

Graphic Memory Data Book

May 17, 1994

Notice

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

Contents

Section 1	Synchronous DRAM HM5241605 Series 128K x 16 bits x 2 banks HM5241605TT -15/-17/-20 66MHz/57MHz/50MHz HM5283206 Series 128K x 32 bits x 2 banks HM5283206FP -12/-15/-17/-20 80MHz/66MHz/57MHz/50MHz HM5283206TT -12/-15/-17/-20 80MHz/66MHz/57MHz/50MHz 80MHz/66MHz/57MHz/50MHz
	VRAM.HM534251B Series256K x 4 bits Multiport DRAM•HM534251BJ -60/-70/-80/-100•HM534251BZ -60/-70/-80/-100•HM534251BR -60/-70/-80/-100•HM534253B Series256K x 4 bits Multiport DRAM•HM534253BJ -60/-70/-80/-100•HM534253BZ -60/-70/-80/-100•HM534253BR -60/-70/-80/-100•HM534253BR -60/-70/-80/-100•HM534253BT -60/-70/-80/-100•HM538123B Series•128K x 8 bits Multiport DRAM•HM538253 Series•256K x 8 bits Multiport DRAM•HM538253 J -70/-80/-100•HM538253 J -70/-80/-100•HM538253 Series•256K x 8 bits Multiport DRAM•HM538253 Series•256K x 8 bits Multiport DRAM•HM538253 Series•256K x 8 bits Multiport DRAM•HM538254 Series•128K x 16 bits Multiport DRAM•HM5316123 Series•128K x 16 bits Multiport DRAM•HM5316123 F -70/-80/-100
Section 3*	Frame Memory
Section 4	Line Memory

Section 1 Synchronous DRAM

Preliminary

HM5241605 Series

131,072-word x 16-bit x 2-bank Synchronous Dynamic RAM

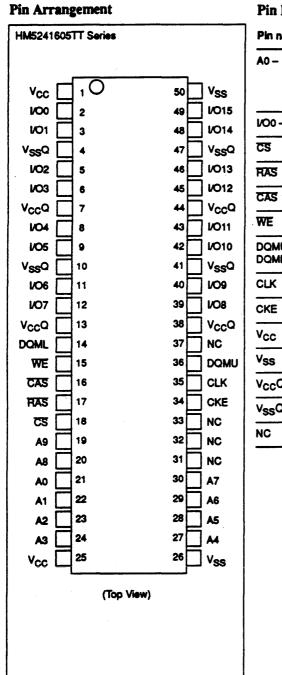
HITACHI

Rev. 0.3 Apr. 13, 1994

All inputs and outputs are referred to the rising edge of the clock input. The HM5241605 is offered in 2 banks for improved performance.

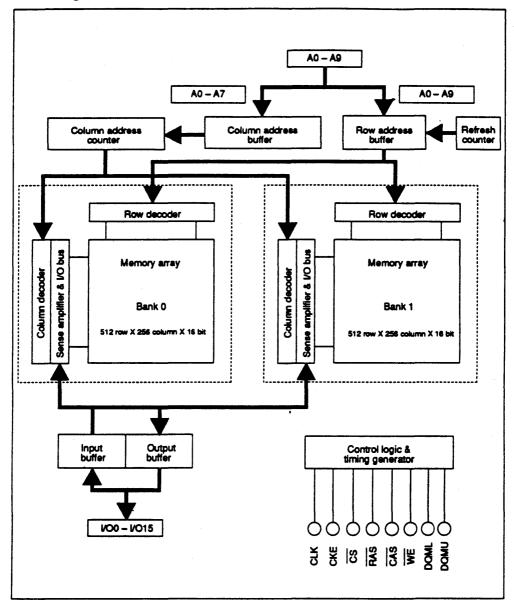
Features

- 3.3V Power supply
- Clock frequency 66 MHz/57 MHz/50 MHz
- LVTTL interface
- Single pulsed RAS
- 2 Banks can operates simultaneously and independently
- Burst read/write operation and burst read/ single write operation capability
- Programmable burst length 1/2/4/8/full page
- Programmable burst sequence Sequential/interleave
- Full page burst length capability Sequential burst burst stop capability
- Programmable CAS latency 1/2/3
- Byte control by DQMU and DQML
- 1024 refresh cycles: 16 ms
- · 2 variations of refresh -
- Auto refresh
- Self refresh


Preliminary: This document contains information on a new product. Specifications and information contained herein are subject to change without notice.

Ordering Information

Type No.	Frequency	Package
HM5241605TT-20	50 MHz	400-mil 50-pin
HM5241605TT-17	57 MHz	plasticTSOP II
HM5241605TT-15	66 MHz	(TTP-50D)


ADE-203-186(C)(Z)

Pin Description

Pin name	Function
A0 - A9	Address input - Row address A0 - A8 - Column address A0 - A7 - Bank select address A9
VO0 - VO15	Data-input/output
टड	Chip select
RAS	Row address strobe command
CAS	Column address strobe command
WE	Write enable command
DQMU DQML	Upper byte input/output mask Lower byte input/output mask
CLK	Clock input
CKE	Clock enable
V _{CC}	Power for internal circuit (3.3 V)
V _{SS}	Ground for internal circuit
V _{CC} Q	Power for VO pin (3.3 V)
V _{SS} Q	Ground for I/O pin
NC	No connection

Pin Functions

CLK (input pin): CLK is the master clock input to this pin. The other input signals are referred at CLK rising edge.

CS (input pin): When CS is Low, the command input cycle becomes valid. When CS is High, all inputs are ignored. However, internal operations (bank active, burst operations, etc.) are held.

RAS, CAS, and WE (input pins): Although these pin names are the same as those of conventional DRAMs, they function in a different way. These pins define operation commands (read, write, etc.) depending on the combination of their voltage levels. For details, refer to the command operation section.

A0 to A8 (input pins): Row address (AX0 to AX8) is determined by A0 to A8 level at the bank active command cycle CLK rising edge. Column address (A0 to A7) is determined by A0 to A7 level at the read or write command cycle CLK rising edge. And this column address becomes burst access start address. A8 defines the precharge mode. When A8 = High at the precharge command cycle, both banks are precharged. But when A8 = Low at the precharge command cycle, only the bank that is selected by A9(BS) is precharged.

A9 (input pin): A9 is a bank select signal (BS). The memory array of the HM5241605 is divided into bank 0 and bank 1, both which contain 512 row x 256 column x 16 bits. If A9 is Low, bank 0 is selected, and if A9 is High, bank 1 is selected.

CKE (input pin): This pin determines whether or not the next CLK is valid. If CKE is High, the next CLK rising edge is valid. If CKE is Low, the next CLK rising edge is invalid. This pin is used for power-down and clock suspend modes.

DQMU/DQML (input pins): DQMU controls upper byte and DQML controls lower byte input/output buffers.

Read operation: If DQMU/DQML is High, the output buffer becomes High-Z. If the DQMU/DQML is Low, the output buffer becomes Low-Z.

Write operation: If DQMU/DQML is High, the previous data is held (the new data is not written). If DQMU/DQML is Low, the data is written.

I/O0 to I/O15 (I/O pins): Data is input to and output from these pins. These pins are the same as those of a conventional DRAM.

 V_{CC} and $V_{CC}Q$ (power supply pins): 3.3 V is applied. (V_{CC} is for the internal circuit and $V_{CC}Q$ is for the output buffer.)

 V_{SS} and $V_{SS}Q$ (power supply pins): Ground is connected. (V_{SS} is for the internal circuit and $V_{SS}Q$ is for the output buffer.)

Command Operation

Command Truth Table

The synchronous DRAM recognizes the following commands specified by the CS, RAS, CAS, WE and address pins.

Function	Symbol	CKE n - 1	n	cs	RAS	CAS	WE	A 9	AS	A7 - 0
Ignore command	DESL	Н	X	H	x	X	x	x	x	X
No operation	NOP	н	x	L	н	н	н	x	X	x
Burst stop in full page	BST	н	x	L	н	Н	L	x	x	x
Column address and read command	READ	н	x	L	н	L	Н	v	L	v
Read with auto-precharge	READ A	н	x	L	н	L	н	v	н	v
Column address and write command	WRIT	н	x	L	н	L	L	v	L	v
Write with auto-precharge	WRIT A	н	x	L	Н	L	L	v	н	v
Row address strobe and bank act.	ACTV	Н	x	L	L	н	н	V	V	v
Precharge select bank	PRE	н	x	L	L	Н	L	V	L	x
Precharge all bank	PALL	Н	x	.·L	L	н.	L	x	н	x
Refresh	REF/SELF	н	۷	L	L	L	Н	x	x	x
Mode register set	MRS	н	x	L	L	L	L	L	L	v

Note: H: VIH. L: VIL. X: VIH or VIL. V: Valid address input

•Ignore command [DESL]: When this command is set (\overline{CS} is High), the synchronous DRAM ignore command input at the clock. However, the internal status is held.

•No operation [NOP]: This command is not an execution command. However, the internal operations continue.

•Burst stop in full-page [BST]: This command stops a full-page burst operation (burst length = full-page(256)), and is illegal otherwise. Full page burst continues until this command is input. When data input/output is completed for a fullpage of data (256), it automatically returns to the start address, and input/output is performed repeatedly. •Column address strobe and read command [READ]: This command starts a read operation. In addition, the start address of burst read is determined by the column address (AY0-AY7) and the bank select address (BS). After the read operation, the output buffer becomes High-Z.

•Read with auto-precharge [READ A]: This command automatically performs a precharge operation after a burst read with a burst length of 1, 2, 4, or 8. When the burst length is fullpage(256), this command is illegal.

•Column address strobe and write command [WRIT]: This command starts a write operation. When the burst write mode is selected, the column address (AY0 to AY7) and the bank select address (A9) become the burst write start address. When the single write mode is selected, data is only written to the location specified by the column address (AY0 to AY7) and the bank select address (A9).

•Write with auto-precharge [WRIT A]: This command automatically performs a precharge operation after a burst write with a length of 1, 2, 4, or 8, or after a single write operation. When the burst length is full-page(256), this command is illegal.

•Row address strobe and bank activate [ACTV]: This command activates the bank that is selected by A9(BS) and determines the row address (AX0-AX8). When A9 is Low, bank 0 is activated. When A9 is High, bank 1 is activated. •Precharge selected bank [PRE]: This command starts precharge operation for the bank selected by A9. If A9 is Low, bank 0 is selected. If A9 is High, bank 1 is selected.

•Precharge all banks [PALL]: This command starts a precharge operation for all banks.

•Refresh [REF/SELF]: This command starts the refresh operation. There are two types of refresh operation, the one is auto-refresh, and the other is self-refresh. For details, refer to the CKE truth table section.

•Mode register set [MRS]: Synchronous DRAM has a mode register that defines how it operates. The mode register is specified by the address pins (A0-A9) at the mode register set cycle. For details, refer to the mode register configuration. After power on, the contents of the mode register are undefined, execute the mode register set command to set up the mode register.

Function	Symbol	CKE n - 1	n	DQM U	L
Upper byte write enable/output enable	ENBU	н	x	L	x
Lower byte write enable/output enable	ENBL	н	x	x	L
Upper byte write inhibit/output disable	MASKU	н	x	н	x
Lower byte write inhibit/output disable	MASKL	н	X	x	н

DQM Truth Table

Note: H: VIH. L: VIL. X: VIH or VIL.

The HM5241605 series can mask input/output data by means of DQMU and DQML. DQMU masks the upper byte and DQML masks the lower byte. During reading, the output buffer is set to Low-Z by setting DQMU/DQML to Low, enabling data output. On the other hand, when DQMU/DQML is set to High, the output buffer becomes High-Z, disabling data output. During writing, data is written by setting DQMU/DQML to Low. When DQMU/DQML is set to High, the previous data is held (the new data is not written). Desired data can be masked during burst read or burst write by setting DQMU/DQML. For details, refer to the DQM control section of the HM5241605 operating instructions.

Current state	Function		CKE n - 1	n	ट्य	RAS	CAS	WE	Address
Active	Clock suspend mode entry	,	н	L	X	X	X	x	x
Any	Clock suspend		L	L	x	X	٠x	x	x
Clock suspend	Clock suspend mode exit		L	н	x	x	x	x	x
idie	Auto-refresh command	REF	н	н	L	L	L	н	x
ldle .	Self-refresh entry	SELF	н	L	L	L	L	н	x
ldle	Power down entry		н	L	L	н	н	н	x
			н	Ĺ	Н	x	x	x	x
Self refresh	Self refresh exit		L	н	L	н	н	н	x
			L	Н	н	x	x	x	x
Power down	Power down exit		L	н	L	н	н	н	x
			L	Н	н	x	X	x	x

CKE Truth Table

Note: H: VIH. L: VIL. X: VIH or VIL.

•Clock suspend mode entry: The synchronous DRAM enters clock suspend mode from active mode by setting CKE to Low. The clock suspend mode changes depending on the current status (1 clock before) as shown below.

•ACTIVE clock suspend: This suspend mode ignores inputs after the next clock by internally maintaining the bank active status.

•READ suspend and READ A suspend: The data being output is held (and continues to be output).

•WRITE suspend and WRIT A suspend: In this mode, external signals are not accepted. However, the internal state is held.

•Clock suspend: During clock suspend mode, keep the CKL to Low.

•Clock suspend mode exit: The synchronous DRAM exits from clock suspend mode by setting CKE to High during the clock suspend state. •IDLE: In this state, all banks are not selected, and completed precharge operation.

•Auto-refresh command [REF]: When this command is input from the IDLE state, the synchronous DRAM starts auto-refresh operation. (The auto-refresh is the same as the CBR refresh of conventional DRAMs.) During the auto-refresh operation, refresh address and bank select address are generated inside the synchronous DRAM. For every auto-refresh cycle, the internal address counter is updated. Accordingly, 1,024 times are required to refresh the entire memory. Before executing the auto-refresh command, all the banks must be in the IDLE state. In addition, since the precharge for all banks is automatically performed after auto-refresh, no precharge command is required after auto-refresh. •Self-refresh entry [SELF]: When this command is input during the IDLE state, the synchronous DRAM starts self-refresh operation. After the execution of this command, self-refresh continues while CKE is Low. Since self-refresh is performed internally and automatically, external refresh operations are unnecessary.

•Power down mode entry: When this command is executed during the IDLE state, the synchronous DRAM enters power down mode. In power down mode, power consumption is suppressed by cutting off the initial input circuit. •Self-refresh exit: When this command is executed during self-refresh mode, the synchronous DRAM can exit from self-refresh mode. After exiting from self-refresh mode, the synchronous DRAM enters the IDLE state.

•Power down exit: When this command is executed at the power down mode, the synchronous DRAM can exit from power down mode. After exiting from power down mode, the synchronous DRAM enters the IDLE state.

Function Truth Table

The following table shows the operations that are performed when each command is issued in each mode of the synchronous DRAM.

		X H H H L	X H H L L H	X H L H	X X X BA, CA, A8 BA, CA, A8	DESL NOP BST READ/READ A WRIT/WRIT A	Enter IDLE after t _{RP} Enter IDLE after t _{RP} ILLEGAL ILLEGAL
-	L L L	H H H	H L L	L H L	X BA, CA, A8	BST READ/READ A	ILLEGAL
 -	 L L	H H	L	H	BA, CA, A8	READ/READ A	ILLEGAL
-	- L L	н	L	L			
	L				BA, CA, AB	WRIT/WRIT A	ILLEGAL
		L	Н				
. I	L			Н	BA, RA	ACTV	ILLEGAL
-		L	Н	L	BA, A8	PRE, PALL	ILLEGAL
·		L	L	н	X	REF, SELF	ILLEGAL
	L	L	L	L	MODE	MRS	ILLEGAL
idie i	н	x	x	x	x	DESL	NOP
l	L	н	Н	н	x	NOP	NOP
-	L	н	н	L	x	BST	NOP
i	L	н	L	Н	BA, CA, A8	READ/READ A	ILLEGAL
Ī	L	Н	L .	L	BA, CA, A8	WRIT/WRIT A	ILLEGAL
- t	Ļ	L	н	Н	BA, RA	ACTV	Bank and row active
l	L	L	н	L	BA, AS	PRE, PALL	NOP
, a l	L	L	L	Н	X	REF, SELF	Refresh
l	L	L	L	L	MODE	MRS	Mode register set

Function Truth Table (cont.)

Current state	হ্য	RAS	CAS	WE	Address	Command	Operation
Row active	н	x	x	X	x	DESL	NOP
	L	н	Н	н	x	NOP	NOP
	L	н	н	L	x	BST	NOP
	L	н	L	н	BA, CA, A8	READ/READ A	Begin read
	L	н	L	L	BA, CA, A8	WRIT/WRIT A	Begin write
	L	L	н	н	BA, RA	ACTV	Other bank active*3 ILLEGAL on same bank
	L	L	н	L	BA, A8	PRE, PALL	Precharge
	L	L	L	Н	x	REF, SELF	ILLEGAL
	L	L	L	L	MODE	MRS	ILLEGAL
Read	Н	x	x	x	x	DESL	Continue burst to end
	L	н	Н	н	x	NOP	Continue burst to end
	L	н	н	L	x	BST	Burst stop to full page
	L	H .	L	н	BA, CA, A8	READ/READ A	Continue burst read to CAS latency and New read
	L	H	L	L	BA, CA, A8	WRIT/WRIT A	Term burst read/start write
	L	L	Н	Н	BA, RA	ACTV	Other bank active* ³ ILLEGAL on same bank
	L	L	н	L	BA, A8	PRE, PALL	Term burst read and Precharge
	L	L	L	н	x	REF, SELF	ILLEGAL
	L	L	L	L	MODE	MRS	ILLEGAL

Function Truth Table (cont.)

Current state	হ্য	RAS	CAS	WE	Address	Command	Operation
Read with auto-precharge	н	x	x	x	x	DESL	Continue burst to end and precharge
	L	Н	н	H	X	NOP	Continue burst to end and precharge
	L	н	н	L	x	BST	ILLEGAL
	Ĺ	н	L	н	BA, CA, A8	READ/READ A	ILLEGAL
	L	н	L	L	BA, CA, AS	WRIT/WRIT A	ILLEGAL
	L	L	н	Н	BA, RA	ACTV	Other bank active*3 ILLEGAL on same bank
	L	L	н	L	BA, A8	PRE, PALL	ILLEGAL
	L	L	L	н	x	REF, SELF	ILLEGAL
	L	L	L	L	MODE	MRS	ILLEGAL
Write	н	X	x	X	x	DESL	Continue burst to end
	L	н	н	н	x	NOP	Continue burst to end
	L	н	н	L	x	BST	Burst stop on full page
	L	н	L	н	BA,-CA, A8	READ/READ A	Term burst and New read
	L	н	L	L	BA, CA, A8	WRIT/WRIT A	Term burst and New write
	L	L	н	Н	BA, RA	ACTV	Other bank active*3 ILLEGAL on same bank
	L	L	Н	L	BA, A8	PRE, PALL	Term burst write and Precharge ^{*2}
	L	L	L	н	X	REF, SELF	ILLEGAL
	L	L	L	L	MODE	MRS	ILLEGAL

Function Truth Table (cont.)

Current state	ଅ	FAS	CAS	WE	Address	Command	Operation
Write with auto-precharge	н	X	x	X	X	DESL	Continue burst to end and precharge
	L	н	н	н	x	NOP	Continue burst to end and precharge
	L	н	Н	L	x	BST	ILLEGAL
	L .	н	L	н	BA, CA, A8	READ/READ A	ILLEGAL
	L	H	L	L	BA, CA, AS	WRIT/WRIT A	ILLEGAL
	L	L	н	Н	BA, RA	ACTV	Other bank active ^{•3} ILLEGAL on same bank
	L	L	Н	L	BA, A8	PRE, PALL	ILLEGAL
	L	L	L	Н	x	REF, SELF	ILLEGAL
	L	L	L	L	MODE	MRS	ILLEGAL
Refresh	н	x	x	x	x	DESL	Enter IDLE after t _{RC}
(auto-refresh)	L	н	Н	н	x	NOP	Enter IDLE after t _{RC}
	L	н	н	L	x	BST	Enter IDLE after t _{RC}
- -	L	н	L.	н	BA, CA, AS	READ/READ A	ILLEGAL
	L	н	L	L	BA, CA, AS	WRIT/WRIT A	ILLEGAL
	L	L	н	н	BA, RA	ACTV	ILLEGAL
	L	L	н	L	BA, A8	PRE, PALL	ILLEGAL
	L	L	L	н	x	REF, SELF	ILLEGAL
	L	L	L	L	MODE	MRS	ILLEGAL

Note 1. H: V_{IH}. L: V_{IL}. X: V_{IH} or V_{IL}. The other combinations are inhibit.

An interval of t_{RWL} is required between the final valid data input and the precharge command.
 If t_{RRD} is not satisfied, this operation is illegal.

From [PRECHARGE]

To [DESL], [NOP] or [BST]: When these commands are executed, the synchronous DRAM enters the IDLE state after t_{RP} has elapsed from the completion of precharge.

From [IDLE]

To [DESL], [NOP], [BST], [PRE] or [PALL]: These commands result in no operation.

To [ACTV]: The bank specified by the address pins and the ROW address is activated.

To [REF], [SELF]: The synchronous DRAM enters refresh mode (auto-refresh or selfrefresh).

To [MRS]: The synchronous DRAM enters the mode register set cycle.

From [ROW ACTIVE]

To [DESL], [NOP] or [BST]: These commands result in no operation.

To [READ], [READ A]: A read operation starts. (However, an interval of t_{RCD} is required.)

To [WRIT], [WRIT A]: A write operation starts. (However, an interval of t_{RCD} is required.)

To [ACTV]: This command makes the other bank active. (However, an interval of t_{RRD} is required.) Attempting to make the currently active bank active results in an illegal command.

To [PRE], [PALL]: These commands set the synchronous DRAM to precharge mode. (However, an interval of t_{BAS} is required.)

From [READ]

To [DESL], [NOP]: These commands continue read operations until the burst operation is completed.

To [BST]: This command stops a full-page burst.

To [READ], [READ A]: Data output by the previous read command continues to be output. After \overline{CAS} latency, the data output resulting from the next command will start.

To [WRIT], [WRIT A]: These commands stop a burst read, and start a write cycle.

To [ACTV]: This command makes other banks bank active. (However, an interval of t_{RRD} is required.) Attempting to make the currently active bank active results in an illegal command.

To [PRE], [PALL]: These commands stop a burst read, and the synchronous DRAM enters precharge mode.

From [READ with AUTO-PRECHARGE]

To [DESL], [NOP]: These commands continue read operations until the burst operation is completed, and the synchronous DRAM then enters precharge mode.

To [ACTV]: This command makes other banks bank active. (However, an interval of t_{RRD} is required.) Attempting to make the currently active bank active results in an illegal command.

From [WRITE]

To [DESL], [NOP]: These commands continue write operations until the burst operation is completed.

To [BST]: This command stops a fullpage burst.

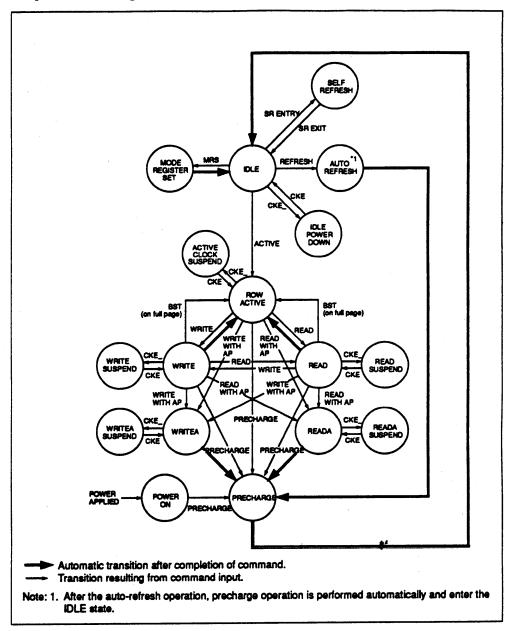
To [READ], [READ A]: These commands stop a burst and start a read cycle.

To [WRIT], [WRIT A]: These commands stop a burst and start the next write cycle.

To [ACTV]: This command makes the other bank active. (However, an interval of t_{RRD} is required.) Attempting to make the currently active bank active results in an illegal command.

To [PRE], [PALL]: These commands stop burst write and the synchronous DRAM then enters precharge mode.

From [WRITE with AUTO-PRECHARGE]


To [DESL], [NOP]: These commands continue write operations until the burst is completed, and the synchronous DRAM enters precharge mode.

To [ACTV]: This command makes the other bank activ. (However, an interval of t_{RC} is required.) Attempting to make the currently active bank active results in an illegal command.

From [REFRESH]

To [DESL], [NOP], [BST]: After an autorefresh cycle (after t_{RC}), the synchronous DRAM automatically enters the IDLE state.

Simplified State Diagram

Mode Register Configuration

The mode register is set by the input to the address pins (A0 to A9) during mode register set cycles. The mode register consists of five sections, each of which is assigned to address pins.

•A9 and A8: (OPCODE)

The synchronous DRAM has two types of write modes. One is the burst write mode, and the other is the single write mode. These bits specify write mode.

Burst read and BURST WRITE

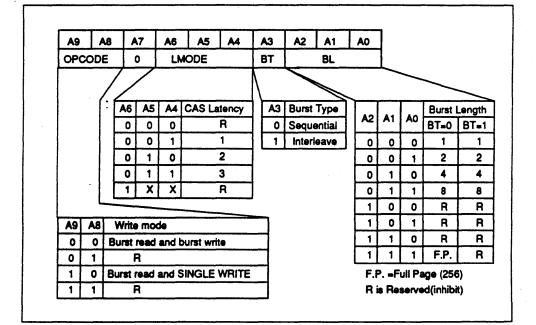
Burst write is performed for the specified burst length starting from the column address specified in the write cycle.

Burst read and SINGLE WRITE

Data is only written to the column address specified during the write cycle, regardless of the burst length.

•A7

Keep this bit Low at the mode register set cycle.


•A6, A5, A4: (LMODE) These pins specify the CAS latency.

•A3: (BT)

A burst type is specified. When full-page burst is performed, only "sequential" can be selected.

•A2, A1, A0: (BL)

These pins specify the burst length.

Burst Sequence

Burst length = 2							
Stating Ad.	Addressing(decimal)						
A0	Sequence	Interleave					
0	0, 1,	0, 1,					
1	1, 0,	1, 0,					

_		
Burst	length	= 4

Statin	ng Ad.	Addressing(decimal)								
A1	AO	Sequence	Interleave							
0	0	0, 1, 2, 3,	0, 1, 2, 3,							
0	1	1, 2, 3, 0,	1, 0, 3, 2,							
1	0	2, 3, 0, 1,	2, 3, 0, 1,							
1	1	3, 0, 1, 2,	3, 2, 1, 0,							

Burst length = 8	Runet length - 2
------------------	------------------

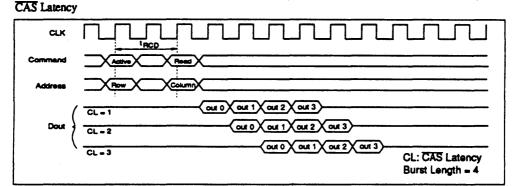
Stating Ad. Addressing(decimal)																		
A2	A1	AO	See	Sequence						Interleave								
0	0	0	0,	1,	2,	3,	4,	5,	6,	7,	0,	1,	2,	3,	4,	5,	6,	7
0	0	1	1,	2,	3,	4,	5,	6,	7,	0,	1,	0,	3,	2,	5,	4,	7,	6
0	1	0	2,	3,	4,	5,	6,	7,	0,	1, -	2,	3,	0,	1,	6,	7,	4,	5
0	1	1	3,	4,	5,	6,	7,	0,	1,	2,	3,	2,	1,	0,	7,	6,	5,	4
1	0	0	4,	5,	6,	7,	0,	1,	2,	3,	4,	5,	6,	7,	0,	1,	2,	3
1	0	1	5,	6,	7,	0,	1,	2,	3,	4,	5,	4,	7,	6,	1,	0,	3,	2
1	1	0	6,	7,	0,	1,	2,	3,	4,	5,	6,	7,	4,	5,	2,	З,	0,	1,
1	1	1	7,	0,	1,	2,	3,	4,	5,	6,	7,	6,	5,	4,	3,	2,	1,	0,

Operation of HM5241605 Series

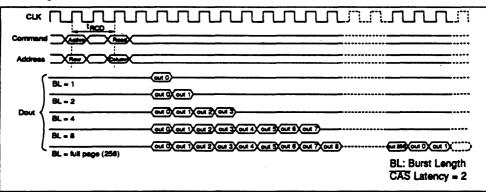
Read/Write Operations

Bank active

Before executing a read or write operation, the corresponding bank and the row address must be activated by the bank active (ACTV) command. Either bank 0 or bank 1 is activated according to the status of the A9 pin, and the row address (AX0 to AX8) is activated by the A0 to A8 pins at the bank active command cycle. An interval of t_{RCD} is required between the bank active command input and the following read/write command input.


Read operation

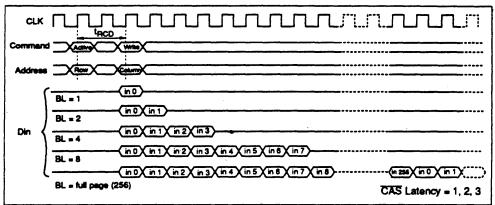
A read operation starts when a read command is input. Output buffer becomes Low-Z in the (\overline{CAS} Latency - 1) cycle after read command set. HM5241605 series can perform a burst read operation. The burst length can be set to 1,2,4,8 or fullpage(256). The start address for a burst read is specified by the column address (AY0 to AY7) and the bank select address (A9) at the read command set cycle. In a read operation, data output starts after the number of cycles specified by the CAS Latency. The CAS Latency can be set to 1,2,3.


When the burst length is 1, 2, 4, or 8, the Dout buffer automatically becomes High-Z at the next cycle after the successive burst-length data has been output.

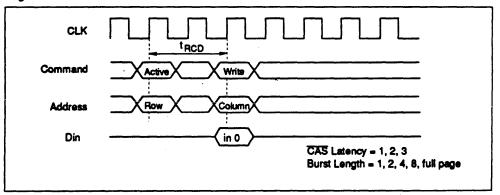
When the burst length is full-page(256), data is repeatedly output until the burst stop command is input.

The \overline{CAS} latency and burst length must be specified at the mode register.

Burst Length

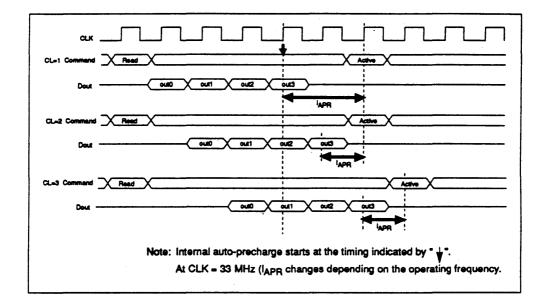

Read/Write Operations (cont.)

Write operation

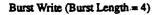

Burst write or single write mode is selected by the OPCODE (A9, A8) of the mode register.

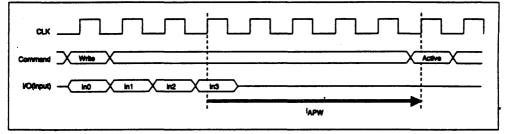
(1) Burst write: A burst write operation is enabled by setting OPCODE(A9, A8) to (0, 0). A burst write starts in the same cycle as a write command set. (The latency of data input is 0.) The burst length can be set to 1, 2, 4, 8, and fullpage, like burst read operations. The write start address is specified by the column address (AY0 to AY7) and the bank select address (A9) at the write command set cycle. (2) Single write: A single write operation is enabled by setting OPCODE(A9, A8) to (1, 0). In a single write operation, data is only written to the column address (AY0 to AY7) and the bank select address (A9) specified by the write command set cycle without regard to the burst length setting. (The latency of data input is 0).

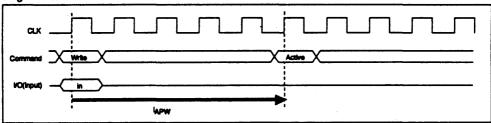
Burst Write


Single Write

Read/Write Operations (cont.)

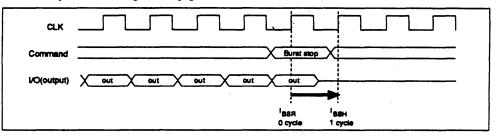

•Read with auto-precharge: In this operation, since precharge is automatically performed after completing a read operation, a precharge command need not be executed after each read operation. The command executed for the same bank after the execution of this command must be the bank active (ACTV) command. In addition, an interval defined by l_{APR} is required before execution of the next command.


CAS latency		Precharge start cycle					
	3	2 cycle before the final data is output					
	2	1 cycle before the final data is output					
	1	same cycle as the final data is output					

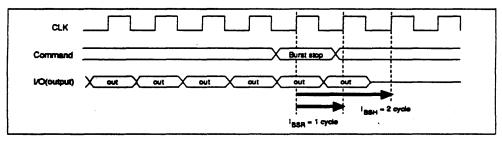

Read/Write Operations (cont.)

•Write with auto-precharge: In this operation, since precharge is automatically performed after completing a burst write or single write operation, a precharge command need not be executed after each write operation. The command executed for the same bank after the execution of this command must be the bank active (ACTV) command. In addition, an interval of I_{APW} is required between the final valid data input and input of the next command.

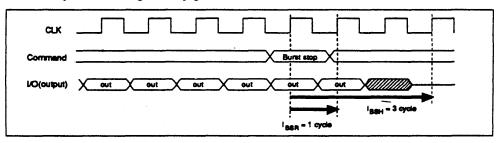
Single Write



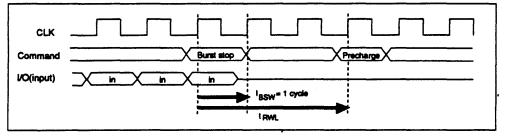
Full-page Burst Stop


•Burst stop command during burst read: The burst stop (BST) command is used to stop data output during a full-page burst. The BST command sets the output buffer to High-Z and stops the full-page burst read. The timing from command input to the last data changes depending on the \overline{CAS} latency setting. When the \overline{CAS} latency is 3, the data becomes invalid two cycles after the BST command. In addition, the BST command is valid only during full-page burst mode, and is invalid with burst lengths of 1, 2, 4, and 8.

CAS latency	BST to valid data	BST to high impedance	
. 1	0	1	
2	1	2	
3	1	3	


CAS Latency = 1, Burst Length = full page

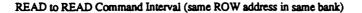
 \overline{CAS} Latency = 2, Burst Length = full page

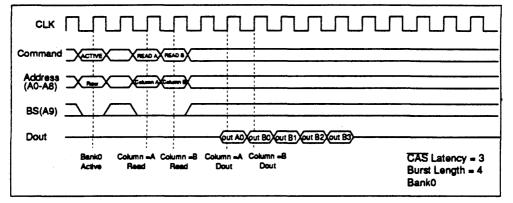

CAS Latency = 3, Burst Length = full page

Full-page Burst Stop (cont.)

•Burst stop command at burst write: The burst stop command (BST command) is used to stop data input during a full-page burst write. Data is still written in the same cycle as the BST command, but no data is written in subsequent cycles. In addition, the BST command is only valid during full-page burst mode, and is invalid with burst lengths of 1, 2, 4, and 8. And an interval of t_{RWL} is required between the BST command and the next precharge command.

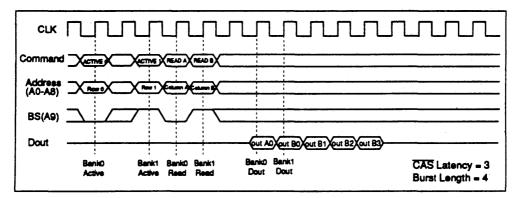
Burst Length = full page



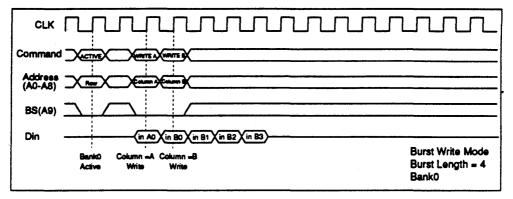

Command Intervals

•Read command to Read command interval

(1) Same bank, same ROW address: When another read command is executed at the same ROW address of the same bank as the preceding read command execution, the second read can be performed after an interval of no less than 1 cycle.

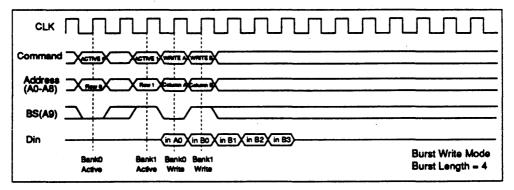

Even when the first command is a burst read that is not yet finished, the data read by the second command will be valid.

(2) Same bank, different ROW address: When the ROW address changes on same bank, consecutive read commands cannot be executed; it is necessary to separate the two read commands with a precharge command and a bank-active command. (3) Different bank: When the bank changes, the second read can be performed after an interval of no less than 1 cycle, provided that the other bank is in the bank-active state. Even when the first command is a burst read that is not yet finished, the data read by the second command will be valid.


READ to READ Command Interval (different bank)

•Write command to Write command interval (1) Same bank, same ROW address: When another write command is executed at the same ROW address of the same bank as the preceding write command, the second write can be performed after an interval of no less than 1 cycle.

In the case of burst writes, the second write command has priority.


WRITE to WRITE Command Interval (same ROW address in same bank)

(2) Same bank, different ROW address: When the ROW address changes, consecutive write commands cannot be executed; it is necessary to separate the two write commands with a precharge command and a bank-active command.

(3) Different bank: When the bank changes, the second write can be performed after an interval of no less than 1 cycle, provided that the other bank is in the bank-active state. In the case of burst write, the second write command has priority.

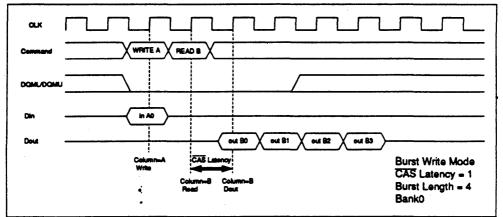
WRITE to WRITE Command Interval (different bank)



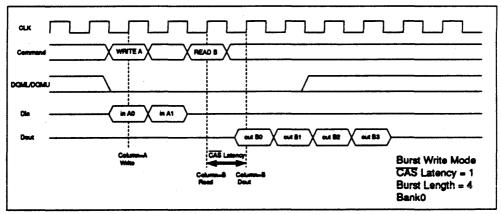
•Read command to Write command interval

(1) Same bank, same ROW address: When the write command is executed at the same ROW address of the same bank as the preceding read command, the write command can be performed after an interval of no less than 1 cycle.

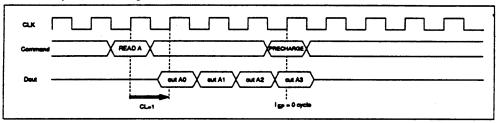
However, DQML/DQMU must be set High so that the output buffer becomes High-Z before data input.


(2) Same bank, different ROW address: When the ROW address changes, consecutive write commands cannot be executed; it is necessary to separate the two write commands with a precharge command or a bank-active command. (3) Different bank: When the bank changes, the write command can be performed after an interval of no less than 1 cycle, provided that the other bank is in the bank-active state. However, DQML/DQMU must be set High so that the output buffer becomes High-Z before data input.

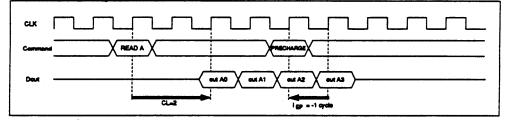
Write command to Read command interval


(1) Same bank, same ROW address: When the read command is executed at the same ROW address of the same bank as the preceding write command, the write command can be performed after an interval of no less than 1 cycle.

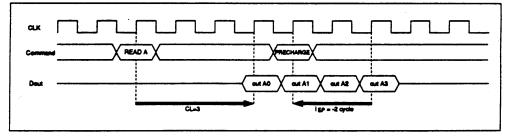
However, in the case of a burst write, data will continue to be written until one cycle before the read command is executed.


WRITE to READ Command Interval (2)

(2) Same bank, different ROW address: When the ROW address changes, consecutive write commands cannot be executed; it is necessary to separate the two write commands with a precharge command and a bank-active command. (3) Different bank: When the bank changes, the write command can be performed after an interval of no less than 1 cycle, provided that the other bank is in the bank-active state. However, in the case of a burst write, data will continue to be written until one cycle before the read command is executed (as in the case of the same bank and the same address).

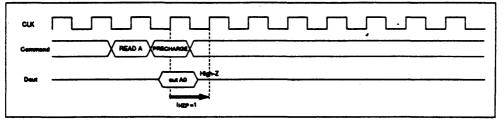

•Read command to Precharge command interval (same bank): When the precharge command is executed for the same bank as the read command that preceded it, the minimum interval between the two commands is one cycle. However, since the output buffer then becomes High-Z after the cycles defined by I_{HZP}, there is a possibility that burst read data output will be interrupted, if the precharge command is input during burst read. To read all data by burst read, the cycles defined by l_{EP} must be assured as an interval from the final data output to precharge command execution.

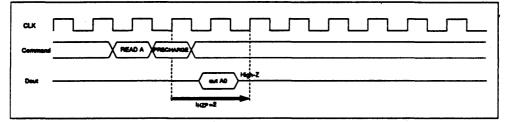
READ to PRECHARGE Command Interval (same bank): To output all data



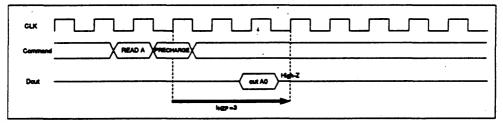
CAS Latency = 1, Burst Length = 4

\overline{CAS} Latency = 2, Burst Length = 4

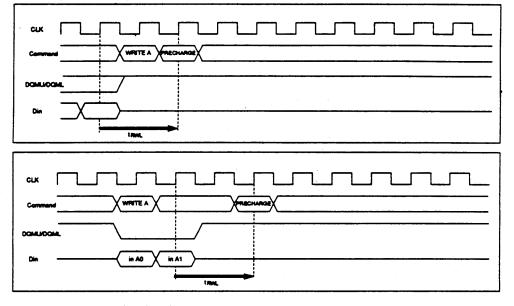

 \overline{CAS} Latency = 3, Burst Length = 4


Command Intervals (cont.)

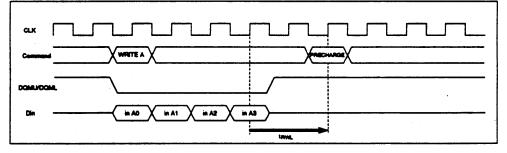
READ to PRECHARGE Command Interval (same bank): To stop output data


CAS Latency = 1, Burst Length = 1, 2, 4, 8

CAS Latency = 2, Burst Length = 1, 2, 4, 8


 \overline{CAS} Latency = 3, Burst Length = 1, 2, 4, 8

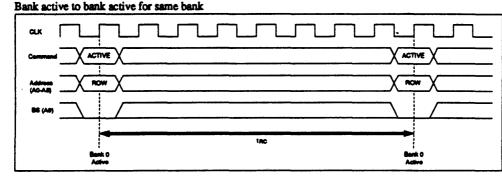
Command Intervals (cont.)


•Write command to Precharge command interval (same bank): When the precharge command is executed for the same bank as the write command that preceded it, the minimum interval between the two commands is 1 cycle. However, if the burst write operation is unfinished, the input data must be masked by means of DQMU and DQML for assurance of the cycle defined by IRWL.

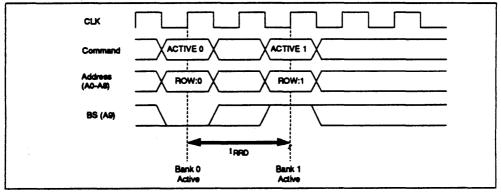
WRITE to PRECHARGE Command Interval (same bank)

Burst Length = 4 (To stop write operation)

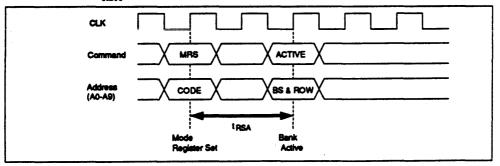
Burst Length = 4 (To write all data)



Command Intervals (cont.)

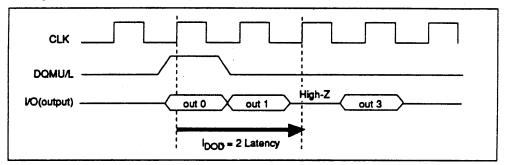

Bank active command interval

(1) Same bank: The interval between the two bank-active commands must be no less than t_{RC} .

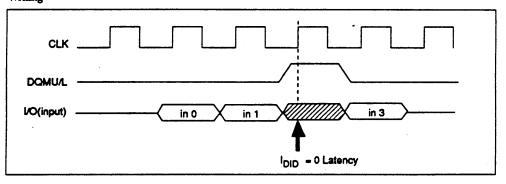

(2) In the case of different bank-active commands: The interval between the two bank-active commands must be no less than t_{RRD}.

Bank active to bank active for different bank

•Mode register set to Bank-active command interval: The interval between setting the mode register and executing a bank-active command must be no less than t_{RSA}.


DQM Control

The DQML and DQMU mask the lower and upper bytes of the I/O data, respectively. The timing of DQML/DQMU is different during reading and writing.


•Reading: When data is read, the output buffer can be controlled by DQML/DQMU.

By setting DQML/DQMU to Low, the output buffer becomes Low-Z, enabling data output. By setting DQML/DQMU to High, the output buffer becomes High-Z, and the corresponding data is not output. However, internal reading operations continue. The latency of DQML/DQMU during reading is 2. •Writing: Input data can be masked by DQML/DQMU. By setting DQML/DQMU to Low, data can be written. In addition, when DQML/DQMU is set to High, the corresponding data is not written, and the previous data is held. The latency of DQML/DQMU during writing is 0.

Reading

Writing

Refresh

Auto-refresh

All the banks must be precharged before executing an auto-refresh command. Since the auto-refresh command updates the interval counter every time it is executed and determines the banks and the ROW addresses to be refreshed, external address specification is not required. The refresh cycle is 1,024 cycles/16 ms. (1,024 cycles are required to refresh all the ROW addresses.) The output buffer becomes High-Z after auto-refresh start. In addition, since a precharge has been completed by an internal operation after the auto-refresh, an additional precharge operation by the precharge command is not required.

Self-refresh

After executing a self-refresh command, the selfrefresh operation continues while CKE is held Low. During self-refresh operation, all ROW addresses are refreshed by the internal refresh timer. A self-refresh is terminated by a self-refresh exit command. After the self-refresh, since it is impossible to determine the address of the last ROW to be refreshed, an auto-refresh should immediately be performed for all addresses (1,024 cycles).

Others

Power-down mode

The synchronous DRAM enters power-down mode when CKE goes Low in the IDLE state. In power down mode, power consumption is suppressed by deactivating the input initial circuit. Power down mode continues while CKE is held Low. In addition, by setting CKE to High, the synchronous DRAM exits from the power down mode, and command input is enabled from the next cycle. In this mode, internal refresh is not performed.

Clock suspend mode

By driving CKE to Low during a bank-active or read/write operation, the synchronous DRAM enters clock suspend mode. During clock suspend mode, external input signals are ignored and the internal state is maintained. When CKE is driven High, the synchronous DRAM terminates clock suspend mode, and command input is enabled from the next cycle. For details, refer to the "CKE Truth Table".

Power-up sequence

During power-up sequence, the DQML/DQMU and the CKE must be set to High. When 100 μ s has past after power on, all banks must be precharged using the precharge command. After t_{RP} delay, set the mode register. And after t_{RSA} delay, execute two cycles of auto-refresh operation as dummy, an interval of t_{RC} is required between two auto-refresh commands.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage on any pin relative to V _{SS}	VT	-1.0 to +4.6	v
Supply voltage relative to V _{SS}	V _{CC}	-1.0 to +4.6	v
Short circuit output current	lout	50	mA
Power dissipation	PT	1.0	Ŵ
Operating temperature	Topr	0 to +70	•C
Storage temperature	Tstg	-55 to +125	°C

Recommended DC Operating Conditions (Ta = 0 to +70°C)

Parameter	Symbol	Min	Max	Unit	Note
Supply voltage	V _{CC} , V _{CC} Q	3.0	3.6	V	1
•	V _{SS} , V _{SS} Q	0	0	v	
Input high voltage	VIH	2.0	4.6	v	1, 2
Input low voltage	VIL	-0.3	0.8	v	1, 3

Notes: 1. All voltage referred to V_{SS} 2. V_{IH} (max) = 5.5 V for pulse width \leq 5 ns 3. V_{IL} (min) = -1.0 V for pulse width \leq 5 ns

DC Characteristics (Ta = 0 to 70°C, V_{CC} , $V_{CC}Q$ = 3.3 V ± 0.3 V, V_{SS} , $V_{SS}Q$ = 0 V)

		HM5	24160	5						
		-15		-17		-20				
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test conditions	Notes
Operating current	ICC1	_	80	_	70		65	mA	Burst length=1 t _{RC} = min	1, 2
Standby current (Bank Disable)	ICC2	-	3		3	-	3	mA .	CKE=V _{IL} , t _{CK} = min	
(Darik Uisabie)			2		2	-	2	mA	CKE=VIL CLK=VIL or VIH Fixed	
			25	_	22		20	mA	$CKE=V_{H},$ NOP command $t_{CK} = min$	3
Active standby current (Bank active)	ICC3		7		7	-	7	mA	CKE=V _{IL} , t _{CK} = min, I/O=High-Z	1, 2
		-	30		26	— .	23	mA	CKE=V _{IH} , NOP command t _{CK} = min, VO = High-Z	1, 2, 3
Burst operating (CL= current (CL=2 (CL=2	2)	_	55 100 105	_	50 90 95	_	45 80 85	mA mA mA	t _{CK} = min	1, 2
Refresh current	I _{CC5}		70		65	_	60	mA	t _{RC} = min	
Self refresh current	ICC6	-	2	_	2	_	2	mA	V _H ≥V _{CC} -0.2 V _L ≤ 0.2 V	
Input leakage current	lu	-10	10	-10	10	-10	10	μA	$0 \leq Vin \leq V_{CC}$	
Output leakage current	LO	-10	10	-10	10	-10	10	μA	$0 \le Vout \le V_{CC}$ VO = disable	
Output high voltage	VOH	2.4	-	2.4		2.4	-	v	l _{OH} = -2 mA	
Output low voltage	VOL		0.4		0.4		0.4	۷	l _{OL} =2 mA	

Notes: 1. I_{CC} depends on output load condition when the device is selected. I_{CC} (max) is specified at the output open condition.

2. One bank operation.

3. Input signal transition is once per two CLK cycles.

Capacitance (Ta = 25°C, V_{CC} , $V_{CC}Q = 3.3 V \pm 0.3 V$)

Parameter	Symbol	Тур	Max	Unit	Notes
Input capacitance (Address)	C _{i1}	-	5	pF	1, 3
Input capacitance (Signals)	C ₁₂		5	pF	1, 3
Output capacitance (I/O)	ço		7	pF	1, 2, 3

Notes: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method. 2. DQMU/L = V_{IH} to disable Dout. 3. This parameter is sampled and not 100% tested.

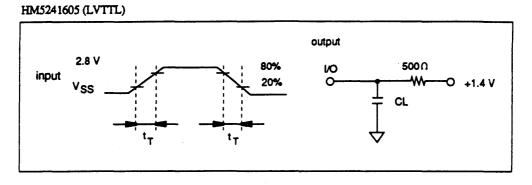
AC Characteristics (Ta = 0 to 70°C, V_{CC} , $V_{CC}Q$ = 3.3 V ± 0.3 V, V_{SS} , $V_{SS}Q$ = 0 V)

				41003						
			-15		-17		-20			
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
	CL=1) CL=2, 3)	¹ СК	30 15	_	35 17.5	-	40 20	_	ns ns	1
CLK high pulse w	ridth	¹ СКН	6	_	7	_	8		ns	1
CLK low pulse wi	dth	^t CKL	6		7	_	8		ns	1
from CLK (C	;L=1) ;L=2) ;L=3)	^t AC	_	30 15 13		34 16.5 15.5		38 18 18	ns ns ns	1, 2 1, 2 1, 2
	(CL=1, 2) (CL=3)	^t ACK	_	30 43		34 50.5	_	38 58	ns ns	1 1
Data-out hold time	(CL=1) (CL=2, 3)	^t ОН	4 2	_	4 2	_	4 2	_	ns ns	1, 2
CLK to Data-out low impedance		٤z	0		0		0		ns	1,2
CLK to Data-out (high impedance		ţнz	4 2	15 10	4 2	17 12	4 2	19 14	ns ns	1, 3
Data-in setup time	9	t _{DS}	4		4		4		ns .	1
Data in hold time		^t DH	2 .		2		2	-	ns	1
Address setup tin	10	tas	4	_	4	_	4	• _	ns	1
Address hold time)	t _{AH}	2		2		2		ns	1
CKE setup time		^t CES	4		4		4		ns	1

HM5241605

AC Characteristics (Ta = 0 to 70 °C, V_{CC} = 3.3 V ± 0.3 v, V_{SS} = 0 V)(cont.)

		HM52	41605						
		-15		-17		-20			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
CKE setup time for power down exit	^t CESP	13	-	15		17	- -	ns	1
CKE hold time	¹ CEH	2		2		2		ns	1
Command(CS, RAS, CAS, WE, DOM) setup time	tcs	4	<u> </u>	4	-	4	_	ns	1
Command(CS, RAS, CAS, WE,DQM) hold time	ţсн	2	_	2	_	2	_	ns	1
Ref/Active to Ref/Active command period	^t RC	110		120	—	130		ns	1
Active to Precharge command period	¹ RAS	70	10000	75	10000	80	10000	ns	1
Active to precharge on full page mode	IRASC	-	80000	-	80000		80000	ns	1
Active command to column command (same bank)	^t RCD	30	_	35	_	40	-	ns	1
Precharge to active command period	t _{RP}	34	-	34		40		ns	1
The last data-in to Precharge lead time	^t RWL	30		35	_	40	-	ns	1
Active (a) to Active (b) command period	^t RRD	30		35		40	-	ns	1
Register set to active command	^t RSA	30	<u> </u>	35		40	-	ns	1
Transition time (rise to fall)	t _T	1	5	1	5	1	5	ns	
Refresh period	^t REF	-	16	_	16		16	ms	


Notes: 1. AC measurement assumes t_T = 1 ns. Reference level for timing of input signals is 1.40 V.

2. Access time is measured at 1.40 V. Load condition is CL = 50 pF with current source.

3. t_{HZ} (max) defines the time at which the outputs achieves ± 200 mV.

Load condition is CL = 5 pF with current source.

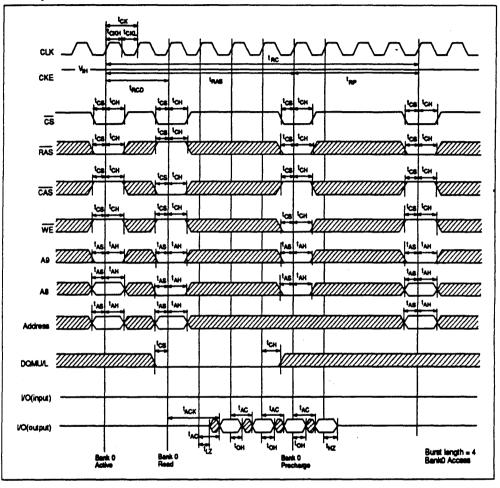
4. t_{CES} define CKE setup time to CKE rising edge except power down exit command.

37

Relationship Between Frequency and Minimum Latency

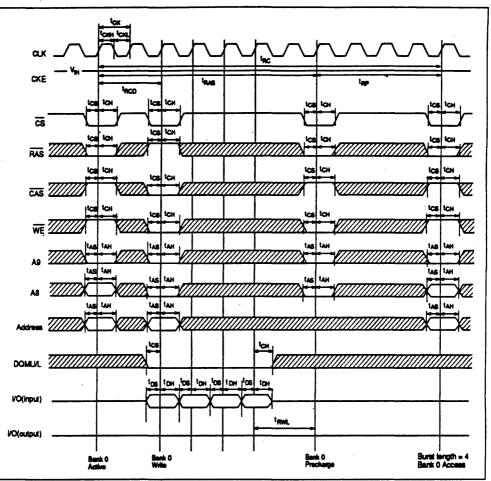
		HM	524160	5				
•		-15		-17		-20		
Parameter Frequency (MHz) t _{CK} (ns)	Symbol	66 15	33 30	57 17.5	28.5 35	50 20	25 -40	- Notes
Active command to column command (same bank)	^t RCD	2	1	2	1	2 .	1	
Active command to active command (same bank)	^t RC	8	5	7	4	7	4	= [t _{RAS} + t _{RP}]
Active command to precharge command (same bank)	^t RAS	5	3	5	3	4	2	
Precharge command to active command (same bank)	t _{RP}	3	2	2	1	2	1	
Last data input to precharge command (same bank)	^t RWL	2	1	2	1	2	1	······································
Active command to active command (different bank)	^t RRD	2	1	-2	1	2	1	
Last data in to active command (Auto precharge, same bank)	APW	5	3	4	2	4	2	= [t _{RWL} + t _{RP}]
Self refresh exit to command input	ISEC	8	4	7	4	7	4	= [t _{RC}]
Precharge command to high impedance (CAS latency = 3) (CAS latency = 2) (CAS latency = 1)	IHZP	3 2 —	3 2 1	3 2	3 2 1	3 2 —	3 2 1	
Last data out to active command (auto precharge) (CAS latency = 2, 3) (same bank) (CAS latency = 1)	IAPR	2	1 2	1	0 1	1	0	= [t _{RP}] - 1 = [t _{RP}]
Last data out to precharge (early precharge) (CAS latency = 3) (CAS latency = 2) (CAS latency = 1)	İEP	-2 -1 	2 1 0	-2 -1	-2 -1 0	-2 -1 	-2 -1 0	<u>, , , , , , , , , , , , , , , , , , , </u>
Column command to column command	ICCD	1	1	1	1	1	1	· · ·
Write command to data in latency	łwcd	0	0	0	0	0	0	
DQM to data in	DiD	0	0	0	0	0	0	· · · · · · · · · · · · · · · · · · ·
DQM to data out	IDOD	2	2	2	2	2	2	
CKE to CLK disable	ICLE	1	1	1	1	1	1	

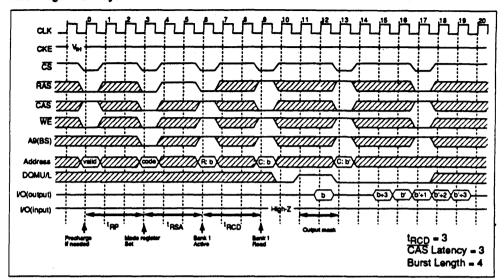
Relationship Between Frequency and Minimum Latency (cont.)


		HM	524160					
		-15		-17		-20		-
Parameter Frequency (MHz) t _{CK} (ns)	Symbol	66 15	33 30	57 17.5	28.5 35	50 20	25 `40	- Notes
Register set to active command	^t RSA	2	1	2	1	2	1	
CS to command disable	ICDD	0	0	0	0	0	0	
Power down exit to command input	IPEC	1	1	1	1	1	1	
Burst stop to output valid data hold (CAS latency =1) (CAS latency =2, 3)	IBSR	1	0 1	1	0 1	1	0	
Burst stop to output high impedance (CAS latency = 1) (CAS latency = 2) (CAS latency = 3)	IBSH	2 3	1 2 3		1 2 3		1 2 3	
Burst stop to write data ignore	IBSW	1	1	1	1	1	1	

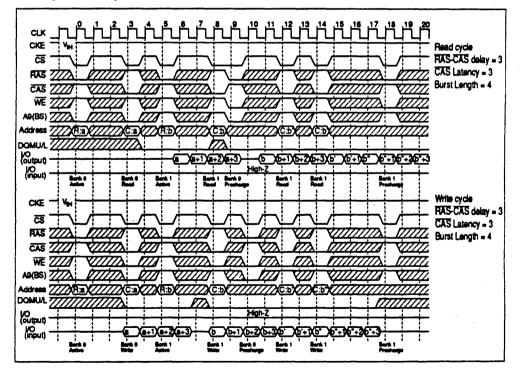
Note: 1. t_{RCD} to t_{RRD} are recommended value. 2. $CL = \overline{CAS}$ latency.

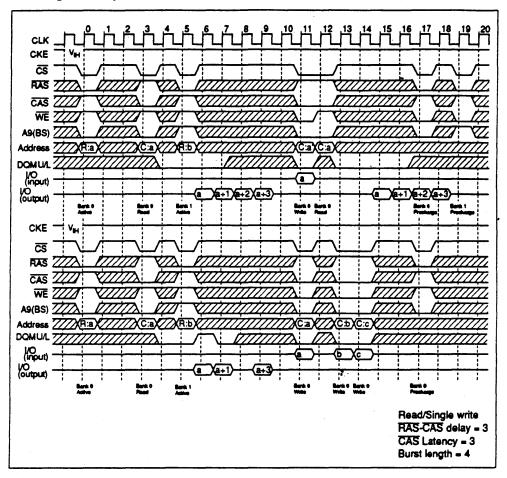
39


Timing Waveforms


Read Cycle

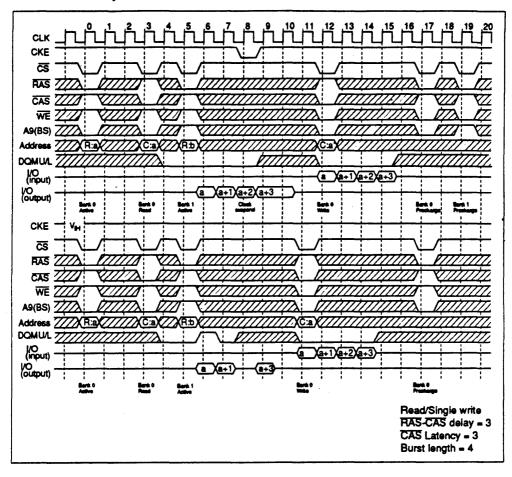
40



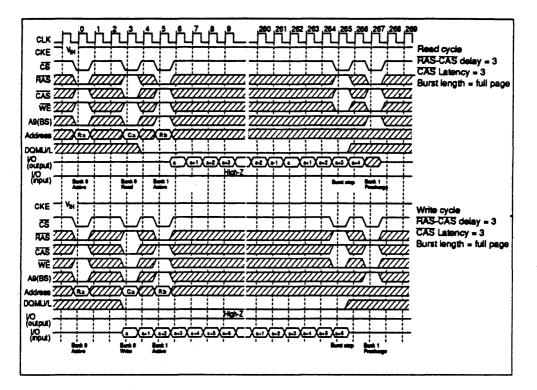


Mode Register Set Cycle

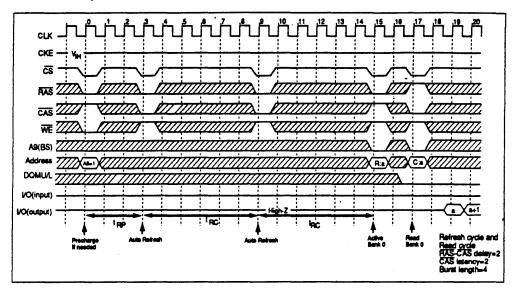
Read Cycle/Write Cycle



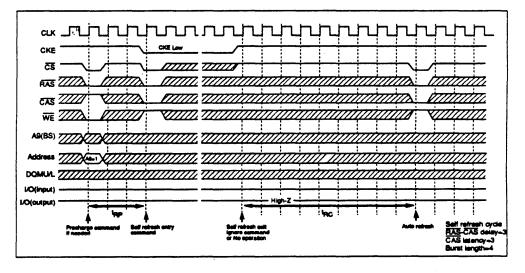
Read/Single Write Cycle

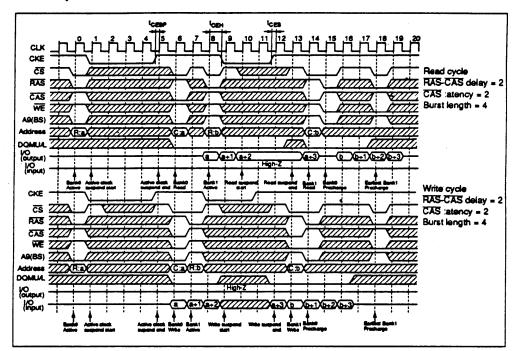

43

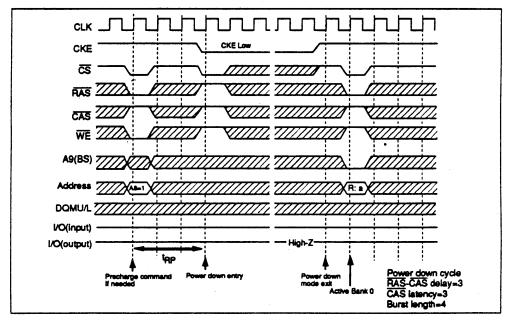
Read/Burst Write Cycle

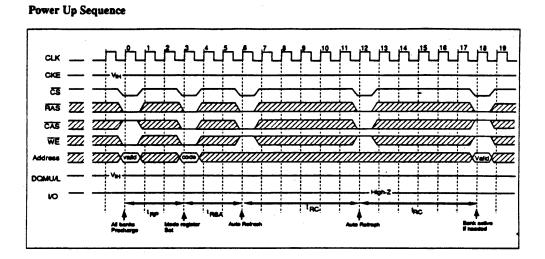


HM5241605 Series


Full Page Read/Write Cycle

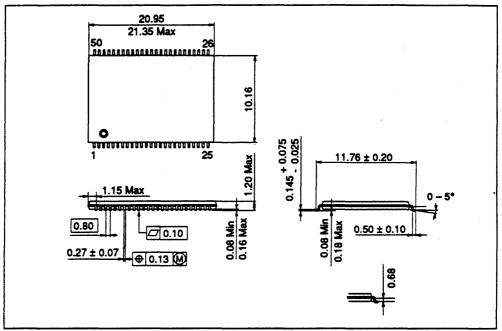

Auto Refresh Cycle


Self Refresh Cycle



Clock Suspend Mode

Power Down Mode



48

Package Dimensions

HM5241605TT Series (TTP-50D)

Unit: mm

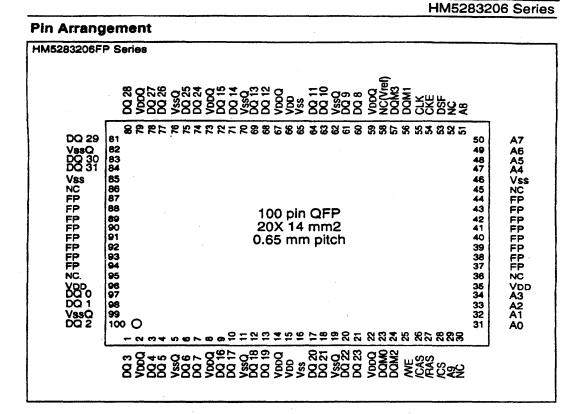
PRELIMINARY SPEC

131, 072-word x32-bit x2-bank Synchronous Graphic RAM

HITACHI

All inputs and outputs signals refers to rising edge of the clock input. The HM5283206 provides 2 banks to realize better performance. 8 column Block write and write per bit functions are added for graphic applications.

Ordering Information


Frequency	Package
50 MHz	100-pin
57 MHz	plastic QFP
66 MHz	•
80 MHz	
50 MHz	400-mil 80-pln
57 MHz	plastic TSOP II
66 MHz	
80 MHz	
	50 MHz 57 MHz 66 MHz 80 MHz 50 MHz 57 MHz 66 MHz

Features

- 3.3V Power supply
- · Clock frequency
- 80 MHz/66 MHz/57 MHz/50 MHz
- · LVTTL interface
- 2 Banks can operates simultaneously and independently
- Burst read / write operation and burst read / single write operation capability
- Programmable burst length
- 1/2/4/8 full page
- Programmable burst sequence Sequential / interleave
- Full page burst length capability Sequential burst burst stop capability
- Programmable CAS latency
 1/2/3
- Byte control by DQM
- 8 column block write function with column address mask
- Write per bit function (old mask)
- · 2 variations of refresh
- Auto refresh
- Self refresh (1024 refresh cycles : 16ms)

Preliminary : This document contains information on a new product. Specifications and information contained herein are subjected to change without notice.

Pin Description

Pin name	Function		Pin name	Function
A0A9	Address input		DQM	Byte input/output mask
	- Row address	A0—A8	CLK	Clock input
	- Column addres	A0A7	CKE	Clock enable
A9	Bank select addres	BS	VDD	Power for internal circuit(3.3V)
DQ0-DQ31	Data-input/out-put		Vss	Ground for internal circuit
/RAS	Row address asserte	d	VDDQ	Power forDQ pin(3.3V)
	bank enable		VssQ	Gorund for DQ pin
/CS	Chip select		DSF	Special function input flag
/CAS	Column address ass	reted	NC	No connection
/WE	Write enable		FP	TBD

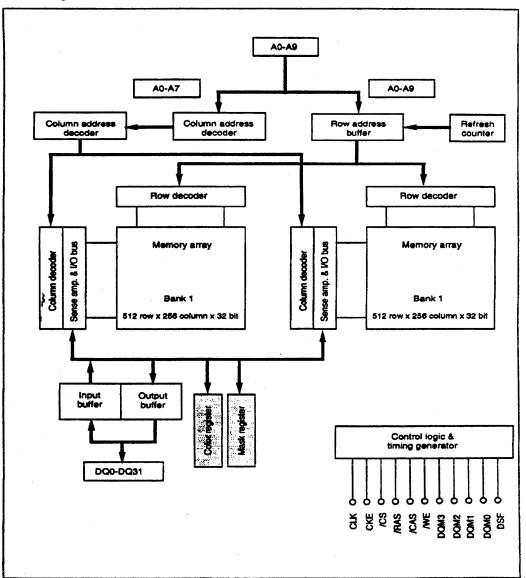
Pin Functions

CLK(Input pin): Clock provides the fundamental timing signal. The other input signals refer CLK rising edge.

/CS(Input pin): By setting /CS to low level, commands are ready to be accepted.

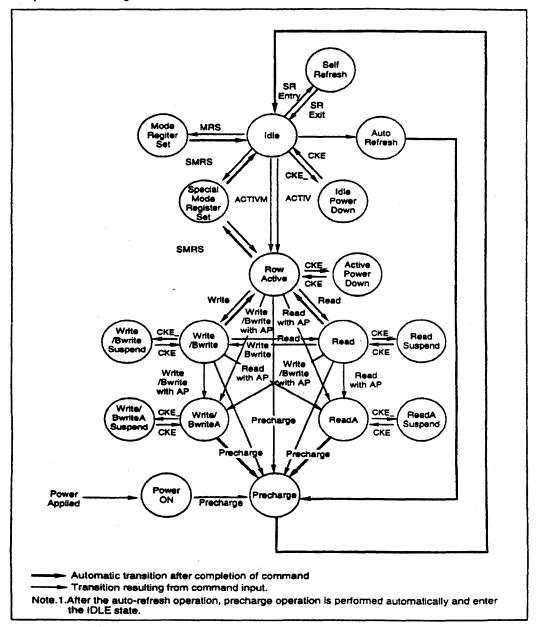
/RAS, /CAS, /WE, DSF(Input pins): All these pins are used to issue commands.

A0-A8(input pins): Row address (AX0-AX8) is acquired through A0-A8 pins when bank active commands are executed. Column address (AY0-AY7) is acquired through A0-A7 when read or write commands are executed. A8 determines precharge mode when precharge commands are issued. If A8 is low, select bank goes into precharge process. If A8 is high, all banks are selected for precharge operation.


A9(input pins): A9 is a bank select signal(BS). In case A9 = '0', bank 0 is selected. In case A9 = '1',bank 1 is selected. CKE(Input pin): By referring low level on CKE pin, HM5283206 determines to go into clock suspend modes or power down modes. In self refresh mode, low level on this pin is also referred to turn on refresh process.

DQM0, DQM1, DQM2 and DQM3(Input pins): DQM0 controls DQ0-DQ7. DQM1 controls DQ8 -DQ15. DQM2 controls DQ16-DQ23. DQM3 controls DQ24-DQ31. In read mode, referring high level on DQM pins, HM5283206 floats related DQ pins. In write mode, referring high level on DQM pins, HM5283206 ignores input data through related DQ pins.

DQ0-DQ31(input/output): These are the data line for the HM5283206.


VDD, VSS, VDDQ, VSSQ(Power supply): VDD and VSS are power supply pins for internal circuits. VDDQ and VSSQ are power supply pins for DQ buffers.

Block Diagram

003

Simplified State Diagram

Command Operation

Command Truth Table

The HM5283206 recognizes the following commands specified by the /CS, /RAS, /CAS, /WE, DSF and address pins.

Function		CKE n-1	n	/cs	/RAS	/CAS	ΜE	DSF	A9	A8	A7-0
Ignore Command	DESL	н	x	н	x	x	x	x	x	x	×
No operation	NOP	н	x	L	н	н	н	L	X	x	×
Burst stop in full page	BST	н	x	L	н	н	L	L	x	x	×
Column address & read command	READ	н	х	L	н	L	н	L	v	L	v
Read with auto precharge	READA	н	x	L	н	L	н	L	v	н	V
Column address & write command	WRIT	н	x	L	н	L	L	L	v	L	v
Write with auto precharge	WRITA	н	X	L	н	L	L	L	v	н	v
Row address strobe and bank act.	ACTV	н	x	L	L	н	н	L	v	v	v
Precharge select bank	PRE	н	х	L	L	н	L	L	v	L	×
Precharge all banks	PALL	н	X	L	L	н	L	L	x	н	x
Mode register set	MRS	н	x	L	L	L	L	L	L	L	v
Row address strobe and bank act. and Masked write snable	ACTVM	. н	X,	25C	L	н	∦н (H	. v.	v	<u>v</u> .
Column address & Block write	BWRIT	. н	x	<u> </u>	н	.г	L	н.	v	** L	. . .
Block write with auto precharge	BWRITA	ি দ	x	۲.	н	L	L		v	н	v
Special mode register sat	SMRS	н .	. ×	<u>.</u> Ľ	. L	L -	L	Ĥ	ŢĽ.	. C.	<u>v</u>

Note: H:High level. L: Low level: X:H or L(Don't care). V:Valid address input

.Ignore command[DESL]: When this command is set (/CS is high), the HM5283208 ignores command input. Internal operation is held.

.No operation[NOP]: This command is not an execution command and does not affect internal operation.

.Burst stop in full-page(BST): This command stops the full page burst operation (burst length is 256(full-page)), and is illegal for the burst length 1, 2, 4, 8. Full page burst continues until this command is input. When full page read/write is completed, it automatically returns to the start address, and read/write is performed repeatedly.

.Column address strobe and read command[READ]: This command starts read operation. The start address of burst read is determined by the column address(AY0-AY7) and the bank select address A9. After the read operation, the HM5283206 floats DQ output buffer.

.Read with auto-precharge[READ A]: This command automatically performs a precharge operation after a burst read with burst length 1, 2, 4 or 8. When the burst length is full-page(256), this command is illegal.

.Column address strobe and write

command[WRIT]: This command starts a write operation. When the burst write mode is selected, the column address (AYO-AY7) and the bank select address A9 become the start address of burst write . When the single write mode is selected, data is only written to the location defined by the column address (AY0 to AY7) and the bank select address A9.

.Column address strobe and block write command[BWRIT]: By this command, the HM5283206 executes a block write with the data stored in the color register. The column block address is given through A0-A7 pins at the same cycle when this command is Issued. To go details about block write operation, refer to "Block write and write per bit".

.Write with auto-precharge[WRIT A]: This command automatically performs a precharge operation after burst write or single write. For the full-page mode, this command is forbidden.

.Block write with auto-precharge[BWRIT A]: This command automatically performs a precharge operation after block write.

.Row address strobe and bank activate [ACTV]: This command activates the bank selected by A9 pin and determines the row address (AX0-AX8), with refer to A0-A7 and A8 pins. When BS is low, bank 0 is activated. When BS is high, bank 1 is activated.

.Row address strobe, bank activate and write per bit enable[ACTVM]: This command not only performs the operation executed by ACTV but also enables write per bit. To go detail about write per bit function, refer to "Block write and write per bit"

.Precharge selected bank[PRE]: This command starts precharge operation for the bank selected by A9. If A9 is low, bank 0 is selected. If A9 is high, bank 1 is selected.

.Precharge all banks[PALL]: This command starts a precharge operation for all banks.

.Refresh[REF/SELF]: This command starts refresh operation. There are two types of refresh operation. One is auto refresh(CBR type), the other is self-refresh. For details refer to the CKE truth table.

.Mode register set[MRS]: The HM5283206 has a mode register that defines how it operates. The mode register is specified by the address pins (AO-A9) at the mode register set cycle. For details, refer to the mode register configuration. Just after power on, the contents of the mode register are undefined so that this command should be executed.

.Special mode register set[SMRS]: By this command, color register or mask register is set, with refer to A5 and A6 pins. For details, refer to "Special mode register configuration".

DQM Truth Table

		СКЕ			
Function		n-1	n	DQMI	
Ith byte write enable/out put enable	ENB i	н	x	L	
Ith byte write input/output disable	MASKI	н	X	H ·	

Note: H:High level. L: Low level. X:H or L(Don't care). i=0,1,2,3 DQM0 for DQ0-DQ7, DQM1 for DQ8-DQ15, DQM2 for DQ16-DQ23, DQM3 for DQ24-DQ31

The HM5283206 series can control DQ input/output buffers with use of DQMI(I=0, 1, 2, 3). DQM0 controls DQ0-DQ7. DQM1 controls DQ8-DQ15. DQM2 controls DQ16-DQ23. DQM3 controls DQ24-DQ31. During read operation, as long as DQMi is low, corresponding DQ output buffers are kept active so that data are driven out. In order to stop data output trough DQ pins, corresponding DQM pin should be set to high to float DQ output. During write operation, as long as DQMi pins low, data through corresponding DQ input buffers are driven into HM5283206. To stop new data through DQ input buffers to keep the previous data, corresponding DQMi pin should be set to high. For details, refer to the DQM control section of the operating instructions.

CKE Truth Table

Current State	Function		CKE n-1	'n	/cs	/RAS	/CAS	WE	DSF	Address
Active	Clock suspend mode entry		н	L	×	x	×	×	X	x
Any	Clock suspend		L	L	x	x	×	x	x	х
Clock suspend	Clock suspend mode exit		L	н	x	x	×	x	x	x
Idle	auto refresh command	REF	н	н	L	L	Ļ	н	L	x
ld ie	Self refresh entry	SELF	Н	L	L	L	L	н	L	x
ldle	Power down entry		н	L	L	н	н	н	L	x
Self refresh	Self refresh exit		Ĺ	н	L	н	н	н	L	x
			L	н	н	x	×	x	L	x
Power down	Power down exit		L	н	L	н	н	н	L	x
			Ļ	н	н	x	x	x	x	x

Note: H:High level. L: Low level. X:H or L(Don't care).

.Clock suspend mode entry:

The HM5283206 enters into clock suspend mode from active mode by setting CKE to low. There are few types of clock suspend mode depends on the state when CKE level is changed from 'H' to "L'.

-ACTIVE clock suspend: If CKE-transition(1 to 0) happens during bank active states, bank active status is kept. Any input signals are ignored in this mode.

-READ and READ A suspend: If CKE transition(1 to 0) happens during read operation, read operation is kept going or DQ output data is driven out until completion. Any input signals are ignored in this mode.

-WRITE(BLOCK WRITE) and WRITE A(BLOCK WRITE A) suspend: If CKE-transition(1 to 0) happens during write operation, though any input signals include DQ input data ignored, write operation is kept going until completion. Any input signals are ignored in this mode.

.Clock suspend mode exit: By changing CKE level from 0 to 1, clock suspend mode is punctuated.

.IDLE: In this state, all banks are kept precharged and no banks are activating.

.Auto-refresh command [REF]:

When this command is input from the IDLE state, the HM5283206 starts auto-refresh operation.(The auto-refresh is the same as the CBR refresh of conventional DRAM.) During the auto-refresh operation, refresh address and bank select address is internally generated. For every auto-refresh command, the internal address counter is updated. Accordingly, 1024 times are required to refresh the entire memory. Before executing the auto-refresh command, all banks must be in the IDLE state. No precharge commands are required after autorefresh, since the precharge for all banks is automatically performed after auto-refresh,.

.Self-refresh entry[SELF]: When this command is input during the IDLE state, the HM5283206 starts self-refresh operation. After the execution of this command, self-refresh continues while CKE is low. Since self-refresh is performed internally and automatically, external refresh operations are unnecessary.

.Power down exit: When this command is

HM5283206 can exit from power down mode. After

exiting from power down mode, the HM5283206

executed in the power down mode, the

enters into the IDLE state.

.Power down mode entry: When this command is executed during the IDLE state, the HM5283206 enters into the power down mode. In power down mode, power consumption is suppressed by cutting off the initial input circuit.

.Self-refresh exit:

When this command is executed during self-refresh mode, the HM5283206 can exit from self-refresh mode. After existing the self-refresh mode, the HM5283206 enters into the IDLE state.

Function truth table

283206 enters into the IDLE state.

The following tables show how each command works and what command can be executed in the state given.

Current state	/CS	/RAS	/CAS	/WE	DSF	Address	Command	Operation
Precharge	н	×	x	x	x	×	DESL	Enter idle after tRP
	L	н	н	н	Ļ	X	NOP	Enter idle after tRP
	L	н	н	L	L	x	BST	ILLEGAL
	L	н	L	н	L	BA, CA, A8	READ/A	ILLEGAL
	L	н	L	L	L	BA, CA, A8	WRIT/A	ILLEGAL
	L	L	н	н	L	BA, RA	ACTV	ILLEGAL
	L	L	н	L	L	BA, A8	PRE, PALL	ILLEGAL
	Ľ	L	L	н	L	x	REF, SELF	ILLEGAL
	L	L	L	L	L	MODE	MRS	ILLEGAL
	2°L	Ľ	. н.	⁹ "H		BA, RA	ACTVM	ILLEGAL
	at ,	H	. L	₹ (×	H.	BA; CÁ, A8	BWRIT/A	ILLEGAL
	÷с,		- L 2	<u>ا</u> ر ا	н.	Special MOD	ESMAS -	TLLEGAL

Function Truth	Table(co	ont.)						
Current state	/CS	/RAS	/CAS	WE	DSF	Address	Command	Operation
Idle	Н	×	×	×	×	x	DESL	NOP
	L	н	н	н	L	x	NOP	NOP
	L	н	н	L	L	X .	BST	NOP
	L	н	L	н	L	BA, CA. A8	READ/A	ILLEGAL
	L	н	L	L	L	BA, CA, A8	WRIT/A	ILLEGAL
	L	L	н	н	L	BA, RA	ACTV	Bank and row active
	L	L	н	L	L	BA, A8	PRE, PALL	NOP
	L	L	L	н	L	x	REF, SELF	Refresh
	L	L	L	L	L	MODE	MRS	Mode register set
	L.	С.,	H	He.	Н с	BA, FA	ACTVM.	Bank and row active
	t.	н≙	12.2	Les ?	H.::::	BA CA, AB	BWAIT/A	ILLEGAL
	C , 1	Ŭ,	C) inte	t.,,,	ĴĦ	Special Mode	SMRS	Special mode register se
Row active	н	x	x	x	x	x	DESL	NOP
	L	н	н	н	L	×	NOP	NOP
	L	н	н	L	L	x	BST	NOP
	L	н	L	н	L	BA, CA, A8	READ/A	Start read
	L	н	L	L	L	BA, CA, A8	WRIT/A	Start write
	L	L	н	н	L	BA, RA	ACTV	Other bank active Illegal on the same bank
	L	L	н	L	L	BA, A8	PRE, PALL	Precharge
	L	L	L	н	L ·	x	REF, SELF	ILLEGAL
	L	L	L	L	L	MODE	MRS	ILLEGAL
		<u>.</u> 	н	H M	H	BA, BA.	ACTVM	Other bank active & write per bit snable filegal on the same bank
	12	́н Г	L.	L	H	BA, CA, A8	BWRIT/A	Start block write
		æ.	La maise	·U		Special Mode	SMRS	Special mode register se

						<u> </u>	HM	5283206 Series
Function Truth	Table(cont.)						
Current state	/CS	/RAS	/CAS	WE	DSF	Address	Command	Operation
Read	H.	x	x	×	x	X	DESL	Continue operation
	L	н	н	н	L	X	NOP	Continue operation
	L	н	н	L	L	X	BST	Burst stop in full page
	L	н	L	H	L	BA, CA, A8	READ/A	Start new read
	L	н	L	L	L	BA, CA, A8	WRIT/A	Start write
	L	L	н	н	L	BA, RA	ACTV	Other bank active Illegal on the same bank
	L	L	H	L	L	BA, A8	PRE, PALL	Precharge
	L	L	L	н	L	X	REF, SELF	ILLEGAL
	L	. L	L	L	L	MODE	MRS	ILLEGAL
		. L. s.	H Singer	H	-H	BA, RA		Other bank and row activ & write pet bit anable litegal on the same bank
	ι.D	н		L	H ===	BA; CA, A8	BWRIT/A	Startblock write
	LŦ	L	1. 44	τ.	_ H	Special Mode	SMRS	ILLEGAL
Read with auto	н	×	×	x	x	x	DESL	Continue operation
precharge	L	н	н	н	L	x	NOP	Continue operation
	L	н	н	L	L	x	BST	ILLEGAL
	L	н	L	н	L	BA, CA, A8	READ/A	ILLEGAL
	L	н	L	L	L	BA, CA, A8	WRIT/A	ILLEGAL
	L	L	н	н	L	BA, RA	ACTV	Other bank active Illegal on the same bank
	L	L	н	L	L	BA, A8	PRE, PALL	ILLEGAL
	L	L	L	н	L	×	REF, SELF	ILLEGAL
	L	L	L	L	L	MODE	MRS	ILLEGAL
		.e	19 <u>2</u> ,	-+ =	н,	BA, RA	-AGTVM	Other bank active & write per bit enable litegal on the same bank
	L.	<u>н</u>	L .	1	н.,	BA, CA, A8	BWRIT/A	ILLEGAL
	12		L	1	Н.	Special Mode	SMAS	ILLEGAL

		·				······	HM	5283206 Series
Function Truth 1								
Current state	/CS	/RAS	/CAS	WE	DSF	Address	Command	Operation
Write/Bwrite	н	X	<u>×</u>	X	×	X	DESL	Continue operation
	L	н	н	н	L	×	NOP	Continue operation
	L	. н	н	L	L	x	BST	Burst stop in full page
	L	н	L	н	L	BA, CA, A8	READ/A	Start read
	L	н	L	L	L	BA, CA, A8	WRIT/A	Start new write
•	L	L	н	н	L	BA, RA	ACTV	Other bank active Illegal on the same bank
	L	L	н	L	L	BA, AB	PRE, PALL	Precharge
	L	L	L	н	L	x	REF, SELF	ILLEGAL
	L	L	L	L	L	MODE	MRS	ILLEGAL
		<u> </u>	<u>ана</u> 1.	TH)	.н 7,5.	BA, FA	ACTVM	Other bank and row activ & write per bit enable illeget on the same bank
	E.	-ή		Ľ.	 4 #	BA, CA, AS	BWRIT7A	Stan block write
	÷C;	jer o	1	1 L .	H	Special Mode	SMRS	ILLEGAL
Write/Bwrite with	н	×	×	×	×	×	DESL	Continue operation
uto precharge	L	н	н	н	L	x	NOP	Continue operation
	L	н	н	L	L	x	BST	ILLEGAL
	L	н	L	н	L	BA, CA, A8	READ/A	ILLEGAL
	L	н	L	L	L	BA, CA, A8	WRIT/A	ILLEGAL
	L	L _.	н	н	L	BA, RA	ACTV	Other bank active Illegal on the same bank
	٤	L	н	L	L	BA, A8	PRE, PALL	ILLEGAL
	L	L	L	н	L	x	REF, SELF	ILLEGAL
	L	L	L	L	L	MODE	MRS	ILLEGAL
			H.	f F	н.	BA; RA	ACTVM	Other bank active & write per bit enable Illagal on the same bank
	ΪŪ,	́н×́		ÊÇ.,		BA, CA. AB	BWRITZA	ILLEGAL - 2
	÷L.	۲	- <u>C</u>	2 .	: H-	Special Mode	SMRB	ILLEGAL

							HM5283206 Series		
Function Truth	Table	(cont.)							
Current state	/CS	/RAS	/CAS	ΛWE	DSF	Address	Command	Operation	
Refresh	н	x	x	x	х	x	DESL	NOP	
	L	н	н	н	L	x	NOP	NOP	
	L	н	н	L	L	x	BST	NOP	
	L	н	L	н	L	BA. CA. A8	READ/A	ILLEGAL	
	Ĺ	н	L	L	L	BA, CA, A8	WRIT/A	ILLEGAL	
	L	L	н	н	L	BA, RA	ACTV	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE, PALL	ILLEGAL	
	L	L	L	н	L	x	REF, SELF	ILLEGAL	
	L	L	L	L	L	MODE	MRS	ILLEGAL	
	The second	ΞL_	, н.	÷, Á	. н ^{.,}	BALRA	Астум	ILLEGAL	
	SC	." H*	1 444	Ĵ.	_н⊸	BA, CA. AB	SWRIT/A	ILLEGAL	
	a:	Č.	. C.	- C.	~н	Special Mode	SMRS	ILLEGAL	

Note: H:High level. L: Low level. X:H or L(Don't care).

From (PRECHARGE)

To [DESL], [NOP]: When these commands are executed, the HM5283206 enters into the IDLE state after tRP has elapsed from the completion of precharge.

From[IDLE]

To[DESL], [NOP], [BST], [PRE] or [PALL]: These commands result in no operation. To[ACTV] : The bank specified by the address pins and the ROW address is activated. To[ACTVM]: The bank specified by the address pins and the ROW address is activated. In addition, write per bit is also enabled. To[REF], [SELF]: The HM5283206 enters into refresh mode(auto-refresh or self-refresh). To[MRS]: The HM5283206 enters into the mode register set cycle.

To[SMRS]: The HM5283206 enters into the special mode register set cycle.

From[ROW ACTIVE]:

To [DESL], [NOP], or [BST]: These commands in no operation.

To[READ], [READA]: A read operation starts. (However, an Interval of tRCD is required) To[WRIT], [BWRIT], [WRITA] or [BWRIT A]: A write or block write operation starts. (However, an interval of tRCD is required.)

To[ACTV]: This commands makes the other bank active. (However, an interval tRRD is required.) Attempting to reactivate the current active bank is illegal.

To[ACTVM]:This commands makes the other bank active and enable write per bit. (However, an interval tRRD is required.) Attempting to reactivate the current active bank is illegal.

To[SMRS]: The HM5283206 sets the special mode register.

To [PRE], [PALL]: These commands set the HM5283206 to precharge mode. (However, an interval or tRAS is required.)

From [READ]

To[DESL], [NOP]: These commands continue read operation until the burst operation completed. To[BST]: This command stops a full-page burst. To[READ], [READA]: Data output by the previous read command continues to finish. After /CAS latency, the data output resulting from the

next command will start. To[WRIT], [BWRIT], [WRITA] or [BWRIT A]: These commands stop burst read and start write

cycle. To[ACTV]: This command activates the other bank. Attempting to reactivate the current active

bank is illegal. To[ACTVM]: This command activates the other bank and enables write per bit. Attempting to reactivate the current active bank is illegal. To [PRE], [PALL]: These commands put the HM5283206 into precharge mode. (However, an interval or tRAS is required.)

From [READ with AUTO-PRECHARGE]

To [DESL], [NOP]: These commands continue read operation until burst operation is completed, then the HM5283206 enters into precharge mode. To[ACTV]: This command activates the other bank. Attempting to reactivate the current active bank is illegal.

To[ACTVM]: This command activates the other bank and enables write per bit. Attempting to reactivate the current active bank is illegal.

From [WRITE] or [BWRITE]

To[DESL], [NOP]: These commands continue write operations until burst operation is completed. To[BST]: This command stops a full-page burst. To[READ] or [READ. A]: These commands stop burst write cycle and start read cycle. To[WRIT], [BWRIT], [WRIT A] or [BWRIT A]:

These commands stop burst write cycle and start new burst write or block write.

To[ACTV]: This command activates the other bank. Attempting to reactivate the current active bank is illegal.

To[ACTVM]: This command activates the other bank and enables write per bit. Attempting to reactivate the current active bank is illegal. To[PRE] or [PALL]: These commands stop burst cycle, then the HM5283206 enters into precharge mode.

From[WRIT A] or [BWRIT A]

To[DESL], [NOP]: These commands continue current write operation until the burst operation is completed then the HM5283206 goes into the precharge process.

To[ACTV]: This commands activates the other bank. Attempting to reactivate the current active bank is illegal.

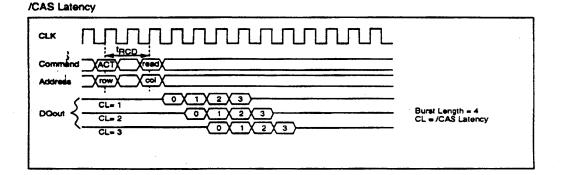
To[ACTVM]:This command activates the other bank and enables write per bit. Attempting to reactivate the current active bank is illegal.

From[REFRESH]

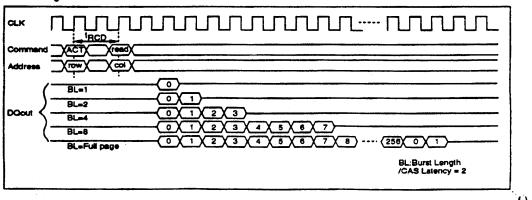
To[DESL], [NOP], [BST]: After the auto-refresh cycle (after tRC), the HM5283206 automatically enters into the IDLE state.

Operation of HM5283206 Series

Read/Write Operations


-Bank active

Before executing a read or write operation, the corresponding bank and the row address must be activated by the bank active(ACTV, ACTIVM) command. Either bank 0 or 1 is activated according to the level on A9 pin, and the row address (AX0 to AX8) is activated by the A0-A8 pins at the bank active command cycle. An interval of tRCD is required between the bank active command input and the following read/write command input.

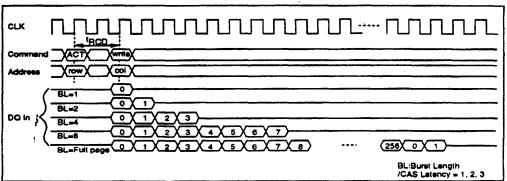

-Read operation

A read operation starts when a read command is input. Output buffers become active in the cycle after read command issued so that the HM5283206 can perform burst read operation. The burst length can be set to 1, 2, 4, 8 or 256 (full-page). The start address of burst read is defined by the column address (AY0 to AY7) and the bank select address (A9) loaded at the cycle when the read command is issued. In read operation, data output starts after the number of cycles specified by the /CAS latency. When the burst length is 1, 2, 4 or 8, DQ buffers automatically become High-Z at the next cycle after the successive burst read has been completed.

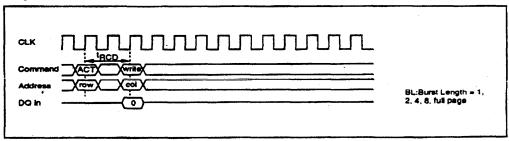
When the burst length is full-page(256), data are repeatedly output until the burst stop command, another read/write commands or precharge commands are input. The /CAS latency and burst length must be specified on the mode register.

Burst Length

Read / Write Operation(cont.)


.Write operation

Burst write or aingle mode is selected by the OPCODE(A9, A8) of the mode register.


(1) Burst write: Prior to execute burst write operation, the OPCODE(A9, A8) should be set to (0, 0). The latency of data input is 0 that is burst write starts on the same cycle when the write command is issued. The burst length can be set to 1, 2, 4, 8 and 256(full-page). The start column of burst write is defined by the column address and the bank select address A9 loaded at the write command set cycle.

(2) Single write: Prior to execute single write operation, the OPCODE(A9, A8) should be set to (1, 0). In a single write operation, data are only written to the single column defined by the column address and the bank select address loaded at the write command set cycle regardless of the defined burst length. (The latency of data input is 0).

Burst Write

Single Write

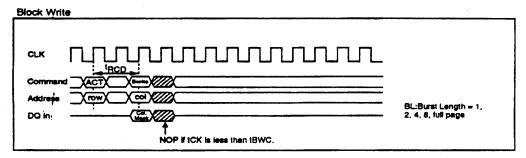
Read / Write Operation(cont.)

.Block Write & Write per bit Function The HM5283206 has two graphic functions, Block write and write per bit, such as

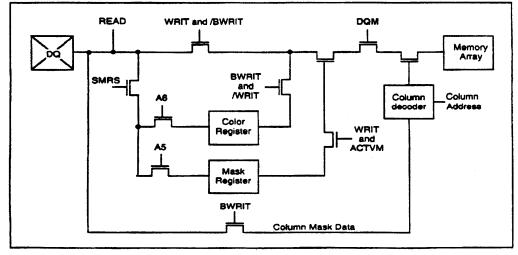
conventional VRAM has.

Block write operation:

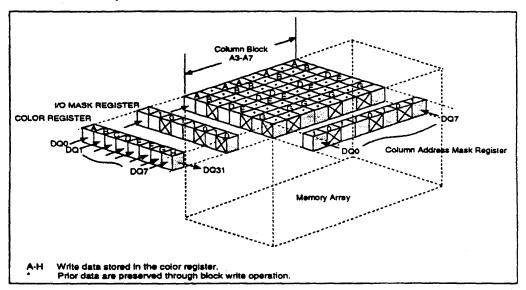
This command enables 8 column write at one CAS cycle with the data stored in color register(3 2 bit). The column block composed of 8 columns is defined by AX3-AX7 loaded through A0-A7 pins when this command is issued. A0-A2 address is ignored then.


This command is executed regardless of burst length.

When this command is issued, DQ data are referred to stop writing color data to specific columns(see "column address mask data "on the next page).


Write per bit operation:

Both for normal write and block write, additional DQ control function or write per bit function is available in the ACTVM state. The HM5283206 has the mask register(32bit). This register indicates DQ bits which will be masked through both normal write(DSF=0) and block write(DSF= 1). Hence, mask register and DQM signal determine DQ bits which should be masked.

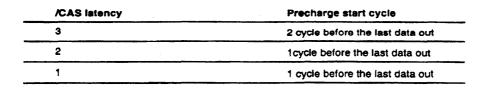

The figure at the top of the next page shows an example of block write with mask.

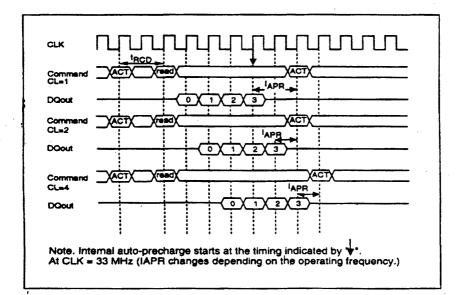
Block diagram of graphic functions

Block write and write per bit

Column Address Mask Data

DQ ix8+1 DQ ix8+2 DQ ix8+3 DQ ix8+4 DQ ix8+5 DQ ix8+6	Column 0 (A0=0, A1=0, A2=0) Mask Data Column 1 (A0=1, A1=0, A2=0) Mask Data Column 2 (A0=0, A1=1, A2=0) Mask Data Column 3 (A0=1, A1=1, A2=0) Mask Data Column 4 (A0=0, A1=1, A2=1) Mask Data Column 5 (A0=1, A1=0, A2=1) Mask Data Column 6 (A0=0, A1=1, A2=1) Mask Data	in Byte	Low : Mask High : Non Mask
DQ ix8+7	Column 7 (A0=1, A1=1, A2=1) Mask Data		

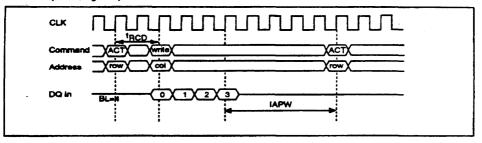

i={0,1,2,3}


Read / Write operation

.Read with auto precharge: In this operation, since precharge is automatically performed after completing a read operation, so no precharge commands are necessary after each read operation.

.

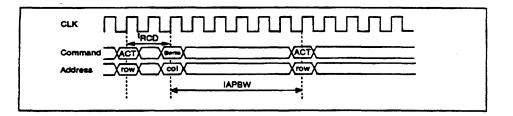
The command next to this command must be the bank active(ACTV, ACTVM) command. In addition, an interval defined by IAPR is required before execution of the next command.



Read /write operation(cont.)

.Write with auto-precharge: In this operation, since precharge is automatically performed after completing burst write or single write operation, so no precharge commands are necessary after each write operation. The command next to this command must be the bank active(ACTV, ACTVM) command. In addition, an interval of IAPW is required between the last valid data input and the next command.

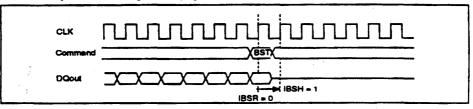
Burst Write(Burst Length = 4)


Single Write

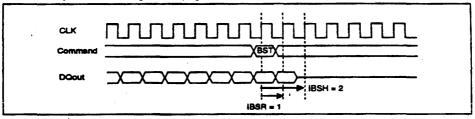
Read /write operation(cont.)

.Block write with auto-precharge: in this operation, since precharge is automatically performed after completing block write operation, so no need to execute any precharge command.

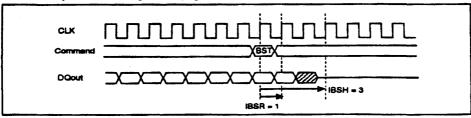
The command next to this command must be the bank active(ACTV, ACTVM)command. In addition, an interval of IAPBW is required between the last valid data and the next command.



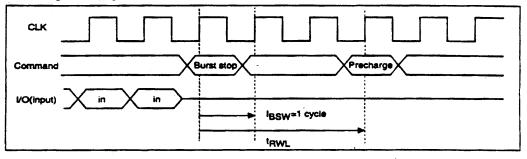
Full page burst stop


. Burst stop command during burst read: The burst command is used to stop data output during a full-page burst. The BST command sets the output buffer to high-Z and stops the full-page burst read. The timing, from command input to the last data, depends on the /CAS latency. When the /CAS latency is 3, the data, two cycles after the BST command, becomes invalid . The BST command is legitimate only in case full page burst mode, and is lilegal in case burst length 1, 2, 4 and 8.

/CAS latency	BST to valid data	BST to high impedance
1	0	1
2	1	2
3	1	3


/CAS Latency = 1, Burst Length = full page

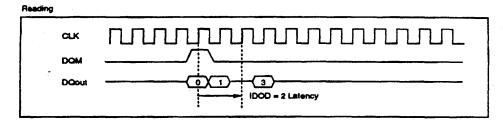
/CAS Latency = 2, Burst Length = full page


/CAS Latency = 3, Burst Length = full page

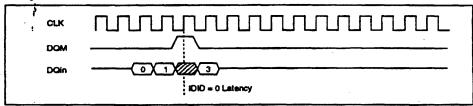
Full-page Burst Stop(cont.)

•Burst stop command at burst write: For full page burst write cycle, when burst stop command is issued, write data at that cycle and the following write data input are ignored. The BST command is legitimate only in case full page burst mode, and is illegal for burst length 1, 2, 4 and 8. An interval tRWL is required between the BST command and the next precharge command.

Burst Length = full page



DQM control


The DQM i(i=0, 1, 2, 3) controls the ith byte of DQ data. DQM control operation for read and for write are different in terms of operation timing.

Reading: When data is read, output buffer can be controlled by DQMi. By setting DQMi to low, corresponding DQ output

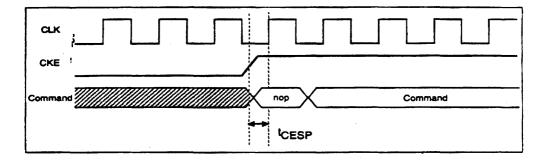
By setting DQMi to low, corresponding DQ output buffer becomes active. By setting DQMi to high, the DQ output buffer is getting floated so that the ith byte of data are not driven out. The latency of DQM operation for read operation is two. Writing: Input data can be controlled by DQMi. While DQMi is low, data is driven into the HM528 3206. By setting DQMi to low, corresponding ith byte of DQ input data are kept from being written to the HM5283206 and the previous data are protected. The latency of DQM control operation is 0.

Writing

Refresh

.Auto-refresh

All the banks must be precharged before executing an auto-refresh command. Since the auto refresh command updates the interval counter every time when it is executed. This command also determines the bank and the ROW to be refreshed. Therefore external address specification is not necessary. The refresh cycle is 1024 cycles/16ms. (1024 cycles are required to refresh all the ROW addresses.) The output buffer becomes high-Z after autorefresh start. no prechrage commands are not necessary after this command execution.


Others

.Power down mode and clock mask Power down mode is a state in which input buffers are made inactive and clock signal is masked to cut power dissipation. To enter into power down mode, CKE should be set to low.

.Self-refresh

After issuing the self refresh command, self refresh operation starts by changing the level on CKE pin from 'H' to 'L'. During self-refresh operation, all data are refreshed. This operation managed by the internal refresh timer. After the self refresh, since the last ROW refreshed cannot be determined, an auto-refresh should immediately be performed for all addresses(1024 cycles).

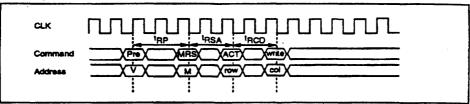
Power down mode is kept as long as CKE is low. Note that during burst read or burst, only clock signal is masked. To exit from power down or clock mask state, CKE should be set to high as the timing shown bellow.

.Clock suspend mode

By driving CKE to low during a bank-active or read/write operation, the HMS283206 enters into clock suspend mode. During clock suspend mode external input signals are ignored and the internal state is maintained. When CKE is driven high, the synchronous DRAM terminates clock suspend mode, and command can be input from the next cycle. For detail, refer to the "CKE Truth Table".

.Power-up sequence

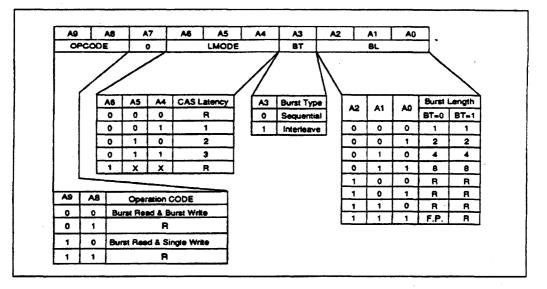
During power-up sequence, the DQMi and the CKE must be set to high. When 100µs has past after power-on, all banks must be precharged using the precharge command. After tRSA delay, execute two auto-refresh commands as dummy, an interval of tRC is necessary between two auto-refresh commands.

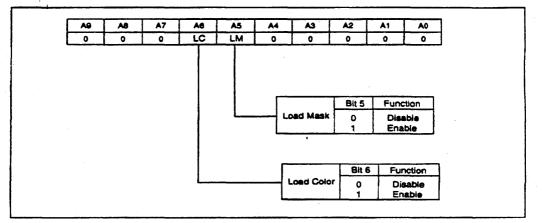

Mode Register Set:

Mode register are set through address pins during the IDLE state. A9 and A8 bits are used to deline OPCODE determines write type. A7 bit isn't used and must be low level. A4 to A6 bits are used to specify LMODE or CAS latency. A3 bits is used to deefine BL or burst length. See " Mode register configuration" in the next page.

Special Mode Register Set:

Special mode register are set through address pins during the IDLE, ACTV or ACTVM state. A6 and A5 pins are used to determine whether loading color data or mask data. Other pins should be low. When special mode register set command is issued, if both A5 and A6 are equal to 1, then neither color nor mask data is assured. See "Special mode register configuration" in the next page.


Mode register set


Sperial mode register set

CLK	
Command	
Address	

Mode register configuration

Special mode register configuration

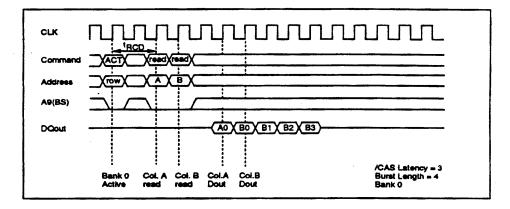
Burst Sequence

Burst length = 2 Stating Ad. Addressing(decimal)								
Stating Ad.	Addressing	(decimal)						
AO	Sequence	Interieave						
0	0, 1,	0, 1,						
1	1, 0,	1, 0,						

.

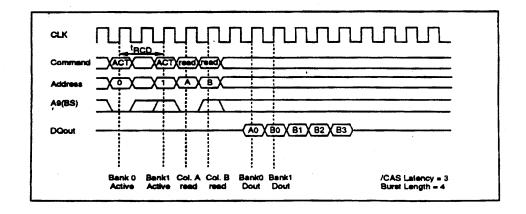
Statin	g Ad.	Ad	dres	ssin	g(de	cimal	>		
A1	AO	Sec	que	nce		Inte	rie	ave	
0	0	0,	1,	2,	3,	0,	1,	2,	3
0	1	1.	2,	3,	0,	1.	0,	З,	2
1	0	2.	З,	0,	1,	2,	З,	0,	1,
1	1	3,	0.	1.	2.	3,	2,	1.	0.

,


Stati	ng Ad		Addressing(decimal)	
A2	A1	AO	Sequence	Interieave
0	0	0	0, 1, 2, 3, 4, 5, 6, 7,	0. 1. 2. 3. 4. 5. 6. 7.
0	0	1	1, 2, 3, 4, 5, 6, 7, 0,	1. 0, 3, 2, 5, 4, 7, 6,
0	1	0	2, 3, 4, 5, 6, 7, 0, 1,	2, 3, 0, 1, 6, 7, 4, 5,
0	1	1	3. 4. 5. 6. 7. 0. 1. 2.	3, 2, 1, 0, 7, 6, 5, 4,
1	0	0	4, 5, 6, 7, 0, 1, 2, 3,	4, 5, 6, 7, 0, 1, 2, 3,
1	0	1	5. 6, 7, 0, 1, 2, 3, 4,	5, 4, 7, 6, 1, 0, 3, 2,
1	1	0	6, 7, 0, 1, 2, 3, 4, 5,	6, 7, 4, 5, 2, 3, 0, 1,
1	1.	1	7, 0, 1, 2, 3, 4, 5, 6,	7, 6, 5, 4, 3, 2, 1, 0,

Command intervals

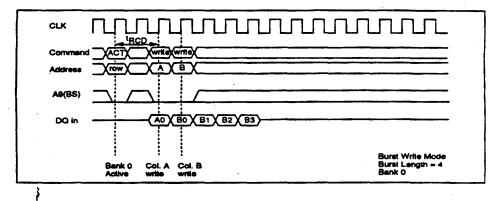
.Read command to read command interval


(1) Operation for the column in the same row (page): Within the same ROW (page), read command can be issued every cycle.

Note that the last read command has the priority to the preceding read command, that is, any read command can interrupt the preceding burst read operation to get valid data aimed by this interruption.

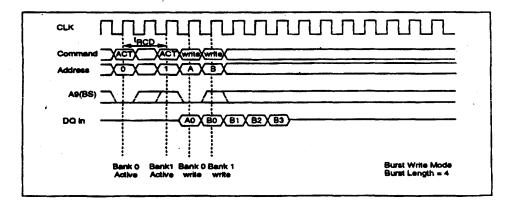
(2) Operation for the column in other ROW of the same bank: To read the data of other ROW of the same bank, it is necessary to execute a precharge command and a bank-active command before executing next read command.

(3) Operation for another bank: For another bank in active state, burst read command can be executed from the next cycle after the preceding read command is issued. If another bank is in the idle state, bank active command should be executed prior to the read command.



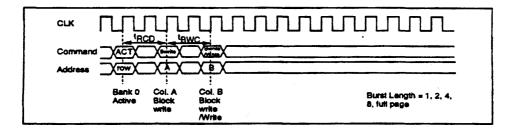
Command intervals(cont.)

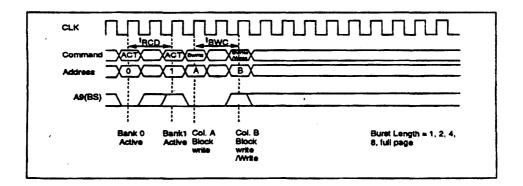
.Write command to write command interval


(1) Operation for the column in the same row : Within the same ROW (page), write command can be issued every cycle.

Note that the last write command has the priority to the preceding write command, that is, any write command can interrupt the preceding burst write operation to get valid data

(2) Operation for the column in other ROW of the same bank: To write data on other row of the same bank, it is necessary to execute a precharge command and bank active command before executing next write command.

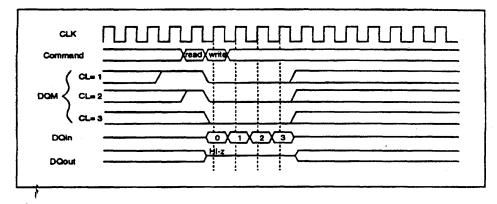

(3) Operation for another bank: For another bank in active state, burst write command can be executed from the next cycle after the preceding write command is issued. If another bank is in the idle state, bank active command should be executed.


Command intervals(cont.)

Block Write command to write or block write command interval

(1) Operation for the column in the same row : Within the same ROW (page), it is necessary to take no less than tBWC between block write and another block write/normal write. If tCK is less than tBWC, NOP command should be issued for the cycle between the block write command and the following write or block write command.

(2) Operation for the column in other ROW of the same bank: To execute write command or another block write command for other row of the same bank, it is necessary to execute a precharge command and bank active command before write or block write operation. (3) Operation for another bank: To execute write command or another block write command for another bank in active state, tBWC interval to the next command is necessary. If another bank is in the idle state, bank active command should be executed. If tCK is less than tBWC, NOP command should be issued for the cycle between the block write command and the following write or block write command.

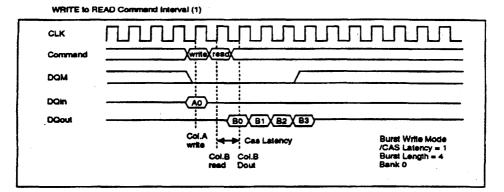


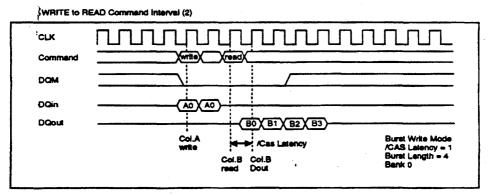
Command intervals(cont.)

.Read command to write or block write command interval

(1) Operation for the column in the same ROW: The write or block write command following the preceding read command can be performed after an interval of no less than 1 cycle. To set DQ output High-Z when data are driven in, DQM must be used depending on cas latency as the timing shown below.

Note that the last write or block write command has the priority to the preceding read command, that is, any write or block write command can interrupt the preceding burst read operation to get valid data.

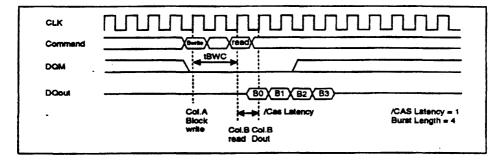

(2) Operation for the column in other ROW of the same bank: To execute write or block write for other row of the same bank, it is necessary to execute a precharge command and bank active command before executing these commands. (3) Operation for another bank: For another bank in active state, burst write command can be executed from the next cycle after the preceding write command is issued. If another bank is in the idle state, bank active command should be executed.


Command intervals(cont.)

.Write command to read command interval

(1) Operation for the column in the same ROW: The read command following the preceding write command can be performed after an interval of no less than 1cycle.

Note that the last read command has the priority to the preceding writing command, that is, any read command can interrupt the preceding burst write operation to get valid data.



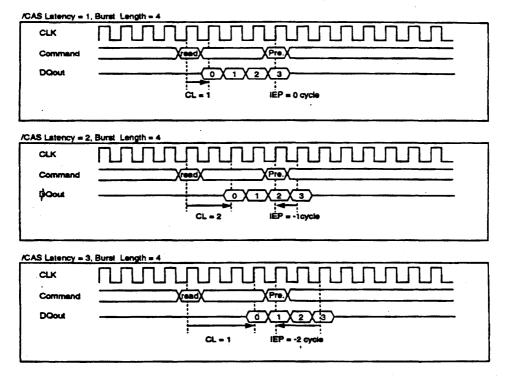
(2) Operation for the column in other ROW of the same bank: To execute read command for other row of the same bank, it is necessary to execute a precharge command and bank active command. (3) Operation for another bank: For another bank in active state, burst read command can be executed from the next cycle after the preceding write command is issued. If another bank is in the idle state, bank active command should be executed prior to execute these command.

Command intervals(cont.)

Block Write command to read command interval

(1) Operation for the column in the same row : Within the same ROW (page), It is necessary to take no less than tBWC between block write and the following read command. If tCK is less than tBWC, NOP command should be issued for the cycle between the block write command and the following read command.

(2) Operation for the column in other ROW of the same bank: To execute read command for other row of the same bank, it is necessary to execute, a precharge command and bank active command before write or block write operation.


(3) Operation for another bank: To execute read command for another bank in active state, tBWC interval to the next command is necessary. If another bank is in the idle state, bank active command should be executed. If tCK is less than tBWC, NOP command should be issued for the cycle between the block write command and the following read command.

Command intervals(cont.)

.Read command to precharge command The minimum interval between read command and precharge command is one cycle. However, since the output buffer then becomes high-Z after the cycles defined by IHZP, there is a possibility that burst read data output will be interrupted, if

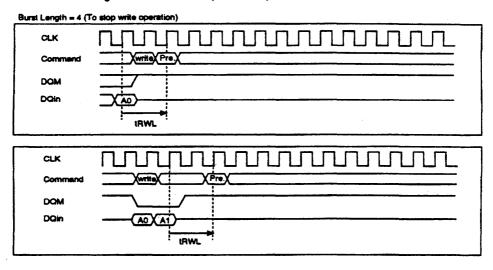
the precharge command is input during burst read. To read all data by burst read, the cycles defined by IEP must be assured as an interval from the final data output to precharge command execution.

,READ to PRECHARGE Command interval (same bank): To output all data

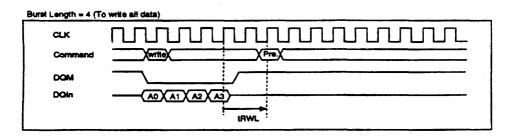
Command intervals(cont.)

READ to PRECHARGE Command Interval (same baank): To stop output data

CAS Latency = 1, E	Jurat Length = 4
CLK	uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
Command	Xreed XPre X
DQout	


/CAS Latency = 2, Burst Length = 4

CLK	mmmmmm
Command	Vreed XPre.X
DQout	
	HZP = 2


/CAŞ Latency = 3,	Burst Length = 4	
ськ	uuuuuuuuuuuuuuuu	
Command	Vreed Pre.	
DQout		

Command intervals(cont.)

.Write command to precharge command: The minimum interval between write command and precharge command. However, if the burst write operation is unfinished, the input must be masked by means of DQM for assurance of the cycle defined by tRWL.

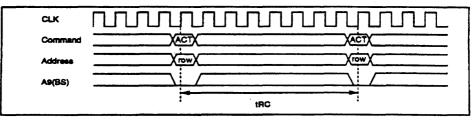
WRITE to Precharge Command Interval (same bank)

Command intervals(cont.)

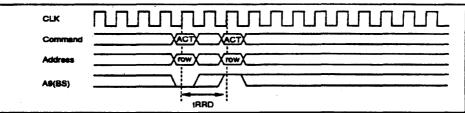
.Block write command to precharge command interval:

The minimum interval between block write command and precharge command is tBWL.

WRITE to Precharge Command Interval (same bank)


CLK	
Command	Xerrex
DQM	
	tBWL

Command intervals(cont.)


.Bank active command interval

(1) Same bank: The interval between the two bank-active commands must be no less than tRC. (2) In the case of different bank-active commands: The interval between two bank-active commands must be no less than tRRD.

Bank active to bank active for same bank

Bank active to bank active for different bank

.Mode register set to bank-active command Interval: The interval between setting the mode register and executing a bank-active command must be no less than tRSA.

СЦК	Mana Mana Mana Mana Mana Mana Mana Mana
Command	
Address	XcodeXXrowX
	Mode Benk Register Set Active

			HM5	283206	HM5	293208	HMS	283208	HMS	283205	-		
			-12		-15		-17		-20				
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Test Conditions	Notes
Operating current		lcc1	-	TBD	-	TBD	-	TBD	-	TBD	mA	Burst length=1 tRC=min	1
Standby current		lcc2	_	TBD	-	TBD	_	TBD	_	TBD	mΑ	CKE=VIL,tCK=min	
(Bank Disable)			_	TBD	-	TBD	-	TBD	_	TBD	mA	CKE=VIL CKE=VIL or VIH fixed	
			-	TBD		TBD		TBD	-	TBD	mA	CKE=VIH, NOP com. tCK=min	
Active standby current		Icc3	-	TBD		TBD	-	TBD	-	TBD	mA	CKE=VIL, tCK=min DQ=High-Z	1
(Bank actine)			-	TBD	-	TBD	-	TBD	-	TBD	mA	CKE=VIH, NOP com. tCK=min, DQ=High-Z	
Burst operating(CL=1) current	(CL=2) (CL=3)	icc4	-	TBD	-	TBD	-	TBD	-	TBD	mA	tCK≖min	1
Refresh current		lcc5		TBD	_	TBD		TBD	_	TBD	mA	tAC=min	
Self refresh current		1008	-	2	-	2	-	2	-	2	mA	VIH≥Vcc-0.2 VIL≤0.2	
Input leakage current		IU	-10	10	-10	10	-10	10	-10	10	uA	0svinsvcc	
Output leakage current		ILO	-10	10	-10	10	-10	10	-10	10	uA	0sVoutsVcc DQ=disable	
Output high voltage		VOH	2.4	_	2.4	_	2.4		2.4	-	v	IOH=-2mA	
Output low voltage		VOL	_	0.4	_	0.4	_	0.4		0.4	V	IOL=2mA	

Note 1: Icc depends on output load condition when the device is selected. Icc max is specified on condition that all output plns are floated.

DC Characteristics(Ta=0 to 70°C,Vcc=3.3V,Vss=0V)

Capacitance

parameter	Symbol	Тур.	Max.	Unit	Notes	
input capacitance(Address)	CI1	-	5	pF	1	
Input capacitance(Signais)	CI2	-	5	pF	1	
Output capacitance(DQ)	co		7	pF	1,2	

Note.1. Capacitance measured with Booton Meter or effective capacitance measuring method. 2. DQM=VIH to disable Dout

HM5283206 Series

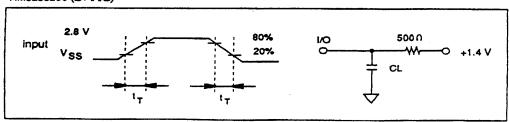
•

							<u> </u>	M528	3206 Se	eries	
AC Characteristics(Ta=0	to 70°C,V	cc=3	.3V,Vss	=0V)							
		HM5283206		HM5283206		HM5283206		HM5	283206		
•		-12		-15		-17		-20			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Active to precharge on full page mode	tRASC	-	80000	-	80000	-	80000	-	80000	ns	1
Active command to column command (same bank)	tRCD	25	_	30	-	35	-	40		ns	1
Precharge to active command period	tRP	34	-	34	_	34	-	40	-	ns	1
The last data-in to precharge lead time	tRWL	25		30	-	35		40	_	ns	1
Active(a) to active(b) command period	IRAD	25	-	30		35	-	40	_	ns	1
Register set to active command	IRSA	25	-	30		35	-	40	-	ns	1
Block write cycle time	tBWC	25		30	-	35	-	40	-	ns	1
Transition time(rise to fail)	tΤ	1	5	1	5	1	5	1	5	ពន	
Refresh period	IREF	-	16	_	16	_	16	_	16	ms	

.

Notes:

1.AC measurement assumes tT=1ns. Reference level for timing input signals IS 1.4V.


2.Access time is measured at 1.4V. Load condition is CL=50pF with current source.

3.tHz(max)defines the time at which the outputs achieves ±200mV.

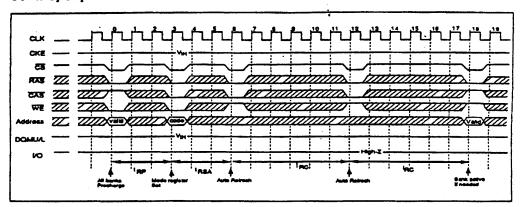
Load condition is CL=5pF with current source.

4.An initial pause of 100 us is required after power up followed by a mode resister set cycle and minimum of eight initialization cycles. (Auto refresh cycles or row active precharge command.)
5.If IT is longer than 1 ns. input timing referred level should be VIH(min)/VIL(max)and 1ns should be subtracted parameter.

6.tCES define CKE setup time to CKE rising edge except power down exit command.

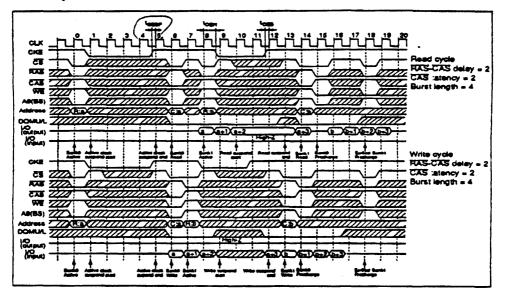
HM5283206 (LVTTL)

									HM5283	3206 5	Series	
AC Characteristics	(Ta=0 to	70°C,V	'cc=3	.3V,Vss								
				283206		83206		\$3206	_	83206		
			-12		-15		-17		-20			
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
System Clock	(CL=1) (CL=3)	ICK	25 12.5	-	30 15	-	35 17.5	-	40 20	-	ns na	1
CLK high pulse width		1CKH	5	_	6	_	7		8	-	ns	1
CLK low pulse width		1CKL	5	-	6	-	7		8	-	ns	1
Access time from CLK	(CL=1) (CL=2) (CL=3)	AC	-	24 12.5 11.5	-	30 15 13	-	34 16.5 15.5	-	38 18 18	ns ns	1,2 1,2 1,2
Read command to data valid time	(CL=1) (CL=2,3)	tACK	_	25 36	_	30 43	_	34 50.5		38 58	ns ns	1 1
Data-out hold time	(CL=1) (CL=2,3)	tOH	4 2	-	4	-	4 2	-	4 2	_	ns na	1,2
CLK to Data-out low impedance		۲LZ	0		0	-	0	-	0	-	Π\$	1,2
CLK to Data-out high impedance		tHZ	4 2	12.5 8	4 2	15 10	4 2	17 12	4 2	19 14	ns ns	1,3
Data-in setup time		tDS	4	-	4		4	`	· 4	-	ns	1
Data-in hold time		tDH	2		2		2		2	_	ns	1
Address setup time		tAS	4	_	4	-	4	-	4		ns	1
Address hold time		tAH	2		2	-	2	. —	2	-	ns	1
CKE setup time		ICES	4	-	4		4		4	_	ns	1
CKE hold time		ICEH	2		2	_	2	_	2		ns	1
Command(/CS, /RAS, /WE, DQM, DSF)setup		tCS	4	-	4		4	-	4		ns	1
Command(/CS. /RAS. /WE, DQM, DSF)hold		tCH	2		2	-	2		2	_ .	ns .	1
Rel/Active to Rel/activ command period	•	IRC	100		• 110	—	120	-	130		ns	1
Active to precharge command period		tRAS	65	10000	70	10000	75	10000	80	10000	ns	1

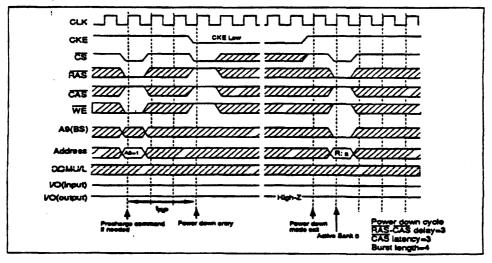

								HM	5283	3206	Series
Relationship Between Frequen	icy and M	Ainimum L		-							
Parameter			HM53 -12	283200	-15	83206	HM52 -17	83206	HM52 -20	83206)
Frequency(MHz) tCK(ns)		Symbol	80 12.5	33 25	66 15	33 30	57 17.5	28.5 35	50 20	25 40	Notes
Active command to column Command(same bank)		IRCD	2	1	2	1	2	1	2	1	
Active command to active command(same bank)		IRC	8	4	8	4	7	4	7	4	=(IRAS+IRP)
Active command to precharge command(same bank)		IRAS	5	3	5	3	5	3	4	2	
Precharge command to active command(same bank)		tRP	3	2	3	2	2	1	2	1	
Last data in to active command (same bank)		tRWL	2	1	2	1	2	1	2	1	
Block write to precharge command (same bank)		tBWL	3	2	3	2	3	2	3	2	=[IRWL+1]
Active command to active command(different bank)		tRAD	2	1	2	1	2	1	2	1	· .
Last data in to active command (Auto precharge, same bank)		IAPW	5	3	5	3	4	2	4	2	=(tRWL+tRP)
Block write to active command (Auto precharge, same bank)		IAPBW	6	4	6	4	5	3	5	3	={18WL+1RP}
Self refresh exit to command input		ISEC	8	4	8	4	7	4	7	4	=tRC
Precharge command to high impeda	nce	IHZP									
(CL=3)			3	3	3	3	3	3	3	3	
(CL=2) (CL=1)			2	2	2	2	2	2	2	2	
						•		•		·	
Last data out to active command (CL=2,3)		IAPR	2		2	1	1	o	1	0	=[18P]-1
(CL=1)			_	2	-	2	<u> </u>	1	<u> </u>	1	=[tRP]
Last data out to precharge		iEP			~						
-	L=3)		-2	-2	-2	-2	-2	-2	-2	-2	
•	L=2)		-1	•1	-1	-1	-1	-1	-1	-1	
	L=1)		-	0	-	0	_	٥	-	0	
Column command to column comma	nd	ICCD	1	1	1	1	1	1	1	1	
Write command to data in latency		IWCD	Ó	0	0	0	0	0	0	0	
Block write cycle time		tBWC	2	1	2	1	2	1	2	1	
								•			

						HM	5283	206 S	eries
d Minimum I	Latenc	y							
		283206		63206				83206	
	-12		-15		-17	•	-20		
	80	33	66	33	57	28.5	50	25	
Symbol	12.5	25	15	30	17.5	35	20	40	Unit Note:
IDID	0	0	0	0	0	0	0	0	
IDOD	2	2	2	2	2	2	2	2	
ICLE	1	1	1	1	1	1	1	1	
IBSR									
	-	0	-	0	-	0		0	
	- 1	1	1	1	1	1	1	1	
IBSH									
		1	-	1	-	1	-	1	
	2	2	2	2	2	2	2	2	
	3	3	З	3	3	3	3	3	
IBSW	0	0	0	0	0	0	0	0	
	Symbol IDID IDOD ICLE IBSR IBSH	HM5: -12 80 Symbol 12.5 1DID 0 1DOD 2 ICLE 1 IBSR 1 IBSR 2 3	-12 80 33 12.5 25 1DID 0 0 1DOD 2 2 1CLE 1 1 1BSR - 0 1 1 1BSH - 1 2 2 3 3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

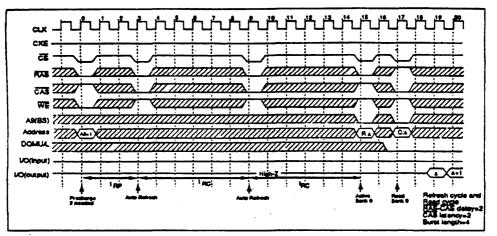
Note. CL=CAS latency

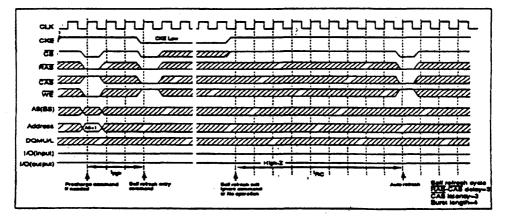

HAL/SP

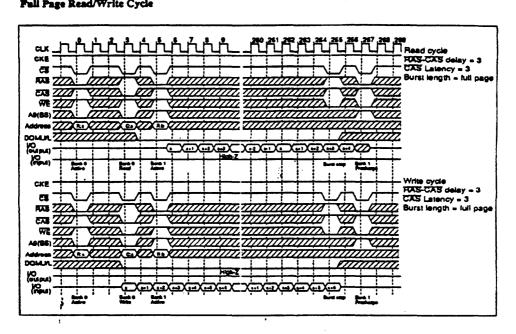
HM5283206 Series

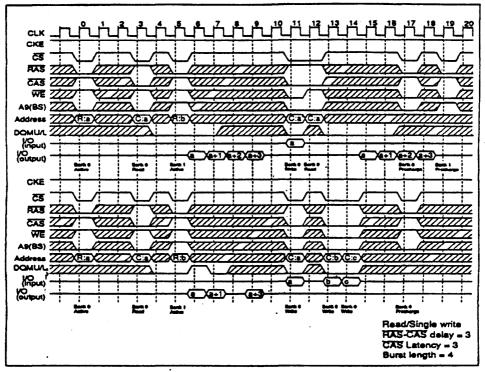


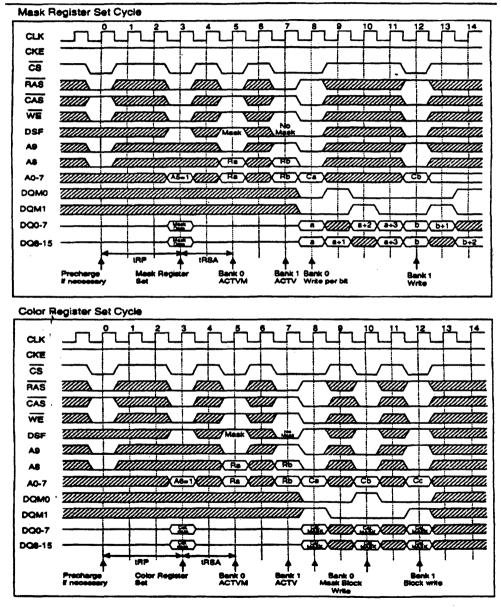
Power Up Sequence

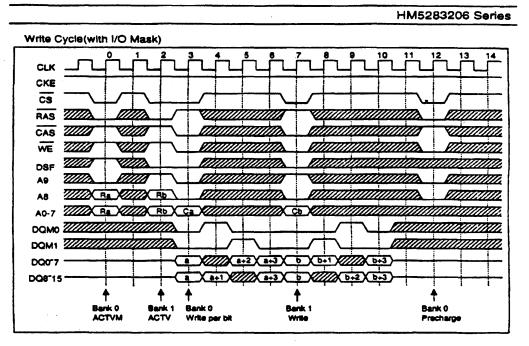

Clock Suspend Mode


Power Døwn Mode

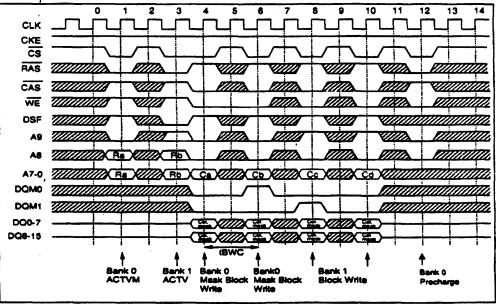

Auto Refresh Cycle


Full Page Read/Write Cycle




ĥ, CLK _ CKE CS RAS 7/// 07 \mathcal{T} CTS 2222 VII 77777 77 WE Z 077 A9(83) 777 7 Address 7/// R:a//////C:a////R:b////// $\overline{\Pi}$ DOMUL Z ろ (mout) x+1/2+2/2+3) 8 (output) a+1)a+2(a+3 -----1 a 1 Barth 1 tine . Bert 1 CKE ĈŜ . 1 $\overline{\mathcal{T}}$ RAS 2222 $\sqrt{111}$ $\cos Z$ Ì VII. ク [77] WE ZZZZ ∇ 111 777 0 $\overline{\mathcal{D}}$ σz A9(BS) 2222 777XC=2777XR-577777 Address 777X Rat DOMUL 777 . Know -8+2 4+3 Courses 1 1 i sene : ÷. **Read/Single write** RAS-CAS delay = 3 CAS Latency = 3 Burst length = 4

Read/Burst Write Cycle


Read/Single Write Cycle

Block Write Cycle

Section 2 VRAM

HM534251B Series

262144-word x 4-bit Multiport CMOS Video RAM

HITACHI

Rev. 1 Mar. 18, 1994

The HM534251B is a 1-Mbit multiport video RAM equipped with a 256-kword x 4-bit dynamic RAM and a 512-word x 4-bit SAM (serial access memory). Its RAM and SAM operate independently and asynchronously. It can transfer data between RAM and SAM and has write mask function.

Features

 Multiport organization
 Asynchronous and simultaneous operation of RAM and SAM capability RAM: 256 kword x 4 bit

 SAM: 512 word x 4 bit

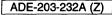
 Access time RAM: 60 ns/70 ns/80 ns/100 ns max SAM: 20 ns/22 ns/25 ns/25 ns max

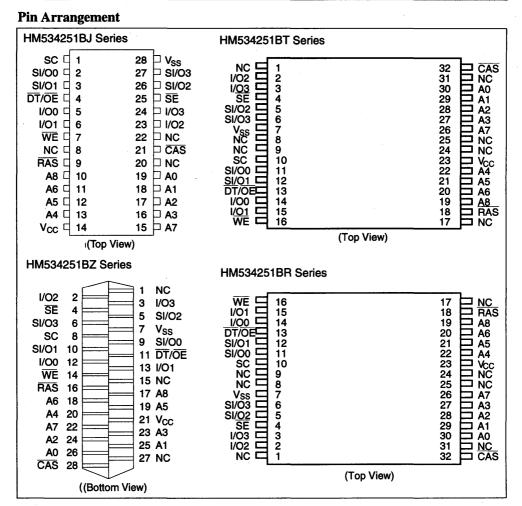
• Cycle time

RAM: 125 ns/135 ns/150 ns/180 ns min SAM: 25 ns/25 ns/30 ns/30 ns min

• Low power

Active RAM: 413 mW max SAM: 275 mW max Standby 38.5 mW max

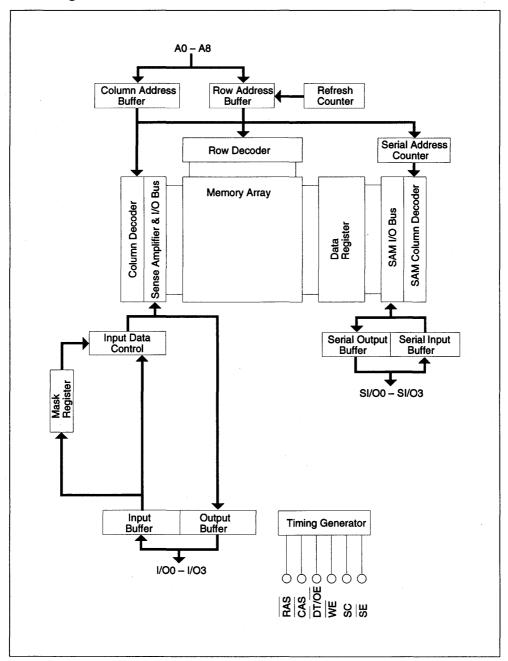

- High-speed page mode capability
- Mask write mode capability
- Bidirectional data transfer cycle between RAM and SAM capability
- Real time read transfer cycle capability
- 3 variations of refresh (8 ms/512 cycles) RAS-only refresh


CAS-before-RAS refresh Hidden refresh

· TTL compatible

Ordering Information

Type No.	Access time	Package
	60 ns	400-mil 28-pin
HM534251BJ-7	70 ns	plastic SOJ
HM534251BJ-8	80 ns	(CP-28D)
HM534251BJ-10	100 ns	
HM534251BZ-6	60 ns	400-mil 28-pin
HM534251BZ-7	70 ns	plastic ZIP
HM534251BZ-8	80 ns	(ZP-28)
HM534251BZ-10	100 ns	
HM534251BT-6	60 ns	8 mm x 14 mm
HM534251BT-7	70 ns	32-pin TSOP
HM534251BT-8	80 ns	type I
HM534251BT-10	100 ns	(TFP-32DA)
HM534251BR-6	60 ns	8 mm x 14 mm
HM534251BR-7	70 ns	32-pin TSOP
HM534251BR-8	80 ns	type I reverse
HM534251BR-10	100 ns	(TFP-32DAR)



Pin Description

Pin name	Function
A0 – A8	Address inputs
1/00 - 1/03	RAM port data inputs/outputs
SI/O0 - SI/O3	SAM port data inputs/outputs
RAS	Row address strobe
CAS	Column address strobe
WE	Write enable

Function								
Data transfer/Output enable								
Serial clock								
SAM port enable								
Power supply								
Ground								
No connection								

Block Diagram

Pin Functions

RAS (input pin): \overline{RAS} is a basic RAM signal. It is active in low level and standby in high level. Row address and signals as shown in table 1 are input at the falling edge of \overline{RAS} . The input level of these signals determine the operation cycle of the HM534251B.

Table 1. Operation Cycles of the HM5342

Input level at the falling edge of RAS

CAS	DT/OE	WE	SE	Operation mode
L	x	x	x	CBR refresh
н	L	L	L	Write transfer
н	L	L	н	Pseudo transfer
н	L	н	х	Read transfer
н	н	L	х	Read/mask write
н	н	н	х	Read/write

Note: X : Don't care.

CAS (input pin): Column address is fetched into chip at the falling edge of CAS. CAS controls output impedance of I/O in RAM.

A0-A8 (input pins): Row address is determined by A0-A8 level at the falling edge of \overline{RAS} . Column address is determined by A0-A8 level at the falling edge of \overline{CAS} . In transfer cycles, row address is the address on the word line which transfers data with SAM data register, and column address is the SAM start address after transfer.

 \overline{WE} (input pin): \overline{WE} pin has two functions at the falling edge of \overline{RAS} and after. When \overline{WE} is low at the falling edge of \overline{RAS} , the HM534251B turns to mask write mode. According to the I/O level at the time, write on each I/O can be masked. (\overline{WE} level at the falling edge of \overline{RAS} is don't care in read cycle.) When \overline{WE} is high at the falling edge of \overline{RAS} , a normal write cycle is executed. After that, \overline{WE} switches read/write cycles as in a standard DRAM. In a transfer cycle, the direction of transfer is determined by \overline{WE} level at the falling edge of \overline{RAS} . When \overline{WE} is low, data is transferred from SAM to RAM (data is written into RAM), and when \overline{WE} is high, data is transferred from RAM to SAM (data is read from RAM).

I/O0 – I/O3 (input/output pins): I/O pins function as mask data at the falling edge of RAS (in mask write mode). Data is written only to high I/O pins. Data on low I/O pins are masked and internal data are retained. After that, they function as input/output pins as those of a standard DRAM. **DT/OE (input pin):** DT/OE pin functions as DT (data transfer) pin at the falling edge of RAS and as \overline{OE} (output enable) pin after that. When DT is low at the falling edge of RAS, this cycle becomes a transfer cycle. When DT is high at the falling edge of RAS, RAM and SAM operate independently.

SC (input pin): SC is a basic SAM clock. In a serial read cycle, data outputs from an SI/O pin synchronously with the rising edge of SC. In a serial write cycle, data on an SI/O pin at the rising edge of SC is fetched into the SAM data register.

SE (input pin): SE pin activates SAM. When SE is high, SI/O is in the high impedance state in serial read cycle and data on SI/O is not fetched into the SAM data register in serial write cycle. SE can be used as a mask for serial write because internal pointer is incremented at the rising edge of SC.

SI/O0-SI/O3 (input/output pins): SI/Os are input/output pins in SAM. Direction of input/output is determined by the previous transfer cycle. When it was a read transfer cycle, SI/O outputs data. When it was a pseudo transfer cycle or write transfer cycle, SI/O inputs data.

Operation of HM534251B

RAM Read Cycle ($\overline{DT}/\overline{OE}$ high and \overline{CAS} high at the falling edge of \overline{RAS})

Row address is entered at the RAS falling edge and column address at the CAS falling edge to the device as in standard DRAM. Then, when \overline{WE} is high and $\overline{DT}/\overline{OE}$ is low while CAS is low, the selected address data outputs through I/O pin. At the falling edge of RAS, $\overline{DT}/\overline{OE}$ and CAS become high to distinguish RAM read cycle from transfer cycle and CBR refresh cycle. Address access time (t_{AA}) and RAS to column address delay time (t_{RAD}) specifications are added to enable highspeed page mode.

RAM Write Cycle (Early Write, Delayed Write, Read-Modify-Write)

 $(\overline{\text{DT}}/\overline{\text{OE}} \text{ high and } \overline{\text{CAS}} \text{ high at the falling edge of } \overline{\text{RAS}})$

• Normal Mode Write Cycle (\overline{WE} high at the falling edge of \overline{RAS})

When \overrightarrow{CAS} and \overrightarrow{WE} are set low after driving \overrightarrow{RAS} low, a write cycle is executed and I/O data is written in the selected addresses. When all 4 I/Os are written, \overrightarrow{WE} should be high at the falling edge of \overrightarrow{RAS} to distinguish normal mode from mask write mode.

If \overline{WE} is set low before the \overline{CAS} falling edge, this cycle becomes an early write cycle and I/O becomes in high impedance. Data is entered at the \overline{CAS} falling edge.

If \overline{WE} is set low after the \overline{CAS} falling edge, this cycle becomes a delalyed write cycle. Data is input at the \overline{WE} falling. I/O does not become high impedance in this cycle, so data should be entered with \overline{OE} in high.

If $\overline{\text{WE}}$ is set low after t_{CWD} (min) and t_{AWD} (min) after the $\overline{\text{CAS}}$ falling edge, this cycle becomes a read-modify-write cycle and enables read/write at the same address in one cycle. In this cycle also, to avoid I/O contention, data should be input after reading data and driving $\overline{\text{OE}}$ high.

• Mask Write Mode (WE low at the falling edge of RAS)

If \overline{WE} is set low at the falling edge of RAS, the cycle becomes a mask write mode cycle which writes only to selected I/O. Whether or not an I/O is written depends on I/O level (mask data) at the falling edge of \overline{RAS} . Then the data is written in high I/O pins and masked in low ones and internal data is retained. This mask data is effective during the \overline{RAS} cycle. So, in high-speed page mode cycle, the mask data is retained during the page access.

High-Speed Page Mode Cycle ($\overline{DT}/\overline{OE}$ high and \overline{CAS} high at the falling edge of \overline{RAS})

High-speed page mode cycle reads/writes the data of the same row address at high speed by toggling \overline{CAS} while \overline{RAS} is low. Its cycle time is one third of the random read/write cycle. Note that address access time (t_{AA}), \overline{RAS} to column address delay time (t_{RAD}), and access time from \overline{CAS} precharge (t_{ACP}) are added. In one \overline{RAS} cycle, 512-word memory cells of the same row address can be accessed. It is necessary to specify access frequency within t_{RASP} max (100 µs).

Transfer Operation

The HM534251B provides the read transfer cycle, pseudo transfer cycle and write transfer cycle as data transfer cycles. These transfer cycles are set by driving \overline{CAS} high and $\overline{DT}/\overline{OE}$ low at the falling edge of \overline{RAS} . They have following functions:

- Transfer data between row address and SAM data register (except for pseudo transfer cycle) Read transfer cycle: RAM to SAM Write transfer cycle: SAM to RAM
- (2) Determine SI/O state Read transfer cycle: SI/O output Pseudo transfer cycle and write transfer cycle: SI/O input
- (3) Determine first SAM address to access after transferring at column address (SAM start address).

SAM start address must be determined by read transfer cycle or pseudo transfer cycle after power on, and determined for each transfer cycle.

Read Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low and \overline{WE} high at the falling edge of \overline{RAS})

This cycle becomes read transfer cycle by driving $\overline{\text{DT}/\text{OE}}$ low and $\overline{\text{WE}}$ high at the falling edge of $\overline{\text{RAS}}$. The row address data (512 x 4-bit) determined by this cycle is transferred to SAM data register synchronously at the rising edge of $\overline{\text{DT}/\text{OE}}$. After the rising edge of $\overline{\text{DT}/\text{OE}}$, the new address data outputs from SAM start address determined by column address. In read transfer cycle, $\overline{\text{DT}/\text{OE}}$ must be risen to transfer data from RAM to SAM.

This cycle can access SAM even during transfer (real time read transfer). In this case, the timing t_{SDD} (min) specified between the last SAM access before transfer and $\overline{DT/OE}$ rising edge and t_{SDH} (min) specified between the first SAM access and $\overline{DT/OE}$ rising edge must be satisfied. (See figure 1.).

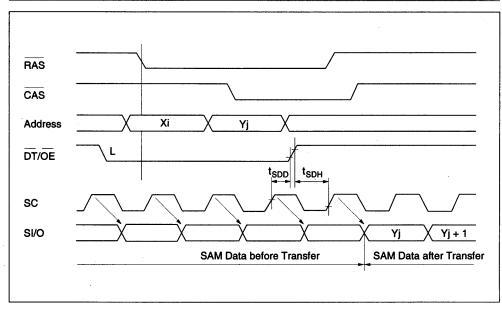


Figure 1. Real Time Read Transfer

When read transfer cycle is executed, SI/O becomes output state by first SAM access. Input must be set high impedance before t_{SZS} (min) of the first SAM access to avoid data contention.

Pseudo Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, WE low and \overline{SE} high at the falling edge of \overline{RAS})

Pseudo transfer cycle switches SI/O to input state and set SAM start address without data transfer to RAM.

This cycle starts when CAS is high, $\overline{DT/OE}$ low, WE low and \overline{SE} high at the falling edge of RAS. Data should be input to SI/O later than t_{SID} (min) after RAS becomes low to avoid data contention. SAM access becomes enabled after t_{SRD} (min) after RAS becomes high. In this cycle, SAM access is inhibited during RAS low, therefore, SC must not be risen.

Write Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, WE low and \overline{SE} low at the falling edge of \overline{RAS})

Write transfer cycle can transfer a row of data input by serial write cycle to RAM. The row address of data transferred into RAM is determined by the address at the falling edge of \overline{RAS} . The column address is specified as the first address for serial write after terminating this cycle. Also in this cycle, SAM access becomes enabled after t_{SRD} (min) after \overline{RAS} becomes high. SAM access is inhibited during \overline{RAS} low. In this period, SC must not be risen.

Data transferred to SAM by read transfer cycle can be written to other address of RAM by write transfer cycle. However, the address to write data must be the same MSB of row address (AX8) as that of the read transfer cycle.

SAM Port Operation

Serial Read Cycle

SAM port is in read mode when the previous data transfer cycle is read transfer cycle. Access is synchronized with SC rising, and SAM data is output from SI/O. When SE is set high, SI/O becomes high impedance, and the internal pointer is incremented by the SC rising. After indicating the last address (address 511), the internal pointer indicates address 0 at the next access.

Serial Write Cycle

If previous data transfer cycle is pseudo transfer cycle or write transfer cycle, SAM port goes into write mode. In this cycle, SI/O data is fetched into data register at the SC rising edge like in the serial read cycle. If \overline{SE} is high, SI/O data isn't fetched into data register. Internal pointer is incremented by the SC rising, so \overline{SE} high can be used as mask data for SAM. After indicating the last address (address 511), the internal pointer indicates address 0 at the next access.

Refresh

RAM Refresh

RAM, which is composed of dynamic circuits, requires refresh to retain data. Refresh is executed by accessing all 512 row addresses within 8 ms. There are three refresh cycles: (1) RAS-only refresh cycle, (2) CAS-before-RAS (CBR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which activate RAS such as read/write cycles or transfer cycles can refresh the row address. Therefore, no refresh cycle is required when all row addresses are accessed within 8 ms.

- (1) RAS-Only Refresh Cycle: RAS-only refresh cycle is executed by activating only RAS cycle with CAS fixed to high after inputting the row address (= refresh address) from external circuits. To distinguish this cycle from data transfer cycle, DT/OE must be high at the falling edge of RAS.
- (2) CBR Refresh Cycle: CBR refresh cycle is set by activating CAS before RAS. In this cycle, refresh address need not to be input through external circuits because it is input through an internal refresh counter. In this cycle, output is in high impedance and power dissipation is lowered because CAS circuits don't operate.
- (3) Hidden Refresh Cycle: Hidden refresh cycle executes CBR refresh with the data output by reactivating RAS when DT/OE and CAS keep low in normal RAM read cycles.

SAM Refresh

SAM parts (data register, shift register and selector), organized as fully static circuitry, require no refresh.

Item	Symbol	Rating	Unit
Terminal voltage ^{*1}	VT	-1.0 to +7.0	v
Power supply voltage ^{*1}	V _{CC}	-0.5 to +7.0	V
Short circuit output current	lout	50	mA
Power dissipation	PT	1.0	w
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C

Absolute Maximum Ratings

Note: 1. Relative to V_{SS}.

ltem	Symbol	Min	Тур	Max	Unit	
Supply voltage*1	V _{CC}	4.5	5.0	5.5	v	
Input high voltage*1	V _{IH}	2.4	_	6.5	v	1
Input low voltage*1	VIL	-0.5 ^{*2}		0.8	v	

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C)

Notes: 1. All voltages referenced to V_SS. 2. -3.0 V for pulse width ≤ 10 ns.

DC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V$)

		HM5	34251	В								
		-6		-7		-8		-10			Test condit	ions
Item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	RAM port	SAM port
Operating current	I _{CC1}	_	75	_	70	_	60		55	mA	RAS, CAS	$SC = V_{IL}, \overline{SE} = V_{IH}$
current	I _{CC7}		125	_	120	_	100	_	95	mA	t _{RC} = min	$\overline{SE} = V_{IL}, SC cycling t_{SCC} = min$
Standby	I _{CC2}		7		7		7		7	mA	RAS, CAS	$SC = V_{IL}, \overline{SE} = V_{IH}$
current	I _{CC8}	—	50	· · · ·	50		40	_	40	mA	= V _{IH}	$\overline{SE} = V_{IL}$, SC cycling t _{SCC} = min
RAS-only refresh	I _{CC3}		75		70	-	60		55	mA	\overline{RAS} cycling CAS = V _{IH}	$SC = V_{IL}, \overline{SE} = V_{IH}$
current	I _{CC9}		125		120		100		95	mA	t _{RC} = min	$\overline{SE} = V_{IL}$, SC cycling t _{SCC} = min
Page mode current	I _{CC4}		80	_	80	—	70	_	65	mA	\overline{CAS} cycling RAS = V _{II}	$SC = V_{IL}, \overline{SE} = V_{IH}$
Current	ICC10	_	130	<u> </u>	130	_	110	_	105	mA	$t_{PC} = min$	$\overline{SE} = V_{IL}$, SC cycling t _{SCC} = min
CAS-before- RAS refresh	I _{CC5}	—	50	_	45	—	40	_	35	mA		$SC = V_{IL}, \overline{SE} = V_{IH}$
current	ICC11	_	100		95	_	80		75	mA	t _{RC} = min	$\overline{SE} = V_{IL}$, SC cycling t _{SCC} = min
Data	I _{CC6}	_	80	-	75	-	65	_	60	mA	RAS, CAS	$SC = V_{IL}, \overline{SE} = V_{IH}$
transfer current	I _{CC12}		130	_	125	-	105	_	100	mA	cycling t _{RC} = min	$\overline{\overline{SE}} = V_{IL}, SC cycling t_{SCC} = min$

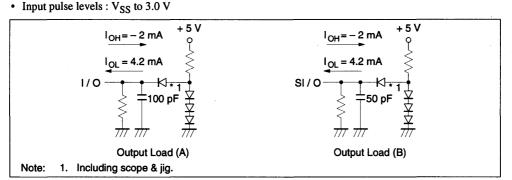
DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%, V_{SS} = 0 V) (cont)

		HM534251B											
Item		-6		-7		-8		-10			Test conditions		
	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	RAM port	SAM port	
Input leakage current	L	-10	10	-10	10	-10	10	-10	10	μA			
Output leakag current	el _{LO}	-10	10	-10	10	-10	10	-10	10	μA			
Output high voltage	V _{OH}	2.4	_	2.4	_	2.4		2.4	-	۷	l _{OH} = -2 m	A	
Output low voltage	V _{OL}	_	0.4	_	0.4	-	0.4	_	0.4	v	l _{OL} = 4.2 m	A	

Note: 1. I_{CC} depends on output loading condition when the device is selected. I_{CC} max is specified at the output open condition.

2. Address can be changed once while \overline{RAS} is low and \overline{CAS} is high.

Capacitance (Ta = 25°C, V_{CC} = 5 V, f = 1 MHz, Bias: Clock, I/O = V_{CC} , address = V_{SS})


ltem	Symbol	Min	Тур	Max	Unit	
Address	C _{l1}	_		5	pF	
Clock	C _{I2}	. —		5	рF	-
I/O, SI/O	C _{I/O}			7	pF	

AC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V$) *1, *16

Test Conditions

- Input rise and fall time: 5 ns
- Output load: See figures

- Input timing reference levels: 0.8 V, 2.4 V
 Output timing reference levels: 0.8 V, 2.0 V
- Unput rolad. See figures

Common Parameter

		HM5	342511	3							
		-6		-7		-8		-10			
Item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	^t RC	125		135	_	150	·	180	_	ns	
RAS precharge time	t _{RP}	55		55	_	60	_	70	_	ns	
RAS pulse width	t _{RAS}	60	10000	70	10000	80	10000	100	10000	ns	
CAS pulse width	^t CAS	20	_	20		20	_	25	_	ns	
Row address setup time	tASR	0	-	0	—	0		0		ns	
Row address hold time	t _{RAH}	10	_	10	_	10		10	_	ns	· · · · · · · · · · · · · · · · · · ·
Column address setup time	tASC	0		0		0	—	0	_	ns	
Column address hold time	^t CAH	15		15		15	_	15	_	ns	
RAS to CAS delay time	t _{RCD}	20	40	20	50	20	60	20	75	ns	2
RAS hold time referenced to CAS	t _{RSH}	20	_	20	_	20		25		ns	
CAS hold time referenced to RAS	t _{CSH}	60	_	70		80	— .	100	_	ns	
CAS to RAS precharge time	^t CRP	10	_	10		10	_	10	_	ns	
Transition time (rise to fall)	t _T	3	50 ·	3	50	3	50	3	50	ns	3
Refresh period	tREF	_	8		8		8	_	8	ms	
DT to RAS setup time	t _{DTS}	0		0	_	0	·	0	_	ns	
DT to RAS hold time	^t DTH	10		10	—	10	_	10		ns	
Data-in to CAS delay time	t _{DZC}	0		0	—	0	-	0		ns	4
Data-in to OE delay time	t _{DZO}	0	-	0		0	_	0	_	ns	4
Output buffer turn-off delay referenced to CAS	^t OFF1	-	20	 .	20		20	-	20	ns	5
Output buffer turn-off delay referenced to OE	^t OFF2	<u> </u>	20	_	20	-	20		20	ns	5

Read Cycle (RAM), Page Mode Read Cycle

•		HM	5342511								
	Symbol	-6		-7		-8		-10			
item		Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Access time from RAS	t _{RAC}	_	60		70	<u> </u>	80	_	100	ns	6, 7
Access time from CAS	^t CAC	_	20		20	_	20	_	25	ns	7, 8
Access time from OE	^t OAC	—	20		20		20	_	25	ns	7
Address access time	t _{AA}	_	35		35	_	40	_	45	ns	7, 9
Read command setup time	t _{RCS}	0		0	_	0	_	0		ns	
Read command hold time	t _{RCH}	0	—	0	_	0	_	0		ns	10
Read command hold time referenced to RAS	t _{RRH}	10	_	10	_	10		10	_	ns	10
RAS to column address delay time	tRAD	15	25	15	35	15	40	15	55	ns	2
Column address to RAS lead time	t _{RAL}	35		35	_	40	_	45		ns	
Column address to CAS lead time	t _{CAL}	35	-	35		40		45	_	ns	
Page mode cycle time	t _{PC}	45	_	45	_	50		55	_	ns	
CAS precharge time	^t CP	10	_	10	_	10	·	10	<u> </u>	ns	
Access time from CAS precharge	tACP	-	40	_	40	_	45	_	50	ns	
Page mode RAS pulse width	tRASP	60	100000	70	10000	080	100000	0 100	100000	ns	

Write Cycle (RAM), Page Mode Write Cycle

	HM	5342511								
	-6		-7		-8		-10			
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
twcs	0	_	0	—	0	_	0	_	ns	11
twch	15	_	15	_	15	_	15	_	ns	
twp	15		15	—	.15		15		ns	
t _{RWL}	20		20		20		20		ns	
^t CWL	20		20		20		20	_	ns	
t _{DS}	0		0		0	_	0	_	ns	12
t _{DH}	15	_	15	_	15	_	15		ns	12
tws	0		0		0		0	_	ns	
t _{WH}	10	_	10		10		10	_	ns	
t _{MS}	0	_	0		0	_	0		ns	
^t мн	10	<u> </u>	10		10	_	10	_	ns	
t _{OEH}	20	_	20	_	20	_	20		ns	
t _{PC}	45		45		50	_	55	_	ns	
t _{CP}	10		10	_	10		10	_	ns	· · ·
tCDD	20	-	20	_	20	_	20		ns	13
tRASP	60	100000	70	100000	80	100000	100	100000	ns	
	twcs twcH twP tRWL tcWL tos tDH twS twH twS twH tMS twH tMS twH toEH toEH toP	-6 Symbol Min twCS 0 twCH 15 twP 15 tRWL 20 tCWL 20 tDS 0 tDH 15 tWP 15 tWP 20 tDS 0 tDH 15 tWS 0 tWH 10 tMH 10 tOEH 20 tOEH 20 tOEH 10 tOEH 20 tOEH 20 tOEH 20 tOEH 20 tOEH 20 tCP 10 tCDD 20	-6 Symbol Min Max twcs 0 twcH 15 twP 15 twP 20 tcWL 20 tcWL 20 tDS 0 tDH 15 tWS 0 tWH 10 tMH 10 tOEH 20 tQEH 10 tOEH 20 tOEH 20 tOEH 20 tOEH 20 tCP 10 tCP 20 tCDD 20	Symbol Min Max Min twcs 0 0 twcH 15 15 twP 15 15 twP 20 20 tcwL 20 20 tcWL 20 20 tcWL 20 20 tDS 0 0 tDH 15 15 tWS 0 0 tWH 10 10 tMAH 10 10 tOEH 20 20 tPC 45 45 tCP 10 10 tCDD 20 20	-6 -7 Symbol Min <max< th=""> Max t_{WCS} 0 0 t_{WCH} 15 15 t_{WP} 15 15 t_{WP} 15 20 t_{RWL} 20 20 t_{CWL} 20 20 t_{DS} 0 20 t_{DH} 15 0 t_{DH} 15 15 t_{WS} 0 0 t_{WH} 10 10 t_{MH} 10 10 t_{OEH} 20 20 t_{CP} 10 10 t_{CDD} 20 20 t_{CDD} 20 20 t_{CDD} 20</max<>	-6 -7 -8 Min <max< th=""> Min<max< th=""> Min<max< th=""> Min<max< th=""> Min twcs 0 - 0 - 0 twcH 15 - 15 - 15 twP 15 - 15 - 15 twP 20 - 20 - 20 tcwL 20 - 20 - 20 tcwL 20 - 20 - 20 tcwL 20 - 0 - 0 tbS 0 - 0 - 0 tbH 15 - 15 - 15 tws 0 - 0 - 0 15 tws 0 - 0 - 0 0 tws 0 - 0 - 0 10 tws 0 - 0 - 0<!--</td--><td>-6 -7 -8 Symbol Min Max Min Max Min Max twcs 0 - 0 - 0 - twcH 15 - 15 - 15 - twcH 15 - 15 - 15 - twp 15 - 15 - 15 - twp 20 - 20 - 20 - tcwL 20 - 20 - 20 - tps 0 - 0 - 0 - tps 0 - 0 - 0 - tps 0 - 0 - 0 - tws 0 - 0 - 0 - tws 0 - 10 - 10 - tbps 0 - 10 - 10 - tws 0 - 20 - 20 - 10<!--</td--><td>-6 -7 -8 -10 Symbol Min<max< th=""> Min<max< th=""> Min<max< th=""> Min<max< th=""> Min<max< th=""> twcs 0 - 0 - 0 - 0 twcH 15 - 15 - 15 - 15 twp 15 - 15 - 15 - 15 twp 15 - 20 - 20 - 20 tcwL 20 - 20 - 20 - 20 tcwL 15 - 15 - 15 - 15 tcwL 10 - 10 - 10 - 10 tcwL 0 - 0 - 0 - 0</max<></max<></max<></max<></max<></td><td>-6 -7 -8 -10 twcs 0 -0 -0 -15 -15 twch 15 - 15 - 15 - twch 15 - 15 - 15 - twch 15 - 15 - 15 - twp 15 - 15 - 15 - twp 15 - 20 - 20 - 20 - twp 15 - 20 - 20 - 20 - tps 0 - 20 - 20 - 20 - tps 0 - 20 - 20 - 20 - tps 0 - 0 - 0 - 0 - tps 0 - 0 - 0 - 0 -</td><td>-6 -7 -8 -10 twcs 0 -0 0 -0 min Max Unit twcs 0 - 0 - 0 - ns twcH 15 - 15 - 15 - ns twcH 15 - 15 - 15 - ns twp 15 - 20 - 20 - 20 - ns twp 15 - 15 - 15 - ns twp 15 - 20 - 20 - 20 - ns twp 15 - 15 - ns ns twp 15 - 15 - ns ns twp 15 - 15 - ns ns twp 0 - 0 - 0 - ns twp 10 - 10 - 10 - ns</td></td></max<></max<></max<></max<>	-6 -7 -8 Symbol Min Max Min Max Min Max twcs 0 - 0 - 0 - twcH 15 - 15 - 15 - twcH 15 - 15 - 15 - twp 15 - 15 - 15 - twp 20 - 20 - 20 - tcwL 20 - 20 - 20 - tps 0 - 0 - 0 - tps 0 - 0 - 0 - tps 0 - 0 - 0 - tws 0 - 0 - 0 - tws 0 - 10 - 10 - tbps 0 - 10 - 10 - tws 0 - 20 - 20 - 10 </td <td>-6 -7 -8 -10 Symbol Min<max< th=""> Min<max< th=""> Min<max< th=""> Min<max< th=""> Min<max< th=""> twcs 0 - 0 - 0 - 0 twcH 15 - 15 - 15 - 15 twp 15 - 15 - 15 - 15 twp 15 - 20 - 20 - 20 tcwL 20 - 20 - 20 - 20 tcwL 15 - 15 - 15 - 15 tcwL 10 - 10 - 10 - 10 tcwL 0 - 0 - 0 - 0</max<></max<></max<></max<></max<></td> <td>-6 -7 -8 -10 twcs 0 -0 -0 -15 -15 twch 15 - 15 - 15 - twch 15 - 15 - 15 - twch 15 - 15 - 15 - twp 15 - 15 - 15 - twp 15 - 20 - 20 - 20 - twp 15 - 20 - 20 - 20 - tps 0 - 20 - 20 - 20 - tps 0 - 20 - 20 - 20 - tps 0 - 0 - 0 - 0 - tps 0 - 0 - 0 - 0 -</td> <td>-6 -7 -8 -10 twcs 0 -0 0 -0 min Max Unit twcs 0 - 0 - 0 - ns twcH 15 - 15 - 15 - ns twcH 15 - 15 - 15 - ns twp 15 - 20 - 20 - 20 - ns twp 15 - 15 - 15 - ns twp 15 - 20 - 20 - 20 - ns twp 15 - 15 - ns ns twp 15 - 15 - ns ns twp 15 - 15 - ns ns twp 0 - 0 - 0 - ns twp 10 - 10 - 10 - ns</td>	-6 -7 -8 -10 Symbol Min <max< th=""> Min<max< th=""> Min<max< th=""> Min<max< th=""> Min<max< th=""> twcs 0 - 0 - 0 - 0 twcH 15 - 15 - 15 - 15 twp 15 - 15 - 15 - 15 twp 15 - 20 - 20 - 20 tcwL 20 - 20 - 20 - 20 tcwL 15 - 15 - 15 - 15 tcwL 10 - 10 - 10 - 10 tcwL 0 - 0 - 0 - 0</max<></max<></max<></max<></max<>	-6 -7 -8 -10 twcs 0 -0 -0 -15 -15 twch 15 - 15 - 15 - twch 15 - 15 - 15 - twch 15 - 15 - 15 - twp 15 - 15 - 15 - twp 15 - 20 - 20 - 20 - twp 15 - 20 - 20 - 20 - tps 0 - 20 - 20 - 20 - tps 0 - 20 - 20 - 20 - tps 0 - 0 - 0 - 0 - tps 0 - 0 - 0 - 0 -	-6 -7 -8 -10 twcs 0 -0 0 -0 min Max Unit twcs 0 - 0 - 0 - ns twcH 15 - 15 - 15 - ns twcH 15 - 15 - 15 - ns twp 15 - 20 - 20 - 20 - ns twp 15 - 15 - 15 - ns twp 15 - 20 - 20 - 20 - ns twp 15 - 15 - ns ns twp 15 - 15 - ns ns twp 15 - 15 - ns ns twp 0 - 0 - 0 - ns twp 10 - 10 - 10 - ns

HM534251B

Read-Modify-Write Cycle

		HM534251B									
		-6		-7		-8		-10			
Item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read-modify-write cycle time	^t RWC	175	.	185		200	_	230	_	ns	
RAS pulse width (read-modify-write cycle)	tRWS	110	10000	120	10000	130	10000	150	10000	ns	
CAS to WE delay time	tCWD	45	_	45		45	<u> </u>	50	_	ns	14
Column address to WE delay time	tAWD	60	_	60	_	65	_	70	_	ns	14
OE to data-in delay time	tODD	20		20		20		20	_	ns	12
Access time from RAS	^t RAC	_	60		70		80		100	ns	6, 7
Access time form CAS	^t CAC	_	20		20	—	20		25	ns	7, 8
Access time from OE	tOAC	_	20		20	_	20		25	ns	7
Address access time	t _{AA}		35	_	35		40	_	45	ns	7, 9
RAS to column address delay time	tRAD	15	25	15	35	15	40	15	55	ns	-
Read command setup time	t _{RCS}	0	_	0		0	_	0	_	ns	
Write command to RAS lead time	t _{RWL}	20		20	_	20	_	20	_	ns	
Write command to CAS lead time	^t CWL	20	_	20		20	_	20	_	ns	
Write command pulse width	t _{WP}	15	_	15	—	15	_	15		ns	
Data-in setup time	t _{DS}	0	—	0	_	0		0		ns	12
Data-in hold time	t _{DH}	15	<u> </u>	15		15	_	15	_	ns	12
OE hold time referenced to WE	t _{OEH}	20	_	20	_	20		20		ns	

Refresh Cycle

		HM534251				
		-6	-7	-8	-10	
Item	Symbol	Min Max	Min Max	Min Max	Min Max	Unit Notes
CAS setup time (CAS-before-RAS refresh)	^t CSR	10 —	10 —	10 —	10 —	ns
CAS hold time (CAS-before-RAS refresh)	^t CHR	10 —	10 —	10 —	10 —	ns
RAS precharge to CAS hold time	tRPC	10 —	10 —	10 —	10 —	ns

Read Transfer Cycle

		HM	HM534251B								
		-6		-7		-8		-10			
Item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
DT hold time referenced to RAS	t _{RDH}	50	10000	60	10000	65	10000	80	10000	ns	
$\overline{\text{DT}}$ hold time referenced to $\overline{\text{CAS}}$	^t CDH	20		20	_	20	_	25	_	ns	
DT hold time referenced to column address	^t ADH	25		25	_	30	_	30	_	ns	
DT precharge time	tDTP	20	_	20		20		30	_	ns	
DT to RAS delay time	t _{DRD}	65	-	65		70		80		ns	
SC to RAS setup time	tSRS	25	_	25	_	30		30	_	ns	
1st SC to RAS hold time	tSRH	60		70		80		100		ns	
1st SC to \overline{CAS} hold time	t _{SCH}	25	_	25		25		25	_	ns	
1st SC to column address hold time	t _{SAH}	40		40	-	45		50		ns	
Last SC to DT delay time	t _{SDD}	5		5	_	5		5	_	ns	
1st SC to $\overline{\text{DT}}$ hold time	t _{SDH}	10		10		15		15	_	ns	
Serial data-in to 1st SC delay time	tszs	0		0		0		0		ns	
Serial clock cycle time	tscc	25		25		30		30		ns	
SC pulse width	tsc	5		5		10		10	_	ns	
SC precharge time	tSCP	10		10	_	10		10		ns	

Read Transfer Cycle (cont)

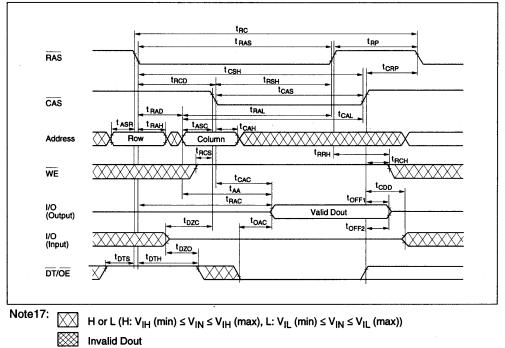
		НМ	534251								
		-6		-7		-8		-10			
Item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
SC access time	t _{SCA}	_	20	_	22		25		25	ns	15
Serial data-out hold time	t _{SOH}	5	_	5	_	5	—	5		ns	
Serial data-in setup time	tsis	0		0		0		0	_	ns	
Serial data-in hold time	t _{SIH}	15	_	15	_	15	_	15	_	ns	
RAS to column address delay time	t _{RAD}	15	25	15	35	15	40	15	55	ns	
Column address to RAS lead time	t _{RAL}	35	_	35	_	40	_	45	_	ns	
DT high hold time from RAS precharge	^t DTHH	10		10	_	10	_ , .	10		ns	

Pseudo Transfer Cycle, Write Transfer Cycle

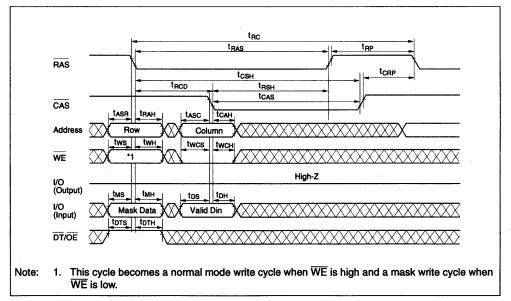
		НМ	53425 1								
		-6		-7		-8		-10			
Item	Symbol	Min	Max	Mir	Max	Mir	Max	Min	Max	Unit	Notes
SE setup time referenced to RAS	t _{ES}	0		0		0	_	0		ns	
SE hold time referenced to RAS	^t EH	10	_	10	_	10		10		ns	
SC setup time referenced to RAS	tSRS	25		25	-	30	_	30	_	ns	
RAS to SC delay time	tSRD	20	_	20	_	25	_	25	_	ns	
Serial output buffer turn-off time referenced to RAS	tSRZ	10	40	10	40	10	45	10	50	ns	
RAS to serial data-in delay time	tSID	40	_	40	_	45	_	50		ns	
Serial clock cycle time	tscc	25	—	25	_	30	—	30	—	ns	
SC pulse width	tsc	5	_	5	—	10	_	10		ns	
SC precharge time	tSCP	10		10		10	_	10	_	ns	
SC access time	^t SCA	_	20	_	22	_	25		25	ns	15

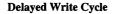
Pseudo Transfer Cycle, Write Transfer Cycle (cont)

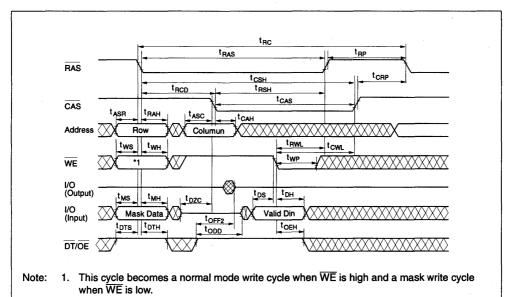
		HM534251B									
	Symbol	-6		-7		-8		-10			
Item		Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
SE access time	t _{SEA}	_	20	_	22	_	25	_	25	ns	15
Serial data-out hold time	t _{SOH}	5	_	5	_	5	<u> </u>	5		ns	
Serial write enable setup time	tsws	5		5		5	_	5	_	ns	
Serial data-in setup time	tsis	0	·	0	-	0		0	_	ns	
Serial data-in hold time	t _{SIH}	15	—	15	—	15	_	15		ns	

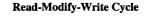

Serial Read Cycle, Serial Write Cycle

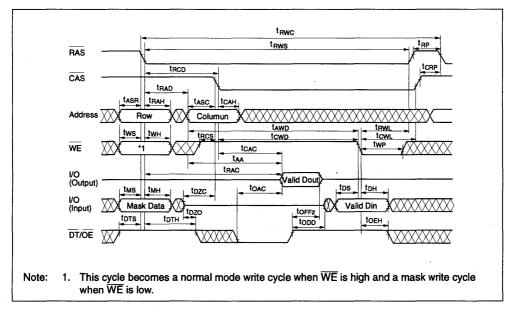
	HM534251B										
		-6		-7		-8		-10			
Item	Symbol	Mir	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Serial clock cycle time	tscc	25	_	25		30		30	_	ns	
SC pulse width	tsc	5		5		10	_	10	—	ns	
SC precharge width	tSCP	10	<u> </u>	10		10		10	_	ns	
Access time from SC	^t SCA		20		22	<u> </u>	25	_	25	ns	15
Access time from \overline{SE}	^t SEA		20	_	22	_	25	_	25	ns	15
Serial data-out hold time	t _{SOH}	5		5	_	5	_	5		ns	an an an tha that at the
Serial output buffer turn-off time referenced to \overline{SE}	^t SEZ		20	_	20		20	_	20	ns	5
Serial data-in setup time	tsis	0		0	-	0	_	0		ns	
Serial data-in hold time	t _{SIH}	15	-	15	_	15	—	15		ns	
Serial write enable setup time	tsws	5	_	5	· ·	5		5	_	ns	,
Serial write enable hold time	t _{SWH}	15	-	15		15		15	_	ns	
Serial write disable setup time	tswis	5	_	5	—	5	-	5		ns	
Serial write disable hold time	tswiH	15	_	15	_	15		15		ns	

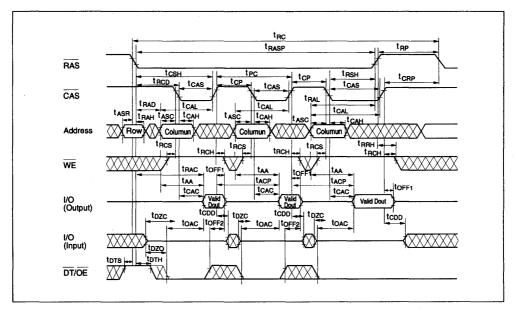

- Notes: 1. AC measurements assume $t_T = 5$ ns.
 - 2. When $t_{RCD} > t_{RCD}$ (max) or $t_{RAD} > t_{RAD}$ (max), access time is specified by t_{CAC} or t_{AA} .
 - V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Transition time t_T is measured between V_{IH} and V_{IL}.
 - Data input must be floating before output buffer is turned on. In read cycle, read-modify-write cycle and delayed write cycle, either t_{DZC} (min) or t_{DZO} (min) must be satisfied.
 - t_{OFF1} (max), t_{OFF2} (max) and t_{SEZ} (max) are defined as the time at which the output acheives the open circuit condition (V_{OH} -100 mV, V_{OL} +100 mV).
 - 6. Assume that $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
 - 7. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
 - When t_{RCD} ≥ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max), access time is specified by t_{CAC}.
 - 9. When $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \ge t_{RAD}$ (max), access time is specified by t_{AA} .
 - 10. If either t_{RCH} of t_{RRH} is satisfied, operation is guaranteed.
 - When t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle, and I/O pins remain in an open circuit (high impedance) condition.
 - 12. These parameters are specified by the later falling edge of CAS or WE.
 - 13. Either t_{CDD} (min) or t_{ODD} (min) must be satisfied because output buffer must be turned off by CAS or OE prior to applying data to the device when output buffer is on.
 - 14. When t_{AWD} ≥ t_{AWD} (min) and t_{CWD} ≥ t_{CWD} (min) in read-modify-write cycle, the data of the selected address outputs to an I/O pin and input data is written into the selected address. t_{ODD} (min) must be satisfied because output buffer must be turned off by OE prior to applying data to the device.
 - 15. Measured with a load circuit equivalent to 2 TTL loads and 50 pF.
 - After power-up, pause for 100 μs or more and execute at least 8 initialization cycle (normal memory cycle or refresh cycle), then start operation.

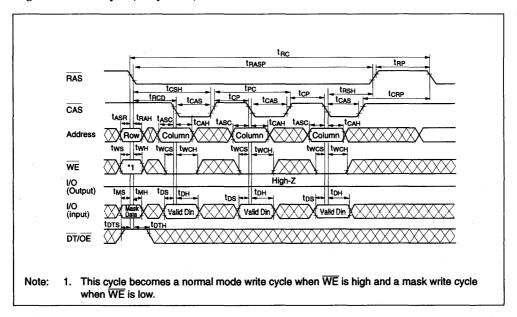

Timing Waveforms *17

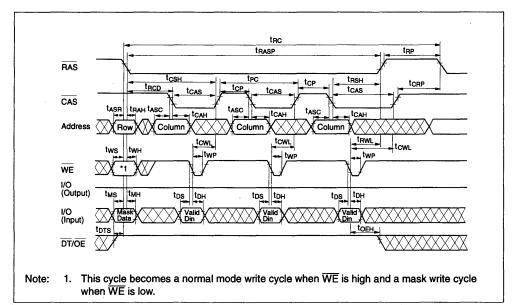


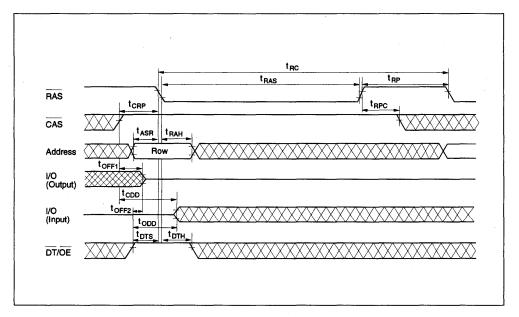


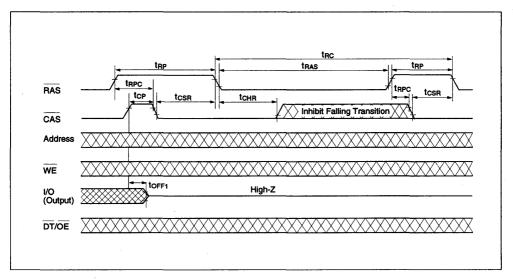


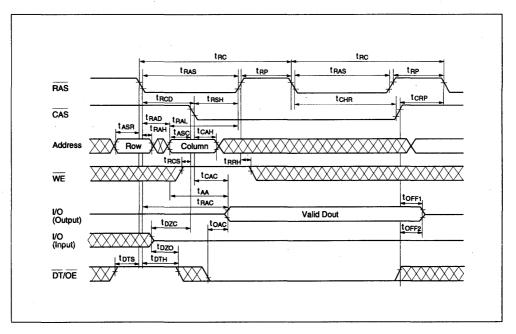


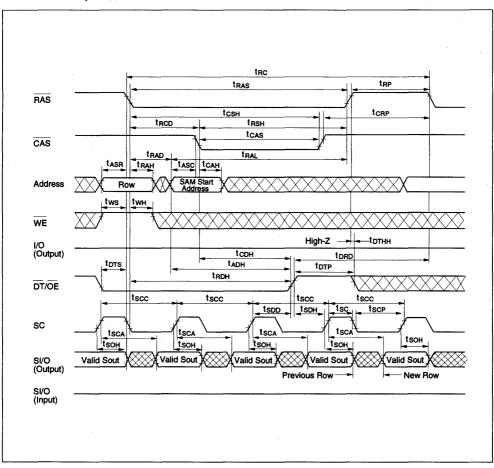


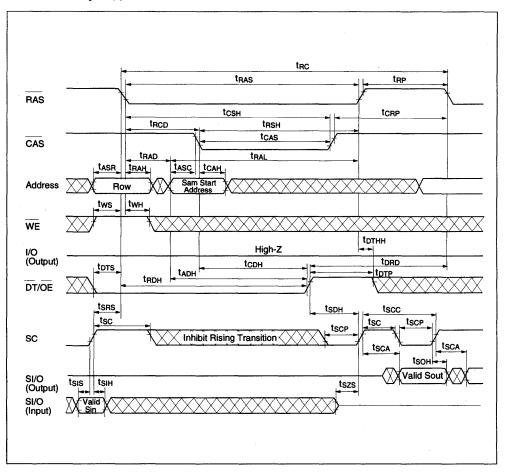

Page Mode Read Cycle


Page Mode Write Cycle (Early Write)


Page Mode Write Cycle (Delayed Write)

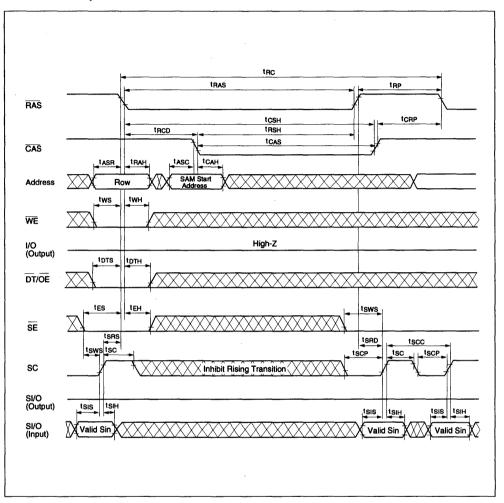

RAS-Only Refresh Cycle


CAS-Before-RAS Refresh Cycle

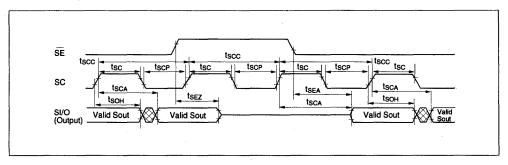

Hidden Refresh Cycle

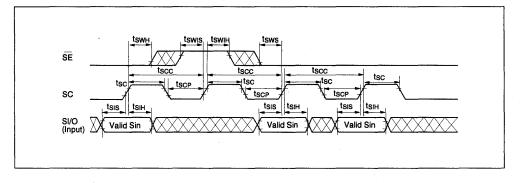
Read Transfer Cycle (1)

Read Transfer Cycle (2)

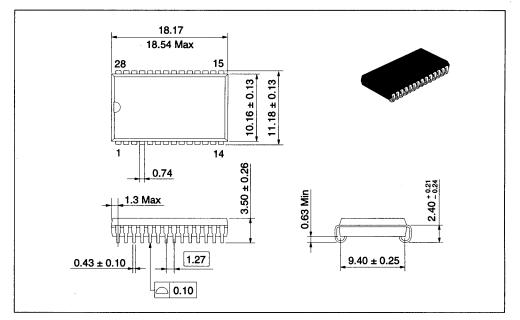


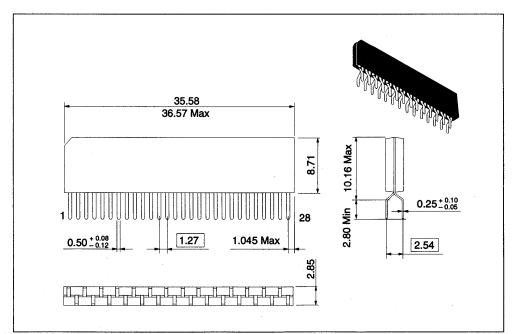
Pseudo Transfer Cycle


.


Write Transfer Cycle

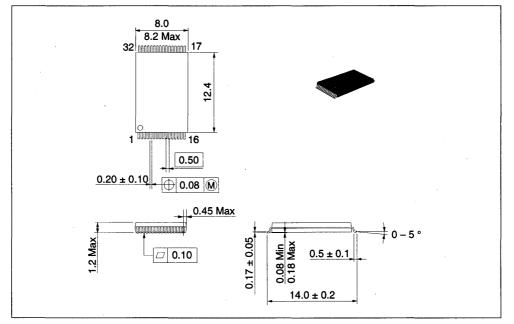
Serial Read Cycle

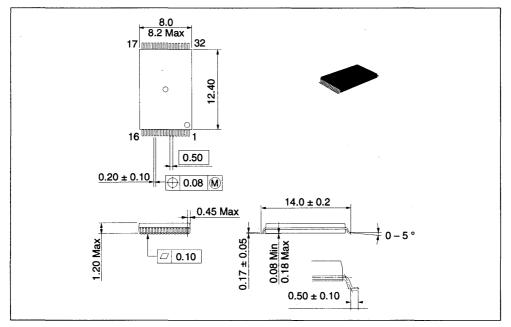

Serial Write Cycle


Package Dimensions

Unit: mm

HM534251BJ Series (CP-28D)


HM534251BZ Series (ZP-28)


Package Dimensions (cont)

Unit: mm

HM534251BT Series (TFP-32DA)

HM534251BR Series (TFP-32DAR)

262,144-Word x 4-Bit Multiport CMOS Video RAM

HITACHI

Rev. 1 Mar, 1 1994

The HM534253B is a 1-Mbit multiport video RAM equipped with a 256-kword x 4-bit dynamic RAM and a 512-word x 4-bit SAM (serial access Its RAM and SAM operate memory). independently and asynchronously. It can transfer data between RAM and SAM. In addition, it has two modes to realize fast writing in RAM. Block write and flash write modes clear the data of 4word x 4-bit and the data of one row (512-word x 4-bit) respectively in one cycle of RAM. And the HM534253B makes split transfer cycle possible by dividing SAM into two split buffers equipped with 256-word x 4-bit each. This cycle can transfer data to SAM which is not active, and enables a continuous serial access.

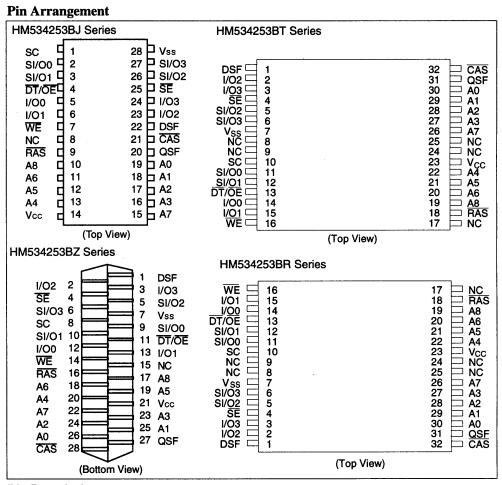
Features

• Multiport organization

Asynchronous and simultaneous operation of RAM and SAM capability RAM: 256 kword x 4 bit SAM: 512 word x 4 bit

- Access time
 - RAM: 60 ns/70 ns/80 ns/100 ns max SAM: 20 ns/22 ns/25 ns/25 ns max
- Cycle time RAM: 125 ns/135 ns/150 ns/180 ns min SAM: 25 ns/25 ns/30 ns/30 ns min
- Low power Active RAM: 413 mW max

1 icu ve	10101 , ± 15 m 10 max
	SAM: 275 mW max
Standby	38.5 mW max

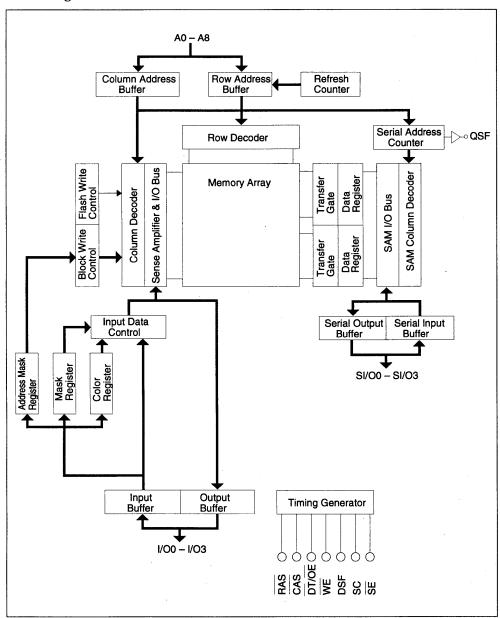

- · High-speed page mode capability
- Mask write mode capability
- Bidirectional data transfer cycle between RAM and SAM capability

- Split transfer cycle capability
- Block write mode capability
- Flash write mode capability
- 3 variations of refresh (8 ms/512 cycles)
- RAS-only refresh
- CAS-before-RAS refresh
- Hidden refresh
- TTL compatible

Ordering Information

Туре No.	Access time	Package
HM534253BJ-6	60 ns	400-mil 28-pin
HM534253BJ-7	70 ns	plastic SOJ
HM534253BJ-8	80 ns	(CP-28D)
HM534253BJ-10	100 ns	
HM534253BZ-6	60 ns	400-mil 28-pin
HM534253BZ-7	70 ns	plastic ZIP
HM534253BZ-8	80 ns	(ZP-28)
HM534253BZ-10	100 ns	
HM534253BT-6	60 ns	8 mm x 14 mm
HM534253BT-7	70 ns	32-pin TSOP
HM534253BT-8	80 ns	type I
HM534253BT-10	100 ns	(TFP-32DA)
HM534253BR-6	60 ns	8 mm x 14 mm
HM534253BR-7	70 ns	32-pin TSOP
HM534253BR-8	80 ns	type I reverse
HM534253BR-10	100 ns	(TFP-32DAR)

ADE-203-204A (Z)



Pin Description

A0 – A8 Address inputs I/O0 – I/O3 RAM port data inputs/outp	
I/O0 – I/O3 RAM port data inputs/outp	
	uts
SI/O0 – SI/O3 SAM port data inputs/outp	uts
RAS Row address strobe	
CAS Column address strobe	
WE Write enable	
DT/OE Data transfer/output enab	e

Pin name	Function
SC	Serial clock
SE	SAM port enable
DSF	Special function input flag
QSF	Special function output flag
V _{CC}	Power supply
V _{SS}	Ground
NC	No connection

Pin Functions

 \overline{RAS} (input pin): \overline{RAS} is a basic RAM signal. It is active in low level and standby in high level. Row address and signals as shown in table 1 are input at the falling edge of \overline{RAS} . The input level of these signals determine the operation cycle of the HM534253B.

Inpu	ut level at th	e falling	edge of R	AS	DSF at the falling	Operation mode
CAS	DT/OE	WE	SE	DSF	edge of CAS	Operation mode
L	х	x	х	х		CBR refresh
н	L	L	L	L	x	Write transfer
н	L	L	н	L	x	Pseudo transfer
н	L	L	х	Н	x	Split write transfer
Н	L	н	х	L	X	Read transfer
н	L	н	X	Н	x	Split read transfer
Н	н	L	х	L	L	Read/mask write
н	Н	L	x	L	Н	Mask block write
Н	н	L	х	, H	X	Flash write
н	н	н	х	L	L	Read/write
н	H.	н	х	L	Н	Block write
н	Н	н	х	Н	x	Color register read/write

Table 1. Operation Cycles of the HM5342	253B	HM534253	the	vcles of	n C	Operation	1.	Table
---	------	----------	-----	----------	-----	-----------	----	-------

Note: X: Don't care.

 \overline{CAS} (input pin): Column address and DSF signals are fetched into chip at the falling edge of \overline{CAS} , which determines the operation mode of the HM534253B. \overline{CAS} controls output impedance of I/O in RAM.

A0 – A8 (input pins): Row address is determined by A0 – A8 level at the falling edge of \overline{RAS} . Column address is determined by A0 – A8 level at the falling edge of \overline{CAS} . In transfer cycles, row address is the address on the word line which transfers data with SAM data register, and column address is the SAM start address after transfer.

 \overline{WE} (input pin): \overline{WE} pin has two functions at the falling edge of \overline{RAS} and after. When \overline{WE} is low at the falling edge of \overline{RAS} , the HM534253B turns to mask write mode. According to the I/O level at the time, write on each I/O can be masked. (\overline{WE} level at the falling edge of \overline{RAS} is don't care in read cycle.) When \overline{WE} is high at the falling edge of \overline{RAS} , a normal write cycle is executed. After that, \overline{WE} switches read/write cycles as in a standard DRAM. In a transfer cycle, the direction of transfer is determined by \overline{WE} level at the falling edge of \overline{RAS} . When \overline{WE} is low, data is transferred from SAM to RAM (data is written into RAM), and when \overline{WE} is high, data is transferred from RAM to SAM (data is read from RAM).

I/O0 - I/O3 (input/output pins): I/O pins function as mask data at the falling edge of RAS (in mask write mode). Data is written only to high I/O pins. Data on low I/O pins are masked and internal data are retained. After that, they function as input/output pins as those of a standard DRAM. In block write cycle, they function as address mask data at the falling edges of \overline{CAS} .

 $\overline{\text{DT}/\text{OE}}$ (input pin): $\overline{\text{DT}/\text{OE}}$ pin functions as $\overline{\text{DT}}$ (data transfer) pin at the falling edge of $\overline{\text{RAS}}$ and as $\overline{\text{OE}}$ (output enable) pin after that. When $\overline{\text{DT}}$ is low at the falling edge of $\overline{\text{RAS}}$, this cycle becomes a transfer cycle. When $\overline{\text{DT}}$ is high at the falling edge of $\overline{\text{RAS}}$, RAM and SAM operate independently.

SC (input pin): SC is a basic SAM clock. In a serial read cycle, data outputs from an SI/O pin synchronously with the rising edge of SC. In a serial write cycle, data on an SI/O pin at the rising edge of SC is fetched into the SAM data register.

 \overline{SE} (input pin): \overline{SE} pin activates SAM. When \overline{SE} is high, SI/O is in the high impedance state in serial read cycle and data on SI/O is not fetched into the SAM data register in serial write cycle. \overline{SE} can be used as a mask for serial write because internal pointer is incremented at the rising edge of SC.

SI/O0 – SI/O3 (input/output pins): SI/Os are input/output pins in SAM. Direction of input/output is determined by the previous transfer cycle. When it was a read transfer cycle, SI/O outputs data. When it was a pseudo transfer cycle or write transfer cycle, SI/O inputs data.

DSF (input pin): DSF is a special function data input flag pin. It is set to high at the falling edge of \overline{RAS} when new functions such as color register read/write, split transfer, and flash write, are used. DSF is set to high at the falling edge of \overline{CAS} when block write is executed.

QSF (output pin): QSF outputs data of address A8 in SAM. QSF is switched from low to high by accessing address 255 in SAM and from high to low by accessing 511 address in SAM.

Operation of HM534253B

RAM Port Operation

RAM Read Cycle ($\overline{DT}/\overline{OE}$ high, \overline{CAS} high and DSF low at the falling edge of \overline{RAS} , DSF low at the falling edge of \overline{CAS})

Row address is entered at the \overline{RAS} falling edge and column address at the \overline{CAS} falling edge to the device as in standard DRAM. Then, when \overline{WE} is high and $\overline{DT/OE}$ is low while \overline{CAS} is low, the selected address data outputs through I/O pin. At the falling edge of \overline{RAS} , $\overline{DT/OE}$ and \overline{CAS} become high to distinguish RAM read cycle from transfer cycle and CBR refresh cycle. Address access time (t_{AA}) and \overline{RAS} to column address delay time (t_{RAD}) specifications are added to enable high-speed page mode.

RAM Write Cycle (Eraly Write, Delayed Write, Read-Modify-Write)

 $(\overline{DT}/\overline{OE}$ high, \overline{CAS} high and DSF low at the falling edge of \overline{RAS} , DSF low at the falling edge of \overline{CAS})

• Normal Mode Write Cycle (\overline{WE} high at the falling edge of \overline{RAS})

When \overline{CAS} and \overline{WE} are set low after driving \overline{RAS} low, a write cycle is executed and I/O data is written in the selected addresses. When all 4 I/Os are written, \overline{WE} should be high at the falling edge of \overline{RAS} to distinguish normal mode from mask write mode.

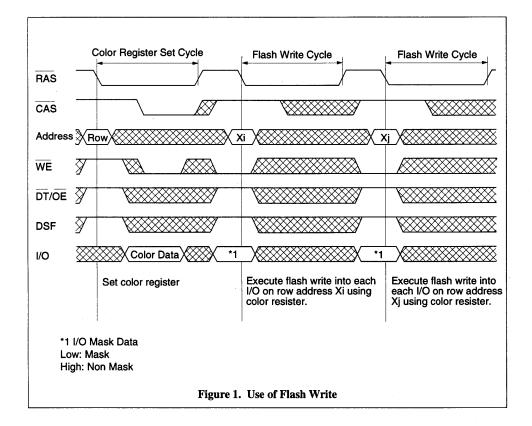
If \overline{WE} is set low before the \overline{CAS} falling edge, this cycle becomes an early write cycle and all I/O become in high impedance. Data is entered at the \overline{CAS} falling edge.

If \overline{WE} is set low after the \overline{CAS} falling edge, this cycle becomes a delayed write cycle. Data is input at the \overline{WE} falling. I/O does not become high impedance in this cycle, so data should be entered with \overline{OE} in high. If \overline{WE} is set low after t_{CWD} (min) and t_{AWD} (min) after the \overline{CAS} falling edge, this cycle becomes a readmodify-write cycle and enables read/write at the same address in one cycle. In this cycle also, to avoid I/O contention, data should be input after reading data and driving \overline{OE} high.

• Mask Write Mode (\overline{WE} low at the falling edge of \overline{RAS})

If WE is set low at the falling edge of RAS, the cycle becomes a mask write mode which writes only to selected I/O. Whether or not an I/O is written depends on I/O level (mask data) at the falling edge of \overline{RAS} . Then the data is written in high I/O pins and masked in low ones and internal data is retained. This mask data is effective during the \overline{RAS} cycle. So, in high-speed page mode, the mask data is retained during the page access.

High-Speed Page Mode Cycle ($\overline{DT}/\overline{OE}$ high, \overline{CAS} high and DSF low at the falling edge of \overline{RAS})


High-speed page mode cycle reads/writes the data of the same row address at high speed by toggling CAS while \overline{RAS} is low. Its cycle time is one third of the random read/write cycle. In this cycle, read, write, and block write cycles can be mixed. Note that address access time (t_{AA}), \overline{RAS} to column address delay time (t_{RAD}), and access time from \overline{CAS} precharge (t_{ACP}) are added. In one \overline{RAS} cycle, 512-word memory cells of the same row address can be accessed. It is necessary to specify access frequency within t_{RASP} max (100 µs).

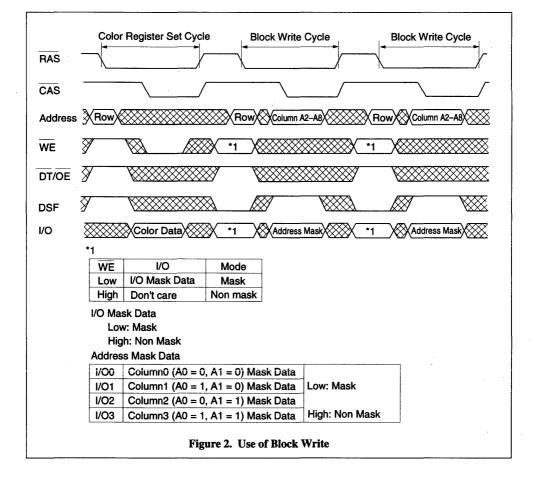
Color Register Set/Read Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ high, \overline{WE} high and DSF high at the falling edge of \overline{RAS})

In color register set cycle, color data is set to the internal color register used in flash write cycle or block write cycle. 4 bits of internal color register are provided at each I/O. This register is composed of static circuits, so once it is set, it retains the data until reset. Color register set cycle is just as same as the usual write cycle except that DSF is set high at the falling edge of \overline{RAS} , and read, early write and delayed write cycle can be executed. In this cycle, the HM534253B refreshes the row address fetched at the falling edge of \overline{RAS} .

Flash Write Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ high, \overline{WE} low, and DSF high at the falling edge of \overline{RAS})

In a flash write cycle, a row of data (512 word x 4 bit) is cleared to 0 or 1 at each I/O according to the data of color register mentioned before. It is also necessary to mask I/O in this cycle. When \overrightarrow{CAS} and $\overrightarrow{DT/OE}$ is set high, \overrightarrow{WE} is low, and DSF is high at the falling edge of \overrightarrow{RAS} , this cycle starts. Then, the row address to clear is given to row address and mask data is given to I/O. Mask data is as same as that of a RAM write cycle. High I/O is cleared, low I/O is not cleared and the internal data is retained. Cycle time is the same as those of RAM read/write cycles, so all bits can be cleared in 1/512 of the usual cycle time. (See figure 1.)

Block Write cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ high and DSF low at the falling edge of \overline{RAS} , DSF high at the falling edge of \overline{CAS})


In a block write cycle, 4 columns of data (4 word x 4 bit) is cleared to 0 or 1 at each I/O according to the data of color register. Column addresses A0 and A1 are disregarded. The data on I/Os and addresses can be masked. I/O level at the falling edge of \overline{CAS} determines the address to be cleared. (See figure 2.) In a page mode cycle, mixed cycle of normal Read/Write and block write can be allowed by controlling DSF.

• Normal Mode Block Write Cycle (WE high at the falling edge of RAS)

The data on 4 I/Os are all cleared when \overline{WE} is high at the falling edge of \overline{RAS} .

• Mask Block Write Mode (\overline{WE} low at the falling edge of \overline{RAS})

When \overline{WE} is low at the falling edge of \overline{RAS} , the HM534253B starts mask block write mode to clear the data on an optional I/O. The mask data is the same as that of a RAM write cycle. High I/O is cleared, low I/O is not cleared and the internal data is retained. The mask data is available in the \overline{RAS} cycle. In page mode block write cycle, the mask data is retained during the page access.

Transfer Operation

The HM534253B provides the read transfer cycle, split read transfer cycle,pseudo transfer cycle, write transfer cycle, and split write transfer cycle as data transfer cycles. These transfer cycles are set by driving \overline{CAS} high and $\overline{DT}/\overline{OE}$ low at the falling edge of \overline{RAS} . They have following functions:

(1) Transfer data between row address and SAM data register (except for pseudo transfer cycle)

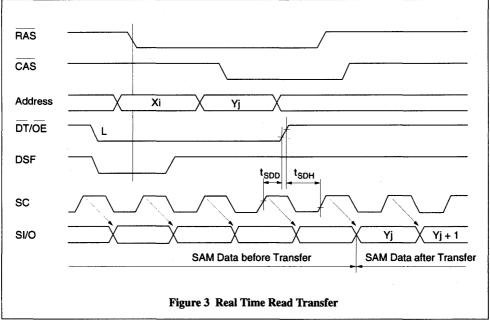
Read transfer cycle and split read transfer cycle: RAM to SAM

Write transfer cycle and split write transfer cycle: SAM to RAM

(2) Determine SI/O state (except for split read transfer cycle and split write transfer cycle) Read transfer cycle: SI/O output

Pseudo transfer cycle and write transfer cycle: SI/O input

(3) Determine first SAM address to access after transferring at column address (SAM start address).


SAM start address must be determined by read transfer cycle or pseudo transfer cycle (split transfer cycle isn't available) before SAM access, after power on, and determined for each transfer cycle.

Read Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WE} high and DSF low at the falling edge of \overline{RAS})

This cycle becomes read transfer cycle by driving $\overline{DT/OE}$ low, \overline{WE} high and DSF low at the falling edge of RAS. The row address data (512 x 4 bits) determined by this cycle is transferred to SAM data register synchronously at the rising edge of $\overline{DT/OE}$. After the rising edge of $\overline{DT/OE}$, the new address data outputs from SAM start address determined by column address. In read transfer cycle, $\overline{DT/OE}$ must be risen to transfer data from RAM to SAM.

This cycle can access SAM even during transfer (real time read transfer). In this case, the timing t_{SDD} (min) specified between the last SAM access before transfer and $\overline{DT}/\overline{OE}$ rising edge and t_{SDH} (min) specified between the first SAM access and $\overline{DT}/\overline{OE}$ rising edge must be satisfied. (See figure 3.)

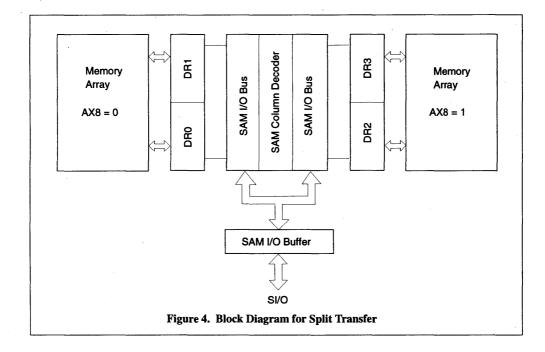
When read transfer cycle is executed, SI/O becomes output state by first SAM access. Input must be set high impedance before t_{SZS} (min) of the first SAM access to aviod data contention.

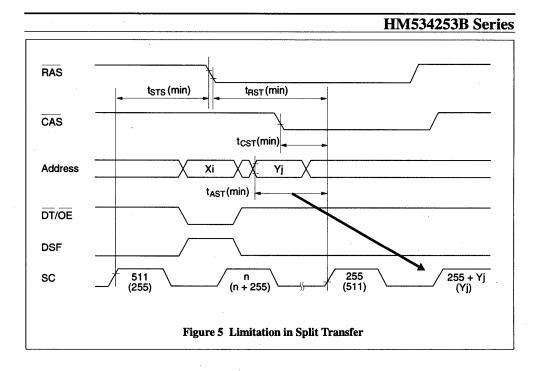
Pseudo Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WE} low, \overline{SE} high and DSF low at the falling edge of \overline{RAS})

Pseudo transfer cycle switches SI/O to input state and set SAM start address without data transfer to RAM. This cycle starts when \overrightarrow{CAS} is high, $\overrightarrow{DT/OE}$ low, \overrightarrow{WE} low, \overrightarrow{SE} high and DSF low at the falling edge of RAS. Data should be input to SI/O later than t_{SID} (min) after RAS becomes low to avoid data contention. SAM access becomes enabled after t_{SRD} (min) after RAS becomes high. In this cycle, SAM access is inhibited during RAS low, therefore, SC must not be risen.

Write Transfer cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WE} low, \overline{SE} low, and DSF low at the falling edge of \overline{RAS})

Write transfer cycle can transfer a row of data input by serial write cycle to RAM. The row address of data transferred into RAM is determined by the address at the falling edge of \overline{RAS} . The column address is specified as the first address for serial write after terminating this cycle. Also in this cycle, SAM access becomes enabled after t_{SRD} (min) after \overline{RAS} becomes high. SAM access is inhibited during \overline{RAS} low. In this period, SC must not be risen. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other addresses of RAM by write transfer cycle. However, the address to write data must be the same MSB of row address (AX8) as that of the read transfer cycle.


Split Read Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WE} high and DSF high at the falling edge of \overline{RAS})


To execute a continuous serial read by real time read transfer, the HM534253B must satisfy SC and $\overline{\text{DT/OE}}$ timings and requires an external circuit to detect SAM last address. Split read transfer cycle makes it possible to execute a continuous serial read without the above timing limitation. Figure 4 shows the block diagram for a split transfer. SAM data register (DR) consists of 2 split buffers, whose organizations are 256-word x 4-bit each. Let us suppose that data is read from upper data reagister DR1 (The row address AX8 is 0 and SAM address A8 is 1.). When split read transfer is executed setting row address AX8 0 and SAM start addresses A0 to A7, 256-word x 4-bit data are transferred from RAM to the lower data register DR0 (SAM address A8 is 0) automatically. After data are read from data register DR1, data start to be read from SAM start addresses of data register DR0. If the next split read transfer isn't executed while data are read from data register DR0, data start to be read from SAM start address 0 of DR1 after data are read from data register DR0. If split read transfer is executed setting row address AX8 1 and SAM start addresses A0 to A7 while data are read from data register DR1, 256-word x 4-bit data are transferred to data register DR2. After data are read from data register DR1, data start to be read from SAM start addresses of data register DR2. If the next split read transfer isn't executed while data is read from data register DR2, data start to be read from SAM start address 0 of data register DR3 after data are read from data register DR2. In this time, SAM data is the one transferred to data register DR3 finally while row address AX8 is 1. In split read data transfer, the SAM start address A8 is automatically set in the data register which isn't used.

The data on SAM address A8, which will be accessed next, outputs to QSF. QSF is switched from low to high by accessing SAM last address 255 and from high to low by accessing address 511.

Split read transfer cycle is set when \overline{CAS} is high, $\overline{DT}/\overline{OE}$ is low, \overline{WE} is high and DSF is high at the falling edge of \overline{RAS} . The cycle can be executed asyncronously with SC. However, t_{STS} (min) timing specified between SC rising and \overline{RAS} falling must be satisfied. SAM last address must be accessed, satisfying t_{RST} (min), t_{CST} (min), and t_{AST} (min) timings specified between \overline{RAS} or \overline{CAS} falling and column address. (See figure 5.)

In split read transfer, SI/O isn't switched to output state. Therefore, read transfer must be executed to switch SI/O to output state when the previous transfer cycle is pseudo transfer or write transfer cycle.

Split Write Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WE} low and DSF high at the falling edge of \overline{RAS})

A continuous serial write cannot be executed because accessing SAM is inhibited during RAS low in write transfer. Split write transfer cycle makes it possible. In this cycle, t_{STS} (min), t_{RST} (min), t_{CST} (min) and t_{AST} (min) timings must be satisfied like split read transfer cycle. And it is impossible to switch SI/O to input state in this cycle. If SI/O is in output state, pseudo transfer cycle should be executed to switch SI/O into input state. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other addresses of RAM by split write transfer cycle. However, pseudo transfer cycle must be executed before split write transfer cycle. And the MSB of row address (AX8) to write data must be the same as that of the read transfer cycle or the split read transfer cycle.

SAM Port Operation

Serial Read Cycle

SAM port is in read mode when the previous data transfer cycle is read transfer cycle. Access is synchronized with SC rising, and SAM data is output from SI/O. When \overline{SE} is set high, SI/O becomes high impedance, and the internal pointer is incremented by the SC rising. After indicating the last address (address 511), the internal pointer indicates address 0 at the next access.

Serial Write Cycle

If previous data transfer cycle is pseudo transfer cycle or write transfer cycle, SAM port goes into write mode. In this cycle, SI/O data is fetched into data register at the SC rising edge like in the serial read cycle. If \overline{SE} is high, SI/O data isn't fetched into data register. Internal pointer is incremented by the SC rising, so \overline{SE} high can be used as mask data for SAM. After indicating the last address (address 511), the internal pointer indicates address 0 at the next access.

Refresh

RAM Refresh

RAM, which is composed of dynamic circuits, requires refresh to retain data. Refresh is executed by accessing all 512 row addresses within 8 ms. There are three refresh cycles: (1) \overline{RAS} -only refresh cycle, (2) \overline{CAS} -before- \overline{RAS} (CBR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which activate \overline{RAS} such as read/write cycles or transfer cycles can refresh the row address. Therefore, no refresh cycle is required when all row addresses are accessed within 8 ms.

(1) RAS-Only Refresh Cycle: RAS-only refresh cycle is executed by activating only RAS cycle with \overline{CAS} fixed to high after inputting the row address (= refresh address) from external circuits. To distinguish this cycle from data transfer cycle, $\overline{DT/OE}$ must be high at the falling edge of RAS.

(2) CBR Refresh Cycle: CBR refresh cycle is set by activating \overline{CAS} before \overline{RAS} . In this cycle, refresh address need not to be input through external circuits because it is input through an internal refresh counter. In this cycle, output is in high impedance and power dissipation is lowered because \overline{CAS} circuits don't operate.

(3) Hidden Refresh Cycle: Hidden refresh cycle executes CBR refresh with the data output by reactivating \overline{RAS} when $\overline{DT}/\overline{OE}$ and \overline{CAS} keep low in normal RAM read cycles.

SAM Refresh

SAM parts (data register, shift resister and selector), organized as fully static circuitry, require no refresh.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit			
Voltage on any pin relative to V_{SS}	V _T	-1.0 to +7.0	v	1		
Supply voltage relative to V _{SS}	V _{CC}	-0.5 to +7.0	v	1		
Short circuit output current	lout	50	mA			
Power dissipation	PT	1.0	W			
Operating temperature	Topr	0 to +70	°C			
Storage temperature	Tstg	-55 to +125	°C			

Note 1. Relative to V_{SS}.

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply voltage ^{*1}	V _{CC}	4.5	5.0	5.5	v	1
Input high voltage ^{*1}	V _{IH}	2.4		6.5	v	1
Input low voltage*1	VIL	-0.5*2	_	0.8	v	1

Notes: 1. All voltage referred to V_{SS} 2 -3.0 V for pulse width \leq 10 ns.

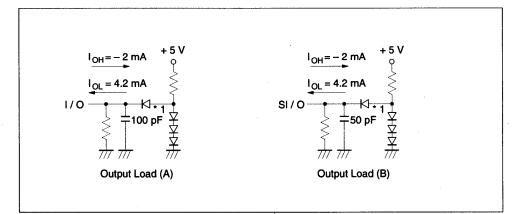
DC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V$)

		HM	53425	3 B								
		-6		-7		-8		-10		-		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Test condit	ions
Operating current	I _{CC1}		75	_	70		60	_	55	mA	RAS, CAS	$SC = V_{ L}, \overline{SE} = V_{ H}$
current	I _{CC7}		125	_	120	_	100		95	mA	t _{RC} = min	$\overline{SE} = V_{ L}$, SC cycling $t_{SCC} = min$
Standby current	I _{CC2}	_	7		7		7		7	mA		$SC = V_{ L}, \overline{SE} = V_{ H}$
current	ICC8		50	_	50	_	40	—	40	mA	-= V _{IH}	$\overline{SE} = V_{1L}$, SC cycling t _{SCC} = min
RAS-only refresh	ICC3		75	_	70		60	—	55	mA	RAS cycling -CAS = V _{IH}	$SC = V_{ L}, \overline{SE} = V_{ H}$
current	lCC9	—	125		120	—	100		95	mA	$t_{\rm RC} = \min$	$\overline{SE} = V_{IL}$, SC cycling $t_{SCC} = min$
Page mode current	I _{CC4}	_	80		80		70		65	mA	CAS cycling RAS = V _{IL}	$SC = V_{ L}, \overline{SE} = V_{ H}$
cunent	ICC10	—	130	_	130	_	110	—	105	mA	$t_{PC} = min$	$\overline{SE} = V_{IL}$, SC cycling $t_{SCC} = min$
CAS-before- RAS refresh	I _{CC5}	_	50		45		40		35	mA	RAS cycling -t _{BC} = min	$SC = V_{IL}, \overline{SE} = V_{IH}$
current	ICC11		100		95	-	80	-	75	mA	4C - 1111	$\overline{SE} = V_{ L}$, SC cycling t _{SCC} = min
Data transfer	I _{CC6}	_	80		75	_	65	_	60	mA	RAS, CAS	$SC = V_{ L}, \overline{SE} = V_{ H}$
current	ICC12	—	130	_	125		105	—	100	mA	t _{RC} = min	$\overline{SE} = V_{1L}$, SC cycling t _{SCC} = min
Input leakage current	϶l _U	-10	10	-10	10	-10	10	-10	10	μA		
Output leakage current	ILO	-10	10	-10	10	-10	10	-10	10	μA		
Output high voltage	V _{OH}	2.4		2.4		2.4	_	2.4	_	V	I _{OH} = -2 m	A
Output low voltage	V _{OL}	—	0.4		0.4		0.4	_	0.4	v	l _{OL} = 4.2 m	A

Notes: 1. I_{CC} depends on output load condition when the device is selected. I_{CC} max is specified at the output open condition.

2. Address can be changed once while \overline{RAS} is low and \overline{CAS} is high.

Parameter	Symbol	Тур	Max	Unit	Note
Input capacitance (Address)	C _{I1}		5	pF	• 1
Input capacitance (Clocks)	C _{l2}		5	pF	1
Output capacitance (I/O, SI/O, QSF)	C _{I/O}	<u> </u>	. 7	pF	1


Capacitance (Ta = 25°C, V_{CC} = 5 V, f = 1 MHz, Bias: Clock, I/O = V_{CC} , address = V_{SS})

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V$) *1, *16

Test Conditions

- Input rise and fall times: 5 ns
- Input pulse levels: V_{SS} to 3.0 V
 Input timing reference levels: 0.8 V, 2.4 V
- Output timing reference levels: 0.8 V, 2.0 V
- Output load: See figures

		HM534253B									
		-6		-7		-8		-10		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	125		135	— .	150	-	180	—	ns	
RAS precharge time	t _{RP}	55	.	55	_	60	_	70	—	ns	
RAS pulse width	tRAS	60	10000	70	10000	80	10000	100	1000	0	ns
CAS pulse width	^t CAS	20	_	20		20	_	25		ns	

Common Parameter

Common Parameter (cont)

	HM534253B										
		-6		-7		-8		-10		-	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Row address setup time	tASR	0	_	0		0	—	0	_	ns	
Row address hold time	^t RAH	10		10	_	10	_	10	_	ns	
Column address setup time	tASC	0		0		0		0		ns	
Column address hold time	^t CAH	15		15	_	15		15	_	ns	
RAS to CAS delay time	^t RCD	20	40	20	50	20	60	20	75	ns	2
\overrightarrow{RAS} hold time referenced to \overrightarrow{CAS}	^t RSH	20	_	20	_	20	-	25		ns	
CAS hold time referenced to RAS	t _{CSH}	60		70	_	80		100		ns	
CAS to RAS precharge time	^t CRP	10		10		10		10		ns	
Transition time (rise to fall)	t _T	3	50	3	50	3	50	3	50	ns	3
Refresh period	tREF		8	_	8	_	8	_	8	ms	
DT to RAS setup time	t _{DTS}	0	_	0		0		0		ns	
DT to RAS hold time	t _{DTH}	10	_	10	. 	10		10	_	ns	
DSF to RAS setup time	t _{FSR}	0	_	0		0		0	_	ns	-
DSF to RAS hold time	^t RFH	10	_	10		10		10	<u> </u>	ns	
DSF to CAS setup time	t _{FSC}	0		0		0	_	0	_	ns	
DSF to CAS hold time	^t CFH	15	_	15	·	15		15	_	ns	
Data-in to CAS delay time	t _{DZC}	0		0		0		0	_	ns	4
Data-in to \overline{OE} delay time	t _{DZO}	0		0		0		0	_	ns	4
Output buffer turn-off delay referenced to CAS	^t OFF1		20		20	_	20		20	ns	5
Output buffer turn-off delay referenced to OE	^t OFF2		20		20		20	_	20	ns	5

Read Cycle (RAM), Page Mode Read Cycle

		HM534253B									
		-6		-7		-8		-10		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Access time from RAS	t _{RAC}	_	60		70		80		100	ns	6, 7
Access time from CAS	^t CAC	_	20	_	20	_	20		25	ns	7, 8
Access time from OE	^t OAC	-	20	 .	20	_	20		25	ns	7
Address access time	t _{AA}	_	35	_	35	_	40		45	ns	7, 9
Read command setup time	t _{RCS}	0		0		0		0		ns	
Read command hold time	^t RCH	0	_	0	_	0	_	0	_	ns	10
Read command hold time referenced to RAS	t _{RRH}	10		10		10	_	10	_	ns	10
RAS to column address delay time	t _{RAD}	15	25	15	35	15	40	15	55	ns	2
Column address to RAS lead time	t _{RAL}	35	_	35	_	40		45		ns	
Column address to CAS lead time	^t CAL	35		35		40		45		ns	
Page mode cycle time	t _{PC}	45	_	45		50	_	55		ns	
CAS precharge time	t _{CP}	10		10		10		10		ns	
Access time from CAS precharge	t _{ACP}	_	40	_	40		45		50	ns	
Page mode RAS pulse width	tRASP	60	100000	70	100000	80	100000	100 1	0000	0 ns	

HM534253B

Write Cycle (RAM), Page Mode Write Cycle, Color Register Set Cycle

		HM									
		-6		-7		-8		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write command setup time	twcs	0		0		0	_	0	_	ns	11
Write command hold time	twch	15		15		15	—	15	_	ns	
Write command pulse width	^t WP	15	- .	15	_	15		15	_	ns	
Write command to RAS lead time	tRWL	20	·	20		20	_	20	_	ns	
Write command to CAS lead time	^t CWL	20		20	_	20		20	_	ns	
Data-in setup time	t _{DS}	0		0		0	_	0		ns	12
Data-in hold time	t _{DH}	15		15		15	_	15		ns	12
WE to RAS setup time	tws	0		0		0	_	0	-	ns	
WE to RAS hold time	twn	10		10		10		10	_	ns	
Mask data to RAS setup time	t _{MS}	0	_	0		0	_	0		ns	
Mask data to RAS hold time	t _{MH}	10	_	10	_	10		10	-	ns	
OE hold time referenced to WE	t _{OEH}	20		20		20		20	_	ns	
Page mode cycle time	t _{PC}	45	_	45	_	50	_	55		ns	
CAS precharge time	t _{CP}	10		10		10	_	10	_	ns	
CAS to data-in delay time	tCDD	20	_	20	- .	20	_	20	_	ns	13
Page mode RAS pulse width	tRASP	60	100000	70	100000	80	10000	100	1000	00	ns

Read-Modify-Write Cycle

		HM534253B									
		-6		-7		-8		-10		-	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read-modify-write cycle time	t _{RWC}	175	_	185		200		230	_	ns	
RAS pulse width (read-modify-write cycle)	^t RWS	110	10000	120	10000	130	10000	150	10000	ns	
CAS to WE delay time	^t CWD	45		45		45		50		ns	14
Column address to \overline{WE} delay time	t _{AWD}	60	_	60	_	65	_	70		ns	14
OE to data-in delay time	tODD	20	_	20		20		20		ns	12
Access time from RAS	tRAC	_	60	_	70	_	80	-	100	ns	6, 7
Access time from CAS	^t CAC	—	20	—	20	_	20	_	25	ns	7, 8
Access time from \overline{OE}	^t OAC	—	20	_	20	—	20	_	25	ns	7
Address access time	t _{AA}	—	35	—	35	_	40	—	45	ns	7, 9
RAS to column address delay time	t _{RAD}	15	25	15	35	15	40	15	55	ns	
Read command setup time	t _{RCS}	0		0		0		0		ns	
Write command to RAS lead time	t _{RWL}	20	_	20	<u> </u>	20	_	20	— .	ns	
Write command to CAS lead time	^t CWL	20		20	_	20	—	20		ns	
Write command pulse width	twp	15		15		15		15		ns	
Data-in setup time	t _{DS}	0	_	0	_	0		0		ns	12
Data-in hold time	t _{DH}	15	_	15	. —	15	_	15	_	ns	12
OE hold time referenced to WE	^t OEH	20	— .	20	-	20	_	20	_	ns	

Refresh Cycle

		HM								
		-6		-7		-8		-10		-
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit Notes
CAS setup time (CAS-before-RAS refresh)	^t CSR	10		10		10		10		ns
CAS hold time (CAS-before-RAS refresh)	^t CHR	10		10		10		10		ns
$\overline{\text{RAS}}$ precharge to $\overline{\text{CAS}}$ hold time	t _{RPC}	10	—	10	—	10	—	10	<u> </u>	ns

Flash Write Cycle, Block Write Cycle

		HMS	534253								
		-6		-7		-8		-10		_	
Parameter	Symbol	Min	Max	Min Max		Min Max		Min Max		Unit Notes	
CAS to data-in delay time	tCDD	20	_	20	_	20		20	_	ns	13
OE to data-in delay time	todd	20	- .	20	_	20		20		ns	13

Read Transfer Cycle

	HM5	_							
	-6		-7		-8		-10		-
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit Notes
t _{RDH}	50	10000	60	10000	65	10000	80	10000	ns
^t CDH	20		20		20		25		ns
t _{ADH}	25		25		30		30		ns
t _{DTP}	20	-	20		20		30		ns
tDRD	65		65		70		80		ns
tSRS	25		25	_	30		30		ns
tSRH	60		70	_	80		100	_	ns
	triant todh tadh totp torp tord tsrs	-6 Symbol Min t _{RDH} 50 t _{CDH} 20 t _{ADH} 25 t _{DTP} 20 t _{DRD} 65 t _{SRS} 25	-6 Symbol Min Max t _{RDH} 50 10000 t _{CDH} 20 t _{ADH} 25 t _{DTP} 20 t _{DRD} 65 t _{SRS} 25	Symbol Min Max Min t _{RDH} 50 10000 60 t _{CDH} 20 — 20 t _{ADH} 25 — 25 t _{DTP} 20 — 20 t _{DRD} 65 — 65 t _{SRS} 25 — 25	-6 -7 Symbol Min Max Min Max t _{RDH} 50 10000 60 10000 t _{CDH} 20 20 t _{ADH} 25 25 t _{DTP} 20 20 t _{DRD} 65 65 t _{SRS} 25 25	-6 -7 -8 Symbol< Min Max Min Max Min t _{RDH} 50 10000 60 10000 65 t _{CDH} 20 20 20 t _{ADH} 25 25 30 t _{DTP} 20 20 20 t _{DRD} 65 65 70 t _{SRS} 25 25 30	-6 -7 -8 Symbol Min Max Min Max Min Max t_{RDH} 50 10000 60 10000 65 10000 t_{CDH} 20 - 20 - 20 - t_{ADH} 25 - 25 - 30 - t_{DTP} 20 - 20 - 20 - t_{DRD} 65 - 65 - 70 - t_{SRS} 25 - 25 - 30 -	-6 -7 -8 -10 Symbol Min Max Min Max Min Max Min Max Min t_{RDH} 50 10000 60 10000 65 10000 80 t_{CDH} 20 20 20 25 t_{ADH} 25 25 30 30 t_{DTP} 20 20 20 30 t_{DRD} 65 65 70 80 t_{SRS} 25 25 30 30	-6 -7 -8 -10 Symbol Min Max Min Max Min Max Min Max t_{RDH} 50 10000 60 10000 65 10000 80 10000 t_{CDH} 20 20 25 t_{ADH} 25 25 30 t_{DTP} 20 20 30 t_{DRD} 65 65 70 80 t_{SRS} 25 25 30 30

Read Transfer Cycle (cont)

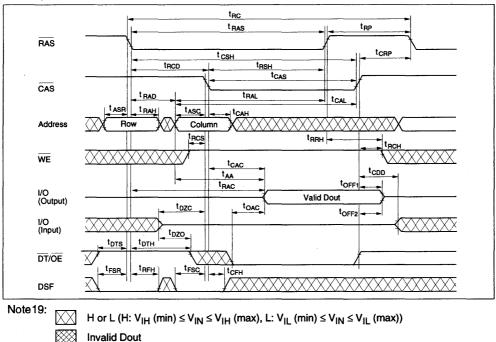
		HM534253B									
	Symbol	-6		-7		-8		-10		-	
Parameter		Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
1st SC to CAS hold time	t _{SCH}	25		25	_	25	_	25		ns	
1st SC to column address hold time	t _{SAH}	40	-	40	-	45		50		ns	
Last SC to $\overline{\text{DT}}$ delay time	t _{SDD}	5	_	5	_	5		5		ns	
1st SC to $\overline{\text{DT}}$ hold time	t _{SDH}	10	_	10	—	15		15		ns	
RAS to QSF delay time	t _{RQD}	_	65		70		75	_	85 ·	ns	15
CAS to QSF delay time	t _{CQD}	_	35	_	35	_	40	_	40	ns	15
DT to QSF delay time	t _{DQD}	_	35	_	35	_	35	_	35	ns	15
QSF hold time referenced to RAS	t _{RQH}	20	_	20	_ ·	20		25		ns	
QSF hold time referenced to CAS	tCQH	5	<u> </u>	5	_	5	_	5		ns	
QSF hold time referenced to $\overline{\text{DT}}$	t _{DQH}	5	_	5		5		5		ns	
Serial data-in to 1st SC delay time	t _{SZS}	0	_	0	_	0	_	0		ns	
Serial clock cycle time	tscc	25	_	25	_	30	—	30		ns	
SC pulse width	t _{SC}	5		5		10	-	10		ns	
SC precharge time	tSCP	10		10	_	10	_	10	_	ns	
SC access time	^t SCA		20	_	22	-	25	_	25	ns	15
Serial data-out hold time	t _{SOH}	5	_	5	_	5	_	5	_	ns	
Serial data-in setup time	tsis	0		0		0		0		ns	
Serial data-in hold time	t _{SIH}	15	<u> </u>	15	_	15		15	_	ns	
RAS to column address delay time	t _{RAD}	15	25	15	35	15	40	15	55	ns	
Column address to RAS lead time	t _{RAL}	35	_	35	_	40	_	45	_	ns	
RAS precharge to DT high hold time	^t DTHH	10		10		10		10		ns	18

Pseudo Transfer Cycle, Write Transfer Cycle

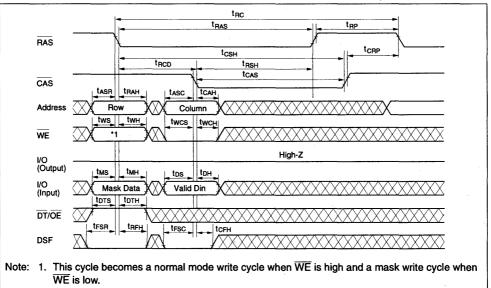
		HM534253B									
Parameter		-6		-7		-8		-10		-	
	Symbo	i Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
SE setup time referenced to RAS	t _{ES}	0	_	0	_	0		0	_	ns	
SE hold time referenced to RAS	t _{EH}	10		10	-	10	_	10	_	ns	
SC setup time referenced to RAS	tSRS	25	<u> </u>	25		30		30	_	ns	
RAS to SC delay time	tSRD	20		20		25	_	25		ns	
Serial output buffer turn-off time referenced to RAS	tSRZ	10	40	10	40	10	45	10	50	ns	
RAS to serial data-in delay time	t _{SID}	40		40		45	_	50		ns	
RAS to QSF delay time	tRQD	_	65		70		75		85	ns	15
CAS to QSF delay time	tCQD	_	35	_	35		40		40	ns	15
QSF hold time referenced to RAS	^t RQH	20	_	20	_	20		25	_	ns	
QSF hold time referenced to CAS	^t CQH	5		5	_	5	_	5		ns	
Serial clock cycle time	tscc	25	_	25	_	30		30	_	ns	
SC pulse width	tsc	5	_	5	_	10		10		ns	
SC precharge time	tSCP	10		10		10	_	10	<u> </u>	ns	
SC access time	tSCA		20		22		25		25	ns	15
SE access time	t _{SEA}		20	_	22		25		25	ns	15
Serial data-out hold time	t _{SOH}	5		5		5	_	5	_	ns	
Serial write enable setup time	tsws	5		5		5		5		ns	
Serial data-in setup time	t _{SIS}	0		0		0		0	_	ns	
Serial data-in hold time	tsih	15		15		15	_	15	_	ns	

Split Read Transfer Cycle, Split Write Transfer Cycle

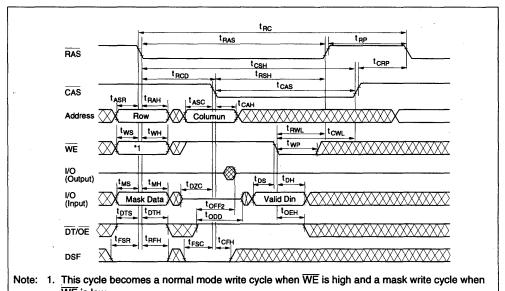
		HM534253B									
Parameter		-6		-7		-8		-10		-	
	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Split transfer setup time	t _{STS}	20		20		20	-	25		ns	
Split transfer hold time referenced to RAS	^t RST	60	_	70		80	_	100	_	ns	
Split transfer hold time referenced to CAS	^t CST	20		20		20		25	_	ns	
Split transfer hold time referenced to column address	tAST	35	_	35		40	_	45	_	ns	
SC to QSF delay time	tSQD		30	-	30		30	_	30	ns	15
QSF hold time referenced to SC	t _{SQH}	5		5	_	5	_	5		ns	
Serial clock cycle time	tscc	25	_	25	_	30		30	_	ns	
SC pulse width	tsc	5		5	_	10	_	10		ns	
SC precharge time	tSCP	10	_	10	_	10		10		ns	
SC access time	t _{SCA}		20	_	22	_	25		25	ns	15
Serial data-out hold time	tsoн	5	_	5		5	_	5	_	ns	
Serial data-in setup time	tsis	0		0	_	0		0		ns	
Serial data-in hold time	t _{SIH}	15		15	_	15	_	15		ns	
RAS to column address delay time	t _{RAD}	15	25	15	35	15	40	15	55	ns	
Column address to RAS lead time	t _{RAL}	35		35	_	40		45		ns	

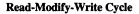

HM534253B

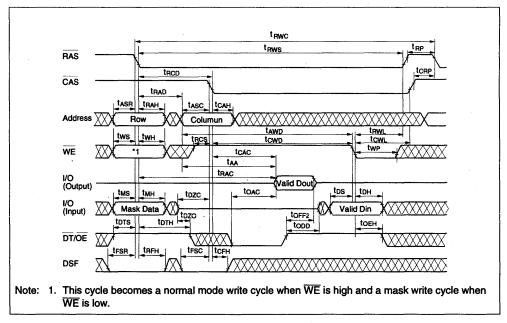
Serial Read Cycle, Serial Write Cycle

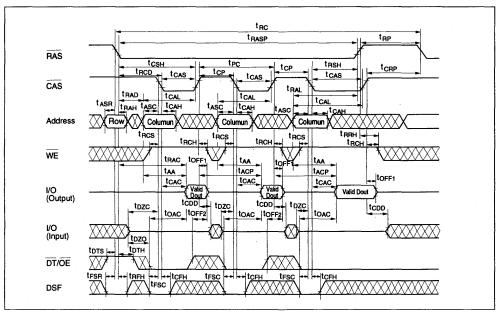

	HM534253B									
	-6		-7		-8		-10			
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
tscc	25		25		30	_	30		ns	
tsc	5	—	5	_	10	_	10		ns	
tSCP	10	— .	10	_	10		10	_	ns	
tSCA	_	20	_	22		25	_	25	ns	15
^t SEA	_	20		22	_	25		25	ns	15
t _{SOH}	5	_	5	_	5		5	_	ns	-
tSEZ		20	_	20	_	20	_	20	ns	5
tsis	0		0	_	0		0	_	ns	
t _{SIH}	15	_	15	_	15		15		ns	
tsws	5		5	_	5		5		ns	
tswH	15		15	_	15		15	_	ns	
tswis	5	_	5		5	_	5		ns	
^t swiH	15	_	15		15	_	15		ns	
	tscc tscp tsca tsca tsca tsca tsca tsca tsca tsca	-6 Symbol Min t _{SCC} 25 t _{SC} 5 t _{SCP} 10 t _{SCA} t _{SSM} 5 t _{SWNS} 5	-6 Symbol Min Max t _{SCC} 25 t _{SC} 5 t _{SCP} 10 t _{SCP} 10 t _{SCA} 20 t _{SCA} 0 t _{SUB} 0 t _{SWS} 5 t _{SWH} 15 t _{SWIS} 5	-6 -7 Symbol Min Max Min t_{SCC} 25 25 t_{SC} 5 5 t_{SCP} 10 10 t_{SCA} 20 t_{SCA} 20 t_{SCA} 20 t_{SOH} 5 5 t_{SOH} 5 0 t_{SIS} 0 0 t_{SIH} 15 15 t_{SWS} 5 5 t_{SWH} 15 15 t_{SWIS} 5 5	-6 -7 Symbol Min Max Min Max t_{SCC} 25 25 t_{SC} 5 5 t_{SCP} 10 10 t_{SCA} 20 22 t_{SCA} 20 20 t_{SEA} 20 20 t_{SIS} 0 0 t_{SWS} 5 5 t_{SWH} 15 15 t_{SWIS} 5 5 t_{SWIS} 5 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-6 -7 -8 Symbol Min <max< th=""> Max Min<max< th=""> Min<max< th=""> t_{SCC} 25 25 30 t_{SC} 5 5 10 t_{SC} 5 5 10 t_{SCP} 10 10 10 t_{SCA} - 20 22 25 t_{SCA} - 20 22 25 t_{SCA} - 20 22 25 t_{SCA} - 20 20 25 t_{SCA} - 20 20 20 t_{SEA} - 20 20 20 t_{SIS} 0 15 15 t_{SWH} 15 15 5 t_{SWH}</max<></max<></max<>	-6 -7 -8 -10 Symbol Min Max Min Max Min Max Min Max Min t_{SCC} 25 - 25 - 30 - 30 t_{SC} 5 - 5 - 10 - 10 t_{SCP} 10 - 10 - 10 - 10 t_{SCA} - 20 - 22 - 25 - t_{SCA} - 20 - 20 - 5 - 5 t_{SCH} 5 - 5 - 5 - 5 - t_{SIS} 0 - 0 - 0 - 0 - t_{SIH}	-6 -7 -8 -10 Symbol Min Max Min Max Min Max Min Max t_{SCC} 25 - 25 - 30 - 30 - t_{SC} 5 - 5 - 10 - 10 - t_{SCP} 10 - 10 - 10 - 10 - t_{SCA} - 20 - 22 - 25 - 25 t_{SCA} - 20 - 22 - 25 - 25 t_{SCA} - 20 - 22 - 25 - 25 t_{SCA} - 20 - 22 - 25 - 25 t_{SCA} - 20 - 20 - 25 - 25 t_{SCA} - 20 - 20 - 20 - 20 t_{SIS} 0 - 15 - <	-6 -7 -8 -10 Symbol Min Max Min Max Min Max Min Max Unit t_{SCC} 25 - 25 - 30 - 30 - ns t_{SC} 5 - 5 - 10 - 10 - ns t_{SCP} 10 - 10 - 10 - ns t_{SCA} - 20 - 22 - 25 - 25 ns t_{SCA} - 20 - 22 - 25 - 25 ns t_{SCA} - 20 - 22 - 25 - 25 ns t_{SCA} - 20 - 22 - 25 - 25 ns t_{SCH} 5 - 5 - 5 - 15 ns t_{SCH} 5 - 5 - 5 - 15 ns

- Notes: 1. AC measurements assume $t_T = 5$ ns.
 - When t_{RCD} > t_{RCD} (max) and t_{RAD} > t_{RAD} (max), access time is specified by t_{CAC} or t_{AA}.
 - 3. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Transition time t_T is measured between V_{IH} and V_{IL} .
 - Data input must be floating before output buffer is turned on. In read cycle, read-modify-write cycle and delayed write cycle, either t_{DZC} (min) or t_{DZO} (min) must be satisfied.
 - 5. t_{OFF1} (max), t_{OFF2} (max), and t_{SEZ} (max) are defined as the time at which the output acheives the open circuit condition (V_{OH} 100 mV, V_{OL} + 100 mV).
 - Assume that t_{RCD} ≤ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
 - Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
 - When t_{RCD} ≥ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max), access time is specified by t_{CAC}.
 - 9. When $t_{RCD} \leq t_{RCD}$ (max) and $t_{RAD} \geq t_{RAD}$ (max), access time is specified by t_{AA} .
 - 10. If either t_{RCH} or t_{RRH} is satisfied, operation is guaranteed.
 - When t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle, and I/O pins remain in an open circuit (high impedance) condition.
 - 12. These parameters are specified by the later falling edge of CAS or WE.
 - 13. Either t_{CDD} (min) or t_{ODD} (min) must be satisfied because output buffer must be turned off by CAS or OE prior to applying data to the device when output buffer is on.
 - 14. When t_{AWD} ≥ t_{AWD} (min) and t_{CWD} ≥ t_{CWD} (min) in read-modify-write cycle, the data of the selected address outputs to an I/O pin and input data is written into the selected address. t_{ODD} (min) must be satisfied because output buffer must be turned off by OE prior to applying data to the device.
 - 15. Measured with a load circuit equivalent to 2 TTL loads and 50 pF.
 - 16. After power-up, pause for 100 µs or more and execute at least 8 initialization cycle (normal memory cycle or refresh cycle), then start operation.
 - 17. When the serial write cycle is used, at least one SC pulse is requied before proper SAM operation after V_{CC} stabilized.
 - 18. tDTHH (min) must be satisfied only if DT/OE rises up before RAS rises in a read transfer cycle.

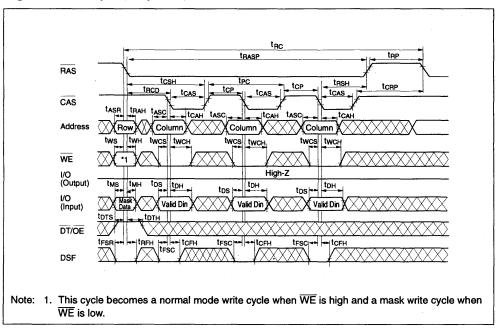

Timing Waveforms^{*19} Read Cycle

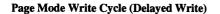


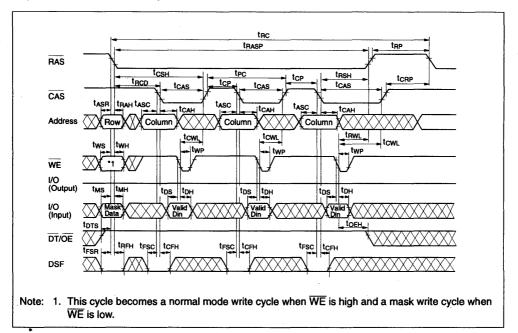


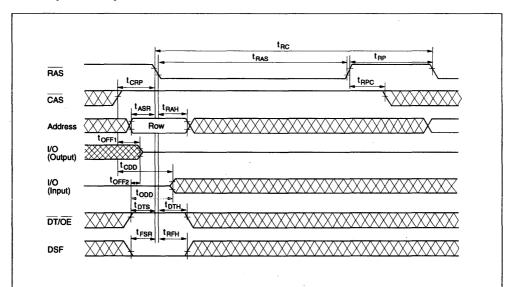


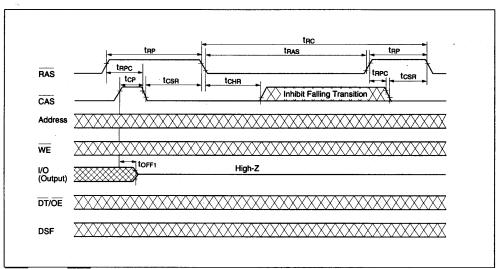
WE is low.

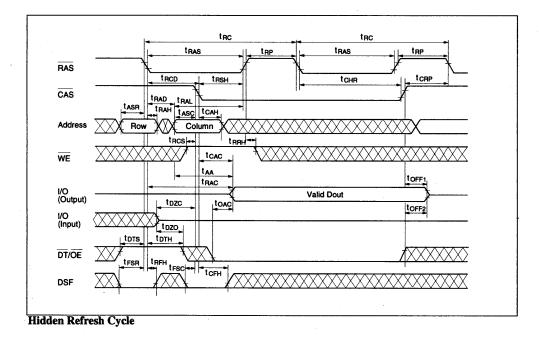


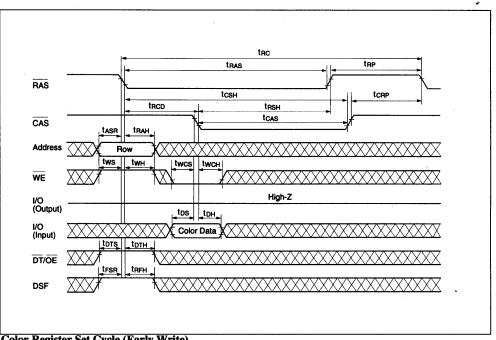

Page Mode Read Cycle



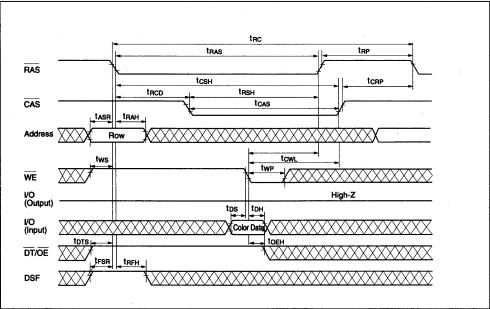

Page Mode Write Cycle (Early Write)


-

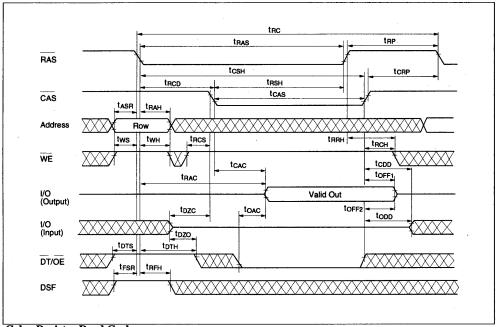


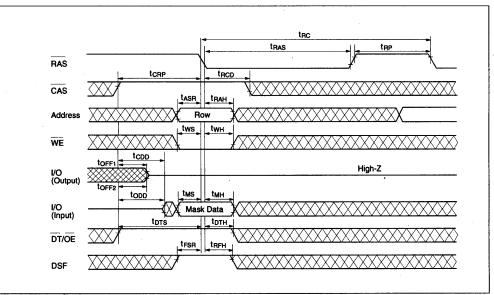


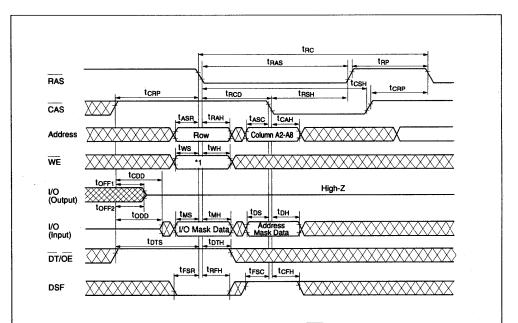
RAS-Only Refresh Cycle

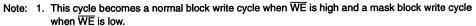


CAS-Before-RAS Refresh Cycle

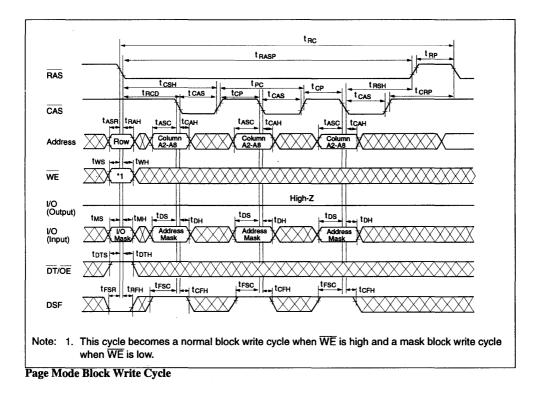


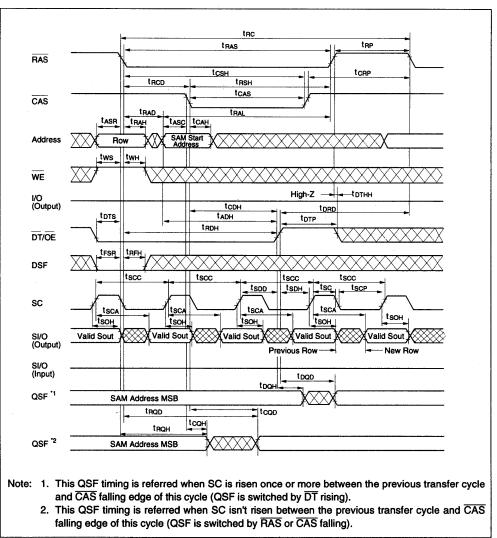

Color Register Set Cycle (Early Write)

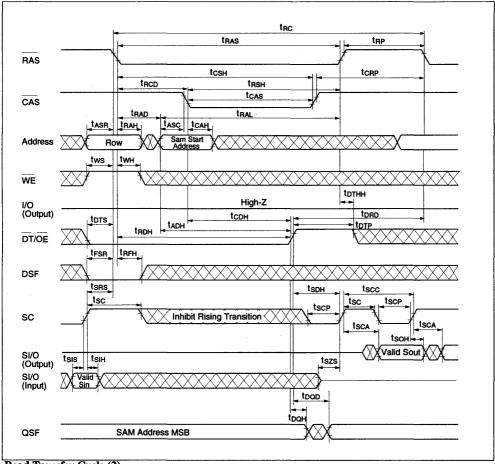

Color Register Set Cycle (Delayed Write)



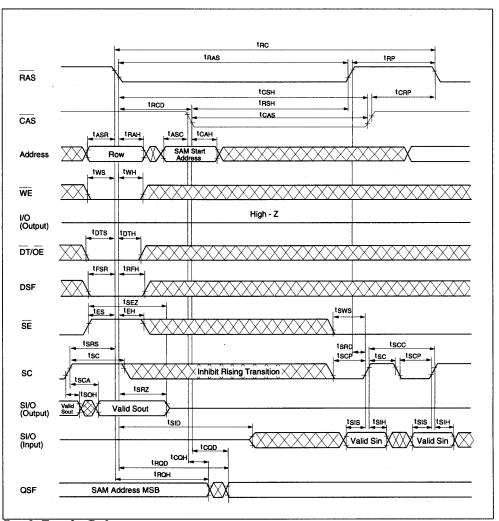
Color Register Read Cycle

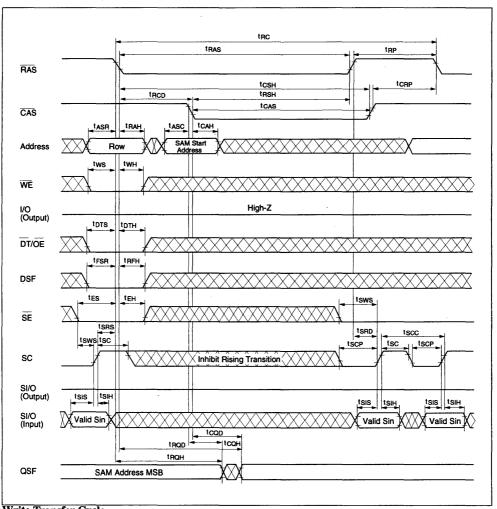


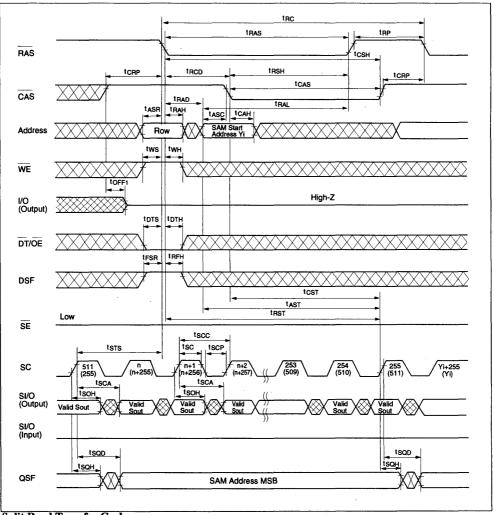

Flash Write Cycle

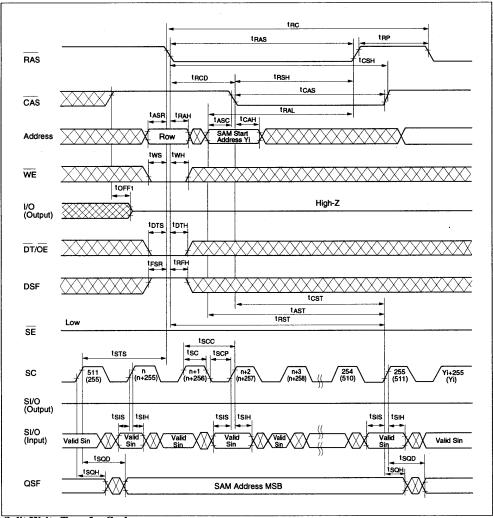


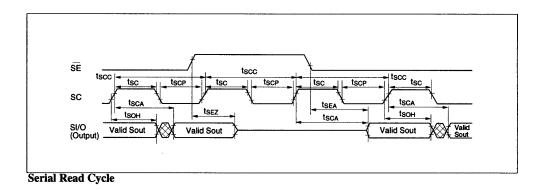
Block Write Cycle

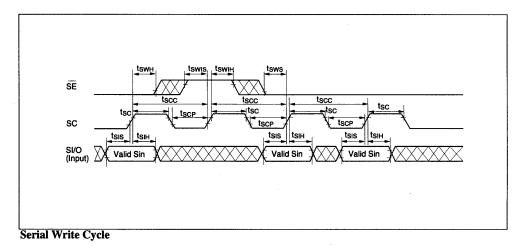



Read Transfer Cycle (1)


Read Transfer Cycle (2)

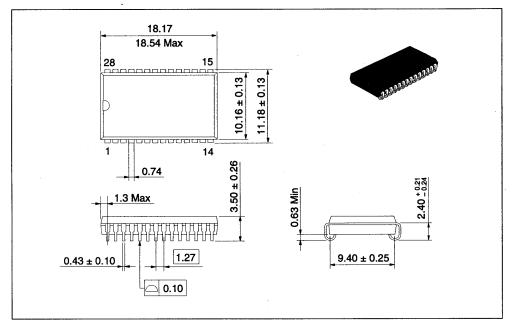

Pseudo Transfer Cycle


Write Transfer Cycle

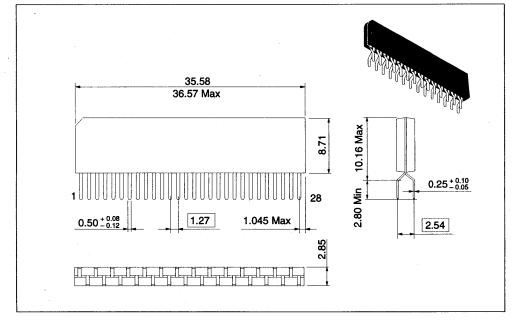


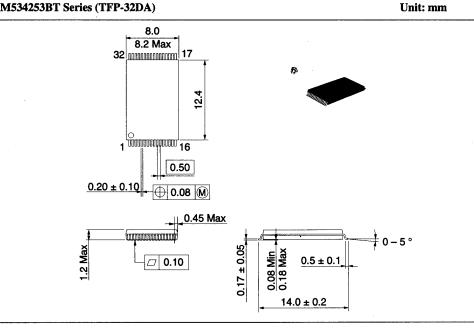
Split Read Transfer Cycle

Split Write Transfer Cycle

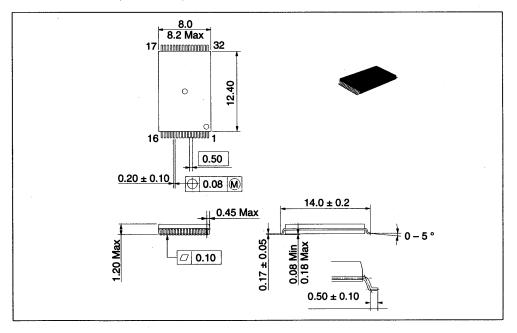


Package Dimensions


HM534253BJ Series (CP-28D)


HM534253BZ Series (ZP-28)

Unit: mm


Package Dimensions (cont)

HM534253BT Series (TFP-32DA)

HM534253BR Series (TFP-32DAR)

Unit: mm

131072-word x 8-bit Multiport CMOS Video RAM

HITACHI

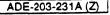
Rev. 1 Mar. 18, 1994

The HM538123B is a 1-Mbit multiport video RAM equipped with a 128-kword x 8-bit dynamic RAM and a 256-word x 8-bit SAM (serial access Its RAM and SAM operate memory). independently and asynchronously. It can transfer data between RAM and SAM. In addition, it has two modes to realize fast writing in RAM. Block write and flash write modes clear the data of 4word x 8-bit and the data of one row (256-word x 8-bit) respectively in one cycle of RAM. And the HM538123B makes split transfer cycle possible by dividing SAM into two split buffers equipped with 128-word x 8-bit each. This cycle can transfer data to SAM which is not active, and enables a continuous serial access.

Features

- Multiport organization
 Asynchronous and simultaneous operation of RAM and SAM capability
 RAM: 128 kword x 8 bit and
- SAM: 256 word x 8 bit • Access time
 - RAM : 60 ns/70 ns/80 ns/100 ns max SAM : 20 ns/22 ns/25 ns/25 ns max
- Cycle time RAM: 125 ns/135 ns/150 ns/180 ns min SAM: 25 ns/25 ns/30 ns/30 ns min
- Low power
 Active RAM: 413 mW max

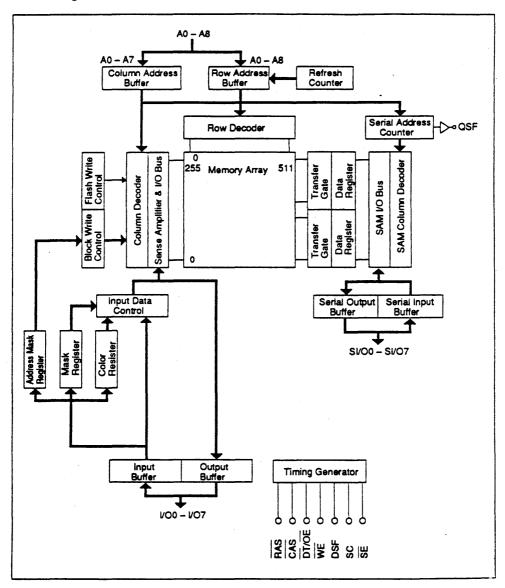
SAM: 275 mW max


- Standby 38.5 mW max
- High-speed page mode capability
- Mask write mode capability
- Bidirectional data transfer cycle between RAM and SAM capability
- Split Landfor cycle capability
- Block write mode capability

- Flash write mode capability
- 3 variations of refresh (8 ms/512 cycles) RAS-only refresh CAS-before-RAS refresh Hidden refresh
- TTL compatible

Ordering Information

Access time	Package				
60 ns	400-mil				
70 ns	40-pin				
80 ns	plastic SQJ				
100 ns	(CP-40D)				
	60 ns 70 ns 80 ns				


Pin Arrangement

1	HM538123BJ	Series
SCOTOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	40 V _{SS} 39 SI/O7 38 SI/O6 37 SI/O4 35 SE 34 1/O7 33 1/O6 32 1/O5 31 1/O6 32 1/O5 31 1/O5 31 1/O5 32 1/O5 3
	(Top View)	

Pin Description

Pin name	Function
A0-A8	Address inputs
1/00-1/07	RAM port data inputs/outputs
SI/00-SI/07	SAM port data inputs/outputs
RAS	Row address strobe
CAS	Column address strobe
WE	Write enable
DT/OE	Data transfer/Output enable
sc	Serial clock
SE	SAM port enable
DSF	Special function input flag
QSF	Special function output flag
V _{cc}	Power supply
V _{SS}	Ground
NC	No connection

Block Diagram

Pin Functions

RAS (input pin): RAS is a basic RAM signal. It is active in low level and standby in high level.

Table 1 Operation Cycles of the HM538123B

Input Level	at the	falling	edge	of	RAS
-------------	--------	---------	------	----	-----

Row address and signals as shown in table 1 are input at the falling edge of RAS. The input level of these signals determine the operation cycle of the HM538123B.

input L	iput Level at the failing edge of HAS				DSF at the failing				
CAS	DT/OE	WE	SE	DSF	edge of CAS	Operation Mode			
L	x	x	x	x		CBR refresh			
н	L	L	L	L	×	Write transfer			
н	L	L	н	L	x	Pseudo transfer			
н	L	L	x	H.	x	Split write transfer			
н	L	н	X	L	×	Read transfer			
н	L	н	x	н	x	Split read transfer			
н	H	L	X	L	L	Read/mask write			
н	Н	L	x	L	Н	Mask block write			
н	н	L	x	н	×	Flash write			
н	Н	н	x	L	L	Read/write			
н	н	н	x	L	н	Block write			
н	H.	н	x	н	x	Color register read/write			

Note: X; Don't care.

CAS (input pin): Column address and DSF signal are fetched into chip at the falling edge of CAS, which determines the operation mode of HM538123B. CAS controls output impedance of VO in RAM.

A0-A8 (input pins): Row address (AX0-AX8) is determined by A0-A8 level at the falling edge of RAS. Column address (AY0-AY7) is determined by A0-A7 level at the falling edge of \overline{CAS} . In transfer cycles, row address is the address on the word line which transfers data with SAM data register, and column address is the SAM start address after transfer.

WE (input pin): WE pin has two functions at the falling edge of RAS and after. When WE is low at the falling edge of RAS, the HM538123B turns to mask write mode. According to the I/O level at the time, write on each I/O can be masked. (WE level at the falling edge of RAS is don't care in read cycle.) When WE is high at the falling edge of RAS, a normal write cycle is executed. After that, WE switches read/write cycles as in a standard DRAM. In a transfer cycle, the direction of transfer is determined by WE level at the falling edge of RAS. When WE is low, data is transferred from SAM to RAM (data is written into RAM), and when WE is high, data is transferred from RAM to SAM (data is read from RAM).

I/O0-I/O7 (input/output pins): I/O pins function as mask data at the falling edge of RAS (in mask write mode). Data is written only to high I/O pins. Data on low I/O pins are masked and internal data are retained. After that, they function as input/output pins as those of a standard DRAM. In block write cycle, they function as address mask data at the falling edge of CAS.

 $\overline{DT}/\overline{OE}$ (input pin): $\overline{DT}/\overline{OE}$ pin functions as \overline{DT} (data transfer) pin at the falling edge of \overline{RAS} and as \overline{OE} (output enable) pin after that. When \overline{DT} is low at the falling edge of \overline{RAS} , this cycle becomes a transfer cycle. When \overline{DT} is high at the falling edge of \overline{RAS} , RAM and SAM operate independently.

SC (input pin): SC is a basic SAM clock. In a serial read cycle, data outputs from an SI/O pin synchronously with the tising edge of SC. In a serial write cycle, data on an SI/O pin at the rising edge of SC is fetched into the SAM data register.

SE (input pin): SE pin activates SAM. When SE is high, SI/O is in the high impedance state in serial read cycle and data on SI/O is not fetched into the SAM data register in serial write cycle. SE can be used as a mask for serial write because internal pointer is incremented at the rising edge of SC.

SI/O0-SI/O7 (input/output pins): SI/Os are input/output pins in SAM. Direction of input/output is determined by the previous transfer cycle. When it was a read transfer cycle, SI/O outputs data. When it was a pseudo transfer cycle or write transfer cycle, SI/O inputs data.

DSF (input pin): DSF is a special function data input flag pin. It is set to high at the falling edge of RAS when new functions such as color register read/write, split transfer, and flash write, are used. DSF is set to high at the falling edge of \overline{CAS} when block write is executed.

QSF (output pin): QSF outputs data of address A7 in SAM. QSF is switched from low to high by accessing address 127 in SAM and from high to low by accessing 255 address in SAM.

Operation of HM538123B

RAM Read Cycle ($\overline{DT}/\overline{OE}$ high, \overline{CAS} high and DSF low at the falling edge of \overline{RAS} , DSF low at the falling edge of \overline{CAS})

Row address is entered at the \overline{RAS} falling edge and column address at the \overline{CAS} falling edge to the device as in standard DRAM. Then, when \overline{WE} is high and $\overline{DT}/\overline{OE}$ is low while \overline{CAS} is low, the selected address data outputs through I/O pin. At the falling edge of \overline{RAS} , $\overline{DT}/\overline{OE}$ and \overline{CAS} become high to distinguish RAM read cycle from transfer cycle and CBR refresh cycle. Address access time (t_{AA}) and \overline{RAS} to column address delay time (t_{RAD}) specifications are added to enable highspeed page mode.

RAM Write Cycle (Early Write, Delayed Write, Read-Modify-Write)

(DT/OE high, CAS high and DSF low at the falling edge of RAS, DSF low at the falling edge of CAS)

• Normal Mode Write Cycle (WE high at the falling edge of Table)

When CAS and WE are set low after driving RAS low, a write cycle is executed and I/O data is written in the selected addresses. When all 8 I/Os are written, WE should be high at the falling edge of RAS to distinguish normal mode from mask write mode.

If WE is set low before the \overline{CAS} falling edge, this cycle becomes an early write cycle and I/O becomes in high impedance. Data is entered at the \overline{CAS} falling edge.

If WE is set low after the CAS falling edge, this cycle becomes a delayed write cycle. Data is input at the WE falling. I/O does not become high impedance in this cycle, so data should be entered with \overline{OE} in high.

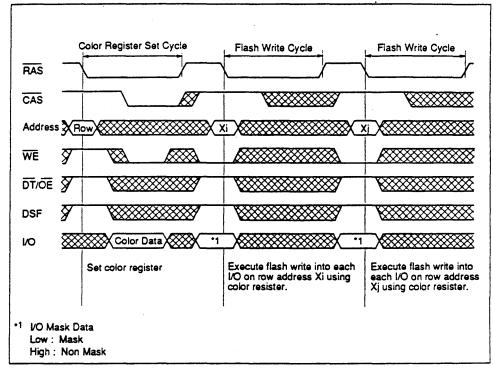
If WE is set low after t_{CWD} (min) and t_{AWD} (min) after the CAS falling edge, this cycle becomes a read-modify-write cycle and enables read/write at the same address in one cycle. In this cycle also, to avoid I/O contention, data should be input after reading data and driving \overline{OE} high.

• Mask Write Mode (WE low at the falling edge of \overline{RAS})

If WE is set low at the falling edge of \overline{RAS} , the cycle becomes a mask write mode which writes only to selected I/O. Whether or not an I/O is written depends on I/O level (mask data) at the falling edge of \overline{RAS} . Then the data is written in high I/O pins and masked in low ones and internal data is retained. This mask data is effective during the \overline{RAS} cycle. So, in high-speed page mode, the mask data is retained during the page access.

High-Speed Page Mode Cycle $(\overline{DT}/\overline{OE} high, \overline{CAS} high and DSF low at the falling edge of <math>\overline{RAS})$

High-speed page mode cycle reads/writes the data of the same row address at high speed by toggling CAS while RAS is low. Its cycle time is one third of the random read/write cycle. In this cycle, read, write, and block write cycles can be mixed. Note that address access time (t_{AA}), RAS to column address delay time (t_{RAD}), and access time from CAS precharge (t_{ACP}) are added. In one RAS cycle, 256-word memory cells of the same row address can be accessed. It is necessary to specify access frequency within t_{RAS} p max (100 µs).


Color Register Set/Read Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ high, \overline{WE} high and DSF high at the falling

edge of \overline{RAS})

In color register set cycle, color data is set to the internal color register used in flash write cycle or block write cycle. 8 bits of internal color register are provided at each I/O. This register is composed of static circuits, so once it is set, it retains the data until reset. Color register set cycle is just as same as the usual write cycle except that DSF is set high at the falling edge of RAS, and read, early write and delayed write cycle can be executed. In this cycle, HM538123B refreshs the row address fetched at the falling edge of RAS.

Flash Write Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ high, \overline{WE} low and DSF high at the falling edge of \overline{RAS})

In a flash write cycle, a row of data (256-word x 8bit) is cleared to 0 or 1 at each I/O according to the data of color register mentioned before. It is also necessary to mask I/O in this cycle. When \overline{CAS} and $\overline{DT}/\overline{OE}$ is set high, \overline{WE} is low, and DSF is high at the falling edge of \overline{RAS} , this cycle starts. Then, the row address to clear is given to row address and mask data is given to I/O. Mask data is as same as that of a RAM write cycle. High I/O is cleared, low I/O is not cleared and the internal data is retained. Cycle time is the same as those of RAM read/write cycles, so all bits can be cleared in 1/256 of the usual cycle time. (See figure 1.)

Figure 1 Use of Flash Write

Block Write Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ high and DSF low at the falling edge of \overline{RAS} , DSF high at the falling edge of \overline{CAS})

In a block write cycle, 4 columns of data (4-word x 8-bit) is cleared to 0 or 1 at each I/O according to the data of color register. Column addresses A0 and A1 are disregarded. The data on I/Os and addresses can be masked. I/O level at the falling edge of CAS determines the address to be cleared. (See figure 2.)

• Normal Mode Block Write Cycle (WE high at the falling edge of RAS)

The data on 8 I/Os are all cleared when \overline{WE} is high at the falling edge of \overline{RAS} .

• Mask Block Write Mode (WE low at the falling edge of RAS)

When WE is low at the falling edge of RAS, HM538123B starts mask block write mode to clear the data on an optional I/O. The mask data is the same as that of a RAM write cycle. High I/O is cleared, low I/O is not cleared and the internal data is retained. The mask data is available in the RAS cycle. In page mode block write cycle, the mask data is retained during the page access.

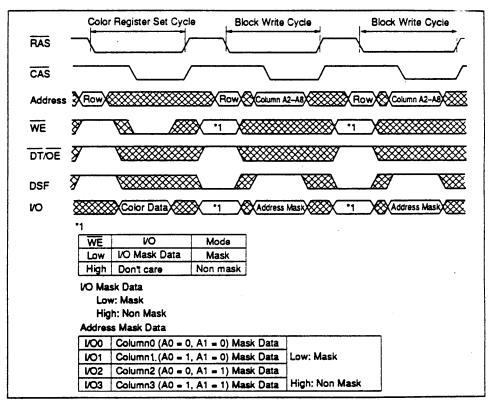


Figure 2 Use of Block Write

Transfer Operation

The HM538123B provides the read transfer cycle, split read transfer cycle, pseudo transfer cycle, write transfer cycle and split write transfer cycle as data transfer cycles. These transfer cycles are set by driving \overline{CAS} high and $\overline{DT}/\overline{OE}$ low at the falling edge of \overline{RAS} . They have following functions:

(1) Transfer data between row address and SAM data register (except for pseudo transfer cycle) Read transfer cycle and split read transfer cycle: RAM to SAM

Write transfer cycle and split write transfer cycle: SAM to RAM

- (2) Determine SI/O state (except for split read transfer cycle and split write transfer cycle) Read transfer cycle: SI/O output Pseudo transfer cycle and write transfer cycle: SI/O input
- (3) Determine first SAM address to access after transferring at column address (SAM start address).

SAM start address must be determined by read transfer cycle or pseudo transfer cycle (split transfer cycle isn't available) before SAM access, after power on, and determined for each transfer cycle. **Read Transfer Cycle** (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WE} high and DSF low at the falling edge of \overline{RAS})

This cycle becomes read transfer cycle by driving $\overline{DT}/\overline{OE}$ low, WE high and DSF low at the falling edge of RAS. The row address data (256 x 8-bit) determined by this cycle is transferred to SAM data register synchronously at the rising edge of $\overline{DT}/\overline{OE}$. After the rising edge of $\overline{DT}/\overline{OE}$, the new address data outputs from SAM start address determined by column address. In read transfer cycle, $\overline{DT}/\overline{OE}$ must be risen to transfer data from RAM to SAM.

This cycle can access SAM even during transfer (real time read transfer). In this case, the timing t_{SDD} (min) specified between the last SAM access before transfer and $\overline{DT}/\overline{OE}$ rising edge and t_{SDH} (min) specified between the first SAM access and $\overline{DT}/\overline{OE}$ rising edge must be satisfied. (See figure 3.)

When read transfer cycle is executed, SI/O becomes output state by first SAM access. Input must be set high impedance before t_{SZS} (min) of the first SAM access to avoid data contention.

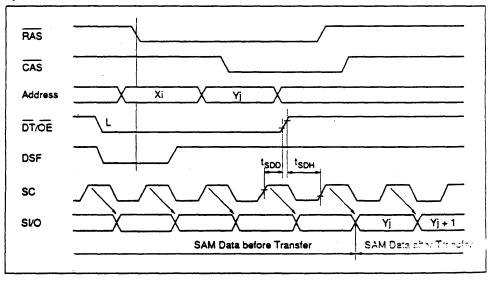


Figure 3 Real Time Read Transfer

Pseudo Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, WE low, SE high and DSF low at the falling edge of \overline{RAS})

Pseudo transfer cycle switches SI/O to input state and set SAM start address without data transfer to RAM.

This cycle starts when CAS is high, \overline{DT}/OE low, WE low, SE high and DSF low at the falling edge of RAS. Data should be input to SI/O later than t_{SID} (min) after RAS becomes low to avoid data contention. SAM access becomes enabled after t_{SRD} (min) after RAS becomes high. In this cycle, SAM access is inhibited during RAS low, therefore, SC must not be risen.

Write Transfer Cycle (CAS high, DT/OE low, WE low, SE low and DSF low at the falling edge of RAS)

Write transfer cycle can transfer a row of data input by serial write cycle to RAM. The row address of data transferred into RAM is determined by the address at the falling edge of RAS. The column address is specified as the first address for serial write after terminating this cycle. Also in this cycle, SAM access becomes enabled after t_{SRD} (min) after RAS becomes high. SAM access is inhibited during RAS low. In this period, SC must not be risen. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other addresses of RAM by write transfer cycle. However, the address to write data must be the same as that of the read transfer cycle or the split read transfer cycle (row address AX8).

Split Read Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, WE high and DSF high at the falling edge of \overline{RAS})

To execute a continuous serial read by real time read transfer, HM538123B must satisfy SC and DT/OE timings and requires an external circuit to detect SAM last address. Split read transfer cycle makes it possible to execute a continuous serial read without the above timing limitation. Figure 4 snows the block diagram for a split transfer. SAM data register (DR) consists of 2 split buffers, whose organizations are 128-word x 8-bit each. Let us

HM538123B Series

suppose that data is read from upper data register DR1 (The row address AX8 is 0 and SAM address A7 is 1.). When split read transfer is executed setting row address AX8 0 and SAM start addresses A0 to A6, 128-word x 8-bit data are transferred from RAM to the lower data register DR0 (SAM address A7 is 0) automatically. After data are read from data register DR1, data start to be read from SAM start atidresses of data register DR0. If the next split read transfer isn't executed while data are read from data register DR0, data start to be read from SAM start address 0 of DR1 after data are read from data register DR0. If split read transfer is executed setting row address AX8 1 and SAM start addresses A0 to A6 while data are read from data register DR1, 128-word x 8-bit data are transferred to data register DR2. After data are read from data register DR1, data start to be read from SAM start addresses of data register DR2. If the next split read transfer isn't executed while data is read from data register DR2, data start to be read from SAM start address 0 of data register DR3 after data are read from data register DR2. In this time, SAM data is the one transferred to data register DR3 finally while row address AX8 is 1. In split read data transfer, the SAM start address A7 is automatically set in the data register which isn't used.

The data on SAM address A7, which will be accessed next, outputs to QSF, QSF is switched from low to high by accessing SAM last address 127 and from high to low by accessing address 255.

Split read transfer cycle is set when \overline{CAS} is high, DT/OE is low, WE is high and DSF is high at the falling edge of \overline{RAS} . The cycle can be executed asyncronously with SC. However, HM538123B must be satisfied t_{STS} (min) timing specified between SC rising and \overline{RAS} falling. SAM start address must be accessed, satisfying t_{RST} (min), t_{CST} (min) and t_{AST} (min) timings specified between RAS or \overline{CAS} falling and column address. (See figure 5.)

In split read transfer, SI/O isn't switched to output state. Therefore, read transfer must be executed to switch SI/O to output state when the provious transfer cycle is pseudo transfer or write transfer cycle.

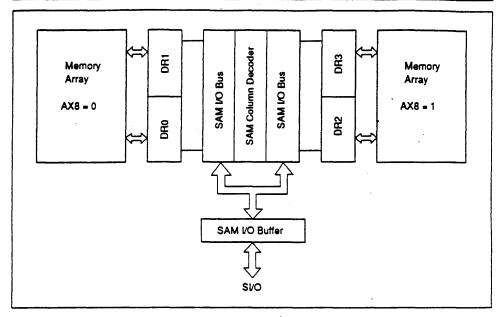


Figure 4 Block Diagram for Split Transfer

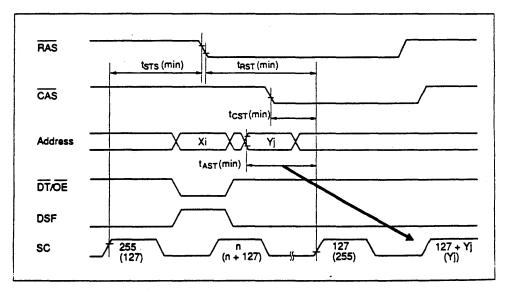


Figure 5 Limitation in Split Transfer

Split Write Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WE} low and DSF high at the falling edge of \overline{RAS})

A continuous serial write cannot be executed because accessing SAM is inhibited during RAS low in write transfer. Split write transfer cycle makes it possible. In this cycle, tSTS (min), tRST (min), tCST (min) and tAST (min) timings must be satisfied like split read transfer cycle. And it is impossible to switch SI/O to input state in this cycle. If SI/O is in output state, pseudo transfer cycle should be executed to switch SI/O into input state. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other addresses of RAM by split write transfer cycle. However, pseudo transfer cycle must be executed before split write transfer cycle. And the MSB of row address (AX8) to write data must be the same as that of the read transfer cycle or the split read transfer cycle.

SAM Port Operation

Serial Read Cycle

SAM port is in read mode when the previous data transfer cycle is read transfer cycle. Access is synchronized with SC rising, and SAM data is output from SI/O. When SE is set high, SI/O becomes high impedance, and the internal pointer is incremented by the SC rising. After indicating the last address (address 255), the internal pointer indicates address 0 at the next access.

Serial Write Cycle

If previous data transfer cycle is pseudo transfer cycle or write transfer cycle, SAM port goes into write mode. In this cycle, SI/O data is fetched into data register at the SC rising edge like in the serial read cycle. If \overline{SE} is high, SI/O data isn't fetched into data register. Internal pointer is incremented

by the SC rising, so \overline{SE} high can be used as mask data for SAM. After indicating the last address (address 255), the internal pointer indicates address 0 at the next access.

Refresh

RAM Refresh

RAM, which is composed of dynamic circuits, requires refresh to retain data. Refresh is executed by accessing all 512 row addresses within 8 ms. There are three refresh cycles: (1) RAS-only refresh cycle, (2) CAS-before-RAS (CBR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which activate RAS such as read/write cycles or transfer cycles can refresh the row address. Therefore, no refresh cycle is required when all row addresses are accessed within 8 ms.

(1) RAS-Only Refresh Cycle: RAS-only refresh cycle is executed by activating only RAS cycle with CAS fixed to high after inputting the row address (=refresh address) from external circuits. To distinguish this cycle from data transfer cycle, DT/OE must be high at the falling edge of RAS.

(2) CBR Refresh Cycle: CBR refresh cycle is set by activating CAS before RAS. In this cycle, refresh address need not to be input through external circuits because it is input through an internal refresh counter. In this cycle, output is in high impedance and power dissipation is lowered because CAS circuits don't operate.

(3) Hidden Refresh Cycle: Hidden refresh cycle executes CBR refresh with the data output by reactivating RAS when DT/OE and CAS keep low in normal RAM read cycles.

SAM Refresh

SAM parts (data register, shift register and selector), organized as fully static circuitry, require no refresh.

Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Terminal voltage*1	VT	-1.0 to +7.0	v
Power supply voltage*1	V _{CC}	-0.5 to +7.0	V
Short circuit output current	lout	50	mA
Power dissipation	PT	1.0	w
Operating temperature	Topr	0 to +70	•C
Storage temperature	Tstg	-55 to +125	•C

Note: 1. Relative to V_{SS}.

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C)

Item	Symbol	Min	Тур	Max	Unit
Supply voitage*1	Vcc	4.5	5.0	5.5	V
Input high voltage*1	VIH	2.4		6.5	v
Input low voitage*1	VIL	-0.5*2	_	0.8	v

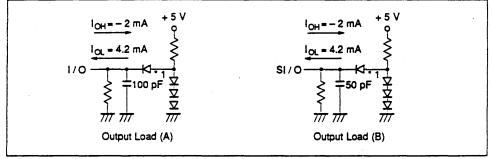
Notes: 1. All voltages referenced to V_{SS} 2. -3.0 V for pulse width \leq 10 ns

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%, V_{SS} = 0 V)

		HM538123B										
		-6		-7		-8		-10		1 1 14	Test Condit	tions
Item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	RAM port	SAM port
Operating	ICC1	-	75	_	70		60	-	55	mA	RAS, CAS	$SC = V_{IL}, \overline{SE} = V_{IH}$
current	ICC7	_	125	_	120	-	100	_	95	mA	cycling t _{RC} = Min	SE = V _{IL} , SC cycling t _{SCC} = Min
Standby current	I _{CC2}		7	_	7	-	7	-	7	mA	RAS, CAS = VIH	$SC = V_{IL}, \overline{SE} = V_{IH}$
corrent	lcca	-	50	-	50		40	-	40	mA	= *IH	SE = V _{IL} , SC cycling t _{SCC} = Min
RAS-only refresh current	lcc3		75		70	-	60	-	55	mΑ	RAS cycling CAS = VIH	ISC = V _{IL} , <u>SE</u> = V _{IH}
	မင္ရင္ရ		125	-	120	-	100	-	95	mA	t _{RC} = Min	SE = V _{IL} , SC cycling t _{SCC} = Min
Page mode current	ICC4	-	80	-	80	-	70	-	65	mA	CAS cycling RAS = V _{IL}	$SC = V_{iL}, \overline{SE} = V_{iH}$
	ICC10	-	130	-	130	-	110	-	105	mA	t _{PC} = Min	SE = V _{IL} , SC cycling t _{SCC} = Min
CAS-before- RAS refresh	lccs		50	-	45	-	40	-	35	mA	RAS cycling tRC = Min	SC = V _{IL} , SE = V _{IH}
current	ICC11	-	100	-	95	-	80	-	75	mΑ		SE = V _{IL} , SC cycling t _{SCC} = Min
Data transfer	lcce		80	-	75	-	65	_	60	mA	RAS, CAS	SC = VIL, SE = VIH
current	ICC12	-	130	-	125	-	105	-	100	mA	t _{RC} = Min	SE = V _{IL} , SC cycling t _{SCC} = Min
Input leakage current	l <u>u</u>	-10	10	-10	10	-10	10	-10	10	μA	<u></u>	
Output leakage current	ilo	-10	10	-10	10	-10	10	-10	10	μA		
Output high voltage	VOH	2.4	-	2.4		2.4		2.4		V	Юн = -2 т/	Ą
Output low voltage	VOL	_	0.4	_	0.4		0.4		0.4	۷	lo _L = 4.2 m	A

Note: 1. 150 depends on output loading condition when the device is selected. 100 mex is specified at the output open condition.

2. Address can be changed once while RAS is low and CAS is high.


•		•	-			33/
item	Symbol	Min	Тур	Max	Unit	
Address	C ₁₁	_	-	5	pF	
Clock	C ₁₂	_		5	pF	
VO, SVO, QSF	C _{I/O}	<u> </u>		7.	pF	

Capacitance (Ta = 25°C, V_{CC} = 5 V, f = 1 MHz, Bias: Clock, I/O = V_{CC} , address = V_{SS})

AC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V$)*1,*16

Test Conditions

Input rise and fall time : 5 ns Output load : See figures Input pulse levels: V_{SS} to 3.0 V Input timing reference levels : 0.8 V, 2.4 V Output timing reference levels : 0.8 V, 2.0 V

Note: 1. Including scope & jig

Common Parameter

		HM538123B									
		-6		•7		-8		-10	<u> </u>		
tem	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
Random read or write cycle time	^t RC	125	-	135	-	150	-	180	÷	ns	
RAS precharge time	t _{RP}	55		55	-	60	-	70		ns	
RAS pulse width	t _{RAS}	60	10000	70	10000	80	10000	100	10000	ns	
CAS pulse width	¹ CAS	20	-	20		20		25		ns	
Row address setup time	TASR	0	-	0		0	-	0	_	ns	
Row address hold time	1 RAH	10		10	_	10	-	10	_	ns	
Column address setup time	TASC	0		0	_	0		0		ns	
Column address hold time	¹ САН	15	_	15		15	_	15	_	ns	
RAS to CAS delay time	^t RCD	20	40	20	50	20	60	20	75	ns	2
RAS hold time referenced to CAS	tRSH	20	_	20		20		25		ns	-
CAS hold time referenced to RAS	^t CSH	60		70		80		100	_	ns	
CAS to RAS precharge time	tCRP	10	_	10		10		10	-	ns	
Transition time (rise to fall)	t _T	3	50	3	50	3	50	3	50	ns	3
Refresh period	^t REF		8	-	8	-	8	_	8	ms	
DT to RAS setup time	^t DTS	0	-	0	-	0	-	0	_	ns	
DT to RAS hold time	^t DTH	10	-	10	`	10	_	10		ns	
DSF to RAS setup time	1 _{FSR}	0		0	-	0		0		ns	
DSF to FAS hold time	^t RFH	10	_	10	-	10	_	10		ns	
DSF to CAS setup time	tFSC	0	-	0	-	0		0	_	ns	
DSF to CAS hold time	¹ CFH	15		15	_	15		15		ns	
Data-in to CAS delay time	tDZC	0	-	0		0	-	0		ns	4
Data-in to OE delay time	tozo	0	-	0	-	0	-	0		ns	4
Jutput buffer turn-off celay eferenced to CAS	^I OFF1		20	_	20		20		20	ns	ċ
Dutput buffer turn-off delay eferenced to OE	^t OFF2		20	-	20		20		20	ns	5

Read Cycle (RAM), Page Mode Read Cycle

		HM538123B									
		-6		-7		-8		-10			
Item	Symbol	Mi	nMax	Min	Max	Min	Max	Min	Max	Unit	Note
Access time from RAS	^t RAC	-	60	_	70		80		100	ns	6,7
Access time from CAS	¹ CAC		20	_	20		20		25	ns	7,8
Access time from OE	^t OAC	_	20	_	20		20		25	ns	7
Address access time	tAA	_	35	_	35		40	_	45	ns	7,9
Read command setup time	tRCS	0		0	-	0	-	0		ns	
Read command hold time	t _{RCH}	0	-	0	-	0	-	0		ns	10
Read command hold time referenced to RAS	^t RRH	10		10	-	10		10		ns	10
RAS to column address delay time	^t RAD	15	25	15	35	15	40	15	55	ns	2
Column address to RAS lead time	tRAL	35	_	35	-	40	-	45	-	ns	-
Column address to CAS lead time	^t CAL	35		35		40	_	45		ns	
Page mode cycle time	tPC	45		45		50		55		ns	
CAS precharge time	tCP	10	_	10		10		10		ns	
Access time from CAS precharge	t _{ACP}	_	40	-	40	-	45	_	50	ns	
Page mode RAS pulse width	tRASP	60	100000	70	100000	80	100000	100	100000	ns	

Write Cycle (RAM), Page Mode Write Cycle, Color Register Set Cycle

	Symbol	HM538123B									
		-6		•7		-8		-10			
Item		Mi	Max	Min	Max	Min	Max	Min	Max	Unit	Note
Write command setup time	twcs	0		0	_	0	_	0		ns	11
Write command hold time	twch	15		15	-	15	-	15	_	ns	
Write command pulse width	twp	15		15	_	15		15		ns	
Write command to RAS lead time	^t RWL	20		20	- .	20	_	20	-	ns	
Write command to CAS lead time	tCWL	20	-	20	-	20	-	20	-	ns	
Data-in setup time	tos	0	-	0	_	0	_	0	_	ns	12
Data-in hold time	^t DH	15		15	-	15	_	15		ns	12
WE to RAS setup time	tws	0	-	0		0	_	0	_	ns	
WE to RAS hold time	twH	10	-	10	_	10		10	_	ns	
Mask data to RAS setup time	tMS	0	-	0	_	0		0	_	ns	
Mask data to RAS hold time	t _{MH}	10		10	_	10		10	_	ns	
OE hold time referenced to WE	¹ ОЕН	20		20		20	-	20	-	ns	
Page mode cycle time	t _{PC}	45		45		50		55		ns	-
CAS precharge time	tCP	10		10		10		10	-	ns	
CAS to data-in delay time	tCDD	20		20		20	-	20	-	ns	13
Page mode RAS pulse width	tRASP	60	100000	70	100000	80	100000	100	100000	ns	

Read-Modify-Write Cycle

		HM538123B									
		-6		-7		-8		-10			
item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
Read-modify-write cycle time	^t RWC	175	-	185	_	200	-	230	-	ns	
RAS pulse width (read-modify-write cycle)	tRWS	110	10000	120	10000	130	10000	150	10000	ns	
CAS to WE delay time	^t CWD	45		45		45	-	50	-	ns	14
Column address to WE delay time	tAWD	60		60		65		70		ns	14
OE to data-in delay time	1000	20		20	-	20	-	20	<u> </u>	ns	12
Access time from RAS	^t RAC	_	60	_	70	-	80	—	100	ns	6,7
Access time from CAS	¹ CAC	-	20	.—	20	-	20	-	25	ns	7,8
Access time from OE	^t OAC	-	20		20		20	_	25	ns	7
Address access time	tAA	-	35		35	-	40	_	45	ns	7,9
RAS to column address delay time	^t RAD	15	25	15	35	15	40	15	55	ns	
Read command setup time	^t RCS	0	-	0		0	_	0	_	ns	
Write command to RAS lead	^t RWL	20	-	20		20	-	20	-	ns	
Write command to CAS lead	^t CWL	20	_	20	_	20		20		ns	
Write command pulse width	twp	15		15		15	_	15	_	ns	
Data-in setup time	tos	0		0	-	0	-	0	-	ns	12
Data-in hold time	^t DH	15	-	15	_	15	_	15	-	ns	12
DE hold time referenced to WE	¹ ОЕН	20		20	_	20	<u> </u>	20	_	ns	

Refresh Cycle

tem		HM538123B									
		-6		-7		-8		-10			
	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
CAS setup time (CAS-before-RAS refresh)	^t CSR	10	-	10		10		10		ns	
CAS hold time (CAS-before-RAS refresh)	^t CHR	10		10		10	_	10	_	ns	
RAS precharge to CAS hold time	^t RPC	10	-	10	·	10		10		ns	

Flash Write Cycle, Block Write Cycle

		HM538123B									
		-6		-7		-8		-10			
item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
CAS to data-in delay time	tCDD	20	_	20		20	_	20	_	ns	13
OE to data-in delay time	todd	20		20	_	20	_	20		ns	13

Read Transfer Cycle

mbol DH	-6- Min 50	Max	7 Min	Max	-8 Min	Max	-10 Min			
рн			Min	Max	Min	Max	Min	Mar		
	50		_				101011	IN III X	Unit	Note
		10000	60	10000	65	10000	80	10000	ns	
ЭН	20	-	20	-	20		25		ns	
ЭН	25	-	25	-	30	_	30	-	ns	
ſP	20		20	-	20		30	-	ns	
30	65	_	65		70	-	80	_	ns	
RS	25		25	-	30		30	_	ns	
чн	60	-	70		80		100		ns	
ж	25		25	_	25		25		ns	
	DH TP RD RS RH	рн 25 гр 20 ад 65 аз 25 ан 60	рн 25 — гр 20 — ар 65 — аs 25 — ан 60 —	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Read Transfer Cycle (cont)

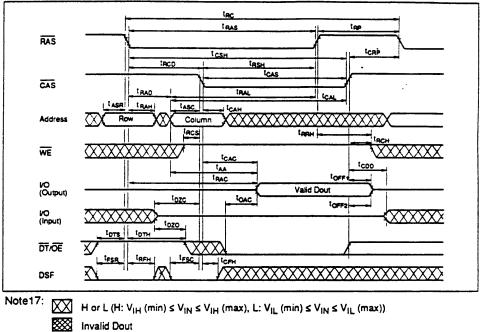
	1945004 00 0									
							.10			
Symbol		Max	<u> </u>	Max		Max			Unit	Note
^t SAH	40		40		45		50	-	ns	
tSDD	5	_	5		5		5		ns	
^t SDH	10		10	_	15	_	15	-	ns	
^t ROD		65	_	70		75	_	85	ns	15
tCOD	-	35	_	35	-	40	_	40	ns	15
tDQD	-	35	_	35	_	35	_	35	ns	15
^t RQH	20		20	-	20	-	25		ns	
^t СОН	5		5	_	5		5	_	ns	
¹ DQH	5		5	-	5		5	-	ns	
¹ SZS	0		0		0		0		ns	
tscc	25	-	25	-	30		30		ns	
tsc	5		5	-	10		10	_	ns	
tSCP	10	-	10	<u> </u>	10	_	10	_	ns	
^t SCA	_	20		22		25		25	ns	15
tsoh	5	 '	5		5		5	_	ns	
tsis	0	_	0	_	0	_	0	_	ns	
^t SIH	15	_	15	-	15	-	15	_	ns	
^t RAD	15	25	15	35	15	40	15	55	ns	
^t RAL	35		35	_	40		45	-	ns	
^t DTHH	10		10		10	-	10	-	ns	
	¹ SAH ¹ SDD ¹ SDH ¹ RQD ¹ CQD ¹ CQD ¹ CQD ¹ CQH ¹ CQH		-6- Symbol Min Max ¹ SAH 40 ¹ SDD 5 ¹ SDH 10 ¹ SDH 10 ¹ SDH 65 ¹ COD 35 ¹ DOD 35 ¹ DOH 5 ¹ COH 5 ¹ DOH 5 ¹ SZS 0 ¹ SCC 25 ¹ SCC 5 ¹ SCA 20 ¹ SCH 5 ¹ SCA 20 ¹ SCH 5 ¹ SCH 5 ¹ SCH 15 ¹ SIH 15 ¹ FAAD 35	Symbol Min Max Min ISAH 40 40 ISDH 10 10 ISDH 10 10 ISDH 10 10 ISDH 10 10 IROD 65 ICOD 35 IDOD 35 IDOD 35 IDOD 35 IDOD 35 IDOH 5 5 IDOH 5 5 ISZS 0 0 ISCC 25 5 ISCP 10 10 ISCA - 20 ISCH 5 5 ISCH 5 5 ISIH	$-6-$ 7 Symbol Min Max Min Max 1SAH 40 40 1SDD 5 5 1SDH 10 10 1SDH 10 10 1SDH 10 35 35 1RQD 35 35 35 1DQD 35 35 35 1RQH 20 20 35 1RQH 5 5 1SZS 0 0 <td< td=""><td>$-6-$ 7 -8 Symbol Min Max Min Max Min ^{1}SAH 40 40 45 ^{1}SDD 5 5 5 ^{1}SDH 10 10 15 ^{1}SDH 10 10 15 ^{1}SDH 10 10 15 ^{1}COD 65 70 ^{1}COD 35 35 ^{1}DOD 35 35 ^{1}COH 5 5 5 5 ^{1}DOH 5 5 5 5 ^{1}SZS 0 10 10 ^{1}SCA - 20 22</td><td>-6- 7 -8 ISAH 40 $-$ 40 45 $-$ ISDD 5 5 5 $-$ ISDH 10 $-$ 10 15 $-$ ISDH 10 10 15 $-$ ISDH 10 10 15 $-$ ISDH 10 10 15 $-$ ISDH 10 35 35 35 IRQH 20 35 35 35 IRQH 20 20 20 20 $-$ ISCQH 5 5 5 $-$ ISCC 25 5 5 $-$ ISC</td><td>-6- 7 -8 -10 $ISAH$ 40 - 40 - 45 - 50 $ISDD$ 5 - 5 - 5 - 5 $ISDH$ 10 - 10 - 15 - 15 $ISDH$ 10 - 10 - 15 - 15 $IRQD$ - 65 - 70 - 75 - $IQDD$ - 35 - 35 - 40 - $IQDD$ - 35 - 35 - 35 - $IQDD$ - 35 - 35 - 35 - $IQDH$ 5 - 5 - 5 - 5 $IQDH$ 5 - 5 - 5 - 5 $ISCC$ 25 - 25 - 30 - <</td><td>$-6 -$ 7 -8 -10 Symbol Min Max Min Max Min Max Min Max I_{SAH} 40 - 40 - 45 - 50 - I_{SDD} 5 - 5 - 5 - 5 - I_{SDH} 10 - 10 - 15 - 15 - I_{SDH} 10 - 10 - 15 - 85 I_{CQD} - 65 - 70 - 75 - 85 I_{CQD} - 35 - 35 - 40 - 40 I_{DQD} - 35 - 35 - 35 - 35 - 35 - 35 - 35 - 35 - 15 - 15 - 15 - 15 - 1</td><td>-6- 7 -8 -10 Min Max Unit ISAH 40 - 40 - 45 - 50 - ns ISDD 5 - 5 - 5 - 50 - ns ISDD 5 - 5 - 5 - ns ISDH 10 - 10 - 15 - ns ISDH 10 - 10 - 15 - ns ISDH 10 - 35 - 35 - 85 ns ISDD - 35 - 35 - 35 ns ns ICQD - 35 - 35 - 35 ns ns IQQH 5 - 5 - 5 - ns ns ISCC 25 - 25 - 30 -</td></td<>	$-6-$ 7 -8 Symbol Min Max Min Max Min ^{1}SAH 40 40 45 ^{1}SDD 5 5 5 ^{1}SDH 10 10 15 ^{1}SDH 10 10 15 ^{1}SDH 10 10 15 ^{1}COD 65 70 ^{1}COD 35 35 ^{1}DOD 35 35 ^{1}COH 5 5 5 5 ^{1}DOH 5 5 5 5 ^{1}SZS 0 10 10 ^{1}SCA - 20 22	-6- 7 -8 ISAH 40 $-$ 40 $ 45$ $-$ ISDD 5 $ 5$ $ 5$ $-$ ISDH 10 $-$ 10 $ 15$ $-$ ISDH 10 $ 10$ $ 15$ $-$ ISDH 10 $ 10$ $ 15$ $-$ ISDH 10 $ 10$ $ 15$ $-$ ISDH 10 $ 35$ $ 35$ $ 35$ IRQH 20 $ 35$ $ 35$ $ 35$ IRQH 20 $ 20$ $ 20$ $ 20$ $-$ ISCQH 5 $ 5$ $ 5$ $-$ ISCC 25 $ 5$ $ 5$ $-$ ISC	-6- 7 -8 -10 $ISAH$ 40 - 40 - 45 - 50 $ISDD$ 5 - 5 - 5 - 5 $ISDH$ 10 - 10 - 15 - 15 $ISDH$ 10 - 10 - 15 - 15 $IRQD$ - 65 - 70 - 75 - $IQDD$ - 35 - 35 - 40 - $IQDD$ - 35 - 35 - 35 - $IQDD$ - 35 - 35 - 35 - $IQDH$ 5 - 5 - 5 - 5 $IQDH$ 5 - 5 - 5 - 5 $ISCC$ 25 - 25 - 30 - <	$-6 -$ 7 -8 -10 Symbol Min Max Min Max Min Max Min Max I_{SAH} 40 - 40 - 45 - 50 - I_{SDD} 5 - 5 - 5 - 5 - I_{SDH} 10 - 10 - 15 - 15 - I_{SDH} 10 - 10 - 15 - 85 I_{CQD} - 65 - 70 - 75 - 85 I_{CQD} - 35 - 35 - 40 - 40 I_{DQD} - 35 - 35 - 35 - 35 - 35 - 35 - 35 - 35 - 15 - 15 - 15 - 15 - 1	-6- 7 -8 -10 Min Max Unit ISAH 40 - 40 - 45 - 50 - ns ISDD 5 - 5 - 5 - 50 - ns ISDD 5 - 5 - 5 - ns ISDH 10 - 10 - 15 - ns ISDH 10 - 10 - 15 - ns ISDH 10 - 35 - 35 - 85 ns ISDD - 35 - 35 - 35 ns ns ICQD - 35 - 35 - 35 ns ns IQQH 5 - 5 - 5 - ns ns ISCC 25 - 25 - 30 -

Pseudo Transfer Cycle, Write Transfer Cycle

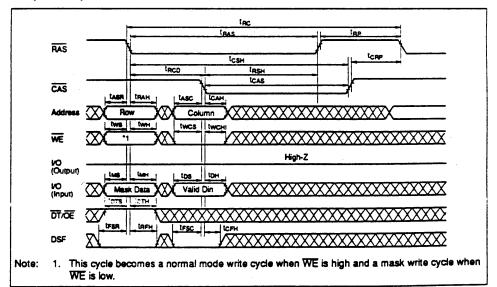
		•									
		HM538123B									
		-6-		7		-8		-10		•	
Item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
SE setup time referenced to RAS	tes	0		0	-	0	_	0	-	ns	
SE hold time referenced to RAS	tEH	10	-	10		10		10		ns	
SC setup time referenced to RAS	^t SRS	25	_	25	-	30		30	-	ns	
RAS to SC delay time	tSRD	20	_	20	_	25		25	_	ns	
Serial output buffer turn-off time referenced to RAS	^t SRZ	10	40	10	40	10	45	10	50	ńs	
RAS to serial data-in delay time	tSID	40	-	40		45		50	-	ns	
RAS to QSF delay time	^t ROD		65	-	70	_	75	_	85	ns	15
CAS to QSF delay time	tcap	-	35	-	35	_	40	_	40	ns	15
QSF hold time referenced to RAS	^t RQH	20	-	20		20	 .	25		ńs	
QSF hold time referenced to CAS	tсон	5	-	5		5		5	_	ns	
Serial clock cycle time	tscc	25	-	25	—	30	<u> </u>	30		ns	
SC pulse width	tsc	5	-	5	-	10		10	-	ns	
SC precharge time	tSCP	10	-	10	-	10		10		ns	
SC access time	^t SCA	-	20		22	-	25		25	ns	15
SE access time	^t SEA		20	-	22		25	_	25	ns	15
Serial data-out hold time	tsoh	5	-	5	-	5	<u> </u>	5		ns	
Serial write enable setup time	tsws	5	-	5		5	-	5	-	ns	
Serial data-in setup time	tsis	0		0	-	0		0	-	ns	
Serial data-in hold time	tSIH	15		15	-	15	-	15	-	ns	_

Split Read Transfer Cycle, Split Write Transfer Cycle

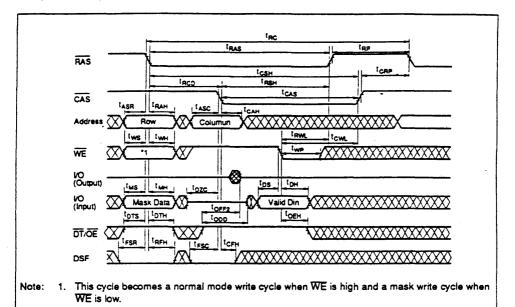
		HM538123B									
	Symbol	-6-		7		-8		-10			
Item		Min	Max	Min	Max	Mir	Max	Mir	Max	Unit	Note
Split transfer setup time	ts⊤s	20	-	20		20		25	_	ns	
Split transfer hold time referenced to RAS	^t RST	60		70		80		100) —	ns	
Split transfer hold time referenced to CAS	tcst	20	-	20	_	20	-	25	_	ns	
Split transfer hold time referenced to column address	TAST	35	-	35	-	40	-	45	-	ns	
SC to QSF delay time	tsad	-	30	-	30	-	30		30	ns	15
QSF hold time referenced to SC	tsoh	5	— .	5		5	-	5	-	ns	
Serial clock cycle time	tscc	25		25	_	30		30	-	ns	
SC pulse width	tsc	5	_	5	-	10	_	10	-	ns	
SC precharge time	tSCP	10		10	-	10	-	10		ns	
SC access time	t _{SCA}	_	20	_	22		25	_	25	ns	15
Serial data-out hold time	^t SOH	5	-	5	-	5		5	-	ns	
Serial data-in setup time	tsis	0		0	-	0		0	_	ns	
Serial data-in hold time	^t SIH	15	-	15		15	_	15	-	ns	
RAS to column address delay time	^t RAD	15	25	15	35	15	40	15	55	ns	
Column address to RAS lead	¹ RAL	35		35	-	40	_	45		ns	

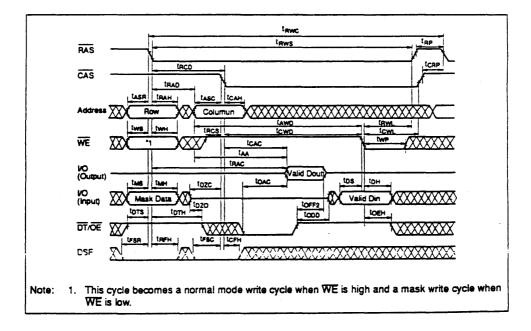

Serial Read Cycle, Serial Write Cycle

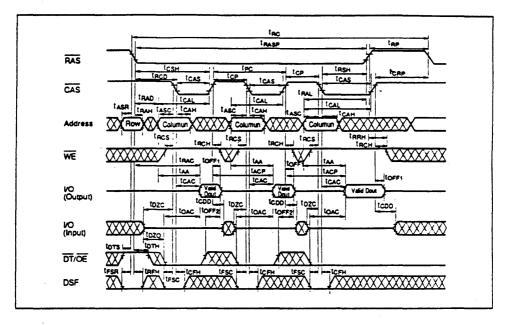
	HM	538123								
	-6-		7		-8		-10			
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
tscc	25		25	-	30	-	30		ns	
tsc	5	-	5		10		10		ns	
1SCP	10	-	10	-	10	-	10		ns	
ISCA	_	20		22	-	25		25	ns	15
ISEA	_	20		22		25	_	25	ns	15
t _{SOH}	5		5	_	5	_	5		ns	
^t SEZ	-	20	_	20		20	_	20	ns	5
tsis	0	-	0	_	0		0	-	ns	
t _{SIH}	15		15	-	15		15	_	ns	
tsws	5	-	5	_	5	_	5		ns	
tswH	15	_	15	-	15	-	15		ns	
tswis	5		5	-	5	_	5	-	ns	
tswiH	15	-	15	-	15	_	15	-	ns	
	tscc tsc tscp tsca tsca tsca tsca tsca tsca tsca tsca	-6- Symbol Min tSCC 25 tSC 5 tSCP 10 tSCA tSIS 0 tSIH 15 tSWH 15 tSWIS 5	-6- Symbol Min Max tSCC 25 tSC 5 tSC 5 tSC 10 tSCA 20 tSEA 20 tSCH 5 tSCH 5 tSEZ 20 tSIS 0 tSIS 0 tSIS 5 tSWH 15 tSWIS 5	Symbol Min Max Min t _{SCC} 25 25 t _{SC} 5 5 t _{SC} 5 10 t _{SCP} 10 10 t _{SCA} - 20 t _{SCA} - 20 t _{SCA} - 20 t _{SCH} 5 5 t _{SCH} 5 5 t _{SEZ} - 20 t _{SIS} 0 0 t _{SIH} 15 15 t _{SWH} 15 15 t _{SWIS} 5 5	-6- 7 Symbol Min Max Min Max tSCC 25 25 tSC 5 5 tSC 5 10 tSCP 10 10 tSCA 20 22 tSEA 20 22 tSCH 5 5 tSEZ 20 20 tSIS 0 0 tSIS 0 0 tSIS 0 5 tSWS 5 5 tSWH 15 15 tSWIS 5 5	-6- 7 -8 Symbol Min Max Min Max Min t_{SCC} 25 - 25 - 30 t_{SC} 5 - 5 - 10 t_{SC} 5 - 5 - 10 t_{SC} 10 - 10 - 10 t_{SCA} - 20 - 22 - t_{SCH} 5 - 5 - 5 t_{SIS} 0 - 0 - 0 t_{SIH} 15 - 15 - 15 t_{SWH} 15 - 15 - 5 t_{SWH} 15 - 5 - 5 <td>-5- 7 -8 Symbol Min Max Min Max Min Max t_{SCC} 25 - 25 - 30 - t_{SC} 5 - 5 - 10 - t_{SC} 5 - 5 - 10 - t_{SC} 7 20 - 22 - 25 t_{SCA} - 20 - 20 - 20 t_{SCA} - 20 - 20 - 20 t_{SEZ} - 20 - 20 - 20 t_{SIH} 15 - 15 - 15 - t_{SWS} 5 - 5 - 5 - t_{SWH}</td> <td>-6- 7 -8 -10 Symbol Min Max Min Max Min Max Min t_{SCC} 25 - 25 - 30 - 30 t_{SC} 5 - 5 - 10 - 10 t_{SC} 5 - 5 - 10 - 10 t_{SC} 10 - 10 - 10 - 10 t_{SCA} - 20 - 22 - 25 - t_{SEA} - 20 - 22 - 25 - t_{SCA} - 20 - 22 - 25 - t_{SCA} - 20 - 20 - 20 - 5 t_{SCH} 5 - 5 - 5 - 5 t_{SIS} 0 - 0 - 0 - 0 t_{SIH} 15 - 15 -<</td> <td>-5- 7 -8 -10 Symbol Min Max Min Max Min Max Min t_{SCC} 25 - 25 - 30 - 30 t_{SC} 5 - 5 - 10 - 10 t_{SC} 5 - 5 - 10 - 10 t_{SC} 10 - 10 - 10 - 10 t_{SCA} - 20 - 22 - 25 - 25 t_{SCA} - 20 - 22 - 25 - 25 t_{SCA} - 20 - 22 - 25 - 25 t_{SCA} - 20 - 20 - 20 - 25 t_{SCA} - 20 - 20 - 20 - 20 t_{SIS} 0 - 0 - 0<</td> <td>-6- 7 -8 -10 Symbol Min Max Min Max Min Max Min Max Min Max Min Max Unit t_{SCC} 25 - 25 - 30 - ns t_{SC} 5 - 5 - 10 - ns t_{SC} 10 - 10 - 10 - ns t_{SCA} - 20 - 22 - 25 - 25 ns t_{SCA} - 20 - 22 - 25 - 25 ns t_{SCA} - 20 - 22 - 25 - 25 ns t_{SCA} - 20 - 20 - 25 ns 15 t_{SCA} - 20 - 20 - 20 ns 15 t_{SCH} 5 - 5 - 5 - 5 ns <t< td=""></t<></td>	-5- 7 -8 Symbol Min Max Min Max Min Max t_{SCC} 25 - 25 - 30 - t_{SC} 5 - 5 - 10 - t_{SC} 5 - 5 - 10 - t_{SC} 7 20 - 22 - 25 t_{SCA} - 20 - 20 - 20 t_{SCA} - 20 - 20 - 20 t_{SEZ} - 20 - 20 - 20 t_{SIH} 15 - 15 - 15 - t_{SWS} 5 - 5 - 5 - t_{SWH}	-6- 7 -8 -10 Symbol Min Max Min Max Min Max Min t_{SCC} 25 - 25 - 30 - 30 t_{SC} 5 - 5 - 10 - 10 t_{SC} 5 - 5 - 10 - 10 t_{SC} 10 - 10 - 10 - 10 t_{SCA} - 20 - 22 - 25 - t_{SEA} - 20 - 22 - 25 - t_{SCA} - 20 - 22 - 25 - t_{SCA} - 20 - 20 - 20 - 5 t_{SCH} 5 - 5 - 5 - 5 t_{SIS} 0 - 0 - 0 - 0 t_{SIH} 15 - 15 -<	-5- 7 -8 -10 Symbol Min Max Min Max Min Max Min t_{SCC} 25 - 25 - 30 - 30 t_{SC} 5 - 5 - 10 - 10 t_{SC} 5 - 5 - 10 - 10 t_{SC} 10 - 10 - 10 - 10 t_{SCA} - 20 - 22 - 25 - 25 t_{SCA} - 20 - 22 - 25 - 25 t_{SCA} - 20 - 22 - 25 - 25 t_{SCA} - 20 - 20 - 20 - 25 t_{SCA} - 20 - 20 - 20 - 20 t_{SIS} 0 - 0 - 0<	-6- 7 -8 -10 Symbol Min Max Min Max Min Max Min Max Min Max Min Max Unit t_{SCC} 25 - 25 - 30 - ns t_{SC} 5 - 5 - 10 - ns t_{SC} 10 - 10 - 10 - ns t_{SCA} - 20 - 22 - 25 - 25 ns t_{SCA} - 20 - 22 - 25 - 25 ns t_{SCA} - 20 - 22 - 25 - 25 ns t_{SCA} - 20 - 20 - 25 ns 15 t_{SCA} - 20 - 20 - 20 ns 15 t_{SCH} 5 - 5 - 5 - 5 ns <t< td=""></t<>

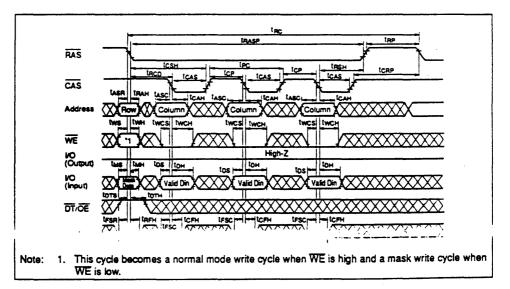

- Notes: 1. AC measurements assume $t_T = 5$ ns.
 - 2. When $t_{RCD} > t_{RCD}$ (max) or $t_{RAD} > t_{RAD}$ (max), access time is specified by t_{CAC} or t_{AA} .
 - 3. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Transition time t_T is measured between V_{IH} and V_{IL}.
 - Data input must be floating before output buffer is turned on. In read cycle, read-modify-write cycle and delayed write cycle, either t_{DZC} (min) or t_{DZC} (min) must be satisfied.
 - t_{OFF1} (max), t_{OFF2} (max) and t_{SEZ} (max) are defined as the time at which the output achieves the open circuit condition (V_{OH} - 100 mV, V_{OL} + 100 mV).
 - 6. Assume that t_{RCD} ≤ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
 - 7. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
 - 8. When $t_{RCD} \ge t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max), access time is specified by t_{CAC} .
 - 9. When $t_{RCD} \leq t_{RCD}$ (max) and $t_{RAD} \geq t_{RAD}$ (max), access time is specified by t_{AA} .
 - 10. If either t_{RCH} of t_{RRH} is satisfied, operation is guaranteed.
 - When t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle, and I/O pins remain in an open circuit (high impedance) condition.
 - 12. These parameters are specified by the later falling edge of CAS or WE.
 - Either t_{CDD} (min) or t_{ODD} (min) must be satisfied because output buffer must be turned off by CAS or OE prior to applying data to the device when output buffer is on.
 - 14. When t_{AWD} ≥ t_{AWD} (min) and t_{CWD} ≥ t_{CWD} (min) in read-modify-write cycle, the data of the selected address outputs to an I/O pin and input data is written into the selected address. t_{ODD} (min) must be satisfied because output buffer must be turned off by OE prior to applying data to the device.
 - 15. Measured with a load circuit equivalent to 2 TTL loads and 50 pF.
 - 16. After power-up, pause for 100 μs or more and execute at least 8 initialization cycle (normal memory cycle or refresh cycle), then start operation.

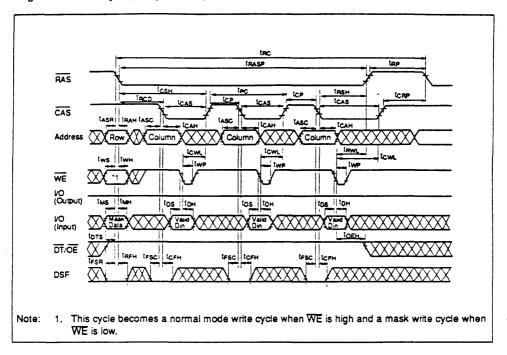
Timing Waveforms *17

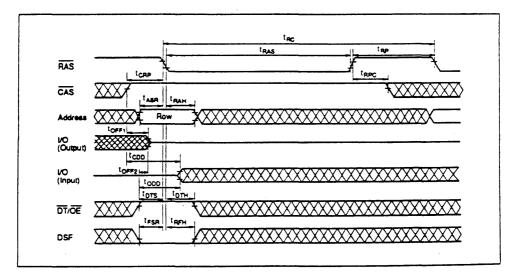


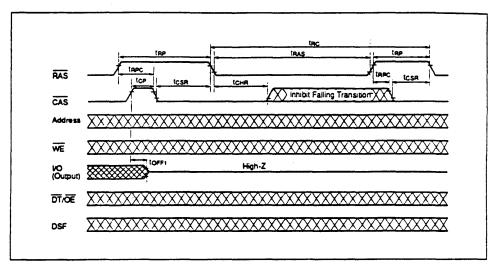


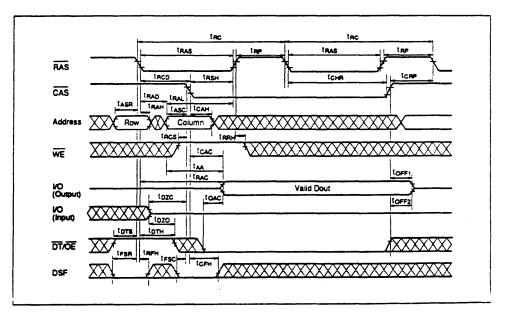

Delayed Write Cycle

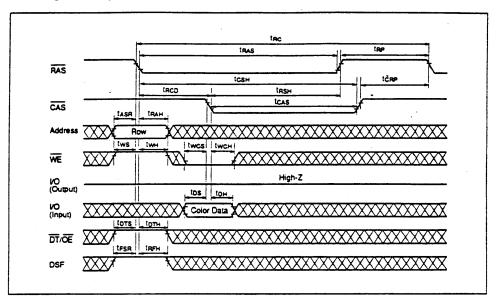

Read-Modify-Write Cycle

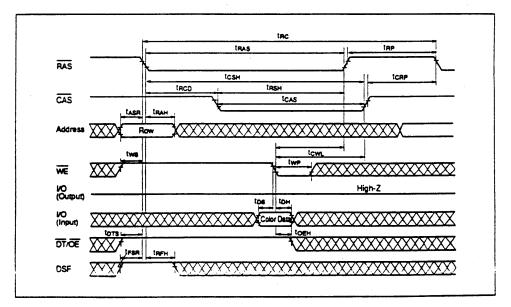

Page Mode Read Cycle

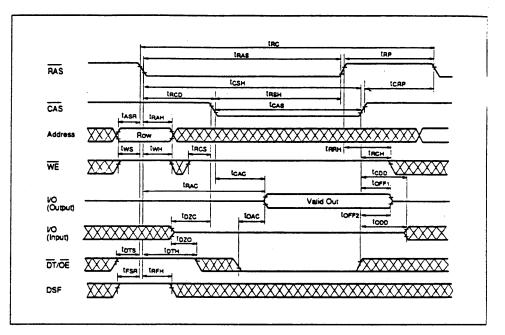

Page Mode Write Cycle (Early Write)

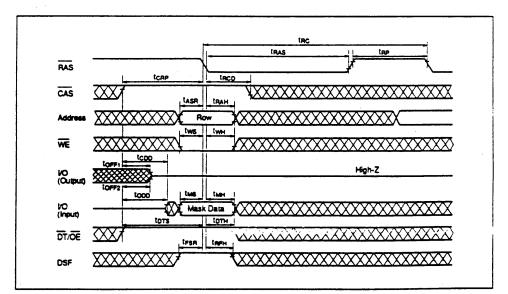

Page Mode Write Cycle (Delayed Write)

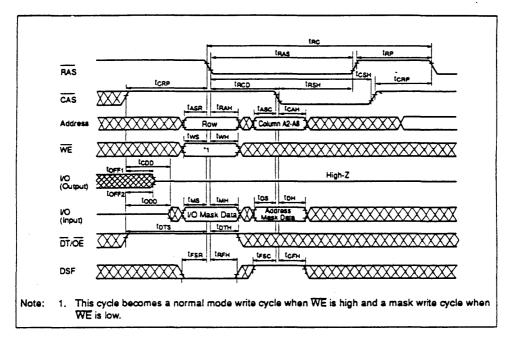

RAS-Only Refresh Cycle

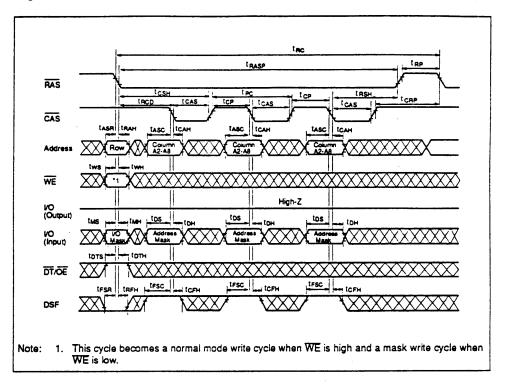

CAS-Before-RAS Refresh Cycle


Hidden Refresh Cycle

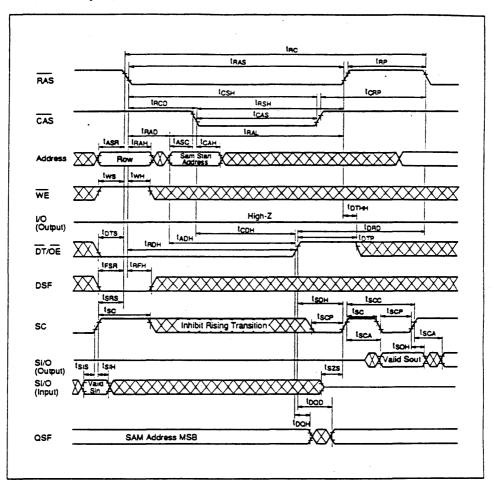

Color Register Set Cycle (Early Write)

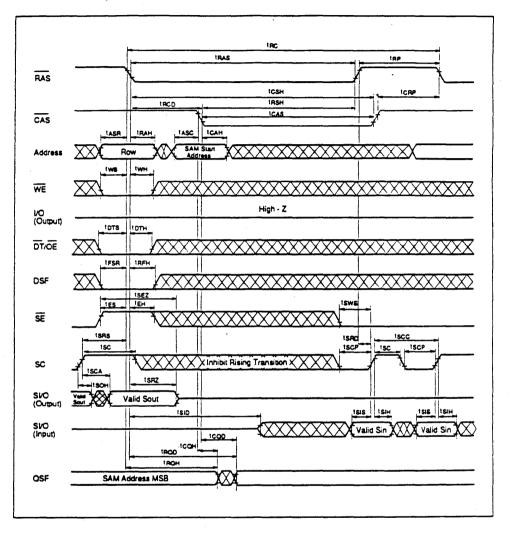

Color Register Set Cycle (Delayed Write)

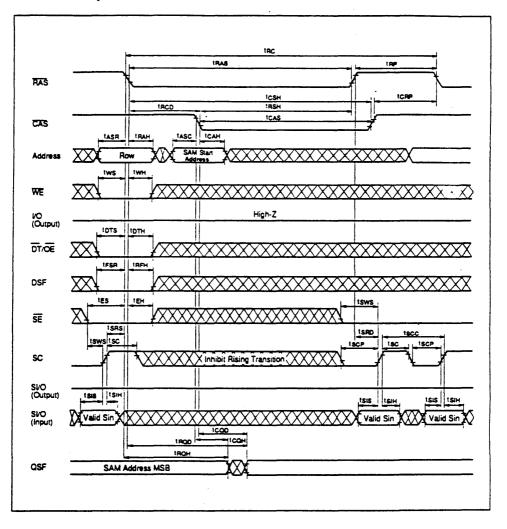

Color Register Read Cycle

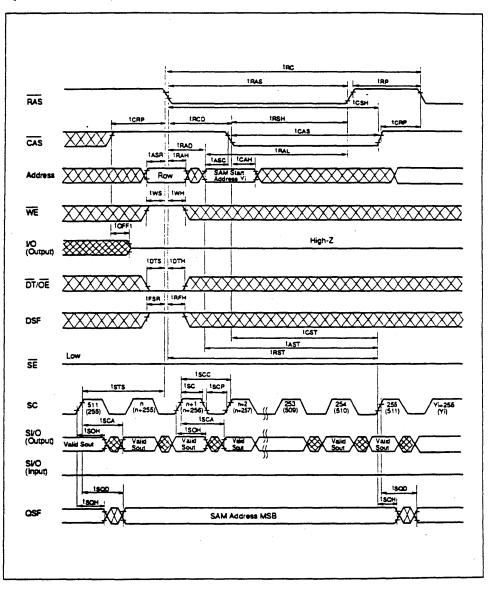


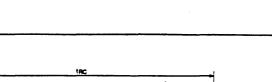
Block Write Cycle

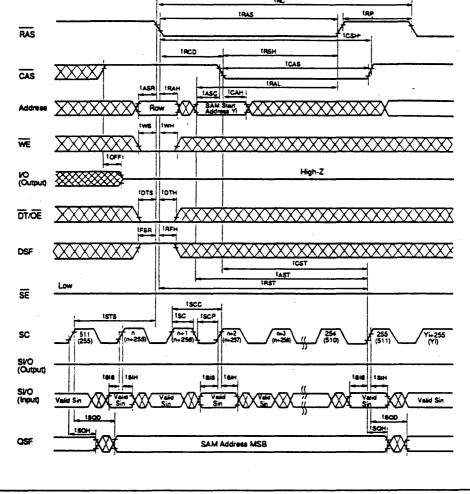

Page Mode Block Write Cycle

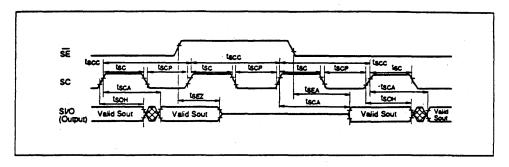

Read Transfer Cycle (1)

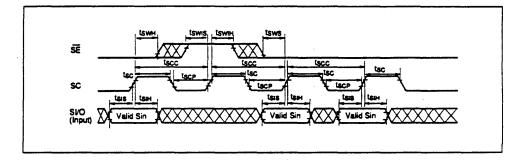

Read Transfer Cycle (2)


Pseudo Transfer Cycle

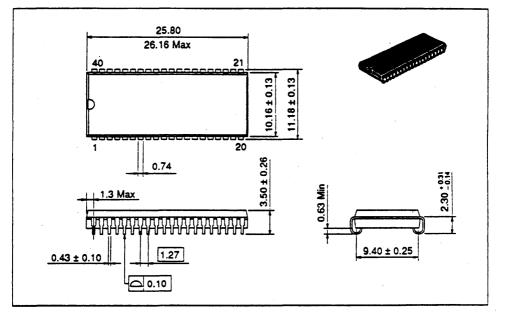

Write Transfer Cycle


Split Read Transfer Cycle


Split Write Transfer Cycle


HM538123B Series

Serial Read Cycle


Serial Write Cycle

Package Dimensions

Unit: mm

HM538123BJ Series (CP-40D)

262,144-Word x 8-Bit Multiport CMOS Video RAM

HITACHI

Rev. 5 Jul. 20, 1993

The HM538253 is a 2-Mbit multiport video RAM equipped with a 256-kword x 8-bit dynamic RAM and a 512-word x 8-bit SAM (full-sized SAM). Its RAM and SAM operate independently and asynchronously. The HM538253 has basically upward-compatibility with the HM534253A / HM538123A except that pseudo-write-transfer cycle is replaced with masked-write-transfer cycle, which has been approved by JEDEC. Furthermore, several new features are added to the HM538253 without conflict with the conventional features. Stopping column feature realizes much flexibility to the length of split SAM register. Persistent mask is also installed according to the TMS34020 features.

Features

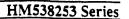
Multiport organization
 Asynchronous and simultaneous operation of
 RAM and SAM capability
 RAM: 256 kword x 8 bit
 SAM: 512 word x 8 bit

 Access time
 RAM: 70 ns/80 ns/100 ns (max)

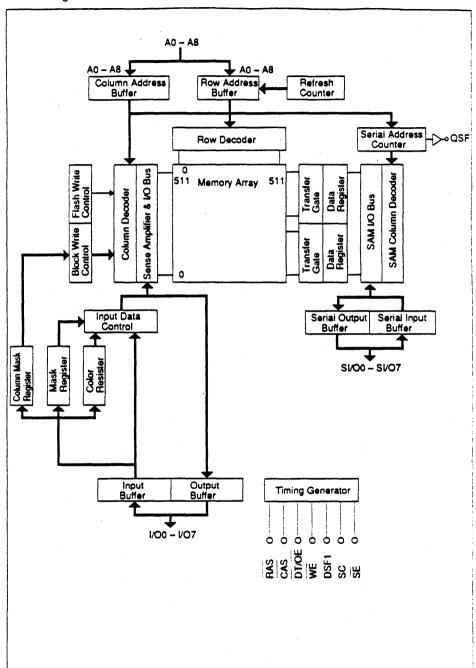
 SAM: 20 ns/23 ns/25 ns (max)

RAM: 130 ns/150 ns/180 ns (min) SAM: 25 ns/28 ns/30 ns (min)

- •Low power
- Active RAM: 605 mW/550 mW/495mW SAM: 358 mW/330 mW/303 mW Standby 38.5 mW (max)
- Masked-write-transfer cycle capability
- Stopping column feature capability
- •Persistent mask capability
- Fast page mode capability
- Cycle time: 45 ns/50 ns/55 ns
- Power RAM: 605 mW/578 mW/550 mW
- •Mask write mode capability


- •Bidirectional data transfer cycle between RAM and SAM capability
- •Split transfer cycle capability
- Block write mode capability
- •Flash write mode capability
- •3 variations of refresh (8 ms/512 cycles)
- RAS-only refresh
- CAS-before-RAS refresh
- Hidden refresh
- •TTL compatible

Ordering Information


Type No.	Access time	Package
HM538253J-7	70 ns	400 mil 40-pin plastic SOJ
HM538253J-8	80 ns	(CP-40D)
HM538253J-10	100 ns	
HM538253TT-7	70 ns	44-pin thin small outline package
HM538253TT-8	80 ns	(TTP-40DA)
HM538253TT-10	100 ns	
HM538253RR-7	70 ns	44-pin thin small outline package
HM538253RR-8	80 ns	(TTP-40DAR)
HM538253RR-10	100 ns	

93.09.02	
ADE-203-113E(Z)	

n Arrangement		Pin Descriptio	n
HM538253J Series		Pin name	Function
Vcc 1	40 🗌 V _{SS}	A0 - A8	Address inputs
SC 2 SVO0 3	39 🗋 SI/O7 38 🗋 SI/O6	1/00 - 1/07	RAM port data inputs/output
	37 SVO5	SI/00 - SI/07	SAM port data inputs/output
SI/O2 5 SI/O3 6	36 🔲 SI/O4 35 🗔 SE	HAS	Row address strobe
	34 1/07	CAS	Column address strobe
1/00 🔤 8	33 🛛 1/06		
	32 1/05 31 1/04	WE	Write enable
₩O2 [] 10 ₩O3 [] 11		DT/OE	Data transfer/output enable
	29 0 DSF1	SC	Serial clock
	28 DSF2		
		SE	SAM port enable
A8 🗌 15 A7 🗌 16	26 0SF 25 0 A0	DSF1, DSF2	Special function input flag
A6 [17	24 A1	QSF	Special function output flag
A5 🗌 18 A4 🗍 19	23 🗆 A2 22 🗋 A3	V _{cc}	Power supply
			Ground
(Top Vie			· · · · · · · · · · · · · · · · · · ·
		NL	No lead
HM538253TT Series		HM538253RR S	eries
Vcc 1	44 V _{SS}	Vss 🛛 44	
SC [] 2 SI/O0 [] 3	43 🔲 SVO7 42 🗌 SVO6	SVO7 (143) SVO6 (142)	2 SC
0,00 [] 3			3 SI/00
SVO1 14	41 🗄 SVOS		3 SVO0 4 SVO1
S1/01 🗖 4 S1/02 🗖 5		SVO5 41 SVO4 40	
SI/O2 5 SI/O3 6	41 SVOS	SVO5 41	4 51/01
S1/O2 5	41 SVO5 40 SVO4	SVO5 41 SVO4 40	4 SV01 5 SV02
SI/O2 5 SI/O3 6	41 SVO5 40 SVO4 39 SE 38 VO7 37 VO6	SVOS [41 SVO4 [40 SE [39	4 SUO1 5 SUO2 6 SUO2 6 SUO3 7 DTTOE 8 VO0
SI/O2 5 SI/O3 6 DT/OE 7 VOO 6 VO1 9	41 SVOS 40 SVO4 39 SE 38 VO7 37 VO6 36 VOS	SVOS [41 SVO4 [40 SE] 39 VO7 [38 VO6 [37 VO5] 36	4 SUO1 5 SVO2 6 SVO3 7 DTT/OE 8 VO0 9 VO1
SI/O2 S SI/O3 6 DT/OE 7 VOO 6 VO1 9 VO2 10	41 SVO5 40 SVO4 39 SE 38 VO7 37 VO6 36 VO5 35 VO4	SVOS [41 SVO4 [40 SE] 39 VO7 [38 VO6 [37 VO5 [36 VO4 [35	4 SUO1 5 SUO2 6 SUO3 7 DT/OE 8 U/O0 9 U/O1 10 U/O2
SI/O2 S SI/O3 6 DT/OE 7 VOO 6 VO1 9 VO2 10 NL 11	41 SVO5 40 SVO4 39 SE 38 VO7 37 VO6 36 VO5 35 VO4 34 NL	SVO5 41 SVO4 40 SE 39 VO7 38 VO6 37 VO5 36 VO4 35 NL 34	4 SUO1 5 SVO2 6 SVO3 7 DT/OE 8 VO0 9 VO1 10 VO2 11 NL
SI/O2 S SI/O3 6 DT/OE 7 VOO 8 VO1 9 VO2 10 NL 11 NL 12	41 SVOS 40 SVO4 39 SE 38 VO7 37 VO6 36 VO5 35 VO4 34 NL 33 NL	SVO5 41 SVO4 40 SE 39 VO7 38 VO6 37 VO5 36 VO4 35 NL 34 NL 33	4 SUO1 5 SUO2 6 SUO3 7 DTTOE 8 VO0 9 VO1 10 VO2 11 NL 12 NL
SI/O2 S SI/O3 6 DT/OE 7 VOO 8 VO1 9 VO2 10 NL 11 NL 12 VO3 13	41 SVO5 40 SVO4 39 SE 38 VO7 37 VO6 36 VO5 35 VO4 34 NL 33 NL 32 VS5	SVO5 41 SVO4 40 SE 39 VO7 38 VO6 37 VO5 36 VO4 35 NL 34 NL 33 VSS 32	4 SV01 5 SV02 6 SV03 7 DT/OE 8 V00 9 V01 10 V02 11 NL 12 NL 13 V03
SI/O2 5 SI/O3 6 DT/OE 7 VOO 8 VO1 9 VO2 10 NL 11 NL 12 VO3 13 VSS 14	41 SVO5 40 SVO4 39 SE 38 VO7 37 VO6 36 VO5 35 VO4 34 NL 33 NL 32 Vss 31 DSF1	SVO5 41 SVO4 40 SE 39 VO7 38 VO6 37 VO5 36 VO4 35 NL 34 NL 33 Vss 32 DSF1 31	4 SV01 5 SV02 6 SV03 7 DT/0E 8 V/00 9 V/01 10 V/02 11 NL 12 NL 13 V/03 14 VSS
SI/O2 5 SI/O3 6 DT/OE 7 VOO 8 VO1 9 VO2 10 NL 11 NL 12 VO3 13 VS5 14 WE 15	41 SVO5 40 SVO4 39 SE 38 VO7 37 VO6 36 VO5 35 VO4 34 NL 33 NL 32 Vss 31 DSF1 30 DSF2	SVO5 41 SVO4 40 SE 39 VO7 38 VO6 37 VO5 36 VO4 35 NL 33 V _{SS} 32 DSF1[31 DSF2] 30	4 SV01 5 SV02 6 SV03 7 DT/OE 8 V/00 9 V/01 10 V/02 11 NL 12 NL 13 V/03 14 V55 15 WE
SI/O2 5 SI/O3 6 DT/OE 7 VOO 8 VO1 9 VO2 10 NL 11 NL 12 VO3 13 V55 14 WE 15 RAS 16	41 SVO5 40 SVO4 39 SE 38 VO7 37 VO6 36 VO5 35 VO4 34 NL 33 NL 32 Vss 31 DSF1 30 DSF2 29 CAS	SVO5 41 SVO4 40 SE 39 VO7 38 VO6 37 VO5 36 VO4 34 NL 33 VS5 32 DSF1 31 DSF2 30 CAS 29	4 SV01 5 SV02 6 SV03 7 DT/OE 8 V/00 9 V/01 10 V/02 11 NL 12 NL 13 V/03 14 VSS 15 WE 16 RAS
SI/O2 5 SI/O3 6 DT/OE 7 VOO 8 VO1 9 VO2 10 NL 11 NL 12 VO3 113 VS5 14 WE 15 PAS 16 A8 17	41 SVO5 40 SVO4 39 SE 38 VO7 37 VO6 36 VO5 35 VO4 34 NL 33 NL 32 Vss 31 DSF1 30 DSF2 29 CAS 28 DSF	SVO5 41 SVO4 40 SE 39 VO7 38 VO6 37 VO5 36 VO4 35 NL 34 NL 33 Vss 32 DSF1 31 DSF2 30 CAS 29 QSF 28	4 SV01 5 SV02 6 SV03 7 DT/OE 8 V/00 9 V/01 10 V/02 11 NL 12 NL 13 V/03 14 V55 15 WE 16 FAS 17 A8
SI/O2 5 SI/O3 6 DT/OE 7 VOO 8 VO1 9 VO2 10 NL 11 NL 12 VO3 113 VSS 14 WE 15 RAS 16 A8 17 A7 18	41 SVO5 40 SVO4 39 SE 38 VO7 37 VO6 36 VO5 35 VO4 34 NL 33 NL 32 Vss 31 DSF1 30 DSF2 29 CAS 28 DSF 27 A0	SVO5 41 SV04 40 SE 39 V07 38 V06 37 V05 36 V04 35 NL 33 Vss 32 DSF1 31 OSF2 29 OSF1 28 A0 27	4 SV01 5 SV02 6 SV03 7 DT/OE 8 V00 9 V01 10 V02 11 NL 12 NL 13 V03 14 V35 15 WE 16 FAS 17 A8 18 A7
SI/O2 S SI/O3 6 DT/OE 7 VOO 8 VO1 9 VO2 10 NL 11 NL 12 VO3 13 VS5 14 WE 15 FAS 16 A8 17 A7 18 A6 19	41 SVO5 40 SVO4 39 SE 38 VO7 37 VO6 36 VO5 35 VO4 34 NL 33 NL 32 V _{SS} 31 DSF1 30 DSF2 29 CAS 28 DSF 27 A0 26 A1	SVO5 41 SVO4 40 SE 39 VO7 38 VO6 37 VO5 36 VO4 35 NL 33 V ₃₅ 31 DSF2 31 DSF2 30 CAS 29 OSF 27 A1 26	4 SV01 5 SV02 6 SV03 7 DT/OE 8 V00 9 V01 10 V02 11 NL 12 NL 13 V03 14 V35 15 WE 16 FAS 17 A8 18 A7 19 A6
SI/O2 S SI/O3 6 DT/OE 7 VOO 8 VO1 9 VO2 10 NL 11 NL 12 VO3 13 VSS 14 WE 15 PAS 16 A8 17 A7 18 A6 19 A5 20	41 SVO5 40 SVO4 39 SE 38 VO7 37 VO6 36 VO5 35 VO4 34 NL 33 NL 32 V _{SS} 31 DSF1 30 DSF2 29 CAS 28 DSF 27 A0 26 A1 25 A2	SVOS 41 SVO4 40 SE 39 VO7 38 VO6 37 VO5 36 VO4 35 NL 33 V35 31 OSF2 31 OSF2 32 OSF1 28 A0 27 A1 26 A2 25	4 SUO1 5 SUO2 6 SUO3 7 DT/OE 8 V/O0 9 V/O1 10 V/O2 11 NL 12 NL 13 V/O3 14 VSS 15 WE 16 FAS 17 A8 18 A7 19 A6 20 A5
SI/O2 5 SI/O3 6 DT/OE 7 VOO 8 VO1 9 VO2 10 NL 11 NL 12 VO3 13 VSS 14 WE 15 FAS 16 A6 17 A7 18 A6 19	41 SVO5 40 SVO4 39 SE 38 VO7 37 VO6 36 VO5 35 VO4 34 NL 33 NL 32 V _{SS} 31 DSF1 30 DSF2 29 CAS 28 DSF 27 A0 26 A1	SVO5 41 SVO4 40 SE 39 VO7 38 VO6 37 VO5 36 VO4 35 NL 33 V ₃₅ 31 DSF2 31 DSF2 30 CAS 29 OSF 27 A1 26	4 SUO1 5 SUO2 6 SUO3 7 DT/OE 8 V/O0 9 V/O1 10 V/O2 11 NL 12 NL 13 V/O3 14 VSS 15 WE 16 FAS 17 A8 18 A7 19 A6

Pin Functions

RAS (input pin): RAS is a basic RAM signal. It is active in low level and standby in high level. Row address and signals as shown in table 1 are input at the falling edge of RAS. The input level of these signals determine the operation cycle of the HM538253.

	RAS					CAS		Addre	55	I/On Input	
Mnemonic Code	CAS	ס/דם	E WE	DSF1	DSF2	DSF1	DSF2	FAS	CAS	FAS	CAS/WE
CBRS	0	-	0	1	0	-	0	Stop		-	-
CBRR	0	-	1	0	0	-	0	-			-
CBRN	0	-	1	1	0	-	0	-	-	-	-
мwт	1	0	. 0	0	0	-	0	Row	TAP	WM	-
MSWT	1	0	0	1	0	-	0	Row	TAP	WM	-
RT	1	0	1	0	0	-	0	Row	TAP	_	-
SRT	1	0	1	1	0	- ·	0	Row	TAP	-	-
RWM	1	1	0	0	0	0	0	Row	Column	WM	input data
Mnemonic	Write	Per		Register		No.of					•
Code	Mask	W.N		WM	Color	Bndry	Func	tion			
CBRS	-	-		-	-	Set	CBR	refresh	with stop r	esister	set
CBRR	- '	Res	iet	Reset	-	Reset	CBR	refresh	with regist	er rese	t
CBRN	-	-		-	-	-	CBR	refresh	(no reset)	_	
мwт	Yes	No Yes		Load/use Use	-		Mask	ed write	transfer (i	new/old	i mask)
MSWT	Yes	No Yes		Load/use Use	-	Use	Mask	ed split	write trans	ifer (ne	w/old mask
RT	-	-		-	-	-	Read	transfe	r		
SRT		-		-	-	Use	Split	read tra	nsfer		
RWM	Yes	No Yes		Load/use Use	-	-	Read	/write (r	iew/old ma	isk)	

Table 1. Operation Cycles of the HM538253

Mnemonic	FAS	5 CAS Address		88	l/On input						
Code	CAS	DT/OE	WE	DSF1	DSF2	DSF1	DSF2	FAS	CAS	RAS	CAS/WE
BWM	1	1	0	0	0	1	0	Row	Column	WM	Column Mask
RW (No)	1	1	1	0	0	0	0	Row	Column	-	Input Data
BW (No)	1	1	1	0	0	1	0	Row	Column	-	Column Mask
FWM	1	1	0	1	0	-	0	Row	-	WM	-
LMR and Old Mask S	1 et	1	1	1	0	0	0	(Row)		• -	Mask Data
LCR	1	1	1	1	0	1	0	(Row)	-	-	Color
Option	0	0	0	0	0	-	0	Mode	-	Data	-

Table 1. Operation Cycles of the HM538253 (cont) .

	Mnemonic Write		Register		No.of	
Mnemonic Code	Mask	Pers. W.M.	WM		Function	
BWM	Yes	No Yes	Load/use Block write Use Use –		Block write (new/old mask)	
RW (No)	No	No	-	-	-	Read/write (no mask)
BW (No)	No	No	-	Use	-	Block write (no mask)
FWM	Yes	No Yes	Load/use Use	Use	-	Masked flash write (new/old mask)
LMR and Old Mask S	_ et	Set	Load	-		Load mask register and old mask set
LCR	-	-	-	Load	-	Load color resister set
Option	-	-	-	-	-	<u></u>

Notes: 1. With CBRS, all SAM operations use stop register.

2. After LMR, RWM, BWM, FWM, MWT, and MSWT, use old mask which can be reset by CBRR.

3. DSF2 is fixed low in all operation. (for the addition of operation mode in future)

 \overline{CAS} (input pin): Column address and DSF1 signals are fetched into chip at the falling edge of \overline{CAS} , which determines the operation mode of the HM538253. \overline{CAS} controls output impedance of I/O in RAM.

A0 - A8 (input pins): Row address (AX0 - AX8) is determined by A0 - A8 level at the falling edge of RAS. Column address (AY0 - AY8) is determined by A0 - A8 level at the falling edge of CAS. In transfer cycles, row address is the address on the word line which transfers data with SAM data register, and column address is the SAM start address after transfer.

WE (input pin): WE pin has two functions at the falling edge of RAS and after. When WE is low at the falling edge of RAS, the HM538253 turns to mask write mode. According to the I/O level at the time, write on each I/O can be masked. (WE level at the falling edge of RAS is don't care in read cycle.) When WE is high at the falling edge of RAS, a no mask write cycle is executed. After that, WE switches read/write cycles. In a transfer cycle, the direction of transfer is determined by WE level at the falling edge of RAS. When WE is low, data is transferred from SAM to RAM (data ts written into RAM), and when WE is high, data is transferred from RAM to SAM (data is read from RAM).

I/O0 - I/O7 (input/output pins): I/O pins function as mask data at the falling edge of RAS (in mask write mode). Data is written only to high I/O pins. Data on low I/O pins are masked and internal data are retained. After that, they function as inut/output pins as those of a standard DRAM. In block write cycle, they function as column mask data at the falling edges of CAS and WE.

 $\overline{DT}/\overline{OE}$ (input pin): $\overline{DT}/\overline{OE}$ pin functions as \overline{DT} (data transfer) pin at the falling edge of \overline{RAS} and as \overline{OE} (output enable) pin after that. When \overline{DT} is low at the falling edge of \overline{RAS} , this cycle becomes a transfer cycle. When \overline{DT} is high at the falling edge of \overline{RAS} , RAM and SAM operate independently.

SC (input pin): SC is a basic SAM clock. In a serial read cycle, data outputs from an SI/O pin synchronously with the rising edge of SC. In a serial write cycle, data on an SI/O pin at the rising edge of SC is fetched into the SAM data register.

SE (input pin): SE pin activates SAM. When SE is high, SI/O is in the high impedance state in serial read cycle and data on SI/O is not fetched into the SAM data register in serial write cycle. SE can be used as a mask for serial write because the internal pointer is incremented at the rising edge of SC.

SI/O0 – SI/O7 (input/output pins): SI/Os are input/output pins in SAM. Direction of input/output is determined by the previous transfer cycle. When it was a read transfer cycle, SI/O outputs data. When it was a masked write transfer cycle, SI/O inputs data.

DSF1 (input pin): DSF1 is a special function data input flag pin. It is set to high at the falling edge of \overline{RAS} when new functions such as color register and mask register read/write, split transfer, and flash write, are used.

DSF2 (input pin): DSF2 is also a special function data input flag pin. This pin is fixed to low level in all operations of the HM538253.

QSF (output pin): QSF outputs data of address A8 in SAM. QSF is switched from low to high by accessing address 255 in SAM and from high to low by accessing address 511 address in SAM.

Operation of HM538253

RAM Port Operation

RAM Read Cycle ($\overline{DT}/\overline{OE}$ high, \overline{CAS} high and DSF1 low at the falling edge of \overline{RAS} , DSF1 low at the falling edge of \overline{CAS})

Row address is entered at the RAS falling edge and column address at the CAS falling edge to the device as in standard DRAM. Then, when WE is high and $\overline{DT}/\overline{OE}$ is low while CAS is low, the selected address data outputs through I/O pin. At the falling edge of RAS, $\overline{DT}/\overline{OE}$ and CAS become high to distinguish RAM read cycle from transfer cycle and CBR refresh cycle. Address access time (t_{AA}) and RAS to column address delay time (t_{RAD}) specifications are added to enable fast page mode.

RAM Write Cycle (Eraly Write, Delayed Write, Read-Modify-Write)

(DT/OE high, CAS high and DSF1 low at the falling edge of RAS, DSF1 low at the falling edge of CAS)

• No Mask Write Cycle (WE high at the falling edge of RAS)

When CAS is set low and WE is set low after RAS low, a write cycle is executed.

If WE is set low before the CAS falling edge, this cycle becomes an early write cycle and all I/O become in high impedance.

If WE is set low after the CAS falling edge, this cycle becomes a delayed write cycle. I/O does not become high impedance in this cycle, so data should be entered with \overline{OE} in high.

If WE is set low after t_{CWD} (min) and t_{AWD} (min) after the CAS falling edge, this cycle becomes a readmodify-write cycle and enables read/write at the same address in one cycle. In this cycle also, to avoid I/O contention, data should be input after reading data and driving \overline{OE} high.

• Mask Write Mode (WE low at the falling edge of RAS)

If WE is set low at the falling edge of RAS, two modes of mask write cycle are capable.

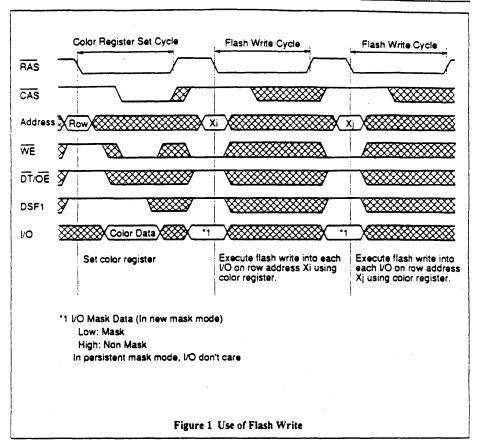
1. In new mask mode, mask data is loaded from I/O pin and used. Whether or not an I/O is written depends on I/O level at the falling edge of \overline{RAS} . The data is written in high level I/Os, and the data is masked and retained in low level I/Os. This mask data is effective during the \overline{RAS} cycle. So, in page mode cycles the mask data is retained during the page access.

2. If a load mask register cycle (LMR) has been performed, the mask data is not loaded from I/O pins and the mask data stored in mask registers persistently are used. This operation is known as persistent write mask, set by LMR cycle and reset by CBRR cycle.

Fast Page Mode Cycle ($\overline{DT}/\overline{OE}$ high, \overline{CAS} high and DSF1 low at the falling edge of \overline{RAS})

Fast page mode cycle reads/writes the data of the same row address at high speed by toggling \overline{CAS} while \overline{RAS} is low. Its cycle time is one third of the random read/write cycle. In this cycle, read, write, and block write cycles can be mixed. Note that address access time (t_{AA}) , \overline{RAS} to column address delay time (t_{RAD}) , and access time from \overline{CAS} precharge (t_{ACP}) are added. In one \overline{RAS} cycle, 512-word memory cells of the same row address can be accessed. It is necessary to specify access frequency within t_{RASP} max (100 µs).

Color Register Set/Read Cycle (CAS high, DT/OE high, WE high and DSF1 high at the falling edge of RAS)


In color register set cycle, color data is set to the internal color register used in flash write cycle or block write cycle. 8 bits of internal color register are provided at each I/O. This register is composed of static circuits, so once it is set, it retains the data until reset. Since color register set cycle is just as same as the usual read and write cycle, so read, early write and delayed write cycle can be executed. In this cycle, the HM538253 refreshes the row address fetched at the falling edge of RAS.

Mask Register Set/Read Cycle (CAS high, DT/OE high, WE high, and DSF1 high at the falling edge of RAS)

In mask register set cycle, mask data is set to the internal mask register used in mask write cycle, blockwrite cycle, flash write cycle, masked write transfer, and masked split write transfer. 8 bits of internal mask register are provided at each I/O. This mask register is composed of static circuits, so once it is set, it retains the data until next mask register set or reset (CBRR). Since mask register set cycle is just as same as the usual read and write cycle, so read, early write and delayed write cycle can be executed.

Flash Write Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ high, \overline{WE} low, and DSF1 high at the falling edge of \overline{RAS})

In a flash write cycle, a row of data (512 word x 8 bit) is cleared to 0 or 1 at each I/O according to the data of color register mentioned before. It is also necessary to mask I/O in this cycle. When CAS and $\overline{DT}/\overline{OE}$ is set high, WE is low, and DSF1 is high at the falling edge of RAS, this cycle starts. Then, the row address to clear is given to row address. Mask data is as same as that of a RAM write cycle. Cycle time is the same as those of RAM read/write cycles, so all bits can be cleared in 1/512 of the usual cycle time. (See figure 1.)

Block Write Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ high and DSF1 low at the falling edge of \overline{RAS} , DSF1 high and \overline{WE} low at the falling edge of \overline{CAS})

In a block write cycle, 4 columns of data (4 column x 8 bit) are cleared to 0 or 1 at each I/O according to the data of color register. Column addresses A0 and A1 are disregarded. The mask data on I/Os and the mask data on column address can be determined independently. I/O level at the falling edge of \overline{CAS} determines the address to be cleared. (See Figure 2.) The block write cycle is as the same as the usual write cycle, so early and delayed write, read-modify-write, and page mode write cycle can be executed.

• No mask Mode Block Write Cycle (WE high at the falling edge of RAS) The data on 8 I/Os are all cleared when WE is high at the falling edge of RAS.

• Mask Block Write Cycle (WE low at the falling edge of RAS)

When WE is low at the falling edge of RAS, the HM538253 starts mask block write cycle to clear the data on an optional I/O. The mask data is the same as that of a RAM write cycle. High I/O is cleared, low I/O is not cleared and the internal data is retained. In new mask mode, the mask data is available in the RAS cycle. In persistent mask mode, I/O don't care about mask mode.

	Colo	r Register Se	t Cycle B	lock Write (Cycle	Block	Write Cycle
RAS							
CAS	<u> </u>						
Address	Row		Row		2-48		olumn A2-A8
WE	8	×		<u> </u>		•1)	à <i>.</i>
DT/OE	8						*******
DSF1	8			8			
vo						1 680	oiumn Mask
_	•1						
	•1 •1	Mode					
	•1		VO data/RAS				
	·1	Mode					
	•1	Mode New Mask Mode Persistent	VO data/RAS Mask Don't care				
	·1	Mode New Mask Mode Persistent Mask	VO data/RAS Mask				
	-1 WE Low	Mode New Mask Mode Persistent	VO data/RAS Mask Don't care				
	-1 WE Low	Mode New Mask Mode Persistent Mask Mode No mask	VO data/RAS Mask Don't care (mask register u Don't care				
	*1 WE Low High	Mode New Mask Mode Persistent Mask Mode No mask	VO data/RAS Mask Don't care (mask register u				
	*1 WE Low High	Mode New Mask Mode Persistent Mask Mode No mask sk Data (in n	VO data/RAS Mask Don't care (mask register u Don't care new mask mode)				
	1 Low High VO Ma Loy	Mode New Mask Mode Persistent Mask Mode No mask isk Data (in n w: Mask gh: Non Mask	VO data/RAS Mask Don't care (mask register u Don't care new mask mode)	ised)			
	*1 WE Low High VO Ma Low High	Mode New Mask Mode Persistent Mask Mode No mask isk Data (in n w: Mask gh: Non Mask	VO data/RAS Mask Don't care (mask register u Don't care new mask mode)	ised)			
	*1 WE Low High VO Ma Low High	Mode New Mask Mode Persistent Mask Mode No mask Isk Data (in n w: Mask Data (in n w: Mask Data (in n Mask Data	VO data/RAS Mask Don't care (mask register u Don't care new mask mode)	ised)			
	*1 WE Low High VO Ma Lo Hig In pers Colum	Mode New Mask Mode Persistent Mask Mode No mask isk Data (in n w: Mask gh: Non Mask	VO data/RAS Mask Don't care (mask register u Don't care ww mask mode)	ised) are	Low: Mask		
	1 WE Low High VO Ma Lo Hig In pers Colum	Mode New Mask Mode Persistent Mask Mode No mask Sk Data (in n w: Mask gh: Non Mask Galumn0 (/ Column1 (/	VO data/RAS Mask Don't care (mask register u Don't care new mask mode) mode, VO don't ca MO = 0, A1 = 0) Ma	ised) are ask Data ask Data ask Data	Low: Mask		

Transfer Operation

The HM538253 provides the read transfer cycle, split read transfer cycle, masked write transfer cycle and masked split write transfer cycle as data transfer cycles. Theses transfer cycles are set by driving \overline{CAS} high and $\overline{DT}/\overline{OE}$ low at the falling edge of \overline{RAS} . They have following functions:

(1) Transfer data between row address and SAM data register

Read transfer cycle and split read transfer cycle: RAM to SAM

Masked write transfer cycle and masked split write transfer cycle: SAM to RAM

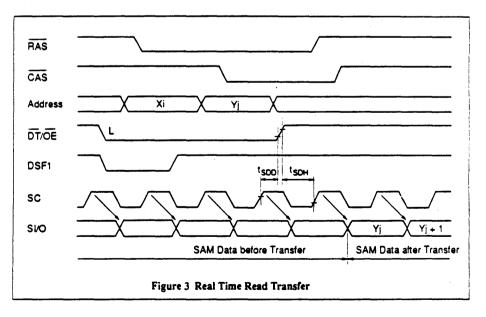
(2) Determine SI/O state (except for split read transfer cycle and masked split write transfer cycle)

Read transfer cycle: SI/O output

Masked write transfer cycle: SI/O input

(3) Determine first SAM address to access after transferring at column address (SAM start address).

SAM start address must be determined by read transfer cycle or masked write transfer cycle (split transfer cycle isn't available)before SAM access, after power on, and determined for each transfer cycle.


(4) Use the stopping columns (boundaries) in the serail shift register. If the stopping columns have been set, split transfer cycles use the stopping columns, but any boundaries cannot be set as the start address.
(5) Load/use mask data in masked write transfer cycle and masked split write transfer cycle.

Read Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WE} high and DSF1 low at the falling edge of \overline{RAS}).

This cycle becomes read transfer cycle by driving $\overline{DT/OE}$ low, \overline{WE} high and DSF1 low at the falling edge of RAS. The row address data (512 x 8 bits) determined by this cycle is transferred to SAM data register synchronously at the rising edge of $\overline{DT/OE}$. After the rising edge of $\overline{DT/OE}$, the new address data outputs from SAM start address determined by column address. In read transfer cycle, $\overline{DT/OE}$ must be risen to transfer data from RAM to SAM.

This cycle can access SAM even during transfer (real time read transfer). In this case, the timing t_{SDD} (min) specified between the last SAM access before transfer and DT/OE rising edge and t_{SDH} (min) specified between the first SAM access and DT/OE rising edge must be satisfied. (See figure 3.)

When read transfer cycle is executed, SI/O becomes output state by first SAM access. Input must be set high impedance before t_{SZS} (min) of the first SAM access to avoid data contention.

Masked Write Transfer cycle (CAS high, DT/OE low, WE low, and DSF1 low at the falling edge of RAS)

Masked write transfer cycle can transfer only selected I/O data in a row of data input by serial write cycle to RAM. Whether SAM data is transferred or not depends on the corresponding I/O level (mask data) at the falling edge of RAS. This mask transfer operation is the same as a mask write operation in RAM cycles, so the persistent mode can be supported. The row address of data transferred into RAM is determined by the address at the falling edge of RAS. The column address is specified as the first address for serial write after terminating this cycle. Also in this cycle, SAM access becomes enabled after t_{SRD} (min) after RAS becomes high. SAM access is inhibited during RAS low. In this period, SC must bot be risen. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other addresses of RAM by write transfer cycle. However, the adddress to write data must be the same as that of the read transfer cycle or the split read transfer cycle (row address AX8)

Split Read Transfer Cycle (CAS high, DT/OE low, WE high and DSF1 high at the falling edge of RAS)

To execute a continuous serial read by real time read transfer, the HM538253 must satisfy SC and DT/OE timings and requires an external circuit to detect SAM last address. Split read transfer cycle makes it possible to execute a continuous serial read without the above timing limitation.

The HM538253 supports two types of split register operation. One is the normal split register operation to split the data register into two halves. The other is the boundary split register operation using stopping columns described later.

Figure 4 shows the block diagram for the normal split register operation. SAM data register (DR) consists of 2 split buffers, whose organizations are 256-word x 8-bit each. Let us suppose that data is read from upper data reagister DR1 (The row address AX8 is 0 and SAM address A8 is 1.). When split read transfer is executed setting row address AX8 0 and SAM start addresses A0 to A7, 256-word x 8-bit data are transferred from RAM to the lower data register DR0 (SAM address A8 is 0) automatically. After data are read from data register DR1, data start to be read from SAM start addresses of data register DR0. If the next split read transfer is 't executed while data are read from data register DR0, data start to be read from SAM start addresses AX8 1 and SAM start addresses A0 to A7, split read transfer is executed while data are read from data register DR0, data start to be read from SAM start address 0 of DR1 after data are read from data register DR0. If split read transfer is executed setting row address AX8 1 and SAM start addresses A0 to A7 while data are read from data register DR1, 256-word x 8-bit data are transferred to data register DR2. After data are read from data register DR1, data start to be read from data register DR1. If split read transfer is 't executed while data is read from SAM start addresses 0 of data register DR1, data start to be read from data register DR1, data start to be read from data register DR2. If the next split read transfer isn't executed while data is read from data register DR2. In split read transfer is 0 of data register DR1 after data are read from SAM start address 0 of data register DR2. If the next split read transfer isn't executed while data is read from data register DR2. In split read transfer, the SAM start address A8 is automatically set in the data register DR2. In split read data transfer, the SAM start address A8 is automatically set in the data register DR2.

The data on SAM address A8, which will be accessed next, outputs to QSF, QSF is switched from low to high by accessing SAM last address 255 and from high to low by accessing address 511.

Split read transfer cycle is set when \overrightarrow{CAS} is high, $\overrightarrow{DT/OE}$ is low, \overrightarrow{WE} is high and DSF1 is high at the falling edge of \overrightarrow{RAS} . The cycle can be executed asyncronously with SC. However, HM538253 must be satisfied tSTS (min) timing specified between SC rising (Boundary address) and \overrightarrow{RAS} falling. In split transfer cycle, the HM538253 must satisfy t_{RST} (min), t_{CST} (min) and t_{AST} (min) timings specified between \overrightarrow{RAS} or \overrightarrow{CAS} falling and column address. (See figure 5.)

In split read transfer, SI/O isn't switched to output state. Therefore, read transfer must be executed to switch SI/O to output state when the previous transfer cycle is masked write transfer cycle or masked split write transfer cycle, or power on. SAM start address must be set in every split read transfer cycle.

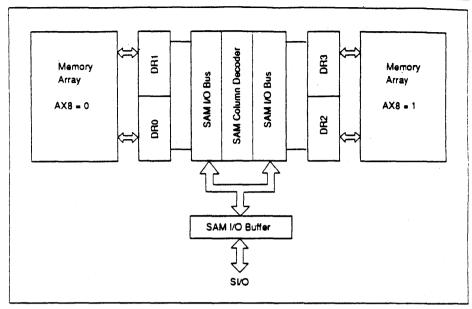


Figure 4 Block Diagram for Split Transfer

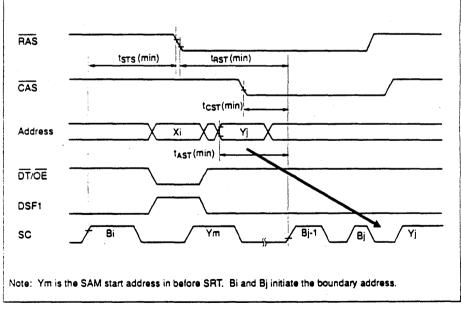
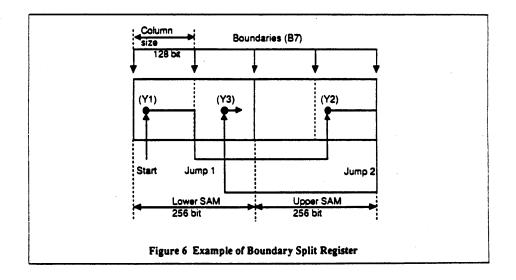


Figure 5 Limitation in Split Transfer


Masked Split Write Transfer Cycle (CAS high, DT/OE low, WE low and DSF1 high at the falling edge of RAS)

A continuous serial write cannot be executed because accessing SAM is inhibited during RAS low in write transfer. Masked split write transfer cycle makes it possible. In this cycle, t_{STS} (min), t_{RST} (min), t_{CST} (min) and t_{AST} (min) timings must be satisfied like split read transfer cycle. And it is impossible to switch SI/O to input state in this cycle. If SI/O is in output state, masked write transfer cycle should be executed to switch SI/O into input state. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other addresses of RAM by masked split write transfer cycle. However masked write transfer cycle, the WSB of row address (AX8) to write data must be the same as that of the read transfer cycle or the split read transfer cycle. In this cycle, the boundary split register operation using stopping columns is capable like split read transfer cycle.

Stopping Column in Split Transfer Cycle

The HM538253 has the boundary split register operation using stopping columns. If a CBRS cycle has been performed, split transfer cycle performs the boundary operation. Figure 6 shows an example of boundary split register. (Boundary code is B7.)

First of all a read transfer cycle is executed, and SAM start addresses A0 to A8 are set. The RAM data are transferred to the SAM, and SAM serial read starts from the start address (Y1) on the lower SAM. After that, a split read transfer cycle is executed, and the next start address (Y2) is set. The RAM data are transferred to the upper SAM. When the serial read arrive at the first boundary after the split read transfer cycle, the next read jumps to the start address (Y2) on the upper SAM (jump 1) and continues. Then the second split read transfer cycle is executed, and another start address (Y3) is set. The RAM data are transferred to the lower SAM. When the serial read arrive at the other boundary again, the next read jumps to the start address (Y3) on the lower SAM. In stopping column, split transfer is needed for jump operation between lower SAM and upper SAM.

Stopping Column Set Cycle (CBRS)

This cycle becomes stopping column set cycle by driving \overline{CAS} low, \overline{WE} low, DSF1 high at the falling edge of \overline{RAS} . Stopping column data (boundaries) are latched from address inputs on the falling edge of \overline{RAS} . To determine the boundary, A2 to A7 can be used and don't care A0, A1, and A8. In the HM538253, 7 types of boundary (B2 to B8) can be set including the default case. (See stopping column boundary table.) If A2 to A6 are set to high and A7 is set to low, the boundaries (B7) are selected. Figure 6 shows the example. The stop address that is set by the CBRS is used from next split transfer cycle. Once a CBRS is executed, the stopping column operation mode continues until CBRR.

		Stop	Address						
Boundary code	Column size	A2	A3	A4	A5	A6	A7		
B2	4	0	•	•	•	•	•		
B3	8	1	0	•	•	•	•		
B4	16	1	1	0	•	•	•		
B5	32	1	1	1	0	•	•		
B6	64	1	1	1	1	0	•		
87	128	1	1	1	1	1	0		
B8	256	1	1	1	1	1	1		

Stopping Column Boundary Table

Notes: 1.A0, A1, and A8: don't care 2.*: don't care

Register Reset Cycle (CBRR)

This cycle becomes register reset cycle (CBRR) by driving CAS low, WE high, and DSF1 low at the falling edge of RAS. A CBRR can reset the persistent mask operation and stopping column operation, so the HM538253 becomes the new mask operation and boundary code B8. When a CBRR is executed for stopping column operation reset and split transfer operation, it needs to satisfy t_{STS} (min) and t_{RST} (min) between RAS falling and SC rising for correct SAM read/write operation.

No Reset CBR Cycle (CBRN)

This cycle becomes no reset CBR cycle (CBRN) by driving CAS low, WE high and DSF1 high at the falling edge of RAS. The CBRN can only execute the refresh operation.

SAM Port Operation

Serial Read Cycle

SAM port is in read mode when the previous data transfer cycle is a read transfer cycle. Access is synchronized with SC rising, and SAM data is output from SI/O. When SE is set high, SI/O becomes high impedance, and the internal pointer is incremented by the SC rising. After indicating the last address (address 511), the internal pointer indicates address 0 at the next access.

Serial Write Cycle

If previous data transfer cycle is masked write transfer cycle, SAM port goes into write mode. In this cycle, SI/O data is fetched into data register at the SC rising edge like in the serial read cycle. If \overline{SE} is high, SI/O data isn't fetched into data register. The internal pointer is incremented by the SC rising, so \overline{SE} high can be used as mask data for SAM. After indicating the last address (address 511), the internal pointer indicates address 0 at the next access.

Refresh

RAM Refresh

RAM, which is composed of dynamic circuits, requires refresh cycle to retain data. Refresh is executed by accessing all 512 row addresses within 8 ms. There are three refresh cycles: (1) RAS-only refresh cycle, (2) CAS-before-RAS (CBRN, CBRS, and CBRR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which activate RAS, such as read/write cycles or transfer cycles, can also refresh the row addresses. Therefore, no refresh cycle is required when all row addresses are accessed within 8 ms.

(1) RAS-Only Refresh Cycle: RAS-only refresh cycle is executed by activating only the RAS cycle with CAS fixed to high after inputting the row address (= refresh address) from external circuits. To distinguish this cycle from a data transfer cycle, $\overline{DT}/\overline{OE}$ must be high at the falling edge of RAS.

(2) CBR Refresh Cycle: CBR refresh cycle (CBRN, CBRS and CBRR) are set by activating \overline{CAS} before \overline{RAS} . In this cycle, the refresh address need not to be input through external circuits because it is input through an internal refresh counter. In this cycle, output is in high impedance and power dissipation is lowered because \overline{CAS} circuits don't operate.

(3) Hidden Refresh Cycle: Hidden refresh cycle executes CBR refresh with the data output by reactivating RAS when DT/OE and CAS keep low in normal RAM read cycles. In the mask register read cycle and the color register read cycle, Dout data guaranteed while RAS and CAS are low, and so after the mask register read cycle or the color register read cycle is performed, in hidden refresh cycle Dout data is not guaranteed.

SAM Refresh

SAM parts (data register, shift resister and selector), organized as fully static circuitry, require no refresh.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Voltage on any pin relative to V _{SS}	V _T	-1.0 to +7.0	v	
Supply voltage relative to V _{SS}	V _{CC}	-0.5 to +7.0	v	
Short circuit output current	lout	50	mA	
Power dissipation	PT	1.0	W	
Operating temperature	Topr	0 to +70	°C	
Storage temperature	Tstg	-55 to +125	°C	

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply voltage	V _{CC}	4.5	5.0	5.5	V	1
Input high voltage	ViH	2.4		6.5	v	1
Input low voltage	VIL	-0.5*2	_	0.8	V	1

Notes: 1. All voltage referenced to V_{SS} 2 -3.0~V for pulse width \leq 10 ns.

DC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V$)

HM538253-7 HM538253-8 HM538253-10

Parameter	Symbol	Min	Max	Min	Max	Min	Max	Uni	Test cond	itions
Operating	ICC1		110	-	100	_	90	mΑ	RAS, CAS	SC = VIL. SE = VIH
current	ICC7		165		150		140	πA	cyding t _{RC} = min	SE = VIL, SC cycling, t _{SCC} = min
Block write	ICC18W	-	115	-	105	-	90	mA	RAS, CAS	SC= V _{IL} , SE= V _{IH}
current	ICC78W	-	170	-	155		140	mΑ	t _{RC} = min	SE = V _{IL} , SC cycling, t _{SCC} = min
Standby current	ICC2	-	7	-	7	-	7	mA	RAS, CAS =VIH	SC = VIL. SE = VIH
Current	ICC8	-	65	-	60	-	55	mA	= v IH	SE = V _{IL} , SC cycling, t _{SCC} = min
RAS-only refresh	lcc3		110	-	100	_	90	mA	RAS cycling	SC = VIL. SE = VIH
current	lcce		165	-	150		135	mA		SE = V _{IL} , SC cycling, t _{SCC} = min
Fast page mode	lcc4		110	_	105	-	100	mA	CAS cycling RAS = V _{II}	SC = V _{IL} , SE = V _{IH}
current *3	ICC 10	-	160	-	155		150	mA		SE = V _{IL} , SC cycling, t _{SCC} = min
Fast page mode block	ICC4BW		130	_	125		120	mA	CAS cycling RAS = V _{II}	SC = V _{IL} . SE = V _{IH}
write current *3	ICC10BW	-	185	-	175		165	mA		SE = V _{IL} , SC cycling, t _{SCC} = min
CAS-before- RAS refresh	lccs		85	_	75	_	65	mA	RAS cycling tRC = min	SC = VIL. SE = VIH
current	ICC11	-	140		130	_	120	mA		SE = V_{1L} , SC cycling, t_{SCC} = min
Data transfer current	lccs	-	130	-	115		100	mA	RAS, CAS	SC = VIL. SE = VIH
	ICC12	-	180		165		145	mA	t _{RC} = min	SE = VIL, SC cycling, t _{SCC} = min
Input leakage current	ILI	-10	10	-10	10	-10	10	μA		0 V ≤ Vin ≤ 7 V
Output leakage current	^I LO	-10	10	-10	10	-10	10	μ A		0 V ≤ Vout ≤ 7 V Dout, Sout = disable
Output high voltage	VOH	2.4		2.4		2.4	— ,	v	^I OH = -1 r	πΑ
Output low voitage	VOL .	-	0.4	-	0.4		0.4	v	IOL = 2.1	mA

Notes: 1. I_{CC} depends on output load condition when the device is selected. I_{CC} max is specified at the output open condition.

2. Address can be changed once while RAS is low and CAS is high.

3. Address can be changed once in 1 page cycle (tpc).

				· ((), add(css = + 5	
Parameter	Symbol	Тур	Max	Unit	Note
Input capacitance (Address)	C _{I1}		5	ρF	1
Input capacitance (Clocks)	C ₁₂	-	5	pF	1
Output capacitance (I/O, SI/O, QSF)	C _{1/O}		7	рF	1

Capacitance (Ta = 25°C, V_{CC} = 5 V ± 10%, f = 1 MHz, Bias: Clock, I/O = V_{CC} , address = V_{CS})

Notes: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%, V_{SS} = 0 V) *1, *16

Test Conditions

- Input rise and fall times: 5 ns

- Input pulse levels: V_{SS} to 3.0 V
- Input timing reference levels: 0.8 V, 2.4 V
- Output timing reference levels: 0.8 V, 2.0 V
- Output load: RAM 1TTL + CL (50 pF)
 - SAM, QSF 1TTL + CL (30 pF)

(Including scope and jig)

Common Parameter

Ain 80	Max		
00		Unit	Notes
		ns	
70		ns	
00	10000	ns	
25	·	ns	
)	-	ns	
0		ns	
)		ns	
15		ns	
20	75	ns	2
25	-	ns	
100		ns	
10		ns	
1	5 20 25 00	5 — 10 75 15 — 00 —	5 — ns 10 75 ns 15 — ns 00 — ns

Common Parameter (cont)

Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Transition time (rise to fall)	t _T	3	50	3	50	3	50	ns	3
Refresh period	^t REF	- <u>-</u> -	8	_	8		8	ms	
DT to RAS setup time	tots	0		0		0		ns	
DT to RAS hold time	^t DTH	10		10		10		ńs	
DSF1 to RAS setup time	^t FSR	0		0		0.	-	ns	
DSF1 to RAS hold time	^t RFH	10		10	_	10		ns	
DSF1 to CAS setup time	^t FSC	0	-	0	-	0		ns	
DSF1 to CAS hold time	^t CFH	12		15		15	-	ns	
Data-in to CAS delay time	tozc	0		0		0	_	ns	4
Data-in to OE delay time	tozo	0	-	0	_	0	_	ns	4
Output buffer turn-off delay referenced to CAS	OFF1		15	-	20	-	20	ns	5
Output buffer turn-off delay referenced to OE	¹ OFF2	-	15	-	20	_	20	ns	5
المحافظة المتحرينية المتحدينية المتحليلة المتحاف وتحصي والشمي والمتحد والمتحد		-	_					_	

HM538253-7 HM538253-8 HM538253-10

Read Cycle (RAM), Page Mode Read Cycle

Parameter	Symbol	Min	Mex	Min	Max	Min	Max	Unit	Notes
Access time from RAS	TRAC		70	-	80	-	100	ns	6, 7
Access time from CAS	¹ CAC	_	20	-	20		25	ns	7, 8
Access time from OE	¹ OAC	_	20		20		25	ns	7
Address access time	tAA	_	35	-	40		45	ns	7,9
Read command setup time	IACS	0	_	0	_	0	_	ns	
Read command hold time	¹ ясн	0	-	0	-	0	_	ns	10
Read command hold time referenced to RAS	^t RRH	0	-	5		10	-	ns	10
RAS to column address delay time	IRAD	15	35	15	40	15	55	ns	2
Column address to RAS lead time	IRAL	35		40		45	_	ns	
Column address to CAS lead time	^t CAL	35	-	40	-	45	-	ns	
Page mode cycle time	^t PC	45		50	-	55		ns	
CAS precharge time	1CP	7	_	10	-	10	_	ns	
Access time from CAS precharge	TACP		40		45	_	50	ns	
Page mode RAS pulse width	IRASP	70	100000	80	100000	100	100000	ns	

HM538253-7 HM538253-8 HM538253-10

		HMS	38253-7	HM5	38253-8	HM5	38253-10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write command setup time	twcs	0	-	0	-	0	·	ns	11
Write command hold time	twch	12		15	-	15	-	ns	
Write command pulse width	twp	12	-	15		15	-	ns	
Write command to RAS lead time	^t RWL	20	-	20	— `	20	-	ns	
Write command to CAS lead time	tcwL	20	-	20	-	20 ·	_	ns	
Data-in setup time	tos	0	-	0		0	_	ns	12
Data-in hold time	^t DH	12	-	15		15	-	ns	12
WE to RAS setup time	^t ws	0		0	-	0	-	ns	
WE to HAS hold time	twн	10	-	10	-	10	-	ns	
Mask data to RAS setup time	^t MS	0	-	0	-	0	-	ns	
Mask data to RAS hold time	^t мн	10	-	10	-	10	_	ns	
OE hold time referenced to WE	¹ ОЕН	15	-	20		20		ns	
Page mode cycle time	^t PC	45		50		55	_	ns	
CAS precharge time	tCP	7	-	10	-	10		ńs	
CAS to data-in delay time	tCDD	15	-	20		20	-	ns	13
Page mode RAS pulse width	TRASP	70	100000	80	100000	100	100000	ns	

Read-Modify-Write Cycle

							0230-10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read-modify-write cycle time	tawc	180		200		230		ńs	
RAS pulse width (read-modify-write cycle)	taws	120	10000	130	10000	150	10000	ns	
CAS to WE delay time	tcwp	40		45	-	50		ns	14
Column address to WE delay time	tAWD	60		65	_	70		ns	14
OE to data-in delay time	topp	15		20		20 -	_	ns	12
Access time from RAS	TRAC	_	70	-	80	-	100	ns	6, 7
Access time from CAS	^t CAC	-	20		20	-	25	ns	7, 8
Access time from OE	^t OAC		20		20		25	ns	7
Address access time	t _{AA}		35	_	40		45	ns	7, 9
RAS to column address delay time	^t RAD	15	35	15	40	15	55	ns	
Read command setup time	^t RCS	0		0		0	_	ns	
Write command to RAS lead time	IRWL	20		20	-	20		ns	
Write command to CAS lead time	tCWL	20	-	20	_	20		ns	
Write command pulse width	twp	12	-	15		15		ns	
Data-in setup time	tos	0		0		0	_	ns	12
Data-in hold time	^t DH	12	_	15		15	-	ns	12
OE hold time referenced to WE	юен	15	_	20	_	20	_	ns	
								_	

HM538253-7 HM538253-8 HM538253-10

Refresh Cycle

		HM5	38253-7	HM538253-8		HM538253-10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit Notes
CAS setup time (CAS-before-HAS refresh)	^t CSR	10		10	_	10	_	ns
CAS hold time (CAS-before-RAS refresh)tCHR	10	_	10	_	10	_	ns
RAS precharge to CAS hold time	^t RPC	10		10		10		n s

Flash Write Cycle, Block Write Cycle, and Register Read Cycle

		_							
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
CAS to data-in delay time	tCDD	15	_	20		20 ·		ns	13
OE to data-in delay time	1000	15	-	20	-	20	_	ns	13

HM538253-7 HM538253-8 HM538253-10

CBR Refresh with Register Reset

		HM538253-7		HM538253-8		HM538253-10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit Notes
Split transfer setup time	^t STS	20	-	20		25		ns
Split transfer hold time referenced to RAS	IAST	70		80		100	_	ns

Read Transfer Cycle

		HM5	38253-7	H M5 :	38253-8	H M5 3	8253-10		
DT hold time referenced to CAS Thold time referenced to column address DT precharge time DT to FIAS delay time SC to FIAS setup time st SC to FIAS hold time st SC to CAS hold time	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
DT hold time referenced to RAS	^t RDH	60	10000	65	10000	80	10000	ns	
DT hold time referenced to CAS	^t CDH	20	_	20		25		ns	
DT hold time referenced to column address	^t ADH	25		30	_	30		ns	
DT precharge time	^t DTP	20	_	20		30		ns	
DT to RAS delay time	^t DRD	60		70		80		ns	
SC to HAS setup time	tsas	15	_	20		30		ns	
1st SC to RAS hold time	^t SRH	70	-	80		100		ns	
1 st SC to CAS hold time	^t SCH	25		25		25	_	ns	
1st SC to column address hold time	tSAH	40		45		50	-	ns	
Last SC to DT delay time	tSDD	5		5		5	-	ns	
1 st SC to DT hold time	^t SDH	10	-	13	_	15	-	ns	
DT to QSF delay time	toqo	_	30		35	-	35	ns	15

Read Transfer Cycle (cont)

		1 1141-2			10203-0	111123	0233-10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
QSF hold time referenced to DT	^t DQH	5	-	5	_	5		ns	
Serial data-in to 1st SC delay time	tszs	0	_	0	-	0	-	ns	
Serial clock cycle time	tscc	25	_	28	_	30		ns	
SC pulse width	tsc	5	-	10	_	10	·	ns	
SC precharge time	tSCP	10	-	10	-	10 -	-	ns	
SC access time	^t SCA		20	-	23	-	25	ns	15
Serial data-out hold time	^t SOH	5	-	5	-	5	-	ns	
Serial data-in setup time	tsi s	0	_	0	_	0		ns	
Serial data-in hold time	^t SIH	15	-	15	-	15		ns	
RAS to column address delay time	^t RAD	15	35	15	40	15	55	ns	
Column address to RAS lead time	^t RAL	35	-	40	_	45	_	ns	
RAS to QSF delay time	tROD	_	70		75		85	ns	15
CAS to QSF delay time	tcop		35	_	35		35	ns	15
QSF hold time referenced to RAS	^t ROH	20	_	20	-	25	_	ns	
QSF hold time referenced to CAS	^t COH	5	_	5		5		ns	
								-	

HM538253-7 HM538253-8 HM538253-10

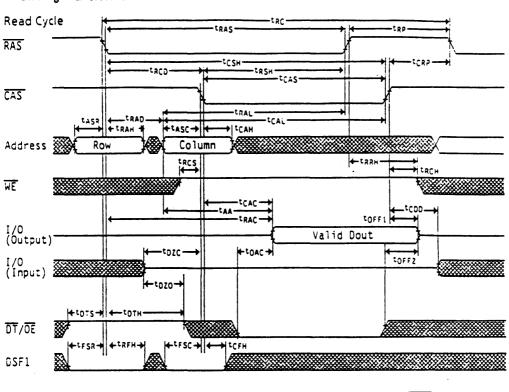
Masked Write Transfer Cycle

		rimo	38253-/	nwo:	38253-8	HM53	8253-10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
SC setup time referenced to RAS	^t SRS	15		20	_	30	-	ns	
RAS to SC delay time	^t SRD	20		25		25		ns	
Serial output buffer turn-off time referenced to RAS	^t SRZ	10	30	10	35	10	50	ns	
HAS to serial data-in delay time	^t SID	30	—	35	-	50	-	ns	
RAS to QSF delay time	^t RQD	-	70	-	75	-	85 .	ns	15
CAS to QSF delay time	tcap	-	35		35	-	35	ns	15
QSF hold time referenced to RAS	^t ROH	20		20	-	25	_	ns	
QSF hold time referenced to CAS	tсан	5	_	5		5	_	ns	
Serial clock cycle time	tscc	25	-	28	-	30		ns	
SC pulse width	tsc	5	-	10	-	10	-	ns	
SC precharge time	ISCP	10	. —	10		10	-	ns	
SC access time	^t SCA	_	20	-	23	-	25	ns	15
Serial data-out hold time	¹ SOH	5	_	5		5		ns	
Serial data-in setup time	tsis	0	_	0		0	_	ns	
Serial data-in hold time	tSIH	15		15	-	15		ns	
······································									

HM538253-7 HM538253-8 HM538253-10

Split Read Transfer Cycle, Masked Split Write Transfer Cycle

Symbol								
	Min	Max	Min	Max	Min	Max	Unit	Notes
^t s⊤s	20	-	20	-	25		ns	
IRST	70	-	80	-	100	-	ns	
^t CST	20	_	20	_	25	_	ns	
IAST	35	_	40	-	45		ns	
tsad	-	30		30	-	30	ns	15
tsQH	5	-	5	_	5	_	ns	
tscc	25	_	28	_	30	— .	ns	
tsc	5	-	10		10		ns	
^t SCP	10	_	10		10	-	ns	
^t SCA	-	20		23	-	25	ns	15
^t SOH	5		5		5		ns	
tsis	0	_	0	_	0	_	ns	
tsiH	15	-	15	_	15	_	ns	
^t RAD	15	35	15	40	15	55	ns	
^t RAL	35	_	40	-	45	_	ns	
	¹ STS ¹ RST ¹ CST ¹ AST ¹ SQD ¹ SQH ¹ SCC ¹ SCA ¹ SCA ¹ SCA ¹ SCA ¹ SCH ¹ SCA ¹ SCA	IRST 70 IRST 70 ICST 20 IAST 35 ISQD — ISQH 5 ISCC 25 ISC 5 ISCP 10 ISCA — ISOH 5 ISOH 5 ISOH 5 ISOH 15 ISIH 15 IRAD 15	tsts 20 — tRST 70 — tCST 20 — tCST 20 — tST 35 — tSQD — 30 tSC 5 — tSCP 10 — tSCA — 20 tSOH 5 — tSCA — 20 tSOH 5 — tSIS 0 — tSIS 0 — tSIH 15 — tRAD 15 35	tSTS 20 — 20 tRST 70 — 80 tCST 20 — 20 tAST 35 — 40 tSQD — 30 — tSQH 5 — 5 tSCF 10 — 10 tSCA — 20 — tSOH 5 — 5 tSIS 0 — 0 tSIS 0 — 0 tSIH 15 — 15 tRAD 15 35 15	tsts 20 20 20 tRST 70 80 tCST 20 20 tCST 20 20 tAST 35 40 tSQD 30 30 tSQD 30 30 tSQD 30 30 tSQD 30 30 tSCP 5 5 tSCA 20 23 tSCA 20 23 tSOH 5 5 tSIS 0 0 tSIS 0 0 tSIH 15 15 tRAD 15 35 15 40	tSTS 20 $-$ 20 $-$ 25 tRST 70 $-$ 80 $-$ 100 tCST 20 $-$ 20 $-$ 25 tAST 35 $-$ 40 $-$ 45 tSQD $-$ 30 $-$ 30 $-$ tSQL 25 $-$ 28 $-$ 30 tSCC 25 $-$ 28 $-$ 30 tSCP 10 $-$ 10 $-$ 10 tSCA $-$ 20 $-$ 23 $-$ tSIS 0 $-$	tsts 20 20 20 25 $-$ tRST 70 $=$ 80 $ 100$ $-$ tCST 20 $ 25$ $-$ tST 35 $ 20$ $ 25$ $-$ tSQD 20 $ 25$ $-$ tSQD $ 30$ $ 40$ $ 45$ $-$ tSQD $ 30$ $ 30$ $ 30$ $ 30$ tSQD $ 30$ $ 30$ $ 30$ $ 30$ tSQD $ 30$ $ 30$ $ 30$ $-$ tSCC 25 $ 28$ $ 30$ $-$ tSCP 10 $ 10$ $ 10$ $-$ tSCA $ 20$ $ 23$ $ 25$ $-$ tSCA $ 20$ $ 23$ $-$ <td>tSTS 20 20 25 -100 ns tRST 70 80 100 ns tCST 20 20 25 ns tCST 20 25 ns tST 35 40 45 ns tSQD 30 30 30 ns tSQD 30 30 30 ns tSQD 30 30 30 ns tSQD 30 30 ns tSQL 25 5 5 ns tSQL 25 20 23 25 ns tSCA 20 23 25 ns</td>	tSTS 20 20 25 -100 ns tRST 70 $ 80$ $ 100$ $ ns$ tCST 20 $ 20$ $ 25$ $ ns$ tCST 20 $ 25$ $ ns$ tST 35 $ 40$ $ 45$ $ ns$ tSQD $ 30$ $ 30$ $ 30$ ns tSQD $ 30$ $ 30$ $ 30$ ns tSQD $ 30$ $ 30$ $ 30$ ns tSQD $ 30$ $ 30$ $ ns$ tSQL 25 $ 5$ $ 5$ $ ns$ tSQL 25 $ 20$ $ 23$ $ 25$ ns tSCA $ 20$ $ 23$ $ 25$ ns

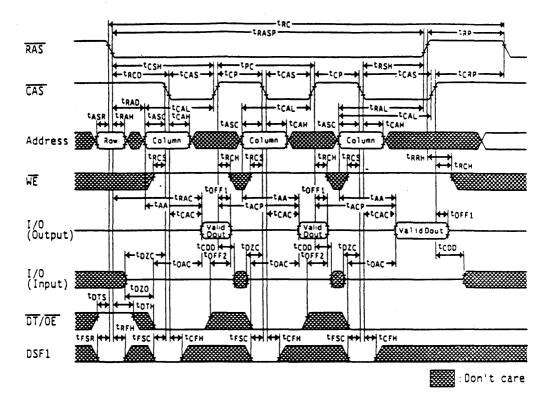

HM538253-7 HM538253-8 HM538253-10

Serial Read Cycle, Serial Write Cycle

Parameter	Symbol								
		Min	Max	Min	Max	Min	Max	Unit	Notes
Serial clock cycle time	tscc	25		28		30		ns	
SC pulse width	tsc	5	-	10	_	10	_	ns	
SC precharge width	^t SCP	10	-	10		10	_	ns	
Access time from SC	^t SCA	-	20	_	23	-	`25	ns	15
Access time from SE	¹ SEA		17	_	20		25	ns	15
Serial data-out hold time	^t SOH	5	_	5	-	5		ns	
Serial output buffer turn-off time referenced to SE	^t SHZ	-	15	_	20		20	ns	5,17
SE to serial output in low-Z	tsLZ	0		0	-	0		ns	5,17
Serial data-in setup time	tsis	0	-	0	-	0	_	ns	
Serial data-in hold time	tsiH	15		15	_	15	_	ns	
Serial write enable setup time	tsws	0	_	0	_	0	_	ns	
Serial wrtie enbable hold time	tswH	15		15		15		ns	
Serial write disable setup time	tswis	0		0		0	_	ns	
Serial write disable hold time	^t SWIH	15		15		15		ns	

HM538253-7 HM538253-8 HM538253-10

- Notes: 1. AC measurements assume $t_T = 5$ ns.
 - 2. When tRCD > tRCD (max) and tRAD > tRAD (max), access time is specified by tCAC or tAA.
 - V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Transition time t_T is measured between V_{IH} and V_{II}.
 - Data input must be floating before output buffer is turned on. In read cycle, read-modify-write cycle and delayed write cycle, either t_{DZC} (min) or t_{DZO} (min) must be satisfied.
 - t_{OFF1} (max), t_{OFF2} (max), t_{SHZ} (max) and t_{SLZ} (min) are defined as the time at which the output acheives the open circuit condition (V_{OH} - 100 mV, V_{OL} + 100 mV). This parameter is sampled and not 100% tested.
 - Assume that t_{RCD} ≤ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
 - 7. Measured with a load circuit equivalent to 1 TTL loads and 50 pF.
 - When t_{RCD ≥} t_{RCD} (max) and t_{RAD ≤} t_{RAD} (max), access time is specified by t_{CAC}.
 - When t_{RCD} ≤ t_{RCD} (max) and t_{RAD} ≥ t_{RAD} (max), access time is specified by t_{AA}.
 - 10. If either tRCH or tRRH is satisfied, operation is guaranteed.
 - 11. When t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle, and *V*O pins remain in an open circuit (high impedance) condition.
 - 12. These parameters are specified by the later falling edge of CAS or WE.
 - 13. Either t_{CDD} (min) or t_{ODD} (min) must be satisfied because output buffer must be turned off by CAS or OE prior to applying data to the device when output buffer is on.
 - 14. When t_{AWD} ≥ t_{AWD} (min) and t_{CWD} ≥ t_{CWD} (min) in read-modify-write cycle, the data of the selected address outputs to an I/O pin and input data is written into the selected address. t_{ODD} (min) must be satisfied because output buffer must be turned off by OE prior to applying data to the device.
 - 15. Measured with a load circuit equivalent to 1 TTL loads and 30 pF.
 - 16. After power-up, pause for 100 μs or more and execute at least 8 initialization cycle (normal memory cycle or refresh cycle), then start operation. Hitachi recommends that least 8 initialization cycle is the CBRR for internal register reset. This CBRR need not t_{STS} and t_{RST}.
 - 17. When t_{SHZ} and t_{SLZ} are measured in the same VCC and Ta condition and tr and tf of SE are less than 5 ns, t_{SHZ} ≤ t_{SLZ} + 5 ns. This parameter is sampled and not 100% tested.
 - 18. After power-up, QSF output may be High-Z, so 1SC cycle is needed to be Low-Z it.
 - DSF2 pin is open pin, but Hitachi recommends it is fixed low in all operation for the addition mode in future.


:Con't care

· · · · · ·

Timing Waveforms

OHITACHI

Fast Page Mode Read Cycle

AUTAOUI

Write Cycle

The write cycle state table as shown below is applied to early write, delayed write, page mode write, and read-modify write.

Write Cycle State Table

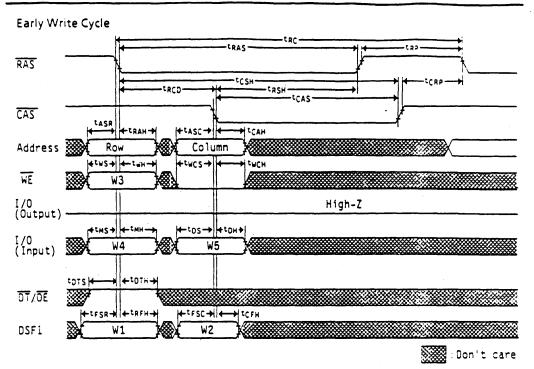
		FAS	CAS	FAS	FAS	CAS
		DSF1	DSF1	WE	vo	VO
Menu	Cycle	W1	W2	W3	W4	W5
RWM	Write mask (new/old) Write DQs to I/Os	0	0	0	Write mask*1	Valid data
BWM	Write mask (new/old) Block write	0	1	0	Write mask ¹²	Column mask ^{*2}
RW	Normal write (no mask)	0	0	1	Don't care'1	Valid data
BW	Block write (no mask)	0	1	1	Don't care*2	Column mask ²
LMR'4	Load mask resister	1	0	1	Don't care	Mask data ¹³
LCR'4	Load color resister	1	1	1	Don't care	Color data

Note 1

WE	Mode	VO data/RAS
Low	New Mask Mode	Mask
	Persistent Mask Mode	Don't care (mask register used)
High	No mask	Don't care

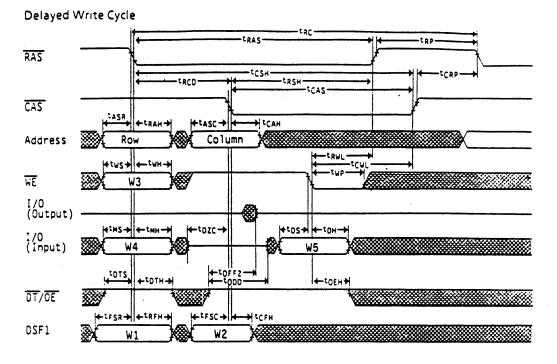
I/O Mask Data (In new mask mode)

Low: Mask


High: Non Mask

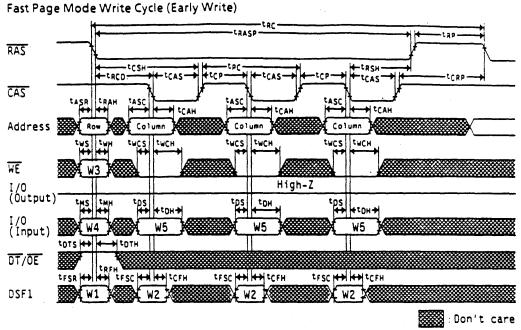
In persistent mask mode, VO don't care

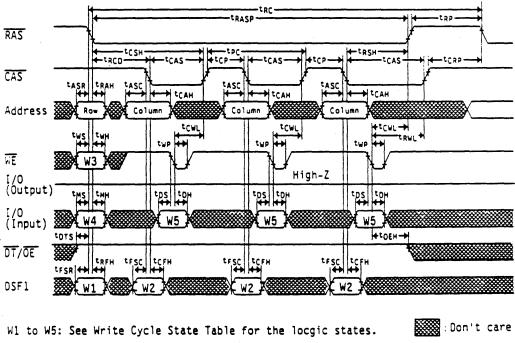
Note 2: reference Figure 2 use of Block Write


Note 3: I/O Write Mask Data Low: Mask High: Non mask

Note 4: Column Address: Don't care

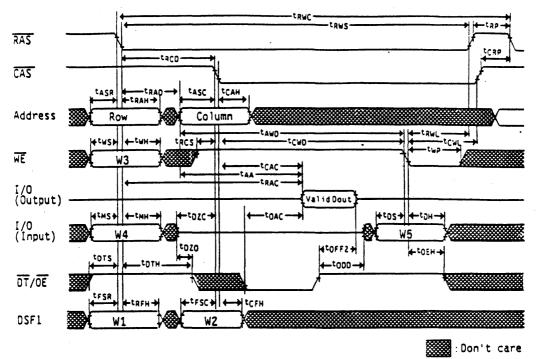
W1 to W5: See Write Cycle State Table for the logic states.


OHITACHI

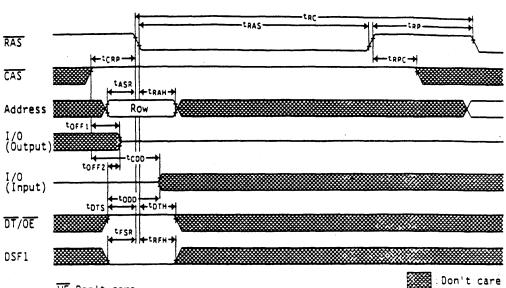

:Don't care

W1 to W5: See Write Cycle State Table for the logic states.

@HITACHI

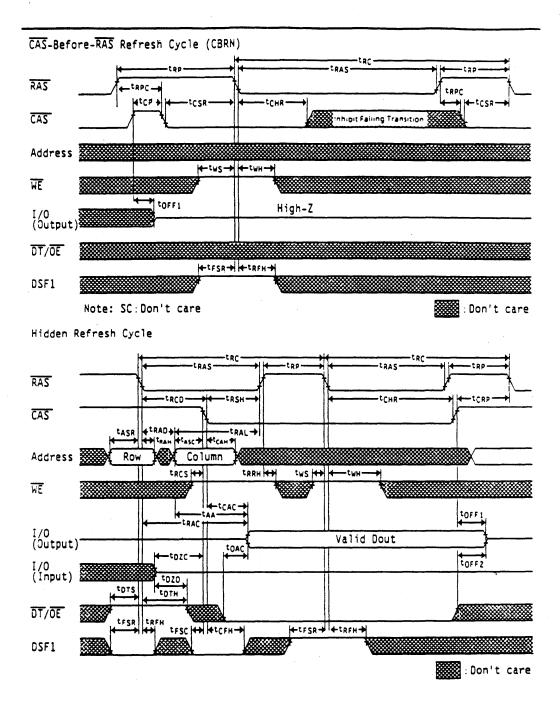

W1 to W5: See Write Cycle State Table for the logic states.

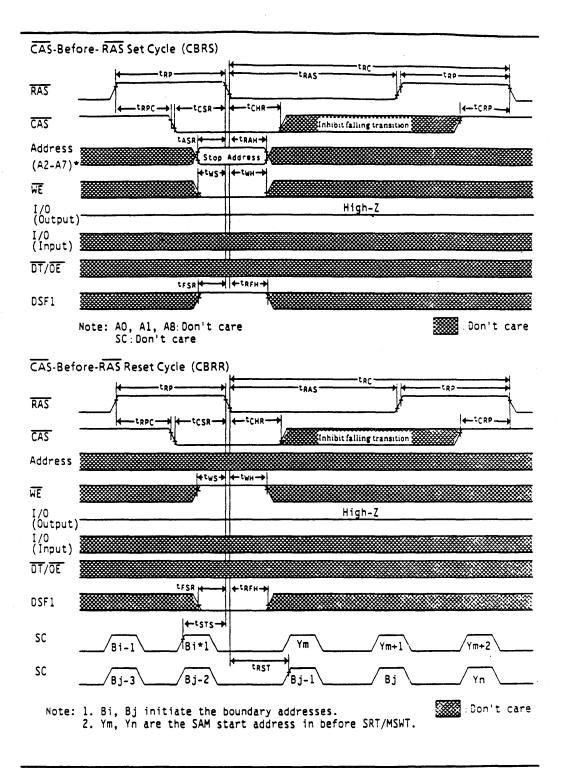
Fast Page Mode Write Cycle (Delayed Write)


ППАСНІ

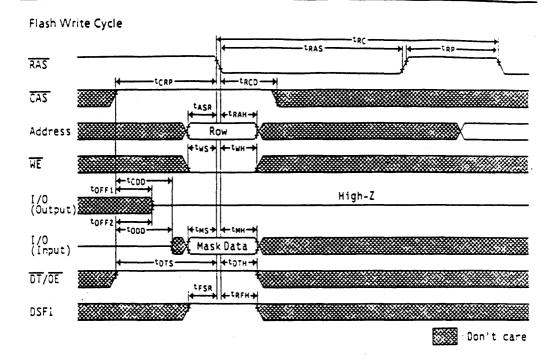
Read- Modify-Write Cycle

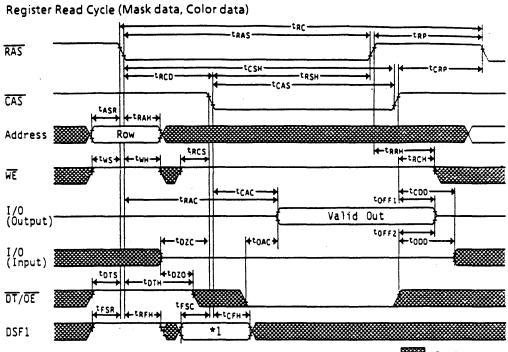
W1 to W5: See Write Cycle State Table for the logic states.


ППАСНІ


WE: Don't care

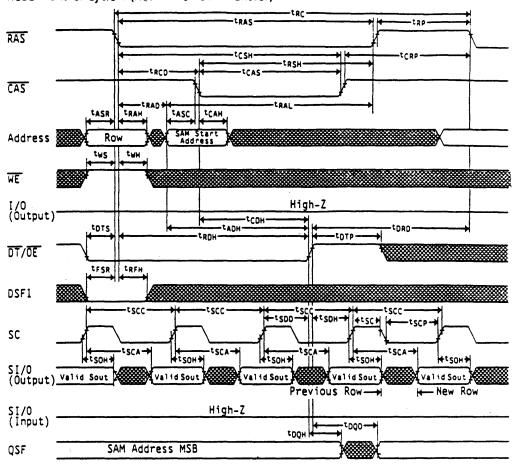
• RAS-Only Refresh Cycle


OHITACHI


AUITAOUI

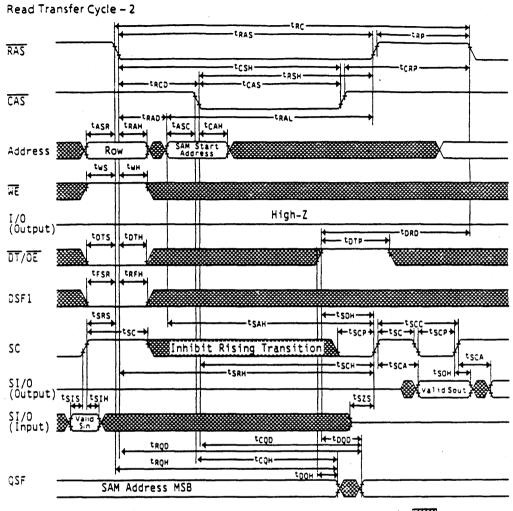
MUTACHI

OHITACHI

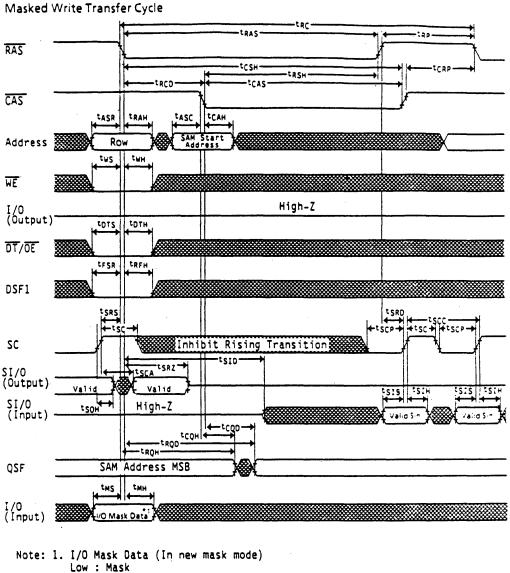

:Don't care

Note: 1. State of DSF1 at falling edge of \overline{CAS}

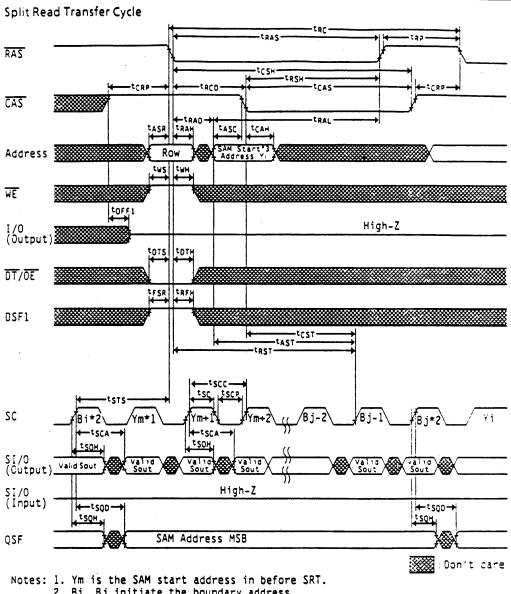
State	0	1
Accessed	Mask Data	Color Data
Data	(LMR)	(LCR)


Питлен

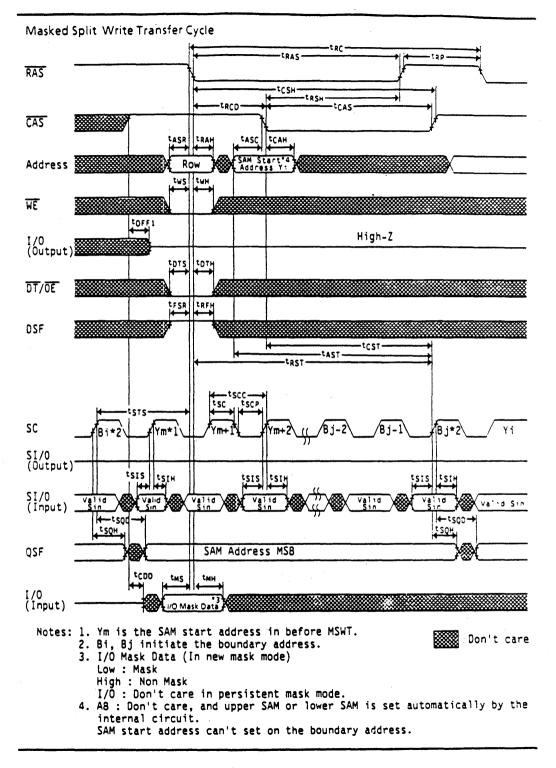
.....


Read Transfer Cycle-1 (Real Time Read Transfer)

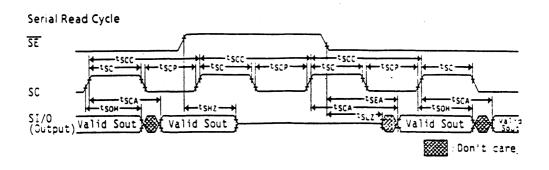
:Don't care

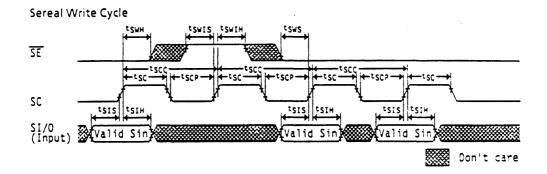

: Don't care

RUITACUI


- High : Non Mask
- I/\tilde{O} : Don't care in persistent mask mode.

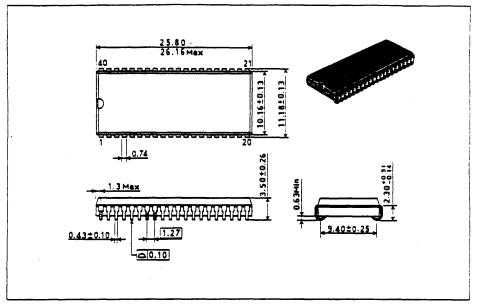
:Don't care




Bi, Bj initiate the boundary address.
 A8 : Don't care, and upper SAM or lower SAM is set automatically by the internal circuit.
 SAM start address can't set on the boundary address.

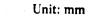
AUITACUI

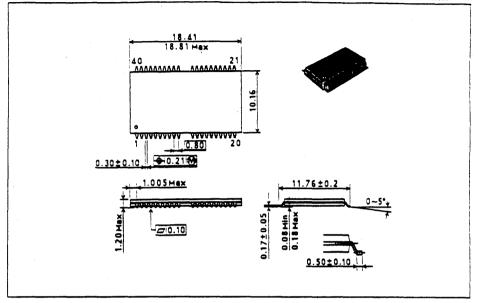
AUTAOUI



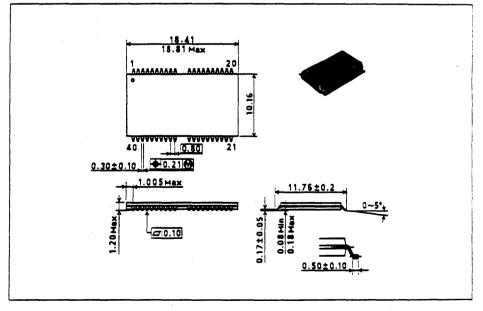
(C) HITACHI

Package Dimensions


HM538253J Series (CP-40D)


Unit: mm

Package Dimensions (cont)



HM538253RR Series (TTP-40DAR)

Unit: mm

262,144-Word x 8-Bit Multiport CMOS Video RAM

HITACHI

Rev. 3 Jul. 7, 1993

The HM538254 is a 2-Mbit multiport video RAM equipped with a 256-kword x 8-bit dynamic RAM and a 512-word x 8-bit SAM (full-sized SAM). Its RAM and SAM operate independently and asynchronously. The HM538254 has basically upward-compatibility with the HM534253A / HM538123A except that pseudo-write-transfer cycle is replaced with masked-write-transfer cycle, which has been approved by JEDEC. Furthermore, several new features are added to the HM538254 without conflict with the conventional features. Stopping column feature realizes much flexibility to the length of split SAM register. Persistent mask is also installed according to the TMS34020 features. The HM538254 has Hyper page mode.

Features

 Multiport organization Asynchronous and simultaneous operation of RAM and SAM capability RAM: 256 kword x 8 bit SAM: 512 word x 8 bit Access time RAM: 70 ns/80 ns/100 ns (max) SAM: 20 ns/23 ns/25 ns (max) Cvcle time RAM: 130 ns/150 ns/180 ns (min) SAM: 25 ns/28 ns/30 ns (min) Low power Active RAM: 578 mW/495 mW/468 mW SAM: 358 mW/330 mW/303 mW Standby 38.5 mW (max) Hyper page mode capability Cycle time: 35 ns/40 ns/45 ns Power RAM: 825 mW/715 mW/605 mW Masked-write-transfer cycle capability Stopping column feature capability Persistent mask capability Mask write mode capability

•Bidirectional data transfer cycle between RAM and SAM capability •Split transfer cycle capability •Block write mode capability •Flash write mode capability •3 variations of refresh (8 ms/512 cycles) - RAS-only refresh - CAS-before-RAS refresh - Hidden refresh

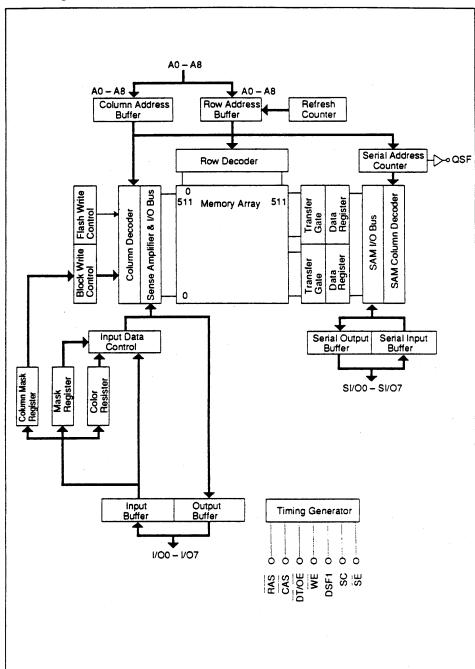
•TTL compatible

Ordering Information

Type No.	Access time	Package
HM538254J-7	70 ns	400 mil 40-pin plastic SOJ
HM538254J-8	80 ns	(CP-40D)
HM538254J-10	100 ns	
HM538254TT-7	70 ns	44-pin thin small outline package
HM538254TT-8	80 ns	(TTP-40DA)
HM538254TT-10	100 ns	
HM538254RR-7	70 ns	44-pin thin small outline package
HM538254RR-8	80 ns	(TTP-40DAR)
HM538254RR-10	100 ns	

93.09.02	
ADE-203-112C(Z)	

Pin Arrangement


HM538254J Series	
HM538254J Series	40 V _{SS} 39 SI/O7 38 SI/O6 37 SI/O5 36 SI/O4 35 SE 34 V/O7 33 V/O6 32 V/O5 31 V/O4 30 V _{SS} 29 DSF1 28 DSF2 27 CAS 26 OSF 25 A0 24 A1 23 A2 22 A3
Vcc 20	
(105) view)

Pin Description

Pin name	Function
A0 - A8	Address inputs
1/00 - 1/07	RAM port data inputs/outputs
SI/O0 - SI/O7	SAM port data inputs/outputs
RAS	Row address strobe
CAS	Column address strobe
WE	Write enable
DT/OE	Data transfer/output enable
sc	Serial clock
SE	SAM port enable
DSF1, DSF2	Special function input flag
QSF	Special function output flag
V _{CC}	Power supply
V _{SS}	Ground
NL	No lead

HM538254TT Series		HM538254RR Series	
	44 🗇 V _{SS}	Vss 44	1 🛛 V _{cc}
SC 2	43 🗖 SVO7	SV07 43	2 🗋 SC
SV00 🗖 3	42 🗖 SVO6	SVO6 🗖 42	3 🗖 S1/00
SVO1 4	41 🗋 SVO5	SVO5 🗖 41	4 SI/01
SVO2 🗖 5	40 🗖 SVO4	SVO4 🗖 40	5 🗍 SI/O2
SVO3 🗖 6	39 🗇 SE	SE 🗖 39	6 🗖 SI/O3
DT/OE 7	38 🗖 vo7	VO7 🗖 38	
100 C 8	37 🗇 VO6	VO6 🗖 37	8 🗍 1/00
V01 🖸 9	36 🗇 VOS	VO5 🗖 36	9 1/01
VO2 10	35 🗇 1/04	VO4 🗖 35	10 102
NL 11	34 NL	NL 34	11 NL
NL 12	33 NL	NL 33	12 NL
VO3 🗖 13	32 🗖 V _{SS}	V _{SS} 🗖 32	13 🗍 VO3
Vss 🗖 14	31 🗍 DSF1	DSF1 31	14 🛛 Vss
WE 🖸 15	30 🗍 DSF2	DSF2 30	15 🗍 WE
	29 🗋 CAS	CAS 29	16 TRAS
A8 🗖 17	28 🗍 OSF	OSF 🔲 28	17 🗆 A8
A7 🗖 18	27 🗋 🗚 0	A0 🗖 27	18 🗖 A7
A6 🗖 19	26 🗋 🗛 1	A1 🗖 26	19 🏳 A6
A5 🗖 20	25 🗍 A2	A2 🗖 25	20 🗖 🗛 5
A4 [21	24 🗋 A3	A3 🗖 24	21 🗋 A4
V _{CC} [22	23 🛛 V _{SS}	Vss 🗖 23	22 🖵 Vcc
(Top view))	(Тор	view)

2

Block Diagram

3

Pin Functions

RAS (input pin): RAS is a basic RAM signal. It is active in low level and standby in high level. Row address and signals as shown in table 1 are input at the falling edge of RAS. The input level of these signals determine the operation cycle of the HM538254.

	RAS					CAS		Addre	SS	l/On l	nput
Mnemonic Code	CAS	DT/O	e we	DSF1	DSF2	DSF1	DSF2	RAS	CAS	RAS	CAS/WE
CBRS	0	-	0	1	0		0	Stop	_		-
CBRR	0	-	1	0	0	-	0	-	-	-	-
CBRN	0	-	1	1	0	-	0		-		-
MWT	1	0	0	0	0	-	0	Row	TAP	WM	-
MSWT	1	0	0	1	Ó	-	0	Row	TAP	WM	-
RT	1	0	1	0	0	-	0	Row	TAP	-	-
SRT	1	0	1	1	0	-	0	Row	TAP	-	-
RWM	1	1	0	0	0 .	0	0	Row	Column	WM	Input data
Mnemonic	Write	Pers		Register		No.of					
Code	Mask	W.M	-	WM	Color	Bndry	Func	tion			
CBRS	-	-		-	-	Set	CBR	refresh	with stop r	esister	set
CBRR	-	Res	et	Reset	-	Reset	CBR	refresh	with regist	er rese	t
CBRN	-	-		-	-	-	CBR	refresh	(no reset)		
MWT	Yes	No Yes		Load/use Use	-	-	Mask	ed write	transfer (i	new/old	i mask)
MSWT	Yes	No Yes		Load/use Use	-	Use	Mask	ed split	write trans	ifer (ne	w/old mask)
RT		-		-	-	-	Read	transfe	r		
SRT	-	-			-	Use	Split	read tra	nsfer		
RWM	Yes	No Yes		Load/use Use	-	-	Read	/write (r	new/old ma	isk)	

Table 1. Operation Cycles of the HM538254

Mnemonic	HAS	FAS		CAS Address			ess	I/On Input			
Code	CAS	DT/OE	WE	DSF1	DSF2	DSF1	DSF2	FAS	CAS	RAS	CAS/WE
BWM	1	1	0	0	0	1	0	Row	Column	WM	Column Mask
RW (No)	1	1	1	0	0	0	0	Row	Column	_	Input Data
BW (No)	1	1	1	0	0	1	0	Row	Column	-	Column Mask
FWM	1	1	0	1	0	-	0	Row	-	WM	_
LMR and Old Mask S	1 et	1.	1	1	0	0	0	(Row) -	-	Mask Data
LCR	1	1	1	1	0	1	0	(Row) -	-	Color
Option	0	0	0	0	0	-	0	Mode	_	Data	-

Table 1. Operation Cycles of the HM538254 (cont)

••	141.11		Register		NI 4	
Mnemonic Code	Write Mask	Pers W.M.	WM	Color	No.of Bndry	Function
BWM	Yes	No Yes	Load/use Use	use	-	Block write (new/old mask)
RW (No)	No	No	÷ .	-	-	Read/write (no mask)
BW (No)	No	No	-	Use	-	Block write (no mask)
FWM	Yes	No Yes	Load/use Use	Use	-	Masked flash write (new/old mask)
LMR and Old Mask S	et	Set	Load	-	-	Load mask register and old mask set
LCR	-	-	-	Load	÷	Load color resister set
Option	-	-	-	-	-	· · · · · · · · · · · · · · · · · · ·

 Notes:
 1. With CBRS, all SAM operations use stop register.

 2. After LMR, RWM, BWM, FWM, MWT, and MSWT, use old mask which can be reset by CBRR.

3. DSF2 is fixed low in all operation. (for the addition of operation mode in future)

CAS (input pin): Column address and DSF1 signals are fetched into chip at the falling edge of CAS, which determines the operation mode of the HM538254.

A0 - A8 (input pins): Row address (AX0 - AX8) is determined by A0 - A8 level at the falling edge of RAS. Column address (AY0 - AY8) is determined by A0 - A8 level at the falling edge of CAS. In transfer cycles, row address is the address on the word line which transfers data with SAM data register, and column address is the SAM start address after transfer.

WE (input pin): WE pin has two functions at the falling edge of \overline{RAS} and after. When \overline{WE} is low at the falling edge of \overline{RAS} , the HM538254 turns to mask write mode. According to the I/O level at the time, write on each I/O can be masked. (WE level at the falling edge of \overline{RAS} is don't care in read cycle.) When \overline{WE} is high at the falling edge of \overline{RAS} , a no mask write cycle is executed. After that, \overline{WE} switches read/write cycles. In a transfer cycle, the direction of transfer is determined by \overline{WE} level at the falling edge of \overline{RAS} . When \overline{WE} is low, data is transferred from SAM to RAM (data is written into RAM), and when \overline{WE} is high, data is transferred from RAM to SAM (data is read from RAM).

I/OO - I/O7 (input/output pins): I/O pins function as mask data at the falling edge of \overline{RAS} (in mask write mode). Data is written only to high I/O pins. Data on low I/O pins are masked and internal data are retained. After that, they function as inut/output pins as those of a standard DRAM. In block write cycle, they function as column mask data at the falling edges of \overline{CAS} and \overline{WE} .

 $\overline{DT}/\overline{OE}$ (input pin): $\overline{DT}/\overline{OE}$ pin functions as \overline{DT} (data transfer) pin at the falling edge of \overline{RAS} and as \overline{OE} (output enable) pin after that. When \overline{DT} is low at the falling edge of \overline{RAS} , this cycle becomes a transfer cycle. When \overline{DT} is high at the falling edge of \overline{RAS} , RAM and SAM operate independently.

SC (input pin): SC is a basic SAM clock. In a serial read cycle, data outputs from an SI/O pin synchronously with the rising edge of SC. In a serial write cycle, data on an SI/O pin at the rising edge of SC is fetched into the SAM data register.

SE (input pin): SE pin activates SAM. When SE is high, SI/O is in the high impedance state in serial read cycle and data on SI/O is not fetched into the SAM data register in serial write cycle. SE can be used as a mask for serial write because the internal pointer is incremented at the rising edge of SC.

SI/O0 – SI/O7 (input/output pins): SI/Os are input/output pins in SAM. Direction of input/output is determined by the previous transfer cycle. When it was a read transfer cycle, SI/O outputs data. When it was a masked write transfer cycle, SI/O inputs data.

DSF1 (input pin): DSF1 is a special function data input flag pin. It is set to high at the falling edge of \overline{RAS} when new functions such as color register and mask register read/write, split transfer, and flash write, are used.

DSF2 (input pin): DSF2 is also a special function data input flag pin. This pin is fixed to low level in all operations of the HM538254.

QSF (output pin): QSF outputs data of address A8 in SAM. QSF is switched from low to high by accessing address 255 in SAM and from high to low by accessing address 511 in SAM.

6

Operation of HM538254

RAM Port Operation

RAM Read Cycle ($\overline{DT}/\overline{OE}$ high, \overline{CAS} high and DSF1 low at the falling edge of \overline{RAS} , DSF1 low at the falling edge of \overline{CAS})

Row address is entered at the RAS falling edge and column address at the CAS falling edge to the device as in standard DRAM. Then, when WE is high and $\overline{DT/OE}$ is low while CAS is low, the selected address data outputs through I/O pin. At the falling edge of RAS, $\overline{DT/OE}$ and CAS become high to distinguish RAM read cycle from transfer cycle and CBR refresh cycle. Address access time (t_{AA}) and RAS to column address delay time (t_{RAD}) specifications are added to enable hyper page mode.

RAM Write Cycle (Eraly Write, Delayed Write, Read-Modify-Write)

 $(\overline{DT}/\overline{OE}$ high, \overline{CAS} high and DSF1 low at the falling edge of \overline{RAS} , DSF1 low at the falling edge of \overline{CAS})

• No Mask Write Cycle (\overline{WE} high at the falling edge of \overline{RAS})

When \overline{CAS} is set low and \overline{WE} is set low after \overline{RAS} low, a write cycle is executed.

If WE is set low before the CAS falling edge, this cycle becomes an early write cycle and all I/O become in high impedance.

If \overline{WE} is set low after the \overline{CAS} falling edge, this cycle becomes a delayed write cycle. I/O does not become high impedance in this cycle, so data should be entered with \overline{OE} in high.

If \overline{WE} is set low after t_{CWD} (min) and t_{AWD} (min) after the \overline{CAS} falling edge, this cycle becomes a readmodify-write cycle and enables read/write at the same address in one cycle. In this cycle also, to avoid I/O contention, data should be input after reading data and driving \overline{OE} high.

Mask Write Mode (WE low at the falling edge of RAS)

If \overline{WE} is set low at the falling edge of \overline{RAS} , two modes of mask write cycle are capable.

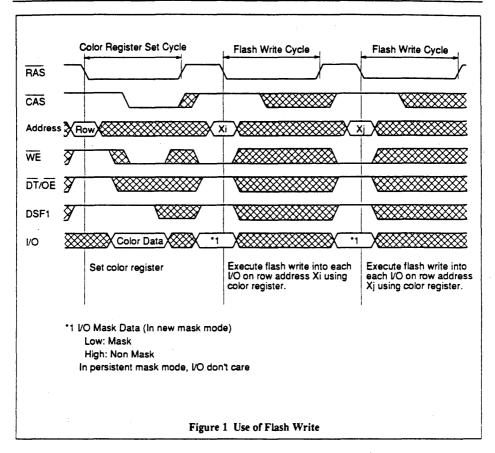
1. In new mask mode, mask data is loaded from I/O pin and used. Whether or not an I/O is written depends on I/O level at the falling edge of \overline{RAS} . The data is written in high level I/Os, and the data is masked and retained in low level I/Os. This mask data is effective during the \overline{RAS} cycle. So, in page mode cycles the mask data is retained during the page access.

2. If a load mask register cycle (LMR) has been performed, the mask data is not loaded from I/O pins and the mask data stored in mask registers persistently are used. This operation is known as persistent write mask, set by LMR cycle and reset by CBRR cycle.

Hyper Page Mode Cycle ($\overline{DT}/\overline{OE}$ high, \overline{CAS} high and DSF1 low at the falling edge of \overline{RAS})

Hyper page mode cycle reads/writes the data of the same row address at high speed by toggling \overline{CAS} while \overline{RAS} is low. Its cycle time is one forth of the random read/write cycle. In this cycle, read, write, and block write cycles can be mixed. Note that address access time (t_{AA}), \overline{RAS} to column address delay time (t_{RAD}), and access time from \overline{CAS} precharge (t_{ACP}) are added. Column address is latched by \overline{CAS} low edge triger, access time from \overline{CAS} is determined by t $_{CAC}$ (t_{AA} from column address, t_{ACP} from \overline{CAS} high edge). Dout data is held during \overline{CAS} high and is sustained until next Dout. Data output enable/disable is controlled by $\overline{DT}/\overline{OE}$ and when both \overline{RAS} and \overline{CAS} become high, Data output become High-Z. In one \overline{RAS} cycle, 512-word memory cells of the same row address can be accessed. It is necessary to specify access frequency within t_{RASP} max (100 µs).

Color Register Set/Read Cycle (CAS high, DT/OE high, WE high and DSF1 high at the falling edge of RAS)

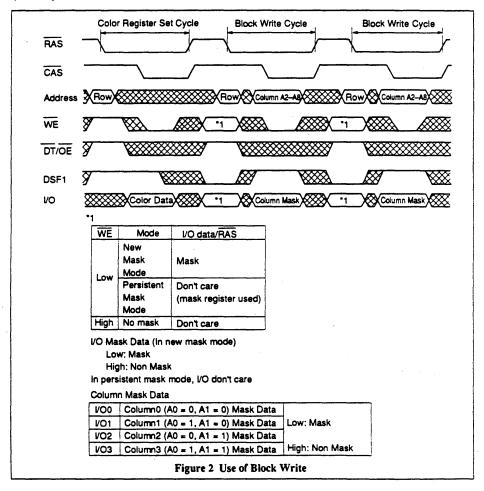

In color register set cycle, color data is set to the internal color register used in flash write cycle or block write cycle. 8 bits of internal color register are provided at each I/O. This register is composed of static circuits, so once it is set, it retains the data until reset. Since color register set cycle is just as same as the usual read and write cycle, so read, early write and delayed write cycle can be executed. In this cycle, the HM538253 refreshes the row address fetched at the falling edge of RAS.

Mask Register Set/Read Cycle (CAS high, DT/OE high, WE high, and DSF1 high at the falling edge of RAS)

In mask register set cycle, mask data is set to the internal mask register used in mask write cycle, block write cycle, flash write cycle, masked write transfer, and masked split write transfer. 8 bits of internal mask register are provided at each I/O. This mask register is composed of static circuits, so once it is set, it retains the data until next mask register set or reset (CBRR). Since mask register set cycle is just as same as the usual read and write cycle, so read, early write and delayed write cycle can be executed.

Flash Write Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ high, \overline{WE} low, and DSF1 high at the falling edge of \overline{RAS})

In a flash write cycle, a row of data (512 word x 8 bit) is cleared to 0 or 1 at each I/O according to the data of color register mentioned before. It is also necessary to mask I/O in this cycle. When \overrightarrow{CAS} and $\overrightarrow{DT/OE}$ is set high, \overrightarrow{WE} is low, and DSF1 is high at the falling edge of \overrightarrow{RAS} , this cycle starts. Then, the row address to clear is given to row address. Mask data is as same as that of a RAM write cycle. Cycle time is the same as those of RAM read/write cycles, so all bits can be cleared in 1/512 of the usual cycle time. (See figure 1.)



Block Write Cycle (CAS high, $\overline{DT}/\overline{OE}$ high and DSF1 low at the falling edge of \overline{RAS} , DSF1 high and \overline{WE} low at the falling edge of \overline{CAS})

In a block write cycle, 4 columns of data (4 column x 8 bit) are cleared to 0 or 1 at each I/O according to the data of color register. Column addresses A0 and A1 are disregarded. The mask data on I/Os and the mask data on column addresses can be determined independently. I/O level at the falling edge of \overline{CAS} determines the address to be cleared. (See Figure 2.) The block write cycle is as the same as the usual write cycle, so early and delayed write, read-modify-write, and page mode write cycle can be executed.

- No mask Mode Block Write Cycle (WE high at the falling edge of RAS) The data on 8 I/Os are all cleared when WE is high at the falling edge of RAS.
- Mask Block Write Cycle (WE low at the falling edge of RAS)

When WE is low at the falling edge of RAS, the HM538254 starts mask block write cycle to clear the data on an optional I/O. The mask data is the same as that of a RAM write cycle. High I/O is cleared, low I/O is not cleared and the internal data is retained. In new mask mode, the mask data is available in the RAS cycle. In persistent mask mode, I/O don't care about mask mode.

Transfer Operation

The HM538254 provides the read transfer cycle, split read transfer cycle, masked write transfer cycle and masked split write transfer cycle as data transfer cycles. Theses transfer cycles are set by driving \overline{CAS} high and $\overline{DT/OE}$ low at the falling edge of \overline{RAS} . They have following functions:

(1) Transfer data between row address and SAM data register

Read transfer cycle and split read transfer cycle: RAM to SAM

Masked write transfer cycle and masked split write transfer cycle: SAM to RAM

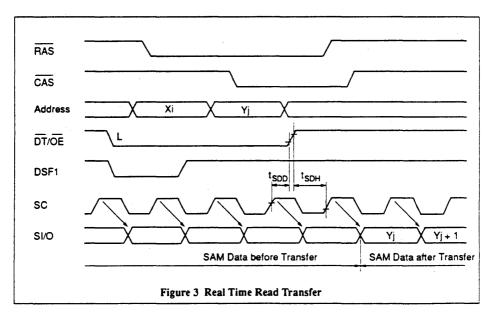
(2) Determine SI/O state (except for split read transfer cycle and masked split write transfer cycle)

Read transfer cycle: SI/O output

Masked write transfer cycle: SI/O input

(3) Determine first SAM address to access after transferring at column address (SAM start address).

SAM start address must be determined by read transfer cycle or masked write transfer cycle (split transfer cycle isn't available)before SAM access, after power on, and determined for each transfer cycle.


(4) Use the stopping columns (boundaries) in the serail shift register. If the stopping columns have been set, split transfer cycles use the stopping columns, but any boundaries cannot be set as the start address.
(5) Load/use mask data in masked write transfer cycle and masked split write transfer cycle.

Read Transfer Cycle (CAS high, DT/OE low, WE high and DSF1 low at the falling edge of RAS)

This cycle becomes read transfer cycle by driving $\overline{DT}/\overline{OE}$ low, \overline{WE} high and DSF1 low at the falling edge of RAS. The row address data (512 x 8 bits) determined by this cycle is transferred to SAM data register synchronously at the rising edge of $\overline{DT}/\overline{OE}$. After the rising edge of $\overline{DT}/\overline{OE}$, the new address data outputs from SAM start address determined by column address. In read transfer cycle, $\overline{DT}/\overline{OE}$ must be risen to transfer data from RAM to SAM.

This cycle can access SAM even during transfer (real time read transfer). In this case, the timing t_{SDD} (min) specified between the last SAM access before transfer and $\overline{DT}/\overline{OE}$ rising edge and t_{SDH} (min) specified between the first SAM access and $\overline{DT}/\overline{OE}$ rising edge must be satisfied. (See figure 3.)

When read transfer cycle is executed, SI/O becomes output state by first SAM access. Input must be set high impedance before t_{S7S} (min) of the first SAM access to avoid data contention.

Masked Write Transfer cycle (CAS high, DT/OE low, WE low, and DSF1 low at the falling edge of RAS)

Masked write transfer cycle can transfer only selected I/O data in a row of data input by serial write cycle to RAM. Whether SAM data is transferred or not depends on the corresponding I/O level (mask data) at the falling edge of RAS. This mask transfer operation is the same as a mask write operation in RAM cycles, so the persistent mode can be supported. The row address of data transferred into RAM is determined by the address at the falling edge of RAS. The column address is specified as the first address for serial write after terminating this cycle. Also in this cycle, SAM access becomes enabled after t_{SRD} (min) after RAS becomes high. SAM access is inhibited during RAS low. In this period, SC must bot be risen. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other addresses of RAM by write transfer cycle. However, the adddress to write data must be the same as that of the read transfer cycle or the split read transfer cycle (row address AX8)

Split Read Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WE} high and DSF1 high at the falling edge of \overline{RAS})

To execute a continuous serial read by real time read transfer, the HM538254 must satisfy SC and $\overline{DT}/\overline{OE}$ timings and requires an external circuit to detect SAM last address. Split read transfer cycle makes it possible to execute a continuous serial read without the above timing limitation.

The HM538254 supports two types of split register operation. One is the normal split register operation to split the data register into two halves. The other is the boundary split register operation using stopping columns described later.

Figure 4 shows the block diagram for the normal split register operation. SAM data register (DR) consists of 2 split buffers, whose organizations are 256-word x 8-bit each. Let us suppose that data is read from upper data reagister DR1 (The row address AX8 is 0 and SAM address A8 is 1.). When split read transfer is executed setting row address AX8 to 0 and SAM start addresses A0 to A7, 256-word x 8-bit data are transferred from RAM to the lower data register DR0 (SAM address A8 is 0) automatically. After data are read from data register DR1, data start to be read from SAM start addresses of data register DR0. If the next split read transfer is 't executed while data are read from data register DR0, data start to be read from SAM start address of of DR1 after data are read from data register DR0. If split read transfer is executed setting row address AX8 to 1 and SAM start addresses A0 to A7 while data are read from data register DR1, 256-word x 8-bit data are read from data register DR2. After data are read from data register DR1, 256-word x 8-bit data are transferred to data register DR2. If the next split read transfer is 't executed while data are register DR2. If the next split read from data register DR1 after data are read from data register DR2. If split read from data register DR1, data start to be read from data register DR2. In split read from SAM start address 0 of data register DR1 after data are read from data register DR2. Is the next split read transfer is 't executed while data are read from data register DR2. In split read from SAM start address 0 of data register DR1 after data are read from data register DR2. In split read from SAM start address 0 of data register DR1 after data are read from data register DR2. In split read transfer, the SAM start address A8 is automatically set in the data register, which isn't used.

The data on SAM address A8, which will be accessed next, outputs to QSF, QSF is switched from low to high by accessing SAM last address 255 and from high to low by accessing address 511.

Split read transfer cycle is set when \overline{CAS} is high, $\overline{DT}/\overline{OE}$ is low, \overline{WE} is high and DSF1 is high at the falling edge of \overline{RAS} . The cycle can be executed asyncronously with SC. However, HM538254 must be satisfied tSTS (min) timing specified between SC rising (Boundary address) and \overline{RAS} falling. In split transfer cycle, the HM538254 must satisfy t_{RST} (min), t_{CST} (min) and t_{AST} (min) timings specified between \overline{RAS} or \overline{CAS} falling and column address. (See figure 5.)

In split read transfer, SI/O isn't switched to output state. Therefore, read transfer must be executed to switch SI/O to output state when the previous transfer cycle is masked write transfer cycle or masked split write transfer cycle, or power on. SAM start address must be set in every split read transfer cycle.

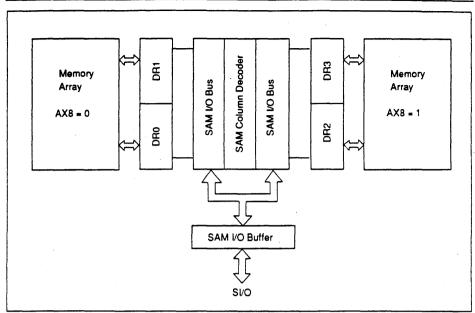


Figure 4 Block Diagram for Split Transfer

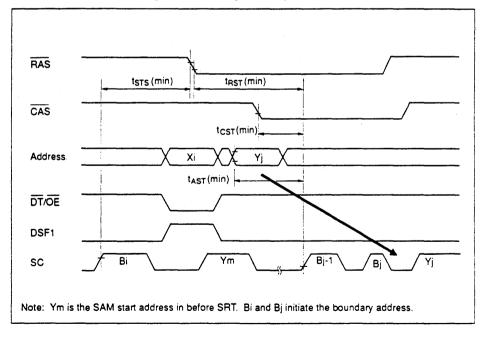
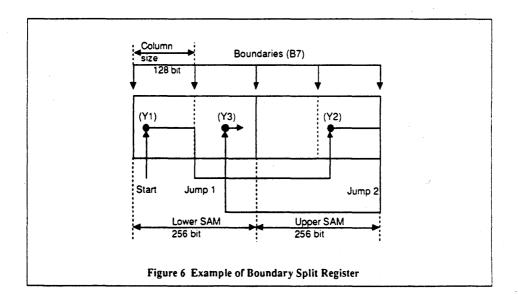


Figure 5 Limitation in Split Transfer


Masked Split Write Transfer Cycle (CAS high, DT/OE low, WE low and DSF1 high at the falling edge of RAS)

A continuous serial write cannot be executed because accessing SAM is inhibited during RAS low in write transfer. Masked split write transfer cycle makes it possible. In this cycle, t_{STS} (min), t_{RST} (min), t_{CST} (min) and t_{AST} (min) timings must be satisfied like split read transfer cycle. And it is impossible to switch SI/O to input state in this cycle. If SI/O is in output state, masked write transfer cycle should be executed to switch SI/O into input state. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other addresses of RAM by masked split write transfer cycle. However masked write transfer cycle, the MSB of row address (AX8) to write data must be the same as that of the read transfer cycle or the split read transfer cycle. In this cycle, the boundary split register operation using stopping columns is capable like split read transfer cycle.

Stopping Column in Split Transfer Cycle

The HM538254 has the boundary split register operation using stopping columns. If a CBRS cycle has been performed, split transfer cycle performs the boundary operation. Figure 6 shows an example of boundary split register. (Boundary code is B7.)

First of all a read transfer cycle is executed, and SAM start addresses A0 to A8 are set. The RAM data are transferred to the SAM, and SAM serial read starts from the start address (Y1) on the lower SAM. After that, a split read transfer cycle is executed, and the next start address (Y2) is set. The RAM data are transferred to the upper SAM. When the serial read arrive at the first boundary after the split read transfer cycle, the next read jumps to the start address (Y2) on the upper SAM (jump 1) and continues. Then the second split read transfer cycle is executed, and another start address (Y3) is set. The RAM data are transferred to the lower SAM. When the serial read arrive at the other boundary again, the next read jumps to the start address (Y3) on the lower SAM. In stopping column, split transfer is needed for jump operation between lower SAM and upper SAM.

Stopping Column Set Cycle (CBRS)

This cycle becomes stopping column set cycle by driving \overline{CAS} low, \overline{WE} low, DSF1 high at the falling edge of \overline{RAS} . Stopping column data (boundaries) are latched from address inputs on the falling edge of \overline{RAS} . To determine the boundary, A2 to A7 can be used and don't care A0, A1, and A8. In the HM538254, 7 types of boundary (B2 to B8) can be set including the default case. (See stopping column boundary table.) If A2 to A6 are set to high and A7 is set to low, the boundaries (B7) are selected. Figure 6 shows the example. The stop address that is set by the CBRS is used from next split transfer cycle. Once a CBRS is executed, the stopping column operation mode continues until CBRR.

Stopping Column Boundary Table

		Stop	Address					
Boundary code	Column size	A2	A3	A4	A5	A6	Α7	
B2	4	0	•	•	•	•	•	
B3	8	1	0	•	•	•	•	
B4	16	1	1	0	•	•	•	
B5	32	1	1	1.	0	•	•	
B6	64	1	1	1	1	0	•	
B7	128	1	1	1	1	1	0	
B8	256	1	1	1	1	1	1	

Notes: 1.A0, A1, and A8: don't care 2.*: don't care

Register Reset Cycle (CBRR)

This cycle becomes register reset cycle (CBRR) by driving \overline{CAS} low, \overline{WE} high, and DSF1 low at the falling edge of \overline{RAS} . A CBRR can reset the persistent mask operation and stopping column operation, so the HM538254 become the new mask operation and boundary code B8. When a CBRR is executed for stopping column operation reset and split transfer operation, it needs to satisfy t_{STS} (min) and t_{RST} (min) between \overline{RAS} falling and SC rising for correct SAM read/write operation.

No Reset CBR Cycle (CBRN)

This cycle becomes no reset CBR cycle (CBRN) by driving \overline{CAS} low, \overline{WE} high and DSF1 high at the falling edge of \overline{RAS} . The CBRN can only execute the refresh operation.

SAM Port Operation

Serial Read Cycle

SAM port is in read mode when the previous data transfer cycle is a read transfer cycle. Access is synchronized with SC rising, and SAM data is output from SI/O. When \overline{SE} is set high, SI/O becomes high impedance, and the internal pointer is incremented by the SC rising. After indicating the last address (address 511), the internal pointer indicates address 0 at the next access.

Serial Write Cycle

If previous data transfer cycle is masked write transfer cycle, SAM port goes into write mode. In this cycle, SI/O data is fetched into data register at the SC rising edge like in the serial read cycle. If \overline{SE} is high, SI/O data isn't fetched into data register. The internal pointer is incremented by the SC rising, so \overline{SE} high can be used as mask data for SAM. After indicating the last address (address 511), the internal pointer indicates address 0 at the next access.

Refresh

RAM Refresh

RAM, which is composed of dynamic circuits, requires refresh cycle to retain data. Refresh is executed by accessing all 512 row addresses within 8 ms. There are three refresh cycles: (1) RAS-only refresh cycle, (2) \overline{CAS} -before-RAS (CBRN, CBRS, and CBRR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which activate RAS, such as read/write cycles or transfer cycles, can also refresh the row addresses. Therefore, no refresh cycle is required when all row addresses are accessed within 8 ms.

(1) \overline{RAS} -Only Refresh Cycle: \overline{RAS} -only refresh cycle is executed by activating only the \overline{RAS} cycle with \overline{CAS} fixed to high after inputting the row address (= refresh address) from external circuits. To distinguish this cycle from a data transfer cycle, $\overline{DT}/\overline{OE}$ must be high at the falling edge of \overline{RAS} .

(2) CBR Refresh Cycle: CBR refresh cycle (CBRN, CBRS and CBRR) are set by activating \overline{CAS} before \overline{RAS} . In this cycle, the refresh address need not to be input through external circuits because it is input through an internal refresh counter. In this cycle, output is in high impedance and power dissipation is lowered because \overline{CAS} circuits don't operate.

(3) Hidden Refresh Cycle: Hidden refresh cycle executes CBR refresh with the data output by reactivating RAS when DT/OE and CAS keep low in normal RAM read cycles. In the mask register read cycle and the color register read cycle, Dout data guaranteed while RAS and CAS are low, and so after the mask register read cycle or the color register read cycle is performed, in hidden refresh cycle Dout data is not guaranteed.

SAM Refresh

SAM parts (data register, shift resister and selector), organized as fully static circuitry, require no refresh.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit V	
Voltage on any pin relative to V _{SS}	v _T	-1.0 to +7.0		
Supply voltage relative to V _{SS}	Vcc	-0.5 to +7.0	V	
Short circuit output current	lout	50	mA	
Power dissipation	Ρ _T	1.0	. W	
Operating temperature	Topr	0 to +70	°C	
Storage temperature	Tstg	-55 to +125	°C	

Recommended DC Operating Conditions (Ta = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply voltage	V _{CC}	4.5	5.0	5.5	v	1
Input high voltage	V _{IH}	2.4	_	6.5	v	1
Input low voltage	V _{IL}	-0.5*2	-	0.8	V	1

Notes: 1. All voltage referenced to V_{SS} 2 -3.0 V for pulse width \leq 10 ns.

DC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V$)

Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unii	Test cond	itions
Operating	ICC1	_	110	_	100	_	90	mA		SC = V _{IL} , SE = V _{IH}
current	ICC7		165	_	150	_	140	mA	cycling t _{RC} = min	SE = V _{IL} , SC cycling, t _{SCC} = min
Block write	ICC1BW	-	115	-	105		90	mΑ		SC = VIL, SE = VIH
current*3	CC7BW	_	170	-	155		140	mA	cycling t _{RC} ≖ min	SE = V _{IL} , SC cycling, t _{SCC} = min
Standby	I _{CC2}	-	7		7	-	7	mA		SC = V _{IL} , SE = V _{IH}
current	I _{CC8}	_	65	—	60	_	55	mA	≖V _{iH}	SE = V _{IL} , SC cycling, t _{SCC} = min
RAS-only refresh	lcc3		110		100	-	90	mA	RAS cycling	SC = V _{IL} , SE = V _{IH}
current	lcca	<u> </u>	165		150		135	mA		SE = V _{IL} , SC cycling, t _{SCC} = min
Hyper page mode current	Icc4	-	130	_	120	_	110	mA	CAS cycling RAS = V _{II}	SC = V _{IL} . SE = V _{IH}
	ICC10	_	185	_	170	<u> </u>	160	mA		SE = V _{IL} . SC cycling, t _{SCC} = min
Hyper page mode block	ICC4BW		155	_	140	-	130	mA	CAS cycling RAS = V _{II}	SC = V _{IL} , SE = V _{IH}
write current*3	ICC10BW		210		190	-	175	mA	t _{PC} = min	SE = V _{IL} , SC cycling, t _{SCC} = min
CAS-before- RAS refresh	I _{CC5}		85	_	75	_	65	mΑ	RAS cycling t _{RC} = min	SC = V _{IL} , SE = V _{IH}
current	ICC11	_	140	—	130		120	mA		SE = V _{IL} , SC cycling, t _{SCC} = min
Data transfer current		-	130	_	115	-	100	mA	RAS, CAS	SC = V _{IL} , SE = V _{IH}
	ICC12	_	180		165		145	mA	t _{RC} = min	SE = V _{IL} , SC cycling, t _{SCC} = min
Input leakage current	ILI	-10	10	-10	10	-10	10	μA		0 V ≤ Vin ≤ 7 V
Output leakage current	ILO	-10	10	-10	10	-10	10	μA	-	0 V ≤ Vin ≤ 7 V Dout, Sout = disable
Output high voltage	V _{ОН}	2.4	-	2.4	-	2.4	-	v	IOH = -1 n	nA
Output low voltage	VOL	-	0.4		0.4	_	0.4	v	I _{OL} = 2.1 r	nA

HM538254-7HM538254-8HM538254-10

Notes: 1. I_{CC} depends on output load condition when the device is selected. I_{CC} max is specified at the output open condition.

2. Address can be changed once while RAS is low and CAS is high.

3. Address can be changed once in 1 page cycle (tpc).

				(CC)	
Parameter	Symbol	Тур	Max	Unit	Note
Input capacitance (Address)	C _{I1}		5	pF	1
Input capacitance (Clocks)	C _{l2}		5	pF	1
Output capacitance (I/O, SI/O, QSF)	CI/O		7	рF	1

Capacitance (Ta = 25°C, V_{CC} = 5 V ± 10%, f = 1 MHz, Bias: Clock, I/O = V_{CC} , address = V_{SS})

Notes: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%, V_{SS} = 0 V) *1, *16

Test Conditions

- Input rise and fall times: 5 ns

- Input pulse levels: V_{SS} to 3.0 V
- Input timing reference levels: 0.8 V, 2.4 V
- Output timing reference levels: 0.8 V, 2.0 V
- Output load: RAM 1TTL + CL (50 pF)
 - SAM, QSF 1TTL + CL (30 pF)
 - (Including scope and jig)

Common Parameter

		HM5	38254-7	HM538254-8		HM538254-10				
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes	
Random read or write cycle time	^t RC	130	-	150		180		ns		
RAS precharge time	tRP	50		60	_	70	-	ns		
RAS pulse width	^t RAS	70	10000	80	10000	100	10000	ns		
CAS pulse width	¹ CAS	20		20		25		ns		
Row address setup time	tASR	0		0		0		ns		
Row address hold time	t _{RAH}	10		10		10	_	ns		
Column address setup time	tASC	0	_	0	_	0	-	ns		
Column address hold time	^t CAH	12	_	15		15	-	ns		
RAS to CAS delay time	^t RCD	20	50	20	60	20	75	ns	2	
RAS hold time referenced to CAS	t _{RSH}	20		20	_	25		ns		
CAS hold time referenced to RAS	^t CSH	70		80	_	100		ns		
CAS to RAS precharge time	^t CRP	10	_	10		10		ns		

Common Parameter (cont)

Parameter	Symbol	Min	Max	Min	Max	Min	Max	- Unit	Notes
Transition time (rise to fall)	t _T	3	50	3	50	3	50	ns	3
DSF1 to CAS setup time	tFSC	0		0	-	0		ns	
Refresh period	^t REF	_	8		8	_	8 -	ms	
DT to RAS setup time	^t DTS	0		0	_	0	-	ns	
DT to RAS hold time	^t DTH	10	_	10		10	·	ns	
DSF1 to RAS setup time	tFSR	0		0		0	<u> </u>	ns	
DSF1 to RAS hold time	t _{RFH}	10	_	10	-	10		ns	
DSF1 to CAS hold time	¹ CFH	12		15		15	_	ns	
Data-in to CAS delay time	tDZC	0		0	-	0	_	ns	4
Data-in to OE delay time	tDZO	0		0	_	0	_	ns	4
Output buffer turn-off delay referenced to OE	^t OFF2		15		20		20	ns	5
		ورجيع محيول المحي							

HM538254-7 HM538254-8 HM538254-10

Read Cycle (RAM), Hyper Page Mode Read Cycle

		rim556254-7		1111030234-0		nm330234-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Access time from RAS	¹ RAC	_	70	_	80	-	100	ns	6, 7
Access time from CAS	1CAC		20		20		25	ns	7, 8
Access time from OE	^t OAC		20		20		25	ns	7
Address access time	taa	_	35	-	40	_	45	ns	7, 9
Read command setup time	^t RCS	0	_	0	_	0	-	ns	
Read command hold time	t _{RCH}	0		0	-	0	_	ns	10
Read command hold time referenced to RAS	t _{RRH}	0		5	_	10		ns	10
RAS to column address delay time	1RAD	15	35	15	40	15	55	ns	2
Column address to RAS lead time	1 _{RAL}	35	_	40	-	45	-	ns	
Column address to CAS lead time	^t CAL	25	_	30	-	35	-	ns	
Hyper page mode cycle time	tPC	35	_	40	_	45	_	ns	
Hyper page CAS precharge time	t _{CP}	5		10	_	10		ns	
Hyper page access time from CAS precharge	tACP	_	40	_	45	_	50	ns	
Hyper page mode RAS pulse width	1 RASP	70	100000	80	100000	0 1 0 0	10000	2	ńs
Hyper page data out hold time	^t DOH	4	-	5	-	5	_	ns	
Data-out buffer turn-off time (RAS)	^t RHZ		15		20	· — .	20	ns	5
Data-out buffer turn-off time (CAS)	tchz	_	15	_	20	_	20	ns	5
									. <u> </u>

HM538254-7 HM538254-8 HM538254-10

	HM538254-7		HM538254-8		HM538254-10			
Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
twcs	0	-	0		0	—	ns	11
^t wch	12		15	-	15		ns	
twp	12		15	-	15	_	ns	
^t RWL	20	_	20		20	-	ns	
tCWL	20	<u> </u>	20	_	20		'ns	
tDS	0	-	0		0	-	ns	12
t _{DH}	12	_	15	_	15		ns	12
tws	0		0	_	0		ns	
twH	10	·	10		10		ns	
^t MS	0		0		0		ns	
^t мн	10		10	—	10		ns	•
^t OEH	15	 .	20		20	_	ns	
t _{PC}	35	_	40		45	_	ns	
tCP	5		10	_	10		ns	
tCDD	15	-	20	_	20		ns	13
tRASP	70	100000	80	100000	100	100000	ns	
	twcs twcн twp tRwL tCwL tDS tDH tws tWH tMH tOEH tPC tCDD	Symbol Min twcs 0 twcH 12 twP 12 tRWL 20 tCWL 20 tCWL 20 tDS 0 tDH 12 tWS 0 tWH 10 tMS 0 tMH 10 tOEH 15 tPC 5 tCDD 15	Symbol Min Max twcs 0 twcH 12 twP 12 twP 20 tRwL 20 tCWL 20 tDS 0 tDH 12 tWF 10 tWH 10 tMH 10 tMH 10 tQEH 15 tCP 5 tCDD 15	Symbol Min Max Min twcs 0 0 twcH 12 15 twP 12 15 twP 12 20 tcWL 20 20 tcWL 20 20 tDS 0 0 tDH 12 15 tWS 0 0 tWH 10 10 tMS 0 0 tMH 10 10 tQEH 15 20 tPC 35 40 tCPD 5 10	Symbol Min Max Min Max t_{WCS} 0 0 t_{WCH} 12 15 t_{WP} 12 15 t_{WP} 12 15 t_{WP} 20 20 t_{RWL} 20 20 t_{CWL} 20 20 t_{DW} 12 15 t_{DH} 12 15 t_{WH} 10 10 t_{WH} 10 10 t_{MH} 10 10 t_{OEH} 15 20 t_{CP} 5 10 t_{CDD} 15 20	Symbol Min Max Min Max Min t_{WCS} 0 0 0 t_{WCH} 12 15 15 t_{WP} 12 15 15 t_{WP} 12 15 20 t_{RWL} 20 20 20 t_{CWL} 20 20 20 t_{CWL} 20 20 20 t_{DW} 0 0 20 t_{DH} 12 15 15 tWS 0 0 0 t_{WH} 10 10 10 t_{MH} 10 10 20 t_{DEH} 15 20 20 t_{CPD} </td <td>Symbol Min Max Min Max Min Max 1_{WCS} 0 - 0 - 0 - 1_{WCH} 12 - 15 - 15 - 1_{WP} 12 - 15 - 15 - 1_{WP} 12 - 15 - 15 - 1_{WP} 12 - 15 - 20 - 1_{WP} 20 - 20 - 20 - 1_{RWL} 20 - 20 - 20 - 1_{DS} 0 - 0 - 0 - 1_{DH} 12 - 15 - 15 - 1_{WH} 10 - 15 - 10 - 1_{WH} 10 - 10 - 10 - 1_{MH} 10 - 10 -</td> <td>Symbol Min Max Min Max Min Max Min Max Unit twcs 0 - 0 - 0 - ns twcH 12 - 15 - 15 - ns twp 12 - 15 - 15 - ns twp 12 - 15 - 15 - ns twp 12 - 20 - 20 - ns twp 20 - 20 - 20 - ns tcwL 20 - 20 - 20 - ns tDs 0 - 0 - 0 - ns tbs 0 - 0 - 0 - ns tws 0 - 0 - 0 - ns tws 0 -</td>	Symbol Min Max Min Max Min Max 1_{WCS} 0 - 0 - 0 - 1_{WCH} 12 - 15 - 15 - 1_{WP} 12 - 15 - 15 - 1_{WP} 12 - 15 - 15 - 1_{WP} 12 - 15 - 20 - 1_{WP} 20 - 20 - 20 - 1_{RWL} 20 - 20 - 20 - 1_{DS} 0 - 0 - 0 - 1_{DH} 12 - 15 - 15 - 1_{WH} 10 - 15 - 10 - 1_{WH} 10 - 10 - 10 - 1_{MH} 10 - 10 -	Symbol Min Max Min Max Min Max Min Max Unit twcs 0 - 0 - 0 - ns twcH 12 - 15 - 15 - ns twp 12 - 15 - 15 - ns twp 12 - 15 - 15 - ns twp 12 - 20 - 20 - ns twp 20 - 20 - 20 - ns tcwL 20 - 20 - 20 - ns tDs 0 - 0 - 0 - ns tbs 0 - 0 - 0 - ns tws 0 - 0 - 0 - ns tws 0 -

Write Cycle (RAM), Hyper Page Mode Write Cycle, Color Register Set Cycle

Read-Modify-Write Cycle

		HM538254-7		HM538254-8		HM538254-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit ns ns ns ns ns ns ns ns ns ns ns ns ns	Notes
Read-modify-write cycle time	^t RWC	180	_	200	_	230		ns	
RAS pulse width (read-modify-write cycle)	tRWS	120	10000	130	10000	150	10000	ns	
CAS to WE delay time	tCWD	40		45		50	— .	ns	14
Column address to WE delay time	tawd	60	—	65		70	_	ns	14
OE to data-in delay time	todd	15		20	_	20	_	ns	12
Access time from RAS	IRAC	-	70	_	80	_	100	ns	6, 7
Access time from CAS	^t CAC	_	20	_	20		25	ns	7, 8
Access time from OE	^t OAC	_	20		20	. .	25	ns	7
Address access time	t _{AA}	-	35	_	40		45	ns	7, 9
RAS to column address delay time	tRAD	15	35	15	40	15	55	ns	
Read command setup time	TRCS	0		0		0	_	ns	
Write command to RAS lead time	tRWL	20		20		20	_	ns	
Write command to CAS lead time	tCWL	20		20		20		ns	
Write command pulse width	twp	12	_	15	_	15		ns	
Data-in setup time	tDS	0		0		0	_	ns	12
Data-in hold time	t _{DH}	12		15		15	_	ns	12
OE hold time referenced to WE	^t OEH	15	-	20		20	_	ns	

Refresh Cycle

		HM538254-7		HM538254-8		HM5	10	
Parameter	Symbol	Min	Max	Min	Max	Min		Unit Notes
CAS setup time (CAS-before-RAS refresh)	tCSR	10		10	—	10		ns .
CAS hold time (CAS-before-RAS refresh)	^t CHR	10		10		10	_	ns
RAS precharge to CAS hold time	^t RPC	10	_	10		10	_	ns

Flash Write Cycle, Block Write Cycle, and Register Read Cycle

	·	HM53	H M538254- 7		HM538254-8		38254-1	10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes	
CAS to data-in delay time	tCDD	15	_	20		20	-	ns	13	
OE to data-in delay time	todd	15		20		20		ns	13	
RAS to data-in delay time	^t RDD	20	_	20		20	_	ns	13	

CBR Refresh with Register Reset

	Symbol	HM538254-7		HM538254-8		HM5	10	
Parameter		Min	Max	Min	Max	Min	Max	Unit Notes
Split transfer setup time	tSTS	20		20	_	25		ns
Split transfer hold time referenced to RAS	t RST	70	-	80	-	100	_	ns

Read Transfer Cycle

	HM538254-7		HM538254-8		HM5	38254-1	0	
Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
1RDH	60	10000	65	10000	80	10000	ns	
^t CDH	20		20		25		ns	
t _{ADH}	25		30		30	_	ns	
^t DTP	20		20		30		ns	
t _{DRD}	60		70		80		ns	
tSRS	15		20		30	_	ns	
^t SRH	70		80		100		ns	
1SCH	25	_	25	_	25	_	ns	
^t SAH	40		45	_	50		ns	
tSDD	5		5	-	5		ns	
t _{SDH}	10		13		15	-	ns	
tDQD	—	30		35		35	ns	15
	¹ RDH ¹ CDH ¹ ADH ¹ DTP ¹ DRD ¹ SRS ¹ SRH ¹ SCH ¹ SDD ¹ SDH	Symbol Min tRDH 60 tCDH 20 tADH 25 tDTP 20 tDRD 60 tSRS 15 tSRH 70 tSCH 25 tSAH 40 tSDD 5 tSDH 10	Symbol Min Max tRDH 60 10000 tCDH 20 tADH 25 tDTP 20 tDRD 60 tSRS 15 tSRH 70 tSCH 25 tSDD 5 tSDH 10	Symbol Min Max Min t _{RDH} 60 10000 65 t _{CDH} 20 20 t _{ADH} 25 30 t _{DTP} 20 20 t _{DRD} 60 70 t _{SRS} 15 80 t _{SRH} 70 80 t _{SCH} 25 25 t _{SAH} 40 45 t _{SDD} 5 5 t _{SDH} 10 13	Symbol Min Max Min Max t _{RDH} 60 10000 65 10000 t _{CDH} 20 20 t _{ADH} 25 30 t _{ADH} 25 20 t _{DTP} 20 20 t _{DRD} 60 70 t _{SRS} 15 20 t _{SRH} 70 80 t _{SCH} 25 25 t _{SDD} 5 5 t _{SDH} 10 13	Symbol Min Max Min Max Min t _{RDH} 60 10000 65 10000 80 t _{CDH} 20 20 25 t _{ADH} 25 30 30 t _{DTP} 20 20 30 t _{DTP} 20 20 30 t _{DRD} 60 70 80 t _{SRS} 15 20 30 t _{SRH} 70 80 100 t _{SCH} 25 25 25 t _{SAH} 40 45 50 t _{SDD} 5 5 5	Symbol Min Max Min Max Min Max Min Max t _{RDH} 60 10000 65 10000 80 10000 t _{CDH} 20 20 25 t _{ADH} 25 30 30 t _{ADH} 25 30 30 t _{DTP} 20 20 30 t _{DRD} 60 70 80 t _{SRS} 15 20 30 t _{SRH} 70 80 100 t _{SCH} 25 25 25 t _{SDD} 5 5 5 t _{SDH} 10 13 15	Symbol Min Max Min Max Min Max Min Max Unit t _{RDH} 60 10000 65 10000 80 10000 ns t _{CDH} 20 20 25 ns t _{ADH} 25 30 30 ns t _{ADH} 25 30 30 ns t _{DTP} 20 20 30 ns t _{DRD} 60 70 - 80 ns t _{SRS} 15 20 30 ns t _{SRH} 70 80 ns ns t _{SCH} 25 25 25 ns t _{SDD} 5 5 ns ns

Read Transfer Cycle (cont)

		HM538254-7		HM538254-8		HM538254-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max		Notes
QSF hold time referenced to DT	^t DQH	5	_	5	_	5		ns	
Serial data-in to 1st SC delay time	tszs	0	_	0		0	-	ns	
Serial clock cycle time	tscc	25		28	_	30		ns	
SC pulse width	tsc	5	_	10	_	10	_	ns	
SC precharge time	tSCP	10	-	10		10	-	ns	
SC access time	^t SCA		20	_	23		25	ns	15
Serial data-out hold time	^t SOH	5	<u></u>	5	_	5	-	ns	
Serial data-in setup time	tsis	0		0	_	0		ns	~~~~~~~~~~~
Serial data-in hold time	t _{SIH}	15	_	15		15	_	ns	
RAS to column address delay time	tRAD	15	35	15	40	15	55	ns	
Column address to RAS lead time	^t RAL	35	-	40	-	45	_	ns	
RAS to QSF delay time	^t RQD	_	70		75	_	85	ns	15
CAS to QSF delay time	tCQD		35		35	_ '	35	ns	15
QSF hold time referenced toRAS	^t RQH	20	_	20		25		ns	
QSF hold time referenced to CAS	tCOH	5	_	5	-	5	_	ns	

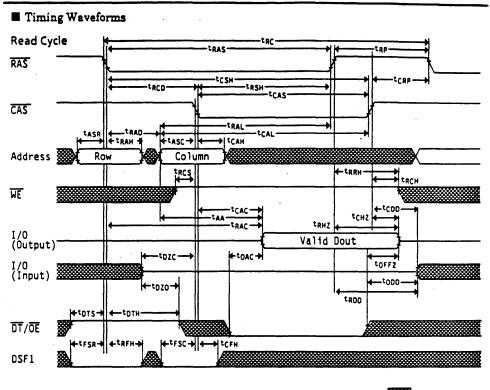
Masked Write Transfer Cycle

		HM538254-7		HM538254-8		HM538254-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
SC setup time referenced to RAS	^t SRS	15	<u> </u>	20	_	30	_	ns	
RAS to SC delay time	^t SRD	20	_	25	_	25	-	ns	
Serial output buffer turn-off time referenced to RAS	^t SRZ	10	30	10	35	10	50	ns	
RAS to serial data-in delay time	tSID	30	_	35		50	-	ns	
RAS to QSF delay time	tROD	-	70	-	75	_	85	ns	15
CAS to QSF delay time	tCQD	_	35	-	35	—	35	ns	15
QSF hold time referenced to RAS	^t ROH	20	-	20	_	25	-	ns	
QSF hold time referenced to CAS	tCOH	5	_	5	-	5	-	ns	
Serial clock cycle time	tscc	25	-	28	-	30	-	ns	
SC pulse width	tsc	5	-	10	_	10		ns	
SC precharge time	^t SCP	10	— .	10	-	10		ns	
SC access time	^t SCA	_	20	-	23	-	25	ns	15
Serial data-out hold time	^t SOH	5		5	_	5	_	ns	
Serial data-in setup time	tsis	0	-	0	-	0		ns	
Serial data-in hold time	^t SIH	15	_	15		15		ns	
······································									

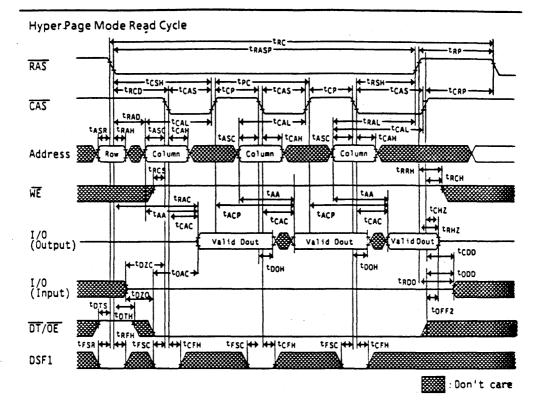
Split Read Transfer Cycle, Masked Split Write Transfer Cycle

.

Symbol	Min Max		Min	Max	Min	Max	Unit	Notes
tSTS	20		20		25	-	ns	
tRST	70	-	80	_	100	_	ns	
tcst	20	_	20		25	- .	ns	
^t AST	35		40	_	45		ns	
tsop	_	30		30	-	30	ns	15
t _{SQH}	5	_	5	_	5		ns	
tscc	25	-	28	 .	30	_	ns i	
tsc	5	_	10	_	10		ns	
tSCP	10		10		10	_	ns	
^t SCA	_	20	_	23		25	ns	15
t _{SOH}	5		5	_	5		ns	
tsis	0	_	0	_	0	_	ns	
tsiH	15		15	_	15	_	ns	
	15	35	15	40	15	55	ns	
tRAL	35		40	<u> </u>	45	_	ns	
	¹ STS ¹ RST ¹ CST ¹ AST ¹ SQD ¹ SQD ¹ SQH ¹ SCC ¹ SCC ¹ SCC ¹ SCC ¹ SCA ¹ SOH ¹ SIS ¹ SIH ¹ RAD	tRST 70 tCST 20 tAST 35 tSQD tSQH 5 tSCC 25 tSCP 10 tSCH 5 tSCH 5 tSCH 5 tSCH 5 tSCH 10 tSCH 5 tSCH 15 tSIH 15 tRAD 15	tSTS 20 — tRST 70 — tCST 20 — tSCT 20 — tSOD — 35 — tSOD — 30 30 tSOD — 30 30 tSOP — 30 — tSCC 25 — — tSCP 10 — — tSCA — 20 — tSCA — 20 — tSOH 5 — — tSIH 15 — — tRAD 15 35 —	tSTS 20 — 20 tRST 70 — 80 tCST 20 — 20 tAST 35 — 40 tSOD — 30 — tSOD — 30 — tSOD — 30 — tSOP 0 30 — tSOP 5 — 5 tSCC 25 — 28 tSC 5 — 10 tSCP 10 — 10 tSCA — 20 — tSOH 5 — 5 tSOH 15 — 15 tRAD 15 35 15	t_{STS} 20 20 t_{RST} 70 80 t_{CST} 20 20 t_{AST} 35 40 t_{SQD} 30 30 t_{SCP} 10 10 t_{SCH} 5 5 t_{SCH} 5 5 t_{SCH} 5 5 t_{SIH} 15 15 t_{RAD} 15 35 15 40	t_{STS} 20 — 20 — 25 t_{RST} 70 — 80 — 100 t_{CST} 20 — 20 — 25 t_{AST} 35 — 20 — 25 t_{AST} 35 — 20 — 25 t_{SQD} — 30 — 40 — 45 t_{SQD} — 30 — 30 — 45 t_{SQD} — 30 — 30 — 45 t_{SQH} 5 — 5 — 5 — 5 t_{SCP} 10 — 10 — 10 … 10 t_{SCH} 5 — 5 — 5 … 5 t_{SOH} 5 — 5 … 5 … 5 t_{SOH} 5 … 5 … 5 … 5 t_{SOH} 15 … 15 …	t_{STS} 20 - 20 - 25 - t_{RST} 70 - 80 - 100 - t_{CST} 20 - 20 - 25 - t_{CST} 20 - 20 - 25 - t_{AST} 35 - 40 - 45 - t_{SQD} - 30 - 30 - 30 t_{SQD} - 30 - 30 - 30 t_{SCP} 5 - 5 - 5 - t_{SCP} 10 - 10 - 10 - t_{SCH} 5 - 5 - 5 - t_{SCH} 5 - 5 - 5 - t_{SCH} 5 - 5 - 5 - t_{SCH} 15 - 15 - 15 - t_{SCH} 15 - 15 -	t_{STS} 20 — 20 — 25 — ns t_{RST} 70 — 80 — 100 — ns t_{CST} 20 — 20 — 25 — ns t_{CST} 20 — 20 — 25 — ns t_{AST} 35 — 40 — 45 — ns t_{SQD} — 30 — 30 — 30 ns t_{SQH} 5 — 5 — 5 — 5 — ns t_{SQH} 5 — 5 — 5 — ns t_{SCP} 10 — 10 — 10 — ns t_{SOH} 5 — 5 — 5 — 5 … ns t_{SCP} 10 — 10 — ns ns ns ns t_{SOH} 5 — 5 — 5


HM538254-7 HM538254-8 HM538254-10

Serial Read Cycle, Serial Write Cycle


		1111300204-1		11113302340		1141330234-10		,	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	– Unit	Notes
Serial clock cycle time	tscc	25		28		30		ns	
SC pulse width	tsc	5	—	10	_	10	—	ns	
SC precharge width	^t SCP	10	_	10		10		ns	
Access time from SC	1 _{SCA}	_	20	-	23		25	ns	15
Access time from SE	^t SEA	_	17	_	20	_	25	ns	15
Serial data-out hold time	t _{SOH}	5	_	5	_	5	—	ns	
Serial output buffer turn-off time referenced to SE	^t SHZ	-	15		20		20	ns	5,17
SE to serial output in low-Z	tsLZ	0		0		0		ns	5,17
Serial data-in setup time	tsis	0	_	0		0	_	ns	
Serial data-in hold time	tsiH	15	_	15		15	_	ns	
Serial write enable setup time	tsws	0		0	_	0	_	ns	
Serial wrtie enbable hold time	tswH	15		15		15	_	ns	
Serial write disable setup time	tswis	0	_	0	_	0		ns	
Serial write disable hold time	tswih	15	_	15	-	15		ns	

HM538254-7 HM538254-8 HM538254-10

- Notes: 1. AC measurements assume $t_T = 5$ ns.
 - 2. When tRCD > tRCD (max) and tRAD > tRAD (max), access time is specified by tCAC or tAA.
 - V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Transition time t_T is measured between V_{IH} and V_{IL}.
 - Data input must be floating before output buffer is turned on. In read cycle, read-modify-write cycle and delayed write cycle, either t_{DZC} (min) or t_{DZO} (min) must be satisfied.
 - t_{RHZ} (max), t_{CHZ} (max), t_{OFF2} (max), t_{SHZ} (max) and t_{SLZ} (min) are defined as the time at which the output acheives the open circuit condition (V_{OH} - 100 mV, V_{OL} + 100 mV). This parameter is sampled and not 100% tested.
 - Assume that t_{RCD} ≤ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
 - 7. Measured with a load circuit equivalent to 1 TTL loads and 50 pF.
 - 8. When $t_{RCD} \ge t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max), access time is specified by t_{CAC} .
 - When t_{RCD} ≤ t_{RCD} (max) and t_{RAD} ≥ t_{RAD} (max), access time is specified by t_{AA}.
 - 10. If both t_{RCH} and t_{RRH} are satisfied, operation is guaranteed.
 - When t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle, and I/O pins remain in an open circuit (high impedance) condition.
 - 12. These parameters are specified by the later falling edge of \overline{CAS} or \overline{WE} .
 - 13. Either t_{CDD} (min), t_{ODD} (min) or t_{RDD} (min) must be satisfied because output buffer must be turned off by CAS, OE or RAS prior to applying data to the device when output buffer is on.
 - 14. When t_{AWD} ≥ t_{AWD} (min) and t_{CWD} ≥ t_{CWD} (min) in read-modify-write cycle, the data of the selected address outputs to an I/O pin and input data is written into the selected address. t_{ODD} (min) must be satisfied because output buffer must be turned off by OE prior to applying data to the device.
 - 15. Measured with a load circuit equivalent to 1 TTL loads and 30 pF.
 - 16. After power-up, pause for 100 μs or more and execute at least 8 initialization cycle (normal memory cycle or refresh cycle), then start operation. Hitachi recommends that least 8 initialization cycle is the CBRR for internal register reset. This CBRR need not t_{STS} and t_{RST}.
 - 17. When t_{SHZ} and t_{SLZ} are measured in the same VCC and Ta condition and tr and tf of SE are less than 5 ns, t_{SHZ} ≤ t_{SLZ} + 5 ns. This parameter is sampled and not 100% tested.
 - 18. After power-up, QSF output may be High-Z, so 1 sc cycle is needed to be low-Z it.
 - DSF2 pin is open pin, but Hitachi recommends it is fixed low in all operation for the addition mode in future.

:Don't care

Write Cycle

The write cycle state table as shown below is applied to early write, delayed write, page mode write, and read-modify write.

Write Cycle State Table

		FAS	CAS	RAS	HAS	CAS
Menu		DSF1	DSF1	WE	vo	vo
	Cycle	W1	W2	W3	W4	W5
RWM	Write mask (new/old) Write DQs to I/Os	0	0	0	Write mask*1	Valid data
BWM	Write mask (new/old) Block write	0	1	0	Write mask ^{•2}	Column mask ^{*2}
RW	Normal write (no mask)	0	0	1	Don't care*1	Valid data
BW	Block write (no mask)	0	1	1	Don't care'2	Column mask ^{*2}
LMR'4	Load mask resister	1	0	1	Don't care	Mask data ^{*3}
LCR'4	Load color resister	1	1	1	Don't care	Color data

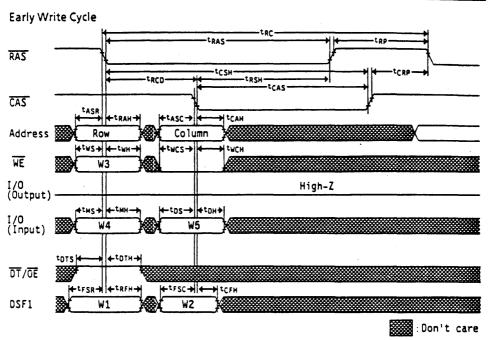
Note 1

WE	Mode	I/O data/RAS
Low	New Mask Mode	Mask
2011	Persistent Mask Mode	Don't care (mask register used)
High	No mask	Don't care

I/O Mask Data (In new mask mode) Low: Mask

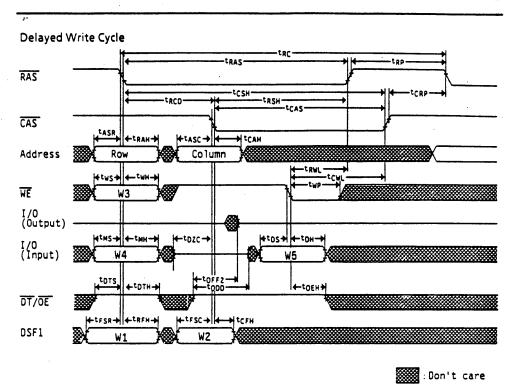
High: Non Mask

In persistent mask mode, I/O don't care

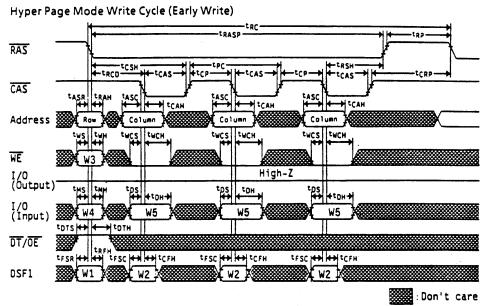

Note 2: reference Figure 2 use of Block Write

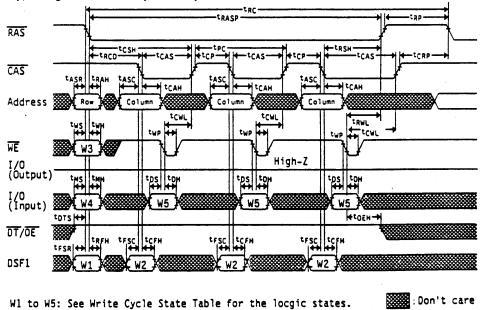
Note 3: I/O Write Mask Data

Low: Mask

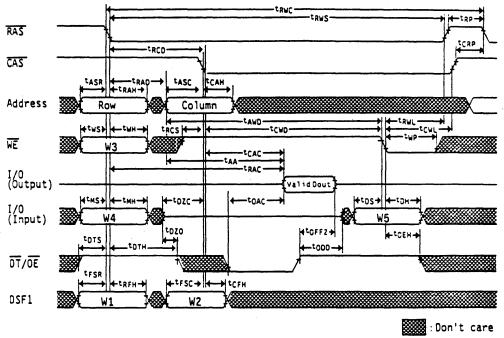

High: Non mask

Note 4: Column Address: Don't care

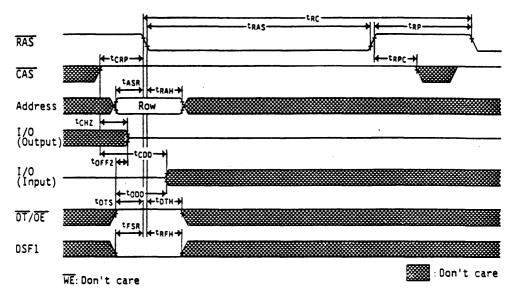

W1 to W5: See Write Cycle State Table for the logic states.

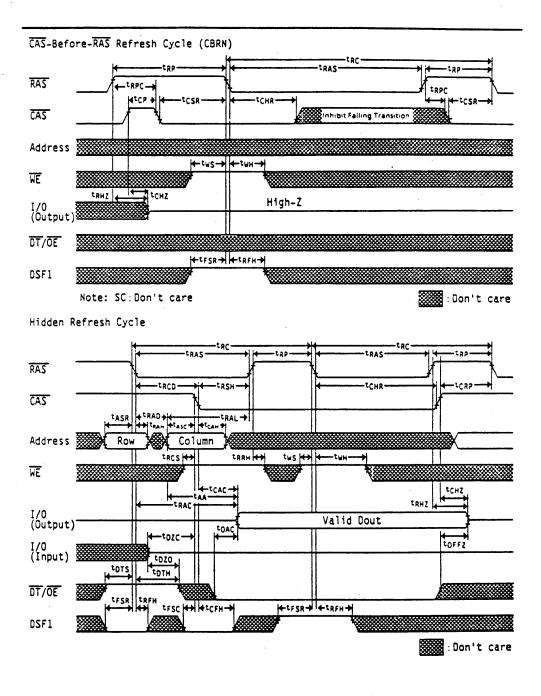


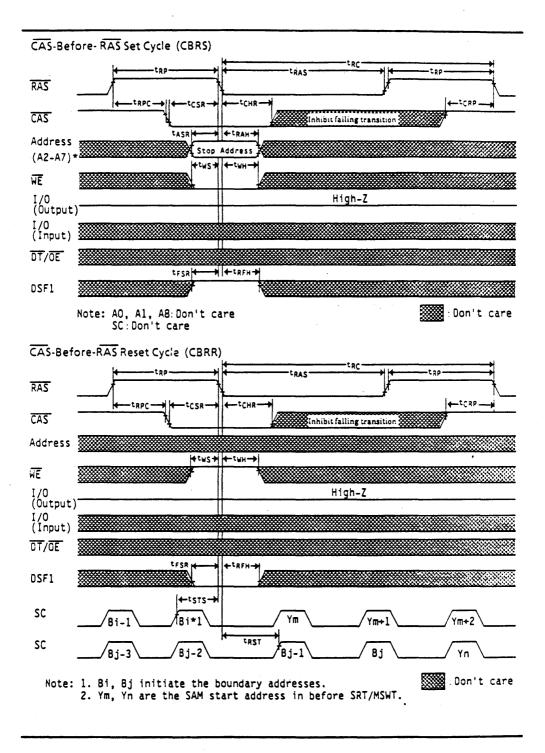
W1 to W5: See Write Cycle State Table for the logic states.

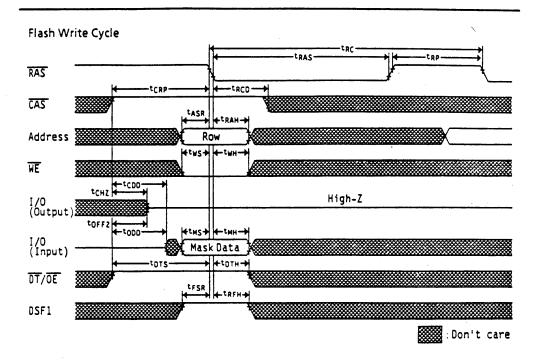


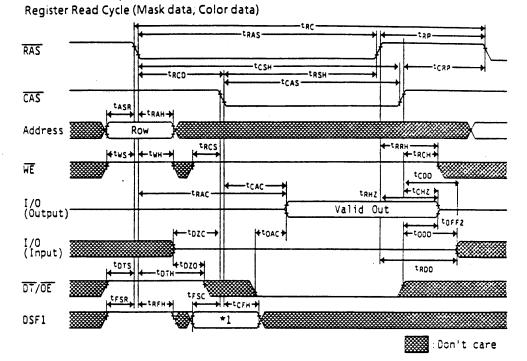
W1 to W5: See Write Cycle State Table for the logic states.


Hyper Page Mode Write Cycle (Delayed Write)

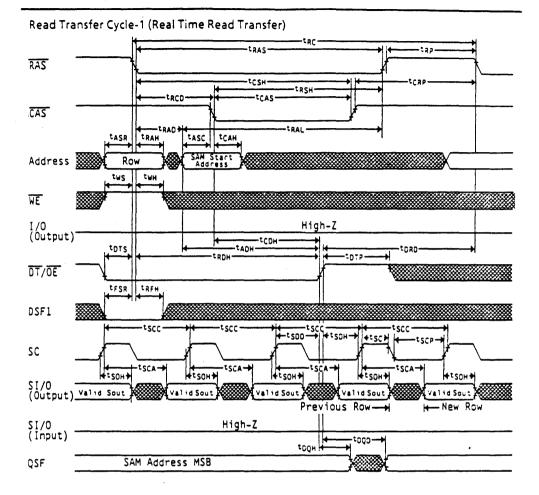

Read- Modify-Write Cycle


W1 to W5: See Write Cycle State Table for the logic states.

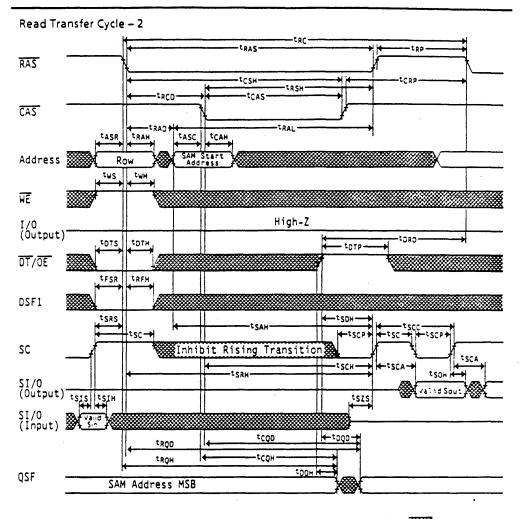

• RAS-Only Refresh Cycle

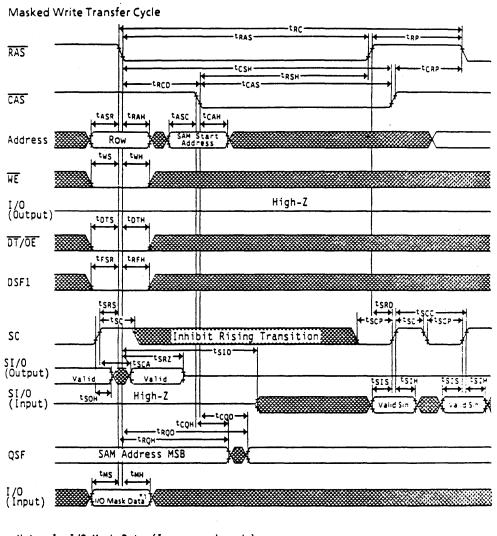


OHITACHI



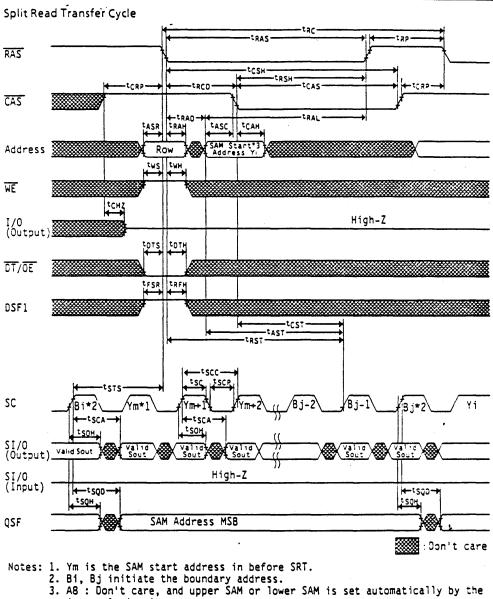
Note: 1. State of DSF1 at falling edge of \overline{CAS}


State	0	1
Accessed	Mask Data	Color Data
Data	(LMR)	(LCR)

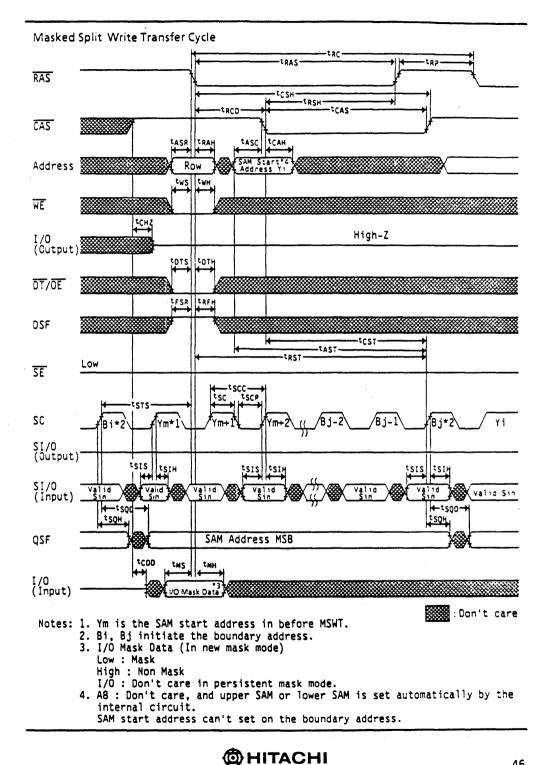


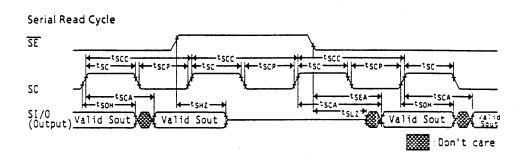
:Don't care

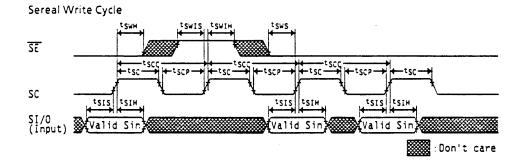
ФНІТАСНІ


:Don't care

Note: 1. I/O Mask Data (In new mask mode) Low : Mask High : Non Mask I/O : Don't care in persistent mask mode.

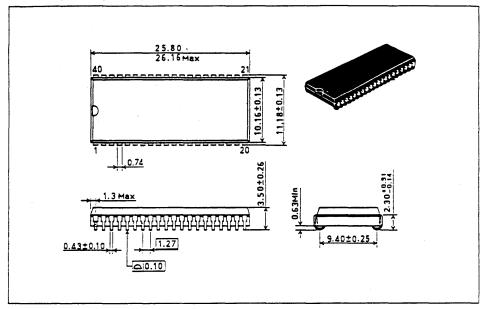

:Don't care





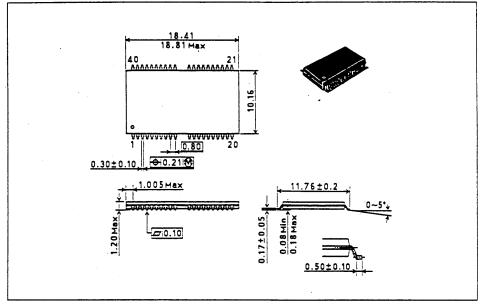
internal circuit.

SAM start address can't set on the boundary address.

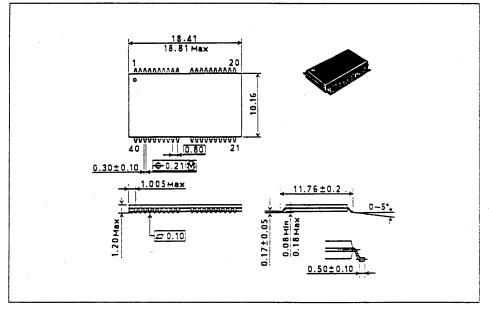


Package Dimensions

HM538254J Series (CP-40D)


Unit: mm

Package Dimensions (cont)



Unit: mm

HM538254RR Series (TTP-40DAR)

Unit: mm

HM5316123 Series

131,072-Word x 16-Bit Multiport CMOS Video RAM

HITACHI

Rev. 2 Feb. 10, 1993

Preliminary

The HM5316123 is a 2-Mbit multiport video RAM equipped with a 128-kword x 16-bit dynamic RAM and a 256-word x 16-bit SAM (full-sized SAM). Its RAM and SAM operate independently and asynchronously. The HM5316123 has basically upward-compatibility with the HM534253A/HM538123A except that pseudowrite-transfer cycle is replaced with masked-writetransfer cycle, which has been approved by JEDEC. Furthermore, several new features are added to the HM5316123 without conflict with the conventional features. Stopping column feature realizes much flexibility to the length of split SAM register. Persistent mask is also installed according to the TMS34020 features. Byte-write-control is useful for x16 organization to be fit to 8-bit bus system.

Preliminary: This document contains information on a new product. Specifications and information contained herein are subject to change without notice.

semiconducto

Features

Multiport organization

Asynchronous and simultaneous operation of RAM and SAM capability

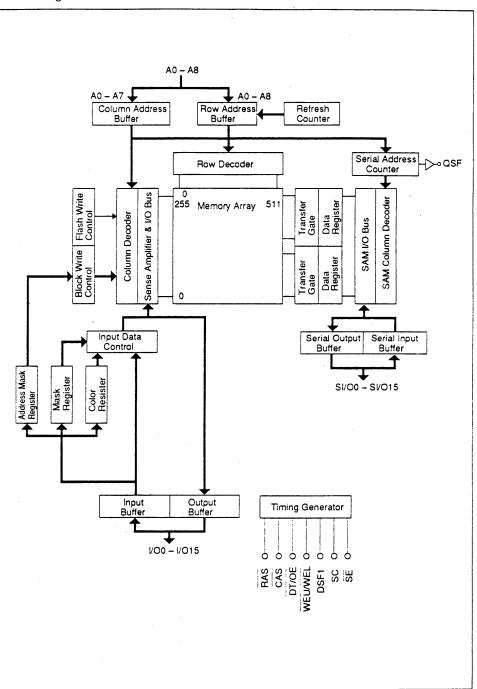
RAM: 128 kword x 16 bit SAM: 256 word x 16 bit

- Access time
 - RAM: 70 ns/80 ns/100 ns (max) SAM: 20 ns/23 ns/25 ns (max)
- Cycle time RAM: 130 ns/150 ns/180 ns (min) SAM: 25 ns/28 ns/30 ns (min)
- Low power Active RAM: 660 mW/605 mW/550 mW SAM: 468 mW/413 mW/385 mW Standby 38.5 mW (max)
- Masked-write-transfer cycle capability
- Stopping column feature capability
- · Persistent mask capability
- Byte write control capability: 2WE control
- Fast page mode capability Cycle time: 45 ns/50 ns/55 ns Power RAM: 688 mW/660 mW/633 mW
- Mask write mode capability
- · Bidirectional data transfer cycle between RAM and SAM capability
- Split transfer cycle capability
- Block write mode capability
- Flash write mode capability
- 3 variations of refresh (8 ms/512 cycles)
 - RAS-only refresh
 - CAS-before-RAS refresh
- Hidden refresh
- TTL compatible

HM5316123 Series

Ordering Information

Туре No.	Access time	Package				
HM5316123F-7	70 ns	64-pin plastic shrink SOP				
HM5316123F-8	80 ns	(FP-64DS)				
HM5316123F-10	100 ns					


Pin Arrangement

Pin Description

Pin name	Function
A0 – A8	Address inputs
1/00 – 1/015	RAM port data inputs/outputs
SI/O0 – SI/O15	SAM port data inputs/outputs
RAS	Row address strobe
CAS	Column address strobe
WEU	Upper byte write enable
WEL	Lower byte write enable
DT/OE	Data transfer/output enable
SC.	Serial clock
SE	SAM port enable
DSF1, DSF2	Special function input flag
QSF	Special function output flag
V _{CC}	Power supply
V _{SS}	Ground

HM5316123 Series

Pin Functions

 \overline{RAS} (input pin): \overline{RAS} is a basic RAM signal. It is active in low level and standby in high level. Row address and signals as shown in table 1 are input at the falling edge of \overline{RAS} . The input level of these signals determine the operation cycle of the HM5316123.

RAS						CAS		Address		I/On Input	
Code			DSF2	RAS	CAS	RAS	CAS/WE				
CBRS	0	-	0	1	0	-	0	Stop	-	-	-
CBRR	0	-	1	0	0	-	0	-	_	-	-
CBRN	0	_	1	1	0	-	0	-	-	-	-
MWT	1	0	0	0	0	-	0	Row	TAP	WM	_
MSWT	1	0	0	1	0	-	0	Row	TAP	WM	-
RT	1	0	1	0	0	-	0	Row	TAP	-	-
SRT	1	0	1	1	0	-	0	Row	TAP	-	-
RWM	1	1	0	0	0	0	0	Row	Colum	WM	Input data

Table 1. Operation Cycles of the H

Mnemonic Write		Dese	Register		NI6				
	Mask	Pers W.M.	WM	Color	No.of Bndry	Function			
CBRS	-	-	-	-	Set	CBR refresh with stop resister set			
CBRR	_	Reset	Reset	-	Reset	CBR refresh with register reset			
CBRN	-		-	-	-	CBR refresh (no reset)			
MWT	Yes	No Yes	Load/us Use	ie –	-	Masked write transfer (new/old mask)			
MSWT	Yes	No Yes	Load/us Use	e –	Use	Masked split write transfer (new/old mask)			
ŔŢ	-	-	-	-	-	Read transfer			
SRT	-	-	-	_	Use	Split read transfer			
RWM	Yes	No Yes	Load/us Use	e –		Read/write (new/old mask)			

Mnemonic	RAS					CAS		Addre	\$ \$	l/On Input	
Code	CAS	DT/OE	WE	DSF1	DSF2	DSF1	DSF2	RAS	CAS	RAS	CAS/WE
BWM	1	1	0	0	0	1	0	Row	Column	WM	Column Mask
RW (No)	1	1	- 1	0	0	0	0	Row	Column	-	Input data
BW (No)	1	1	1	0	0	1	0	Row	Column	-	Column Mask
FWM	1	1	0	1	0	-	0	Row	-	WM	-
LMR and Old Mask S	1 et	1	1	1	0	0	0	(Row)		-	Mask Data
LCR	1	1	1	1	0	1	0	(Row)	-	-	Color
Option	0	0	0	0	0	-	0	Mode	_	Data	

Table 1. Operation Cycles of the HM5316123 (cont)

• • • • • • • • • • •	144-24 -	D	Register		No. of					
Mnemonic Code	Write Mask	Pers W.M.	WM	Color	No.of Bndry	Function				
BWM	Yes	No Yes	Load/use Use	Use		Block write (new/old mask)				
RW (No)	No	No	-	-	-	Read/write (no mask)				
BW (No)	No	No	-	Use		Block write (no mask)				
FWM	Yes	No Yes	Load/use Use	Use	-	Masked flash write (new/old mask)				
LMR and Old Mask Se	_ ət	Set	Load	-	-	Load mask register and old mask set				
LCR	-	-	-	Load	-	Load color resister set				
Option	-	-	-	-	-					

Notes: 1. With CBRS, all SAM operations use stop register.

2. After LMR, RWM, BWM, FWM, MWT, and MSWT, use old mask which can be reset by CBRR.

3. DSF2 is fixed low in all operation. (for the addition of operation mode in future)

 \overline{CAS} (input pin): Column address and DSF1 signals are fetched into chip at the falling edge of \overline{CAS} , which determines the operation mode of the HM5316123. \overline{CAS} controls output impedance of I/O in RAM.

A0 - A8 (input pins): Row address (AX0 - AX8) is determined by A0 - A8 level at the falling edge of RAS. Column address (AY0 - AY7) is determined by A0 - A7 level at the falling edge of CAS. In transfer cycles, row address is the address on the word line which transfers data with SAM data register, and column address is the SAM start address after transfer.

WEU and WEL (Input pins): WEU and WEL pins have two functions at the falling edge of RAS and after. When either WEU or WEL is low at the falling edge of RAS, the HM5316123 turns to mask write mode. According to the I/O level at the time, write on each I/O can be masked. (WEU and WEL levels at the falling edge of RAS is don't care in read cycle.) When both WEU and WEL are high at the falling edge of RAS, a no mask write cycle is executed. After that, WEU and WEL switch read/write cycles. Both WEU and WEL must be held high in a read cycle. In a transfer cycle, the direction of transfer is determined by WEU and WEL levels at the falling edge of RAS. When either WEU or WEL is low, data is transferred from SAM to RAM (data is written into RAM), and when both WEU and WEL are high, data is transferred from RAM to SAM (data is read from RAM).

I/O0 - I/O15 (input/output pins): I/O pins function as mask data at the falling edge of RAS (in mask write mode). Data is written only to high I/O pins. Data on low I/O pins are masked and internal data are retained. After that, they function as inut/output pins as those of a standard DRAM. In block write cycle, they function as column mask data at the falling edges of CAS, and WEU or WEL.

 $\overline{DT}/\overline{OE}$ (input pin): $\overline{DT}/\overline{OE}$ pin functions as \overline{DT} (data transfer) pin at the falling edge of \overline{RAS} and as \overline{OE} (output enable) pin after that. When \overline{DT} is low at the falling edge of \overline{RAS} , this cycle becomes a transfer cycle. When \overline{DT} is high at the falling edge of \overline{RAS} , RAM and SAM operate independently.

SC (input pin): SC is a basic SAM clock. In a serial read cycle, data outputs from an SI/O pin synchronously with the rising edge of SC. In a serial write cycle, data on an SI/O pin at the rising edge of SC is fetched into the SAM data register.

SE (input pin): SE pin activates SAM. When SE is high, SI/O is in the high impedance state in serial read cycle and data on SI/O is not fetched into the SAM data register in serial write cycle. SE can be used as a mask for serial write because the internal pointer is incremented at the rising edge of SC.

SI/O0 – SI/O15 (input/output pins): SI/Os are input/output pins in SAM. Direction of input/output is determined by the previous transfer cycle. When it was a read transfer cycle, SI/O outputs data. When it was a masked write transfer cycle, SI/O inputs data.

DSF1 (input pin): DSF1 is a special function data input flag pin. It is set to high at the falling edge of \overline{RAS} when new functions such as color register and mask register read/write, split transfer, and flash write, are used.

DSF2 (input pin): DSF2 is also a special function data input flag pin. This pin is fixed to low level in all operations of the HM5316123.

QSF (output pin): QSF outputs data of address A7 in SAM. QSF is switched from low to high by accessing address 127 in SAM and from high to low by accessing address 255 in SAM.

Operation of HM5316123

RAM Port Operation

RAM Read Cycle ($\overline{DT}/\overline{OE}$ high, \overline{CAS} high and DSF1 low at the falling edge of \overline{RAS} , DSF1 low at the falling edge of \overline{CAS})

Row address is entered at the RAS falling edge and column address at the CAS falling edge to the device as in standard DRAM. Then, when \overline{WEU} or \overline{WEL} is high and $\overline{DT/OE}$ is low while CAS is low, the selected address data outputs through I/O pin. At the falling edge of RAS, $\overline{DT/OE}$ and CAS become high to distinguish RAM read cycle from transfer cycle and CBR refresh cycle. Address access time (t_{AA}) and RAS to column address delay time (t_{RAD}) specifications are added to enable fast page mode.

RAM Write Cycle (Eraly Write, Delayed Write, Read-Modify-Write)

 $(\overline{DT}/\overline{OE}$ high, \overline{CAS} high and DSF1 low at the falling edge of \overline{RAS} , DSF1 low at the falling edge of \overline{CAS})

• No Mask Write Cycle (WEU and WEL high at the falling edge of RAS)

When CAS is set low and either WEU or WEL is set low after RAS low, a write cycle is executed.

If either WEU or WEL is set low before the \overrightarrow{CAS} falling edge, this cycle becomes an early write cycle and all I/O become in high impedance. All 16 data are latched on the falling edge of \overrightarrow{CAS} . If only one of WEU and WEL is low when \overrightarrow{CAS} falls, the write will affect only those corresponding 8 bits. If the other of WEU and WEL falls at the same time in the cycle, the write will then occur for those 8 bits, with the latched data.

If both WEU and WEL are set low after the CAS falling edge, this cycle becomes a delayed write cycle and all 16 data are latched on the falling edge of WEU or WEL. Byte write occures if only one of WEU or WEL falls during the cycle. I/O does not become high impedance in this cycle, so data should be entered with \overline{OE} in high.

If both WEU and WEL are set low after t_{CWD} (min) and t_{AWD} (min) after the CAS falling edge, this cycle becomes a read-modify-write cycle and enables read/write at the same address in one cycle. In this cycle also, to avoid I/O contention, data should be input after reading data and driving \overline{OE} high.

• Mask Write Mode (WEU or WEL low at the falling edge of \overline{RAS})

If WEU or WEL is set low at the falling edge of RAS, two modes of mask write cycle are capable.

1. In new mask mode, mask data is loaded from I/O pin and used. Whether or not an I/O is written depends on I/O level at the falling edge of \overline{RAS} . The data is written in high level I/Os, and the data is masked and retained in low level I/Os. This mask data is effective during the \overline{RAS} cycle. So, in page mode cycles the mask data is retained during the page access.

2. If a load mask register cycle (LMR) has been performed, the mask data is not loaded from I/O pins and the mask data stored in mask registers persistently are used. This operation is known as persistent write mask, set by LMR cycle and reset by CBRR cycle.

Fast Page Mode Cycle ($\overline{DT}/\overline{OE}$ high, \overline{CAS} high and DSF1 low at the falling edge of \overline{RAS})

High-speed page mode cycle reads/writes the data of the same row address at high speed by toggling \overline{CAS} while \overline{RAS} is low. Its cycle time is one third of the random read/write cycle. In this cycle, read, write and block write cycles can be mixed. Note that address access time (t_{AA}), \overline{RAS} to column address delay time (t_{RAD}), and access time from \overline{CAS} precharge (t_{ACP}) are added. In one \overline{RAS} cycle, 256-word memory cells of the same row address can be accessed. It is necessary to specify access frequency within t_{RASP} max (100 µs).

Color Register Set/Read Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ high, \overline{WEU} and \overline{WEL} high and DSF1 high at the falling edge of \overline{RAS})

In color register set cycle, color data is set to the internal color register used in flash write cycle or block write cycle. 16 bits of internal color register are provided at each I/O. This register is composed of static circuits, so once it is set, it retains the data until reset. Since color register set cycle is just as same as the usual write cycle, so read, early write and delayed write cycle can be executed. In this cycle, the HM5316123 refreshes the row address fetched at the falling edge of RAS.

Mask Register Set/Read Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ high, \overline{WEU} and \overline{WEL} high, and DSF1 high at the falling edge of \overline{RAS})

In mask register set cycle, mask data is set to the internal mask register used in mask write cycle, block write cycle, flash write cycle, masked write transfer, and masked split write transfer. 16 bits of internal mask register are provided at each I/O. This mask register is composed of static circuits, so once it is set, it retains the data until reset. Since mask register set cycle is just as same as the usual read and write cycle, so read, early and delayed write cycles can be executed.

Flash Write Cycle (CAS high, DT/OE high, WEU or WEL low, and DSF1 high at the falling edge of RAS)

In a flash write cycle, a row of data (256 word x 16 bit) is cleared to 0 or 1 at each I/O according to the data of color register mentioned before. It is also necessary to mask I/O in this cycle. When \overrightarrow{CAS} and $\overrightarrow{DT/OE}$ is set high, \overrightarrow{WEU} or \overrightarrow{WEL} is low, and DSF1 is high at the falling edge of RAS, this cycle starts. Then, the row address to clear is given to row address. Mask data is as same as that of a RAM write cycle. Cycle time is the same as those of RAM read/write cycles, so all bits can be cleared in 1/256 of the usual cycle time. (See figure 1.)

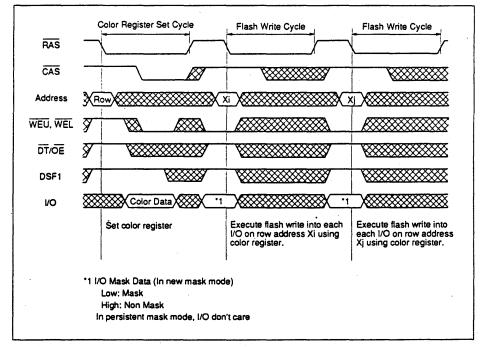
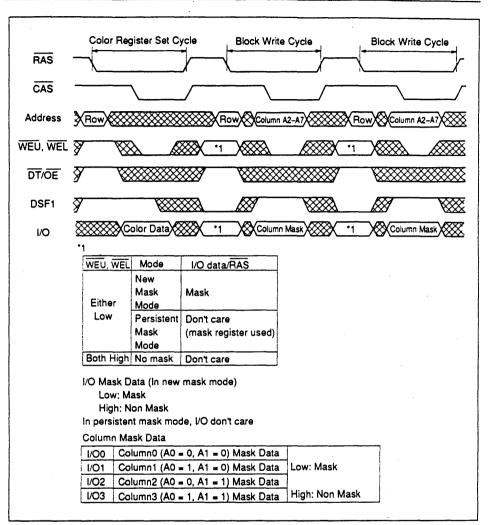


Figure 1 Use of Flash Write

Block Write Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ high and DSF1 low at the falling edge of \overline{RAS} , DSF1 high and \overline{WEU} or \overline{WEL} low at the falling edge of \overline{CAS})

In a block write cycle, 4 columns of data (4 column x 16 bit) are cleared to 0 or 1 at each I/O according to the data of color register. Column addresses A0 and A1 are disregarded. The mask data on I/Os and the mask data on column addresses can be determined independently. I/O level at the falling edge of \overline{CAS} determines the address to be cleared. (See Figure 2.) The block write cycle is as the same as the usual write cycle, so early and delayed write, read-modify-write, and page mode write cycle can be executed.

• No mask Mode Block Write Cycle (WEU and WEL high at the falling edge of RAS)


The data on 16 I/Os are all cleared when \overline{WEU} and \overline{WEL} are high at the falling edge of \overline{RAS} .

Mask Block Write Cycle (WEU or WEL low at the falling edge of RAS)

When either \overline{WEU} or \overline{WEL} is low at the falling edge of \overline{RAS} , the HM5316123 starts mask block write cycle to clear the data on an optional I/O. The mask data is the same as that of a RAM write cycle. High I/O is cleared, low I/O is not cleared and the internal data is retained. In new mask mode, the mask data is available in the \overline{RAS} cycle. In persistent mask mode, I/O don't care about mask mode.

• Column Mask (WEU or WEL low at the falling edge of CAS)

Column mask data is determined by 4I/Os (I/O0, I/O1, I/O2, I/O3) level at \overline{CAS} low and \overline{WEU} or \overline{WEL} low edge. When upper byte column mask is performed by \overline{WEL} high and \overline{WEU} low, column mask data are determined by 4I/Os (I/O0, I/O1, I/O2, I/O3) and other I/Os (I/O4 to I/O15) don't care.

.

Figure 2 Use of Block Write

Transfer Operation

The HM5316123 provides the read transfer cycle, split read transfer cycle, masked write transfer cycle and masked split write transfer cycle as data transfer cycles. Theses transfer cycles are set by driving \overline{CAS} high and $\overline{DT}/\overline{OE}$ low at the falling edge of \overline{RAS} . They have following functions:

(1) Transfer data between row address and SAM data register

Read transfer cycle and split read transfer cycle: RAM to SAM

Masked write transfer cycle and masked split write transfer cycle: SAM to RAM

(2) Determine SI/O state (except for split read transfer cycle and masked split write transfer cycle)

Read transfer cycle: SI/O output

Masked write transfer cycle: SI/O input

(3) Determine first SAM address to access after transferring at column address (SAM start address).

SAM start address must be determined by read transfer cycle or masked write transfer cycle (split transfer cycle isn't available)before SAM access, after power on, and determined for each transfer cycle.

(4) Use the stopping columns (boundaries) in the serail shift register. If the stopping columns have been set, split transfer cycles use the stopping columns, but any boundaries cannot be set as the start address.

(5) Load/use mask data in masked write transfer cycle and masked split write transfer cycle.

Read Transfer Cycle (CAS high, DT/OE low, WEU and WEL high and DSF1 low at the falling edge of RAS)

This cycle becomes read transfer cycle by driving $\overline{DT}/\overline{OE}$ low, WEU and WEL high and DSF1 low at the falling edge of RAS. The row address data (256 x 16 bits) determined by this cycle is transferred to SAM data register synchronously at the rising edge of $\overline{DT}/\overline{OE}$. After the rising edge of $\overline{DT}/\overline{OE}$, the new address data outputs from SAM start address determined by column address. In read transfer cycle, $\overline{DT}/\overline{OE}$ must be risen to transfer data from RAM to SAM.

This cycle can access SAM even during transfer (real time read transfer). In this case, the timing t_{SDD} (min) specified between the last SAM access before transfer and $\overline{DT}/\overline{OE}$ rising edge and t_{SDH} (min) specified between the first SAM access and $\overline{DT}/\overline{OE}$ rising edge must be satisfied. (See figure 3.)

When read transfer cycle is executed, SI/O becomes output state by first SAM access. Input must be set high impedance before t_{SZS} (min) of the first SAM access to avoid data contention.

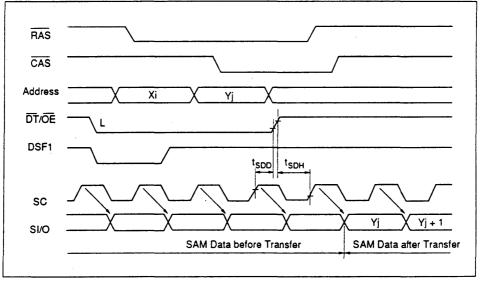


Figure 3 Real Time Read Transfer

Masked Write Transfer cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WEU} or \overline{WEL} low, and DSF1 low at the falling edge of \overline{RAS})

Masked write transfer cycle can transfer only selected I/O data in a row of data input by serial write cycle to RAM. Whether one I/O data is transferred or not depends on the corresponding I/O level (mask data) at the falling edge of RAS. This mask transfer operation is the same as a mask write operation in RAM cycles, so the persistent mode can be supported. The row address of data transferred into RAM is determined by the address at the falling edge of RAS. The column address is specified as the first address for serial write after terminating this cycle. Also in this cycle, SAM access becomes enabled after t_{SRD} (min) after RAS becomes high. SAM access is inhibited during RAS low. In this period, SC must bot be risen. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other address of RAM by write transfer cycle. However, the adddress to write data must be the same as that of the read transfer cycle or the split read transfer cycle (row address AX8)

Split Read Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WEU} and \overline{WEL} high and DSF1 high at the falling edge of \overline{RAS})

To execute a continuous serial read by real time read transfer, the HM5316123 must satisfy SC and $\overline{DT}/\overline{OE}$ timings and requires an external circuit to detect SAM last address. Split read transfer cycle makes it possible to execute a continuous serial read without the above timing limitation.

The HM5316123 supports two types of split register operation. One is the normal split register operation to split the data register into two halves. The other is the boundary split register operation using stopping columns described later.

Figure 4 shows the block diagram for the normal split register operation. SAM data register (DR) consists of 2 split buffers, whose organizations are 128-word x 16-bit each. Let us suppose that data is read from upper data reagister DR1 (The row address AX8 is 0 and SAM address A7 is 1.). When split read transfer is executed setting row address AX8 to 0 and SAM start addresses A0 to A6, 128-word x 16-bit data are transferred from RAM to the lower data register DR0 (SAM address A7 is 0) automatically. After data are read from data register DR1, data start to be read from SAM start addresses of data register DR0. If the next split read transfer isn't executed while data are read from data register DR0, data start to be read from SAM start address 0 of DR1 after data are read from data register DR0. If split read transfer is executed setting row address AX8 to 1 and SAM start addresses A0 to A6 while data are read from data register DR1, 128-word x 16-bit data are transferred to data register DR2. After data are read from data register DR1, data start to be read from data register DR2. If the next split read transfer isn't executed while data is read from data register DR2. If the next split read transfer isn't executed while data is read from data register DR2. If the next split read transfer isn't executed while data are read from data register DR2. If the next split read transfer isn't executed while data are read from data register DR2. In split read data transfer, the SAM start address A7 is automatically set in the data register, which isn't used.

The data on SAM address A7, which will be accessed next, outputs to QSF, QSF is switched from low to high by accessing SAM last address 127 and from high to low by accessing address 255.

Split read transfer cycle is set when \overline{CAS} is high, $\overline{DT}/\overline{OE}$ is low, \overline{WEU} and \overline{WEL} is high and DSF1 is high at the falling edge of \overline{RAS} . The cycle can be executed asyncronously with SC. However, HM5316123 must be satisfied tSTS (min) timing specified between SC rising (Boundary address) and \overline{RAS} falling. In split transfer cycle, the HM5316123 must satisfy t_{RST} (min), t_{CST} (min) and t_{AST} (min) timings specified between \overline{RAS} or \overline{CAS} falling and column address. (See figure 5.)

In split read transfer, SI/O isn't switched to output state. Therefore, read transfer must be executed to switch SI/O to output state when the previous transfer cycle is masked write transfer cycle or masked split write transfer cycle. SAM start address must be set in every split read transfer cycle.

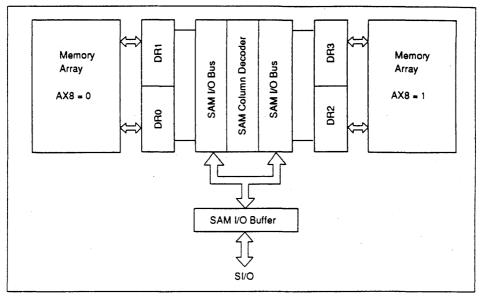


Figure 4 Block Diagram for Split Transfer

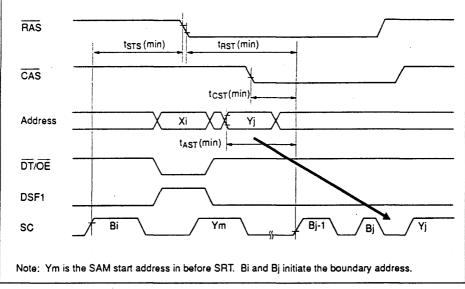


Figure 5 Limitation in Split Transfer

Masked Split Write Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WEU} or \overline{WEL} low and DSF1 high at the falling edge of \overline{RAS})

A continuous serial write cannot be executed because accessing SAM is inhibited during RAS low in write transfer. Masked split write transfer cycle makes it possible. In this cycle, t_{STS} (min), t_{RST} (min), t_{CST} (min) and t_{AST} (min) timings must be satisfied like split read transfer cycle. And it is impossible to switch SI/O to input state in this cycle. If SI/O is in output state, masked write transfer cycle should be executed to switch SI/O into input state. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other addresses of RAM by masked split write transfer cycle. However, masked write transfer cycle must be executed before split write transfer cycle. And in this masked split write transfer cycle, the MSB of row address (AX8) to write data must be the same as that of the read transfer cycle or the split read transfer cycle.

Stopping Column in Split Transfer Cycle

The HM5316123 has the boundary split register operation using stopping columns. If a CBRS cycle has been performed, split transfer cycle performs the boundary operation. Figure 6 shows an example of boundary split register. (Boundary code is B6.)

First of all a read data transfer cycle is executed, and SAM start addresses A0 to A7 are set. The RAM data are transferred to the SAM, and SAM serial read starts from the start address (Y1) on the lower SAM. After that, a split read transfer cycle is executed, and the next start address (Y2) is set. The RAM data are transferred to the upper SAM. When the serial read arrive at the first boundary after the split read transfer cycle is executed, and another start address (Y2) is set. The RAM data are transferred to the upper SAM. When the serial read arrive at the first boundary after the split read transfer cycle is executed, and another start address (Y3) is set. The RAM data are transferred to the lower SAM. When the serial read arrive at the other boundary again, the next read jumps to the start address (Y3) on the lower SAM. In stopping column, split transfer is needed for jump operation between lower SAM and upper SAM.

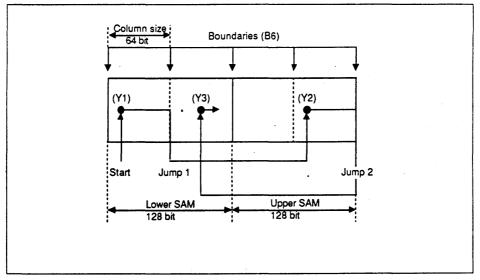


Figure 6 Example of Boundary Split Register

Stopping Column Set Cycle (CBRS)

This cycle becomes stopping column set cycle by driving \overline{CAS} low, \overline{WEU} or \overline{WEL} low, DSF1 high at the falling edge of \overline{RAS} . Stopping column data (boundaries) are latched from address inputs on the falling edge of \overline{RAS} . To determine the boundary, A2 to A6 can be used and don't care A0, A1, and A7. In the HM5316123, 6 types of boundary (B2 to B7) can be set including the default case. (See stopping column boundary table.) If A2 to A5 are set to high and A6 is set to low, the boundaries (B6) are selected. Figure 6 shows the example. The stop address that is set by the CBRS is used from next split transfer cycle. Once a CBRS is executed, the stopping column mode continues until CBRR.

		Stop	Addr	ess		
Boundary code	Column size	A2	A3	A4	A5	A6
B2	4	0	*	*	*	*
B3	8	1	0	*	*	*.
B4	16	1	1	0	*	*
B5	32	1	1	1	0	*
B6	64	1	1	1	1	0
B7	128	1	1	1	1	1

Stopping Column Boundary Table

Notes: 1. A0, A1, and A7: don't care 2. *: don't care

Register Reset Cycle (CBRR)

This cycle becomes register reset cycle (CBRR) by driving \overrightarrow{CAS} low, \overrightarrow{WEU} and \overrightarrow{WEL} high, and DSF1 low at the falling edge of \overrightarrow{RAS} . A CBRR can reset the persistent mask operation and stopping column operation, so the HM5316123 becomes the new mask operation and boundary code B7. When a CBRR is executed for stopping column operation reset and split transfer operation, it need to satisfy t_{STS} (min) and t_{RST} (min) between \overrightarrow{RAS} falling and SC rising for correct SAM read/write operation.

No Reset CBR Cycle (CBRN)

This cycle becomes no reset CBR cycle (CBRN) by driving \overline{CAS} low, \overline{WE} high and DSF1 high at the falling edge of \overline{RAS} . The CBRN can only execute the refresh operation.

Byte Control (WEU, WEL)

In a write cycle, when \overline{WEL} set low and \overline{WEU} set high, I/O0 to I/O7 become write mode and I/O8 to I/O15 become no write mode, and when \overline{WEL} set high and \overline{WEU} set low, I/O0 to I/O7 become no write mode and I/O8 to I/O15 become write mode. The write cycle that byte control is capable are RAM write cycle, block write cycle, load write mask register cycle and load color register cycle. The byte control write cycle is capable to execute early write, delay write, read-modify-write and page mode. But write mask in new mask mode, flash write, transfer and refresh cycle can not execute byte control.

SAM Port Operation

Serial Read Cycle

SAM port is in read mode when the previous data transfer cycle is a read transfer cycle. Access is synchronized with SC rising, and SAM data is output from SI/O. When \overline{SE} is set high, SI/O becomes high impedance, and the internal pointer is incremented by the SC rising. After indicating the last address (address 255), the internal pointer indicates address 0 at the next access.

Serial Write Cycle

If previous data transfer cycle is masked write transfer cycle, SAM port goes into write mode. In this cycle, SI/O data is fetched into data register at the SC rising edge like in the serial read cycle. If \overline{SE} is high, SI/O data isn't fetched into data register. The internal pointer is incremented by the SC rising, so \overline{SE} high can be used as mask data for SAM. After indicating the last address (address 255), the internal pointer indicates address 0 at the next access.

Refresh

RAM Refresh

RAM, which is composed of dynamic circuits, requires refresh cycle to retain data. Refresh is executed by accessing all 512 row addresses within 8 ms. There are three refresh cycles: (1) RAS-only refresh cycle, (2) CAS-before-RAS (CBRN, CBRS, and CBRR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which activate RAS, such as read/write cycles or transfer cycles, can also refresh the row address. Therefore, no refresh cycle is required when all row addresses are accessed within 8 ms.

(1) \overrightarrow{RAS} -Only Refresh Cycle: \overrightarrow{RAS} -only refresh cycle is executed by activating only the \overrightarrow{RAS} cycle with \overrightarrow{CAS} fixed to high after inputting the row address (= refresh address) from external circuits. To distinguish this cycle from a data transfer cycle, $\overrightarrow{DT}/\overrightarrow{OE}$ must be high at the falling edge of \overrightarrow{RAS} .

(2) CBR Refresh Cycle: CBR refresh cycle (CBRN, CBRS and CBRR) are set by activating \overline{CAS} before \overline{RAS} . In this cycle, the refresh address need not to be input through external circuits because it is input through an internal refresh counter. In this cycle, output is in high impedance and power dissipation is lowered because \overline{CAS} circuits don't operate.

(3) Hidden Refresh Cycle: Hidden refresh cycle executes CBR refresh with the data output by reactivating RAS when DT/OE and CAS keep low in normal RAM read cycles.

SAM Refresh

SAM parts (data register, shift resister and selector), organized as fully static circuitry, require no refresh.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage on any pin relative to V _{SS}	V _T	-1.0 to +7.0	v
Supply voltage relative to V _{SS}	Vcc	-0.5 to +7.0	v
Short circuit output current	lout	50	mA
Power dissipation	PŢ	1.0	w
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C

Recommended DC Operating Conditions (Ta = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply voltage	V _{CC}	4.5	5.0	5.5	v	1
Input high voltage	VIH	2.4		6.5	v	1
Input low voltage	VIL	-0.5*2		0.8	v	1

Notes: 1. All voltage referenced to V_{SS} 2. -3.0 V for pulse width \leq 10 ns.

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%, V_{SS} = 0 V)

.

		H M5 -7	31612	3 -8		-10				
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test conditi	ons
Operating current	ICC1		120	·	110	_	100	mA	HAS, CAS	SC = V _{IL} , SE = V _{IH}
	ICC7	_	195	-	175		160	mA	-cycling t _{RC} = min	SE = V _{IL} , SC cycling t _{SCC} = min
Block write current	ICC1BW	-	125	-	115	-	. 100	mA	RAS, CAS	SC = V _{IL} , SE = V _{IH}
	ICC7BW	<u> </u>	200	-	180	_	160	mA	t _{RC} = min	SE = V _{IL} , SC cycling t _{SCC} = min
Standby current	I _{CC2}	—	7	-	7	<u>~</u>	7	mA	RAS, CAS -= V _{IH}	SC = V _{IL} , SE = V _{IH}
	ICC8	— ,	85	-	75	-	70	mA		SE = V _{IL} , SC cycling t _{SCC} = min
RAS-only refresh current	I _{CC3}	—	115	-	105	_	90	mA	RAS cycling -CAS =V _{IH}	SC = V _{IL} , <u>SE</u> = V _{IH}
conent	lcca	-	185	-	165	. —	150	mA	$t_{\rm RC} = \min$	SE = V _{IL} , SC cycling t _{SCC} = min
Fast page mode current *3	ICC4	_	125	—	120	_	115	mA	CAS cycling -RAS = VII	$SC = V_{IL}, \overline{SE} = V_{IH}$
	ICC10	—	200	-	185	-	175	mA	$t_{PC} = min$	SE = V _{IL} , SC cycling t _{SCC} = min
Fast page mode block write	ICC4BW		145		135		130	mA	CAS cycling -RAS = V _{IL}	SC = V _{IL} , SE = V _{IH}
current *3	ICC 10BW	,—	220	-	205	-	195	mA	t _{PC} = min	SE = V _{IL} , SC cycling t _{SCC} = min
CAS-before RAS	I _{CC5}		85	—	75	-	65	mA		$SC = V_{IL}, \overline{SE} = V_{IH}$
ienesn current	ICC11	_	155	-	140	-	125	mA	-t _{RC} = min	SE = V _{IL} , SC cycling t _{SCC} = min
Data transfer current	ICCe	-	130		120	-	110	mА	RAS, CAS	SC = V _{IL} , <u>SE</u> = V _{IH}
	ICC12	.	205		185	. —	165	mA	t _{RC} = min	SE = V _{IL} , SC cycling t _{SCC} = min
input leakage curren	t I _{LI}	-10	10	-10	10	-10	10	μA		
Output leakage current	LO	-10	10	-10	10	-10	10	μA		
Output high voltage	VOH	2.4	_	2.4		2.4	_	v	I _{OH} = -1 m/	
Output low voltage	VOL		0.4		0.4	_	0.4	۷	I _{OL} = 2.1 m/	A

Notes: 1. I_{CC} depends on output load condition when the device is selected. I_{CC} max is specified at the output open condition.

2. Address can be changed once while $\overrightarrow{\text{RAS}}$ is low and $\overrightarrow{\text{CAS}}$ is high.

3. Address can be changed once in 1 page cycle (tpc).

					33/
Parameter	Symbol	Тур	Max	Unit	Note
Input capacitance (Address)	C ₁₁	_	5	рF	1
Input capacitance (Clocks)	C _{I2}	_	5	pF	1
Output capacitance (I/O, SI/O, QSF)	C _{l/O}		7	рF	1

Capacitance (Ta = 25°C, V_{CC} = 5 V±10 %, f = 1 MHz, Bias: Clock, I/O = V_{CC} , address= V_{SS})

Notes: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V$) *1, *16

Test Conditions

- Input rise and fall times: 5ns

- Input pulse levels: V_{SS} to 3.0 V
- Input timing reference levels: 0.8 V, 2.4 V
- Output timing reference levels: 0.8 V, 2.0 V
- Output load: RAM 1TTL+CL(50PF)
 - SAM, QSF 1TTL+CL(30PF)

(Including scope and jig)

Common Parameter

		HM531612 -7		3 -8 		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	^t RC	130		150		180		ns	
RAS precharge time	^t RP	50		60	-	70		ns	
RAS pulse width	^t RAS	70	10000	80	10000	100	10000	ns	
CAS pulse width	^t CAS	20		20		25	-	ns	
Row address setup time	^t ASR	0	_	0		0		ns	
Row address hold time	^t RAH	10		10	_	10	_	ns	
Column address setup time	tasc	0		0		0	-	ns	
Column address hold time	^t CAH	12	<u> </u>	15		15		ns	
RAS to CAS delay time	^t RCD	20	50	20	60	20	75	ns	2
RAS hold time referenced to CAS	^t RSH	20		20	_	25	_	ns	
CAS hold time referenced to RAS	^t CSH	70		80		100	-	ns	
CAS to RAS precharge time	^t CRP	10		10	-	10		ns	

Common Parameter (cont)

		HM5316123 -7		3 -8 		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Transition time (rise to fall)	t _T	3	50	3	50	3	50	ns	3
Refresh period	^t REF	-	8	-	8		8	ms	
DT to RAS setup time	^t DTS	0	_	0		0		ns	
DT to RAS hold time	^t DTH	10		10		10	-	∩s	-
DSF1 to RAS setup time	^t FSR	0	_	0	_	0	_	ns	
DSF1 to RAS hold time	^t RFH	10	-	10	_	10	_	ns	
DSF1 to CAS setup time	^t FSC	0		0	_	0	_	ns	
DSF1 to CAS hold time	^t CFH	12	-	15	_	15		ns	
Data-in to CAS delay time	^t DZC	0		0		0		ns	4
Data-in to OE delay time	tDZO	0		0		0	-	ns	4
Output buffer turn-off delay referenced to CAS	^t OFF1		15	<u> </u>	20	-	20	ns	5
Output buffer turn-off delay referenced to OE	^t OFF2		15		20	_	20	ns	5

Read Cycle (RAM), Page Mode Read Cycle

	HM -7	HM5316123 -7		-8 		-10			
Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes	
^t RAC	_	70		80		100	ns	6, 7	
^t CAC	. —	20	_	20		25	ns	7, 8	
^t OAC	_	20	-	20	-	25	ns	7	
^t AA		35	_	40	-	45	ns	7, 9	
t _{RCS}	0	-	0	_	0		ns		
^t RCH	0		0	-	0	-	ns	10	
^t RRH	0		5	_	10	- <u>-</u> .	ns	10	
tRAD	15	35	15	40	15	55	ns	2	
^t RAL	35		40		45		ns		
t _{CAL}	35	-	40		45		ns		
^t PC	45	_	50	_	55		ns		
tCP	7		10	.—	10	-	ns		
TACP	-	40	_	45		50	ns		
tRASP	70	100000	80 1	00000	100	100000	ns		
	tRAC tCAC tOAC tAA tRCS tRCH tRCH tRRH tRAD tRAL tCAL tCAL tCP tACP	-7 Symbol Min tRAC — tCAC — tOAC — tAA — tRCS 0 tRCH 0 tRAL 35 tCAL 35 tCAL 35 tCP 7 tACP —	-7 Symbol Min Max tRAC 70 tCAC 20 tOAC 20 tAA 35 tRCS 0 tRCH 0 tRAC 15 35 tRCH 0 tRAD 15 35 tRAL 35 tRAL 35 tRAL 35 tRAL 35 tCAL 35 tCP 7 tACP 40	-7 -8 Symbol Min Max Min t_{RAC} 70 t_{CAC} 20 t_{OAC} 20 t_{OAC} 20 t_{AA} 35 t_{RCS} 0 0 t_{RCH} 0 5 t_{RAD} 15 35 15 t_{RAL} 35 40 t_{CAL} 35 50 t_{CAL} 35 50 t_{CP} 7 10 t_{ACP} 40	-7 -8 Min Max Min Max t_{RAC} 70 80 t_{CAC} 20 20 t_{OAC} 20 20 t_{OAC} 20 20 t_{AA} 35 40 t_{RCS} 0 0 t_{RCH} 0 5 t_{RAD} 15 35 15 40 t_{RAL} 35 40 t_{RAL} 35 40 t_{RAL} 35 40 t_{CAL} 35 50 t_{CP} 7 10 t_{ACP} 40 45	-7 -8 -10 Symbol Min Max Min Max Min t_{RAC} - 70 - 80 - t_{CAC} - 20 - 20 - t_{OAC} - 20 - 20 - t_{OAC} - 20 - 20 - t_{AA} - 35 - 40 - t_{RCS} 0 - 0 - 0 t_{RCH} 0 - 5 - 10 t_{RAD} 15 35 15 40 15 t_{RAL} 35 - 40 - 45 t_{CAL} 35 - 40 - 45 t_{CAL} 35 - 50 - 55 t_{CP} 7 - 10 - 10 t_{ACP} - 40 - 45 -	-7 -8 -10 Min Max Min Max Min Max t_{RAC} - 70 - 80 - 100 t_{CAC} - 20 - 20 - 25 t_{OAC} - 20 - 20 - 25 t_{AA} - 35 - 40 - 45 t_{RCS} 0 - 0 - 0 - t_{RCH} 0 - 5 - 10 - t_{RAD} 15 35 15 40 15 55 t_{RAL} 35 - 40 - 45 - t_{RAL} 35 - 40 - 45 - t_{RAL} 35 - 40 - 45 - t_{CAL} 35 - 50 - 55 - t_{RA	-7 -8 -10 Min Max Min Max Min Max Unit t_{RAC} - 70 80 100 ns t_{CAC} - 20 20 25 ns t_{OAC} 20 20 25 ns t_{OAC} 20 20 25 ns t_{AA} 35 40 45 ns t_{RCB} 0 0 ns ns t_{RCH} 0 5 10 ns t_{RAD} 15 35 15 40 15 55 ns t_{RAL} 35 40 45 ns t_{CP} 7 50 55	

•

Write Cycle (RAM), Page Mode Write Cycle, Color Register Set Cycle

·

		HM: -7	531612	3 -8		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write command setup time	twcs	0	_	0		0	_	ns	11
Write command hold time	twch	12	<u> </u>	15		15	_	ns	
Write command pulse width	twp	12	_	15	_	15		ns	
Write command to RAS lead time	^t RWL	20		20		20	_	ns	
Write command to CAS lead time	tCWL	20		20	-	20		ns	
Data-in setup time	tDS	0	-	0		0		ns	12
Data-in hold time	^t DH	12	_	15		15		ns	12
WE to RAS setup time	tws	0		0	_	0	_	ns	
WE to RAS hold time	^t wн	10		10		10		ns	
Mask data to RAS setup time	t _{MS}	0	-	0	_	0		ns	
Mask data to RAS hold time	t _{MH}	10	_	10	_	10		ns	
OE hold time referenced to WE	^t OEH	15		20		20		ns	
Page mode cycle time	t _{PC}	45		50	_	55		ns	
CAS precharge time	t _{CP}	7		10	_	10	_	ns	
CAS to data-in delay time	tCDD	15		20	-	20		ns	13
Page mode RAS pulse width	tRASP	70	00000	80	100000	100	100000	ns	

Read-Modify-Write Cycle

		HM5 -7	316123	-8		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read-modify-write cycle time	^t RWC	180		200		230		ns	
RAS pulse width (read-modify-write cycle)	tRWS	120	10000	130	10000	150	10000	ns	
CAS to WE delay time	tcwD	40		45		50	_	ns	14
Column address to WE delay time	tawd	60		65	-	70		ns	14
OE to data-in delay time	topp	15		20	_	20	_	ns	12
Access time from RAS	^t RAC		70	_	80	_	100	ns	6, 7
Access time from CAS	tCAC	-	20		20		25	ns	7, 8
Access time from OE	tOAC		20		20		25	ns	7
Address access time	t _{AA}		35		40		45	ns	7, 9
RAS to column address delay time	^t RAD	15	35	15	40	15	55	ns	
Read command setup time	tRCS	0		0	_	0		ns	
Write command to RAS lead time	t _{RWL}	20		20		20		ņs	
Write command to CAS lead time	tcwL	20	_	20	_	20	_	ns	
Write command pulse width	twp	12	-	15		15		ns	
Data-in setup time	tos	0	_	0	_	0	_	ns	12
Data-in hold time	^t DH	12		15	_	15		ns	12
OE hold time referenced to WE	^t OEH	15	_	20	_	20	_	ns	

Refresh Cycle

•

	Symbol	HM531612 -7		23 -8		-10		
Parameter		Min	Max	Min	Max	Min	Max	Unit Notes
CAS setup time (CAS-before-RAS refresh)	^t CSR	10	_	10		10		ns
CAS hold time (CAS-before-RAS refresh)	^t CHR	10	_	10		10	_	ns
RAS precharge to CAS hold time	tRPC	10		10	_	10		ns

.

Flash Write Cycle, Block Write Cycle, and Register Read Cycle

	Symbol	HM531612: -7		3 8		-10			
Parameter		Min	Max	Min	Max	Min	Max	Unit	Notes
CAS to data-in delay time	tCDD	15	`	20		20	—	ns	13
OE to data-in delay time	todd	15	-	20	-	20	-	ns	13

CBR Refresh with Register Reset

	Symbol	HM5316123 -7		3 -8		-10		
Parameter		Min	Max	Min	Max	Min	Max	Unit Notes
Split transfer setup time	tSTS	20		20	[,]	25		ns
Split transfer hold time referenced to RAS	^t RST	70	-	80		100	-	กร

Read Transfer Cycle

		HM5316123 -7		3 -8					
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
DT hold time referenced to RAS	t _{RDH}	60	10000	65	10000	80	10000	ns	
DT hold time referenced to CAS	t _{CDH}	20	_	20		25		ns	
DT hold time referenced to column address	t _{ADH}	25		30	_	30	_	ns	
DT precharge time	^t DTP	20		20		30	<u> </u>	ns	
DT to RAS delay time	t _{DRD}	60	_	70	_	80	_	ns	
SC to RAS setup time	^t SRS	15		20	-	30	_	ns	
1st SC to RAS hold time	^t SRH	70	_	80	_	100	<u> </u>	ns	
1st SC to CAS hold time	tsch	25	-	25	_	25	-	ns	
1st SC to column address hold time	^t SAH	40	-	45		50		ns	
Last SC to DT delay time	tSDD	5		5	_	5	_	ns	
1st SC to DT hold time	t _{SDH}	10	<u> </u>	13	-	15		ns	
DT to QSF delay time	tDQD	_	30		35	_	35	ns	15
QSF hold time referenced to DT	t DQH	5		5	_	5	-	ns	
Serial data-in to 1st SC delay time	tszs	0		0		0		ns	
Serial clock cycle time	tscc	25	_	28		30	-	ns	
SC pulse width	tsc	5	_	10	_	10	_	ns	
SC precharge time	tSCP	10		10		10	<u> </u>	ns	
SC access time	tSCA	_	20		23		25	ns	15
Serial data-out hold time	t _{SOH}	5	_	5		5	_	ns	
Serial data-in setup time	tsis	0		0	_	0		ns	·
Serial data-in hold time	tSIH	15		15	_	15		ns	
RAS to column address delay time	tRAD	15	35	15	40	15	55	ns	· · ·
Column address to RAS lead time	tRAL	35	_	40		45	-	ns	
RAS to QSF delay time	^t RQD		70		75	_	85	ns	15
CAS to QSF delay time	tCOD	_	35	_	35	_	35	ns	15

Read Transfer Cycle (cont)

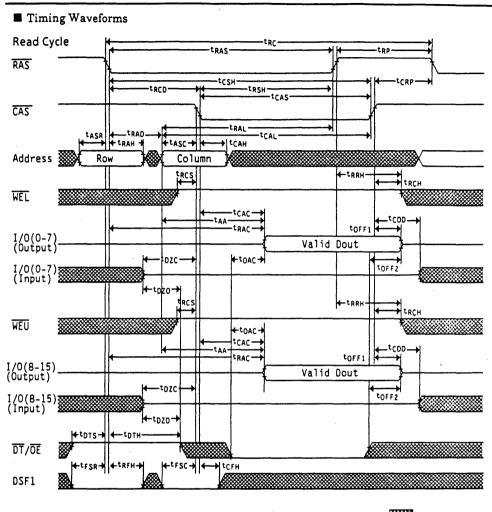
.

	Symbol	HM5316123 -7		3 -8		-10		
Parameter		Min	Max	Min	Max	Min	Max	Unit Notes
QSF hold time referenced to RAS	^t RQH	20	_	20		25		ns
QSF hold time referenced to CAS	tсан	5	-	5	-	5	-	ns

Masked Write Transfer Cycle

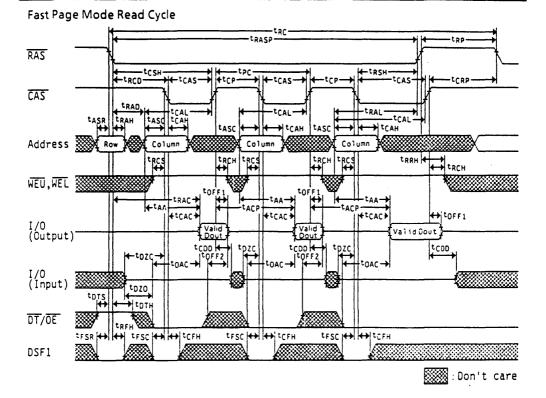
		HM5316123 -7		-8		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
SC setup time referenced to RAS	tsrs	15	_ '	20	_	30	—	ns	
RAS to SC delay time	tSRD	20	<u> </u>	25	-	25	—	ns	
Serial output buffer turn-off time referenced to RAS	tSRZ	10	30	10	35	10	50	ns	
RAS to serial data-in delay time	tsiD	30		35		50	_	ns	
RAS to QSF delay time	^t RQD	_	70	_	75	_	85	ns	15
CAS to QSF delay time	tCOD		35	_	35	_	35	ns	15
QSF hold time referenced to RAS	^t RQH	20	— ·	20		25	-	ns	
QSF hold time referenced to CAS	^t COH	5	-	5	-	5	-	ns	
Serial clock cycle time	tscc	25		28	_	30	-	ns	
SC pulse width	tsc	5	`	10	_	10	_	ns	
SC precharge time	tSCP	10	_	10		10	-	ns	- -
SC access time	^t SCA	_	20		23		25	ns	15
Serial data-out hold time	^t SOH	5	_	5		5	<u> </u>	ns	
Serial data-in setup time	^t sis	0	-	0	-	0	· <u> </u>	ns	
Serial data-in hold time	tsiH	15		15	_	15	_	ns	

Split Read Transfer Cycle, Masked Split Write Transfer Cycle


		HM5316123 -7		-8		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Split transfer setup time	tsts	20	 .	20		25	-	ns	
Split transfer hold time referenced to RAS	^t RST	70	-	80		100	_	ns	
Split transfer hold time referenced to CAS	^t CST	20		20	-	25	-	ns	
Split transfer hold time referenced to column address	^t AST	35	-	40	-	45	-	ns	
SC to QSF delay time	tsad		30		30		30	ns	15
QSF hold time referenced to SC	^t SOH	5	— .	5	<u> </u>	5	-	ns	
Serial clock cycle time	tscc	25	-	28	-	30	_	ns	
SC pulse width	tsc	5		10	_	10	_	ns	
SC precharge time	1SCP	10	_	10	-	10		ns	
SC access time	^t SCA	_	20	_	23	_	25	ns	15
Serial data-out hold time	tsoh	5	—	5		5	-	ns	
Serial data-in setup time	tsis	0	_	0	_	0	-	ns	
Serial data-in hold time	tsiH	15	-	15	-	15	-	ns	
RAS to column address delay time	tRAD	15	35	15	40	15	55	ns	
Column address to RAS lead time	^t RAL	35	_	40	-	45		ns	

Serial Read Cycle, Serial Write Cycle

•


	HM5316123 -7		-8		-10			
Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
tscc	25		28	—	30	_	ns	
tsc	5		10	-	10	-	ns	
tSCP	10	-	10	_	10	-	ns	
¹ SCA	_	20		23	-	25	ns	15
^t SEA	_	17	-	20		25	ns	15
t _{SOH}	5	_	5	_	5		ns	
^t SHZ	-	15		20	-	20	ns	5,17
ts∟z	0	- ·	0	_	0	-	ns	5,17
tsis	0	-	0	_	0	-	ns	
tsiH	15		15	_	15		ns	
tsws	0		0		0		ns	
^t swH	15	-	15		15	-	ns	
tswis	0		0		0		ns	
tswiH	15	_	15		15	_	ns	
	tscc tsc tscp tsca tsca tsca tsca tsca tsca tsca tsca	-7 Symbol Min tscc 25 tsc 5 tscP 10 tscA tsws 0 tswis 0 tswis 0	-7 Symbol Min Max t _{SCC} 25 t _{SC} 5 t _{SCP} 10 t _{SCA} - 20 t _{SCA} - 20 t _{SCA} - 17 t _{SCA} - 17 t _{SCH} 5 t _{SHZ} - 15 t _{SHZ} 0 t _{SIS} 0 t _{SIH} 15 t _{SWS} 0 t _{SWH} 15 t _{SWIS} 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Notes: 1. AC measurements assume $t_T = 5$ ns.
 - 2. When $t_{BCD} > t_{BCD}$ (max) and $t_{BAD} > t_{BAD}$ (max), access time is specified by t_{CAC} or t_{AA} .
 - V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Transition time t_T is measured between V_{IH} and V_{IL}.
 - Data input must be floating before output buffer is turned on. In read cycle, read-modify-write cycle and delayed write cycle, either t_{DZC} (min) or t_{DZO} (min) must be satisfied.
 - t_{OFF1} (max), t_{OFF2} (max), t_{SHZ} (max) and t_{SLZ} (min) are defined as the time at which the output acheives the open circuit condition (V_{OH} - 100 mV, V_{OL} + 100 mV). This parameter is sampled and not 100% tested.
 - Assume that t_{RCD} ≤ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
 - 7. Measured with a load circuit equivalent to 1 TTL loads and 50 pF.
 - 8. When $t_{BCD} \ge t_{BCD}$ (max) and $t_{BAD} \le t_{BAD}$ (max), access time is specified by t_{CAC} .
 - 9. When $t_{BCD} \leq t_{BCD}$ (max) and $t_{BAD} \geq t_{BAD}$ (max), access time is specified by t_{AA} .
 - 10. If either t_{RCH} or t_{RRH} is satisfied, operation is guaranteed.
 - When t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle, and I/O pins remain in an open circuit (high impedance) condition.
 - 12. These parameters are specified by the later falling edge of CAS or WEU and WEL.
 - 13. Either t_{CDD} (min) or t_{ODD} (min) must be satisfied because output buffer must be turned off by CAS or OE prior to applying data to the device when output buffer is on.
 - 14. When t_{AWD} ≥ t_{AWD} (min) and t_{CWD} ≥ t_{CWD} (min) in read-modify-write cycle, the data of the selected address outputs to an I/O pin and input data is written into the selected address. t_{ODD} (min) must be satisfied because output buffer must be turned off by OE prior to applying data to the device.
 - 15. Measured with a load circuit equivalent to 1 TTL loads and 30 pF.
 - 16. After power-up, pause for 100 μs or more and execute at least 8 initialization cycle (normal memory cycle or refresh cycle), then start operation. Hitachi recommends that least 8 initialization cycle is the CBRR for internal register reset. This CBRR need not t_{STS} and t_{RST}.
 - 17. When t_{SHZ} and t_{SLZ} are measured in the same V_{CC} and Ta condition and tr and tf of SE are less than 5 ns, t_{SHZ} ≤ t_{SLZ} +5 ns. This parameter is sampled and not 100% tested.
 - 18. When both WEU and WEL go low at the same time, all 16-bits data are written into the device, WEU and WEL cannot be staggered within the same write cycles.
 - 19. After power-up, QSF output may be High-Z, so 1 sc cycle is needed to be Low-Z it.
 - 20. DSF2 pin is open pin, but Hitachi recommends it is fixed low in all operation for the addition mode in future.

:Don't care

@нітасні

OHITACHI

Write Cycle

The write cycle state table as shown below is applied to early write, delayed write, page mode write, and read-modify write.

Write Cycle State Table

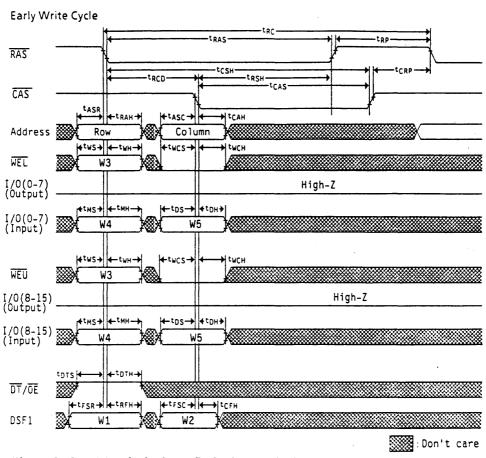
.

		CAS	FAS	FAS	CAS	
• • • •	DSF1	DSF1	WEU, WEL	VO	VO	
Cycle	W1	W2	W3	W4	W5	
Write mask (new/old) Write DQs to I/Os	0	0	0	Write mask*1	Valid data	
Write mask (new/old) Block write	0	1	0	Write mask ^{•2}	Column mask ^{•2}	
Normal write (no mask)	0	0	1	Don't care'1	Valid data	
Block write (no mask)	0	1	_ 1	Don't care ^{*2}	Column mask ^{*2}	
Load write mask resister	1	0	1	Don't care	Write mask data*3	
Load color resister	1	1	1	Don't care	Color data	
	Write DQs to I/Os Write mask (new/old) Block write Normal write (no mask) Block write (no mask) Load write mask resister	CycleW1Write mask (new/old)0Write DQs to I/Os0Write mask (new/old)0Block write0Normal write (no mask)0Block write (no mask)0Load write mask resister1	CycleW1W2Write mask (new/old) Write DQs to I/Os00Write mask (new/old) Block write01Normal write (no mask)00Block write (no mask)01Load write mask resister10	CycleW1W2W3Write mask (new/old) Write DQs to I/Os000Write mask (new/old) Block write010Normal write (no mask)001Block write (no mask)011Load write mask resister101	CycleW1W2W3W4Write mask (new/old) Write DQs to I/Os000Write mask*1Write mask (new/old) Block write010Write mask*2Normal write (no mask)001Don't care*1Block write (no mask)011Don't care*2Load write mask resister101Don't care	

Notes: 1.

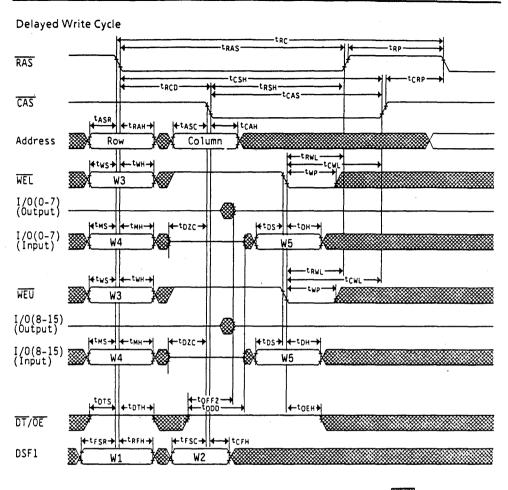
WEU, WEL	Mode	I/O data/RAS
Either	New Mask Mode	Mask
Low	Persistent Mask Mode	Don't care (mask register used)
Both High	No mask	Don't care

I/O Mask Data (In new mask mode) Low: Mask High: Non Mask

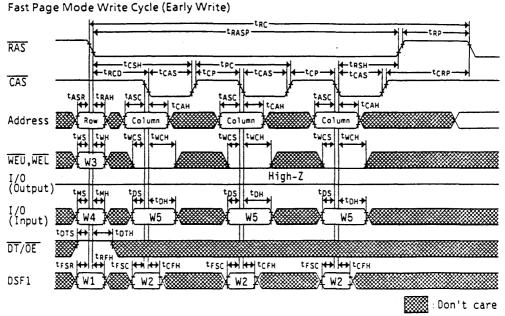

In persistent mask mode, I/O don't care

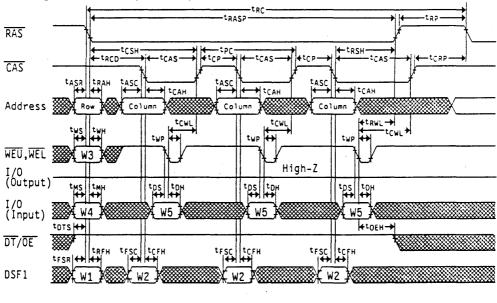
2. Reference Figure 2 Use of Block Write.

3. I/O Write Mask Data Low: Mask


High: Non Mask

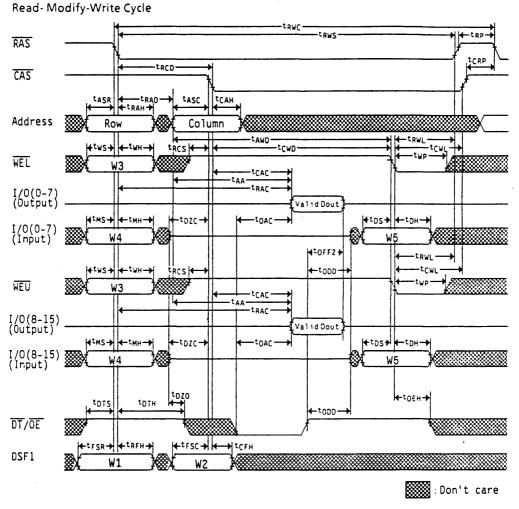
4. Column Address: Don't care


W1 to W5: See Write Cycle State Table for the logic states.



:Don't care

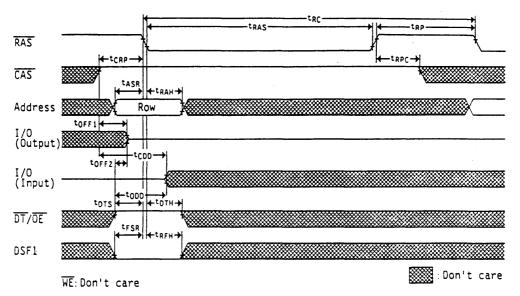
W1 to W5: See Write Cycle State Table for the logic states.

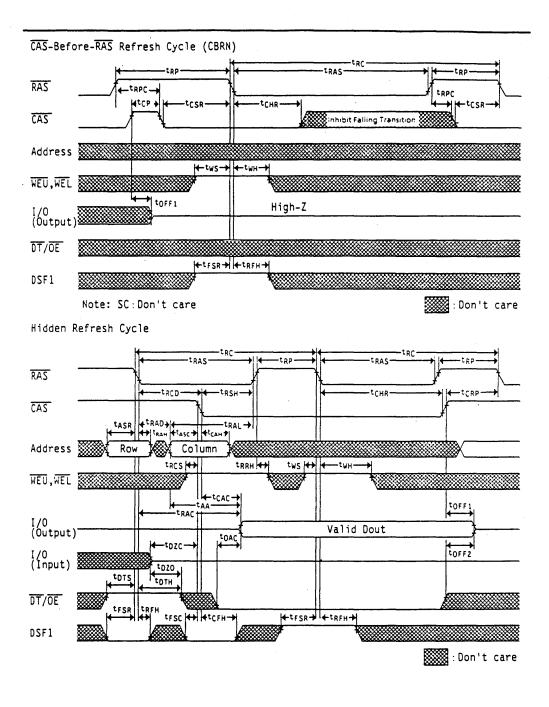


HITACHI

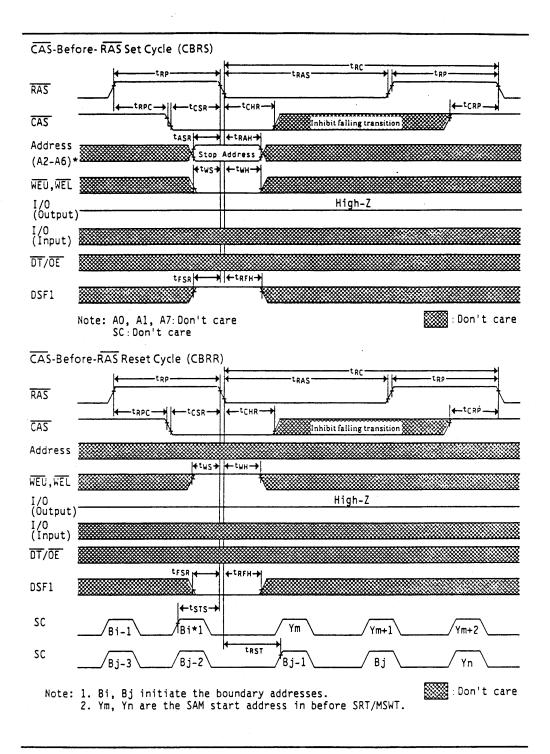
Fast Page Mode Write Cycle (Delayed Write)

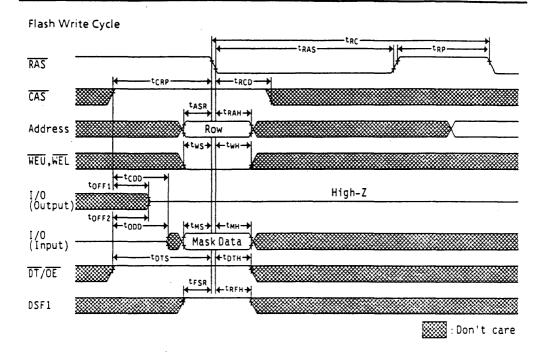
:Don't care

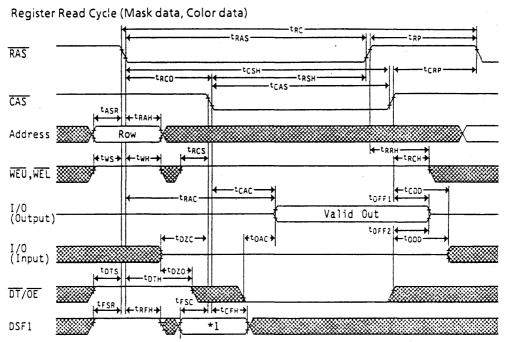

W1 to W5: See Write Cycle State Table for the locgic states.


W1 to W5: See Write Cycle State Table for the logic states.

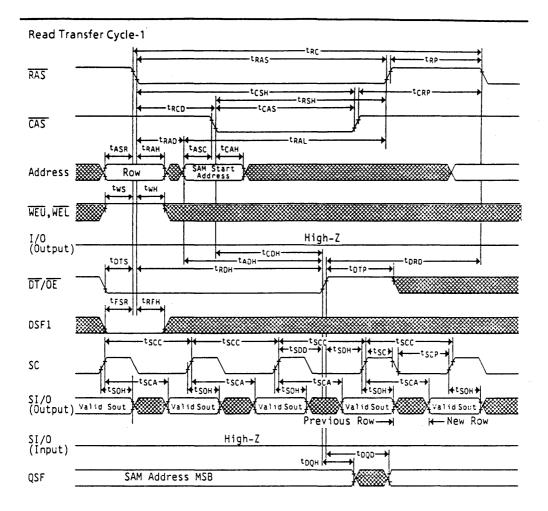
OHITACHI


• RAS-Only Refresh Cycle



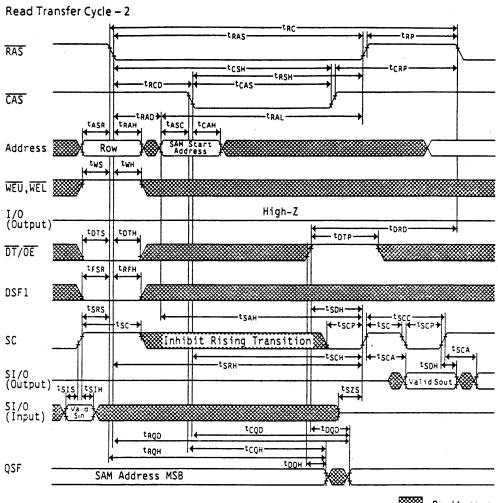

OHITACHI

OHITACHI

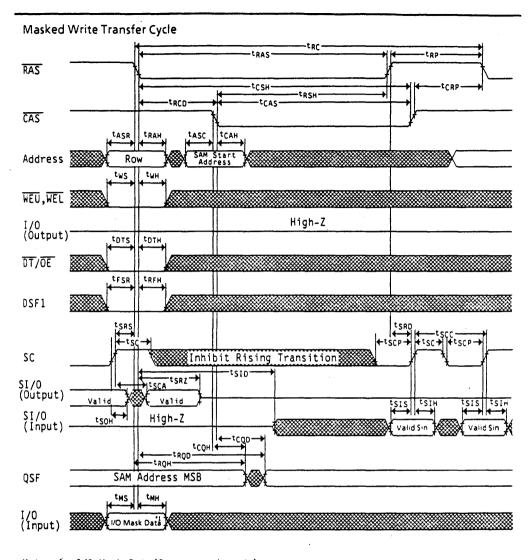


:Don't care

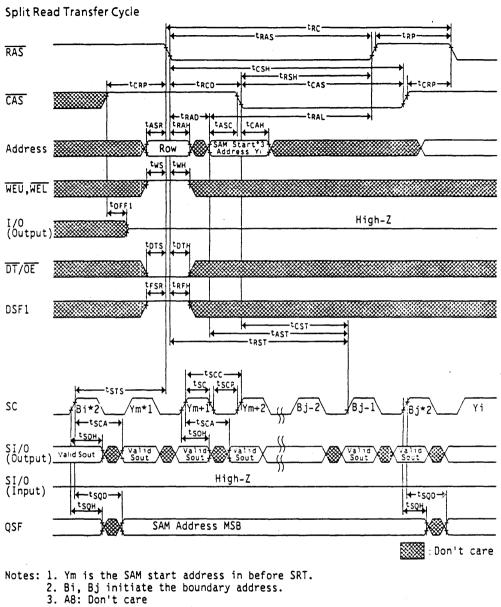
Note: 1. State of DSF1 at falling edge of \overline{CAS}


State	0	1
Accessed	Mask Data	Color Data
Data	(LMR)	(LCR)

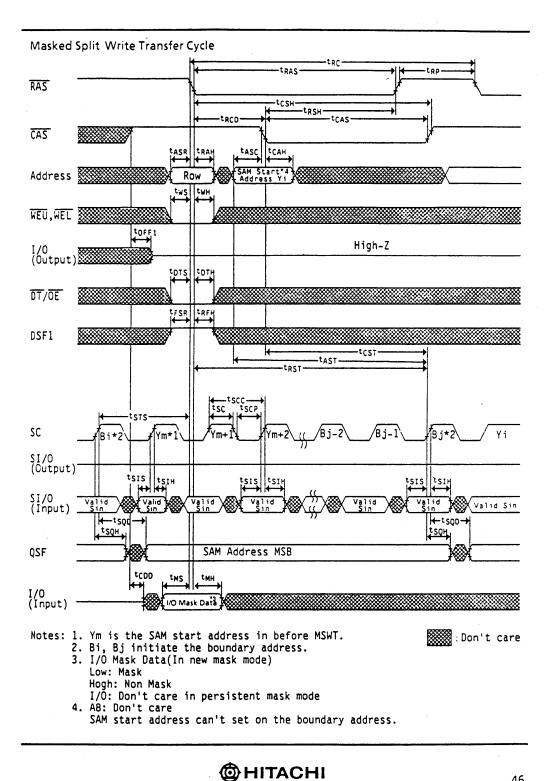
HITACHI

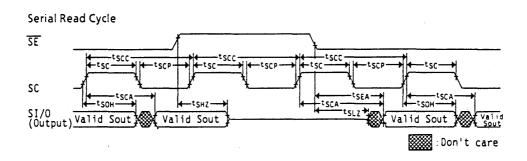

Don't care

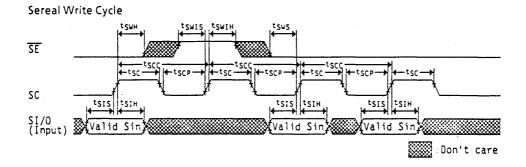
: Don't care


OHITACHI

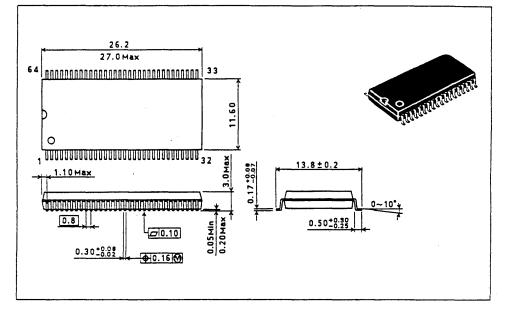
Note: 1. I/O Mask Data(In new mask mode) Low: Mask High: Non Mask I/O: don't care in persistent mask mode




:Don't care



- - SAM start address can't set on the boundary address.


HITACHI

HM5316123 Series

Package Dimensions

HM5316123 Series (FP-64DS)

Unit: mm

Section 3 Frame Memory

HM530281 331,776-Word × 8-Bit Frame Memory

HITACHI

Rev. 3 Feb. 1994

The HM530281 memory products provide completely asynchronous I/O and operate at the high speed of 50 MHz. $0.8 \mu m$ CMOS process is used in their fabrication.

The HM530281 memory products provide reset, jump, and line increment/hold pointer control functions that can be used in synchronization with independent clocks on each of the I/O ports. Memory can be accessed immediately without any waiting period after the execution of these functions.

In addition to the FIFO function, the 281 products support an address structure that is compatible with HDTV, NTSC, and PAL standards, and can be used in a wide range of applications, such as noise reducers, TBC (time-based correction), inter-frame YC separation, and special function modes (e.g., multi-freeze, P-in-P) in the digital TV, VCR, and video camera application.

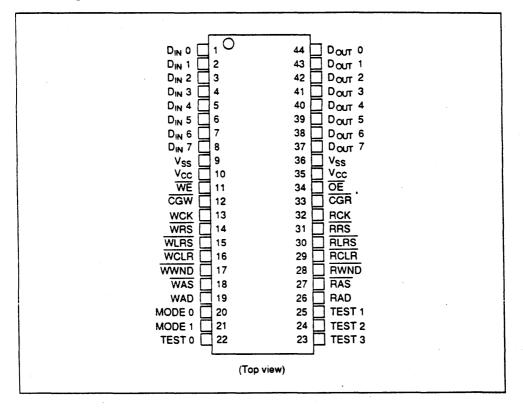
They are also appropriate for use as inter-system speed conversion buffer memories in communication systems, as cache memories of HDD and MOD and as frame buffer of VGA.

Features

(1) HM530281

- Organization: 331,776 words × 8 bits
- Completely asynchronous operation of the serial read port and write port
 - Internal generation of read and write addresses
 - Internal memory operation control provided on-chip
- High speed read/write cycle time: 50 MHz
- Reset functions
 - Independent execution for read and write ports
 - Can be executed with arbitrary timing
 - Allow immediate access after execution (read/write) (for the jump function, when the address setup is complete)
 - Jump address specifiable in 32-word units
- Built-in self-refresh eliminates the need for external refresh control.
- Power supply voltage: $V_{CC} = 5.0 \text{ V} \pm 10\%$
- 2 dimensial Address
- 32 word unit address jump
- Line increment/hold Address pointer control function
- Window scan function
- Can handle HDTV, NTSC, and PAL standards
 - Line length: Up to 1152 hits (arbitrary line lengths can also be handled by using the line reset function.)
 - Line count: Up to 324 lines

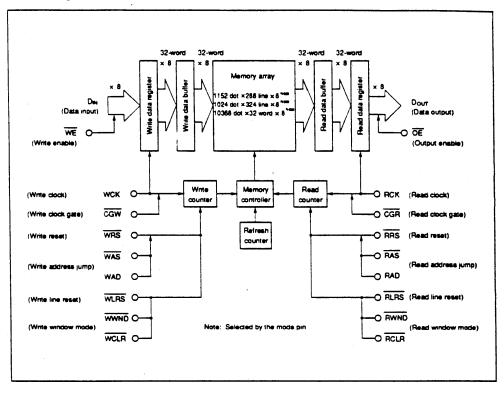
Ordering Information


Product Number	Cycle Time	Memory Organization	Package
HM530281 TT-20	20 ns	331,776 words × 8 bits*1	44-pin TSOP
-25	25 ns	1152 dots × 288 lines × 8 bits* ²	•
-34	34 ns	1024 dots x 324 lines x 8 bits	
-45	45 ns		

Selectable following two kinds of addressing mode by mode pins.

Notes: 1. 1 dimensional addressing mode

2. 2 dimensional addressing mode


Pin Arrangement

Pin Functions

	Pin Functions	
Symbol	2 Dim.add.	1 Dim.add.
D _{IN} 0 to D _{IN} 7	Data input	Data input
Dout 0 to Dout 7	Data output	Data output
WCK	Write clock	Write clock
RCK	Read clock	Read clock
WRS	Write reset	Write reset
RRS	Read reset	Read reset
WE	Write enable	Write enable
OE	Output enable	Output enable
CGW	Write clock gate	Write clock gate
CGR	Read clock gate	Read clock gate
WAS	Write address set	Write address set
WAD	Write address	Write address
RAS	Read address set	Read address set
RAD	Read address	Read address
WLRS	Write line reset	Vcc or GND
RLRS	Read line reset	Vcc or GND
WWND	Write window mode	Vcc or GND
RWND	Read window mode	Vcc or GND
WCLR	Write clear	Vcc or GND
RCLR	Read clear	Vcc or GND
MODE 0 to 1	Mode selection input	Mode selection input
V _{cc}	Power supply	Power supply
V _{SS}	Ground	Ground
TEST0 to TEST3	Connect to ground	Connect to ground

Block Diagram

Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Pin voltage ^{Note}	V _T	-1.0 to +7.0	v
Power dissipation	PT	1.0	W
Operating temperature	Toor	0 to +70	°C
Storage temperature	T _{stg}	-55 to +125	°C
Storage temperature (when biased)	Tbias	-10 to +85	°C

Note: The permissible values with respect to $\ensuremath{\mathsf{V}_{\text{SS}}}$

Recommended DC Operating Conditions (Ta = 0 to +70°C)

Item	Symbol	Min	Тур	Max	Unit
Power supply voltage	V _{CC}	4.5	5	5. 5	V
	V _{SS}	0	0	0	v
Input voltages	V _{IH}	2.7	-	6.5	v
•	VIL	-0.5Note	_	0.6	v

Note: When the pulse width is under 10 ns, V_{iL} min = -3.0 V.

DC Characteristics ($V_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, Ta = 0 to +70°C)

		HM	5302	81-20	HM	5302	81-25	HM	5302	81-34	HM	5302	81-45		Test
ltem	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Operating power supply voltage	ICCA		110	135		90	120	-	70	95		55	75	mA	l _{OUT} = 0, twcc = t _{ROC} = Min
Standby power supply voltage	lccs	-	15	25		15	25	-	15	25	_	15	25	mA	
Input leakage current	l _U	-10		10	-10	- .	10	-10		10	-10		10	mA	$V_{CC} = 5.5 V,$ $V_{IN} = V_{SS} to V_{CC}$
Output leakage current	Lo	-10)	10	-10		10	-10		10	-10		10	mA	$\overline{OE} = V_{IN}$ $V_{OUT} = V_{SS}$ to V_{CC}
Output	VaL			0.4	_	_	0.4		-	0.4		_	0.4	V	l _{Ot} = 2.1 mA
voltages	VOH	2.4	-		2.4		_	2.4	_		2.4	_	-	V	I _{OH} = -1.0 mA
Capacit	ances														
Item			s	ymbo	bl		Тур		1	Max		U	nits		Test Conditions
Input capa	acitance		Ċ	- IN			_		:	5		p	F		V _{IN} = 0 V
Output ca	pacitance		C	our						7		p	F		V _{OUT} = 0 V

Note: These parameters are sampled values, not values measured for all units.

AC Characteristics

Test Conditions

Input pulse level: V_{SS} to 3.0 V Input rise/fall times: 3 ns I/O timing reference level: 1.5 V Output load: 1 TTL + 50 pF (including jig and scope capacitances)

		HM530281-20 HM530281-25 HM530281-34 HM530281-45									
Item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
Write clock cycle time	twcc	20	·	25	-	34	-	45	-	ns	
Write clock pulse width (high)	twc	8	-	10		12	<u> </u>	15	-	ns	
Write clock pulse width (low)	twcp	8	-	10	-	12		15		ns	
WRS setup time	twrs	8		8	_	10	-	10	-	ns	
WRS hold time	^t wRH	7		8		10		10	-	ns	
Data input setup time	t _{DS}	5	-	5		5		5	-	ns	
Data input hold time	^t DH	6	-	6		6	-	6	-	ns	
CGW setup time	twgs	7	-	8	-	10	—	10	-	ns	
CGW hold time	^t wGH	7	-	8	<u> </u>	10	-	15	-	ns	
WE setup time	twes	5		5		5		5	_	ns	
WE hold time	twen	6	-	6	_	6		6		ns	
Read clock cycle time	tRCC	20		25	_	34	-	45	-	ns	
Read clock pulse width (high)	^t RC	8	_	10		12	_	15	_	ns	
Read clock pulse width (low)	TRCP	8	-	10	·	. 12		15		ns	
RRS setup time	^t ARS	7	_	8	_	10	_	10	-	ns	
RRS hold time	^t RRH	7		8	-	10	-	10		ns	
Access time from RCK	^t RAC		18		23		25		35	ns	
Output hold time	тон	6	-	6	-	6		6	-	ns	

AC Characteristics (cont)

		HM530281-20 HM530281-25 HM530281-34 HM530281-45								
Item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Output enable time	tolz	0	-	0	-	0	_	0	-	ns
Output enable access time	toac	-	18	-	20	-	25		25	ns
Output disable time	^t онz	0	15	0	18	0	20	0	20	ns
CGR setup time	^t RGS	7	-	8		10	-	10		ns
CGR hold time	^t RGH	7		8	-	10		10	-	ns
WAS setup time	twss	7	-	8	-	10	-	10	_	ns
WAS hold time	^t wsh	7		8	_	10		10	_	ns
RAS setup time	^t RSS	7		8	_	10	-	10		ns
RAS hold time	^t RSH	7	-	8		10		10	-	ns
Write address input setup time	twas	5	-	5	-	5	-	5	_	ns
Write address input hold time	twah	6	-	6	-	6	-	6	·	ns
Read address input setup time	^t RAS	5	-	5	-	5	-	5	-	ns
Read address input hold time	^t RAH	6	-	6		6		6	-	ns
WLRS setup time	twls	7		8	_	10	_	10		ns
WLRS hold time	^t wLH	7		8	_	10	-	10	-	ns
RLRS setup time	t _{RLS}	7	_	8		10		10		ns
RLRS hold time	t _{RLH}	7	-	8		10		10	-	ns
WCLR setup time	twcls	7	_	8		10.		10	-	ns
WCLR hold time	^t wCLH	7		8	_	10	_	10		ns
RCLR setup time	t _{RCLS}	7	_	8	_	10		10		ns
RCLR hold time	t _{RCLH}	7	-	8	_	10	-	10		ns
WWND setup time	twwos	7	-	8	_	10	-	10		ns
WWND hold time	twwdh	7	_	8		10	_	10	_	ns
RWND setup time	t _{RWDS}	7	_	8	_	10	_	10		ns
RWND hold time	t _{RWDH}	7	_	8	_	10	_	10		ns

7

Input and Output Pin Functions

D_{IN}0 to D_{IN}7 (data input) Input

The D_{IN} pins input 8 bits of data. Data is input on the rising edge of the cycle of WCK that follows a low level on both \overline{CGW} and \overline{WE} .

DOLTO to DOLT7 (data output) Output

The D_{OUT} pins output 8 bits of data. Data output is synchronized with the RCK clock, and the access time is specified from the rising edge of the RCK cycle.

WCK (write clock) Input

WCK is the write clock input pin. The input of write data is synchronized with this clock.

Write data is input on the rising edge of the cycle of WCK that follows a low level on both CGW and \overline{WE} , and when CGW is low, the internal write address pointer is incremented at the same time.

Input of the write jump address is also synchronized with this clock. The 14 or 15 bits of the write jump address are read in <u>sequentially</u> from the WCK cycle that set WAS low, irrespective of write data acquisition.

RCK (read clock) Input

RCK is the read clock input pin. Read data is output in synchronization with this clock when both CGR and \overline{OE} are low, and when \overline{CGR} is low, the internal read address pointer is incremented at the same time.

Input of the read jump address is also synchronized with this clock. The read jump address is read in sequentially starting at the RCK cycle in which RAS was set low, independently of read data output.

WRS (write address pointer reset) Input

WRS is a reset signal input that resets the write address pointer to 0 when WAS and WLRS are high, resets to the head of the line currently being written when WAS is high and WLRS is low, and jumps to the preset write jump address when WAS is low.Note

Only the falling edge of this reset input is detected, and, on the first WCK cycle following that falling edge, a write cycle to the set address is started immediately.

Note: The reset destination in window scan mode changes as follows:

Reset to 0 -	→	Reset to the window start.
Reset to line start -	÷	Reset to the point at the left edge of the window for the line.

RRS (read address pointer reset) Input

 \overline{RRS} is a reset signal input that resets the read address pointer to 0 when \overline{RAS} and \overline{RLRS} are high, resets to the start of the line currently being read when \overline{RAS} is high and \overline{RLRS} is low, and jumps to the read jump address when \overline{RAS} is low.^{Note}

Only the falling edge of this reset input is detected, and, on the first RCK cycle following that falling edge, a read cycle at the set address is started immediately.

Note: The reset destination in window scan mode changes as follows:

Reset to 0	\rightarrow	Reset to the window start.
Reset to line start	\rightarrow	Reset to the point at the left
		edge of the window for the
		line.

WE (write enable) Input

 \overline{WE} is an input signal that controls the enabling/disabling of the data input pins. When \overline{WE} is low, input data is acquired on the WCK cycle, and when \overline{WE} is high, data input is disabled and the previous memory data is maintained.

Note that the write address pointer is incremented by the WCK write clock without regard for the level of \overline{WE} .

OE (output enable) Input

 \overline{OE} is an input signal that enables/disables the data output pins. When \overline{OE} is low, data output is enabled, and when high, data output is disabled and the output pins go to the high impedance state.

Note that the read address pointer is incremented by the RCK read clock without regard for the level of \overrightarrow{OE} . Therefore, data can be jumped over during read simply by disabling output with \overrightarrow{OE} .

CGW(clock gate for write) Input

 \overline{CGW} is an input signal that enables/disables incrementing of the internal write address pointer. When \overline{CGW} is low, the write address pointer is incremented in synchronization with the WCK write clock, and when high, incrementing is stopped. Therefore time axis compression can be easily implemented without stopping the write clock by using \overline{CGW} .

CGR(clock gate for read) Input

CGR is an input signal that enables/disables incrementing of the internal read address pointer. When CGR is low, the read address pointer is incremented in synchronization with the RCK read clock, and when high, incrementing is stopped. Therefore time axis expansion can be easily implemented without stopping the read clock by using CGR.

WAS (write address set and jump) Input

WAS is an input signal that initiates write jump address input when WRS is high and jumps to the previously input write jump address when WRS is low. The falling edge of this input signal is detected, and either a write jump address input is initiated or a jump to the previously input write jump address is executed on the first WCK cycle following the fall of WAS.

WAD (write jump address) Input

WAD is the input pin for the write jump address. The 14/15 bits of the write jump address are read in sequentially from the high order bit, starting at the WCK cycle (when WRS was high) in which WAS was set low.^{Note}

RAS (read address set and jump) Input

 \overline{RAS} is an input signal that initiates read jump address input when \overline{RRS} is high and jumps to the previously input read jump address when \overline{RRS} is low. The falling edge of this input signal is detected, and either the read jump address input is initiated or the jump to the previously input read jump address is executed on the first RCK cycle following the fall of \overline{RAS} .

RAD (read jump address) Input

RAD is the input pin for the read jump address. The 14/15 bits of the write jump address are read in sequentially from the high order bit, starting at the RCK cycle (when RRS was high) in which RAS was set low.^{Note}

Note:

Addressing Mode	Address Structure	Input Address		
1 dim. add. (FIFO)	0 to 10,367 blocks	Address bits A_{13} to A_0		
2 dim.add. (1)	32 horizontal blocks by 324 vertical lines	Line address bits V_8 to V_0 , horizontal address bits H_4 to H_0		
2 dim.add. (2)	36 horizontal blocks by 288 vertical lines	Line address bits V_8 to V_0 , horizontal address bits H_5 to H_0		

Note: For 2 dim. add., read jump and read window starting point setup are available only for the read jump address of which horizontal address is "0".

WLRS (write line reset) Input (in 2 dimensional addressing mode)

WLRS is an input pin for resetting the write address pointer to the start of the line from an arbitrary dot for each line.^{Note} Only the falling edge of this signal is detected, and, on the first WCK cycle following that falling edge, the write address pointer is set to the head of the next line when WRS is high, and to head of the current line when WRS is low.^{Note}

Note: When window scan mode is set, the reset is to the point at the left edge of the window for the line.

RLRS (read line reset) Input (in 2 dimensional addressing mode)

RLRS is an input pin for resetting the read address pointer to the start of the line from an arbitrary dot for each line.^{Note} Only the falling edge of this signal is detected, and, on the first RCK cycle following that falling edge, the write address pointer is set to the head of the next line when RRS is high, and to head of the current line when RRS is low.^{Note}

Note: When window scan mode is set, the reset is to the point at the left edge of the window for the line.

WWND (write window scan) Input (in 2 dimensional addressing mode)

WWND is an input signal that specifies the use of the window scan function. When executing a write jump with WRS and WAS low, if WWND is set low at the same time, a scan of the window region that takes that write jump address as its starting point will begin (see note below).

RWND (read window scan) Input (in 2 dimensional addressing mode)

RWND is an input signal that specifies the use of the window scan function. When executing a read jump with **RRS** and **RAS** low, if **RWND** is set low at the same time, a scan of the window region that takes that read jump address as its starting point will begin.^{Note} Note: When window scan is set, the horizontal address of the pointer reset destination when increment/hold is executed will be the left edge of the window. Also, when a write/read reset is executed, the pointer will be reset to the starting point of the window. Thus it is possible to scan arbitrary window regions within the screen independently for read and write by using these line reset and reset functions.

Starting point of read window is confined to the address of which horizontal address is '0'.

WCLR (write clear) Input

WCLR is an input signal that, independently of the levels on WRS, WAS, WLRS and WWND, resets the write address pointer to 0 and clears the window scan function. This function is executed immediately in the WCK cycle in which WCLR was set low. This clear operation should also be performed after applying power to the HM530281.

RCLR (read clear) Input

RCLR is an input signal that, independently of the levels on RRS, RAS, RLRS and RWND, resets the read address pointer to 0 and clears the window scan function. This function is executed immediately in the RCK cycle in which RCLR was set low. This clear operation should also be performed after applying power to the HM530281.

Memory Structure

The memory is organized as 331,776 words of 8 bits each, and these words can be accessed sequentially, since the address pointer can be incremented by inputting a clock signal. Addresses are allocated corresponding to 32 word blocks.

The mode pins switch between the three addressing modes shown below.

Mode 0	Mode 1	Addressing Mode	Address Structure	Capacity
0	0	1 dim. add. (FIFO)	0 to 10,367 blocks	331,776 words
1	0	2 dim. add. (1)	32 horizontal blocks by 324 vertical lines	1024 dots by 324 lines
0	1	2 dim. add. (2)	36 horizontal blocks by 288 vertical lines	1152 dots by 288 lines

In 1 dimensional addressing mode, blocks 0 to 10367 are accessed cyclically.

In the 2 dimensional addressing modes, the line head can be reset at an arbitrary dot on each line.

Operations

Write

Write operation

When the WE and CGW inputs are low, 8 bits of write data are input in synchronization with the WCK clock. The input data is read in to the word indicated by the address pointer on the next rising edge of the WCK cycle. This allows read data and write data to be handled with the same clock, and cascade connections to be easily implemented.

Write reset operations

When \overline{CGR} is 'L', by setting \overline{WRS} low, the write address pointer can be set immediately on that WCK cycle to the address 0 block head.

This operation can be executed independently of the input level of \overline{WE} . (See 'Notes on usage 6' on the operation when $\overline{CGW} = 'H'$)

 Write address pointer increment operations
 The write address pointer is incremented in synchronization with WCK when CGW is low.

It is possible to apply a write mask in WCK clock units by setting the \overline{WE} input high. In this case, the previous memory data will be retained. The write address pointer increment function can be stopped by setting the \overline{CGW} input high. This allows time axis compression to be implemented easily. (See 'Notes on usage 3 and 4' for interval specifications of write system reset operations)^{Note}

Note: The write system reset operation stands for

WE and CGW Input Level, Write Address Pointer, and Data Input State Relationship

WCK RI	sing Edg	lnternal Write			
CGW	WE	Address Pointer	Data Input		
L	L	Incremented	Enable		
L	н		Disable		
н		Stopped	(memory data is retained)		

Data is input when the WE input is low.

write reset, write window reset, write line reset, write jump and write clear.

Read

Read operation

8 bits of read data are output in synchronization with the RCK clock when the \overline{OE} and \overline{CGR} inputs are low. The access time is stipulated from the rising edge of the RCK clock.

Read reset operations When CGR is 'L', by setting \overline{RRS} low, the read address pointer can be set immediately on that RCK cycle to address 0 and data will then be output.

This operation can be performed independently of the input level of \overline{OE} . (See 'Notes on usage 5' on the operation when $\overline{CGR} = 'H'$)

 Read address pointer increment operations The read address pointer is incremented in synchronization with RCK when CGR is low.

Data outputs go to the high impedance state when the \overline{OE} input is set high. The read address pointer increment function can be stopped by setting the CGR input high. This allows time axis expansion to be implemented easily. (See 'Notes on usage 2' for interval specifications of read system reset operations)^{Note}

Note: The read system reset operation stands for read reset, read jump, read window reset, read line reset and read clear.

Relation Between the OE and CGR Input Levels and the Read Address Pointer and Data Output States.

HCK HISING	rage	Interne	Read

CGR	OE	Address Pointer	Data Output
L	-L	Incremented	Output
L	н		High impedance
н	L	Stopped	Output data held
Н	н		High impedance

Data is output when the \overline{OE} input is low.

Line Reset (independent functions for read and write, in 2 dimensional addressing modes)

When the 281 series products are used in 2 dimensional addressing modes, the line length can be set to be either 1024 dots (2 dimensional (1)) or 1152 dots (2 dimensional (2)). In these modes, after accessing the data at the last dot (address) on each line, address pointer incrementing is stopped. Access is restarted at either the first dot at the head of the next line or at the first dot at the head of the current line by executing either a line increment or a line hold, respectively. Also, since these line reset operations can be executed at any arbitrary point in the middle of a line, an arbitrary line length (of between 64 dots and the actual line length) can be realized.

Line increment operation

In case clock gate signal (\overline{CGW} , \overline{CGR}) is 'L', the read and write line increment operations are executed by setting RLRS low and RRS high, and setting WLRS low and WRS high respectively. When these operations are executed, the next access goes immediately to the starting dot of the next line.

Line hold operation

In case clock gate signal (\overline{CGW} , \overline{CGR}) is 'L', the read and write line hold operations are executed by setting RLRS and RRS low, and setting WLRS and WRS low respectively. When these operations are executed, the next access goes immediately to the starting dot of the current line. Note that the read line hold operation is invalid on the first line following a 0 reset or jump. In this case, the same effect can be achieved by re-executing the reset or jump operation (resetting only the H address to 0).

If the reset interval specifications are met (see Notes on Usage 1 to 3), the line reset^{Note} operation can be performed on an arbitrary RCK/WCK clock cycle without regard for the levels of the \overrightarrow{OE} , \overrightarrow{WE} , and inputs. (See Notes on usage 6, 7 for the operation when clock gate signal (\overrightarrow{CGW} , \overrightarrow{CGR}) is 'H'.)

Note: The line reset operation stands for write line hold, write line increment, read line hold and read line increment.

Jump (independent functions for read and write)

It is possible to set the address pointer to the start address of an arbitrary block in 32 word units.^{Note} After initializing a jump address setup for read and/or write, after 64 WCK or 64 RCK cycles, it is possible to execute a jump to that address (random access in 32 word by 8 bit units) independently for read and write.

- Note: As for the read jump, in 2-dim add, read jump address is confined to the address of which horizontal address is '0'.
- Jump to the line end block is inhibited. (See 'Notes on usage 5' for jump operation to '0' address)
- Jump address setup

The read and write jump addresses are serially input independently from the RAD and WAD pins in synchronization with the RCK and WCK clock inputs respectively. Address input start is enabled by setting the RAS and/or WAS inputs low for read and write respectively, and 14/15 bits of jump address are input sequentially starting with that cycle.^{Note} Note that the read and write operations can continue independently of this address input operation.

 Jump address setup is executed regardless of the input level of WE, CGW and OE, CGR.

Addressing	Address	Input		
Mode	Structure	Address		
1 dim. add.	0 to 10,367	Address bit A ₁₃		
(FIFO)	blocks	to A ₀		
2 dim. add (1)	32 horizontal blocks by 324 vertical lines	Line address bits V_8 to V_0 , horizontal address bits H_4 to H_0		
2 dim. add. (2)	36 horizontal blocks by 288 vertical lines	Line address bits V_8 to V_0 , horizontal address bits H_5 to H_0		

Following the start of address input, it is possible to mask the input of address bits below an arbitrary bit position by returning \overline{RAS} or \overline{WAS} to the high level at the desired bit position. This can be convenient in applications that need to jump a fixed interval, since the low order bits of the address will be fixed. When all 14 bits of an address are to be input, be sure to hold \overline{RAS} and \overline{WAS} low for the full 14-clock period.

Jump operation

In case clock gate signal is 'L', the jump operation is executed by setting \overline{RRS} and \overline{RAS} low for read, and by setting \overline{WRS} and \overline{WAS} low for write, and the address set is accessed immediately from that RCK or WCK cycle. Note that as long as the interval specifications listed in Notes on Usage 1 to 4 are met, the jump operation can be executed on any RCK or WCK cycle without regard for the values of \overline{OE} on read, and \overline{WE} on write. (See 'Notes on usage 5 and 6' on the operation when clock gate signal (\overline{CGW} , \overline{CGR}) is 'L')

Window Scan (independent functions for read and write)

The window scan function can be used with either the 2 dimensional (1) or (2) addressing modes, and is a function which scans a rectangular region with an arbitrary starting point^{Note}. The jump address setup function (see Jump address setup above) is used to specify the starting point

- Note: Starting point of read window is confined to the address of which horizontal address is '0'.
- Initiating window scan When clock gate signal is 'L', the window scan function is started by setting WWIND to low for write or RWIND low for read, and executing a read or write jump

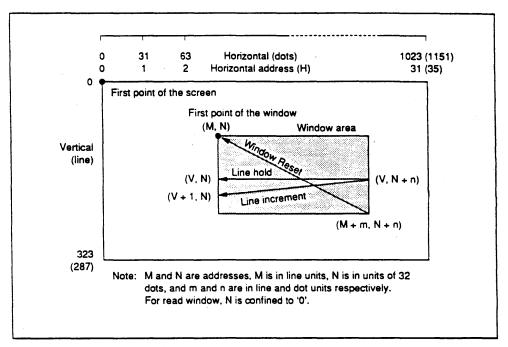
operation (see Jump operation above). Window scan will start immediately from that cycle.

Window scan operation

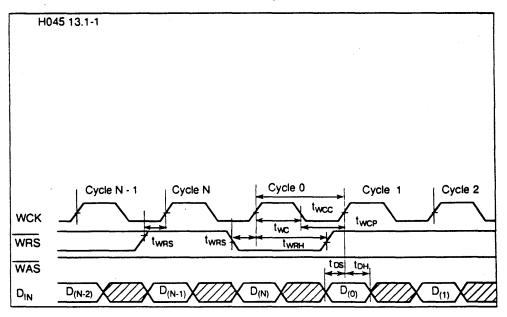
When clock gate signal is 'L', one of the window scan functions described below will be executed independently for read and write.^{Note}

Also note that as long as the interval conditions listed in Notes on Usage 1 to 3 are met, these operations can be executed at arbitrary dots without regard for the address block organization.

Operation	Address	Pointer	Control
-----------	---------	---------	---------


Reset	Reset to the first dot at the start of the window.
Line increment	Reset to the first dot at the left edge of the window on the next line.
Line hold	Reset to the first dot at the left edge of the window on the current line.

Note: For a starting point, minimum window size can be scanned, is 64 dots × 1 line.


Clearing window scan The window scan function is turned off either by executing a reset or jump with RWIND (for read) or WWIND (for write) set high, or by executing the clear operation described in section Clear below.

 Both setting and clearing window scan mode are executed independently of OE and WE. (See 'Notes on usage 1 and 2' for the operation when clock gate signal (CGW, CGR) is 'H')

Overview of the window scan operation

Starting and clearing window scan

Clear (independent functions for read and write)

The clear function both resets the address pointer to 0 without regard for the value on \overline{WRS} , \overline{WAS} , \overline{WLRS} , \overline{WWND} , \overline{RRS} , \overline{RAS} , \overline{RLRS} and \overline{RWND} . If window mode is set, this clears window mode.

Clear Operation

When clock gate signal (CGW or CGR) is 'L', the clear operation can be executed by setting the RCLR pin low for read (read clear) and the WCLR pin low for write (write clear). The data input following a write clear is valid data. If the interval conditions listed in Notes on Usage 1 to 3 are met by the operations including the clear operation, then the data preceding the clear operation will also be valid data.

Access of New and Previous Data

- New data access (follow-up read out of data currently being written)
 Written data of 32 word block can be read out 128 WCK cycles after it was written.
 However, it is necessary to execute the read jump address setup operation outside the time period between 32 WCK cycles before write to that address is started and 32 WCK cycles after write to that address is completed.
 - It is also possible to read out the new data of 32 word block when jumping to an address at least 128 WCK clock cycles after write to that address was finished. Note that in this case, there is more than enough time for the read jump address setup operation even if it is begun 32 or more clock cycles after the completion of the write operation.

 It is possible to read out the new data of less than 32 word block when 128 WCK clock after write system reset was input.

At least 96 WCK clock are necessory between completion 32 word block data input and starting previous address of 32 word block data output. Generary this mean, 160 WCK clock separation between write and read Address pointer.

 Previous data access (reading out data prior to that of the current write operation)
 The previous data can be read out up to 32
 WCK clock cycles after the write operation.

Therefore, these memories can be used to provide delay times of between 160 and 331,808 (331,776 + 32) clock cycles.

Power On

Wait at least $100 \ \mu s$ after power-on to begin operation. At this time the write and read address pointers are undefined.

The following operation should be executed.

- CGW and CGR should be hold low.
- Reset cycle when 1 dimensional addressing mode.
- Clear cycle when 2 dimensional addressing mode.
- Dummy cycle of over 64 WCK and 64 RCK clock cycle.

Then, initiate the desired operating mode by providing the signal input combination given by the truth tables below.

Function Table^{Note}

1 Dimensional Addressing Modes

• Write

WCK Rising Edge

WRS	WAS	Operation	
н	н	Normal state	In the normal state, the write address pointer is incremented in synchronization with WCK.
L	н	Reset	The write address pointer is reset to 0.
Ļ	L	Jump	Jump to the address A to which the write address pointer is set.
н	L	Address setup	The write jump address is input.

Read

RCK Rising Edge

RRS	RAS	Operation	
н	н	Normal state	In the normal state, the read address pointer is incremented in synchronization with RCK.
L	н	Reset	The read address pointer is reset to 0.
-	L	Jump	Jump to the address A to which the read address pointer is set.
н	L	Address setup	The read jump address is input.

Note: Description of operations of function table is based on the operation on condition \overline{CGW} , \overline{WE} and \overline{CGR} , \overline{OE} is 'L'.

2 Dimensional Addressing Modes (when window scan is not used)

Write^{*1}

	•					Operation		
Levels at the Rise of WCK						Write Address Write Jump		
WRS	WAS	WLRS	WWND	WCLR		Pointer Control	Address	Notes
Н	н	н	н	н	Normal state	Incremented in synchronization with WCK	-	•2
L	н	Н	н	Н	Reset	Reset to (0, 0)		
L	L	Н	н	Н	Jump	Jump to the set address A	-	
н	L	н	н	н	Address set	-	Set	
Н	н	L	Н	н	Line increment	Reset to the first bit of the next line	-	•2
L	Н	L	Н	н	Line hold	Reset to the first bit of the current line		*2
_	-		-	L	Clear	Reset to (0, 0)	_	

(--: Don't care)

Notes: 1. Hold the WWND pin high when window mode is not used.

 The write address pointer is incremented up to the last dot on the current line, and then stopped. Writing is started immediately from the first dot on the next line by execution of the line increment operation. Also, writing is started immediately from the first dot on the current line by execution of the line hold operation.

Read^{*1}

					Operation			
Levels at the Rise of RCK RRS RAS RLRS RWND RCLR		-	Read Address Pointer Control	Read Jump Address				
н	Н	Н	н	Normal state	Incremented in synchronization with RCK	-	•2	
н	н	Н	н	Reset	Reset to (0, 0)			
L	н	н	н	Jump	Jump to the set address A	_		
L	н	н	н	Address set	-	Set		
Н	L	н	н	Line increment	Reset to the first bit of the next line	-	•2	
н	L	н	Н	Line hold	Reset to the first bit of the current line		•2	
_	_	_	L	Clear	Reset to (0, 0)			
	RAS H H L L H	RASRLRSHHHHLHLHHL	RASRLRSRWNDHHHHHHLHHLHHHLH	RASRLRSRWNDRCLRHHHHHHHHHHLHHLHHHLHHH	RASRLRSRWNDRCLRHHHHNormal stateHHHHResetLHHHJumpLHHHAddress setHLHHLine incrementHLHHLine hold	at the Rise of RCK Read Address RAS RLRS RWND RCLR Read Address Pointer Control H H H H Normal state Incremented in synchronization with RCK H H H H Reset Reset to (0, 0) L H H H Jump Jump to the set address A L H H Address set H L H H Reset to the first bit of the next line H L H H Line hold Reset to the first bit of the current line	RASRLRSRWNDRCLRHead AddressHead JumpHHHRCLRPointer ControlAddressHHHHNormal stateIncremented in synchronization with RCK—HHHHResetReset to (0, 0)—LHHHJumpJump to the set address A—LHHHAddress set—SetHLHHLine incrementReset to the first bit of the next line—HLHHLine holdReset to the first bit of the current line—	

(--: Don't care)

Notes: 1. Hold the RWND pin high when window mode is not used.

 The read address pointer is incremented up to the last dot on the current line, and then stopped. Reading is started immediately from the first dot on the next line by execution of the line increment operation. Also, reading is started immediately from the first dot on the current line by execution of the line hold operation. 2 Dimensional Addressing Modes (when window scan is used)

• Write

					Operation					
						Write A Pointer				-
Levels at the Rise of WCK					_	Window Mode	Window Mode	Write Jump	Window Mode after	
WRS	WAS	WLRS	WWND	WCLR		Off	On	Address	Execution	Notes
L	н	Н	Н	Н	Reset	Reset to (0,	0)	-	Off	
н	н	н	-	н	Normal state	Incremente synchroniza WCK				*1
н	н	L	-	Н	Line increment	To the first bit of the next line	To the left edge of the window on the next line			
L	Н	L		н	Line hold	To the first bit of the current line	To the left edge of the window on the current line	-	_	
н	L	н		н	Address set			Set		
L	L	н	н	н	Jump	Jump to the	set address A	-	Off	
L	L	н	L	н	Window jump	Jump to the	set address A	-	On	•2
L	н	Н	L	H	Window Reset	Reset to th origin point		-	_	
_				L	Clear	Reset to (0	, 0)		Off	

(-: Don't care)

Notes: 1. The write address pointer is incremented up to the last address on the line, and then stopped. Writing is started immediately from the first dot on the next line or the left edge of the window by execution of the line increment operation.

2. It is possible to move directly from an old window to a new window in window mode by setting up a new jump address and executing a window setup jump operation.

However, the new jump address should be input after access to the last line of the old window.

Read

				Operation					- ·
				Read Address Pointer Control					
Levels at the Rise of RCK				_	Window Mode	Window Mode	Read Jump	Window Mode after	
RAS	RLRS	RWND	RCLR		Off	On	Address	Execution	Notes
н	н	Н	Н	Reset	Reset to (0,	0)		Off	
Н	н		н	Normal state	Incremented in synchronization with RCK		-	-	•1
н	L	-	н	Line increment	To the first bit of the next line	To the left edge of the window on the next line	-	-	
H 	L		H	Line hold	To the first bit of the current line	To the left edge of the window on the current line	_	-	
L	Н	_	н	Address set			Set	_	
L	н	н	н	Jump	Jump to the set address A			Off	
L	Н	L	н	Window jump	Jump to the set address A			On	•2
Н	Н	L	н	Window Reset	Reset to the window origin point A		_		
_		_	L	Clear	Reset to (0	, 0)		Off	
	RAS H H H L L	RAS RLRS H H H H H L H L L H L H	RAS RLRS RWND H H H H H — H L — H L — L H — L H H L H L	RAS RLRS RWND RCLR H H H H H H — H H L — H H L — H L H — H L H H H L H L H H L H H H H L H	s at the Rise of RCK RAS RLRS RWND RCLR H H H Reset H H H Reset H H — H Reset H H — H Normal state H L — H Line increment H L — H Line hold L H — H Address set L H H H Jump L H L H Window jump H H L H Window Reset	Reed A Reed A Pointer S at the Rise of RCK Window Mode RAS RLRS RWND RCLR Off H H H Reset Reset to (0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	Read Address Pointer Control S at the Rise of RCK RAS RLRS RWND RCLR Window Mode Mode H H H Reset Reset to (0, 0) Incremented in synchronization with RCK H L — H Line increment Normal state Incremented in synchronization with RCK H L — H Line increment Line To the first bit of the next line To the left edge of the the current line H L — H Line hold To the first bit of the current line To the left edge of the the current line L H H H Jump Jump to the set address A L H H H Jump Jump to the set address A H H L H Window Normal state Reset to the window origin point A	Reed Address Pointer Control S at the Rise of RCK Window Window Mode Mode Reed Jump Off On Address H H H Reset Reset to (0, 0) — H H H Reset Reset to (0, 0) — H H H Reset Reset to (0, 0) — H H — H Reset Reset to (0, 0) — H H — H Reset Reset to (0, 0) — H H — H Reset Reset to (0, 0) — H H — H Normal state Incremented in synchronization with RCK — H L — H Line increment To the intert mext line window on the next line — H L — H Line hold To the off first bit of edge of the the current window on line — Set L H — H Address set — Set L H H	Read Address Pointer Control S at the Rise of RCK Window Window Mode Read Mode Jump Mode after Address RAS RLRS RWND RCLR Off On Address Execution H H H Reset Reset to (0, 0) — Off H H — H Normal state Incremented in synchronization with RCK — — — H L — H Line increment To the first bit of edge of the the next line — — — H L — H Line hold To the first bit of the current line To the left — — — H L — H Line hold To the first bit of the current line Edge of the the current line — — L H — H Address set — Set — L H H Jump Jump to the set address A — Off L H H Window Reset Reset to the window orig

.

(--:Don't care)

Notes: 1. The read address pointer is incremented up to the last address on the line, and then stopped. Reading is started immediately from the first dot on the next line or the left edge of the window by execution of the line increment operation.

 It is possible to move directly from an old window to a new window in window mode by setting up a new jump address and executing a window setup jump operation.

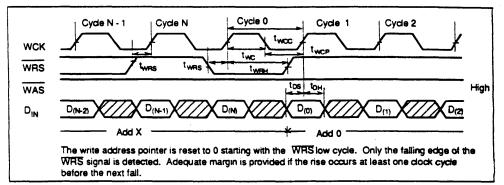
However, the new jump address should be input after access to the last line of the old window. 3. When window scan mode is used any case after power on, WWND and WRS or RWND and

Notes on Usage

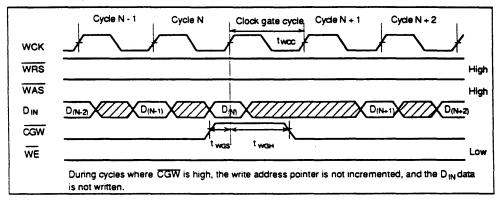
RRS pins are should be input same signal.

- Read system resets (read reset, read jump, read window reset, read line reset and read clear) and the read address setup operation cannot be executed for consecutive RCK clock cycles. Similarly, write system resets (write reset, write jump, write window reset, write line reset and write clear) and the write jump address setup operation cannot be execution for consecutive WCK clock cycles.
- 2. Read system reset operations and read jump address set operations must be performed at times separated by at least 64 RCK clock cycles. (There is no need to use only 32 word addressing units, and these operations can be performed on any clock cycle.)
- 3. Write system reset operations must be performed at times separated by at least 64 WCK clock cycles. During setting write jump address, write system reset operations cannot be executed.

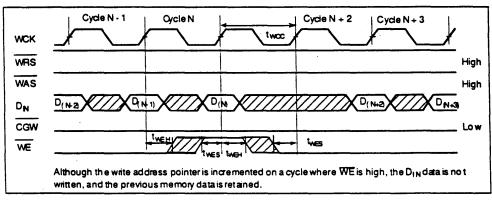
- 4. It is possible to input the write system reset in the middle of 32 word unit addressing. In this case, not only must the condition of note 2 be met, but furthermore, pairs of write system resets for units of less than 32 words must be separated by at least 160 WCK clock cycles. When the write system reset is executed at less than 32 words, the data up to the point to which the address pointer has advanced will be written, and the remaining data will retain the old values. (Note that after the completion of a write of less than 32 words, a write reset is required to write the data for the last address into the memory array.)
- 5. Location 0 and line end cannot be specified as a jump address. Use a reset to access location 0.
- 6. Any number of read system resets can be input when CGR is high, but the only first reset is effective. This read system reset operation is executed at the rising edge of the RCK just after CGR is set to low.
- 7. When \overline{CGW} is high, write system can reset be input only once. In this case, this write system reset is executed at the rising edge of the WCK just after \overline{CGW} is set to low.


Supplement

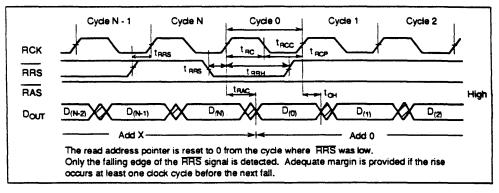
If the read system reset interval (at least 64 RCK clock cycles) of note 1, or the write system reset interval for less than 32 word units (and at least 160 WCK clock cycles) are not provided (see note 3), it is possible for the 32 words of data of the first address after the reset to be invalid, or for the first write of less than 32 words following the write reset to fail to occur. However, even in this case, address pointer control will correctly, and valid data will be output for the second and following addresses. (However, in this case the condition of note 2 and the 32 clock or longer read system reset/read jump address interval must be provided.)


Timing Charts

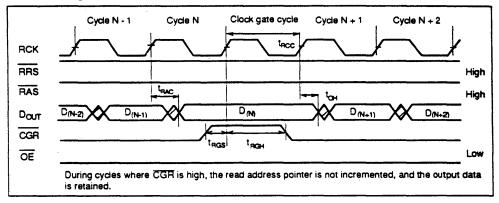
Write Cycle


Write address reset

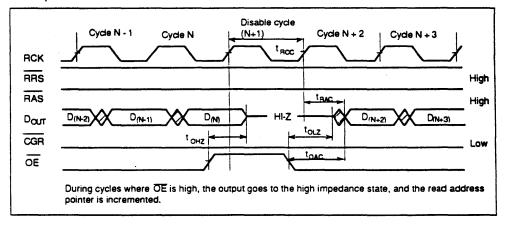
Write clock gate



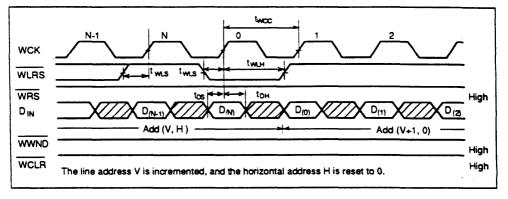
• Write enable

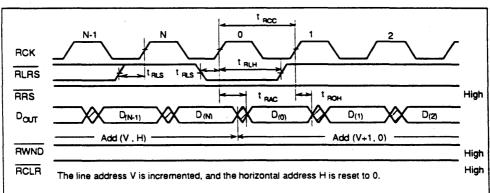


Read Cycle

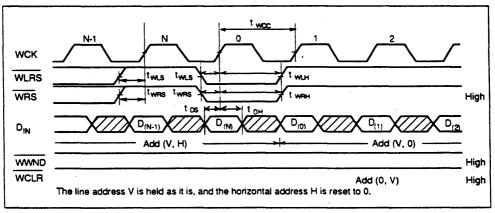

Read address reset

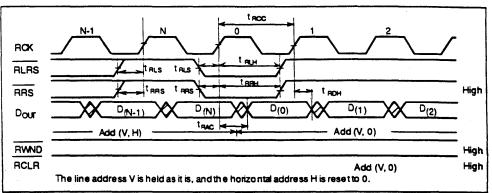
Read clock gate




Output enable

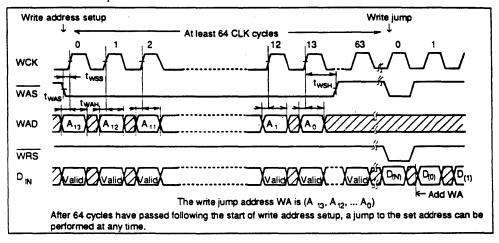
Line Reset

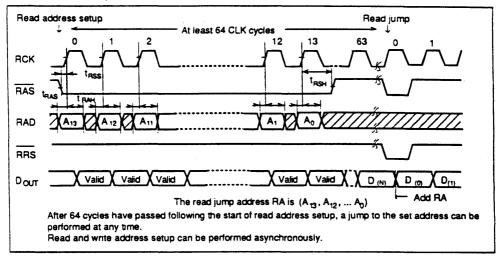

• Write line increment



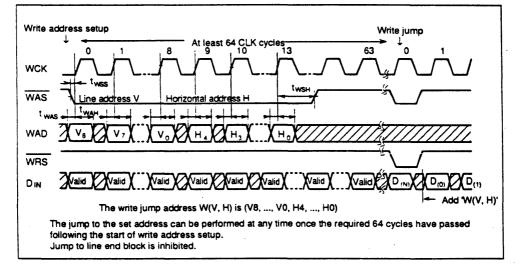
Read line increment

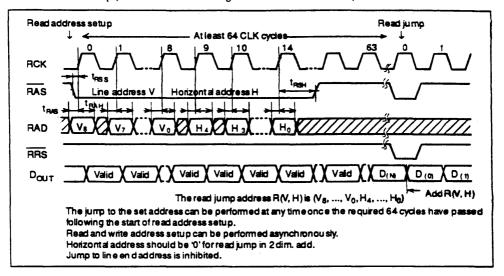
• Write line hold


Read line hold

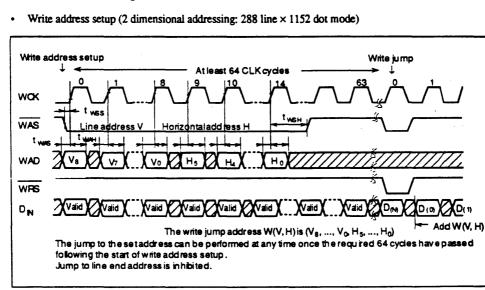

Jump Address Setup

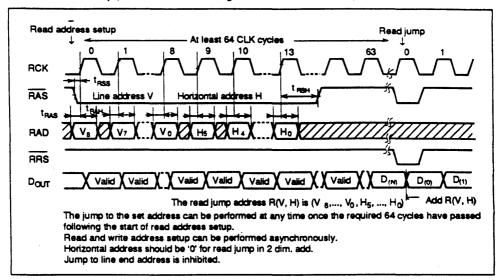
1 Dimensional Addressing Mode


Write address setup

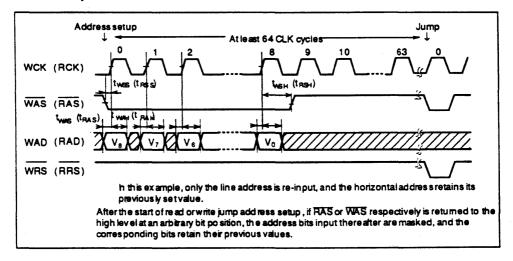

Read address setup

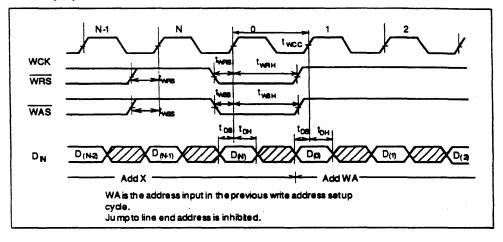
2 Dimensional Addressing Mode 1



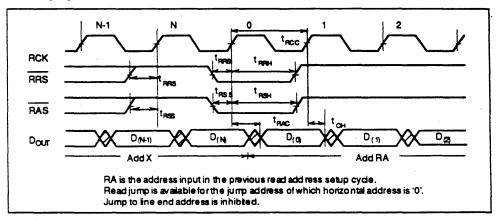

Write address setup (2 dimensional addressing: 324 line × 1024 dot mode)

Read address setup (2 dimensional addressing: 324 line × 1024 dot mode)


2 Dimensional Addressing Mode 2

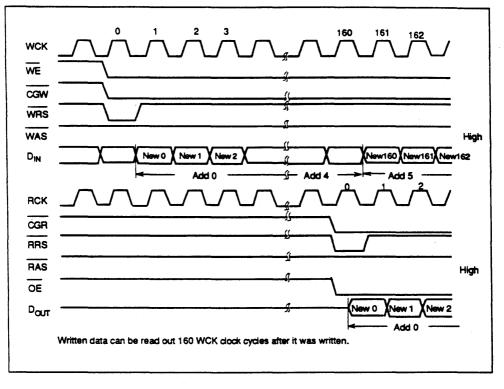

Read address setup (2 dimensional addressing: 288 line × 1152 dot mode)

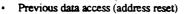
Address input mask

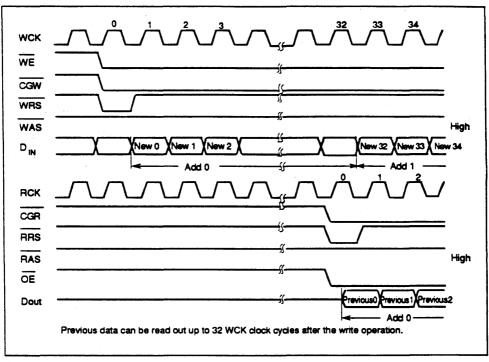


Jump

Write jump

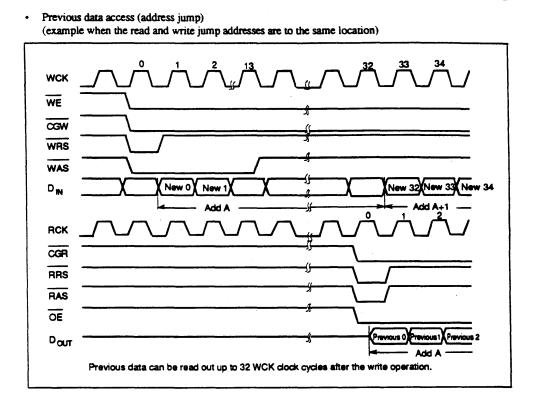



Read jump

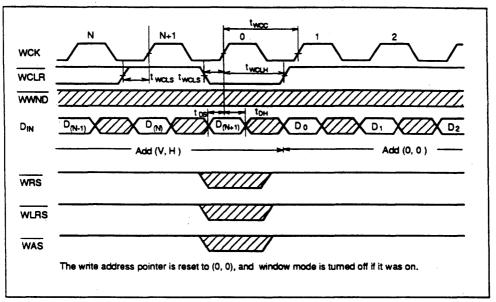


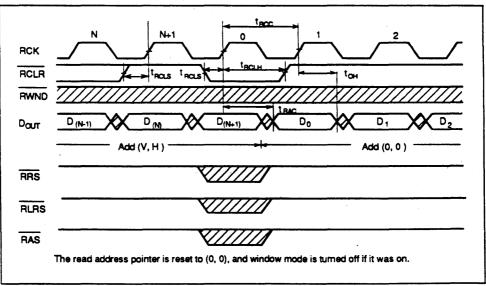
New/Previous Data Access

New data access (address reset)



New data access (address jump)


(example where the read and write jump addresses are to the same location)



Clear

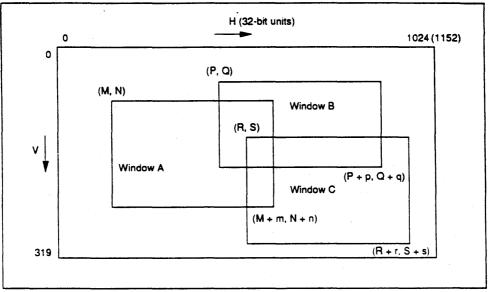
Write clear

34

Window Scan Function

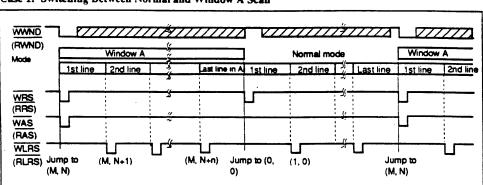
Combined Window Scan Example

In window scan mode, the destination address of a jump will be the first point in the window region, and line reset and reset operate as follows.

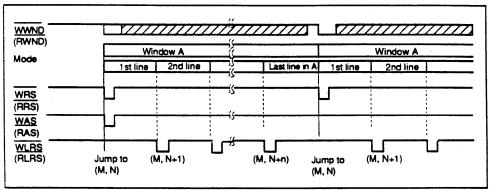

Line increment: Resets to the left edge of the window on the next line.

Line hold: Resets to the left edge of the window on the same line.

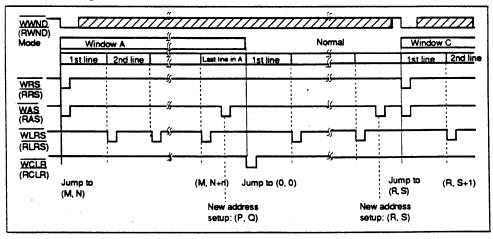
In this mode, addresses are generated automatically internally, so this function is useful in applications that need to scan a window region.

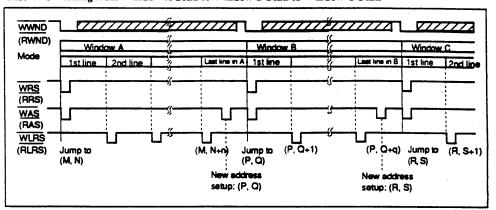

Also, completely independent window regions can be scanned by the read and write systems.

Representative application examples are presented below.

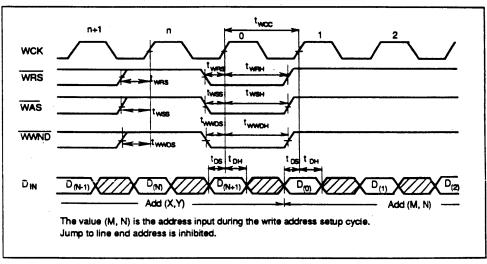

Reset: Resets to the first point in the window.

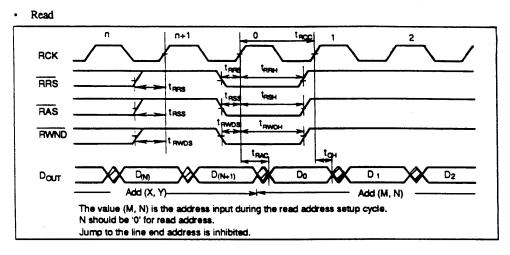
Note: Horizontal address should be '0' for read window jump.




Case 1: Switching Between Normal and Window A Scan

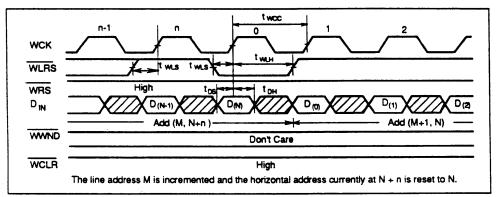
Case 2: Repeatedly Scanning Window A

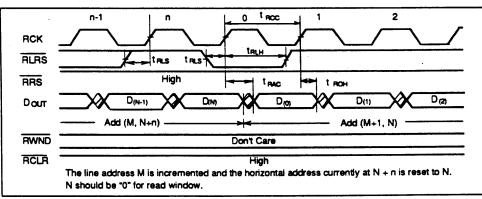




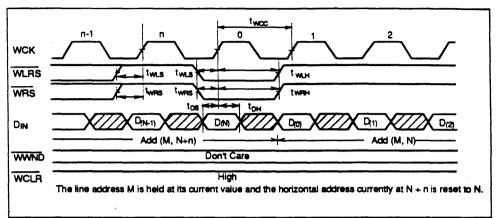
Window Scan Timing Charts

Window Jump (setup)

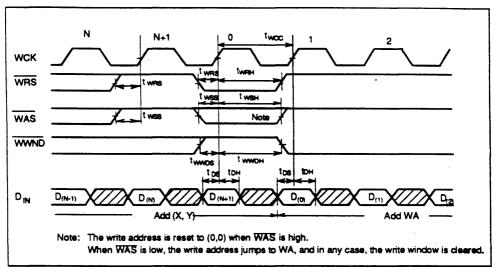


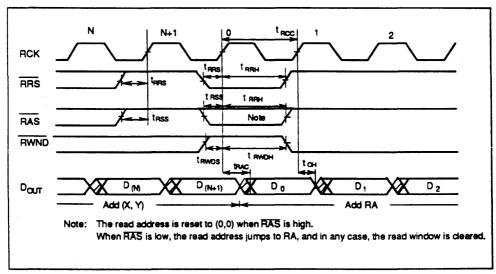


Line Increment (in window mode)


• Write

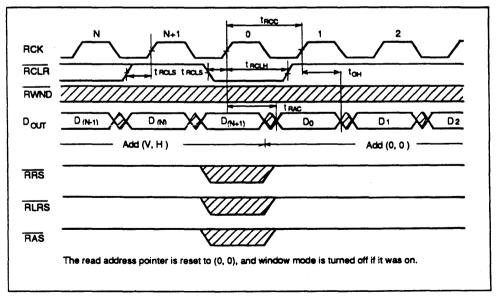
Line Hold (in window mode)


Write



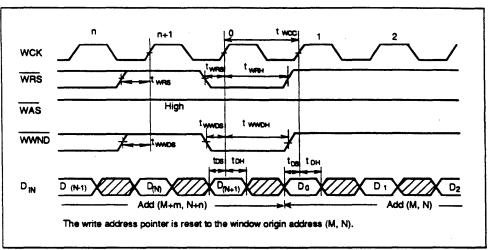
Window Clear

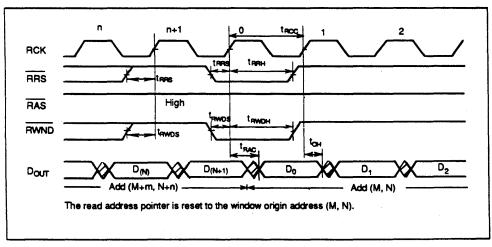
• Write



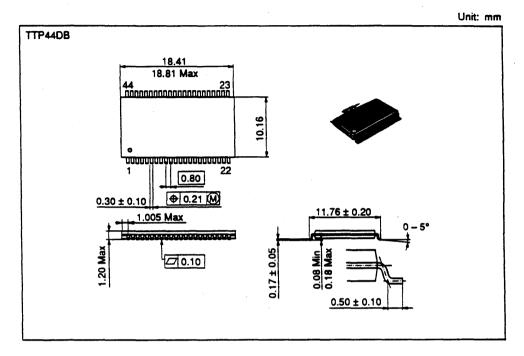
Clear

• Write clear


Read clear

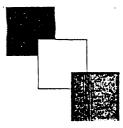


Reset to the Window Origin


These figures show the timing charts for resetting the address pointer to the window origin address (M, N) during window scan mode execution.

Write

Package Dimensions


43

Section 4 Line Memory

Rev. 7 Aug. 1990

HM63021P-28/34/45 2048 x 8 - bit Line Memory

The HM63021P is a 2048-word x 8-bit static Serial AccessMemory (SAM) with separate data inputs and outputs. Since it has an internal address counter, no external address signal is required and internal addresses are scanned serially. Using five different address scan modes, it is applicable to FIFO memories, double-speed conversions, 1H delay lines, and 1H/2H delay lines for digital TV signals. Its minimum cycle times are 28 ns and 34 ns, each corresponding to 8 fsc of PAL TV signals and NTSC TV signals. All inputs and outputs are TTL-compatible. This device is packaged in a 300-mil 28-pin DIP, and 28-pin plastic SOP.

🕲 HITACHI

Ordering Information

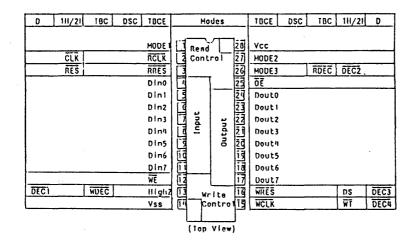
Type No.	Cycle Time	Package
HM63021P-28	28 ns	300-mil
HM63021P-34	34 ns	28-pin plastic DIP
HM63021P-45	45 n s	(DP-28N)
HM63021FP-28	28 ns	28-pin
HM63021FP-34	34 ns	plastic SOP
HM63021FP-45	45 ns	(FP-28DA)

Features

```
* Five modes for various applications
```

* Corresponds to digital TV system with 4 fsc sampling (PAL, NTSC)

```
* Decoder signal output pin: Fewer external circuits
* Asynchronous read/write operations
```


* Asynchronous read/write operations Separate address counters for read/write No address input required

```
* High speed
Cycle time: HM63021-28: 28 ns (min)
HM63021-34: 34 ns (min)
HM63021-45: 45 ns (min)
* Completely static memory: No refresh required
```

```
* 8-bit SAM with separate I/O
```

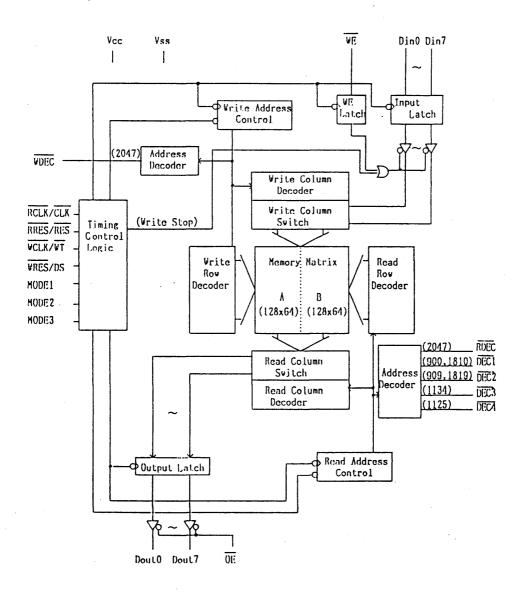
- * Low power dissipation
- Active: 250 mW typ
- * Single 5 V supply
- * TTL-compatible

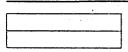
Pin Arrangement

Mode Table

Mo	de Sign	als	Mode	Application Example		
Mode1	Mode2	Mode3				
н	н	н	Time base compression/ expansion (TBCE)	Picture in picture		
н	Н	L	Double speed conversion (DSC)	Non interlace		
н	L	- *1	Time base correction (TBC)	Time base corrector		
L	H	- *1	1H/2H delay (1H/2H)	Vertical filter		
L	L	- *1	Delay line (D)	Delay line		

OHITACHI


Note: *1 Decoder output signal (RDEC, DEC2)


Pin Description

Pin No.	Pin Name	Functions
1	MODE1	Mode input 1 (all modes)
2	RCLK/CLK	Read clock input (TBCE, DSC, TBC)
· ·		clock input (1H/2H, D)
3	RRES/RES	Read reset input (TBCE, DSC, TBC)
		reset input (1H/2H, D)
	Din0-Din7	Data inputs (all modes)
12	WE	Write enable input (all modes)
13	HighZ/WDEC/DEC1	
		write decode pulse output (TBC)
		Decode pulse output 1
		(1H/2H, D)
14	Vss	Ground (all modes)
15	WCLK/WT/DEC4	Write clock input (TBCE, DSC, TBC)
		Write timing input (1H/2H)
		Decode pulse output 4 (D)
16	WRES/DS/DEC3	Write reset input(TBCE, DSC, TBC)
		Delay select input (1H/2H)
		Decode pulse output 3 (D)
	DoutO-Dout7	Data outputs (all modes)
25	0E	Output enable input (all modes)
26	MODE3/RDEC/DEC2	Mode input 3 (TBCE)
		Read decode pulse output (TBC)
		Decode pulse output 2 (1H/2H, D)
27	MODE2	Mode input 2 (all modes)
28	Vcc	Power supply (+5V) (all modes)

Block Diagram

4

Absolute Maximum Ratings Rating Parameter Symbol Unit -0.5* to +7.0 Voltage on any pin ۷T ٧ relative to Vss Power PT 1.0 W dissipation Topr 0 to +70 °C Operating temperature Tstg - 55 to +125 °C Storage temperature °C Storage temperature Tbias -10 to +85 under bias

Note: * V_T min = -3.5 V for pulse width \leq 10 ns

Recommended DC Operating Conditions (Ta = 0 to +70 °C)

Parameter	Symbol	min	typ	max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	v
	Vss	0	0	0	V
Input voltage	VIH	2.4	-	6.0	v
	VIL	-0.5*	-	0.8	v

Note: * V_{IL} min = -3.0 V for pulse width \leq 10 ns

Electrical Characteristics

DC Characterist:	ics (Ta	= 0 to	+70°C, *1		5 V±10	%, Vss = 0 V)
Parameter	Symbol	min	typ	max	Unit	Test Condition
Input leakage current	ILI	-	-	10	μΛ	Vcc=5.5 V Vin=Vss to Vcc
Output leakage current	ILO	•	-	10	μΛ	OE=VIH Vout=Vss to Vcc
Operating power supply current	Icc		50	90	mΛ	Min.cycle, Iout=0 mA *2
	VOL	•	•	0.4	V	<u>IOL</u> =8mA,Dout0 - 7 DEC output pin *3
Output voltage	VOH	2.4	•	-	v	IOH=-4 mA, Dout0 - 7 pin
	VOH	2.4	-	•	v	<u>10H</u> =-1 mA,

Notes: *1 Typical values are at Vcc=5V, Ta=25°C and for reference only. *2 Dout and DEC

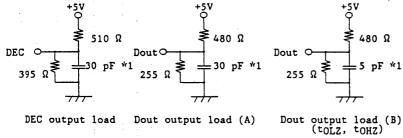
DEC output pin

*3 I_{OL} = 6 mA for 45 ns version.

Capacitance (Ta=25°C, f=1.0 MHz)

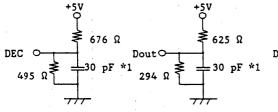
Parameter	Symbol	min	typ	max	Unit	Condition
Input capacitance	Cin	•	•	6	pF	
Output capacitance *1	Cout	•	•	9	pF	
Notes: *1 13,15 - 24,2	6 pin					

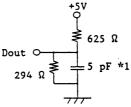
*2 This parameter is sampled and not 100 % tested.


```
NEW PRODUCT
HE1
```

AC Characteristics (Vcc = 5 V±10 %, Ta = 0 to 70°C unless otherwise noted)

* AC Test Conditions


```
# Input and output timing reference levels: 1.5 V
# Input pulse levels: Vss to 3 V
# Input rise and fall times: 5 ns
```


```
HM63021-28, -34
```


DEC output load Dout output load (A)

HM63021-45

pF *1

DEC output load Dout output load (A) Dout output load (B) (tolz, tonz) Note: *1 Including scope and jig Read Cvcle

Read Cycle	· .	HM630	21-28	HM630	HM63021-34		HM63021-45		
Parameter	Symbol	min	max	min	max	min	max	Unit	
Read cycle time	tRC	28	•	34	•	45	•	ns	
Read clock width	tRWL	10	-	10	-	15	-	ns	
-	tRWH	10	-	10	•	15	-	ns	
Access time	tAC	•	20	•	25	•	30	ns	
Decode output(fall) access time	tDA1	. •	20	-	25	-	30	ns	
(rise)	tDA2	-	40	•	50	•	60	ns	
Output hold time	tOH	·S	•	5	•	5	-	ns	
Decode output(fall) hold time	t DOH1	5	-	5		5	•	ns	
(rise)	tDOH2	2 5	• 🗕	5	-	5	-	ns	
Output enable access time	tOE	•	20	-	25	•	30	ns	
Output disable to output in high-Z	tOHZ	0	15	0	20	0	25	ns	
Output enable to output in low-Z	tOLZ	5	-	5	-	5	-	ns	

ത

HITACHI Integrated Circuits Div. Write Cycle

		HM630	021-28	HM630	021-34	HM630	021-45	
Parameter	Symbol		max		max		max	Unit
Write cycle time	twc	28	-	34	-	45	-	ns
	t _{WC} (1H/2H Mo	de)56	-	68	-	90	-	ns
Write clock widt	t _{WWL}	10	-	10	-	15	-	ns
	twwH	10	-	10	-	15	-	ns
Input data setup Time	tDS	5	-	5	-	7	-	ns
Input data hold Time	tDH	5	-	5	-	7	-	ns
WE setup time	twesl	5	-	5	-	7	-	ns
-	twesh	5	-	5	-	7	-	ns
WE hold time	tWEHL	5	-	5	-	7	-	ns
	tWEHH	5	-	5	-	7	-	ns
WT setup time	twtsl	5	-	5	-	7	-	ns
•	tWTSH	5	-	5	-	7	-	ns
WT hold time	tWTHL	5	-	5	-	7	-	ns
	twthh	5	-	5	-	7	•	ns

Reset Cycle

-		HM63	021-28	HM63	021-34	HM63	021-45	
Parameter	Symbol	min	max	min	max	min	max	Unit
Reset setup time	tRES	8	-	9	-	10	-	ns
Reset hold time	tREH	5	-	5	-	7	-	ns
Clock setup time before reset	^t REPS	8	-	9	-	10	-	ns
Clock hold time before reset	tREPH	5	-	5	-	7	-	ns

OHITACHI

ated Circuits Div.

Mode Description

* Time Base Compression/Expansion Mode

This mode turns HM63021 into a 2048-word x 8-bit FIFO memory with asynchronous input/output. The HM63021 provides 2 clocks (RCLK, WCLK) and 2 resets (RRES, WRES), one each for read and write. The internal address counters increment by 1 address clock and are reset to address 0. A write-inhibit function of HM63021 stops writing automatically after the data has been written into all addresses 0 to 2047. The write-inhibit function is released by reset using WRES, and the HM63021 restarts writing into address 0.

* Double-Speed Conversion Mode

This mode turns HM63021 into a 1024-word x 8-bit x 2 memory with asynchronous input/output. It is used for generating non-interlaced TV signals. When the original signal and the inter-polated signal (1-field delay) of interlaced signals are input to the HM63021, multiplexed per dot, it outputs non-interlaced signals for each line. 8 fsc should be input to RCLK and WCLK. A standard II synchronizing signal and a non-interlace H synchronizing signal are input to WRES and RRES respectively. A write-inhibit function is provided in this mode, making it applicable to PAL TV, where extra data (1135 - 1024 = 111 bits) is ignored.

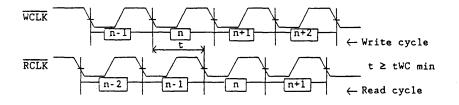
* TBC Mode

This mode turns HM63021 into a 2048-word x 8-bit FIFO memory with asynchronous input/output. The HM63021 provides 2 clocks (RCLK, WCLK) and 2 resets (RRES, WRES), one each for read and write. The internal address counters increment by 1 address at each clock and are reset to address 0. The internal address counters return to address 0 after they reach address 2047. The HM63021 outputs a write decode pulse from WDEC, synchronizing it with address 2047 in the write address counter, and read a decode pulse from RDEC, synchronizing it with address 2047 in the read address counter. Using these pulses, the memory area can be extended easily (multiple HM63021s can be used with ease).

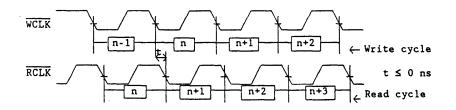
* 1H/2H Delay Mode

This mode turns HM63021 into a 1024-word x 8-bit x 2 delay line with synchronous input/output. Delay time is defined by the reset period of RES. Since the HM63021 outputs a 901 decode pulse (DEC1) and a 910 decode pulse (DEC1), connecting DEC2 to RES, for example, outputs 1H-and 2H-delayed signals alternately at a 8-fsc cycle when the original signal is input at a 4-fsc cycle. A write-inhibit function is provided in this mode, making it applicable to PAL TV, where extra data (1135 - 1024 = 111 bits) is ignored.

* Delay Line Mode

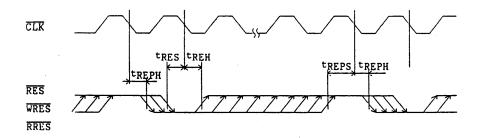

This mode turns the HM63021 into a 2048-word x 8-bit delay line with synchronous input/output. Delay time (3 to 2048 bits) is defined by the reset period of RES. The delay is 2048 bits when RES is fixed high. Signals delayed by 910 bits to 1135 bits, for example; can be easily obtained without external circuits by just connecting selected decoded pulses on DEC1 - DEC4 to RES.

OHITACHI

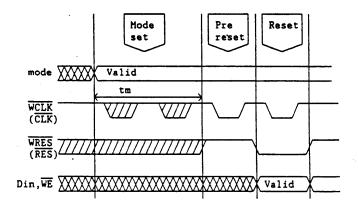

Notes on Using HM63021

- * Hitachi recommends that pin 13 (high impedance) should be fixed by pulling up or down with a resistor (of several $k\Omega$) in TBC or DSC mode.
- * Hitachi recommends that the mode signal input pins and DS pin should be fixed by pulling them up or down with a resistor (of several $k\Omega$).
- * Data integrity cannot be guaranteed when mode or DS is changed during operation.
- * When a read address coincides with a write address in TBCE, TBC or DSC mode, the data is written correctly but it is not always read correctly.

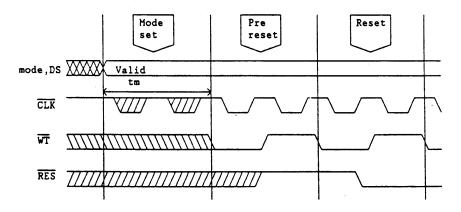
(1) Read after write (3 bits delay)



(2) Write after read (2048 bits delay)



- * At power on, the output of the address counter is not defined. Therefore, operations before the system is reset cannot be guaranteed, and decode signal output is not defined until after the first reset cycle.
- * The decode signal is latched by a decode output latch circuit at the previous address of the internal counter address and is output synchronized with the next address. For example, WDEC in TBC mode is latched at write address 2046 and is output at write address 2047. If a write reset is performed on address 2047 at this time, the write address becomes 0 and WDEC is output. The same operation is performed in other modes.
- * In the reset cycle, the input levels of WRES, RRES, RES are raised to satisfy tREH, and are fixed high until tREPH in the next pre-reset cycle is satisfied. The rise timings of the reset signals (RES, WRES, RRES) are optionals provided that the tREPS specification is satisfied. The timings at which RES, WRES, and RRES fall after pre-reset are also optional, provided that the tREPH and tRES specifications are satisfied.



111

- * Hitachi recommends that t_m (time between mode set and the first cycle (Pre-reset)) should be kept for 2 cycle time (56 ns/68 ns /90 ns) or more while the power supply is on.
 - (1) TBCE, TBC, DSC and Delay Line Mode

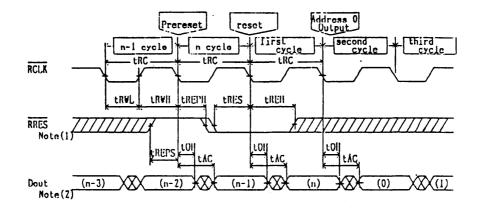
(2) 1H / 2H Delay Mode

Note: When mode pins are fixed with $V_{\rm CC}, \, V_{\rm SS}$ in mode set while the power supply is on, t_m spec is not needed.

11

Decode Signal

sho	wn b	elow,		puts become lo	W.
Mode	Pin	Pin	Internal	Timing of the	
	No.	Name	Address	Output Signal	Operation
			Counter		
TBC	13	WDEC	Write 2047	After write	Completion of writing on all
				2047	bits is detected.
	26	RDEC	Read 2047	Output of	Completion of reading from
				2046	all bits is detected.
1H/2H	13	DEC 1	Read 900	Output of	By inputting this signal to pin
			(2H)	900(1H)	#3, 901/1802-bit delay output
					is obtained.
	26	DEC2	Read 909	Output of	By inputting this signal to pin
			(2H)	909(1H)	#3, 910/1820-bit delay output
					is obtained.
Delay	13	DEC1	Read 900	Output of 899	By inputting this signal to pin
line					#3, 910-bit delay output is
					obtained.
			Read 1810	Output of	By inputting this signal to pin
				1809	#3 after the frequency of DEC1
					is devided into two, 1811-bit
					delay output is obtained.
	26	DEC2	Read 909	Output of 908	By inputting this signal to pin
				} •	#3, 910-bit delay output is
					obtained.
			Read 1819	Output of	By inputting this signal to pin
				1818	#3 after the frequency of DEC2
	1	1			is devided into two, 1820-bit
	1			ļ	delay output is obtained.
	16	DEC3	Read 1134	Output of	By inputting this signal to pin
		}		1133	#3, 1135-bit delay output is
		1			obtained.
	15	DEC4	Read 1125	Output of	By inputting this signal to pin
				1124	#3. 1126-bit delay output is
			1		obtained.
Note	: W1	ien th	e counter	is reset by rea	set signal (RRES, RES, WRES),

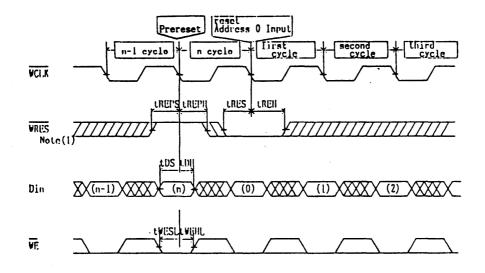

When the internal address counter reaches the specified address as shown below, decode outputs become low.

Note: When the counter is reset by reset signal (RRES, RES, WRES), address becomes 0.

Write-inhibit Function

When internal address counter is as follows, writing is inhibited automatically for the next cycle. The write-inhibit function is cancelled by reset through WRES or RES. Mode Write-inhibit Function (internal counter address) TBCE Write-inhibit after address 2047 DSC Write-inhibit after address 1023 x 2 TBC No function 11I/2H Write-inhibit after address 1023 D No function Note: When the address counter is reset by WRES or RES, address becomes 0.

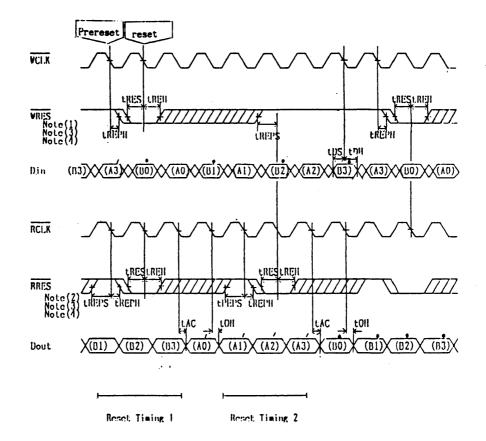
Read Reset Cycle (TBCE, TBC Modes)


Notes: 1. The <u>read</u> address counter is reset at the first falling edge of <u>RCLK</u> after <u>RRES</u> falls, meeting the specifications of t_{REPS} <u>and tREPH</u>, and it is not reset at the next falling edge of <u>RCLK</u> even if <u>RRES</u> is kept low.

When t_{RES} , t_{REH} , t_{REPS} , and t_{REPH} cannot meet the specifications, the reset operation is not guaranteed. In reset operation, both prereset and reset are required.

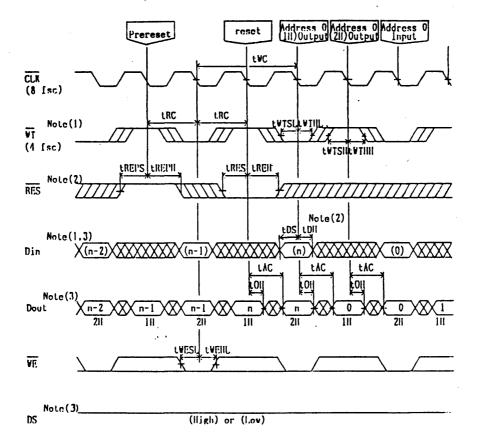
- 2. Output is from the read address of the previous cycle.
- 3. When RRES is fixed high, the data at the read address counter is reset after the data of address 2047 is output, and the same operation restarts.

Write Reset Cycle (TBCE, TBC Hodes)



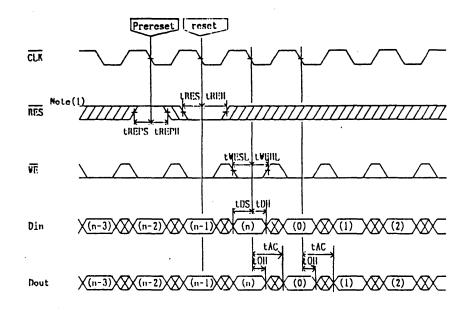
Note: The write address counter is reset at the first falling edge of WCLK after WRES falls, meeting the specifications of tREPS and tREPH, and it is not reset at the next falling edge of WCLK even if WRES is kept low.

When t_{RES} , t_{REH} , t_{REPS} , and t_{REPH} cannot meet the specifications, the reset operation is not guaranteed. In reset operation, both prereset and reset are required.


Reset Cycle (DSC Mode)

- Notes: 1. The write address counter is reset at the first falling edge of WCLK after WRES falls, meeting the specifications of t_{REPS} and t_{REPH} , and it is not reset at the next falling edge of WCLK even if WRES is kept low. When t_{RES} , t_{REH} , t_{REPS} , and t_{REPH} cannot meet the specifications, the reset operation is not guaranteed.
 - 2. The read address counter is reset at the first falling edge of RCLK after RRES falls, meeting the specifications of t_{REPS} and t_{REPH} , and it is not reset at the next falling edge of RCLK even if RRES is kept low. When t_{RES} , t_{REH} , t_{REPS} , and t_{REPH} cannot meet the specifications, the reset operation is not guaranteed.
 - 3. When tREPH, tRES, and tREH (WRE to WCLK), or tREPS, tREPH, tRES, tREH (PRES to RCLK) cannot meet the specifications, the output of video signal A is not guaranteed. (Reset Timing 1)
 - video signal A is not guaranteed. (Reset Timing 1)
 4. When t_{REPS} (WRES to RCLK), or t_{RES}, t_{REH}, t_{REPH} (RRES to RCLK) cannot meet the specifications, the interpolation signal B is not guaranteed. (Reset Timing 2)

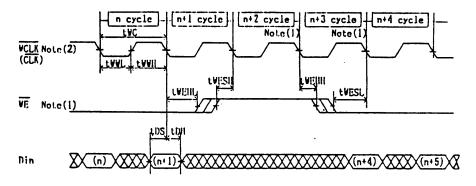
OHITACHI


Reset Cycle (1H/2H Mode)

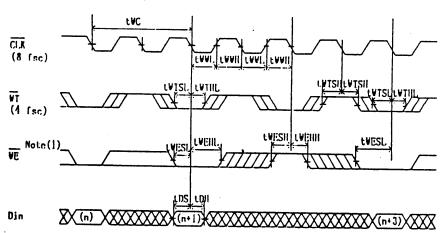
- Notes: 1. WT is the input during half cycle of CLK, meeting the specifications of tWTSL, tWTHL, tWTSH, and tWTHH. Data is written when WT is low. Reset is possible when WT is high.
 - 2. Read address counter is reset at the first falling edge of CLK after RES falls, meeting the specifications of t_{REPS} and t_{REPH} , and it is not reset at the next falling edge of CLK even if RES is kept low. When t_{RES} , t_{REH} , t_{REPS} , and t_{REPH} cannot meet the specifications, the reset operation is not guaranteed. In reset operation, both prereset and reset are required.
 - 3. When DS is fixed high, 1H output data is delayed by n bits and 2H output data is delayed by 2n-bits where 2n is the reset cycle of $\overline{\text{RES}}$. When DS is fixed low, 1H output data is delayed in n-5 bits and 2H output data is delayed in 2n-5 bits.

HITACHI

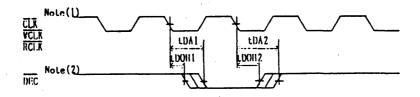
Reset Cycle (D Mode)



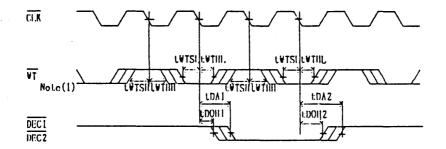
Note: The read address counter is reset at the first falling edge of $\overline{\text{CLK}}$ after $\overline{\text{RES}}$ falls, meeting the specifications of t_{REPS} and t_{REPH}, and it is not reset at the next falling edge of $\overline{\text{CLK}}$ even if $\overline{\text{RES}}$ is kept low.


When t_{RES}, t_{REH}, t_{REPS}, and t_{REPH} cannot meet the specifications, the reset operation is not guaranteed. In reset operation, both prereset and reset are required.

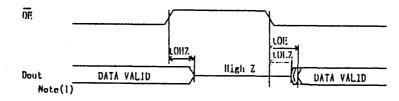
Write Enable (TBCE, DSC, TBC, D Modes)



- Notes: 1. When tweekl, tweekl, tweekl, and tweesl cannot meet this specifications, the write enable operation is not guaranteed.
 - 2. In the delay line mode, CLK takes the place of WCLK.


Write Enable (1H/2H Mode)

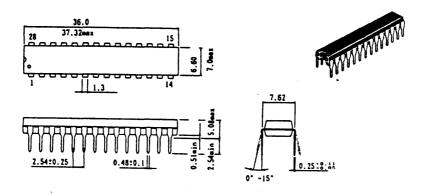
Note: When twisi, twith, twill, and twith cannot meet the specifications, the write enable operation is not guaranteed. Decode Output (TBC, D Modes)


Notes: 1. In TBC mode, WCLK or RCLK takes the place of CLK. 2. DEC is WDEC or RDEC in TBC, DEC1, DEC2, DEC3, or DEC4 in D mode.

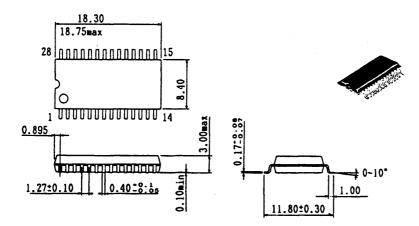
Decode Output (1H/2H Modes)

Note: When t_{WTSL} , t_{WTHL} , t_{WTSH} , and t_{WTHH} cannot meet the specifications, the decode output operation is not guaranteed.

Output Enable (All Modes)



Note: Transition of t_{OHZ} and t_{WLZ} is measured ± 200 mV from steady state voltage with Output Load B. This parameter is sampled and not 100 % tested.


Package Dimensions

Unit: mm

•HM63021P Series

•HM63021FP Series

HITACHI

HITACHI AMERICA. LTD.

Semiconductor & I.C. Division

San Francisco Center 2000 Sierra Point Parkway Brisbane, CA 94005-1819 (415) 589-8300 Fax: (415) 583-4207

REGIONAL OFFICES

Northeast

Hitachi America, Ltd. 77 S. Bedford Street Burlington, MA 01803 (617) 229-2150

Eastern

Hitachi America, Ltd. 5511 Capital Center Drive Suite 204 Raleigh, NC 27606 (919) 233-0800

North Central

Hitachi America. Ltd. 500 Park Boulevard Suite 415 Itasca, IL 60143 (708) 773-4864

Central

Hitachi America. Ltd. Two Lincoln Centre 5420 LBJ Freeway Suite 1446 Dallas, TX 75240 (214) 991-4510

Southwest

Hitachi America, Ltd. 2030 Main Street Suite 450 Irvine, CA 92714 (714) 553-8500

DISTRIBUTORS

Cronin Electronics, Inc. • ITT Multicomponents-Canada • Marsh Electronics, Inc. • Marshall Industries • Milgray Electronics, Inc • Reptron Electronics • Sterling Electronics • Vantage Components Inc. •

Western

Suite 500

Suite 690

AT&T

Suite 203

(201) 514-2100

Automotive

Suite 311

IBM

Suite 104

Hitachi America, Ltd.

San Jose, CA 95110

Mountain Pacific

Hitachi America, Ltd.

4600 S. Ulster Street

Hitachi America, Ltd.

325 Columbia Turnpike

Florham Park, NJ 07932

Hitachi America, Ltd.

Fairlane Plaza South

Dearborn, MI 48126

Hitachi America, Ltd.

21 Old Main Street

Fishkill, NY 12524 (914) 897-3000

(313) 271-4410

290 Town Center Drive

Denver, CO 80237

(303) 779-5535

(408) 451-9570

1740 Technology Drive

Western Micro Technology .

Engineering Facility

Hitachi Micro Systems, Inc. 179 East Tasman Drive San Jose, CA 95134

Manufacturing Facility

Hitachi Semiconductor (America) Inc. 6431 Longhorn Drive Irving, TX 75063-2712

South Central

Suite 1040

Hitachi America, Ltd.

Houston, TX 77042

IBM Engineering

Hitachi America, Ltd.

9600 Great Hills Trail

Hitachi (Canadian) Ltd.

Austin, TX 78759

320 March Road

Kanata, Ontario,

Canada K2K2E3

(512) 502-3033

(713) 974-0534

Suite 150W

Ottawa

Suite 602

One Westchase Center

10777 Westheimer Road

DISTRICT OFFICES

Southeast

Hitachi America. Ltd. 4901 N.W. 17th Way Suite 302 Ft. Lauderdale, FL 33309 (305) 491-6154

Mid-Atlantic

Hitachi America, Ltd. 325 Columbia Turnpike Suite 203 Florham Park, NJ 07932 (201) 514-2100

Bloomington

Hitachi America. Ltd. 3800 W. 80th Street Suite 1050 Bloomington, MN 55431 (612) 896-3444

REPRESENTATIVE OFFICES I

Electri-Rep • Electronic Sales & Engineering • EIR. Inc. • Jav Marketing Associates . Longman Sales, Inc. . M. Gottlieb Associates, Inc. • Mycros Electronica • The Novus Group, Inc. • Parker-Webster Company • QuadRep Inc. • QuadRep/Crown, Inc. • QuadRep Southern, Inc. • Robert Electronic Sales • Strategic Sales, Inc. • Sumer Inc. • System Sales of Arizona • System Sales of New Mexico • Technology Sales, Inc. • TekRep, Inc. • Thompson & Associates, Inc. • West Associates •

THIRD-PARTY ASIC DESIGN CENTERS

Indiana Microelectronics Center • Intronic Semiconductor • Locus · Micral

HITACHI®

Hitachi America, Ltd. Semiconductor & I.C. Division 2000 Sierra Point Parkway, Brisbane, CA 94005-1835 1-415-589-8300

© Copyright 1994, Hitachi Americia, Ltd. All rights reserved. Printed in U.S.A.

694/1M/ABC/MFM Printed on recycled paper. Order Number: M11T268