

•
INMOS Limited
1000 Aztec West
Almondsbury
Bristol BS12 4SQ
UK
Telephone (0454) 616616
Telex 444723

INMOS Japan K,K,
4th Floor No 1 Kowa Bldg
11-41 Akasaka 1-chome
Mlnato-ku
Tokyo 107
Japan
Telephone 03-505 2840
Telex J29507 TEl JPN
Fax 03-505 2844

INMOS Corporation
PO Box 16000
Colorado Springs
CO 80935
USA
Telephone (719) 630 4000
Telex (Easy Link) 629 44 936

INMOS SARL
Immeuble Monaco
7 rue Le Corbusler
SILIC 219
94518 Rungls Cedex
France
Telephone (1) 46 87 22 01
Telex 201222

LOCAL U.S. SALES OFFICES

INMOS Corporation
200 E Sand pOinte
SUite 650
Santa Ana
CA 92707
Telephone(714) 9576018

INMOS Corpoatlon
2620 Augustine Drive
SUite 100
Santa Clara
CA 95054
Telephone (408) 727 7771

INMOS Corporation
12400 Whitewater Drive
SUite 120
Minnetonka
MN 55343
Telephone (612) 932 7121

INMOS Corporation
6025-G Atlantic Blvd
Norcross
GA 30071
Telephone (404) 242 7444

INMOS CorporatIOn
5 Burlington Woods Drive
SUite 201
Burlington
MA 01803
Telephone (617) 229 2550

INMOS Corporation
10200 E Girard Avenue
SUite B239
Denver
CO 80231
Telephone (303) 3680561

INMOSGmbH
Danziger Strasse 2
8057 Echmg
Munich
West Germany
Telephone (089) 319 1028
Telex 522645

INMOS CorporatIOn
14643 Dallas Parkway
SUite 730
Dallas
TX 75240
Telephone (214) 490 9522

INMOS Corporation
9861 Broken Land Parkway
SUite 320
Columbia
MD 21046
Telephone (301) 995 6952

INMOS Corporation
PO Box 272
Fishkill
NY 12524
Telephone (914) 897 2422

TRANSPUTER
APPLICATIONS
NOTEBOOK

Systems and Performance

First Edition June 1989

INMOS DataboOi< Series

Transputer Databook
Transputer Support Databook: Development and Sub-systems
Memory Databook
Graphics Databook
Digital Signal Processing Databook
Military Micro-Products Databook
Transputer Applications Notebook: Architecture and Software
Transputer Applications Notebook: Systems and Performance

Copyright ©INMOS Limited 1989

INMOS reserves the right to make changes in specifications at any time and without notice.
The informatk>n furnished by INMOS in this publication is believed to be accurate; however,
no responsibility is assumed for its use, nor for any infringement of patents or other rights
of third parties resulting from its use. No licence is granted under any patents, trademarks
or other rights of INMOS .

• , 1Inmos, IMS and occam are trademarks of the INMOS Group of Companies.

INMOS is a member of the SGS-THOMSON MicroelectroniCs Group of Companies.-

INMOS document number: 72-TRN-205-00

Printed at Redwood Burn Limited, Trowbridge

Contents overview

INMOS

Hardware

2 Designing with the
IMS T414 and IMS T800

memory interface

3 Connecting INMOS links

4 IMS B003 design of a
multi-transputer board

5 Using transputers from
EPROM

Systems

6 Designs and applications
for the IMS C004

7 Module motherboard
architecture

8 Dual inline transputer
modules (TRAMs)

Software

9 Program design for
concurrent sytems

10 Exploring multiple
transputer arrays

11 Extraordinary use of
transputer links

12 Analysing transputer
networks

13 Loading transputer
networks

An overview.

Explains the use of the transputer memory interface.
(/NMOS technical note 09)

Discusses how links are used for local and long distance
communication. (INMOS technical note 18)

Describes the design of a simple multiple transputer board.
(/NMOS technical note 10)

Describes booting a single or network of transputers from EPROM
and paging time critical code from slow EPROM to fast RAM.
(/NMOS technical note 58)

Explains how the IMS C004 link switch can construct a number of
different networks. (INMOS technical note 19)

Describes the architecture of a range of transputer modules and
motherboards. (/NMOS technical note 49)

Provides a detailed specification of the transputer modules.
(/NMOS technical note 29)

Discusses the design of concurrent processing systems.
(/NMOS technical note 05)

Explains how a transputer array can be explored and tested by a
'worm' program. (INMOS technical note 24)

Describes the software needed to recover from failure of communi
cation via a transputer link.(/NMOS technical note 01)

Describes the components of the Transputer Development System
analyse mechanism. (/NMOS technical note 33)

Describes how the Transputer Development System loads code into
the network. (INMOS technical note 34)

iii

iv

Applications

14

15

16

A transputer based
radio-navigation system

The transputer based
navigation system - testing

embedded systems

A transputer based
distributed graphics display

Involves the analysis of incoming radio signals in real time.
(lNMOS technical note 00)

Discusses system integration and testing using the navigation
system as an example.
(INMOS technical note 02)

Describes a high performance graphics system showing the
performance requirements of the common graphics operations.
(lNMOS technical note 46)

Performance

17 Lies, damned lies and Explains the performance of the transputer measured by the
benchmarks standard Whetstone, Dhrystone and Savage benchmarks.

(INMOS technical note 27)

18 Performance maximisation Describes the techniques for optimising system performance.
(INMOS technical note 17)

v

Contents

Preface xiv

INMOS 1
1.1 Introduction 2
1.2 Manufacturing 2
1.3 Assembly 2
1.4 Test 2
1.5 Quality and Reliability 2
1.6 Military 2
1.7 Future Developments 2

1.7.1 Research and Development 3
1.7.2 Process Developments 3

1 Hardware 5

2 Designing with the IMS T414 and IMS TBOO memory interface 6
2.1 Overview of the memory interface 6

2.1.1 Memory interface timing 7
2.1.2 Early and late write 8
2.1.3 Refresh 8
2.1.4 Wait states and extra cycles 9
2.1.5 Setting the memory interface configuration 9
2.1.6 The memory interface program 9

2.2 Basic considerations in memory design 10
2.2.1 Minimum memory interface cycle time 10
2.2.2 Delay and skew 10
2.2.3 Ringing 11

2.3 Worked example 12
2.3.1 Choose memory device size 12
2.3.2 Choose RAS duty cycle 12
2.3.3 Allocate strobes 12
2.3.4 Address decoding 13
2.3.5 Loading considerations 15
2.3.6 Address latching and multiplexing 15
2.3.7 Evaluate DRAM timing 16
2.3.B Choose write mode 18
2.3.9 Choose refresh interval 18
2.3.10 Timing for other memory and peripherals 18
2.3.11 Summary of design steps 21

2.4 Further examples 22
2.4.1 Minimum component, 256Kbyte memory 22
2.4.2 DRAM only: 1 Mbyte 24
2.4.3 Fast static memories 26

2.5 Debugging memory systems 28
2.5.1 Peeking and poking 28
2.5.2 Investigation of memory timing 28

2.6 Summary 29

vi

3

4

5

Connecting INMOS links
3.1 Introduction
3.2 Link operation
3.3 Electrical considerations

3.3.1 Transmission lines
The transmission line
Transmission line effects
Controlling transmission line effects

3.3.2 Noise and crosstalk
3.3.3 Differential line drivers/receivers
3.3.4 Attenuation
3.3.5 Buffering
3.3.6 Skew
3.3.7 Protection of links

3.4 Implementing an INMOS link using optical fibres
3.4.1 Advantages of optical fibres
3.4.2 An implementation of a 5 Mbits/s INMOS link

using optical fibres
Fibre bandwidth considerations
Choosing a fibre
Flux budgeting
Recommended components
Transmitter circuit
Receiver circuitry
Physical considerations
Conclusion

3.5 Summary
3.6 References

IMS B003 design of a multi-transputer board
4.1 Introduction

4.1.1 Logic for each transputer
Memory interface
Links
Error
Decoupling
Printed circuit layout

4.1.2 Logic used by all the transputers
Reset etc
Coding switch
Clock

Using transputers from EPROM
5.1 Introduction
5.2 Requirements
5.3 Methodology ... D700D TDS based

5.3.1 Running from EPROM
5.3.2 Running from RAM
5.3.3 Running from EPROM, with critical code in RAM (statically)
5.3.4 Loading the code
5.3.5 Running from EPROM, with critical code

paged into RAM (dynamically)
5.4 Conclusions

30
30
30
31
31
32
34
34
37
39
40
41
43
45
46
46

46
47
48
48
48
49
49
50
50
51
51

52
52
52
53
53
54
54
54
56
56
56
56

57
57
57
57
57
58
59
60

60
63

vii

2 S~stems 65

6 Designs and applications for the IMS COO4 66
6.1 Introduction 66
6.2 IMS C004 programmable link switch 66

6.2.1 The INMOS serial link interface 67
6.2.2 Switch implementation 67
6.2.3 Functionality of the IMS COO4 68

6.3 Versatility of the IMS COO4 69
6.3.1 A small increase in crossbar capacity 70
6.3.2 A large increase in crossbar capacity 72
6.3.3 Design example for cascading IMS COO4s 74

6.4 Using the IMS C004 to configure transputer networks 75
6.4.1 Complete connectivity of a transputer network

using four crossbars 76
6.4.2 Complete connectivity of a transputer network

using two crossbars 77
6.5 Using the IMS C004 as a general purpose communication crossbar 79

6.5.1 occam implementation of a 32 stage bidirectional exchange 80
6.5.2 Message length 85

6.6 Conclusions 85
6.7 CSP description of IMS COO4 86
6.8 CSP description of a 32 stage bidirectional exchange 88

7 Module motherboard architecture 92
7.1 Introduction 92
7.2 Module motherboard architecture 92

7.2.1 Design goals 92
7.2.2 Architecture 92

7.3 Link configuration 93
7.3.1 Pipeline 93
7.3.2 IMS C004 link configuration 94
7.3.3 T212 pipeline and C004 control 94
7.3.4 Software link configuration 94

7.4 System control 96
7.4.1 Reset, analyse and error 96
7.4.2 Up, down and subsystem 96
7.4.3 Source of control 98
7.4.4 Clock 103

7.5 Interface to a separate host 103
7.5.1 Link interface 103
7.5.2 System control interface 104
7.5.3 Interrupts 105

7.6 Mechanical considerations 105
7.6.1 Dimensions 105

Width and length 105
Vertical dimensions 106

7.6.2 Motherboard sockets 107
7.6.3 Mechanical retention of TRAMs 107
7.6.4 Module orientation 108

7.7 Edge connectors 108

viii

8 Dual Inline transputer modules (TRAMs) 114
8.1 Background 114
8.2 Introduction 115
8.3 Functional description 116

8.3.1 Pinout of size1 module 116
8.3.2 Pinout of larger sized modules 116
8.3.3 TRAMs with more than one transputer 118
8.3.4 Extra pins 118
8.3.5 Subsystem signals driven from a TRAM 118
8.3.6 Memory parity 120
8.3.7 Memory map 120

8.4 Electrical description 121
8.4.1 Link outputs 121
8.4.2 Link inputs 121
8.4.3 notError output 121
8.4.4 Reset and analyse inputs 121
8.4.5 Clock input 122
8.4.6 notError input to subsystem 122
8.4.7 GND, VCC 122

8.5 Mechanical description 122
8.5.1 Width and length 122
8.5.2 Vertical dimensions 123
8.5.3 Direction of cooling 125

8.6 TRAM pins and sockets 125
8.6.1 Stackable socket pin 125
8.6.2 Through-board sockets 125
8.6.3 Subsystem pins and sockets 126
8.6.4 Motherboard sockets 126

8.7 Mechanical retention of TRAMs 126
8.8 Profile drawings 127

3 Software 131

9 Program design for concurrent systems 132
9.1 Introduction 132
9.2 Structuring the system 132
9.3 System topology 132
9.4 System design - the functional blocks 135
9.5 System integration 137
9.6 Conclusions 138
9.7 References 138

10 Exploring multiple transputer arrays 139
10.1 Introduction 139
10.2 The structure of an exploratory worm program under the TDS 139
10.3 The host transputer EXE 141

10.3.1 Reading the CODE PROGRAM fold 141
10.3.2 Resetting the subsystem 142
10.3.3 Determine which link to examine 142
10.3.4 Worm handler 142
10.3.5 Interface 142
10.3.6 Display and file output 142

ix

10.4 The exploratory worm PROGRAM 143
10.4.1 Introduction 143
10.4.2 Probing a neighbouring transputer 143
10.4.3 Booting a neighbouring transputer 144
10.4.4 Exploring a tree of transputers 144
10.4.5 Exploring a general network of transputers 148
10.4.6 Returning the local link map 151

10.5 An example 152
10.6 Some points to note 153

10.6.1 16 and 32-Bit compatible programs 153
10.6.2 Using an exploratory worm program to perform testing 154
10.6.3 Using an exploratory worm program to load another program 154
10.6.4 Debugging an exploratory worm program 155
10.6.5 Loading a network in parallel 156

10.7 References 156

11 Extraordinary use of transputer links 157
11.1 Introduction 157
11.2 Clarification of requirements 157

11.2.1 Connection of distinct sub-systems 157
11.2.2 Communication via an unreliable interconnect 158

11.3 Programming concerns 158
11.4 Predefined input and output procedures 158
11.5 Recovery from failure 159
11.6 Examples: two systems with extraordinary link usage 159

11.6.1 Example 1: a development system 159
The problem 159
The solution 160

11.6.2 Example 2: two systems connected by a link 161
The problem 161
The solution 161

11.7 Program listing 1 164
11.8 Program listing 2 166

12 Analysing transputer networks 167
12.1 Introduction 167

12.1.1 Characteristics 168
12.2 TDS debugging 169

12.2.1 Debugging requirements 169
12.2.2 Meeting the requirements 170
12.2.3 Analysing the network 171

12.3 The boot sequence 173
12.3.1 The bootstrap 173
12.3.2 The loader 175
12.3.3 The analyser 176

12.4 The analysing message structure 177
12.4.1 Command structure 177
12.4.2 Analyser action 178
12.4.3 RS232 180

12.5 Bootstrap code 181
12~ Loader code 183
12.7 Analyser occam 184

x

13 Loading transputer networks 188
13.1 Introduction 188

13.1.1 Development 188
13.1.2 Characteristics 189

13.2 The TDS Extractor 190
13.3 Bootstrap and Loaders 193

13.3.1 The bootstrap 193
13.3.2 The bootloader 194
13.3.3 The loader 195

13.4 The loading message structure 196
13.4.1 Command structure 196
13.4.2 loader action 197
13.4.3 RS232 199

13.5 Bootstrap code 201
13.6 Bootloader code 203
13.7 Loader occam 204

4 Applications 207

14 A transputer based radio-navigation system 208
14.1 Introduction 208
14.2 LORAN 209
14.3 The 1/0 system 211
14.4 The processor 211
14.5 The software 211
14.6 Position calculation 214
14.7 System integration 215
14.8 Conclusions 215

15 The transputer based navigation system - an example of testing embedded
systems 216
15.1 Introduction 216
15.2 Testing the burst detector 218
15.3 Testing the group detector 219
15.4 Testing the frame detector 220
15.5 Improvements during testing 220
15.6 Conclusions 221

16 A transputer based distributed graphics display 222
16.1 Introduction 222
16.2 A brief history 222

16.2.1 Introduction 222
16.2.2 Displays 222
16.2.3 The frame store 224
16.2.4 Colour 225
16.2.5 System performance 225
16.2.6 Graphics display system 227

16.3 Overview of a parallel graphics system 228
16.3.1 Introduction 228
16.3.2 Transputers and occam 229

The IMS T800 transputer 229
The occam programming language 231

xi

16.3.3 Transputer modules (TRAMs) 231
16.3.4 Introduction to graphics TRAMs 232
16.3.5 An Introduction to the serial port TRAM 232
16.3.6 An Introduction to the display backend TRAM 233

16.4 Serial port TRAM 234
16.4.1 Introduction 234

Memory map 234
Frame store addressing and the video RAM 235
Pixel mappings 236
Double buffered frame store addressing 236
Frame store distribution 237

16.4.2 Random access port 238
Memory upgrades 238
Memory cycles 239
Address latches and multiplexing 240
Decoding 240

16.4.3 Serial access port 241
Introduction 241
Address generator 242
Address sequencer 243
Pixel counter 243
Distributed control 243

16.5 Display TRAMs 244
16.5.1 Introduction 244
16.5.2 An example display TRAM 244

Pixel channels 244
Display modes 245

16.6 System configurations 246
16.6.1 Driving the frame store 246
16.6.2 Frame store configurations 246

16.7 Conclusion 248
16.8 Transputer memory interface 249

16.8.1 Memory interface timing 250
16.8.2 Configurable strobes 250
16.8.3 Multiplexed address-data bus 251
16.8.4 Byte selection 251
16.8.5 Refresh 252
16.8.6 Wait states 253
16.8.7 MemReq, MemGranted and direct memory access 253
16.8.8 Termination 253
16.8.9 Configuration of the memory interface 253
16.8.10 The memory interface program 254

16.9 Video RAMs 254
16.9.1 What is a video RAM 254
16.9.2 Video RAM logic operations 256

16.10 References 256

xii

5 Performance 257

17 Lies, damned lies and benchmarks 258
17.1 Introduction 258
17.2 The Whetstone benchmark 258

17.2.1 Understanding the program 258
17.2.2 The effect of optimisations 259
17.2.3 Limitations of the Whetstone 259

Floating-point operations on the IMS T414 and IMS T800 259
Multi-dimensional arrays 260
Elementary functions on the IMS T414 and IMS T800 261

17.3 The Savage Benchmark 262
17.3.1 Speed and accuracy of elementary functions 262

17.4 The Dhrystone benchmark 262
17.4.1 String manipulation performance 262

17.5 Conclusion 264
17.6 References 264
17.7 Comparative Whetstone benchmark results 265
17.8 Comparative Savage benchmark results 267
17.9 Comparative Dhrystone benchmark results 267
17.10 Elementary function performance 268
17.11 Source of the occam Whetstone program 269
17.12 Source of the occam Dhrystone program 273
17.13 Benchmarking the IMS T212 278

18 Performance maximisation 280
18.1 Introduction 280
18.2 Maximising performance of a single transputer 280

18.2.1 Making use of on-chip memory 281
Memory layout 281
Workspace layout 281
Workspace layout of called procedures 282
Workspace layout of parallel processes 283

18.2.2 Abbreviations 283
Abbreviations - removing range-checking code 283
Abbreviations - opening out loops 284

18.2.3 Placing critical vectors on-chip 285
Beware the PLACE statement 286

18.2.4 Block move 286
18.2.5 Retyping - accelerating byte manipulation 287
18.2.6 Use TIMES 288

18.3 Maximising multiprocessor performance 288
18.3.1 Maximising link performance 288

Decoupling communication and computation 288
Prioritisation 289

18.3.2 Large link transfers 291
18.4 Dynamic load balancing and processor farms 291
18.5 A worked example: the INMOS ray tracer 293

18.5.1 The ray tracer 293
18.5.2 The controller process 293
18.5.3 The calculator process 294
18.5.4 The graphics process 294

xiii

18.6 Conclusions 295
18.7 Handling recursion in occam 295
18.8 References 297

xiv

Preface

The Transputer Applications Notebook - Systems and Performance is a compilation of technical notes written
by INMOS engineers to assist in the implementation of transputer technology. The collection is divided into
five sections which describe an approach to system design and development using transputer technology.

INMOS technical notes are written with the intention of investigating and developing a particular area of
interest or application. This compilation is intended to be of particular interest to electronic engineers, soft
ware engineers, programmers, system designers and managers. It has been published in response to the
increasing interest and requests for information regarding the transputer and the occam language.

The INMOS transputer family is a range of VLSI building blocks for concurrent processing systems, with oc
cam as the associated design formalism. occam is an easy and natural language for the programming and
specification of concurrent systems. A compilation of technical notes explaining the architectural foundation
of occam and the transputer can be found in a companion publication in the INMOS Databook series, ie
The Transputer Applications Notebook - Architecture and Software.

Current INMOS transputer products include the 16 bit IMS T222 (which supersedes the IMS T212), the 32
bit IMS T414 and IMS T425, in addition to the IMS T800 family of 32 bit transputers featuring an integral
high speed floating pOint processor. The transputer is fully supported by INMOS development tools and
standard language compilers. The product range also includes peripheral controllers and communications
products. Comprehensive information detailing the range of transputer products is available in a separate
INMOS Databook series publication, ie The Transputer Databook.

The IMS M212 is an Intelligent peripheral controller comprising a 16 bit processor, on chip memory and
communications links. It contains hardware and interface logic to control disc drives and can be used as a
programmable disc controller or as a general purpose peripheral interface.

The INMOS serial communication link is a high speed system interconnect which provides full duplex commu
nication between members of the transputer family. It can be used as a general purpose interconnect even
where transputers are not used. The IMS C011 and IMS C012 link adaptors are communications devices
enabling the INMOS serial communication link to be connected to parallel data ports and microprocessor
buses. The IMS C004 is a programmable link switch. It provides a full crossbar switch between 32 link inputs
and 32 link outputs.

The Transputer Development System referred to in this manual comprises an integrated editor, compiler
and debugging system which enables transputers to be programmed in occam and in industry standard
languages. Detailed information describing the Transputer Development System has been published in the
Prentice Hall series of INMOS technical publications, ie the Transputer Development System manual.

System
services

On-chip
RAM

Processor

~LLTrinikk-l-+-- Input
,.,ullnn.!§te[jrf~acQleLJ--t-... Output

•
•
•

Application specific interface

Transputer architecture

rIromos Chapter 1

e INMOS

2

1.1 Introduction

INMOS is a recognised leader in the development and design of high-performance integrated circuits and is
a pioneer in the field of parallel processing. The company manufactures components designed to satisfy the
most demanding of current processing applications and also provide an upgrade path for future applications.
Current designs and development will meet the requirements of systems in the next decade. Computing
requirements essentially include high-performance, flexibility and simplicity of use. These characteristics are
central to the design of all INMOS products.

INMOS has a consistent record of innovation over a wide product range and supplies components to system
manufacturing companies in the United States, Europe, Japan and the Far East. As developers of the
Transputer, a unique microprocessor concept with a revolutionary architecture, and the occam parallel
processing language, INMOS has established the standards for the future exploitation of the power of parallel
processing. INMOS products include a range of transputer products in addition to a highly successful range
of high-performance graphics devices, an innovative and successful range of high-performance digital signal
processing (DSP) devices and a broad range of fast static RAMs, an area in which it has achieved a greater
than 10% market share.

The corporate headquarters, product design team and worldwide sales and marketing management are based
at Bristol, UK.

INMOS is constantly upgrading, improving and developing its product range and is committed to maintaining
a global position of innovation and leadership.

1.2 Manufacturing

INMOS products are manufactured at the INMOS Newport, Duffryn facility which began operations in 1983.
This is an 8000 square metre building with a 3000 square metre cleanroom operating to Class 10 environment
in the work areas.

To produce high performance products, where each microchip may consist of up to 300,000 transistors,
INMOS uses advanced manufacturing equipment. Wafer steppers, plasma etchers and ion implanters form
the basis of fabrication.

1.3 Assembly

Sub-contractors in Korea, Taiwan, Hong Kong and the UK are used to assemble devices.

1.4 Test

The final testing of commercial products is carried out at the INMOS Newport, Coed Rhedyn facility. Military
final testing takes place at Colorado Springs.

1.5 Quality and Reliability

Stringent controls of quality and reliability provide the customer with early failure rates of less than 1000
ppm and long term reliability rates of better than 100 FITs (one FIT is one failure per 1000 million hours).
Requirements for military products are even more stringent.

1.6 Military

Various INMOS products are already available in military versions processed in full compliance with MIL-STD-
883C. Further military programmes are currently in progress.

1 INMOS 3

1.7 Future Developments

1.7.1 Research and Development

INMOS has achieved technical success based on a position of innovation and leadership in products and
process technology in conjunction with substantial research and development investment. This investment
has averaged 18% of revenues since inception and it is anticipated that future investment will be increased.

1.7.2 Process Developments

One aspect of the work of the Technology Development Group at Newport is to scale the present 1.2 micron
technology to 1.0 micron for products to be manufactured in 1989. In addition, work is in progress on the
development of 0.8 micron CMOS technology.

4

firomos Part 1

_ Hardware

5

6

2 Designing with the IMS T414 and IMS T800 memory interface

2.1 Overview of the memory interface

The IMS T414 and IMS T800 have a configurable memory interface designed to allow easy interfacing of a
variety of memory types with a minimum of extra components. The interface can directly support DRAMs,
SRAMs, ROMs and memory mapped peripherals. The interface is the same for both parts so for 'T414' read
'T 414 and T800' throughout.

The T414 has a 32 bit multiplexed data and address bus with a linear address space ot 4 Gbytes. There
are 4 byte write strobes, a read strobe, a refresh strobe, 5 configurable strobes, a wait input, a memory
configuration input, a bus request input and bus grant output. Figure 2.1 shows the inputs and outputs for
the T414 transputer that are associated with the memory interface.

notMemWrB0-3
notMemRd
notMemRf

notMemSO-4

MemnotWrDO
MemnotRfD1
MemAD2-31

MemReq
MemGranted

MemWalt
MemConfig

f--4-

r---5-

I--- 30-

Figure 2.1

byte write strobes
read strobe
refresh strobe
configurable strobes

notWrite Flag/data 0
notRefreshFlag/data 1
address/data 2-31

external request
external request granted

wait states
configuration input

With this flexible arrangement, a variety of memory timing controls can be obtained with little external hard
ware. An example of bus timing is shown in figure 2.2.

Tm period T1 T2 T3 T4 T5 T6 Tl

fixed fixed
notMemSO I

fixed programmable
notMe~m~sr1r---------~1~4~;;;;;;;;;=====~~~'~==~~~===4~;-------

programmable fixed
notMemS2 4 • ~I

programmable fixed
notMemS3 4 • ·1

programmable fixed
notMe~m~sr<4r-----------.4====================1.t=====~·rl--------------

MemAD----1[====~ad~d~re~s~s====]_----------------c=~d~a~ta~~'_ ____ __
READ

notMem Rd

MemAD---j address H data H'--____ _
W R I T E '--------------:-e"'"'a"r lyL.,----r:la..,..te:---------------------'

notMemWrB{w} I write ...------------

Figure 2.2

2 Designing with the IMS T414 and IMS T800 memory interface 7

The T414 has a signed address space and addresses memory as bytes. Addresses, therefore, run from
$80000000 through $FFFFFFFF to $7FFFFFFF. This differs from the occam map which starts at $0 and
is organised as words. The comparison, for the T 414, is given in figure 2.3: the T800 has MemStart at
$80000070 and start of external memory at $80001000.

Machine Map
hi Byte address Word offsets Occam Map

~I R_e_s_et_ln_s_t 1-----11 #7FFFFFFE (ResetCodePtr)

1 Memory configuration #7FFFFFF8 to #7FFFFF6C I ;
1 I #0 . I #80000800 • Start of external memory· #0200 Nt-I _____ -ti

1 P I rocessor use
N

Event
Link 3 Inout
Link 2 Inout

Link 1 Inout
Link 0 Inout
Link 3 Outout
Link 2 Outout
Link 1 Outout
Link 0 Outout

#80000048 MemStart

#80000020
#8000001C
#80000018

#80000014
#80000010
#8000000C
#80000008
#80000004
#80000000
(MOSTNEG INT)

Figure 2.3

I P I MemStart #12

rocessor use

#08 Event

#07 Link 3 Input

#06 Link 2 Input

#05 Link 1 Input

#04 Link 0 Input

#03 Link 3 Output

#02 Link 2 Output

#01 Link 1 Output

#00 Link 0 Output

(Base of memory)

Throughout this application note, all addresses referred to will be those for the machine map.

The T 414 has 2Kbytes of on-Chip RAM at addresses $80000000 to $800007FF: the T800 has 4Kbytes at
addresses $80000000 to $80000FFF. It is, therefore, advisable for $80000000 to $FFFFFFFF to be used for
RAM and $00000000 to $7FFFFFFF to be used for ROM and 1/0. If internal memory and external memory
exist at the same address, the transputer will access internal memory. Note that if the memory map is not
completely decoded, it is usually possible to access the 'hidden' external memory at another address; e.g.
on the 8004-2, the hidden memory can actually be accessed at $80200000 to $802007FF.

2.1.1 Memory interface timing

The T414 memory interface cycle has six timing states, referred to as Tstates. The Tstates have the nominal
functions:

Tstate

T1 address setup time before address valid strobe
T2 address hold time after address valid strobe
T3 read cycle tristatelwrite cycle data setup
T4 extended for wait states
T5 read or write data
T6 end tristateldata hold

The duration of each Tstate is configurable to suit the memory devices used and can be from one to four Tm
periods. One Tm period is half the processor cycle time; i.e. half the period of ProcClockOut. Thus, Tm is

8 Hardware

25nsec for a T414-20 (20M Hz transputer). T4 may be extended by wait states in the form of additional Tms.
AO and A1 are not output with the rest of the address. During a write cycle, byte and half-word (16 bit data)
addressing is achieved by the four write byte strobes (notMemWrB): only the write strobes corresponding to
the bytes to be written are active. During a read cycle, this is aChieved by internally selecting the bytes to be
read.

Thus, the two lowest order address lines are not needed. However, care must be taken when mapping byte
wide peripherals onto the interface, as they will have to be addressed on word boundaries.

The two lowest order data lines are not multiplexed with address lines but, during the "address period, are
used to give early indication of the type of cycle which will follow:

MemnotWrDO is low during T1 and T2 of a write cycle.

MemnotRfD1 is low during T1 and T2 of a refresh cycle.

The use of the strobes notMemSO to notMemS4 will depend upon the memory system. The rising edge of
notMemS1 and the falling edges of notMemS2 to notMemS4 can be configured to occur from 1 to 31 Tm
periods after the start of T2. This is summarised in figure 2.2 and in the table below.

Signal Starts Ends

notMemSO T2 T6
notMemS1 T2 T2 + (Tm*s1) (or end of T6 if this occurs first)
notMemS2 T2 + (Tm*s2) T6
notMemS3 T2 + (Tm*s3) T6
notMemS4 T2 + (Tm*s4) T6

It should be noted that the use of wait states can advance the rising edge of notMemS1 in relation to that
of the other strobes; care must be taken if this signal is being used for RAS driving DRAMs for which RAS
must not be removed before CAS.

2.1.2 Early and late write

The notMemWrB strobes can be configured to fall either at the beginning of T3 (early write) or at the beginning
of T4 (late write); the rising edge is always at the beginning of T6. Early write gives a longer set up time for
the write strobe but data is only valid on the rising edge of the pulse. For late write, data is also valid on the
falling edge of the strobe but the pulse is shorter.

2.1.3 Refresh

The T414 has an on-Chip refresh controller and 10 bit refresh address counter and can, therefore, refresh
DRAMs of up to 1 Mbit by 1 capacity without requiring the counter to be extended externally.

Refresh can be configured to be either enabled or disabled. If enabled, the refresh interval can be configured
to be 18, 36, 54 or 72 Clockln periods; though if a refresh cycle is due, the current memory cycle is always
completed first. The time between refresh cycles is thus almost independant of transputer speed and the
length of memory cycles.

Refresh cycles are flagged by notMemRf going low before T1 and remaining low until the end of T6. Refresh
is also indicated by MemnotRfD1 going low during T1 and T2 with the same timing as address signals. The
address output during refresh is:

ADO
AD1
AD2 - AD11
AD12 - AD30
AD31

= MemnotWrDO
= MemnotRfD1

high
low, to indicate refresh
refresh address
high
low

2 Designing with the IMS T414 and IMS TSOO memory interface 9

During refresh cycles, the strobes notMemSO - notMemS4 are generated as normal.

2.1.4 Wait states and extra cycles

Memory cycles can be extended by wait states. MemWait is sampled close to the falling edge of ProcClock
Out prior to, but not at, the end of T4. If it is high, T4 is extended by additional Tms (shown as "W" by the
memory interface program). Wait states are inserted for as long as MemWait is held high, T5 proceeds when
MemWait is low. Note that the internal logic of the memory interface ensures that, if wait states are inserted,
T5 always begins on a rising edge of ProcClockOut: so the number of wait states inserted will be either
always odd or always even, depending on the memory configuration being used.

Every memory interface cycle must consist of a number of complete cycles of ProcClockOut: i.e. it must
consist of an even number of Tms. If there are an odd number of Tm periods up to and including T6, an
extra Tm (shown as 'E' by the memory interface program) will be inserted after T6.

2.1.5 Setting the memory interface configuration

A memory interface configuration is specified by a 36 bit word and is fixed at reset time. The T 414 has a
selection of 13 pre-programmed configurations. If none of these is suitable, a different configuration can be
selected by supplying the complement of the configuration word to the T414s MemConfig input immediately
following reset.

A pre-programmed configuration is selected by connecting MemConfig to MemnotWrDO, MemnotRfD1,
MemAD2-MemAD11 or MemAD31. Immediately after reset, the T414 takes all of the data lines high and
then, beginning with MemnotWrDO, they are taken low in sequence. If MemConfig goes low when the T414
pulls a particular data line low, the memory interface configuration associated with that data line is used. If,
during the scan, MemConfig is held low until MemnotWrDO goes low, or is connected to MemAD31, the
slowest memory configuration is used.

After scanning the data lines as described above, the T414 performs 36 read cycles from locations
$7FFFFF6C, $7FFFFF70 - $7FFFFFFS. No data is latched off the data bus but, if MemConfig was held
low until MemnotWrDO was taken low, each read cycle latches one bit of the (inverted) configuration word
on MemConfig. Thus, a memory configuration can be supplied by external logic.

Using a pre-programmed configuration has the advantage of requiring no external components: only a con
nection from MemConfig to the appropriate data line. However, selecting an external configuration can also
be very economical in component use. If the transputer is booting from ROM, the ROM must occupy the top
of the address space. One bit of the memory configuration word can be stored in each of the 36 addresses
mentioned above and the only additional hardware required is an inverter connecting the appropriate data line
(usually MemnotWrDO) to MemConfig. MemConfig is thus held low until MemnotWrDO goes low and is fed
with the inverse of the configuration word during the 36 read cycles. Alternatively, the inverted configuration
word can be generated from A2-A7 by one sum term of a PAL.

2.1.6 The memory interface program

The INMOS Transputer Development System includes an interactive program which assists in the task of
memory interface design. The program produces timing diagrams and timing information so that the designer
can see the effects of varying the length of each Tstate and the positions of the programmable strobe
edges. Of course, the program cannot allow for external logic delays and loading effects as these are system
dependant but it does assist greatly in preliminary design.

10 1 Hardware

2.2 Basic considerations in memory design

2.2.1 Minimum memory interface cycle time

The minimum number of processor clock cycles for an external memory access is 3, which occurs when all
Tstates are 1 Tm. With a 50 nsec cycle time, this will be 150 nsec.

The most important DRAM parameters to be considered at the start of a memory design are the access
and cycle times and the RAS precharge time. These will be a guide to the fastest timing possible, which is
generally a good starting point, and are defined in figure 2.4.

cycle time

RAS

Data

access
time

Parameters for typical Dynamic RAMS:
Figure 2.4

NEC uPD41256-15 NEC uPD41256-12 Hitachi HM51256-10

Access time
Cycle time
RAS precharge

NMB

Access time
Cycle time
RAS precharge

150ns
260ns
100ns

MA2800-150

150ns
246ns
90ns

120ns
220ns
90ns

AAA2800-80

80ns
151ns
65ns

100ns
180ns
70ns

Higher density devices require longer RAS precharge times but, if the memory does not require RAS to
remain low until the end of the memory cycle, it can be taken high before the cycle ends, thus easing the
designer's job of finding adequate precharge time whilst minimising the amount of time to be added to the
DRAM cycle time.

2.2.2 Delay and skew

When calculating memory interface timings, consideration must be given to propagation delay and skew
through buffers and decoding. Skew occurs where there are different logic thresholds and hence different
propagation delays for high going and low going signals. This is shown in figure 2.5.

It is also important to bear in mind the asymmetric drive capabilities of most logic that would be used externally.

2 Designing with the IMS T414 and IMS T800 memory interface 11

4----~"PO;"
t nominal

high

threshold t'--,-t ___ ~~ : I~O~W
---I I.... ~eshold

actual

Figure 2.5

2.2.3 Ringing

Ringing (figure 2.6) becomes a problem when signals are called upon to drive a large capacitive load, such
as a DRAM array. The high currents required to charge the capacitance have to flow through wiring or PCB
tracks, all of which have some inductance, thus creating a tuned circuit. Ideally, the waveform presented will
be as steep as possible for minimum propagation delays; however, this implies a large spread of frequencies,
including the resonant frequency of the tuned circuit. An alternative way to view the problem is that of driving
a transmission line. The solution is to include a series resistor to dissipate the energy in the tuned circuit
whilst matching the driver more closely to the transmission line characteristic impedance. The aim is critical
damping of the response to the step input. Some DRAM buffers/drivers have the series resistor, or something
equivalent, incorporated. e.g. AMD Am2965/6.

high -r--HI-------~--------~'--t_+-

indeterm inate

ffe tive
high

period

indeterminate

Figure 2.6

effective
low

period

12

2.3 Worked example '

This example describes the design of a system based on a T414-20 with:

1 2 Mbytes of RAM.

2 A 1 Mbyte ROM space.

3 A 1 Mbyte 1/0 space.

1 Hardware

Warning: A number of common pitfalls exist in this application, and are revealed step by step. Thus the
partial circuits should not be used until this complete section has been read and digested.

2.3.1 Choose memory device size

The most compact way to implement the 2 Mbyte memory is as two banks of 256k x 1 bit DRAMs. This
requires 64 devices.

2.3.2 Choose RAS duty cycle

A T414-20 has been specified as the design goal. This gives a Tm period of 25 nsec. To run as fast as
possible, let T1 - T6 each be 1 Tm in length; giving an external memory cycle time of 150 nsec. Such a
short memory cycle time requires the use of a fast, high performance DRAM.

With only 3 processor cycles, there is only one realistic pOSSibility, as shown in figure 2.7, namely RAS low
for three Tm periods. RAS low for two Tm periods would require a 50 nsec access DRAM and RAS low for
four Tm periods leaves only 50 nsec for RAS precharge. Neither of these is possible with current DRAMs.

I T6 I T1 I T2 I T3 I T4 I T5 I T6 I T1 I T2 I

RAS

Figure 2.7

2.3.3 Allocate strobes

Most current EPROMs and peripherals cannot run at a cycle time of 150 nsec. The fastest widely available
EPROMs are 150nsec access. Thus it will be necessary to insert wait states when EPROMs and peripherals
are accessed. To maximise the system performance it will be necessary to have two different lengths of
wait states, one for ROM and one for peripherals, requiring the use of two of the transputer's programmable
strobes. This means that only a change to the memory configuration will be required at a later date to upgrade
to faster parts. Therefore, we will reserve notMemS3 and notMemS4 as two separate wait state generators,
since the point at which they go low is the feature that is user programmable.

This leaves 3 strobes, notMemSO-2 for total DRAM control.

notMemSO goes low at the start of T2 and high at the start of T6, being low for 4 Tm periods in this example,
and thus cannot be used for RAS. The data and address lines from the transputer are multiplexed, addresses
being valid for T1 and T2, so notMemSO can be. used to latch the address.

notMemS1 goes low at the start of T2 and the duration of its low period is programmable. It can, therefore,
be used as RAS because RAS must go low at the beginning of T2 and high at the beginning of T5 to meet
the precharge time ..

notMemS2 has a programmable falling edge and goes high at the beginning of T6. It can, therefore, be

2 Designing with the IMS T414 and IMS TaOO memory interface 13

used as CAS. To allow sufficient data set up time during read cycles, and sufficient CAS/RAS lead time,
notMemS2 must fall at the beginning of T3.

We require one further signal, usually called Amux, which is used to switch between the row and column
addresses supplied to the DRAM. Normally, as in the simple example, notMemS2 would be used for this and
notMemS3 for CAS, leaving notMemS4 for wait state generation but, in this case, we can make use of one
of the features of the AAA280x series DRAMs: that of short row address hold time (tRL1 AX), which is only
2 nsec. This allows the RAS strobe delayed by 2nsec or more to be used as Amux.

The preliminary circuit and timing are shown in figures 2.8 and 2.9.

32 off AAA280X drams
notWbyte3
notWbyte2

* notWbyte1
notWbyteO

~t::::-
W

c.2~
T414-20

~~
notMemS2

c..Pr9--
notMemS1

CAS

notMemSO
RAS

~t::::- c.2~ W

,-

ADO-31
;-'-- c.2r9-

9X
AD11-19 latch

(col) L 9X
'-- 2: 1 -

- MUX
'--- ADO-? AD8-15 AD 16-23 AD 24-31

AD2-10

Figure 2.8

2.3.4 Address decoding

The RAM must occupy the bottom of the address space so that it appears to be a continuation of the
transputer's internal RAM. The ROM must occupy the top of the address space, so that the transputer can
boot from ROM. We can, therefore, use A31 to select between RAM and ROM. A2-A19 will be used to
address the DRAMs so we should use A20 to select between banks. We can also use A20 to select between
ROM and I/O. This gives a very simple decoding scheme:

A31 A20
1 0 RAM bank 0
1 1 RAM bank 1
o 0 I/O space
o 1 ROM

14

Tm period

ProcClock

ALE(SO)

RAS(Sl)

CAS(S2)

2 3

1 Hardware

4 5 6

MemAD----1[====~ad~d~r~es~s~==:t----------------_[~d~a~la~r___1L_ ____ _
READ

nolMemRd

MemAD----1~ _____ ad_d_r_es_s ____ ~H~ ____________ d_a_Ia ____________ ~H~ ____ _
WRITE

noIMemWrB(w)

Figure 2.9

For most DRAMs: any RAS sequence will refresh an entire row of 1024 bits, reading or writing of data is
initiated by CAS. Therefore, address decoding need only be applied to CAS; RAS can be enabled to both
banks of RAM at all times. Thus, reading or writing one RAM bank will cause the other to be refreshed and
accesses to ROM or 1/0 will refresh both banks.

Note that during a refresh cycle, AD31 is low so that the CAS signals to both banks are disabled. Figure 2.10
shows the address decoding.

notMemWrB3

notMemWrB2

notMemWrB1

notMemWrBO

nolA31

nolRAS

A31

notMemRd

Figure 2.10

Am
29828

bnolWb le3

bnolWbyle2

bnolWbyle 1

bnolWbyleO

bnolRAS 1

bnolCASO

bnolCAS1

bnollOen

bnolROMen

2 Designing with the IMS T414 and IMS T800 memory interface 15

2.3.5 Loading considerations

The notRAS and notCAS signals will need to be buffered because each is required to drive 32 DRAMs, giving
a total load capacitance on each line of:

32 x 6 = 192 pF

The four notMemWrB strobes wi II also requi re buffering as, for a 2 Mbyte memory, they must each drive 16
DRAMs giving a total capacitive load on each line of:

16 x 6 = 96 pF

The maximum load specified by INMOS is 50 pF.

Neither of these figures allows for layout capacitance so the actual load will be somewhat more.

We will choose to gate the notMemWrB strobes with some address decoding, prior to buffering them, so that
they are not enabled to the DRAM when writing to peripherals.

2.3.6 Address latching and multiplexing

The address decoding requires that latched addresses should be valid as early as possible, and the most
effective way to do this is with transparent latches. This way, the addresses will be stable before they are
latched by notMemSO, so that the first stages of the decoding will already have settled. The complement of
some of the address lines are also required by the decoding. These are provided by inverting the latched
addresses.

The address multiplexing can be done by using an address latch with tri-state outputs and a tri-state buffer.
The delayed RAS signal is used to switch between the buffer (row address) and latch (column address).
Figure 2.11 shows the address latching and multiplexing circuit.

ALE(notMemSO)

MemnotWrDO L notWr

AD12·18 AD20 AD31 Am AD12-18,20,31
9 29841

oe

LE

AD2·11 Am A2-11
10 29841 10

oe

LE

AD11·19 -50R

9
0 oe

notRAS

AII-19

AD2·10 Am -50R multiplexed
with

9 29827 A2-10 A2-IO
oe for DRAM

Figure 2.11

16 Hardware

2.3.7 Evaluate DRAM timing

Since this is the most critical timing, and the one most subject to amendment, it should now be checked. This
requires the drawing of a more detailed timing diagram than figure 2.9. The logic that has still to be added
will not affect the timing.

The following steps then need to be followed to investigate the timing properly:

1 Add the skew of any signal change. From the T414 data sheet section on memory interface AC
characteristics, this is, typically, -3/+4 nsec.

2 Add the propagation delays through any external logic, including any latches or buffers.

3 Check that all of the times on the data sheet for the DRAM devices in use are within specification.

4 If any parameter is outside the specification, try to meet it by altering the external logic or, if this is
unsuccessful, insert extra Tstates.

The following table will be useful in determining propagation delays:

Device

74FOO
74F02
74F08
74F27
74F32
AM29828

Type

Quad 2i/p NAND
Quad 2i/p NOR
Quad 2i/p AND
Triple 3i1p NOR
Quad 2i/p OR
10x inv. buffer

low-high in nsec

6.0
6.5
6.6
6.0
6.6
7.5 (14')

high-low in nsec

5.3
5.3
6.3
5.3
6.3
7.5 (14')

All 0-70 degrees C, worst case, load 50pF, 'load 300pF

The emerging family of FACT HCMOS logic has superior characteristics to the FAST devices listed above,
and is preferable where available. One of its main attributes is the symmetrical propagation delays which
make it particularly suitable for buffering transputer links.

For most other logic, note that inverting logic generally has marginally lower propagation delays; thus if a gate
has to be buffered, an extra 1-2 nsec can be gained by using say a NOR + inverting buffer over an OR +
non-inverting buffer.

An examination of the resulting diagram, figure 2.12, shows one possible problem immediately: the write
strobe may not go high until after the data bus has gone tri-state, causing data corruption on write with some
RAMs. This is not a problem with page mode DRAMs which latch write data on the falling edge of CAS or
Write, whichever is the later.

However, this potential problem can be completely removed by substituting a 74F32 for the 74F02 and
removing the high-current buffer to reduce the propagation delay for the write strobes. The 74F32 can drive
up to 180pF and the loading calculated in section 2.3.5, with an allowance for layout capacitance, is less than
this. It is possible to use two 74F32s for each of the write strobes, one for each DRAM bank, to give lower
propagation delays. This now provides the timing shown in figure 2.13.

The final selection of DRAM device can now be made. In this circuit RAS is used to switch the multiplexer
and, since RAS goes high before CAS, the column address supplied to the RAM will change before the end
of the CAS access cycle. Therefore, we must use a page mode DRAM (e.g. AAA2801 or uPD41256) which
latches the column address on the falling edge of CAS, and is unaffected by subsequent changes.

2 Designing with the IMS T414 and IMS TaOO memory interface

Tm period

ProcClock

ALE(SO)

RAS(Sl)

Tm period

ProcClock

ALE(SO)

RAS(Sl)

2 3 4 5 6

I!I 11111111111111111

iii tolerance (-3 +4 nsec)

D FAST propagation delay (6.5 nsec)

IllIlD Am29xxx buffer propagation delay (12 nsec with 200pF load)

Figure 2.12

2 3 4 5 6

m 11111111111111111 m 11111111111111111

III tolerance (-3 +4 nsec)

D FAST propagation delay (6.5 nsec)

IllIlD Am29xxx buffer propagation delay (12 nsec with 200pF load)

Figure 2.13

17

18 Hardware

2.3.8 Choose write mode

Most DRAMs can perform two types of write cycle: early and late write. An early write cycle occurs when
notWE is taken low before notCAS. Thus, the output buffers are turned off before CAS and the output pins
remain tristate throughout a write cycle. A late write cycle occurs when notCAS is taken low before notWE.
Thus, the beginning of a late write cycle appears to the DRAM to be a read cycle and read data is gated
onto the output pins; this would be used in complex memory systems for read - modify - write cycles.

Early write cycles allow the DRAM's data input and data output pins to be commoned and connected directly
to the AD bus. Late write cycles require the data output pins to be connected to the AD bus through tristate
buffers enabled by notMemRd; otherwise the transputer AD pins and DRAM data output pins may collide in
write cycles.

In this application, there is no requirement for late write cycles and the circuit will be simpler if we can achieve
early write. This may be difficult because, to achieve sufficient read data set up time and RAS/CAS lead
time, the falling edge of CAS (notMemS2) has been pulled forward to the beginning of T3. Hence, if the
memory interface is configured for early write, the notMemWrB strobes fall coincident with notMemS2; i.e.
coincident with CAS.

However, the heavier buffering on notMemS2 means that notWE will become valid before notCAS and, be
cause the early write set-up time (tWL 1 CL 1) for the AAA280x series is only Onsec, the DRAMs will experience
early write.

Thus, the DRAM's data input and output pins can both be connected directly to the AD bus.

The DRAM circuit has now been worked through and it remains only to choose the refresh interval and add
EPROM and peripherals.

2.3.9 Choose refresh interval

Most 256k DRAMs are organised as 256 rows of 1024 bits each row of which must be refreshed within 4
msec if data is not to be lost.

The memory interface program gives the time taken for 256 refresh cycles based on the input clock frequency
and the refresh interval. In this example, with a 5MHz input clock, the longest refresh interval of 72 clockin
periods gives 3.69 msec for 256 cycles, within the maximum of 4 msec allowed for the DRAMs used.

2.3.10 Timing for other memory and peripherals

notMemRd is used to generate the EPROM chip select because, in the default memory configuration used
to read the memory configuration word from ROM after reset, it is the only available strobe. notMemS2 is
used to generate the peripheral chip select because, since it goes high at the beginning of T6, its low period
is stretched by wait states; whereas the low period of notMemS1 is fixed. The address decoding shown
provides one wordwide ROM/EPROM space and one I/O space.

The timing for a common medium speed EPROM is typically:

t access
t ce
toe
t df

200 nsec access time
200 nsec chip enable time

75 nsec output enable time
60 nsec output turn off(to bus float)

Access, chip enable and output enable times can all be met by the use of wait states with the timing already
derived. However, Tdf is another problem. Referring to figure 2.10 and 2.13, it can be seen that peripheral
and ROM/EPROM enable timing will be the same as CAS except for the wait states inserted between T4
and T5. Thus Tdf is restricted to a limit of 0 nsec if the bus is to be tri-state by the start of T1, when the
addresses are placed on it. Using notMemS2 directly, rather than buffered, which is possible if the loading
is not exceeded, will give 12-15 nsec available, but this is considerably less than that required. The Tdf of
typical peripheral devices, such as the SCN2681 A DUART (DUal Asynchronous Receiver / Transmitter) is up

2 Designing with the IMS T414 and IMS T800 memory interface 19

to 100 nsec, compounding the problem.

There are two basic routes to a solution; the first is to rearrange the timing, but this will slow down the DRAM
cycles as well, thus defeating the object of this design. The second is to use external buffers on the data
lines connected to ROM and peripherals. The delay through these buffers must be taken into consideration
when determining the number of wait states required.

If F245 buffers are used, these should be enabled by notMemRd or notMemWrB during ROM or peripheral
access cycles. These strobes must be used because they are the only ones available in the default memory
configuration after reset. The direction can be selected by the latched MemnotWrDO signal. This is low
during T1 and T2 of a write cycle and can, therefore, be latched in the same way as the address.

Thus, all that remains to be designed is the gating logic for the wait state generator. This must gate notMemS4
to MemWait during ROM access cycles, and notMemS3 to MemWait during peripheral access cycles; during
RAM access cycles and refresh MemWait must be held low. notMemS4 is used as the wait state generator
for ROM accesses because it alone will generate a suitable length of wait state in the default memory
configuration after reset. The NAND gate is included in the address decoding for ROM and peripherals to
ensure that wait states are not inserted in refresh cycles; when A20=1 and A31=O.

Figure 2.14 gives the full detail of the circuit, and although this represents a complex design by transputer
standards, it is still very simple when compared to the support logic required for other processors in a similar
system. Memory configuration data is taken from EPROM, on data line O. Figure t09:FAST2 shows the final
timing, without the wait states for EPROM and 1/0.

20

notMemS3
nollOwal1

notMemS4
nolROMwail

notMemWrB1

notMemWrBO
nolA31

noiMemS1

A20

notMemS2

notMemRf

notA31

notMemRd

ALE(noIMemSO)

MemnotWrDO

AD12-1B,AD20,AD31

AD2-11

AD11-19

notRAS

AD2-10

LE

Am
29841

oe

LE

Am
29.841

oe

LE

Am
29841

oe

Am
29827

oe

1 Hardware

F245 EPROM

bAD24·31

bAD t 6·~~

bAD8·15

ft41-r-----~ by teO

bnotRASO notWr
1<>--r-l---4~

bnotCASO

bnolCASI

notlOwait

bnotiOen

notROMwalt

bnotROMen

notWr

ADI2·18,20,31

A2·11

Al1·19 9

bnotRAS1 •

bnotCASI •

bnotRASO.

bnotCASO.

A 11·19
multiplexed

with
A2·10

A2·10 9 for DRAM

Figure 2.14

w

D Q

A2·18 • ce

bnotROMen

A2·5

DUART
'-----~

notWr

bnollOen

D Q

ADB-15

64 off AAA2801
drams

....::A~D=-O --1[> MemConflg

2 Designing with the IMS T414 and IMS T800 memory interface 21

2.3.11 Summary of design steps

As each application is different, it is hard to generalise, but figure 2.15 is a flow chart showing the major
steps. In all systems, it is necessary to start with the RAM timing, as that is the most critical area, and will
have the greatest impact on system performance. In many designs, RAM is the only memory.

Figure 2.15

Make change
and reiterate

22 Hardware

2.4 Further examples

2.4.1 Minimum component, 256Kbyte memory

The example in figure 2.16 is taken from the Inmos B003 board. On this board, the 256k byte memory is
made up of eight 64k x 4 DRAMs (e.g. NEC uPD41464).

Clockln (5MHz) -----,

vee

LlnkOIN-+-~

linkOOut

LmkllN
LlnkOIN

llnk21N

lmk20ut

.M5

T414

MemConfig

ADO·31

Error

nalyse

.L:L :L
GNG:L:L :L

Reset~OIErrorWlredOR

0.Wby •• 3 ______ .:::GN.:::D _________ --,

0.Wby •• 2--------------....,

otWbylel------------.,

otWbyleO ----------,

otMemRD----------.,

0.53,---------.....,

64K·4

nOl8 S Dynamic

nolRAS Ram

AD10·17 AD2·9 ADO·)

Figure 2.16

AD24·31

NotMemSO is used to latch address bits 10-17 into a 74F373 and two 74F241s are used as an addresss
multiplexer. NotMemS1 is used as notRAS, notMemS2 is used as the select on the multiplexer and not
MemS3 as notCAS. Each notMemWB strobe goes to a pair of 64k x 4 DRAMs and notMemRD goes to all.
Thus, the 256k bytes is organised as 64k words of 32 bits. The internal memory configuration selected by
connecting MemAD5 to the MemConfig input is used; figure 2.17 shows the timing in terms of Tm periods,
so the transputer clock speed has to be taken into account before actual timings can be added to the diagram.

It is possible to reduce the component count still further by using devices such as the 74F604/6. This is a 16
bit latch to 8 bit multiplexed output, one version being faster and the other glitch free. The only drawback of
this device is that the latches are rising edge triggered and, therefore, an inverter is needed in notMemSO.
Again, care must be taken to ensure that the loadings on RAS and CAS are not exceeded. Figure 2.18
outlines this circuit.

In simple systems, the use of transistors or power MOSFETs can keep the required board area down. Power
MOSFETs such as the Motorola MPF91 0 make useful drivers, as they come in a T092 package, can handle
peak currents in the range 1-2A, and have turn on/turn off times of 4 nsec; thus they can charge or discharge
a large capacitance very quickly. The careful use of discretes such as these can allow better board layout
and allows more control of the heavy currents that flow during switching.

2 Designing with the IMS T414 and IMS T800 memory interface 23

T3 !::. T3 !::. T4 !::. T5 l T5 i T6 i T1

'V1:::::: ; I::. I:: I::. . -+-+~~:::i. Vi::.

.: ~::.~ '::.!' -+--!-----!-.--s.~, , , r~-+;--+--
----!--~>-m+-m-1-mmLm---~--m+uu--CT

: :: ::::

; ; ~ I Vii
~---i.~j' .::.j .~

~~r~+-~-+--~~~~

~"-"";"---i--.;....---;-----'!r

Figure 2.17

notWbyte3
8 If 64k 4 DRAM 0 X S.

notWbyte2
notWbyte1
notWbyteO

T414-20

~~-notMemS3 CAS
notMemS2

~~ notMemS1 I
RAS

notMemSO -

~I~~
-

r-
r-

mux row & -
r-

col adds r-
ADO-31 cp s ~-

LL) 0> C"') r-- ~

AD10-17(col)
~ ~ N ~ M

C"') r-- ~ N J:, 6 cO cO
..,.

0 ..,.
~ ~ N N N

- Cl Cl Cl Cl Cl Cl Cl Cl

AD2-9(row) <: <: <: <: <: <: <: <:

74F604/6

Figure 2.18

24 Hardware

2.4.2 DRAM only: 1 Mbyte

This has been outlined during the main worked example, but is detailed here in its minimum form. The row
and column address multiplexer is made from a tri-state latch and buffer. As this is a RAM only system, and
there is only one bank of RAM, no address decoding is required and it is not necessary to detect refresh
cycles. Instead, refresh cycles can be allowed to appear to the RAM as normal read cycles and they will still
have the desired effect.

notWbyte3
32 II AAA2801 d 0 rams

notWbyte2 -$-notWbyte1 v
notWbyteO

,..cW-
--.9~

T414-20

J::::::- ~r9-
notMemS

W
:cAs

notMemS :=:: RAS
notMemSO ~ J:W- --.9~

~
r---

ADO·31 Ie J?r9-
AD11-19 9bit I

(col) latch I- ...r:J.-

~~l -r- buff.

AD2-10 ~ ADO-7 AD8-15 AD16-23 AD (row) 24-31

Figure 2.19

In the circuit shown in figure 2.19, RAS delayed by a gate is used as Amux. This allows CAS to go low
one Tm period after RAS goes low, giving a longer access time and, hence, the shortest possible memory
interface cycle time; 3 cycles of ProcClockOut. With longer cycle times, it is possible to use notMemS2 for
Amux and notMerpS3 for CAS. Note that to ensure early write, CAS has been delayed with respect to the
write strobes by an extra buffer.

2 Designing with the IMS 1414 and IMS T800 memory interface 25

nolWbyte3
32 off AAA280X drams

notWbyte2

~ notWbytel
notWbyteO v

J:.ii
-.P~

T414-20
notMemS3---. :c7is ~w=- -.P~ '---'

notMemSI -c:::J- ~11AS -v
noiMemS2 {>0- J:.;=- ~~
notMemSO

W

+. -
ADO-3l

-.P~
AD11-19 9bit ..,....--,.

(col) Qj -= I
9bit

-buff.~ -
AD2-10 ~ ADO-? ADS-IS AD16-23 AD (row) 24-31

Figure 2.20

If very fast memory devices are available, it may be possible for CAS to fall at the beginning of T4 and still
achieve a memory cycle time of 3 cycles of ProcClockOut. In that case, Amux can be generated by another
strobe, as there will then be two Tm periods between RAS and CAS. This is shown by the circuit diagram,
figure 2.20, and the timing diagram, figure 2.21.

The important parameters to consider here are the CAS to RAS lead time, 1he time from CAS going low to
RAS going high, and the CAS access time. The CAS to RAS lead time is a minimum of 15 nsec for the
AM2800-60, adding the transputer tolerances to the strobe edges allows about 18 nsec; if a greater margin
is required, inserting an extra buffer in RAS will provide it. For the AM2800-60, CAS access time is 11 nsec
maximum, so the buffer delay on CAS must be minimised to give sufficient access time. Thus, it may just be
possible to do this with AAA2800-60 DRAMs.

The circuit in figure 2.20 could be extended to 4 Mbytes by substituting 1 Mbit DRAMs for the 256k DRAMs
but, with current memory speeds, 4 cycles would be needed for the memory interface.

26

Tm period

ProcClock

ALE(SO)

RAS(S1)

Amux(S2)

2 3 4 5 6

mlllllllllllllli 111111111111111111

mil tolerance (-2 +5 nsec)

o FAST propagation delay (6.5 nsec)

liliiii Am29xxx buffer propagation delay (12 nsec with 200pF load)

Figure 2.21

2_4.3 Fast static memories

1 Hardware

Other than the problem of meeting access time, the only critical timing is the chip disable to output inactive
time. For either the IMS T414 or the IMS T800 to acheive the fastest possible memory cycle time this must
be less than one Tm. Static RAMs with common data 10 pins generally have faster turn-off times than those
with separate 10. The following table gives the most important times for the IMS 1620 (16k x4) and the IMS
1820 (64k x4).

Memory 1620-45 1620-55 1620-70 1820-25 1820-35 1820-451

Access time 45 55 70 25 35 45 nsec
Write pulse width 40 50 60 20 30 40 nsec
Chip disable to
output inactive 20 25 25 15 15 20 nsec

It is possible to operate static RAMs in two modes: asynchronous, where the device is continuously en
abled, or synchronous, where the address inputs are only allowed to change when the device is deselected.
Synchronous operation is preferred because it achieves lower error rates than asynchronous operation. Syn
chronous operation is very easy to implement with the IMS T414 or IMS T800, by using one of the pro
grammable strobes as chip enable.

1 Product under development. Contact INMOS for availability.

2 Designing with the IMS T414 and IMS T800 memory interface 27

8 of IMS 1820
nnIM~mS?

nnIM"mWrR' I nnIMp,mWrB?

1,1 r- III nnlM"mWrR1

I J r T414 ~tMemWrRn

III r or notMemSO I I
T800 "I r-

W E -E r-

~ AD2-17 A2-17
D Q

~ MemConfig 16

~ I AD8 - D -OE 4 4
V2 of 74HC373

,"8 '8 , 8 8
ADO-31 32

Figure 2.22

The memory configuration used is very simple; figure 2.23. One with early write is preferred as this allows
slower memories to be used. For example, with a T414-20 or T800-20, the IMS 1620-45 (for total 64Kbytes)
or IMS 1820-45 (for total 256Kbytes) can be used. For the IMS T800-30, the IMS 1820-35 should be used.

Expansion of the system illustrated above is easy until the bus loading becomes too great or until address
decoding is needed. Any address decoding must impose a minimal delay on chip enable as any delay
reduces the available access time and also the time available for disabling the RAM output buffers. If the
delay through the address decoding is too great, a slower memory cycle can be used.

Alternatively, if data bus buffers are used to reduce the bus loading, these will turn off faster than the RAM
output buffers and it may not be necessary to use a slower cycle.

AD (write)

T2 T3 T4 T5 T6

~~--~-----+----~--~1
~::: 1.----~

i' y
=1<-a-d-dr-e-ss-?!----..~ dala i 1<
~ ,dd"" i ~mm------+--mm--+mm--m+-------m-~

T1

ALE (noISO)

E (noIS2)

WE (notWrB)

AD (read)

Figure 2.23

28 Hardware

2.5 Debugging memory systems

2.5.1 Peeking and poking

Transputers can be booted from ROM (BootFromROM to Vcc) or from link (BootFromROM to ground).
When booting from link, a header byte is expected, if it is in the range 2-255 it should be followed by that
number of bytes. These will be placed in memory starting at MemStart ($80000048) and execution will then
be transferred to this address. The code executes at low priority and its work space is located immediately
above itself. Usually, this code will be a loader, to load the user's program into this transputer and any others,
if it is part of a network.

If the header byte is 0, a 'poke' operation will take place. The 0 byte should be followed by a 4 byte address
(AAAA) and 4 bytes of data (DDDD) to be placed at that address:

input: header=O, then A A A ADD D D

If the header byte is 1, a 'peek' operation will take place. The 1 byte should be followed by a 4 byte address
(AAAA). The transputer will then output, on the same link, 4 bytes of data (DDDD) read from that address:

input: header=l, then A A A A
output: D D D D

After both the peek and poke operations, the transputer reverts to awaiting a new header (which could initiate
another peek or poke).

Thus, if the user has another transputer, such as the one in the development system, it is possible to test the
hardware by poking to the transputer under test to place data in the internal or external memory, and then
peeking to read the data back and compare it. The same method can be used to test, say, a UART. These
peek and poke operations allow simple test programs to be written in occam and run on the development
system, considerably simplifying the design engineer's job. For temperature range testing, the system under
test can be put In an environmental chamber with development system outside; all that is needed to connect
them is a reset cable and a 4 wire link cable. In a mixed memory system, the engineer can now determine
whether it is the memory or the DUART that is marginal, something that previously was difficult to do.

2.5.2 Investigation of memory timing

There may be occasions where a designer wishes to compare different memory interface configurations, and
rather than programming an EPROM or a PAL in order to alter a parameter each time, software configuration
for the memory interface would be useful. In figure 2.24, a basic scheme is outlined for this. It assumes that a
known working transputer board is available, such as one that is part of the development system. This is used
to 'poke' the required parameters into the RAM, which need only be one bit wide, as previously described for
memory debugging; the memory configuration used is the internal configuration associated with ADx. Poking
anything to a location of $8xxxxxxx will then generate a reset and cause the new memory configuration to
be read from RAM on the line ADx. The memory debugging technique can then be used to test the system.
Pressing the reset switch will generate a new reset and select the internal configuration again. Thus, once a
software configuration has been selected, it cannot be altered by any program that may be run.

2 Designing with the IMS T414 and IMS TaOO memory interface

2.6 Summary

transputer development
board e 9 BOOt 12/4

RAM

~

Figure 2.24

link

$7FFFFFFF

only needs to be
t bit wide·
connected to AD,

<$7FFFFF6C

AD,

h

29

link

boot

T4 t 4

AD bus

ALE I SO)

reset

memconflg

Whilst this document has not covered the memory interface of the T 414 transputer exhaustively, it has shown
the main features and how complex systems can be built with the minimum of effort. The reduced amount
of logic required means fewer problems with propagation delays and race and hence faster memory cycles
and shorter design cycles.

30

3 Connecting INMOS links

3.1 Introduction

The INMOS link is fundamental to the concept of the transputer and of occam [1, 2]. A link is the hardware
implementation of an occam channel, each bidirectional link providing a pair of occam channels, one in
each direction. A link provides serial data communication between two transputer family devices at speeds
up to 20Mbits/s.

A link between two transputers is implemented by connecting a link interface on one transputer product to a
link interface on the other transputer product by two uni-directional signal lines. Each signal line carries data
and control information.

Communication through a link involves a simple protocol. This provides the synchronised communication
of occam. The use of a protocol providing for the transmission of an arbitrary sequence of bytes allows
transputer products of different wordlength to be connected together.

Electrically, link signals are TTL compatible and as such are a simple means of communication over short
distances « 0.3 metre). Links are designed for local communication. However, it is possible to use them over
longer distances although a little more consideration is needed to ensure reliable operation. This application
note is intended to provide the kind of information needed to engineer reliable links over various distances
and media.

The note describes the operation of the INMOS link protocol followed by a discussion of the adverse phe
nomena encountered in link transmissions and means by which they may be overcome. Finally, a 5Mbits/s
fibre optic link is described.

3.2 Link operation

An INMOS link between two transputer products consists of two uni-directional signal lines connected to the
link interface on each transputer family device, providing point-to-point serial communication, as shown in
figure 3.1.

Transputer product 1 Transputer product 2

LinkOut . Linkln

Linkln LinkOut

Figure 3.1 Link connection

Communication across a link involves a simple protocol (figure 3.2).

Each message is transmitted as a sequence of single byte communications, requiring only the presence of a
single byte buffer in the receiving transputer to ensure that no information is lost.

Each byte is transmitted as a start bit then a one bit, followed by the eight data bits and a stop bit.

After transmitting a data byte, the sender waits until an acknowledge is received. This consists of a start bit
followed by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged
byte, and that the receiving link is able to receive another byte. Acknowledges may not be sent in advance.
The receiving end starts with an empty buffer, ready to receive the first byte. The sending link reschedules
the sending process only after the acknowledge for the final byte of the message has been received.

Data bytes and acknowledges may be multiplexed down each signal line during duplex communication. In

3 Connecting INMOS links 31

o 2 3 4 5 6 7

Data packet I
data stop bit start data packet

vv
bit bit

Acknowledge ~

Figure 3.2 Link protocol

one implementation of the link (e.g. IMS T414) acknowledges are outpul on receipt of the full eleven bits
of the data packet. The link implementation provided on the IMS T800 or IMS T222 allows overlapped
acknowledges. In this implementation, the acknowledge may be sent immediately on receipt of the start bit
and the 'data is to follow' bit, allowing continuous data transmission with no delays between data packets.

The quiescent state of a link output is logic '0', i.e. OV.

3.3 Electrical considerations

Links may be connected very simply over short distances «0.3 metre). No engineering is required other
than a direct wire connection between LinkOut of one transputer and Linkln of another. The connection may
consist of tracks on a pcb or backplane, or a cable.

Over greater distances, certain parameters of the interconnection medium must be taken into account:

Transmission line effects

Noise and crosstalk

Line attenuation

Pulse dispersion

Skew

Propagation delay

A further consideration that applies to all link connections is protection of the link interface from electrostatic
discharge.

This application note discusses these parameters as they apply to INMOS links. The communications medium
commonly used at present by INMOS is twisted pair cable. The discussion of link parameters concentrates
on this medium, but it could apply equally well to other transmission media, e.g. coaxial cable.

3.3.1 Transmission lines

INMOS links are designed to transmit serial data between transputer family devices at speeds up to 20Mbits/s.

The signals are TIL compatible and as such are suitable for transmitting data over short distances (up to
30cm) with no engineering except a simple wire connection.

At greater distances, the wire will exhibit transmission line effects which can cause undesirable undershoot
or ringing in the received signal.

32 Hardware

This section discusses why these effects occur and means by which they may be alleviated.

The transmission line

A
Zo

B

Transmission line

RI

1
Transm iller Receiver

Figure 3.3 Typical transmission system

Figure 3.3 shows a typical transmission system. As the length of the transmission line is increased signals
travelling through it are delayed. Transmission line effects take place when the propagation delay is signifi
cantly greater than 33% of the risetime of the transmitted digital signals, manifesting themselves as ringing
and undershoot, as shown in figure 3.4.

Overshoot

-++-~----~--t-------- Undershoot

Received pulse

Figure 3.4 Transmission line effects

The 10-90% rise and fall times of the link outputs varies with capacitive loading, as shown in figure 3.5. [3)

As can be seen, the minimum rise time of 12ns corresponds to a capacitive loading of 20pF.

3 Connecting INMOS links

Time
ns

33

30
Rise time

20

Fall time
10

40 60 80100

Load capacitance pF

Figure 3.5 Typical link rise/fall times

Transmission line effects become significant when the length of the transmission line is one tenth of the
wavelength of the highest frequency component in the transmitted signal. i.e.

0.1),

0.1up tr(ns)

350.106

Thus, the effects begin when the delay down the line is

Where

I = length of the transmission line(m)
). = wavelength(m)

0.1).

3.5

Up = propagation velocity of the signal through the line(m/s)
tr = rise time of signal(ns)

Thus, for a rise time of 12ns, transmission line effects will occur when the delay down the line is greater than
3.4ns.

A typical value of up for twisted pair cable is 60% of the velocity of light. Thus, a propagation delay of 3.4ns
is equivalent to a length of 60cm.

Figure 3.5 shows that the fall time is generally half the rise time for a given capacitive load. Thus, the
frequency components in a falling edge will give rise to transmission line effects when the line length exceeds
half that of the rise time minimum length. i.e. 30cm.

34 Hardware

Transmission line effects

A transmission line has associated with it a characteristic impedance, Zoo This is dependent on the inductance
and capacitance per unit length and is given by

Where

L,=inductance per metre
C,=capacitance per metre

Consider a rectangular pulse sent along a transmission line. The rising edge of the pulse travels along the
line arriving at the receiver after a propagation delay Td, determined by the capacitance and inductance of
the line, and causes a voltage drop across the load resistance R

"
giving rise to voltage Vb. Depending on

the value of the load resistance, a reflection may occur which will travel back down the line to the transmitter.
The amplitude of the reflected voltage depends on the reflection coefficient, given by

R,-Zo
p = R, +Zo

The amplitude of the reflection is given by p . Vb. Clearly, if R, = Zo' p is zero and no reflection takes place.
In the worst case, if R, » Zo,P = 1; if R, « Zo,P = -1. If a reflection occurs, the reflected pulse travels
back down the line arriving at the transmitter after another propagation delay Td . If the output impedance of
the transmitter is not equal to Zo, another reflection takes place which travels back to the receiver where a
further reflection takes place, and so on. The result is a series of reflections travelling back and forth along
the transmission line each of which is successively smaller than the last. It is these reflections that cause
ringing.

reflected pulse
voltage voltage

time time
(a) 2 Tdl (b) 2 Td2

Figure 3.6 Simple reflections

Figure 3.6 shows a simplified picture of the effect of a reflection on the transmitted signal. Figure 3.6 (a)
shows the waveform of the transmitted signal with the length of the transmission line at the critical length when
the round trip delay (2Td1) is long enough to prevent the reflected waveform interfering with the transmitted
waveform. In this case, p has a value of two thirds, the reflected pulse has a magnitude two thirds that of the
transmitted pulse, shown in dotted lines, travelling in the opposite direction. Figure 3.6 (b) shows the effect of
the reflection interfering with the transmitted pulse where the round trip delay (2Td2) in this case is sufficiently
small. If the load has a reactive impedance, the resulting waveform will exhibit capacitive and inductive effects.
If the load is inductive, it will initially behave as an open-circuit, finally behaving as a resistance. Alternatively,
a capacitive load will initially behave as a short circuit, then finally acting as a resistance. These effects will
result in the reflected waveforms having time constants.

Controlling transmission line effects

Ringing and undershoot are undesirable because they reduce the system noise margin. Some method of
minimising undershoot is required. This is achieved by correct termination i.e. matching the impedance of

3 Connecting INMOS links 35

the transmitter and/or receiver to the characteristic impedar,ce of the transmission line. A simple method of
termination that requires no dc power is series termination.

A resistor is placed in series with a transputer LinkOut pin such that the combined impedance of the resistor
and the output impedance of the link pin is equal to the characteristic impedance of the transmission line.
The resulting transmission system is shown in figure 3.7.

Zo

Transmission line

Transmitter

Figure 3.7 Series terminated transmission line

If R, > Zo, the reflection coefficient at the load is

RI-Zo
PI = --- and 0 < PI ~ 1

RI+Zo

If Ro + R. = Zo, the reflection coefficient at the source is

P.
(Ro +R.) - Zo
(Ro +R.) +Zo
o

RI

1
Receiver

This means that a transmitted signal will be reflected at the receiver, but the termination resistance will absorb
the reflection, thus preventing any further reflections from reaching the load.

A single specified value of resistor will not be able to match the link output in all cases. The on-resistances of
the P and N transistors of the link output are different and also vary between devices, with temperature and
with supply voltage. Thus, a matching resistor may be specified to cope approximately with most variations.

Unless the transmission line is very well matched, the propagation delay down the line should not exceed
0.4 of the bit period at the operating link speed. Owing to the operation of the link output pad, a reflection
arriving at the link output pin during a logic transition may cause a glitch on the local power supply of the link,
possibly corrupting data.

The oscilloscope plot in figure 3.8 shows a data byte transmitted at 10Mbitsls over 24 metres of 100n
characteristic impedance twisted pair cable with no termination resistor. The top trace shows the waveform at
the LinkOut pin. The reflections can be seen to arrive back at the sending end at a time twice the propagation

36 1 Hardware

delay later. The trace at the LinkOut pin is attenuated due to the effective potential divider caused by the
resistances of the link output pad and the line. The dotted line shows ttie trace of the waveform, had there
been no reflections. Thus, the reflections can be seen to be summated with the sending waveform, shown by
the peaks on the data bits. The irregularity of the waveform is caused by the reactive load, discussed earlier
in this note.

The bottom trace shows the received signal at the other end of the cabl::!. N"ote the overshoot on the falling
edges of the data bits caused by the signal being reflected a second time at the oource.

The link interface inputs data by sampling each data bit 5 times, the correct value of the data being deduced
as a result of these samples. Thus, excessive ringing may cause incorrect bit samples to be taken, corrupting
data.

r" t' ": ••

5V

LinkOut pin

OV .
5V

Linkln pin

Amplitude = 2 volts/div Timebase = 160 ns/div

Figure 3.8 Reflections on a data packet

The plot in figure 3.9 shows the effect of inserting a resistance of 490 between LinkOut and the cable. The top
trace shows that a reflection occurs at the receiver which travels back to the transmitter, in a similar manner
to that shown in figure 3.6. However, in this case the termination resistor absorbs the energy of the reflection,
eliminating a second reflection. The overshoot on the received Signal, as shown in the bottom trace, is now
eliminated. Since data will be switching between 1 and 0 regularly, there is a tradeoff between minimising
overshoot and overdamping the signal. The value of the resistor required should be approximately 560.

Series termination has advantages over other forms of termination (e.g. parallel termination). No power
supply other than the logic supply is needed and the overall power requirement is low. Distributed loading
along the line cannot be used, but since links are used point-to-point this is not a problem.

The link cables supplied with INMOS board products are made from twist 'n' flat cable. This is 28 awg twisted
pair cable with 2-inch flat sections every 18 inches to provide easy connector termination. The nominal
characteristic impedance of this cable is 1050. A 560 series termination resistor provides good matching
between the transputer and the cable.

3 Connecting INMOS links 37

LinkOut pin

5V

Linkln pin

Amplitude = 2 volts/div Timebase = 160 ns/div

Figure 3.9 Data packet with a matched line

3.3.2 Noise and crosstalk

Noise or electromagnetic interference (EMI) can come from numerous sources including lightning, electrical
machinery and electrostatic discharges, any of which can cause interference on a communications line. Link
signals are TTL compatible and as such have a specified noise margin when directly driving a TTL input:

VoH(MIN) - VIH(MAX)

VIL(MIN) - VodMAX)

2.4- 2
O.4V

0.8 - 0.4

O.4V

i.e. noise on the line must be limited to O.4V in order to avoid the possibility of unwanted changes in logic
level.

Crosstalk occurs when signal lines are run close together. The changing signal in one line is coupled into
the other line, appearing as a noise voltage which is proportional to the rate of change of the current in the
first line, for inductive coupling. Noise produced by capacitive coupling is proportional to the rate of change
of voltage.

The protection of electronic circuitry from noise is a large subject [4), but some simple steps can lead to a
reduction in noise pickup and crosstalk. Using twisted pair cable having a ground return twisted with each
link signal line helps to reduce differential mode noise, i.e. noise which appears between the link signal and
ground. Figure 3.10 shows the connections of an INMOS standard link cable. Note how each link signal line
has its own ground. This also helps maintain a constant characteristic impedance along the cable.

Screened twisted pair increases the immunity from common mode noise, i.e. noise coupled equally into
both wires in a pair. Crosstalk can appear as common mode noise, depending upon the construction of the

38 Hardware

Transputer product 1

0 Ground
Transputer product 2

• ------ Ground 0
0 LinkOut Linkln 0
0 Linkln LinkOut 0
0 Ground • two twisted pairs Ground 0

Figure 3.10 INMOS standard link cable

cable, and can be reduced by screening individual pairs. Figure 3.11 shows a test set up to record crosstalk
between link signal lines. A process running on transputer Tl continuously sends the byte AA hex, i.e. bytes
containing alternate '1 's and 'O's. Transputer T2 sends Acknowledge packets.

Transputer product 1 Transputer product 2

GND Byte~ GND

LinkOut Twisted pair Linkln

Linkln LinkOut

GND
Twisted pair

GND
+-Ack

Figure 3.11 Crosstalk test

Figure 3.12 shows a plot of the crosstalk induced from the byte on Tl LinkOutO onto Tl LinklnO when
10 metres of unscreened twist 'n' flat is used. The peaks at the extreme edges of the plot are the acknowledge
start bits. These peaks have been clipped by the oscilloscope in order to show the crosstalk on a reasonable
scale. The crosstalk is caused by the rapid edges of the data packet bits in the other signal wire. It can be
seen that the data packets are transmitted between acknowledges on separate lines.

The measurements are taken when transmitting at 20Mbits/s with no series termination.

Figure 3.13 shows a similar plot using 18 metres of twisted pair where each pair is individually screened.
Again, the two large, clipped peaks at either side of the plot are the acknowledge start bits with the data
packet crosstalk being shown between the acknowledges. The dotted line on the inset trace shows the
(exaggerated) waveform of the data packets on the other signal wire in order to show the correlation between
the edges of the data packet and the crosstalk being coupled onto the other signal line.

The crosstalk is reduced from 1.77V to 760mV peak to peak, a reduction of more than 7dB due to the
screening. A similar performance can be expected for external noise rejection. Since noise pickup increases
with the length of line it is recommended that long links implemented with twisted pairs are screened. An
overall screen is adequate, but individually screened pairs will improve the rejection of crosstalk. Screens
should be connected to the Trame ground at both ends of the cable, due to the high frequency components
in the edges of the data.

3 Connecting INMOS links

Ack· :j Ack .,
,

__ J
,
i
.,

. i
10V
I

------ ______ 1

Amplitude = 500 mvolts/div Timebase = 200 ns/div
Peak - to - peak = 1.77 volts

Figure 3.12 Crosstalk on a 10m twisted pair

" Ack

Amplitude = 200 mvolts/div Timebase = 150 ns/di\
Peak - to - peak = 760 mvolts

Figure 3.13 Crosstalk on a 18m screened twisted pair

3.3.3 Differential line drivers/receivers

Ack

\

1

I
I
I

OV

39

Differential line drivers/receivers such as EIA Standard RS 422 [5], when used with twisted pair, provide
maximum noise immunity. Because the signal is sent differentially common mode noise is rejected by the
receiver up to its common mode rejection limit. Figure 3.14 shows an implementation of an RS 422 system
suitable for use with INMOS links. This system has been used by INMOS for reliable link transmission over

40 Hardware

160 metres of twisted pair at 5Mbits/s. It should be noted that the RS 422 specification limits the maximum
bit rate to 10Mbits/s at a maximum distance of about 15 metres using 24 awg twisted pair. At 5Mbits/s, the
maximum length is about 25 metres. The RS 422 specification is, however, deliberately conservative.

Transputer product Transputer product 2

LinkOut

Linkln

3.3.4 Attenuation

Linkln

""'-- vee

~----------------------------~ __ -~ LinkOut as above

Figure 3.14 RS 422 link

Assuming a noise free environment, the maximum length of line over which a link signal may be transmitted
without buffering is determined by the attenuation of the line. Attenuation of twisted pair increases with
the frequency of the signal transmitted along it. The bandwidth required for transmission of the significant
frequency components of the link Signal line spectrum can be expressed by

350
6(ns)
58MHz

Where hdb= the frequency at which the line spectrum components are decreased by 3dB.i.e. 50% of the
initial magnitude, assuming a minimum fall time of 6ns.

This arises from the fact that high frequency components are attenuated more than low frequency ones,
resulting in slower edges and the height of the corners of a signal being reduced.

3 Connecting INMOS links

For a maximum signal reduction of O.4V from the logic 1 level, the permissible attenuation is

The maximum line length is then

dB 20 log (~:)
20 log (2;4)

~ 1.6dB

41

where Atten is the cable attenuation in dB/100m at the operating frequency. For example, using twisted pair
with an attenuation of 30 dB/100m at 58MHz

100mx1.6
30

5.3m

This value is of course the maximum length of cable which will allow all frequency components up to 50MHz.
The received signal will still be adequate, regardless of the rounding effects of the low pass filtering action of
the cable. From figure 3.5, a link with a capacitive load of 80pF will have a fall time of 10ns. This corresponds
to a maximum frequency component of 35M Hz. For a cable with an attenuation of 18dB/1 OOm at 35M hz, the
maximum length of cable is 8.9m.

3.3.5 Buffering

If longer links are required buffer/line drivers may be used (figure 3.15). Because of the asynchronous
operation of links, the round trip propagation delay is unimportant as far as reliability is concerned. It is,
however, important that the skew Introduced by the buffers is less than the maximum skew quoted in the
Transputer Reference Manual [1]. (Skew is discussed further in the next section.) To minimise skew and to
maximise noise margin at all link speeds it is recommended that FACT buffers are used [6]. e.g. the 74AC244
octal buffer/line driver.

Transputer product

LinkOut

Linkln

Transputer product 2

~--___ ------i Linkln

LinkOut

buffers

Figure 3.15 Buffered links

42

At Vcc = 4.5V

Voh = 4.4V

Vih = 3.15V

Therefore

Hence

Attenuation

assuming the same cable as previous examples.

20 log (VOH)
V1H

(4.4)
2010g 3.15

2.9dB

100mx2.9
18

16m

1 Hardware

While the FACT data book states that the input and output diode clamps on a FACT device will match most
transmission line impedances, it is recommended that a series matching resistor is used at the buffer output.
The series resistor should be equal to the characteristic impedance of the transmission line. Figure 3.16
shows a plot of a bit taken at Linkln in figure 3.15, operating at 10Mbits/s along a 50cm INMOS link cable.
No termination resistor is used and ringing results. Figure 3.17 shows a similar plot taken after the insertion
of a termination resistance of 91 n which damps the ringing.

:sv

ov

Amplitude = 2 volts/div Timebase = 20 ns/div

Figure 3.16 Ringing at FACT buffer output

3 Connecting INMOS links 43

5V

Amplitude = 2 volts/div Timebase = 20 ns/div

Figure 3.17 Series damped FACT buffer output

3.3.6 Skew

The skew of a system is defined as

skew = max {ltpLH - tpHLI, ItPLH; - tpHL;I}

where tpLH is the system propagation delay for low to high signals, and tpHL is the propagation delay for
high to low signals. The rising edge of a start bit is denoted by tpLH; and tpLH; relates to successive rising
edges. The effect of skew is to broaden or narrow digital signals in the system. This changes the times at
which data bits and the stop bit (and the next start bit) are seen at the receiving end relative to the leading
edge of the start bit, shown in figure 3.18.

Skew varies instantaneously with power supply variations.

1.SV
LinkOut::==::~~------------~C:::::==::::~-----------

1.5 V
Linkln

tPLHi tPHL ___ tPLHj

Figure 3.18 Skew

Figures 3.19 and 3.20 show some of the causes of skew. Figure 3.19 demonstrates how skew is introduced
by buffering link signals. The skew arises as a result of the buffer exhibiting differing propagation delays for
rising (t PLH) and falling (t PHL) edges, thus distorting the pulse width and reducing the sampling window.
Skew of this nature can be largely eliminated by using FACT buffers which exhibit relatively little skew.

Figure 3.20 shows the effect of having independent grounds for each link interface. Small changes in the
voltage between the separate grounds can cause ambiguous data samples. This diagram also shows the
effect of a voltage caused by noise on the link data. Instantaneous voltages of this nature may also result in
incorrect samples, hence the need for adequate noise control.

While the overall propagation delay of a line has no effect on the reliability of a link, there is a maximum amount
of skew that the link interfaces can withstand before they fail. Table 3.1 shows the absolute maximum value of
skew obtained experimentally that links can withstand at the three link speeds. These figures were obtained
in an environment designed to be harsh by omitting a ground plane and decoupling capacitors.

44 Hardware

1.SV
Input to buffer

1.5 V
Output from buffer

earliest t PLH
latest t PLH -~

Figure 3.19 Skew caused by buffering

lit

Figure 3.20 Other causes of skew

Link speed (Mbits/s) Bit period (ns) Max skew (ns)
5 200 40
10 100 15
20 50 8
Vcc = 5V, skew measured at 1.5V

Table 3.1

This does not imply that the maximum skew figures quoted in the transputer reference manual [1] should be
exceeded.

3 Connecting INMOS links 45

3.3.7 Protection of links

In order to protect links from electrostatic discharge (ESO) the circuit shown in figure 3.21 is used. The circuit
is required for each Linkln pin. The Schottky diode protects the link from ESO up to 2kV, while the resistor
prevents the link input from floating high when not in use. The diode also helps to eliminate overshoot on
received link signals by turning on when Linkln rises more than about O.4V above Vcc.

vee

1---- Linkln

GND

Figure 3.21 Link protection

Figure 3.22 shows a plot of a bit received at a Linkln. Note how the clamping effect of the diode eliminates
any overshoot on the leading edge of the pulse. With the addition of another diode (figure 3.23) the circuit
can be used to terminate a transmission line. The diodes clamp signal overshoot in both directions.

I ' .
. - - - - - - - -1- - - - - Y"'-__ >"<J""""'-..=.- - ~ - . 5V

I
I
I

- 1- ___________ :... __

I
I
I
I
I

Amplitude = 1 voltldiv Timebase = 50 ns/div

Figure 3.22 Clamping effect of a diode

46 Hardware

I---r- Linkln

10K

GND

Figure 3.23 Schottky diode termination

3.4 Implementing an INMOS link using optical fibres

When operating over short distances, e.g. within an ITEM, standard twisted-pair link cables provide a reliable
link medium at all link speeds (5 , 10 and 20 Mbits/s). Over longer distances, however, reliable transmission
is affected by the characteristics of the line .i.e. Attenuation, pulse distortion and noise susceptibilty.

One method of overcoming these disadvantages is to use an optical fibre. It is not the intention of this
application note to educate the reader in all aspects of optical fibres. The purpose of the note is a simple
discussion of the issues that arise when engineering an INMOS link, using optical fibres.

3.4.1 Advantages of optical fibres

Optical fibres have a very high bandwidth, greatly reduced attenuation and are physically very light compared
with more conventional media e.g. coaxial cable.

Optical fibres exhibit no susceptibility to crosstalk or external noise.

Owing to the total electrical isolation offered by optical fibres there is no danger of ground current loops and
ground noise being coupled between individual systems.

An optical fibre system is inherently difficult to tap onto. This makes it almost impossible for a third party to
monitor information being transmitted on an optical fibre without being detected.

3.4.2 An implementation of a 5 Mbits/s INMOS link using optical fibres

The INMOS link is an asynchronous means of sending data between transputer family devices.

Although the link was originally designed for local communication, communication over longer (> 100m)
distances is best achieved by using optical fibres.

Because of the asynchronous nature of the INMOS link protOCOl, the propagation delay of the link does not
affect reliability, it may, however, affect performance. The time delay between a transputer device sending a
data packet and receiving an acknowledgement increases with the length of the link, thus decreasing effective
data throughput.

3 Connecting INMOS links

The time taken to send a data packet and receive the corresponding acknowledge can be expressed by:

where

I is length of the link
Tdp is the time taken to output a data packet
Tap is the time taken to output an acknowledge
Tmpd is the propagation delay of the transmission medium per unit length

47

The following graph (figure 3.24) shows plots of maximum data throughput at the various link speeds versus
length of optical fibre using the link implementation provided by a transputer family device such as the T414
or T212.

It can be seen that the difference in data throughput at different link speeds decreases with increasing length
of optical fibre, the main contributing factor to the delay being the propagation delay of the medium, the
constant hardware overheads becoming negligible.

It can be seen that for a medium of length approximately 500m, the effective difference in performance for the
various link speeds is very much decreased. Therefore, at longer fibre lengths, there is very little advantage
to be gained by operating the links at 20 MBits/s rather than, say, 5 MBits/s. This fact allows the designer to
relax the constraints (especially skew) of the system.

However, the graph does not strictly apply to the link implementation provided by the T800 or T222. Increased
performance is provided by such links over longer distances due to the overlapped acknowledges.

800 20 MBits/s

400 10 MBits/s

5 MBits/s

o ~ ____________________________ ___

10 100 1000 10000

distance (m)

Figure 3.24 Effect of link length on data throughput

Fibre bandwidth considerations

However, even with optical fibres, there is a limit placed on the maximum length of fibre owing to the skew
restrictions of the INMOS link inputs [1). This skew is caused, in the case of optical fibres, by the phenomenon
known as dispersion.

There are two basic causes of dispersion, chromatic and modal. Chromatic dispersion arises from light
of different wavelengths propagating at varying velocities through the fibre. Modal dispersion is caused by
reflections at the interface between the core and the cladding of the fibre. This results in the reflected wave
having a longer effective path length than a wave propagating directly through the fibre with no reflections.

48 1 Hardware

Owing to the difference in path lengths, the optical signals will not arrive at the receiving end of the fibre at
the correct moments in time, resulting in dispersion.

Different types of fibre exhibit varying dispersion characteristics, offering the optical system designer a range
of price/performance tradeoffs. However, problems with dispersion will tend only to occur at much longer
distances. (> 1 km)

The recommended maximum skew across the system is 30ns for the 5 Mbits/s linkspeed compared to the
20 Mbits/s tolerance of 3ns. A fibre used at low data rates can have a higher dispersion without affecting link
reliability, owing to the increased skew tolerance.

Choosing a fibre

When constructing a system, parameters such as attenuation, dispersion (modal and chromatic) and band
width must be considered when choosing an optical fibre. Speed of data transmission, skew tolerances
and maximum length of fibre are determined by the characteristics of specific fibres and transmitter/receiver
components.

For example, laser devices will cause less dispersion than light-emitting-diode type devices.

Graded index fibres will decrease modal dispersion.

Monomode fibres will largely eliminate modal dispersion.

For further information consult reference [7].

Flux budgeting

An optical fibre system consists of a transmitter, fibre and receiver. The technique of ensuring sufficient
QPtical power is transferred throuqh the system to drive the receiver correctly is known as flux budgetin.q.
Each component in the system will have an associated power loss. The maximum length of any opticallibre
system can be calculated using the following equation:

where:

Pt - al >= Pr + Mp

PI = transmitter power(dBm) measured at the end of 1 m of fibre
a = fibre attenuation per length(dB/km)
I = cable length(km)
Pr = minimum optical power required by the receiver
Mp = optical power margin set by user (>1 dB)

Recommended components

This note is intended to give the reader some idea of the method of implementing an optical fibre link.

For evaluation purposes a simple circuit was constructed. The devices to be used were required to be
relatively inexpensive, simple to use and to comply with the constraints of the INMOS link engines. Of the
devices considered, those manufactured by Hewlett-Packard were found to be suitable. Those used were:

Transmitter: HFBR 1402

Receiver: HFBR 2402

The transmitter is an 820nm Gallium Arsenide light-emitting-diode and the receiver is a PIN [7] photodiode
with a TTL compatible output.

These devices simply plug directly into a printed circuit board, require a minimum of support circuitry and are

3 Connecting INMOS links 49

fully TIL compatible.

The devices are fitted with the emerging industrial standard for optical fibre connectors, the SMA connector.
This enables a fibre previously fitted with SMA connectors to be screwed directly onto the device, allowing
simple interchanging of fibres. At present, these devices will only operate reliably at speeds up to 5 Mbits/s.
It is expected that equally suitable components enabling higher data rates will be available in the not too
distant future.

The major advantage of these devices is the fact that they are DC coupled i.e. there is no requirement
for a steady stream of data passing between transmitter and receiver as is found in the more common AC
coupled devices. AC coupled devices tend to require minimum data rates and impose restrictions on the
duty cycle of data being transmitted. Devices of this nature are obviously of no use for link communication
unless some method of encoding and perhaps having to send dummy packets is incorporated into the circuit,
thus increasing circuit complexity. Such methods tend to move away from the idea of simple communication,
provided by the link itself. For more information consult reference [8].

For our evaluation purposes the fibre used was 200 PCS (Plastic Clad Silica), a step index fibre [7]. This
method of construction exhibits greater attenuation and dispersion than graded index fibres. However, this
problem is offset by the ability of PCS to couple more optical power between transmitter and receiver.

Transmitter circuit

Figure 3.25 shows the circuit required to operate the transmitter. As can be seen, the transputer family device
link output is simply directly connected to the input of the circuit. No driver circuitry is required in this case
as the link output provides sufficient current to drive the optical transmitter. However for more extreme cases
(e.g. longer distances or higher attenuation fibre) the LED may require more drive current in order to provide
the receiver with sufficient optical power.

+Vdd

LinkOut

10 pF
HFBR 1402 3

Gnd

Figure 3.25 Transmitter circuit

The component values shown are calculated from the equations given in [8] for a drive current of 25mA. The
1 OpF capacitor is a 'speed-up' capacitor, intended to square the edges of the input signal.

Receiver circuitry

The receiver is an open-collector device, requiring a pull-up resistor. Owing to the nature of the operation of
a photodiode, the incoming logic value is inverted at the output. It must be stressed that, in order to invert
the receiver output Signal, a FACT inverter should be used. The FACT technology provides very fast edges,
with negligible skew, making FACT an ideal logic family for interfacing with INMOS links. A suitable device is
the AC04 hex inverter IC. The output of the FACT buffer is connected, by methods described earlier in this
note, to the input of a link.

50 Hardware

--------------------~----------~--------------~--+Vdd

Linkln

T of

Gnd
3,7 HFBR 2402

Figure 3.26 Receiver circuit

Physical considerations

It must be stressed that, although optical fibres offer many advantages over conventional wire, they cannot
be treated as such. Multiple fibres may be contained within a single sleeve, allowing easy installation of
numerous links. In applications requiring multiple connections (e.g. an ITEM module) allowance must be
made for the extra space required for the fibre bending. A typical fibre has a minimum bend radius of 2.5 cm.
In having multiple link connections using such devices as those supplied by Hewlett-Packard there is a
problem concerning board area, as two devices are required for each link. This allows a small maximum
number (approximately 3-6) of links to be realised on the edge of a double Eurocard. The devices can be
placed away from a card edge. However, this increases the difficulty of repeated connection in multiple card
systems.

One way of circumventing the problem of a fixed amount of optical fibre links is to use the IMS C004 [9]. This
effectively allows dynamic reconfiguration of up to 32 INMOS link inputs to be connected to up to 32 outputs.
This device allows the network of transputers to be reconfigured, thus allowing the optical links available to
be shared between different devices on a board or in a system, giving a more efficient use of board area at
Slightly increased circuit complexity .

Conclusion

The INMOS link, by the very nature of its operation, demands a minimal delay between sender and receiver
via a noise free medium. Optical fibres are able to provide such a medium and over longer distances than
conventional methods.

The optical fibre electrically isolates separated sytems.

The simplicity and low cost of implementing a 5 Mbits/s INMOS link with optical fibres has been demonstrated
in this note, using the devices produced by Hewlett-Packard.

It is beyond the scope of this note to discuss all aspects of optical fibre system design. For high performance
systems the reader should consult reference [7].

3 Connecting INMOS links 51

3.5 Summary

Although links were originally designed for local communications between devices on a pcb or across a
backplane, it is possible to use them over longer distances. However, some precautions must be taken to
ensure reliability and integrity of data, as summarised below.

Distance Method of connection Comments

Up to 30cm Direct connection

Up to 10m Series termination

Up to 20m FACT buffers

Up to 30m RS 422

Over 30m Optical fibre

3.6 References

Suitable for pcbs, backplanes

5611 to match 10011
transmission line

Minimal skew

Suitable only for 5 or 10 Mbits/s.
Good noise immunity

Noise free, low attenuation.
5Mbits/s system demonstrated
Simple engineering over long distances

The Transputer Databook. INMOS Limited 1989

2 occam Reference Manual. INMOS Limited. Prentice Hall 1988

3 IMS T414 Data Sheet. INMOS Limited 1986

4 How To Control Electrical Noise. Mardiguian, M. Don White Consultants, Inc. 1983

5 EIA Standard RS 422A. Electronic Industries Association. 1978

6 FACT Data Book. Fairchild Camera and Instrument Corporation 1985

7 Fiber Optics Handbook. Hewlett-Packard. 1983

8 Optoelectronics Designer's Catalog. Hewlett-Packard 1986

9 IMS C004 Data Sheet. INMOS Limited 1987

52

4 IMS B003 design of a multi-transputer board

4.1 Introduction

The B003 evaluation board is a double extended Eurocard containing four T414 transputers, each with 256
Kbytes of dynamic RAM. The four transputers are configured in a square, and two links from each transputer
are brought to the edge conector.

The interface from the B003 is via a 96 way DIN 41612 edge connector. Links 0 and 1 from each transputer
are brought out via the edge connector together with the system services signals. The connector is a simple
superset of the 64 way connector used by B001, B002 and other INMOS evaluation boards.

The board uses a minimum of glue logic. The system services shared by all the transputers consist of a
single 5 MHz clock and three packs of TTL. Each transputer uses a further three packs of TTL to interface
to its eight RAM chips. The minimal glue logic introduces minimal access time overhead for the RAM, and
the T414-15 completes a memory access in four processor cycles.

The square connection of transputers makes it possible to test the board down a single link, minimizes edge
connector pin count, and makes it possible to build a wide variety of networks. The application note bound
with this note gives programmed examples of the 8003 in a ring, a rectangular array, a 'butterfly' network
(folded binary structure) and a hypercube.

4.1.1 Logic for each transputer

The logic for each transputer with its 256 Kbytes is shown in figure 4.1. The RAM is provided by eight 64K*4
dynamic RAMs, with just three TTL packs between the transputer and RAM. Apart from the RAM and TTL,
there are a few discrete components for the links, for error, and for decoupling.

Clockln
(5 MHz)

LinkOln

LinkOOut

Link11n
Link10ut

Link21n
Link20ut

Link31n
Link30ut

1.0 /LF
CapPlus .

---::=---;::L-L~~C~apMinus notErrorWlredOr

Reset~K7
VCC J; J; Ill, • • J,. J; 1 0 /LF
GND T T "r "!" T ,-. ---,

Error ---------;:::==L--,/
Analyse

GND r-----;:::=L---./
notMemWrB3
notMemWrB2

56R notMemWrB1

IMS notMemWrBO
64K.4 As LinkO notMemRd notOE T414 Dynamic notMemS3 notCAS

notMemS2 RAM
notMemS1
notMemSO

56R

As Link2

MemConfig

8"'", 0,.. M ,.. ,..
00 It) ')I j ,-OM ~

,..
:=-1 '-- 1 I 10

It) ..,$N ,.. :=a:C\I co ,.. C\I
0 00 0 0 00 0 0 0 0 « 1:1:« « 1:1:« « « «
E EEE E EEE E E E
QI QIQIQI QI QIQIQI QI QI QI
:: :::::: :: :::::: :: :: ::

Figure 4.1 Logic for each transputer on IMS 8003

4 IMS B003 design of a multi-transputer board 53

Memory interface

The logic is used to latch the column address and to multiplex between the row address and column address.

The load on the F241 multiplexers is sufficiently small (50 pF), and the RAMs are sufficiently close to the
F241 outputs that series matching resistors are not needed.

The control signals notRAS, notCAS, notOE and notWEn are taken directly from the transputer signals
notMemS1, notMemS3, notMemRd and notMemWByten. No buffering is needed because the transputers
can easily drive the 50 pF load, and again no series matching resistors are required because the transputer
is so close to the RAMs.

Using such a small amount of logic between the transputer and the RAM not only minimises cost, but also
minimises delay. The RAM can therefore be used with minimal overheads on its access and cycle times.
The timing diagram for the interface is shown in figure 4.2.

Starting notRAS at the earliest opportunities and latching the read data at the latest opportunity gives ample
margin on access time from both notRAS and notCAS. Terminating notRAS early gives an adequate notRAS
pulse width, and at the same time ensures sufficient precharge time.

Four processor cycles are used with the T414-15 and the 41464-12 RAMs because the cycle time of the
RAM, at 220 ns, is more than would be provided by a memory interface cycle of three processor cycles.

Tl I T2 T3 T3 T4 I T5 I T5 I T6 I Tl

I

~ RAS(notSl)

I

y' ~ I ~----.---.---.---~
Mux(notS2)

CAS(notS3) -,----,----'1-----..1'\. I /
I I '\. V I I

AD(raad) =:><--r:---(~- -~- --- ~----~ --- ~-- --~ ----~
OE(notRd) ~ I I ~

AD(wrlta) =:><.........-----f~: : : : : K=
WE(notWrB)

Figure 4.2 Timing diagram for memory interface

Links

The links of the transputer used on the 8003 are capable of running at 20 Mbits/s, at which speed they will
not tolerate skew introduced by buffering.

Links 2 and 3 of each transputer which are connected within the 8003 have a simple series termination on the
LinkOut signal. The termination resistor of 47 ohms, combined with the output impedence of the LinkOut
circuit, gives a termination impedence marginally below 100 ohms.

Links 0 and 1, which are brought to the edge connector, also have 47 ohm resistors on the link outputs.
The link inputs also need pull down resistors in case a link is not connected. On the transputers used on the

54 1 Hardware

B003, the link inputs are more sensitive to electrostatic discharge (ESD) than the link outputs, and so the link
inputs which connect to the edge connector are protected by schottky diodes; with the diodes the transputer
can withstand 'zap' tests of up to 2 kV without damage.

Error

The error output produced by the transputer is active high, which is suitable when there is one transputer on
a board but causes extra wiring and logic if there are many transputers on a board. To simplify the wiring, a
notErrorWiredOR signal is generated by a resistor and transistor.

Decoupling

The power supply decoupling for the RAM and for the TTL is so close to the transputer that it provides
excellent decoupling for the transputer. In addition to the power supply decoupling a further capacitor is
needed between CapPlus and CapMinus to decouple an internal power supply used by the phase locked
loop/clock multiplier. This capaCitor was originally a 10 Jl.F tantalum capacitor, but has been changed to 1 Jl.F
ceramic for future production.

Printed circuit layout

The printed circuit is a straightforward 4 layer board with power and ground planes for the inner layers, and
all signal traces on the outer layers. The design rules are an easily manufacturable 0.010" trace, with 0.008"
between traces. Component pads are 0.070", with 1 mm holes; vias are 0.050" pads with 0.6 mm holes.
Only one trace is allowed between pads.

The two outer layers are shown in figure 4.3.

(a) Component side

•••••••••••••••••••• ••• ••••••••••••• • .. -

Figure 4.3 PCB layout: (a) Component side (b) Solder side

(b) Solder side

PGAs have been somewhat notorious for the difficulty they present to PCB layout. At first sight this layout
appeared difficult, but careful component placement and orientation resulted in surprisingly simple layout, and
there is still transparency for a number of additional connections.

Aspects of the placement which helped were:

4 IMS 8003 design of a multi·transputer board 55

• moving the link and control connections so they do not interfere with the memory connections;

• placing ICs lengthwise to the transputer. This allows maximum transparency, without pads getting
in the way;

• moving the 373 to beyond the address multiplexors, which also had the effect of putting Byte 1 of
the RAMs beyond Byte O.

Overall signal flow is shown in figure 4.4:

Link

MemAD bu.
~~ ~--~--~~

Multiplexed

addre ••

Byte1

By teO

Byte2

Byte3

Figure 4.4 Signal flow on IMS B003 PCB

Ltnk1 LlnkO

Analyse Reset Analyse Reset

TRANSPUTER 0 Ltnk.2I-t-.... HLlnk3 TRANSPUTER 1

CiocklnLlnk3notErro Clockln LlnkfotError

AnalyseLlnk2 Reset Analyse Llnk3 Reset

TRANSPUTER 3 Llnk31-+-+--HLlnk2 TRANSPUTER 2

Clockln not Error Clockln not Error

LlnkO Llnk1

12 DownNotRaset

Ink1

VCC

....... +-_____ ...J...- LlnkOSpe.d

....... +-___ ...J..._ Llnk123Spaad

....... ------~-- SpaclalSpaad

Error LED

6 UpNolError

Figure 4.5 Logic shared by the four transputers on IMS B003

56

4.1.2 Logic used by all the transputers

The logic shared by all the transputers is shown in figure 4.5.

Reset etc

1 Hardware

The evaluation boards share a common system control architecture. The aim of the system control functions
is that it should be possible to control an arbitrarily large system built with the boards. The control implies the
ability to reset the system, to note that an error has occurred in the system, and to analyse the error. Signals
are provided for this purpose in the Up and Down sockets on the edge connector.

Up and Down sockets of evaluation boards are connected in a daisy chain as shown. The board at the top
of the chain is controlled by a Subsystem socket on another evalulation board. The Subsystem socket has
the same signals as the Up and Down sockets, but the Subsystem signals can be controlled by software
running on the board with the Subsystem socket.

The Reset and Analyse signals flow in the direction of the arrows, the Error signal flows in the reverse
direction from Down to Up, and indicates that an error has occurred on this board or on a board further down
from this board.

All the 8003's transputers are reset on power ON. A single Error LED (yellow) lights if an error has occurred
on this board.

Coding switch

The coding switch sets the Link speed signals for all the transputers. Separate controls are provided for Links
o and Links 123, which are independently set to 10 Mbits/s or 20 Mbits/sec.

Clock

The board uses a Single 5 MHz clock OSCillator, which is shared by all the transputers.

57

5 Using transputers from EPROM

5.1 Introduction

The INMOS Transputer has a unique ability to start from cold without any EPROM or similar non-volatile
storage. It is able to load its first program from its serial links. This allows large networks of transputers to
be constructed without the need for an EPROM on each, or its associated glue logic.

Where networks of transputers are being used for compute intensive tasks, many users have developed
systems that are hosted by an I/O processor that sends the first program to the transputer. This allows the
myriad of transputer based accelerator boards on the market to use cheap high volume keyboard, screen
and disc in the form of a PC or a workstation.

Few systems of this type require an EPROM. However there are two other areas where EPROMs are needed;
the embedded system where there is no I/O processor or disc, and the workstation that is transputer based,
i.e. has no other processor.

5.2 Requirements

The EPROM is required to boot the processor to which it is attached, and any other processors attached to
that one by the links thus only one set of EPROMs for the entire network.

For the 'other' processors, no problem, as they are simply booting from link, as they were when attached to
a development system. For the first processor, however, there are three possible requirements.

i) Transputers have a few kilobytes (2K on T212,T414, 4K on T425,T800 ...) of internal RAM that is extremely
fast (50ns,40ns). Thus it can be beneficial to use this rather than slow external EPROM for execution. The
normal run from EPROM case would use this fast RAM as its dataspace.

ii) Transputer memory interfaces support RAM down to 1 OOns cycle time, (T801-25 80ns), which is faster than
EPROM. EPROMs are widely available only down to 150ns access time, which means at least 200ns cycle
time on a conventional bus. Thus, even if the program does not fit in the extremely fast internal memory, it
can be beneficial to load it into external RAM where 1 OOns cycle time can be achieved.

iii) Especially on 16 bit machines, it may be desirable to run the code from EPROM, either to save providing
RAM or to save space in the address map, but some critical piece or pieces of code may need to execute
from internal RAM to achieve the necessary performance. When it is a single piece of code, this must be
downloaded from EPROM to RAM at start-up. When it is multiple pieces of code, a paging system may need
to be implemented.

Another implementation possibility is to use EPROMs that are not in the transputer address space at all, but
are controlled by a counter and some logic to drive a link adapter. At reset, the contents of the EPROM are
sent down the link to the transputer or transputer network, which itself is set to boot from link. The target
system then behaves exactly as if it were loaded from the development system. One may still need to use
method three above if it were critical to execute a part of the code from internal RAM, when the dataspace
required was more than the size of that RAM.

5.3 Methodology ... D700D TDS based

The INMOS Transputer Development System (TDS) (IMS D700D) provides support for the first two require
ments outlined above, and these are described briefly below. The purpose of this note, however, is to
demonstrate the two variants of requirement (iii).

5.3.1 Running from EPROM

To create an EPROM from the TDS, one simply takes a CODE SC fold and places it in a previously empty
fold bundle. An additional fold that specifies the memory interface timing requirements may also be included
for T414,T800,T425 processors which have an on chip DRAM controller. This fold is created by another

58 Hardware

development system utility. One then gets the EPROM HEX tool from the toolset fold, puts the cursor on
the fold bundle and presses run.

{{{ eprom hex
... F
... F
... F

fo~d bund~e for
CODE SC
(confi.gurati.on)

EPROM HEX

the compi.~ed and ~i.nked code
opti.ona~ memory i.nterface data
output created by EPROM HEX program

} } }

This creates an additional member of the fold bundle, which is the EPROM HEX file, which simply contains
the start address, the processor type, and the code in ascii hex.

Finally one runs the HEXTOPROGRAMMER utility on the hex fold, to drive an EPROM programmer, or an
equivalent program to create a disc image for later use by a programmer.

The code sent out actually has been extended slightly to include a preamble whose task it is to initialise those
parts of the transputer not initialised by reset. Only the absolute minimum is reset in hardware, so that
the maximum state is available after a crash for debugging. Transputers boot by executing the instructions
in the top two bytes of the address space. In these two bytes, a backward jump is placed, which jumps to
the start of the preamble. Near the end of the preamble, it calls the user SC, and the final few bytes are
a stop. process instruction in case the user program should return.

5.3.2 Running from RAM

If it is required to run from RAM, for reasons mentioned in 'Requirements' above, or other transputers in the
network must be loaded from this one, then a slightly different method is adopted.

A fold bundle is created as before, but this time the CODE SC that is put in it is a loader. (NMOS provides the
source of such a loader in directory \tds2\tools\eprom, in a fold marked 'multi-board EPROM loader',
or the user can provide their own.

Also in the fold bundle, one must provide a CODE PROGRAM fold, this being the complete program for
the network to be loaded, including the host transputer. For single transputer systems, the program fold
represents just that transputer.

{{{ fo~d bundle for EPROM HEX
... F CODE SC multi.-board eprom loader
... F CODE PROGRAM the appli.cati.on
... F (confi.gurati.on) opti.onal memory ti.mi.ng
} } }

Note that whilst the CODE SC will be placed in the eprom as executable binary, the CODE PROGRAM will
be simply copied into the ROM in its existing message-packet form.

The EPROM-HEX program is run as before, and it produces hex as shown below, where the first line gives
the address to load the first byte, then the rest of the fold is a stream of bytes expressed as two digit ascii
hex, separated by spaces and/or newlines.

{{{
.7FFFEA20 T4
69 67 54 23 45 65 76 87 90 01 9A 77 AE 7C 34 87
23 45 65 76 87 90 01 9A 77 AE 7C 34 87 69 67 54
65 76 87 90 01 9A 77 AE 7C 34 87 69 67 54 23 45
76 87 90 01 9A 77 AE 7C 34 87 69 67 54 23 45 65
} } }

The loader reads the packets of program from the EPROM, and obeys the embedded commands exactly as
if it was part of a system booting from link passing on code for elsewhere, loading those for itself into local
RAM. Finally it returns control to the preamble, which then calls an artificial mai.n program embedded
in the program to keep the entry point consistent. This mai.n program then calls the loaded code, and

5 Using transputers from EPROM 59

supports the endprocess should the user program complete.

5.3.3 Running from EPROM, with critical code in RAM (statically)

When it is necessary to run certain time critical sections of code from internal RAM, leaving the rest of the
program running from EPROM, the task becomes far more complex.

Using the INMOS occam compilers, there is a predefined procedure kernel.. run that allows code previ
ously loaded into a data array to be executed. There are also other various predefines to allow the parameters
to be loaded for that code.

Thus the call of

signal.. process (x,y,z)

where the formal parameter associated with x is a VAL :INT, with Y is [] BYTE, with z is [10] BYTE,
becomes:

VAL nparams :IS 4: -- x,y,z,S:IZE z

params:IS workspace FROM «S:IZE workspace) - (nparams + 2»
FOR (nparams + 2) :

SEQ
params[l] := x
LOAD.BYTE.VECTOR(params[2],y)
params[3] := S:IZE y
LOAD.BYTE.VECTOR(params[4],z)
KERNEL.RUN(code.space,code.entry,workspace,nparams)

Note the assumption here that the code has already been loaded into the vector code. space, that
code. entry is known, and that the vector workspace is large enough for both the real workspace
and the parameters.

To analyse the code above note that the parameter space is at the top of the workspace, with one spare
word above and below it, hence the nparams + 2.

The two extra spaces are for the return address, and for the old workspace pointer. These are put in by the
compiler/kernel.run. If the code loaded used separate vector space, one would put nparams + 3.

Note that vectors in the parameter list become two parameters if the formal parameter of the procedure to be
called was unsized, the first being the address of the vector, the second its size. Note that all items requiring
a pointer to be passed must be retyped as byte vectors. Thus had the formal parameter associated with x
been an :INT rather than a VAL :INT, then the code would have been

[]BYTE X.v RETYPES x:
LOAD.BYTE.VECTOR(params[l],x.v)

Also if y had been a vector of integers, its code would be

[]BYTE y.bv RETYPES y:
LOAD.BYTE.VECTOR(params[2],y.bv)
params[3] := S:IZE y

Note that the size passed with the parameter is the number of elements in the array, not the actual number
of bytes used, so as the called procedure is expecting an integer array, it is given SIZE y rather than
S:IZE y.bv.

60 1 Hardware

5.3.4 Loading the code

The above section assumed that the code had been loaded into the vector code. space. This area requires
some elucidation.

For the static case covered here, this need only be done at start-up, so the solution is to insert some code
at the top of the program, sequentially before the application proper, to copy the code into the internal RAM.
This assumes that the space has been allocated, and we know where to find the code in the first place.

The best way of finding the code is to use the disassembler provided with the 07000 TOS. This can be found
in directory \TDS2\TOOLS\SRC, and must be compiled before use as it is shipped as source only. One
of its options is to create an occam hex table of the code, so that this table can be buried in your main
application source code.

Thus the procedure that must be put in internal RAM is compiled and extracted as a separately compiled
foldset SC. The disassembler is applied to this foldset and adds another fold to it that contains the code in
an occam table of the form

VAL code.tab1.e IS "*#67,*#24,*#55, etc":

This fold is taken to the main application and embedded there.

There are two system infelicities to note in this operation. Firstly, the disassembler will not write to a foldset
that is marked as compiled, so one has to 'break' it by going in to the source of the SC with the editor and
typing,then deleting, a space, before running the disassembler. Secondly, the output fold, the table, is marked
as type COMMENT, although the word 'comment' does not appear, so when compiled, the table is ignored.
This is overcome by making another fold around the table fold, which will be of type occam source, and
then removing the inner fold.

To load the code at run-time, the code looks this:

VAL code.table IS "*#67,*#24,*#55, etc":
VAL enough IS SIZE code.table:
[enough]BYTE code. space:

VAL code.entry IS 0:
application dec1.arations

SEQ
[code. space FROM 0 FOR SIZE code.table] .- code.tab1.e

rest of application, using kernel.run to call it

Note that the disassembler puts a jump on the front of the code, so that it can always be entered from address
offset O. Also code. space has been sized from the code table, so no space is wasted.

Note that if separate vector space is being used, the line:

PLACE code.space IN WORKSPACE:

is required, immediately after the declaration of code.space, if there are more declarations than fit in internal
memory, in order that the code space is on- chip. The declaration is put before the application declarations
in order that it gets first call on internal memory.

5.3.5 Running from EPROM, with critical code paged into RAM (dynamically)

Extending the above method for dynamic paging where all the code originates in EPROM is extremely simple.
Where code may be coming in either on a link or from a disk or active compiler/linker, it is more complex, but
this is unlikely to occur on an embedded system.

5 Using transputers from EPROM 61

Assuming all the code exists in the EPROM, and some part of it needs to be paged into fast memory and
executed, and the process repeated on demand for other functions adds little complexity. If there were ten
functions to be performed, these would be disassembled to occam tables as before and incorporated in
the source. A CASE statement would then receive a command, with the correct parameters forced by the
protocol, and run the appropriate function:

VAL code.tableO IS n •••••••••••••

VAL code.table9 IS n •••••••••••••

decls

PROTOCOL commands
CASE

jobO ; INT ; INT

job9 ; BYTE ; BaaL
end --tag meaning stop, no data needed

CHAN OF commands command. chan:

SEQ
running : = TRUE
WHILE running

command. chan ? CASE
jobO ; int.paraml ; int.param2

SEQ
[code. space FROM 0 FOR SIZE code.tableO] := code.tableO

load parameters
kernel.run(code.space,O,work.space,nparams)

job9 byte.paraml; bool.paraml
SEQ

end
running := FALSE

ELSE
error.message

Note that in this version, each job has a parameter list defined in the channel protocol, and the case input
then automatically selects the correct load- code, load-parameters and run sequence, but we have had to
write the code out ten times and use appropriate memory space.

A much simpler approach, albeit more restrictive, is to use a two dimensional table for the code tables. This
is only possible if the rows are the same length, so one needs to pad all the compiled code tables to the
length of the longest.. .. not always feasible.

One also needs to ensure that all the commands take the same parameter list. This is usually not a problem,
particularly if they are channels for input and output.

62 Hardware

The code then becomes

VAL code.table IS
[[contents of code.tableO],

. [contents of code.table1],

[contents of code.table9]
decls

CHAN OF msg user.in,user.out:

--each padded to longest

PROTOCOL commands IS INT; INT INT:
CHAN OF commands command. chan:

SEQ
running := TRUE
WHILE running

SEQ
command. chan ? job
IF

job <> stop. code

SEQ

param1

[code. space FROM 0 FOR

param2

SIZE code.table[O]] := code.table[job]
--warning, not all compilers accept that linebreak

load params, including chans user.in,user.out

kernel.run(code.space,O,workspace,nparms)

TRUE
running := FALSE

The final development is to allow the code of a job to migrate from transputer to transputer. This cannot be
done after execution of the code has started, but can between jobs. Thus a full dataflow style system can be
built. Assuming variable parameter lists, packed at source into a byte array, so that the formal parameters
are a single array, but not assuming constant code or data sizes, the code becomes:

PROTOCOL commands IS INT:: []BYTE ; INT: :BYTE :

CHAN OF commands command. chan:

decls

SEQ
running := TRUE
WHILE running

SEQ
command.chan ? code.length::code.space

data.length::work.space
IF

code. length <> 0
SEQ

load parameters
kernel. run (code. space, O,work. space, nparms}

TRUE
running := FALSE

5 Using transputers from EPROM 63

Such jobs would of course create output to be sent elsewhere. This is easily achieved by passing
user. in,user . out channels as in the previous example, or by passing out a results array.

An extension of this example would be in a transputer network where all the code was held in the EPROMs
on one transputer, and the other transputers sent it a message asking for a block of code as required, then
running it. This is a combination of the last two examples above.

5.4 Conclusions

Despite user reservations caused by the revolutionary nature of the transputer, many functions are more easily
performed on a transputer than a more conventional machine. Whilst code and data are cleanly separated
by the occam language and the development system, each can be treated as the other, so that dynamic
systems to make best use of the 50 nanosecond transputer internal RAM are easily achieved, without the
need to resort to assembly language.

64 1 Hardware

Itnmos Part 2

_ Systems

65

66

6 Designs and applications for the IMS C004

6.1 Introduction

The IMS C004 is a 32-way crossbar switch that supports the INMOS link protocol. This article describes its
functionality, discusses how it may be used as a design element to provide larger crossbar switches, and how
it may be applied to configure large transputer networks. It also suggests how it can be used as a general
purpose communication engine, and gives an occam description of a message routing exchange.

It includes a concise description of the IMS C004's functionality USing Hoare's CSP notation as well as a CSP
description of the message routing exchange.

LinklnO

Linkln31

ConfigLinkln
ConfigLinkOut

Crossbar
switch

Control
logic

System
services

Figure 6.1 IMS C004 block diagram

6.2 IMS C004 programmable link switch

LinkOutO

LinkOut31

The INMOS communication link is a new standard for system interconnection. It uses the capabilities of VLSI
to offer simple, easy-to-use and cheap interconnections for computer systems. The serial linK is a fundamental
component of, and was developed as part of, the INMOS transputer architecture. The transputer is a single
VLSI device with memory, processor and communications links for direct connection to other transputers. It
is a programmable component which enables systems to be constructed from a collection of transputers that
operate concurrently and communicate through links.

6 Designs and applications for the IMS C004 67

The IMS C004 programmable link switch provides a full crossbar switch between 32 link inputs and 32 link
outputs. It will switch links running at standard transputer speeds (10 and 20 Mbits/sec). It introduces a 1.6 to
2 bit time delay on the signal.

The link switch can be cascaded to any depth without loss of signal integrity and it can be used to construct
reconfigurable networks of arbitrary size.

The IMS C004 is programmed via a separate serial link called the configuration link.

6.2.1 The INMOS serial link interface

LinkOut f----__

Linkln

C10ckln 1-+----5MHz

Figure 6.2 Standard clock input

INMOS serial links are standard across all products in the transputer product range. All transputers will
support a standard communications frequency of 10 Mbits/sec, regardless of processor performance. Thus
transputers of different performance can be connected directly and future transputer systems will be able to
communicate directly with those of today. Each link consists of a serial input and a serial output, both of
which are used to carry data and link control information.

A message is transmitted as a sequence of bytes. After transmitting a data byte, the sender waits until an
acknowledge has been received, signifying that the receiver is ready to receive another byte. The receiver
can transmit an acknowledge as soon as it starts to receive a data byte, so that transmission can be contin
uous. This protocol provides handshaken communication of each byte of data, ensuring that slow and fast
transputers communicate reliably. When there is no activity on the links they remain at logic 0, GND potential.

A 5 MHz input clock is used, from which internal timings are generated. Link communication is not sensitive
to clock phase. Thus communication can be achieved between independently clocked systems, provided that
the communications frequency is within the specified tolerance.

Data 0 2 3 4 5 6 7

o

Acknowledge

[2E

Figure 6.3 Link protocol

6.2.2 Switch implementation

The IMS C004 is internally organised as a set of thirty two 32-to-1 multiplexers. Each multiplexer has
associated with it a six bit latch, five bits of which select one input as the source of data for the corresponding
output. The sixth bit is used to connect and disconnect the output. These latches can be read and written
by messages sent on the configuration link via ConfigLinkln and ConfigLinkOut.

The output of each multiplexer is synchronised with an internal high speed clock and regenerated at the
output pad. This synchronisation introduces, on average, a 1.75 bit time delay on the signal. As the signal is

68 2 Systems

not electrically degraded in passing through the switch, it is possible to form links through an arbitrary number
of link switches.

Each input and output is identified by a number in the range 0 to 31. A configuration message consisting
of one, two or three bytes is transmitted on the configuration link. The configuration messages sent to the
switch on this link are shown in the table.

Configuration message Function

[0] [input] [output] Connects input to output.
[1] [link1] [link2] Connects Iink1 to Iink2 by connecting the input of Iink1 to the output of Iink2

and the input of Iink2 to the output of Iink1.
[2] [output] Enquires which input the output is connected to. The IMS C004 responds

with the input. The most signifigant bit of this byte indicates whether the
output is connected (bit set high) or disconnected (bit set low).

[3] This command byte must be sent at the end of every configuration sequence
which sets up a connection. The IMS C004 is then ready to accept data on
the connected inputs.

[4] Resets the switch. All outputs are disconnected and held low. This also
happens when Reset is applied to the IMS C004.

[5] [output] Output output is disconnected and held low.
[6] [link1] [link2] Disconnects the output of Iink1 and the output of Iink2.

6.2.3 Functionality of the IMS C004

This section gives a textual description of the functionality of the IMS C004. For a more formal description
refer to section 6.7. -

As detailed in section 6.2.2, there are seven commands that are used to set up the IMS C004. (N.B. In
first revision of Silicon, the two disconnect commands were not included.) These will be referred to in this
document as

ct.reset
cUnput.output
ct. link
ct.enquire
ct. disconnect. output
ct. disconnect. link
ct. setup

(BYTE 4)
(BYTE 0)
(BYTE 1)
(BYTE 2)
(BYTE 5)
(BYTE 6)
(BYTE 3)

These commands are sent to the IMS C004 via the configuration link (ConfigLinkln, ConfigLinkOut). These
single byte commands may be followed by output identifiers, input identifiers or link identifiers as explained
below, all of which should be in the range BYTE 0 .. BYTE 31.

After power on reset, the single byte command ct.reset should be executed. This ensures that all inputs are
disabled (i.e. cannot receive data) and all outputs are inactive (i.e. are not connected to any input).

The ct. enquire byte should be followed by an output identifier. The IMS C004 will then return, via the
configuration link, an input identifier which represents the input to which that output is connected. This will
be independent of whether or not that output is active. The most significant bit (bit 7) is set to 1 if the output
is active. (N.B. In first revision of silicon this was not implemented.) Hence after a ct.reset command it is
possible to find out to which input an output has been connected prior to the command. After a power on
reset the input identifier returned after a ct. enquire command will be arbitrary.

The cUnput.output byte should be followed by an input identifier and an output identifier. This command
enables the specified input, connects the specified output to that input and activates that output.

6 Designs and applications for the IMS C004 69

The ct.link byte should precede two link identifiers. This command is equivalent to two cUnput.output com
mands in which the identifiers are reversed; i.e.

ct. link Iink1 link2 cUnput.output Iink1 Iink2; ct.input.output link2 link1

The ct. disconnect. output byte should be followed by an output identifier. This command makes the specified
output inactive.

The ct.disconnect.link byte should precede two link identifiers. This command is equivalent to two consecutive
ct. disconnect. output commands; i.e.

ct. disconnect. link link1 link2 ct. disconnect. output link1 ; ct. disconnect. output link2

The ct. setup command is a single byte command that should be sent to the IMS C004 prior to using data
links that have been redirected by the setup commands (ct.input.outputor ct. link) to ensure that the IMS C004
has had enough time to be programmed correctly.

LinklnO-31

synchronisation LinkOutO

synchronisation LinkOut31

Control
logic

t---------- ConfigLinkOut
r----------- ConfigLinkln
r---------- LinkSpeed

L-____ -'

GND System 1--------- CapPlus VCC ----fl----i
Clockin : services CapMinus

Reset ---.-L: _____ ~

Figure 6.4 IMS C004 implementation

6.3 Versatility of the IMS C004

Since IMS C004's are digital devices that effectively regenerate received data for transmission, they can be
used as elements of larger switching networks without any signal degradation occuring when a link path is
routed through several elements. The only drawback is that each IMS C004 can introduce a delay of up to
2 bits, and since each byte transfer requires a data and acknowledge packet to comply with the link protocol,
the communication bandwidth is reduced by each IMS C004.

70 2 Systems

The IMS C004 is a 32-way crossbar switch. This doesn't however restrict a designer to using a crossbar of this
size. Large crossbars can be designed from smaller crossbar elements. This section introduces two possible
design methods to achieve this, and describes how these methods can be used for cascading IMS C004s.

6.3.1 A small increase in crossbar capacity

If a crossbar element of size M is available (M = 32 for an IMS C004) and a design requires a slightly
larger crossbar, this can be achieved using three crossbars to produce a single crossbar of greater capacity.
Figure 6.8 shows a special case where three identical crossbars (size M) are combined to produce a 50%
larger crossbar (size 3M/2). The following text explains why this arrangement achieves the objective.

Assume that an N-way crossbar is required. That is, a circuit that can connect N inputs to N outputs in any
permutation.

A trivial way of doing this is shown in figure 6.5. It is immediately obvious that this design has not achieved
anything, since two N-way crossbars have been merged to derive a single N-way crossbar. Nevertheless, it
is easy to see that the required circuit has been produced.

N/2

N

N/2
N

Figure 6.5

N/2

N/2

-----~-

Another design that achieves our objective is shown in figure 6.6. Provided that we are happy with the design
of figure 6.5, it is not very difficult to convince ourselves that this new design will also satisfy the requirement
that any input can be connected to any output. If any input needs to be connected to either output 0 or
output 1, then it must be routed via the 2-way crossbar. This stili is not a particularly useful deSign, since
there is a great deal of expense in producing a crossbar only one dimension larger than the two needed to
implement it.

6 Designs and applications for the IMS C004 71

N/2 . (N/2)-1

Output 0

Output 1

N/2 (N/2)-1

Figure 6.6

However, the concept is important because there is no reason why we cannot increase the size of the
smaller crossbar, hence reducing the size of the larger ones to achieve the same result. Figure 6.7 shows
the generalised design structure for combining three crossbars in this way to produce a larger crossbar. Now,
if all three crossbars are of size M they combine to derive a crossbar of size 3M/2 (figure 6.8).

Three IMS C004s can therefore be used to implement a 48-way crossbar.

N/2 (N/2)-(M/2)

N/2 (N/2)-(M/2)

Figure 6.7

72 2 Systems

3M/4 M/4

3M/4 M/4

Figure 6.8

"- M "- " M "
M" M" M" M"

" M "- " M "
M" M" Some M" M"

interconnection

• •
• •
• •

" M " M "
M" M' M M'

Figure 6.9 Large crossbar design using smaller crossbar elements

6.3.2 A large increase in crossbar capacity

A large crossbar can be derived from smaller crossbar elements (M-way) as shown in figure 6.9. A first
attempt at defining the unknown block might be a simple interconnection as shown in figure 6.10. But an
obvious requirement for figure 6.9 is that there should be at least M paths between any input crossbar and
output crossbar, which figure 6.10 does not satisfy.

6 Designs and applications for the IMS C004 73

Min

M M
M M

M M
M M

• •
• •
• •

M M
M Min M

Figure 6.10 A first attempt

An arrangement which does satisfy this requirement is shown in figure 6.11. This uses 3n elements of size M
to implement an nM-way crossbar where n ~ M. A crossbar switch with M inputs and M outputs can be used
to design a crossbar with up to M2 inputs and M2 outputs. Note that it also has the property that each input
to output connection will always be routed through three of the smaller elements.

But note that since we cannot have a fraction of a link, this description uses integer arithmetic. In general,
therefore, it is possible to design a crossbar of size n(M - M mod n).

Using this assertion here are some examples for a C004 (where M=32):

n COO4s Size of crossbar
2 6 64

3 9 90

4 12 128

5 15 150

32 96 1024

74 2 Systems

o 2n

M M
M M

M M
M M

n-1 3n-1

M M M
M Min Min M

Figure 6.11 An nM-way crossbar design for a fixed delay

6.3.3 Design example for cascading IMS C004s

From section 6.3.1, it can be seen that three IMS C004's can be cascaded to derive a 48-way crossbar,
and from section 6.3.2 that 3n IMS C004's can be used to achieve a crossbar of size n(32 - 32 mod n) for
n:::; 32.

Sometimes a choice must be made between the two design techniques. For example if two 45-way crossbars
are required, then the first design could be implemented using six IMS C004's (three IMS C004's for each
crossbar). Alternatively, two 45-way crossbars are a subset of a single gO-way crossbar (which has the bonus
of extra flexibility), and this can be implemented using nine IMS C004's in the second design. If such a choice
is to be made then the following properties should be considered. The first design will route each link path
through 1,2 or 3 IMS C004s, whereas the other will always route through three IMS C004's. The average
link delay of the first will therefore be smaller, which will usually be preferable, but a fixed link delay might
be more desirable. The software support for setting up the second cascade is simpler because the design is
more uniform and the crossbar is more flexible. Finally the first design will use fewer IMS C004's.

01

1
01 :c..
c
CI)
I/)

l t
c cO'
I/) :::I
S· I/)

CD III - :::I
:s- a.
CI) III

Crossbar A
(size n) 3:

't:I
'S!.

(f) o·
I I 0 III

0 6-0

"'"
:::I
I/)

0' -0
0 ...

I

l 12l 2 2 1 I r----" r----'

Crossbar C i"" - I I I I r- Crossbar D o T(O) 1 o T(1) 1 I I • • I I o T(n-1) 1 (size n) I I I I (size n) i"- i"- - I I I I i"- I--
'-----" L ____ .J

I t 3l 3 3 t ~

I
I

0 ~ :::I
::::l CI)

CD 3: c:: ...
CI) (f) - 0 ...
III 0
:::I 0
I/) "'" 't:I
c:: -CI) ...
:::I
CI)

i'
0 ...
;1l:'

I
I/)

t t
Crossbar 8

(size n)

___ JJ I
Figure 6.12 Complete connectivity of a transputer network using four crossbars

~

76 2 Systems

6.4.1 Complete connectivity of a transputer network using four crossbars

The design suggested in this section makes use of the property that all four transputer links are identical. This
means that as far as the configuration software is concerned, it doesn't care on which link a hard channel is
placed, provided that each is connected to the transputer specified by that software. Because of this we can
choose any link numbering scheme when trying to configure a network with crossbars.

It is always possible to set a network of transputers to any configuration using just four crossbars. The size
of the crossbars should be at least as great as the number of transputers in the network. For example, a
32 node network can be configured using four IMS C004's, and a 48 node network can be configured using
twelve (making use of an IMS C004 cascade arranged as shown in figure 6.8). Although a complete proof of
this statement is outside the scope of this text, we will show how this can be achieved for configurations that
contain a Hamiltonian Cycle (i.e. a route through the network that visits every node once only). This method
will be applicable to most interesting configurations. The hardware arrangement is as shown in figure 6.4.
Note that crossbar A connects link 0 outputs to link 1 inputs, crossbar B connects link 1 outputs to link 0
inputs, and crossbars C and D similarly connect links 2 and 3.

Firstly, find a Hamiltonian Cycle (if one exists) through the network and choose a link 0 to link 1 connection
between all transputers. Since any link 0 can be connected to any link 1 by crossbars A and B this cycle can
be configured.

Now each transputer has just two links left to connect. Again since these links are identical, we do not care
which links we choose when connecting our configuration.

If, for example, transputer p is to be connected to transputer q (figure 6.13) and so far no other connections
have been made, a link 2 to link 3 connection can be made in one of two ways. Having made this connection
(figure 6.14), transputer q link 3 can be connected to link 2 of any other transputer in the network (including p).
If another link between p and q is required, these transputers will be completely connected (i.e. there cannot
be other connections to them) and so the next link to be connected will be between two transputers with both
link 2 and link 3 unconnected.

12 12

P q

13 13

Figure 6.13

12 12

P q

13 13

Figure 6.14

Assume now that q is connected to transputer r (figure 6.15). link 3 of transputer r can be connected to link 2
of any other transputer in the network with the exception of transputer q. But since link 2 and link 3 of q have
already been connected, it will not be required to connect another link to it in a four link configuration. If a
link between rand p is required, we again have a completely connected group.

6 Designs and applications for the IMS C004 77

12 12 12

P q r

13 13 13

Figure 6.15

Hence, by induction, it is always possible to arrange that all links 2 are connected to links 3 and vice-versa.
This can be achieved using crossbars C and D in figure 6.4.

6.4.2 Complete connectivity of a transputer network using two crossbars

In the previous section, advantage was taken of the fact that all transputer links are identical. It will often
also be true that all transputers in the network are identical. If this is the case then the Hamiltonian Cycle (if
it exists) can be a fixed pipeline through the network. This means that the link 0 to link 1 connections can be
hardwired and all possible configurations can be obtained by connecting link 2 to link 3 using two crossbars
as described above. A network of N transputers could then be configured using just two N-way crossbars.
This arrangement is shown in figure 6.4.2.

For example 32 transputers can be completely configured using just two IMS C004s.

l I 2 l 2 2

- .--------------Crossbar C
(size n) 0 T(O) 1 o T(1) 1 0 T(n-1) - --------------.-

I t3
1

3 3

Figure 6.16 Complete connectivity of a transputer network using two crossbars

I
~ Crossbar D

(size n) r--

11
J

~

N

en
~ ;-
3
In

6 Designs and applications for the IMS C004 79

6.5 Using the IMS C004 as a general purpose communication crossbar

The use of the IMS C004 is not restricted to computer configuration applications. The ability to change the
switch setting dynamically enables it to be used as a general purpose message router. This may of course
also find applications in computing with the emergence of the new generation of supercomputers, but a more
widespread use may be found commercially as a communication exchange.

This section considers one way in which an exchange might be implemented. A suitable protocol for this
example is shown using Hoare's CSP notation [CAR Hoare: Communicating Sequential Processes) in sec
tion 6.8. A possible occam implementation is included below for users unfamiliar with CSP. There is no
reason why this exchange should not be expanded with a larger crossbar, making use of the design tech
niques of section 6.3.

A message into the exchange must be preceded by a destination token. When this message is routed through
the exchange, the destination token is replaced with a source token so that the receiver knows where the
message has come from. The input. output processes of figure 6.17 and the controller processes could be
implemented easily with INMOS IMS T212 transputers, and the link protocol for establishing communication
with these devices can be interfaced with INMOS link adaptors. In this configuration two channels are placed
on each IMS C004 link in opposite directions.

up[32)
C.out

Control c.in

up[O)

rx[O) cross.in[O)

tx[O) in.out cross.out[O)
0

up[1)

rx[1) cross.in[1)

tx[1) in.out cross.out[1)
1 COO4

t up[2)

I
I

rx[31)
: up(31)

cross.in(31)

tx(31) in.out cross.out(31)
31

t

Figure 6.17

80 2 Systems

6.5.1 occam implementation of a 32 stage bidirectional exchange

This section provides some occam code that could be used to implement the exchange described in sec
tion 6.8. Its main purpose within the context of this document is to give an alternative way of describing the
example for the reader who is unfamiliar with CSP. For this reason, declarations have been omitted except
where confusion might arise without (figure 6.17).

PLACED PAR
PROCESSOR no.of.nodes T2

contro11er (c.in, c.out,
up [0],
up[no.of.nodes])

PLACED PAR i = 0 FOR no.of.nodes
PROCESSOR i T2

Notes

input.output (BYTE i,
rx[i], tx[i],
up [i] ,
up[i+l],
cross.in[i], cross.out[i])

Link placement statements have been omitted, but a convention has been adopted that two channels
placed on the same bidirectional link are paired together on the same line. All channel parameters
are hard channels.

2 Constant byte tokens are prefixed by ct. for IMS C004 tokens and et. for exchange tokens.

3 Section 6.2 recommends that a ct.setup token is sent to the configuration link of the IMS C004 after
a ct. link command. The reason for this is to give the IMS C004 enough time to make the connection.
In this application there will be a substantial delay before that connection is used by an input.output
process and so this precaution is not necessary.

6 Designs and applications for the IMS C004 81

Controller

The code for this process should be loaded onto the transputer that talks to the IMS C004 via its configuration
link. It receives a token from hard channel up.in and, depending on the value of that token, takes one of
three paths before repeating.

PROC controller (CHAN c.in, c.out,
up.in,

WHILE TRUE
SEQ

up. in? token
IF

token = et.ack

up. out)

consume rest of acknowledge packet since
it has done its job

up.in? any.byte; any.byte
token = et.req

deal with request
token = et.rel

setup link or send new request

i. deal with request

(i)

(ii)

This firstly receives the rest of the request packet. It then finds out which nodes are currently connected to
the two that want to talk to each other and sends a release packet to inform the relevant nodes that a new
link is about to be set up.

{{{ deal with request
SEQ

up. in? source; dest
c.in! ct.enquire; source
c.out? current. source. conn -- address of node currently

-- connected to source
set.to.nil.if.inactive (current.source.conn) -- (iii)
c.in! ct.enquire; dest
c.out? current.dest.conn -- address of node currently

-- connected to dest
set.to.nil.if.inactive (current.dest.conn) -- (iii)
up.out! et.rel; current. source. conn;

current.dest.conn; source; dest
}}}

82 2 Systems

ii. setup link or send new request

This firstly receives the rest of the release packet. It then proceeds to find out what is currently connected
to the two that want to communicate. If the same as before (Le. when this was done before sending the
release packet) then the previous connections are disconnected, the new link is set up, and an acknowledge
packet is transmitted. Otherwise a new release packet is sent.

{{{ setup 1ink or send new request
SEQ

up. in? 1ast.source.conn; 1ast.dest.conn; source; dest
c.in! ct.enquire; source
c.out? current.source.conn
set.to.ni1.if.inactive (current.source.conn)
c.in! ct.enquire; dest
c.out? current.dest.conn

(iii)

set.to.ni1.if.inactive (current.dest.conn) -- (iii)
IF

}}}

(1ast.source.conn = current. source. conn) AND
(1ast.dest.conn = current.dest.conn)

-- IMS-C004 setup has not affected these node connections
-- since the re1ease packet was transmitted
SEQ

IF

IF

disconnect current.source.conn and source

current.source.conn = byte.ni1
SKIP

TRUE
-- disab1e current connection to source
c.in! ct.disconnect.1ink; current. source. conn; source
disconnect current.dest.conn and dest

current.dest.conn = byte.ni1
SKIP

TRUE
-- disab1e current connection to dest
c.in! ct.disconnect.1ink; current.dest.conn; dest

c.in! ct.1ink; source; dest
up.out! et.ack; source; dest

TRUE
SEQ

-- transmit a new re1ease packet
up.out! et.re1; current.source.conn;

current.dest.conn; source; dest

6 Designs and applications for the IMS C004 83

iii. seUo.nil.if.inactive

If bit 7 of the parameter output.conn is 1. then the connection is inactive and the byte is set to address nil.
Otherwise it is unchanged. This could not be expressed in detail in the esp description.

PROC set.to.nil.if.inactive (BYTE output. conn)
IF

(output.conn BITAND (BYTE #80» = (BYTE #80)
output.conn := byte.nil

TRUE
SKIP

Input.Output

The code for this process should be loaded onto all the other transputers. The state is initially inactive. If
a message is received from the IMS e004 on switch.in then it is passed on via data.out. If a command
packet is received on up.in then it is dealt with as described in (iv). If a message is received on data.in then
it is dealt with as described in (v). This repeats indefinitely. Note that a priority is given to the three input
sequences. This could not be expressed in esp.

PROC input.output (VAL BYTE i,

SEQ

CHAN data. in, data. out,
up. out,
up. in,
switch.out,switch.in)

state := inactive
d := byte.nil
[max.mess]BYTE rX.mess:
[max.mess]BYTE tx.mess:
WalLE TRUE

PRI ALT
switch. in? source; tx.length; [tx.mess FROM 0 FOR tx.length]

data.out! source; tx.length; [tx.mess FROM 0 FOR tx.length]
up.in? token

deal with command packet (iv)
«state = active) OR (state=inactive» &
data. in? dest; rX.mess; [rx.mess FROM 0 FOR rx.length]

deal with message transfer
-- (v)

84 2 Systems

iv. deal with command packet

If a release token has been received, the rest of the release packet is received and passed on to the next
node. Now if the state is active and either dest, addr1 or addr2 are the same as the local identifier (i), then
the state is set to inactive. Note that this is not necessary if the link that has been requested already exists,
which may occur if the other end of the link has made the request prior to the existing setup.

If a request token has been received, the rest of the packet is received and passed on since this will only be
analysed by the controller.

If an acknowledge token has been received, the rest of the packet is received and passed on. If the destination
address is local (dest = i) then a new link path has been set up for this node and it becomes active. If the
source address is local (source = i) then the request that was previously sent has now been acknowledged
and the stored message can be sent to its destination via the IMS C004.

{{{ deal with command packet
IF

token = et.rel
SEQ

up.in?
-- pass
up.out!
IF

addrl; addr2; source; dest
release packet on to next node in daisy chain
et.rel; addrl; addr2; source; dest

(state = active) AND
««addrl = i) OR (addr2 = i» OR (dest = i» AND
(NOT «source=d) AND (dest=i»»
-- another node has requested a link to this node or its
-- connected node is to be connected to another node
state .- inactive

TRUE
SKIP

(token = et.req) OR (token = et.ack)

}}}

SEQ
up. in? source; dest
-- pass request or acknowledge packet on to
-- next node in daisy chain
up.out! token; source; dest
IF

token = et.req
SKIP

token = et.ack
IF

(state = inactive) AND (dest = i)
-- a link has been set up with
-- another node
SEQ

state := active
d := source

(state = pending) AND (source = i)
-- the link that was previously requested
-- has now been set up
SEQ

TRUE

switch.out! i; rx.length;
[rx.mess FROM 0 FOR rx.length]

state := active
d := dest

SKIP

6 Designs and applications for the IMS C004 85

v. deal with message transfer

A message has been received with an associated destination. If the state of the process is active and
the d8c;tination is that already set up (dest = d) then the message can be immediately routed through the
IMS C004. Otherwise a request is sent to the controller to set up a new link path and the state is set to
pending.

{{{ deal with message transfer
SEQ

IF

}}}

(state = active) AND (dest = d)
-- the destination requested by the message
-- received is the one that is currently
-- connected by the IMS-C004
switch.out! i; rx.length;

[rx.mess FROM 0 FOR rx.length]
(state = active) OR (state = inactive)

-- a new link needs to be requested
SEQ

up.out! et.req; i; dest
state := pending

6.5.2 Message length

In general the transputer handles long messages more efficiently than short messages. However, with the
code given here, while a message transfer is occurring, two input.output processes of the bidirectional ex
change will become busy and will not be able to pass information to the controller. For this reason messages
should be kept short and long messages should be broken into short ones. In the case, for example, when
all routes are active in transferring data between fixed destinations and sources, there need not be any com
munication to the controller until a particular source decides it wants to talk to another destination. Therefore
for the exchange to operate efficiently each input.output process would be expected to be predominantly in
the active state.

6.6 Conclusions

A single IMS C004 can be used alone as a 32 x 32 crossbar supporting INMOS link protocol. Alternatively,
since it is a digital device, a number of IMS C004's can be used to construct a larger crossbar without any
other hardware. Since it introduces a small real time communication delay, the data transmission rate will be
reduced when cascading more than one IMS C004.

With careful design and suitable software support, a small number of IMS C004's can be used to completely
connect any configuration of a large network of transputers without any loss of generality.

Since it can be dynamically programmed, its applications can be extended to systems that might not use
transputers. The INMOS link adaptor enables any parallel bus users to take advantage of the flexibility of the
device. The design of a message routing exchange is fairly straightforward.

86 2 Systems

6.7 CSP description of IMS C004

For completeness a concise description of the IMS C004 is given using CSP [CAR Hoare: Communicating
Sequential Processes].

N.B. Protocol tokens are prefixed by ct. for external tokens and cit. for internal tokens.

c.in and C.out are the channels associated with the control link (or configuration link). cross. in and cross. out
represent the link input and link output wires which are connected by the crossbar. The protocol tokens:
ct.input.output, ct. link, ct. enquire, ct. disconnect. output, ct. disconnect. link and ct. reset correspond to bytes: 0,
1, 2, 3, 5 and 4 respectively.

IMS.C004 = C II (,e!13' IN,) II (Jell.., OUTj)

The process IN, has two states. It is initially set to IN"I!' As information is received from process C, the
parameter set is modified. When set is not empty, the process may either receive a message packet (mess)
from cross.in[iJ, in which case mess is sent to all OUTj processes that are referenced by the elements of set,
or the process may receive a token op from C. In the latter case, if op is ct. reset, the parameter set becomes
empty and the process continues to behave like IN;,\!, but if the token is cit.sub or cit. add, it receives another
token from C and either subtracts or adds this to set depending on whether op is cit. sub or cit. add. IN;,\! can
only receive information from C.

IN, IN"il

IN',il setup.in;? op -+ case op = citreset =>
op = cit.sub =>
op = cit.add =>

esac

IN;,set setup.in;? op -+ case op = cit.reset =>
op = cit.sub =>
op = cit.add =>

esac

cross.in[i]? mess -+

IN;,\!
setup.in,? any -+ IN;,\!
setup.in;? output -+ IN,,{output}

IN· I!
sei'up.in,? output -+ IN;,(set-{output})
setup.in,? output -+ IN;,(.etu{output})

c',J! mess -+ IN;,.et

The process OUT, has two states. It is initially set to OUT.INACTIVEo,j. In the state OUT.INACTIVE;,j it
can receive an input address in from C which if not nil will set the state to OUT.ACTIVEin,j, or it can receive
a token from C on a separate channel to which it responds by returning the process state and the identifier
of the IN, process from which it has been set up to receive messages (/). In the state OUT.ACTIVE;,j the
process may follow either of the paths described above or it may receive a message packet (mess) from IN;
which is then transmitted on cross.outB}.

OUTj = OUT.INACTIVEo,j

OUT.INACTIVE"j = setup.outj ? in -+ (OUT.INACTIVE;,j <f. in = nil 1- OUT.ACTIVE;n,j)

I enquirej? any -+ answer,! false, i -+ OUT.INACTIVE;,j

OUT.ACTIVE;,j = setup.outj ? in -+ (OUT.lNACTIVE"j <f. in = nil 1- OUT.ACTIVE;n,j)

I enquirej? any -+ answerjl true, i -+ OUT.ACTIVE;,j

I C;,J? mess -+ cross.outUl! mess -+ OUT.ACTIVE;,j

6 Designs and applications for the IMS C004 87

The process C will receive an item token on the c.in channel. Depending on which command this is, the
process branches to one of six different processes.

C= c.in? token
-+ case token = ct.input.output => SET.IN.OUT

token = ct.link => SET.L1NK
token = ct.enquire => ENQUIRE
token = ct.disconnect.output => DISCONNECT .OUTPUT
token = ct.disconnect.link => DlSCONNECT.L1NK
token = ct.reset => RESETo
token = ct.setup => C

esac

SET.lN.OUT receives the input and output addresses to be connected. It then enquires as to which link input
(Iast.inpu~ was previously talking to OUT output and sends a (cit. sub, outpu~ packet to IN,a•t onput. It sets up
the new connection by sending input to OUToutput and a (cit. add, outpu~ packet to I Nmput .

SET.lN.OUT = c.in? input, output -+ enquireoutput! any -+ answeroutput? any; lastinput
-+ setup.in'a.t.onput! cit.sub, output -+ setup.outoutput! input
-+ setup.ininput! cit.add, output -+ C

SET.L1NK receives the Iink1 and Iink2 addresses to be connected. It then finds out which link input (last.inpu~
was previously talking to OUTlink1 and sends a (cit.sub, Iink1) packet to IN'a.t.mput, and repeats this procedure
for Iink2. It sets up the new connection by sending link1 to OUThnk2 and Iink2 to OUTlink1 , followed by a
(cit. add, Iink2) packet to INlink1 and a (cit. add, link1) packet to INlink2 •

SET.L1NK = c.in? Iink1, Iink2
-+ enquirelink1! any -+ answerlink1? any; lastinput -+ setup.in'a.t.mput! cit.sub, link1
-+ enquirelink2! any -+ answerlink2? any; lastinput -+ setup.in'a.t.,nput! cit.sub, link2
-+ setup.outlink1! Iink2 -+ setup.outhnk2! Iink1
-+ setup.in,ink1! cit.add, Iink2 -+ setup.inhnk2! cit. add , link1 -+ C

ENQUIRE receives the link output for enquiry and sends an arbitrary token to the relevant OUT process (via
enquireoutput) which responds (via answeroutput) with the appropriate link input that is assigned to this output
and a boolean state to determine whether this connection is activated. (N.B. In the implementation this is
encoded into the byte that also contains the input, i.e bit 7 contains state, bits 4 .. 0 contain input address).
This is then transmitted on c.out.

ENQUIRE = c.in? output -+ enquireoutput! any -+ answeroutput? status, input
-+ c.out! status, input -+ C

DISCONNECT.OUTPUT receives the link output address to be disconnected. It determines which link input
was previously connected to it, sends a (cit. sub, outpu~ packet to INinput and sends nil to OUT output.

DISCONNECT.OUTPUT = c.in? output -+ enquireoutput! any -+ answeroutput? any, input
-+ setup.ininput! cit.sub, output -+ setup.outoutput! nil -+ C

DISCONNECT.L1NK receives the link addresses (Iink1 and Iink2) to be disconnected, and does the same as
DISCONNECT.OUTPUT for each address.

DISCONNECT.L1NK = c.in? link1, Iink2 -+ enquireunk1! any -+ answerlink1? any, input
-+ setup.inmput ! cit.sub, Iink1 -+ setup.outlink1! nil
-+ enquireunk2! any -+ answer'mk2? any, input
-+ setup.ininput! cit.sub, link2 -+ setup.ouijink2! nil -+ C

88 2 Systems

RESET sends ct.reset to all IN processes and nil to all OUT processes. All IN and OUT processes are
therefore deactivated but the OUT processes preserve knowledge of their previous connection.

RESET31 = setup.in31! citreset -+ setup.oub1! nil -+ C

RESET; = setup. in, ! cit.reset -+ setup.out;! nil -+ RESET;+1

N.B. This section describes the command set and functionality of the IMS C004 that should be available from
revision B silicon onwards. At the time of print, revision A only is available. The ct. disconnect. output and
ct. disconnect. link commands are not implemented and neither is the bit 7 coding after a ct. enquire command
which will give the output state. Section 6.5 (and section 6.8) gives an example of setting up the IMS C004
dynamically, and assumes that these functions have been implemented.

6.8 CSP description of a 32 stage bidirectional exchange

Section 6.5 described a 32-way bidirectional exchange using occam. This section describes the same
system more formally using CSP [CAR Hoare: Communicating Sequential Processes] (figure 6.17).

N.B. Protocol tokens are prefixed by ct. for IMS.C004 tokens and et. for exchange tokens.

All messages received from rx[i] should be preceded by the destination output (des~. On receipt of such a
message the INPUT.OUTPUT process will request to the CONTROLLER, a bidirectional link path to process
dest. The CONTROLLER will determine which processes are currently connected to each end of the proposed
link. When it is sure that both ends are free, it will set up IMS.C004 and will inform both ends of the new link
that a switch has occurred. Note that in this network two channels are placed on each IMS C004 link, one
for each direction.

EXCHANGE = IMS.C00411 CONTROLLER II (lIi..o .. 31INPUT.OUTPUTi)

The exchange modelled will have an IMS.C004, a CONTROLLER and 32 INPUT. OUTPUT processes.

Controller

CONTROLLER firstly receives a token on up[O]. If this is an acknowledge token the rest of the packet is
simply consumed. Otherwise depending on whether the token is a request or release token, it proceeds to
one of two other processes.

CONTROLLER = up[O]? token
-+ case token = et.ack

token = et.req
token = et.rel

esac

'* (up[O]? any, any -+ CONTROLLER)
'* DEAL.WITH.REo
'* SETUP.LlNK.OR.SEND.NEW.RELEASE

6 Designs and applications for the IMS C004 89

DEAL.WITH.REO firstly receives the source and destination addresses of the requested connection. It then
finds out which inputs are already connected to source and dest and passes information to the relevant
INPUT. OUTPUT processes (via a release packet on the daisy chain) to inform them that their outputs are
being acquired. Note that if either or both of the addresses are currently free (state is false) the release
packet is stuffed with address nil.

DEAL.WITH.REO = up[O]? source, dest
-+ c.in! ct.enquire, source -+ c.out? source.state, current.source.conn
-+ c.in! ct.enquire, dest -+ c.out? dest.state, current.dest.conn
-+ up[32]! etrel, source, dest

-+ case (source. state = true) AND (dest.state = true)

esac

~ (up[32]! current.source.conn, current.dest.conn -+ CONTROLLER)
(source.state = true) AND (dest.state = false)
~ (up[32]! current.source.conn, nil -+ CONTROLLER)

(source.state = false) AND (dest.state = true)
~ (up[32]! nil, current.source.conn -+ CONTROLLER)

(source.state = false) AND (dest.state = false)
~ (up[32]! nil, nil -+ CONTROLLER)

SETUP.LlNK.OR.SEND.NEW.RELEASE firstly receives the rest of the release packet which has visited every
INPUT.OUTPUT process. It then examines IMS.C004 (ct.enquire) to determine if any changes have been
made to the source and dest setup since the release message was sent. If not then the link is set up and an
acknowledge packet is transmitted. Otherwise a new release packet is sent.

SETUP.LlNK.OR.SEND.NEW.RELEASE =

up[O]? last.source.conn, last.dest.conn, source, dest
-+ c.in! ct.enquire, source -+ c.out? source.state, current.source.conn
-+ c.in! ct.enquire, dest -+ c.out? dest.state, current.dest.conn
-+ (c.in! ct.disconnect.link, current.source.conn, source

-+ C.in! ct.disconnect.link, current.dest.conn, dest
-+ c.in! ct.link, source, dest -+ up[32]! et.ack, source, dest -+ CONTROLLER)

-f. ((Iast.source.conn = current.source.conn) OR (source.state = false))
AND

((Iast.dest.conn = current.dest.conn) OR (dest.state = false)) .,.
(up[32]! et.rel, current.source.conn, current.dest.conn, source, dest -+ CONTROLLER)

90 2 Systems

Input.Output

The process INPUT. OUTPUT, has three states. In all states a message received on cross.out[i] from
IMS.C004 will be passed directly to its output channel tx[i].

INPUT.OUTPUT; = INACTIVE,

Initially each process is set up to inactive. While in this state the process may receive messages on all
three channels. If a message is received preceded by a destination address on rX[i},a request is sent to the
CONTROLLER via up[i] and the process state is now pending. If a token is received from the CONTROLLER
via up[i+ 1], then depending on whether it is a request, release or acknowledge token one of two processes
is selected.

INACTIVE.PASS.RELEASE.PROTOCOL receives the rest of the release packet and since the pro
cess in this state is not talking to an output, there is no change of state and the data packet is
passed along the daisy chain (up[iJl.

INACTIVE.REO.OR.ACK receives the source and destination addresses and passes the complete
packet to the next inpul.output process. If the packet is a request then there is no change in state,
but if the packet is acknowledge and it has a local address (dest = /) then the process becomes
active and can now talk to source.

INACTIVE; = rx[i)? dest, mess -+ up[i)! etreq, i, dest -+ PENDING;,meu

I cross.out[i)? source, mess -+ !x[i)! source, mess -+ INACTIVE;

I up[i+ 1)? token
-+ INACTIVE.PASS.RELEASE.PROTOCOl;

-I. token = etrel 1-
INACTIVE.REO.OR.ACK;,token

INACTIVE.PASS.RELEASE.PROTOCOL, = up[i+1)? source, dest, addr1, addr2
-+ up[i)! etrel, source, dest, addr1, addr2 -+ INACTIVE,

INACTIVE.REO.OR.ACK"token = up[i+1)? source, dest -+ up[i)! token, source, dest
-+ INACTIVE;

-I. token = etreq 1-
(ACTIVE".ource -I. dest = i 1- INACTIVE,)

When the process is pending it cannot receive any more messages (rx[i)) since it is waiting to send one
already. If a token is received from the CONTROLLER via up[i+1], then depending on whether it is a request,
release or acknowledge token one of two processes is selected.

PENDING.PASS.RELEASE.PROTOCOL receives the rest of the release packet and since the pro
cess in this state is not talking to an output, there is no change of state and the data packet is
passed along the daisy chain (up[iJl.

PENDING.REO.OR.ACK receives the source and destination addresses and passes the complete
packet to the next input.output process. If the packet is a request then there is no change in state,
but if the packet is acknowledge and it has a local address (source = /) then the message is sent
(preceded by the source address) and the process goes into active state.

PENDING"m = cross.out[i)? source, mess -+ tx[i)! source, mess -+ PENDING;,m

I up[i+ 1)? token
-+ PENDING.PASS.RELEASE.PROTOCOl;,m

-I. token = et.rel 1-
PENDING.REO.OR.ACK;,m,token

6 Designs and applications for the IMS C004 91

PENDING.PASS.RELEASE.PROTOCOL;,m = up[i+1]? source, dest, addr1, addr2-+
up[i)! etrel, source, dest, addr1, addr2 PENDING" m

PENDING.REQ.OR.ACK;,m,token = up[i+1)? source, dest -+ up[i)! token, source, dest
-+ PENDING;,m

f. token = etreq i
((cross.in[i)! i,m -+ ACTIVE;,dest) f. source = i i PENDING;,m)

When the process is active, a message received (rx[ilJ will either be passed straight to IMS.C004 (cross.in[ilJ
(if destination address is unchanged) replacing dest with i, or the process will request a new output to talk to
and switch to pending state, If a token is received from the CONTROLLER via up[i+1], then depending on
whether it is a request, release or acknowledge token one of two processes is selected.

ACTIVE.PASS.RELEASE,PROTOCOL receives the rest of the release packet and passes it along
the daisy chain. If the packet addresses indicate that this connection should be released it becomes
inactive. Otherwise the state is preserved.

ACTIVE.REQ.OR.ACK receives the source and destination addresses and passes the complete
packet to the next input.output process. If the packet is a request then there is no change in state,
but if the packet is acknowledge and it has a local address (dest = /) then its connection address is
changed to source.

ACTIVE;,d = rx[i)? dest, mess -+
(cross.in[i)! i, mess -+ ACTIVE;,d) f. d = dest i (up[i)! etreq, i, dest -+ PENDING;,m.,,)

I cross.out[i)? source, mess -+ !X[i)! source, mess -+ ACTIVE;,d

I up[i+ 1)? token
-+ ACTIVE.PASS.RELEASE.PROTOCOL;,d

f. token = etrel i
ACTIVE.REQ.OR.ACK;,d,token

ACTIVE.PASS.RELEASE.PROTOCOL.,d =
up[i+1)? source, dest, addr1, addr2-+
up[i)! etrel, source, dest, addr1, addr2 -+
-+ INACTIVE;

f. ((dest = i) AND (source "I d)) OR (addr1 = i) OR (addr2 = i) i
ACTIVE;,d

ACTIVE. REQ.OR.ACK,d,token = up[i+ 1)? source, dest -+ up[i)! token, source, dest
-+ ACTIVEi,d

f. token = etreq i
(ACTIVEi,oource f. dest = i i ACTIVE"d)

92

7 Module motherboard architecture

7.1 Introduction

INMOS transputer modules are designed to form the building blocks of parallel processing systems. They
consist of printed circuit boards in a range of sizes which typically hold a member of the transputer family
of processors, some memory and perhaps some application specific circuitry. A module needs only a 5 volt
power supply and a 5MHz clock to operate. These are supplied to the module through pins on the periphery
of the board. Other pins bring out the transputer's serial links and reset, analyse and error signals. Some
modules can control a subsystem of other modules through another set of pins. The Dual-In-Line Transputer
Modules (TRAMs) document provides a complete specification of INMOS transputer modules.

In order to use modules as parallel processing building blocks INMOS has developed a range of mother
boards. While these boards provide access to transputers from a number of different host machines, they
have a common architecture to allow control and interconnection of potentially large numbers of transput
ers. This document describes the generic architecture of module motherboards. It is recommended that this
specification is followed when designing in order to preserve compatibility with INMOS module motherboards.

7.2 Module motherboard architecture

The INMOS range of module motherboards has a common architecture making it easy to build and configure
systems consisting of large numbers of transputer modules. The goals aimed at in the design of the module
motherboards, and the architecture developed to achieve them, are described below.

7.2.1 Design goals

The main goals aimed at in the design of module motherboards are:

• To be able to build systems with any number of transputer modules in any combination of type or
size

• To be able to build a variety of different kinds of network (e.g. arrays, trees, cubes, etc.)

• Enable any number of motherboards to be chained together

• Make transputer link connections easily configurable by software

• To be able to run test and applications programs on transputers without first configuring links

• Provide a standard hardware interface to configuration and applications software

• Allow hierarchical control of systems of transputers

• Make the transputer hardware and software independent of the host system

7.2.2 Architecture

In order to achieve the design goals outlined above, a standard architecture is adopted for all module moth
erboards. The rest of this document describes the motherboard architecture in detail, but the salient features
are given below.

• The modules in a network are connected in a pipeline using two links from each module

• The remaining links from each module are taken to IMS C004 programmable link switches

• A number of links are taken from IMS C004s to edge connectors for wiring to other boards

• Each IMS C004 is controlled by an IMS T212 transputer

7 Module motherboard architecture 93

• The IMS T212s are connected in a separate pipeline

• The first module in the pipeline on a particular motherboard can control a subsystem of other trans
puters that may reside on the same motherboard, another motherboard or may be distributed across
a number of boards

• An interface may be provided to enable a non-transputer based host system to control and commu
nicate with a motherboard

7.3 Link configuration

Transputers communicate with each other via serial links operating at 10 or 20Mbits/s. The module mother
board architecture facilitates the interconnection of links between transputer modules by providing a standard
hardware link configuration and allowing software configuration using IMS C004 programmable link switches.
Links should be interconnected by properly terminated transmission lines (PCB trace or cable) having a char
acteristic impedance of 100fl. INMOS Technical note 18, Connecting INMOS links, gives full details on all
aspects of connecting links.

7.3.1 Pipeline

Each module resides in a module slot which provides two sockets that take the 16 pins of a size 1 module. A
motherboard may have any number of module slots, determined only by the physical size of the board. The
slots are numbered starting at slot O.

All the modules on a motherboard are connected in a pipeline as shown in figure 7.1. Link 2 of the module in

Pipe head 1
Slot 0

2 1
Slot 1

2 1
Slot 2

~ __________ .1 Slot n 2 Pipetail

Figure 7.1 Module pipeline

slot 0 is connected to link 1 of slot 1 and so on for the rest of the pipeline. Link 1 of module slot O(Pipehead)
and link 2 of the last module slot (Pipetail) are brought out to an edge connector thus enabling the pipelines
of any number of boards to be chained together by connecting Pipehead of one board to Pipetail of the next.
See figure 7.2.

pehead
Board 0

Pi Pipe head
Pipetail

Board 1
___ ~ie~h_e~~ _
Pipetail

Figure 7.2 Module pipeline on several boards

Board n
Pipetail

Some applications may not require a full complement of modules or may use size 2 or larger modules which
take up more than one slot, but use only one slot for electrical connection. In either case the pipeline will be

94 2 Systems

broken unless steps are taken to keep it intact. A pipe jumper is a small connector used for this purpose.
See figure 7.3. It plugs into an unused module slot and connects link 1 of that slot to link 2 of the same slot,
thus preserving the pipeline.

Pin 1 marked ""

c=;::::7~TT~T~T7r::::==;::T~T
Figure 7.3 Pipe jumper

7.3.2 IMS C004 link configuration

An IMS C004 programmable link switch is used for software configuration of links. This device is a crossbar
switch which can handle up to 32 links. It can connect any of the 32 link inputs to any of the 32 link outputs
under software control from a separate configuration link.

Links 0 and 3 of each module are taken to an IMS C004 or a number of IMS C004s, depending on the number
of links. Links may be taken from an IMS C004 to an edge connector to allow links from one motherboard to
be connected to those of another.

The number of IMS C004s required on a particular motherboard depends on the number of modules the
board can hold. The exact arrangement of IMS C004 links is not specified here in order to give the designer
maximum flexibility for his particular application. The only restriction is that links 0 and 3 of each module
are taken to a C004. This may be done in a number of ways. For example:

• Link Os may be taken to one IMS C004 or a set of IMS C004s; link 3s may be taken to another IMS
C004 or a set of them

• Both Link Os and link 3s may be taken to the same IMS C004(s)

• LinkOutOs and LinkOut3s may be connected to an IMS C004 or a set of the same, while LinklnOs
and Linkln3s are taken to another IMS C004 or a set of them

7.3.3 T212 pipeline and C004 control

Each IMS C004 on a motherboard is controlled from an IMS T212 16-bit transputer as shown in figure 7.4.
An IMS T212 can control up to two IMS C004s via its links 0 and 3. Links 1 and 2 of each IMS T212 are used
to connect the transputers in a configuration pipeline. Link 1 of the first IMS T212 on the board is taken to an
edge connector designated ConfigUp; link 2 of the last IMS T212 in the board's configuration pipeline is also
taken to an edge connector designated ConfigOown. In this way the configuration pipelines of any number
of motherboards may be chained together by connecting ConfigDown of one board to ConfigUp of the next,
enabling a network of transputer modules spread over several boards to be configured from software.

The IMS C004 configuration data may come from software running on a module residing on the first moth
erboard in the system. It is therefore necessary to be able to connect a link of that module to the board's
configuration pipeline. A jumper provides the option of connecting link 1 of the first IMS T212 in the config
uration pipeline either to ConfigUp or to link 1 of module slot O. In the latter, the jumper also disconnects
PipeHead on the edge connector from slot 0 link 1. This is shown diagrammatically in figure 7.5.

7.3.4 Software link configuration

The hardware configuration described in Sections 7.3.2 and 7.3.3 provides the standard architecture recog
nised by the Module Motherboard Software (MMS) , a software package available from INMOS which allows
easy configuration of the IMS C004 link connections.

The MMS lakes a list of link connections that are hardwired on the board together with a list of the required

7 Module motherboard architecture

ConfigUp 1 IMS T212 1-2 ___ --i1 IMS T212 _2 _________ IMS T212 2 ConfigDown

Config Link

IMS C004

Config Link

IMS C004

o o 3

--11 F----------------------------:-------l rr --
~ ____________________________________ __J/

Slots 0 to n, Links 0 and 3

Figure 7.4 IMS C004 control by a pipeline of IMS T212s

r----- ----."
I I

I

Pipehead
I
I 1 2 ---0--- --r Slot 0 -----
I
I
I

ConfigUp
-'---0--- -~ 1

IMS T212
2

I
I
I
I

---_ ..
Jumpers

Figure 7.5 ConfigUp/Pipehead jumper

'softwired' connections and generates the configuration details for each IMS C004.

For each board in the system, the user can:

• Connect link 0 of any module to link 3 of any module

• Connect link 0 or link 3 of any module to an edge connector link

95

96 2 Systems

• Connect an edge connector link to another edge connector link

The MMS is described in detail in the MMS2 User Guide.

7.4 System control

The subsystem control function of the module motherboard architecture allows hierarchical control of networks
of transputers. It enables a module capable of driving a subsystem to reset or analyse a network of modules
and to handle errors in the network. The driving module can itself form part of a network which is controlled
by another module. In this way a hierarchy of control is made possible.

Each module on a motherboard requires a 5MHz clock. The module motherboard specification provides a
scheme for distributing the clock signal from a single crystal oscillator to all the modules on a motherboard.

7.4.1 Reset, analyse and error

Three signals are provided by transputers for the purpose of allowing system control: Reset, Analyse and
Error. The Reset and Analyse inputs enable the transputer to be initialised or halted in a way which preserves
its state for subsequent analysis. The transputer Error signal is connected directly to the processor's Error
flag. See the Transputer Reference Manual for a detailed description of these Signals.

A transputer module has a similar set of signals: module Reset and Analyse are connected directly to the
respective pins on the transputer; the transputer Error pin is taken to a transistor on the module to produce
an open collector not Error signal that can be wire-ORed with the notError signals of other modules.

Some modules are capable of controlling a subsystem of other modules. They have three extra pins: SubSys
temReset, SubSystemAnalyse and notSubSystemError, which are controlled by the on-module transputer
through latches in memory. These pins are connected to the Reset, Analyse and notError pins of the
modules in the subsystem being controlled. The subsystem can then be reset or analysed by asserting the
relevant signal of the subsystem controller module. The subsystem's ORed notError Signal can also be
monitored by the controlling module.

7.4.2 Up, down and subsystem

A module motherboard has three ports that provide hierarchical control: Up, Down and subsystem (see
figure 7.6). Each port appears at an edge connector and has three active-low signals: notReset, notAnalyse
and notError. A board is able to control a subsystem of other boards by connecting its subsystem port to
the Up port of the next board. Boards in a subsystem are chained together by connecting the Down port of
one board to the Up port of the next board. A board within a subsystem is in turn able to control another
network through its subsystem port.

Figure 7.7 shows how a board can be connected to a subsystem of boards.

The notReset and notAnalyse signals flow from subsystem of one board to Up of the next board. From
there, they go directly to Down. They are also logical ORed with that board's subsystem reset and analyse
latches and then pass to the subsystem port. The notError signal passes from a board through its Up port.
If it is connected to the Down port of the board above, it is logical ORed with that board's Error signal and
passed to the Up port. If it goes to the subsystem port of the board above, the Error signal is not passed
on, but is handled by that board. (Figures 7.10, 7.11 and 7.12 show the module motherboard system control
logic.)

7 Module motherboard architecture

Up

Down

notUpReset
notUpAnalyse

notUpError

Up port

Up port

notDownAnalyse
notDownReset

Module motherboard

Subsystem port

notSubSystemError

notSubSystemAnalyse
notSubSystemReset

Figure 7.6 Up, down and subsystem

Sub
system

Up Up Up

Sub Sub Sub
Down system Down system Down system

Up Up Up

Sub Sub Sub
Down system Down system Down system

I

Figure 7.7 Controlling a subsystem of boards

97

98 2 Systems

7.4.3 Source of control

If there are n slots on a motherboard, modules in slots 1 to n may be controlled from either the Up port (or
a host machine if the motherboard has an interface to one, see Section 7.5) or may be part of a subsystem
controlled by a suitable module in slot O. The source of control is determined by a jumper or switch, as shown
in figure 7.8.

Host subsystem

Up

0 Slot
contro

.. 0

I

Slot 0

c 1 6,,,d oocteo'
select

Down

Subsy stem

Slot 0
Slots 1 to n and 1M subsystem I oocteo' "',d

S T212

I I
I I
I I
I

Slots 1 to nand
I

I IMS T212s I
I I
I I
I I L ________________ ~

Figure 7.8 Source of control

The on-board IMS T212(s) may be reset and analysed from the same source that controls slots 1 to n. The
Error pin of the IMS T212(s) is not connected.

A power-on reset circuit is required for the IMS C004(s) on board. An IMS C004 may then be reset at
power-on or by the IMS T212 controlling it. Each IMS T212 has a latch mapped into its memory space. See
figure 7.9. This enables software running on the IMS T212 to reset the IMS C004 either by setting the latch
or by sending a reset message to the IMS C004 Configuration link.

7 Module motherboard architecture

--r-- 4n 7

..l.- GND

DO
IMS T212 1------1 D

notMemCE 1--____ --1 CK

Power on Reset

VCC

QI------~

CL

Figure 7.9 IMS C004 reset circuit

IMS C004 Reset
)---

99

Figures 7.10,7.11 and 7.12 show the logic required for Reset, IMS C004 Reset, Analyse and Error, respec
tively. These diagrams provide a logical description only: the actual implementation is left to the individual
designer. It is important, however, to include the passive components indicated in the diagrams. The 1 K
pull-up resistors on the notUpReset, notUpAnalyse, notDownError and notSubSystemError signals are
necessary to ensure that if these signals are unconnected they are not left floating, but are deasserted. The
4K7 pull-up resistors are required to wire-OR the open collector notError signals from the module slots. Note
that the Dual-In-Line Transputer Modules (TRAMs) document specifies a maximum of ten notError signals
should be wire-ORed together. The combination of each 1000 resistor and 1 OOnF capacitor filters out noise
on the notUpReset, notUpAnalyse, notDownError and notSubSystemError signals coming from off the
board.

To improve noise rejection, it is recommended that Schmitt gates are used to receive signals from other
boards. These gates should use bipolar technology (e.g low power Schottky 74LS series TTL). It is also
recommended that gates driving signals off the board are capable of providing a full output voltage swing
from OV to 5V, e.g. HCT series gates.

The Reset logic (figure 7.10) uses the Board Control Select switch and multiplexer to select whether Slot 0
and the Down port are reset from the Up port or from the host. The Slots 1 to n & IMS T212 Control Select
switch and multiplexer determine whether Slots 1 to n and the IMS T212s are reset from the Slot 0 subsystem
port or from the Up port or the host. A similar arrangement is used for the Analyse logic (figure 7.11).

In the Error logic (figure 7.12), the Slots 1 to n & IMS T212 Control Select switches and multiplexers select
whether notError from Slots 1 to n is passed either to the Slot 0 subsystem port or to the Up port or the host.
The Board Control Select switch and decoder determine whether Slots 1 to n notError, notDownError or
notSlotOError are passed to the Up port or to the host.

Board Control Select and Slots 1 to n & IMS T212 Control Select correspond to the conceptual switches
in figure 7.8.

100

notUpReset

notHostReset

Slot 0 SubSystem Reset

notA/B
A

B

y

Up 9
-L GND

2 Systems

Control Select

Slot 0 & Host
interface Reset

notDownReset
~-------

VCC

Slots 1 to n & IMS T212
Control Select

UP/HOS~

....---'.,..,..".-, GND
notA/B

A

B

Other Reset
yl-------

(Slots 1 to n
& IMS T212)

notSubSystem Reset

Figure 7.10 Reset logic

7 Module motherboard architecture

VCC

notUpAnalyse

Slot 0 SubSystemAnalyse

notA/B
A

y

VCC

1K

Board Control Select

Up 9
--L- GND

Slot 0 Analyse

not DownAnalyse

VCC

1K

Slots 1 to n & IMS T212

UP/Hosl

GND

Control Select

notA/B
A

Other Analyse
yl-------

B (Slots 1 to n
& IMS T212)

notSu b SystemAna Iys e

Figure 7.11 Analyse logic

101

102

notSlotOError

GND

vee

U IHost'{ ~ontrol
p ~elect

no tAiB
A

B

GND

GND

yl-------'

vee

lK

Slots 1 to n
& IMS T212
Control

UP/Ho~elect

notA/B
A

GND

"'----'x

notA/B

2 Systems

vec

lK

Board
Control

Up '{ Select

--L- GND

notUpError
A ~---------

notHostError
BI-------

G~-- ________________ ~

no tS I 0 to Sub Sy stem E rro r

y~----------------~

B

Figure 7.12 Error logie

7 Module motherboard architecture 103

7.4.4 Clock

A 5MHz, TTL compatible clock signal is required for each module slot, IMS T212 and IMS C004 on board.
Since the clock must be distributed to a number of modules and devices the buffering scheme shown in
figure 7.13 is used to minimise distortion of the clock waveform caused by excessive loading and transmission
line effects. This is a star configuration and it may be extended indefinitely by adding more buffers at the star
points which may drive further buffers, and so on until the required number of clock signals are derived. The
length of any pcb trace carrying a clock signal should be limited to 30cm.

5MHz
Clock

VCC

1K 100
...-C::::J-- 81010 Clock
!-C:::::J-- 810t1 Clock

810t n-1 Clock

810t n Clock

Figure 7.13 Clock distribution

7.5 Interface to a separate host

Some module motherboards may require an interface to a host machine or system that is not transputer
based, e.g. the IBM PC, VMEbus or Futurebus. Because the implementation of the interface is specific to
the host system, it is not defined here. However, it should allow the system to access the module pipeline
and control a subsystem of modules.

7.5.1 Link interface

The host system accesses the module pipeline via Slot 0 Link 0, as shown in figure 7.14. It is beyond the
scope of this document to define the implementation of the host to link interface, but it might consist of an
INMOS link adapter, the registers of which may be mapped into the host's address space, or It may involve
the use of dual-ported RAM shared between the host and a transputer.

The interface must be capable of interrupting the host when a data transfer in either direction has been
completed.

104

Host system

Host/motherboard
interface

Host subsystem

Link Reset interface

Slot 0 control

Up
-+0

2 Systems

Down

Slot 0 subsystem subsystem
~------~------------~------~~-

Pipehead 2
Slot 0

t
Slots 1 to n

and IMS T212
control

Figure 7.14 Host to motherboard interface

7.5.2 System control interface

The host system must be able to control a network of modules. This is made possible by the provision of
latches mapped into the host's memory. There are three latches: Reset, Analyse and Error, which correspond
to the notHostReset, notHostAnalyse and notHostError signals of the HostSubSystem port shown in
figure 7.14. The Reset and Analyse latches are mapped into successive locations of host memory. Reset
and Analyse are write only by the host; the Error latch is read only and shares the same address as the
Reset latch.

Writing a '1' into bit 0 of the Reset latch asserts notHostReset;
Writing a '0' into bit 0 of the Reset latch deasserts notHostReset.

Writing a '1' into bit 0 of the Analyse latch asserts notHostAnalyse;
Writing a '0' into bit 0 of the Analyse latch deasserts notHostAnalyse.

A '1' read in bit 0 of the Error latch indicates that notHostError is asserted;
A '0' read in bit 0 of the Error latch indicates that notHostError is deasserted.

The host to motherboard link interface is reset by the same source as Slot 0, i.e. the Up port or the
HostSubSystem port.

7 Module motherboard architecture 105

7.5.3 Interrupts

The host to subsystem interface must be capable of generating an interrupt to the host when certain events
occur on the motherboard. These include:

• Completion of transfer of data from the host to the motherboard

• Completion of transfer of data from the motherboard to the host

• Error in subsystem indicated by notHostError being set

Other system specific conditions may also generate an interrupt, e.g. if DMA is used to transfer data between
the host and motherboard, the end of a DMA cycle may trigger an interrupt.

The host may select which conditions cause an interrupt by setting bits in a register or registers on the
motherboard, mapped into the address space of the host. Other registers hold status information that can be
read by the host to determine the source of an interrupt.

7.6 Mechanical considerations

The size and shape of a module motherboard is determined by its application. However, there are a number of
mechanical constraints which must be adhered to in order to maintain compatibility between different modules
and motherboards.

The size and spacing of module slots must conform to the mechanical specification in the Dual-In-Line
Transputer Modules (TRAMs) document, the main points of which are reiterated here.

7.6.1 Dimensions

In the following, dimensions are quoted in inches for PCB length, width and related dimensions; all other
dimensions are quoted in millimetres.

Width and length

The basic size of a TRAM is a very wide 16 pin DIP, with 3.3" between the two rows of pins. These TRAMs
fit on a 3.6" pitch on their length, and a 1.1" pitch on their width. Extra length is added beyond the pins to
hold the pins, to provide for mechanical fixing, and to polarise the module shape. Modules can be made
larger than the standard size by keeping the 3.3" between pins and using two or more sets of the 16 pins.
They can be made smaller than the standard size, down to a 16 pin DIP with 0.6" between the two rows of
pins, or 1 .5" between the pins. These sizes will normally be used for Single chip modules or hybrids.

The top drawing in figure 7.15 shows a Size1 module and how the jigsaw pattern fits together between
adjacent modules. The lower drawing in figure 7.15 shows the various sizes of TRAM. Detailed dimensions
of the different sizes are given in the Dual-In-Line Transputer Modules (TRAMs) document.

106 2 Systems

a
a a a

~

a Pin 1 (reference) a a a a TRAM A B C D a a
module a a a a size a a 1 3.3' 3.5' 1.05 3.66' a a 2 3.3' 3.5' 2.15' 3.66' a
4 3.3' 3.5' 4.35' 3.66'

a S 3.3' 3.5' S.7S' 3.66'
112 1.5' 1.7' 1.05' a C a a a 1/4 0.6' O.S' LOS' a a 2/4 0.6' O.S' 2.15' a a a a a a a a a

I~ ~ A (pitch between pins) I~
B (to inside edges of board) ·1

I~
D (overall. including fixing/polarizing lugs) ~

Figure 7.15 Transputer module sizes

Vertical dimensions

The height specifications. both above and below the TRAM PCB, are shown in figure 7.16a. Figure 7.16b
shows a module with these dimensions plugged into a motherboard.

Figure 7.16c shows a TRAM above components on a motherboard and the overall component height is
13.7mm, which is within normal specifications for motherboards on O.S" centres.

It is recommended that any component reaching a maximum specified height has an insulating surface.

To provide the spacing shown in figure 7.16c, the TRAM pins are implemented as a stackable socket. and
an extra stackable socket is used between the motherboard socket and module pin.

Figure 7.16d shows an alternative component height which meets the 13.7mm overall height if the module is
not above components on a motherboard.

Figure 7.16e shows two modules stacked.

Note that the datum for component heights on both sides of the TRAM is the component side surface. This
datum is also used for the stackable socket to minimize tolerance buildup.

7 Module motherboard architecture 107

---L--.,--r"--. Datu m

5.0mm

a

b

d e

Figure 7.16 Component heights

7.6.2 Motherboard sockets

The TRAM pins/stackable sockets defined in the Dual-In-Line Transputer Modules (TRAMs) document will
plug into any standard IC socket. To meet the component heights given in figure 7.16, the stackable socket
must also be used on the motherboard.

Motherboard sockets for the Slot 0 subsystem signals should be the 0.38mm or O.4mm sockets referred to
in the Dual-In-Line Transputer Modules (TRAMs) document.

7.6.3 Mechanical retention of. TRAMs

Vibration tests have shown that in a normal office or laboratory environment, the TRAMs remain plugged into
their sockets. In transit, however, or in an environment where there is vibration, some form of mechanical
retention may be necessary.

108 2 Systems

Modules have fixing holes to facilitate mechanical retention, see the Dual-In-Une Transputer Modules (TRAMs)
document. Similar fixing holes should be drilled in the motherboard as shown in figure 7.17. M2.5 nylon bolts
may be used between these fixing holes to secure the modules.

- ~--------------------- -

-~--------------------i~-

~ • • Holes 2.5mm dia
o 150" I 3.3" I opposite pins

. • .. 2,7,10,15

Figure 7.17 Fixing holes for mechanical retention

7.6.4 Module orientation

Figure 7.18 shows the orientation of transputer modules when mounted in slots on a motherboard. Notice how
each module is rotated through 1800 with respect to adjacent modules. This serves two purposes: cooling
of Size 1 modules is improved; and it makes it possible to have Single-In-Line modules at some future date.

00000000 00000000 00000000 00000000
8 1 16 9 8 1 16 9

9 16 8 9 16 8
00000000 00000000 00000000 00000000

Figure 7.18 Orientation of module slots

7.7 Edge connectors

Connectors are necessary to enable links and system control signals to be taken from a motherboard to other
boards. Several types of connector have been used on INMOS module motherboards.

The IMS B008 module motherboard for the IBM PC uses a 37-way D-type connector, the pin-out of which is
shown in figure 7.19.

7 Module motherboard architecture 109

notUpReset
~
20 1 GND

notUpError 21 2 notUpAnalyse

EdgeLi nkl nO 22 EdgeLinkOutO

EdgeLinkln1 23 4 EdgeLinkln1

EdgeLinkOut2 24 GND

EdgeLinkOut3 25 EdgeLinkln2

EdgeLinkOut4 26 7 EdgeLinkln3

GND 27 EdgeLinkln4

EdgeLinkln5 28 EdgeLinkOut5

EdgeLinkln6 29
10 EdgeLinkOut6

11 EdgeLinkOut7
EdgeLinkln7 30

12 GND
ConligU pLlnkOut 31

13 ConligUpLinkln
Pipe He adLinkOut 32

14 PipeHeadLinkln
notSubSystemReset 33

15 notSubSystemAnalyse
notSubSystemError 34

16 PipeTailLinkOut
PipeTailLinkln 35

17 ConligDownLinkOut
Conlig DownLinkln 36

18 notDownReset
notDownAnalyse 37
~ otDownError

Figure 7.19 37 -way D-type connector

This connector provides up to twelve links (including ConfigUp, ConfigDown, PipeHead and PipeTail), plus Up,
Down and Subsystem ports. A cable suitable for connecting IMS B008s together is shown diagrammatically
in figure 7.20.

The IMS B012 is a module motherboard in double extended Eurocard format. It has two 96-way DIN 41612
connectors. The bottom connector (P2) provides connections for eight links (including ConfigUp, ConfigDown,
PipeHead and PipeTail) and Up, Down and SubSystem ports. Table 7.1 shows the general pinout adopted
by INMOS for such a connector, making it suitable for use with module motherboards while preserving
compatibility with the the rest of the INMOS range of boards. The pins marked Spare and Spare link may
be used for signals and links specific to a particular application. The IMS 8012 User Guide and Reference
Manual describes how these pins are used on the IMS B012.

The top connector (P1) of the IMS B012 is a DIN 41612 connector that takes a special mini-backplane to
provide connections to 32 links. See figure 7.21 for the mechanical details and Table 7.2 for the pinout of this
connector. On the IMS B012, the P1 connector is used to bring out links from the board's two IMS C004s. See
the IMS 8012 User Guide and Reference Manual for details. The mini-backplane is available from Varelco,
part number 07-8258-0940-01-00. Both the P1 and P2 connectors are used with the INMOS Link and Reset
cables provided with most INMOS board products.

110

37 way D
connector
(Female)

37 way D
connector
(Female)

1m

Link[njin _____ ,X'---- Link[njin

Link[njout ' -----Link[njout
For links 0 to 7

PipeHeadLinkOut -----><' ____ _
PipeHeadLinkln ____ , _

PipeTailLinkOut

PipeTailLinkln

PipeTailLinkOut -----X, ___ _
PipeTailLinkln ----.... -

PipeHeadLinkOut

PipeHeadLinkln

ConfigDownLi nkOut ConfigUpLinkOut -----X ... ___ _
ConfigUpLinkln - - ConfigDownLinkln

ConfigUpLinkln

ConfigDownLinkOut ----_>< ____ _
ConfigDownLinkln , _

ConfigUpLinkOut

Down

Up ------~~ ~--------Up
---............ Subsystem

Figure 7.20 37-way cable

2 Systems

7 Module motherboard architecture 111

c b a
1 GND GND GND
2 vee vee vee
3 PAUX nc PAUX
4 vee vee vee
5 GND GND GND

6 vee vee vee
7 GND GND GND
8 nc nc nc
9 PipeHeadOut Spare linkout PipeTaiiOut
10 PipeHeadln Spare linkin PipeTailln

11 GND GND GND
12 nc nc nc
13 GND GND GND
14 nc nc nc
15 eonfigUpOut Spare linkout eonfigDownOut

16 eonfigUpln Spare linkin eonfigDownln
17 GND GND GND
18 nc nc nc
19 Spare nc Spare
20 Spare nc nc

21 Spare GND nc
22 Spare nc notSubReset
23 Spare Spare linkout notSubAnalyse
24 Spare Spare linkin notSubError
25 Spare GND GND

26 Spare nc nc
27 nc GND nc
28 notUpReset nc notDownReset
29 notUpAnalyse Spare linkout notDownAnalyse
30 notUpError Spare linkin notDownError

31 GND GND GND
32 GND GND GND

Table 7.1 P2 DIN 41612 connector pin out

112

H ~ 0.125"

0.200" min
0.230" nom

Figure 7.21 P1 32-link connector

2 Systems

7 Module motherboard architecture 113

c b a
1 LinkOutO LinklnO GND
2 LinkOut1 Linkln1 GND
3 LinkOut2 Linkln2 GND
4 LinkOut3 Linkln3 GND
5 LinkOut4 Linkln4 GND

6 LinkOut5 Linkln5 GND
7 LinkOut6 Linkln6 GND
8 LinkLut7 Linkln7 GND
9 LinkOut8 Linkln8 GND
10 LinkOut9 Linkln9 GND

11 LinkOut10 Linkln10 GND
12 LinkOut11 Linkln11 GND
13 LinkOut12 Linkln12 GND
14 LinkOut13 Linkln13 GND
15 LinkOut14 Linkln14 GND

16 LinkOut15 Linkln15 GND
17 LinkOut16 Linkln16 GND
18 LinkOut17 Linkln17 GND
19 LinkOut18 Linkln18 GND
20 LinkOut19 Linkln19 GND

21 LinkOut20 Linkln20 GND
22 LinkOut21 Linkln21 GND
23 LinkOut22 Linkln22 GND
24 LinkOut23 Linkln23 GND
25 LinkOut24 Linkln24 GND

26 LinkOut25 Linkln25 GND
27 LinkOut26 Linkln26 GND
28 LinkOut27 Linkln27 GND
29 LinkOut28 Linkln28 GND
30 LinkOut29 Linkln29 GND

31 LinkOut30 Linkln30 GND
32 LinkOut31 Linkln31 GND

Table 7.2 P1 DIN 41612 connector pin out

114

8 Dual inline transputer modules (TRAMs)

8.1 Background

INMOS has built a number of transputer evaluation boards. Most are the same size (220mm x 233.4mm),
which fits the INMOS ITEM. These boards have different transputer configurations and different amounts of
memory (IMS T212, T414, T800, M212, transputer graphics, several transputers, 64K to 2M of RAM).
INMOS has also produced boards to fit particular computers, such as the IBM PC and the NEC 9801.

The need

It would have been nice if we had been able to offer all the different transputer configurations to fit into
these personal computers. But instead of about ten different designs of boards, this would have meant 30
different designs. And there was market demand for transputers to plug into VME, to VAX, to SUN, to other
workstations, process control computers, minicomputers, mainframes. And there was further demand for
more configurations, such as more memory per transputer, more transputers with less memory, or the same
memory in much less space, graphics and other different peripherals

Clearly to produce all these different transputer configurations, to plug into all these different computers,
would need over 100 different board deSigns. Even if INMOS could design those, it would be foolish to stock
and sell so many different designs. But a genuine market demand existed to be met. Somehow we had to
separate the transputer configuration from the computer and its size and shape of board.

Meeting the need

A small range of transputer configurations, implemented as modular subsystems, and a small range of
motherboards with sockets for the modules, offered this separation.

Users can mix and match different physical sizes of modules, modules with different memory sizes and
modules with different functions. By mixing and matching, many more than 100 different combinations are
possible.

An advantage to many customers who have the expertise in interfacing to their own computers is that they
can design their own module motherboards, and use the ready-built transputer configuration supplied as
modules. This should greatly reduce the time needed to prototype a transputer system.

The building block

In effect the module is a board level transputer, with a very simple standardized interface. The building block
concept is practically realized by integrating memory and peripheral functions on board, and by limiting the
pin out to 16 pins (although some modules use several sets of these 16 pins). It is just as easy to build
transputer circuits with modules as it used to be to build logic circuits out of TTL.

Several of the modules are densely packed, offering thousands of MIPs, hundreds of MFLOPs and many
megabytes, all on a few motherboards in a small box.

Two questions

Two questions are frequently asked - why OIL, and why just this size?

We use OIL because it is more robust than SIL when assembled on the board; also because the height of a
transputer SIL strip would be over 1" using PGA transputers. The pin out of adjacent modules is arranged,
however, so that if at some future time SIL strips appear viable, the SIL pinout works.

The size comes from considering how small a transputer could become. As the chip is about 1cm square,
it would not fit with a 0.3" 16 pin DIP, but it would fit into a 0.6" 16 pin DIP. Put four of these on a regular
prototyping board with rows of sockets on 0.3" centres and you have a set of pins 9-16 just 3.3" away from
pins 1-8. Add enough at each end for mechanical fixing and width for a PGA to give the final size.

So the size was primarily chosen to fit standard prototyping boards. Conveniently, the size also fits the IBM
PC, VME boards, and the INMOS ITEM, as well as a host of other computers.

8 Dual inline transputer modules (TRAMs) 115

8.2 Introduction

TRAMs are small subassemblies of transputers (or other components with INMOS links), a few discrete
components, and sometimes some RAM and/or application specific circuitry. They:

interface to each other via INMOS links

have a standard pinout

come in a range of standard sizes

The basic size of a TRAM is 1.05" by 3.66" overall, about half the size of a credit card. This basic size is
referred to as Size1. Larger TRAMs can be up to 8.75" by 3.66", which fits comfortably on an IBM PC board
or on a VME board (this largest size is referred to as Size8). Smaller TRAMs (hybrids or silicon, not yet
implemented) can be as small as a 16 pin DIP with leads on 0.6" centres.

The standard pinout and standard sizes of TRAMs make it very simple for users to build customized mother
boards with sockets for TRAMs. These can either be in prototype form (Perfboard, Vectorboard or Veroboard),
or in printed circuit form.

TRAMs may be plugged into the TRAM sockets on any of the following INMOS evaluation boards: B006
(eight Size1 modules), B009 (one Size4 module), B01 0 (four Size1 modules), and B011 (two Size1 modules).
Connections between modules are hard wired on the B006 as two squares; on the other boards the links are
connectable either at header plugs or at an edge connector.

The IMS B008 and B012 are specifically designed for TRAMs. Both boards can be connected into a wide
variety of different networks by 'softwiring' connections between transputers by using t.he IMS C004 link switch.
The B008 takes 10 Size1 TRAMs and plugs into the IBM PC, The B012 takes 16 Size1 TRAMs on a double
extended Eurocard and plugs into the INMOS ITEM. INMOS will introduce other boards to fit other hosts.

The TRAM standards refered to above are independent of:

transputer type (IMS T212, T414, T800, M212, etc.)

number of transputers (1, 4, 8, 12, 16 are all possible)

wordlength of transputer (16 bits on T212, 32 bits on T 414)

speed (T414-15, -20, to T800-30 and beyond)

function (transputer plus RAM, disk control, other peripheral contrOl)

memory size (no external RAM up to many megabytes)

package (68 pin PGA, 84 pin PGA, PLCC, and other transputer packages)

implementation (through-hole PCB, surface mount PCB, hybrid, silicon)

Further information is available from INMOS on the B008 and B012 module motherboards, and on the product
family of TRAMs.

116 2 Systems

8.3 Functional description

8.3.1 Pinout of size1 module

The pins include four INMOS links, which require no off-module buffering.

Table 1 shows the pinout. This pinout has been chosen partly to simplify layout of the motherboard, and
partly to simplify the layout of the TRAM.

Table 1: Standard TRAM pinout

1 Link20ut Link3in 16
2 Link2in Link30ut 15
3 VCC GND 14
4 Link10ut LinkOin 13
5 Link1 in LinkOout 12
6 LinkSpeedA notError 11
7 LinkSpeedB Reset 10
8 Clockin(5MHz) Analyse 9

When LinkSpeedA and LinkSpeedB are both low, the TRAM links operate at 10Mbits/s. When they are both
high, the links operate at 20Mbits/s. Other states of these pins are reserved for future enhancements.

The notError signal is driven by an open collector transistor so the signal can be wire ORred. This allows for
the error line to be bussed in the same way as Clock, Reset, and Analyse. The fan-in of the notError signal
must be controlled, and it is recommended that no more than ten notError outputs are wired together.

Pin 1 is marked by a silk screened triangle.

8.3.2 Pinout of larger sized modules

Figure 8.1 shows two adjacent Size1 TRAMs side by side. Notice that the orientation of the two modules is
different. This difference in orientation serves two purposes: cooling of Size1 modules is improved; and it
makes it possible at some future date to have Single-In-Line modules.

~1
16

t ~InK "2

~
, ,-

I·
::::: j

~
IOKl

a a
a a
a a

r 8 9

9 8 ~

1
a a a

-I I:
a

i:
a

~InR :0 \ In: lj inK .. ' , lin
16 1 All

Figure 8.1 Orientation of adjacent Size1 modules

8 Dual inline transputer modules (TRAMs) 117

Many modules, and all the early products IMS 8401 to 8405, contain a single transputer, and so do not need
more than one set of 16 pins for electrical signals. Modules larger than Size1, however, are assembled with
extra sets of 16 pins; the extra pins give mechanical support, allow modules to be stacked, and provide extra
GND and vee pins. A Size2 module with one transputer is shown in figure 8.2a.

,.
t-~. ::=:J:iiiK::::::Z:::=,' :;r-r ~l~:::::===:;i
o 0

o
o
o
o
o
o
o
o

a

~o
0
0
0

~g
0

b

o
o
o
o
o
o
o
o

.::::
(5

1~
0
0
0

:~

Figure 8.2 Size2 TRAMs with one and four transputers

TRAMs may be built with more than one transputer, or with transputers having more than four links. An
example of a possible TRAM with more than one transputer is shown in figure 8.2b. This has four transputers
connected as a square, in the same way as the IMS 8003 and 8006. (In practice, if INMOS were to produce
a TRAM with four transputers, the links would probably be routed to make better use of standard motherboard
connections.)

The detailed pinouts of larger modules are shown with the mechanical details in section 8.8 and assume that
each TRAM has a single transputer, with four links.

Notice that the Size2 module and the Size4 module have the pins which are actually used at one end. The
Size8 module (when it has a subsystem capability) has the pins which are used in the middle.

118 2 Systems

8.3.3 TRAMs with more than one transputer

Standards for pinout of transputers with more than one transputer are to be defined.

8.3.4 Extra pins

TRAMs may include application specific circuitry which requires pins other than the standard 16 pins. Ex
amples are peripheral controllers or pipelines used for graphics or signal processing. The recommended
connector for these is a strip of pins on 0.1" grid, such as a stripcable socket will attach to.

8.3.5 Subsystem signals driven from a TRAM

It is useful for TRAMs to be able to control a network of transputers and/or more TRAMs. Such a slave
network is known as a subsystem of the master, and the set of control signals from the module are described
as a subsystem port

The subsystem port consists of three signals: SubsytemReset and Subsystem Analyse, which enable the
master to reset and analyse its subsystem; and SubsystemnotError, which is used to monitor the state of
the error flag in the subsystem. The polarity of these signals is such that a motherboard can be built with a
master TRAM controlling slave TRAMs via its subsystem port with no buffering or gating. (Note that a change
of polarity may be required for a subsystem port which goes off the motherboard.)

The three subsystem signals are located on low profile sockets which are positioned 0.1" inside the standard
module pins 1-3. This is illustrated by figure 8.3.

The pinout is as follows:

Pin Signal
1 a SubsystemnotError
2a SubsystemReset
3a SubsystemAnalyse

Figure 8.3 Location of subsystem sockets

o
o
o

U

The sockets are fitted into the module PCB upside-down. The motherboard into which the module is plugged
will also have three such sockets in the corresponding positions, but fitted from the component side in the
usual fashion. The connection between the module and the motherboard is then made by a double-ended
header, strip (see figure 8.4). This arrangement ensures that if the subsystem port of a module is not used,
the module remains mechanically compatible with modules which do not have subsystem ports.

8 Dual inline transputer modules (TRAMs)

3-way double ended
header strip

Figure 8.4 Subsystem port connections

Subsystem registers

119

The subsystem is controlled by reading and writing to addresses in positive address space (i.e. location zero
onwards). On all INMOS evaluation boards and TRAMs, two BYTE locations are used, where each byte is
the least significant byte of a 32 bit word. A further two locations control parity generation logic, which will be
described in section 8.3.6. These four locations are permitted to repeat throughout the whole of the positive
address space.

The subsystem registers are located at the following addresses for 32 bit transputers

Register
SubSystemResetLatch (write only)
SubSystemAnalyseLatch (write only)
SubSystemnotError (read only)

The subsystem port operates as follows:

Hardware byte address
#00000000
#00000004
#00000000

Writing a 1 into bit 0 of #80000000 asserts SUBSYSTEM Reset;
Writing a 0 into bit 0 of #80000000 deasserts SUBSYSTEM Reset.

Writing a 1 into bit 0 of #80000004 asserts SUBSYSTEM Analyse;
Writing a 0 into bit 0 of #80000004 deasserts SUBSYSTEM Analyse.

A 1 read from bit 0 of #80000000 indicates that SUBSYSTEM Error is TRUE.
A 0 read from bit 0 of #80000000 indicates that SUBSYSTEM Error is FALSE.

The subsystem is reset or analysed under the control of the transputer on the TRAM, but must also be reset
when the TRAM itself is reset. To pass the signals on to the subsystem, the following combinational logic is
included:

Subsystem Reset = Reset OR SubsystemResetLatch
SubsystemAnalyse = Analyse OR SubsystemAnalyseLatch
the latches are initialized at power-on to be inactive.

Note that Subsystem Error does NOT propagate to the TRAM's notError pin.

Multiple subsystems

TRAMs may contain more than one subsystem port. They should have their locations separated by 16 bytes.

120 2 Systems

8.3.6 Memory parity

TRAMs may include parity logic for external RAM. The implementation on TRAMs must ensure that there is
no way that corrupt data can reach any other transputer.

One way to achieve this is that if a parity error occurs, the wait signal is held active so the memory cycle does
not complete. All data in memory is lost, however, when an error occurs, and the memory cycle is slowed
down by the parity check.

Parity checking may be enabled or disabled by writing to a parity control register. If parity is enabled and an
error occurs, the error is ORed in to the notError signal from the module. Information on the cause of the
error can be found by examining the parity status register.

Reset disables parity checking and de asserts MemWait. When the transputer is analysed, MemWait is
deasserted and the contents of the parity status register are preserved.

The parity registers are as follows:

Register
Parity control (write only)
Parity status (read only)

Hardware byte address
#00000008
#00000008

The locations are used as described below:

Writing a 1 into bit 0 of #80000008 enables parity error detection;
Writing a 0 into bit 0 of #80000008 disables parity.

Reading the contents #80000008 returns the status of the parity detection hardware.

Status Bit
Bit 0 Indicates a parity error has occured.
Bits 1 & 2
Bits 3 .. n

Indicate the BYTE in which the error occured. (Bit 1 is Isb).
Indicate the BANK in which the error occured. (Bit 3 is Isb).

8.3.7 Memory map

The memory map should be of the form:

ROM top of memory
Peripherals
Subsystems
External RAM
On-Chip RAM bottom of memory

In the particular case of TRAMs with 32 bit transputers, the memory map should be as follows:

Byte address Description

7FFF FFFF
7FFF FFFE Boot from ROM

oooooooe
00000008
00000004
00000000

8FFF FFFF
Memstart

Peripherals

Parity status and control
SubsystemAnalyseLatch
SubsystemResetLatch

RAM
RAM

Comment

Bootstrap program requires ROM at top of memory.
7FFF FFFE Will contain a backward jump to the bootstrap.

If used

These locations must
be decoded as a set
of four, even if Parity
is not used.

Both internal and
external RAM

8 Dual inline transputer modules (TRAMs) 121

Substantial logic can often be saved by not fully decoding the hardware address. An effect of not fully
decoding the address is that hardware can appear at multiple addresses.

In particular, if the module does not have a subsystem, the RAM can repeat throughout the address space,
including the positive address space (above location 0).

The Subsystem and parity locations can also repeat throughout the positive address space.

100nF

GND I vee

LinkOut
1,4,12,15

Linkln
2,5,13,16

NotError 10K
+/- 5% 11

GND vee

Figure 8.5 Recommended circuit between TRAM pins and transputer

8.4 Electrical description

8.4.1 Link outputs

Link outputs must be terminated so that the combined output impedence of the transputer plus termination
resistors is 100 ohms ± 20%. For the optimum value of resistor, see the appropriate transputer data sheet.

8.4.2 Link inputs

Link inputs may be taken off a module motherboard and so must be protected from positive ESD by a diode
to VCC. Signal diodes such as 1 N4148 or LL4148 may be used. To prevent an unconnected link input from
floating high, link inputs must be pulled down to GND by a resistor, preferred value 10K ± 5%.

8.4.3 notError output

The notError output is a wired OR signal driven by an open collector or an open drain. Maximum leakage
should not exceed 10 microamps. Maximum saturation voltage when the transistor is ON and is sinking
10 mA should not exceed 0.4 V. A suitable transistor is BC846 (SOT23) with a 10K resistor between the
transputer's Error pin and the transistor base. The pullup resistor on the module motherboard should draw
between 5mA and 1 OmA when a transistor is ON.

Although the above is conservative and should allow a fan-in of several hundred, it is recommended that the
fan-in is limited to 10.

8.4.4 Reset and analyse inputs

These signals are connected directly from the TRAM pins to the transputer. They must always be driven by
buffers on the module motherboard. Because the motherboard will often have filters on the Reset and Analyse
Signals, the Reset pulse width should be much wider than specified for the transputer. Recommended pulse
width is 5 ms, with a delay of 5 ms before sending anything down a link.

122 2 Systems

8.4.5 Clock input

The TRAM must not present excessive capacitance to the clock input signal. The clock input should therefore
be limited to a single load, which should be connected to the TRAM pin by a trace no longer than 30mm.

Particular care should be taken on the module motherboard to ensure that the clock input Is clean, with fast
edges, minimal undershoot, and minimal jitter (see transputer data sheet for clock specification).

8.4.6 notError input to subsystem

The notError input should not have a pullup resistor on the TRAM. The pullup resistor must be on the
motherboard.

8.4.7 GND, VCC

Adequate high frequency decoupling capacitors must be used. In particular there should be decoupling
capacitors close to the GND pin and to the VCC pin of each TRAM. Recommended value is 100 nF, preferably
at least half as many as the module has ICs.

8.5 Mechanical description

In the following, dimensions are quoted in inches for PCB length, width and related dimensions; all other
dimensions are quoted in millimetres.

8.5.1 Width and length

o
o
o
o o
o
o o

o
o
o
o o
o o
o

1 (reference)

TRAM A B C D
module
size
1 3.3" 3.5" 1.05 3.66"
2 3.3" 3.5" 2.15" 3.66"
4 3.3" 3.5" 4.35" 3.66"
8 3.3" 3.5" 8.75" 3.66"
1/2 1.5" 1.7" 1.05"
1/4 0.6" 0.8" 1.05"
2/4 0.6" 0.8" 2.15"

A (pitch between pins)

B (to Inside edges of board)
D (overall, including fixing/polarizing lugs)

Figure B.6 TRAM sizes

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

~

0
0
0
0
0
0
0
0

0 C 0
0
0
0
0
0
0

.\
~I
~

8 Dual inline transputer modules (TRAMs) 123

The basic size of a TRAM is a very wide 16 pin DIP, with 3.3" between the two rows of pins. These TRAMs
fit on a 3.6" pitch on their length, and a 1.1" pitch on their width. Extra length is added beyond the pins to
hold the pins, to provide for mechanical fixing, and to polarise the module shape.

TRAMs can be made larger than the standard size by keeping the 3.3" between pins and using two or more
sets of the 16 pins.

TRAMs can be made smaller than the standard size, down to a 16 pin DIP with 0.6" between the two rows
of pins, or 1.5" between the pins. These sizes will normally be used for single chip modules or hybrids.

In general the printed circuit TRAMs are longer than the pitch between the two rows of pins. The TRAMs are
also wider than the 0.8" suggested by 16 pins. The small TRAMs may be side-brazed DIPs, as short as 0.8"
long.

The top drawing in figure 8.6 shows a Size1 module and how the jigsaw pattern fits together between
adjacent modules. The lower drawing in figure 8.6 shows the various sizes of TRAM. Detailed dimensions of
the different sizes are given in section 8.8.

8.5.2 Vertical dimensions

There are no vertical height constraints for TRAMs. However, keeping the height of a TRAM, both below and
above the board, within certain limits allows the TRAM to fit together with other TRAMs and motherboards.

Figure 8.7a shows height specifications which allow double-stacking of the TRAMs and which will allow two
deep stacked TRAMs on a motherboard to fit into a 1.0" pitch card-cage, (see figure 8.7e). Figure 8.7b shows
how this vertical size fits onto a motherboard which has no components under the TRAM. Figure 8.7c shows
the same TRAM fitted above components on a motherboard, using spacer socket strips to gain extra height.

Figure 8.7d shows another height specification which allows components such as zip packaged ICs and
5MB connectors to be used on the TRAM, whilst permitting these TRAMs to fit onto motherboards in a 0.8"
pitch card cage. Note that this is only possible when there are no components under the TRAM on the
motherboard.

It is recommended that any component reaching a maximum specified height has an insulating surface.

Note that the datum for component heights on both sides of the TRAM is the component side surface. This
datum is also used for the stackable socket to minimize tolerance buildup.

124 2 Systems

d

182mm max

c e

Figure 8.7 Component heights

Components must not interfere with the TRAM pins, and so the area shown in figure 8.8 must be left free of
components.

No components
in this area
along length I
of stackable -+j
socket

Components may
be placed in the
cross hatched area
between stackable
sockets, indeed this
is a suitable place
for tantalum
decoupling
capacitors.

0.055"

Figure 8.8 Area close to TRAM pins

8 Dual inline transputer modules (TRAMs) 125

8.5.3 Direction of cooling

TRAMs should be designed so that cooling air can flow freely across the width of the the module, or in other
words parallel to pins 1 to 8 rather than from pin 1 to pin 16. Care should also be taken to ensure that the
surface of a module is not too flat: projections cause turbulence which improves cooling.

8.6 TRAM pins and sockets

8.6.1 Stackable socket pin

The stackable pin socket is shown in figure 8.9.

Note: All dimensions in mm. T.
Top of pin/contact assy must line up
exactly with top of wafer (if wafer fitted)

contact -+- 1.473 dia +/·0.012 (barb)

Datum

2.7

~B
I ~;-

5.0
0.45 min
0.48 max
dia

Left side shown fitted in wafer,
Right side shown without wafer.

1.346 dia +/·0.025

1.1 dia +/·0.01

"0.5 radius

Spherical end
Dimension A is to bottom of contact, 2.3 max
Dimension B is to seating plane of pin, 0.6

Tolerances on lengths +/. 0.05

Finish (on both shell and contact): Commercial quality gOld.
Material: see separate specification on bending/breaking.

Figure 8.9 Stackable socket pin

Approved manufacturers of the stackable socket pin are (with part numbers): 1

Individual socket pin Strip of 8 sockets

Scott 128-446 151 08-128-446

The individual socket is used on the TRAMs themseleves. Strips of 8 sockets are used on TRAM mother
boards and as spacers (as in figure 8.8) between TRAMs and motherboards.

8.6.2 Through-board sockets

The component height given in figure 8.7 means that there is not enough height for conventional sockets
for the components. A number of manufacturers make sockets which fit into a PCB in such a way that the
thickness of the PCB is used for the socket, rather than extra height above the board.

1These parts are available from Scott Electronics Ltd, Tonbridge, Kent, England (Tel: 0372 359270), or Andon ElectrOnics Corp,
Albion, RI, USA (Tel' 401 333 0388)

126 2 Systems

INMOS has seen and used the following sockets. No particular recommendation for any of these is given
or implied. Other manufacturers have shown data sheets for similar sockets with a height of approximately
0.8mm. The Augat 'Holtite' sockets, which sit below the PCB surface, have been seen but not used. The
Augat 'Soldertite' sockets have similar dimensions to the Harwin 3153 and have been seen in prototype
quantities. All of the sockets are available individually or assembled into strips; some are available in DIP
and PGA format.

Manufacturer

Harwin (UK)
Mark Eyelet (AMP) (US)
PreciDIP (Switzerland)

Advanced Interconnections (US)
Harwin (UK)
PreciDIP (Switzerland)

type

H 3153-01
M8043PEC
014-92-001-41-012

type -85
H 3155-01
type 1407

8.6.3 Subsystem pins and sockets

height above PCB

0.38mm
0.2mm approx
O.4mm

0.78mm
1.2mm
0.8mm

The preferred socket to fit on the solder side of the TRAM is Harwin H 3153-01, and on the motherboard
also. Samtec pin strip HLT-03-G-R is suitable for connecting between these sockets.

8.6.4 Motherboard sockets

The TRAM pins/stackable sockets will plug into any standard IC socket. To meet the component heights
given in figure 8.7, the stackable socket (see section 8.6.1) must also be used on the motherboard.

Motherboard sockets for the Subsystem signals should be the 0.38mm or O.4mm sockets referred to above.

8.7 Mechanical retention of TRAMs

Vibration tests have shown that in a normal office or laboratory environment, the TRAMs remain plugged into
their sockets. In transit, however, or in an environment where there is vibration, some form of mechanical
retention may be necessary.

-~--------------------i~-
- ~--------------------~ -
~ • • Holes 2.5mm dia

o 150" I 3.3" I opposite pins
. .. • 2,7,10,15

Figure 8.10 Fixing holes for mechanical retention

The detail drawings of the module sizes in section 8.8 show fixing holes in the modules. Similar fixing holes
should be drilled in the motherboard as shown in figure 8.10. M2.5 nylon bolts may be used between these
fixing holes to secure the modules.

8 Dual inline transputer modules (TRAMs)

8.8 Profile drawings

0.175

DATUM -

0.100

0.224

0.775

0.175

DATUM -

0.100

0.224

0.775
0.875

1.076
1.200

1.480

1.975

000
0"'",
(I')(W")cwl

1// II"",
III I"
III (pin 1) III
III III
I III
III III
~~1~1---411

II
Link20ut -------------------link3in 0
Link2in Link30ut 0

o VCC GND 0
o Link10ut LinkOin 0
o Link1in Size1 LinkOout 0
o LinkSpeedA notError 0
o LinkSpeedB Reset 0
o Clockln(5MHz) Analyse 0

I DATUM (pin 1)

11
Link2out _________ --- -------Link3in 0
Link2in Link30ut 0

o VCC GND 0
o Link10ut Size2 LinkOin 0
o Link1 in LinkOout 0
o LinkSpeedA notError 0
o LinkSpeedB Reset 0
o Clockln(5MHz) Analyse 0

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0
NC 0
NC 0

Note. All dimensions are in inches and measured from the datum line

Figure 8.11 PCB profile drawings and pinout, TRAMs Sizes 1 and 2

127

_DATUM

_ DATUM

128

0.175

DATUM _

0.100

0.224

0.775

0.875

1.076

1.200

1.480

2.025

2.300

2.424

2.975

3.075

3.276
3.400

3.680

4.175

000

co '" 0

(pin 1)

2 Systems

,1/ , , , ,
~~---t ' , ,

Link2out _____ --------- ----- ---------Link3in 0
Link2in Link30ut 0

o VCC GND 0
o Linklout LinkOin 0
o Linkl in S· 4 LinkOout 0 o LinkSpeedA Ize notError 0
o LinkSpeedB Reset 0 o Clockln(5MHz) Analyse 0

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0 1.576

NC 0 1.700

NC 0
1.975

NC 0
NC 0

GND 0
NC 0 2.520
NC 0
NC 0
NC 0 2.800
NC 0 2.924

3.125
3.225

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0 3.776

NC 0 3.900

NC 0

Nole. All dimensions are in inches and measured from the datum line

Figure 8.12 PCB profile drawings and pinout, TRAMs Size 4

8 Dual inline transputer modules (TRAMs)

0175

DATUM -
0100

0224

077.
0875

1076
1200

1480

2025

2300
2424

2975
3075

3276
3400

3680

4225

4500

" 824

5175
5275

5476
5600

5880

6425

6700

6824

7375
7475

7676
7800

8080

8575

DATUM (~n 1)

LlOk20UI------------------ -Lmk3m 0
l1nk21n Lmk30uI 0

o VCC GND 0
o lInkloul LlnkOln 0 o llnk1." LlnkOoutO o LinkSpeedA nolEnor 0
o llnkSp •• dB SizeS module R ... , 0
o Clockln(SMHz) without subsystem Analy •• O

NC 0
NC 0

GND 0
NC 0
NC 0
NC 0
NC 0
Ne 0

Ne 0
Ne 0
Ne 0
Ne 0
Ne 0

vce 0
Ne 0
Ne 0

ONe Ne 0
o NC Ne 0
o vee GND 0
ONe Ne 0
ONe Ne 0
ONe Ne 0
ONe Ne 0
ONe Ne 0

ONe Ne 0
o NC Ne 0
ONe Ne 0
o NC Ne 0 o NC Ne 0
o GND vee 0
o NC NC 0
ONe Ne 0

Figure S.13 PCB profile drawing and pinout, TRAMs SizeS without subsystem

129

130

I DATUM (PI" 11

o 175

DATUM ---ItH-""''----------------------NC 0
0100 NC 0
orn ~gg

0775
0875

1076

1200

1480

2025

2300

2424

2975
3075

327'
3400

3680

SizeS module
with subsystem

4225

45<>0
.. 624

'10 0 Lmk20ul ISubsyslemnolError
o 0 unk2m I Subsys'emRell'
a 0 vee I Sub.ysttmAnalYI8 a LIOk1oui

5 175
5275

OLlnk11n
o LlnkSp •• dA
a LlnkSptedB a Clock'ln(SUHz)

547' 0 NC
5.00 0 Ne o NC

o NC
5BBO 0 Ne

6425

6700

6824

7375
7475

o GND
o NC
ONe

ONe o NC
o vee
ONe
oNe
oNe
o NC
ONe

7.7. 0 Ne
7 BOO 0 Ne

ONe
oNe

B OBO 0 Ne
o GND
ONe
ONe

8575

NC 0
NC 0
NC 0
NC 0

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0
NC 0
NC 0

Ne 0
Ne 0

GND 0
Ne 0
Ne 0
Ne 0
Ne 0
Ne 0

_ DATUM

Figure 8.14 PCB profile drawing and pinout, TRAMs Size8 with subsystem

2 Systems

mos Part 3

- Software

131

132

9 Program design for concurrent systems

9.1 Introduction

This note illustrates one approach to programming concurrent systems in occam. It concentrates on appli
cations, rather than general purpose computer networks, which are covered in Technical Note 13 [1].

9.2 Structuring the system

There is no absolutely correct topology for an application; each possibility represents a trade-off between
programming ease and ultimate efficiency. In this trade off consideration must be given to the level of
reliability required and the cost of development and final hardware.

Assuming there is to be more than one processor in the system under design; an important early decision
is the manner of sharing the load between the processors. This depends upon how the problem may be
divided, and the measure of performance required. If the task is a repetitive one; that is, the same operation
performed on many pieces of data, the ultimate throughput is infinite, limited only by economic factors; the
number of processors you can afford. However, the latency; that is, the delay from raw data in to associated
results out, cannot be reduced below the total execution time of those operations that must be performed
sequentially on the data.

Having established that a task is divisible in the way we require, processes can be written to perform each
subtask, and each data item passed through the subtasks. Whether divisible or not, the option of providing
multiple processes; each capable of performing the same task, remains. This approach allows many items
of data to pass through many identical processes at the same time and thus increases overall throughput.

Note that we use the term 'processes' in preference to 'processors'. The first term is the logical division of a
task and the second is the physical division of a task. In the final analysis we may allocate several processes
to one processor. This is an important point; as it illustrates that the division of a task into sub tasks must
be done to a greater extent rather than a lesser, as processes can be grouped later, but cannot easily be
subdivided after writing.

9.3 System topology

We can now consider the topology of the system. Processes are represented by rounded boxes, and com
munication channels by arrowed lines. To illustrate a simple case, consider the example in figure 9.1.

keyboard app.in

echo

screen

Figure 9.1

This shows a functional division of a generic application into a keyboard handler, a screen handler and the
application itself. Such a division is for ease of programming and flexibility rather than performance.

9 Program design for concurrent systems 133

Each channel is given a name on the diagram, and then the top level occam can be written. The three
functional blocks execute at the same time, i.e. in PARallel. The ONLY items they share are the channels
between them, so these are declared in an outer scope .

... proc dec1s
CHAN OF INT app.in, echo, app.out
PAR

keyboard. handler
screen. handler
app1ication

(keyboard, app.in echo)
(screen, app.out, echo)
(app.in. app.out)

This top level design done - and instantly coded due to the correlation between the occam and the diagram
- we progress to the three functional blocks.

These are totally independent, and as long as they agree on the form of data to pass between them, can be
designed by different people on different sites. This hierarchical approach means that the most complex task
can be attacked and reduced to simplicity.

The last example illustrated functional division. This is the most effective solution for ease of programming,
but relies on a divisible task. For the indivisible task, the solution is 'many hands make light work' - achieved
by distributing data items to different processors, all working at the same time. In the first example, the system
topology was dictated by the connectivity required by the functions. In the indivisible task, the topology is
arbitrary.

A simple topology directly supported by occam's PAR replicator syntax is a pipeline, or spaceline. The
pipeline relies on each stage not only processing, but also passing on data and/or results on behalf of other
processes.

Data + Data +

-C,,~:~,,) DaI, { I;'" 9A m;ddl, 9A: I,,, Y''''''.
Figure 9.2

In order to achieve this, messages would have tags indicating their types and a router process would handle
this, so each stage would become:

Figure 9.3

However, as channels are available in the opposite direction, one can arrange for input and output to be at
one end of the pipeline, which allows for simple extensibility.

134 3 Software

Data 1-+---' Data

Results --+-1 ~+--- Results

Figure 9.4

The routers are very simple - usually around 5 lines of operational code after initialisation etc., so are not a
problem. However, it must be borne in mind that the first processors will be handling the data and results for
ALL processors, so one must consider the balance of communications and processing. Provided messages
are used, rather than single words or bytes, a pipeline is appropriate to length of order 10 (Le. < 100)

A spaceline system is implemented as shown:

Data ReSults.

Figure 9.5

The width of a spaceline is limited by the number of links on the distributor and gatherer. By using a tree
structure, spacelines of any width can be constructed.

Figure 9.6

9 Program design for concurrent systems 135

Clearly, the optimum topology is application dependent, and each application must be judged on its merits.
The rest of this note will concentrate on functionally divided applications. For arrays etc. (See Technical Note
13 [1).)

9.4 System design - the functional blocks

Reverting to the example of figure 9.1, we must now design the functional blocks.

In general, each process must do some initialisation, then will repetitively receive data, and act upon it. The
actions may be complex, may read more data, may generate output, and may terminate the process, but the
basic structure still holds.

The Transputer Development System uses a folding editor, which can represent a large block of text in a
single named fold line marked by three dots. A fold can contain another fold, nested to any depth. Folds can
be 'opened' by the editor to display internal structure and source text, or 'closed' to hide data not currently of
interest. Thus any level of detail can be viewed at will.

Folds can be created and named even before their contents have been written. This allows the structure of
the process to be entered as part of the design. Thus the generic process is as shown here:

PROC my.proc (parameters)
dec~arations, inc~uding ~oca~ procs

SEQ
... initia~isation
WHILE condition

SEQ
~oop initia~ise

... input data

... act upon it

... tidy up this pass
tidy up process

Considerable experience training programmers new to both the folding editor and occam has shown that
adopting this type of structure is essential, otherwise they immediately enter a program that mimics languages
they are accustomed to, rather than making use of the parallel and communications of occam.

136

Thus the keyboard handler from the example becomes:

PROC keyboard.handler(CHAN
INT ch:
VAL stopch IS INT '@':
BOOL running:

SEQ
running : = TRUE

WHILE running
SEQ

in ? ch

PAR

IF

out ! ch
to. screen ch

ch = stopch
running = FALSE

TRUE
SKIP

OF INT in , out , to. screen)
--decl.arations

--initial.isation

--input

--action

3 Software

As can be seen, many of the elements of the standard structure are null, but the conscious decision to exclude
them is very beneficial in the design process.

One powerful construct of occam that does not clearly fit this structure is the ALTernate. This is used to
take input from one of many channels, when it is not known which will be ready first. Thus it is used in the
screen handler. The reason it does not clearly fit the standard format is because it includes both input and
action. The screen handler implemented here puts echoed text and output text in two separate windows, so
the structure is modified to:

WHILE <condition>
ALT

... input from echo
SEQ

go to echo cursor position
output text
update cursor position

input from appl.ication
SEQ

go to appl.ication cursor position
output text
update cursor position

Again the editor helps, because due to the similarity between the two branches, only one need be entered,
it can then be copied and edited.

9 Program design for concurrent systems 137

9.5 System integration

Once all three function blocks are entered, the system can be compiled and tested. Were it a complex appli
cation, the individual processes would have been separately tested, with test-data-generators, as described
in Technical Note 2 [2). This example, however is simple enough that the complete system can be tested
together.The modus operandi is first to run the program on a single transputer, either the development sys
tem or an external evaluation board, and then to adapt it for the target system.To adapt this program to run
on 3 transputers is mechanical - one simply exchanges the PAR for a PLACED PAR, add PROCESSOR
statements, assign the channel names to particular links using PLACE ... AT, and make each PROC separately
compiled .

. .. SC keyboard.hand1er

... SC screen.hand1er

... SC app1ication

CHAN OF INT keyboard,screen,echo, app.in, app.out:

PLACED PAR

AT 1inkOin:
AT 1inklout:

PROCESSOR 0 T4
PLACE keyboard
PLACE echo
PLACE app.in AT 1ink2out:

keyboard. handler (keyboard, app.in , echo)

PROCESSOR 1 T4
PLACE screen
PLACE echo
PLACE app.out

AT 1inkOout:
AT 1inklin:
AT link2in:

screen. handler (screen, app.out , echo)

PROCESSOR 2 T4
PLACE app.in AT linkOin:
PLACE app.out AT linklout:

application (app.in , app.out)

138 3 Software

However, in a more general system, if my advice was heeded, there are more logical processes than physical
processors. The allocation must be done by the programmer considering three factors:

1 The connectivity - taking account of the number of physical links on each transputer.

2 The processor loading - the system will probably run at the speed of the most loaded processor.

3 The size of program on each processor, with regard to both internal memory (which is faster) and
total memory provided.

Once the decision is taken, it is simply an additional box drawn on the diagram to map our example onto 2
processors.

In this case there is a little juggling to be done to ensure that the code for each processor is a single separately
compiled unit.

... SC keyboard.and.screen.hand1er

... SC app1ication

CHAN OF INT keyboard,screen, app.in, app.out:

PLACED PAR
PROCESSOR 0 T4

PLACE keyboard AT 1inkOin:
PLACE screen AT 1inkOout:
PLACE app.in AT 1inklout:
PLACE app.out AT 1inklin:

keyboard.and.screen.hand1er (keyboard,screen,app.in,app.out)

PROCESSOR 1 T4
PLACE app.in AT 1inkOin:
PLACE app.out AT 1inkOout:

app1ication (app.in , app.out)

For the multi transputer system, an additional operation is performed after the compilation known as con
figuring. This creates a code file that can be loaded into a network of transputers. It includes the routing
information for the code, derived from the PROCESSOR and PLACE AT statements. The target system can
then be loaded with a single keystroke, and live testing can begin - the multi processor concurrent program
is running.

9.6 Conclusions

Concurrent programming is very Simple, and errors easily avoided, using occam, provided the programmer
is willing to adapt his style appropriately. Specification, design and programming become a smooth flow of
work using the same tools on the same text, which becomes progressively more detailed. The process and
channel diagram is essential in top down design, and at the lower levels, a formalised approach to design,
using the folds where a COBOL programmer might have used flow charts allows on-screen design and rapid,
error free programming.

9.7 References

Transputer networks using the IMS B003,
Technical note 13, INMOS Limited, 1987.

2 The transputer based navigation system - testing embedded systems,
Technical note 02, INMOS Limited, 1987

139

10 Exploring multiple transputer arrays

10.1 Introduction

A transputer is a component computing device which can easily be connected to form networks in multiproces
sor arrays. These arrays can become quite large and complex. This technical note describes an '.exploratory
worm program', which will explore an unknown network of transputers, and determine its configuration. This
is useful in confirming that the transputers have been connected in a particular configuration, as required for
some particular task, and that they are all working properly. Further applications include testing a network for
reliability, and loading code into a network whose configuration is not known in advance.

The exploration is achieved by having a program which will worm its way around the network, exploring all the
links on all the transputers to determine the interconnections. An example of an exploratory worm program,
which is referred to in this technical note, is available as part of the Transputer Development System. This
program explores a network made up of an unlimited number of IMS T414 transputers. Some notes about
further applications are given in section 10.6.

10.2 The structure of an exploratory worm program under the TDS

The transputer development system (TDS) recognises two different types of program, known as EXE and as
PROGRAM. An EXE program runs on the host transputer, and may access the keyboard, screen, and filing
system of the host machine. A PROGRAM, on the other hand, runs on a network of one or more transputers,
and is loaded from the host transputer via a transputer link. This link may be the network's only connection
with the outside world.

An example of such a system is given in figure 10.1. This shows an IBM PC-AT with an INMOS B004
evaluation board, running a single IMS T414 transputer and 2 megabytes of external RAM. This transputer
acts as the host processor for the development of programs, and for loading multiple transputer networks.
Link 2 of the B004 is connected to an INMOS B003 evaluation board, which runs 4 IMS T 414s, each with
256 kilobytes of memory.

o
I

I
I I

I
IBM 0 B004 0 T414 - T414 r-PC-AT 2

~ I I
1- T414 - T414 ~ o

I I
o

Figure 10.1

Typically, when a PROGRAM is loaded onto a multiple transputer network, a simple EXE program will also be
run on the host transputer which monitors the output transmitted back from the PROGRAM, sends results to
the screen, passes on any input from the keyboard, and controls the TDS filing system, as required.

140 3 Software

A simple PROGRAM, intended to run on a network of just one transputer, looks like this:

{ { { PROGRAM Example
{{{F

SC Example
PROCESSOR 0 T4

Example ()
}}}
}}}

When this bundle is compiled, configured and extracted, a new fold is created:

... F CODE PROGRAM Example

If extracted as a BOOTABLE type fold (as opposed to a DIAGNOSTIC fold), this CODE PROGRAM fold will
just contain code which will initialise and load a single transputer, and run SC Example. Thus, if an occam
byte array Program contains the contents of a bootable CODE PROGRAM fold, then the effect of:

ToLink ! Program

is to load and run the program on a transputer connected to link ToLink. The precise way in which a
transputer loads code does not concern us here - it is described in full in [1].

A program may thus explore a network of transputers as follows:

Suppose that a transputer is already running an exploratory worm program, and that it is connected
to another transputer, which has not yet been loaded with code. The first transputer, which will be
called the 'parent', loads the second ('daughter') by outputting the code Program as above. It then
sends Program a second time, which the daughter stores as a byte array in memory. The daughter
is now also in a position to load other transputers, and so on, until the entire network is loaded.

To achieve this, the exploratory worm program is made up of two parts:

EXE Host - This runs on the host transputer
PROGRAM Worm - This explores the network

The Host EXE reads the CODE PROGRAM Worm fold, and stores it in a byte array Program. After resetting
the network, it then loads this program onto the first transputer in the network by outputting Program on an
appropriate link. As the worm proceeds to explore the network, the program running on the host transputer
processes any data returned to it from the worm, interpreting and displaying the results.

The following section (section 10.3) describes the EXE program which runs on the host transputer, while
section 10.4 describes the PROGRAM which actually explores the network. Section 10.5 shows some typical
results. Section 10.6 provides some notes on extending the exploratory worm for different uses.

In describing the program, declarations and channel protocols have been left out, for brevity, except where they
may not be obvious. Variable names start with a lower case letter, constants with a capital. Tokens, indicated
by the suffix. t, are used to communicate a particular meaning on a channel, for example, NoMoreData. t.
Similarly, a suffix • v is used to indicate a particular interpretation of a stored value, for example, assigning
the value UnAttached.v to a word which describes the status of a link.

It is assumed that each transputer can access enough memory to run the exploratory worm - informa
tion about the memory requirements may be obtained by creating a configuration information fold for the
PROGRAM.

10 Exploring multiple transputer arrays 141

10.3 The host transputer EXE

The program which runs on the host transputer looks like this:

SEQ
code.fold.reader (Screen, from.user.filer[O] , to.user.filer[O] ,

programTable, programLenqth, errorFlag)
IF

errorFlag
SKIP

TRUE
SEQ

Determine which link to examine
Reset subsystem, links

-- Main section
VAL Program IS [programTable FROM 0 FOR programLenqth] :
PAR

WormBandler (LinkIn[linkNumber], LinkOut[linkNumber],
ToInterface, linkNumber, Delay, Program)

Interface (ToInterface, SoftScreen, Beading, linkNumber)
Display and file output using standard procs

write.full.string (Screen, "*C*NType <any> to continue")
Keyboard ? word

After determining which of the host transputer's links is to be explored, and resetting the subsystem network,
the main section of the program is structured as in figure 10.2. The components are described in the following
sections.

Screen

r---~ to/from user filer

to/from transputer link

Figure 10.2

10.3.1 Reading the CODE PROGRAM fold

The process code. fold. reader provided in the example exploratory worm program will attempt to read
a CODE PROGRAM fold from inside a fold bundle, which may be a compiled or uncompiled PROGRAM fold,
or a plain text fold. The latter option is included for reasons which are described in the section on filing the
output.

142 3 Software

The reading and writing of folds and files is described in [1]. If an error occurs, the boolean errorFlag is
set to TROE, and the cause of the error is displayed on channel Screen, using the term.p protocol.

10.3.2 Resetting the subsystem

It is assumed that the reset pins of the subsystem network are chained together, and controlled by the host
transputer (for example, the Subsystem Reset pin on a 8004, as described in [2]). In order to reset the
transputers correctly, the reset pin must be held high for a certain minimum period of time - a millisecond
is ample.

10.3.3 Determine which link to examine

The program asks the user which link of the host transputer, linkNumber, is to be examined - the link
which is connected to the subsystem must be stated. None of the other links will be tried during the course
of the program. If two (or more) links are connected to the same subsystem, then only one can be tried. In
this case, the other link will receive data from the subsystem, as the worm program explores, which remains
unacknowledged. In order that this does not upset any program running on the host transputer after the
exploratory worm has completed, all the links are reset on completion of the program. The resetting of links
is described in [3].

10.3.4 Worm handler

The channels LinkIn, LinkOut have been placed at the transputer's hard links. This process attempts
to load a transputer connected to link linkNumber with the exploratory worm program. However, there may
be nothing connected at all, or the transputer connected may not have been reset, or not powered on, or some
other simple problem, in which case the output will fail. To cater for this eventuality, the OutputOrFail
routines described in [3] are used. If the output of the code Program is not completed within a period
Delay, then it is abandoned, and the link is reset. This makes it possible for the program to terminate
neatly, even if there is no transputer connected to the link.

If the code Program is successfully output from the link, booting a transputer, then PRoe WormHandler
sends more data, as described in section 10.4.3. In particular, this new transputer is given an identity
number '0'. As the exploration proceeds, PROC WormHandler relays data back from the network to PROC
Interface.

10.3.5 Interface

The Interface process is passed data from the worm handler. This is interpreted, and text is output on channel
Soft Screen using the term.p protocol [1].

10.3.6 Display and file output

The output from PROe Interface is suitable for immediate display on the screen. However, the standard
library processes scrstream. fan. out and scrstream. to. file are used to file a copy of the output.
To do this, the user must transfer the eODE PROGRAM fold from the PROGRAM Worm fold into an empty
text fold. When the EXE is run, pointing at this text fold, then a new, filed fold will be created which contains
the output from PRoe Interface:

{{{ Results
... F eODE PROGRAM Worm
... F Output will appear here
}}}

write. endstream is used to close down these processes.

If the program is run while pointing at a PROGRAM fold, results are displayed but not filed.

10 Exploring multiple transputer arrays 143

10.4 The exploratory worm PROGRAM

10.4.1 Introduction

As described in section 10.2, the exploratory worm program is constructed as a PROGRAM fold which con
sists of a separately compiled process, SC Worm, placed on a single transputer. This is then extracted to
produce a CODE PROGRAM Worm fold, which contains code to boot a transputer and run SC Worm on that
transputer. This section now describes how that SC is constructed.

The exploratory worm is structured as follows:

SEQ
Read in copy of program, identify boot link
Initialise

SEQ I = 0 FOR NLinks
Try each link in turn

Return control to parent

•.• Feed back final link information to parent

When SC Worm starts to run on a transputer, it first identifies which link is connected to its parent, i.e. which
of its neighbours booted it, and inputs a copy of the program code so that it, too, may boot other transputers.

After initialising various flags (which keep track of which links have been explored, etc.), the program now
picks a link, and tries to send a probe down the link, which may (or may not) be connected to another
transputer. An OutputOrFail routine is again used, and if the program does not receive any response, it
will timeout and look elsewhere.

The period of time for which program is prepared to wait, Delay, is quite critical. It must be long enough
for any neighbour to have the chance to reply, but not so long that the program is slow to explore a large
network of transputers. A Delay of 30 milliseconds has been found to be appropriate.

Section 10.4.2 describes the way in which a transputer probes a link to test whether a neighbouring transputer
is attached. Section 10.4.3 describes how, if this is successful, the program is loaded and run on the
neighbour. These are incorporated into the exploration worm in section 10.4.4, which describes a simple
algorithm for exploring a tree of transputers. In section 10.4.5, this algorithm is generalised, to enable the
exploration of a general network of transputers.

10.4.2 Probing a neighbouring transputer

A transputer can conveniently test whether link I is attached to an unbooted neighbouring transputer by using
the Peek and Poke feature [4). For example, it may load a word of data at an address, and then read it back,
as follows:

[4]CHAN OF ANY LinkIn, LinkOut :
PLACE LinkIn AT 4 :
PLACE LinkOut AT 0 :
SEQ

LinkOut[I] O(BYTE); Address; Data
LinkOut[I] ! l(BYTE); Address
LinkIn[I] ? word

Poke
Peek
Data is returned

Provided that the address specified exists in memory, then the word returned should match the data sent.
A suitable address is Minlnt, the minimum 32-bit integer, i.e. #80000000, the bottom of the neighbouring
transputer's internal RAM.

In practice, an OutputOrFail routine is used for peeking and poking, in case the link is unattached. If
successful, the Data is returned on hard channel LinkIn [I] . Otherwise, (after a time Delay has elapsed,)
the program assumes that the link is unattached.

144 3 Software

10.4.3 Booting a neighbouring transputer

Having determined that a link is connected to an unbooted neighbour, a transputer loads a neighbouring,
unbooted transputer by outputting the code Program, as mentioned in section 10.2. The newly booted
neighbour will first read in a copy of the program, and identify the boot link:

SEQ
ALT I = 0 FOR 4 -- Determine which ~ink is connected

to my parent!
LinkIn[I] ? programLength

parent Link := I

LinkIn[parentLink] ? [programTab~e FROM 0 FOR programLength]
LinkIn[parentLink] ? token; ~oadingData

~oadingData[3] := parent Link
LinkOut[parentLink] ! LoadingData.t; ~oadingData

LinkIn[parentLink] ? token -- Synchronise.t token from the host

The parent sends the length of the program, which enables the daughter to determine which link is connected
to the parent. The code Program is sent again, and stored by the daughter as a byte array for future
use. The parent also sends a set of data which includes the parent identity number, the link attached to the
daughter, and the number of transputers found so far, nTransputers. The daughter returns the data, with
the link on which the daughter was booted appended.

The data returned by the daughter is referred to as ~oadingData. ~oadingData contains information
useful to follow the path of the worm. Its four elements are, in order, the identity number of the parent, the link
which the parent used to boot the daughter, the identity number of the daughter, and the link on which the
daughter was booted. This array is transmitted back to the host transputer for display. The WormHandler
process, running on the host, acknowledges receipt of the loadingData with a Synchronise. t token,
transmitted back to the new daughter.

10.4.4 Exploring a tree of transputers

This section describes a simplified version of the exploration algorithm, suitable for exploring a tree, i.e. a
network in which there are no closed loops. The complete algorithm is described in section 10.4.5. An
example of a tree of transputers is shown in figure 10.3.

The worm explores the branches of the tree sequentially. Excluding the host transputer, each transputer in
the tree will be in one of the following states:

(R) reset but unbooted;

(0) booted, but not yet probing its links;

(1) probing a link, to see if there is another transputer connected;

(2) booting a neighbouring transputer;

(3) relaying ~oadingData to the host;

(4) all links have been explored.

The network is then explored as follows:

Consider figure 10.3 as an example. Suppose that link 3 of transputer A has booted transputer B by link 0,
and B has input a copy of the program from A. A enters stage 3, in which it will wait passively to transmit
further data. Transputer B starts stage 1, probing one of its links to see if any other transputer is connected.
Since link 0 is known to be connected to transputer A, link 1 is the first link to be probed. As described in
section 10.4.1, the nucleus attempts to poke and then peek any transputer which may be attached to that

10 Exploring multiple transputer arrays 145

o

Figure 10.3

link. The nucleus then waits for a word (which should be Minlnt), to be returned on input link 0, for a period
of time, Delay, before timing out. If nothing is returned, the program assumes this link is unattached, and
sets a boolean downLoad [0] to FALSE. The next link, link 2, is probed in a similar manner.

However, let us assume that a transputer is attached to link 1, and that it has returned the value Minlnt in
response to the probing. Transputer B now attempts to load the neighbour with code (stage 2), as described
in the previous section.

Call this new daughter 'C'. C determines its parentLi.nk, the code Program, and loadi.ngData (stage
0). It takes its identity number to be nTransputers, and increments nTransputers by one, where
nTransputers is the number of transputers found so far (the third element of loadi.ngData).

At this point, transputer B enters stage 3 of the program, and acts simply to pass on messages from C, even
though it has not yet checked links 2 or 3. While transputer C explores its environment, B does not attempt
to timeout link 1. Let us suppose that C is not connected to any other transputers. Having failed to find any
neighbours, transputer C returns control to B, by sending the token ReturnControl. t, together with the
latest number of transputers found so far. Transputer C then enters stage 4, and since it has tried all of its
links, takes no further part in the exploration. B sets downLoad [1] to TRUE, to note that a transputer has
been loaded from this link.

Transputer B now returns to stage 1 of the program, and similarly tries link 2, and finally link 3. When all links
have been tried, B returns control to A, together with the number of transputers found so far. And so on ...

Because of the sequential nature of the algorithm, there is only ever one process actively testing its links.
That transputer alone stores the correct value of nTransputers. This enables a unique identity number
to be given to each transputer as the exploration proceeds.

146 3 Software

If a transputer is booted on link parentLink, then the above algorithm may be expressed as follows:

Note:

SEQ
SEQ I = 0 FOR 4

downLoad [I] := FALSE
nTransputers .- LoadingData[2]
id . - nTransputers
nTransputers .- nTransputers + 1
SEQ I = 0 FOR 4 -- Try each link in turn

IF
I = parent Link

SKIP
TRUE

SEQ
:= 1

FALSE
FALSE

stage
waiting :=
badOut :=

Probe neighbouring transputer (set waiting)
Boot neighbour, and wait while worm explores

LinkOut[parentLink] ! ReturnControl.t; nTransputers

(i)
(iii)

(i) Peek and poke a neighbour:

SEQ
OutputToken.t
OutputInt.t
OutputInt.t
OutputToken.t
OutputInt.t

Clock? time
ALT

(LinkOut[I] , o (BYTE) ,
(LinkOut[I], MinInt,
(LinkOut[I], MinInt,
(LinkOut[I] , l(BYTE),
(LinkOut[I], MinInt,

Delay, badOut)
Delay, badOut)
Delay, badOut)
Delay, badOut)
Delay, badOut)

LinkIn[I] ? token -- Value returned
SEQ

stage := 2
waiting := TRUE

Clock ? AFTER time PLUS Delay
SKIP

-- (ii)

Note how the return of the value Minlnt indicates that a successful poke and peek has taken place
(the boolean badOut also indicates that this transputer has output the peek and poke). waiting
is now set to true, and the algorithm enters the next loop.

10 Exploring multiple transputer arrays 147

(ii) The procs Output Token. t, Outputlnt. t, OutputString. t are based on the output or fail
routine. For example:

PROC OutputToken.t (CHAN OF ANY ToLink, VAL BYTE Token,
VAL INT Delay, BOOL stopping)

INT time :
TIMER Clock
VAL [l]BYTE String RETYPES Token :
IF

stopping
SKIP

TRUE
SEQ

Clock ? time
time := time PLUS Delay
OutputOrFail.t (ToLink, String, Clock, time, stopping)

(iii) Given the success of (i) (waiting is set to TRUE)' now try to boot the neighbouring transputer:

SEQ
Try to boot neighbouring transputer

WHILE waiting -- worm explores branch off neighbour
Linkln[I] ? token

CASE token
LoadingData.t (iv)
ReturnControl.t (v)

Booting is performed as follows:

VAL []BYTE InitialData RETYPES [Id, I, nTransputers, 0] :
VAL Program IS [programTable FROM 0 FOR programLength] :
SEQ

OutputString.t
Outputlnt.t
OutputString.t
Outputlnt.t
OutputString.t

(LinkOut [I] ,
(LinkOut [I] ,
(LinkOut [I] ,
(LinkOut [I] ,
(LinkOut [I] ,

Program,
SIZE Program,

Program,
LoadingDat a . t,
InitialData,

Delay,
Delay,
Delay,
Delay,
Delay,

badOut)
badOut)
badOut)
badOut)
badOut)

Although we know, from peeking and poking, that there is a transputer waiting to be booted off this
link, it helps debugging to use the output or fail routines again here!

(iv) The loadingData is returned to the host (for immediate display) and is acknowledged by the token
Synchronise. t. On receipt of the data, the host process returns the token Synchronise. t.
This synchronisation is important, for it guarantees that all transputers at stage 3 are ready to be
probed on any link J, and are not still engaged in returning loadingData.

LoadingData.t
[LoadingDataLength]INT passOnData :
SEQ

Linkln[I] ? passOnData
LinkOut[parentLink] ! LoadingData.t; passOnData
Linkln[parentLink] ? token Synchronise.t
LinkOut[I] ! Synchronise.t
stage := 3

148 3 Software

(v) The return of control indicates that the tree off link I has been completely explored. This process may
now explore other links.

ReturnControl.t
SEQ

Link1n[1] ? nTransputers
downLoad [I] := TRUE
waiting := FALSE

Error reporting will be described in the next section.

The searching procedure is initiated by PROC WormHandler booting the first transputer in the tree, and
telling it that nTransputers = O. When that transputer finally returns control to WormHandler, the total
number of transputers in the network will be returned, and the network will have been completely searched.

10.4.5 Exploring a general network of transputers

The algorithm described in the previous section would be quite satisfactory if all networks took the form of a
tree. However, they are usually more complicated, in that they may have either or both (i) two links connected
on the same transputer, and (ii) there are closed loops of connections involving more than one transputer.
The network will still have a unique start point, however, namely the host transputer. An example is shown
in figure 10.4.

°

Figure 10.4

The basic algorithm is as before, but in addition there is the situation where a link is connected back to a
transputer which has already been booted. This is handled by arranging for every transputer to 'listen' on all
links which have not yet been tried - using a replicated ALT construct.

Suppose, for example, that link 2 of transputer A has booted transputer B on link 0, and is now passively
waiting while B explores further. B outputs the poke and peek sequence on link 1, which arrives back at link
1 of transputer A. It must now be arranged that A will recognise this sequence, even though it comes in on
a different link to the one on which daughter B was booted. So A inputs the whole message, and returns a
token A1readyLoaded. t, which has a value different from M.in1nt, in order to be recognised by B.

In order that A does not try link 1 again later, a boolean tryLink [I] is maintained (initialised to true),
indicating whether to try probing off link I. In our example, tryLink [1] is set to FALSE.

It is also useful at this stage to build up a map of which links are connected to whom. A table, [4] [2] 1NT
linkArray, is assembled for each transputer, in which each link has a corresponding entry giving the

10 Exploring multiple transputer arrays 149

identity of the neighbour attached to that link (if any), and that neighbour's link. For example,

linkArray[3] := [6,0]

would be set to indicate that link 3 is connected to link 0 of transputer 6. When a parent boots a daughter,
this information is communicated in the loacli.ngData, and may be entered into the table as appropriate.
However, when a transputer probes another one which is already loaded, the programs running on each
transputer must exchange identities and link numbers, storing the information in linkArray.

The central part of the program now looks like this:

Note:

SEQ
Initialise downLoad, id, nTransputers as before
Initialise tryLink, linkArray

SEQ I = 0 FOR 4
IF

NOT tryLink[I]
SKIP

TRUE
Abbreviations as before

SEQ
Initialise as before
Probe neighbour
Boot neighbour, and wait for reply

tryLink[I] := FALSE
LinkOut[parentLink] ! ReturnControl.t; nTransputers

(i)

(ii)
(iv)

(i) Initialise tryLink [I] to TRUE for all links except the link back to parent. The elements 0 and 1 of the
array loacli.ngData contain the identity and link of the parent transputer.

SEQ I = 0 FOR 4
tryLink[I] := TRUE

tryLink[parentLink] := FALSE
linkArray[parentLink] := [loadingData FROM 0 FOR 2]

(ii) There is now the possibility that two links on the same transputer are connected. Hence, the peek and
poke must be done in parallel to listening on all other links:

PAR
Probe neighbouring transputer

SEQ
Clock ? time
ALT

ALT J = 0 FOR NLinks
(J <> I) AND tryLink[J] & LinkIn[J] ? probeString

SEQ
linkArray[J] := [id, I]
linkArray[I] := [id, J]
tryLink[J] := FALSE

LinkIn[I] ? token
CASE token

MinInt as before
AlreadyLoaded
ELSE -- error

Time out as before

(iii)
(vi)

150 3 Software

(iii) If there is a closed loop (other than 2 links connected on the same transputer), we get the situation that
one transputer probes another, which replies AlreadyLoaded. t. The two ends then exchange
pleasantries, viz id and link.

PAR
LinkOut[link] ! rid, link]
Linkln[link] ? linkArray[link]

(iv) As before, waiting is only set to true if a neighbouring transputer has been found. The case when
two links are connected on the same transputer need not now be considered:

SEQ
Try to boot neighbouring transputer as before

WHILE waiting
SEQ

Clock ? time
ALT

ALT J = 0 FOR NLinks
(J <> I) AND tryLink[J] & Linkln[J] ? probeString

Reply 'AlreadyLoaded.t' (iii)
Linkln ? token

CASE token
LoadingData. t
ReturnControl.t
ELSE -- error

Time Out

(as
(v)

before)
(vi)

(vii)

(v) In addition to passing the loading data back, we also keep a note of the daughters id, boot link:

IF
stage = 2

linkArray[I] .- [passOnData FROM 2 FOR 2]
TRUE

SKIP

(vi) Make a note of the fact that a bad communication has taken place on this link by making a record in
linkArray. Use a special token TokenError. v to indicate that an unexpected token has been
returned. A classic cause of this is when two transputers are communicating at different link speeds
(10 and 20 MHz, for example).

SEQ
waiting := FALSE
linkArray [I] := [stage, TokenError.v]

(vii) A timeout at stage 1 implies that the link is unattached. However, if a timeout occurs at a later stage,
assuming Delay is long enough to allow for the booting of a daughter, then the neighbour has not
been successfully loaded - report this as an error.

Clock ? AFTER time PLUS Delay
SEQ

linkArray[I] := [stage, TimeOutError.v]
waiting := FALSE

10 Exploring multiple transputer arrays 151

10.4.6 Returning the local link map

Having explored the local connections of each link on a transputer, and returned control to the parent, we
wish to relay the information linkArray back to the host transputer. This is done as follows:

CHAN OF ANY ToParent IS LinkOut[parentLink]
SEQ

stage := 4
ToParent ! NetworkData.t; id; linkArray

SEQ I = 0 FOR 4
IF

NOT downLoad[I]
SKIP

downLoad [I]
SEQ

Pass on network info from daughter processes

ToParent

Note:

reading := TRUE
WHILE reading

SEQ
Linkln[I] ? token
CASE token

NetworkData.t
NoMoreData.t
ELSE

NoMoreData.t

(i) Pass on the identity and link array.

NetworkData.t pass on id and info
INT passOnId :
[4] [2]INT passOnLinkArray
SEQ

LinkIn[I] ? passOnId; passOnLinkArray
ToParent ! NetworkData.t; passOnId; passOnLinkArray

(ii) There is no more data to transmit from this branch.

NoMoreData.t
reading := FALSE

(iii) This is an error. Return a modified linkArray report.

ELSE
SEQ

reading := FALSE
linkArray[I] := [stage, TokenError.v]
ToParent ! NetworkData.t; id; linkArray

(i)
(ii)

(iii)

Data from each transputer, giving the id. number and local link connections, will arrive back at WormHandler
after the entire network has been loaded.

152 3 Software

10.5 An example

Below is some typical output from an exploratory worm program when run on the transputer configuration
shown in figure 10.5:

o

Figure 10.5

Checking network off 1ink 2 ...
Parent Daughter

:Id Link :Id Link
host 2 0 0

0 1 1 0
1 1 2 1
1 3 3 1
3 2 4 0
4 3 5 1
5 0 6 2

The number of transputers found is 7
Arranged in the f0110wing network :

:Id Link: 0 1 2 3
0 host-2 1-0 3-0 6-0
1 0-1 2-1 2-0 3-1
2 1-2 1-1 000 000
3 0-2 1-3 4-0 6-1
4 3-2 000 000 5-1
5 6-2 4-3 5-3 5-2
6 0-3 3-3 5-0 000

The first table refers to the initial loading of the network. It indicates that link 2 of the host transputer (running
on a B004, for example) has booted transputer 0 by link O. Then link 1 of transputer 0 booted transputer 1
by link 0, and so on.

The second table summarises the connectivity of the network, by stating what each link of each transputer is
attached to. For example, the entry 6-0 in row 0, column 3, indicates that link 3 of transputer 0 is attached
to link 0 of transputer 6.

10 Exploring multiple transputer arrays 153

10.6 Some points to note

This section will note some further developments which can be made to an exploratory worm program, and
restrictions on such a program.

10.6.1 16 and 32·Bit compatible programs

The instruction set of the INMOS transputer is independent of the wordlength of the transputer on which it is
to run. Code compiled for the IMS T414 may be run on a T800, or T212, for example, provided the following
points are observed:

If data, for example text strings or constant definitions, is included in the program, then it will be
'word aligned' in the compiled code. A program containing such data, and compiled for a 32-bit
transputer ('T4'), will run on a 16-bit transputer ('T2'), but the converse may not be true. Therefore,
it will be assumed that programs intended to run on either a T2 or T4 are compiled using the T4
compiler.

2 Communication between two transputers with different word lengths requires a mutually agreed
datalength. For example, it might be arranged that all data is input and output as INT16 words, and
that l.inkArray is built up and transmitted as an INT16 array.

Internal communication of words should be treated similarly. For example, the input of a word, when
compiled for a 32-bit machine, always attempts to input explicitly 4 bytes - which is not what is
wanted if the program is to be run on a 16-bit machine.

Beware that, if INT32 words are specified in a program which is compiled for a 32-bit transputer,
they will be recognised as being of the natural wordlength of the machine, and no special treatment
will be given. If the same code is run on a 16-bit machine without recompilation, the data would be
treated as 16-bits, which would be catastrophic if it was intended to communicate a 32-bit word.

3 Peeking and poking of a transputer assumes knowledge of the word length of that device. But when
a transputer first explores its links, it knows nothing about what is connected at the other end! The
simplest way around this is to attempt to poke and peek a neighbour assuming that it is a T2. If this
fails, terminate the T2 sequence with an extra byte to make it look like a T4 poke. Then try again
for a T4. For example:

ToLink #00; #00; #80; #00; #80;

ToLink
ToLink

#01; #00; #80
#00
#00; #00; #00; #00; #80; #00; #00;
#01; #00; #00; #00; #80

(i)
(ii)

#00; #80;
-- (iii)

(i) is a sequence for poking and peeking a 16-bit transputer, (ii) rounds this off to a valid 32-bit poke
(but at an address in external memory, which is not guaranteed to exist) and (iii) is a sequence
for pokinG and peeking a 32-bit transputer. Words have been expressed as bytes, little end first,
to prevent any possible confusion over compiling 16 and 32-bit words. If the neighbour is already
loaded, it should be made to reply immediately it receives probe (i).

4 The memory requirement of programs is determined by the compiler as the number of words needed.
However, running a program on a 16-bit transputer may require more words of storage than if the
same program was run on a 32-bit transputer. For example, [4]BYTE array requires 1 word
of storage on a T4, but 2 words on a T2. Since, as is noted in (1) above, the program must be
compiled for a 32-bit transputer, the allocation of storage must be forced to be suitable for 16-bit
transputers by declaring arrays as follows:

[2] [ArraySize]BYTE dummyArray :
[ArraySize]BYTE array IS dummyArray[O]

The same applies for boolean and INT16 arrays.

5 Provided that it does not contain any floating point or extended arithmetic, a program compiled and
extracted for a T 414 will run on a T800. The reverse is not true - do not try to run a program
compiled for the T800 on a T 414.

154 3 Software

6 The code which loads a CODE PROGRAM fold onto a transputer is word length independent, and a
program compiled and extracted to load a T4 will work equally well on a T2, provided that the above
points have been noted.

7 Because of differences in code placement, the debugger won't work when the worm is running on a
transputer other than the one it was compiled for.

10.6.2 Using an exploratory worm program to perform testing

An exploratory worm program is an extremely useful vehicle for testing transputer based products. Tests
for memory and the links may be included in the basic program, for example. If a hardware fault occurs,
the program may report the location and nature of the problem, while continuing to test other components
in the network. This is particularly useful during a long burn-in run. By testing the network repeatedly with
an exploratory worm, any failure may be detected and logged, while the rest of the network continues to be
burnt-in.

All INMOS transputers and transputer evaluation boards are burnt-in before shipping, and subsequent failure
is unlikely. However, this technique may be useful for testing products which use transputers as components.
In designing an exploratory test program, the following points should be borne in mind:

The same program will be loaded onto every transputer. Ideally, all components of the network to
be tested will be identical, but if there is any variation, the program will have to dynamically assess
the attributes (for example memory size, peripherals) of each transputer it finds.

2 The program has its own algorithm for assigning identity numbers to each transputer in the network,
which may be quite different to the one which the user has in mind. If a failure occurs, and the
program is run again, yet another different numbering of the network may occur.

3 If memory is to be tested, a transputer should test a section of memory of a potential daughter using
peek and poke, before booting that daughter. The section tested is the area where the program and
workspace will go.

4 If the links are to be tested, it should be remembered that corruption of data on a link (by noise, for ex
ample) might cause a data packet to look like an acknowledge, or vice-versa. The OutputOrFail
predefines are useful in this context.

10.6.3 Using an exploratory worm program to load another program

Another field in which it is useful to have a vehicle to load an arbitrary network is when the user intends
to run a program replicated over an array of processors, but does not care too much about their precise
configuration. An example of this is the data farm approach to processing [5]. In this, one central processor
'farms out' work to an array of 'worker' processes, each of which is capable of processing a piece of data
and returning it. The following points should be made:

1 The program which the user wishes to run on every transputer is included as part of the SC Worm,
so that it executes after the exploration phase has been completed.

2 An identical program will run on each transputer in the network. This program will be passed
information by the exploratory worm such as which links are connected to neighbours, and which
is connected back to the parent. From such information, algorithms to control the broadcasting or
routing of data may be developed.

3 The host transputer will be responsible for communicating with the rest of the network as required,
for example by sending out data for processing, and receiving results back.

4 Although this technnical note has described an exploratory worm as being initiated from the host
transputer, there is no reason why it could not be launched out from an already partially loaded
system.

10 Exploring multiple transputer arrays 155

A more flexible system can be constructed by arranging that the worm declares a large workspace. After the
system has been explored, the host sends out processes, in the form of pieces of compiled code, to specified
processors in the network, which are run using KERNEL. RUN. This allows the placement of code to be
decided at run-time, which might be useful, for example, in constructing a program which takes advantage of
all the processors in an arbitrary network, or to be used as a basis for a multi-tasking operating system.

10.6.4 Debugging an exploratory worm program

By its very nature, a worm program is difficult to debug. While the INMOS software debugger is very useful
for debugging a program which has been configured to match a known multiprocessor configuration, it does
not deal with a program which has explored an unknown network. To make things simpler, let us assume
that the program to be debugged is being run on a network of transputers whose configuration is actually
known, and which is known to be free from hardware bugs.

Since the worm takes the form of a PROGRAM configured for one transputer, a bug which occurs on the first
transputer in the network can be traced by using the debugger in the normal way - simply point it at the
worm PROGRAM and it will give the values of all variables, channel communication, etc., and the point at
which the program failed.

If a bug occurs deeper down in the network, use the following procedure. First modify the program so that it
looks like this:

SC Worm
CHAN OF ANY a,b,c,d,e,f,g,h
PROCESSOR 0 T4

PLACE a AT 0, b AT 1, etc.
Worm (a,b,c,d,e,f,g,h)

(The channels a, ... h are not used by the worm, but must be declared to ensure that code is placed in the
same way as below.)

Now take a copy of this program, and configure it to match the actual network (or part of the network). For
example, for a 2 transputer network connected by link 0 on each transputer:

SC Worm
CHAN OF ANY a,b,c,d,e,f,g,h
CHAN OF ANY i,j,k,l,m,n :
PLACED PAR

PROCESSOR 0 T4
PLACE a AT 0, b AT 1, etc. as before

Worm (a,b,c,d,e,f,g,h)
PROCESSOR 1 T4

PLACE e AT 0, a AT 4, i AT 1, etc.
Worm (e,i,j,k,a,l,m,n)

Load the network by pointing the EXE at the Worm PROGRAM configured for one transputer, in the usual
way. (A suspected software bug occurs which causes the program to fail. ..) Now point the debugger at the
copy of the program configured to match the network. The debugger will give complete symbollic information
about the state of the system when the program crashed.

Remember that, even if the failure is severe enough to cause the host transputer to lock up, so that it has to
be rebooted, the state of the subsystem is not altered by rebooting, and it can still be debugged as above

It is always important that channels are declared and placed on hard links in the same way, no matter how
the program is configured. This is to ensure that the way the code is loaded exactly matches the placement
of the code for the configured program, as used by the debugger. If in doubt, use the 'check code' feature of
the debugger to check that placement of the code loaded on the transputer matches the configured program.

156 3 Software

10.6.5 Loading a network in parallel

Section 10.4 described an algorithm for sequentially exploring a network. This is quite fast enough for most
purposes. However, if a large program is to be loaded onto an extremely large network of transputers, a
parallel loading algorithm might be considered. Such an algorithm is not so simple as the one described
above. In particular, it may happen that two loaded transputers simultaneously try to boot a third, unloaded
transputer, which is connected to both of them. The following points should be noted:

After receiving a peek or poke sequence on a particular link, an unbooted transputer will continue
to listen on all links for any further communication. Therefore, if two different transputers probe
the same daughter, confusion may arise. In particular, it would be impossible to test the memory
properly by peeking and poking.

2 Once a transputer has been successfully booted, care must be taken in how it identifies its parent.
For another transputer, besides the genuine parent, may also be trying to boot the new daughter.

3 The numbering of each transputer with unique identity numbers can only take place after the entire
network has been explored.

10.7 References

Transputer Development System, Prentice Hall 1988.

2 IMS B004 Evaluation Board User Manual, INMOS Limited

3 Extraordinary use of transputer links, Technical note 1, INMOS Limited 1987.

4 The Transputer Databook, INMOS Limited 1989.

5 Communicating Process Computers, Technical note 22, INMOS Limited, 1987.

157

11 Extraordinary use of transputer links

11.1 Introduction

The transputer link architecture provides ease of use and compatibility across the range of transputer products.
The transputer link is asynchronous at the bit level, which removes the need to distribute a clock within tight
phase constraints; indeed, separate clocks can be used to supply the transputers within a system. The use
of a handshaken protocol at the byte level allows fast systems to communicate with slow systems without
overrun problems. Finally, the provision of synchronised communcation at the message level matches the
occam model of communication.

Transputer links are intended to be used for communication within a system of devices connected on the
same PCB or via a backplane. The links are TTL compatible. This allows the use of simple buffers and
determines their DC noise margins. If transputer links are used within their specifications (Vcc, clock jitter,
clock frequency, data skew, and decoupling) they are extremely reliable; there will no run out errors on
clocking and the synchronisation failure rate has been designed to be less than 1 failure per 10**25 samples.

In certain circumstances, such as communication between a development system and a target system, or for
communication via an unreliable interconnect, it is desirable to use a transputer link even though the synchro
nised message passing of occam is not exactly what is required. Such extraordinary use of transputer links
is possible but requires careful programming and the use of some special pre-defined occam procedures.
This note explains how to use these procedures and gives two examples of their use.

11.2 Clarification of requirements

It is essential to have a clear idea of the requirements of a system in order to program extraordinary use
of the transputer links. We have two cases to consider here. The first is of a system consisting of two
distinct parts connected via a link. Here the requirement is to insulate each system from the other, perhaps
allowing one system to monitor to behaviour of the other. The second case is of a system which uses an
unreliable interconnect, where there is a danger of disconnection, or if the link is used outside its specified
noise margins, a danger of data corruption.

11.2.1 Connection of distinct sub-systems

As an example, consider a development system connected via a link to a target system. The development
system compiles and loads programs onto the target and also provides the program executing in the target
with access to facilities such as a file store. Suppose the target halts (due to a bug) whilst it is engaged
in communication with the development system. The development system then has to analyse the target
system.

A problem will arise if the development system is written in 'pure' occam. It is possible that when the target
system halts, the development system is in the middle of communicating. As a result, the input or output
process will not terminate and the development system will be unable to continue. This problem can occur
even where an input occurs in an alternative construct together with a timeout (as illustrated below). When
the first byte of a message is received the process performing the alternative commits to inputting; the timer
guard cannot subsequently be selected. Hence, if insufficient data is transmitted the input will not terminate.

ALT
TIME ? AFTER t~eout

from. other. system ? message

It is important to note that the problem arises from the need to recover from the communication failure. It is
perfectly straightforward to detect the failure within 'pure' occam, and this is quite sufficient for implementing
resilient systems with multiple redundancy.

158 3 Software

11.2.2 Communication via an unreliable interconnect

In the case of communication via an unreliable interconnect there are a number of possible failure modes.
If the interconnect becomes disconnected whilst a data transfer is in progress the communication will not
complete. It is possible that this might manifest itself to only one of the systems; if the disconnection occurs
after all the data packets have been transmitted but before the final acknowledge packet has been transmitted
then the inputting system will see a completed transfer but the outputting system will hang. It is also possible
for a disconnection to cause data corruption or the conversion of a data packet into an acknowledge packet
(see next paragraph).

If a link is being used outside its noise margins there are a number of errors which may occur. The first is
the corruption of the content of a data packet which will lead to the reception of erroneous data. This may
be detected by the use of standard checking techniques such as checksums or CRCs. Otherwise, an error
will involve the generation of, the deletion of, or the corruption of a packet. This will lead to the breakdown of
the end-to-end synchronisation of the protocol, and ultimately, will cause one, or both, of the communicating
processes to hang on a communication.

For example, if a data packet is lost, it will not be acknowledged by the receiving transputer. Hence, the
transmitting transputer will neither be able to transmit any further data packets, nor to schedule the outputting
process. Consequently, the receiving transputer will never receive suffient data packets to schedule the
inputting process. Hence neither the inputting process, nor the outputting process will terminate.

11.3 Programming concerns

The first concern of a designer is to understand how to recognise the occurence of a failure. This will depend
on the system; for example, in some cases a timeout may be appropriate.

The second concern is to use ensure that even if a communication fails, all input processes and output
processes will terminate. As this cannot be achieved directly in occam, INMOS provides a number of
predefined procedures which perform the required function. These are described below.

The final concern is to be able to recover from the failure and to re-establish communication on the link. This
involves reinitialising the link hardware; again INMOS provides a suitable pre-defined procedure to allow this
to be performed.

11.4 Predefined input and output procedures

There are four predefined procedures which implement input and output processes which can be made to
terminate even when there is a communication failure. They will terminate either as the result of the com
muncation completing, or as the result of the failure of the communcation being recognised. Two procedures
provide input and output where communication failure can be detected by a simple timeout, the other two
procedures provide input and output where the failure of the communication is signalled to the procedure
via a channel. The procedures have a boolean variable as a parameter which is set true if the procedure
terminated as a result of communication failure being detected, and is set false otherwise. If the procedure
does terminate as a result oFcommunication failure having been detected then the link channel will be reset
(see later).

All four predefined procedures take as parameters a link channel c (on which the communication is to take
place), a byte vector mess (which is the object of the communication) and the boolean variable aborted.
The choice of a byte vector as the parameter to these procedures allows an object of any type to be passed
along the channel provided it is retyped first.

11 Extraordinary use of transputer links 159

The two procedures for communication where failure is detected by a timeout take a timer parameter TIME,
and an absolute time t. The procedures treat the communcation as having failed when the time as measured
by the timer TIME is AFTER the specified time t. The names and the parameters of the procedures are:

InputOrFai1.t(CHAN c, []BYTE mess, TIMER TIME, INT t,
BOOL aborted)

and

OutputOrFai1.t(CHAN c, VAL []BYTE mess, TIMER TIME, INT t,
BOOL aborted)

The other two procedures provide communication where failure cannot be detected by a simple timeout. In
this case failure must be signalled to the inputting or outputting procedure via a message on the channel
ki11. The message is of type INT. The names and parameters to the procedures are:

InputOrFai1.c(CHAN c, []BYTE mess, CHAN ki11, BOOL aborted)

and

OutputOrFai1.c(CHAN c, VAL []BYTE mess, CHAN ki11, BOOL aborted)

11.5 Recovery from failure

To reuse a link after a communication failure has occurred it is necessary to reinitialise the link hardware. This
involves reinitialising both ends of both channels implemented by the link. Furthermore, the reinitialisation must
be done after all processes have stopped trying to communicate on the link. So, although the InputOrFai1
and OutputOrFai1 procedures do, themselves, reset the link channel when they abort a transfer, it is
necessary to use the fifth pre-defined procedure Reinitia1ise (CHAN c), after it is known that all activity
on the link has ceased.

The Reinitia1ise pre-defined must only be used to reinitialise a link channel after communication has
finished. If the procedure is applied to a link channel which is being used for communication the transputer's
error flag will be set and subsequent behaviour is undefined.

11.6 Examples: two systems with extraordinary link usage

The following examples illustrate two systems which make extraordinary use of transputer links. The first
example is a development system, the second example is of two systems interconnected by a link which may
be physically disconnected and re-connected at any time.

11.6.1 E'(ample 1: a development system

The problem

For our example we return to the development system described above.

Development - ... Target
system Link system

160 3 Software

The solution

The first step in the solution is to recognise that the development system knows when a failure might occur,
and hence the development system knows when it might be necessary to abort a communication.

We will assume that the process which interfaces to the target system is sent a message when the develop
ment system decides to reset the target causing the interface process to abort any transfers in progress. The
development system can then reset the target system (which resets the target end of the link) and re-initialise
the link.

We can now outline the construction of such a system. The program below would be that part of the
development system which runs once the target system starts executing, until such time as the target is reset
and the link is reinitialised.

SEQ
CHAN terminate.input, terminate.output
PAR

interface process
monitor process

... reset target system
Reinitia1ise(1ink.in)
Reinitia1ise (1ink. out)

The monitor process will output on both terminate. input and terminate. output when it detects
an error in the target system.

The interface process consists of two processes running in parallel, one which outputs to the link, the other
which inputs from the link. As the structure of the processes is similar we only discuss the process which
outputs to the link. If there were no need to consider the possibility of communication failure the process
might be

WHILE active
SEQ

ALT
terminate.out ? any

active := FALSE
from.dev.system ? message

1ink.out ! message

This process will loop, forwarding input from from. dev. system to 1ink. out, until it receives a message
on terminate. out. However, if after this process has attempted to forward a message, the target system
halts without inputting, the interface process will fail to terminate.

The following program overcomes this problem:

WHILE active
BOOL aborted
SEQ

ALT
terminate.out ? any

active := FALSE
from.dev.system ? word

SEQ
OutputOrFai1.c(1ink.out, message, terminate. out, aborted)
active := NOT aborted

11 Extraordinary use of transputer links 161

This program is always prepared to input from terminate. out, and is always terminated by an input from
terminate. out. There are two cases which can occur. The first is that the message is received by the
input which then sets active to false. The second is that the output gets aborted. In this case the whole
process is terminated because the variable aborted would then be true.

11.6.2 Example 2: two systems connected by a link

The problem

In this example we consider two transputer-based systems, connected by a link. The particular problem with
which we are concerned is that the link between the two systems might become disconnected. (We assume
that the electrical design of the system is adequate).

This example illustrates two things. Firstly how to detect that the link has become disconnected, and secondly
how to restart communication after it is re-connected.

The solution

The key to this solution is detecting the disconnection of the link. Unlike the development system example
we do not straightforwardly know when this has occured. For example, if one system has not received
communication from the other system for thirty minutes it cannot necessarily deduce that the link has been
disconnected; it may just be that the other system has not tried to communicate for thirty minutes!

To overcome this problem we adopt the use of 'watchdog' processes on each system to ensure that it
communicates frequently with the other system. The frequency of communication is chosen so that the
disconnection of the link is detected as quickly as is required by a system.

In this solution each system contains a process which interfaces to the communication link. This process
connects to an input channel, an output channel and both the channels implemented by the link. The outline
of this process is as follows:

TIMER TIME :

PROC copier(CHAN output, input, unreliable. in, unreliable. out)
INT start.time
SEQ

synchronise with other end
TIME? start.time
WHILE active

SEQ
'" copy until failure occurs
'" resynchronise

For simplicitr we will assume that the system starts with the link connected. First, the two systems synchronise
by passing a message. This establishes a common timeframe for the two systems (used when we need to
re-establish communication after disconnection of the link). Then the systems copy information between
themselves until the link is disconnected. If one system detects a failure it ensures that the other system
detects a failure by deliberately not engaging in communication for a suitable period. The two systems then
attempt to re-establish communication.

162 3 Software

The copier performs the copying using two processes running in parallel, as follows:

CHAN in.to.out, out.to.in :
PAR

copy.in (unreliable. in, output,
copy. out (unreliable. out, input,

out.to.in, in. to. out, one. sec)
in.to.out, out.to.in, one.sec/4)

input copy.out
unreliable. out

out. to. in ~ tin.to.out

.... output unreliable.in
~ copy.in

The channels in. to. out and out. to. in enable each process to signal the other when one detects
failure. The processes implement a protocol on the link channels with two types of packet, 'data' and 'tick'
packets. A data packet is a 'data' tag, followed by a message, a tick packet consists of just a 'tick' tag. In
this example both the tag and the message are one word long.

The processes forward and receive messages as needed and insert tick packets if there are no messages
being forwarded. The disconnection of the link is detected either by the input process or the output process
failing to communicate within their alloted time.

In this example the outputting process outputs at least once every quarter second (on unreliable. out)
and assumes that the link has been disconnected if the output does not complete within a quarter second.
The inputting process will assume the link has become disconnected if it does not receive a message (on
unreliable. in) for one second.

The coding of the two procedures copy. in and copy. out can now be explained. The program text
is given in section 11.7. 80th procedures (A) declare an integer mess and then retype it to a byte array
mess. a. This allows the integer mess to be passed to the predefined procedures which require a byte
array as a parameter. The main loop of both procedures (8) continue until either the procedure receives a
message which tells it that the other procedure, running in parallel, has detected link disconnection (C), or it
has detected an error itself (G).

The other possibilities for the main loop of copy. out are to receive a message on channel output (E),
or to determine that it is time to send a 'tick' (0). In both cases an OutputOrFail. t is used in case the
link is disconnected whilst copy. out is outputting.

If copy. in does not receive a message on error. det it will perform an input (F). This is done using
InputOrFail. t which will detect link disconnection if the timeout is exceeded.

Each process contains program to inform the other, parallel, process when it detects an error (G). This runs
an input in parallel with an output to ensure that if the other parallel process has performed an output, the
communication will occur correctly. Correspondingly, if the procedure is informed that an error has occured
by the other process (C) it acknowledges the receipt of that information.

It now remains to describe how to restart communication. The first problem here is to identify that the link
has been reconnected. In this example we will assume that there is no way of doing this other than by trying
to use the link. (This is not ideal but is adequate).

11 Extraordinary use of transputer links 163

The scheme we use is for both systems to try, repeatedly, to communicate with the other. We use the
transputer's timer to ensure that the systems attempt to communicate at the same time. The systems execute
processes of the form

WHILE tryi.ng
SEQ

PAR

wai.t unti.1 start of next cyc1e
reset both 1i.nk channe1s
wai.t unti.1 next phase of cyc1e

... i.nput from 1i.nk channe1 wi.th ti.meout
'" output to 1i.nk channe1 wi.th timeout

tryi.ng := i.nput.fai.1ed OR output.fai.1ed

The breaking of the cycle into distinct, non-overlapping, phases ensures that the systems will not fail to
communicate because one system is resetting its links at the same time as the other system is trying to
communicate.

The full code is given in section 11.8. In this code i.nterva1 contains the number of timer ticks in a cycle,
and phase contains the number of ticks in a phase (which equals i.nterva1/3). The program fragment
starting at (A) calculates the time to the start of the next cycle. de1ta. time contains the the elapsed
time since the processes originally synchronised (modulo the wordlength). The LONGDIV computes the time
since the start of the last cycle. Note that in order for this code to work correctly the number of ticks in a
cycle must divide 2"wordlength exactly.

164

11.7 Program listing 1

VAL INT data. tag IS 0
VAL INT tick.tag IS 1

PROC get. next. tick (INT next. tick, VAL INT delta)
SEQ

TIME? next.tick
next.tick := next.tick PLUS delta

PROC copy.out(CHAN out.dubious, input, error.det, error.gen,
VAL INT delta)

INT mess : (A)
[]BYTE mess.a RETYPES mess
INT next.tick
BOOL active :
SEQ

active := TRUE
WHILE active (B)

INT sink, data
BOOL error :
SEQ

get.next.tick(next.tick, delta)
PRI ALT

error.det ? sink (C)

IF

SEQ
error.gen ! 0
active := FALSE

TIME? AFTER next.tick (D)
SEQ

get.next.tick(next.tick, delta)
mess := tick. tag
OutputOrFail.t(out.dubious, mess.a,

TIME, next.tick, error)
in ? data (E)

SEQ
next.tick := next.tick PLUS delta
mess := data. tag
OutputOrFail.t(out.dubious, mess.a,

IF
error

SKIP
NOT error

SEQ

TIME, next.tick, error)

get.next.tick(next.tick, delta)
mess := data
OutputOrFail.t(out.dubious, mess.a,

error
SEQ

PAR
error.gen ! 0
error.det ? data

active .- FALSE
TRUE

SKIP

TIME, next.tick, error)

(G)

3 Software

11 Extraordinary use of transputer links

PROC copy.in(CHAN in.dubious, output, error.det, error.gen,
VAL INT de1.ta)

INT mess :
[]BYTE mess.a RETYPES mess
INT next.tick
BOOL active
SEQ

active := TRUE
WHILE active

INT sink :
BOOL error
SEQ

get.next.tick(next.tick, de1.ta)
PRI ALT

error.det ? sink
SEQ

error.gen ! 0
active := FALSE

TRUE & SKIP
SEQ

(A)

(B)

(C)

InputOrFai1..t(in.dubious, mess.a, (F)

IF
TIME, next.tick, error)

error
SKIP

mess = tick.tag
SKIP

mess = data.tag
SEQ

get.next.tick(next.tick, de1.ta)
InputOrFai1..t(in.dubious, mess.a,

TIME, next.tick, error)
IF -- forward data un1.ess error detected

error
SKIP

TRUE
output mess

IF
error

SEQ
PAR

error.gen ! 0
error.det ? sink

active .- FALSE
TRUE

SKIP

(G)

165

166

11.8 Program listing 2

INT start.time ;
SEQ

pass initial message and set up start.time
WHILE active

SEQ
... copy until failure occurs

[l]BYTE i.byte, o.byte
INT time, delta.time, next. cycle, next.phase, cycles
BOOL trying ;
SEQ

determine start of next cycle
TIME ? time (A)
delta. time ;= time MINUS start.time
LONGDIV(cycles, delta. time, 0, delta. time, interval)
next.cycle ;= (time MINUS delta.time) PLUS interval

trying ; = TRUE
WHILE trying

BOOL input.failed, output. failed
SEQ

TIME? AFTER next. cycle
ResetChannel(unreliable.in)
ResetChannel(unreliable.out)

next.phase ;= next.cycle PLUS phase
TIME ? AFTER next. phase

next.phase ;= next.phase PLUS phase
PAR

InputOrFail.t(unreliable.in, i.byte, TIME,
next.phase, input. failed)

OutputOrFail.t(unreliable.out, o.byte, TIME,
next.phase, output. failed)

trying ;= input.failed OR output.failed

next.cycle ;= next cycle PLUS interval

3 Software

167

12 Analysing transputer networks

12.1 Introduction

The Transputer Development System (TDS) is a software package which is used for developing applications
for execution on transputers. The TDS contains facilities for loading and running code on the host computer
(which may be a transputer) or on a network of transputers connected to the host. This technical note
describes the mechanism employed by the TDS to retrieve information from a network which is being analysed
for debugging purposes.

The debugging tools which incorporate the software which implements the network investigation technique
described in this note, are employed after a user program has been run on the network and failed in some
way. They are independent tools which recover information about the state of the network at the time it was
reset, rather than software which provides continuous monitoring of the condition of the user program while
it is running.

occam contains constructs which are used to specify the allocation of code to different processors in the
network. The TDS compiler implements a subset of these allocation facilities which allows users to allocate
occam compilation units to different processors. This specification is called the configuration. The following
example configuration specifies a network of two processors which are connected by channel datalink
placed on both processors at transputer link zero. The content of the compilation unit root is to be loaded
onto the processor attached to the host computer and the content of the compilation unit node is to be
loaded onto the other processor in the network. The textually first processor in a network is assumed to be
connected to the host computer by a transputer link or serial line for loading and is referred to as the root
processor.

{{{ PROGRAM using two processors
{{{F

SC root (in)
SC node (out)

CHAN OF BYTE datal ink
PLACED PAR

PROCESSOR 1 T4
PLACE datal ink AT 4
root (datalink)

PROCESSOR 2 T4

}} }
}}}

PLACE datalink AT 0
node (datalink)

Link 0 in

-- Link 0 out

The complier checks that the configuration described by the user is valid and that every processor is load able
from the root processor. The compiler also checks that the code to be loaded to each processor is available
and is compiled for the correct processor type. The compiler produces a fold containing a description of the
configuration specified by the user. This description is used by the analyse software to determine a path
through the network to analyse every processor in turn.

The TDS is deSigned to enable users to develop their network software easily and quickly. This environment
calls for a generalised debugging mechanism which is simple reliable and reasonably efficient. The debugging
facilities provided as part of the TDS attempt to find the cause when something has gone wrong in the
execution of an application on a network and the program has halted, set error, locked or in some other
way appears to be incorrect. The debugging software then examines the processor state and memory of
every processor in the network presenting the information in a manner which enables the user to relate it
to the occam source of the program. No facilities are provided to interrupt, examine and restart a running
application. It is expected that applications which require more than this 'post-mortem' debugging technique
will have a specific analyse tectmique designed.

The analyse strategy used by the TDS was developed after the network loading mechanism and is based very
closely upon it. It is not the only way of analysing a network of transputers and may not be the best mechanism
for many environments. The development of the loading scheme is described in an accompanying technical

168 3 Software

note 'Loading Transputer Networks'. The analyse mechanism was made as similar to the loading scheme
as possible to shorten development time, for simplicity of maintenance and because the loading scheme had
proved relatively easy to develop and was simple and efficient.

12.1.1 Characteristics

TDS debugging tools assist the user in finding coding errors by providing 'post-mortem' browsing access to the
registers and memory of all transputers in a network. The extent of the browsing facilities provided depends
on the debugging tool used, some provide only the ability to locate to occam source text while others are
able to display the contents of local varaibles and trace back procedure calls. All of the tools, however, have
a common interface to the network of transputers being examined. This interface is maintained by an occam
process residing on the host computer which keeps a map of the network as well as a certain amount of
the information retrieved from the network. The debugging tool sends information requests to the interface
process, which gathers the data together from the information it maintains on the host and the information
still available from the network. The interface process controls all access to the processors in the network,
routing requests to the required processor and assembling the information returned.

The characteristics of the analyse software to satisfy the requirements of the debugging tools and its devel
opment from the loader are described in the rest of this section.

The contents of all the registers and the complete memory as it was when the processor (was) halted must
be available to the debugging software. Many of the processor registers can only be accessed by a program
running on that processor and consequently a program must be loaded onto each processor in the network.
When the complete network has been loaded with the analyse process, the host interface process is a
manager of a database, part of which is held in locally in the host and part of which is distributed on every
processor in the network.

To avoid losing the contents of the memory locations into which this program is going to be loaded it is
necessary to save the contents prior to loading the program. The memory is saved by reading it from the
processor and saving it as part of a data base on the host computer. The data is accessed by 'peeking' the
memory prior to booting the processor with the program to access the registers. The transputer bootstrap
facility which is employed when the memory of a processor is being peeked is described later in section
12.2.3.

The analYSing program has to be distributed to each processor in the network and the information returned
by each processor has to be returned to the host, so part of the task performed by the program loaded into
each processor is to copy this information to and from the host. Before the analyse process is run each
processor is loaded with a bootstrap and a loader which perform data retrieval, initialisation and loading
tasks. The first part, the bootstrap, saves the values retained in registers about the previous execution state
of the processor, initialises the transputer and then loads the second part. The second part, the loader, loads
the analyse process (which is received as a set of message packets from the host, terminated by a zero
length message packet) then transmits the information accumulated by the bootstrap back to the host and
finally initialises the local workspace and then runs the code just loaded. The code loaded by the loader, the
analyser, performs the tasks of distributing code and information to other processors in the network, returning
information from other processors in the network and peeking neighbour processors which are not yet booted.

The bootstrap, loader and analyser are grouped together as a set of message packets which are sent by the
host to a processor immediately after it has been peeked. This boot sequence is transmitted to each processor
from the host, it does not propagate from one processor to the next. The debugging interface process on
the host computer maintains all knowledge of the structure of the network, transmitting instructions to direct
the actions of the the analyser on each processor in the network. Processors in the network maintain no
information about neighbouring processors.

The analyse communications transmitted from the host to the network are collections of single bytes and
packets of bytes. The single bytes are commands which control the routing and loading of information. The
packets of bytes are transputer code boot sequences being directed to an unbooted transputer. The boot
sequence message packets are never greater than 60 bytes in length and a zero length packet terminates
the sequence. The value 60 was chosen for a variety of reasons. Firstly, it is necessary to provide a buffer
in the analyser for passing code on to other processors and the larger this is the more space the analyser
uses. Secondly, a message protocol could be devised which simplified the analyser if the message length

12 Analysing transputer networks 169

was never greater than 63. Thirdly, the buffer had to be large enough to contain the bootstrap part of the
boot sequence for passing on to other processors in the network and a bootstrap capable of performing the
initial analyse functions and loading the loader proved to be just under 60 bytes in length.

12.2 TDS debugging

The debugging faCilities provided as part of the TOS, interface to the analyse software described in this
technical note. This section describes the requirements which the debugging facilities demand of the analyse
software and how the analyse software satisfies these demands.

12.2.1 Debugging requirements

The TOS debugging facilities are deSigned for use when a loaded network has crashed by stopping, dead
locking or has generated error. The debugging takes the form of a post-mortem browser which examines the
state of the processor at the moment of the crash.

The minimum level of help that a post-mortem debugging tool can provide to a user is to indicate the source
location associated with the execution point at the moment when the processor halted. A debugging facility
of this sort demands little of the analyse software other than to return from each processor in the network, its
error condition and its instruction pointer at the moment it halted. Retrieving just these two items however,
requires that the analyse software has the ability to transmit boot sequences to every processor in the network
and return data from any processor to the host.

A slight refinement is to inform the user which instruction was being executed when an error occurred. The
following occam fragment illustrates how this debugging facility could appear to the user.

overf1ow during constant addition of -1

INT a:
SEQ

a := 0
WHILE a <= no.of.reps

SEQ
perform action

a := a - 1 cursor locates to this pOSition

In the above example, the user has typed - instead of + and the activity has continued until overflow occurs
when a has the value MOS'l'NEG INT. Even this simple example shows how the TOS can provide useful
debugging information, from which the program can easily be corrected by the user. The above example
extends the initial requirement of the analyse software to enable the debugging tool to determine the contents
of specified locations on a selected processor. This could be achieved by examining code files on the host
or by adding the facility to the analyse software. The latter solution avoids any problems associated with
changes in the loading strategies and provides a facility which is needed by more complex debuggers.

Adding the facility to examine the contents of specified locations on any processor demands that the analyse
software is capable of passing requests to the selected processor and returning the data retrieved. It also
demands that the complete memory contents are available even though some of the memory will be overwritten
by the boot sequence necessary to access the data used to locate the instruction.

Extending the debugging requirements does not place significantly greater demands on the analyse software.
Extending the debugging facilities to display to the user the processes on the queues or waiting for link trans
fers, requires the part of the analyser which accesses the instruction pointer and error state for the minimum
locate faCilities to retrieve other processor registers at the same time. All other debugging requirements, such
as back tracing procedure calls and displaying the contents of selected workspace locations, can be met by
the ability to access the contents of any location on any processor.

170 3 Software

Summarising the facilities which the debugging tools require from the analyse software produces the following
list.

The following state information at the moment when the processor halted must be retrieved

• the instruction pointer

• the workspace pointer

• the high priority process queue front pointer

• the high priority process queue back pointer

• the low priority process queue front pointer

• the low priority process queue back pointer

• the error state

• the halt on error state

• the high priority time

• the low priority time

• the link process words

• the event process word

• the high priority timer queue front pOinter

• the low priority timer queue front pointer

The contents of any location in the complete memory space.

12.2.2 Meeting the requirements

This section shows how the analyse software meets the requirements of the TDS debugging tools. The
analyse software aims to satisfy the requirements of the debugging tool which imposes the greatest demand,
assuming that debugging tools which do not require all the facilities will simply not use them.

The primary requirements is to access the contents of transputer registers at the moment when the processor
halted. The transputer hardware assists significantly in meeting this requirement in the following ways.

• A transputer can be run in a state which causes it to halt if an error occurs. In this state, when
a transputer executes an instruction which causes an error (such as an attempt to exceed an array
bound), the instruction pointer is left with a known value in relation to the instruction which caused
the error.

• The transputer has an input hardware Signal, the analyse Signal, which causes it to stop
operation in a manner which preserves much of its internal state and then start to boot.

• After booting the stack registers contain processor information from when the procesor halted
and booted. The value that was in the instruction pointer is available in Areg, the contents of
the workspace descriptor register is available in Breg and the address of the link booted from is
available in Crego

Details of other information available after booting an analysed transputer can be found in the document
entitled 'The transputer instruction set - a compiler writers' guide' (ISBN 0-13-929100-8).

Most register information is only available to a program running on the processor. A program to access the
register contents must read the available information and then initialise the processor registers to a state
which allows normal program execution to proceed. The boot sequence of each transputer retrieves register
information in a way which preserves all of the available data. The boot sequence loaded onto a processor

12 Analysing transputer networks 171

obviously overwrites the previous contents of the memory locations where the boot sequence is loaded.

To provide the debugging tool with access to the contents of every memory location in the memory map of the
processor it is, therefore, necessary to read the contents of the locations which are going to be overwritten
by the boot sequence before it is loaded. Again the transputer hardware assists in meeting this requirement
in the following ways.

• On receipt of the input analyse signal the transputer does not initialise its external memory
interface and so memory contents are preserved.

• Prior to a transputer being loaded with bootstrap code, specified areas of the memory of the
transputer can be retrieved and saved by a program running on a different processor.

The area of memory recovered prior to booting each processor is transmitted to the host so that requests by
the debugging tool for the contents of memory locations is to a distributed data base; some of which is held
by the individual processors throughout the network and some of which is stored in the host computer. The
size and location of the memory recovered prior to booting is 600 bytes starting from MOSTNEG INT.

After the memory has been retrieved, the processor is loaded with a program which reads the contents of
the processor registers for transmission back through the network to the host. The program loaded into each
processor must also be able to pass on a similar program to processors further away from the host and copy
the contents of specified memory locations back through the network to the host.

12.2.3 Analysing the network

The processors are loaded with the analyse program in a sequence, determined by the host software, referred
to as the bootstrap sequence. The host software also selects the specific bootstrap and analyser for each
processor in the network and sends the code to the network, controlling any interaction with the root processor
and reporting any failures.

The data retrieved from each processor is made up of two components; firstly the copy of the memory contents
retrieved to become part of the distributed memory data base and secondly the processor register contents.
The processor register contents are used to determine the process state of the processor. The control of the
bootstrap sequence and the recovery and management of all of the data retrieved by the network is handled
by a single process. This interface process

• reads the memory copy retrieved from each processor.

• sends the bootstraps to each transputer in the network.

• reads the processor register data for every processor.

• maintains the interface to the memory and register data bases.

From link connection information and processor load data provided by the compiler, the interface process
builds a graph representing the network to be examined. From this data structure the order in which the
processors in the network are analysed is determined.

To determine the order, the graph of the network is first pruned to a strict tree structure with only the shortest
paths from the host to all the processors remaining. The analyse order is then determined from the tree by
the following algorithm.

Analyse the root processor (the processor connected to the host). Then for links 0,1,2,3 in turn of the root
processor, analyse the network attached to the link. If the link is connected to a processor, analyse the
processor connected to the link •. and analyse the networks connected to links 0,1,2,3 of the newly analysed
processor. Note that the links are not necessarily used in the direction defined within the occam configuration.

172

ThiS can be illustrated with reference to the following example configuration:

SC process.l
SC process.2
SC process.3
definitions and declarations

PLACED PAR
PROCESSOR 0

PLACE Ll
PLACE LO
PLACE L6
process. 1

PROCESSOR 1
PLACE L2
PLACE L6
PLACE L7
process. 2

PROCESSOR 2
PLACE LO
PLACE L2
PLACE L4
process. 3

PROCESSOR 3
PLACE L3
PLACE Ll
PLACE L5
process. 1

PROCESSOR 4
PLACE L5
PLACE L7
PLACE L4
process. 3

T4
AT
AT
AT

(Ll,
T4

AT
AT
AT

(L2,
T4

AT
AT
AT

(LO,
T4

AT
AT
AT

(L3,
T4

AT
AT
AT

(L5,

l.ink3.in
l.inkl.out
l.ink2.in

LO, L6)

l.inkl.in
l.inkO.out
l.ink2.in

L6, L7)

l.inkO.in
l.ink3.out
l.ink2.in

L2, L4)

l.ink3.in
l.inkO.out
l.ink2.out

Ll, L5)

l.ink3.in
l.inkO . out
l.inkl.out

L4, L7)

The above occam configuration can be represented by the diagram in figure 12.1.

This example configuration is analysed in the following order.

processor 0 from host
processor 2 from processor 0 l.ink 1
processor 4 from processor 2 l.ink 2
processor 1 from processor 0 l.ink 2
processor 3 from processor 0 l.ink 3

3 Software

Analysing a processor proceeds in two stages, firstly the retrieval of a copy of an area of memory before the
processor is booted and secondly, booting the processor. The copy of part of the memory of an unbooted
processor is made by using the transputer 'peek' bootstrap sequence to read the desired memory locations.
The root processor is peeked by the host computer, all other processors are peeked by the preceding
processor in the boot sequence which then transmits the peek data back through the network to the host
computer. The host computer sends a command to a processor to direct it to peek the processor on a
specified link.

The peek bootstrap sequence is given in the following lines.

1 to.next.processor! peek.command

2 to.next.processor ! peek.address

3 from.next.processor ? peek. word

In the above sequence, peek. command is a BYTE value and peek. address and peek. word are word

12 Analysing transputer networks

L1

L1

0

L3 3 3 1

process. 1
2

LS

LS

3

3

3

r------------, , ,
: Host , , , , ,
L------r--- __ J , , , ,

'0

0

process.1
2

L6
0

1

process.2
2

L7
0

4

process.3
2

1

1

1

Figure 12.1 Example network

173

LO

LO

0

L2 3 2

process.3
2

L4

L4

values of the word size of the unbooted processor being peeked. At the same time as directing a processor
to peek the processor attached to a link, the host computer must also inform the peeking processor of the
word length of the processor about to be peeked. The requirement that processors must be able to peek
other processors with a different word length causes the compiled code of the analyse program loaded on
each processor to be different for different word-length transputers.

The 600 bytes starting from MOSTNEG INT are retrieved from the unbooted transputer prior to loading the
bootstrap and analyse programs. The bootstrap, loader and analyser for each processor type are contained
within the host interface process as a table of bytes organised as a sequence of length bytes followed by
the specified number of bytes. The table is generated by a program provided with the TOS. This program
contains within it a mechanism for inserting transputer instructions directly into the table, and for reading the
code of a compiled occam program and adding the contents to the table. The bootstrap and the loader are
coded directly into the table, the analyser, however, is written in occam.

12.3 The boot sequence

12.3.1 The bootstrap

After power-on or reset, a transputer waits until it receives a communication on anyone of its links. If the
value of the first byte of this communication is 2 or greater, then that number of bytes is input from the link
into the memory starting at Mem~tart and the processor starts executing at MemStart. The host debugging
interface process sends the bootstrap to each processor as a length byte followed by the bootstrap code.

The bootstrap, the first packet of the boot sequence, is a short program which reads the contents of various
transputer registers and then initialises the registers and some workspace. Section 12.S 'Bootstrap code'

174 3 Software

gives the full listing of the bootstrap which is written in transputer assembler instructions. The sequence of
actions performed by the bootstrap is as follows:

1 Allocate workspace for bootstrap, loader and analyser variables.

2 Save stack registers containing previous instruction pOinter, previous workspace pointer and link
booted from.

3 Save low and high process queue registers.

4 Reset low and high process queue registers.

5 Save and reset error and halt on error.

6 Save high and low priority time values.

7 Load the loader.

The bootstrap is loaded by the transputer at MemStart. When the register contents are recovered and the
initialisation is complete, the bootstrap loads the loader at MemStart and then jumps to MemStart to enter the
loader. Because the bootstrap loads the loader at the same location as itself, the bootstrap is at least two
bytes longer than the loader (so that the instruction by which control is passed to the loader is not overwritten
by the loader code being loaded). The space occupied by the bootstrap and the loader is used by the third
part of the boot sequence, the analyser, as a communication buffer and consequently, the bootstrap is always
padded to the buffer size.

12 Analysing transputer networks 175

The memory layout for a T4 transputer while the bootstrap is running is given in the following diagram.

#800000DO

Bootstrap
workspace

#800000CO

Analyse
data

#80000084

Bootstrap
code

#80000048 MemStart

Reserved
locations

#80000000 MOSTNEG INT

Figure 12.2 T 4 Bootstrap memory usage

Addresses for the T2 and T8 which correspond with those given in the above diagram for the T4 are given
in the following table.

Transputer
MOSTNEG INT
MemStart
Bootstrap top
Analyse data top
Workspace top

T2
#8000
#8024
#8060
#807E
#8086

12.3.2 The loader

T4
#80000000
#80000048
#80000084
#800000CO
#80000000

T8
#80000000
#80000070
#800000AC
#800000E8
#800000F8

The loader, which is the second packet of the boot sequence, is a short program capable of loading contiguous
blocks of code into memory. The code of the loader, which is written in transputer assembler instructions, is
listed in section 12.6 'Loader code'. It performs two different functions, firstly, it is used to load the analyser
and secondly, after all of the code of the analyser has been received and loaded it transmits the initial analyse
data recovered by the bootstrap back to the host. The sequence of actions performed by the loader is given
in the following list.

1 Load code from boot link until terminator.

2 Transmit analyse data to boot link followed by terminator.

3 Initialise remaining parameters for analyser.

4 Initialise workspace pOinter and call code just loaded.

The loader is loaded by the bootstrap at MemStart. The loader starts loading the analyser at the first free
location after the workspace reserved by the bootstrap. The messages input by the loader are a sequence
of length byte and data packet pairs which are loaded at consecutive locations from the start point onwards.
After the zero length byte terminator has been received, the saved analyse data is transmitted to the link
booted from followed by a zero length byte terminator. The message buffer used by the analyser for passing
bootstrap code on to unbooted processors and returning peek, analyse and dump data to the host is set up
by the loader to occupy the same area as the bootstrap and loader code - the 60 bytes starting at MemStart.

176 3 Software

The code position and workspace layout while the loader is loading the analyser is the same as when the
bootstrap is running.

12.3.3 The analyser

The third component of the boot sequence loaded onto each processor is the analyser. The analyser is a
short occam program which distributes code to other processors in the network and copies data from the
network towards the host. Only one connection through the analyser is active at anyone time so that all
communications are via the boot link to the host or via one of the other links, the current link, to the network.
The analyser obeys a sequence of commands received from the host which direct it to perform the following
functions:

• Read a code packet from the boot link into the buffer and then copy it to the current link. The
terminating packet will always be followed by a set of messages from the current link to be copied
to the boot link.

• Set a new current link.

• Pass commands from the boot link to the current link. A command sequence copied to the
current link will always be followed by a set of messages from the current link to be copied to the
boot link.

• Copy an area of memory to the boot link.

• Peek the memory of the processor connected to the current link.

The information received by the analyser from the host is a stream of single byte commands and packets of
code, the structure of the commands is described in detail in the next section. The information transmitted
by the analyser to the host is a stream of single byte length counts and packets of data. The commands are
nested within bracketing command bytes so that each processor can interpret commands for itself, remove
one level of bracketing and pass on commands intended for another processor later in the analyse path. The
The occam source text of the analyser is listed in section 12.7 'Analyser occam'.

The commands received by the analyser are structured in such a way that only one function is being performed
by the network at anyone time. Consequently the system can be regarded as having four components:

1 The host computer transmitting commands and receiving data.

2 The target processor at the end of the analyse path to which commands or code are being directed.

3 The intermediate processors which copy code and commands from the host to the target processor
and copy data from the target processor back towards the host.

4 Processors which do not lie on the analyse path and are not involved in the transaction.

An analyse transaction consists of a set of communications from the host computer to the target processor
followed by a set of communications from the target processor to the host computer. The complete set of
these transactions is given in the following list.

from. host ? peek next processor

to.host ! peek.data

2 from. host ? bootstrap code

to.ho_st ! analyse data

3 from. host ? dump. memory

to.host ! dump.data

12 Analysing transputer networks 177

All intermediate processors on the analyse path copy communications from an input link to an output link.
The communications are structured so that the intermediate process can always determine from which link
the next input will be received.

The memory layout for a T414 while the Analyser is running is given in the following diagram.

#800001F8

Analyser
code

#800000DO

Analyser
workspace

#80000084

Analyser
buffer

#80000048 MemStart

Reserved
locations

#80000000 MOSTNEG INT

Analyser memory usage

12.4 The analysing message structure

12.4.1 Command structure

Analyse commands and data transmitted to and through a transputer consists of a word length independent
mixture of single bytes and packets of bytes. The single bytes are commands to be interpreted by the
analyser to control the routing of information, the packets of bytes contain the bootstrap and analyse program
for unbooted processors.

The commands are applied using an operand word as a parameter to the command. The value in the operand
word is created by OR'ing in the bottom six bits of information from the command byte into the bottom six
bits of the operand word. One of the four command values allows this to be repeated by shifting the value in
the operand word six places ready to receive another six bits. The command bytes are thus encoded from
two components:

Bits 7 .. 6

These two bits define the command which should be applied to the current value contained in the operand
word after the data part of the command byte has been OR'd into it. The operand word is always cleared
after obeying a command other than PREFIX.

o : MESSAGE. The operand word contains the size of the message which follows this command byte. The
next 'operand' bytes is the messa{le. The protocol is implemented so that all messages will not exceed 60
bytes in length and thus, not require PREFIXES.

1 : NUMBER. The operand word contains a single number.

178 3 Software

2 : FUNCTION the operand word contains a value that is to be obeyed as an independent command which
is not applied to the operand word.

3 : PREFIX. The current operand word is shifted left by six places. This allows arbitrary length values to be
built.

Bits 5 .. 0

These six bits provide the data (operand) part of the received character. This data is always OR'd into the
bottom of the operand word which is used according to the command code in the top two bits of the received
byte.

command data

7 6 5 4 3 2 o

Figure 12.3 Command byte format

The packets of bytes always follow a MESSAGE command. By making the value of MESSAGE 0 (zero), a
MESSAGE command will be be interpreted by an unbooted transputer as a length byte and, consequently,
bootstrap sequences conform to the command structure. All message packet transfers are sent and received
on transputer links as single communications.

12.4.2 Analyser action

The analyser action in response to input commands is descibed in the following paragraphs.

NUMBER

The current link is set to the value of the data part of the number command. The number will not contain
prefixes. NUMBERS can also occur following an address function, where they are interpreted as a dump
address and a length count as described below.

MESSAGE

On receipt of a message command which indicates that the message is of length greater than zero, the
analyser will input a message packet from the boot link into the buffer and then copy both the message
command and the message packet to the current link. A message command of zero is a terminator and the
analyser prepares to receive reply communications from the current link for transmission to the link booted
from.

FUNCTION

There are five functions as follows:

2 : PEEK2 indicates that the analyser must peek the processor connected to the current link. this
function also indicates that the processor to be peeked has a two bytes per word address for its
peek protocol. The analyser peeks 600 bytes, as ten blocks of 60 bytes, starting at MOSTNEG INT
from the unbooted transputer.

4 : PEEK4 is identical to PEEK2 except that it indicates that the processor to be peeked has a four
bytes per word address for its peek protocol. The analyser peeks 600 bytes, as ten blocks of 60
bytes, starting at MOSTNEG INT from the unbooted transputer.

12 Analysing transputer networks 179

5 : OPEN indicates that all command bytes received up to but not including a matching CLOSE
function should be copied without interpretation to the current link. All commands other than MES
SAGE can occur between an OPEN and the matching CLOSE command, including paired OPEN
and CLOSE commands.

6 : CLOSE brackets a nested command sequence, matching a previous OPEN function.

7 : ADDRESS is followed by two NUMBERs, the first of which is interpreted as a dump start address
and the second is the number of bytes required to be dumped. The address is an offset in bytes
from MOSTNEG INT, rather than the transputer byte address, because access to the memory of the
transputer is to an occam array parameter of the loader placed at MOSTNEG INT. ADDRESS is
always followed by two NUMBERs, both of which may have prefixes.

The examples which follow show how simple and more complex analyse requests are encoded and directed
to the recipient transputer for the configuration described in section 12.2 'TDS debugging'. The symbols used
in the examples have the following meaning.

commun~cat~ons from the host to the network

{bootstrap}
{}
o
#300

p2
p4
(
)
A

a message conta~n~ng bootstrap code
a message of length 0 used as a te~nator
a number used as to set up the current l~nk
a number used as the dump address or the
number of bytes to dump
the funct~on Peek2
the funct~on Peek4
the funct~on Open
the funct~on Close
the funct~on Address

commun~cat~ons from the network to the host
[data] a block of retr~eved ~nformat~on
[] a block of length zero used as a term~nator

sequence of prece~ng ~tem

single transputer

Before the bootstrap is sent to the single processor, the host computer must peek the 600 bytes starting at
MOSTNEG INT from the unbooted transputer. The following occam fragment shows how the host computer
peeks the initial 600 bytes from the first transputer in the network.

WHILE more.to.peek
[4]BYTE peek. address, reply.word :
SEQ

create address to ex~ne ~n peek.address
to. network ! BYTE 1
to.network ! [peek. address FROM 0 FOR target.bytes.per.word]
from.network ? [reply.word FROM 0 FOR target.bytes.per.word]

copy reply data out of reply.word
dec~de ~f more.to.peek

The sequence to analyse only processor a is given in the following lines.

{bootstrap} { }
[data] []
A #300 #20
[data] []

180 3 Software

This analyse sequence boots the first processor and then reads the initial analyse data. The analyser loaded
onto the processor is then requested to copy the 32 bytes, starting at offset 768 (#300) from the most negative
address, back to the host computer. In this case both the initial analyse sequence and the requested memory
dump only require a single data packet.

multiple transputers

Analyse instructions for transputers not directly connected to the host are bracketed between an Open and
a Close function. Each transputer removes the first and last brackets and passes the contents byte by byte
to the current link. If the analyse items for processor 0 and 2 are not included, the sequence to analyse
processor 4 and then read 256 (#100) bytes starting at address offset 4608 (#1200) is given in the following
lines.

1 (2 p4)
[data] ... []
{bootstrap} ... {}
[data] []
1 (2 (A #1200 #100))
[data] ... []

The first command, the number 1, sets link 1 as the current link on processor 0, the following items between
the open and close brackets are copied to link 1. Processor 2 sets link 2 as the current link and then peeks
600 bytes from the memory of the four bytes per word processor connected to the current link returning it to
the host as 10 packets of 60 bytes. The bootstrap for processor 4 is then passed to it and the initial analyse
data is copied back to the host. The request for the data dump is then passed by the same route to processor
4 and the requested data passed back as four packets of 60 and 1 packet of 16 bytes.

12.4.3 RS232

A transputer connected to a host computer by means other than a transputer link must be set to boot from
ROM. The ROM code must then receive bootstrap and analysing information from the communication medium
and perform the load accordingly. Inmos transputer evaluation boards are designed so that a board which is
booted from ROM will receive its load commands from an RS232 serial port. Normally only the root processor
(Le. the processor connected to the host) is set to boot from ROM.

The Inmos evaluation boards communicate with the host using a standard protocol which is described below.

startup sequence

The first three bytes received from the host are used to determine the baud rate of the transmission, the com
munication mode and the operating function required. Each correct wakeup character read is acknowledged
by transmitting an acknowledge (ACK) code to the host computer, an incorrect character is acknowledged
with a not acknowledge (NAK) code. The three wakeup sequence bytes are described in more detail below.

'?' An initial wake up code (which can be used by the receiving processor to determine the transmission
speed of the serial line).

'H' or '8' If '8' is received then all subsequent data is transmitted as full eight bit binary data. If the 'H'
character is received then all subsequent data from the host is to be read in encoded form.

'L' or 'A' This command is used to determine the operating function that the ROM is to perform. 'L' indicates
that a load sequence will follow, 'A' indicates that an analyse sequence will follow. The load
sequence is described in the accompanying technical note 'Loading transputer networks'. This
function will be received as two ASCII chars if the previous command was an 'H'.

12 Analysing transputer networks 181

data encoding

In order to avoid transmitting 8-bit binary values to a host computer all values transmitted to the host are
printable ASCII characters. The following standard definitions are used:

VAL
VAL
VAL

ACK
NAK
HEX

IS
IS
IS

'0' :
'3' :
"569ABDGHKMNPSVYZ"

The 16 values of the HEX table above are used instead of the hexadecimal digits 0, 1 ... E,F. The values are
used to encode all binary numbers that have to be transmitted to the host as well as to encode all input from
the host if the startup sequence include the 'H' code to indicate encoded transmission. Encoded binary data
is thus transmitted as two ASCII characters that can be used to create a single byte value. For example:

#00 is received as '5' followed by'S'
#42 is received as '9' followed by '8'
#FC is received as'S' followed by 'Z'

The ASCII characters have been chosen so that they are all at least two bits different from each other, and
each one has an even number of bits set (even parity with a zero parity bit).

Every message packet transmitted from the host is followed by another byte value; i.e. messages from the
host have one more byte than the number given in the operand word. This extra byte is a checksum value:
the checksum is correct if the exclusive or of all the bytes in the message and the checksum itself yields a
zero value. If the checksum is correct then the board responds with an ACK to the host; otherwise the board
responds with NAK to the host. Checksums and handshaking are not used when communication is via links.

12.5 Bootstrap code

The first part of this section lists the local workspace used by the bootstrap and the loader, which should be
read with reference to this workspace layout.

VAL next.address IS 0 start of next block to load
VAL message. length IS 12 input message length
VAL links IS 12 links start address
VAL from.boot IS 13 link booted from
VAL to.boot IS 14 reply link
VAL MemStart IS 15 start of boot part 2
VAL occam. start IS 16 first available word for occam
VAL occam. entry IS occam. start - (links - 1) :

-- first available word for occam after workspace adjust prior to
-- call of occam procedure.

-- analyse data offsets
VAL old.Iptr IS 1
VAL old.wptr IS 2
VAL low. front IS 3

VAL low.back

VAL high. front
VAL high.back
VAL old. error
VAL old.ha1t.error
VAL fpu.error
VAL low.time
VAL high. time
--VAL boot link

IS 4

IS 5
IS 6
IS 7
IS 8
IS 9
IS 10 :
IS 11 :

IS 13

previous Iptr
previous Wptr
low priority process queue

front pointer
low priority process queue

back pointer
high priority queue front pointer
high priority queue back pointer
previous error state
previous halt on error state
previous floating pt error state
contents of low priority timer
contents of high priority timer

-- link booted from

182 3 Software

The initial workspace requirement is found by reading the workspace requirement from the analyser occam
and subtracting the size of the workspace used by both the loader and the bootstrap (temp. workspace).

initial.work.space := (occam.workspace - links) - 1
IF

initial.work.space < 3
initial.work.space := 3

TRUE
SKIP

-- space for process

The bootstrap is listed in a transputer assembler format. It was, however, actually developed by using an
occam program to encode defined values into a table ready for insertion into the TDS debugging tool.

-- set up workspace and save registers
start:

ajw
stl
stl
stl

initial.adjustment
old. Iptr
old.Wptr
from. boot

save
work
ldc
ldpi

addrO:

analyse information
out MemStart

start - addrO

stl MemStart
save queue registers
ldlp low. front
savel
ldlp
saveh

high. front

reset queue registers
mint
stlf
mint
sthf

save error conditions
testerr
eqc 0
stl ol.d.error
testhal.terr
stl. old.halt.error

save old instruction ptr
save old work space ptr
save l.ink booted from

distance to start byte
address of first instruction

save for later use

pOinter to anal.yse data sl.ots to
save low priority process queue pointers
pointer to analyse data slots to
save high priority process queue pointers

Not Process to
reset low priority queue
Not Process to
reset high priority queue

test if error flag is clear
invert flag. i.e. False = False
save in analyse data slot
read halt on error
save in analyse data slot

high and low priority time values save
ldc
ldpi

addrl:
stl
ldl.p

addr2 - addrl offset to high read timer instruction
address of high read ti~er instruction

runp

high. time - 1
high. time

j addr3
addr2:

ldtimer
stl 0
stopp

addr3:
ldtimer
stl low.time

store Iptr in w.s slot at high.time - 1
point future high Wptr at high.time
start high priority read time process
skip high priority code
start of high priority code
read high priority time
store value in Wptr[O] (= high. time)
exit back to low priority
iemainder of low priority process
fead low priority time
save value in low.time

12 Analysing transputer networks

10ad and enter 10ader
1dc 0
st1 message.1ength

1d1p
1d1
1dc
in

message.1ength
from. boot
1

zero message 1ength BYTE variable

pointer to message 1ength variab1e
address of boot 1ink
bytes to 10ad
input 1ength byte

insert nu11 instructions so bootstrap is exact1y 60 bytes

1d1
ld1
1d1
in

1d1
gca11

MemStart
from. boot
message.1ength

MemStart

12.6 Loader code

start of area to load 10ader
address of link
10ader size
input 10ader code packet

start of 10aded code
enter loader

183

The loader is produced by the same mechanism which produces the bootstrap. Both programs become
single message packets preceded by a length byte (which is also an analyser MESSAGE command) and are
transmitted from the TDS debugging tool interface process through the network as MESSAGE communica
tions.

save fpu error if TaOO
fptesterr
eqc 0
st1 fpu.error

test if fp error f1ag is c1ear
invert
save as part of ana1yse data

10ad ana1yse occam
set up ana1yse 10ad

1d1p occam. start
position

st1 next. address
10ad ana1yse code packets

start10ad:
1d1p
1d1
1dc
in

1d1
cj

1d1
1d1
1d1
in
1d1
1d1
bsub
st1
j

end10ad:

message.1ength
from.boot
1

message.1ength
endload

next. address
from. boot
message.1ength

message.1ength
next. address

next. address
start10ad

pointer to end of 10ca1 workspace
save as start of area to 10ad 10ader

pointer to message 1ength
address of 1ink
bytes to 10ad
input message 1ength byte

message 1ength
stop if 0 bytes

variab1e

pointer to area to 10ad next packet
address of link
message length
input code packet
message 1ength
address 10aded to
adjust 10ad area by packet size
save area to 10ad
go back for next b10ck

184 3 Software

work out rep1y 1ink
1dc -4
1d1 from.boot
wsub
st1 to.boot

output 1ink - input 1ink
from boot 1ink
address of to boot 1ink
save for 1ater use

output accumu1ated ana1yse data
1d1 to.boot
1dc packet.1ength
outbyte

1d1p
1d1
1dc
out

o1d.Iptr
to.boot
packet.1ength

1d1 to.boot
1dc 0
outbyte

address of 1ink
bytes to send
output message 1ength

start of data buffer
address of 1ink
bytes to send
output saved info

address of 1ink
terminating zero
output terminator

set up remaining occam workspace and ca11 ana1yse
mint bottom of memory
st1 1inks address of output 1inks

ajw 1inks - 1

1d1p occam. entry
gca11

12.7 Analyser occam

work space for occam (1inks is new W1)

pointer to 10ad address in new workspace
enter ana1yser

This section lists the occam source of the analyser. It is included as part of the table in the TDS debugging
tool by the program which 'assembles' the bootstrap and loader, as a sequence of MESSAGE command
message packet pairs.

Command and function constant definitions used by the program are given below.

VAL message.1ength IS 60
VAL n.b10cks IS 10
VAL data.fie1d IS #3F
VAL data.fie1d.bits IS 6
VAL tag.fie1d IS #CO
VAL tag.field.bits IS 2
VAL message IS 0
VAL number IS 1
VAL function IS 2
VAL prefix IS 3
VAL tag.prefix IS prefix « data.field.bits

VAL boot2 IS 2
VAL boot4 IS 4
VAL open IS 5
VAL function. open IS BYTE ((function « data.field.bits) \/ open) :
VAL close IS 6 :
VAL function. close IS BYTE ((function « data.field.bits) \/ close) :
VAL address IS 7 :

12 Analysing transputer networks

The overall layout of the procedure is as follows.

PROC

INT
INT
SEQ

T4 . anal.yse (
[8]CHAN OF ANY
CHAN OF ANY
[packet.l.ength]BYTE

constants
l..ink :
copy.repl.y

l..ink := 0
WHILE TRUE

l..inks,
from. boot, to.boot,
buffer)

.input.l..ink IS l..inks[l..ink + 4]
SEQ

copy.repl.y := 0
perform act.iv.ity
copy reply .if necessary

The fold marked perform act.iv.ity contains the following occam.

output.l..ink IS l..inks[l..ink]:
BYTE command:
INT operand:
INT work.var: -- general. var.iable, used wherever needed
SEQ

from. boot ? command
work.var := (INT command) »data.f.iel.d.b.its
operand := (INT command) /\ data.f.ield
IF

work.var = message
SEQ

output.l..ink ! command
IF

operand <> 0
SEQ

from. boot
output.l.ink

TRUE
copy.repl.y := 1

work.var = funct.ion
IF

? [buffer FROM 0 FOR operand]
! [buffer FROM 0 FOR operand]

operand = open
operand = address
operand .ind.icates must peek at next processor

TRUE
SKIP

TRUE -- work.var = number
l..ink := operand

185

186 3 Software

The choices depending on the value of operand when the input command was function are given in the
following fragments. The first choice is when the operand value indicates that the following command should
be copied to the current link.

operand = open
INT depth
SEQ

SEQ
depth ;= 1
WHILE depth <> 0

SEQ
from.boot ? command
IF

IF

command = function.open
depth ;= depth + 1

command = function.close
depth ;= depth - 1

TRUE
SKIP

depth <> 0
output.link

TRUE
SKIP

command

copy.reply ;= 1

The second choice is a request for a quantity of data from a specified address.

operand = address
INT dump. address
SEQ

SEQ i = 0 FOR 2
BOOL more;
SEQ

dump.address := work.var
work.var ;= 0
more ;= TRUE
WHILE more

WHILE
INT
SEQ

IF

SEQ
work.var ;= work.var « data.field.bits
from. boot ? command
work.var ;= work.var +

«INT command) /\ data.field)
more ;= (INT command) >= tag.prefix

work.var <> 0
this.packet ;

work.var > message.length
this.packet ;= message.length

TRUE
this.packet ;= work.var

to.boot ! BYTE this.packet
[4]BYTE memory ;
PLACE memory AT 0
to.boot ! [memory FROM dump.address FOR this.packet]
dump.address ;= dump.address PLUS this.packet
work.var ;= work.var - this.packet

to.boot ! BYTE 0

12 Analysing transputer networks

The third choice is a command to peek the next processor.

(operand = boot2) OR (operand = boot4)
[4]BYTE peek. address :
PLACE peek. address IN WORKSPACE :
SEQ

INT32 i.address RETYPES peek. address:
i.address := o (INT32)
peek.address[operand - 1] .- #80 (BYTE)
SEQ i = 0 FOR n.blocks

SEQ
work.var := 0
WHILE work.var < message. length

SEQ
output.link ! BYTE 1
output.link ! [peek. address FROM 0 FOR operand]
input.link ? [buffer FROM work.var FOR operand]
work.var := work.var + operand
[]INT i.peek.address RETYPES peek.address:
i.peek.address[O] := i.peek.address[O] + operand

to.boot ! BYTE work.var --message. length
to.boot ! [buffer FROM 0 FOR work.var]

to.boot ! BYTE 0

The fold marked copy reply if necessary contains the following occam.

IF
copy. reply <> 0

BYTE length:
INT i.length
SEQ

i.length := 1
WHILE i.length <> 0

TRUE
SKIP

SEQ
input.link ? length
to.boot ! length
i.length := INT length
IF

i.length <> 0
SEQ

input.link ? [buffer FROM 0 FOR i.length]
to.boot ! [buffer FROM 0 FOR i.length]

TRUE
SKIP

187

188

13 Loading transputer networks

13.1 Introduction

The Transputer Development System is a software package which is used for developing occam applications
for execution on transputers. The TDS contains facilities for loading and running code on the host computer
(which may be a transputer) or on a network of transputers connected to the host. This technical note
describes the loading mechanism employed by the TDS to load code onto a network rather than onto the
host.

occam contains constructs which are used to specify the allocation of code to different processors in the
network. The TDS compiler implements a subset of these allocation facilities which allows users to allocate
occam compilation units to different processors. This specification is called the configuration. Two other
utilities are used in the process of sending code to a network of transputers, these are the !EXTRACT! utility
and the !LOAD NETWORK! utility, both of which are described below.

The following example configuration specifies a network of two processors which are connected by channel
datal.i.nk placed on both processors at transputer link zero. The content of the compilation unit root is
to be loaded onto the processor attached to the host computer and the content of the compilation unit node
is to be loaded onto the other processor in the network. The textually first processor in a network is assumed
to be connected to the host computer by a transputer link or serial line for loading and is referred to as the
root processor.

{{{ PROGRAM usi.ng two processors
{{ {F

SC root (i.n)
SC node (out)

CHAN OF BYTE datal.i.nk
PLACED PAR

PROCESSOR 1 T4
PLACE datal.i.nk AT 4
root (datali.nk)

PROCESSOR 2 T4

} } }
} } }

PLACE datali.nk AT 0
node (datal.i.nk)

Li.nk 0 i.n

-- Li.nk 0 out

The compiler checks that the configuration described by the user is valid and that every processor is load able
from the root processor. The compiler also checks that the code to be loaded to each processor is available
and is compiled for the correct processor type. The compiler produces a fold containing a description of the
configuration specified by the user. This description is used by the extraction and loading utilities to control
the distribution of code to the network. The extraction utility brings together all the different blocks of code
to be sent to the network. At the same time bootstraps and routing and loading information is included with
the code to initialise the processors and direct the code to the intended locations in the memory of the target
processors. The loading utility sends the extracted code to the network, controlling any interaction with the
root processor and reporting any failure to the user.

The TDS is designed to enable users to develop their network software easily and quickly. This environment
calls for a network loading mechanism which is simple, reliable and reasonably efficient. It is expected that
applications which require special performance from the loading software, such as loading every processor
in a network with identical code but not, perhaps, knowing the topology of the network, would have a specific
loading mechanism designed.

13.1.1 Development

The loading strategy used by the TDS was specifically developed to satisfy the requirements of the TDS, it
is not the only way of distributing code to a network of transputers and may not be the best mechanism for
many environments. The decisions behind the scheme can be more easily understood if the requirements
are stated.

13 Loading transputer networks 189

These are:

1 Any code to be sent to the network should only be transmitted from the host to the network once,
even if it is to be loaded at different addresses on different processors.

2 Blocks of code may be loaded in any order to any location on any processor.

3 The loading mechanism should not permanently occupy space in the target processor's memory.

4 The loading strategy should be reasonably efficient for the number of transputers likely to be used
with the TDS - say 500.

5 The loader should be small enough to fit in internal memory so that a processor with large amounts
of memory can be loaded via a processor with no external memory.

6 Each type of transputer must be supported.

To load code into every processor, it is necessary for a loader to be resident on each processor. This loader
must be able to load code into the local memory and also pass code on for other processors. Requirement
1 and requirement 3 above are antagonistic for the design of the loader. Requirement 1 demands a loader
which is capable of loading code to other processors when it has finished loading code into the local memory,
while requirement 3 demands that space occupied by the loader code can be re-used for code being loaded
into the local memory.

The sixth requirement, that all types of transputers be supported, had quite a different effect upon the loading
scheme. The TDS had to support transputer types which did not boot into the same state and whose external
links were at different addresses. This demanded that the bootstrap and loader for each processor in the
network be directed to that processor alone.

13.1.2 Characteristics

The requirements placed upon the design of the loading scheme resulted in the characteristiCS described
below.

Each processor is pre-loaded with a bootstrap and loaders which perform initialisation and loading tasks. The
first program, the bootstrap, initialises the registers, the link and event process words and the queue pointers
of the transputer and then loads the second program, the bootloader. The bootloader is a simple loader
capable of loading code to contiguous blocks of memory, it is used to load the third program, the loader,
and, later in the load sequence, additional blocks of code not loaded by the loader. The loader performs the
tasks of loading code into local memory as well as distributing code and information to other processors in
the network. The bootstrap and loaders are grouped together as a set of message packets which are sent
to each processor by the host before any other loading information.

The development system on the host computer, the TDS, maintains all knowledge of the structure of the
network. This allows the loader on each processor in the network to be simple. At each stage it is told exactly
what to do by the communications received from the host.

The bootstrap and loaders for each processor in the network are transmitted from the host to the processor
being booted, they do not propagate from one processor to the next. To all processors, apart from the
processor being booted, the bootstrap and loader code is indistinguishable from any other code.

Loading code to the network proceeds in distinct phases. Firstly, the bootstrap and loaders for each processor
are transmitted from the host in a manner which ensures that a processor which lies on the route to the
recipient processor has itself already received its own bootstrap and loader. Secondly, the code to be loaded
is transmitted from the host and propagated to all recipient processors. Thirdly, code to call the loaded code
is transmitted from the host in a sequence which ensures that a processor which has received its calling
sequence will not receive any more loading information from the host and may therefore run this call code.

190 3 Software

The bootstrap and loaders are loaded onto a processor in the lowest available adresses (nearest to MOSTNEG
INT). The code to be run on a processor is loaded so that the most negative addresses will be workspace.
Normally, therefore, the loader resides in memory which will become the workspace of the application being
loaded. If, however, there is a requirement to load code into the space occupied by the loader, then the
loader can be overwritten by blocks of code loaded by the bootloader after the loader has terminated.

The loading messages are collections of single bytes and packets of bytes. The single bytes are commands
which control the routing and loading of information. The packets of bytes contain transputer code to be
loaded into the memory of a transputer. The packets of bytes are 60 bytes or less. The value 60 was chosen
for a variety of reasons. Firstly, it is necessary to provide a buffer in the loader for passing code on to other
processors and the larger this is the more space the loader uses. Secondly, a message protocol could be
devised which simplified the loader if the message length was never greater than 63. Thirdly, the buffer had
to be large enough to contain the bootstrap, which is 53 bytes in length, as a single packet.

13.2 The TDS Extractor

The extraction and loading utilities, provided as part of the TDS, control the loading mechanism. The extract
utility determines the order in which processors are loaded and the location of code loaded on every processor
and selects the specific bootstrap and loader for each processor in the network. The loading utility sends the
code to the network, controlling any interaction with the root processor and reporting any load failures. The
functions of the extraction and loading utilities can be performed as one action within the TDS; the descriptions
given in this section will be phrased as if this the mode of operation being described and the term 'extractor'
will be used for the combined function. This section gives a brief overview of the extractor and the order in
which code is transmitted to the network with particular reference to an example. The bootstrap and loaders
are described in more detail in later sections.

From link connection information and processor load data provided by the compiler, the extractor builds a
graph representing the network to be loaded. From this data structure the order in which the processors in
the network receive the bootstrap and loader code is determined.

To determine the order, the graph of the network is first pruned to a strict tree structure with only the shortest
paths from the host to all the processors remaining. The order is then determined from the tree by the
following algorithm.

Boot the root processor (the processor connected to the host). Then for links 0,1,2,3 in turn of the root
processor, boot the network attached to the link. If the link is connected to a processor, boot the processor
connected to the link, and boot the networks connected to links 0,1,2,3 of the newly booted processor. Note
that the links are not necessarily used in the direction defined within the occam configuration.

This can be illustrated with reference to the following example configuration.

SC process.i
SC process.2
SC process.3
definitions and declarations

PLACED PAR
PROCESSOR 0

PLACE Li
PLACE LO
PLACE L6
process. 1

PROCESSOR 1
PLACE L2
PLACE L6
PLACE L7
process. 2

T4
AT
AT
AT

(Li,
T4

AT
AT
AT

(L2,

link3.in
linkl.out
link2.in

LO, L6)

linkl.in
linkO.out
link2.in

L6, L7)

13 Loading transputer networks

PROCESSOR 2 T4
PLACE LO AT l.iftkO.in
PLACE L2 AT l.ink3.out
PLACE L4 AT l.ink2.in
process. 3 (LO, L2, L4)

PROCESSOR 3 T4
PLACE L3 AT l.ink3.in
PLACE Ll AT l.inkO.out
PLACE LS AT l.ink2.out
process. 1 (L3, Ll, LS)

PROCESSOR 4 T4
PLACE LS AT l.ink3.in
PLACE L7 AT l.inkO.out
PLACE L4 AT l.inkl.out
process. 3 (LS, L4, L7)

The above occam configuration can be represented by the following diagram:

r------------, , , , ,
: Host : , , , , , ,
L _____ -,- _____ J

, , , ,
'0

L1 3 0 1

process. 1
L1 2

L6
0 0

L3 3 3 1 3 1 1

process. 1 process.2
2 2

L7

L5 0

L5 3 4 1

process.3
2

Figure 13.1 Example network

This example configuration generates the following boot path:

processor 0 from host
processor 2 from processor 0 l.ink 1
processor 4 from processor 2 l.ink 2
processor 1 from processor 0 l.ink 2
processor 3 from processor 0 l.ink 3

LO

L2

L4

191

LO

0

3 2

process.3
2

L4

192 3 Software

After all of the processors in a network have been booted (loaded with the bootstrap and loaders), the
compiled code is transmitted to the network. The code of the procedures to be transmitted to the network is
sent in the order in which the procedures are declared in the PROGRAM fold. The loading order is the same
as the boot order, each processor taking a copy or not of a code packet, then passing it to zero or more
output links.

The SC code loaded to the network shown in figure 13.1 will be sent in the following order:

process.l
o load 3 load

process.2
o pass 1 load

process.3
o pass 2 load 4 load

The compiler generates a small amount of code to call the procedure which has been loaded onto each
processor, this is referred to as the main program. The main program contains code which initialises the
parameters to the application code, the call of that code and, following the code, an instruction which will
stop the processor if the application program terminates and returns to the main program. The main program
code is loaded so that it is contiguous with the previously loaded application code and is at more negative
addresses. The layout of the loaded code and workspace on a transputer is shown in the following diagram.

Application
code

main
program

Load position

Application
workspace

MemStart

Reserved
locations

MOSTNEG INT

Figure 13.2 Application code and workspace

The main program code is sent to the network by traversing the pruned tree representing the network in the
following 'depth first' manner: For links 0,1,2,3 in turn of the root processor, load the network attached to the
link. If the link is connected to a 'new' processor, load the networks connected to links 0,1,2,3 of the new
processor, followed by the new processor. Finally load the root processor. A new processor is one which
has not previously been encountered during this phase of the loading.

13 Loading transputer networks

The main body code loaded to the network described above will be sent in the following order:

processor 4
processor 2
processor 1
processor 3
processor 0

193

The loading position of the code in any processor is determined by the workspace requirement of the code to
be loaded to that processor. The load address is calculated by adding the size of the workspace and a base
workspace address. If this load address is less than a minimum value, then the minimum value is used as
the load address. The minimum value is the lowest address to which code can be loaded onto a processor
without overwriting the workspace of the code doing the loading (the bootloader).

The workspace requirement on a processor may be small and consequently the calculated load address
may overlap the space occupied by the loader program, which resides in low memory addresses (nearest to
MOSTNEG INT) as described in the next sections. Rather than adjust the loading address to avoid the loader,
the code which overlaps the loader is held back in an internal buffer within the extractor. When the distributing
phase of the network load has finished, the saved code is sent to the network with the main body code for
each processor. The main bodies are loaded remote processor first, so that a processor receiving a main
body will not receive any further load path information. The loader can, therefore, return to the bootloader,
which can load contiguous code packets which do not require any load directives. This allows the saved code
to be loaded to the space previously occupied by the loader.

The bootstrap, bootloader and loader for each processor type are contained within the extractor occam as a
table of bytes organised as a sequence of length bytes followed by the specified number of bytes. The table
is generated by a program provided with the TDS. This program contains within it a mechanism for inserting
transputer instructions directly into the table, and for reading the code of a compiled occam program and
adding the contents to the table. The bootstrap and the bootloader are coded directly into the table, the
loader is written in occam. The extractor transmits the contents of the table to the network as length byte,
code packet pairs.

13.3 Bootstrap and Loaders

13.3.1 The bootstrap

After power-on or reset, a transputer waits until it receives a communication on anyone of its links. If the
value of the first byte of this communication is 2 or greater, then that number of bytes is input from the link
into the memory starting at MemStart and the processor starts executing at MemStart. The TDS extractor
sends the bootstrap to each processor as a length byte followed by the bootstrap code.

The bootstrap, the first packet of the bootstrap and loader sequence, is a short program which initialises the
processor and memory. Section 13.5 'Bootstrap code' gives the full listing of the bootstrap which is written
in transputer assembler instructions. The sequence of actions performed by the bootstrap is as follows:

1 Allocate workspace for bootstrap and loader variables.

2 Reset high and low priority process queues.

3 Clear or set the halt on error flag.

4 Clear error.

5 Initialise all link and event process words to NotProcess.

6 Initialise some of the loader parameters.

7 Load the bootloader.

The bootstrap is loaded by the transputer at MemStart. When the initialisation is complete, the bootstrap loads

194 3 Software

#800000D4

Bootstrap
and loader
workspace

#80000080

Bootstrap
code

#80000048 MemStart

Reserved
locations

#80000000 MOSTNEGINT

Figure 13.3 T4 Bootstrap memory usage

the bootloader at MemStart and then jumps to MemStartto enter the bootloader. Because the bootstrap loads
the bootloader at the same location as itself, the bootstrap is at least two bytes longer than the bootloader
(so that the instruction by which control is passed to the bootloader is not overwritten by the bootloader code
being loaded). The bootstrap for the T4 transputer is 53 bytes in length and the corresponding bootloader is
51 bytes.

The memory layout for a T4 transputer while the bootstrap is running is given in the following diagram.

Addresses for the T2 and T8 which correspond with those given in the above diagram for the T4 are given
in the following table.

Transputer
MOSTNEG INT
MemStart
Bootstrap top
Workspace top

T2
#8000
#8024
#805C
#808C

13.3.2 The boot loader

T4
#80000000
#80000048
#80000080
#800000D4

T8
#80000000
#80000070
#800000A8
#800000FC

The bootloader, which is the second packet of the bootstrap and loader sequence, is a short program capable
of loading contiguous blocks of code into memory. The code of the bootloader, which is written in transputer
assembler instructions, is listed in section 13.6 'Bootloader code' It loads two different sets of code packets.
Firstly, it is used to load the loader and secondly, after the loader has finished, the bootloader loads the main
program code packets prior to starting the loaded code. The bootloader performs the following functions:

1 Initialise remaining parameters for loader.

2 Load code from boot link until terminator.

3 Initialise workspace pointer and call code just loaded.

4 Start clock.

5 Prepare to load more code.

6 Go to step 2. The main program code loaded does not return, so this loop is only obeyed twice.

13 Loading transputer networks 195

The bootioader is loaded by the bootstrap at MemStart. The bootloader creates the loader buffer starting at
the address of the variable with the greatest offset in the workspace reserved by the bootstrap. The loader
is then loaded at the first free location after the buffer. The bootloader loads the second set of code packets
at an address returned by the Io'ader. The messages input by the bootloader are a sequence of length byte
and data packet pairs.

The code position and workspace layout while the bootloader is loading the loader is given in part (a) of
figure 13.4 and the memory layout while the bootloader is loading the final code packets is given in part (b)
of figure 13.4.

#800000D4
Space available

#80000098
for loading

Bootloader
and loader
workspace Bootloader

workspace
#80000080 #80000080

Bootloader Bootloader
code code

#80000048 #80000048 MemStart

Reserved Reserved
locations locations

#80000000 #80000000 MOSTNEG INT

(a) (b)

Figure 13.4 Bootioader memory usage

13.3.3 The loader

The third component of the bootstrap and loader sequence loaded onto each processor is the loader. The
loader is a short occam program which loads and distributes code. It obeys a sequence of commands
received from the host which direct it to perform the following functions:

Load a code packet to the current load address and increment the current load address.

Output a code packet to a link.

Set a new current load address

Pass commands to a link.

The command structure is described in detail in the next section. The information received by the loader
from the host is a stream of single byte commands and packets of code. The commands are nested within
bracketing command bytes so that each processor can interpret commands for itself, remove one level of
bracketing and pass on commands intended for other processors later in the load path. The commands
received change the value of variables within the loader. When packets of code are received by the loader,
the value of the variables previously affected by the commands determines the destination of the code. The
occam source text of the loader is listed in section 13.7 'Loader occam'.

196 3 Software

The memory layout while the loader is running is as follows.

Space available
for loading

#800001E4

Loader
code

#80000110

Loader
buffer

#800000D4

Bootloader
and loader
workspace

#80000080

Bootloader
code

#80000048 MemStart

Reserved
locations

#80000000 MOSTNEG INT

Figure 13.5 Loader memory usage

13.4 The loading message structure

13.4.1 Command structure

Load commands and data transmitted to and through a transputer consist of a word length independent
mixture of single bytes and packets of bytes. The single bytes are commands to be interpreted by the loader
to control the routing and loading of information, the packets of bytes contain transputer code to be loaded
into the memory of a transputer. The bootstrap packets conform to the protocol and thus a processor, which
is passing a bootstrap to another processor, cannot detect that bootstrap packets are being transferred.

The commands are applied using an operand word as a parameter to the command. The value in the operand
word is created by OR'ing in the bottom six bits of information from the command byte into the bottom six
bits of the operand word. One of the four command values allows this to be repeated by shifting the value in
the operand word six places ready to receive another six bits. The command bytes are thus encoded from
two components:

Bits 7 .. 6

These two bits define the command which should be applied to the current value contained in the operand
word after the data part of the command byte has been OR'd into it. The operand word is always cleared
after obeying a command other than PREFIX.

13 Loading transputer networks 197

o : MESSAGE. The operand word contains the size of the message which follows this command byte. The
next 'operand' bytes is the message. The protocol is implemented so that all messages will not exceed 60
bytes in length and thus, not require PREFIXES.

1 : NUMBER. The operand word contains a single number.

2 : FUNCTION the operand word contains a value that is to be obeyed as an independent command which
is not applied to the operand word.

3 : PREFIX. The current operand word is shifted left by six places. This allows arbitrary length values to be
built.

Bits 5 .. 0

These six bits provide the data (operand) part of the received character. This data is always OR'd into the
bottom of the operand word which is used according to the command code in the top two bits of the received
byte.

command data

7 6 5 4 3 2 o

Figure 13.6 Command byte format

The packets of bytes always follow a MESSAGE command. By making the value of MESSAGE 0 (zero), a
MESSAGE command will be be interpreted by an unbooted transputer as a length byte and, consequently,
bootstrap sequences conform to the command structure. All message packet transfers are sent and received
on transputer links as single communications.

13.4.2 loader action

The loader is an occam program which responds to input commands by altering the value of one or more
local variables. These local variables maintain a current load address, a current output link, the set of active
output links and whether or not any code received is to be loaded at the current load address. The variable
which controls whether code is loaded into memory is initialised to FALSE (FALSE means don't load, TRUE
means load).

The loader actions in response to input commands are described in more detail in the following sections.

MESSAGE

After receiving a message command the message packet is input from the boot link. If the transputer is
currently loading, the message is input to the current load address and the current load address is incremented
by the size of the message. If the transputer is not currently loading, the message is input into a buffer.

The message command and message packet are copied in turn to all the links which are in the set of active
output links.

NUMBER

The current output link is set to the value of the data part of the number command. The value is also
remembered as one of the set of active output links to which code should be copied. The number will not
contain prefixes. NUMBERS can also occur following an address function, where they are interpreted as a
new loading address as descibed below.

198 3 Software

FUNCTION

There are six functions as follows:

o : LOAD sets the state of the variable which controls whether code is loaded into memory to
TRUE. Any future code packets received will be input at the current load address as described for
MESSAGE above. The set of active links is reset to none.

1 : PASS sets the state of the variable which controls whether code is loaded into memory to FALSE.
Any future code packets received will be input into a buffer as described for MESSAGE above. The
set of active links is reset to none.

2 : OPEN indicates that all command bytes received up to but not including a matching CLOSE
function should be copied without interpretation to the current link. All commands other than MES
SAGE can occur between an OPEN and the matching CLOSE command, including paired OPEN
and CLOSE commands.

3 : CLOSE brackets a nested command sequence, matching a previous OPEN function.

4 : ADDRESS indicates that the NUMBER which follows should be used as the current load address
for future code packets. The address used for loading is an offset in bytes from MOSTNEG INT,
rather than the transputer byte address, because access to the memory of the transputer is to an
occam array parameter of the loader placed at MOSTNEG INT. ADDRESS is always followed by
a NUMBER, the NUMBER may have prefixes. The value of the last address received by the loader
is returned to the bootloader and is used as the entry point/initial workspace address of the loaded
code.

5 : TERMINATE indicates that the distributed phase of the load is finished and the loader returns to
the bootloader. TERMINATE will always be preceded by the final load address.

The examples which follow show how simple and more complex loading information is encoded and directed
to the recipient transputers for the configuration described in section 13.2 'The TDS Extractor'. The symbols
used in the examples have the following meaning.

{bootstrap}
{code}
{}
o
#300
L
P
(
)
A
T

a message containing bootstrap code
a message containing some code
a message of length 0
a number used as to set up the current link
a number used as the current load address
the function Load
the function Pass
the function Open
the function Close
the function Address
the function Terminate
sequence of preceding item

single transputer

The sequence to load only processor 0 is given in the following lines.

{bootstrap}
L A #300
L A #500
L A #230

{}
{code} {code}
{code} {code}
T {code} {}

This load sequence begins with the bootstrap and loaders, these are followed by the first set of code packets
which are loaded starting at offset #300 from the most negative address, the next set of code packets are
loaded starting at offset #500 from the most negative address and the final set of code packets is loaded
starting at offset #230 from the most negative address. The first group of messages and the last group of
messages are loaded by the bootloader which terminates on receipt of a message length of O. The other two

13 Loading transputer networks 199

groups of messages are loaded by the loader which examines each command to determine the next action
and thus does not require a message sequence terminator.

After the receipt of the terminate operation, the loader is exited and control is returned to the bootloader
which has the ability to load sequences of code packets at consecutive addresses. The final parts of the
loaded program can overwrite the loader program if necessary. The entry point of the loaded code is always
the last address received by the loader. This is also the initial value of the work space pointer.

multiple load

Load instructions for transputers not directly connected to the host are bracketed between an Open and a
Close function. Each transputer removes the first and last brackets and passes the contents byte by byte to
the current output link. If the load items for processor 0 are not included, the sequence to load processor 2
is given in the following lines.

P 1 {bootstrap} ... {}
P 1 (L A #300) {code} {code}
P 1 (L A #230 T) {code} {}

The first line loads processor 2's bootstrap and bootloader. The Pass command resets the set of active
output links and indicates that any future code received should be copied to the set of active output links via
the buffer. The next command, the number 1, adds link 1 to the set of active output links and sets link 1 as
the current output link. This is followed by the command Open (the open bracket) which causes all items up
to but not including the matching Close to be copied to the current output link.

Copying the same piece of code to more than one processor is achieved by having a load path for each
recipient of the code. This is demonstrated with the following sequence to load processor 4 and processor
3 with the same piece of code, at address #400 on processor 4 and at #500 on processor 3 (note that the
example configuration does not allocate the same code to processors 1 and 3).

P 1 (P 2 (L A #400» 2 (L A #500» {code} ...

Taking a copy of a code packet and passing it to another processor is achieved by using the load rather than
the pass function as is shown by the following sequence to load processor 2 and processor 4 with the same
piece of code, at address #900 on both processors.

P 1 (L A #900 2 (L A #900» {code} ...

13.4.3 RS232

A transputer connected to a host computer by means other than a transputer link must be set to boot from
ROM. The ROM code must then receive bootstrap and loading information from the communication medium
and perform the load accordingly. Inmos transputer evaluation boards are designed so that a board which is
booted from ROM will receive its load commands from an RS232 serial port. Normally only the root processor
(i.e. the processor connected to the host) is set to boot from ROM.

The Inmos evaluation boards communicate with the host using a standard protocol which is described below.

startup sequence

The first three bytes received from the host are used to determine the baud rate of the transmission, the com
munication mode and the operating function required. Each correct wakeup character read is acknowledged
by transmitting an acknowledge (ACK) code to the host computer, an incorrect character is acknowledged
with a not acknowledge (NAK) code. The three wakeup sequence bytes are described in more detail below.

'?' An initial wake up code (which can be used by the receiving processor to determine the transmission
speed of the serial line).

200 3 Software

'H' or '8' If '8' is received then all subsequent data is transmitted as full eight bit binary data. If the 'H'
character is received then all subsequent data from the host is to be read in encoded form.

'L' or 'A' This command is used to determine the operating function that the ROM is to perform. 'L' indicates
that a load sequence will follow, 'A' indicates that an analyse sequence will follow. The analyse
sequence is used when the host is interrogating the network to retrieve details of the previous
program loaded. Analysing is described in more detail in an accompanying technical note. This
function will be received as two ASCII chars if the previous command was an 'H'.

data encoding

In order to avoid transmitting 8-bit binary values to a host computer all values transmitted to the host are
printable ASCII characters. The following standard definitions are used:

VAL
VAL
VAL

AClt
NAB:
REX

IS
IS
IS

, 0' :
, 3' :
"569ABDGHKMNPSVYZ"

The 16 values of the HEX table above are used instead of the hexadecimal digits 0, 1 ... E,F. The values are
used to encode all binary numbers that have to be transmitted to the host as well as to encode all input from
the host if the startup sequence includes the 'H' code to indicate encoded transmission. Encoded binary data
is thus transmitted as two ASCII characters that can be used to create a single byte value. For example:

#00 is received as '5' followed by'S'
#42 is received as '9' followed by '8'
#FC is received as'S' followed by 'Z'

The ASCII characters have been chosen so that they are all at least two bits different from each other, and
each one has an even number of bits set (even parity with a zero parity bit).

Every message packet is followed by another byte value; i.e. messages from the host have one more byte
than the number given in the operand word. This extra byte is a checksum value: the checksum is correct if
the exclusive or of all the bytes in the message and the checksum itself yields a zero value. If the checksum
is correct then the board responds with an ACK to the host; otherwise the board responds with NAK to the
host. Checksums and handshaking are not used when communication is via transputer links.

13 Loading transputer networks 201

13.5 Bootstrap code

This section lists the local workspace used by the bootstrap and the bootloader, which should be read with
reference to this workspace layout. The workspace used by the bootstrap is organised so that the 6 words
used by the bootstrap and bootloader for directing the loading are at the lowest offsets. These six words are
overwritten by the loader and then repositioned to the lowest available addresses for the second call of the
bootloader

VAL base IS 1 ~oop index
VAL count IS 2 ~oop count

VAL ~oad.start IS 0 start of ~oader
VAL ~oad.~ength IS 1 ~oader b~ock ~ength
VAL next.address IS 2 start of next b~ock to ~oad
VAL boot~ink IS 3 ~ink booted from
VAL next.wptr IS 4 work space of ~oaded code
VAL return. address IS 5 return address from loader
VAL temp. workspace IS return. address : -- workspace used by both

-- preamb~e and ~oader
VAL NotProcess IS 6 : -- copy of MinInt
VAL ~inks IS NotProcess : -- 1st par am to ~oader (MinInt)
VAL boot~ink.param IS 7 2nd parameter to ~oader
VAL memory IS 8 3rd parameter to ~oader
VAL buffer. start IS 9 4th parameter to ~oader
VAL entry.point IS 10 5th parameter to ~oader
VAL entry. address IS 11 referenced from entry point
VAL MemStart IS 12 start of boot part 2

The initial workspace requirement is found by reading the workspace requirement from the loader occam
and subtracting the size of the workspace used by both the loader and the bootstrap (temp. workspace).
This value is incremented by 4 to accomodate the workspace adjustment by the ca~~ instruction used to
preserve the processor registers.

initia~.adjustment := (~oader.workspace + 4) - temp.workspace
-- occam work space, + 4 for ca~~ to save registers, - adjustment made
-- when entering occam. Must be at ~east 4
IF
initia~.adjustment < 4
initia~.adjustment := 4

TRUE
SKIP

The bootstrap is listed in a transputer assembler format. It was, however, actually developed by using an
occam program to encode defined values into a table ready for insertion into the TDS extractor.

-- set up work space, save registers,
-- save MemStart and NotProcess
start:

ajw
ca~~

~dc
~dpi

addrO:
stl.

mint
st~

initia~.adjustment -- see above
o save registers

start - addrO

MemStart

NotProcess

distance to start byte
address of start

save for ~ater use

-- save for ~ater use

202

initia1ise process queues and c1ear error
1d1 NotProcess
st1f -- reset 10w priority queue

1d1
sthf

NotProcess
-- reset high priority queue

3 Software

use c1rha1terr here to create bootstrap for REDUCED app1ication
setha1terr set ha1t on erro~
testerr -- read and c1ear error bit

and rounding initia1ise T8 error
fpu.c1earerr -- f10ating c1ear error instruction

and event words initia1ise 1ink
1dc 0
st1 base
1dc 11
st1 count

start100p:
1d1
1d1
1d1
wsub
stn1
1d1p
1dc
1end

end1oop:

NotProcess
base
NotProcess

o
base
end100p - startloop

index to words to initia1ise
no. words to initia1ise
count of words 1eft

index

point to next address
put NotProcess into addressed
address of loop control info

return jump
go back if more

set up some 10ader parameters. See the parameter
structure of the 10ader
1d1p entry. address
st1 entry. point

1d1p MemStart
1d1 NotProcess

address of entry word
store in par am 5

address start of buffer
bottom of memory

word

diff convert address to memory offset
st1 buffer. start buffer offset in param 4

1d1 NotProcess bottom of memory
st1 memory store in par am 3

1d1 boot1ink copy of bootlink
st1 boot1ink.param store in param 2

10ad boot10ader over
code must be 2 bytes
1d1p 10ad.1ength
1d1 boot1ink
1dc 1
in

1d1
1d1
ld1
in

MemStart
boot1ink
10ad.1ength

bootstrap
shorter than bootstrap

packet size word
address of link
bytes to 10ad
input 1ength byte

area to 10ad boot1oader
address of 1ink
message length
input boot1oader

enter code just 10aded
1d1 MemStart
gca11

start of 10aded code
enter bootloader

13 Loading transputer networks 203

13.6 Bootloader code

The bootloader is produced by the same mechanism which produces the bootstrap. Both programs become
single message packets preceded by a length byte (which is also a loader MESSAGE command) and are
transmitted from the TDS extractor through the network as MESSAGE communications.

initia~ise boot~oader
~dc packet.~ength
~eUp MemStart
bsub
st~ next. address

~eUp
st~

restart:
~eU
st~

temp. workspace
next.wptr

next. address
~oad.start

workspace
buffer size
buffer start address
end of buffer address
start of area to ~oad ~oader

pointer to ~oader's work space zero
work space pointer of ~oaded code

adddress to ~oad ~oader
current ~oad point

~oad code unti~ terminator
start~oad:

~eUp
~eU
~dc
in

~eU
cj

~eU
~eU
~eU
in
~eU
~eU
bsub
st~

j
eneUoad:

~oad.~ength
boot~ink
1

~oad.~ength
end~oad

next.address
boot~ink
~oad.~ength

~oad.~ength
next.address

next.address

start~oad

packet ~ength
address of ~ink
bytes to ~oad
input ~ength byte

message ~ength
quit if 0 bytes

start of area to ~oad ~oader
address of ~ink
message ~ength
input code b~ock
message ~ength
area to ~oad
new area to ~oad
save area to ~oad

go back for next b~ock

-- initia~ise return address and enter ~oaded code
~dc return - addrl offset to return address
~dpi return address

addrl:
stl
leU
gajw
ldnl
gca~l

return. address
next.wptr

~oad.start

save in WO
wspace of loaded code
set up his work space
address of first ~oad packet
enter ~oaded code

return:
ajw -(temp.workspace + 4)-- reset work space after return

start c~ock
~dc 0
sttimer

204

initialise reduced workspace

bootlink.param
entry. address
NotProcess

for loading main body

new copy of boot link
loaded code entry offset
convert to entry address

3 Software

code
ldl
ldl
ldl
bsub
ldc

address of work space/entry point

ajw
o reset load length byte
4 - (initial.adjustment - 4)

-- reset workspace to start + 4 for call
this means that while the last few blocks are being loaded
the below work space requirement overlaps these last few instructions
which are never used again.
call 0

ldl
stl

j

next.address
next.wptr

restart

13.7 Loader occam

store in new workspace

loaded code work space pointer
work space pointer for entry

go back for remaining blocks

This section lists the occam source of the loader. It is included as part of the extractor table by the program
which 'assembles' the bootstrap and bootloader, as a sequence of MESSAGE command message packet
pairs.

The overall layout of the procedure is:

PROC loader ([4] CHAN OF ANY
CHAN OF ANY
[4]BYTE

links,
boot link ,
memory,

BYTE
INT
INT
BOOL

SEQ

VAL INT
INT

constants
command
links.to.load,
last.address
loading :

buffer. address,
entry.point)

output. link

bootlink ? command
WHILE command <> function.terminate

INT tag, operand :
SEQ

tag := (INT command) »data.field.bits
operand := (INT command) /\ data. field
IF

tag = message
tag = function
tag = number

boot link ? command

13 Loading transputer networks

The command and function constant definitions are

VAL data.fi.eld IS #3F
VAL data.fi.eld.bi.ts IS 6
VAL tag.fi.el.d IS #CO
VAL tag.fi.eld.bi.ts IS 2
VAL message IS 0
VAL number IS 1
VAL functi.on IS 2
VAL tag.functi.on IS functi.on « data.fi.eld.bi.ts
VAL prefi.x IS 3 :
VAL tag.prefi.x IS prefix « data.fi.eld.bi.ts :

VAL load IS 0
VAL pass IS 1
VAL open IS 2
VAL functi.on.open IS BYTE (tag. functi.on \I open) :
VAL close IS 3 :
VAL functi.on.close IS BYTE (tag. functi.on \/ cl.ose) :
VAL address IS 4 :
VAL terminate IS 5 :
VAL functi.on.termi.nate IS BYTE (tag. functi.on \/ execute):

The component processes of the outer level IF are expanded in the following sections.

If the command was message

tag = message
INT load. address
SEQ

IF

IF

loadi.ng
SEQ

load. address := last.address
last.address := load. address PLUS operand

TRUE
load. address := buffer. address

operand <> 0
bootli.nk ? [memory FROM load. address FOR operand]

TRUE
SKIP

SEQ i. = 0 FOR 4
IF

(l.i.nks.to.load /\ (1 « i. » <> 0
SEQ

l.inks[i.] ! command
IF

TRUE
SKIP

operand <> 0
l.i.nks[i] [memory FROM l.oad.address FOR operand]

TRUE
SKIP

205

206

If the command was number

TRUE -- tag = number (l.ast component of IF)
SEQ

output.l.ink := operand
l.inks.to.l.oad := l.inks.to.l.oad \/ (1 « output.l.ink)

If the command was function

tag = function
IF

operand = l.oad
SEQ

l.oading : = TRUE
l.inks.to.l.oad .- 0

operand = pass
SEQ

l.oading := FALSE
l.inks.to.l.oad .- 0

operand = open
INT depth:
SEQ

depth := 1
WHILE depth <> 0

SEQ
bootl.ink ? command
IF

IF

command = function. open
depth := depth + 1

command = function.cl.ose
depth .- depth - 1

TRUE
SKIP

depth <> 0
l.inks[output.l.ink]

TRUE
SKIP

operand = address
SEQ

BOOL more:
SEQ

l.ast.address := 0
more := TRUE
WHILE more

SEQ

command

l.ast.address := l.ast.address «
data.fiel.d.bits

bootl.ink ? command
l.ast.address := l.ast.address PLUS

«INT command) /\ data.fiel.d)

more := (INT command) >= tag.prefix
entry.point := l.ast.address

3 Software

Irnmos Part 4

_ Applications

207

208

14 A transputer based radio-navigation system

14.1 Introduction

The speed and multi-processing capabilities of the transputer make it ideal for demanding signal processing,
calculating and control tasks (figure 14.1). A navigation system needs all these facilities, and the LORAN C
system, operating at 100kHz, gives the opportunity for the transputer to capture the incoming radio frequency
in real time, without demodulation.

VCC
GND

CapPlus
CapMinus

Reset
Analyse

Error
BootFromROM

Clockln

DisablelntRam

ProcClockOut
notMemCE

notMemWrBO-1

MemWait
MemBAcc

MemReq
MemGranted

System
services

4k bytes
of

On-chip
RAM

External
Memory
Interface

LinkSpecial
LinkOSpecial

~~======~- Link123Speciai
LinklnO
LinkOutO

Linkln1
LinkOut1

Linkln2
LinkOut2

Linkln3
LinkOut3

F EventReq
Event. EventAck

16 MemDO-15

16 MemAO-15

Figure 14.1 The T222 16 bit transputer

The T222 transputer is the 16-bit member of the transputer family. It has 4K bytes of SOns static RAM on
the chip, which allow it to operate at 20 MIPS (peak). The memory can be extended externally, the external
interface being optimised for static memory, with separate address and data lines. Thus Static RAM or
program ROM can be attached with no TTL glue logic. The T222 has four serial links operating at 5, 10
or 20 Mbaud rates, designed for connections between transputers or to peripherals such as link adapters.
These links have full duplex DMA into or out of the transputer memory, giving the processor the equivalent of
eight high-speed DMA controllers on chip. Also on the transputer are a hardware scheduler and timer, and
all these taken with the language occam make it a very powerful general purpose processor.

14 A transputer based radio-navigation system 209

14.2 LORAN

The incentive to design a LORAN C system is given by the imminent opening of a new experimental chain of
transmitters serving Northern Europe. The system already covers most of the world's oceans, and also the
Mediterranean, but southern Britain has lacked coverage.

LORAN (Lang-range RAdio Navigation) is a system run for ships and aircraft by the US government. Like
the Decca system, it works by measuring the relative delays from several transmitters, but being long-range,
it has far fewer chains, operating at much lower frequency, and no charge is made for its use.

All the transmitters operate on one frequency, but they transmit at a low duty cycle with each chain having
a different repetition rate. Thus the receiver can identify the valid signals as those operating at the desired
rate, and although one particular signal may be blotted out by another chain, as no two chains operate at
co-multiple rates, the signal can be recovered on the next frame (see figure 14.2).

Master Secondary Secondary Secondary
pulses X pulses Y pulses Z pulses

~ ~ ~ ~
11111111 I 11111111 11111111 11111111

X Delay -+l ~ -,\j...

.1 Y Delay 1000 jlS
Z Delay

Figure 14.2 LORAN signal format

The transputer has an inherent response time to external stimuli of between one and three micro-seconds,
and has an internal resolution of one microsecond. Therefore it could theoretically resolve RF information to
an accuracy of three (... (3-1)+1 ...) microseconds, which at the speed of light would give a navigation system
an accuracy of around a kilometre. However, each result can be produced from an average of around 150
such measurements, which would improve the accuracy to around 300 metres. This is because the variable
response time can be averaged out, but the resolution cannot because of the high stability of the clocks used.

The design used here improves on this accuracy by capturing the phase of the incoming signal relative to a
crystal clock. The amplified filtered signal is used to clock a latch to sample a counter. In keeping with the
transputer architecture, the latch used is a link adapter, which allows DMA type tranfer of the data into the
transputer, and the appropriate stimulus to the hardware scheduler is generated automatically. The crystal
oscillator is inexpensive, as it is required for the transputer anyway, but improves the resolution from one
microsecond to better than 10 nanoseconds, which makes analogue noise the predominant problem.

At 100kHz, the events must be trapped at a 10 microsecond rate, which makes the transputer's low latency
and rapid process switch time of paramount importance in this application. Any other processor attempting
this task would have to hang mid-cycle awaiting the signal on a wait pin to achieve low enough latency, and
thus would be unable to perform the trig operatiol"ls or the system control at the same time. The closest
alternative appears to be the Intel 8096, which has a latency of up to 21 microseconds, but does have timers
and a fifo that would allow this to be performed only once per seven inputs. This however prevents external

210 4 Applications

upgrading of the internal two-microsecond timer as shown on the transputer based design.

A block diagram of the system is shown in figure 14.3, and a circuit diagram of the digital section in figure
14.4.

\1
COUNTER

AMP+LlMIT V
-~

..
LINK ADAPTOR

,

~ I I ~
TRANSPUTER

T222

DISPLAY (

I L
EPROM

KEYBOARD

Figure 14.3 Navigation system block diagram

To T222 ~==:::,...~r-i1I""-;-~~

RF Signal
100 kHz -------1~

00-1

L---~----~----~'------OV

EPROM

(RAM
during

TRANSPUTER

IMS T222

keyboard

OV

I

Ld~e_vl~·)~~~_~~Will~~~~C:Jlk~---5MHZ

5V

Figure 14.4 Digital circuitry

14 A transputer based radio-navigation system 211

The basic elements are a high-gain narrow band amplifier to capture the incoming signal, which is only short
bursts of RF, so energy-storing LC circuits are avoided where possible, a counter to measure the phase,
a transputer to do signal processing and trigonometric calculation, besides controlling the system, and a
keyboard and display.

14.3 The 1/0 system

The interface between the transputer and the analogue and I/O sections has been designed using the IMS
C011 Link Adapter. The total input requirements are one bit from the analogue section, the carrier, seven
from the counter, and one from the keyboard scanner. The carrier is not fed to the transputer, but used as
the 'Input Valid' signal to strobe the current value of the counter, i.e. the relative phase of the signal, into
the link adapter input pins. The spare input, 10, is used to receive the open/closed signal from the keyboard
matrix, if implemented.

The output requirements are four bits to drive the keyboard scanner, the same four being used as a data bus
to the LCD display driver, and a bit to clock the display driver. This leaves three bits spare, which could be
used to enlarge the keyboard matrix, or to operate LEOs or alarms for carrier fail or off track error.

The keyboard scanner works by taking the four bits 00-3 and decoding them in a CMOS analogue multiplexer
into two one-out-of-four Signals, giving a 16 key crosspoint matrix. The appropriate Y -wire is connected to
ground, and the selected X-wire is fed to the 10 input of the Link Adapter, with a pull-up resistor. Thus, if the
currently scanned key is depressed, the input will be a zero, if not, it will be a one. The processor must scan
the keyboard, by outputting all 16 possibilities on the highway, at an appropriate interval, say 100 milliseconds.
There are three further bits available on the output side of the link adapter that could be used to expand the
matrix to 64 keys, which would allow a QWERTY keyboard in a more sophisticated implementation.

The display is an LCD module, available assembled complete with controller, or buildable separately. The
driver is a Hitachi 44780, and this is configured to communicate in a four bit mode, so that it can be driven
from a link adapter, with a fifth bit used as a timing strobe under software control.

14.4 The processor

The processing module is entirely separate from the rest, and this may be useful in improving the screening
of the sensitive analogue stages from processor noise.

The IMS T222 transputer is a self contained computing engine, with RAM, CPU, timers and communications
controllers all on the one Chip. The only external requirements in this type of embedded system are a program
ROM and a 5MHz clock.

The ROM is a standard EPROM, as fast as possible. If an EPROM is available that can keep up with the
transputer (1 OOns cycle!), then no TTL is required, all the necessary chip enable signals are generated by the
transputer. Choosing a slower speed option transputer may be worthwhile, for this reason alone, providing
the faster parts of the software still operate. If higher performance is required, choose a fast option transputer
and use a shift register off the transputer clock to delay memory cycles using the wait pin. If this solution is
chosen, there are benefits in copying the code for the front end signal capture process into internal RAM at
start-up, giving the ultimate performance.

Only one ROM chip is required, as the T222 has the ability to use 8 or 16-bit data paths externally, depending
on the state of an external pin.

14.5 The software

The occam language gives the programmer the ability to map his application onto a yet-to-be determined
number of processors, maintaining all the potential for parallelism that exists in the underlying application.
The methodology of a parallel language is very different from the sequential approach. At the highest level,
all the requirements of the system can be specified as inputs and outputs to a monolithic process, and
the specification of that process is the relationships of its outputs to its inputs. Thus we can draw the

212 4 Applications

diagram of figure 14.5. However, processes are hierarchical, that is we can divide up the work of the main
process into several subsidiary processes, with appropriate interconnections, and similarly specify each of
them individually. They do not interact in any way except by messages over the connecting channels, as there
is no shared memory, so each can be separately debugged, and the deCision as to which is in hardware, and
which groups on which processor can be left until later. This divide-and-conquer mechanism can be repeated
indefinitely, until the base processes are simple to write and thus error-free (see figure 14.6).

Figure 14.5 Overall function process diagram

CHAN OF BYTE signa1, keyin, keyout, disp1ayout:
PLACED PAR

PROCESSOR 1 1'222
CHAN OF INT s_to.p, p.to.c, p.to.s, k.to.c, c.to.d, p.to.d:
PLACE signa1 AT 1inkOin:
PLACE disp1ayout AT 1inkOout:
PAR

Signa1 hand1er (s)
Position ca1cu1ator (p)
Keyboard hand1er (k)
Course hand1er (c)
Disp1ay hand1er (d)

Figure 14.6 Detail Process diagram and top level occam

14 A transputer based radio-navigation system 213

For the lowest processes, which are sequential, normal flowchart practice can be used, although with correct
system design and well commented code, the programmer can go directly from the process diagram and
specification to the occam source. The signal processing function divides cleanly into three processes as
shown in figure 14.7. The first process identifies valid carrier transitions, the second valid carrier bursts,
collating them into groups, and the third identifies the elements of the required frame, corresponding with the
group repetition interval of the LORAN chain in use.

10 J.Ls rate

phase.
in

3000 messages/s

{{{ navsys

60 messages/s

PROC signa1.processing (CHAN OF BYTE keyboard, screen)
proc dec1s

dec1s

PAR

} } }

test harness

rfburst (phase. in, burst)
group (burst, group.e1ement)
frame (group.e1ement, de1ays.out, contro1 [chains + 1])

Figure 14.7 Sub processes for signal processing

10 messages/s

214

{{{ declaration of proc frame
PROC frame (CHAN OF INT in, out, control)

decls and defs

SEQ
new GRI if offered

START-UP

debug

RUN

}}}

{{{ RUN
SEQ i = 0 FOR 4

missed [i] := 1
count := 0
in ? type; phase; time
WHILE running

SEQ
new GRI if offered

COMMENT debug
IF

}}}

NOT (time AFTER (grouptime [count] MINUS margin»
in ? type; phase; time --replace as too early

NOT (time AFTER (grouptime [count] PLUS margin»
correct, pass on after noting

TRUE
missed some signals

Figure 14.8 occam for signal detection, overview and detail

14.6 Position calculation

4 Applications

The RF signal, suitably processed, gives the difference in distance of the receiver from the master and slave
one, and the master and slave two. No absolute distances are known, only the two differences. Simple
systems present these differences on a display, and the user must look up two sets of lines on a special
chart, locating himself at the intersection of the two lines.

Tre transputer has enough number-crunching ability to solve the complex trigonometry to calculate the position
directly. This is a very difficult calculation, as roughly it is the intersection of two hyperboloids (the distance
differences) and a sphere (the earth). However, the hyperboloids are not true mathematical ones, as the
generators were not straight-line distances, but great circle routes over the surface of the earth.

This problem does not arise on the short range navigators, because the surface of interest approximates to a
plane. In the LORAN system, three approaches are possible. One can assume a position and iterate from it
until an accurate result is found. The problem with this is making the program sophisticated enough to detect
when the solution will not converge. A second method is to assume linear transmission paths, calculate a
rough position, correct the distances and recalculate, repeating until the desired accuracy is reached.

The third and most desirable solution is an analytical one, so the transputer simply calculates some equations.
The calculation requires about twenty trig operations, including inverse operations, with a few squares and
square roots, and the transputer can easily calculate this to update the position every transmission frame.
This is probably not desirable, as it may result in unacceptable jitter in the least significant displayed digit,

14 A transputer based radio-navigation system 215

so the solution is to only re-calculate and display the position after a set of differences has stabilised. A 10
second update suffices, as this only reduces the accuracy on high-speed powerboats, and at 50 knots, one
covers about 300 metres in that time.

14.7 System integration

Once the software is written and tested on the development system, using a dummy occam process, or
harness, to feed in phase values and keyboard operations, and capture display results, the code is downloaded
into a complete prototype. Using a RAM in the EPROM socket, the code can be changed at will from the
development system keyboard at an occam level, with the system operating full speed off air to its own
display, with or without additional monitoring information being sent up to the development system.

14.8 Conclusions

The design has shown that the transputer's speed allows functions normally performed in hardware to be
brought into the processor, with gains in both assembly cost and flexibility. It has shown how an application
may be rapidly taken from the concept to pre-production phase due to the ability to run the prototype attached
to the development system, giving the manufacturer a time advantage in the market-place, and a product can
be maintained, updated and extended at any time often by issuing only new software.

216

15 The transputer based navigation system - an example of testing embedded
systems

15.1 Introduction

This note covers the implementation of the Navigation System outlined in Technical Note 0, 'A transputer
based radio-navigation system'.

The software described in Technical Note 0 consisted of 4 concurrent processes in a pipeline, as shown in
figure 15.1.

narrow band
amplifier

These processes performed the following tasks:

P1 Burst detection
P2 Group detection
P3 Frame detection
P4 Position calculation

Figure 15.1

Just as the 'Divide and Conquer' method eased the design of the software, similarly it allows the software to
be tested and debugged without difficulty.

Each process is provided with input data, and i!s output is checked. Taking the independence of each
process into full account allows independent test-data generators to be produced for each, and this is the
recommended method if P1 thru P4 are being developed simultaneously by separate teams. However, when
one team is developing each in turn, only a single test generator is required; when P1 is correct, its output
can be used to test P2 and so on. Note that this latter method does not test the resilience of subsequent
processes to incorrect data, while the former method does.

The system does require resilience to incorrect input data, even if P2 to P4 do not and the method of ensuring
this is covered later.

Once the code for P1 is written, a test-data generator is required. This software test-data generator replaces
the hardware environment that would normally feed the data.

The most convenient way of testing is to ensure that the process accepts correct data first, and then to extend
it to correctly reject erroneous data. To generate the correct data, another process is written.

In the case of the navigation system, the input data is the off-air signal from a chain of transmitters. The
incorrect data is interference from other chains of transmitters and from random noise. Thus the first test
harness consists of a control environment that manages keyboard and screen of the development system,
and a process that mimics a chain of transmitters on figure 15.2.

15 The transputer based navigation system - an example of testing embedded systems 217

Figure 15.2

This would be ideal, but when it is wrong, how can an error in the controller, TC1 or P1 be traced? In this
case the harness is debugged by first using just TC1 with the control - figure 15.3.

Figure 15.3

This allows TC1 and the controller to be interactively tested on-screen; feeding in new parameters and
checking the data generated.

The generated data consists of a stream of numbers, being the timestamp associated with each zero-crossing
of the carrier waveform. The carrier is in groups of bursts, as shown below in figure 15.4.

Master Secondary Secondary Secondary
pu I se s X pulses Y pulses Z pulses

~ ~ ~ ~
11111111 I III 11111 III 11111 11111111

X Delay --.J .1 -.\~ J Y Delay 1000 IlS
Z Delay

Figure 15.4

218 4 Applications

The parameters fed to TC1 are Delay 1, Delay 2, Delay 3 and the Group Repetiton Interval (GRI). In order
to facilitate testing, the development system screen was divided into 3 windows, and a menu created. The
menu controlled the test environment, displayed in the first window, and the user inputs to the navigation
system; i.e. its front panel controls were displayed in the second window. The third window displayed the
results from the system, and so represented the front panel display of the navigation system.

15.2 Testing the burst detector

Once the harness was debugged, the configuration of figure 15.2 was used to debug and tune P1. 'Tune'
should be stressed because there were many constant parameters to each process that determined how
selective/tolerant it should be, there being a trade-off, of course, between tolerance, accuracy, and resilience;
defined here as the ability to continue functioning in the face of adverse conditions - for example in the case
of intermittent lack of input data.

The job of P1 is to monitor each supposed carrier transition, validate it as being the correct frequency, and
of adequate duration, then pass on its initial timestamp and mean phase to P2.

As the incoming carrier has a frequency of 100KHz, consecutive events should occur at 10 microsecond
intervals. Thus P1 checks that the interval is within limits (currently set to 9 to 11, as the system implemented
differs from Technical Note 0 in feeding the signal direct to the transputer's event pin, giving 1 microsecond
resolution on the internal timer, rather than via an external timer).

It then counts a preset number of validated transitions, and if it reaches the threshold, currently set to 10, it
accepts the signal as being genuine and passes on to P2 a timestamp-pair, consisting of the timer value of
the first transition and the sum of the 10 phase values. This latter figure allows the effective resolution to be
increased by a vernier effect between the RF carrier and the transputer crystal over the whole burst, or group
of bursts.

P1 was tested and tuned until the bursts of signal at its input were correctly presented to P2; or at this stage,
displayed on the screen.

One of the functions of P1 is to discriminate against nOise, so to test this the ability to inject noise was required.
This was achieved by expanding the test harness to generate noise. This meant two new processes, one to
generate timestamps representing noise, and the other to multiplex the data sources, sorting timestamps into
the correct order - see figure 15.5.

Figure 15.5

Although not fully rigorous, the noise type chosen was bursts of carrier described by their carrier period, the
number of cycles in a burst, and the burst repetition rate, so each of these became parameters in the menu
window.

15 The transputer based navigation system - an example of testing embedded systems 219

The multiplexer simply performed an input as necessary on each stream to ensure it had access to the next
data item on each stream. It then selected the earliest timestamp, and passed it to P1, replenishing itself
from the stream chosen. Notice that no analogue level was considered - the high gain limiting amplifier was
considered to have made all inputs full strength. However, time distortion was added; if two timestamps were
too close (currently 4 microseconds), they would both be deleted, and replaced with a single transition at the
mean of the two: - again, not rigorous, but implementing some approximation to real interference.

15.3 Testing the group detector

Once P1 had been proven to the harness, P2 was added. The function of P2 is to monitor the carrier bursts it
receives, and validate them into correct groups for master or slave transmitters. A slave transmitter generates
eight bursts at one millisecond intervals, and a master 9 bursts, spaced as if the group were ten bursts with
the ninth omitted.

It can be seen that there is massive data reduction down the pipeline. P1 expects an input every 10 P.s, P2
every 1 ms, P3 approximately every tenth of a second; these are peak rates - the duty cycle is very low.
As a result of the data reduction, more thorough testing is feasible as the later processes are added, as the
volume of data on the screen reduces.

This implementation uses visual checking; it would be perfectly possible to correlate output and input in
another process and report only statistics. This method was rejected because the final navigation system
generates only two outputs - LATitude and LONGitude; the visual approach is entirely satisfactory.

To validate bursts, P2 checks that they are at one millisecond intervals, plus/minus a tolerance, currently set
to 5 microseconds. Again, the benefit of the harness is seen in allowing the system to be tuned. It then
counts validated bursts. The subtle part is how to optimally detect master transmitters, as the process only
runs when triggered by an input, so if the final pulse never comes, it is a slave, but the process does not run
to report this.

The solution is Simple, once found. It is important not to waste CPU time, so to deschedule the process and
wait on a timer for 2+ milliseconds would be a problem, but is the easiest to implement. However, there is no
problem of latency in the pipeline - it does not matter if the screen display runs milliseconds after the input -
all the data inputs were timestamped on reception, so accuracy is maintained. Thus no output is generated
until the next input burst, when the decision is made whether it is the ninth burst of the group (I.e. it was a
master) or the first of an independent group (it was a slave).

Part of the validation task performed by P2 is to reject groups that have been corrupted by overlapping
between two transmitter chains.

If the bursts collide directly, P1 will reject them. However, because of the low duty cycle it is possible that
they may interleave. In this case the current implementation of P2 will lock onto the group starting first, and
ignore the interleaved bursts as each is 'too early' in its opinion. This is not the optimum solution, as the
second group may be the desired one. However, P2 is ignorant of this, it being decided in P3, and to track
two groups simultaneously adds unnecessary complication. It could be done, however, if the LORAN time
domain became too cluttered in some areas.

All these functions can be tested by adding a second transmitter chain (TC2) to the environment. Experiments
can then be performed with the two chains with very close repitition intervals. Again, due to the data reduction,
this testing can be extended greatly after P3 is written.

The final test harness is shown in figure 15.6, used first with P1 and P2, then P1 to P3, then P1 to P4.

220 4 Applications

Figure 15.6

15.4 Testing the frame detector

P3 is the most complex and thus requires most testing and tuning. Its task is twofold - i.e. it has two
modes of operation. First it must identify and lock onto the correct transmitter chain, then it must monitor it,
even though a large percentage of its transmissions may have been lost due to noise or other transmitters
interfering.

The first task is performed by capturing a buffer full of detected groups, and then searching the buffer for
groups that have the correct repetition interval. The buffer must be large enough to cover at least two frames,
in order that spurious internal matches be excluded, and again, the tolerance on the matching requires tuning.

If there is not suitable match, the initialisation phase starts again, and repeats until successful.

Once the timestamps of the required transmitter chain are found, the process predicts when the next will be,
and validates against that. If a timestamp is missed, a new prediction is made, and the omiSSion noted. After
a set number of omissions in a row (currently 5), the system admits a synchronisation failure and reverts to
initialisation mode.

Thus the 'locking' criteria can be tuned against the 'unlocked' criteria. As set at present, there will be the
occasional false lock, which will then find no valid frames and re-initialise. Final tuning of this will be done in
the real world, when the level of noise etc. is real, not simulated.

At each successful frame, P3 passes on the delay values to P4, which performs the mathematics and displays
the ship's position.

15.5 Improvements during testing

Two improvements were made to P3, P4 to maximise the performance of the system.

In P3, allowance was made for errors in frequency between the transmitter crystal and the transputer crystal.
Although partly covered by the timing tolerances in P1 to P3 already, because P3 assumes missed Signals,
and predicts future ones, any error is multiplied by the number of frames covered. Thus while it is instructed to
use a particular Group Repetition Interval, it will actually use one extracted off-air, within a tolerance (currently
48 microseconds).

15 The transputer based navigation system - an example of testing embedded systems 221

This greatly improved the system noise tolerance.

In P4, rather than update the display every tenth of a second, which is too fast for the human eye, causes
excessive least-significant digit jitter, and uses excessive CPU time, the delay signals were validated by
collecting them for a period (currently 2 seconds), rejecting jitter-rogues, and then calculating and displaying.

15.6 Conclusions

It can be seen that the software harness allowed demonstration of the system, basic debugging, error-handling,
performance enhancements, all before an oscilloscope was bought to test the hardware! It will also allow
continued testing with real input data, but display via the development system, giving the opportunity for final
program tuning in RAM before the ROMs are programmed and the system goes live across the ocean.

222

16 A transputer based distributed graphics display

16.1 Introduction

This technical note examines a frame store distribution technique using the IMS T800 for high performance
computer graphics systems.

Firstly there is a brief introduction to some of the techniques and terminology used in typical graphic systems
including comments on system implementation and processing implications.

Following this, section 16.3 provides an overview of parallel graphics systems and frame store distribution.
There is also brief descriptions of the transputer, specifically the IMS T800 architecture, the occam lan
guage and transputer module architecture. Following this there is an introduction to the two TRAMs used to
implement the distributed graphics system.

The next two sections describe the graphics TRAMs in detail, and how the distribution methods are imple
mented.

Finally some example system configurations are described using the graphics TRAMs and some performance
implications of the configurations.

16.2 A brief history

16.2.1 Introduction

In the early days of computing, user interaction with computers usually consisted of a teletype machine with
a built in keyboard. This was costly in terms of maintaining the mechanics and producing reams of partially
used paper. It wasn't long before electronic displays began to be commonly used. The first displays were
essentially glass teletypes, providing the user with an electronic alphanumeric display. The visual display
was constructed from a two dimensional array of dots called pixels. Each pixel had one colour and could
be illuminated individually -either on or off, hence the name monochrome (monochromatic) display. From
this any character could be represented provided it was constructed from a small array of dots that fitted into
one character matrix size on the screen. Since then these displays have become more sophisticated, having
large numbers of displayable colours and higher numbers of unique displayable dots per square unit of the
screen surface.

16.2.2 Displays

Most electronic displays consist of an evacuated sealed glass tube, with a coating on the inside surface of
the display screen. A beam of electrons are fired onto the coating, which makes it glow, producing a small
spot of light. Because the beam is moving charge, it can be deflected using either electrostatic or magnetic
fields. Its intensity can also be controlled, changing the brightness of the spot. This allows the path of the
spot and its brightness to be controlled by electronic circuitry (see figure 16.1).

These circuits are designed to make the beam scan in a series of horizontal sweeps, left to right across the
display. When the beam reaches the end of the line, it's brightness will be switched off (blanked) and it will fly
back at high speed to the start of the next line, slightly below the previous line. This is known as line flyback
(see figure 16.2). This scanning will continue until the entire display has been scanned. When the beam
reaches the end of the last line it will be blanked and will fly back at high speed to the top of the display, This
is known as frame flyback (see figure 16.1). This happens so fast that the human eye cannot see the spot,
and the lines are so close together that they are not individually perceivable at normal viewing distances. A
small spot of light can produce a complete frame so fast that it can be animated without being perceived as
individual frames. This is a similar technique to that of the film industry, where multiple still frames give the
illusion of a moving picture.

Some systems use a technique known as interlace. Each frame of a scene is split into two fields. Each
field contains every other line of the complete frame. So one field contains all the odd numbered lines and
the the other all the even lines. This technique allows each field to be displayed for the same period as a
complete frame, without causing much of a flickering effect. This halves the rate of data that needs to be
displayed, reducing the necessary speed of the electronics. Television systems use this technique to reduce

16 A transputer based distributed graphics display

1f'v':::,.
/"-,, ,

Frame flyback
period

Line flyback period

/' "
/'

"-

,
..... ,.

..........

........

"'-

''''..,

'-,

Figure 16.1 Display scanning

the bandwidth of the transmitted signal.

223

D Display blanked

__ Displayed data

__ Line flyback

............... Frame flyback

The circuitry controlling the horizontal and vertical scanning frequencies of the beam and the brightness of
the spot can be controlled using an input control signal. This control signal is continuously variable in the
range of 0 to 1 volt. The brightness of the spot is represented by the input signal voltage level in the range 0.3
to 1 volt. Synchronisation pulses (pulses that control the frequency of the scanning spot) are represented by
the control input signal voltage level in the range 0 to 0.3 volt (see figure 16.2). The synchronisation pulses
are superimposed onto this signal by the graphics hardware, so that the display scanning Circuitry will scan
in lockstep to the scanning of the frame store. This ensures that the data representing a particular pixel on
the display will always be at the same place on the screen (see figure 16.2).

Screen Blanking
Horizontal Line Scan

0.7 volts

0.3 Volts T
Horizontal Synchronisation Signal

One Line Period --------~

Vertical Synchronisation Signal

One Frame Period --------tl.~1

Figure 16.2 Analogue control voltage waveforms

224 4 Applications

These control signals have characteristics which have defined standards (such as the RS170 video standard)
and therefore standard displays, called monitors, can be used. These monitors usually come in ranges
classified by the screen dot size and the overall size of the display. It is these two factors which define the
range of scanning frequencies that the monitor is designed to lock onto.

16.2.3 The frame store

The analogue control signal is derived from a digital source. It is the job of the graphics hardware to scan
and retrieve digital video data from a frame store (a digital representation of the display screen) and convert
it into the analogue control signal outlined above.

There are generally two methods of implementing a frame store. These are:

• Bitmapped pixels: Data is stored (see figure 16.3) so that a single bit from each word of a processors
store will illuminate a pixel either on or off. The method for storing the data in this way has become known
as a bitplane. Monochromatic displays use a single bitplane as a frame store.

Byte 0 Byte 1 etc
" \I " t 0 2 3 4 5

Byte 1

Byte 0

Pixels (bits)

Memory Map

Figure 16.3 A bit plane

Once monochrome bitplanes were in common use, it became necessary to add colour. The extra colours are
the result of adding more bitplanes and more pixels are the result of having larger bitmaps (see figure 16.4).

1 Pixel Pixel Planes

Memory Map

Plane 3

Plane 2

Plane 1

Plane 0

Figure 16.4 Multiple bitplane address map

Notice that an individual pixels data is spread to several locations in store, so that an update will require
several accesses to store. This allows more planes to be added to a system by increasing the amount of
ram, of course the hardware must be in place to take advantage of the extra colours available .

• Packed pixels: Data is stored so that each pixel is located at a single address in store. This provides an
efficient memory access utilisation at the cost of fixed numbers of colours per pixel.

16 A transputer based distributed graphics display 225

Byte Mapped Pixel Display
Top of Frame Store liZ" " " " " " " " I t

Bottom of Frame Store

Figure 16.5 Packed pixel organisation

Any frame store implementation must be scanned by hardware continuously so that the the pixel information
can be encoded onto the analogue control signal. Also, the frame store must be available for modification by
the processor. The hardware must therefore arbitrate the frame store access between the display scanning
and processing (see figure 16.7).

16.2.4 Colour

Colour monitors use three different colour sub-pixels (as close to the three primary colours, red, green and
blue, as possible) that can be illuminated separately. For this, three separate control signals, which vary the
brightness of each colour, are necessary.

To produce these colour signals, the digital data is separated into the three colour components red, green
and blue. Each is fed into a separate digital to analogue converter (DAC). The analogue signal now consists
of the three separate signals representing the primary colours. By varying the digital input to these DACs the
voltage levels of each these signals can be changed producing a large number of possible colours on the
monitor. This can be extended so that digital pixel data can represent an address in a table which has been
preloaded with various colour values for each output DAC (see figure 16.6).

This intermediate Colour lookup table (CLUT) can increase the total number of possible displayable colours.
This is because the table width is not related to the addressable entries to the table (see figure 16.6). Each
entry can output data to each DAC, presenting more bits to all three DACs than the input pixel data contains.
Only a small number of the total displayable colours can be displayed at anyone time though (the number
of unique addressable entries to the table).

For example (see figure 16.6), the colour table may contain 256 entries, each entry is 18 bits wide, presenting
6 bits of colour value to each DAC. This gives 262144 (218) possible colour values. Any combination of these
colours are allowed since the table is preloadable, but only 256 colours are displayable at anyone time.

16.2.5 System performance

In many graphics systems, there are aspects of the design where system performance is reduced, such as
in a multiple bitplane addressing (see section 16.2.3). Many systems become special purpose to overcome
these performance problems and thereby increase the cost of the system by using custom built hardware and
reducing flexibility. The following are typical areas where these problems can arise:

• Pixel addressing: Each pixel may not have a unique address, ie. when using multiple bit planes. Single
bits in many locations in the frame store represent a single pixel, requiring accesses to many locations to

226

Cl)

"0
o
U
Cl)

o

Colour Lookup Table

Red Green Blue

6 Bits

Figure 16.6 Colour lookup table

4 Applications

CRT MONITOR

change this pixel value. General purpose processors do not usually have the ability to manipulate data
addressed in this way. SpeCial high speed graphic processors with hardware engines need to be placed
between the general purpose processor and the frame store to map pixel data into the frame store (see
figure 16.7). These processors come in a range of configurations, ranging from full blown processors with
large instruction sets, to a collection of engines designed for highly specific purposes.

.. Graphic
Engine

t
Processor

... ... Arbitration ~ Display
Hardware
~

• Bottleneck •
Frame Store

Figure 16.7 Special graphic processor

16 A transputer based distributed graphics display 227

• Frame store access conflicts: The processor must perform drawing tasks into the frame store when the
display scanning hardware is not using the frame store. This can consume processor performance because
any drawing into the frame store is restricted due to the sheer amount of data that has to be shuffled out of
the frame store by the display scanning hardware. This is especially so in high resolution systems. This is
referred to as the frame store bottleneck (see figure 16.7).

Consider a 512 by 512 by 8 bit pixel display. If we assume that a 32 bit read from the frame store takes
200 x 10-9 secs., and the store is scanned 50 times a second (20 x 10-3 secs). Then to read all the
data will take 65536 reads and will take 13.1 x 10-3 secs. This leaves the processor (20 x 10-3)

(13.1 x 10-3) =6.9 x 10-3 secs. to update the display. This leaves only 34% of the total frame store
bandwidth for the processor to do anything useful.

Doubling the horizontal and vertical resolution (R) quadruples the frame store data (proportional to R2). Also,
doubling the number of colours (C) will increase frame store access bandwidth. It follows that the processors
access to the frame store is proportional to a CR2 law. This is doubled when we consider that the scanning
hardware needs to read all this data as well. This can somewhat be relieved by using several banks of ram
and using a ping-pong mechanism to switch the busses between the processor and display hardware. This
is only useful in animation systems where each frame has to be completely redrawn and therefore becomes
somewhat special purpose.

• Compute performance: Consider animating a graphic image which consists of 12,000 pOints (where
FLOPs means 'Floating Point Operations').

Operation

Rotate, translate, scale
Clip (display viewable surfaces)
Converting to screen coordinates
Shading
Interpolation (rounding flat surfaces)
The approximate total is:

Units

:300 KFLOPs
:72 KFLOPs
:130 KFLOPs
:360 KFLOPs
:300 KFLOPs
:1.2 MFLOPs

Assuming 25 frames a second, the grand total becomes 30 million FLOPs per second. This level of perfor
mance is well beyond single processor performance, indeed just shuffling the data around is beyond memory
bus bandwidths of many processors.

16.2.6 Graphics display system

From the above brief discussion, several requirements arise for a general purpose graphics system can
satisfy the needs described:

• Compute performance: Any required compute performance desired for any given application.

• Drawing performance: Any required drawing performance into the frame store for a given application.

• Display access: The display scanning must have separate access to the frame store to remove the conflict
between the processor and the display scanning hardware.

• Display resolution and colour depth: Any required display resolutions and colour depth (bits per coiour)

• Display Drivers: Any required display output (to follow above). For instance, very high speed device
technology may be necessary for a very high resolution display.

This technical note will describe a transputer based, distributed graphics system which resolves the problems
outlined above.

228 4 Applications

16.3 Overview of a parallel graphics system

16.3.1 Introduction

In the previous section (section 16.2.6). several aspects of a graphics system were discussed.

To provide any desired processing performance requires that the processing task is divided into smaller
subtasks and as many processors that are necessary to provide the appropriate performance must be used.
This allows a system to be built to achieve any drawing bandwidth. with any compute performance. The
problem is now one of distribution and how this is implemented.

Here are some methods for distributing processing tasks:

• Spatial: The display is broken up into a number of tiles. Each tile is distributed to a different processor or
a group of processors (see figure 16.8).

Display

Processor

Processor

Processor

Processor

Figure 16.8 Spatial distribution

• Chronological: This method distributes the entire display to all processors in the system, but only one
will display all it's data at anyone time. Each frame of the display is produced by a processor or a group of
processors (see figure 16.9).

Frame n+ 1 MOD 4

Frame n+2 MOD 4

Frame n+3 MOD 4

Display

Figure 16.9 Chronological distribution

Processor

16 A transputer based distributed graphics display 229

• Objective: This method distributes different objects in a scene to different processors. This is deceptively
difficult - consider the problem of handling hidden and intersecting objects (see figure 16.10).

L--_L1J_!-,' ~a"

L...-----!LJ=t:...J' ~a"

Figure 16.10 Objective distribution

• Characteristic: This method distributes characteristics of the scene, such as colour, to different processors
(see figure 16.11).

I:: ~'
==~' Display

•

I=::~'
i8tEI~'

Figure 16.11 Characteristic distribution

These distribution methods are simplified using the occam model of localised data and process communi
cation, applied with the transputer localised processor bus and interprocessor communication.

16.3.2 Transputers and occam

The IMS T800 transputer

The IMS T800 is the latest member of t~e INMOS transputer family [1]. It integrates a 32 bit 10 MIP processor
(CPU), 4 serial communication links, 4 Kbytes of RAM and a floating point unit (FPU) 0n a single Chip. An
external memory interface allows access to a total memory of 4 gigabytes (see figure 16.12).

The transputer family has been designed for the efficient implementation of high level language compilers.
Transputers can be programmed in sequential languages such as C, PASCAL and FORTRAN (compilers for
which are available from INMOS). However the occam language allows the programmer to fully exploit the

230

facilities for concurrency and communication provided by the transputer architecture.

System
services

Timers

On·chip
RAM

External
Memory
Interface

Floating Point Unit

32

Figure 16.12 IMS TSOO block diagram

4 Applications

The on-chip memory is not a cache, but part of the transputer's total address space. It can be thought of as
replacing the register set found on conventional processors, operating as a very fast access data area, but
can also act as program store for small pieces of code.

Serial links

The 4 serial links on the IMS TSOO allow it to communicate with other transputers. Each serial link provides a
data rate of 1.7 MBytes per second unidirectionally, or 2.35 MBytes per second when operating bidirectionally,
[2].

Since the links are autonomous DMA engines, the processor is free to perform computation concurrently with
link communication. With all four links receiving simultaneously, the maximum data rate into an IMS T800
is 6.S Mbytes per second. This allows a graphics system based around IMS TSOOs to act as image sinks,
accepting pixels down serial links and placing them directly into the frame store.

On-chip floating point unit

The IMS TSOO FPU is a co-processor integrated on the same chip as the CPU, and can operate concurrently
with the CPU. The FPU performs floating point arithmetic on single and double length (32 and 64 bit) quantities
to IEEE 754. The concurrent operation allows floating point computation and address calculation to fully
overlap, giving a realistically achievable performance of 1.5 Mflops (4 million Whetstones [3] / second) on the
20 MHz part; 2.25 Mflops (6 million Whetstones / second) at 30 Mhz.

2·0 Block move instructions

Among the new instructions in the IMS TSOO are those for graphics support. The IMS TSOO has a set of
microcoded 2-dimensional block move instructions which allows it to perform cut and paste operations on
irregularly shaped objects at full memory bandwidth.

16 A transputer based distributed graphics display 231

The three MOVE2D operations are:

MOVE2DALL which copies an entire area of memory
MOVE2DZERO which copies only zero bytes
MOVE2DNONZERO which copies only non-zero bytes

The use of these instructions is described more fully elsewhere [2].

The occam programming language

The occam language enables a system to be described as a collection of concurrent processes which
communicate with one another, and with the outside world, via communication channels. occam programs
are built from three primitive processes:

variab1e := expression
channe1 ? variab1e
channe1 ! expression

assign value of expression to variable
input a value from channel to variable
output the value of expression to channel

Each occam channel provides a one way communication path between two concurrent processes. Commu
nication is synchronised and unbuffered. The primitive processes can be combined to form constructs which
are themselves processes and can be used as components of another construct. Conventional sequential
programs can be expressed by combining processes with the sequential constructs SEQ, IF, CASE and
WHILE.

Concurrent programs are expressed using the parallel construct PAR, the alternative construct ALT and
channel communication. PAR is used to run any number of processes in parallel and these can communicate
with one another via communication channels. The alternative construct allows a process to wait for input
from any number of input channels. Input is taken from the first of these channels to become ready and
the associated process is executed. A full definition of the occam language can be found in the occam
reference manual [4].

16.3.3 Transputer modules (TRAMs)

Transputer Modules [5] or TRAMs are subassemblies of transputers (or other components with INMOS links),
a few discrete components, and sometimes some RAM and/or application specific circuitry. All TRAMs:

• Have a standard interface using serial links.

• Have a standard pinout.

• Have standard sizes.

• Are designed to a published specification [5].

These TRAM standards make it very simple for users to build customised TRAMs or motherboards with
sockets for TRAMs. The TRAM pinout standard is independent of:

• Transputer type (IMS T212, T414, T800, M212, etc.)

• Number of transputers (0, 1, 4, 8, 16, etc.)

• Word length of transputer.

• Speed of transputer.

• Function (transputer plus RAM, disk control, other peripheral control)

• Memory size.

• Package (68 pin PGA, 84 pin PGA, PLCC, and other transputer packages)

232 4 Applications

• Implementation (PCB, hybrid, silicon, etc)

16.3.4 Introduction to graphics TRAMs

If the graphical display processors are implemented as modular transputer compute elements, each with
transputer, memory and logic to implement special functions, the problem of designing a distributed graphics
system becomes much simpler.

To provide the distributed frame store requirements and any display output type (see section 16.2.6), two
different TRAMs are deemed necessary.

• Serial port TRAM: This contains an IMS TaOO and all the logic necessary for a complete frame store. It
can be connected to other identical TRAMs so that distribution of the frame store becomes a matter of simple
replication of this TRAM. This is known as the Serial port TRAM because of the serial nature of the output
data.

• Display backend driver TRAM: This contains all the logic necessary to drive a particular display type.
This TRAM interfaces directly to, and receives it's high speed data from, the serial port TRAM. This TRAM
will be known as the Display Backend TRAM.

Separation of frame store scanning from the processor address and data bus is achieved on the serial port
TRAM using video RAMs (see section 16.9). Video RAMs have a separate serial port (a port in this context
means a separate access path to shared data) for video data. This allows the frame buffer to be scanned
in a serial fashion without causing significant loss of processor access to the RAM, relieving the arbitration
problems associated with conventional RAMs (see section 16.2.5).

The serial port TRAM supplies a continuous stream of high speed serial data from the frame store. The
Display Backend can drive display monitors using this stream of data in a variety of display modes. These
TRAMs are connected together by a 60 way ribbon cable, which contains a control bus and a distributed data
bus. All serial port TRAMs in the system connect in parallel to this cable (see figure 16.13).

Links

Serial
Port

TRAM

Links

Serial
Port

TRAM
Display
TRAM

60 way Ribbon Cable

~--~------~~~~~~~~~~~~--~~----------~

Figure 16.13 Connectivity of graphics TRAMs

16.3.5 An Introduction to the serial port TRAM

This section contains a short introduction to the serial port TRAM. A detailed description can be found in
section 16.4.

The serial port TRAM (see figure 16.14) consists of:

• A transputer: An IMS TaOO, which maintains the frame store.

• Memory: The standard serial port TRAM contains a total of 2.25 Mbytes of 4 cycle dynamic RAM. Of this
1 Mbyte is standard dynamic RAM and 1.25 Mbytes is Video RAM.

16 A transputer based distributed graphics display 233

Random Port Serial Port
- -

IMS T800 ill 32 J\ ill 32 J\ 1.25 MByte 32 -'" Distributed 11. 60 J\ en

+ interface Data Bus
:::J

Video RAM
Serial V

OJ

control \[11 en N' 11 Interface '\f 11 '" :::J
OJ C;;

Data e
!!l
'"

A~rtss
II ~ Cl - Control E

~7
0

en (,,) en
~
'C 'C
'C .El

11. J\
«

11. 32 J\ VRAM VI. VRAM :::J

1 MByte 32 :g
Address Address en Workspace '\f 11 \[11 Logic N" Generator Ci

'--
'--

Figure 16.14 Serial port TRAM block diagram

• Video RAM address generator: This controls the VRAM serial port addressing. It is in turn controlled by
the distributed control bus. \
• Serial bus interface: This is the distributed serial data and control bus interface. It connects the distributed
control bus to the various timing components on the TRAM and the VRAM serial data to the distributed data
bus.

Figure 16.14 shows a block diagram of the serial port TRAM, outlining some of the blocks previously described.

16.3.6 An Introduction to the display backend TRAM

All display TRAMs have a generic architecture. Figure16.15 shows the generic block diagram of the display
backed TRAM architecture. A detailed description of the Display Backend can be found in section 16.5.

Distributed
Data and
Control

Bus

Q)
u

~
Q)

E

e
E
o

(,,)

Application Display
Hardware

,.....-------1 Video Clocks
Control and Timing

Generation

Figure 16.15 Generic display TRAMs

234 4 Applications

The Display Backend TRAM consists of:

• A transputer link: Communication to this module via at least one INMOS link, as a processor may not be
necessary as it is used only for control and initialisation of the backend hardware.

• Video system clock generator: This provides the video system clock. The video system is timed from
this clock.

• A video timing generator: From this, all synchronisation and system control is derived.

• Serial control and data bus interface: This drives the distributed serial control bus and takes data from
the distributed data bus.

• Application specific display hardware: This hardware produces the application specific output derived
from the 32 bit input data.

16.4 Serial port TRAM

In the short introduction to the serial port TRAM (section 16.3.5 and in figure 16.14) the functional blocks
were briefly discussed. This section will discuss the serial port TRAM in more detail.

16.4.1 Introduction

The serial port TRAM can be considered as a transputer with memory, some of which is dual ported video
RAM. The VRAM has a serial and a random access port to the frame store. These two ports can be
considered more or less as separate entities ,(see figure 16.14). This section will give an overview of the
serial port TRAM and then describe each port separately.

Memory map

I I Top Of Store ,,,-,,,,,,,,,,,, '''-'
. System Coriirol .

#00000000

#80900000

#80280000

#80100000

#80000000

Figure 16.16 Memory map

16 A transputer based distributed graphics display 235

The serial port module has 2.25 Mbytes of usable dynamic RAM. Of this 1 MByte is conventional dynamic
RAM and 1.25 Mbytes is dual ported video RAM. Referring to figure 16.16, the RAM has been placed so
that the video RAM abuts the 1 Mbyte of workspace RAM, this allows the video RAM to be used as extra
workspace RAM if required.

The video RAM is mapped twice into the decoded memory map so that the special logic modes (marked Logic
Mode) used in some video RAMs, which need special interfacing cycling, can be used (see section 16.9).
These special logic modes can be set by writing data to the area of store reserved for this purpose (marked
Logic Set). Registers which control the serial port addressing and frame synchronisation are mapped into
the positive address space (marked System Control).

Frame store addressing and the video RAM

The serial port TRAMs frame store is designed around the Packed Pixel architecture (see section 16.2.3).
There are two addressing schemes that can be used with video RAMs, when using packed pixel architecture:

• Memory relative: Data is placed into the frame store with addressing related to the physical addressing
of the video RAM. Put simply, the VRAM row and column addresses have a direct relationship with the frame
stores X and Y coordinates, but the display can have a different horizontal dimension than the frame store.
Notice that the maximum width of display is the size of the dual port buffer in the VRAM, ie. 10248 bit pixels
(see figure 16.17).

Vram Updates

Start of VRAM Row
Start of next VRAM Row

Frame Store

Column Address

Figure 16.17 Frame buffer relative addressing

• Display relative: The VRAM raw and column addressing have no direct relationship to the frame stores
X and Y coordinates. Instead the frame store addressing and the visible display have the same horizontal
dimension (see figure 16.18). This scheme needs the video RAM real time data transfer mechanism (see
Section 16.9), which allows the display horizontal dimension to be longer than the VRAM dual port buffer, ie.
longer than 1 024 8 bit pixels.

236

CI)
CI)

i

Column Address

Pixel

Frame Store

VRAM Addressing

Display Data Addresses
do not correspond to

VRAM Physical Addressing

Figure 16.18 Display relative addressing

4 Applications

The serial port TRAM normally uses the display relative addressing scheme. When interlace is used, which
can be set at initialisation, it is switched into memory relative mode, and the frame store has a fixed horizontal
dimension of 1024 bytes (although the display can be smaller). These methods reduce the logic necessary
to construct the address generator.

Pixel mappings

The video RAM can be used for various pixel types and screen sizes. The usage of the frame store en
tirely depends upon the user software and the backend display TRAM. Recommended mappings are (see
figure 16.19):

.8 bit packed pixels: Pixels mapped as bytes, four pixels per word. This allows 256 colours per pixel with
a maximum of 1310720 pixels. This can be used for high resolution CAD, ie. one serial port module can
produce a 1280 by 1024 by 8 bit display, with an appropriate display backend .

• 32 bit packed pixels: Pixels can be mapped as 32 bit words, allowing a maximum of 232 colours per
pixel. One serial port TRAM can have a total of 327680 pixels. Applications include any system that needs
real colour displays.

The method of mapping the frame store to the processor can have a profound effect on the performance
of the graphical operations a single IMS T800 can achieve. To achieve most efficient use of the IMS T800
performance, pixels should be mapped as either bytes or 32 bit word data types as this takes advantage of
the IMS T800s internal datapath representation.

Double buffered frame store addressing

It is useful, when maximising performance in some graphic applications such as animation, to have at least
two displays mapped onto the frame store. This allows one to be displayed whilst another is being updated.

16 A transputer based distributed graphics display

IMS T800
Address Map

etc ..

t

Byte Mapped Pixel Display

Word Mapped Pixel Display

Figure 16.19 Pixel mapping

237

To facilitate this, the address of the first pixel at the top left of the display can be preset. This address
presetting allows the display to be flipped to alternate areas of the frame store (see section 16.4.3). Flipping
the display during frame flyback allows complete frames to be drawn before being displayed. This prevents
disturbing visual artefacts.

The transputer can be informed of the state of the frame flyback condition so as to synchronise the frame flip
to the frame flyback period. It is also sometimes necessary to synchronise with other serial port TRAMs in a
system when some system wide or global event has occurred. Each serial port TRAM can cause a system
event or can respond to it from an external source.

For this reason logic has been included so that the serial port TRAM can be informed when a frame flyback
or system event has occurred. This logic uses the IMS TaOO Event input (similar to a transputer link but it is
only able to convey information about when external events have occurred). Alternatively the transputer can
poll some registers which have bits representing the state of these signals.

Frame store distribution

The method of frame store distribution (see section 16.3.1) can have dramatic effects upon the design of the
hardware to implement it. For the serial port TRAM the design rests on the specification of the distributed
data bus, which consists of a synchronous (clocked) inverted open-collector bus. (see figure 16.20).

The open-collector arrangement allows any serial port TRAM to output data onto the bus at any time without
fear of bus contention. This removes any need for any bus arbitration logic hence, allows arbitrary distribution
of screen space amongst an arbitrary number of serial port TRAMs. Each serial port TRAM has enough
memory to be able to address any pixel of the display. Since all serial port TRAMs are synchronised any
one of them can alter the pixel data presently on the distributed data bus. If any serial port TRAM is not
responsible for any particular pixel, it simply writes a null (zero) into that location in the frame store. This fits
neatly into the IMS TaOO 2D block move instructions (see section 16.3.2), as null has special meaning when

23B 4 Applications

Figure 16.20 Distributed data bus open-collector arrangement

moving data with these instructions [2].

This distribution technique is simple, and provides the spatial and characteristic distribution methods described
in section 16.3.1. To further enhance the flexibility of this, an output enable control bit is mapped into the IMS
TBOO address space. Any serial port TRAM output can be switched off (or nulled) completely. This provides
the chronological distribution method discussed in section 16.3.1.

The objective distribution method also discussed in section 16.3.1 has not been implemented due to its
complex nature. It is suggested that the reader refer to 6 and 7 both of which deal with distribution of solid
object geometry and some implementation methods.

16.4.2 Random access port

This section will describe the implementation of the transputers access to the frame store. It also describes
the mechanisms used to take full advantage of video RAM architecture.

Memory upgrades

As memory technology progresses, memory speeds increase as well as memory densities. Usually a de
signer, where pOSSible, will incorporate the logic and PCB tracking necessary for a memory upgrade. To
upgrade designs to more memory is quite straightforward, but to upgrade to a higher speed can mean a
redesign, an option that can be economically unacceptable.

The IMS TBOO allows the designer to upgrade memory speeds by changing the memory interface Configu
ration (see section 16.B.9). The serial port TRAM has the configuration data stored in a PAL (programmable
array logiC) which also controls the IMS TBOOs speed selection (as this has a bearing on the memory interface
timings). This means that a speed upgrade requires only a PAL change (assuming logic delays are taken
into consideration).

The upgrade paths allowed for in the design of the serial port TRAM are: • Memory size: An increase in

16 A transputer based distributed graphics display 239

the size of the workspace RAM from 1 Mbyte to 4 Mbytes, using 4 Mbit rams when available. For the 4 Mbit
RAMs extra addressing bits were included with no real cost. The upgrade involves a decode PAL and an
option resistor (to change an address bit to a decoding PAL). The decoding needs to be changed because
the video RAM will be pushed further up the address space.

• Memory speed: The speed of the interface can also be changed with the configuration PAL which also
contains the speed selection for the IMS T800 as discussed above.

Memory cycles

The serial port TRAM has eight different types of memory access:

• Internal read/write: This cycle is the fastest. It is internal to the IMS T800 and lasts for a Single cycle (50
nano seconds on the 20 Mhz transputers)

• External read/write: This cycle is the basic external memory cycle. It lasts for four processor cycles (200
nano seconds on the 20 Mhz transputer) and consists of a conventional dynamic RAM multiplexed addressed
cycle (see figure 16.21).

T1 T2 T3 T3 T4 T4 , T5 I T6
\

I
,

I

t ~ ~
,

~ ProcClock ~ ~ ~ , , , ,
I ,

~
,/

~ Address Latch
I , ,

RAS I ~ IRA< precharge, , , ,
I , ,

~ MUX t ~
, I

CAS ~ ~ I , , I ,
Multiplexed : Address ' :. -=

Figure 16.21 External read/write cycle

• Refresh: This is a CAS before RAS refreSh cycle (see section 16.8.5), due to an addressing complication
of the video RAMs. The notMemRf strobe is used to cause the relative timings of RAS and CAS to change.

• Video update: This cycle is controlled by the video update logic. It allows the video RAM serial port to
be updated. The vtdeo logic proceeds after gaining control of the data and multiplexed address buses and
cycles the video RAM with a serial port update cycle. This cycle only happens infrequently, when data in the
serial port is about to run out of data.

• Logic operation set: The logic operation unit available in some video RAMs is activated using a CAS
before RASwfire-Gyc~e (see section 16.9). The logic mode remains set until a Reset Logic Mode or another
Logic Operation Set Mode is issued.

• Logic operation: The Logic Operation cycle is a conventional RAS-CAS cycle but is six cycles long. This
cycle needs a special extended RAS pulse, which is generated from a combination of the interface strobes
notMemS1, notMemS2 and notMemS4. This cycle is forced to six cycles using notMemS4 strobe fed back

240 4 Applications

into the Wait input of the IMS T800. This is done as a function of the addressing, and is controlled by a PAL .

• Serial port control logic: This cycle allows the transputer to access the serial port control logic. It is
initiated when A31 is low. All RAMs are disabled in this cycle .

• Configuration: The configuration sequence is a conventional external read cycle that is used only after the
transputer has just been reset (see section 16.8.9). The configuration data is generated from the configuration
PAL using the six least significant unlatched address bits. The configuration data is then latched into a single
bit of the decode address latch to hold the data until the end of the cycle.

Address latches and multiplexing

Due to the multiplexed address-data bus of the IMS T800 the addresses are only available at the begining of
the external memory cycle. The addresses have to be demultiplexed from the data (see section 16.8.3). This
is done using the transputer strobe notMemSO driving the latch enable inputs (marked LE on figure 16.22)
of two ten bit transparent latches. The latches used are high speed CMOS, as these have low propagation
delays and have high output drive.

Multiplex Control From High Speed PAL

...... ",-

IMS T800 -
....

c:) 10 bit
Latch

notMemSO ..
LE ... MultiplexeS!.

Address r
Dynamic RAM

~
10 bit
Latch r notMemSO LE

MemAd Bus

Figure 16.22 Multiplex arrangements with dynamic RAMs

Due to the multiplexed address bus used with dynamic RAMs, the now demultiplexed transputer addresses
have to be multiplexed onto the RAM address bus (see figure 16.22). To achieve this the output enables
of the address latches are controlled from a high speed PAL. The outputs from two latches are connected
together.

This control is a function of the transputer memory interface strobes notMemS2 and MemGranted (see
Section 16.8). MemGranted is used because the video logic needs to drive the multiplexed address bus
during a video update and therefore the multiplexer outputs have to be turned off completely.

A slight complication concerning the order of the multiplexed addresses presented to the video RAM, arises
due to the way data is stored in the video ram. The most significant address bits are presented as row
addresses, which can cause the a problem with the refresh address, which is on the low order address bits
(see Memory cycles).

Decoding

The top address bits AD31, AD23 .. 18 and the Configuration data are latched into a separate eight bit
transparent latch. These address bits are used for the decoding.

16 A transputer based distributed graphics display 241

The RAM is arranged as:

• A single bank of general workspace RAM arranged as eight 256 Kbit by 4 RAMs (1 Mbit by 4 with
the upgrade).

• Five banks of eight 64 Kbit by 4 (256 Kbit) video RAMs.

The high speed PAL that controls the operation of the address multiplexer also generates four RAS strobes,
one for the workspace RAM and three for the video RAM. Pairs of video RAM banks share RAS strobes The
last VRAM bank and the workspace RAM have their own RAS strobe.

The CAS strobes are supplied from another high speed PAL. This essentially is the RAM decoder, having
six separate CAS strobes The decoding is a function of the latched addresses A20 .. 18, A31 and the Option
input (see Memory upgrades). The CAS strobes are timed from notMemS3 on a External Read/Write cycle.

Decoding with RAS is not essential if a full decode with CAS is used, as in this case, but it has several
advantages:

• Less heat dissipation: It will cause less heat to generated by the memories. This is so because RAMs
consume more current when RAS is cycled, even when not completely selected by a subsequent CAS strobe.
Heat dissipation can be a problem in non forced air enclosures .

• Speed: Using several RAS strobes instead of one decreases the capacitive loading on the respective
strobe, so the strobe can meet critical timings.

16.4.3 Serial access port

This section will describe the implementation of the serial interface on the serial port TRAM.

Introduction

At the heart of the distributed frame store are two clocks which are synchronous. 80th clocks are distributed
to all serial port TRAMs in the system. One is known as the sequencer clock and the other is known as
the VRAM clock (the VRAM clock can run slower than the pixel rate, so that the 32 bits of data can be
multiplexed at a higher clock rate to the display). The VRAM clock is stoppable, controlled by the display
TRAM, and is switched off just before the start of, and switched on just before the end of, the horizontal
blanking period.

MemReq
MemGranted

Address
Generator

Address
Sequencer

Sequencer

Random Port

Multplexed Address

Pixel
Counter

Clock

VRAM

t
Pixel Clock

Disrtributed

Distributed Data Bus

Figure 16.23 Serial interface block diagram

242 4 Applications

The serial port is built from several distinct groups of logic all synchronised to the previously mentioned clocks:

• The address generator: This generates the new serial address for the VRAM during a serial port update.
The address generator has tri-state bus drivers connected to the multiplexed address bus of the VRAM.

• Address sequencer: This orchestrates control of the address generator during the update the serial port.
The address sequencer takes over from the transputers memory interface and then cycles the VRAM in a
data transfer cycle.

• Pixel counter: This starts the sequencer when serial data in the VRAM is about to run out. It is simply
a counter that counts the data read out from the serial port, which resets itself immediately after the update
occurs.

• Serial bus interface: This is the interface to the distributed data and control bus. This interface is clocked
using the sequencer clock.

Address generator

The address generator is used when a video update cycle has been initiated. It provides 19 address bits,
some of which are presented to the VRAM during a serial port update cycle (see section 16.9) and some
of which are used as decode selectors. These addresses only form the start address for the serial data,
subsequent data is accessed by clocking the VRAM (see figure 16.24).

-

~
Column

Start /
Address 18

(J)

::>
III

!!l
'" ~ Cl

-::t:::: Row =f?
Row /

Start Address 18 75
Address I ncrementer f-

'-- f\ ,
3/ -=

Clocked

From Sequencer Decoder

Figure 16.24 Address generation scheme

Multi

-">VRa
"V

plex Control

m Multiplexed
Address Bus

VRam Bank
Seriai

Output
Enables

The lower 8 bits of the address are fixed but are presetable. This forms the column address to the VRAM
during the update cycle. This determines which data appears at the VRAM serial output after the VRAM has
been updated.

The next 11 address bits are generated from a preloadable counter that increments just after every update
cycle. This address points to the first VRAM row to be accessed after each new frame is started. The lower
8 bits from this form the row address in the VRAM during the update cycle. The top 3 bits of the counter are
used to control the serial output enables of the five banks of VRAM, see figure 16.24. There is no decoding
on the update cycle, ie all VRAMs are updated at the same time.

The counters top 5 bits are preloaded from a 5 bit register which the user can preset so that the display
can start from various addresses of the video ram. This provides the frame flipping mechanism mentioned in
section 16.4.1.

16 A transputer based distributed graphics display 243

Address sequencer

This logic interfaces the address generator to the VRAM and determines the timing of the serial update control
strobes. It arbitrates this update cycle between the address generator and the IMS T800s memory interface
logic.

The sequencer is designed to update the serial port without interrupting the pixel stream. To do this the pixel
counter informs the sequencer that the serial data is about to run out. The entire sequencer operation last
for 31 sequencer clocks, (new data appears at the VRAM serial outputs after 30 sequencer clock periods).

The sequencer requests the VRAM address bus by asserting MemReq (see section 16.8). When Mem
Granted is asserted by the transputer, the sequencer cycles the VRAM in a serial port update cycle. This
cycle updates the serial port via the random port when the VRAM strobe DT/OE is brought high synchro
nised with the VRAM serial clock (see section 16.9). This is known as Real Time Read Data Transfer, see
figure 16.36.

Pixel counter

The serial port of the VRAM wraps around after 256 clocks. It therefore needs reloading every 256 VRAM
clock cycles if data is not to be redisplayed. To implement this, the pixel counter signals to the sequencer
when the end of serial data is about to occur. This end of data signal knows that the update will occur 30
clock periods later, so it signals the sequencer early.

A slight complication of the sequencer operation concerns the line flyback period. The sequencer must finish
its operation before line flyback occurs, otherwise data destined for the start of the next line will be lost. The
pixel counter will not cause an update to occur if an end of line is due, so that the update cannot occur during
the line flyback period. The timing of this is critical, as the data which finds its way to the display is pipelined
twice (at the distributed data bus output driver and at the display TRAM) before getting to the display. This
means the pipeline must be precharged with data before the display line starts and emptied before the line
ends. To this end, the VRAM clock is turned on two clock periods before the start of the line and switched
Off two clocks before the end of the line.

Distributed control

The serial port TRAM is designed to function as part of a distributed graphics system. For this reason the
control necessary to drive the distributed data bus has to be common to all serial port TRAMs in the system.
All clocking and control strobes are distributed using parallel terminated transmission lines.

The transmission lines are driven at the source (Display TRAM) using high speed CMOS logic with high
output drive capability. This is terminated with a resistor to ground equal to the characteristic impedance of
the transmission cable (this resistance will be anything between 50 and 1000). All control inputs to the serial
port TRAM are short stubs to buffers, which offers little disturbance to the transmission line.

244 4 Applications

16.5 Display TRAMs

16.5.1 Introduction

It would be impractical to build a graphics system that is capable of practically any present day graphical
display output. It is reasonable that a display TRAM should have application specific display output driving
hardware.

16.5.2 An example display TRAM

This particular display TRAM has been designed with some features that allow it to be used in a variety of
applications. This display TRAM has:

• A transputer: AIMS T212 is used purely as a logic controller to initialise the video timing logic, colour
look up tables and the mode selection.

• Distributed control bus interface: This consists of a few transmission line drivers, distributing the control
signals to all the serial port TRAMs.

• Video clocks and timing generator: The pixel clocks and video timing generation used to synchronise
all serial port TRAMs are controlled by the display TRAM.

• Three pixel channels: Each display channel converts 32 bits of input data from three distributed data bus
inputs into the analogue control signals to drive standard display monitors.

Pixel channels

The display TRAM consists of three independent 8 bit pixel channels, all with common clock and video timing
generators (see figure 16.25). Each channel has:

• Premultiplexer: A eight bit pre multiplexer which links 8 bits of data from channel 0 onto channel 1 and 8
bits of data from channel 0 onto channel 2. This then maps 24 input bits of channel 0 onto the lowest 8 bits
of channels 0,1 and 2.

• Input latch: Distributed data bus 32 bit input latch.

• Multiplexer: 32 bit input 4 to 1 multiplexer

• CLUT: 256 location colour lookup table.

"l Channel 0
In

'" 1ii
o

11===t=;1.....
CS H:;=========:)

Figure 16.25 Pixel channels

Colour
Lookup
Table

Red
Green
Blue

16 A transputer based distributed graphics display 245

Display modes

There are three modes that the display TRAM has been designed for:

• 8 bit mode: This mode treats the 32 bit pixel data entering the display TRAM as four 8 bit pixel values.
This data is multiplexed to the colour look up table. All three pixel channels operate separately sharing only
the distributed control, (see figure 16.26).

IMS T212

Video
System
Clock
Gen.

Video
Timing

Generator

D,srlbuted Control

\- --- -... . ,
t. ____ : Unused

.1 Used

Pixel
Chan ne I

2

,
:.-.
~
~ '-7..-:r-X''''''

Figure 16.26 8 bit mode

Distributed
Control

Bus
Interface

• Low resolution 24 bit mode: This mode treats the 32 bit pixel data entering the display TRAM as a single
32 bit word of pixel data. The top 8 bits are not used, leaving the lower 24 bits as pixel data. The three pixel
channels contribute to the display, one channel per primary colour (see figure 16.27).

Pixel
Channel

o

DistributedBus 0

Red

Control/Clock

Pixel
Channel

1

~ .. · . · . " · . · . · . . "
.. ;-,! : ~
" \ \ II \ \
,I \ \ .' \ \ .' \ \ I' \ \
" \ \ It \ \
\' \ \ ______ __ ... ' __ 1.J _____ ,

: Distributed Bus 2: , .. \

Figure 16.2724 bit mode

Blue

~"'--"'''''--''i
~--..-- ' Unused

Used

246 4 Applications

The 24 bit mode has a different clocking arrangement. Since data is being displayed at the same clock
speed (pixel clock) but four times as much data is being used by the display, the input clock speed must
be increased, ie pixel clock runs at the same speed as the pixel bus. The mode selection can change the
clocking arrangements to suit these modes.

• High resolution 24 bit mode: This mode is similar to the 8 bit mode, except all three channels are used
to provide each of the primary colours (see figure 16.28).

Pixel
Channel

o

Red

Control/Clock

Pixel
Channel

1

Pixel
Green Channel

2 Blue

• Used

Distributed Bus 0 Distributed Bus Distributed Bus 2

Figure 16.28 High resolution 24 bit mode

16.6 System configurations

16.6.1 Driving the frame store

The serial port TRAM can be used in a varied and non specific manner, but the techniques fall into several
distinct classes.

• Data generator: The serial port TRAM receives high level graphical commands from another TRAM and
satisfies these commands by generating the drawing data into the frame store. The serial port TRAM becomes
a programmable graphical drawing engine.

• Data sink: No graphical tasks are executed on the serial port TRAM. The serial port TRAM acts purely as
a data sink, receiving data from the serial links and places this data directly into the frame store. The frame
store data is generated elsewhere on other TRAMs with transputers or specific hardware.

• Data generator and sink: A mixture of both the above methods.

The performance of the above techniques can be improved by adding more Serial Port TRAMs and distributing
the drawing tasks appropriately, thus improving the effective drawing speed or the total serial link bandwidth
into the frame store (see figure 16.29).

16.6.2 Frame store configurations

Using a combination of serial port TRAMs and the Display TRAM many system configurations can be con
structed.

• Minimal 8 bit display system: The minimal system consists of a single serial port TRAM and is connected
as shown in figure 16.13. This minimal system provides all that is necessary for a 8 bit pixel (256 colour)

16 A transputer based distributed graphics display 247

Figure 16.29 Conceptualisation of the distributed frame Store

graphic display, to a maximum of 1280 by 1024 pixels .

• Distributed 8 bit display system: Figure 16.13 shows a distributed 8 bit graphic display system. This
distribution provides increased drawing speed and transputer link bandwidth into the frame store.

For example in [7], a multi-user flight simulator is described in detail. The system produces an 8 bit 512 by
512 pixel display at 23 frames/sec. The system is based upon a transformation pipeline, and at the end of the
pipeline are the polygon shaders. These are transputers that produce display data and send it to the graphics
transputer using the data sink method described in section 16.6.1. An upgrade to higher resolution would
consist of placing these polygon shaders onto four serial port TRAMs, turning the display system into a data
generator (see figure 16.30). The display resolution can now be increased with no impact on performance.

FromRing

Figure 16.30 Modified high resolution flight Simulator

248 4 Applications

• Minimal low resolution 24 bit display system: The system in figure 16.13 can also be used as a low
resolution (maximum of 327680 pixels) 32 bit pixel system. The Display TRAMs premultiplexer is used in this
configuration and provides a maximum of 24 bits of output colour (8 bits per primary). Each pixel channel is
used as a single primary colour output.

• Distributed low resolution 24 bit display system: The system in figure 16.13 can also provide a low
resolution 32 bit display. The display TRAM is set into 24 bit mode as above, but the system provides
increased possible drawing and link bandwidth into the frame store as in the distributed 8 bit system, but with
more colours.

• High resolution 24 bit display system: This system (figure 16.31) is essentially 3 separate 8 bit systems.
This method separates the red green and blue components into three 8 bit high resolution display channels
as in the 8 bit system. It has all the characteristics of the 8 bit system but each of the 3 pixel channels on
the Display TRAM operate independently to provide a primary colour as in the low resolution 24 bit system.

• High resolution distributed 24 bit display system: This system (figure 16.31) is essentially the same as
the previous system except that each 8 bit pixel channel is distributed in the same way as the 8 bit system.
Again this method separates the red green and blue components into three 8 bit high resolution display
channels, but the possible drawing and link bandwidth into the frame store has been increased.

8 Bit Red

System

8 Bit Green Display
System TRAM

8 Bit Blue
System

Figure 16.31 High resolution 24 bit display

16.7 Conclusion

This technical note has shown that the performance of the frame store can be increased without using special
hardware by using video RAMs. The video RAM provides a flexible and efficient frame store by mapping the
display data directly onto the transputers address map without degradation of bus usage.

This note has looked at the problems associated with frame stores, and has highlighted the problems of
single processor bus bottlenecks. It has shown how these bottlenecks can be removed by distributing the
frame store, and that this distribution is simplified using transputers.

It has been shown that the large amount of processing necessary to perform typical graphical operations
rapidly swamps single processor systems. In high performance systems it becomes necessary to distribute
the processing task into smaller more manageable tasks. The complexity and control of this distribution is
considerably reduced using transputers and occam, and the distribution of the frame store compliments such
a system by providing a convenient interface to the display. Once the distribution has been achieved, adding
more transputers into the system, at the display or at the processing front end, can produce any desired
system performance.

16 A transputer based distributed graphics display 249

16.8 Transputer memory interface

The IMS T800 has a configurable memory interface designed to allow easy interfacing of a variety of memory
types with a minimum of extra components. The interface can directly support DRAMs, SRAMs, ROMs and
memory mapped peripherals.

The IMS T800 has a 32 bit multiplexed data and address bus with a linear address space of 4 Gbytes. The
interface has:

• 4 byte write strobes, for controlling byte write operations.

• A read strobe.

• A refresh strobe, for signalling refresh cycles when using dynamic RAMs.

• 5 configurable strobes, for general interfacing of memories.

• A wait input, for extending the interface period.

• A memory configuration input, used to configure the interface at after reset.

• A bus request input and bus grant output, to relinquish control of the memory interface.

Figure 16.32 shows the inputs and outputs for the T800 transputer that are associated with the memory
interface.

notMemWrBO-3
notMemRd

notMemRf

notMemSO-4

MemnotWrDO

MemnotRfD1

MemAD2-31

MemReq

MemGranted

MemWait
MemConfig

-4 ~

..
r

r--- 5 ~

.. . .. -
-4--30~

..
•

.. ..

byte write strobes

read strobe

refresh strobe

configurable strobes

notWriteFlag/data a
notRefresh Flag/data

address/data 2-31

external request

external request granted

wait states

configuration input

Figure 16.32 IMS T800 memory interface

All RAM appears to the IMS T800 as 232 bytes mapped as 32 bit words in a linear signed address space.
Addresses, therefore, run from 80000000'6 through FFFFFFFF'6 to 7FFFFFFF,6. As shown in figure 16.33
the IMS T800 has 4 Kbytes of internal Single cycle (50ns on 20 Mhz part) RAM from byte address 80000000,6
to 80000FFF,6. Of this RAM the first 70'6 bytes are reserved for processor use. The IMS T800 has MemStart
at 80000070'6 and start of external memory at 80001000,6.

250

Hi

Machine Map

Reset Instl

Memory Configuation

User Programs

Reseverd For

Extended Functions

Lo

#7FFFFFFE

#7FFFFFF8
#7FFFFF6C

#80001000 External Mem

#80000070 Mem Start

#80000000 Base Of Memo~

Figure 16.33 T800 memory map

4 Applications

It is advisable for the address range 8000000016 to FFFFFFFF16 to be used for RAM and 0000000016 to
7FFFFFFF16 to be used for ROM and 110. If external memory exists it will overlap internal memo~, but if
the memory map is not completely decoded, it is usually possible to access the hidden external memory at
another address.

16.8.1 Memory interface timing

The IMS T800 memory interface cycle has six timing states, referred to as Tstates. The Tstates have the
nominal functions:

Tstate

Tl address setup time before address valid strobe
T2 address hold time after address valid strobe
T3 read cycle tristate/write cycle data setup
T4 extended for wait states
T5 read or write data
T6 end tristate/data hold

The duration of each Tstate is configurable to suit the memo~ devices used and can be from one to four
Tm periods. One Tm period is half the processor cycle time, i.e. half the period of ProcClockOut. Thus,
Tm is 25 nsec for an IMS T800-20 (20MHz transputer). T4 may be extended by wait states in the form of
additional Tms.

With this flexible arrangement, a variety of memory timing controls can be obtained with little external hard
ware. The bus timing is shown in figure 16.34.

Every memory interface cycle must consist of a number of complete cycles of ProcClockOut: i.e. it must
consist of an even number of Tms. If there are an odd number of Tm periods up to and including T6, an
extra Tm shown as "E" by the memory interface program (see section 16.8.9) will be inserted after T6.

16.8.2 Configurable strobes

The use of the strobes notMemSO to notMemS4 will depend upon the memory system. The rising edge of
notMemS1 and the falling edges of notMemS2 to notMemS4 can be configured to occur from 1 to 31 Tm
periods after the start of T2. This is summarised in figure 16.34 and in the table below.

16 A transputer based distributed graphics display

Tm period T1 T2 T3 T4 T5 T6 T1

fixed fixed
notMemSO 1

fixed programmable

I- • •
programmable fixed

notMemS1

.. • ·1
programmable fixed

notMemS2

.. • ·1
programmable fixed

notMemS3

notMemS4 .. • !I
READ

MemAD address data f----l
notMemRd

WRITE
MemAD address H data H

L---:..-.-:..-.----:e~arl!-:-y --r=la'""te--"':"='~--------.J '-----

notMemWrB(w)

Signal

notMemSO
notMemS1
notMemS2
notMemS3
notMemS4

Starts

T2
T2
T2 + (Tm*s2)
T2 + (Tm*s3)
T2 + (Tm*s4)

1 write

Figure 16.34 The configurable strobes

Ends

T6
T2 + (Tm*s1)
T6
T6
T6

(or end of T6 if this occurs first)

Where s1, s2, s3 and s4 are the configured number of Tm periods for each respective strobe.

251

It should be noted that the use of wait states can advance the rising edge of notMemS1 in relation to that of
the other strobes. Care must be taken if this signal is being used when Wait states are being used.

16.8.3 Multiplexed address-data bus

The address and data buses are multiplexed onto the MemAd bus. Addresses are available from the begining
of the cycle until the end of T2. Whereupon the MemAd bus will go either tri-state (a passive state) or have
data present depending whether a read or write cycle is in progress (if the cycle is a single or multiple
byte-write cycle, bytes which are not to be written will go tri-state)

The address bus can be demultiplexed using transparent latches (latches that act as buffers until the latch
control is used, whereupon the data becomes held), controlled by notMemSO directly (not a configurable
strobe). The transparent latch will buffer the MemAd bus whilst notMemSO is not active. When notMemSO
goes active at start of T2, the addresses are held. Using transparent latches makes the demultiplexing simple
(using notMemSO directly) and gives as much address set up time as possible.

16.8.4 Byte selection

During a write cycle, byte addressing is achieved by the four write byte strobes notMemWrB[O .. 3]. Only the
write strobes corresponding to the bytes to be written are active. During a read cycle complete words are
read, and the bytes to be used are selected internally. Thus, the two lowest order address bits AO and A1 are
not needed and are not output with the rest of the addresses. However, care must be taken when mapping

252 4 Applications

byte wide peripherals onto the interface, as they are addressed on word boundaries.

The two lowest order data bits during the address period, are used to give early indication of the type of cycle
which is in progress:

MemnotWrDO is low during T1 and T2 of a write cycle.

MemnotRfD1 is low during T1 and T2 of a refresh cycle.

The notMemWrB strobes can be configured to fall either at the beginning of T3 (early write) or at the beginning
of T4 (late write); the rising edge is always at the beginning of T6. Early write gives a longer set up time for
the write strobe but data is only valid on the rising edge of the pulse. For late write, data is valid on the falling
edge of the strobe but the pulse is shorter.

16.8.5 Refresh

The IMS T800 has an on-chip refresh controller and 10 bit refresh address counter and can, therefore, refresh
DRAMs of up to 4 Mbit capacity (since these are arranged as 1024 rows of 4096 bit columns) without requiring
the counter to be extended externally.

Refresh can be configured to be either enabled or disabled. If enabled, the refresh interval can be configured
to be 18, 36, 54 or 72 Clockln periods; though if a refresh cycle is due, the current memory cycle is always
completed first. The time between refresh cycles is thus almost independent of transputer speed and the
length of memory cycles.

Refresh cycles are flagged by notMemRf going low before T1 and remaining low until the end of T6. Refresh
is also indicated by MemnotRfD1 going low during T1 and T2 with the same timing as address signals. The
address output during refresh is:

ADO
AD1

= MemnotWrDO
= MemnotRfD1

AD2 - AD11
AD12 - AD30
AD31

high, indicates a read
low, to indicate refresh
refresh address
high
low

During refresh cycles, the strobes notMemSO - notMemS4 are generated as normal.

Several choices for the designer exist for refresh schemes with the IMS T800. These are:

RAS only Refresh
This requires an address supplied by the interface to refresh the selected row. The row address is
incremented after every refresh cycle. Note that no CAS is necessary during refresh and all RAMs
are RAS selected.

CAS Before RAS Refresh

Where:

This causes an internal counter in the RAM to be used as the refresh address. It requires that
the CAS strobe goes active before the RAS strobe. This can be arranged because the notMemRf
strobe is active at the beginning of memory cycle and appears at the same time as addresses and
can therefore be used to switch the timing of the RAS and CAS strobes.

CAS Refers to the Column Address Strobe input on the dynamic RAMs.

RAS Refers to the Row Address Strobe input on the dynamic RAMs.

As all RAMs need to be refreshed simultaneously, all RAMs are RAS selected. As RAMs will consume current
when RAS goes active, this is usually the most power hungry cycle of a dynamic RAM interface.

Care has to be taken to ensure that the power supply is not left with a problem of supplying high current

16 A transputer based distributed graphics display 253

surges at refresh, and thereby causing a power supply noise. This can be a particular problem if many
transputers with lots of dynamic RAM are used with a common power supply. The refresh may well be nearly
synchronous due to the common reset signal. This problem will be made worse if the transputers have a
common input clock. The clocking may be near synchronous (albeit on different phases due to the phase
locked clock multiplyer on each transputer).

It is suggested that large capacitors are used as near to the dynamic RAM as possible, as this will reduce
the supply noise to acceptable levels.

16.8.6 Wait states

Memory cycles can be extended by wait states. MemWait is sampled close to the falling edge of ProcClock·
Out prior to, but not at, the end of T4. If it is high, T4 is extended by additional Tms (shown as 'W' by the
memory interface program). Wait states are inserted for as long as MemWait is held high, T5 proceeds when
MemWait is low. Note that the internal logic of the memory interface ensures that, if wait states are inserted,
T5 always begins on a rising edge of ProcClockOut: so the number of wait states inserted will be either
always odd or always even, depending on the memory configuration being used.

16.8.7 MemReq. MemGranted and direct memory access

Direct memory access (DMA) with the IMS T800 has been implemented in the following way.

MemReq can be asserted asynchronously (at any time) with respect to ProcClockOut, but to guarantee
DMA, MemReq must be set up two periods Tm before end of T6. MemReq will be sampled at at the final
Tm period of T6 of a refresh or external memory cycle when ProcClockOut is low. If the IMS T800 is
accessing internal RAM or is idle, MemReq is sampled during the low period of every ProcClockOut and
internal memory accesses will not be affected by this DMA activity.

When MemReq has been sampled high, two Tm periods after ProcClockOuts next rising edge, the address
bus is tristated and all strobes go inactive. One Tm period later MemGranted is set high to indicate a DMA
cycle is in progress. After this MemReq is sampled at each low period of ProcClockOut and if found to be
low MemGranted will be removed synchronously at the next falling edge of ProcClockOut.

A few points to note about DMA:

• If the DMA period lasts for more than one refresh interval the DMA hardware is responsible for
refresh .

• Refresh has higher priority than DMA. So the worst case asynchronous DMA response time is
two external memory interface cycle periods (one external cycle plus one refresh cycle) plus 3 Tm
periods.

16.8.8 Termination

This is always worth a mention, as it is frequently overlooked. All buffered memory strobes and multiplexed
addresses should be series terminated with 25 to 50 n. This prevents negative voltage spikes on address and
control pins. It cannot be overstressed that negative spikes can cause random memory failures, especially
on the higher density RAMs.

The unbuffered data bus need not be terminated as the transputers output drive pads have been designed
to prevent the fast edges associated with negative excursions.

16.8.9 Configuration of the memory interface

A memory interface configuration is specified by a 36 bit word and is fixed at reset time. The IMS T800
has a selection of 13 pre-programmed configurations. If none of these is suitable, a different configuration
can be selected by supplying the complement of the configuration word to the IMS T800s MemConfig input
immediately following reset.

254 4 Applications

A pre-programmed configuration is selected by connecting MemConfig to MemnotWrDO, MemnotRfD1,
MemAD2-MemAD11 or MemAD31. Immediately after reset, the IMS T800 takes all of the data lines high
and then, beginning with MemnotWrDO, they are taken low, at intervals of two Clockin periods, in sequence.
This is the internal configuration scan.

If MemConfig is high at the start of this scan, an internal configuration is to be selected. The selection is
accomplished by MemConfig going low when the IMS T800 pulls a particular data line low, the configuration
associated with that data line is then used.

If, at the begining of the scan, MemConfig is sensed low before MemnotWrDO goes low, an external config
uration is selected. To aid this when an external configuration is used the configuration data is expected to be
inverted so that a single inverter between a MemAd pin and the MemConfig signals an external configuration
from ROM.

After the scan, the IMS T800 performs 36 configuration read cycles from locations 7FFFFF6C16 to
7FFFFFF816. If an internal configuration was selected these reads are ignored. If an external configura
tion has been selected, each of the configuration read cycles will latch one bit of the configuration data into
the MemConfig input from an external source.

Using an internal configuration has the advantage of requiring no external components, only a connection
from MemConfig to the appropriate data line.

However, selecting an external configuration can also be very economical in component use if the configuration
data is stored in a PAL and this PAL is used for other purposes concerning the low order address bits.

If the transputer is booting from ROM, the ROM must occupy the top of the address space. One bit of
the memory configuration data can be stored in each of the 36 addresses mentioned above and the only
additional hardware required is an inverter connecting the appropriate data line (usually MemnotWrDO) to
MemConfig. MemConfig is thus held low until MemnotWrDO goes low and is fed with the inverse of the
configuration data during the 36 read cycles. Alternatively, the inverted configuration data can be generated
from A2-A7 by a PAL.

16.8.10 The memory Interface program

The INMOS Transputer Development System includes an interactive program which assists in the task of
memory interface design. The program produces timing diagrams and timing information so that the designer
can see the effects of varying the length of each T8tate and the positions of the programmable strobe
edges. Of course, the program cannot allow for external logic delays and loading effects as these are system
dependent but it does assist greatly in preliminary design. (It has sometimes been considered an essential
tool in designing the interface configuration data).

A foolproof method to produce the PAL equations for the configuration data is to modify the configuration
data page generated by the memory interface configuration program.

16.9 Video RAMs

16.9.1 What is a video RAM

Recent developments in RAM design architecture has made available a cost effective dual ported Video
RAM. The video RAM has a secondary set of output selector register sets (see figure 16.35) controlled by
an external serial clock.

This extra selector is able to operate totally asynchronously to the normal selector register set. These two
register sets are referred to as the access ports to the RAM bulk, the random access port and the serial
access port. The serial access port accesses data in a sequential manner, which needs to be updated when
data runs out using the special update cycle from the random port.

The random access port is similar to conventional dynamic RAMs except for the extra function of sequencing
the DE (Output Enable) pin. This extra function is called a Data Transfer, hence the pin is renamed DT/DE.

16 A transputer based distributed graphics display

Data "' __ ~I
1/0

Column
1/0
and

Logic
Operation

Unit

Random Port

Multiplexed Address Bus

Ram Bulk

Q;
"'- en ",.-
00>

Q)

a:

~

o
U
Q)

.Q)
en

Serial Port

Figure 16.35 Video RAM architecture

Serial Clock

I---t~ Serial
1/0

255

Sequencing the DT/OE pin on a random access causes data transfer from the RAM to the serial port. Once
the serial port is updated it can proceed to output data without recourse to the random port, until it needs
new data (see figure 16.36).

RAS /
-----'

\'--_____ --JI
CAS /

----I \'---__ ----11
AO~A7~ Row Address X Column Address ~

WE

DTIOE

SC

Serial
Data

7
\

Real Time Data Transfer
Window

Figure 16.36 Video updating

The update cycle is the only time that the serial port and the random port interfere with each others operation,
but because so much data is read into the internal register sets, this interference happens only occasionally,

256 4 Applications

ie. every 256 serial port access cycles. This means that a frame store directly mapped into a processors
address map will use very little of the processors access to memory to refresh the display.

16.9.2 Video RAM logic operations

Some video RAMs have an internal logic operation unit (See figure 16.37). This unit can be set into particular
modes by using a special CAS before RAS write cycle. The modes are selected by writing data to various
locations using this special cycle. The data written is used as a write mask when writing subsequently to the
RAM.

Random I/O
Port

Control

Logic Operation Unit

Address

Control
Sequencer

Ram

Destination Read Data

Source Read Data

Figure 16.37 Logic operation unit

This mechanism allows a whole series of logic operations, such as Exor, Or, etc, to be carried out transparently
during a write cycle. The RAM takes advantage of the fact that write accesses to dynamic RAMs are essentially
read- modify-write cycles internal to the RAM. These modes are programmable and include a write-per-bit
data mask.

16.10 References

IMS T800 Architecture, Technical Note 6, INMOS Limited

2 Notes on Graphics Support and Performance Improvements on the IMS TBOO, Technical Note 26,
INMOS Limited

3 Lies, Damned Lies and Benchmarks, Technical Note 27, INMOS Limited

4 occam 2 Reference Manual, INMOS Limited, Prentice Hall, ISBN 0-13-629312-3

5 Duallnline Transputer Modules (TRAMS), Technical Note 29, INMOS Limited

6 High Performance Graphics with the IMS T800 j, Technical Note 37, INMOS Limited

7 A Transputer Based Multi·User Flight Simulator, Technical Note 36, INMOS Limited

, Itrumos Part 5

· _ Performance

257

258

17 Lies, damned lies and benchmarks

17.1 Introduction

A benchmark is supposed to be a standard measure of performance that enables one computer to be
compared with another. However, a car is a simpler machine than a computer, and yet no-one expects all the
relevant features of a car to be contained in a single number. Even in the specialised world of motor-racing,
knowing the b.h.p. or the top speed is not enough to predict which car will be fastest round the track, and
computing equivalents such as 'MIPS' or 'MFlops' are similarly misleading.

For any application it is performance on that application which counts, and benchmarks are relevant only so
far as they resemble it. For example, some microprocessors can match the speed of super-minicomputers
on non-numerical benchmarks, although their floating-point performance and input-output capability can be
substantially inferior. Also, microprocessor architectures tend to give atypically high performance on small
programs, by making good use of small register sets, caches, on-chip memory etc., and nearly all benchmark
programs are very small in order to be easily disseminated.

Ideally, computers should be compared by running the intended application on each of them, but usually this
is impractical, and benchmarks are often used instead. Some benchmarks have been carefully constructed
and, in context, they can be a good guide to processor performance, provided their limitations are clearly
understood. The Whetstone benchmark is one such, and is widely used as an indicator of performance on
numerical tasks, although it omits some aspects of such applications, which we consider separately. The
Savage benchmark tests only a narrow aspect of performance, but is often included in sets of benchmarks,
so we consider it briefly. On the other hand, there are benchmarks which are badly constructed and cannot
be related to any real application. An example is the Dhrystone benchmark, which, regrettably, is also widely
used as a vague measure of processor power.

It is important to realise that all of these benchmarks are intended as tests for Single-processor machines.
None of them are particularly suited to parallelism; but then none of them are real application programs! Real
programs are generally used to process data of some kind, and very often different parts of the data can be
dealt with independently, allowing for large performance gains when several processors are used. Applications
designed with parallelism in mind can often also be split into parts which can perform successive operations
on the same flow of data in parallel, using a pipeline or other structure, allowing still more processors to be
used effectively.

It is likely that the wide variety of possible architectures for parallel machines will render benchmarking
impractical. Until that time we must live with benchmarks, so in this note we look at these three: the
Whetstone, the Savage and the Dhrystone. We consider their merits and limitations, and provide performance
figures and source listings.

17.2 The Whetstone benchmark

The Whetstone benchmark program [1] was constructed to compare processor power for scientific applica
tions. Running the program is considered equivalent to executing (approximately) one million 'Whetstone'
instructions. Performance, as measured by the benchmark, is quoted in 'Whetstones per second' and differs
from any measure of pure floating-point performance given in 'flops'. In addition to floating-point operations, it
includes integer arithmetic, array indexing, procedure calls, conditional jumps, and elementary function eval
uations. These are mixed in proportions carefully chosen to simulate a 'typical' scientific application program
of a decade ago.

17.2.1 Understanding the program

The virtue of the Whetstone benchmark is that it approaches real programs in complexity, w/"lereas many
other benchmarks only measure performance on simple loops. For example, a large part of the 'Unpack'
benchmark effectively measures only the time to perform a loop of the form:

SEQ :i = 0 FOR N
a[:i]:= b[:i]+(t*c[:i])

17 Lies, damned lies and benchmarks 259

However, this complexity means that in order to relate the resulting performance figures to a real application,
it is necessary to consider the precise composition of the benchmark. The occam source of the Whetstone
is given in section 17.11. This is a straightforward translation of the ALGOL original, which consists of a
series of modules designed to typify different aspects of a scientific computation. The core of each module
is performed a certain number of times, determined by a 'best fit' to statistics of actual programs.

The time taken to execute a particular module may depend more on the speed of floating-point operations
than on the specific task it represents. For example, module 2 is concerned with 'array accessing', but for
each iteration of the loop there are 20 array accesses and 17 floating-point operations. On machines where
the duration of a floating-point operation is much longer than the time taken to load or store a number, the
floating-point operations will dominate the time to perform the module. This is also true of other modules. So
the overall Whetstone performance will be largely determined by the floating-point speed of such machines.
It will also depend on the speed of evaluation of elementary functions, because of the large number of
such evaluations in modules 7 and 11. This is an area where applications vary widely, and the Whetstone
represents an average which may be very different from any particular application.

17.2.2 The effect of optimisations

Since the benchmark is written in a high-level language (originally ALGOL; commonly FORTRAN; and in this
case occam) it must be compiled before it can be executed. This makes the interpretation of the results more
difficult since they depend not only on the hardware but also on the software which is used. As compilers
become more sophisticated there is a danger that the original purpose of the benchmark will be lost in all the
optimisations that can be done. The purpose of the benchmark is to cause the execution of (typically) one
million 'Whetstone' instructions, which represent low-level operations of an abstract machine, and not to get
through a particular FORTRAN program as fast as possible. Thus 'global' or source-level optimisations (either
automatic or by hand) invalidate the benchmark since they miss out some of the 'Whetstone' instructions.
Indeed, since no-one is interested in the results of the computations they could be optimised out altogether!
By contrast the choice of high-level language to express the benchmark is relatively insignificant, provided its
semantics are not too different from those of FORTRAN or ALGOL.

The occam compilers used to benchmark transputers aim to produce efficient code, but do not perform global
or source-level optimisations. Consequently all the 'Whetstone' instructions implicit in the original program
are performed.

17.2.3 Limitations of the Whetstone

It is important to realise that significant aspects of many contemporary scientific calculations are absent from
the Whetstone, whilst others are over-emphasised:

1 No consideration is given to the quality of floating-point calculations, and their speed is measured
only indirectly.

2 There are no multi-dimensional arrays, which are common in numerical programs, and the arrays
which are present are very small.

3 The number of elementary function evaluations is probably atypical of modern programs, and despite
this heavy usage no account is taken of their accuracy.

We examine these points in the following sections.

Floating-point operations on the IMS T414 and IMS T800

Floating-point operations on the IMS T414

The floating-point operations provided for the IMS T414 are both fast and of high quality. Although the IMS
T414 was designed to provide fast arithmetic operations on 32-bit integer values, it was appreciated that
for many applications it would be necessary to perform floating-point arithmetic and so there are special
instructions in the IMS T414 to support the implementation of floating-point operations. i!) software.

The use of formal program proving methods has ensured that the quality of the software implementation is

260 5 Performance

very high [2]. The software packages correctly implement IEEE-standard floating-point arithmetic, including
the handling of denormalised numbers.

Although implemented in software, floating-point operations on the IMS T414 are very fast, comparable with
those performed by special floating-point co-processor chips. For example, the assignment in the occam
fragment below:

REAL32 a, b, c :
SEQ

a := b 1< C

will execute in about 11 ",S, provided all the code and variables are in internal RAM. By comparison, the
same assignment on an 8 Mhz Intel 80286/80287 combination would take about 31 ",S (using the fastest
possible memory). Even on 64-bit floating-point numbers, where it might be expected that software would
lose out against hardware, the IMS T414 would take about 38 ",S whilst the Intel combination would take
about 44",S.

Floating-point operations on the IMS TaOO

To achieve even higher performance than the IMS T414, the IMS T800 has a 64-bitfloating-point unit on-chip.
Its microcode was derived from the formally-proven occam implementation, so that the results of floating
point calculations by the two processors are identical (and correct) - only the speed differs. On an IMS
T800 the assignment above would take only 29 cycles (1.45 ",S for a 20MHz version, 0.97 ",S for a 30MHz
version), again assuming internal RAM is used.

The table below gives the typical and worst case operation times for floating point arithmetic on an IMS T414
(50 nS cycle time) and on an IMS T800 (50 nS and 33 nS cycle times). For the IMS T414 this assumes the
code of the floating-point package is in the internal RAM.

Floating-point operation times

IMS T414-20 IMS T800-20 IMS T800-30
Typical Worst case Typical Worst case Typical Worst case

REAL32
+, - 11.5 ",S 15.0 ",S 350 nS 450 nS 230 nS 300 nS

* 10.0 ",S 12.0 ",S 550 nS 900 nS 370 nS 600 nS
1 11.3",S 14.0 ",S 800 nS 1400 nS 530 nS 930 nS

REAL64
+, - 28.2",S 35.0 ",S 350 nS 450 nS 230 nS 300 nS

* 38.0 ",S 47.0 ",S 1000 nS 1350 nS 670 nS 900 nS
1 55.8",S 71.0 ",S 1550 nS 2150 nS 1030 nS 1430 nS

Multi-dimensional arrays

Although not represented in the Whetstone benchmark, multi-dimensional arrays are common in many nu
merical applications. The IMS T414 and IMS T800 have a fast multiplication instruction ('product') which is
used for the multiplication implicit in multi-dimensional array access. For example, in the following fragment
of occam:

[20] [20]REAL32 A :
SEQ

B := A[I] [J]

performing the assignment involves calculating the offset of element A [I] [J] from the base of the array A.

17 Lies, damned lies and benchmarks 261

The transputer compiler would generate the following code for this computation:

10ad 1oca1 I
10ad constant 20
product
10ad 1oca1 J
add

Since the product instruction executes in a time dependent on the highest bit set in its second operand, and
the highest bit set in the constant 20 is bit 5, in this case the 'product' instruction will execute in only 8 cycles.
In general, the multiplication in an address calculation is performed in a time approximately proportional to
the logarithm of the array dimension. When combined with the concurrent operation of the CPU and FPU on
the IMS T800 this enables address calculations to be entirely overlapped with floating-point calculations in
most cases.

Elementary functions on the IMS T414 and IMS T800

The implementation of elementary functions involves a trade-off between speed, accuracy, and code-size.
Whilst total accuracy is mathematically impossible, errors must be kept within reasonable bounds or else
the functions are useless. The need to constrain code-size precludes the use of certain very fast algorithms
which make use of very large look-up tables and linear interpolation.

The elementary function libraries used on the INMOS transputers are written in occam. They use rational
approximations (quotients of polynomials), rather than table look-up or 'CORDIC' methods, as this gives the
fastest execution whilst remaining accurate and code-compact. The single-length functions typically require
a few hundred bytes of code (approximately 400 on the IMS T414 and 300 on the IMS T800) , and have
average errors of less than half a unit in the last bit. The functions handle all IEEE-standard values, including
denormalised numbers, Not-a-Numbers, and Infinities. Further details are given in [3] and [4].

On the IMS T414 the rational approximations are computed using fixed-point arithmetic rather than floating
point. The IMS T 414 has a 'fractional multiply' instruction which multiplies two 32-bit numbers together,
treating each as a fraction between +1 and -1; the normal 'add' instruction will add such fractions. As a
result of this the multiply and add, needed in each stage of a polynomial evaluation, will execute in under
3.5).1S; if floating-point arithmetic were used these operations would take about seven times as long.

However the performance of the IMS T800 FPU is such that the multiply and add stage of a floating-pOint
polynomial takes only 0.9).IS, so the library for this processor evaluates the rational approximations using
floating-point arithmetic. Of course this library may be used on the IMS T 414, producing identical results to
those which would be obtained on an IMS T800, because of the equivalence of the floating-point software
and hardware.

The importance of the speed of elementary function evaluation to the overall Whetstone performance figure
is indicated by the proportion of time spent evaluating them, as indicated in the following table:

Percentage of total execution time

Processor: IMS T414 IMS T800
Floating-point format: Single Double Single Double

TrigonometriC functions 26% 34% 23% 29%
Standard functions 13% 17% 21% 23%

Total 39% 51% 44% 52%

These percentages would probably be lower on a processor with special hardware for speeding up elementary
function evaluation. Neither the IMS T414 nor the IMS T800 have any such speCial hardware, since including
it would have compromised some other aspect of performance, so the speed and accuracy of elementary
function evaluation is a good test of these processors. This is considered more fully in the next section, and
timings for the individual functions are given in section 17.10.

262 5 Performance

17.3 The Savage Benchmark

17.3.1 Speed and accuracy of elementary functions

The Savage benchmark is a benchmark of elementary function evaluation only. It is actually named after its
creator [5], although it is indeed quite a vicious test of an unsuspecting function library! It tests both speed
and accuracy; in occam it is:

#USE dbJ.math
REAL64 a :
SEQ

a := 1.0(REAL64)
time ? start. time

SEQ i = 0 FOR 2499
a := DTAN(DATAN(DEXP(DALOG(DSQRT(a*a»») + 1.0(REAL64)

time? finish. time

If the function subroutines were exact the final value of a would be 2500.0, so the difference from this
figure is a measure of their accuracy. However it is important to note that the format (in this case IEEE
double-precision) enforces a fundamental limitation no matter how carefully the functions are evaluated. The
minimum error that can be achieved using double-precision floating-point is 1.177 * 10-9 , and it can be seen
from the table in section 17.11 that the occam function library produces a result which is very close to this
figure. Some implementations give results more accurate than this, by using 'extended double precision' (80
bits) to evaluate the expression, only rounding to double-precision when the store into a is done.

Some results from this benchmark are given in section 17.8. It is certainly not typical of application programs,
but it does give some indication of performance on elementary function evaluation only.

17.4 The Dhrystone benchmark

17.4.1 String manipulation performance

The Dhrystone [6] is a synthetic benchmark designed to test processor performance on 'systems programs'.
In fact it has a number of flaws which seriously limit its usefulness as a guide to performance on 'typical'
programs. Unfortunately its use has become widespread, with results published on the USENET, and manu
facturers reporting their performance in terms of 'Dhrystones per second'. It was originally published in Ada,
but the most widely used version is a translation into C, distributed over USENET.

As the construction of the Dhrystone is fully explained in the original publication, our discussion of the bench
mark is limited to its drawbacks. The two principal flaws are the omission of any significant looping from the
program and the inclusion of character string operations.

Whilst the Dhrystone's major advantage over many small benchmarks is that is does not consist of just
a single loop, it suffers from the drawback that it does not do any significant amount of looping. This is
unsound because most programs do contain loops and code executed within them will often account for most
of the execution time. Also, when generating code for loops, a good compiler will seek to minimise the time
to execute the loop repeatedly, possibly at the expense of more loop initialisation. Furthermore, research
shows [7] that the code found within loops differs from code outside of loops; for example, most accesses to
subscripted variables occur within loops.

The second major drawback of the Dhrystone that it uses strings, even though the only dynamic statistics
in [6] show no use of strings (although the static statistics from the same source do show use of strings).
In addition, the use of strings causes a large number of other problems with the benchmark. There are too
many to consider in detail, so we will just look at the most significant.

The first problem comes from the method of construction of the benchmark, which was to ensure that the
distribution of operators and operands matched that found in 'typical' programs. Unfortunately, the operators

17 Lies, damned lies and benchmarks

and operands seem to have been treated independently, and as a result, the statement

if Strinq_par~In_l > Strinq_Par_In_2

263

occurs in the Ada original. This may look inoffensive but when a translation into, for example, C occurs the
result is

if (stromp(StrParIl, StrParI2) > 0)

which involves a very suspicious looking call to a library routine. As very little computation is performed in
the benchmark this may be very significant. The amount of time taken to perform the comparison will, in fact,
depend on the two strings being compared. In the Dhrystone the strings used are:

"DBRYSTONE PROGRAM, 2'ND STRING"

and

"DBRYSTONE PROGRAM, l' ST STRING"

which match for the first 19 charactersl The overall result of this is that, with a straightforward implementation
of stromp the only loop of any significance has been introduced by accident rather than by design.

The second problem is that the program contains a string assignment, which also becomes more blatant
when the program is translated. In the Dhrystone as originally published, written in Ada, the strings in the
program were declared to be 30 characters long. This means that a processor with the ability to copy data
in blocks would be able to do the assignment very efficiently. When the translation to C takes place the
translator has to make a choice; either the strings are converted into C strings, or they are changed into a
structure. The former is more natural whilst the latter is more in keeping with the original program. The effect
of this is, again, that a seemingly small part of the benchmark contributes significantly to the overall result.

One final point that should be noted is that the Dhrystone program, although intended to represent a typical
'system program', is actually extremely small, which again may make the results misleading.

The best known version of the Dhrystone benchmark is that in C, distributed on the USENET. It is a fair
translation of the Ada except that it uses C-strings rather than fixed-sized byte arrays. The consequences of
this alteration have already been discussed.

For some time an erroneous version of the Dhrystone was circulated on the USENET. When making
comparisons of performance it is essential to check that the Dhrystone figure is for the correct version
of the benchmark, known as version 1.1 by the USENET community. Figures for this erroneous
version would be substantially higher than figures for the correct version. In particular the figures
given in [8] are for the erroneous version.

The occam version attempts to be as close to the Ada as possible. There are some problems with this which
were tackled as follows. The first difficulty is that the Ada Dhrystone uses structures, which occam does not
support. The occam Dhrystone simulates structures using arrays, with the byte array (string) being 'punned'
onto several words of the array. The second problem is that occam does not provide dynamic storage
allocation which is used for allocating the structures. The occam Dhrystone uses an array of structures
instead (this is of no significance to performance as the allocation of the structure is not timed as part of the
benchmark). There are some other minor changes which have been necessitated such as re-ordering the
declaration of procedures as in occam they must be declared before they are used.

The source of the occam version of the Dhrystone benchmark is given in section 17.12.

264 5 Performance

17.5 Conclusion

The Whetstone benchmark is one of the most respected and widely used measures of performance on
'scientific' applications, even though it does not address important aspects of such computations, and over
emphasises others. The IMS T414 and IMS T800 microprocessors are very well suited to such applications,
and this is reflected in their Whetstone performance, shown in section 17.7.

The Savage benchmark only measures performance Oil elementary functions, but is quite widely used in the
microcomputing world. Although Transputers have no special hardware for elementary functions, in order to
maximise performance on more common operations [4], they perform extremely well, as can be seen from
the results in section 17.8.

Thus the IMS T414 surpasses all other single-chip processors in performing numerical calculations with
software, and outperforms many processor Ico-processor combinations. The IMS T800 is the world's fastest
microprocessor, superior even to multi-chip sets and bit-slice machines.

The Dhrystone is also widely used, even though it is essentially useless as an indicator of performance on
real programs. The table in section 17.9 shows that Transputers give a high figure on this benchmark, but
this is of relatively little significance. It is interesting to note that at least one recent 32-bit microprocessor
has special hardware for processing strings; not surprisingly its projected Dhrystone figure is extremely high.
However only programs that only process strings are likely to realise this promised performance. Transputers
have not been optimised to 'pass' a particular benchmark; they are general-purpose processors delivering
high performance on all applications.

17.6 References

A Synthetic Benchmark, Curnow H.J., and Wichmann B.A., Computer Journal 19 no. 1,
February 1976.

2 Formal Methods Applied to a Floating Point Number System, Barrett G.,
Oxford University Computing Laboratory Technical Monograph PRG-58 1987.

3 Transputer Development System Manual, INMOS Limited, Prentice Hall 1988.

4 Technical Note 6: IMS T800 Architecture, INMOS Limited, Bristol, U.K. INMOS 1986.

5 Dr. Dobb's Journal, Savage B., September 1983, p120.

6 Dhrystone: a synthetic systems programming benchmark, Reinhold P. Weicker,
Communications of the ACM, Vol. 27, Number 10, October 1984.

7 An Empirical Analysis of FORTRAN programs, Robinson and Torsun, Computer Journal 19 no. 1,
February 1976.

8 The 80386: A High Performance Workstation Microprocessor, Intel Corporation, 1986,
Order number: 231776-001.

17 Lies, damned lies and benchmarks 265

17.7 Comparative Whetstone benchmark results

The following tables compare the performance figures of the transputers with other processors and processor
leo-processor combinations for both the single and double precision Whetstone benchmarks. Some of the
figures may have been superseded since these tables were compiled, but they are adequate for illustrative
purposes.

System Thousands of Single-precision
Whetstones per Second

IMS T800-30 (projected) 6800

IMS T800-20 4548

WE 32200/32206-24 2800
INTEL 80386 + 80387 1860
VAX 11/780 1083
MVII 925
SUN-3 860
NS 32332/32081 728

IMS T414-20 704

NS 32032 and 32081 390
INTEL 286/287 300
IBM RT-PC + FPA 200

IMS T212-20 181

INTEL 8086 + 8087 178
MC 68000 13
IBM RT-PC 12

System Thousands of Double-precision
Whetstones per Second

IMS T800-30 (projected) 4400

IMS T800-20 2932

INTEL 80386 + 80387 1730
MVII 925
SUN-3 790
VAX 11/780 715

IMS T414-20 161

INTEL 8086 + 8087 152

266

Systems used for the benchmarks

IBM RT-PC
IBM RT-PC + FPA
IMS T212-20
IMS T414-20
IMS T800-20
IMS T800-30
INTEL 8086 + 8087
INTEL 286/287
INTEL 386/387
MC 68000
MVII
NS 32032 and 32081
NS 32332 and 32081
SUN-3
WE 32200/32206-24
VAX 11/780

software only
with NS32081 floating-point chip, in 'direct mode'
20 MHz internal clock rate, using product occam compiler
20 MHz internal clock rate, using product occam compiler
20 MHz internal clock rate, using product occam compiler
30 MHz internal clock rate, scaled from -20 result
8 MHz
10 MHz
20 MHz
10 MHz, assembler coded software floating-point
MicroVAX II with FPA, running MicroVMS
10 MHz
15 MHz
MC 68020 (16 MHz) and MC 68881 (12.5 MHz)
24 MHz
8MB memory, FPA, running under UNIX 4.3BSD

5 Performance

The figures for the IMS T414-20 were obtained by running the program on an IMS T414B-20 (50 nS cycle
time), with 150 nS cycle time external memory. Note that running the program on a slower system, such
as are provided by INMOS for hosting the development system, will give a lower figure. The figures
for the IMS T800-20 were obtained by running the program on an IMS T800C-20 (50 nS cycle time). Figures
for the faster version (30 MHz) were then obtained by straightforward scaling.

The figure for the IMS T212-20 was obtained by running the program on an IMS T212-20 (50 nS cycle time),
with 100 nS cycle time external memory, using the technique of section 17.13.

Our sources for the other figures are as follows:

IBM RT-PC
INTEL 8086 + 8087
INTEL 286/287
INTEL 386/387
MC 68000
MVII
NS 32032 and 32081
NS 32332 and 32081
SUN-3
WE 32200/32206-24
VAX 11/780

IBM RT Personal Computer Technology, SA 23-1057, IBM 1986
Sun-3 Benchmarks (Sun Microsystems, inc)
Sun benchmark document
Doug Rick, 80387 Marketing Manager
Published figure
Sun Benchmark document
Ray Curry, National Semiconductor, via USENET
Ray Curry, National Semiconductor, via USENET
Sun published data
Electronics, December 18, 1986
John Mashey at MIPS Computer Systems, via USENET

17 Lies, damned lies and benchmarks 267

17.8 Comparative Savage benchmark results

System CPU - FPP MHz Language Time Error
(seconds) (absolute)

IMS T800 (proj.) 30.0 occam 0.3 1.2E-9
IMS T800 20.0 occam 0.4 1.2E-9
Sun-3/160 68020 68881 16.67 Sun 3.0 FORTRAN 77 0.4 2.0E-12
HP 9000/320 68020 68881 Pascal 0.7 2.8E-7
VAY. 8600 FORTRAN 77 0.9 1.8E-8
OMS 8086 8087 Turbo Pascal 3.8 1.1 E-9
Zenith Z-248 80286 80287 8.0 FORTRAN 77 4.5 1.2E-9
IMS T414 20.0 occam 6.3 1.2E-9
IBM PC-AT 80286 80287 6.0 Turbo Pascal 7.4 1.2E-9
Sun-3/160 68020 16.67 Sun 3.0 FORTRAN 77 21.5 3.1 E-7
IMS T212 20.0 occam 21.9 1.2E-9
Turbo-Amiga 68020 14.32 Absoft F77 V2.2B 21.9 1.8E-7

Information in this table (except for the Transputer figures) was supplied on USENET on 16th December 1986
by AI Alburto et al. The Transputer figures were obtained using the product occam compiler and libraries.
The time for the IMS T800-30 was obtained by scaling the -20 result.

17.9 Comparative Dhrystone benchmark results

The following tables compare the performance of INMOS Transputers with other processors. The figure for
the IMS T414 was obtained from an IMS B001 evaluation board, running an IMS T414B-20 with 3 cycle
external memory. Note that running the program on a slower system, such as are provided by INMOS
for hosting the development system, will give a lower figure. The other transputer figures were obtained
by running the program on INMOS TRAMs.

System Dhrystones
per Second

IBM 3090/200 31250

IMS T800-30 (proj.) 13400
IMS T800-20 8956
IMS T212-20 8711
IMS T414-20 8193

VAX 8600 6423
Gould PN9080 Custom ECl 4992

Intel 386-16 (predicted) 4300
MC68020-17 3977

Intel 80286-9 1976
VAX 111780 1650
MC68000-8 1136

It should be noted that Dhrystone figures, especially those quoted by manufacturers, are often invalid. Either
they refer to the incorrect version 1.0 (and if no version is given, this is usually the case) or else they use
optimising compilers, which are forbidden for this benchmark (frequently both). The figures above are believed

268 5 Performance

to be free of such contamination. It is regretted that no such figure is currently available for the 80386, and
so an old predicted figure is given instead.

17.10 Elementary function performance

The table below gives the time taken to evaluate complete standard elementary functions on an IMS T800-20
and an IMS T414-20, each with 150 nS external RAM. Timings are given for both the case when the function
code and the process workspace are in the on-chip RAM (for the IMS T800) and when the code is stored in
the external RAM (both processors). The figures for each function were derived from measurements taken
for 8000 arguments chosen at random from the interval [0.0, 10.0], except for arcsine and arccosine where
the paints were drawn from the interval [-1.0, 1.0], and the double-precision hyperbolic functions, for which
the points were drawn from [0.0, 20.0].

Timings in microseconds

IMS TBOO-20 IMS T414-20
ON-CHIP OFF-CHIP OFF-CHIP

single-precision mean max mean max mean max

SORT 5.9 6.4 6.0 6.5 26.0 27.6
ALOG 22.5 22.9 27.4 27.9 131.1 141.4

ALOG10 25.7 26.1 31.4 31.9 145.2 155.3
EXP 22.0 22.2 26.7 27.0 120.6 126.8
SIN 16.2 16.8 19.2 19.9 146.7 169.6

COS 18.9 19.3 22.2 22.6 178.1 186.8
TAN 18.4 19.2 22.3 23.2 142.7 164.4

ASIN 17.0 22.2 19.8 25.3 105.1 145.7
ACOS 16.7 21.3 19.8 24.8 101.5 132.6
ATAN 18.5 21.9 22.6 26.4 125.6 161.7
SINH 26.6 28.7 32.7 35.3 149.8 167.6

COSH 26.2 26.7 31.9 32.6 155.2 166.1
TANH 23.4 28.3 28.6 34.6 137.3 175.6

double-precision mean max mean max mean max

DSORT 12.2 12.9 12.2 13.0 204.0 212.8
DALOG 34.5 38.5 45.0 46.0 607.9 636.1

DALOG10 42.5 43.1 49.9 50.9 658.7 687.4
DEXP 39.8 40.4 47.0 47.7 512.9 538.5
DSIN 33.1 34.2 38.1 39.2 590.0 655.2

DCOS 29.4 29.9 33.7 34.2 671.9 700.0
DTAN 35.8 37.3 42.0 43.7 632.4 712.2

DASIN 33.1 41.7 37.0 45.7 587.0 758.7
DACOS 32.9 40.6 36.8 44.9 574.3 714.2
DATAN 31.3 35.7 36.6 41.7 565.6 701.8
DSINH 45.9 47.8 54.2 56.5 609.5 649.0

DCOSH 44.8 45.4 53.3 54.1 618.4 648.5
DTANH 44.2 47.4 52.8 56.8 623.6 686.4

No figures are given for the IMS T212, but as a rough guide, consider single-precision functions to take
between 5 and 7 times as long as for an IMS T 414.

17 Lies, damned lies and benchmarks 269

17.11 Source of the occam Whetstone program

This is the source of the occam version of the Whetstone benchmark. The output statments have been
omitted, since they complicate the benchmarking process without affecting the results in any way. However
the modules which are executed zero times have been included, since their omission would be a 'global
optimisation' affecting the code-size. This is the single-precision version; the double-precision version is
obtained by replacing all occurences of REAL32 by REAL64, and all the library function calls by their
double-precision versions.

PROC Whetstone (VAL [ll]INT n, VAL INT iterations, INT timeO, time1)

IUSE sng1math this incorporates library code for the functions
TIMER time :
[4] REAL32 e1
INT j, k, 1 :
REAL32 t, t1, t2

PROC p3 (VAL REAL32 xdash, ydash, REAL32 z)
REAL32 x, y :
SEQ

x := t * (xdash + ydash)
y := t * (x + ydash)
z := (x + y) I t2

PROC pO 0
SEQ

e1 [j] := e1 [k]
e1 [k] .- e1 [1]
e1 [1] := e1 [j]

PROC pa ([4]REAL32 e)
SEQ j = 0 FOR 6

SEQ
e[O] := « (e [0] + e[l]) + e [2])
e[l] .- « (e[O]
e[2] := («e [0]
e[3] := « «-e [0])

SEQ
INITIALISE CONSTANTS

t := 0.499975(REAL32)
t1 := 0.50025(REAL32)
t2 := 2.0(REAL32)

RECORD START TIME
time ? timeO

+ e[l]) - e[2])
- e[l]) + e [2])
+ e[l]) + e[2])

-- MODULE 1 : SIMPLE IDENTIFIERS
REAL32 xl, x2, x3, x4
SEQ

xl .- 1. 0 (REAL32)
x2 .- -1. o (REAL32)
x3 := -1. o (REAL32)
x4 .- -1. 0 (REAL32)
SEQ i = 0 FOR n[O] * iterations

SEQ
xl .- «(xl + x2) + x3) - x4)
x2 .- «(xl + x2) - x3) + x4)
x3 := «(xl - x2) + x3) + x4)
x4 .- ««-x1) + x2) + x3) + x4)

- e[3])
+ e[3])
+ e[3])
+ e[3])

* t

* t
* t
* t

* t
* t
* t
I t2

270

-- MODULE 2 : ARRAY ELEMENTS
SEQ

e1 [0] := 1.0 (REAL32)
e1 [1] := -1.0(REAL32)
e1 [2] : = -1.0 (REAL32)
e1 [3] :=-1.0(REAL32)
SEQ i = 0 FOR n[l] * iterations

SEQ
e1[0] := «(e1[0] + e1[1]) + e1[2]) - e1[3]) * t
e1[1] := «(e1[0] + e1[1]) - e1[2]) + e1[3]) * t
e1[2] := «(e1[0] - e1[1]) + e1[2]) + e1[3]) * t
e1[3] := ««-e1[0]) + e1[1]) + e1[2]) + e1[3]) * t

MODULE 3 : ARRAY AS PARAMETER
SEQ i = 0 FOR n[2] * iterations

pa (e1)

-- MODULE 4 : CONDITIONAL JUMPS
SEQ

j := 1
SEQ i = 0 FOR n[3] * iterations

SEQ
IF

IF

IF

j = 1
j := 2

TRUE
j := 3

j > 2
j := 0

TRUE
j := 1

j < 1
j := 1

TRUE
j := 0

MODULE 5 OMITTED IN ORIGINAL

MODULE 6 INTEGER ARITHMETIC
SEQ

j := 1
k := 2
J. := 3
SEQ i = 0 FOR n[5] * iterations

SEQ
j = (j * (k - j» * (J. - k)
k = (J. * k) - «J. - j) * k)
J. = (J. - k) * (k + j)
e1 [J. - 2] := REAL32 ROUND «j + k) + J.)
e1 [k - 2] := REAL32 ROUND «j * k) * J.)

5 Performance

17 lies, damned lies and benchmarks

-- MODOLE 7 : TRIGONOMETRIC FUNCTIONS
REAL32 x, y :
SEQ

x := 0.5(REAL32)
y := 0.5(REAL32)
SEQ i = 0 FOR n[6] * iterations

SEQ
x := t * ATAN

y .- t * ATAN

(t2 * (SIN(x)*COS(x») /
«COS(x + y) + COS(x - y» - 1.0(REAL32»

(t2 * (SIN(y)*COS(y») /
«COS(x + y) + COS(x - y» - 1.0(REAL32»

MODOLE B : PROCEDURE CALLS
REAL32 x, y, z :
SEQ

x := 1.0(REAL32)
y := 1.0(REAL32)
z := 1.0(REAL32)
SEQ i = 0 FOR n[7] * iterations

p3 (x, y, z)

-- MODOLE 9 : ARRAY REFERENCES
SEQ

j := 1
k := 2
1 := 3
el [0] .- 1.0(REAL32)
el [1] := 2.0(REAL32)
el [2] .- 3.0(REAL32)
SEQ i = 0 FOR n[B] * iterations

pO ()

-- MODOLE 10 : INTEGER ARITHMETIC
SEQ

j := 2
k := 3
SEQ i = 0 FOR n[9] * iterations

SEQ
j := j + k
k := j + k
j .- k - j
k := (k - j) - j

MODOLE 11 : STANDARD FUNCTIONS
REAL32 x :
SEQ

x := 0.75(REAL32)
SEQ i = 0 FOR n [10] * iterations

REAL32 r2 :
x := SQRT (EXP (ALOG (x)/tl))

RECORD FINISH TIME
t:ime ? t:imel

271

272 5 Performance

Using the occam Whetstone program

The program given below will run the Whetstone benchmark twice; first to perform one million 'Whetstones',
secondly to perform two million. The length of time taken to perform each run of the benchmark is sent on the
channel Out to another process. This process should be running on another processor to avoid disturbing
the Whetstone results.

The process connected to the other end of channel Out has to take the difference of the two times it is
sent, and multiply the reciprocal by 1012 (because the time is for one million Whetstones, measured in
micro-seconds). The result is then a measure of 'Whetstones per second', free from any bias introduced by
irrelevant overheads.

PROC Benchmark (CHAN Out)

SC Whetstone -- the program in the previous section

VAL [11] INT n IS [0, 12, 14, 345, 0, 210, 32, 899, 616, 0, 93]:
-- n is the array of loop repetition counts
INT timeO, time1 :

PRI PAR -- to get high-priority clock with 1us ticks
SEQ

Whetstone (n, 10, timeO, time1) one million whetstones
Out ! time1 MINUS timeO output time difference
Whetstone (n, 20, timeO, time1) two million whetstones
Out ! time1 MINUS timeO output time difference

SKIP -- null process to complete the PRI PAR construct

The Whetstone benchmark is run at high priority to ensure that a 1 j.tS resolution timer is used.

The table n contains the number of iterations for each loop in the benchmark; these were calculated to make
the benchmark equivalent to a 'typical' scientific application. This array of weights is an integral part of the
benchmark, and if it is altered the results are not comparable with figures quoted in 'Whetstones'.

The actual number of iterations of each loop is the product of the table entry and the second parameter of
the Whetstone procedure. If this is set to 10 then 1 million 'Whetstones' are performed.

17 Lies, damned lies and benchmarks 273

17.12 Source of the occam Dhrystone program

This is the source of the program run on an IMS T414B-20, compiled with the product occam compiler.

PROC DHRYSTONE(CBAN OF INT32 In, Out)

-- Define constants etc for the Struct equiva1ent
VAL NULL IS 0
VAL Ident1 IS 1
VAL Ident2 IS 2
VAL Ident3 IS 3
VAL Ident4 IS 4
VAL Ident5 IS 5

VAL PtrComp IS 0 -- 'pointer' to one of these records
VAL Discr IS 1
VAL EnumComp IS 2
VAL IntComp IS 3
VAL StringComp IS 4 StringComp is subsequent 30 bytes

VAL StringSize IS 30
VAL StringWords IS 8 -- a110cate 30/4 + 1 = 8 words on an INS T414

VAL StructSize IS StringWords + 4 :

[3] [StructSize]INT Records: -- a11 the records required

-- G1oba1 variab1e dec1arations
[51]INT Array1
[51] [51]INT Array2
INT IntG10b :
BOOL Boo1G1ob :
BYTE Char1G1ob, Char2G1ob
INT PtrG1b, ptrG1bNext

-- array p1acement
PLACE Array1 AT (#800 / 4) p1acement for an IMS T414 and IMS T800
PLACE Array2 AT (#800 / 4) + 51
Array2G1ob IS Array2 :
Array1G1ob IS Array1 :

INT FUNCTION Func1 (VAL BYTE CharPar1, CharPar2)
INT Res :
VALOF

BYTE CharLoc1, CharLoc2
SEQ

CharLoc1 := CharPar1
CharLoc2 .- CharLoc1
IF

CharLoc2 <> CharPar2 -- true
SEQ

Res := Ident1
TRUE

Res : = Ident2
RESULT Res

274 5 Performance

BOOL FUNCTION Func2 (VAL [StringSize]BYTE StrParI1, StrParI2)
BOOL Res:
VALOF

INT FUNCTION strcmp (VAL [StringSize]BYTE Sl, S2)
!NT order
VALOF

IF
IF i = 0 FOR StringSize

Sl[i] <> S2[i]
IF

TRUE

(INT Sl[i]) > (!NT S2[i])
order .- 1

TRUE
order := -1

order := 0
RESOLT order

StrParI1 = "DBRYSTONE, l*'ST STRING"
StrParI2 = "DBRYSTONE, 2*'ND STRING"

INT IntLoc :
BYTE CharLoc :
SEQ

IntLoc := 1
WHILE IntLoc <= 1 -- executed once

IF
Func1(StrParI1[IntLoc], StrParI2[IntLoc+1]} = Ident1

SEQ
CharLoc := ' A'
IntLoc := IntLoc + 1

TRUE
SKIP

VAL CharLoc.int IS INT CharLoc -- because no '>' for BYTEs
IF

IF

(CharLoc.int>= (INT 'W')} AND (CharLoc.int <= (INT 'Z')}
IntLoc := 7 -- not executed

TRUE
SKIP

CharLoc = 'X'
Res := TRUE -- not executed

strcmp(StrParI1, StrParI2} > 0
SEQ -- not executed

IntLoc := IntLoc + 7
Res := TRUE

TRUE
Res := FALSE

RESULT Res

17 Lies, damned lies and benchmarks

BOOL FUNCTION Func3(VAL INT EnumParIn)
BOOL Res :
VALOF

INT EnumLoc :
SEQ

EnumLoc := EnumParIn
IF

EnumLoc = Ident3
Res := TRUE

TRUE
Res := FALSE

RESULT Res

PROC P8([51]INT Array1Par, [51] [51]INT Array2Par,
VAL INT IntParI1, IntParI2)

-- once; IntParI1 = 3, IntParI2 = 7
INT IntLoc, IntIndex
SEQ

IntLoc := IntParI1 + 5
Array1Par[IntLoc] := IntParI2
Array1Par[IntLoc + 1] := Array1Par[IntLoc]
Array1Par[IntLoc + 30] := IntLoc
SEQ Intlndex = IntLoc FOR 2 -- twice

Array2Par[IntLoc] [IntIndex] := IntLoc
Array2Par[IntLoc] [IntLoc-1] := Array2Par[IntLoc] [IntLoc-1] + 1
Array2Par[IntLoc+20] [IntLoc] .- Array1Par[IntLoc]
IntGl.ob : = 5

PROC P7(VAL INT IntParI1, IntParI2, INT IntParOut) thrice
1) IntParI1 = 2, IntParI2 = 3, IntParOut := 7
2) IntParI1 = 6, IntParI2 = 10, IntParOut := 18
3) IntParI1 = 10, IntParI2 = 5, IntParOut := 17

INT IntLoc :
SEQ

IntLoc := IntParI1 + 2
IntParOut := IntParI2 + IntLoc

PROC P5() -- once
SEQ

Char1Gl.ob := 'A'
Bool.Gl.ob := FALSE

PROC P4() -- once
BOOL Bool.Loc
SEQ

Bool.Loc := Char1Gl.ob = 'A'
Bool.Loc := Bool.Loc OR Bool.Gl.ob
Char2Gl.ob := 'B'

PROC P3(INT PtrParOut) -- executed once
SEQ

IF
PtrGl.b <> NULL -- true

PtrParOut := Records [ptrGl.b] [PtrComp]
TRUE

IntGl.ob := 100
P7(10, IntGl.ob, Records [PtrGl.b] [IntComp])

275

276

PROC P6(VAL INT EnumParln, INT EnumParOut) -- once
-- EnumParln = Ident3, EnumParOut := Ident2
SEQ

EnumParOut := EnumParln
IF

NOT Func3(EnumParln) -- not taken
EnumParOut .- Ident4

TRUE
SKIP

CASE EnumParln
Ident1

EnumParOut := Ident1
Ident2

IF
IntGl.ob > 100

EnumParOut := Ident1
TRUE

EnumParOut .- Ident4
Ident3 -- this one chosen

EnumParOut := Ident2
Ident4

SKIP
Ident5

EnumParOut .- Ident3

PROC P2(INT IntParIO) executed once
INT IntLoc, EnumLoc
BOOL Going- :
SEQ

IntLoc := IntParIO + 10
Going- := TRUE
WHILE Going- -- executed once

SEQ
IF

Char1Gl.ob = 'A'
SEQ

IntLoc := IntLoc - 1
IntParIO := IntLoc - IntGl.ob
EnumLoc := Ident1

TRUE
SKIP

Going- := EnumLoc <> Ident1

5 Performance

17 Lies, damned lies and benchmarks

PROC P1(VAL INT PtrParIn) -- executed once
[StructSize] INT NextRecTemp :
SEQ

277

NextRecTemp := Records [PtrGlb] -- must do this to avoid aliasing
Records [PtrParIn] [IntComp] := 5
NextRecTemp[IntComp] := Records [PtrParIn] [IntComp]
NextRecTemp[PtrComp] := Records [PtrParIn] [PtrComp]
P3(NextRecTemp[PtrComp])
-- NextRecTemp[PtrComp] = Records [PtrGlb] [PtrComp] = ptrGlbNext
IF

NextRecTemp[Discr] = Ident1 -- it does
INT IntCompTemp :
SEQ

TRUE

NextRecTemp[IntComp] := 6
P6 (Records [PtrParIn] [EnumComp], NextRecTemp[EnumComp])
NextRecTemp[PtrComp] := Records [PtrGlb] [PtrComp]
IntCompTemp := NextRecTemp[IntComp] -- to avoid aliasing
P7(IntCompTemp, 10, NextRecTemp[IntComp])

Records [PtrParIn] := NextRecTemp
Records [Records [PtrParIn] [PtrComp]] .- NextRecTemp

PROC PO (INT32 out, VAL INT32 loops)
TIMER TIME :
[StringSize]BYTE String1Loc, String2Loc
INT IntLoc1, IntLoc2, IntLoc3 :
BYTE CharLoc :
INT EnumLoc :
INT Start Time , EndTime, NullTime
VAL Loops IS 10 * (INT loops)
SEQ

-- initialisation
-- initialise arrays to avoid overflow
SEQ i = 0 FOR SIZE Array1Glob

Array1Glob[i] := 0
SEQ i = 0 FOR SIZE Array2Glob

SEQ j = 0 FOR SIZE Array2Glob[0]
Array2Glob[i] [j] .- 0

PtrGlb := 1
PtrGlbNext := 2
-- initialise record 'pointed' to by PtrGlb
Record IS Records[PtrGlb] :
SEQ

Record [PtrComp] := ptrGlbNext
Record [Discr] .- Ident1
Record [EnumComp] := Ident3
Record [IntComp] := 40
[4*StringWords]BYTE ByteBuff RETYPES

[Record FROM StringComp FOR StringWords]
[ByteBuff FROM 0 FOR StringSize] :=

"DHRYSTONE PROGRAM, SOME STRING"
String1Loc := "DHRYSTONE PROGRAM, l*'ST STRING"

-- measure loop overhead
TIME ? StartTime
SEQ i = 0 FOR Loops

SKIP
TIME? EndTme
NullTime := EndTme MINUS StartTime

278

TIME ? StartTi.me
SEQ i. = 0 FOR Loops

SEQ
P5 ()
P4 ()

5 Performance

-- CharlGlob = 'A', Char2Glob = 'B', BoolGlob = FALSE
IntLocl := 2
IntLoc2 := 3
Stri.ng2Loc := "DHRYSTONE PROGRAM, 2*'ND STRING"
EnumLoc := Ident2
BoolGlob := NOT Func2(Stri.nglLoc, Stri.ng2Loc)
-- BoolGlob = TRUE
WHILE IntLocl < IntLoc2 -- body executed once only

SEQ
IntLoc3 := (5 * IntLocl) - IntLoc2
P7(IntLocl, IntLoc2, IntLoc3)
IntLocl := IntLocl + 1

P8(ArraylGlob, Array2Glob, IntLocl, IntLoc3)
-- IntGlob = 5
Pl (PtrGlb)
SEQ Charlndex = INT 'A' FOR «INT Char2Glob) - «INT 'A')-l»

-- twi.ce
IF

EnumLoc = Funcl(BYTE Charlndex, 'C')
P6(Identl, EnumLoc)

TRUE
SKIP

EnumLoc = Identl
IntLocl = 3, IntLoc2 = 3, IntLoc3 = 7

IntLoc3 := IntLoc2 * IntLocl
IntLoc2 := IntLoc3 / IntLocl
IntLoc2 := (7 * (IntLoc3 - IntLoc2» - IntLocl
P2(IntLocl)

TIME ? EndTi.me

out := INT32 «EndTi.me MINUS StartTi.me) - NullTi.me)

PRI PAR -- to get hi.gh pri.ori.ty ti.mer
INT32 count, result
SEQ

In ? count
PO (result, count)
Out ! result

SKIP

This program is intended to be run on a single processor, with channel Out mapped onto a hard link
connected to another processor, running a process which outputs the number of loops to be performed (to
improve the resolution of the timer) - typically 10000 - and then inputs the number of microseconds taken.
A simple calculation turns this into a number of 'Dhryslones per second'.

17.13 Benchmarking the IMS T212

It should be noted that obtaining benchmark figures for the IMS T212 is slightly more involved than for either
the IMS T414 or the IMS T800. This is because the built-in timer has only 16 bits on this processor, as
opposed to 32 on the other two processors, so consequently the clock 'wraps round' very much faster. In

17 Lies, damned lies and benchmarks 279

fact it does so faster than a benchmark program can be run, and so the run-time of the program cannot be
obtained simply by reading the clock at the beginning and end of the run, as shown in the preceeding listings.

The solution to this problem is to use another processor to perform the timing. Instead of reading the timer
the program on the IMS T212 sends a message to another processor (an IMS T 414 or an IMS T800) which
responds by reading its own timer. The quoted benchmark results for the IMS T212 were obtained in this
way.

280

18 Performance maximisation

18.1 Introduction

The INMOS transputer family [1] is a family of microcomputers with high-performance processor. memory
and communication links on a single chip, figure 18.1. The links are used to connect transputers together,
and very large concurrent systems can be built from collections of transputers communicating via their links.

Reset
Analyse

Error 32 bit
BootFromROM System Processor

Clockln Servi ce s
VCC
GND Link IE LinkSpecial

CapPlus Services
LinkOSpecial

CapMinus Lmk123Speciai

Link LinklnO
Timers Interface LinkOutO

Link Linkln1
2k bytes Interface LinkOut1

of
On·chip Link Linkln2

RAM Interface LinkOut2

ProcClockOut Link Linkln3
notMemSO·4 Interface LinkOut3

notMemWrBO·3
External

~ notMemRd Event
EventReq

notMemRf Memory EventAck
Interface MemWait MemAD2·31

MemConfig MemnotRfD1
MemReq MemnotWrDO

MemGranted

Figure 18.1 Transputer architecture

The occam programming language [2] was developed by INMOS to address the task of programming
extremely concurrent systems. This document will illustrate how best to arrange occam programs in order
to maximise the performance of transputer systems, with particular reference to the author's ray-tracing
program [3].

All these performance enhancement techniques have been implemented in the ray tracer, and their use will
be illustrated by fragments from this program.

Several topics will be discussed, falling into two main categories - maximising the performance of an indi
vidual transputer, and maximising the performance of arrays of transputers.

Note that all occam examples conform to the product release of the Transputer Development System.

18.2 Maximising performance of a single transputer

The following sections describe how to maximise the performance of a single transputer. However, all these
performance maximisation techniques are highly relevant to maximising the performance of each processor
in a multiple transputer system.

18 Performance maximisation 281

18.2.1 Making use of on-chip memory

To achieve maximum performance from a transputer it is important that good use is made of on-chip memory.
On the IMS B004-4 Transputer Evaluation Board for example [4], the internal memory cycles in 66ns, whereas
the off-chip memory cycles in 330ns. This factor of five degradation in memory speed can be reflected in
program performance if heavily accessed locations are in off-chip memory.

On-chip memory is better used for scalar values and pointers rather than code and arrays. The IMS T414
fetches instructions in 32-bit words, so every code fetch cycle will pull in 4 instructions. Hence code aocesses
generally occur less frequently than data accesses. Also, every access to a data structure requires two or
more scalar values and pointers to be accessed to determine the address of a component of the array.

Memory layout

The occam compiler and transputer loader software try to place scalar values and pointers on-chip. Three
areas of store are allocated starting from the lowest free location in on-chip memory.

The first area holds the process workspaces; this is normally placed in on-chip memory. The second holds
the program code; this is placed above the workspaces and most of it will be in off-chip memory. The third
area holds the arrays; this is nearly always in off-chip memory (figure 18.2).

Unused
Vector space

Arrays of occam
program

Code space
Compiled code

of occam program

Workspace
Process works paces

of occam prog ram

System space
Link data words etc.

1-"77'7'777'?""""7::"""'I~--- Top of vectors

Start of vectors
Top of code

~~~.,.<-r;..<-h~"I .. --- Start of code 
Top of works paces 

Start of workspaces 
MemStart 

MOSTNEG INT 

Figure 18.2 Memory layout of occam program 

This is made possible because all data allocation in occam is static, and after compilation the loader knows 
exactly the data space requirement of the program. (Static allocation has one major drawback - recursion 
is not allowed in occam. Handling recursive algorithms in occam is described in section 18.7.) 

If a program has a data space requirement of more than 4K bytes (the on-chip memory space of the IMS 
T800), then some data will be placed in off-chip memory. It is then up to the programmer to arrange his 
occam program such that the most frequently used variables are placed on-chip. The following sections will 
describe how to write occam programs which optimise use of on-chip memory. 

Workspace layout 

On the transputer, variables are accessed relative to a workspace pointer register, W [1]. Each occam 
process has its own workspace - a procedure call will generate a new workspace for the called procedure, 
and forking a set of parallel processes will generate a new workspace for each new process. 

To maximise performance it is important that variables within the most frequently active workspace areas be 
in on-Chip memory. 



282 5 Performance 

Workspace layout of called procedures 

In occam, workspace for called procedures is allocated as a falling stack. Called procedures have their 
workspace placed at lower addresses than the caller. Scalar variables and pointers are located within the 
workspace. Arrays are normally located in the seperate off-chip storage area, but can be placed within the 
workspace if it is important that they are accessed rapidly. 

The occam compiler places the most recently declared variables in the lowest workspace slots. For example, 
the following piece of code: 

INT32 a, b, c : 
[200] INT32 Vector 
PLACE Vector IN WORKSPACE: 
SEQ 

a := 42 
b := #DEFACED 
c := #DEAF 
SEQ i = 0 FOR 200 

Vector [i] := 0 

would result in the following workspace layout: 

Variable Workspace Location 
a 205 
b 204 
c 203 
Vector 2 .. 202 
i o .. 1 (replicators consume 2 workspace slots) 

Note that the replicator variable is implicitly declared last, and therefore takes up the two lowest workspace 
slots. However, a, band c have ended up above the array Vector, and prefixing instructions are required 
to access them. If a b or c are going to be accessed frequently, it is better to declare them after Vector. 

A procedure may access global variables and arrays; these will have been declared in an enclosing procedure. 
Global variables are accessed using a pointer in the procedure workspace. This pointer is the head of a list 
known as the static chain through which the procedure can access variables from the workspace of any en
closing procedure. To avoid lengthy access times and bulky code due to static chaining, frequently accessed 
global variables and vectors should be brought into local scope, either by passing them as parameters, or 
abbreviating them locally. 

Further use of abbreviations to improve performance is discussed in 18.2.2. 



18 Performance maximisation 283 

Workspace layout of parallel processes 

Workspace for parallel processes is allocated below the workspace of the parent. The first member of the 
PAR list is allocated workspace immediately below the parent, the second immediately below that, etc. 

proe a 
proe b Total data proe e 
proe d requirement of a 

Total data 
requirement of b 

lo44"~':"":'~~-- base of workspace of b 
Total data 
requirement of c 

Total data 
requirement of d 

I'Tn':"":'N'7"l~-- base of workspace of d 

MOSTNEG INT 

Figure 18.3 Workspace layout of parallel processes 

If, in the example above any of the processes abc or d were consuming large amounts of workspace, 
then the workspace of the others could be resident off-chip. 

18.2.2 Abbreviations 

Abbreviations are a powerful feature of the occam language. They can be used to bring non-local variables 
down into local scope, thus removing static chaining and speeding up access. They can also speed up 
execution by removing range check instructions. Where appropriate, VAL abbreviations should be used; for 
scalar values this creates a local copy of a varible rather than a pointer to it. 

Abbreviations - removing range-checking code 

By abbreviating sub-vectors of larger vectors and using constants to index into the sub-vector, the compiler 
will generate range-checking code for the abbreviation, but will not need to generate range-checking code 
for accesses to the sub-vector. 

As an example of abbreviations removing range check instructions, here are two versions of the same pro
cedure. Part of the ray-tracer, this procedure is initialising fields in a new node to be added into a tree. The 
identifier nodePtr pOints to the start of the node. The second version uses abbreviations, generates no 
range checking code (apart from initial generation of the abbreviation) generates shorter code sequences for 
each assignment, and executes more quickly. 

PROC initNode (VAL INT nodePtr 
SEQ 

tree nodePtr + n.refleet] := nil 
tree nod'!!Ptr + n.refract] := nil. 
tree nodePtr + n.next] .- nil 
tree nodePtr + n.objeet] := nil 

PROC initNode ( VAL INT nodePtr ) 
node IS [ tree FROM nodePtr FOR nodeSize ] 
SEQ 

node 
node 
node 
node 

n.reflect] .
n.refraet] := 

n.next] := 
n.object] .-

nil 
nil 
nil 
nil 



284 5 Performance 

Even if range-checking were switched off, the second version will execute more quickly. Without range 
check instructions, the statement tree [ nodeptr + n. refract] : = nil will generate the 
following transputer instructions: 

get data to save 
get pointer to base of node 
get static chain 

ldc 
ld1 
ld1 
ldnlp 
wsub 
stnl 

nil 
nodeptr 
static 
tree generate pointer to tree ( in outer scope) 

generate pointer to tree [ nodeptr] 
n.refract and store to tree [ nodePtr + n.refract] 

whereas the second version node [ n. refract] : = nil will generate the following, appreciably 
shorter and faster fragment of code: 

ldc nil 
ld1 node 
stnl n.refract 

get data to save 
load abbreviation 
and store 

Of course there is an initial overhead to generate the abbreviation, but this is rapidly swamped by the subse
quent savings. 

Abbreviations - opening out loops 

Using abbreviations to open out loops can speed up execution considerably. Take the following piece of 
occam, a simple vector addition: 

SEQ i = 0 FOR 20000 
a[i] :=b[i] + c[i] 

The transputer loops in about a microsecond, but adds in about 50 nanoseconds. 
performance we must increase the number of adds per loop: 

Therefore to increase 

VAL bigLoops IS 2000 » 4 : 2000 / 16 
VAL leftOver IS 2000 - (bigLoops TIMES 16) 
SEQ 

SEQ i = 0 FOR 
VAL base IS 
aSlice IS [ 
bSlice IS [ 
cSlice IS [ 
SEQ 

bigLoops 
i TIMES 16 
a FROM base FOR 16 
b FROM base FOR 16 
c FROM base FOR 16 

aSlice 
aSlice 
aSlice 

[0] 
[1] 
[2 ] 

:= bSlice [0] + cSlice [0] 
:= bSlice [1] + cSlice [1] 
:= bSlice [2] + cSlice [2] 

aSlice [14] := bSlice[14] + cSlice[14] 
aSlice [15] := bSlice[15] + cSlice[15] 

SEQ i = 2000 - leftOver FOR leftOver 
a[i] := b[i] + c[i] 



18 Performance maximisation 285 

Obviously, loops can be opened out in any language, on any processor, and performance will tend be 
improved at the expense of increased code size. However, opening loops out in slices of 16 has a knock
on effect on the transputer, as optimal code with no prefix instructions is generated for each addition 
statement. Compare the code generated for the two statements: 

a[i] := b[i] + c[i] 

l.eU i 
l.eU b 
wsub 
l.dnl. 0 
l.eU i 
leU c 
wsub 
ldnl 0 
add 
l.eU a 
leU i 
wsub 
stnl. 0 

aSl.ice[15] .- bSlice[15] + cSlice[15] 

leU bSl.ice 
l.dnl. 15 
l.eU cSl.ice 
l.dnl. 15 
add 
leU aSl.ice 
stnl. 15 

The second piece of code is just over half the size of the first and the number of loop end (lend) instructions 
executed is reduced by a factor of 16. 

18.2.3 Placing critical vectors on-chip 

As mentioned above, in is sometimes important to place arrays in on-chip memory. For example, the following 
piece of code clears the screen of the IMS B007 graphics board [5]: 

PROC cl.earScreen ( VAL BYTE pattern ) 
-- the screen is decl.ared as 
-- [2] [512] [512] BYTE screenRAM : 
[256] [1024] BYTE screen RETYPES screenRAM [ currentScreen] 
[1024] BYTE fastVec: -- this is in on-chip memory 
PLACE fastVec IN WORKSPACE: 
SEQ 

initBYTEvec ( fastVec, pattern, 1024 ) -- fast byte initialiser 
SEQ y = 0 FOR 256 

screen [y] := fastVec 

This process fires off 256 block move instructions, each of 1024 bytes. Since the block move is reading from 
on-chip memory and writing to off-chip memory it will proceed more quickly than: 

PROC cl.earScreen ( VAL BYTE pattern ) 
[512*512] BYTE screen RETYPES screenRAM [ currentScreen] 
initBYTEvec ( screen, pattern, 512*512 ) -- fast byte initialiser 

where all data accesses are to off-chip memory. The time saved during the block moves outweighs the cost 



286 5 Performance 

of setting up the parameters to the block moves, and of the initial initBYTEvec. See section 18.2.4 for 
more about block moves, and the source of initBYTEvec. 

Beware the PLACE statement 

A common mistake in trying to make occam go faster is to physically place data on-chip, using a PLACE 
statement. This does the right thing - the compiler will physically place the variable on-chip, but the variable 
will be outside local workspace. 

Therefore to access the variable, its physical address must be generated, and an indirection performed to 
load the contents of the address. 

For example, declaring a variable at word address 30 above MOSTNEG INT, and setting its value to 3: 

INT a : 
PLACE a AT 30: -- 30th word address above mint 
a := 3 

l.dc 3 
mint 
stnl. 30 

This code sequence takes 6 cycles (300 ns on an IMS T414-20). Were a a local variable, the code sequence 
would be: 

l.dc 3 
stl. a 

and would take only 2 cycles (100 ns) if the workspace were on-chip. 

Placing variables in on-chip memory can also be extremely dangerous; if the PLACEd variable accidentally 
overlays a workspace location the results will be unpredictable and could be disastrous. 

The key to making variable accesses go faster is to keep the workspace on-chip. Then if it is necessary 
for a vector to be on-chip, it can be declared in local scope and placed in the workspace. 

18.2.4 Block move 

The IMS T414 vector assignment instruction move [1] is directly supported by the occam language. The 
vector assignment statement: 

[65536] BYTE bigVec, otherVec 
[ bigVec FRaN 0 FOR 65536] := 

compiles down to only 4 instructions: 

otherVec FROM 0 FOR 65536] 

l.dl. bigVec 
l.dl. otherVec 
l.OO 65536 
move 

assuming the vectors are abbreviated 
l.ocal.l.y 
this wil.l. be prefixed of course 



18 Performance maximisation 

A very fast vector initialiser can be written using block moves. 

PROC initBYTEvec ( [] BYTE vec, VAL BYTE pattern, VAL INT bytes ) 
INT dest, transfer : 
SEQ 

transfer := 1 
dest : = transfer 
vec [0] := pattern 
WHILE dest < bytes 

SEQ 
[vec FROM dest FOR transfer] := [vec FROM 0 FOR transfer] 
dest := dest + transfer 
transfer := transfer + transfer 

287 

This performs a series of assignments of increasing length, initialising the first byte of the vector, then the 
next 2, then the next 4, 8, 16 etc. As printed above it will only initialise vectors which are an exact power of 
two in size, but very slight modifications make it completely general. 

18.2.5 Retyping - accelerating byte manipulation 

Under certain circumstances retyping can be used to speed up byte manipulation. If it is necessary to 
frequently extract byte fields from a word, then accessing retyping the word to a byte array is faster than 
shifting and masking. For example: 

INT word : 
[4] BYTE bWord RETYPES word : 
SEQ 

use bWord[O] , bWord[l], bWord[2] , bWord[3] 

To access bits 16 .. 23 in word, simply reference bWord [2] , which will generate: 

l.dc 2 
l.dl.p bWord 
bsub 
l.b 

l.oad base of bWord 
sel.ect byte 2 
and l.oad it 

To perform byte operations on large arrays it is worthwhile moving portions of the array to a local (on-chip) 
array; this is because a block move transfers words and is therefore much faster than accessing individual 
bytes from an off-chip array. For example: 

[1024] INT vector : 
[] BYTE bytevector RETYPES vector 

[16] BYTE l.ocal. : 
PLACE l.ocal. IN WORKSPACE 
INT base : 
SEQ 

base := 0 
SEQ i = 0 FOR 64 

SEQ 
l.ocal. := [bytevector FROM base FOR 16] 
base := base + 16 
SEQ i = 0 FOR 16 

SEQ 
use l.ocal.[i] to access each byte 



288 5 Performance 

18.2.6 Use TIMES 

The IMS T414 transputer has a fast (but unchecked) multiply instruction, which is accessed with the occam 
operator TIMES. An integer multiply on the IMS T414-20 takes over a microsecond - using TIMES this will 
take as many processor cycles as there are significant bits in the right-hand operand, plus 2 cycles overhead. 
Therefore, 

a ." 4 

still takes over a microsecond, whereas 

a TIMES 4 

takes only 6 cycles (300 ns). Therefore, when multiplying integers by small constants, use TIMES. Note that 
the IMS T800 Floating Point Transputer has a modified version of TIMES which optimally multiplies small 
negative integers. 

18.3 Maximising multiprocessor performance 

The following sections will describe how to obtain more performance from an array of transputers. However, 
only very general guidelines can be offered. Maximising multiprocessor performance is still an area of active 
research, and any solution will tend to be specific to the problem at hand. 

18.3.1 Maximising link performance 

The transputer links are autonomous DMA engines, capable of transferring data bidirectionally at up to 20 
Mbits/sec. They are capable of these data rates without seriously degrading the performance of the processor. 
To achieve maximum link throughput from a multi transputer system the links and the processor should all 
be kept as busy as possible. 

Decoupling communication and computation 

To avoid the links waiting on the processor or the processor waiting on the links, link communication should 
be decoupled from computation. 

For example, the following program is part of a pipeline, inputting data, applying a transformation to each 
data item, then outputting the transformed data: 

PROC transform ( CHAN in, out ) 
[dataSize] INT data : 
WHILE TRUE 

SEQ 
in ? data 
applyTransform ( data ) 
out ! data 

If the channels in and out are transputer links, then the performance of the pipeline will be degraded. The 
SEQ contruct is forcing the transputer to perform only one action at a time; it is either inputting, computing 
or outputting; it could be doing all three at once. Embedding the transformer between a pair of buffers will 
improve performance considerably: 

PAR 
buffer ( in, a ) 
transform ( a, b ) 
buffer ( b, out ) 

The buffers are decoupling devices, allowing the processor to perform computation on one set of data, whilst 
concurrently inputting a new set, and outputting the previous set. 



18 Performance maximisation 289 

In this example the buffer processes will simply input data then output it. There is a transfer of data here 
which can be avoided, as all the data can be passed by reference: 

[dataSize] INT a, b, c : 
proc input 

SEQ 

proc transform 
proc output 

input ( a) start-up sequence .. pull in data 
PAR 

input ( b) 
transform a) 

WHILE TRUE 
SEQ 

PAR 
input 
transform 
output 

PAR 

( c) 
( b) 
( a) 

input a) 
transform ( c) 
output ( b) 

PAR 
input ( b) 
transform ( a) 
output ( c) 

now transform that data 
and pull in more 

and from here on 
the buffers pass round-robin 
between the inputter, transformer 
and outputter 

Instead of input and output operations transferring data between the processes, the processes transfer them· 
selves between the data, each process cycling between the vectors a,b and c as the PAR statements close 
down and restart. 

This is a special case, a data f:ow architecture where all communication and processing is synchronous 
- there is a lock-step in, transform, out sequence which allows this sequential overlay of computing and 
communication. This is not the case in many programs, where buffer processes are required. 

Some applications are sufficiently concurrent that implicit buffering is taking place in processes which com
municate directly with links. This is the case with the ray-tracer. The ray-tracer has extensive data routing 
processes, and the insertion of additional buffering processes unexpectedly reduced the performance (albeit 
by much less than one per cent). However these buffer processes have been shown to be important, as 
subtle deadlocks can occur if the buffers are removed. 

Prioritisation 

Correct use of prioritisation is important for most distributed programs communicating via links. If a message 
is transmi:ted to a transputer and requires throughrouting, it is essential that the transputer input the message 
then output it with minimum delay - another transputer somewhere in the system could be held up, waiting 
for the message. In such cases it is important to run the processes which use the links at high-priority. 
There will tend to be more than one process talking to links, at most eight, and the PRI PAR statement 
allows only one process at each priority level. It is necessary to gather together all the link communication 
processes, unify them into a process with a PAR statement, and run this process at high-priority. 



290 5 Performance 

The program from above now becomes: 

[dataSize] INT a, b, c 
proc input 
proc transform 
proc output 

SEQ 
input ( a) 
PRI PAR 

input 
transform 

WHILE TRUE 
SEQ 

PRI PAR 
PAR 

( b) 
( a) 

input 
output 

transform 
PRI PAR 

PAR 
input 
output 

transform 
PRI PAR 

PAR 

c) 
( a) 
( b) 

( a) 
( b) 
( c) 

input b) 
output c) 

transform a) 

start-up sequence .. pull in data 

now transform that data (HI-PRI) 
and pull in more 

and from here on 
the buffers pass round-robin 

between the inputter, transformer 

and outputter 

As an example, this is the outermost level of the calculate process in the ray tracer. Note the use of 
prioritisation, and global vectors. Everything is prioritised except the process performing the computation -
a scheme which at first sight appears to be counter intuitive, but is of fundamental importance in a parallel 
system. Accidental or misguided prioritisation of computing processes will lead to disastrous performance 
degradation. 

PROC calculate ( CHAN fromPrev, toNext, fromNext, toPrev, 
VAL BOOL propogate ) 

proc render 
proc routeWork 
proc mixP ixels 

CHAN toLocal, fromLocal, requestWork : 

-- run all through routers at hi-PRI, and do 
-- all the floating point maths at lo-PRI 

[256] INT buffA, buffB : 
[(treeSize + worldModelSize) + gridSize] REAL32 heap 
WHILE TRUE 

PRI PAR 
PAR 

routeWork buffA, fromPrev, toNext, toPrev, local, 
request Work , propogate ) 

mixPixels (buffB, fromLocal, fromNext, toPrev, buffers 
render ( heap, toLocal, fromLocal, requestWork ) 



18 Performance maximisation 291 

18.3.2 Large link transfers 

Setting up a transfer down a link takes about about a microsecond (20 processor cycles), but once that 
transfer is started it will proceed autonomously from the processor, consuming typically 4 processor cycles 
every 4 microseconds (one memory read or write cycle per 32-bit word). Keep messages as long as 
possible. For example: 

[300] INT data : 
SEQ 

out ! some.data; 300; [ data FROM 0 FOR 300] 

is far better than 

[300] INT data : 
SEQ 

out some.data; 300 
SEQ i = 0 FOR 300 

out ! data [i] 

However, long link transfers increase latency when data must be through routed. Some optimal message 
length will give the best compromise between overhead on setting up transfers, and overhead on throughrout
ing. A detailed discussion can be found in [6]. 

18.4 Dynamic load balancing and processor farms 

Processor farms [7] are a general way of distributing problems which can be decomposed into smaller 
independent sub-problems. If implemented carefully, processor farms can give linear performance in multi 
transputer systems - that is ten processors will perform 10 times as well as one processor. Processor 
farms come into their own when solving problems where the amount of computation required for any given 
sub-problem is not constant. 

For example, in the ray tracer one pixel may only require one traced ray to determine its colour, but other 
pixels may require over a hundred. 

Rather than give each processor say one tenth of the screen (assuming ten processors in the array) , the 
screen is split into much smaller areas - in this case 8x8 pixels, giving a total of 4096 work packets for a 
512x512 pixel screen. These are handed out piecewise to the farm. Each processor in the farm computes 
the colours of the pixels for that small area, and passes the pixels back, the pixel packet being an implicit 
request for another area of screen to be rendered. 

Since work is only given to the farm on demand, load is balanced dynamically, with the whole system 
keeping itself as busy as possible. Buffer processes overlay data transfer with communication, reducing the 
communication overhead to zero, and the end-case latency of a processors farm implemented this way is far 
lower than in a statically load-balanced system. 

Here is a diagram of the ray tracer. 

The key to the processor farm is a valve process, allowing work packets into the farm only when there is an 



292 

Array of calculators 

flow of work 

flow of results (pixels) 

controller 

graphics Engine 

Figure 18.4 Structure of ray tracing program 

idle processor. The structure of this valve is: 

PAR 
-- pump work unconditionally 
SEQ i = 0 FOR workPackets 

inject ! packet 
-- regulate flow of work into farm 
SEQ 

idle := processors 
WHILE running 

PRI ALT 
fromFarm ? results 

idle := idle + 1 
(idle > 0) & inject ? packet 

SEQ 
tofarm ! packet 
idle := idle - 1 

where the crucial statement is the guarded ALT, 

(idle > 0) & inject ? packet 

5 Performance 

only allowing work to pass from the pumper into the farm when there is an idle processor. The ALT is 
prioritised to accept results - this is explained in section 18.5.3. 

The processor farm technique has been used to implement a very fast Mandelbrot Set generator [7, 8] and 
a step-coverage simulator for VLSI circuits [9]. A large forecasting/statistical modelling package is in the 
process of being implemented as a processor farm. In all cases fully implemented, linearity of performance 
to number of processors has been high, from 80-99.5%. That is, ten processors perform between 8 and 
9.95 times as well as one processor. 



18 Perfonnance maximisation 293 

18.5 A worked example: the INMOS ray tracer 

Ray tracing [1 0) is a computer graphics technique capable of generating extremely realistic images. It handles 
inter-object reflections, refraction and shadowing effects in a simple and elegant algorithm. However, ray 
tracing has one major drawback - it devours computing resource. In [10) very simple scenes were rendered 
on a powerful minicomputer, taking from 45 to 180 minutes per image. 

The structure of the INMOS ray tracer was described in [3) and (7) - in this section the performance en
hancement techniques described above will be illustrated with reference to the ray tracer. 

Finally, results will be presented comparing the optimised implementation of the ray tracer with deliberately 
de-tuned versions. 

18.5.1 The ray tracer 

As described in section 18.4 and in [3), the ray tracer consists of three major processes - controller, 
calculator and qraphi.csEnqi.ne. 

18.5.2 The controller process 

The controller is at the heart of the processor farm. The internal structure of the controller is illustrated below. 

toGraphics 

valve process (work fll)w regulator) 

toFarm 
• 

from Farm 

toValve 

work pumper 

Figure 18.5 The controller process 

The valve process is regulating the flow of work into the farm of calculators, and passing results packets on 
to the graphics card. It is very important that the controller responds quickly to incoming results packets. 
Therefore the process accepting results packets is prioritised, and the ALT construct in the valve process is 
prioritised to accept results rather than pass on work. Each calculator has a buffered work packet, so it is 
more important that results be passed on to the graphics card rather than more work packets passed out to 
the farm. 



294 5 Performance 

18.5.3 The calculator process 

The calculator contains a work router, a pixel stream mixer and a renderer (section 3.1). 

renderer 

work packets in 
• 

work packets out 

results packets 
~.~----------------~ 

results packets in 

pixel stream mixer 

Figure 18.6 The calculator process 

All the vectors used by mixPixels routeWork and calculate are declared at the outermost lexical 
level, and passed into the processes as parameters. Keeping the workspace of the work routing processes 
in internal memory is very important in a processor farm, as the latency of response to link inputs is reduced. 
When a process is scheduled, several words are written into the workspace of the descheduled process, 
and these write cycles will be slower if the workspace is off-chip, thus increasing process-swap time and 
degrading the performance of the farm as a whole. 

18.5.4 The graphics process 

The graphics process accepts pixels from the controller and plots them on aiMS B007 graphics board [5]. 
The internal structure of the graphics process is illustrated below. 

pixels in 

plotter pixel buffer 

Figure 18.7 The graphics process 

The buffer process in qraphicsEnqine improves overall performance slightly, by overlaying the plotting 
of one patch with inputting the next. The buffer process is prioritised over the plotter. 



18 Performance maximisation 295 

18.6 Conclusions 

Several techniques have been presented for performance enhancement of occam programs running on 
transputers. 

These techniques can be summarised as: 

Enhancement technique Section 
Keep workspaces in on-chip memory 18.2.1 
Use abbreviations to minimise static chaining 18.2.2 
Use abbreviations to remove range checking 18.2.2 
Use abbreviations to open out loops 18.2.2 
Place critical vectors on-chip 18.2.3 
Initialise large vectors with block move 18.2.4 
Use retyping to accelerate byte manipulation 18.2.5 
Use TIMES 18.2.6 

Decouple communication and computation 18.3.1 
Use buffer processes on links where necessary 18.3.1 
Prioritise processes which use links 18.3.1 
Keep messages as long as possible 18.3.2 
Use dynamic load balancing if appropriate 18.4 

Some techniques (dynamic load balancing, link buffering, buffer process prioritisation) are applicable only to 
arrays of transputers, others (optimum use of on-chip memory) should be applied at all times. 

It has been shown that severe performance degradation can occur if an occam program is written without 
appropriate application of these techniques. Therefore these techniques should be considered for all occam 
applications. 

18.7 Handling recursion in occam 

occam does not allow recursion, so recursive algorithms must be restated in a non-recursive manner. A 
good example is the anti-aliasing algorithm from the ray tracer. 

In computer graphics, anti-aliasing is a term used to describe algorithms which reduce perceptually disturbing 
artefacts in images. These artefacts are aliases, and are due to the point-sampling nature of computer 
graphics algorithms (see (101). In order to reduce these aliases (and hence generate more realistic images) 
it is necessary to perform area-sampling, so that the colour assigned to each pixel on the display is an 
integration over the entire pixel area, rather than a single point sample. 

The simplest approach to anti-aliasing is therefore to supers ample each pixel (e.g. trace 16 rays rather than 
1) and return the average colour - this implies a factor of 16 increase in the work load, over an already 
compute-intensive algorithm. Therefore an adaptive supersample is performed. 

The purpose of adaptive supersampling is to generate an anti-aliased image without the expense of super
sampling all pixels in the image. The algorithm supersamples those pixels where detectable colour changes 
have occured, splitting these pixels into four sub-pixels and recurring. This results (in most cases) in an 
acceptable image at an average 30-50% increase in computation time over a simple ray trace. 

Expressed recursively in PASCAL, the algorithm is 

FUNCTION averageCo~ou~ 
FORWARD; 

xO, yO, size, ~eve~ 

FUNCTION averageCo~our { xO, yO, size, ~eve~ 
VAR 

A, B, C, D, h~f : INTEGER; 

INTEGER) I:NTEGER; 

INTEGER) INTEGER} ; 



296 5 Performance 

A 8 

Figure 18.8 Magnified object silhoutte A) without and 8) with anti-aliasing 

BEGIN 
A := rayTrace xO, yO); 
B := rayTrace xO+size, yO); 
C := rayTrace xO, yO+size); 
D := rayTrace ( xO+size, yO+size); 
IF (1eve1 < maxLeve1) AND 

(co1ourDifference ( A, B, C, D) 
BEGIN 

> maxDiff) THEN 

ha1f := size / 2 
averageCo1our := 

END 
ELSE 

( averageCo1our 
averageCo1our 
averageCo1our 
averageCo1our 

xO, 
xO+ha1f, 
xO, 
xO+ha1f, 

yO, 
yO, 
yO+ha1f, 
yO+ha1f, 

averageCo1our := (A + B + C + D) / 4; 
END; 

ha1f, 
ha1f, 
ha1f, 
ha1f, 

1eve1+1) + 
1eve1+1) + 
1eve1+1) + 
1eve1+1» / 4 

The recursion bottoms out either when a maximum recursion level has been reached, or when the colour dif
ference across the corners of the pixel is deemed acceptable. The INMOS implementation has the maximum 
recursion level set to 2, so up to 16 rays will be traced per pixel for anti-aliasing. 

In occam, the implementation is more verbose, but is simple to understand. The program explicitly manipu
lates 2 stacks - actions (Le. what the program should do next) and parameters (Le. the data on which the 
program shall act) are stored on one stack, and returned results (in this case colour values) are kept on the 
other. 

An action value is popped off the stack and the appropriate action performed. If a TRACE action is to be 
performed then four points (representing the corners of the pixel) are ray traced , and their colours compared 
- if the colour spread is acceptable then the average colour is pushed onto the colour stack, otherwise a 
MIX action and four further TRACE actions are pushed onto the action stack. 

If a MIX action is to be performed, four colour values are popped off the colour stack, and their average 
pushed back. 

The algorithm terminates on a HAL Taction, at which time the pixel's colour is held on top of the colour stack. 

PROC averageCo1our ( INT averageCo1our, 
VAL INT xO, yO, sizeO ) 

dec1are actions - HALT MIX abc d and TRACE xO yO size 1eve1 
dec1are variab1es, dec1are stacks, sp 
procs to manipu1ate action / parameter stack 
procs to manipu1ate co1our stack 



18 Performance maximisation 

SEQ 
init stack pointers 

pushlAction ( HALT )
push4Action ( xO,yO,sizeO,l) 
action := TRACE 

pre-load stack with HALT action 
and parameters for this pixel 

WHILE action <> HALT 
IF 

action = TRACE 
INT a, b, c, d, diff 
SEQ 

pop4Action x, y, size, level 
rayTrace a, x, y ) 
rayTrace b, x+size, y ) 
ray Trace c, x, y+size ) 
rayTrace (d, x+size, y+size 
colourDifference ( diff, a, b, c, d ) 
IF 

(level < maxLevel) AND (diff > maxDiff) 
SEQ 

size := size / 2 
level := level+l 
pushlAction ( MIX ) 
push5Action ( TRACE,x,y,size,level ) 
push5Action ( TRACE,x+size, y,size,level ) 
push5Action ( TRACE,x,y+size,size,level ) 
push4Action ( x+size,y+size,size,level ) 

TRUE 
SEQ 

pushlColour «(a + b) + (c + d» / 4) 
poplAction ( action) 

action = MIX 
INT a, b, c, d : 
SEQ 

pop4Colour (a, b, c, d ) 
pushlColour «(a + b) + (c + d» / 4) 
poplAction ( action) 

poplColour ( averaqeColour) 

297 

Note that as presented the algorithm is extremely inefficient, re-ray tracing points several times over. The 
algorithm as implemented caches previous results (in a large vector declared at the outermost lexical level 
and abbreviated into a local variable). 

18.8 References 

The Transputer Databook, INMOS Limited 1989 

2 occam 2 reference manual, Prentice Hall 1988 

3 Exploiting concurrency; a ray tracing example, Technical note 07, INMOS Limited, Bristol 1987 

4 IMS B004 IBM PC add-in board, Technical note 11, INMOS Limited, Bristol 1987 

5 IMS B007 a transputer based graphics board, Technical note 12, INMOS Limited, Bristol 1987 

6 Signal Processing With Trl3.nsputers J.G. Harp, J.B.G. Roberts and J.S. Ward, 
Computer Physics Communications, January 1985 

7 Communicating Process Computers, Technical note 22, INMOS Limited, Bristol 1987 



298 5 Performance 

8 Turbocharging Mandelbrot, Dick Pountain, BYTE magazine, September 1986 

9 Evaporated film profiles over steps in substrates, I.A Blech, Thin Solid Films, 6 (1970) pp 113-118 

10 An Improved Illumination Model For Shaded Display, Turner Whitted, 
Communications Of The ACM, pp 343-349, June 1980,23 (6). 




