
Design and Implementation Trade-offs
in the Clipper C400 Architecture

Howard G. Sachs

Harlan McGhan

Lee F. Hanson

Nathan A. Brookwood

Intergraph Corp

18 IEEE Micro

The c400 is the f"trst complete redesign of the Clipper reduced instruction-set computing ar

chitecture since its introduction in 1985. The c400 delivers three times the performance of
the C300, yet retains full-code compatibility with earlier Clippers. A combination of super

scalar and superpipelining techniques effectively exploits instruction-level parallelism in code.

[II
rom the introduction of the first C100

architecture in October 19i1� to the
new C400 introduced in Septemher

1990. three ambitions have motivated

Clipper development. First. the microprocessor

must be complete and highly functional. Second.

it must achieve the highest possible perfonnance.
Third. it must accomplish the previous objectives

at the lowest possible cost. Pursuit of these di

verse goals meant facing a series of trade-otIs

balancing the virtue of simplicity against the con

venience of fllnctionality, maXiJllllJll fllnctlonal

ity against the benefits of integration. the highest

levels of integration against the requirement tClr
performance, and ultilllate perfornlance against
the value of cost-effectiVE· implen1E"ntation.

Earlier Clippers. including both the C100 and

the C300 (introduced in November 19i1"7). em

phasized a high degree of instnlction-sct fllnC

tionahty. together with highly integrated functional

units in silicon. To attain these ohiectin�s v.;ith

mid-19ilOs technology. we accepted \";lriuus limi
tations on performance. The new V[Ol! (see Fig

ure J) preserve, the programmrng model of the

earlier generation. But. since today's si1icon tech

nology forces far fe\ver perfonnance cUlnprulnises
on the implementation of this model. the cion
achieves far higher performance. Our perfor
mance simulations suggest the cioo will attain a
SPEC ratio of 11 (see box)

The ClOO comhines two architectural "p-

proaches to attain its perl·ormance goals. The Erst

approach. superscalar operation , allows the pro
cessor to begin the execution of more than one
instruction during each clock cycle. A conven

tional. nonsuperscalar machine can start only one

instruction per cycle . At �O MHz. such a machine
can start (or complete) at the most ';0 million

instnlctions each second. An Ilth order superscalar

machine can start II instructions during each clock

cycle. and thus has a peak pertormance n times

that of the com·entional approach. Johnson' pro
\-ides an excellent overview of superscalar

principles.
We characterize the C400 as moderately su

perscrlar: it can dispatch two instructions per clock

cvcle. with each imtrucrion coming Irom one 01
l\vo broad classes. One class contains all load

and store operations (such as memory reference

instn[ctions). :IS well as COnTrol. logical. ,md tlxed

roinT arithmetic instructions. 'r1w other class in

cludes t1o"ting-point instnrctions. This structure

fits ea.silv into the original Clipper architecture
and yields a significant performance boost in the
tloating-point-intensive applications that predomi

nclte in technical markets. The C400 is also op

portunisticallv sllperscal:rr: it does not replicate
function unit<:-i to minimize class conflicts, and it
issue.s only one instruction per clock cycle when

s<'quential instructions fall into the same class.
Tn :rddition to sllperscahr operation. the C400

embodies the design concept 01 superpipelining.

0272-1732/9110600-0018$01.00 e, 1991 IEEE

Figure 1. C400 CPU chip, mounted in a 299-PGA package.

We use this relatively new term. coined by Joupp1.� � to de
scribe an approach that emphasizes high clock rates and deep

execution pipelines in attaining high compuwional perfor

mance. For example. the C400 pipelines access the cache

subsystem. enabling the cpe (see Figure 2) to issue a steadv Figure 2. The C411 CPU.

SPEC benchmarks

Computer system vendors han' long struggled \\'ith the

problem of measuring and comparing the performance of

the systems they sell with the performance of other sys
tems. Early solutions to this problem . such as characteriL
ing systems in terms of MIPS (million instructions per
second) or Mflops (million floating operations per sec

ond) hecame increasingly meaningless due to the diver

sity of computer architectures. This diversity caused chfTerent
machines to require the execution of ,-,,,tly diflerent num

bers of instnretions to calculate the same results. Also. the

p r ograms that measured these values \\ ere smalL and
vendors could often "tune" their systems to perform bet

ter on these benchmarks than on the actual programs.

Finally , in I\ovember 1988, four vendors (Apollo Com

puter, Hewlett-Packanl, Mips Computer Systems , and Sun

Microsystems) and Elec/ronic Engilleering limes (an in

dustry Journal) formed the Systems Performance Evalua
tion Cooperative (SPEC). SPECs charter \\ as to "establish

a suite of standard performance benchmarks for the
measurement and characterization of high-performance

computers

In 1989. SPEC issued its benchmark suite-a set of IO
programs that represent the types of tasks technical com

puter users often encounter. Lnlike tire earlier programs

that measured MIPS and Mflops . the programs in the SPEC

suite were deSigned to more alcuralel) represent the work
load users will place on the machines they purchaslC. This

increased accuralY .should make it morlC likely that the
performance reporled bv the benchmark will correlate

\\ ith the perforlnarKe observed In actual use. The suite
Includes four prugr,uns that e:-.ercise the systern's capabilities

m lugical and flxed-puint uperations ami six numerically

inten",'e programs thal measure floating-pOint performance.

Each program'., perfurnrance , referred to �" its SPEC
ratio, i reported a:-. the ratio bct\\ L'cn the execlltion lilne

on the system in question and the corresponding exeCll

tion time on a Digital Equipment Corp. \'AX-11/:80 com

puter. SPEC coined the terrn Specllwrk to refer lo the

geometric mean of all 10 SPEC ratios. A machine rated at
';0 Specmarks can (on a,-erage) be considered to run 40

times faster than the reference VAX system. Some pro

grams will likely exceed this ratio. ",hile others \\'ill fall
short of it.

The concept of using Spec marks to compare system

performance is being explored within the computer in

dustry. '.lany vendors ha,-c ceased entirely using the metrics
of MIPS and "vltlu[,,- Tire SPEC cunsurtium cuntinues to
el'oln, its suite of test programs and expects to release a
ne\\· redsion later this year that 111eaSllres a larger set of

system capaiJilities

June 1991 19

Clipper C4(J()

stream of load instructions without causing stalls while the
cache accesses data. Similarly, the CPU can issue successive
floating-point multiply (or add) instructions on every clock
cycle without stalling the execution pipeline. This capability
provides a level of floating-point performance in vector codes
that previously required the use of digital signal processing
arrays.

Programming model
Clipper's programming model makes it one of the more

complex reduced instruction-set computing designs. RISCs
often include fewer than 100 instructions, but Clipper pro
vides more than 160 instructions. Most RISCs use fIXed-length,

32-bit instructions, but Clipper uses a Cray-like, variable-length
scheme. Simple, register-oriented instructions occupy only
16 bits. More complex instructions can require 32,48, or 64
bits. Most RISCs provide only rwo or three different ways to
address memory, but Clipper provides nine different address
ing modes, including absolute, relative, PC-relative, and in
dexed addressing.4-6

The combination of a Cray-like, instruction-set encoding
and a multiplicity of addressing modes results in a more com
pact ohject code on the Clipper than on other RISCs. In an
unpuhlished report, Alan J. Smith of University of California,
Berkeley's Computer Science Department analyzed the size
of emitted code for standard benchmarks in several architec
rures. Smith measured the text portion of the object files and
normalized his result� to the code size produced on a VAX
running BSD 4.3 Unix. A summary of his results appears in
Table I.

Every 16- or 32-bit instruction on Clipper saves 16 bits
over the equivalent 32-hit instruction or pair of 32-bit instruc
tions on another RISC machine. Even in this era of relatively
inexpensive dynamic RAM main memories, code density still
plays a role in system cost and performance. High-density
code improves both the effectiveness of the instruction cache
and the available bus bandwidth.

Early hardware implementations
We weighed the advantages of Clipper's high-code den

sity against the cost, paid for this attribute on the CIOO and
C300. Neither machine included a delayed branch instruc
tion, largely because of difficulties associated with parsing
variable-length instructions. Consequently, every branch
caused a pipeline stall and adversely affected performance
(especial ly in tight loops). The variety of addressing modes
complicated effective address generation for loads and stores.
Since the ClOO and C300 employed the integer AiU for ad
dress generation, use of the complex addreSSing modes on
these machines tied up the AiU and slowed the flow of inte
ger instructions through the execution pipeline.

Processor logic in the Cl00 and C300 was partitioned into
three devices. The cpe chip both handled integer and floating
point operations. We provided separate cache and memory
management chips (CAMMUs), one each for instructions and
data. The integration of CPU and FPU functions on one chip
required a large die-more than 500 mils on a side. Even
with a die this large, space was still very tight at the 1.5-1J.l11
geometries used in the C300, forcing critical design compro
mises. In particular, of the rwo main execution units, we only
pipe lined the integer unit; the FPU was left as a standard,
unsegmented flow-through unit. The single-threaded design
of the floating-pOint logic caused operations with short laten
cies (like adds) to back up behind ones with very long laten
cies (like divides), and thus slowed performance. The chip's
32-bit data paths limited the rate at which operands could be
loaded into the 64-bit register file; the data paths also re
duced double-precision performance.

Combining cache and MMU functions on one chip im
posed a serious compromise in cache size; a handicap that
was only partly offset by good code density and a rwo-way,
set-associative cache design. On large programs, a small cache
usually meant a high miss rate. Having the CPU and cache
on separate chips meant accesses to the cache took multiple
clocks. Since limited silicon resources precluded pipelining

cache accesses, back-to-back loads or stores
introduced wait states, even for cache hits.

of course, it is necessary to maintain per

Table 1. Size of emitted code for standard benchmarks

spective. In the 1990s, it is easy to regard the
instruction cache used in the ClOO and C300
as small and slow. It is important to remember
that microprocessors have evolved rapidly over
the past decade. The first commercial 32-hit
microprocessor was not introduced until 1982.
At the time of its introduction in 1985, the Cl00's
4-Kbyte, three-clock cache was relatively large
and fast; it was a key to the performance at
tained by this machine.

Standard
benchmarks

No optimization

Optimization 01

Optimization 02

20 IEEE Micro

in several architectures.

Architectures (hardware/operating system)

Clipper/ Sun-4/200/ Mips R2000/ HP9000/
CLiX 3.1 Sun as 4.0 N/A HP-UX

1.12 1.94 2.15 1.63

0.99 1.73 1.65 1.05

0.98 1.41 1.28 N/A
The C100's hardware strengths unexpectedly

led to a weakness related to software. It� com
pilers paid little attention to instruction sched-

32 Data 32 Virtual address
/

32 Real address I nterprocessor

� I communications

28
:

I 1 I C411 r 8 �I (;421 1 � CPU
.1 I

FPU .; , 2

• 64 Instruction/data t t
I Bus

watch 64 Data
32 128 32 Address' Data Address

Figure 3. Diagram of the (400 system processor.

uling or the sequencing of calculations. because the CPL's
hardware scoreboard could stall the CPV when the result of
a previous operation was not yet available. 'Ibis inanention
to code scheduling did not affeL1 the accuracy or the ability
to rcpeat computations, but it did affcL1 execution time.
degrading performance in both benchmarks and real
applications.

(Fortunately, in the summer of 1988. coinciding with the
start of the C400 hardware redesign, Intergraph launched in
tensive software efforts to produce a new set of optimizing
compilers and a performance-tuned operating system kernel
for Clipper . Baxter and Arnold- present some of the results of
this ongoing software effort in the area of compilers.)

C400 project overview
We recognized that no amount of improvement in process

or software technology alone could compensate for the per
formance constraint, forced on these earlier products. In the
fall of 1988 the Clipper design team set out to reimplement
the hardware architecture completely. Clipper designers
wanted to preserve binaty software compatibility with the
millions of lines of application code compiled for the CIOO/

C300 since 1985. The goals for the C400 program were to.

• anain a perfonnance level in excess of 40 Specmarks.
TIlL, goal implied improvements of a factor of three in
integer perfonnance, and a factor of six in floating-point
performance, relative to the e-arlier C300;

• minimize development time and risks. producing first

silicon by the start of 1991:
• keep volume production costs low; and

provide an upwardly compatible binaty environment.
enabling customers to migrate at their own pace to sys

tems based on the new chip set.

128 Data

32 Address

M ain
mory
tem

me
sys

The C400 system addres..'Cs the perfonnance limitations of
the earlier Clippers, and accomplishes the goals outlined
atxlVe. The prcX'essor. as illustrated in Figure 3. includes four
major elernenb:

• 'i11e C411 integer unit (CPL:) decodes and is..>ues all in
struc1ions. and executes integer operations. Packaged in

a 2,)9-pin ceramic pm grid array. the unit contains ap
proximately 160.000 transistors on a die measuring
2'53.000 square mils.

• The C4:n FPL incorporates the floating-point register
file and the floating-point execution pipelines. Packaged
identically to the CPt:. the FI'e contains approximately

140,000 transistors.
• 1be M.MU handles vinual-to-physical address translation.

using translation Ic�)k-aside buffers stored in disuete static
RAMs.

• The cache unit provides a high-speed (one clcX'k cycle).

128-Kbyre. direct-mapped cache that supports the CPl"s
bandwidth requirements for instructions and data. Dis
crete SRAMs store cache data and tags.

The system uses 64-bit data paths to link the CPl:. FPC
and cache. One transfer from the cache to the CPl:'s instmc

tion buffer contains up to lour variable-length instructions.
Double-precision data move from the cache to the FPL's

register file in one clock cycle: in general. there is only a

minor perfonnance penalty associated with the use of double
precision arithmetic, compared with single-precision timings.

The C4()()"s superpipelined load and storc operations permit
the CPll TO execute sequential load operations without pipe

line stall s on a sustained basis. However, this execution occurs
only as long as the system cache contains the contents of the

COJltinued 011 p. 74

June 1991 21

Clipper C400
continuedfrom p. 21

memory locations referenced. The CPU pipelines all accesses
to the cache and main memory system. During a given clock
cycle, the CPU generates a new virtual address, the MMU
translates the previous virtual address, and the cache accesses
the physical address calculated in the previous clock cycle.
Although the CPU coordinates all transfers between the cache
and CPU or FPU, floating-point data moves directly between
the cache and the FPU register file; it does not pass through
the CPU.

The initial version of the C400 implements MMU and cache
functions using discrete elements, but plans call for a future
version to incorporate a custom VLSI cache/MMU mechanism.
We will package these forthcoming CAMMU chips with the
CPU and FPU chips on a multichip module that behaves in
most regards like a large single chip. The controlled imped
ance of the multichip module, along with the shorter signal
paths possible in this configuration, will permit operation at
clock speeds far in excess of the 50-MHz level planned for the
discrete cache version. This multichip module product will
possess the same high level of functional integration as the
current C300 module, but with far greater performance in a
much smaller package.

C400 perfonnance
The Clipper design team used two major strategies to maxi

mize performance and attain its perfomlance goal of 40 or
more Specmarks. First, it targeted high clock rates (for a CMOS-

90

80

70

60

o
El 50
()
� 40
en

30

20

10

based device) of 50 MHz and beyond, with the expectation
that this performance would benefit all classes of applications.
Second, the team planned to achieve a low-average-clocks
per-instruction metric via a combination of superscalar dis
patch, improved cache bandwidth, and a mUltiplicity of
execution pipelines for integer and floating-point operations.

The design team observed that instruction runs (that is, se
quential instructions terminated by a transfer of control opera
tion) tend to be short for integer-oriented codes (like
compilers). They are longer for the scalar floating-point codes
that characterize fflany electronic design automation applica
tions, and longer still for the vectorizable codes used in many
mechanical CAD applications . Clipper's principal customer,
Intergraph, emphasizes these laner applications. We decided
to optimize vectorizable code via a highly pipelined FPU
coupled to a high-bandwidth pipelined MMl] and cache sub
system. As the suhsequent discussion of the Linpack Daxpy
routine shows, the C400 achieves a more-than-respectahle re
sult on thL� class of code.

Extensive simulation of the C400 chip set and an associated
128-Kbyte, direct-mapped, unified cache suggests the product
will attain an overall SPEC ratio of 41. As shown in Figure 4,
C400 tends to excel in applications conducive to pipelining
techniques. However, it turns in a respectable level of perfor
mance even in applications where short instruction runs force
pipeline stalls. There remains the possibility that actual perfor
mance may not match the simulated results shown in Figure 4,
but we have attempted to be conservative in the assumptions
that drove our simulations.

The Unpack benchmark provides a good illustration of the

O+---�----�----r----T----'----'-----'----'----'----'
Gee Espresso Spice Ooduc Nasal Eqntott Matrix300 Fpppp TOMCATV

Figure 4. Graph of SPEC ratios for the 50-MHz C400 based on simulation studies.

74 IEEE Micro

...... 1------- 18 clock cycles ---------l� ..

Loop unrolled six times
34 instructions

12 Flops

18 clocks
33 Mflops at 50 MHz

94 MIPS at 50 MHz

a Integer add

s Integer subtract
A Double-precIsion add

M Double-precision multiply

Q Load double-double (LOADD2)
S Store double
b Delayed branch

Figure 5. Sequence of (400 code scheduling for the Lin

pack Daxpy. Shaded areas indicate the clock cycles in

which multiple instructions issue.

C400's vector pcrfonnance. Daxpy. its well-known inner loop,
includes a sequence of five operations : load, load. multiply.
add, and store. Load, and stores dominate this loop, com
prising 60 percent of the operations. j'nrolling the loop in
creases the considerable instruction-level parallelism present
in this algorithm even more. A hand-scheduled code for the
C400, which has 34 instructions, unrolls the loop six timesS

The superscalar leature of the C400 exploits the parallel

ism inherent in this code segment by issuing a load or store
instruction concurrently with each floating-point mUltiply or

add. A new instruction in the C400. LOAD02 (load douhle

In

Figure 6. Diagram of the (400 integer unit.

tloating double), play, a key role in increasing instruction
issue bandwidth by combining two sequential 64-bit load
operations in one instruction. The result is that the C400 can
execute these 34 instructions in only 1 R clocks. Therefore.
the clocks-per-instruction rate for this piece of code is 0.53
with a corresponding rating of 91 native MIPS and 33.3 YIflops.

As the Daxpy case shows. the capability of issuing tloating
point loads and floating-point operations in the same clock
cycle makes the c400's superscalar capahilities far more ef
lective than they might at first appear. Figure 5 details the
code scheduling for this vector loop. In essence, the C400
calculates and stores six array elements. hased on 12 input

values (a total of 18 memory accesses) in just 18 clock cycles.
The execution of the arithmetic and loop control instruc

tions (including the updating of address pointers and testing
for end conditions) overlaps completely with the data loads
and stores. The time needed lo execute the former is com
pletely hidden by the time used for the loads and stores: it

adds nothing to the overall time reqUlred to execute the pro
gram. It is impossible to surpass the performance attained

within this inner loop in a uniprocessor design with one 64-
bit path hetween the CPC and cache. Subsequent perfor
mance improvements can only be attained via higher clock
rates. wider paths between cache and CPC. or multiproces
sor techniques.

Integer unit design
The design of the C400 processor includes nine distinct

pipelines that handle loads. stores. branches, and a variety of
mteger and floating-point execution elements (see Figure 6).
To support the high degree of concurrency within the CPl:.
the chip incorporates a 32 x 32-bit reg ister file with three

read and two write ports. This custom-designed file uses an

advanced circuit design that provides a 6-IlS access time in a
1-I.un-CMOS process technology."

'111e integer unit fetches. decodes. and issues all instI11c-

June 1991 75

Clipper C400

� JIHJ manages all but the floatlng-pomt execution plpC

l imes Ihe CPU abo supervIses the execution 01 floatmg-pomt

I 10<llb and stores It SIgnals the fPC regardmg the appropnate

regIster to load or store, but treats the operatIon Itke an mte

ger operation in all other regards . The C400's superscalar

dispatch logic allows the CPl' to stan :.t floating-point load

(or store) and a floating-point operations instruction in the

same clock cycle, if there are no dat:l dependencies in the

instructions to be issued.

Load/store pipeline
The load pipeline normally requires one clock cycle to

generate an elfective address. another to translate this ad

dress, and a third cycle to access the cache and present the

cached data to the CPU or FPC. To eliminate the bottleneck

in the C100/C300 caused by using a common ALC for both

address generation and all integer operations. the C400 de
sign uses a dedicated address adder in the load and store

pipelines . Upon arrival at the CPC or FPC, the data can write

to the register file or bypass to the appropr iate functional

unit. The overall flow appears in Figure -,
Just as the dedicated address adder overcomes the delays

caused in the C100/300 by Cl ipper's complex addressing

modes. so the new branch pipeline adds a delayed branch

in..,tnlcrioll. This ne�v instnlction represents a Inaior enhance

ment to the Clipper instruction-set architecture. and is also

1 clock cycle = 20 ns
at 50 MHz

... .

one of the few changes lisihle to application programs. While

it is therefore necessar\, to recompile progrdms to take ad

vantage of this pert(xmance enhancement, recompilation is

not required simply for the sake of continued correct execu

tion of existing binaries. C400 preserves the semantics of the
old branch and conditional branch instructions. The new
compare-and-branch instruction tests the value of a general

register and branches accordingly with two delay slots. This
approach avoids the use of condition codes and gives the

compiler more flexible choices regarding code scheduling.

Figure R shows the overall flow

The integer unit contains an ALt:, a 32-bit barrel shifter. a

Wallace-tree multiplier. and an integer divider. 'vIost arith

metic and logical operations execute in une clock cycle, and

thus do not present any special prohlems regarding resource

management or i nstruction scheduling. Multipli cation and
division operations, though, require a variable I1u1l1ber of

cvcles to complete based on the values of the operands. Be

caust> thesE' integer operations Jre not superpipelined. the
instruction issue logiC ca nnot issue ;:1 second instructIon of

the same type until the first one completes. To minimize lost

cycles. the Issue logic and the multiplv dIvide function unit

COn11TIU111clte via a si111ple protocol that lets the function unit

examine t he arguments and int<:>nn the issue logic how long

the operatiun will take. For mo.q rnteger and logical opera

tions. the basic flow follows the classic !{lSC decode/execute!

wnte-hack model . and the uni t can

sustain a docks-per-instruction rate close

to l.0 unce the program and data reside

in the systeln's cdebe.
; Instruction; Instruction
, fetch ; fetch Decode Decode : Execute Write back

FPU design
Instruction

I
Register file/

II cache access address
generator

Figure 7. Example of the (400 load pipeline.

1 clock cycle = 20 ns
at 50 MHz

:.. .;

Figure 8. (400 delayed branch pipeline.

76 IEEE Micro

Data I
I

Register

I cache access file
I

The FPl· contains separate execution

units fur addition subtraction. llluitipli

cation. and diviSIon . A 16 x 64-bit regis

ter file with three read and two write

ports holds floating-point data. Like the

CPC's register file. the register file can

he accessed in less than 6 ns . The inte

ger unit decodes all floating-pOint instruc

tions and handles all the address

calculations and memory operations in

volved in floating-point loads and stores.
Thus , most of the real estate on the FPC

chip itself is free for the three execution

uniLS that handle floating-point addition:

subtraction. multiplication . and division .
The !'PC's superpipelined design

trades olf the number of pipeline srages

against the number of logic levels within

each stage. This design allows the pro

cessor to run at a much higher clock rate

than otherwise possible, given typical 1-

Multiply Add Divide

Figure 9. Diagram of the (400 floating-point unit.

!-1m-CMOS gate uelays. The higher clock rate creates more
opportunities to issue instructions and improves pelformance.

The key to the FPU's perforrnance is its capability of issuing
instructions to the same function unit on evelY clock cycle.
(Double-precision multiplication operations require a one
clock interval between back-to-back instructions; a one-clock
stall occurs when the compiler places two 64-bit floating-point
multiplies in adjacent issue slots.) Floating-point division does
not occur with sufficient frequenc.y to justify the expense of a
pipelined divider; the issue logic will stall the processor when
the compiler schedules a second divide operation prior to the
compleTion of an earlier one (see Figure 9).

The C400 instruction issue logic does not issue instructions
out of order, and it will delay the issue of any instruction
until all the resources needed for its execution arc available.
But, given the wide range of execution times for t1oating
point instructions (a 32-bit add takes four clock cycles and a
64-bit divide takes 30), concurrently executing instructions
can finish out of order. This situation creates an interesting
problem for the compilers that must track the sequence in
which computations complete, if they are to provide optimal
code scheduling. It creates an even more challenging prob
lem for tlle handlers that deal with the variety of IEEE Stan
uaru 754 floating-point exception traps that can occur during
nornral program execution.

For example, suppose a program starts a 64-bit division (a
.�O-clock operation). proceeds wirh several additions and

multiplications, anu then discovers a t10ating undert10w con
uition on the division. The trap handler will sort this out,
match the error to the offending instruction, and present the
results to the application programmer in a manner consistent
with in-order instruction isoue and in-order instruction comple
tion. Some IEEE implementations do this simply by disabling
out-of-order completion; for example, they serialize instruc
tion issue ami give up any oppOltunities to exploit parallel
ism within the code. Other Implementations examine the
operands at the start of each operation and signal a trap
when there is a possibility a trap might occur. This approach
increases overhead as the software processes these potential
problems.

The C400 FPC achieves IEEE compatibility without sacri
ficing performance or accuracy. At the start of each floating
operation, the FPC stores the program counter and source
operands in a set of storage registers known as the floating
trap queue. As operations complete, their entries are removed
trom the queue. When the hardware encounters an IEEE
exception, the contents of the floating-point trap queue are
frozen and an operating system routine untangles the situa
tion. This solution is both easy and unintrusive to implement
in hardware, since the t1oating-point trap queue largely rep
licares the floating register me and occupies less than :3 per
cent of the die. The queue is also relatively painless in
performance, since when traps do not occur, there is no pen
alty, and when they do, the penalty is low.

Superscalarlsuperpipelined architecture
The two strategies of providing superpipelined execution

units and superscalar dispatch of instructions to mUltiple func
tional units are often viewed as redundant in principle since
both exploit instruction-level parallelism in code. to In prac
tice, the two capabilities are highly complementary. In vector
codes characterized by a high degree of instruction-level par
allelism, the combination of floating-point pipelines that can
execute one instnrction per cycle, and superscalar issuc of
two instructions in the same clock, is extremely effective (as
the Oaxpy example described earlier illustrates).

Combining the two confers rhe capability of exploiting in
structIon-level parallelism at Iinle expense. Returning to the
example of Oaxpy. to attain the same 33 Mflops of perfor
mance on this code as the superpipelined!superscalar 50-
MHz C400, a single-issue superpipelined machine would have
to run at 100 _\1Hz. Alternately, a pure superscalar machine
operating at 25 MHz would haVE' to issue four instructions in
a one clock cycle, including two loads or two stores.

Following either of these pure routes is difficult. The ex
tremely deep pipelines needed for 100-MHz operation intro
duce long latencies everywhere in integer and floating-point
code alike. Since integer code generally has less instnrction
level parallelism than vector floating-point code, the cost of
superpipelining ilie integer execution unit, "Will generally go

June 1991 77

Clipper oroo

Table 2. Superpipelined execution unit latency
in the (400.

Issue rate Execution latency
Instruction (single/double) (single/double)

Floating-point 1/1 4/4
unit adderlsubtracter

FPU m ultipler 1/2 5/6

Load pipeline 111 2/2

unrewarded. Higher clock rates complicate circuit design is
sues, magnify the effect of clock skew, and increase heat
dissipation.

The alternate pure path, namely, building a superscalar

microprocessor that can issue four instructions in one cycle,
requires the construction of dual load/store pipes. Multiple
paths to and from memory are both expensive and pin
intensive. Also, the decode circuitry required to parse four
instructions in parallel may lengthen the instruction decod
ing stage and thus limit the processor clock rate. This forces
the entire machine is then forced to operate at lower (less
efficient) frequencies than otherwise possible.

By contrast, the C400 avoids these problems. Its integer

AiU sers the clock rate by the speed of its fastest operations.
Consequently, integer operations have a one-cycle issue rate
and a one-cycle latency. Slower fum;tional unirs in the critical

path of instruction issue, including the load pipe, the floating

point adder/subtracter and multiplier, are superpipelined to
match this clock rate (see Table 2) The 'SO-MHz clock rate
does not tax contemporary CMOS technology and leaves room
for clock -rate scaling with future improvemenrs in process
technology and smaller geometries.

The superscal ar dispatch employed by the C400 is strictly
opportunistic; instructions are issued simultaneously only to
different types of functional units. No functional units are
replicated solely to allow the simultaneous issue of instruc
tions of the same type . Such replications increase cost and
complexity for more than performance, particularly since the
majority of cycles provide no opportunity to use these repli
cated execution units.

Decoding two instructions during one cycle poses no tim
ing problem, fits well with the 64-hit huses needed (anyway)
to handle double-precision data. and does not represent a
real or potential hazard to the maximum clock rate sustain

able by the C400. Johnson! discusses the trade-ofts between
two-instruction and four-instruction decoders, and concludes
that the latter yields a 20-25 percent performance improve

ment at any given clock rate. The C400's use of a two-way
decoder and a fast clock boosts performance by far more
than 2S percent, and avoids the instruction-fetch and branch

78 IEEE Micro

prediction problems inherent in the more complex order
superscalar implementations.

Circuit design
We designed C400 VLSI components using a standard cell

method with a custom-designed register file and I/O pad
ring, and a I-11m-CMOS process with two layers of metal.
The short design cycle, combined with the desire to mini
mize both risks and cosrs during the development phase,
mandated the use of a standard cell approach for most of the
logic design. The high bandwidth requirements needed to
support concurrent operations by the CPU and FPU dictated
the use of a custom memory design for the register me. Since
the Intergraph Advanced Processor Division depends on ex

ternal foundries for wafer production, the choice of a I-11m

process seemed a conservative one for the 1990-91 time frdme,
when we planned to go into production with the c400. Sur
prisingly, we found ourselves closer to the state of the art in
this regard than we expected.

Our desire to spread the design over several moderately
sized chips rather than pack it all on one die, led to the need
for innovation with regard to interconnection circuitry. Along

with interconnection delays, power dissipation had to be mini
mized. DiSSipated power can be calculated by the formula :
p � CV'f where P is the dissipated power, C is the capaci
tance of the cirCUit, Vis the voltage swing, and fis the driving
frequency. This formula reveals that much of the power dis
sipated by CMOS devices drives the I/O pads.

With many I/O pins on each device and anticipated fre
quencies in excess of 50 MHz, heat huildup was a concern.
We reviewed the use of a BiCMOS process to obtain l ow

voltage I/O and 5-volt on-chip operation, but no BiCMOS
vendor could support our requirements. Instead, we turned
to a unique circuit design that allows us to use lOW-VOltage
swings (approximately IV) for most high-frequency I/O lines.

A low-voltage Signal supplied to the chip serves as both a
reference voltage for input signals and as a voltage source for
outputs. This one-volt signaling method reduces the power
used to drive the I/O lines by a factor of 25, and keeps total
pmver requirements under 7 watts.

Chip sets versus megachips
The decision to implement the c400 as a chip set, ulti

matel y integrated on a multichip module, nms counter to the
prevailing trend to integrate more and more processor func
tions on a one multimillion-transistor ';megachip" (such as
the 860, 960, 486, 68040, and so on). We believe the multichip
approach has several important advantages that more than
outweigh its one notable drawback. On the plus side, a chip
set provides ample room for whatever silicon may he needed
for the sake of perfom1ance or functionality. Thus, the Intel
860, with its 1.2 million transistors squeezed onto one chip,
compares unfavorably in both performance and functionality

with mM's RS/6000, which spreads out nearly 7 million tran
sistors over nine chips.

Semiconductor economics also favor the use of several
moder.ltely sized chips over one very large device. Semicon
ductor production yield falls exponentially with increasing
die area. One large die costs significantly more than two
smaller die with the same aggregate area. At a ratio of 1 .5
defects per square centimeter, a six-inch wafer yields only
about three good 2.0 sq cm die, versus about 33 good 1.0 sq
cm dies. Obviously, the economics strongly favor the smaller
size. Independent of the cost of a wafer, the bigger die will
be 5.5 times more expensive than the smaller, per unit area
of (working) siliconY

Of course, as manufacturing moves down the learning
curve, defect densities decrease, yields increase, and the dif
ference in cost between the one larger and the two smaller
dies will decrease. Nonetheless, it never dwindles to the point
of irrelevance. Our silicon suppliers estimate that it takes four
years to cut the defect ratio roughly in half, that is, to move
from 1.5 to 0.8 defects per square oentimeter. But even at this
second figure---typical for a mature product on a stable pro
cess-a 6-inch wafer yields only about 14 good 2.0 sq cm
dies, versus about 66 good 1 .0 em' dies. The cost difference
per unit area of (working) silicon still favors the two smaller
dies by considerably more than two to one.

It is tempting to argue that these cost differences sound
more important than they really are, since the CPU com
prises an increasingly small fraction of the cost of building a
system. One might argue that in a $10,000 system, it hardly
matters whether the CPU costs $100 or $250. This argument
assumes the economics of low volumes. As unit volumes
increase, small cost savings get magnified greatly. As the RISC
market grows, product shipments for workstations will be
measured in the hundreds of thousands of units. At only
100,000 units, a savings of $150 a unit amounts to $15 mil
lion-a sum that falls straight to the bottom line.

The major disadvantage of chip sets, compared to megachip
processors, is that communication between functional units
located on different chips involves greater delays than com
municating between units located on the same chip. It takes
time to build up the currmt required to drive from chip to
chip, and still more time for current to travel the extra dis
tances involved. The result is that chip sets usually run some
what slower than single chips. Hut this disadvantage can be
minimized. Off-chip accesses can be pipelined, effectively
bringing them down to one clock cycle (assuming sufficient
instruction-level parallelism exists to keep the pipeline full).
Even without pipelining, interconnection delays, when pack
aged on a multichip module, amount to no more than 2 or 3
ns. At 100 MHz, this time represents no more than 20 to 30
percent in overhead penalty (2 or 3 ns added to a 10-ns clock).

A 20 or 30 percent penalty in CPU performance seems a
modest price to pay for a savings of more than 60 percent in

CPU cost. We are in an era when margins are under increas
ing pressure for all workstation manufacturers. One key to
survival in the coming decade will be cost-effective manufac
turing. Cost-effective manufacturing begins with attention to
small details and a willingness to make sensible product de
sign trade-offs based on economics.

THE C400 DEVELOPMENT PROGRAM accomplished a
complete hardware redesign of the Clipper processor in slightly
less than two years, approximately half of the elapsed time
required to implement the original CIOO. The speed with
which we performed this task demonstrates two positive as
pects of our industry and Clipper architecture.

First, VLSI development tools have improved vastly over
the last five years, especially in the areas of chip layout and
simulation.

Second, the design team incorporated a variety of new
ide-AS in the C400, including superscalar instruction dispatch,
superpipelined execution units, and even new delay slot in
structions, while maintaining software compatibility with ex
isting applications. This fleXibility and compatibility
demonstrates the robustness of the architecture and validates
many decisions made in the Clipper's original definition, such
as hiding the precise operation of the execution pipeline from
application-level code.The performance gains from our lim

ited opportunistic approach to su perscalar instruction dis
patch were truly gratifying.

This new Clipper delivers a level of performance
unachievable just a few years ago. Nonetheless, the C400
does not represent a limit for future micToprocessor develop
ment, any more than the original CIOO did in 1985. We are
enthusiastic about our accomplishments with the C400, based
on 1990 architectural concepts and implementation capabili
ties. However, partly as a consequence of our experiences in
desigrting and implementing this newest addition to the old
est line of commercial RISC microprocessors, we are also
inspired with even newer architectural ideas and implemen
tation possibilities. Today we are hard at work on our fourtll
generation Clipper-a machine targeted to proVide three to
four times the performance of the C400. III

References
1 . W.M. Johnson, " Super-Scalar Processor Design, " Stanford University

Tech. Report CSL-TR-89-383, Stanford, Calif., June 1 989, p. 52.

2 . N. Jouppi, "The Nonuniform Distribution of Instruction-Level and

Machine Parallelism and Its Effect on Performance," IEEE Trans.

Computers, VoL 38, No. 1 2, Dec. 1 989, p. 1 ,648ff.

3. N. Jouppi and D. Wall, "Available Instruction-Level Parallelism for

Supersca lar and Superpipelined Machines, " Proc Third Int'l Conf.

June 1991 79

Clipper C400

Architectural 5upportfor Programming Languages and Operating

5ys., IEEE CS Press, los Alamitos, Calif., Apr. 1 989, p. 275ft.

4. Introduction to the Clipper Architecture, Intergraph Advanced

Processor Division, Palo Alto, Calif. , Jan. 1 989.

5. "C l ipper C300 Data Sheet, " Intergraph Advanced Processor

Division, Sept. 1 988.

6. W. Hollingsworth, H. Sachs, and A.J. Smith, "The C lipper Processor:

Instruction Set Architecture and Implementation," Comm. ACM,
Vol . 32, No. 2, Feb. 1 989, pp. 200-2 1 9 .

7 . W. Baxter a n d R. Arnold, "Code Restructuring for Enhanced

Performance on a Pipelined Processor," Proc. Compean. IEEE CS

Press, 1 99 1 , pp. 252-260.

Howard G_ Sachs is the executive vice
president and general manager for
Intergraph's Advanced Processor Division
in Palo Alto, Calif. He was the chief archi
tect of the ClOO, the original Clipper de
signed at Fairchild Semiconductor. Before
joining Fairchild, Sachs was a vice presi

dent at the Boulder Division of Cray Research and directed
engineering activities at National Advanced Systems, TRW,
Xerox, and the California Institute of Technology.

Sachs has a BS in engineering from California State Univer
sity at Los Angeles and an MSEE from the University of South
ern California. He is a member of the IEEE.

Harlan McGhan is the manager of soft
ware engineering applications and analy
sis at the same division. Before joining
Intergraph, he served as the software en
gineering manager and product line man
ager for National Semiconductor's 32000
series of microprocessors. He has also

worked in engineering and engineering management, tech
nical marketing, and technical writing.

McGhan received a BA in philosophy from Michigan State
University and an MA and ABD in logic and history of sci
ence from Princeton University. He is a member of the Ameri
can Philosophical Association.

Address questions concerning this article to Nathan A.
Brookwood, Intergraph Corp., 2400 Geng Road, Palo Alto,
CA 94303.

80 IEEE Micro

8. H. Sachs and H. McGhan, "The C400 Chipset Architecture,"

IntergraphAdvanced Processor Div/SiOn White Paper. Sept., 1 990.

9. L. Hanson and N. Brookwood, "The C400 Superscalarf

Superpipelined RISC Design, " Proc. Compean, IEEE CS Press,

1 99 1 , pp. 247-2 5 1 .

1 0 . J . Wilson, "A ReviewofSuperscalar literature," Univ. of Cal ifornia

at Berkeley Computer Science DiVISion Report, Berkeley, Calif.,

Apr. 23, 1 990, p. 1 0 .

1 1 . H. Sachs and H. McGhan, " Future Directions i n Clipper Processors, "

Proc. Compean, IEEE CS Press, 1 99 1 , pp. 240-246.

Lee F. Hanson is the director of chip de
velopment for the division, where he has
managed the design effort for the C4 mi
croprocessor for most of the project's life
time. Before joining Intergraph, he
managed the design of super-minicomput
ers at Gould's Computer Systems Division

and held a variety of engineering and engineering manage
ment pOSitions at Amdahl, STC Computer Research, National
Advanced Systems, NCR, and Datum Corp.

Hanson earned a BS in electrical engineering from North
Dakota State University and an MSEE from San Diego State
University. He is a memher of the IEEE and the Computer
Society.

Nathan A. Brookwood is the director of
marketing for the division. His responsi
bilities include planning and marketing for
a range of Clipper-based chips, hoards,
and system-level products. Before joining
Intergraph, Brookwood researched high
performance systems architecture for D. H.

Brown Associates, a market research finn. He has also worked
at DEC, Prime Computer, and Convergent Technologies.

Brookwood is a graduate of the Massachusetts Institute of
Technology and the Harvard Business School.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 159 Medium 160 High 161

L

