HITACHI MOS LSI DATA BOOK LCD DRIVER LSI

AUG. 1983

INDEX

GENERAL INFORMATION	Page
• QUICK REFERENCE GUIDE	1
• PACKAGING INFORMATION	3
• RELIABILITY AND QUALITY ASSURANCE	5
• RELIABILITY TEST DATA OF LCD DRIVERS	17
• FLAT PLASTIC PACKAGE (FPP) MOUNTING METHODS	23
• LIQUID CRYSTAL DRIVING METHODS	27
DATA SHEET	
• GENERAL PURPOSE LCD DRIVER	
HD44100H (LCD DRIVER WITH 40-CHANNEL OUTPUT)	41 X
• CHARACTER DISPLAY TYPE	
HD43160AH (CONTROLLER WITH BUILT-IN CHARACTER GENERATOR)	49
HD44780 (LCD-II) (DOT MATRIX LIQUID CRYSTAL DISPLAY CONTROLLER & DRIVER)	65 X
HD44101H (DOT MATRIX LIQUID CRYSTAL DISPLAY CONTROLLER & DRIVER)	115
• GRAPHIC DISPLAY TYPE	
HD44102CH (DOT MATRIX LIQUID CRYSTAL GRAPHIC DISPLAY COLUMN DRIVER)	151
HD44103CH (DOT MATRIX LIQUID CRYSTAL GRAPHIC DISPLAY COMMON DRIVER)	173
HD61830 (DOT MATRIX LIQUID CRYSTAL GRAPHIC DISPLAY CONTROLLER)	183 X
• SEGMENT DISPLAY TYPE	
HD61602/HD61603 (SEGMENT TYPE LCD DRIVER)	209
NOTICE	

The example of an applied circuit or combination with other equipment shown herein indicates characteristics and performance of a semiconductor-applied products. The Company shall assume no responsibility for any problem involving a patent caused when applying the descriptions in the example.

GENERAL INFORMATION

Ту	pe	General	Segment	Display	Chai	racter Display	y	C	raphic Disp	lav
Type Nur	mber	HD44100H	HD61602	HD61603	HD44780 (LCD-11)	HD44101H	HD4 3160AH	HD44102CH	HD44103CH	HD61830
Process		CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS
Supply 1	Voltage (V)	5*1	3~5*1	3~5*1	5*1	5*1	5*1	5*1	s*1	s*1
Operatin Temperat	ng (°C) ture	-20~+75*2	-20~+75	-20~+75	-20~+75*2	-20~+75	-20-+75	-20~+75	-20~+75	-20~+75
Package		FP-60	FP-80	FP-80	FP-80	FP-80	FP-54	FP-80	FP-60	FP-60
Power Dition	issipa- (mW)	5.0	0.5(5V)	0.5(5V)	1.75	1.75	10.0	2.5	4.0	30.0
Memory	ROM (bits)	-	-	-	7200 (CG)*3	6720 (CG)*3	6240 (CG)*3	-	-	7360 (CC) *3
i~wory	RAM (bits)	-	51x4	64 ×1	80×8/64×8 (CG)*3	32×8	80×8	200×8	-	(external 65536×8)
1/0	Interface (CPU)	8	14	10	11	12	21	21	6	13
	Interface (Driver IC)	2	-	-	4	4	5	-	5	9
	Interface (External ROM, RAM)	-	-	-	-	-	18	-	-	33
Number Instruc	of tion	-	4	4	11	8	6	6	-	12
	Common		4	1	16	15	-	-	20	-
LCD Driver	Segment	40	51	64	40	40	-	50	-	-
	Duty	Free (N)	Static, 1/2,1/3 1/4	Static	1/8,1/11, 1/16	1/7,1/14	1/8,1/12, 1/16	1/8,1/12, 1/16,1/24, 1/32	1/8,1/12, 1/16,1/24, 1/32	1/1 ~ 1/128
	Bias	1/2, 1/3, 1/4, 1/5	1/2,1/3	-	1/4,1/5	1/4,1/5	-	1/5	1/5	-
Display	Capability	N×40 Matrix (1/N Duty)	204 Seg- ment (1/4 Duty)	64 Seg- ment	16 Digits (5×7 Dots 1/16 Duty)	16 Digits (5×7 Dots 1/14 Duty)	-	32×50 Dots (1/32 Duty)	-	-
Comment		SR type			Expandable to 80 Digits using HD44100H	Expandable to 32 Digits using HD44100H	Display to 80 Digits using HD44100H			Display to 524288 Dots using HD44100H

*1: Except Power Supply for LCD.
*2: -40~+85*C (Special Request). Please contact Hitachi Agents.

*3: CG; Character Generator.

LCD DRIVER SERIES CHARACTERISTICS

PACKAGING INFORMATION

PACKAGE INFORMATION

The Hitachi LCD driver devices use plastic flat packages to make more compact the equipment in which they are incorporated and provide higher density mounting by utilizing the features of their thin liquid crystal display elements.

■ PACKAGE INFORMATION (UNIT: mm)

There are two kinds of marking of the Hitachi LCD driver devices: the one with a standard type No. and the other with a ROM code. The type No. 2 with a ROM code is applied to the HD61830 and LCD II (HD44780).

(1) Standard type No.

(a) Type No. with ROM code

Meaning of each mark

(a)	Hitachi mark
(b)	Lot code
(c)	Standard type No.
(d)	JAPAN mark
(e)	ROM code

RELIABILITY AND QUALITY ASSURANCE

1. VIEWS ON QUALITY AND RELIABILITY

Basic views on quality in Hitachi are to meet individual user's purchase purpose and quality required, and to be at the satisfied quality level considering general marketability. Quality required by users is specifically clear if the contract specification is provided. If not, quality required is not always definite. In both cases, efforts are made to assure the reliability so that semiconductor devices delivered can perform their ability in actual operating circumstances. To realize such quality in manufacturing process, the key points should be to establish quality control system in the process and to enhance moral for quality.

In addition, quality required by users on semiconductor devices is going toward higher level as performance of electronic system in the market is going toward higher one and is expanding size and application fields. To cover the situation, actual bases Hitachi is performing is as follows;

- (1) Build the reliability in design at the stage of new product development.
- (2) Build the quality at the sources of manufacturing process.
- (3) Execute the harder inspection and reliability confirmation of final products.
- (4) Make quality level higher with field data feed back.
- (5) Cooperate with research laboratories for higher quality and reliability.

With the views and methods mentioned above, utmost efforts are made for users' requirements.

2. RELIABILITY DESIGN OF SEMICONDUCTOR DEVICES

2.1 Reliability Targets

Reliability target is the important factor in manufacture and sales as well as performance and price. It is not practical to rate reliability target with failure rate at the certain common test condition. The reliability target is determined corresponding to character of equipments taking design, manufacture, inner process quality control, screening and test method, etc. into consideration, and considering operating circumstances of equipments the semiconductor device used in, reliability target of system, derating applied in design, operating condition, maintenance, etc.

2.2 Reliability Design

To achieve the reliability required based on reliability targets, timely study and execution of design standardization, device design (including process design, structure design), design review, reliability test are essential.

(1) Design Standardization

Establishment of design rule, and standardization of parts, material and process are necessary. As for design rule, critical items on quality and reliability are always studied at circuit design, device design, layout design, etc. Therefore, as long as standardized process, material, etc. are used, reliability risk is extremely small even in new development devices, only except for in the case special requirements in function needed.

(2) Device Design

It is important for device design to consider total balance of process design, structure design, circuit and layout design. Especially in the case new process and new material are employed, technical study is deeply executed prior to device development.

(3) Reliability Evaluation by Test Site

Test site is sometimes called Test Pattern. It is useful method for design and process reliability evaluation of IC and LSI which have complicated functions.

- 1. Purposes of Test Site are as follows;
 - Making clear about fundamental failure mode
 - Analysis of relation between failure mode and manufacturing process condition
 - Search for failure mechanism analysis
 - Establishment of QC point in manufacturing
- 2. Effectiveness of evaluation by Test Site are as follows;
 - Common fundamental failure mode and failure mechanism in devices can be evaluated.

- Factors dominating failure mode can be picked up, and comparison can be made with process having been experienced in field.
- Able to analyze relation between failure causes and manufacturing factors.
- Easy to run tests.

etc.

2.3 Design Review

Design review is organized method to confirm that design satisfies the performance required including users' and design work follows the specified ways, and whether or not technical improved items accumulated in test data of individual major fields and field data are effectively built in. In addition, from the standpoint of enhancement of competitive power of products, the major purpose of design review is to ensure quality and reliability of the products. In Hitachi, design review is performed from the planning stage for new products and even for design changed products. Items discussed and determined at design review are as follows;

- (1) Description of the products based on specified design documents.
- (2) From the standpoint of specialty of individual participants, design documents are studied, and if unclear matter is found, sub-program of calculation, experiments, investigation, etc. will be carried out.
- (3) Determine contents of reliability and methods, etc. based on design document and drawing.
- (4) Check process ability of manufacturing line to achieve design goal.
- (5) Discussion about preparation for production.
- (6) Planning and execution of sub-programs for design change proposed by individual specialist, and for tests, experiments and calculation to confirm the design change.
- (7) Reference of past failure experiences with similar devices, confirmation of method to prevent them, and planning and execution of test program for confirmation of them. These studies and decisions are made using check lists made individually depending on the objects.

3. QUALITY ASSURANCE SYSTEM OF SEMICONDUCTOR DEVICES

3.1 Activity of Quality Assurance

General views of overall quality assurance in Hitachi are as follows;

- Problems in individual process should be solved in the process. Therefore, at final product stage, the potential failure factors have been already removed.
- (2) Feedback of information should be made to ensure satisfied level of process ability.
- (3) To assure reliability required as an result of the things mentioned above is the purpose of quality assurance.

The followings are regarding device design, quality approval at mass production, inner process quality control, product inspection and reliability tests.

3.2 Quality Approval

To ensure quality and reliability required, quality approval is carried out at trial production stage of device design and mass production stage based on reliability design described at section 2.

The views on quality approval are as follows;

- (1) The third party performs approval objectively from the standpoint of customers.
- (2) Fully consider past failure experiences and information from field.
- (3) Approval is needed for design change and work change.
- (4) Intensive approval is executed on parts material and process.
- (5) Study process ability and fluctuation factor, and set up control points at mass production stage.

Considering the views mentioned above, quality approval shown in Fig. 1 is performed.

3.3 Quality and Reliability Control at Mass Production

For quality assurance of products in mass production, quality control is executed with organic division of functions in manufacturing department, quality assurance department, which are major, and other departments related. The total function flow is shown in Fig. 2. The main points are described below.

3.3.1 Quality Control of Parts and Material

As the performance and the reliability of semiconductor devices are getting higher, importance is increasing in quality control of material and parts, which are crystal, lead frame, fine wire for wire bonding, package, to build products, and materials needed in manufacturing process, which are mask pattern and chemicals. Besides quality approval on parts and materials stated in section 3.2, the incoming inspection is, also, key in quality control of parts and materials. The incoming inspection is performed based on incoming inspection specification following purchase specification and drawing, and sampling inspection is executed based on MIL-STD-105D mainly.

The other activities of quality assurance are as follows:

- (1) Outside Vendor Technical Information Meeting
- (2) Approval on outside vendors, and guidance of outside vendors
- (3) Physical chemical analysis and test

The typical check points of parts and materials are shown in Table 1.

3.3.2 Inner Process Quality Control

Inner process quality control is performing very important function in quality assurance of semiconductor devices. The following is description about control of semi-final products, final products, manufacturing facilities, measuring equipments, circumstances and sub-materials. The quality control in the manufacturing process is shown in Fig. 3 corresponding to the manufacturing process.

(1) Quality Control of Semi-final Products and Final Products

Potential failure factors of semiconductor devices should be removed preventively in manufacturing process. To achieve it, check points are set-up in each process, and products which have potential failure factor are not transfer to the next process. Especially, for high reliability semiconductor devices, manufacturing line is rigidly selected, and the quality control in the manufacturing process is tightly executed rigid check in each process and each lot, 100% inspection in appropriate ways to remove failure factor caused by manufacturing fluctuation, and execution of screening needed, such as high temperature aging and temperature cycling. Contents of inner process quality control are as follows;

- Condition control on individual equipments and workers, and sampling check of semifinal products.
- Proposal and carrying-out improvement of work
- Education of workers
- Maintenance and improvement of yield
- Picking-up of quality problems, and execution of counter-measures
- Transmission of information about quality
- (2) Quality Control of Manufacturing Facilities and Measuring Equipment

Equipments for manufacturing semiconductor devices have been developing

of production, and are important factors to determine quality and reliability. In Hitachi, automatization of manufacturing equipments are promoted to improve manufacturing fluctuation, and controls are made to maintain proper operation of high performance equipments and perform the proper function. As for maintenance inspection for quality control, there are daily inspection which is performed daily based on specification related, and periodical inspection which is performed periodically. At the inspection, inspection points listed in the specification are checked one by one not to make any omission. As for adjustment and

Fig. 2 Flow Chart of Quality Control in Manufacturing Process

maintenance of measuring equipments, maintenance number, specification are checked one by one to maintain and improve quality.

(3) Quality Control of Manufacturing Circumstances and Submaterials

Quality and reliability of semiconductor device is highly affected by manufacturing process. Therefore, the controls of manufacturing circumstances - temperature, humidity, dust - and the control of submaterials - gas, pure water - used in manufacturing process are intensively executed. Dust control is described in more detail below.

Dust control is essential to realize higher integration and higher reliability of devices. In Hitachi, maintenance and improvement of cleanness in manufacturing site are executed with paying intensive attention on buildings, facilities, airconditioning systems, materials deliveredin, clothes, work, etc., and periodical inspection on floating dust in room, falling dusts and dirtiness of floor.

- 3.3.3 Final Product Inspection and Reliability Assurance
- (1) Final Product Inspection

Lot inspection is done by quality assurance department for products which were judged as good products in 100% test, which is final process in manufacturing department. Though 100% of good products is expected, sampling inspection is executed to prevent mixture of failed products by mistake of work, etc. The inspection is executed not only to confirm that the products meet users' requirement, but to consider potential factors. Lot inspection is executed based on MIL-STD-105D.

(2) Reliability Assurance Tests

To assure reliability of semiconductor devices, periodical reliability tests and reliability tests on individual manufacturing lot required by user are performed.

Table 1 Quality Control Check Points of Material and Parts (Example)

Material, parts	Important control items	Point for check
Water	Appearance Dimension Sheet resistance Defect density Crystal axis	Damage and contamination on surface Flatness Resistance Defect numbers
Mask	Appearance Dimension Resistoration Gradation	Defect numbers, scratch Dimension level Uniformity of gradation
Fine wire for wire bonding	Appearance Dimension Purity Elongation ratio	Contamination, scratch, bend, twist Purity level Mechanical strength
Frame	Appearance Dimension Processing accuracy Plating Mounting characteristics	Contamination, scratch Dimension level Bondability, solderability Heat resistance
Ceramic package	Appearance Dimension Leak resistance Plating Mounting characteristics Electrical characteristics Mechanical strength	Contamination, scratch Dimension level Airtightness Bondability, solderability Heat resistance Mechanical strength
Plastic	Composition Electrical characteristics Thermal characteristics Molding performance Mounting characteristics	Characteristics of plastic material Molding performance Mounting characteristics

Pro	cess		Control point	Purpose of control
Y Purchas	e of material			
Water		Valer	Characteristics, Appearance	Scratch, removal of crystal defect vater
Surface	oxidation 1	Oxide on I		Assurance of resistance
Inspect oxidati	tion on surface		Appearance, Thickness of oxide film	Pinhole, Scratch
Photo z	resist	Photo resist	y and the second s	
Inspect	ion on photo resist		Dimension, Appearance	Dimension level
200	: level check			Check of photo resist
O Diffuei	loa	Diffusion	Diffusion depth, Sheet resistance	Diffusion status
	ion on diffusion		Gate width	Control of basic parameters
	level check		Characteristics of oxide film, Breakdown voltage	(VTH, etc.) cleanness of surface Prior check of VTH Breakdown voltage check
C Evapora	ition	Evapora- tioa	Thickness of vapor film, Scratch, Contemination	Assurance of standard thickness
Inspect	ion on eveporation			
PQC	level check			
U Wafer 1	nspection	Wafer	Thickness, V _{TH} characteris- tics	Prevention of crack, Quality assurance of scribe
	ion on chip cal characteristics	Chip	Electrical characteristics	
Chip Sc	ribe		Appearance of chip	-
Inspect appeara	ion on chip nce		$(t_{1}, t_{2}, \dots, t_{n}) \in \mathbb{R}^{n}$	
203	lot judgement			
Assembl	ing	Assembling	Appearance after chip booding Appearance after wire booding	Quality check of chip Bonding Quality check of wire Bonding
PQC	level check		Pull strength, Compression width, Shear strength	Prevention of open and short
Inspect	ion after assembling		Appearance after assembling	
PQC	lot judgement			
Package				
♦ Sealing		Sealing	Appearance after sealing Outline, Dimension	Guarantee of Appearance and Dimension
PQC	level check	Marking	Marking scrength	
🗘 Final e	lectrical inspection			
Fai	lure analysis		Analysis of failures, Failure mode, Mechanism	Feedback of analysis infor- mation
Appeara	ince inspection			
Samplin product	g inspection on			
Q Receivi	ng in the second s			
Shipmen	.c.	1		

Fig. 4 Process Flow Chart of Field Failure

RELIABILITY TEST DATA OF LCD DRIVERS

I. INTRODUCTION

The use of liquid crystal displays with microcomputer application systems has been increasing, because of their merits such as low power consumption, freedom in display pattern design, and thin shape. Low power consumption and high density packaging have been achieved through the use of the CMOS process and the flat plastic packages, respectively.

This chapter describes reliability and quality assurance data for Hitachi LCD driver LSIs based on test data and failure analysis results.

2. CHIP AND PACKAGE STRUCTURE

Hitachi LCD driver LSI family are produced in low power CMOS technology and flat plastic package. Si-gate process is used for high reliability and high density. Chip structure and basic circuit are shown in Fig. 1, and package structure is shown in Fig. 2.

Fig. 2 Package Structure

Fig. 1 Chip Structure and Basic Circuit.

3. RELIABILITY TEST RESULTS

The test results of LCD Driver LSI family are shown in Table 1, 2 and 3.

(1a=125°C, VCC=5.5V, VEE=-5.5V)					
Device	Sample size	Component hour	Failure		
HD44100H	40	40,000	0		
HD44101H	40	20,000	0		
HD44102CH	40	40,000	0		
HD44103CH	40	40,000	0		
HD44780	90	90,000	0		
Total	250	230,000	0		

Table 1 Test Result (1), High Temperature Operation $(Ta=125^{\circ}C, V_{CC}=5.5V, V_{EE}=-5.5V)$

Table 2 Test Result (2)

Test item	Test condition	Sample size	Component hour	Failure
High temp, storage	Ta=150°C, 1000 hrs.	90	900,000	0
Low temp, storage	Ta=-55°C, 1000 hrs.	80	800,000	0
Steady state humidity	65°C, 95% RH, 1000 hrs.	545	550,000	1*1
Steady state humidity biased	85°C, 90% RH, 1000 hrs.	165	170,000	2*2
Pressure cooker	121°C, 2 ATM. 96 hrs.	55	5,300	0

*1, *2: Aluminum corrosion

• •

Table 3 Test Results (3)

Test items	Test condition	Sample size	Failure
Thermal shock	0 ~ 100°C 10 cycles	108	0
Temperature cycling	-55°C ~ 150°C 10 cycles	678	0
Soldering heat	260°C 10 sec.	132	e. O .
Solderability	230°C 5 sec.	43	0

4. QUALITY DATA FROM FIELD USE

Field failure rate is estimated in advance through production process evaluation and reliability tests. Past field data on similar devices provides the basis for this estimation. Quality information from the users are indispensable to the improvement of products quality. Therefore, field data on products delivered to the users are followed up carefully. On the basis of information furnished by the user, failure analysis is conducted and the results are quickly fed back to the design and production divisions.

Failure analysis result on MOS LSF returned to Hitachi is shown in Fig. 3.

Fig. 3 Failure Analysis Result

5. PRECAUTION

5.1 Storage

It is preferable to store semiconductor devices in the following ways to prevent detrioration in their electrical characteristics, solderability, and appearance, or breakage.

- (1) Store in an ambient temperature of 5 to 30°C, and in a relative humidity of 40 to 60%.
- (2) Store in a clean air environment, free from dust and active gas.
- (3) Store in a container which does not induce static electricity.
- (4) Store without any physical load.

- (5) If semiconductor devices are stored for a long time, store them in the unfabricated form. If their lead wires are formed beforehand, bent part may corrode during storage.
- (6) If the chips are unsealed, store them in a cool, dry, dark, and dustless place. Assemble them within 5 days after unpacking. Storage in nitroge gas is desirable. They can be stored for 20 days or less in dry nitroge gas with a dew point at -30° C or lower. Unpacked devices must not be stored for over 3 months.
- (7) Take care not to allow condensation during storage due to rapid temperature changes.

5.2 Transportation

As with storage methods, general precautions for other electronic component parts are applicable to the transportation of semiconductors, semiconductorincorporating units and other similar systems. In addition, the following considerations must be given, too:

- Use containers or jigs which will not induce static electricity as the result of vibration during transportation. It is desirable to use an electrically conductive container or aluminium foil.
- (2) In order to prevent device breakage from clothes-induced static electricity, workers should be properly grounded with a resistor while handling devices. The resistor of about 1 M ohm must be provided near the worker to protect from electric shock.
- (3) When transporting the printed circuit boards on which semiconductor devices are mounted, suitable preventive measures against static electricity induction must be taken; for example, voltage built-up is prevented by shorting terminal circuit. When a belt conveyor is used, prevent the conveyor belt from being electrically charged by applying some surface treatment.
- (4) When transporting semiconductor devices or printed circuit boards, minimize mechanical vibration and shock.

5.3 Handling for Measurement

Avoid static electricity, noise and surge-voltage when semiconductor devices are measured. It is possible to prevent breakage by shorting their terminal circuits to equalize electrical potential during transportation. However, when the devices are to be measured or mounted, their terminals are left open to provide the possibility that they may be accidentally touched by a worker, measuring instrument, work bench, soldering iron, belt conveyor, etc. The device will fail if it touches something which leaks current or has a static charge. Take care not to allow curve tracers, synchroscopes, pulse generators, D.C. stabilizing power supply units etc. to leak current through their terminals or housings.

Especially, while the devices are being tested, take care not to apply surge voltage from the tester, to attach a clamping circuit to the tester, or not to apply any abnormal voltage through a bad contact from a current source.

During measurement, avoid miswiring and short-circuiting. When inspecting a printed circuit board, make sure that no soldering bridge of foreign matter exists before turning on the power switch.

Since these precautions depend upon the types of semiconductor devices, contact Hitachi for further details.

FLAT PLASTIC PACKAGE (FPP) MOUNTING METHODS

The FPP can obtain better space factors than DIP type because the board occupying area and thickness can be reduced. No through holes nor lead forming is required for mounting the board. Therefore, the FPP can be mounted as it is, and is suitable for automatic mounting, providing remarkable reduction of manpower.

Various mounting methods are provided and can be used for each purpose. The typical example of mounting are given below.

1. Individual Mounting with Soldering Iron

A method used mainly in the trial and small-scale production of circuits. The FPP can be soldered by fixing it on the mounting part of the printed circuit board with flux or adhesive agent while pressing it. For mounting, sharpen the tip of soldering iron or make it in a block shape so that more than one pin can be heated simultaneously. Use a fine solder (about ϕ 0.5mm). Solder within 10 seconds per IC at the maximum temperature of 260°C for lead and 235°C for resin part (lead bottom) as the heating conditions.

2. Reflow Soldering

The reflow soldering is the most general method in which the chips such as a transistor, a resistor and a capacitor are mounted on a hybrid IC. It can be also applied to the FPP. (Note) In addition, there are methods in which spare soldering and flux are applied to a printed circuit board in advance and in which solder paste is selectively applied to a printed circuit board by screen process printing.

The FPP is tacked at a specified position with flux or solder paste. However, a small amount of adhesive can be applied to the rear of FPP for temporary fixing. Spare solder is melted by passing the board whose parts are tacked, through a temperature-controlled hot plate or conveyor type heater. Then the board can be soldered. In this case, preheat thoroughly to eliminate the thermal distortion of board and mounted parts. Pay attention to temperature control in consideration of the heat absorption of black plastic caused by an infrared-ray heater. As the heating conditions, preheat the board and parts for 20 seconds at a temperature of 100 to 150°C. Then heat them within 10 seconds at the maximum temperature of 235°C as a resin surface temperature. If the board is directly heated from the upper side of FPP with an infrared-ray heater, the temperarure of resin surface becomes higher than the lead. Therefore, a shielding plate or similar thing must be used so that the temperature of resin surface can be 235°C or below.

(Note) Reflow soldering can be applied to the 2.9 mm (Max.) thick FPP used in the LCD driver series. However, the FPPs of 2.4 mm (Max.) and 1.5 mm (Max.) in thickness cannot be used for reflow soldering under the above conditions.

teriet.

I HOUNCING ME

LIQUID CRYSTAL DRIVING METHODS

Driving a liquid crystal at direct current triggers electrode reaction inside the liquid cell, deteriorating display quality rapidly. The liquid crystal must be driven at alternating current. The AC driving method includes the static driving method and the multiplex driving method, each of which has the features and can be used for applications. Hitachi has been developping the LCD driver devices corresponding to the static driving method and the multiplex driving method. The following sections describe the features of each driving method, the driving waveforms and how to apply bias.

VDD

(Frample of HD61602/HD61602)

Fig. 1 shows the driving waveforms of the static driving method and an example in which "4" is displayed in the segment method. The static driving method is the most basic method in which good display quality can be obtained. Ho ever, it is not suitable for the display of the liquid crystal with many segments because one liquid crystant the frame frequency $(1/t_f)$ of several tens to several hundreds Hz.

MULTIPLEX DRIVING METHOD

The multiplex driving method is effective in reducing the number of driver circuits, the number of connections between the circuit and the display cell, a... the cost when driving many display picture elements. Fig. 2 shows the comparision of the static drive with the multiplex drive (1/3 duty) in 8-digit numeric display. The number of liquid crystal driver circuits required is 65 for the former and 27 for the latter. The multiplex drive reduces the number of driver circuits. However, the more multiplexed, the

Fig. 2 Example of Comparision of Static Drive with Multiplex Drive

smaller the driving voltage tolerance. Thus, there are limits to extent of multiplexing.

There are two types of multiplex drive waveforms: A type and B type. A type, shown in Fig. 3, is used for alternation in 1 frame. B type is used for alternation in between 2 frames. B type has better display quality than A type in high multiplex drive.

- Fig. 3 A Type Waveforms (1/3 duty, 1/3 bias)
- Fig. 4 B Type Waveforms (1/3 duty, 1/3 bias)

● 1/2 Bias, 1/2 Duty Drive

癒

In the 1/2 duty drive, 1 driver circuit drives 2 segments. Fig. 5 shows an example of the connection in displaying '4' on the liquid crystal display of 7-segment type, and the output waveforms.

• 1/3 Bias, 1/3 Duty Drive

In the 1/3 duty drive, 3 segments are driven by 1 segment output driver. Fig. 6 shows an example of the connection in displaying '4' on the liquid crystal display of 7-segment type, and the output waveforms.

Eia 6 Evample of Haunforme in 1/2 Duty Drive (Q two)

•1/3 Bias, 1/4 Duty Drive

In the 1/4 duty drive, 4 segments are driven by 1 segment output driver. Fig. 7 shows an example of the connection in displaying '4' on the liquid crystal of 7-segment type, and the output waveforms.

(Example of HD61602)

Fig. 8 Example of Waveforms in 1/8 Duty Drive (A type) (Example of LCD-II)

i.**'**•

● 1/5 Bias, 1/8 Duty Drive

Fig. 9 Example of Waveforms in 1/8 Duty Drive (A type) (Example of HD44100H)

16.50 - 1996 - 1886 - 3

and and the set

and the second second

1. 1. J. 400

Fig. 10 Example of Waveforms in 1/16 Duty Drive (A type) (Example of LCD-II)

gent and generated

Fig. 11 Example of Waveforms in 1/32 Duty Drive (Example of HD44102CH, HD44103CH)

POWER SUPPLY CIRCUIT FOR LIQUID CRYSTAL DRIVE

Table 1 shows the relationship between the number of driving biases and display duty ratios.

Table 1 Relationship between the Number of Dispaly Duties Ratio and the Number of Driving Biases

Dispłay duty ratio	Static	1/2	1/3	1/4	1/7	1/8	1/11	1/12	1/14	1/16	1/24	1/32	1/64
Number of driving biases	2	3 (1/2 bias)	4 (1/3	bias)	2 	(1/4	5 bias)		(1	6 /5 bi	.as)	

• Drive in Resistance Dividing

A driving bias is generally generated in resistance dividing.

(a) 1/4 Bias (1/8, 1/11 duty) (b) 1/5 Bias (1/16 duty)

Fig. 12 Example of Driving Voltage Supply

The setting of resistance value is determined by considering of operation margine and power consumption. Since the liquid crystal display load is

capacitive, the drive waveform itself is distorted due to charge/discharge current when the liquid crystal display drive waveform is applied. To reduce distortion, the resistance value should be decreased but the power consumption increases because of the increase of the current through the dividing resistors. Since larger liquid crystal display panels have larger capacitance, the resistance value must be decreased.

Fig. 13 Example of Capacitor Connection for Improvement of Liquid Crystal Display Drive Waveform Distortion (1/5 bias) (Example of LCD-II)

It is efficient to connect a capacitor to the resistors in parallel as shown in Fig. 13 in order to improve charge/discharge distortion. However, the effect is limited. Even if it is attempted to reduce the power consumption with a large resistor and improve waveform distortion with a large capacitor, a level shift occurs and the operating margine is not improved.

Since the liquid crystal display load is of matrix configuration, the path of the charge/discharge current through the load is complicated. Moreover, it varies depending on display condition. Thus, a value of resistance cannot be simply determined from the load capacitance of liquid crystal display. It must be experimentally determined according to the demand for the power consumption of the equipment in which the liquid crystal display is incorporated.

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997

Generally, R is $1k\Omega$ to $10k\Omega$, and VR is $5k\Omega$ to $50k\Omega$. No capacitor is used. A capacitor of 0.1μ F is usually used if necessary.

Drive by Operational Amplifier.

In graphic display, the size of liquid crystal becomes larger and the display duty ratio becomes smaller, then the stability of liquid crystal drive level is more important than small display system.

Since the liquid crystal for graphic display is large and has many picture elements, the load capacity becomes large. The high impedance of the power supply for liquid crystal drive produces distortion in the drive waveforms, and deteriorates display quality. For this reason, the liquid crystal drive level should be low impedance with operational amplifiers. Fig. 14 shows an example of operational amplifier configuration.

7-28-4

Fig. 14 Drive by Operational Amplifier (1/5 bias)

No load current flows through the dividing resistors because of the high input impedance of operational amplifier. A high resistance of $R = 10k\Omega$ and $VR = 50k\Omega$ can be used.

Generation of Liquid Crystal Drive Level in LSI

The power supply circuit for liquid crystal drive level may be incorporated in the LSI such as for portable calculator with liquid crystal display. HD61602, HD61603 for small display system has built-in power supply circuit for liquid crystal drive level.

Precaution on Power Supply Circuit

The LCD driver LSI has two types of power supplies: the one for logication circuits and the other for liquid crystal display drive circuit. The several supply system is complicated because of several liquid crystal drive levels.

For this reason, in the power supply design, take care not to deviate from the voltage range assured in the maximum rating at the rise of power supply and from the potential sequence of each power supply. If the input terminal level is indefinite, through current flows and the power consumtion increases because of the use of CMOS process in the LCD driver. Simultaneously, the potential sequence of each power supply becomes wrong, and a latch-up phenomenon may be caused.

DATA SHEETS

HD44100H (LCD DRIVER WITH 40-CHANNEL OUTPUTS)

The HD44100H has two sets of 20-bit bidirectional shift registers, 20 data latch flip flops and 20 liquid crystal display driver circuits. It receives serial display data from a display control LSI, converts it into parallel data and supplies liquid crystal display waveforms to the liquid crystal.

The HD44100H is a liquid crystal display driver with high generalizability, which can drive a static drive liquid crystal and a dynamic drive liquid crystal, and can be applied to a common driver or segment driver.

FEATURES

- Liquid crystal display driver with serial/ parallel conversion function
- Serial transfer facilitates board design
- Capable of interfacing to liquid crystal display controllers: HD43160AH, LCTC (HD61830), HD44101H, LCD II(HD44780), LCDIII (HD44790).
- Internal liquid crystal display driver ... 40 drivers
- Internal serial/parallel conversion circuits

```
20-bit shift register × 2
20-bit data latch × 2
```

• Display bias: Static $\sim 1/5$

• Power supply

Internal logic: +5V

Liquid crystal display driver circuit: -5V

increase.

• CMOS process

• 60-pin flat plastic package

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

	ltem	Symbol	Value	Unit
Supply	Logic	v _{cc}	-0.3 to $+7.0$	V *1
voltage LCD drivers		V _{EE} *2	$V_{CC} - 13.5$ to $V_{CC} + 0.3$	v
Input vo	ltage	V _{T1}	-0.3 to V _{CC} + 0.3	V *1
Input vo	ltage	V _{T2} *3	$V_{CC}^{+0.3}$ to $V_{EE}^{-0.3}$	v
Operatin	g temperature	T _{opr}	- 20 to + 75	°C
Storage	temperature	T _{stg}	-55 to +125	°C

- *1 All voltage values are referenced to GND.
- *2 Connect a protection resistor of $220\Omega \pm 5\%$ to VEE power supply in series.
- *3 Applies to V_1 to V_6

■ ELECTRICAL CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, $V_{EE} = -5V \pm 10\%$, $G\overline{ND} = 0V$, Ta = -20 to + 75°C)

			22				
ltem	Symbol	Applicable terminal	Test condition	min	typ	max	Unit
Inout voltage	VIH	CL1,CL2,DL1,DL2,DR1,DR2,	•	0.7 VCC	-	۷cc	v
unhar vortage	VIL	M,SHL1,SHL2,FCS		0	-	0.3 V _{CC}	V
Output voltage	Voli		I _{OH} = -0.4mA	V _{CC} - 0.4	-	-	v
CUCHIC VOICARE	VOL	DIT, DIE, ORT, DRE	$I_{OL} = +0.4 \text{mA}$	-	-	0.4	V
Vi-Yj voltage	V _{D1}	L	ION = 0.1mA for one of Y1	-	-	1.1	v
descending	V _{D2}	[*]	I _{ON} = 0.05mA for each Yi	-	-	1.5	v
Input leakage current	JIL	CL1,CL2,DL1,DL2,DR1,DR2, M,SHL1,SHL2,FCS,NC	Vin=0 to V _{CC}	- 5.0	-	5.0	μA
Vi leakage current	۲vı.	*3	Vin = V _{CC} to V _{EE}	-10.0	-	10.0	٨u
Power supply	ICC	• 7	fcL2 = 400kHz	-	-	1.0	mA
current	IEE	· ·	fCL1 = 1kHz	-	-	10	u٨

*1 VI - Yj (Vi=1 to 6, j=1 to 40) equivalent circuit

R1- 1kΩ typ. R2-10kΩ typ.

*2 Input/output current is excluded; when input is at the intermediate level with CMOS, excessive current flows through the input circuit to the power supply. To avoid this, input level must be fixed at high or low.

*3 Output Y1 to Y40 open.

Vi '

TIMING CHARACTERISTICS

 $(V_{CC} = 5V \pm 10\%, V_{EE} = -5 \pm 10\%, GND = 0V, Ta = -20 to + 75°C)$

	Item	Symbol	Applicable terminal	Test condition	min	typ	max	Uni
'Jata sl	nift frequency	fCL	CL2		-	-	400	kHz
Clock	High level	t CWH	CL1,CL2		000	-	-	ės.
width Low level		tCWL	CL2		800	-		ns
Data se	et-up time	tSU	DL1,DL2,DR1,DR2,FLM		300	-	-	ns
Clock :	set-up time	tSL	CL1,CL2	(CL2+CL1)	500	-	-	ns
Clock s	set-up time	tLS	CL1,CL2	(CL1+CL2)	500	-		ns
Data de	elay time	tpd	DL1,DL2,DR1,DR2	CL = 15 pF	-	-	500	ns
Clock 1	rise/fall time	tct	CL1,CL2		-	-	200	ns
i de la companya de l La companya de la comp								

Fig. 1 Timing Waveform

Signal name	Number of lines	Input/ Output	Con	nected to					Function						
٠cc	1		Pow	er supply	Pover	supply	for le	ngical c	ircuit						
GND	1		Pow	er supply	ον										
VEL	1		Pou	er supply	Pover	supply	for 1	iquid cr	ystał displa	y drive					
Y1 - Y20	20	Output	Liq	uid crystal	Liquid	crysta	al driv	ver outp	ut (Channel	1)					
Y21 - Yee	20	Output	Liq	uid crystal	Liquid	crysta	al driv	ver outp	ut (Channel	2)					
v., v.	2	Input	Pow	er supply	Power supply for liquid crystal display drive (Select leve)										
v., v.	2	Input	Pow	er supply	Power supply for liquid crystal dispaly drive (Non-select [*] level for channel 1)										
V1, V6	2	Input	Pove	r supply	Power	supply	for 1	lquid cr	vstal displa (Non-selec	y drive ct level for channel 2>					
SHL1	1	Input	vcc	or GND	Select	ion of	channe	l l shi	ft register	in the shift direction					
					SHL1	DLI	DR1								
					۷cc	OUT	IN								
					GND	IN	OUT								
SHL2	1	Input	Vcc	or GND	Select	ion of	channe	1 2 shi	ft register	in the shift direction					
		.	1		SHL2	DL2	DR2			,					
					Vcc	OUT	1N			1					
		*			GND	IN	OUT								
DL1, DR1	2	lnput/ output	Cont or H	roller 1D44100H	Data i	nput /ou	stput c	of channe	el l shift r	egister					
DL2, DR2	2	Input/ output	Cont or H	roller ID44100H	Data i	nput/ou	itput o	of channe	el 2 shift r	egister					
м	1	Input	Cont	roller	Alterna	ated si	gnal f	or liqui	id crystal d	river output					
CLI	1	Input	Cont	roller	Shift s This is	signal s used	for ch for ch	annel 1 annel 2	() *] when FCS is	GND.					
CL2	1	Input	Cont	roller	Latch s This is	signal s used	for ch for ch	annel 1 annel 2	(~_) *1 when FCS is	GND.					
FCS	1	Input	^v cc	or GND	Mode select signal of channel 2. FCS signal exchanges the latch signal and the shift signal of channel 2 and inverts M for channel 2.										
				FCS level		Chan	nel 2	-	M polarity	Purpose					
					Latch s	signal	Shift	signal		•					
ĺ				vcc	CL2		CL	:	ĥ	For common drive					
				GND	CL1	Ĩ.	CL	? ~	М	For segment drive					
ł						*1		*1		*2					

Table 1 Fucntional Description of Terminals

*1 \bot and $\overleftarrow{-}$ indicate the latches at rise and fall times respectively.

*2 The output level relationship between channel 1 and channel 2 based on the FCS signal level is as follows:

FCC	Dear		Output level						
rus	Data	п	$1(Y_1 - Y_{20})$	2 (12: - 1.0)					
	"1"	"1"	v ₁	V:					
vcc	(Select)	"0"	V2	VI					
("1")	"0"	"1"	٧,	V _e					
	(Non-select)	"0"	V.	Ve					
	"1"	"1"	v ₁	V ₁					
CND	(Select)	0	V ₂	V:					
("0")	"0"	"1"	۲,	V.					
	(Non-select)	"0"	· ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	V ₆					

"1" and "0" indicate a high and low levels, respectively.

• Segment Driver

When the HD44100H is used as a segment driver, the FCS is set to GND to cransfer display data in the riming shown in Fig. 2. In this case, be of channel 1 and channel 2 are shift data at the fall of CL2 and latch it at the fall of CL1. V₃ and V₅, V₄ and V₆ of power supply for liquid crystal display driver are short-circuited.

• Common Driver

When channel 1 is used as a segment driver and channel 2 as a common driver. When channel 2 of HD44100H is used as a common driver, the FCS is set to V_{CC} level to transfer display data in the timing shown in Fig. 3. In this case, channel 2 shifts data at the rise of CL1 and latches it at the rose of CL2. Channel 1 has the same data as Fig. 2.

Fig. 3 Common Data Waveforms (A type waveforms of channel 2, 1/8 duty)

When both of channel 1 and channel 2 of HD44100H are used a common driver, the FCS is set to GND and the signals (CL1, CL2, FLM) from the controller are connected to shown in following figure.

In this case, connection of power supply for liquid crystal display der is different from segment driver, so refer to following figure.

 V_1 , V_2 Select level of segment and common

V₃, V₄ Non-select level of segment

V₅, V₆ Non-select level of common

• Static Drive

When the HD44100H is used in the static drive, data is transferred at the fall of CL2 and latched at the fall of CL1. The frequency of CL1 becomes the frame frequency of liquid crystal display driver. The signal that has the frequency twice that of CL1 synchronized at the fall of CL1 is input into terminal M. The power supply for liquid crystal display driver is used by short-circuiting V_1 , V_4 and V_6 , and V_2 , V_3 and V_5 .

One of liquid crystal display driver output terminals can be used for a common output. In this case, the FCS is set to GND and data is transferred so that "O" can be always latched in the latch corresponding to the liquid crystal display driver output terminal used as the common output. If the latch signal corresponding to the segment output is "1", the segments of LCD light. They also light with common side = "1", and segment side "O".

HD43160AH (CONTROLLER WITH BUILT-IN CHARACTER GENERATOR)

DISPLAY CONTROLLER AND CHARACTER GENERATOR FOR DOT MATRIX LIQUID CRYSTAL DISPLAY SYSTEM

The HD43160AH receives character data written in the ASCII code or JIS code from microcomputer and stores them in its RAM which has 80 words capacity.

The HD43160AH converts these data into serial character pattern, then transfers them to LCD drivers.

It also generates other signals for LCD.

CHARACTER DISPLAY

- Alphanumeric character; A ~ Z, a ~ z, \emptyset , #, Z, δ , etc.
- Japanese Character (katakana)
- 160 characters by internal character generator (ROM). (Max 256 characters by external ROM)

NUMBER OF CHARACTERS

• 4, 8, 16, 24, 32, 40, 64 or 80 characters in 1 or 2 lines

FRONT

• 5 \times 7 + Cursor or 5 \times 11 + Cursor

■ OTHER FUNCTION CONTROLLED BY MICROCOMPUTER

- Display clear
- Cursor ON/OFF
- Cursor position preset (Character position)

• Cursor return

■ ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit
Supply voltage	v _{cc}	-0.3 to +7.0	v
Input voltage	v _T	-0.3 to V _{CC} +0.3	v
Operating temperature	T _{opr}	-20 to +75	°C
Storage temperature	Tstg	-40 to +125	°C

■ ELECTRICAL CHARACTERISTICS (V_{CC}=5V±5%, GND=0V, Ta=-20 to +75°C)

Item	Symbol	Terminal No.	Test condition	min	typ	max	Unit
Input voltage	VIII	CSO CSJ, E, R/W,	20	2.0	-	Vcc	٧
(TTL compatible)	Vit	DHO ~ DB7, RSO	n na standard and an	0	-	0.8	v
input voltare	VINC	OSCI, TEST, RST, FNTS,		0.7 V _{CC}		Vcc	V
Infac fortuge	VILC	$CNO - CN2, O_1 - O_5$		0	-	0.3 v _{CC}	V
Output voltage	v _{oh}	- D#7	1 _{0H} =-0.205mA	2.4	-	-	V
	VOL		IOL-1.6mA	-	° -	0.4	V
Output voltage	V ОНС	FLM,H,D,CL1,CL2,	linds+0.6mA	VCC-1.0	-	-	V
output vortage	VOLC	X0 - X7, Y0 - Y3	. 10800.4MV	-	-	1.0	V
Input leak current	lin	All inputs		-5	-	5	μΑ
Output leak current	ILO	DB7		-10	-	10	μA
Operating frequency	f _{CP1}		$R_f = 200k\Omega \pm 2Z$, 5×7+Cursor	130	192	250	kHz
	fcp2		$R_{f}=130k\Omega\pm22$, $5\times11+Cursor$	200	288	375	kHz
Input pull up current	IPL	CSO ~ CS3, RSO, R/W, DBO ~ DB7	V _{in} =0V	2	10	20	μA
Power dissipation	۴T	*	Ta=25c, f _{CP} =400kHz (external clock)	-	-	10	mW

* Input/output <u>current</u> is excluded. When input is at the intermediate level with CMOS, excessive current flows through the input circuit to the power supply. To avoid this, input level must be fixed at high or low, but CSO ~CS3, RSO, R/W, DBO ~DB7 are excluded.

PIN ARRANGEMENT

.

Sec.

Ϋ́In Nu.	Power sup. OSC.	lnput	Output		Pin No.	Power sup. OSC.	Input	Output		Pin No.	Power sup. OSC.	Input	Output
1	GND (-)	ſ	а.	Π	19			D		37		D83	*
2			X4	\prod	20	-		FIM		38		D84	
3			X3		21			φA		39	0	D85	
4			X2	Π	22	OSC1	40 -			40		DB6	
5			X1	Π	23	OSC2			1	41		DB7	DB7
6			xo	Π	24		RST		T	42		ROMS	
7			N.C.	Π	25		TEST		1	43		05	
8			N.C.	Π	26		E		T	44		04	
9			N.C.	Π	27	V _{CC} (+)			1	45		03	
10		CURS		ÎT	28		R/W		T	46		02	
11		FNTS		Π	29		RSO			47		01	
12		DLN		Π	30		CS0		T	48			¥3
13		CN0		Π	31		CSI		T	49			¥2
14		CN1		Π	32		CS2		1	50			. Y1
15		CN2		Π	33		CS3		1	51			YO
16	6:	Ê	C1.2	Π	34		DBO		1	52			X7
17			CL1	T	35		DB1	•	1	53	•		X6
18			м	1	36		DB2		T	54			X5

PIN FUNCTION

Pin name	Number of lines	Connected to	1/0	Function
V _{CC} GND	2	Power supply		+5V ± 10% Power supply
CNO CN1 CN2	. 3	GND or V _{CC}	I	Total displayed character number select.Mo.45162432406480CN0GNDV _{CC} GNDV _{CC} GNDV _{CC} GNDV _{CC} CN1GNDGNDV _{CC} V _{CC} GNDGNDV _{CC} V _{CC} CN2GNDGNDGNDGNDV _{CC} V _{CC} V _{CC} V _{CC}
CURS	1	GND or V _{CC}	I	Cursor select V _C C: 5 dots. •••• GND: 1 dot. •
DLN	1	GND or V _{CC}	I	Display line number select. V _{CC} : 2 lines. GND: 1 line.
FNTS	1	GND or V _{CC}	I	Font select. V _{CC} : 5 ×11 + Cursor. GND: 5 ×7 + Cursor.
RST	1	- v _{cc}	I	Only for test. Normally V _{CC}
TEST	1	GND	I	Only for test. Normally GND
E	1	MPU	I	Strobe signal. Write mode: The HD43160AH latches the data or DBO ~ DB7 at the falling edge of this signal. Read mode: Busy/Ready signal is active on DB3 while this signal is 'H'.
R/W	1	MPU	I	Read/Write signal L: HD43160AH gets the data from MPU. H: MPU gets the Busy/Ready signal from HD43160AH.
CSO CS1 CS2 CS3	- 4	MPU	I	Chip select When all of CSO ~ CS3 are 'H', HD43160AH is selected.
RSO	1	MPU	I	Register select. HD43160AH has 2 registers. One is for Character code and another is for instruction code. Each register latches the data on DBO ~ DB7 at the falling edge of 'E', when CSO ~ CS3 are 'H' and R/W is 'L'. H; Character code register is selected. L; Instruction code register is selected.
	8	MPU	I I/0	Data bus. Inputs for Character code and Instruction
DBO , DB7			(DB7)	code from MPU. Output for Busy/Ready flag (DB7).
DBO , DB7 D	1	HD44100H	(DB7)	code from MPU. Output for Busy/Ready flag (DB7). Serial dot data of characters for LCD drivers

Contraction of the local division of the loc	and the second se			
м	1	HD44100H	0	Alternate signal for LCD drivers.
FLM	1	HD44100H	0	Signal for common plates scanning.
хо , х7	8	ROM	0	Character code outputs for External character generator. (for Ext ROM) X7: MSB, ex: character 'A' X0: LSB MSB LSB '1'='H' 0 110100001 '0'='L'
Y0 Y1 Y2 Y3	4	ROM	0 .	Character row code for External character generator. $5 \times 7 + Cursor$ $Y_3 Y_2 Y_1 Y_4$ $Y_3 Y_2 Y_1 Y_4$ $Y_4 = 0$ $Y_1 Y_2 Y_1 Y_4$ $Y_1 $
φA	1	ROM	0	Clock signal for External character generator (dynamic ROM etc.) if necessary.
01 , 05	5	ROM	I	Dot data inputs from External character generator. 1(H): ON O(L): OFF
ROMS	1	GND or V _{CC}	I	Select Internal or External ROM. H: External ROM L: Internal ROM
OSC1 OSC2	2		(I) (0)	Oscillator. $5 \times 7 + Cursor$: $R_f = 200k_\Omega$ (typ) $5 \times 11 + Cursor$: $R_f = 130k_\Omega$ (typ)

-

 \mathbf{v}_{i}

• 5 × 7

The bottom lines of the English small characters "g, i, p, q, y," are on the cursor line.

. –	Charac 1 code 10.200 + 2105 (hexaling)														Dife - An		
		0	1 1	2		4	1 5	6	7	8	9		B B	l c		E	F
	2		88	88		0000 0000 0000	°°88 88°°	8°°° 8°°°	e B B B B B B B B B B B B B B B B B B B	800	°°8 °°	ခ်ိန်ခို	ထန္ထိထ	88	00000	88	00000
[mal)	3	80000 8000 80000 80000 80000 80000 80000 8000 80000 80000 80000 80000 80000 80000 80000 8000 8000000	გთლგ	8000 8000 8000	°000 0000 00000	8000	°‱8 8000 80000	8000 8000 8000 8000 8000 8000 8000 800	‱ع 8	8 <u></u> 88 8208 8208	8000 8000 8000 8000	88 88	88 8°°	°°°°	00000 00000	00000000000000000000000000000000000000	°0000000000000000000000000000000000000
exadect	4	°			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8000 8000 8000 8000		80000 8000 8	0000 8 00 8 0 8 00 8 1 8 1		ရှိ ကေရိ	000 000 000		8	8288 888 888 888		888
ts (he	5		8000 8000 8000 8000	8000 8000 8000 8000 8000 8000 8000 800	8000 8000 8000	2000 2000 2000 2000		8000	8888 8888	868 888	8_8 8	လက္ရ လက္ရ လက္ရ	80000	8888 8888 8888	80000	°°°0	യ്യ
r 4 b1	6	90 00	888 888 888	8888	8 ⁰⁰⁰ 0	8000	8000 8000 8000 8000	80 88 80	8000	8000 8000 8000	စ အားရှိ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8000 8000 8000	റ്റു	888	8008	8
de uppe	7	8000 8000 8000	8000 8000 8000	80 ⁰⁰ 0	۳۳ ۳۳ ۳۳	₩ 800 800 800 800 800 800 800 800 800 80	88	8008	8888	°°°°	88	ക്ക	80000000000000000000000000000000000000	80000	စိုက်စို	യ്ക്ക	ထို့ထာ
ter co	A		8 38	800	8 8 8	000	88	کی کی	کې کې	ംജ	జర్యా కారాజ		യുങ്ക ം ⁰ 8	ရန်က ရန်က		8888 8888 8888	8 8 8 ∞
Charac	в		888	° ° °	8000 80008	8000 8000 8000 8000	° 8000 8000	800 800 800 800 800 800 800 800 800 800	8000 8000 8000 8000 8000 8000 8000 800	800 800 800 800 800 800 800 800 800 800	8000 8000 8000		888 888 888	8 8 8	ထားရ လုိလိ	8000 8000 8000	888 800
Ch.	с	80 80 80 80 80 80 80 80 80 80 80 80 80 8	စိုးရှိစ	888	°0088	aadaaa	Song Boog Boog Boog Boog Boog Boog Boog B	880 8800	8000 000 000	0000 0000 0000	oooooooooooooooooooooooooooooooooooooo	888		۵۵۵۵ ۵۵ ۵۵	°°° 8	ಹಕ್ಷಿ 8 8 8 8 8	လက္ရ လက္ရ
	D	880 880 880 880	80008 80008	000 8000	888 888 888 888	add the second s	80008	8888 8888 8888 8888 8888 8888 8888 8888 8888	° 888 888	8 8. 8 8. 8 8.	88888	8000		ൣ	∞ ∞8	ୄୄୖୖ	838

• 5 × 11

Only English small character "g, j, p, q, y," are displayed as below, the others are in the same way as that of 5×7 .

• Cursor 5 dots: ••••• 1 dot : •

The cursor is displayed on the 8th or 12th line.

APPLICATION

• Setting Up

- a) Total character number (CNO ~ CN2)
- b) Cursor pattern (CURS)
- c) Display line number (DLN)
- d) Font (FNTS)

These terminals should be connected to V_{CC} or GND according to the LCD display system. RST and TEST should be connected to V_{CC} and GND respectively.

- Interface to the Controller
 - a) Example 1 Interface to HD6800

In this example, the addresses of HD43160AH in the address area of the HD6800 microcomputer are

Instruction code register	# ' E*** '	(R/W=O)
Character code register	# ' F*** '	(R/W=O)
Busy flag	#'E***' or #'F***'	(R/W=1).
	*• don	t care

a the William Starting and

And the second s

1...

c) Time length of Busy

	T busy				
	MIN	MAX			
Display clear	400 F _{CP}	$\frac{410}{F_{CP}}$	sec		
Other function	$\frac{10}{F_{cp}}$	$\frac{20}{F_{CP}}$	sec		

HD43160AH begins the operation from the rising edge of 'E'. Instruction code register and Character code register latch the data on DB0 ~ DB7 at the falling edge of 'E'.

e)	Timing	char	acteristics
----	--------	------	-------------

ς

		Symbol min		typ	max	Unit
Cycle time of 'E'		t _{cyc}	·1.0	-	-	μs
Pulse width of 'E'	H level	PWEH	0.45	-	25	μs
	L level	PWEL	0.45	-	-	μs
Set up time of CS	Write	t _{AS}	140	-	-	ns
Deta delay time	Write	t _{DDW}	-	-	225	ns
	Read	tDDR	-	-	300	ns
Hold time		t _H	10	-	-	ns

Read sequence

f) Example 2 Interface to 8085A (Intel)

g) Timing chart

Pulse widths of $\overline{\text{RD}}$ and $\overline{\text{WR}}$ signals of the 8085A are 400ns MIN, while the pulse width of E signal of the HD43160AH is 450 ns min. Therefore, in this example, $\overline{\text{RD}}$ and $\overline{\text{WR}}$ signal pulse widths are widened by using T_{WAIT} cycle.

DISPLAY COMMANDS

Display Controll Instructions

These instructions should be written into the instruction register of HD43160AH by the controller. (RSO='L', R/W='L')

a) Display clear MSB LSB 0 0 0 0 0 0 0 0 1 Code:

> Operation: The screen is cleared and the cursor returns to the lst digit.

b) Cursor return

MSB								LSB	
Code:	0	0	0	0	0	0	1	0	

Operation: The cursor returns to the 1st digit and the characters - being displayed do not change.

c) Cursor ON/OFF

MSB							LSB		
Code:	0	0	0	Ô	0	1	0	0	(ON)
	0	0	0	0	0	1	0	1	(OFF)

Operation: The cursor appears (ON) or disappears (OFF).

d) Set cursor position

Cod

LSB

e:	l line		1		(N-1) binary
	2 11000	upper	1	0	(n-1) binary
	2 Times	lower	1	1	(m-1) binary
]	N,n,	m: digit number

MSB

Operation: The cursor moves to the Nth (nth, mth) digit.

 $N \leq$ the total character number;

 $n,m \leq 1/2$ total character number.

ex 1 *1 line*

Set the cursor at 55 digit. The code is '10110110'.

ex 2 *2 lines*

Set the cursor at 35 digit of upper or lower line. The code is '10100010' (upper).

'11100010' (lower).

• Display Character Command

When the character code is written into the character register of HD43160AH, the character of this code appears where the cursor was displayed and the cursor moves to the next digit. (RSO='H', R/W='L')

Read Busy Flag

When CSO ~ CS3='H', R/W='H' and E='H' (RSO='don't care'), the Busy/Ready signal appears on DB7.

DB7 'H': BUSY

'L': READY

Time Length of Busy (@OSC=200kHz)

	MIN	MAX	
Display clear	2.0	2.05	ms
Other operations	50	100	μs

(depends on the operating frequency)

• Interface to External ROM

a) Example

ROMS 1: Ext. 0: Int.

*ØA is used as the
precharge signal for
Dynamic ROM if necessary.

Interface to External ROM

Row code

 $5 \times 7 + Cursor$

 $5 \times 11 + Cursor$

c) Timing chart

•

CL 2 $1 + \frac{1}{1 c_p}$ $1 + \frac{1}{1 c_p}$ 1

Interface to LCD Drivers

a) Example

Typical Application

5 ×7 + Cursor

e.

Lines 40 Characters

HD44780 (LCD-II) (DOT MATRIX LIQUID CRYSTAL DISPLAY CONTROLLER & DRIVER)

The LCD-II (HD44780) is a dot matrix liquid crystal display controller & driver LSI that displays alphanumerics, kana characters and symbols. It drives dot matrix liquid crystal display under 4-bit or 8-bit microcomputer or microprocessor control. All the functions required for dot matrix liquid crystal display drive are internally provided on one chip. The user can complete dot matrix liquid crystal display systems with less number of chips by using the LCD-II (HD44780). If a driver LSI HD44100H is externally connected to the HD44780, up to 80 characters can be displayed.

The LCD-II is produced in the CMOS process. Therefore, the combination of the LCD-II with a CMOS microcomputer or microprocessor can accomplish a portable battery-drive device with lower power dissipation.

FEATURES

- 5 × 7 and 5 × 10 dot matrix liquid crystal display controller driver
- Capable of interfacing to 4-bit or 8-bit MPU.
- Display data RAM ... 80 ×8 bits

(80 characters, max.)

• Character generator ROM ...

Character font 5×7 dots: 160 characters Character font 5×10 dobts: 32 characters

PIN ARRANGEMENT

• Both display data and character generator RAMs can be read from the MPU.

• Internal liquid crystal display driver

16 common signal drivers

14 segment signal drivers (Can be externally extended to 360 segments by liquid crystal display driver HD44

• Duty factor selection (selected by program)

1/8 duty: 1 line of 5 × 7 dots + cursor

1/11 duty: 1 line of 5 × 10 dots + cursor

1/16 duty: 2 lines of 5 x 7 dots + cursor

Maximum number of display characters

No. of display lines	Duty factory	Extension	HD44780	HD44100H	No. of display characters
l-line	1/8 1/11	Not provided	1 pc.		8 characters ×1 alle
display	duty	provided	l pc.	9 pcs. (8 characters/pc.)	80 characters ×1 line
2-line	1/16	Not provided	1 pc.		8 characters ×2 lines
display	duty	provided	1 pc.	4 pcs.(8 characters ×2 lines/pc)	40 characters ×2 lines

• Wide range of instruction functions

Display clear, Cursor home, Display ON/OFF, Cursor ON/OFF, Display character blink, Cursor shift, Display shift

• Internal automatic reset circuit at power ON. (Internal reset circuit)

• Internal oscillation circuit (with external resistor or ceramic filter) (External clock operation possible)

- CMOS process
- Logic power supply: A single + 5V (excluding power for liquid crystal display drive)
- Operation temperature range: $-20 \sim +75^{\circ}C$

(Device for -40 ~ +85°C available upon request)

• 80-pin plastic flat package (FP-80)

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Item	Symbol	Limit	Unit	Note
Power Supply Voltage (1)	V _{CC}	-0.3 to +7.0	V	
Power Supply Voltage (2)	V1 to V5	V _{CC} -13.5 to V _{CC} +0.3	V	3
Input Voltage	v _T	-0.3 to V _{CC} +0.3	v	
Operating Temperature	Topr	-20 to +75	°C	
Storage Temperature	Tstg	-55 to +125	°C	

Note 1: If LSI's are used above absolute maximum ratings, they may be permanently destroyed. Using them within electrical characteristic limits is strongly recommended for normal operation. Use beyond these conditions will cause malfunction and poor reliability.

Note 2: All voltage values are referenced to GND=OV.

Note 3: Applies to V1 to V5. Must maintain $V_{CC} \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$

(high + → 1ow)

• Electrical Characteristics ($V_{CC} = 5V \pm 10\%$, Ta = -20 to +75°C)

The conditions of V_1 , V_5 voltages are for proper operation of the LSI and not for the LCD output level. The LCD drive voltage condition for the LCD output level is specified in "LCD voltage V_{LCD} ".

	[c h . h	1	Test		imit			
Item	Symbol		condition	min	cyp	Bax	Unit	Note
Input "High" Voltage (1)	VIHI			2.2	[-	Vcc	V	(2)
Input-"Low" Voltage (1)	V _{IL1}			-0.3	[-	0.6	V	(2)
Output "High" Voltage (1)(TTL)	VOH1	-I _{OH} =0	.205mA	2.4	-	-	V	(3)
Output "Low" Voltage (1) (TTL)	V _{OL1}	IOL=1	. 2mA	-	-	0.4	V	(3)
Output "High" Voltage (2)(CHOS)	V _{OH2}	-1 _{0H} =0	.04mA	0.9V _{CC}	-	-	V	(4)
Output "Low" Voltage (2) (CHOS)	VOL2	L _{OL} -0	.04mA	-	[-	0.1V _C	V	(4)
Driver Voltage Descending (COM)	VCOH	[Id-0.	05mA	-	-	2.9	V	(10).
Driver Voltage Descending (SEG)	VSEG	Id-0.	05mA	-	-	3.8	V	(10)
Input Leakage Current	IIL	Vin=0	to V _{CC}	-1	-	1	μA	(5)
Pull up MOS Current	-IP	[V _{CC} =5	V	50	125	250	μΑ	
Power Supply Current (1)	I _{CC1}	Cerami oscill V _{CC} =5V 250kHz	c filter ation , f _{osc} =	-	0.55	0.8	mA	(6)
Power Supply Current (2)	ICC2	Rf osc Extern operat V _{CC} =5V fcp=27	illation al clock ion , f _{osc} = 0kHz	_ *	0.35	0.6	mA	(6) (11)
External Clock Operation				A	·		A	
External Clock Frequency	f _{cp}			125	250	350	kHz	[(7)
External Clock Duty	Duty	Í		45	50	55	Z	(7)
External Clock Rise Time	trcp			-	-	0.2	μs	(7)
External Clock Fall Time	tfcp			-	-	0.2	μs	(7)
Input "High" Voltage (2)	V _{IH2}			V _{CC} -1.0	-	Vcc	v	(12)
Input "Low" Voltage (2)	V _{IL2}			-0.3	-	1.0	v	(12)
Internal Clock Operation (Rf osc	illation)						
Clock Oscillation Frequency	fosc	Rf-91k	Ω±2%	190	270	350	kHz	(8)
Internal Clock Operation (Cerami	c filter	oscill	ation)			•••••••		
Clock Oscillation Frequency	fosc	Cerami	c filter	245	250	255	kHz	(9)
LCD Voltage	VLCD1	Vcc-VS	1/5 bias	4.6	-	11	v	(13)
	VLCD2		1/4 bias	3.0	-	11	V	(13)
		Contraction of the local division of the loc						

Note 1: The following are I/O terminal configurations except for liquid crystal display output.

• Input Terminal

Applicable Terminals:

(No pull up MOS)

• Output Terminal

Applicable Terminals: CL1, CL2, M, D

Ε

• I/O Terminal

Applicable Terminals: DB₀ to DB₇

Note 2: Input terminals and I/O terminals. Excludes OSC₁ terminals. Note 3: I/O terminals.

Note 4: Output terminals.

N. Alexandre

- Note 5: Current flowing through pull-up MOS's and output drive MOS's is excluded.
- Note 6: Input/Output current is excluded. When input is at the intermediate level with CMOS, excessive current flows through the input circuit to the power supply. To avoid this, input level must be fixed at high or low.

Note 7: External clock operation.

Note 8: Internal oscillator operation using oscillation resistor Rf.

Since oscillation frequency varies depending on OSC1 and OSC2 terminal capacity, wiring length for these terminals should be minimized.

Note 9: Internal oscillator operation using a ceramic filter.is used.

Note 10: Applies to both V_{COM} and V_{SEG} voltage drops.

 V_{COM} : From poer supply terminal V_{CC} , V_1 , V_4 , V_5 to each common signal terminal (COM₁ to COM₁₆)

VSEG: From power supply terminal V_{CC}, V₂, V₃, V₅ to each organent signal (erminal (SES₁ t) (SES₁)

Note 11: Relation between operation frequency and current consumption is shown in this diagram. $(V_{CC} = 5V)$

Note 12: Applied to OSC1 terminal.

Note 13: The condition for COM pin voltage drop (V_{COM}) and SEG pin voltage drop (V_{SEG}).

• Timing Characteristics

Write Operation

Fig. 1 Bus Write Operation Sequence (Writing data from MPU to HD44780)

Fig. 2 Bus Read Operation Sequence (Reading out data from HD44780 to MPU)

. .

Interface Signal with Driver LSI HD44100H

• Bus liming Characteristics (VCC = $5.0V \pm 10\%$, GND = 0V, Ta = -20 to $+75^{\circ}C$)

_____.

Ttop		Surbal	Toot condition	Limit		Intt
Item		Symbol	lest condition	min	max	
Enable Cycle Time		T _{cyc} E	Fig. 1	1000	1	ns
Enable Pulse Width	"High" level	PW _{EH}	Fig. 1	450	-	ns
Enable Rise/Fall Time		t _{Er,} t _{Ef}	Fig. 1	-	25	ns
Address Set-up Time	RS, R/W —E	t _{AS}	Fig. 1	140	-	ns
Address Hold Time		t _{AN}	Fig. 1	10	-	ns
Data Set-up Time		t _{DSW}	Fig. 1	195	-	ns
Data Hold Time		t _H	Fig. 1	10	-	ns

Write Operation (Writing data from MPU to HD44780)

Read Operation (Reading data from HD44780 to MPU)

There		Cumb a 1	Test condition	Lim	Unit	
Item		Symbol	lest condition	min	max	Unic
Enable Cycle Time		tcycE	Fig. 2	1000	-	ns
Enable Pulse Width "High" level		PW _{EH}	Fig. 2	450	-	ns
Enable Rise/Fall Time		t _{Er} , T _{Ef}	Fig. 2	-	25	ns
Address Set-up Time	RS, R/W —E	t _{AS}	Fig. 2	140	-	ns
Address Hold Time		t _{AH}	Fig. 2	10	1	ns
Data Delay Time		t _{DDR}	Fig. 2		320	ns
Data Hold Time		^t DHR	Fig. 2	20	1	ns

• Interface Signal with HD44100H Timing Characteristics ($V_{CC} = 5.0V \pm 10\%$, GND = 0V, Ta = -20 to +75°C)

Ttem	Symbol	Test condition	Liu	Unit		
1.60		Symbol	Test condition	min	max	UNIC
Clock Pulse Width	"High" level	tc	7 7 1 5	800	- -	ns
Clock Pulse Width "High" level		tCWL	Fig. 3	800	-	ns
Clock Set-up Time	х.	tcsu	Fig. 3	500	-	ns
Data Set-up Time		t _{SU}	Fig. 3	300	-	ns
Data Hold Time	t _{DH}	Fig. 3	300	-	ns	
M Delay Time	tDM	Fig. 3	-1000	1000	ns	

• Power Supply Conditions Using Internal Reset Circuit

Tton	Sumbol	Toot condition	Limit		Unit
Тсеш	SYMDOT	Test condition	min	max	Unit
Power Supply Rise Time	trcc	-	0.1	10	ns
Power Supply OFF Time	t _{OFF}		1	-	ns

Since the internal reset circuit will not operate normally unless the preceding conditions are met, initialize by instruction.

(Refer to "Initializing by Instruction")

(Note) t_{OFF} stipulates the time of power OFF for power supply instantaneous dip or when power supply repeats ON and OFF.

Tah}o	1	Functional	Description	٥f	Torminale
laure	1.	FUNCTIONAL	Description	OT	rerminais

Signal name	No. of lines	Input/ Output	Connected to	Function
RS	1	Input	MPU	Signal to select registers "O": Instruction register (for write) Busy flag; address counter (for read) "1": Data register (for read and write)
R/W	1	Input	MPU	Signal to select read (R) and write (W) "O": Write "1": Read
E	1	Input	MPU	Operation start signal for data read/ write
DB4 ~ DB7	4	Input/ Output	MPU	Higher order 4 lines data bus with bidirectional three-state. Used for data transfer between the MPU and the HD44780. DB7 can be used as a BUSY flag.
DB ₀ ~ DB3	4	Input/ Output	MPU	Lower order 4 lines data bus with bidirectional three-state. Used for data transfer between the MPU and the HD44780. These four are not used during 4-bit operation.
CL1	1	Output	HD44100H	Clock to latch serial data D sent to the driver LSI HD44100H.
CL2	1	Output	HD44100H	Clock to shift serial data D.
M	1	Output	HD44100H	Switch signal to convert liquid crys- tal drive waveform to AC.
D	1	Output	HD44100H	Character pattern data corresponding to each common signal is serially sent. "O": Non selection "1": Selection
сом ₁ ~ сом ₁₆	16	Output	Liquid crystal display	Common signals that are not used are charged to non-selection waveforms. That is, COM ₉ ~ COM ₁₆ are in non- selection waveform at $1/8$ duty factor, and COM ₁₂ ~ COM ₁₆ are in non-selection waveform at $1/11$ duty factor.
sec ₁ ~ sec ₄₀	40	Output	Liquid crystal display	Segment signal
v ₁ ~ v ₅	5		Power supply	Power supply for liquid crystal display drive
V _{CC} , GND	2		Power supply	V _{CC} ; +5V, GND; OV
osc ₁ , osc ₂	2			Terminals connected to resister or ceramic filter for internal clock osillation. For external clock operation, the clock is input to OSC1.

1.1

FUNCTION OF EACH BLOCK

(1) Register

The HD44780 has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction wodes such as display clear and cursor shift, a d address information for display data "wi (DD and) and character generator RAM (CG RAM). The IR can be written from the MPU but not read by the MPU.

The DR temporarily stores data to be written into the DD RAM or the CG RAM and data to be read out from DD RAM or CG RAM. Data written into the DR from the MRU is automatically written into the DD RAM or the CG RAM by internal operation. The DR is also used for data storage when reading data from the DD RAM or the CG RAM. When address information is written into the IR, data is read into the DR from the DD RAM or the CG RAM by internal operation. Data transfer to the MPU is then completed by the MPU reading DR. After the MPU reads the DR, data in the DD RAM or CG RAM at the next address is sent to the DR for the next read from the MPU. Register selector (RS) signals make their selection from these two registers.

Table	2	Register	Sel	ection
TUDIC	-	Register	JUI	CCCION

RS	R/W	Operation
0	0	IR write as internal operation (Display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB $_0 \sim DB_6$)
1	0	DR write as internal operation (DR to DD or CG RAM)
1	1	DR read as internal operation (DD or CG RAM to DR)

(2) Busy flag (BF)

When the busy flag is "1", the HD44780 is in the internal operation mode, and the next instruction will not be accepted. As Table 2 shows, the busy flag is output to DB7 when RS=0 and R/W=1. The next instruction must be written after ensuring that the busy flag is "0".

(3) Address counter (AC)

The address counter (AC) assigns addresses to **DD and GC** RAMS. When an instruction for address is written in IR, the **address** information is sent from IR to AC. Selection of either DD or **CG RM** is also determined concurrently by the instruction.

After writing into (or reading from) DD or CG RAM display data, AC is automatically incremented by +1 (or decremented by -1). AC contents are output to $DB_0 \sim DB_6$ when RS=0 and R/W=1, as shown in Table 2.

(4) Display data RAM (DD RAM)

The display data RAM (DD RAM) stores display data represented in 8-bit character codes. Its capacity is 80×8 bits, or 80 characters. The display data RAM (DD RAM) that is not used for display can be used as a general data RAM. Relations between DD RAM addresses and positions on the liquid crystal display are shown below.

The DD RAM address (ADD) is set in the Address Counter (AC) and is represented in hexadecimal.

ー Hexadecimal ー Hexadecimal ー

(Example) DD RAM address "4E"

1-line Display (N=0)

(a) When the display characters are less than 80, the display begins at the head position. For example, 8 characters using 1 HD44780 are displayed as:

When the display shift operation is performed, the DD RAM address moves as:

	/- · -	
	(Left Shift Display)	01 02 03 04 05 06 07 08
	(Right Shift Display)	4F 00 01 02 03 04 05 06
	(b)	16-character display using an H044786 is in HD44100H is as chown below:
	(digit)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 + Display Position
	l-line	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F + DD RAM Address
		HD44780 Display HD44100H Display
1921 1997 1940 1940 1940		When the display shift operation is performed, the DD RAM address moves as:
	(Left Shift Display	01 02 03 04 05 06 07 08 09 0A OB OC OD OE OF 10
	(Right Shift Display)	4F 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
	(c)	The relation between display position and DD RAM address when the
		number of display digits is increased through the use of one
		HD44780 and two or more HD44100H's can be considered an extension of (b).
		Since the increase can be 8 digits for each additional HD44100H,
		up to 80 digits can be displayed by externally connecting 9 HD44100H's.
	(digit) ¹	2 8 4 5 6 7 8 9 10 11 12 18 14 15 16 17 18 19 20 78 74 75 76 77 78 79 80 Display
	l-line	Position 0 01 02 08 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 18 48 49 4A 4B 4C 4D 4E 4F + DD RAM Address
	. L .	HD44780/ HD44100H(1) _/ HD44100H Diaplay Display Display Display

2-line Display (N=1)

(digit)	1	2	3	4	5		39	40	← Displa Position
l-line	00	01	02	03	04	••••••	26	27	+ DD RAM
2-line	40	41	42	43	44	••••	66	67	Autess
the state of the second		1.0	2.	5.55	Carlos - Carlos	n and a metalogical in allow provide series reprint to the series of the s			

(a) When the number of display characters is less than 40×2 lines, the 2 lines from the head are displayed. Note that the first line end address and the second line start address are not consecutive. For example, when an HD44780 is used, 8 characters \times 2 lines are displayed as:

00

40

l-line 2-line

<u></u> 2 >	; 3 ^{-<,}	- 4-	5	6	° 7	·* 8	+ Display Position
01	02	03	04	05	06	07	+ DD RAM
41	42	43	44	45	46	47	Address

When display shift is performed, the DD RAM address moves as:

(Lef Shif Disp

Et	01	02	03	04	05	06	07	08
olay)	41	42	43	44	45	46	47	48

(Right	27	<u>00</u>	01	02	03	04	05	06
Display)	67	40	41	42	43	44	45	46

16 characters \times 2 lines are displayed when an HD44780 and an (b) HD44100H are used.

(digit)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	+ Display Position
l-line	00	01	02	03	04	05	06	07	08	09	OA	ОВ	0C	OD	0E	OF	+ DD RAM
2-line	40	41	42	43	44	45	46	47	48	49	4 A	4B	4C	4D	4E	4F	Address
		— HI	D44	780	Di	spla	ay -		<u> </u>	– H	D44:	100	H Di	lsp]	tay		1

When display shift is performed, the DD RAM address moves as follows:

(Left Shift	01	02	03	04	05	06	-07	08	09	0A	ОВ	0C	OD	0E	OF	10
Display)	41	42	43	44	45	46	47	48	.49	4A	4B	4C	4D	4E	4F	50

(Right	27	00	01	02	03	04	05	06	07	08	09	0A	OB	0C	0D	0E
Display)	67	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E

(c) The relation between display position and DD RAM address when the number of display digits is increased by using one HD44780 and two or more HD44100H's, can be considered an extension of (b).

Since the increase can be 8 digits \times 2 lines for each additional HD44100H, up to 40 digits 2 lines can be displayed by connecting 4 HD44780's externally.

(5) Character Generator ROM (CG ROM)

The character generator ROM generates 5×7 dot or 5×10 dot character patterns from 8-bit character codes. It can generate 160 types of $5 \times$ 7 dot character patterns and 32 types of 5×10 dot character patterns. Table 3 and 4 show the relation between character codes and character patterns in the Hitachi standard HD44780A00. User defined character patterns are also available by mask-programming ROM. For details, see "The LCD-II (HD44780) Breadboard User's Manual".

(6) Character Generator RAM (CG RAM)

8

The character generator RAM is the RAM with which the user can rewrite character patterns by program. With 5×7 dots, 8 byptes of character patterns can be written and with 5×10 dots 4 types can be written. Write the character codes in the left columns of Tables 3 and 4 to display character patterns stored in CG RAM.

Table 5 shows the relation between CG RAM addresses and data and display patterns.

As Table 5 shows, an area that is not used for display can be used as a general data RAM.

	1									s.	-	· · · · ·
Higher Lower 4bit 4bit	0000 001	0 0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1 111
****0000	CG RAM (1)	į			••	 .		*****	."."] 		i_i'	
××××0001	(2)	-	[]	1.1		•	13	ŀ			ij	
××××0010	(3)	•••• ••••			[]	•••••	la a	•	111			E
××××0011	(4)		j		: :		I	i.j	Ţ		 !.:!	: ∴1
xxxx0100	(5)			İ			•.		•.		ļ	1 1 1 1
××××0101	(6)						:				17.	I_
××××0110	(7)			ļ		I., I			999 89999	0000 0000 0000	j1	
××××0111	(8)	1.	i		1	!. !	, ,r'		•••••		1	T
××××1000	(1)					:::	!]	•••\$q• •* † *•	Ņ	.Г	•••••
××××1001	(2)	1 				۱ ۱	1-1-1 1	·hr	ļ		1	I
××××1010	(3)	: ::					••••• • •	••••• • •	••		-	
xxxx1011	(4)	- "							 			
××××1100	(5) • g			•••••				••• ••• •••	***** 2 84	i j	: ! .	며
xxxx1101	(6)	•			[i i	1		•••••• •••	·••, 1	•••, 1	•	8 80000 8
××××1110	(7)			••••		: .		••••••••••••••••••••••••••••••••••••••	1 1	•••	•"	
××××1111	(8)				; <u> </u> [•••••		·	•••		:I	

Table 3 Correspondence between Character Codes and Character Pattern (Hitachi Standard HD44780A00)

* The user can specify any pattern for character-generator ROM.

Table 4 Relation between CG RAM Addresses and Character Codes (DD RAM) and Character Patterns (CG RAM Data)

(a)	For	5	× 7	dot	character	patterns
-----	-----	---	-----	-----	-----------	----------

Character Codes (DD RAM Data)	CG RAM Address	Character Patterns (CG RAM Data)	
6 5 4 8 2 1 0 Higher Lower Order Order Bits Bits	5 6 8 2 1 0 Higher Lower Order Order Bits Bits	7 6 5 6 8 2 1 0 Higher Lower Order Order Bits Bits	
0 0 0 0 * 0 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Character Pattern Example (1) Cursor + Position Character Pattern Example (2)
0 0 0 0 * 1 1 1			*No effect
		* * *	

2: CG RAM address bits 0 ~ 2 designate character pattern line position. The 8th line is the cursor position and display is performe in logical OR by the cursor.

Maintain the 8th line data, corresponding to the cursor display position, in the "O" state for cursor display. When the 8th line data is "1", bit 1 lights up regardless of cursor existence.

- 3: Character pattern row positions correspond to CG RAM data bits $0 \sim 4$, as shown in the figure (bit 4 being at the left end). Since CG RAM data bits $5 \sim 7$ are not used for display, they can be used for the general data RAM.
- 4: As shown in Table 3 and 4, CG RAM character patterns are selected when character code bits 4 ~ 7 are all "0". However, since downacter code bit 3 is a ineffective bit, the "R" display in the character pattern example, is selected by character code "00" (hexadecimal) or "08" (hexadecimal).
- 5: "1" for CG RAM data corresponds to selection for display and "0" for non-selection.

	-		
Character Codes	CG RAM	Character Patterns	
(DD RAM Data)	Address	(CG RAM Data)	
7 <u>0</u> 5 6 8 2 1 0 Higher Lover	Higher Lover	7 6 5 4 8 2 1 0	
Order Order	Order Order	Order Order	
	DICS BICS	BICS BICS	
	0000	* * * 0 0 0 0 0	
	10001	1 0 0 0 0 0	
			(1)
	0011		Character
	0 1 0 0		Pattern
0 0 0 0 * 0 0 *	0 0 0 1 0 1		Example
1 1	0 1 1 0	1 1 1 0	-
			0
	1 0 0 1		Cursor
	1 0 1 0	* * * 0 0 0 0 0	+ Position
F		* * * * * * * *	
1			
sign the second s	1 1 0 1		
1	11110		
1		* * * * * * * * *	
		* * *	
	0 0 0 1		
00007117			
	1011	* * * * * * * * *	
	1 1 1 0 0		
1	1 1 1 0 1		
1			*No Effect
			NU MALUEL
Ll_		<u> </u>	

(b) For 5 × 10 dot character patterns

(Note) 1: Character code bits 1, 2 correspond to CG RAM address bits 4, 5 (2 bits: 4 types).

2: CG RAM address bits 0 ~ 3 designate character pattern line position. The 11th line is the cursor position and display is performed in logical OR with cursor.

Maintain the llth line data corresponding to the cursor display position in the "O" state for cursor display. When the llth line data is "l", bit l lights up regardless of cursor existence. Since the l2th ~ 16th lines are not used for display, they can be used for the general data RAM.

- 3: Character pattern row positions are the same as 5×7 dot character pattern positions.
- 4: CG RAM character patterns are selected when character code bits 4 7 are all "O". However, since character code bit 0 and 3 are ineffective bits, "P" display in the character pattern example is selected by character code "OO", "O1", "O8" and "O9" (hexadecimal).
- 5: "1" for CG RAM data corresponds to selection for display and "0" for non-selection.

(7) Timing Generation Circuit

The timing generation circuit generates timing signals to operate internal circuits such as DD RAM, CG ROM and CG RAM. RAM read timing needed display and internal operation timing by MPU access are separately generated so they do not interfere with each other. Therefore, when writin data to the DD RAM, for example, there will be no undersirable influence, such as flickering, in areas other than the display area. This circuit also generates timing signals to operate the externally connected driver LSI HD44100H.

(8) Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 16 common signal drivers and 40 segment signal drivers. When character font and number of lines are selected by a program, the required common signal drivers automatically output drive waveforms, the other common signal drivers continue to output non-selection waveforms.

The segment signal driver has essentially the same configuration as the driver LSI HD44100H. Character pattern data is sent serially through a 40-bit shift register and latched when all needed data has arrived. The latched data controls the driver for generating drive waveform outputs. The serial data is sent to the HD44100H, externally connected in cascade, used for display digit number extension.

Send of serial data always starts at the display data character pattern corresponding to the last address of the display data RAM (DD RAM). Since serial data is latched when the display data character pattern, corresponding to the starting address, enters the internal shift register, the HD44780 drives the head display. The rest displays, corresponding to latter addresses, are added with each additional HD44100H.

(9) Cursor/Blink Control Circuit

This is the circuit that generates the cursor or blink. The cursor or the blink appear in the digit residing at the display data RAM (DD RAM) address set in the address counter (AC).

When the address counter is $(08)_{16}$, a cursor position is:

 AC6
 AC5
 AC4
 AC3
 AC2
 AC1
 AC0

 AC
 0
 0
 0
 1
 0
 0
 0

in a 1-line display

In a 2-line display

(digit)	1	2	3	4	5	6	7	8	9	10	11		+	Display Position
lst line	00	01	.02	03	04	05	06	07	08	09	0A		+	DD RAM Address
ہ 2nd line ر	40	41	42	43	44	45	46	47	48	49	4 A			(Hexadecimal)
							t	he c	curso	or po	ositi	on		

(Note) The cursor or blink appears when the address counter (AC) selects the character generator RAM (CG RAM). But the cursor and blink are meaningless.

The cursor or blink is displayed in the meaningless position when AC is the CG RAM address.

INTERFACING TO MPU

In the HD44780, data can be sent in either 4-bit 2-operation or 8-bit 1-operation so it can interace to both 4 and 8 bit MPU's.

(1) When interface data is 4-bits long, data is transferred using only 4 buses: $DB_4 \sim DB_7$. $DB_0 \sim DB_3$ are not used. Data transfer between the HD44780 and the MPU completes when 4-bit data is transferred twice. Data of the higher order 4 bits (contents of DB4 \sim DB7 when interface data is 8 bits long) is transferred first, then the lower order 4 bits (content of DB₀ \sim DB₃ when interface data is 8 bits long) is transferred tata is 8 bits long) is transferred first, then the lower order 4 bits (content of DB₀ \sim DB₃ when interface data is 8 bits long) is transferred. Check the busy flag after 4-bit data has been transferred twice (one instruction). A 4-bit 2-operation will then transfer the busy flag and address counter data.

Fig. 4 4-bit Data Transfer Example

(2) When interface data is 8 bits long, data is transferred using the 8 data buses of $DB_0 \sim DB_7$.

RESET FUNCTION

• Initializing by Internal Reset Circuit

The HD44780 automatically initializes (resets) when power is turned on using the internal reset circuit. The following instructions are executed in initialization. The busy flag (BF) is kept in busy state until initialization ends. (BF=1) The busy state is 10 ms after V_{CC} rises to 4.5V.

(1) Display clear

(2)	Function ser	DL=1 : 8 bit long interface data
		N =0 : l-line display
		$F = 0 : 5 \times 7$ dot character font
(3)	Display ON/OFF control	D =O : Display OFF
		C =0 : Cursor OFF
		B =0 : Blink OFF
(4)	Entry mode set	I/D=1: +1 (increment)
		S =0 : No shift

(Note) When conditions in "Power Supply Conditions Using Internal Reset Circuit" are not met, the internal reset circuit with not operate normally and initialization will not be performed. In this case initialize by MPU according to "Initializing by Instruction".

INSTRUCTION

• Outline

Only two HD44780 registers, the Instruction Register (IR) and the Data Register (DR) can be directly controlled by the MPU. Prior to internal operation start, control information is temporarily stored in these registers, to allow interface from HD44780 internal operation to various types of MPUs which operate in different speeds or to allow interface to peripheral control ICs. HD44780 internal operation is determined by signals sent from the MPU. These signals include register selection signals (RS), read/write signals (R/W) and data bus signals (DB₀ ~ DB₇), and are called instructions, here. Table 5 shows the instructions and their execution time. Details are explained in subsequent sections.

Instructions are of 4 types, those that,

- (1) Designate HD44780 functions such as display format, data length, etc.
- (2) Give internal RAM addresses.
- (3) Perform data transfer with internal RAM
- (4) Others

In normal use, category (3) instructions are used most frequently. However, automatic incrementing by +1 (or decrementing by -1) of HD44780 internal RAM addresses after each data write lessens the MPU program load. The display shift is especially able to perform concurrently with display data write, enabling the user to develop systems in minimum time with maximum programing efficiency. For an explanation of the shift function in its relation to display, see Table 7.

When an instruction is executing during internal operation, no instruction other than the busy flag/address read instruction will be executed. Because the busy flag is set to "1" while an instruction is being executed, check to make sure it is on "1" before sending an instruction from the MPU. (Note) Make sure the HD44780 is not in the busy state (BF=0) before sending the instruction from the MPU to the HD44780. If the inst ion is sent without checking the busy flag, the time between first and next instructions is much longer than the instruction time. See Table 5 for a list of each instruction execution time.

				AFE (1997) - 1994	<u> </u>							Execution time		
InstructionR		R/W	/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0					DB2	DB1	DB _O	Description	(max) (when fcp or fosc is 250kHz)		
Clear Display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DD RAM address 0 in address counter.	1.64ms		
Return Home	0	0	0	0	0	0	0	0	1	*	Sets DD RAM address 0 in adress counter. Also returns display being shifted to original position. DD RAM contents remain unchanged.	1.64ms		
Entry Mode Set	0	0	0	0	ο	0	0	1	I/D	s	Sets cursor move direction and specifies shift of display. These operations are performed during data write and read.	40μs _.		
Display DN/OFF Control	0	۰.	0	0	0	0	1	D	с	В	Sets ON/OFF of entire display (D), cursor ON/OFF (C), and blink of cursor position character (B).	40 _µ s		
Cursor or Display Shift	0	0	٥	0	Ο.	1	s/c	R/L	*	*	Moves cursor and shifts display, without changing DD RAM contents.	40 ₁₁ s		
Function Set	0	0	0	0	1	DL	N .	F	*	*	Sets interface data length (DL), number of display lines (L) and character font (F).	40 ₁ s		
Set CG RAM Address	0	0	0	1			AC				Sets CG RAM address. CG RAM data is sent and received after this setting.	40μs		
Set DD RAM Address	0	0	1	, ,			ADD				Sets DD RAM address. DD RAM data is sent and received after this setting.	40us		
Read Busy Flag Address	0	1	BF				AC				Reads Busy flag (BF) indicating internal operation is being performed and reads address counter contents.	0 _µ s		
Vrite Data to CG or DD RAM	1	0			Wr	ite	Data	L			Writes data into DD RAM or CG RAM.	40µs		
lead Data from CG or DD RAM	1 0 Read Data					ata				Reads data from DD RAM or CG RAM.	40µs			
	I/ I/ S/ S/ R/ R/ DL N F BF	<pre>I/D=1 : Increment I/D=0 : Decrement S =1 : Accompanies display shift. S/C=1 : Display shift S/C=0 : Cursor move R/L=1 : Shift to the right. R/L=0 : Shifts to the left. DL =1 : 8 bits, DL=0 : 4 bits. N =1 : 2 lines, N=0 : 1 line F =1 : 5×10 dots, F=0 : 5×7 dots DE =1 : 4 bits dots.</pre>									DD RAM : Display data RAM CG RAM : Character generator RAM A _{CC} : CG RAM address A _{DD} : DD RAM address. Corresponds to cursor address. AC : Address counter used for both DD and CG RAM address.	Execution time changes when frequency changes (Example) When fcp or fose is 270kHz: 40µs × 250/270 = 37cs		

Description of Details

(1) Clear Display

	RS	R/W	DB7							_ DB()
Code	0	0	0	0	0	0	0	0	0	1	

Writes space code "20" (hexadecimal) (character pattern for character code "20" must be blank pattern) into all DD RAM addresses. Sets DD RAM address 0 in address counter. Returns display to its original status if it was shifted. In other words, the display disappears and the cursor or blink go to the left edge of the display (the first line if 2 lines are displayed). Set I/D = 1 (Increment Mode) of Entry Mode. S of Entry Mode doesn't change.

(2) Return Home

Sets the DD RAM address 0 in address counter. Returns display to its original status if it was shifted. DD RAM contents do not change. The cursor or blink go to the left edge of the display (the first line if 2 lines are displayed).

(3) Entry Mode Set

Code

RS	R/W	DB7			DB0					
0	0	0	0	0	0	0	0	I/D	S	

- I/D: Increments (I/D=1) or decrements (I/D=0) the DD RAM address by 1 when a character code is written into or read from the DD RAM. The cursor or blink moves to the right when incremented by 1 and to the left when decremented by 1. The same applies to writing and reading of CG RAM.
- S: Shifts the entire display either to the right or to the left when S is 1; to the left when I/D=1 and to the right when I/D=0. Thus it looks as if the cursor stands still and the display moves. The display does not shift when reading from the DD RAM when writing into or reading out from the CG RAM does it shift when S=0.

(4) Display ON/OFF Control

	RS	R/₩	DB7							DB6
Code	0	0	0	0	0	0	1	D	С	В

- D : The display is ON when D=1 and OFF when D=0. When off due to D=0, display data remains in the DD RAM. It can be displayed immediately by setting D=1.
- C: The cursor displays when C=1 and does not display when C=0. Even if the cursor disappears, the function of I/D, etc. does not change during display data write. The cursor is displayed using 5 dots in the 8th line when the 5 × 7 dot character font is selected and 5 dots in the 11th line when the 5 × 10 dot character font is selected.
- B : The character indicated by the cursor blinks when B=1. The blink is displayed by switching between all blank dots and display characters at 409.6ms interval when fcp or fosc=250kHz. The cursor and the blink can be set to display simultaneously. (The blink frequency changes according to the reciprocal of fcp or fosc. 409.6 $\times \frac{250}{270}$ = 379.2ms when fcp=270kHz.)

5×7 dot character 5×10 dot character Alternating display font font

(a) Cursor Display Example

(5) Cursor or Display Shift

Shifts cursor position or display to the right or left without writing or reading display data. This function is used to correct or search for the display. In a 2-line display, the cursor moves to the 2nd line when it passes the 40th digit of the 1st line. Notice that the 1st and 2nd line displays will shift at the same time. When the displayed data is shifted repeatedly each line only moves horizontally. The 2nd line display decempents of the line only moves horizontally. S/C R/L

0	0	Shifts the cursor position to the left. (AC is decremented by one.)
0	1	Shifts the cursor position to the right. (AC is incremented by one.)
1	0	Shifts the entire display to the left. The cursor follows the display shift.
▲ .	1	Shifts the entire display to the right. The cursor follows the display shift.

Address counter (AC) contents do not change if the only action performed is shift display.

(6) Function Set

DL : Sets interface data length. Data is sent or received in 8 bit lengths (DB7 ~ DB0) when DL=1 and in 4 bit lengths (DB7 ~ DB4) when DL=0.

When the 4 bit length is selected, data must be sent or received twice.

- N : Sets number of display lines.
- F : Sets character font.

(Note) Perform the function at the head of the program before executing all instructions (except "Busy flag/address read"). From this point, the function set instruction cannot be executed unless the interface data length is changed.

NF	No. of display lines	Character font	Duty factor	Remarks
00	1	5 ×7 dots	1/8	
01	1	5 ×10 dots	1/11	
1 *	2	5×7 dots	1/16	Cannot display 2 lines with 5×10 dot character font.

* (Don't care)

Sets the CG RAM address into the address counter in binary AAAAAA. Data is then written or read from the MPU for the CG RAM.

(8) Set DD RAM Address

Sets the DD RAM address into the address counter in binary AAAAAAA.
Data is then written or read from the MPU for the DD RAM.
However, when N=0 (1-line display), AAAAAAA is "00" ~ "4F" (hexadecimal).
 when N=1 (2-line display), AAAAAAA is "00" ~ "27" (hexadecimal)
 for the first line, and "40" ~ "67" (hexadecimal) for the
 second line.

(9) Read Busy Flag and Address

Reads the busy flag (BF) that indicates the system is now internally operating by a previously received instruction. BF=1 indicates that internal operation is in progress. The next instruction will not be accepted until BF is set to "0". Check the BF status before the next wire operation.

At the same time, the value of the address counter expressed in binary AAAAAAA is read out. The address counter is used by both CG and DD RAM addresses, and its value is determined by the previous instruction. Address contents are the same as in Items (7) and (8).

Writes binary 8 bit data DDDDDDDD to the CG or the DD RAM.

Whether the CG or DD RAM is to be written into is determined by the previous specification of CG RAM or DD RAM address setting. After write, the address is automatically incremented or decremented by 1 according to entry mode. The entry mode also determines display shift.

(11) Read Data from CG or DD RAM

Reads binary 8 bit data DDDDDDDD from the CG or DD RAM.

The previous designation determines whether the CG or DD RAM is to be read. <u>Before entering the read instruction, you must execute either</u> <u>the CG RAM or DD RAM address set instruction. If you don't, the</u> <u>first read data will be invalidated. When serially executing the</u> <u>"read" instruction, the next address data is normally read from the</u> <u>second read.</u> The "address set" instruction need not be executed just before the "read" instruction when shifting the cursor by cursor shift instruction (when reading out DD RAM). The cursor shift in struction operation is the same as that of the DD RAM's address set instruction.

After a read, the entry mode automatically increases or decreases the address by 1. However, display shift is not executed no matter what the entry mode is.

(Note) The address counter (AC) is automatically incremented or decremented by 1 after "write" instructions to either CG R or DD RAM. RAM data selected by the AC cannot then be read out even if "read" instructions are executed. The conditions for correct data read out are: execute either the address set instruction or cursor shift instruction (only with DD RAM), just before reading out execute the "read" instruction from the second time the "read" instruction is serial.

HOW TO USE THE HD44780

- Interface to MPU
 - (1) Interface to 8-bit MPU

(1) When connecting to 8-bit MPU through PIA

Fig. 6-2 is an example of using a PIA or I/O port (for single chip microcomputer) as an interface device. Input and output of the device is TTL compatible.

In the example, PBO to PB7 are connected to the data buses DBO to DB7 and PAO to PA2 are connected to E, R/W and RS respectively. Pay attention to the timing relation between E and other signals when reading or writing data and using PIA as an interface.

HD68B00: 8 bit CPU

Fig. 6 Example of Interface to HD68B00 Using PIA (HD68B21)

2 Connecting directly to the 8-bit MPU bus line

3 Example of interfacing to the HD6805

(4) Example of interfacing to the HD6301

(2) Interface to 4-bit MPU

The HD44780 can be connected to a 4-bit MPU through the 4-bit MPU I/O port. If the I/O port has enough bits, data can be transferred in 8-bit lengths, but if the bits are insufficient, the transfer is made in two operations of 4 bits each (with designation of interface data length for 4 bits). In the latter case, the timing sequence becomes somewhat complex. (See Fig. 7)

Fig. 8 shows an example of interface to the HMCS43C.

Note that 2 cycles are needed for the busy flag check as well as the data transfer. 4-bit operation is selected by program.

Fig. 7 An Example of 4-bit Data Transfer Timing Sequence

(-)

Interface to Liquid Crystal Display

(1) Character Font and Number of Lines

The HD44780 can perform 2 types of display, 5×7 dots and 5×10 dots as character font, with a cursor on each.

Up to 2 lines are displayed with 5×7 dots and 1 line with 5×10 dots. Therefore, three types of common signals are available:

Number of Lines	Character Font	Number of Common Signals	Duty Factor
1	5×7 dots + Cursor	8	1/8
1	5 ×10 dots + Cursor	11	1/11
2	5 ×7 dots + Cursor	16	1/16

Number of lines and font types can be selected by program. (See to Table 5 Instruction)

(2) Connection to HD44780 and Liquid Crystal Display

Fig. 9 (1) and (2) show connection examples.

 (a) Example of a 5 × 7 dot, 8 character × 1 line Display (1/4 Bias, 1/8 Duty)

 (b) Example of a 5 × 10 dot, 8 character × 1 line Display (1/4 Bias, 1/8 Duty)

Fig. 9 (1) Liquid Crystal Display and Connections to HD44780

) Example of 5 × 7 dot, 8 character × 2 lines Display (1/5 Bias, 1/16 Duty)

Fig. 9 (2) Liquid Crystal Display and Connection to HD44780

Since 5 signal lines at the SEG can display one digit, one HD44780 can display up to 8 digits for 1-line display and 16 digits for 2-line display.

In Fig. 9 examples (a) and (b), there are unused common signal terminals, non-selection waveforms which always output. When the liquid crystal display panel has unused extra scanning lines, avoid undesirable influences due to cross-talk in the floating state by connecting the extra scanning lines to these common signal terminals.

5 ×7 dot, 8 character × 1 line Display (1/4 Bias, 1/8 Duty)

Fig. 10 Using COMg to Avoid Cross-talk on Unneeded Scanning Line

(3) Connection of Changed Matrix Layout

In the preceding examples, the number of lines was matched to the number of scanning lines. The following display types are possible by changing the matrix layout in the liquid crystal display panel

(b) 5 × 7 dot, 4 character × 2 line Display (1/4 Bias, 1/8 Duty)

Fig. 11 Changed Matrix Layout Displays

In either case, the only change is the layout. Display characteristics and the number of liquid crystal display characters are dependent on the number of common signals (or duty factor). Note that the display data RAM (DD RAM) addresses for 8 characters × 2 lines and 16 characters × 1 line are the same as shown in Fig. 9 • Power Supply for Liquid Crystal Display Drive

Various voltage levels must be applied to HD44780 terminals V1 to V5 to obtain liquid crystal display drive waveforms. The voltages must be changed according to duty factor. Table 6 shows the relation.

Duty Factor	14. Ku	×.
Supply Bias	×	Х
V ₁	$V_{cc} - \frac{1}{4} V_{LCD}$	$V_{cc} - 5 V_{LCD}$
V ₂	$V_{cc} - \frac{1}{2} V_{LCD}$	$V_{cc} - \frac{3}{5} V_{LCD}$
V3	$V_{cc} - \frac{1}{2} V_{LCD}$	$V_{cc} - \chi V_{LCD}$
V4	$V_{cc} - \frac{1}{2} V_{LCD}$	$V_{cc} - \% V_{LCD}$
V ₅	$V_{cc} - V_{lcd}$	$V_{cc} - V_{lcb}$

Table 5 Duty Factor and Power Supply for Liquid Crystal Display Drive

V_{LCD} gives the peak values for liquid crystal display drive waveforms. Resistance dividing provides each voltage as shown in Fig. 13.

Fig. 13 Drive Voltage Supply Example

- Relation between Oscillation Frequency and Liquid Crystal Display Frame Frequency
- The following examples of liquid crystal display frame frequency apply only when oscillation frequency is 250kHz. (1 clock = 4µs)

l frame = 4 (µs) × 400 × 8 = 12800 (µs) = 12.8 (ms) Frame frequency = $\frac{1}{12.8 \text{ (ms)}}$ = ⁷⁹.1 (¹¹/₂)

(2) 1/11 Duty

(3) 1/16 Duty

l frame = 4 (µs) × 200 × 16 = 12800 (µs) = 12.8 (ms) Frame frequency = $\frac{1}{12.8 \text{ (ms)}}$ = 78.1 (Hz)

• Connection with Driver LSI HD44100H

You can increase the number of display digits by externally connecting a liquid crystal display driver LSI HD44100H to the HD44780.

When connected to the HD44780, the HD44100H is used as segment signal driver. The HD44100H can be connected to the HD44780 directly since it supplies CL₁, CL₂, M and D signals and power for liquid crystal display drive. Fig. 14 shows a connection example.

Caution: Connection of voltage supply terminals V_1 through V_6 for liquid crystal display drive is complicated.

Up to 9 units of the HD44100H can be connected for 1-line display (duty factor 1/8 or 1/11) and up to 4 units for the 2-line display (duty factor 1/16). RAM size limits the HD44780 to a maximum of 80 character display digits. The connection method in Fig. 14 remains unchanged for both 1-line and 2-line display or both 5×7 and 5×10 dot character fonts.

Instruction and Display Correspondence

(1) 8-bit operation, 8-digit × 1-line display (using internal reset)
 Table 7 shows an example of 8-bit × 1-line display in 8-bit operation.
 The HD44780 functions must be set by Function Set prior to display.
 Since the display data RAM can store data for 80 characters, as explained before, the RAM can be used for displays like the lightening board when combined with display shift operation.

Since the display shift operation changes display position only and DD RAM contents remain unchanged, display data entered first can be output when the return home operation is performed.

- (2) 4-bit operation, 8-digit × 1-line display (using internal reset) The program must set functions prior to 4-bit operation. Table 8 shows an example. When power is turned on, 8-bit operation is automatically selected and the first write is performed as an 8-bit operation. Since nothing is connected to DBO ~ DB3, a rewrite is then required. However, since one operation is completed in two accesses of 4-bit operation, a rewrite is needed as a function (see Table 8). Thus, DB4 ~ DB7 of the function set is written twice.
- (3) 8-bit operation, 8-digit \times 2-line display

For 2-line display, the cursor automatically moves from the first to the second line after the 40th digit of the 1st line has been written. Thus, if there are only 8 characters in the first line, the DD RAM address must again be set after the 8th character is completed. (See Table 9) Note that the first and second lines of the display shift are performed. In the example, the display shift is performed when the cursor is on the second line. However, if shift operation is performed when the cursor is on the first line, both the first and second lines move together. When you repeat the shift, the display of the second line will not move to the first line, the same display will only move within each line many times.

(Note) When using the internal reset, the conditions in "Power Supply Condition Using Internal Reset Circuit" must be satisfied. If not, the HD44780 must be initialized by instruction. (See "Initializing by Instruction")

Table 7 8-bit Operation, 8-digit 1-line Display Example(Using Internal Reset)

No.	Instruction	Display	Operation
1	Power supply ON (HD44780 is initialized by the internal reset circuit)		Initialized. No display appears.
2	Function Set RS R/W DB7 DB0 0 0 0 0 1 1 0 0 * *		Sets to 8-bit operation and selects 1-line displa lines and character font (Number of display lines and character fonts canno- be changed hereafter.)
3 3	Display ON/OFF Control 0 0 0 0 0 0 1 1 1 0		Turns on display and cur sor. Entire display is in space mode because of initialization.
4	Entry Mode Set 0 0 0 0 0 0 0 1 1 0		Secuymode to increment to address by one and to shift the cursor to the right at the time of wri to the DD/CG RAM. Display is not shifted.
5	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 0 0 0	[H]	Write "H". The DD RAM h already been selected by initialization when the power is turned on. The cursor is incremente by one and shifted to th right.
6	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 0 0 1	[H I]	Writes "I".
7			
8	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 0 0 1	HITACHI_	Writes "I".
9	Entry Mode Set 0 0 0 0 0 0 0 1 1 1	HITACHI	Sets mode for display shift at the time of write.
10	Write Data to CG RAM/DD RAM 1 0 0 0 1 0 0 0 0 0	ITACHI	Writes "Space".
11	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 1 0 1	TACHI M_	Writes "M".
12	the second s	and the second	

13	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 1 1 1	MICROKO	Writes "O".
14	Cursor or Display Shift 0 0 0 0 0 1 0 0 \star \star	MICROKO	Shifts only the cursor position to the left.
15	Cursor or Display Shift 0 0 0 0 0 1 0 0 * *	MICROKO	Shifts only the cursor position to the left.
. 16	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 0 0 1 1	ICROCO	Writes "C" (correction). The display moves to the left.
17	Cursor or Display Shift 0 0 0 0 0 1 1 1 * *	MICROCO	Shifts the display and cursor position to the right.
18	Cursor or Display Shift 0 0 0 0 0 1 0 1 * *	MICROCO	Shifts display and cursor position to the right.
19	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 1 0 1	ICROCOM_	Writes "M".
20			
21	Return Home 0 0 0 0 0 0 0 0 1 0	<u>H</u> ITACHI	Returns both display and cursor to the original position (Address 0).

Table 8 4-bit Operation, 8-digit 1-line Display Example (Using Internal Reset)

No.	Instruction	Display	Operation
1	Power supply ON (HD44780 is initialized by the internal reset circuit)		Initiation, No display appears.
2	Function Set RS R/W DB7 DB4 0 0 0 0 1 0		Sets to 4-bit operation. In this case, operation is handled as 8 bits by ini- tialization, and only this instruction completes with one write.
3	Function Set 0 0 0 0 1 0 0 0 0.0 * *		Sets 4-bit operation and selects 1-line display and 5×7 dot character font. 4.510 operation from this point on and resetting is needed. (Number of display lines and character fonts cannot be changed hereafter.)
4	Display ON/OFF Control 0 0 0 0 0 0 0 0 1 1 1 0		Turns on display and cur- sor. Entire display is in space mode because of ini- tialization.
5	Entry Mode Set 0 0 0 0 0 0 0 0 0 1 1 0		Sets mode to increment the address by one and to shift the cursor to the right, at the time of write, to the DD/CG RAM. Display is not shifted.
6	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 0 1 0 0 0	H	Writes "H". The cursor is incremented by one and shifts to the right.

Hereafter, control is the same as 8-bit operation.

Table 9 8 bit Operation, 8-digit × 2 line Display Example (Using Internal Reset)

No.	Instruction	Display	Operation
1	Power supply ON (HD44780 is intialized by the internal reset circuit)		Initialized. No display appears.
2	Function Set DB0 RS R/W DB7 DB0 0 0 0 1 1 0 *		Sets to 8-bit operation and selects 2-line display and 5×7 dot character font.
3	Display ON/OFF Control 0 0 0 0 0 0 1 1 1 0		Turns on display and cur- sor. All display is in space mode because of initialization.
4	Entry Mode Set 0 0 0 0 0 0 0 1 1 0		Sets mode to increment the address by one and to shift the cursor to the right, at the time of write, to the DD/CG RAM. Display is not shifted.
5	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 0 0 0	H	Writes "H". The DD RAM has has already been selected by initialization when the power is turned on. The cursor is incremented by one and shifted to the right.
6	· · · · · · · · · · · · · · · · · · ·	•	
7	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 0 0 1	HITACHI	Writes "I".
8	Set DD RAM Address 0 0 1 1 0 0 0 0 0 0		Sets RAM address so that the cursor is positioned at the head of the 2nd line.
9	Write Data co CG RAM/DD RAM 1 0 0 1 0 0 1 1 0 1	H ITACHI M	Writes "M".
10			
11	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 1 1 1	H I T A C H I M I C R O C O	Writes "O".
12	Entry Mode Set	HITACHI	Sets mode for display shift at the time of

13	Write Data to CG RAM/DD RAM	Writes "M". Display is shifted to the right. The first and second
14	1 0 0 1 0 0 1 1 0 1	ICROCOM lines' shift are operated at the same time.
15	Return Home 0 0 0 0 0 0 0 0 1 0	HITACHIReturns both display and cursor to the original position (Address 0).

- Paul

• Initializing by Instruction

If the power supply conditions for correctly operating the internal reset circuit are not met, initialization by instruction is required.

Use the following procedure for initialization.

(1) When interface is 8 bits long;

(2) When interface is 4 bits long;

HD44101H (DOT MATRIX LIQUID CRYSTAL DISPLAY CONTROLLER & DRIVER)

The HD44101H is a dot matrix liquid crystal display controller & driver LSI that displays alphanumerics, kana characters and symbols. It drives dot matrix liquid crystal display under 4-bit or 8-bit microcomputer or microprocessor control. All the functions required for dot matrix liquid crystal display drive are incorporated in one chip. The user can realize the dot matrix liquid crystal display system of less chip configuration by using the HD44101H.

The HD44101H is produced in the CMOS process. Therefore, the combination of HD44101H with a CMOS microcomputer or microprocessor can accomplish a portable battery-drive device making the most of its lower power dissipation.

PIN ARRANGEMENT

(Top View)

FEATURES

- 5×7 dot matrix liquid crystal display controller & driver
- Interfaceable to 4-bit or 8-bit MPU.
- Display data RAM ... 32×8 bits (32 characters, max.)
- Character generator ROM ... 6720 bits; 192 types of 5×7 dot character

- · Internal liquid crystal display driver circuit
 - 15 common signal drivers
 - 40 segment signal drivers (can be externally extended to 120 segments

and a straight

- by the liquid crystal display driver HD44100H)
- Duty factor (can be selected by a program)
 - 1/7 duty : 1 line of 5×7 dots

1/14 duty: 2 lines of 5×7 dots

• Maximum number of display columns

No. of display lines	Duty factor	Extension	HD44101H	HD4100H	No. of display characters
 l-line	1/7	Not provided	1 pc.		8 characters × 1 line
display	duty	Provided	1 pc.	3 pcs. (8 characters/pc.)	32 characters × 1 line
2-line	·· 1/14	Not provided	1 pc.		8 characters × 2 lines
display	y duty	Provided	1 pc.	<pre>1 pc. (8 characters × 2 lines/pc.)</pre>	16 characters × 2 lines

• Various instruction functions

Clear Display, Return Home, Display ON/OFF, Display Shift

- Internal reset circuit at power ON
- Internal oscillator (with an external resistor)
- Low power dissipation
- Logic power supply: A single +5V (excluding power for liquid crystal display drive)
- CMOS process
- 80-pin flat plastic package (FP-80)

ystal

ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Item	Symbol	Limit	Unit	Note
Power supply voltage (1)	V _{CC}	-0.3 to +7.0	v	
Power supply voltage (2)	V1 to V5	V _{CC} -13.5 to V _{CC} +0.3	v	3
Input voltage	٧ _F	-0.3 to V _{CC} +0.3	V .	
Operating temperature	Topr	-20 to +75	°C	
Storage temperature	Tstg	-55 to +125	°C	

- Note 1: If LSI's are used above absolute maximum ratings, they may be permanently destroyed. Using them within electrical characteristic limits is strongly recommended for normal operation. Use beyond these conditions will cause malfunction and poor reliability.
- Note 2: All voltage values are referenced to GND=0V.

Note 3: Applies to V1 to V5. Must maintain $V_{CC} \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$.

 $(high \leftarrow low)$

• Electrical Characteristics

 $(V_{CC}=5V\pm10\%, V5=0-5V, Ta=-20 \text{ to }+75^{\circ}C)$

_	Test	Limit					
ltem	Symbol	condition	Min.	Туре	Max.	Unit V V V V V V V V V	Note
Input "high" voltage (1)	$V_{\rm IH}(1)$	-	2.0	-	v _{cc}	v	(2)
Input "low" voltage (l)	V _{II} (1)		0	-	0.8	v	(2)
Output "high" voltage (TTL)	v _{oh}	-I _{OH} =0.205mA	2.4	–	-	v	(3)
Output "low" voltage (TTL)	V _{OL}	I _{OL} =1.6mA	-	-	0.4	v	(3)
Output "high" voltage (CMOS)	VOHC	-I _{OH} =0.1mA	V _{CC} -0.4	-	-	v	(4)
Output "low" voltage (CMOS)	VOLC	I _{OL} =0.1mA	-	-	0.4	v	(4)
Driver voltage descending(COM)	Vdl	Id=0.1mA	-	-	1.0	v	
Driver voltage descending(SEG)	v _{d2}	Id=0.01mA	-	-	0.2	V	
Input leakage current	I _{IL}	Vin=0 to VCC	-1	-	1	μA	(5)
Pull up MOS current	-IP	V _{CC} =5V,V _{IN} =0V Ta=25°C	2	10	20	μΑ	

		Test	Fill Sharp H	- Limit			Note
Item	Symbol	condition		Туре	Max.		
Power supply current	I _{CC}	Rf oscillation, External clock operation fosc=fcp=78kHz	-	0.2	0.5	mA	(6)
External clock operation							
External clock frequency	f _{cp}		40	78	150	kHz	(7)
External clock duty	Duty		45	50	55	%	(7)
External clock rise time	trcp		-	-	0.2	μs	(7)
External clock fall time	t _{fcp}		-	-	0.2	μs	(7)
Input "high" voltage (2)	V _{IH2}		V _{CC} -1.0	_	v _{CC}	V	(8)
Input "low" voltage (2)	V _{IL2}		0	-	1.0	v	(8)
Internal clock operation (Rf o	scillat:	ion)					
Clock oscillation frequency	fosc	Rf=560kΩ±2%	50	75	100	kHz	(9)

Note 1: The following are I/O terminal configurations except for liquid crystal display output.

• Input Terminal

Applicable terminals: E (No pull up MOS)

Applicable terminals: RS, R/W, <u>C</u>S, DBO to DB6

(With pull up MOS)

• Output Terminal

Applicable terminals: CL1, CL2, M, D

• I/O Terminals

Applicable terminals: DB7

- Excludes OSC1 terminals.
- Note 3: I/O terminals
- Note 4: Output terminals
- Note 5: Current flowing through pull-up MOS's and output drive MOS's is excluded.
- Note 6: Input/output current is excluded. When input is at the intermediate level with CMOS, excessive current flows through the input circuit to the power supply. To avoid this, input level must be fixed at high or low.
- Note -7: External clock operation.

Note 8: Applied to OSC1 terminal.

• • • • • •

, . •

Note 9: Internal oscillator operation using oscillation resistor Rf.

Since oscillation frequency varies depending on OSC1 and OSC2 terminal capacity, wiring length for these terminals should be minimized.

•Timing Characteristics

Fig. 1 Bus Write Operation Sequence (Writing Data from MPU to HD44101H)

Fig. 2 Bus Read Operation Sequence (Reading out Data from HD44101H to MPU)

Interface Signal with Driver LSI HD44100H

Fig. 3 Sending Data to Driver LSI HD44100H

• Bus Timing Characteristics

$(V_{CC}=5.0V\pm10\%, GND=0V, Ta=-20 to +75^{\circ}C)$

			Li		
Item	Symbol	Test conditions	Min.	Max.	Unit
Enable cycle time	T _{cyc} E	Fig. 1	1000	_	ns
Enable pulse width "High" level	pw _{eh}	Fig. 1	450	-	ns
Enable rise/fall time	t _{Er} , t _{Ef}	Fig. 1	-	25	ns
Address set-up time RS, R/W	t _{AS}	Fig. 1	140	-	ns
Address hold time	t _{AH}	Fig. 1	10	_	ns
Data set-up time	tDSW	Fig. 1	195	-	ns
Data hold time	¢H	Fig. 1	10	_	ns

Write Operation (Writing data from MPU to HD44101H)

Read Operation (Reading data from HD44101H to MPU)

The			_	Lim		
ltem		Symbol	ol Test conditions Min. Max.		Unit	
Enable cycle time		t _{cycE}	Fig. 2	1000	-	ns
Enable pulse width	"High" level	Pw _{eh}	Fig. 2	450	-	ns
Enable rise/fall tim	ne	t _{Er} , t _{Ef}	Fig. 2	-	25	ns
Address set-up time	RS, R/W — E	t _{AS}	Fig. 2	140	-	ns
Address hold time		t _{AH}	Fig. 2	10	-	ns
Data delay time		t _{DDR}	Fig. 2	-	320	ns
Data hold time		t _{DHR}	Fig. 2	20	-	ns

• Interface Signal with HD44100H Timing Characteristics

				Li		
ltem		Symbol	Test conditions	Min.	Max.	Unit
Clock pulse width	"High" level	t _{CWH}	Fig. 3	800	-:	ns
Clock pulse width	"High" level	t _{CWL}	Fig. 3	800	-	ns
Clock set-up time		t _{CSU}	Fig. 3	500	-	ns
Data set-up time		t _{SU}	Fig. 3	300	-	ns
Data hold time		tDH	Fig. 3	300	-	ns
M delay time		t _{DM}	Fig. 3	-1000	1000	ns

 $(V_{CC}=5.0V\pm10\%, GND=0V, Ta=-20 to +75°C)$

Power Supply Conditions Using Internal Reset Circuit

	Creek a l	T	Li			
Item	Symbol	lest conditions	Min.	Max.	Unit	
Power supply rise time	t _{rcc}	_ -	0.1	10	ms	
Power supply OFF time	t _{OFF}	-	1	-	ms	

Since the internal reset circuit will not operate normally unless the preceding conditions are met, initialize by instruction.

 $0.1ms \le t_{rCC} \le 10 ms$

torr ≧lms

(Note) t_{OFF} stipulates the time of power OFF for power supply instantaneous dip or when power supply repeats ON and OFF.

Table I	Functional	Description	of	Terminals
---------	------------	-------------	----	-----------

• •

Signal name	Number of lines	Input/ output	Connected to	Function
RS	1	Input	MPU	Signal to select registers "O": Instruction register (for write) Busy flag (for read) "1": Data register (for read and write)
R/W	1	Input	MP U	Signal to select read (R) and write (W) "O": Write "1": Read
E	1	Input	MPU	Operation start signal for data read/write
DB4 ∿DB7	4	Input, I/O only DB7	MPU	Higher order 4 lines data bus. Used for data transfer between the MPU and the HD44101H. DB7 can be used as a BUSY flag.
DBO ∿DB3	4	Input	MPU	Lower order 4 lines data bus. Used for data transfer from the MPU to the HD44101H. These four are not used during 4-bit operation.
CL1	1	Output	HD44100H	Clock to latch serial data D sent to the driver LSI HD44100H.
CL2	1	Output	HD44100H	Clock to shift serial data D.
м	1	Output	HD44100H	Switch signal to convert liquid crystal drive waveform to AC.
D	1	Output	HD44100H	Character pattern data corresponding to each common signal is serially sent. "O": Non selection
СОМ1 ∿СОМ14	14	Output	Liquid crystal display	"1": Selection Common signals that are not used are changed to non-selection waveforms. That is, COM8vCOM14 are in non-selection wave-
SEG1 ∿SEG40	40	Output	Liquid crystal display	form at 1/7 duty factor. Segment signal
V1~V5	5		Power supply	Power supply for liquid crystal display drive
V _{CC} , GND	2		Power supply	V _{CC} : +5V, GND: 0V
OSC1, OSC2	2			Terminals connected to resistor for inter- nal clock oscillation. For external clock operation, the clock is input to OSC1.
COMNÐ	1	Output	Liquid crystal display	Non-selected common signal. It is applied to unused common terminals of LCD, if necessary.

Signal name	Number of lines	Input/ output	Connected to	Function
CS	1	Input	MPU	Chip select signal
dery Rige C				"O": Disable "l": Enable

FUNCTION OF EACH BLOCK

(1) Register

The HD44101H has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes such as display clear and display ON/OFF, and address information for display data RAM (DD RAM). The IR can be written from the MPU, but can not be read.

The DR temporarily stores data to be written into the DD RAM. Data written into the DR from the MPU is automatically written into the DD RAM by internal operation. The DR can be also written from the MPU, but

can not be read. Register selector (RS) signals make their selection from these two registers.

Table 2	Register	Sel	ecti	ion
---------	----------	-----	------	-----

RS	R/W	Operation											
0	0	IR write as internal operation (Display clear, etc.)											
0	1	Read busy flag (DB7)											
1	0	DR write as internal operation (DR to DD RAM)											

(2) Busy flag (BF)

When the busy flag is "1", the HD44101H is in the internal operation mode, and the next instruction will not be accepted. As Table 2 shows, the busy flag is output to DB7, when RS=0 and R/W=1. The next instruction must be written after ensuring that the busy flag is "0".

(3) Address counter (AC)

The address counter (AC) assigns addresses to DD RAM. When an instruction for address is written in IR, the address information is sent from IR to AC. After writing into DD RAM display data, AC is automatically increased by +1.

(4) Display data RAM (DD RAM)

The display data RAM (DD RAM) stores display data represented in 8-bit character codes. Its capacity is 32×8 bits, or 32 characters.

Relations between DD RAM addresses and positions on the liquid crystal display are shown below.

The DD RAM address (ADD) is set in the Address Counter (AC) and is represented in hexadecimal.

(Example) DD RAM address "1E"

1-line display (N=0)

(a) When the display characters are less than 32, the display begins at the head position. For example, 8 characters using 1 HD44101H are displayed as:

When the display shift operation is performed, the DD RAM address moves as:

(Left shift display)	01	02 [.]	03	04	05	06	07	08
(Right shift display)	1F	00	01	02	03	04	05	06

(b) 16-character display using an HD44101H and an HD44100H is as shown below:

When the display shift operation is performed, the DD RAM address moves as:

(c) The relation between display position and DD RAM address when the number of display digits is increased through the use of one HD44101H and two or more HD44100H's can be considered an extension of (b).

Since the increase can be 8 digits for each additional HD44100H, up to 32 digits can be displayed by externally connecting 3 HD44100H's.

• 2-line display (N=1)

(digit)	1	2	3	4	5		15	16 - Display position
l-line	00	01	02	03	04		0E	OF - DD RAM address
2-line	10	11	12	13	14	•••••	1E	lf

(a) When the number of display characters is less than 16×2 lines, the
 2 lines from the head are displayed. Note that the first line end
 address and the second line start address are not consecutive.
 For example, when an HD44101H is used, 8 characters×2 lines are
 displayed as:

(digit)	1	2	3	4	5	6	7	8	- Display position
l-line	00	01	02	03	04	05	06	07	← DD RAM address
2-line	10	11	12	13	14	15	16	17	

When display shift is performed, the DD RAM address moves as:

(Left shift display)	01	02	03	04	05	06	07	08
	11	12	13	14	15	16	17	18

(Right shift	OF	00	01	02	03	04	05	06
display)	lf	10	11	12	13	14	15	16

(b) 16 characters × 2 lines are displayed when an HD44101H and an HD44100H are used:

(digit)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	- Display position
l-line	00	01	02	03-	04	05	06	07	08	09	0A	OB	0C	0Ð	0E	OF	← DD RAM address
2-line	10	.11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	
and a state of the second s		- HD	9441	.01H	di	spl	ay .			- HD	441	он	dis	pla	у —		,

When display shift is performed, the DD RAM address moves as follows:

(Left shift display)	01	02	03	04	05	06	07	08	09	OA	ОВ	0C	OD	0E	0F	00
	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	10
(Right shift display)	OF	00	01	02	03	04	05	06	07	08	09	0A	OB	0C	OD	0E
	1F	10	-11	12	13	•14	15	16	17	18	19	1A	1B	1C	1D	1E

(5) Character generator ROM (CG ROM)

The character generator ROM generates 5×7 dot character patterns from 8-bit character codes. It can generate 192 types of 5×7 dot character patterns. Table 3 shows the relation between character codes and character patterns in the Hitachi standard HD44101A00H. User defined character patterns are also available by mask-programming ROM.

Ilgher	1	T			1							1
Lover 4bit 4 bit	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
××××0000					•	 		•••••	••••	••• ••• •••		
									••••			
xxxx0001	ļ					•				İ;	•••••	
××××0010		•••• •• ••						••				
xxxx0011		••••		; ;	:			;;;	••••	•••••	·••• ·••	
××××0100						•••	••	•••••				
××××0101		· · · · ·			 		::	••••			••••	
xxxx0110				.		. .:			••••	•••••	•::-	
××××0111	:	•••			**** **** ***		••••• ••••	•••••		••••		
xxxx1000					!	:::	.: : `	•	•••••	ļ		••••
××××1001		:	***		* * * *	: 	::::		ŀ		•• :	
××××1010	*	::				•••••						••••
xxxx1011	•••••	:: 									*	
××××1100	;			•••••			: ::			;;;	:::-	
xxxx1101					[]]			•••••	•••••			8 98869 4
xxxx1110				••••	! "		•••• •••• ••••	•••••	•••••	•••	••••	- ! :-
xxxx1111	••	••••	844 844 888	PQQQ	: 	•	:::	• •	••••		:	

Table 3 Correspondence between Character Codes and Character Patterns (Hitachi Standard HD44101A00H)

an a she gara ta Sara.

(6) Timing generation circuit

The timing generation circuit generates timing signals to operate internal circuits such as DD RAM, CG ROM. RAM read timing needed for display and internal operation timing by MPU access are separately generated so they do not interfere with each other. Therefore, when writing data to the DD RAM, for example, there will be no undesirable influence, such as flickering, in areas other than the display area. This circuit also generates timing signals to operate the externally connected driver LSI HD44100H.

(7) Liquid crystal display driver circuit

The liquid crystal display driver circuit consists of 14 common signal drivers and 40 segment signal drivers. When character font and number of lines are selected by a program, the required common signal drivers automatically output drive waveforms, the other common signal drivers continue to output non-selection waveforms.

The segment signal driver has essentially the same configuration as the driver LSI HD44100H. Character pattern data is sent serially through a 40-bit shift register and latched when all needed data has arrived. The latched data controls the driver for generating drive waveform outputs.

The serial data is sent to the HD44100H, externally connected in cascade, used for display digit number extension.

Send of serial data always starts at the display data character pattern corresponding to the last address of the display data RAM (DD RAM). Since serial data is latched when the display data character pattern, corresponding to the starting address, enters the internal shift register, the HD44101H drives the head display. The rest displays, corresponding to latter addresses, are added with each additional HD44100H.

COMND always outputs non-selected common waveform. This signal can be applied to unused common lines in the LCD panel, if necessary, and all the picture element on this common are not visible (see Fig. 10).

RESET FUNCTION

The HD44101H automatically initializes (resets) when power is turned on using the internal reset circuit. The following instructions are executed in initialization. The busy flag (BF) is kept in busy state until initialization ends. The busy stats is 15 ms after V_{CC} rises to 4.0V.

(1) Display clear

(2) Function set DL=0: 4 bit long interface data N=0 : 1-line display
(3) Display ON/OFF control D=0 : Display OFF

(Note) When conditions in "Power Supply Conditions Using Internal Reset Circuit" are not met, the internal reset circuit will not operate normally and initialization will not be performed.

INSTRUCTION

•Outline

Only two HD44101H registers, the Instruction Register (IR) and the Data Register (DR) can be directly controlled by the MPU. Prior to internal operation start, control information is temporarily stored in these registers, to allow interface from HD44101H internal operation to various types of MPUs which operate in different speeds or to allow interface to peripheral control ICs. HD44101H internal operation is determined by signals sent from the MPU. These signals include register selection signals (RS), read/write signals (R/W) and data bus signals (DB0 \sim DB7), and are called instructions, here.

Table 4 shows the instructions. Details are explained in subsequent sections. Instructions are of 4 types, those that,

(1) Designate HD44101H functions such as display format, data length, etc.

- (2) Give internal RAM addresses.
- (3) Perform data transfer to internal RAM.
- (4) Others

In normal use, category (3) instructions are used most frequently. However, automatic increasing by +1 of HD44101H internal RAM addresses after each data write lessens the MPU program load. The display shift is especially able to perform concurrently with display data write, enabling the user to develop systems in minimum time with maximum programming efficiency. For an explanation of the shift function in its relation to display, see Table 6.

When an instruction is executing during internal operation, no instruction other than the busy flag read instruction will be executed. Because the busy flag is set to "1" while an instruction is being executed, check to make sure it is on "0" before sending an instruction from the MPU.

Instruction	Ĺ				Co	de			_		Description		
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB 3	DB2	DB1	DB O	Description		
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DD RAM address 0 in address counter.		
Return - home	0	0	0	0	0	0	0	. 0	1	*	Sets DD RAM address 0 in address counter. Also returns display being shifted to original posi- tion. DD RAM contents remain unchanged.		
Display ON/OFF control	0	0	0	0	0	0	1	D	*	*	Sets ON/OFF of entire display (D).		
Display shift	0	0	0	0	0	1	1	R/L	*	*	Shifts display without changing DD RAM contents.		
Function set	0	0	0	0	1	DL	N	*	*	*	Sets interface data length (DL), number of display lines (L).		
Set DD RAM address	0	0	1	0	0		(a _{DD})	В-		Sets DD RAM address. DD RAM data is received after this setting.		
Read busy flag	0	1	BF	*	*	*	*	*	*	*	Reads busy flag (BF) in- dicating internal opera- tion is being performed.		
Write data to DD RAM	1	0			(Wr	ite	data	ı)∗ _B			Writes data into DD RAM.		
	D=] D=(L: D1): D1	spla. spla	y on y of	f						DD RAM: Display data RAM ADD: DD RAM address		
	R/I R/I	L=1: L=0:	Shif Shif	t to t to	the the	rig lef	ht t				AC : Address counter used for DD RAM address		
	DL= N=]	=1: 8 1: 2	bit line	s, D s, N	L=0: =0:	4 b 1 li	its ne						
	BF= BF=	•1: I •0: C	nter an a	nall ccep	y op t in	erat stru	ing ctio	'n					

Table 4 Instructions

and the No. of Food and a second second second second second second second second second second second second s

Description of Details

(1) Clear display

_	RS	R/W	DB7							DBO	
Code	0	0	0	0	0	0	0	0	0	1	

Writes space code "20" (hexadecimal)(character pattern for character code "20" must be blank pattern) into all DD RAM addresses. Sets DD RAM address 0 in address counter. Returns display to its original status if it was shifted. In other words, the display disappears.

(2) Return home

Sets the DD RAM address 0 in address counter. Returns display to its original status if it was shifted. DD RAM contents do not change.

(3) Display ON/OFF control

D: The display is ON when D=1 and OFF when D-0. When off due to D=0, display data remains in the DD RAM. It can be displayed immediately by setting D=1.

(4) Display shift

* Don't care.

Shifts display to the right or left without writing display data. This function is used to correct or search for the display. Notice that the 1st and 2nd line displays will shift at the same time. When the displayed data is shifted repeatedly each line only moves horizontally. The 2nd line display does not shift into the 1st line position.

R/L=0: Shifts the entire display to the left.

ma galimanan

Address counter (AC) contents do not change if the only action performed is shift display.

(5) Function set

- DL: Sets interface data length. Data is sent or received in 8 bit lengths (DB7~DB0) when DL=1 and in 4 bit lengths (DB7~DB4) when DL=0. When the 4 bit length is selected, data must be sent or received twice.
- N : Sets number of display lines.

N	No. of display lines	Character font	Duty factor	
0	- 1	5×7 dots	1/7	ľ
1	2	5×7 dots	1/14	ľ

(Note) Perform the function at the head of the program before executing all instructions (except "Busy flag/address read"). From this point, the function set instruction cannot be executed unless the interface data length is changed.

(6) Set DD RAM address

Set the DD RAM address into the address counter in binary AAAAA. Data is then written from the MPU for the DD RAM.

However, when N=0 (1-line display), AAAAA is "00" ∿"1F" (hexadecimal) When N=1 (2-line display), AAAAA is "00" ∿"0F" (hexadecimal) for the first line, and "10" ∿"1F" (hexadecimal) for the second line.

RS R/W DB7 **DBO** Code 0 1 BF × * * * * * *

Reads the busy flag (BF) that indicates the system is now internally operating by a previously receive therefore. BF-1 todicates that internal operation is in progress. The next instruction will not be accepted until BF is set to "0". Check the BF status before the next write operation.

(8) Write data to DD RAM

Writes binary 8 bit data DDDDDDDD to the DD RAM.

Where the DD RAM is to be written into is determined by the previous specification of DD RAM address setting. After write, the address is automatically increased by 1.

* Instruction cycle time = $\frac{5}{f_{OCS}}$ or $\frac{5}{f_{CP}}$

HOW TO USE THE HD44101H

• Interface to MPU

(1) Interface to 8-bit MPU

and special states of the spectra of the spectra states and
(1) Direct interface to HD6800

The HD44101H can interface directly to the 8-bit MPU HD6800, having the capability of driving one ordinary TTL through the TTL compatible interface. The interface timing is matched with the HD6800. However, the HD44101H's internal operation is slow, an access must be made while checking the busy signal. Fig. 5 shows an example of circuit. In the example, the HD44100H is selected with A14=1, A15= 0 and the timing width is obtained by VMA and $\phi 2$.

Fig. 5 Example of Interface to HD6800

(2) When connecting to 8-bit MPU through PIA

Fig. 6 is an example of using a PIA or I/O port (for single chip microcomputer) as an interface device. Input and output of the device is TTL compatible.

In the example, PBO to PB7 are connected to the data buses DBO to DB7 and PAO to PA3 are connected to E, R/W, RS and CS respectively. Pay attention to the timing relation between E and other signals when reading or writing data and using PIA as an interface.

Fig. 6 Example of Interface to HD68B00 Using PIA (HD68B21)

3

Connecting directly to the 8-bit MPU bus line

(4) Example of interfacing to the HD6805

 \bigcirc

Example of interfacing to the HD6301

(2) Interface to 4-bit MPU

The HD44101H can be connected to a 4-bit MPU through the 4-bit MPU I/O port. If the I/O port has enough bits, data can be transferred in 8-bit lengths, but if the bits are insufficient, the transfer is made in two operations of 4 bits each (with designation of interface data length for 4 bits). In the latter case, the timing sequence becomes somewhat complex (see Fig. 7).

Fig. 8 shows an example of interface to the HMCS43C.

Note that 2 cycles are needed for the busy flag check as well as the data transfer. 4-bit operation is selected by program.

Note: IR7, IR3: Instruction 7th bit, 3rd bit

Fig. 7 An Example of 4-bit Data Transfer Timing Sequence

HMCS43C: Hitachi 4-bit single-chip microcomputer

Fig. 8 Example of Interface to the HMCS43C

Interface to Liquid-Crystal Display

(1) Character font and number of lines

The HD44101H can perform 5×7 dots as character font.

Up to 2 lines are displayed with 5×7 dots. Therefore, two types of common signals are available:

Number of lines	Character font	Number of common signals	Duty factor
1	5×7 dots	7	1/7
2	5×7 dots	14	1/14

Number of lines and font types can be selected by program. (See Table $\overline{4}$, Instruction.)

(2) Connection to HD44101H and liquid crystal display

Fig. 9 (1) and (2) show connection examples.

Example of a 5×7 dot, 8 character ×1 line display (1/4 bias, 1/7 duty)

Fig. 9 (1) Liquid Crystal Display and Connections to HD44101H

Example of 5×7 dot, 8 character ×2 line display (1/5 bias, 1/14 duty)

Fig. 9 (2) Liquid Crystal Display and Connection to HD44101H

Since 5 signal lines at the SEG can display one digit, one HD44101H can display up to 8 digits for 1-line display and 16 digits for 2-line display.

In Fig. 9 (1) (2), there are unused common signal terminals, nonselection waveforms which always output. When the liquid crystal display panel has unused extra scanning lines, avoid undesirable influences due to cross-talk in the floating state by connecting the extra scanning lines to these common setural terminal by

5×7 dot, 8 character ×1 line display (1/4 bias, 1/7 duty)

Fig. 10 Using COMND to Avoid Cross-Talk on Unneeded Scanning Line

(3) Connection of changed matrix layout

In the preceding examples, the number of lines was matched to the number of scanning lines. The following display types are possible by changing the matrix layout in the liquid crystal display panel.

(a) 5×7 dot, 16 character ×1 line display (1/5 bias, 1/14 duty)

e serve

(b) 5×7 dot, 4 character ×2 line display (1/4 bias, 1/7 duty)

Fig. 11 Changed Matrix Layout Displays

In either case, the only change is the layout. Display characteristics and the number of liquid crystal display characters are dependent on the number of common signals (or duty factor). Note that the display data RAM (DD RAM) addresses for 8 characters ×2 lines and 16 character ×1 line are the same as shown in Fig. 9.

• Power Supply for Liquid Crystal Display Drive

Various voltage levels must be applied to HD44101H terminals V1 to V5 to obtain liquid crystal display drive waveforms. The voltages must be changed according to duty factor. Table 5 shows the relation.

Table	5	Duty	Factor	and	Power	Supply	for	Liquid	Crystal	Display	Drive
	D	uty fa	actor								

	1/7	1/14
Power supply	1/4	1/5
Vl	$v_{CC} - 1/4v_{LCD}$	$v_{CC} - 1/5 v_{LCD}$
V2	$v_{CC} - 1/2v_{LCD}$	$v_{CC} - 2/5 v_{LCD}$
V3	$v_{CC} - 1/2v_{LCD}$	$v_{CC} - 3/5 v_{LCD}$
V4	$v_{CC} - 3/4v_{LCD}$	$v_{CC} - 4/5 v_{LCD}$
V 5	Vcc - Vtcp	Vco - Vr marine

 V_{LCD} gives the peak values for liquid crystal display drive waveforms. Resistance dividing provides each voltage as shown in Fig. 12.

(a) 1/4 bias (1/7 duty)

(b) 1/5 bias (1/14 duty)

Fig. 12 Drive Voltage Supply Example

• Connection with Driver LSI HD44100H

You can increase the number of display digits by externally connecting a liquid crystal display driver LSI HD44100H to the HD44101H.

When connected to the HD44101H, the HD44100H is used as segment signal driver. The HD44101H can be connected to the HD44100H directly since it supplies CL1, CL2, M and D signals and power for liquid crystal display drive. Fig. 13 shows a connection example.

Caution: Connection of voltage supply terminals V1 through V6 for liquid crystal display drive is complicated.

Up to 3 units of the HD44100H can be connected for 1-line display (duty factor 1/7) and up to 1 unit for the 2-line display (duty factor 1/14). RAM size limits the HD44101H to a maximum of 32 character display digits. The connection method in Fig. 13 remains unchanged for both 1-line and 2-line display.

Fig. 13 Example of Connecting HD44100H to HD44101H

•Instruction and Display Correspondence

(1) 8-bit operation, 8-digit × 1-line display

Table 6 shows an example of 8-digit X 1-line display in 8-bit operation. The HD44101H function Since the display data RAM can store data for 32 characters, as explained before, the RAM can be used for displays like the lightening board when combined with display shift operation.

Since the display shift operation changes display position only and DD RAM contents remain unchanged, display data entered first can be output when the return home operation is performed.

(2) 4-bit operation, 8-digit ×1-line display

Table 7 shows an example of 8-digit X 1-line display in 4-bit operation. When power is turned on, 4-bit operation is automatically selected. One operation is completed in two accesses of 4-bit operation.

(3) 8-bit operation, 8-digit ×2-line display

For 2-line display, the DD RAM address must again be set after the 8th character is completed in the first line (see Table 8).

Note that the first and second lines of the display shift are performed. If shift operation is performed, both the first and second lines move together. When you repeat the shift, the display of the second line will not move to the first line, the same display will only move within each line many times.

Table 6 8-bit Operation, 8-digit × 1-line Display

Instruction	Display	Operation
Power ON and automatic reset		Initialized. No display appears.
Function set 0 0 0 0 1 1 0 * * * RS\$#DB7 DB0		Sets to 8-bit operation and selects 1-line display line. This operation is necessary three times at 100 ms intervals.
Display ON/OFF control 0 0 0 0 0 0 0 1 1 * *		Display ON. No display appears.
Write data to DD RAM 1001001000	Н	Writes "H".
Write data to DD RAM	HI	Writes "I".
Write data to DD RAM 1001001001	HITACHI	Writes "I".
Write data to DD RAM 1000100000	HITACHI	Writes space.
Write data to DD RAM 1001001101	HITACHIM	Writes "M", but "M" can't be seen.
Display shift 00000110**	ITACHI M	Shifts left, "M" appears.
1		
Write data to DD RAM 1001001111	IMICROK	Writes "O", but "O" can't be seen.
Display shift 00000110**	MICROKO	Shifts left, "O" appears.
Set DD RAM address 0010001101	MICROKO	Writes the address of "K".
Write data to DD RAM	M.T.C.R.O.C.O	Changes "K" to "C".

- 13

Instruction	Display	Operation
Set DD RAM address 0010001111	MICROCO	Writes the address of next to "O".
Write data to DD RAM 1001001101	MICROCO	Writes "M", but "M" can't be seen.
Display shift 00000110**	MICROCOM	Shifts left, "M" appears.
Return home 0000000010	HITACHI	Returns both display and DD RAM address to the original position.

Table 7 4-bit Operation, 8-digit × 1-line Display

,

••

Instruction	Display	Operation
Power ON and automatic reset		Initialized. No display appears.
Display ON/OFF control RS R/W DB7 - DB4 0 0 0 0 0 0 0 0 1 1 * *		Display ON. No display appears.
Write data to DD RAM 100100 101000	Н	Writes "H".
Hereafter, control is the same as 8-bit operation.	a an an an an an an an an an an an an an	

Instruction Display Operation Power on and automatic Initialized. reset No display appears. 5 Q 14 Function set This instruction is necessary three times at 100 ms intervals. 000011**** RS R/WDB7 _____ DB0 Function set Sets 8-bit operation and 2-line display. 0000111*** RS R/W DB7 _____ DB0 Display ON/OFF control Display ON. No display appears. 0000011** Write data to DD RAM Write "H". H 1001001.001 Write data to DD RAM Writes "I". HITACHI 1001001001 Set DD RAM address Sets DD RAM address to the top HITACHI of the second line. 0010010000 Write data to DD RAM Writes "M". HITACHI 1001001101 M Write data to DD RAM Writes "O". HITACHI 1001001111 MICROCO Write data to DD RAM Writes "M". HITACHI 1001001101 MICROCOM Display shift Shifts left. ITACHI Both line will be shifted. 00000110** ICROCOM Return home Returns display to the original HITACHI position. 0 0 0 0 0 0 0 0 1 * MICROCOM

Table 8 8-bit Operation, 8-digit × 2 lines Display

HD44102CH (DOT MATRIX LIQUID CRYSTAL GRAPHIC DISPLAY COLUMN DRIVER)

The HD44102CH is a column (segment) driver for dot matrix liquid crystal graphic display systems, storing the display data transferred from a 4-bit or 8-bit microcomputer in the internal display RAM and generating dot matrix liquid crystal driving signals.

Each bit data of display RAM corresponds to ON/OFF of each dot of liquid crystal display to provide more flexible display.

The HD44102CH is produced in the CMOS process. Therefore, the combination with a CMOS microcomputer can accomplish a portable battery drive equipment utilizing the liquid crystal display's lower power dissipation.

The combination of HD44102CH with the row (common) driver HD44103CH facilitates dot matrix liquid crystal graphic display system configuration.

PIN ARRANGEMENT

FEATURES

- Dot matrix liquid crystal graphic display column driver incorporating display RAM.
- Interfaceable to 4.6.2 C The Interfaceable to 4.6.2
 - RAM data directly displayed by internal display RAM
 RAM bit data "1" ON
 RAM bit data "0" OFF
 - Display RAM capacity 50 × 8 × 4 (1600 bits)
 - Internal liquid crystal display driver circuit (segment output)
 50 segment signal drivers
 - Duty factor (can be controlled by external input waveform) Selectable duty factors 1/8, 1/12, 1/16, 1/24, 1/32
 - Wide range of instruction functions
 Display Data, Read/Write, Display ON/OFF, Set Address, Set Display
 Start Page, Set UP/DOWN, Read Status
 - Low power dissipation
 - Power supplies V_{CC} 5V±10%, V_{EE} 0 \sim -5V
 - CMOS process
 - 80-pin flat plastic package

MTABLE OF PIN ASSIGNMENT

Na	Power sup- ply, Clock	Input [.]	Output		Na	Power sup- ply, Clock	Input	Output
1		An the second	V 30	10-11-1	41	Vcc	esta da	
1 2		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1 30	<u>彼</u> し、子 字・ 1	1 46	1		
3		· · · ·	Y 37	1	43		KST	a 1 1 - Den Berner, Den Berlinstein und eine Berlinstein 1 - Den Berner, Den Berlinstein und eine Berlinstein und der Berlinstein und der Berlinstein und der Berlinstein
4			Y 36	1	44		CS1	
5			Y 35]	45		CS 2	
6			Y 34	1	46		CS 3	
7	ľ		Y 33	1	47		E	
8			Y 32	1	48		R∕W	
9			Y 31	1	49		D/I	
10			Y 30	1	50		DB₀	DBo
11			Y 29	1	51		DB	DB
12			Y 28	1	52		DB ₂	DB ₂
13			Y 27	1	53		DB3	DB ₃
14			Y 26	1	54		DB.	DB4
15			Y 25	1	55		DB _s	DB ₅
16	- ·		Y 24	1	56		DB	DB.
17			Y 23	1	57		DB ₇	DB ₇
18			Y 22	1	58		FRM	
19			Y 21	1	59		CL	
20			Y 20	1	60	ø ₁		
21			Y 19		61	\$2		
22			Y 18	1	62	· . · ·	N. C.	· · · · · · · · · · · · · · · · · · ·
23		N. C.		1	63		М	
24			Y 17	1	64	GND	51 A. A.	
25			Y 16		65	Vee		
26			Y 15		66	V ₁	· · · ·	
27			Y14		67	V ₂		
28			Y 13	1	68	V,	-	
29			Y 12		69_	V4		
30			Y11		70	and a second second		Y 50
31			Y 10		71			Y 49
32			Y 9		72			Y 48
33			Y8		.73		· •	Y 47
34			¥7		74			Y 46
35			Y 6		75			Y 45
36			Y 5		76			Y 44
37			Y4		77			Y 43
38			¥ 3		78			Y 42
39			Y 2		79			Y 41
40			Y 1		80			Y 40

(Note) N.C.: Nonconnection pin

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit	Note
Supply voltage (1)	v _{cc}	-0.3 ~ +7.0	v	(1)
Supply voltage (2)	VEE	v_{cc} -13.5 $\sim v_{cc}$ +0.3	V	
Input voltage (1)	v _{T1}	-0.3 ∿ V _{CC} +0.3	v	(1)(2)
Input voltage (2)	v _{T2}	$v_{EE}^{-0.3} \sim v_{CC}^{+0.3}$	V.	(3)
Operating temperature	T _{opr}	_20 ∿ +75	°C	
Storage temperature	T _{stg}	- 55 ∿ +125	°C	

Note 1: Referenced to GND=0.

- Note 2: Applied to input terminals (except V1, V2, V3 and V4), and I/O common terminals.
- Note 3: Applied to terminals V1, V2, V3 and V4.

ELECTRICAL CHARACTERISTICS

••

 $(V_{CC}=+5V\pm10\%, GND=0V, V_{EE}=0-5.5V, Ta=-20+75^{\circ}C)$ (Note 4)

Item	Symbol	Test condition	Min.	Тур	Max.	Unit	Note
Input "High" voltage(CMOS)	VIHC		0.7×V _{CC}	-	v _{cc}	v	5
Input "Low" voltage (CMOS)	V _{ILC}		0	-	0.3×V _{CC}	v	5
Input "High" voltage (TTL)	VIHT	-	2.0	-	v _{cc}	v	6
Input "Low" voltage (TTL)	V _{ILT}		0	-	+0.8	v	6
Output "High" voltage	v _{OH}	I _{OH} =-250µA	+3.5	-	-	v	7
Output "Low" voltage	V _{OL}	I _{OL} =+1.6mA	_	-	+0.4	v	7
Xi-Xj ON resistance	R _{ON}	V _{EE} =-5V±10%, Load current 100µA	-	-	7.5	kΩ	
Input leakage current (1)	I _{IL1}	VIN=VCC~GND	-1	-	1	μA	8
Input leakage current (2)	I _{IL2}	VIN=VCCVVEE	-2	-	2	μA	9
Operating frequency	FCLK	φl φ2 frequency	25	-	250	kHz	10
Dissipation current (1)	ICC1	F _{clk} =200kHz frame= 65Hz during display	-	-	100	μA	11
Dissipation current (2)	I _{CC2}	Access cycle 1MHz at access	-	-	500	μA	12

Note 4: Specified within this range unless otherwise noted.
Note 5: Applied to M, FRM, CL, BS, RST, φ1, φ2.
Note 6: Applied to CS1 to CS3, E, D/I, R/W and DBO to DB7.
Note 7: Applied to DBO to DB7.
Sicte 8: Applied to input terminals, M, FRM, CL, BS, RST, φ1, φ2, CS1 to CS3, E, D/I and R/W, and I/O common terminals
Note 9: Applied to V1, V2, V3 and V4.
Note 10: φ1 and φ2 AC characteristics.

1.2.2.1

	Symbol	Mín.	Тур	Max.	Unit
Duty	Duty	20	25	30	X
Fall time	tf	-	-	100	ns
Rise time	tr	-	-	100	ns
Phase difference time	t ₁₂	0.8		-	μs
Phase difference time	t ₂₁	0.8		. –	μs
$T_1 + T_h$		-	-	40	μs

- Note 11: Measured by V_{CC} terminal at no output load, at 1/32 duty, and frame frequency of 65Hz, in checker pattern display. Access from the CPU is stopping.
- Note 12: Measured by V_{CC} terminal at no output load, 1/32 duty and frame frequency of 65Hz.

•INTERFACE AC CHARACTERISTICS

Item	Symbol	Min.	Тур	Max.	Unit	Note
E cycle time	tcyc	1000	-	-	ns	13, 14
E high level width	··· PWEH	450	-	2000 - 1000	ns	13, 14
E low level width	PWEL	450	-	-	ns	13, 14
E rise time .	tr	-	-	25	ns	13, 14
E fall time	tf	-	_	25	ns	13, 14
Address setup time	t _{AS}	140	-	-	ns	13, 14
Address hold time	t _{AH}	10	-	-	ns	13, 14
Data setup time	tDSW	200	-	-	ns	13
Data delay time	tDDR	-	-	320	ns	14, 15
Data hold time at write	t _{DHW}	10	-	-	ns	13
Data hold time at read	t _{DHR}	20	-	-	ns	14 _

Note 13: At CPU write

÷.

1

Note 14: At CPU read

· · · · ·

Sec. 2

Note 15: DBO to DB7 load circuits

Note 16: Display OFF at initial power up.

The HD44102CH can be placed in the display OFF state by setting terminal RST to "LOW" at initial power up.

No instruction other than the Read Status cannot be accepted while the RST is in the "Low" level.

			Min.	Тур	ha	Galt
1	Reset time	t _{RST}	1.0	-	-	μs
	Rise time	tr		-	200	ns

TERMINAL FUNCTIONS DESCRIPTION

Signal name	Number of terminals	1/0	Function									
¥1~¥50	50	0	Liquid crystal display drive output. Relationship among output level, M and display data (D):									
			M _ 1 _ 0 _ f									
at server and the server of th			D 1 0 1 0 Output level V_1 V_3 V_2 V_4									
CS1~CS3	3	I	Chip select									
			CS1CS2CS3StateLLLNon-selectedLLHNon-selectedLHLNon-selectedLHHSelected read/write enableHLLSelected write enable onlyHLHSelected write enable onlyHHLSelected write enable onlyHHLSelected write enable onlyHHHSelected read/write enable									
E	1	I	Enable At write (R/W=L): Data of DBO to DB7 is latched at the fall of E. At read (R/W=H): Data appears at DBO to DB7 while E is in "High" level									

	Signal name	Number of terminals	1/0	Function								
Ster Core	R/W D/I	1	1 9 in:	Read/Write R/W=H: Data appears at DBO to DB7 and can be read by the CPU when E=H and CS2/CS3="H". R/W=L: DBO to DB7 can accept input when CS2/CS3=H or CS1=H. Data/Instruction D/I=H: Indicates that the data of DBO to DB7 is								
			<u>.</u>	D/I=L: Indicates that the data of BDO to DB7 is display control data.								
	DBO~ĐB7	8	1/0	Data bus, Three-state I/O common terminal E R/W CS1 CS2 CS3 State of DB0 to DB7 H H * H H Output state * L H * Input state, * L * H H Others High impedance								
	М	1	I	Signal to convert liquid crystal display drive output to AC								
	CL	1	I	Display synchronous signal At the rise of CL signal, the liquid crystal dis- play drive signal corresponding to display data appears.								
	FRM	1	I	Display synchronous signal (frame signal) This signal presets the 5-bit display line counter and synchronizes a common signal with the frame timing when the FRM signal becomes high.								
	φ1, φ2	2	I	2-phase clock signal for internal operation The ϕ l and ϕ 2 clocks are used to perform the operations (input/output of display data and exe- cution of instructions) other than display.								
	RST	1	I	Reset signal The display disappears and Y address counter is set in the UP counter state by setting the RST signal to "Low" level. After releasing reset, the dis- play OFF state and up mode is held until the state is changed by the instruction.								
	BS	1	I	Bus select signal BS=L: DBO to DB7 operate in 8-bit length. BS=H: DB4 to DB7 are valid in 4-bit length only. 8-bit data is accessed twice in the high and low order.								

	Signal name	Number of terminals	1/0	Function
	V1,V2, V3,V4	4	6	Power supply for liquid crystal display drive. Vl and V2: Selection voltage V3 and V4: Non-selection voltage
3 a	V _{CC} GND V _{EE}	3	na na Sila	Power supply. V _{CC} -GND: Power supply for internal logic V _{CC} -V _{EE} : Power supply for liquid crystal display drive circuit logic

FUNCTION OF EACH BLOCK

• Interface Logic

The HD44102CH can use the data bus in 4-bit or 8-bit word length to enable the interface to a 4-bit or 8-bit CPU.

(1) 4-bit mode (BS=H)

8-bit data is transferred twice for every 4 bits through the data bus when the BS signal is high. The data bus uses the high order 4 bits (DB4 to DB7). First, the high order 4 bits (DB4 to DB7 in 8-bit data length) is transferred and then the low order 4 bits (DB0 to DB3 in 8bit data length).

(Note) Execute the instructions other than Status Read in 4-bit length each. The busy flag is set at the fall of the second E signal. The Status Read is executed once. After the execution of the Status Read, the first 4 bits are considered the high order 4 bits. Therefore, if the busy flag is checked after the transfer of the high order 4 bits, retransfer data from the higher order bits. No busy check is required in the transfer between the high and low order bits.

(2) 8-bit mode (BS=L)

If the BS signal is low, the 8 data buses (DBO to DB7) are used for data transfer.

- DB7 ... MSB (Most significant bit)
 - DBO ... LSB (Least significant bit)

For AC timing, refer to (Note 12) to (Note 15) of "ELECTRICAL CHARACTER-ISTICS".

•Input Register

8-bit data is written into this register by the CPU. The instruction and display data are distinguished by the 8-bit data and D/I signal and then a given operation is performed. Data is received at the fall of E signal when the CS is in the select state and R/W is write state.

• Output Register

The output register holds the data read from the display data RAM. After display data is read, the display data at the address now indicated is set in this output register. After that, the address is increased or decreased by 1. Therefore, when an address is set, the correct data doesn't appear at the read of the first display data. The data at a specified address appears at the second read of data.

• X,Y Address Counter

The XY address counter holds an address for reading/writing display data RAM. An address is set in it by the instruction. The Y address register is composed of a 50-bit UP/DOWN counter. The address is increased or decreased by 1 by the read/write operation of display data. The UP/DOWN mode can be determined by the instruction or RST signal. The Y address register loops the values of 0 to 49 to count. The X address register has no count function.

• Display ON/OFF Flip Flop

This flip flop is set to ON/OFF state by the instruction or RST signal. In the OFF state, the latch of display data RAM output is held reset and the display data output is set to 0. Therefore, display disappears. In the ON state, the display data appears according to the data in the RAM and is displayed. The display data in the RAM is independent of the display ON/OFF.

● UP/DOWN Flip Flop

This flip flop determines the count mode of the Y address counter. In the UP mode, the Y address register is increased by 1. 0 follows 49. In the DOWN mode, the register is decreased by 1. 0 is followed by 49.

• Display Page Register

The display page register holds the 2-bit data that indicates a display start page. This value is preset to the high order 2 bits of the Z address counter by the FRM signal. This value indicates the value of the display RAM page displayed at the top of the screen.

• Busy Flag

After the instruction other than Status Read is accepted, the busy flag is set during its effective period, and reset when the instruction is not effective. The value can be read out on DB7 by the Status Read instruction. The HD44102CH cannot accept any other instructions than the Status Read in the busy state. Make sure the busy flag is reset before the issue of instruction.

• Z Address Counter

The Z address counter is a 5-bit counter that counts up at the fall of CL signal and generates an address for outputing the display data synchronized with the common signal. O is preset to the low order 3 bits and a display start page to the high order 2 bits by the FRM signal.

• Latch

The display data from the display data RAM is latched at the rise of CL signal.

• Liquid Crystal Driver Circuit

Each of 50 driver circuits is a multiplex circuit composed of 4 CMOS switches. The combination of latched display data and M signal causes one of the 4 liquid crystal driver levels, V1, V2, V3 and V4 to be output.

DISPLAY CONTROL INSTRUCTIONS

(1) Read/Write Display Data

		MSB	DB					LSB		
R/W	D/I	7	6	5	4	3	32		0	
1	1		(Dis	pla	y d	ata)		Read (CPU ← HD44102CH)
0	1		(Dis	pla	y d	ata)		Write (CPU + HD44102CH)

Sends or receives data to or from the address of the display RAM specified in advance. However, the dummy read may be required for reading display data. Refer to the description of the output register in the FUNCTION OF EACH BLOCK.

(2) Display ON/OFF

		MSB			D	B			LSB	
R/W	D/I	7	6	5	4	3	2	1	0	
0	0	0	0	1	1	1	0	0	1	Display ON
0	0	0	0	1	1	1	0	0	0	Display OFF

Controls the ON/OFF of display. RAM data is not affected.

(3) Set X/Y Address

1997 - 1997 - 1999 - 19	1. e	MS B	5		Ľ)B			LSI	3		Y address	
R/W	D/I	7	6	5	4	3	2	1	0		0 1		48_4
0	0	0	0								00 M	Page C	
0	0	0	1	В	ina	ry	nun	be	rs		01 L	Page 1	
0	0	1	0	0	of 0	1~49)				10	Page 2	
0	0		1	L	,,				ر			Page 3	
	•	X ad (pag	ldre ;e)	SS	Y (a	add Iddr	lres ess	s ;)			M	Display Data I	RAM

(4) Display Start Page

		MSB			DB				LSB	
R/W	D/I	7	6	5	4	3	2	1	0	
0	0	0	0	1	1	1	1	1	0	Refer to Fig. A.
0	0	0	1	1	1	1	1	1	0	Refer to Fig. B.
0	0	1	0	1	1	1	1	1	0	Refer to Fig. C.
0	0	1	1	1	1	1	1	1	0	Refer to Fig. D.
\sim										
Display										
start page										
		1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111		1.15						

Specifies a RAM page displayed at the top of the screen. Display is as shown in Figs. A, B, C and D respectively. When the display duty is more than 1/32 (For example, 1/24, 1/16), display begins at a page specified by the display start page only by the number of lines.

an a tao ina amin'ny sorana amin'ny sorana amin'ny sorana amin'ny sorana amin'ny sorana amin'ny sorana amin'ny

i en de la servición de la segundad

(5) UP/DOWN Set

R/₩	D/I	7	6	5	4	3	2	1	0	
0	0	0	0	1	1	1	0	1	1	UP mode
0	0	0	0	1	1	1	0	1	0	DOWN mode

Sets Y address register in the UP/DOWN counter mode.

(6) Status Read

ECONNECTION BETWEEN LCD DRIVERS (EXAMPLE OF 1/32 DUTY)

INTERFACE TO CPU

(1) Example of connection to HD6800

Example of Connection to HD6800 Series

In the decoder given in this example, the addresses of HD44102CH in the address space of HD6800 are:

Read/write of display data :	\$'FFFF'
Write of display instruction:	\$'FFFE'
Read of status :	\$'FFFE'

Thus, the HD44102CH can be controlled by reading/writing data at these addresses.

(2) Example of connection to HD6801

- The HD6801 is set to mode 5. P10 \sim P14 are used as output ports, and P30 \sim P37 are-used-as data buses.
- The 74LS154 is a 4-to-16 decoder that decodes 4 bits of P10 \sim P13 to select the chips.
- Therefore, the HD44102CH can be controlled by selecting the chips through P10 ~P13 and specifying the D/I signal through P14 in advance, and later conducting memory Read or Write for external memory space (\$0100 to \$01FF) of HD6801. The IOS signal is output to SC1, and the R/W signal is output to SC2.
- For further details on HD6800 and HD6801, refer to each manual.

CONNECTION TO LIQUID CRYSTAL DISPLAY

(a) Example of connection of 1/32 duty, 1-screen display

(b) Example of connection of 1/16 duty, 1-screen display

and the second second

HD44103CH (DOT MATRIX LIQUID CRYSTAL GRAPHIC DISPLAY COMMON DRIVER)

The HD44103CH is a common signal driver for dot matrix liquid crystal graphic display systems. It generates the timing signals required for display with its internal oscillator and supplies them to the column driver (HD44102CH) to control display, also automatically scanning the common signals of the liquid crystal according to the display duty. It can select 5 types of display duties ratio: 1/8, 1/12, 1/16, 1/24 and 1/32. 20 driver output lines are provided, and the impedance is low (500Ω max.) to enable a large screen to be driven.

FEATURES

- Dot matrix liquid crystal graphic display common driver incorporating the timing generation circuit in it.
- Internal oscillator (Oscillation frequency can be selected by attaching an oscillation resistor and an oscillation capacity)
- Generates display timing signals.
- · 20-bit bidirectional shift register for generating common signals
- · 20 liquid crystal driver circuits with low output impedance
- Selectable display duty ratio: 1/8, 1/12, 1/16, 1/24, 1/32
- Low power dissipation
- Power supplies: V_{CC} ... +5V±10%, V_{EE} ... 0 to -5.5V
- CMOS process
- 60-pin plastic flat package

BLOCK DIAGRAM

• TERMINAL ARRANGEMENT LIST

Na	Power sup- ply, Clock	Input	Output		Na	Power sup- ply, Clock	Input	Output
1			X 14		31	CR		
2			X 13		32			φ ₁
3			X 12		33			Ø2
4			X 11		34	GND		
5			X 10	Î I	35		FS	
6			X 9		36		DS1	
7		N. C.			37		N. C.	
8			X 8		38		N. C.	
9			X 7		39		N. C.	
10		ĺ	X 6		40		DS 2	
11			X 5		41		DS 3	
12		N.C.	IX	in	42		M	M
13	÷ ē	N.C.			43			FRM
14		Ν.С.			44		SHL	
15	5	N.C.			45	Vcc		
16		•-	X 4		46		N. C.	
17			X 3	. (47		N. C.	
18			X 2	` [48		N.C.	
19			X 1	[[49		M⁄S	-
20	V ₁			[50	* 	CL	CL
21		N.C.		[51		N. C.	-
22		N.C.		. [52	e	N. C.	
23	V z			[53		N.C.	
24	Vs			· [54		DR	DR
25	V 6			.[55			X 20
26	Vee			. [56			X 19
27		DL	DL	ſ	57			X 18
28	С			[58			X 17
29	Vsub	Connect	to V _{CC} .	[59	-	-	X 16
30	R				60			X 15

(Note) N.C.: Unused terminal Connect V_{SUB} to V_{CC}. • ABSOLUTE MAXIMUM RATINGS

		and the second second second second second second second second second second second second second second second		
Item	Symbol	Rated value	Unit	Note
Supply voltage (1)	v _{cc}	-0.3 ~ +7.0	V	(1)
Supply voltage (2)	V _{EE}	$v_{\rm CC}$ -13.5 ~ $v_{\rm CC}$ +0.3	V	(14)
Terminal voltage (1)	V _{T1}	-0.3 ∿ V _{CC} +0.3	V	(1), (2)
Terminal voltage (2)	v _{T2}	$v_{\rm EE} = 0.3 \sim v_{\rm CC} = 0.3$	V	···(3)
Operating-temperature	T _{opr}	-20 ~ +75	°C	
Storage temperature	T _{stg}	-55 ~ +125	°C	

Note 1: Referenced to GND=0.

Note 2: Applied to input terminals and I/O common terminals except V1, V2, V3 and V4.

Note 3: Applied to terminals V1, V2, V3 and V4.

Note 14: Connect a protection resistor of $220\Omega\pm5\%$ to V_{EE} power supply in series.

• ELECTRICAL CHARACTERISTICS

 $(V_{CC}=+5V\pm10\%, GND=0V, V_{EE}=0 \text{ to } -5.5V, Ta=-20 \text{ to } +75^{\circ}C)$ (Note 4)

Item	Symbol	Test condition	Min.	Тур	Max.	Unit	Note
Input "high" voltage	V _{IH}		0.7×V _{CC}	-	v _{cc}	v	(5)
Input "low" voltage	VIL		0	_	0.3×V _{CC}	v	(5)
Output "high" voltage	v _{OH}	I _{OH} =-400µА	V _{CC} -0.4	-	-	v	(6)
Output "low" voltage	V _{OL}	I _{OL} =+400μA	-	-	0.4	v	(6)
Vi-Xj ON resistance	R _{ON}	V _{EE} =-5V±10%,Load current ±150µA	-	-	500	Ω	
Input leakage current (1)	I _{IL1}	VIN=VCC~GND	-1	-	1	μA	(7)
Input leakage current (2)	I _{IL2}	VIN=VCC~VEE	-2	-	2	μA	(8)
Shift frequency	fsft	In slave mode		-	50	kHz	(9)
Oscillation frequency	fosc	$R_{f}=70k\Omega 27$, $C_{f}=10pF\pm57$	300	430	560	kHz	(10)
External clock operating frequency	f _{cp}		50	-	560	kHz	
External clock duty	Duty		45	50	55	%	in
External clock rise time	trcp		-	-	50	ns	(11)
External clock fall time	tfcp		_	-	50	ns	(11)

Item	Symbol	Test condition	Min.	Тур	Max.	Unit	Note
Dissipation current (master)	Pwl	CR oscillation= 430kHz	-	-	4.4	mW	(12)
Dissipation current (slave)	Pw2	Frame frequency =70Hz	-	-	1.1	mW	(13)

Note 4: Specified within this range unless otherwise noted.

Note 5: Applied to CR, FS, DS1 to DS3, M, SHL, M/S, CL, DR and DL.

Note 6: Applied to DL, DR, M, FRM, CL, $\phi 1$ and $\phi 2$.

Note 7: Applied to input terminals CR, FS, DS1 to DS3, SHL and M/S, and I/O common terminals DL, DR, M and CL at high impedance.

Note 8: Applied to V1, V2, V5 and V6.

Note 9: Shift operation timing

Note 10: Relationship between oscillation frequency and Rf/Cf

The values of Rf and Cf are typical values. The oscillation frequency varies with the mounting condition. Adjust oscillation frequency to a required value.

Note 12: Measured by V_{CC} terminal at output non-load of $R_f = 70 k\Omega \pm 2\%$ and $C_f = 10 pF \pm 5\%$, 1/32 duty in the master mode.

٢

ł

- Note 13: Measured by V_{CC} terminal at output non-load, 1/32 duty, frame frequency of 70Hz in the slave mode.
- TERMINAL FUNCTIONS

Terminal name	Number of terminals	1/0	Function
X1 _{\u03cb} X20	20	0	Liquid crystal display driver output. Relationship among output level, M and data (D) in shift register.
			M _ 1 _ 0
	an an an an an an an an an an an an an a		
			$\begin{array}{c c} \text{Output} & V_z & V_c & V_s \\ \text{level} & & & & & \\ \end{array}$
CR, R, C	3		Oscillator Rf Cf R CR C CR oscillator
	an an Araba Araba		
м	1	1/0	Signal for converting liquid crystal display driver signal into AC
en en secono de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la co			Master: Output terminal Slave: Thout Prraying 0

Terminal name	Number of terminals	1/0	Function								
CL	1	1/0	Shift register shift clock. Master: Output terminal Slave : Input terminal								
FRM	1	0	Frame signal, Display synchronous signal								
DS 1~DS 3	3	I	Display duty ratio select. Display duty ratio $1/24 1/12 X 1/32 1/16 1/8$ $DS1 L H L H L H L H$ $DS2 L L H H L H H$ $DS3 L L L H H H H$								
FS	1	I	<pre>Frequency select. The relationship between the frame frequency f_{FRM} and the oscillation frequency foSC is as follows: FS="H": f_{OSC} = 6144 × f_{FPM} (1) FS="L": f_{OSC} = 3072 × f_{FRM} (2) Example 1) When FS="H", adjust Rf and Cf so that the oscillation frequency is approx. 430kHz if the frame frequency is 70Hz. Example 2) When FS="L", adjust Rf and Cf so that the oscillation is approx. 215kHz, in order to obtain the same display wave- forms as Example 1. When compared with Example 1, the power dissipation is reduced because of the operation at lower frequency. However, the operating clocks \$1\$ and \$2\$ supplied to the column driver have lower frequencies. There- fore, the access time of the column driver HD44102CH becomes longer.</pre>								
DL, DR	2	1/0	Data I/O terminals of bidirectional shift register.								
SHL	1	I	Shift direction select of bidirectional shift register. SHL Shift direction H DL + DR L DL + DR								

Terminal name	Number of terminals	I/O Function			
M/S	1	Ι	Master/slave select.		
			M/S="H": Master mode The oscillator and timing generation circuit operate to supply display timing signals to the display second bound of the domain ter- minute, 12, 12, 13, 14 and 01 to placed in the output state.		
م م م ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب			M/S="L": Slave mode The timing generation circuit stops operating. The oscillator is not required. Connect ter- minal CR to V_{CC} . Open terminals C and R. One (determined by SHL) of DL and DR, and terminals M and CL are placed in the input state. Connect M, CL and one of DL and DR of the master to the respective terminals. Connect FD, DS1, DS2 and DS3 to V_{CC} .		
			When display buty ratio is 1/8, 1/12 or 1/16, one HD44103CH is required. Use it in the master mode.		
			When display duty ratio is $1/24$ or $1/32$, two HD44103CHs are required. Use the one in the master mode to drive common signals 1 to 20, and the other in the slave mode to drive common signals 21 to 24 (32)		
φ1, φ2	2	0	Operating clock output terminals for HD44102CH.		
			The frequencies of ϕl and $\phi 2$ become half of oscillation frequency.		
V1, V2, V5, V6	4		Liquid crystal display driver level power supply Vl and V2: Selected level V5 and V6: Non-selected level		
V _{CC} GND V _{EE}	3		Power supply. V _{CC} -GND: Power supply for internal logic V _{CC} -V _{EE} : Power supply for driver circuit logic		

na tu ≪at_{ana} tu ML

BLOCK FUNCTIONS

Oscillator

The oscillator is a CR oscillator that attaches an oscillation resistor Rf and oscillation capacity Cf. The oscillation frequency varies with the values of Rf and Cf and the mounting conditions. Refer to ELECTRICAL CHARACTERISTICS (Note 10) to make proper adjustment.

Timing Generation Circuit

The timing generation circuit divides the signals from the oscillator and generates display timing signals (M, CL and FRM) and operating clock (ϕ l and ϕ 2) for HD44102CH according to the display duty ratio set by DS1 to DS3. In the slave mode, this block stops operating. It is meaningless to set FS, DS1 to DS3. However, connect them to V_{CC} to prevent floating current.

Bidirectional Shift Register

This is a 20-bit bidirectional shift register. The shift direction is determined by the SHL. The data input from DL or DR performs a shift opera-tion at the rise of shift clock CL.

Liquid Crystal Display Driver Circuit

Each of 20 driver circuits is a multiplex circuit composed of four CMOS switches. The combination of the data from the shift register with M signal allows one of the four liquid crystal display driver levels V1, V2, V5 and V6 to be transferred to the output terminals.

• APPLICATIONS

Refer to the applications of the HD44102CH.

HD61830 (DOT MATRIX LIQUID CRYSTAL GRAPHIC DISPLAY CONTROLLER)

The HD61830 is a dot matrix liquid crystal graphic display controller LSI that stores the display data sent from an 8-bit microcomputer in the external RAM to generate dot matrix liquid crystal driving signals.

It is possible to select the graphic mode in which the 1-bit data of the external RAM corresponds to the ON/OFF state of 1 dot on liquid crystal display and the character mode in which characters are displayed by storing character codes in the external RAM and developing them into the dot patterns with the internal character generator ROM. Both modes can be provided for various applications.

The HD61830 is produced in the CMOS process. Thus, the combination with a CMOS microcomputer can accomplish a liquid crystal display device with lower power dissipation.

PIN ARRANGEMENT

FEATURES

- Dot matrix liquid crystal graphic display controller
- Display control capacity
 - Craphic mode 512K dc (2¹⁶) es) Character mode 4096 maracters (2¹⁶ characters)
- Internal character generator ROM 7360 bits
 160 types of 5×7 dot character fonts
 32 types of 5×11 dot character fonts
 (Can be extended to 256 types (4K bytes max.) by external ROM)
- Interfaceable to 8-bit MPU
- Display duty (Can be selected by a program)
 Static to 1/128 duty selectable
- Various instruction functions Scroll, Cursor ON/OFF/blink, Character blink, Bit manipulation
- Display method Selectable A or B types
- Internal oscillator (with external resistor and capacitor)
- Low power dissipation
- Power supply: Single +5V
- CMOS process
- 60-pin flat plastic package

extended external ROM.

BLOCK DIAGRAM

BBLUCK FUNCTIONS

• Registers

The HD61830 has the five types of registers: instruction register (IR), data input register (DIR), data output register (DOR), dot registers (DR) and entrol register (MCR).

The IR is a 4-bit register which stores the instruction codes for specifying MCR, DR, a start address register, a cursor address register and so on. The lower order 4 bits DBO to DB3 of data buses are written in it.

The DIR is an 8-bit register used to temporarily store the data written into the external RAM, DR, MCR and so on.

The DOR is an 8-bit register used to temporarily store the data read from the external RAM. Cursor address information is written into the CAC through the DIR. When the memory read instruction is set in the IR (latched at the falling edge of E signal), the data of external RAM is read to DOR by an internal operation. The data is transferred to the MPU by reading the DOR with the next instruction (the contents of DOR are output to the data bus when E is at "High" level).

The DR are registers used to store the dot informations such as character pitches and the number of vertical dots and so on. The information sent from the MPU is written into the DR via the DIR.

The MCR is a 6-bit register used to store the data which specifies states of display such as display ON/OFF and cursor ON/OFF/blink. The information sent from the MPU is written in it via the DIR.

• Busy Flag (BF)

With "1", the busy flag indicates the HD61830 is performing an internal operation. The next instruction cannot be accepted. As shown in Control Instruction(14), the busy flag is output on DB7 under the conditions of RS=1, R/W=1 and E=1. Make sure the busy flag is "0" before writing the next instruction.

• Dot Counters (DC)

The dot counters are counters that generate liquid crystal display timing according to the contents of DR.

Refresh Address Counters (RAC1/RAC2)

The refresh address counters are counters used to control the addresses of external RAM, having the two types: RAC1 and RAC2. The RAC1 is used for upper half of screen and the RAC2 for lower half. In the graphic mode, 16bit data is output and used as the address signal of external RAM. In the character mode, the high order 4 bits (MA12vMA15) are ignored. The 4 bits of line address counter are output and used as the address of extended ROM.

Character Generator ROM

The character generator ROM has 7360 bits in total and stores 192 types of character data. A character code (8 bits) from the external RAM and a line code (4 bits) from the line address counter are applied to its address signals, and it outputs 5-bit dot data.

The character font is 5×7 (160 types) or 5×11 (32 types). The use of extended ROM allows 8×16 (256 types max.) to be used.

Cursor Address Counter

The cursor address counter is a 16-bit counter that can be preset by the instruction. It is used to hold an address when the data of external RAM is read or written (when display dot data or a character code is read or written). The value of cursor address counter is automatically increased after the display data is read or written and after the Set/Clear Bit instruction is executed.

• Cursor Signal Generator

The cursor can be displayed by the instruction in the character mode. The cursor is automatically generated on the display specified by the cursor address and cursor position.

Parallel/Serial Conversion

The parallel data sent from the external RAM, character generator ROM or extended ROM is converted into serial data by two parallel/serial conversion circuits and transferred to the liquid crystal driver circuits for upper screen and lower screen simultaneously.

TERMINAL FUNCTIONS

	Name	Function
19 19 19	DBO ₂ 7	Data bus Three-state I/O common terminal Data is transferred to MPU through DBO to DB7.
	CS	Chip select: . $C\overline{S}=0$.
	R/W	Read/Write $R/W=1$ MPU \leftarrow HD61830 $R/W=0$ MPU \rightarrow HD61830
	RS	Register select RS=1 Instruction register RS=0 Data register
	E	Enable Data is written at the fall of E. Data can be read while E is l.
	CR, R, C	CR oscillator
	RES	Reset Reset=0 results in display OFF and slave mode.
	MA0~15	External RAM address output
	• • • • • • • • • • • • • • • • • • •	In character mode, the line code for external CG is output through MA12 to MA15 ("O": Character 1st line, "F": Character 16th line).
	MD0-07	Display data bus Three-state I/O common terminal.
	RD0∿7	ROM data input Dot data from external character generator is input.
	WE	Write enable Write signal for external RAM.
	CL2	Display data shift clock for LCD drivers.
	CL1	Display data latch signal for LCD drivers.
	FLM	Frame signal for display synchronization.
	MA	Signal for converting liquid crystal driving signal into AC, A type
	MB and the second	Signal for converting liquid crystal driving signal into AC, B type
	D1, D2	Display data serial output
		Dl For upper half of screen D2 For lower half of screen
	СРО	Clock signal for HD61830 in slave mode.
	SYNC	Synchronous signal for parallel operation. Three-state I/O common terminal (with pull-up MOS).
		Master Synchronous signal is output. Slave Synchronous signal is input.

■ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit	Note
Supply voltage	VCC	-0.3 +7.0	town of V	(1)
Terminal voltage	v terreter VT ,∞	-0.3 ~ V _{CC} +0.3	v	(1)
Operating temperature	T _{opr}	-20 ~ +75	°C	
Storage temperature	T _{stg}	-55 ~ +125	°C	

Note 1: All voltage is referenced to GND=0.

ELECTRICAL CHARACTERISTICS

 $(V_{CC}=5V\pm5\%, GND=0V, Ta=-20+75^{\circ}C)$

Item	Symbol	Test condition	Min.	Тур	Max.	Unit	Note
Input "High" voltage (TTL)	VIH		2.2	-	Vcc	V a	(2)
Input "Low" voltage (TTL)	VIL		0	-	0.8	V	(3)
Input "High" voltage	VIHR		3.0	-	v _{cc}	V	(4)
Input "High" voltage (CMOS)	VIHC		0.7v _{CC}	-	v _{CC}	v	(5)
Input "Low" voltage (CMOS)	VILC		0	-	0.3V _{CC}	v	(5)
Output "High" voltage (TTL)	V _{OH}	-I _{OH} =0.6mA	V _{CC} -0.4	-	V _{CC}	v	(6)
Output "Low" voltage (TTL)	VOL	I _{OL} =1.6mA	0	-	0.4	v	(6)
Output "High" voltage(CMOS)	V _{OHC}	-I _{OH} =0.6mA	V _{CC} -0.4	-	v _{cc}	v	(7)
Output "Low" voltage (CMOS)	VOLC	I _{OL} =0.6mA	0	-	0.4	V	(7)
Leakage current	I _{IN}	v _{IN} =0~v _{CC}	-5	-	5	μA	(8)
Output leakage current	I _{OUT}	v _{out} =0∿v _{cc}	-10	-	10	, μΑ	(9)
Power dissipation (1)	P _{wl}	CR oscillation fosc=500kHz	-	10	15	mW	(10)
Power dissipation (2)	Pw2	External clock fcp=1MHz	-	20	30	mW	(10)
Internal clock operation							
Clock oscillation frequency	fosc	Cf=15pF±5% Rf=39kΩ±2%	350	500	650	kHz	(11)

and the second second second second second second second second second second second second second second secon

Item	Symbol	Test condition	Min.	Тур	Max.	Unit	Note
External clock operation					-		
External clock operating frequency	f _{cp}		100	500	1100	kHz	(12)
External clock duty	Duty		47.5	50	52.5	7.	(12)
External clock rise time	~.cp		- 	-	0.05	μs	
External clock fall time	tfcp		-	-	0.05	μs	(12)
Pull-up current	I _{PL}	VIN=GND	2	10	20	μA	(13)

Note: The I/O terminals are of the following configuration:

Shape of Input Terminal

Applicable terminal: \overline{CS} , E, RS, R/W, RES, RDO to RD7, CR

PMOS

NMOS

Shape of Output Terminal

Applicable terminal: CL1, CL2, MA, MB, FLM, COP, D1, D2, WE, MAU MA15

• Shape of I/O Common Terminal

Vcc

Applicable terminal: DBOvDB7, SYNC, MDOvMD7

- Note 2: Applied to input terminals and I/O common terminals, except terminals SYNC, CR and RES.
- Note 3: Applied to input terminals and I/O common terminals, except terminal SYNC and CR.

Note 4: Applied to terminal RES.

Note 5: Applied to terminals SYNC and CR.

Note 6: Applied toutominel annoan I and the High Michael Market Michael

Note 7: Applied to terminals SYNC, CPO, FLM, CL1, CL2, D1, D2, MA and MB.

. . .

- Note 8: Applied to input terminals.
- Note 9: Applied to I/O common terminals. However, the current which flows into the output drive MOS is excluded.
- Note 10: The current which flows into the input and output circuits is excluded. When the input of CMOS is in the intermediate level, current flows through the input circuit, resulting in the increase of power supply current. To avoid this, input must be fixed at high or low.

The relationship between the operating frequency and the power dissipation is given below.

Note 11: Applied to the operation of internal oscillator when oscillation resistor Rf and oscillation capacity Cf are used.

The relationship among oscillation frequency, Rf and Cf is given below.

Note 12: Applied to external clock operation.

Note 13: Applied to SYNC, DBOvDB7, and RDOvRD7.

TIMING CHARACTERISTICS

•Bus Read/Write Operation (Interface to MPU)

Item	Symbol	Min.	Тур	Max.	Unit		
Enable cycle time	tcyc	1.0	-	-	μs		
Enchle sules with	"High" level	tweh	0.45	-	-	μs	
Luadie puise width	"Low" level	twel	0.45	-	-	μs	
Enable rise time	ter	-	-	25	ns		
Enable fall time	tEf	_	1	25	ns	-	
Setup time		t _{AS}	140	-	-	ns	
Data setup time		t dsw	225	-	-	ns	
Data delay time		t _{DDR}	_	-	225	ns	Note
Data hold time	tH	10	-	-	ns		
Address hold time	t _{AH}	10	-	-	ns		
Data hold time		t _{DH}	20	-	_	ns	

Note: The following load circuit is connected for specification:

 $R_L = 2.4 \text{ k} \Omega$ $R = 11 \text{ k} \Omega$ C = 130 pFDiodes Dl to D4: 1S2074 (H)

●Interface to External RAM and ROM

Ite	2 m	Symbol	Min.	Тур	Max.	Unit
SYNC delay time		tDSY	-	-	200	ns
SYNC pulse width	"High" level	twsy	900	-	-	ns
CPO cycle time		tCCP0	900	-	-	ns
CPO pulso width	"High" level				-	ns
cro puise wiach	"Low" level	twcpol	450	-	-	ns
MAO to MA15 refresh	delay time	t DMAR	-	-	200	ns
MAO to MA15 write a	ddress delay time	t DMAW	-	-	200	ns
MDO to MD7 write da	ta delay time	t DMDW	_	-	200	ns
MDO to MD7, RDO to	RD7 setup time	tSMD	900	-	-	ns
Memory address setu	p time	tsmaw	250	1	-	ns
Memory data setup t	tsmdw	250	-	-	ns	
WE delay time		tDWE	-	-	200	ns
WE pulse width ("Lo	w" level)	twwe	450	-	-	ns

Note 1: No load is applied to all the output terminals.

Note 2: "*" indicates the delay time of RAM and ROM.

Item		Symbol	Min.	Тур	Max.	Unit
Clock pulse width	("High" level)	twcl1	450	-	-	ns
Clock delay time	t _{DCL2}	-	-	200	ns	
Clock cycle time		twclz	900	-	-	ns
Clock pulse width	"High" level	twch	450	-	-	ns
	"Low" level	twcl	450	-	-	ns
Data delay time		t DM	-	-	300	ns
Data delay time		t _{DF}	-	-	300	ns
Data delay time		t _{DD}	-	-	200	ns
Data setup time		tsd	250	-	-	ns

Note: No load is applied to all the output terminals (MA, MB, FLM, Dl and D2).

Display is controlled by writing data into the instruction register and 13 data registers. The RS signal distinguishes the instruction register from the data registers. 8-bit data is written into the instruction register with RS=1, and the code of data register is specified. The 8-bit data is written in the data register and the specified instruction is executed with RS=0.

During the execution of the instruction, no new instruction can be accepted. Since the busy flag is set during this, read the busy flag and make sure it is 0 before writing the next instruction.

(1) Mode control

Code \$"00" (hexadecimal) written into the instruction register specifies the mode control register.

Register	R/W	RS	DB 7	DB6	DB 5	DB4	DB 3	DB2	DB1	DBO	
Instruction reg.	0	1	0	0	0	0	0	0	0	0	
Mode control reg.	0	0	0	0	Mode data						

DB5	DB4	DB 3	DB 2	DB1	DBO	Cursor/blink	CG	Graphic/character display
		0	0			Cursor OFF	_	
		0	1		0	Cursor ON	rna.	Character display (Character mode)
		1	0			Cursor OFF, character blink	ute.	
		1	1			Cursor blink	CL	
1/0	1/0	0	0	0		Cursor OFF	-	
	-/ -	0	1		1	Cursor ON	ma	
		1	0			Cursor OFF, character blink	3 C C C	
		1	1			Cursor blink	űŬ	
		0	0	1	0		\bowtie	Graphic mode
ay F	r/		r	c/ ter	U U			
l qs. /0F	iste ave	ínk	rso	phi rac	t./			
I N	Ma sl	B 1	C	Gra cha mod	Ex In			
			1:	Mast	er me	ode		
		(0:	Slav	e moo	de		
L		_ _	1: 0:	Disp Disp	lay (lav (ON OFF		

(2) Set character pitch

Register	R/W	RS	DB7	DB6	DB5	DB4	DB 3	DB2	DB1	DBO
Instruction reg.	0	1	0	0	0	0	0	0	0	1
Character pitch	0	0	(V	'p - 1) bin	ary	0	(H _p –	1) b	inary

Vp indicates the number of vertical dots per character. The space between the vertically-displayed characters is considered for determination. This value is meaningful only during character display (in the character mode) and becomes invalid in the graphic mode.

The Hp indicates the number of horizontal dots per character in display, including the space between horizontally-displayed characters. In the graphic mode, the Hp indicates the number of bits of 1-byte display data to be displayed.

There are three Hp values.

Hp	DB 2	DB1	DBO		
6	1	0	1	Horizontal character pitch 6	
7	1	1	0		
8	1	1	1	" 8	

(3) Set number of characters

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
Instruction reg.	0	1	0	0 -	0	0	0	0	1	0
Number-of-characters reg.	0	0	0	(Hn - 1) binary						

Hn indicates the number of horizontal characters in the character mode or the number of horizontal bytes in the graphic mode. If the sum total of horizontal dots on the screen is taken as n,

 $n = Hp \times Hn$

Hn can be set with an even number of 2 to 128 (decimal).

(4) Set number of time division (inverse of display duty ratio)

Register	R/W	RS	DB 7	DB6	DB5	DB4`	DB3	DB2	DB1	DBO
Instruction reg.	0	1	0	0	0	0	0	0	1	1
Number-of-time shares reg.	C.		6			(x)-	1) (6	4nety		

Nx indicates the number of time division in multiplex display. 1/Nx is a display duty ratio.

A value of 1 to 128 (decimal) can be set to Nx.

(5) Set cursor position

Register	R/W	RS	DB 7	DB6	DB 5	DB4	DB 3	DB2	DB1	DBO
Instruction reg.	0	1	0	0	0	0	0	1	0	0
Cursor position reg	. 0	0	0	0	0	0	(Cp - 1) binary			ary

Cp indicates the position in a character where the cursor is displayed in the character mode. For example, in 5×7 dot font, the cursor is displayed under a character by specifying Cp=8 (decimal). The cursor horizontal length is equal to the horizontal character pitch Hp. A value of 1 to 16 (decimal) can be set to Cp. If a smaller value than the number of vertical character pitches Vp is set (Cp \leq Vp), and a character is overlapped with the cursor, the cursor has higher priority of display (at cursor display ON). If Cp is greater than Vp, no cursor is displayed. The cursor horizontal length is equal to Hp.

(6) Set display start low order address

Register	R/W	RS	DB 7	DB6	DB5	DB4	DB 3	DB2	DB1	DBO
Instruction reg.	0	1	0	0	0	0	1	0	0	0
Display start address reg. (low order byte)	0	0	(Start low order address) binary							у

(7) Set display start high order address

Register	R/W	RS	DB7°	DB6	DB5	DB4	DB3	DB2	DB1	DBO
Instruction reg.	0	1	0	0	0	0	1	0	0	1
Display start address reg. (high order byte) 0 0 (Start high order address) binary									ry	

These instructions cause display start addresses to be written in the display start address registers. The display start address indicates a RAM address at which the data displayed at the top left end on the screen is stored. In the graphic mode, the start address is composed of high/ low order 16 bits. In the character display, it is composed of the lower 4 bits of high order address and 8 bits of low order address. The upper 4 bits of high order address are ignored.

(8) Set cursor address (low order) (RAM write low order address)

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
Instruction reg.	0	1	0	0	0	0	1	0	1	0
Cursor address counter (low order byte)	0	0	(Cursor low order address) binary							у

(9) Set cursor address (high order) (RAM write high order address)

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
Instruction reg.	0	1	0	0	0	0	1	0	1	1
Cursor address counter (high order byte)	0	0	(Cursor high order address) binary						ry	

These instructions cause cursor addresses to be written in the cursor address counters. The cursor address indicates an address for sending or receiving display data and character codes to or from the RAM. In the character mode, the cursor is displayed at the digit specified by the cursor address.

(10) Write display data

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
Instruction reg.	0	1	0	0	0	0	1	1	0	0
RAM	0	0	MSB (pattern data, character code) I							LSB

After the code \$'OC' is written into the instruction register with RS=1, 8 bit data with RS=0 should be written into the data register. This data is transferred to the RAM specified by the cursor address. The cursor address is increased by 1 after this operation. (11) Read display data

Register	R/W	RS	DB7	DB6	DB5	DB4	DB 3	DB2	DB1	DBO
Instruction reg.	0	1	0	0	0	0	1	1	0	1
RAM	1	Û	* \$\$	føðtte	an ang ing ing ing ing ing ing ing ing ing i	N.S.	A.C.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.	: The	cale)	1.62

Data can be read from the RAM by writing code \$'0D' into the instruction register with RS=0. The read procedure is as follows:

This instruction outputs the contents of data output register on Data Bus (DBO to DB7) and then transfers RAM data specified by a cursor address to the data output register, also increasing the cursor address by 1. After setting the cursor address, correct data is not output at the first read but at the second time. Thus, make one increased when reading data after setting the cursor address.

(12) Clear bit

Register	R/W	RS	DB7	DB6	DB5	DB4	DBI DB2	DB1	DBO
Instruction reg.	0	1	9 0 -	0	0	0	1 1	1	0
Bit clear reg.	0	0	0	0	0	0	• NB -	· 1) b	inary

(13) Set bit

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
Instruction reg.	0	1	0	0	0	0	1	1	1	1
Bit set reg.	0	0	0	0	0	0	0	(N _B -	1) b	inary
	া এগজন মন্ত্রা হা	9 9.19 20								

The Clear/Set Bit instruction sets 1 bit in a byte of display data RAM to 0 or 1, respectively. The position of the bit in a byte is specified by Ng. After the execution of the instruction, the cursor address is automatically increased by 1. Ng is a value of 1 to 8. Ng=1 and Ng 8 indicates LSB and MSB, respectively.

(14) Read busy flag

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
Busy flag	1	1	1/0							

When the read mode is set with RS=1, the busy flag is output to DB7. The busy flag is set to 1 during the execution of any of instructions (1) to (13). After the execution, it is set to 0. The next instruction can be accepted. No instruction can be accepted when busy flag=1. Before executing an instruction or writing data, perform a busy flag check to make sure the busy flag is 0. When data is written in the register (RS=1), no busy flag changes. Thus, no busy flag check is required just after the write operation into the instruction register with RS=1.

The busy flag can be read without specifying any instruction register.

Symbol	Name	Meaning	Value
Hp.	Horizontal character pitch	Lateral character pitch	6 to 8 dots
H _N	Number of horizontal characters	Number of lateral characters per line (number of digits) in the character mode or number of bytes per line in the graphic mode.	2 to 128 digits (an even number)
vp	Vertical character pitch	Longitudinal character pitch	l to 16 dots
С _р	Cursor position	Line number on which the cursor can be displayed	l to 16 line
Nx	Number of time division	Inverse of display duty ratio	l to 128 lines

Note: If the number of vertical dots on screen is taken as m, and the number of horizontal dots as n,

Display Mode

.

• Internal Character Generator Patterns and Character Codes

•

• •

										_
a Alfa	Higher Lover 4bit 4bit	0010 0011	0100 010	01 0110	0111 1	010 1011	1100 1	101 1110	1111	
	****0000									
	××××0001				-==				1	a
	××××0010	····							i i	
	xxxx0011								1 1	
ana 1970 - Angelander Angelander 1971 - Angelander Angelander	××××0100	<u>:</u>					•		1	
	xxxx0101	11 1 					••••••		II	
	xxxx0110				i i :				1 	
	xxxx0111	i i i nud		l I			•••••			
	××××1000					·	••••••••••••••••••••••••••••••••••••••	<u>!</u> .r		
	××××1001	· · · · · · · · · · · · · · · · · · ·			·					
	xxxx1010				••••••••••••••••••••••••••••••••••••••			<u>.</u>	••••	
	xxxx1011									
	XXXX1100						••••••	<u>.</u>	F	
	××××1101	•••••		j i i	:		•••• 8		•	
	××××1110	;;		•			••••••••••••••••••••••••••••••••••••••			
	xxxx1111				÷. 1	· i · i	•••••			
· · · ·									,	1.

5

APPLICATION (GRAPHIC MODE)

EXAMPLE OF CONFIGURATION

•Graphic Mode

• Character Mode (1) (Internal Character Generator)

•Character Mode (2) (External Character Generator)

A LAND A BARREN P

• Parallel Operation

HD61602/HD61603 (SEGMENT TYPE LCD DRIVER)

The HD61602 and the HD61603 are liquid crystal display driver LSIs with TTL and CMOS compatible interface. Each of the LSIs can be connected to various microcomputers such as the HMCS6800 series.

The HD61602 incorporates the power supply circuit for liquid crystal display driver. By the software-controlled liquid crystal driving method, several types of liquid crystals can be connected according to the applications.

The HD64603 is a liquid crystal display driver LSI only for static drive and has 64 segment outputs that can display 8 digits per chip.

FEATURES

Service and the

- Wide-range operating voltage
 Operates in a wide range of supply voltage 2.2V to 5.5V.
 Compatible with TTL interface at 4.5V to 5.5V.
- Low current consumption

Can drive from a battery power supply (100µA max. on 5V).

Standby input enables a standby operation at lower current consumption (5 μ A max. on 5V).

• Internal power supply circuit for liquid crystal display driver (HD61602). Internal power supply circuit for liquid crystal display driver facilitates the connection to a microcomputer system.

Type No.	Driving	, method	Display segments	Example of use
	Sta	tic	51	8 segments × 6 digits + 3 marks
HD61602	1/2 bias	1/2 duty	102	8 segments × 12 digits + 6 marks
	1/3 hiae	1/3 duty	153	9 segments × 17 digits
	1,5 0145	1/4 duty	204	8 segments × 25 digits + 4 marks
HD61603	Sta	tic	64	8 segments × 8 digits

• Versatile segment driving capacity

PIN ARRANGEMENT (TOP VIEW)

BLOCK DIAGRAM

• HD61602

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Limit	Unit
Power supply voltage*	V _{SS} , V1, V2, V3	0.3 ~ -7.0	v
Terminal voltage*	v _T	$0.3 \sim V_{SS}-0.3$	v
Operating temperature	T _{opr}	- 20 ∿ + 75	°C
Storage temperature	T _{stg}	-55 ~ +125	°C

* Value referred to $V_{DD}=0V$.

Note: If LSIs are used above absolute maximum ratings, they may be permanently destroyed. Using them within electrical characteristics limits is strongly recommended for normal operation. Use beyond these conditions will cause malfunction and poor reliability.

Itor	Sumb a 1		Limit				
	Symbol	Min.	Тур	Max.	Unit		
Power supply voltage*	-V _{SS}	2.2	-	5.5	v		
	-V1, -V2, -V3	0	-	5.5	v		
Terminal voltage*	-v _T	0	-	-v _{ss}	v		
Operating temperature	T _{opr}	-20	-	75	°C		

■ RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS

• DC Characteristics (1)

(VSS=0V, VDD=4.5 to 5.5V, Ta=-20 to +75°C, unless otherwise noted)

		an An ang san ang sign ang sa	Sector mandaling a sector a sector sector sector sector sector sector sector sector sector sector sector sector) - (1995) 		
Item		Sumbal	Tost condition	······································	imit		11-2
1.00	••	Symbol	Test condition	Min.	Тур	Max.	Uni
Input "High" voltage	OSC1	VIH1		0.8V _{DD}	-	V _{DD}	v
	Others	VIH2		2.0	-	v _{DD}	v
Input "Low" voltage	OSC1	VILI		Ø	-	0.2V _{DD}	V
	Others	V _{IL2}		0	-	0.8	V
Output leakage current	READY	I _{OH}	v _O =v _{DD}	-	-	5	μA
Output "Low" voltage	READY	VOL	I _{OL} =0.4mA	-	-	0.4	V
Input leakage current		IIL	V _{IN} =0~V _{DD}	-1.0	-	1.0	μΑ
LCD driver voltage	COMO~COM3	V _{d1}	tId-34A for each COM	-	<u> </u>	0.3	¥.
drop	SEG0~SEG50	V _{d2}	±Id=3µA for each SEG	-	-	0.6	V
Power supply current		IDD	During display*	-	-	100	μA
		IDD	At standby	-	-	5	μA

* Except the transfer operation of display data and bit data.

• DC Characteristics (2)

($V_{SS}=0V$, $V_{DD}=2.2$ to 3.8V, Ta=-20 to +75°C, unless otherwise noted)

_				_ I				
Item		Symbol	Test condition	Min.	Тур	Max.	Unit	
Input "High" voltage	ganetaan in too sa	VIH		0.8V _{DD}	1	v _{DD}	V	
Input "Low" voltage		VIL		0	_	0.2V _{DD}	V	
Output leakage current	READY	т _{ОН}	v _{IN} =v _{DD}	-	-	5	μA	
Output "Low" voltage READY		V _{OL}	$I_{OL}=0.04$ mA	-		0.1V _{DD}	v	
Input leakage current		IIL	VIN=0~VSS	-1.0	-	1.0	μA	
LCD driver voltage	COMOLCOM3	V _{d1}	±Id=3µA for each COM	-	-	0.3	V	
drop	SEG0~SEG50	V _{d2}	±Id=3µA for each SEG	-	-	0.6	V	
Power supply current	ISS	During display*	-	-	50	μA		
		I _{SS}	At standby	-	-	5	μA	

* Except the transfer operation of display data and bit data.

danas 10-17 Lanna

• AC Characteristics (1)

The second	Item						
Item		Symbol	lest condition	Min.	Тур	Max.	Unit
Oscillation frequency	OSC2	fosc	Rosc=360ka	. –	100		kHz
External clock frequency	OSC1	f _{osc}		-	100	-	kH z
External clock duty	Duty		40	50	60	7.	
	ts		400	-	-	ns	
		tH		10	-	-	ns
		twH		300	-	-	ns
		twl		400	-	-	ns
I/O signal timing		t _{WR}		400	-	-	ns
		t _{DL}	Fig. 5	-	-	600	ns
a.	14 - 11 1	t _{EN}		400	-	-	ns
**		t _{OP1}	For display data transfer	10.5	-	11.5	Clock
		t _{op2}	For bit and mode data transfer	3.5	_	4.5	Clock
Input signal rise time and fall time		t _r , tf		-	-	25	ns

(VSS=0V, VDD=4.5 to 5.5V, Ta=-20 to +75°C, unless otherwise noted)

• AC Characteristics (2)

(V_{SS}=0V, V_{DD}=2.2 to 3.8V, Ta=-20 to +75°C, unless otherwise noted)

			_				
Item		Symbol	Test condition	Min.	Тур	Max.	Unit
Oscillation frequency	OSC2	fosc	R _{osc} =330kΩ	-	100	-	kHz
External clock frequency	OSC1	f _{osc}		-	100	-	kHz
External clock duty	Duty		40	50	60	%	
		ts		1.5	-	-	μs
		t _H		1.0	-	-	μs
		twH		1.5	-	-	μs
		twl		1.5	-	-	μs
I/O signal timing		t _{DL}	Fig. 6	-	-	2.0	μs
		twr		1.5	-	-	μs
		t _{EN}		2.0	-	-	μs
•		t _{OP1}	For display data transfer	10.5	-	11.5	Clock
		t _{OP2}	For bit and mode data transfer	3.5	-	4.5	Clock
Input signal rise time and fall time	an the theorem	t _{r, tf}	a de la companya de l	- New Marine and American		5.0	μs

Fig. 2 Reset/Read Timing (CS and SYNC are fixed on "Low" level)

Fig. 3 READY Timing (When the READY output is always available)

Fig. 4 SYNC Timing

Fig. 5 Bus Timing Load Circuit (LS-TTL Load)

Fig. 6 Bus Timing Load Circuit (CMOS Load)

TERMINAL FUNCTIONS

.

●HD61602 Terminal Functions

,		and the second and the second s	2	
Terminal name	No. of lines	Input/output	to	Func
V _{DD}	1	Power supply		⊕ -side power supply
READY	1	NMOS open drain output	мси	During setting data in the display data RAM and mode setting latch in the LSI after data transfer, "Low" is output to the READY terminal to
n An Anna An Anna Anna Anna Anna Anna An				inhibit the next data input. There are two types of modes: one in which "Low" is output only when both of CS and RE are "Low", and the
			1 m 、 M ₁ } 1	other, in which "Low" is output regardress of C3 and 22.
<u>cs</u>	- 1	Input	MCU	Chip select input. Data can be written only when this terminal is "Low".
WE	1	Input	мси	Write enable input. Input data of DO to D7 is latched at the rising edge of WE.
RE	1	Input	мси	Resets the input data byte counter. After both of \overline{CS} and \overline{RE} are "Low", the first data is recognized as the lst byte data.
SB	1	Input	MCU	"High" level input stops the LSI operations.
				 (i) Stops oscillation and clock input. (ii) Stops LCD driver. (iii) Stops writing data into dis- play RAM.
D0~D7	8	Input	мси	Data input terminal from where 8-bit × 2-byte data are input.
v _{SS}	1	Power supply		⊖ -side power supply
V _{REF1}	1	Output	External R	Reference voltage output. LCD driv- ing voltage is generated by this voltage.
REF2	1	Input	External R	Divides the reference voltage of VREF1 with external R to determine LCD driving voltage. V _{REF2} =V1

	Terminal name	No. of lines	Input/output	Connected to	Function
	V _{C1} , V _{C2} 2		Output	External C	Connection terminals for boosting C of LCD driving voltage generator. An external C is connected between V _{C1} and V _{C2} :
	V1, V2, V3	V1, V2, /33Output (Input)COMO~COM34Output (Input)			LCD driving voltages are output. An external C is connected to each terminal.
	COMO~COM3				LCD common (backplate) driving output.
	SEGOVSEG50	51	Output	LCD	LCD segment driving output.
	SYNC	1	Input	мси	Synchronous input for 2 or more chips application. LCD driver timing-circuit is reset by "High"- input. LCD is off.
OSC1 OSC2		2	Input Output	External R	Attaches external R to these termi- nals for oscillation. An external clock (100kHz) can be input from OSC1.

Note: Logic polarity is positive. "1"="H"=active.

•HD61603 Terminal Functions

Terminal name	No. of lines	Input/output	Connected to	Function
v _{DD}	1	Power supply		⊕ -side power supply
READY	1	NMOS open drain output	мси	During setting data in the display data RAM and mode setting latch in the LSI after data transfer, "Low" is output to the READY terminal to inhibit the next data input. There are two types of modes: one in which "Low" is output only when both of CS and RE are "Low", and the other in which "Low" is output regardless of CS and RE.
<u>cs</u>	1	Input	мси	Chip select input. Data can be written only when this terminal is "Low".
WE	1	Input	MCU	Write enable input. Input data of DO to D3 is latched at the rising edge of WE.

Terminal name	No. of lines	Input/output	Connected to	Function
RĒ	1	Input	MCU	Reset the input data byte counter. After both of \overline{CS} and \overline{RE} are "Low", the first data is recognized as the
SB	1	Input	мси	<pre>"High" level input stops the LSI operations. (i) Stops oscillation and clock input. (ii) Stops LCD driver. (iii) Stops writing data into dis- play RAM.</pre>
DOND3	4	Input	мси	Data input terminal from where 4-bit X4 data are input.
V _{SS}	1	Power supply		O-like your gapely in the
٧3	.1	Input	Power supply	Power supply input for LCD drive. Voltage between V _{DD} and V3 is used as driving voltage.
СОМО	1	Output	LCD	LCD common (backplate) driving output.
SEGO~SEG6 3	64	Output	LCD	LCD segment driving output.
SYNC	1	Input	мси	Synchronous input for 2 or more chips application. LCD driver timing circuit is reset by "High" input. LCD is off.
OSC1 OSC2	2	Input Output	External R	Attaches external R to these termi- nals for oscillation. An external clock (100kHz) can be input from OSC1.

۰., ۲

Note: Logic polarity is positive. "1"="H"=active.

DISPLAY RAM

< HD61602 Display RAM >

The HD61602 has an internal display RAM shown in Fig. 7. Display data is stored in the RAM, or is read according to the LCD driving timing to display on the LCD. One bit of the RAM corresponds to the 1 segment of LCD. Note that some bits of the RAM cannot be displayed depending on LCD driving mode.

Common address (COMOvCOM3)

Fig. 7 Display RAM

Reading Data from Display RAM

A display RAM segment address corresponds to a segment output. The data at segment address SEGn is output to segment output SEGn terminal.

A common address corresponds to the output timings of a common output and a segment output. The same common address data is simultaneously read. The data of display RAM is reproduced on the LCD panel.

When a 7-segment type LCD driver is connected, for example, the correspondence between the display RAM and the display pattern in each mode is as follows:

(1) Static drive

In the static drive, only the column of COMO of display RAM is output. COM1 to COM3 are not displayed.

In the 1/2 duty drive, the columns of COMO and COM1 of display RAM are output in time sharing. The columns of COM2 and COM3 are not displayed.

Display RAM

In the 1/3 duty drive, the columns of COMO to COM2 are output in time sharing. No column of COM3 is displayed.

(4) 1/4 duty drive

LCD connection

 $\begin{array}{c|cccc} COM_3 & f & a \\ \hline COM_2 & g & b \\ \hline COM_1 & e & c \\ \hline COM_0 & d & DP \\ \hline SEG_2 & SEG_3 & SEG_4 \end{array}$

Display RAM

In the 1/4 duty drive, all the columns of COMO to COM3 are displayed.

•Writing Data into Display RAM

Data is written into the display RAM in the following five methods:

(1) Bit manipulation

Data is written into any bit of RAM on a bit basis.

- (2) Static display mode 8-bit data is written on a digit basis according to the 7-segment type LCD pattern of static drive.
- (3) 1/2 duty display mode
 8-bit data is written on a digit basis according to the 7-segment type
 LCD pattern of 1/2 duty drive.
- (4) 1/3 duty display mode
 8-bit data is written on a digit basis according to the 7-segment type
 LCD pattern of 1/3 duty drive.
- (5) 1/4 duty display mode
 8-bit data is written on a digit basis according to the 7-segment type
 LCD pattern of 1/4 duty drive.

The RAM area and the allocation of the segment data for 1-digit display depend on the driving methods as described in the selection of "Reading Data from Display RAM". 8-bit data is written on a digit basis corresponding to the above duty driving methods. The digits are allocated as shown Fig. 8 (allocation of digit). As the data can be transferred on a digit basis from a microcomputer, transfer efficiency is improved by allocating the LCD pattern according to the allocation of each bit data of the digit in the data RAM.

Fig. 8 shows the digit address

of the transferred 8-bit data on a digit basis.

Fig. 9 shows the correspondence between each segment in an Adn and the 8-bit input data.

When data is transferred on a digit basis, 8-bit display data and digit address should be specified as described above.

Fin R Allocation of Diait (HD61602)

Fig. 9 Bit Assignment in an Adn (HD61602)

In the bit manipulation, any one bit of display RAM can be written. When data is transferred on a bit basis, 1-bit display data, a segment address (6 bits) and a common address (2 bits) should be specified.

< HD61603 Display RAM >

The HD61603 has an internal display RAM as shown in Fig. 10. Display data is stored in the RAM and output to the segment output terminal.

64 bits

Segment address

Fig. 10 Display RAM (HD61603)

Reading Data from Display RAM

Each bit of the display RAM corresponds to each LCD segment. The data at segment address SEGn is output to segment output SEGn terminal. Fig. 11 shows an example of the correspondence between the display RAM bit and the

Fig. 11 Example of Correspondence between Display RAM Bit and Display Pattern (HD61603)

• Writing Data into Display RAM

Data is written into the display RAM in the following two methods:

- Bit manipulation
 Data is written into any bit of RAM on a bit basis.
- (2) Static display mode
 8-bit data is written on a digit basis according to the 7-segment type
 LCD pattern of static drive.

The 8-bit data is written on a digit basis into the digit address (displayed as Adn) shown in Fig. 12. When data is transferred from a microcomputer, four 4 bit data are needed to specify the digit address and an 8-bit display data. Fig. 13 shows the correspondence between each segment in an Adn and the transferred 8-bit data.

Fig. 12 Allocation of Digit (HD61603)

In the bit manipulation, any one bit of display RAM can be written. When data is transferred on a bit basis, 1-bit display data and a segment address (6 bits) should be specified.

Operating Modes

< HD61602 Operating Modes >

The HD61602 has the following operating modes:

(1) LCD drive mode

Determines the LCD driving method.

(a) Static drive mode

LCD is driven statically

(b) 1/2 duty drive mode

LCD is driven at 1/2 duty and 1/2 bias.

(c) 1/3 duty drive mode

LCD is driven at 1/3 duty and 1/3 bias.

- (d) 1/4 duty drive mode LCD is driven at 1/4
- (2) Data display mode

13.8.

Determines how to write display data into the data RAM.

- (a) Static display mode
 8-bit data is written into the display RAM according to the digit in the static drive.
- (b) 1/2 duty display mode
 8-bit data is written into the display RAM according to the digit in the 1/2 duty drive.
- (c) 1/3 duty display mode
 8-bit data is written into the display RAM according to the digit in the 1/3 duty drive.
- (d) 1/4 duty display mode
 8-bit data is written into the display RAM according to the digit in the 1/4 duty display drive.
- (3) READY output mode

Determines the READY output timing.

After data set is transferred, the data is processed internally. The next data cannot be acknowledged during the processing period. The READY output reports the period to the MPU. The timing when the READY is output can be selected from the following two modes:

(a) READY is always available. CS WE READY Data transfer period Input inhibit period Next data transfer

(4) LCD OFF mode

In this mode, the HD61602 stops driving LCD and turns it off.

(5) External driving voltage mode

A mode for using external driving voltage (V1, V2 and V3).

The above 5 modes are specified by mode setting data. The modes are independent of each other and can be used in any combination. The bit manipulation is independent of data display mode and can be used regardless of it.

< HD61603 Operating Modes >

The HD61603 has the following modes:

(1) READY output mode

Determines READY output timing.

After data set is transferred, the data is processed internally. The next data cannot be acknowledged during the processing period. The READY output reports the period to the MPU. The timing when READY is output can be selected from the following two modes:

(a) READY is always available.

(2) LCD OFF mode

In this mode, the HD61603 stops driving LCD and turns it off.

INPUT DATA FORMATS

HD61602 Input Data Formats

Input data is composed of 8 bits $\times 2$. Input them as 2-byte data after READY output is changed from "Low" to "High" or "Low" pulse is entered into \overline{RE} terminal.

(1) Display data (Updates display on an 8-segment basis.)

lst byte									2nd	byt	е						
6	0 0 x		×	C (Display address (Digit address Adn)					Display data							
7	7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0

(i) Display address: Digit address Adn in accordance with each display mode.

(ii) Display data : Pattern data that is written into the display RAM according to each display mode and the address.

(2) Bit manipulation data (Updates display on a segment basis.)

(iii) SEG address : Segment address of display RAM.

(3) Mode setting data External lst byte supply 2nd byte Drive mode READY Display DFF/ON 1 0 × 0 X х × × х bits mode bits bit bit 7 6 5 4 3 2 1 0 7 6 5 3 2 0 Δ 1 (i) Display mode bits : 00; Static display mode 01: 1/2 duty display mode 10; 1/3 duty display mode 11; 1/4 duty display mode LCD OFF ("1" is set when SYNC is entered.) (ii)OFF/ON bit 1; : 0; LCD ON 00; (iii) Drive mode bits Static drive : 1/2 duty drive 01; 10: 1/3 duty drive 11: 1/4 duty drive READY outputs "O" only while \overline{CS} and \overline{RE} is (iv) READY bit : 0: "0". ("0" is reset when SYNC is entered.) READY outputs "O" regardless of \overline{CS} and \overline{RE} . 1: (v) External power 0; Driving voltage is generated internally. : supply bit 1; Driving voltage is supplied from external. ("1" is set when SYNC is entered.)

(4) 1-byte instruction

lst byte

1	1	×	×	×	×	×	×	
7	6	5	4	3	2	1	0	

The first data (first byte) is ignored when the bit 6 and bit 7 in the byte are "1".

< HD61603 Input Data Formats >

Input data is composed of 4 bits \times 4. Input them as four 4 bit data after READY output is changed from "Low" to "High" or "Low" pulse is entered into $\overline{\text{RE}}$ terminal.

(1) Display data (Updates display on an 8-segment basis.)

ISC	byte			
,	1	×	r X	
Ļ		L	·	
3	2		0	

The first data (4 bits) is ignored when the bit 3 and 2 in the data are "1".

HOW TO INPUT DATA

< How to Input HD61602 Data >

Input data is composed of 8 bits $\times 2$. Take care that the data transfer is not interrupted. Because the first 8-bit data is distinguished from the second one depending on the sequence only.

If data transfer is interrupted or at the power ON the following two methods can be used to reset the count of the number of bytes (count of the first and second bytes):

- (1) Set CS and RE inputs in "Low" (no display data changes).
- (2) Input 2 or more "1-byte instruction data" which bit 7 and 6 are "1" (display data may change).

The data input method via data input terminals (\overline{CS} , \overline{WE} , D0 to D7) is similar to that of static RAM such as HM6116. An access of the LSI can be made through same bus line as ROM and RAM. When output ports of a microcomputer are used for an access, refer to the timing specifications and Fig. 14.

- *1: READY output is indefinite during 12 clocks after the oscillation start when power ON (clock: OSC₂ clock).
- *2: "High" pulse should be applied to SYNC terminal when using two or more chips synchronously.
- *3: In the mode in which READY is always available, READY output is indefinite while "High" is being applied to SYNC.
- *4: Reset the byte counter after power ON.
- *5: READY output period is within 4.5 clocks in the mode setting operation and bit manipulation or within 11.5 clocks when the display data (8 bits) is updated.

*6: Connect a proper pull-up resistor if \overline{WE} or \overline{RE} may be floating.

< How to Input HD61603 Data >

Input data is composed of 4 bits \times 4. Take care that data transfer is not interrupted. Because the first 4-bit data to the fourth 4-bit data are distinguished from each other depending on the sequence only.

If data transfer is interrupted or at the Power ON, the following two methods can be used to reset the count of the n r of data (count of the first 4 bit data to the fourth 4-bit data):

- (1) Set \overline{CS} and \overline{RE} in "Low".
- (2) Input 4 or more "1-byte instruction" data (4-bit data) which bit 3 and 2 are "1" (display data may change).

The data input method via data input terminals (\overline{CS} , \overline{WE} , D0 to D3) is similar to that of static RAM such as HM6116. An access of the LSI can be made "hrough the same bus line as ROM and RAM. When output ports of a microcomputer are used for an access, refer to the timing specifications and Fig. 15.

- *1: READY output is indefinite during 12 clocks after the oscillation start when power ON (clock: OSC₂ clock).
- *2: "High" pulse should be applied to SYNC terminal when using two or more chips synchronously.
- *3: In the mode in which READY is always available, READY output is indefinite while "High" is being applied to SYNC.
- *4: Reset the 4-bit data counter after power ON.
- *5: READY output period is within 4.5 clocks in the mode setting operation and bit manipulation or within 11.5 clocks when the display data (8 bits) is updated.
- *6 Connect a proper pull-up resistor if \overline{WE} or \overline{RE} may be floating.

STANDBY OPERATION

Standby operation with low power consumption can be activated when terminal SB is used. Normal operation of the LSI is activated terminal SB is "Low" level and the LSI goes into the standby state when terminal SB is "High" level. The standby state of the LSI is as follows:

1 2.0 -

- (a) LCD driver is stopped and no driving voltage is generated (LCD are off).
- (b) Display data and operating mode are held.
- (c) The operation (in which READY is outputting "Low") during display change is suspended. In this case, READY outputs "High" within 10.5 clocks or 4.5 clocks after release from the standby mode.
- (d) Oscillation is stopped.

When this mode is not used, connect terminal SB to V_{SS} .

MULTI-CHIP OPERATION

When a LCD is driven with two or more chips, the driving timing of LCD must be synchronized. —In this case, the chips are synchronized with each other by using SYNC input. If SYNC input is "High", the LCD_driver timing circuit is reset. Apply "High" pulse to the SYNC input after the operating mode is set.

A "High" pulse to the SYNC input causes the change of the mode setting data (The OFF/ON bit is set and the READY bit is reset. See (3) mode setting data in "Input Data Formats".). Transfer the mode setting data into the LSI after every SYNC operation.

If a Power ON RESET signal is applied to the SYNC terminal, the LCD can be off-state when the Power is turned on.

When SYNC input is not used, connect terminal SYNC to VSS.

LIQUED CRYSTAL DISPLAY DRIVING VOLTAGE GENERATION CIRCUIT (HD61602)

• When Internal Driving Voltage is Used As shown in Fig. 16, attach capacitances C1 to C4 for boosting circuit and a halfxed resistor R1 for setting LCD driving voltage. Adjust R1 according to the required LCD driving voltage.

R1 = $1M\Omega$ half-fixed resistor C1 = $0.3\mu F$ C2 \sim C4 = $0.3\mu F$

Fig. 16 An Example when Internal Driving Voltage is Used

•When External Driving Power Supply is Used

As shown in Fig. 17, the LCD driving voltage is supplied by an external power supply with external resistors and capacitors.

(i) Static drive (ii) 1/2, 1/3, 1/4 Fig. 17 An Example when External

As shown in Fig. 18, apply LCD driving voltage from the external power supply.

Note: When standby mode is used, a transistor is required.

Fig. 18 Example of Driving Voltage Generator

SCILLATION CIRCUIT

•When Internal Oscillator Circuit is Used

When the internal oscillator circuit is used, attach an external resistor R_{OSC} as shown in Fig. 19.

Fig. 19 Example of Oscillator Circuit

•When External Clock is Used

When an external clock of 100kHz with CMOS level is provided, terminal OSC1 can be used for the input terminal. In this case, open terminal OSC2.

APPLICATIONS

Fig. 20 Example (1)

HITACHI, LTD. SEMICONDUCTOR AND INTEGRATED CIRCUITS DIVISION SALES OFFICE

HEADQUARTER

Hitachi, Ltd. 5-1, Maru nouchi 1-Chome, Chiyoda-ku Tokyo 100 Telephone: Tokyo (212)1111 Cable Address: "HITACHY" TOKYO Telex: 2225541

US SALES OFFICES Hitachi America Ltd. Electronic Devices Sales and Service Division 1800 Bering Drive San Jose, Calif. 95112 Tel: 408/292-6404 Telex: 17-1581 Twx: 910-338-2103 Fax: 408-2922133

SOUTH WESTERN REGION Hitachi America, Ltd. Western Regional Office 9700-Reseda Blvd, Suite 208 Northridge, Calif. 91324 Tel: 213-701-6606

NORTH CENTRAL REGION Hitachi America, Ltd. North Central Regional Sales Office 500 Park Blvd, Suite 415 Itasca, III, 60143 Tel: 312-773-4864

SOUTHERN REGION

Hitachi America, Ltd. Southern Regional Sales Office 6200 Savoy Drive, Suite 704 Houston, Tex. 77036 Tel: 713-974-0534 Twx: 910-881-7043

NORTH EASTERN REGION Hitachi America, Ltd. Eastern Regional Sales Office 594 Marrentt Road, Suite 22 Lexington, Mass. 02173 Tel: 617-861-1642 Twx: 710-326-1413

EUROPEAN SALES OFFICES (EU) Hitachi Electronic Components Europe GmbH Hans-Pinsel-straße. 3 8013 Harr bei München Tel: 089-46140 Telex: 5-22593 (HITEC-D) Fax: 089-463151

Branch offices Hitachi Electronic Components Europe GmbH Verkaufsbüro Düsseldorf Königsallee 6, 4000 Düsseldolf 1 Tel: 0211-84995 Telex: 8-584536 (HIEC-D)

Hitachi Electronic Components Europe GmbH Verkaufsbüro Stuttgart Fabrikstraße 17, 7024 Filerstadt 4 Tel: 0711-772011 Telex: 7-255267 (HIES)

Hitachi Electronic Components Europe GmbH Bureau de Representation en France 95-101, Rue Charles-Michels 93200 Saint Denis Tel: 01-821 6015 Telex: 611387 Fax: 01-2436997

Hitachi Electronic Components Europe GmbH Milano Branch Office Via B. Davanzati, 27 1-20158 Milano Tel: 02-3763024 Telex: 320343 Fax: 02-683730

EUROPEAN SALES OFFICES (UK)

Hitachi Electronic Components (UK) Ltd. 221-225 Station Road, Harrow, Middlesex, HA1 2XL England Tel: 01-861-1414 Telex: 936293 (HITEC-G) Fax: 01-863-6646

Branch office Hitachi Electronic Components (UK) Ltd. Box 1062, 163 11 Spanga, Sweden Tel: 08-751-0035 Telex: 14106 (HITECST S)

ASIAN SALES OFFICES Hitachi Semiconductor (Hong Kong) Ltd. Room 706-707, 7/F, Wing On Plaza, Salisbury Road, Tsimshatsu, Kowloon, Hong Kong Tel: 3-7219218 Telex: 40815 (HISAL HX)

Branch offices Hitachi Semiconductor (Hong Kong) Ltd. Taiwan Branch Office No. 73.7th F1-1, Fu Shing N. RD. Hsing Nan Bldg. Taipei, Taiwan Tel: 02-773-2162 3 Telex: 23222 (HISEKTWN)

Hitachi Semiconductor (Hong Kong) Ltd. Singapore Branch Office Unit 09-07, 9th Floor, Sultan Plaza 100, Jalan Sultan, Singapore 0719 Tel: 292-7083, – 4 Telex: 35534 (HISEKS-R35534)