviivnciiricceicieieeee, 17-1
17.1.1 Default Segment Attributecccviieiiiiiiiiiee, 17-1
17.1.2 Operand-Size and Address-Size Instruction Prefixesc.ccccceevevvreennn. 17-1
17.1.3 Address-Size Attribute for Stackccccocerieeiiiieeii s 171
17.2 INStruction FOrMAtoiiiiii e st ennne e 17-2
17.2.1 ModR/M and SIB Bytesc.cccieiiiiiiieriiineten ettt 17-3
17.2.2 How to Read the Instruction Set Pagescccccccevviiiiieenncnnececiieennns 17-8
17.2.2.1 OPCOUE oottt et s e s e et e e s s e e be e s e e e saeeennn 17-8
17.2.2.2 INSIIUCHION ... e sane e s 17-9
17.2.2.3 ClOCKS ..eoeiiiiietiectte et ettt eee e e e s te e e s aaesae s e stae s e enneeenaeeerneennes 17-10
17.2.2.4 DeSCHPON ...ooiieeiiee ettt re et e e a e 17-11
17.2.2.5 OPEratioNoooeeeieiieecie et ete s e e s st e e e aessae s e s e e e s e e e s teaesnesnnns 17-11
17.2.2.6 DESCHPLON .ot e e e e e e nnne e ae e e ranes 17-15
17.2.2.7 Flags AffECtedcociiiieeee ettt e 17-16
17.2.2.8 Protected Mode EXCEPLiONScooeveiiiieieceeeeeecee et 17-16
17.2.2.9 Real Address Mode EXCeptionscceeeieeeeecieiecie e 17-16
17.2.2.10 Virtual-8086 Mode EXCEePIONScccccveviviiieciieceecree e 1717
Y Y PR 17-18
AAD ettt et e e s b e e teee et e b ae et e e ae e e enaeean 1719
AAM et te e s s e e e e e ae st e st ataeaaeenaeentannneeas 17-20
AAS et ettt sttt e et e st e e e e e teeree bt e et eeanteeesanenrennenan 17-21
ADC et e e e e e e sa b e e et e ene e re e e e eaneeaeeerennbeenn 17-22
ADD <ottt t e s e e b e e et e tesee b e s aeenaeeenae e rereaea 17-23
AND e et e e e e e e e e e e rareeeeree e teeeataeeaee e seeneee s 17-24
e = P OSSPt 17-25
BOUND ottt sttt e es et e e s s r e e e aesaaesbeesaeessenenneeneeneas 17-26
] T OSSP 17-27
121 = ST 17-28
= O OSSO UU P 17-29
2 OO UOPTSSR 17-31
[1 S T USROS 17-33
2 5 T S PRSP 17-35
072 1 TR 17-37
CBW/CWDE ...ttt ettt s e et e e te e e saesae e reen e e e e e er e nrasanean 17-44
(] 02 OO TUUOPURPRR 17-45
(0] 1 o T 17-46
0] I OO OSSR RTT 17-47
L] OO 17-48
M ettt s ee e et e e e e s e e et ae e beeebesaeesaeeeeneene e anenaennnes 17-49
(071, USRS 17-50
CMPS/CMPSB/CMPSW/CMPSD cociiiiiiiiceeeie st srteese e ee e svaane s 17-51

xi

Intel TABLE OF CONTENTS

Page
(03111 0 7] o 1 T 17-53
()Y NSRRI 17-54
DA S ot e e e e e e et ——e et e et —eee e ——eeeaanbttaeaabteaes e baraeeeeeaanarrnteeeararaann 17-55
0] (O RRRT 17-56
DIV ettt e e e et e ee e e e e e ee it et eeae s aa e e e an——eeaearbraeeeaanteeeeeeearrantaeenarraeeann 17-57
ENTER .oooetieeeteieeeecetteeeseaeseeesesarssesaessseeeesssssreesassseeseesssaseesesaesssasnrasesnsnnannnn 17-58
| RO 17-60
1] LY 2T 17-61
IMUL oottt ceceree e e s e beeeee s ee s beeeeeesaseee e ssaeeeseasseeeseanseeeesesansneeeensssnsnsaeenns 17-63
IN oot ee e e ——— e e e e e et e e e e ————eeeaaaeeaaaeaarartaeeeeeeaeeetaaaaeeeernraaaeens 17-65
|\ OO RR 17-66
INS/INSB/INSW/INSD ..ot cteeerie et sttt et e e st e neneeebe s e s 17-67
INT/INTO ettt ettt a e e e b e st e e be s bt e et e ae e e enes 17-69
IRET/IRETD .ooiiieeeieeeeree e et ceste s ss e seeesee e be e sae e tesaeesaeebe st e sateese e eaensenneeneenes 17-74
N Lo SRR 17-80
UM P ettt e e e e e ee—eeeeeeaateeeeaaatteeeatnnnteeeeaananraeeenares 17-83
(1Y | TSRO UTTRRORRTOR 17-88
17X = SOOI 17-89
L A oottt e e e e e e e ee e e e e e ——ree et et aeee b braaeaeanreeeeeabreeaaaannnreeeaeeaararaeannn 17-91
LEAVE ittt ee ettt e e ettt e e e e et e e e aa e e e e e e nareeaeenareeeeannrraeeeeneeataeasbene 17-93
LGDT/LIDT ittt ettt e st b e sae e s et saesaeene e st e s st eae e e sneaaaensannas 17-94
LGS/LSS/LDS/LES/LES ..ottt sttt st e esre e e s enas 17-96
[1 OSSO 17-98
LMW ittt ettt e et ee e e et e e e et e e s b e ee s e abe e e s eabeee e e nntnna e e annreeennrees 17-99
10 10 R 17-100
LODS/LODSB/LODSW/LODSD ...cccceiiieeiteeieneeeieeetessieeseesnesseseesneesessessseensans 17-102
[010] 7/ @0 eTe s Vo LT 17-104
LS oottt e —e e e eeee e e —————eeaeeeeeaaaba—————etaeseaeeseeast i arrarereenen 17-106
I Y 17-108
Y[XY 2O SRR 17-109
Y[1 RO e aeere et ea e e —abeaes 17-111
MOVS/MOVSB/MOVSW/MOVSD ooiiriririeneeie e sste e seee e see e aneeneas 17-112
LY, [0 157, GO 17-114
Y, [0 1Y 74 G U 17-115
YL T 17-116
| = TR 17-118
L] = 17-119
1 OO 17-120
(0] = SO SRR 17-121
(0] 1 T SUTPRRRRPR 17-122
OUTS/OUTSB/OUTSW/OUTSDoiiiiiiiiiiiieie e eree e e s e sane e 17-123
[0 =TT 17-125

Xii

Intel TABLE OF CONTENTS

Page
POPAJPOPAD ...ttt ar e st s et e e sn e e e e e e eamr e s 17-128
POPF/POPFED ...ttt r e s sr e srae e 17-130
PUSH e e e e e e e e s et ee e e e e e e et nre e aaan 17-131
PUSHA/PUSHADooiiieeeee ettt s e s s e e 17-133
PUSHF/PUSHFDoooiiiie ittt et eree e e e e s eeerneee s 17-135
RCL/RCR/ROL/ROR ...ttt e e 17-136
REP/REPE/REPZ/REPNE/REPNZ ..., 17-139
|2 1 = [PSP SR 17-142
S AHF e ee e e e rrna e e eaebar i aaraeaeteaennas 17-146
SAL/SAR/SHL/SHR ..ot ceeeeeseeete e aes st sanesnnsenns 17-147
5] 2] OSSR RUPPPIRt 17-150
SCAS/SCASB/SCASW/SCASD ...ccciiiieeeeeeieere et s e s 17-151
L] oo 17-153
SGDT/SIDT e e eee e e st ee e s et e e s sr e e e e e e nne e e e 17-154
5T | USSP 17-155
£ |1 ROt 17-157
ST I P 17-159
SIM O e e e e e e et —r e e e ee e e e e et arrraeee e e e st raeaaan 17-160
S PRSP 17-161
ST D ettt ee et e sttt e e e e e sea e e na—eaeaeaeaaeeaanatatetaeeeeeeaatanaraeeann 17-162
£ 1 U U SR 17-163
STOS/STOSB/STOSW/STOSDouveeeceeeeceeeeeeeeeeeseeseeseeessssensessssssssess s sesseees 17-164
£ I U 17-166
SUB .ottt e e e e e e e e ea s ——r et et et e e e e et b e tateeeeeeanasnnarananan 17-167
L =3 PP 17-168
VERR,VERW ...ttt et e e e e e san e s s e e s e e n e e e e aenneees 17-169
LA [O RRE 17-171
D (0 [C PP 17172
XLAT XLAT B et e r e e r e e e s e e e e e e ane e e e e s s enmnnes 17-173
D, (@] = T U UR PRSPPIt 17174
APPENDIX A

OPCODE MAP

APPENDIX B

COMPLETE FLAG CROSS-REFERENCE

APPENDIX C
STATUS FLAG SUMMARY

xiii

Intel TABLE OF CONTENTS

APPENDIX D
CONDITION CODES

APPENDIX E
INSTRUCTION FORMAT AND TIMING

Figures

Figure Title

1-1 Example Data StruCturec.cooo oot
2-1 Two-Component POINErc.cceiiiiiiiiiiicnie e
2-2 Fundamental Data TYPeSc..ccoceirriinieriiieeeiienre et
2-3 Bytes, Words, and Doublewords in MemMOryccccceieiiivreineincnennnne
2-4 80386 Data TYPES ...eveveerrreureeieirenreessesssssee st s sssne e ssasesssn e s e e ssneean
2-5 80386 Applications Register Set ..o
2-6 Use of Memory Segmentationcccoeccreeceeririirecreeree e
2-7 80386 StACK ...cceeeeereieieecrieiieiicre s eer e rar e ser e e rae s s amr e s b ae e s be e s e nareas
2-8 EFLAGS REQISIErcocceuveieieeeerreee et
2-9 Instruction Pointer Register ..o e
2-10 Effective Address Computationccccceeeeeeeriieiercee e s
3-1 PUSH ettt e e e e s n e e s e s e s be s s tae e sate e e eaaas
3-2 [0S o N S
3-3 PO e e r e e e e re e ne e aaeeesrneenane
3-4 POPA ..ttt s a s a e e re e e ne e aaeeneraeenan
3-5 Sign EXIENSION ...ooieiieiee e
3-6 SAL @NA SHL ..ot ane e
3-7 SHR e e s e n e e s re e e reeean
3-8 SAR e ae e et e e r e r e s e e e an e e e neeean
3-9 Using SAR to Simulate IDIVcoooiiiiiiicicreeeeee e
3-10 Shift Left DOUDIEooeiiirieeee e
3-11 Shift Right DOUbIEcooiiiiec e
K - = (0] SRR
R T T = {0] = S O PP RPN
EC s - S = {0 TS SO SRR
£ 1 T = {0 = OSSO PUR PSPPSR
3-16 Formal Definition of the ENTER Instructioncccccoeeiiniiiiiiniiiicenen,
3-17 Variable Access in Nested Proceduresccccocveeviiicieininninnccneenenenes
3-18 Stack Frame for MAIN at Level 1cccceeeicirire e
3-19 Stack Frame for Procedure Aocorieciriennrceieeccsrcve e cssneeesesnnes
3-20 Stack Frame for Procedure B at Level 3 Called from Acccceeveeeneeen.
3-21 Stack Frame for Procedure C at Level 3 Called from Bccccccenneeen.

Xiv

Page

TABLE OF CONTENTS

Figure

3-22
3-23
4-1
4-2
5-1

5-3
5-4
5-5

5-7
5-8
5-9
5-10
5-11
5-12
5-13
6-1

6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
7-1
7-2
7-3
7-4
7-5
7-6
8-1
8-2
9-1
9-2
9-3
9-4
9-5

Title Page
LAHF and SAHF ...ttt s e ae s 3-34
Flag Format for PUSHF and POPFccccoeiiiiniiininieecec e 3-35
Systems Flags of EFLAGS Registercc.ccovciiiiniiniiinirnceceeeeneene 4-2
Control RegISters ... 4-3
Address Translation OVervieWcccocvrrvmrisiecsiecresr e e sns 5-1
Segment Translationcccceveeviiiii e 5-2
General Segment-Descriptor Formatcccccerveneeciininnnsniiee e 5-3
Format of Not-Present DescCriptor ..o e 5-4
Descriptor Tables ..o e 5-5
Format of @ Selector ..o 5-6
Segment Registers ... 5-6
Format of a Linear AdAressccccevcrrririiincnienie e e 5-8
Page Translation ... 5-8
Format of a Page Table ENtrycccvvniniinnvnnennnisesee 5-9
Invalid Page Table Entryccccvviniicenininienieenn, e 5-10
80386 Addressing MechanisSmccccccviiiniiniiniinecrn e 5-12
Descriptor per Page Table ..o e 5-13
Protection Fields of Segment Descriptors (part 1 of 2)ccccoevciiiieennns 6-2
Protection Fields of Segment Descriptors (part 2 of 2)cccccceveiinnneen. 6-3
Levels Of Privilegeccoooiiciieie ettt 6-7
Privilege Check for Data ACCESSccceiinirenmiienieniinees e 6-8
Privilege Check for Control Transfer without Gateccccocovvernnnne 6-10
Format of 80386 Call Gateccccvviiriiniieeicnee e 6-11
Indirect Transfer via Call Gatec.c.ccorrverrereririen e 6-12
Privilege Check via Call Gateccccoceirveriiensirreer e 6-13
Initial Stack Pointers of TSS ...t 6-14
Stack Contents after an Interlevel Callc.ccoooeiieircinccinieecee e, 6-15
Protection Fields of Page Table Entriesccccccvvivinnininininnciiinne 6-21
80386 32-Bit Task State Segment ... 7-2
TSS Descriptor for 32-Bit TSScocceeieccircienrrercrrcie s s seeseesens 7-3
Task Registerccccoveeeirrcceeen e, eenereeeeeeenrreeseerrraesseanrrenanes 7-5
Task Gate DeSCHPIOrccccvieeiiiie e s s senne 7-6
Task Gate Indirectly Identifies Taskccccoocririiiiriciiir e 7-7
Partially-Overlapping Linear SPacescc.ccoerereriierieeneniesiensecrsenneennns 7-13
Memory-Mapped 1/O ... 8-3
1/O Address Bit Mapcccceoirimiirreceene et 8-6
IDT Register and Table ... 9-5
Pseudo-Descriptor Format for LIDT and SIDTccccceccevvcvieninnerncnnsenens 9-5
80386 IDT Gate DesCriptorsccccceivieeiniiniiniinisis e s 9-6
Interrupt Vectoring for Procedurescocccoeveiernenneniccneeensceeseneenae 9-7
Stack Layout after Exception of Interruptcccoovvevvcciniiecnnienicece, 9-8

XV

TABLE OF CONTENTS

10-1
10-2
10-3
10-4
12-1
14-1
15-1
15-2
15-3
16-1
17-1
17-2
17-3
17-4

Table

2-1
2-2
3-1

6-1
6-2
6-3
6-4
6-5
7-1
7-2
9-1
9-2
9-3
9-4
9-5
9-6
9-7
10-1

Title Page
Interrupt Vectoring for Taskscccceeiiiiiecnicinie e 9-9
Error Code Formatooocuiiioiiieeeee e 9-10
Page-Fault Error Code Formatccoeviiiiiiicniincns 9-18
CR2 FOrMALt ittt 9-19
Contents of EDX after RESETcccoieiiiieieeeeccee e e 10-2
Initial Contents Of CRO ooooiiiiii e 10-2
TLB SHUCIUIE ..ottt e e 10-14
Test RegiSters ..ot 10-15
Debug REGISTEISooocieiiciie e 12-3
Real-Address Mode Address Formationc.cecceeviiireniciiecennccieeennn. 14-2
V86 Mode Address FOrmationcccceevieieiesiinne s s e e seee e 15-2
Entering and Leaving an 8086 Programccccccorviiminneeesneeesnneesnneens 156-5
PL 0 Stack after Interrupt in V86 Taskccccccvriierieeciiinnen e 15-7
Stack after Far 16-Bit and 32-Bit Callsc.ccocevririeece e, 16-5
80386 INStruction FOrmMatccccoecceiriii it 17-2
ModR/M and SIB Byte FOrmatsccccreiiiririreecee e 17-4
Bit Offset for BIT[EAX, 21] oottt s 17-14
Memory Bit INEXiNgGcccooriiiiiiii 17-15

Tables

Title Page
Default Segment Register Selection Rulescccooieeveinieiiiiniiieens 217
80386 Reserved Exceptions and Interruptsc.ccceeeveeriiciieincccinennins 2-21
Bit Test and Modify INStrUCtIONScocviieieiee e 3-10
Interpretation of Conditional Transfersccccevoeriniiiniiniicee s 3-23
System and Gate Descriptor TYPESccvvverieririierieieerteeeeeee e 6-4
Useful Combinations of E, G, and B BitSc.covvvvviiiieeieiieeieiciieeeeeveeees 6-5
Interlevel Return ChECKS ccciiiiiiiiice et 6-17
Valid Descriptor Types for LSLcccviiiireeccie e 6-19
Combining Directory and Page Protectioncccoocviiiiiiiiiininns 6-22
Checks Made during a Task Switch ..., 7-9
Effect of Task Switch on BUSY, NT, and Back-Linkccccceecveeeennnn. 7-10
Interrupt and Exception ID ASSIGNMENTS ccooiveeiiieineiiee e 9-2
Priority Among Simultaneous Interrupts and Exceptionsccccecee. 94
Double-Fault Detection Classescccoocveeiiiiiinieneniee e 9-13
Double-Fault Definitioncccoveioiiiiiieie e 9-13
Conditions That Invalidate the TSS ..o 9-14
EXCeption SUMMArYoooiiiie e 9-20
Error-Code SUMMATYccooeiiiiiiiieecree e 9-21
Meaning of D, U, and W Bit Pairsccccccceriiiiiiiniien e, 10-15

Xvi

TABLE OF CONTENTS

Table

12-1
12-2
14-1
14-2
171
17-2
17-3
17-4
17-5
17-6

Title Page
Breakpoint Field Recognition EXamplesc.ccccoeveciinniiiinnnnicneenen. 12-5
Debug Exception Conditionsccceciviiiiiniiiiciiece e 12-6
80386 Real-Address Mode EXceptionscccccvvceviieeercieennien s, 14-5
New 80386 EXCEPLONSccccvviiiimiiiiiiiii it 14-8
Effective Size Atributes ..., 17-2
16-Bit Addressing Forms with the ModR/M Bytecccceviiiiiiiiinnnenes 17-5
32-Bit Addressing Forms with the MOdR/M Bytecccccoeiviiiiienenen, 17-6
32-Bit Addressing Forms with the SIB Byteccccocviiieiriiincinee. 17-7
Task Switch Times for EXCeptionscoccoviiriciiiniciiiereeeen e, 17-12
80386 EXCEPLIONSeviiiireiiiie it e 17-16

xvii

ol

CUSTOMER SUPPORT

CUSTOMER SUPPORT

Customer Support is Intel’s complete support service that provides Intel customers with Customer
Training, Software Support and Hardware Support.

After a customer purchases any system hardware or software product, service and support become
major factors in determining whether that product will continue to meet a customer’s expectations.
Such support requires an international support organization and a breadth of programs to meet a
variety of customer needs. Intel’s extensive customer support includes factory repair services as well as
worldwide field service offices providing hardware repair services, software support services and
customer training classes.

HARDWARE SUPPORT

Hardware Support Services provides maintenance on Intel supported products at board and system
level. Both field and factory services are offered. Services include several types of field maintenance
agreements, installation and warranty services, hourly contracted services (factory return for repair) and
specially negotiated support agreements for system integrators and large volume end-users having
unique service requirements. For more information contact your local Intel Sales Office.

SOFTWARE SUPPORT

Software Support Service provides maintenance on software packages via software support contracts
which include subscription services, information phone support, and updates. Consulting services can
be arranged for on-site assistance at the customer’s location for both short-term and long-term needs.
For complex products such as NDS Il or IZICE, orientation/installation packages are available
through membership in Insite User’s Library, where customer-submitted programs are catalogued and
made available for a minimum fee to members. For more information contact your local Intel Sales
Office.

CUSTOMER TRAINING

Customer Training provides workshops at customer sites (by agreement) and on a regularly scheduled
basis at Intel’s facilities. Intel offers a breadth of workshops on microprocessors, operating systems and
programming languages, etc. For more information on these classes contact the Training Center nearest
you.

TRAINING CENTER LOCATIONS

To obtain a complete catalog of our workshops, call the nearest Training Center in your area.

Boston (617) 692-1000 London (0793) 696-000
Chicago (312) 310-5700 Munich (089) 5389-1
San Francisco (415) 940-7800 Paris (01) 687-22-21
Washington, D.C. (301) 474-2878 Stockholm (468) 734-01-00
Israel (972) 349-491-099 Milan 39-2-82-44-071
Tokyo 03-437-6611 Benelux (Rotterdam) (10) 21-23-77
Osaka (Call Tokyo) 03-437-6611 Copenhagen (1) 198-033

Toronto, Canada (416) 675-2105 Hong Kong 5-215311-7

Introduction to the 80386 1

CHAPTER 1
INTRODUCTION TO THE 80386

The 80386 is an advanced 32-bit microprocessor optimized for multitasking operating systems
and designed for applications needing very high performance. The 32-bit registers and data
paths support 32-bit addresses and data types. The processor can address up to four gigabytes
of physical memory and 64 terabytes (2*¢ bytes) of virtual memory. The on-chip memory-
management facilities include address translation registers, advanced multitasking hardware,
a protection mechanism, and paged virtual memory. Special debugging registers provide
data and code breakpoints even in ROM-based software.

1.1 ORGANIZATION OF THIS MANUAL

This book presents the architecture of the 80386 in five parts:

Part I —Applications Programming
Part 11 —Systems Programming
Part II1 —Compatibility

Part IV —Instruction Set
Appendices

These divisions are determined in part by the architecture itself and in part by the different
ways the book will be used. As the following table indicates, the latter two parts are intended
as reference material for programmers actually engaged in the process of developing software
for the 80386. The first three parts are explanatory, showing the purpose of architectural
features, developing terminology and concepts, and describing instructions as they relate to
specific purposes or to specific architectural features.

Explanation Part | — Applications Programming
Part II — Systems Programming
Part lll — Compatibility

Reference Part IV — Instruction Set
Appendices

The first three parts follow the execution modes and protection features of the 80386 CPU.
The distinction between applications features and systems features is determined by the
protection mechanism of the 80386. One purpose of protection is to prevent applications
from interfering with the operating system; therefore, the processor makes certain registers
and instructions inaccessible to applications programs. The features discussed in Part I are
those that are accessible to applications; the features in Part II are available only to systems
software that has been given special privileges or in unprotected systems.

1-1

Intel INTRODUCTION TO THE 80386

The processing mode of the 80386 also determines the features that are accessible. The
80386 has three processing modes:

1. Protected Mode.
2. Real-Address Mode.
3. Virtual 8086 Mode.

Protected mode is the natural 32-bit environment of the 80386 processor. In this mode all
instructions and features are available.

Real-address mode (often called just “real mode”) is the mode of the processor immediately
after RESET. In real mode the 80386 appears to programmers as a fast 8086 with some
new instructions. Most applications of the 80386 will use real mode for initialization only.

Virtual 8086 mode (also called V86 mode) is a dynamic mode in the sense that the processor
can switch repeatedly and rapidly between V86 mode and protected mode. The CPU enters
V86 mode from protected mode to execute an 8086 program, then leaves V86 mode and
enters protected mode to continue executing a native 80386 program.

The features that are available to applications programs in protected mode and to all
programs in V86 mode are the same. These features form the content of Part I. The additional
features that are available to systems software in protected mode form Part II. Part III
explains real-address mode and V86 mode, as well as how to execute a mix of 32-bit and
16-bit programs.

Available in All Modes Part | — Applications Programming
Available in Protected Part 1| — Systems Programming
Mode Only

Compatibility Modes Part Il — Compatibility

1.1.1 Part I—Applications Programming

This part presents those aspects of the architecture that are customarily used by applications
programmers.

Chapter 2—Basic Programming Model: Introduces the models of memory organization.
Defines the data types. Presents the register set used by applications. Introduces the stack.
Explains string operations. Defines the parts of an instruction. Explains addressing calcula-
tions. Introduces interrupts and exceptions as they may apply to applications programming,.

1-2

Intel INTRODUCTION TO THE 80386

Chapter 3—Application Instruction Set: Surveys the instructions commonly used for appli-
cations programming. Considers instructions in functionally related groups; for example,
string instructions are considered in one section, while control-transfer instructions are
considered in another. Explains the concepts behind the instructions. Details of individual
instructions are deferred until Part IV, the instruction-set reference.

1.1.2 Part ll—Systems Programming

This part presents those aspects of the architecture that are customarily used by program-
mers who write operating systems, device drivers, debuggers, and other software that supports
applications programs in the protected mode of the 80386.

Chapter 4—Systems Architecture: Surveys the features of the 80386 that are used by systems
programmers. Introduces the remaining registers and data structures of the 80386 that were
not discussed in Part I. Introduces the systems-oriented instructions in the context of the
registers and data structures they support. Points to the chapter where each register, data
structure, and instruction is considered in more detail.

Chapter 5—Memory Management: Presents details of the data structures, registers, and
instructions that support virtual memory and the concepts of segmentation and paging.
Explains how systems designers can choose a model of memory organization ranging from
completely linear (“flat™) to fully paged and segmented.

Chapter 6—Protection: Expands on the memory management features of the 80386 to include
protection as it applies to both segments and pages. Explains the implementation of privilege
rules, stack switching, pointer validation, user and supervisor modes. Protection aspects of
multitasking are deferred until the following chapter.

Chapter 7—Multitasking: Explains how the hardware of the 80386 supports multitasking
with context-switching operations and intertask protection.

Chapter 8—Input/Output: Reveals the I/O features of the 80386, including 1/0O instruc-
tions, protection as it relates to I/O, and the I/O permission map.

Chapter 9—Exceptions and Interrupts: Explains the basic interrupt mechanisms of the 80386.
Shows how interrupts and exceptions relate to protection. Discusses all possible exceptions,
listing causes and including information needed to handle and recover from the exception.

Chapter 10—Initialization: Defines the condition of the processor after RESET or power-
up. Explains how to set up registers, flags, and data structures for either real-address mode
or protected mode. Contains an example of an initialization program.

Chapter 11—Coprocessing and Multiprocessing: Explains the instructions and flags that
support a numerics coprocessor and multiple CPUs with shared memory.

Chapter 12—Debugging: Tells how to use the debugging registers of the 80386.

1-3

Intel INTRODUCTION TO THE 80386

1.1.3 Part lll—Compatibility

Other parts of the book treat the processor primarily as a 32-bit machine, omitting for
simplicity its facilities for 16-bit operations. Indeed, the 80386 is a 32-bit machine, but its
design fully supports 16-bit operands and addressing, too. This part completes the picture of
the 80386 by explaining the features of the architecture that support 16-bit programs and
16-bit operations in 32-bit programs. All three processor modes are used to execute 16-bit
programs: protected mode can directly execute 16-bit 80286 protected mode programs, real
mode executes 8086 programs and real-mode 80286 programs, and virtual 8086 mode
executes 8086 programs in a multitasking environment with other 80386 protected-mode
programs. In addition, 32-bit and 16-bit modules and individual 32-bit and 16-bit operations
can be mixed in protected mode.

Chapter 13—Executing 80286 Protected-Mode Code: In its protected mode, the 80386 can
execute complete 80286 protected-mode systems, because 80286 capabilities are a subset of
80386 capabilities.

Chapter 14—80386 Real-Address Mode: Explains the real mode of the 80386 CPU. In this
mode the 80386 appears as a fast real-mode 80286 or fast 8086 enhanced with additional
instructions.

Chapter 15— Virtual 8086 Mode: The 80386 can switch rapidly between its protected mode
and V86 mode, giving it the ability to multiprogram 8086 programs along with “native
mode” 32-bit programs.

Chapter 16—Mixing 16-Bit and 32-Bit Code: Even within a program or task, the 80386 can
mix 16-bit and 32-bit modules. Furthermore, any given module can utilize both 16-bit and
32-bit operands and addresses.

1.1.4 Part IV—Instruction Set

Parts I, I1, and III present overviews of the instructions as they relate to specific aspects of
the architecture, but this part presents the instructions in alphabetical order, providing the
detail needed by assembly-language programmers and programmers of debuggers, compil-
ers, operating systems, etc. Instruction descriptions include algorithmic description of opera-
tion, effect of flag settings, effect on flag settings, effect of operand- or address-size attributes,
effect of processor modes, and possible exceptions.

1.1.5 Appendices

The appendices present tables of encodings and other details in a format designed for quick
reference by assembly-language and systems programmers.

1-4

l“tel INTRODUCTION TO THE 80386

1.2 RELATED LITERATURE
The following books contain additional material concerning the 80386 microprocessor:

e Introduction to the 80386 , order number 231252
* 80386 Hardware Reference Manual , order number 231732
o 80386 System Software Writer's Guide , order number 231499

* 80386 High Performance 32-bit Microprocessor with Integrated Memory Management
(Data Sheet), order number 231630

1.3 NOTATIONAL CONVENTIONS

This manual uses special notations for data-structure formats, for symbolic representation
of instructions, and for hexadecimal numbers. A review of these notations will make it easier
to read the manual.

1.3.1 Data-Structure Formats

In illustrations of data structures in memory, smaller addresses appear at the lower-right
part of the figure; addresses increase toward the left and upwards. Bit positions are numbered
from right to left. Figure 1-1 illustrates this convention.

1.3.2 Undefined Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as undefined.
When bits are marked as undefined (as illustrated in Figure 1-1), it is essential for compat-
ibility with future processors that software treat these bits as undefined. Software should
follow these guidelines in dealing with undefined bits:

e Do not depend on the states of any undefined bits when testing the values of registers
that contain such bits. Mask out the undefined bits before testing.

¢ Do not depend on the states of any undefined bits when storing them in memory or in
another register.

* Do not depend on the ability to retain information written into any undefined bits.

e When loading a register, always load the undefined bits as zeros or reload them with
values previously stored from the same register.

NOTE

Depending upon the values of undefined register bits will make software
dependent upon the unspecified manner in which the 80386 handles these
bits. Depending upon undefined values risks making software incompatible
with future processors that define usages for these bits. AVOID ANY
SOFTWARE DEPENDENCE UPON THE STATE OF UNDEFINED
80386 REGISTER BITS.

Intel INTRODUCTION TO THE 80386

DATA STRUCTURE
31 23 15 7 O «—BIT OFFSET
GREATEST ' ' 28
ADDRESS
24
' 20
.
- - 16
! 12
’ 8
UNDEFINED ' 4
' ’ . SMALLEST
BYTE3 BYTE2 ~ BYTE1 BYTEO | 0 appRess

BYTE OFFSET

G30117

- Figure 1-1. Example Data Structure

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of the 80386 Assembly Language
is used. In this subset, an instruction has the following format:

label: prefix mnemonic argumentl, argument2, argument3
where:

* A label is an identifier that is followed by a colon.
e A prefix is an optional reserved name for one of the instruction prefixes.

* A mnemonic is a reserved name for a class of instruction opcodes that have the same
function.

¢ The operands argumenti, argument?2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for data items. Operand identifiers are either reserved names
of registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example). When two operands are present in
an instruction that modifies data, the right operand is the source and the left operand is
the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

Intel INTRODUCTION TO THE 80386

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX
is the destination operand, and SUBTOTAL is the source operand.

1.3.4 Hexadecimal Numbers

Base 16 numbers are represented by a string of hexadecimal digits followed by the character
H. A hexadecimal digit is a character from the set (0, 1, 2, 3,4,5,6,7,8,9, A, B,C, D, E,
F). In some cases, especially in examples of program syntax, a leading zero is added if the
number would otherwise begin with one of the digits A-F. For example, OFH is equivalent
to the decimal number 15.

Part |
Applications Programming

Basic Programming Model

CHAPTER 2
BASIC PROGRAMMING MODEL

This chapter describes the 80386 application programming environment as seen by assembly
language programmers when the processor is executing in protected mode. The chapter
introduces programmers to those features of the 80386 architecture that directly affect the
design and implementation of 80386 applications programs. Other chapters discuss 80386
features that relate to systems programming or to compatibility with other processors of the
8086 family.

The basic programming model consists of these aspects:

e Memory organization and segmentation
e Data types

¢ Registers

¢ Instruction format

* Operand selection

¢ Interrupts and exceptions

Note that input/output is not included as part of the basic programming model. Systems
designers may choose to make I/O instructions available to applications or may choose to
reserve these functions for the operating system. For this reason, the 1/O features of the
80386 are discussed in Part II.

This chapter contains a section for each aspect of the architecture that is normally visible to
applications.

2.1 MEMORY ORGANIZATION AND SEGMENTATION

The physical memory of an 80386 system is organized as a sequence of 8-bit bytes. Each
byte is assigned a unique address that ranges from zero to a maximum of 232 —1
(4 gigabytes).

80386 programs, however, are independent of the physical address space. This means that
programs can be written without knowledge of how much physical memory is available and
without knowledge of exactly where in physical memory the instructions and data are located.

The model of memory organization seen by applications programmers is determined by
systems-software designers. The architecture of the 80386 gives designers the freedom to
choose a model for each task. The model of memory organization can range between the
following extremes:

* A “flat” address space consisting of a single array of up to 4 gigabytes.

» A segmented address space consisting of a collection of up to 16,383 linear address
spaces of up to 4 gigabytes each.

Intel BASIC PROGRAMMING MODEL

Both models can provide memory protection. Different tasks may employ different models
of memory organization. The criteria that designers use to determine a memory organization
model and the means that systems programmers use to implement that model are covered
in Part II—Systems Programming.

2.1.1 The “Flat”’ Model

In a “flat” model of memory organization, the applications programmer sees a single array
of up to 2?2 bytes (4 gigabytes). While the physical memory can contain up to 4 gigabytes,
it is usually much smaller; the processor maps the 4 gigabyte flat space onto the physical
address space by the address translation mechanisms described in Chapter 5. Applications
programmers do not need to know the details of the mapping.

A pointer into this flat address space is a 32-bit ordinal number that may range from 0 to
232 —1. Relocation of separately-compiled modules in this space must be performed by
systems software (e.g., linkers, locators, binders, loaders).

2.1.2 The Segmented Model

In a segmented model of memory organization, the address space as viewed by an applica-
tions program (called the logical address space) is a much larger space of up to 24 bytes
(64 terabytes). The processor maps the 64 terabyte logical address space onto the physical
address space (up to 4 gigabytes) by the address translation mechanisms described in
Chapter 5. Applications programmers do not need to know the details of this mapping.

Applications programmers view the logical address space of the 80386 as a collection of up
to 16,383 one-dimensional subspaces, each with a specified length. Each of these linear
subspaces is called a segment. A segment is a unit of contiguous address space. Segment
sizes may range from one byte up to a maximum of 232 bytes (4 gigabytes).

A complete pointer in this address space consists of two parts (see Figure 2-1):

1. A segment selector, which is a 16-bit field that identifies a segment.
2. An offset, which is a 32-bit ordinal that addresses to the byte level within a segment.

During execution of a program, the processor associates with a segment selector the physical
address of the beginning of the segment. Separately compiled modules can be relocated at
run time by changing the base address of their segments. The size of a segment is variable;
therefore, a segment can be exactly the size of the module it contains.

2.2 DATA TYPES

Bytes, words, and doublewords are the fundamental data types (refer to Figure 2-2). A byte
is eight contiguous bits starting at any logical address. The bits are numbered 0 through 7;
bit zero is the least significant bit.

2-2

I"Itel BASIC PROGRAMMING MODEL

i

| OFFSET OPERAND SELECTED SEGMENT

16 0

ISEGMENT=

G30117
Figure 2-1. Two-Component Pointer
7 0
BYTE BYTE
15 7 0
| woewevre | Lowsvie] woro
address n+1 address n
31 23 15 7 0
| HIGH WORD | LOW WORD | oouseworo
address n+3 ' address n+2 address+1 I address n

G30117

Figure 2-2. Fundamental Data Types

A word is two contiguous bytes starting at any byte address. A word thus contains 16 bits.
The bits of a word are numbered from O through 15; bit 0 is the least significant bit. The
byte containing bit 0 of the word is called the low byte; the byte containing bit 15 is called

the high byte.

Each byte within a word has its own address, and the smaller of the addresses is the address
of the word. The byte at this lower address contains the eight least significant bits of the
word, while the byte at the higher address contains the eight most significant bits.

A doubleword is two contiguous words starting at any byte address. A doubleword thus
contains 32 bits. The bits of a doubleword are numbered from 0 through 31; bit O is the least
significant bit. The word containing bit 0 of the doubleword is called the low word; the word
containing bit 31 is called the high word.

2-3

lntel BASIC PROGRAMMING MODEL

Each byte within a doubleword has its own address, and the smallest of the addresses is the
address of the doubleword. The byte at this lowest address contains the eight least signifi-
cant bits of the doubleword, while the byte at the highest address contains the eight most
significant bits. Figure 2-3 illustrates the arrangement of bytes within words and
doublewords.

Note that words need not be aligned at even-numbered addresses and doublewords need not
be aligned at addresses evenly divisible by four. This allows maximum flexibility in data
structures (e.g., records containing mixed byte, word, and doubleword items) and efficiency
in memory utilization. When used in a configuration with a 32-bit bus, actual transfers of
data between processor and memory take place in units of doublewords beginning at addresses
evenly divisible by four; however, the processor converts requests for misaligned words or
doublewords into the appropriate sequences of requests acceptable to the memory interface.
Such misaligned data transfers reduce performance by requiring extra memory cycles. For
maximum performance, data structures (including stacks) should be designed in such a way
that, whenever possible, word operands are aligned at even addresses and doubleword
operands are aligned at addresses evenly divisible by four. Due to instruction prefetching
and queuing within the CPU, there is no requirement for instructions to be aligned on word
or doubleword boundaries. (However, a slight increase in speed results if the target addresses
of control transfers are evenly divisible by four.)

MEMORY
BYTE VALUES

ADDRESS
E
D 7A
c FE WORD AT DOUBLE WORD AT

ADDRESS B ADDRESS A
B 06 CONTAINS FE06 CONTAINS 7AFE0636
A 36
BYTE AT ADDRESS
9 1F 9 CONTAINS 1F
8
7 23 WORD AT ADDRESS 6
6 oB CONTAINS 2308
5
4
3 74 WORD AT ADDRESS 2
CONTAINS 74CB
2 cB
WORD AT ADDRESS 1

1 31 CONTAINS CB31
0

NOTE: ALL VALUES IN HEXADECIMAL

G30117

Figure 2-3. Bytes, Words, and Doublewords in Memory

2-4

intel

BASIC PROGRAMMING MODEL

Although bytes, words, and doublewords are the fundamental types of operands, the proces-
sor also supports additional interpretations of these operands. Depending on the instruction
referring to the operand, the following additional data types are recognized:

Integer:

Ordinal:

Near Pointer:

Far Pointer:

String:

Bit field:

Bit string:

BCD:

A signed binary numeric value contained in a 32-bit doubleword,
16-bit word, or 8-bit byte. All operations assume a 2’s complement
representation. The sign bit is located in bit 7 in a byte, bit 15 in a
word, and bit 31 in a doubleword. The sign bit has the value zero for
positive integers and one for negative. Since the high-order bit is used
for a sign, the range of an 8-bit integer is — 128 through +127; 16-bit
integers may range from —32,768 through +32,767; 32-bit integers
may range from —23! through +23' —1. The value zero has a positive
sign.

An unsigned binary numeric value contained in a 32-bit doubleword,
16-bit word, or 8-bit byte. All bits are considered in determining
magnitude of the number. The value range of an 8-bit ordinal number
is 0-255; 16 bits can represent values from 0 through 65,535; 32 bits
can represent values from O through 232 —1.

A 32-bit logical address. A near pointer is an offset within a segment.
Near pointers are used in either a flat or a segmented model of memory
organization.

A 48-bit logical address of two components: a 16-bit segment selector
component and a 32-bit offset component. Far pointers are used by
applications programmers only when systems designers choose a
segmented memory organization.

A contiguous sequence of bytes, words, or doublewords. A string may
contain from zero bytes to 23> —1 bytes (4 gigabytes).

A contiguous sequence of bits. A bit field may begin at any bit position
of any byte and may contain up to 32 bits.

A contiguous sequence of bits. A bit string may begin at any bit position
of any byte and may contain up to 232 —1 bits.

A byte (unpacked) representation of a decimal digit in the range
0 through 9. Unpacked decimal numbers are stored as unsigned byte
quantities. One digit is stored in each byte. The magnitude of the
number is determined from the low-order half-byte; hexadecimal values
0-9 are valid and are interpreted as decimal numbers. The high-order
half-byte must be zero for multiplication and division; it may contain
any value for addition and subtraction.

2-5

intel

BASIC PROGRAMMING MODEL

Packed BCD:

A byte (packed) representation of two decimal digits, each in the range
0 through 9. One digit is stored in each half-byte. The digit in the high-
order half-byte is the most significant. Values 0-9 are valid in each
half-byte. The range of a packed decimal byte is 0-99.

Figure 2-4 graphically summarizes the data types supported by the 80386.

+N +1 [}
7 0 7 0 7 07 0
BYTE BINARY
INTEGER CODEDI I oo I | I |
SIGN BIT) } DE‘(:;'&'; BCD BCD B8CD
MAGNITODE DIGIT N DIGIT 1 DIGIT O
*N)
7 0 7 0 7 0/ 0
BYTE LLAS Rand PACKED“""T"‘] LARS LAAN LAASLALS
ORDINAL BCD oo I I [
MAGNITUDE MOST LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT
+1 0 +N +1 0
1514 87 0 7 7 0 0
WORD BYTE E'ITI'I"'I
INTEGER m STRING bl I I | I I
<\Lmss
SIGNBITTLCMZE)
MAGNITUDE
st ° % +2 GIGABITS 2 GloaBs
WORD LN LARS LA RAAI BIT
Soma [T stewe | L] I %% il
BITO
MAGNITUDE
+3 +2 +1 0 +3 +2 +1 0
31 1615 0 3 0
DOUBLEWORD NEAR
INTEGER Po:?ﬁ:rBEI;
SIGN BIT-h-MsB) [J
MAGNITUDE OFFSET
+3 +2 *1 0 +5 4 +3 2 0
31 0 48 0
DOUBLEWORD FAR
ORDINAL 48-BIT
POINTER
L | L 1 J
MAGNITUDE SELECTOR OFFSET
+5 +4 +3 +*2 +1 0
32-BIT WWWW
BIT FIELD
[BIT FIELD -
170 32 BITS

G30117

Figure 2-4. 80386 Data Types

2-6

Intel BASIC PROGRAMMING MODEL

2.3 REGISTERS

The 80386 contains a total of sixteen registers that are of interest to the applications
programmer. As Figure 2-5 shows, these registers may be grouped into these basic
categories:

1. General registers. These eight 32-bit general-purpose registers are used primarily to
contain operands for arithmetic and logical operations.

2. Segment registers. These special-purpose registers permit systems software designers to
choose either a flat or segmented model of memory organization. These six registers
determine, at any given time, which segments of memory are currently addressable.

3. Status and instruction registers. These special-purpose registers are used to record and
alter certain aspects of the 80386 processor state.

2.3.1 General Registers

The general registers of the 80386 are the 32-bit registers EAX, EBX, ECX, EDX, EBP,
ESP, ESI, and EDI. These registers are used interchangeably to contain the operands of
logical and arithmetic operations. They may also be used interchangeably for operands of
address computations (except that ESP cannot be used as an index operand).

As Figure 2-5 shows, the low-order word of each of these eight registers has a separate name
and can be treated as a unit. This feature is useful for handling 16-bit data items and for
compatibility with the 8086 and 80286 processors. The word registers are named AX, BX,
CX, DX, BP, SP, SI, and DI

Figure 2-5 also illustrates that each byte of the 16-bit registers AX, BX, CX, and DX has a
separate name and can be treated as a unit. This feature is useful for handling characters
and other 8-bit data items. The byte registers are named AH, BH, CH, and DH (high
bytes); and AL, BL, CL, and DL (low bytes).

All of the general-purpose registers are available for addressing calculations and for the
results of most arithmetic and logical calculations; however, a few functions are dedicated
to certain registers. By implicitly choosing registers for these functions, the 80386 architec-
ture can encode instructions more compactly. The instructions that use specific registers
include: double-precision multiply and divide, I/O, string instructions, translate, loop, varia-
ble shift and rotate, and stack operations.

2.3.2 Segment Registers

The segment registers of the 80386 give systems software designers the flexibility to choose
among various models of memory organization. Implementation of memory models is the
subject of Part II—Systems Programming. Designers may choose a model in which appli-
cations programs do not need to modify segment registers, in which case applications
programmers may skip this section.

2-7

BASIC PROGRAMMING MODEL

GENERAL REGISTERS

31 23 15 s
EAX
AX
AH 1 AL
' EDX
DX
DH | DL
' ECX
cx
1 cH] cL
- 4
EBX
BX
, BH | BL
EBP
8P
ES!
si
. ;
EDI
DI
.
ESP
J sP

15 7 0

4

CS (CODE SEGMENT)

SS (STACK SEGMENT)

SEGMENT
REGISTERS DS (DATA SEGMENT)

ES (DATA SEGMENT)

FS (DATA SEGMENT)

GS (DATA SEGMENT)

STATUS AND INSTRUCTION REGISTERS

31 23 15 7

i .

u *
EFLAGS

EIP (INSTRUCTION POINTER)
I

T u —

G30117

Figure 2-5. 80386 Applications Register Set

2-8

Intel BASIC PROGRAMMING MODEL

Complete programs generally consist of many different modules, each consisting of instruc-
tions and data. However, at any given time during program execution, only a small subset
of a program’s modules are actually in use. The 80386 architecture takes advantage of this
by providing mechanisms to support direct access to the instructions and data of the current
module’s environment, with access to additional segments on demand.

At any given instant, six segments of memory may be immediately accessible to an executing
80386 program. The segment registers CS, DS, SS, ES, FS, and GS are used to identify
these six current segments. Each of these registers specifies a particular kind of segment, as
characterized by the associated mnemonics (“code,” “data,” or “stack”) shown in
Figure 2-6. Each register uniquely determines one particular segment, from among the
segments that make up the program, that is to be immediately accessible at highest speed.

The segment containing the currently executing sequence of instructions is known as the
current code segment; it is specified by means of the CS register. The 80386 fetches all
instructions from this code segment, using as an offset the contents of the instruction pointer.
CS is changed implicitly as the result of intersegment control-transfer instructions (for
example, CALL and JMP), interrupts, and exceptions.

Subroutine calls, parameters, and procedure activation records usually require that a region
of memory be allocated for a stack. All stack operations use the SS register to locate the
stack. Unlike CS, the SS register can be loaded explicitly, thereby permitting programmers
to define stacks dynamically.

The DS, ES, FS, and GS registers allow the specification of four data segments, each
addressable by the currently executing program. Accessibility to four separate data areas
helps programs efficiently access different types of data structures; for example, one data
segment register can point to the data structures of the current module, another to the
exported data of a higher-level module, another to a dynamically created data structure, and
another to data shared with another task. An operand within a data segment is addressed
by specifying its offset either directly in an instruction or indirectly via general registers.

MODULE A MODULE A
CODE < I DATA
CS (CODE)

SS (STACK)

I DATA
STACK DS (DATA) _,———> STRUCTURE
1
ES (DATA)
FS (DATA)
DATA l DATA
STRUCTURE GS (DATA) STRUCTURE
2 3

G30117

Figure 2-6. Use of Memory Segmentation

2-9

Inté BASIC PROGRAMMING MODEL

Depending on the structure of data (e.g., the way data is parceled into one or more segments),
a program may require access to more than four data segments. To access additional
segments, the DS, ES, FS, and GS registers can be changed under program control during
the course of a program’s execution. This simply requires that the program execute an
instruction to load the appropriate segment register prior to executing instructions that access
the data.

The processor associates a base address with each segment selected by a segment register.
To address an element within a segment, a 32-bit offset is added to the segment’s base
address. Once a segment is selected (by loading the segment selector into a segment regis-
ter), a data manipulation instruction only needs to specify the offset. Simple rules define
which segment register is used to form an address when only an offset is specified.

2.3.3 Stack Implementation
Stack operations are facilitated by three registers:

1. The stack segment (SS) register. Stacks are implemented in memory. A system may
have a number of stacks that is limited only by the maximum number of segments. A
stack may be up to 4 gigabytes long, the maximum length of a segment. One stack is
directly addressable at a time—the one located by SS. This is the current stack, often
referred to simply as ““the’ stack. SS is used automatically by the processor for all stack
operations.

2. The stack pointer (ESP) register. ESP points to the top of the push-down stack (TOS).
It is referenced implicitly by PUSH and POP operations, subroutine calls and returns,
and interrupt operations. When an item is pushed onto the stack (see Figure 2-7), the

STACK SEGMENT

31 S BOTTOM OF STACK
-« (INITIAL ESP VALUE)

POP

TOP OF
. STACK

PUSH

G30117

Figure 2-7. 80386 Stack

2-10

Intel BASIC PROGRAMMING MODEL

processor decrements ESP, then writes the item at the new TOS. When an item is popped
off the stack, the processor copies it from TOS, then increments ESP. In other words,
the stack grows down in memory toward lesser addresses.

3. The stack-frame base pointer (EBP) register. The EBP is the best choice of register for
accessing data structures, variables and dynamically allocated work space within the
stack. EBP is often used to access elements on the stack relative to a fixed point on the
stack rather than relative to the current TOS. It typically identifies the base address of
the current stack frame established for the current procedure. When EBP is used as the
base register in an offset calculation, the offset is calculated automatically in the current
stack segment (i.e., the segment currently selected by SS). Because SS does not have to
be explicitly specified, instruction encoding in such cases is more efficient. EBP can also
be used to index into segments addressable via other segment registers.

2.3.4 Flags Register

The flags register is a 32-bit register named EFLAGS. Figure 2-8 defines the bits within
this register. The flags control certain operations and indicate the status of the 80386.

The low-order 16 bits of EFLAGS is named FLAGS and can be treated as a unit. This
feature is useful when executing 8086 and 80286 code, because this part of EFLAGS is
identical to the FLAGS register of the 8086 and the 80286.

16-BIT FLAGS REGISTER
A

31 23 15 7

ooooooooooooooooolxnlﬁ

o
4
<)
O

no
n=
mnn
nN

(=]

>
Mo

.

VIRTUAL 8086 MODE —x-| |
RESUME FLAG = X

NESTED TASK FLAG—X
170 PRIVILEGE LEVEL—X
OVERFLOW=—$S
DIRECTION FLAG—C
INTERRUPT ENABLE—X
TRAP FLAG—S

SIGN FLAG—S

ZERO FLAG—S
AUXILIARY CARRY— S
PARITY FLAG —S
CARRY FLAG —S

S = STATUS FLAG, C = CONTROL FLAG, X = SYSTEM FLAG

NOTE: 0 OR 1 INDICATES INTEL RESERVED. DO NOT DEFINE.

G30117

Figure 2-8. EFLAGS Register

2-1

Intel BASIC PROGRAMMING MODEL

The flags may be considered in three groups: the status flags, the control flags, and the
systems flags. Discussion of the systems flags is delayed until Part II.

2.3.4.1 STATUS FLAGS

The status flags of the EFLAGS register allow the results of one instruction to influence
later instructions. The arithmetic instructions use OF, SF, ZF, AF, PF, and CF. The SCAS
(Scan String), CMPS (Compare String), and LOOP instructions use ZF to signal that their
operations are complete. There are instructions to set, clear, and complement CF before
execution of an arithmetic instruction. Refer to Appendix C for definition of each status
flag.

2.3.4.2 CONTROL FLAG
The control flag DF of the EFLAGS register controls string instructions.
DF (Direction Flag, bit 10)

Setting DF causes string instructions to auto-decrement; that is, to process strings from
high addresses to low addresses. Clearing DF causes string instructions to auto-
increment, or to process strings from low addresses to high addresses.

2.3.4.3 INSTRUCTION POINTER

The instruction pointer register (EIP) contains the offset address, relative to the start of the
current code segment, of the next sequential instruction to be executed. The instruction pointer
is not directly visible to the programmer; it is controlled implicitly by control-transfer
instructions, interrupts, and exceptions.

As Figure 2-9 shows, the low-order 16 bits of EIP is named IP and can be used by the
processor as a unit. This feature is useful when executing instructions designed for the 8086
and 80286 processors.

16-BIT IP REGISTER

31 23 15 7 0
| ' EIP (INSTRUCTION POINTER) ']

G30117

Figure 2-9. Instruction Pointer Register

2-12

ntel BASIC PROGRAMMING MODEL

2.4 INSTRUCTION FORMAT

The information encoded in an 80386 instruction includes a specification of the operation to
be performed, the type of the operands to be manipulated, and the location of these operands.
If an operand is located in memory, the instruction must also select, explicitly or implicitly,
which of the currently addressable segments contains the operand.

80386 instructions are composed of various elements and have various formats. The exact
format of instructions is shown in Appendix B; the elements of instructions are described
below. Of these instruction elements, only one, the opcode, is always present. The other
elements may or may not be present, depending on the particular operation involved and on
the location and type of the operands. The elements of an instruction, in order of occurrence
are as follows:

Prefixes—one or more bytes preceding an instruction that modify the operation of the
instruction. The following types of prefixes can be used by applications programs:

1. Segment override—explicitly specifies which segment register an instruction should
use, thereby overriding the default segment-register selection used by the 80386 for
that instruction.

Address size—switches between 32-bit and 16-bit address generation.
3. Operand size—switches between 32-bit and 16-bit operands.

Repeat—used with a string instruction to cause the instruction to act on each element
of the string.

Opcode—specifies the operation performed by the instruction. Some operations have
several different opcodes, each specifying a different variant of the operation.

Register specifier—an instruction may specify one or two register operands. Register
specifiers may occur either in the same byte as the opcode or in the same byte as the
addressing-mode specifier.

Addressing-mode specifier—when present, specifies whether an operand is a register or
memory location; if in memory, specifies whether a displacement, a base register, an
index register, and scaling are to be used.

SIB (scale, index, base) byte—when the addressing-mode specifier indicates that an
index register will be used to compute the address of an operand, an SIB byte is included
in the instruction to encode the base register, the index register, and a scaling factor.

Displacement—when the addressing-mode specifier indicates that a displacement will
be used to compute the address of an operand, the displacement is encoded in the
instruction. A displacement is a signed integer of 32, 16, or eight bits. The eight-bit
form is used in the common case when the displacement is sufficiently small. The
processor extends an eight-bit displacement to 16 or 32 bits, taking into account the
sign.

Immediate operand—when present, directly provides the value of an operand of the
instruction. Immediate operands may be 8, 16, or 32 bits wide. In cases where an eight-
bit immediate operand is combined in some way with a 16- or 32-bit operand, the
processor automatically extends the size of the eight-bit operand, taking into account
the sign.

Intel BASIC PROGRAMMING MODEL

2.5 OPERAND SELECTION

An instruction can act on zero or more operands, which are the data manipulated by the
instruction. An example of a zero-operand instruction is NOP (no operation). An operand
can be in any of these locations:

o In the instruction itself (an immediate operand)

« In a register (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP in the case of 32-bit
operands; AX, BX, CX, DX, SI, DI, SP, or BP in the case of 16-bit operands; AH, AL,
BH, BL, CH, CL, DH, or DL in the case of 8-bit operands; the segment registers; or
the EFLAGS register for flag operations)

¢ In memory
+ AtanI/O port

Immediate operands and operands in registers can be accessed more rapidly than operands
in memory since memory operands must be fetched from memory. Register operands are
available in the CPU. Immediate operands are also available in the CPU, because they are
prefetched as part of the instruction.

Of the instructions that have operands, some specify operands implicitly; others specify
operands explicitly; still others use a combination of implicit and explicit specification; for
example: '

Implicit operand: AAM

By definition, AAM (ASCII adjust for multiplication) operates on the contents of the
AX register.

Explicit operand: XCHG EAX, EBX
The operands to be exchanged are encoded in the instruction after the opcode.
Implicit and explicit operands: PUSH COUNTER

The memory variable COUNTER (the explicit operand) is copied to the top of the stack
(the implicit operand).

Note that most instructions have implicit operands. All arithmetic instructions, for example,
update the EFLAGS register.

An 80386 instruction can explicitly reference one or two operands. Two-operand instruc-
tions, such as MOV, ADD, XOR, etc., generally overwrite one of the two participating
operands with the result. A distinction can thus be made between the source operand (the
one unaffected by the operation) and the destination operand (the one overwritten by the
result).

2-14

htel BASIC PROGRAMMING MODEL

For most instructions, one of the two explicitly specified operands—either the source or the
destination—can be either in a register or in memory. The other operand must be in a regis-
ter or be an immediate source operand. Thus, the explicit two-operand instructions of the
80386 permit operations of the following kinds:

e Register-to-register

¢ Register-to-memory

¢ Memory-to-register

¢ Immediate-to-register
¢ Immediate-to-memory

Certain string instructions and stack manipulation instructions, however, transfer data from
memory to memory. Both operands of some string instructions are in memory and are
implicitly specified. Push and pop stack operations allow transfer between memory operands
and the memory-based stack.

2.5.1 Immediate Operands

Certain instructions use data from the instruction itself as one (and sometimes two) of the
operands. Such an operand is called an immediate operand. The operand may be
32-, 16-, or 8-bits long. For example:

SHR PATTERN, 2

One byte of the instruction holds the value 2, the number of bits by which to shift the
variable PATTERN.

TEST PATTERN, OFFFFOOFFH

A doubleword of the instruction holds the mask that is used to test the variable PATTERN.

2.5.2 Register Operands

Operands may be located in one of the 32-bit general registers (EAX, EBX, ECX, EDX,
ESI, EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI, DI,
SP, or BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL,
or DL).

The 80386 has instructions for referencing the segment registers (CS, DS, ES, SS, FS, GS).
These instructions are used by applications programs only if systems designers have chosen
a segmented memory model.

The 80386 also has instructions for referring to the flag register. The flags may be stored
on the stack and restored from the stack. Certain instructions change the commonly modified
flags directly in the EFLAGS register. Other flags that are seldom modified can be modified
indirectly via the flags image in the stack.

2-15

Intel BASIC PROGRAMMING MODEL

2.5.3 Memory Operands

Data-manipulation instructions that address operands in memory must specify (either directly
or indirectly) the segment that contains the operand and the offset of the operand within the
segment. However, for speed and compact instruction encoding, segment selectors are stored
in the high speed segment registers. Therefore, data-manipulation instructions need to specify
only the desired segment register and an offset in order to address a memory operand.

An 80386 data-manipulation instruction that accesses memory uses one of the following
methods for specifying the offset of a memory operand within its segment:

1. Most data-manipulation instructions that access memory contain a byte that explicitly
specifies the addressing method for the operand. A byte, known as the modR /M byte,
follows the opcode and specifies whether the operand is in a register or in memory. If
the operand is in memory, the address is computed from a segment register and any of
the following values: a base register, an index register, a scaling factor, a displacement.
When an index register is used, the modR /M byte is also followed by another byte that
identifies the index register and scaling factor. This addressing method is the most
flexible.

2. A few data-manipulation instructions implicitly use specialized addressing methods:

e For a few short forms of MOV that implicitly use the EAX register, the offset of
the operand is coded as a doubleword in the instruction. No base register, index
register, or scaling factor are used.

o String operations implicitly address memory via DS:ESI, (MOVS, CMPS, OUTS,
LODS, SCAS) or via ES:EDI (MOVS, CMPS, INS, STOS).

e Stack operations implicitly address operands via SS:ESP registers; e.g., PUSH, POP,
PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF, POPFD, CALL,
RET, IRET, IRETD, exceptions, and interrupts.

2.5.3.1 SEGMENT SELECTION

Data-manipulation instructions need not explicitly specify which segment register is used.
For all of these instructions, specification of a segment register is optional. For all memory
accesses, if a segment is not explicitly specified by the instruction, the processor automati-
cally chooses a segment register according to the rules of Table 2-1. (If systems designers
have chosen a flat model of memory organization, the segment registers and the rules that
the processor uses in choosing them are not apparent to applications programs.)

There is a close connection between the kind of memory reference and the segment in which
that operand resides. As a rule, a memory reference implies the current data segment (i.e.,
the implicit segment selector is in DS). However, ESP and EBP are used to access items on
the stack; therefore, when the ESP or EBP register is used as a base register, the current
stack segment is implied (i.e., SS contains the selector).

2-16

Intel BASIC PROGRAMMING MODEL

Table 2-1. Default Segment Register Selection Rules

Segment
Memory Reference Needed Register Implicit Segment Selection Rule
Used

Instructions Code (CS) Automatic with instruction prefetch

Stack Stack (SS) All stack pushes and pops. Any
memory reference that uses ESP or
EBP as a base register.

Local Data Data (DS) All data references except when
relative to stack or string
destination.

Destination Strings Extra (ES) Destination of string instructions.

Special instruction prefix elements may be used to override the default segment selection.
Segment-override prefixes allow an explicit segment selection. The 80386 has a segment-
override prefix for each of the segment registers. Only in the following special cases is there
an implied segment selection that a segment prefix cannot override:

e The use of ES for destination strings in string instructions.
¢ The use of SS in stack instructions.

e The use of CS for instruction fetches.

2.5.3.2 EFFECTIVE-ADDRESS COMPUTATION

The modR /M byte provides the most flexible of the addressing methods, and instructions
that require a modR /M byte as the second byte of the instruction are the most common in
the 80386 instruction set. For memory operands defined by modR /M, the offset within the
desired segment is calculated by taking the sum of up to three components:

* A displacement element in the instruction.
e A base register.

e An index register. The index register may be automatically multiplied by a scaling factor
of 2, 4, or 8.

The offset that results from adding these components is called an effective address. Each of
these components of an effective address may have either a positive or negative value. If the
sum of all the components exceeds 22, the effective address is truncated to 32 bits.
Figure 2-10 illustrates the full set of possibilities for modR /M addressing.

2-17

|nte| BASIC PROGRAMMING MODEL

SEGMENT + BASE | (INDEX ¥ SCALE) + DISPLACEMENT
EAX EAX
cs EAX Eox 1
ss ECxX EDX
5 EDX 2 NO DISPLACEMENT
S 3+ EBx »+< EBX A x + 8-BIT DISPLACEMENT
ES ESP 4 32-BIT DISPLACEMENT
FS EBP
EBP
GS ESI
ESI e 8
EDI

G30117

Figure 2-10. Effective Address Computation

The displacement component, because it is encoded in the instruction, is useful for fixed
aspects of addressing; for example:

e Location of simple scalar operands.
* Beginning of a statically allocated array.
e Offset of an item within a record.

The base and index components have similar functions. Both utilize the same set of general
registers. Both can be used for aspects of addressing that are determined dynamically; for
example:

e Location of procedure parameters and local variables in stack.

e The beginning of one record among several occurrences of the same record type or in
an array of records.

e The beginning of one dimension of multiple dimension array.
* The beginning of a dynamically allocated array.

The uses of general registers as base or index components differ in the following respects:

e ESP cannot be used as an index register.

*» When ESP or EBP is used as the base register, the default segment is the one selected
by SS. In all other cases the default segment is DS.

The scaling factor permits efficient indexing into an array in the common cases when array
elements are 2, 4, or 8 bytes wide. The shifting of the index register is done by the processor
at the time the address is evaluated with no performance loss. This eliminates the need for
a separate shift or multiply instruction.

Intel BASIC PROGRAMMING MODEL

The base, index, and displacement components may be used in any combination; any of these
components may be null. A scale factor can be used only when an index is also used. Each
possible combination is useful for data structures commonly used by programmers in high-
level languages and assembly languages. Following are possible uses for some of the various
combinations of address components.

DISPLACEMENT

The displacement alone indicates the offset of the operand. This combination is used to
directly address a statically allocated scalar operand. An 8-bit, 16-bit, or 32-bit displace-
ment can be used.

BASE

The offset of the operand is specified indirectly in one of the general registers, as for
“based” variables.

BASE + DISPLACEMENT

A register and a displacement can be used together for two distinct purposes:

1. Index into static array when element size is not 2, 4, or 8 bytes. The displacement
component encodes the offset of the beginning of the array. The register holds the
results of a calculation to determine the offset of a specific element within the array.

2. Access item of a record. The displacement component locates an item within record.
The base register selects one of several occurrences of record, thereby providing a
compact encoding for this common function.

An important special case of this combination, is to access parameters in the procedure
activation record in the stack. In this case, EBP is the best choice for the base register,
because when EBP is used as a base register, the processor automatically uses the stack
segment register (SS) to locate the operand, thereby providing a compact encoding for
this common function.

(INDEX * SCALE) + DISPLACEMENT

This combination provides efficient indexing into a static array when the element size is
2, 4, or 8 bytes. The displacement addresses the beginning of the array, the index register
holds the subscript of the desired array element, and the processor automatically converts
the subscript into an index by applying the scaling factor.

BASE + INDEX + DISPLACEMENT

Two registers used together support either a two-dimensional array (the displacement
determining the beginning of the array) or one of several instances of an array of records
(the displacement indicating an item in the record).

2-19

lntel BASIC PROGRAMMING MODEL

BASE + (INDEX * SCALE) + DISPLACEMENT

This combination provides efficient indexing of a two-dimensional array when the elements
of the array are 2, 4, or 8 bytes wide.

2.6 INTERRUPTS AND EXCEPTIONS
The 80386 has two mechanisms for interrupting program execution:

1. Exceptions are synchronous events that are the responses of the CPU to certain condi-
tions detected during the execution of an instruction.

2. Interrupts are asynchronous events typically triggered by external devices needing
attention.

Interrupts and exceptions are alike in that both cause the processor to temporarily suspend
its present program execution in order to execute a program of higher priority. The major
distinction between these two kinds of interrupts is their origin. An exception is always
reproducible by re-executing with the program and data that caused the exception, whereas
an interrupt is generally independent of the currently executing program.

Application programmers are not normally concerned with servicing interrupts. More infor-
mation on interrupts for systems programmers may be found in Chapter 9. Certain excep-
tions, however, are of interest to applications programmers, and many operating systems
give applications programs the opportunity to service these exceptions. However, the operat-
ing system itself defines the interface between the applications programs and the exception
mechanism of the 80386.

Table 2-2 highlights the exceptions that may be of interest to applications programmers.

» A divide error exception results when the instruction DIV or IDIV is executed with a
zero denominator or when the quotient is too large for the destination operand. (Refer
to Chapter 3 for a discussion of DIV and IDIV.)

* The debug exception may be reflected back to an applications program if it results from
the trap flag (TF).

» A breakpoint exception results when the instruction INT 3 is executed. This instruction
is used by some debuggers to stop program execution at specific points.

e An overflow exception results when the INTO instruction is executed and the OF
(overflow) flag is set (after an arithmetic operation that set the OF flag). (Refer to
Chapter 3 for a discussion of INTO).

¢ A bounds check exception results when the BOUND instruction is executed and the
array index it checks falls outside the bounds of the array. (Refer to Chapter 3 for a
discussion of the BOUND instruction.)

« Invalid opcodes may be used by some applications to extend the instruction set. In such
a case, the invalid opcode exception presents an opportunity to emulate the opcode.

2-20

lnté BASIC PROGRAMMING MODEL

Table 2-2. 80386 Reserved Exceptions and Interrupts

Vector Number Description

Divide Error

Debug Exceptions
NMUInterrupt <o

Breakpoint

INTO Detected Overflow

BOUND Range Exceeded

Invalid Opcode

BNONAWN = O

TS
Se

Page Fault -
“{reserved)
Coprocessor Err
eserved) ..

» The “coprocessor not available” exception occurs if the program contains instructions
for a coprocessor, but no coprocessor is present in the system.

e A coprocessor error is generated when a coprocessor detects an illegal operation.

The instruction INT generates an interrupt whenever it is executed; the processor treats this
interrupt as an exception. The effects of this interrupt (and the effects of all other excep-
tions) are determined by exception handler routines provided by the application program or
as part of the systems software (provided by systems programmers). The INT instruction
itself is discussed in Chapter 3. Refer to Chapter 9 for a more complete description of
exceptions.

2-21

Applications Instruction Set

CHAPTER 3
APPLICATIONS INSTRUCTION SET

This chapter presents an overview of the instructions which programmers can use to write
application software for the 80386 executing in protected virtual-address mode. The instruc-
tions are grouped by categories of related functions.

The instructions not discussed in this chapter are those that are normally used only by
operating-system programmers. Part II describes the operation of these instructions.

The descriptions in this chapter assume that the 80386 is operating in protected mode with
32-bit addressing in effect; however, all instructions discussed are also available when 16-bit
addressing is in effect in protected mode, real mode, or virtual 8086 mode. For any differ-
ences of operation that exist in the various modes, refer to Chapter 13, Chapter 14, or
Chapter 15.

The instruction dictionary in Chapter 17 contains more detailed descriptions of all instruc-
tions, including encoding, operation, timing, effect on flags, and exceptions.

3.1 DATA MOVEMENT INSTRUCTIONS

These instructions provide convenient methods for moving bytes, words, or doublewords of
data between memory and the registers of the base architecture. They fall into the following
classes:

1. General-purpose data movement instructions.
2. Stack manipulation instructions.
3. Type-conversion instructions.

3.1.1 General-Purpose Data Movement Instructions

MOV (Move) transfers a byte, word, or doubleword from the source operand to the destina-
tion operand. The MOV instruction is useful for transferring data along any of these paths':

e To a register from memory

¢ To memory from a register

» Between general registers

+ Immediate data to a register
¢ Immediate data to a memory

1. There are also variants of MOV that operate on segment registers. These are covered in a later section of this chapter.

lntel APPLICATIONS INSTRUCTION SET

The MOV instruction cannot move from memory to memory or from segment register to
segment register are not allowed. Memory-to-memory moves can be performed, however, by
the string move instruction MOVS.

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place of
three MOV instructions. It does not require a temporary location to save the contents of one
operand while o=@ the other is being loaded. XCHG is especially useful for implementing
semaphores or similar data structures for process synchronization.

The XCHG instruction can swap two byte operands, two word operands, or two doubleword
operands. The operands for the XCHG instruction may be two register operands, or a regis-
ter operand with a memory operand. When used with a memory operand, XCHG automat-
ically activates the LOCK signal. (Refer to Chapter 11 for more information on the bus

lock.)

3.1.2 Stack Manipulation Instructions

PUSH (Push) decrements the stack pointer (ESP), then transfers the source operand to the
top of stack indicated by ESP (see Figure 3-1). PUSH is often used to place parameters on
the stack before calling a procedure; it is also the basic means of storing temporary variables
on the stack. The PUSH instruction operates on memory operands, immediate operands,
and register operands (including segment registers).

PUSHA (Push All Registers) saves the contents of the eight general registers on the stack
(see Figure 3-2). This instruction simplifies procedure calls by reducing the number of
instructions required to retain the contents of the general registers for use in a procedure.
The processor pushes the general registers on the stack in the following order: EAX, ECX,
EDX, EBX, the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. PUSHA
is complemented by the POPA instruction.

BEFORE PUSH AFTER PUSH
. 31 31 .

D O o 1 0
I F A ;
R
E E // / /
Cc X
T P 4 - ESP /
1 A -
o N OPERAND
N S <%—ESP

1

[0}

N

G30117

Figure 3-1. PUSH

Intel APPLICATIONS INSTRUCTION SET

BEFORE PUSHA AFTER PUSHA
«31 0- 31 O

D O
| F / / /
R -
- <—ESP
S EAX
(I) ﬁ ECX
N S v

1 EDX

o e

N EBX

OLD ESP

EBP

ESI
EDI
‘ . -— ESP

G30117

Figure 3-2. PUSHA

POP (Pop) transfers the word or doubleword at the current top of stack (indicated by ESP)
to the destination operand, and then increments ESP to point to the new top of stack. See
Figure 3-3. POP moves information from the stack to a general register, or to memory?2.

POPA (Pop All Registers) restores the registers saved on the stack by PUSHA, except that
it ignores the saved value of ESP. See Figure 3-4.

3.1.3 Type Conversion Instructions

The type conversion instructions convert bytes into words, words into doublewords, and
doublewords into 64-bit items (quad-words). These instructions are especially useful for
converting signed integers, because they automatically fill the extra bits of the larger item
with the value of the sign bit of the smaller item. This kind of conversion, illustrated by
Figure 3-5, is called sign extension.

There are two classes of type conversion instructions:

1. The forms CWD, CDQ, CBW, and CWDE which operate only on data in the EAX
register.

2. The forms MOVSX and MOVZX, which permit one operand to be in any general regis-
ter while permitting the other operand to be in memory or in a register.

2. There are also a variant of POP that operates on segment registers. This is covered in a later section of this chapter.

3-3

APPLICATIONS INSTRUCTION SET

BEFORE POP AFTER POP
31 Oe 31 0
D o
I F +
2 E / //
ioe // // «—ESP
1 A OPERAND
O N - ~«—ESP :
N S
1
o
N
. . . .
G30117
Figure 3-3. POP
BEFORE POPA AFTER POPA
+31 0s .31 0
D O - ;
I F g
[i : <«—ESP
T P EAX
1 A
0O N ECX
N S ;
| EDX
o +
N EBX

ESP

EBP

ESI

EDI

~—ESP

G30117

Figure 3-4. POPA

CWD (Convert Word to Doubleword) and CDQ (Convert Doubleword to Quad-Word) double
the size of the source operand. CWD extends the sign of the word in register AX throughout
register DX. CDQ extends the sign of the doubleword in EAX throughout EDX. CWD can
be used to produce a doubleword dividend from a word before a word division, and CDQ
can be used to produce a quad-word dividend from a doubleword before doubleword division.

CBW (Convert Byte to Word) extends the sign of the byte in register AL throughout AX.

3-4

Intel APPLICATIONS INSTRUCTION SET

15 7 J

BEFORE SIGN EXTENSION———— [s|N N N N N N NN N N N NN NN
T
AFTER SIGN EXTENSION —1

31 23 15 7)
[slsssssssssssssssSNNNNNNNNNNNNNNN]

G30117

Figure 3-5. Sign Extension

CWDE (Convert Word to Doubleword Extended) extends the sign of the word in register AX
throughout EAX.

MOVSX (Move with Sign Extension) sign-extends an 8-bit value to a 16-bit value and a
8- or 16-bit value to 32-bit value.

MOVZX (Move with Zero Extension) extends an 8-bit value to a 16-bit value and an 8- or
16-bit value to 32-bit value by inserting high-order zeros.

3.2 BINARY ARITHMETIC INSTRUCTIONS

The arithmetic instructions of the 80386 processor simplify the manipulation of numeric
data that is encoded in binary. Operations include the standard add, subtract, multiply, and
divide as well as increment, decrement, compare, and change sign. Both signed and unsigned
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>