

APPLICATIONS
HANDBOOK

• -:4': = CYPRESS
, SEMICONDUCTOR

Cypress Semiconductor, 3901 North First St., San Jose, CA 95134 (408) 943-2600

Telex: 821032 CYPRESS SNJ UD, TWX: 910 997 0753, FAX: (408) 943-2741

Cypress Semiconductor, Cypress PLD Toolkit, and QuickPro II are trademarks of Cypress Semiconductor
Corporation.
IBM, IBM PC, and PCIXT are registered trademarks of the International Business Machine Corporation.
SPARC is a registered trademark of SPARC International.
Data I/O is a registered trademark of the Data I/O Corporation.
PLD Test and ABEL are trademarks of the Data I/O Corporation.
STAG is a registered trademark of Stag Microsystems Ltd.

Published August 1991

© Cypress Semiconductor Corporation. 1991. The Information contained herein Is subject to change wtthout notice. Cypress Semiconductor Corporation assumes no responsibility for the
use of anyclrcunryotherthan clrcunryembodled In a Cypress SemlconductorCorporatlon product. Nor does It conwyor Imply any license under patent or other rfghts. Cypress Semiconductor
does not authorize Its products for use as critical componenta In Ilfe-supporl systems where a malfunction or failure of the product may reasonably be expected to result In significant Injury
tothe user. The Inclusion of Cypress Semiconductor products In life-support systems appllcallons Implies that the manufacturerassumesaJl rfskofsuch use and In sodolng Indemnifies Cypress
Semiconductor against all damages.

CYPRESS
SEMICONDUcrOR

Preface

About This Book
This Applications Handbook is a learning tool for

using Cypress devices. The application notes included
here range from general product overview articles, such
as "Understanding Dual-Port RAMs," to specific design
examples.

The general overviews describe product-family
characteristics and explain some of the products'
capabilities. These application notes appear at the
beginning of this Handbook.

Next appear application examples that show how to
use specific Cypress devices in the context of real
designs. The application examples are organized by
product type (e.g., SRAMs or EPLDs). Within each
product type examples are arranged by product num­
ber, using the product that is the article's primary focus.

Although your specific application might not ap­
pear explicitly in an application note, the design ex­
amples can still be useful to you. H the design example
is similar to your application, you might be able to
adapt the hardware or software to your design easily.
Many of the application notes provide PLO software
code for design tools from a variety of vendors, so that
you can copy the code and use it as a skeleton for your
own PLO designs. Even if none of the examples relate
directly to your design, they can stimulate new ideas by
showing features or applications that might not have oc­
curred to you. The information can also significantly
reduce the learning curve normally associated with un­
familiar ICs.

Most of the designs described in this Handbook are
based on actual circuits produced either by Cypress or
by one of our customers. Application notes that discuss

iii

specific designs indicate whether the designs have been
simulated and/or built and completely debugged.

H you have questions about any Cypress product,
please contact your local Field Applications Engineer at
the nearest direct sales office. A list of Cypress sales
offices, representatives, and distributors is included at
the back of this Handbook. For continuous on-line in­
formation about Cypress products, you can connect to
the Cypress Bulletin Board at (408) 943-2954.

About Cypress Semiconductor
Since its incorporation in 1982, Cypress has suc­

cessfully addressed diverse, high-performance niche
markets by creating technologically sophisticated
products, using innovative packaging, and emphasizing
quality. Cypress is a complete semiconductor manufac­
turer, performing its own process development, circuit
design, wafer fabrication, assembly, and test. Its core
CMOS and BiCMOS processes lead the industry with
O.8-micron design rules. Cypress ships over 200
products in seven product areas: SRAMs, PROMs,
PLOs, logic devices, SP ARC microprocessors and
peripherals, multichip modules, and high-speed
BiCMOS PLO and memory devices. Cypress is an inter­
national company, with headquarters in San Jose,
California and fabrication facilities in San Jose; Round
Rock, Texas; and Bloomington, Minnesota. The com­
pany has started up five subsidiaries that are funded by
Cypress but run as independent businesses, including
Cypress Semiconductor (Texas) Inc., Aspen Semicon­
ductor Corporation, Multichip Technology Incor­
porated, Ross Technology Inc., and Cypress Semicon­
ductor (Minnesota) Inc.

Contents

Page

General Information
System Design Considerations When Using Cypress CMOS Circuits 1-1
Power Characteristics of Cypress Products .. 1-23
Tips for High-Speed Logic Design .. 1-29
Protection, Decoupling, and Filtering of Cypress CMOS Circuits 1-34

Modules
Choosing Packages in High-Density Module Designs .. 2-1
The Multichip Family of Universal JEDEC ZIP/SIMM Modules 2-7

ECL and TTL BiCMOS
Noise Considerations in High-Speed Logic Systems. .. 3-1
Using ECL in Single + 5V TIL Systems ... 3-4
BiCMOS TIL and ECL SRAMs Improve High-Performance Systems 3-7
PLCC and CLCC Packaging for High-Speed Parts ... 3-15
A New Generation of BiCMOS High-Speed TIL SRAMs 3-20
Access Time vs. Load Capacitance for High-Speed BiCMOS TIL SRAMs 3-23
Combining SRAMs Without an External Decoder 3-27
BiCMOS TIL SRAMs Improve MIPS R3000 and R3000A Systems 3-30
Memory and Support Logic for Next-Generation ECL Systems 3-33

SRAMs
RAM I/O Characteristics .. 4-1
Understanding Dual-Port RAMs .. 4-7
Using Dual-Port RAMs Without Arbitration ... 4-19
Using Cypress SRAMs to Implement 386 Cache ... 4-23

PROMs
Pin-out Compatibility Considerations of SRAMs and PROMs 5-1
Introduction to Diagnostic PROMs 5-4
Interfacing the CY7C289 to the AM29000 ... 5-10
Interfacing the CY7C289 to the CY7C601 ... 5-23

PLDs
Introduction to Programmable Logic. 6-1
CMOS PAL Basics .. 6-10
Are Your PLDs Metastable? ... 6-21
PLD-Based Data Path For SCSI-2 .. 6-40

v

Page
PLDs (continued)
PAL Design Example: A OCR EncoderlDecoder ... ~3
1'2 Framing Circuitry .. 6-76
Using CUPL with Cypress PLDs .. 6-93
Using ABEL to Program the Cypress 22V10 .. 6-119
Using ABEL to Program the CY7C330 .. : 6-139
Using ABEL 3.2 to Program the Cypress CY7C331 .. 6-147
Using Log/IC to Program the CY7C330 , 6-154
State Machine Design Considerations and Methodologies 6-173
Understanding the CY7C330 Synchronous EPLD ... 6-213
Using the CY7C330 in Closed-Loop Servo Control .. 6-233
FDDI Physical Connection Management Using the CY7C330 .. 6-247
Bus-Oriented Maskable Interrupt Controller .. 6-259
Using the CY7C330 as a Multi-channel Mbus Arbiter 6-270
Using the CY7C331 as a Waveform Generator ~ 6-279
CY7C331 Application Example: Asynchronous, Self-Timed VMEbus Requestor 6-286
Understanding the 361 ... 6-295
Using the CY7C361 as an Mbus Arbiter ... 6-305
TMS320C30/VME Signal Conditioner Using the CY7C361 ~ 6-315
DMA Control Using the CY7C342 MAX EPLD .. 6-327
Interfacing PROMs and RAMs to High-Speed DSP Using MAX .. 6-345
FIFO RAM Controller with Programmable Flags. .. 6-351

Logic
Understanding Small FIFOs .. 7-1
Understanding Large FIFOs ... 7-14
Designing with the CY7C439 Bidirectional FIFO (BIFO) 7-2fJ
Microcoded System Performance :..................................... 7-47
Systems with CMOS 16-Bit Microprocessor ALUs ... 7-50

RIse
SPARC Software Advantages Over CISC ... 8-1
Register Windows ... '.' .. 8-3
CY7C600 System Design Footnotes '.' 8-7
The Impact of Memory on High-Performance RISC Microprocessors 8-17
High-Speed CMOS SPARC Design ... 8-23
SPARC System Surface-Mount Design .. 8-33
Memory System Design for the CY7C601 SPARC Processor 8-38
Cache Memory Design ... :............. 8-48
Synchronous Trap Identification for CY7C600 Systems. 8-65
An Introduction to Mbus .. 8-69
Multiprocessing System Boot-Up ... 8-81

vi

Page
RIse (continued)
Porting UNIX to the CY7C604 or CY7C605 ... 8-84
Getting Started with Real-Time Embedded System Development , 8-89
SPARC as a Real-Time Controller .. 8-95
Memory Protection and Address Exception Logic for the CY7C611 SPARC Controller 8-108

Bus Products
VIC068 Special Features and Tips ... 9-1
Interfacing the VIC068 to MC68020 .. 9-5

Glossary .. 10-1

Index ... 1-1

vii

Section Contents

Page
General Information
System Design Considerations When Using Cypress CMOS Circuits 1-1
Power Characteristics of Cypress Products .. 1-23
Tips for High-Speed Logic Design .. 1-29
Protection, Decoupling, and Filtering of Cypress CMOS Circuits 1-34

Systems Design Considerations V\lhen
Using Cypress CMOS Circuits

This application note describes some factors to
consider when designing new systems using Cypress
high-performance CMOS integrated circuits or when
using Cypress products to replace either bipolar or
NMOS circuits in existing systems. The two major areas
of concern are device input sensitivity and transmission
line effects due to impedance mismatching between the
source and load.

To achieve maximum performance when using
Cypress CMOS ICs, pay attention to the placement of
the components on the printed circuit board (PCB); the
routing of the metal traces that interconnect the com­
ponents; the layout and decoupling of the power dis­
tribution 'system on the PCB; and perhaps most impor­
tant of all, the impedance matching of some traces be­
tween the source and the loads. The latter traces must,
under certain conditions, be analyzed as transmission
lines. The most critical traces ate those of clocks, write
strobes on SRAMs and FIFOs, output enables, and chip
enables.

Replacing Bipolar or NMOS les
Cypress CMOS ICs are designed to replace both

bipolar ICs and NMOS products and to achieve equal
or better performance at one-third (or less) the power
of the components they replace.

When high-performance Cypress CMOS circuits
replace either bipolar or NMOS circuits in existing
sockets, be aware of conditions in the existing system
that could cause the Cypress ICs to behave in unex­
pected ways. These conditions fall into two general
categories: device input sensitivity and sensitivity to
reflected voltages.

Input Sensitivity
High-performance products, by definition, require

less energy at their inputs to change state than low- or
medium-performance products.

Unlike a bipolar transistor, which is a current-sens­
ing device, a MOS transistor is a voltage-sensing device.
In fact, a MOS circuit design parameter called K' is

1-1

analogous to the gm of a vacuum tube and is inversely
proportional to the gate oxide thickness.

Thin gate oxides, which are required to achieve the
desired performance, result in highly sensitive inputs.
These inputs require very little energy at or above the
device input-voltage threshold (approximately 1.5V at
25°C) to be detected. CMOS products might detect
high-frequency signals to which bipolar devices would
not respond.

MOS transistors also have extremely high input im­
pedances (5 to 10 MO), which make these transistors'
gate inputs analogous to the input of a high-gain
amplifier or an RF antenna. In contrast, because
bipolar ICs have input impedances of 10000 or less,
these devices require much more energy to change state
than do MOS ICs. In fact, a typical Cypress IC requires
less that 10 picojoules of energy to change state. Thus,
when Cypress CMOS ICs replace bipolar or NMOS ICs
in existing systems, the CMOS ICs might respond to
pulses of energy in the system that are not detected by
the bipolar or NMOS products.

Reflected Voltages
Cypress CMOS ICs have very high input impedan­

ces and - to achieve TTL compatibility and drive
capacitive loads -low output impedances. The im­
pedance mismatch due to low-impedance outputs driv­
ing high-impedance inputs might cause unwanted volt­
age reflections and ringing, under certain conditions.
This behavior could result in less-than-optimum system
operation.

When the impedance mismatch is very large, a
nearly equal and opposite negative pulse reflects back
from the load to the source when the line's electrical
length (PCB trace) is greater than

1= _t_r_
2Tpd

where tR is the rise time of the signal at the source, and
T pd is the one-way propagation delay of the line per
unit length.

The input clamping diodes in bipolar IC families
(e:g., TTL, LS, ALS, FAST, FACT) are inherent in th~

fabrication process. The P substrate is usually grounded
and N-wells are used for the NPN transistors and P­
type resistors. The wells are reverse biased by connect­
ing them to the Vee supply. As a result, a PN junction
diode is formed between every input pin (cathode or N
material) and the substrate (anode or P material). A
negative voltage at an input pin due to either lead in­
ductance or a voltage reflection forward biases the
diode, which turns on and clamps the input pin to a V f
below ground (approximately -0.8V).

Historically, as circuit performance improved, the
output rise and fall times of the bipolar circuits
decreased to the point where voltage reflections began
to occur even for short traces when an, impedance mis~
match existed between the line and the load. Most
users, however, were unaware of these reflections be­
cause the reflections were suppressed by the diodes'
clamping action.

Conventional CMOS processing results in PN junc­
tion diodes, which adversely affect the ESD (electros­
tatic discharge) protection circuitry at each input pin
and cause an increased susceptibility to latch-up. In ad­
dition, when the input pin is negative enough to forward
bias the input clamping diodes, electrons are injected
into the substrate. When a sufficient number of
electrons are injected, the resulting current can disturb
internal nodes, causing soft errors at the system level.

To eliminate this problem, all Cypress CMOS
products use a substrate bias generator. The substrate is
maintained at a negative 3V potential, so the substrate
diodes cannot be forward biased unless the voltage at
the input pin becomes a diode drop more negative than
-3V. (See Figure 5 in "CMOS PAL Basics" for a
schematic of the input protection circuits used on all
Cypress CMOS products.) To the systems designer, this
translates to approximately five times (3.8V divided by
O.8V = 4.75) the negative undershoot safety margin for
Cypress CMOS integrated circuits versus those that do
not use a bias generator.

Voltage reflections should be eliminated by using
impedance matching techniques and passive com­
ponents that dissipate excess energy before it can cause
soft errors. Crosstalk should be reduced to acceptable
levels by careful PCB layout and attention to details.

Crosstalk
The rise and fall times of the waveforms generated

by Cypress CMOS circuit outputs are 2 to 4 ns between
levels of 0.4 and 4V. The fast transition times and the
large voltage swings could cause capacitive and induc­
tive coupling (crosstalk) between signals if insufficient
attention is paid to PCB layout.

You can reduce crosstalk by avoiding running PCB
traces parallel to each other. If this is not possible, run
ground traces between signal traces.

In synchronous systems, the worst time for the
crosstalk to occur is during the clock edge that samples
the data. In most systems, it is sufficient to isolate the

1-2

clock, chip select, output enable, and write and read
control 'lines from each other and from data and ad­
dress lines so that the signals do not cause coupling to
each other or to the data lines.

It is standard practice to use ground or power
planes between signal layers on multi-layered PCBs to
reduce crosstalk. The capacitance of these isolation
planes increases the propagation delay of the signals on
the signal layers, but this drawback is more than com­
pensated for by the isolation the planes provide.

The Theory of Transmission Lines
A connection (trace) on a PCB should be con­

sidered as a transmission line if the wavelength of the
applied frequency is short compared to the line length.
If the wavelength of the applied frequency is long com­
pared to the length of the line, you can use conventional
circuit analysis.

In practice, transmission lines on PCBs are
designed to be as nearly lossless as possible. This
simplifies the mathematics required for their analysis,
compared to a lossy (resistive) line.

Ideally, all signals between ICs travel over constant­
impedance transmission lines that are terminated in
their characteristic impedances at the load .. In practice,
this ideal situation is seldom achieved for a variety of
reasons.

Perhaps the most basic reason is that the charac­
teristic impedances of all real transmission lines are not
constants, but present different impedances depending
upon the frequency of the applied signal. For "classical"
transmission lines driven by a single-frequency signal
source, the characteristic impedance is "more constant"
than when the transmission line is driven by a square
wave or a pulse.

According to Fourier series expansion, a square
wave consists of an infinite set of discrete frequency
components - the fundamental plus odd harmonics of
decreasing amplitude. When the square wave
propagates down a transmission line, the higher fre­
quencies are attenuated more than the lower frequen­
cies. Due to dispersion, the different frequencies do not
travel at the same speed.

Dispersion indicates the dependence of phase
velocity upon the applied frequency (Reference 1 pg.
192). The result is that the square wave or pulse is dis­
torted when the frequency components are added
together atthe load. '

A second reason why practical transmission lines
are not ideal is that they frequently have multiple loads.
You can distribute the loads along the line at regular or
irregular intervals or lump them together as close as
practical at the end of the line. The signal-line reflec­
tions and ringing caused by impedance mismatches,
non-uniform transmission line impedances, inductive
leads, and non-ideal resistors could compromise the
dynamic system noise margins and cause inadvertent
switching.

t IC
VI

t
10

TO
INFINITY

Figure 1. Transmission Line Model

One system design objective is to analyze the criti­
cal signal paths and design the i~terconnectio.ns .such
that adequate system noise margms are mamtamed.
There will always be signal overshoot and undershoot.
The objective is to accurately predict these effects,
determine acceptable limits, and keep the undershoot
and overshoot within the limits.

The Ideal Transmission Line
An equivalent circuit for a transmission line ap­

pears in Figure 1. The circuit consists of subsections of
series resistance (R) and inductance (L) and parallel
capacitance (C) and shunt. admittance (~) or parallel
resistance, Rp. For c1anty and consistency, these
parameters are defined per unit length. Multiply the
values of R, L, C, and Rp by the length of the subsec­
tion, 1, to fmd the total value. The line is assumed to be
infinitely long.

If the line of Figure 1 is assumed to be lossless (R
= 0, Rp = infinity) Figure 1 reduces to Figure 2. A
small series resistance has little effect upon the line's
characteristic impedance. In practice and by design, the
series resistance is quite small. For I-ounce (0.0015-
inch-thick), I-mil-wide (0.010-inch) copper traces on 0-
10 glass epoxy PCBs, the trace resistance is between 0.5
and 0.3.0 per foot. 2-ounce copper has a resistance 50
percent lower than that of I-ounce copper.

b d

~ ~I ..

Input or Characteristic Impedance
To calculate the characteristic impedance (also

called AC impedance or surge impedance) looking i~to
terminals a-b of the circuit in Figure2, use the followmg
procedure. . . .

Let Zl be the input Impedance looking mto ter­
minals a-b, with Z2 for terminals c-d, Z3 for terminals
e-f, etc. Zl is the series impedance of the first inductor
(lL) in series with the parallel combination of Z2 and
the impedance of the capacitor (IC).

From AC theory:
XL= jrolL
where XL is the inductive reactance.

1
Xc= jrolC

where Xc is the capacitive reactance.
Then

Z2XC
ZI=XL+ Z2+XC Eq. 1

If the line is reasonably long, Zl = Z2 Z3. Sub-
stituting Zl = Z2 into Equation 1 yields

ZIXC
ZI=XL+-Z X

1 + C
or,

Z12- ZIXL- XCXL= 0 Eq. 2

~Z3
e IL g

Ie! t ~'--I-C-!--;-4 --~Y
f h

~I.. ~
Figure 2. Ideal Transmission Line Model

1-3

Substituting the expressions for Xc and XL yields

Z12 - jrolL = !=.... Eq.3
C

Equation 3 contains a complex component that is
frequency dependent. You can eliminate the complex
component by allowing I to become very small and by
recognizing that the ratio UC is constant and inde­
pendent of I or ro:
ZI= ~LIC Eq.4

The AC input impedance of a purely reactive,
uniform, lossless line is a resistance. This is true for AC
or DC excitation.

Propagation Velocity and Delay
The propagation velocity (or phase velocity) of a

sinusoid traveling on an ideal line (Reference 1 pg. 33) is
1 cx= _.-

-..fLC
The propagation delay for a lossless line is the

reciprocal of the propagation velocity:
Tpd = -..fLC Eq.5

= ZIC
where L and C are once again the intrinsic line induc­
tance and capacitance per unit length.

Adding additional stubs or loads to the line (Refer~
ence 2 pg. 129) increases the propagation delay by the
factor

...J 1 + cwc
where CD is the load capacitance.

Therefore, the propagation delay of a loaded line,
TpdL, is

TpdL = Tpd...J 1 + Cwc Eq. 6
This application note shows later that a transmis­

sion line's unloaded or intrinsic propagation delay is
proportional to the square root of the dielectric con­
stant of the medium surrounding or adjacent to the line.
Propagation delay is not a function of the line's
geometry.

The characteristic impedance of a capacitively
loaded line decreases by the same factor that the
propagation delay increases:

Z ' ZI
1 = ''\jF

1
-+-

C
-

IYi
- c-

Eq. 7

Note that the capacitance per unit length must be
multiplied by the line length, I, to calculate an
equivalent lumped capacitance.

The Condition for Voltage Reflection
It is relatively straightforward to obtain a c1osed­

form solution for a transmission line's maximum allow­
able length, which, if exceeded, might cause a voltage
reflection. If the line is. not terminated in its charac­
teristic impedance, a reflection is guaranteed to occur.
The reflection's amplitude depends on the amount of
impedance mismatch between the line and the load and

1-4

whether the rise time of the signal at the source equals
or is greater (slower) than two times the propagation
delay of the line.

The condition for a voltage reflection to occur is

L > _tr_ E 8
- 2T q. pdL

Solving for the loaded propagation delay yields

Eq.9

However, the actual physical length of the line is

1= ~ Eq.l0
2Tpd

The intrinsic capacitance of the line from Equation 5 is

C - Tpd Eq.ll
0- Zo

It is standard practice to use Co to designate the
intrinsic line capacitance, Lo the intrinsic line self in­
ductance, and Zo the intrinsic line characteristic im­
pedance.

Substituting the expressions from Equations 9, 10,
and 11 into Equation 6 gives the relationship for the
line length at which voltage reflections might occur.
Two conditions must be present for voltage reflections
to occur: The line must be long, and there must be an
impedance mismatch between the line and the load.

CD
+ ------~x Tpd

Tpd Zo
Solving Equation 12 for the line length, 1, yields

L=~ 1
2Tp dJ C Z

1+~
tr

Eq.12

Eq.13

Equation 13 is very useful to the system designer. It
is generic and applies to all products irrespective of cir­
cuit type, logic family, or voltage levels. The equation
allows you to estimate when a line requires termination,
using variables you can easily determine.

When driving a distributed or non-lumped load, the
signal's rise time depends on the source - not the load,
as you might expect. The intrinsic,· or unloaded, line
propagation delay per unit length is a function of the
dielectric constant and can be easily calculated. The in­
trinsic line characteristic impedance isa function of the
dielectric constant and the PCB's physical construction
or geometry and can also be calculated. Finally, you can
estimate the equivalent (lumped) load capacitance by
adding up the number of loads (device inputs) being
driven and multiplying by 10 pF. For I/O pins, use 15
pF per pin.

Signal Transition Times
The standard Cypress 0.81l (L drawn) CMOS

process yields output buffers whose signals transition
approximately 4V in 2 ns, or, have a slew rate of 2V per

nanosecond. The rise time/fall time is 2 ns. Products
fabricated using the Cypress BiCMOS process have the
same rise times.

The Cypress ECL process yields products with 500-
ps output signal rise times and fall times, or slew rates
of 1 V/0.5 ns = 2V per nanosecond. Internal signal slew
rates are lOV per nanosecond, but only for short (usual­
ly less than 500 mY) voltage excursions. Thus, high-fre­
quency noise is generated on chip, which you can
eliminate by using 100- to 500-pF ceramic or mica filter
capacitors between Vee and ground.

The values in Table 1 come from using Equation 13
to calculate the line length at which voltage reflections
might occur. The calculations assume a 50Q intrinsic
line characteristic impedance and that the PCB is multi­
layer, using stripline construction on G-lO glass epoxy
material (dielectric constant of 5). These conditions
result in an unloaded line propagation delay of 2.27 ns
per foot.

Table 1 reveals that decreasing the source rise time
from 2 to 0.5 ns (a factor of 4) decreases the line length
at which a voltage reflection might occur by a factor of
5 (4.73 divided by 0.93 = 5.09) for the same load (10
pF) and intrinsic propagation delay (2.27 ns/ft.). A
second observation is that for signals with rise times of
0.5 ns, you should terminate all lines.

Reflection Coefficients
Another attribute of the ideal transmission line is

reflection coefficients, which are not actually line char­
acteristics. The line is treated as a circuit component,
and reflection coefficients are defined that measure the
impedance mismatches between the line and its source
and the line and its load. The reason for defining and
presenting the reflection coefficients becomes apparent
later when it is shown that if the impedance mismatch is
sufficiently large, either a negative or positive voltage

Table 1. Line Length at which a Voltage Reflection
Occurs

tr (ns) CD (oF) L (inches)

2 10 4.73

2 20 4.32

2 40 3.74

2 80 3.05

1 10 2.16

1 20 1.87

1 40 1.53

1 80 1.18

0.5 10 0.93

0.5 20 0.76

0.5 40 0.59

0.5 80 0.44

1-5

reflects back from the load to the source, where the
voltage either adds to or subtracts from the original sig­
nal. A mismatch between the source and line im­
pedance might also cause a voltage reflection, which in
tum reflects back to the load. Therefore, two reflection
coefficients are defmed.

For classical transmission lines driven by a single
frequency source, the impedance mismatches cause
standing waves. When pulses are transmitted and the
source's output impedance changes depending upon
whether a Low-to-High or a High-to-Low transition oc­
curs, the analysis is complicated further.

You can use classical transmission line analysis­
where pulses are represented by complex variables with
exponentials - to calculate the voltages at the source
and the load after several back and forth reflections.
However, these complex equations tend to obscure
what is physically happening.

Energy Considerations
Now consider the effects of driving the ideal trans­

mission line with digital pulses and analyze the behavior
of the line under various driving and loading conditions.
The first task is to define the load and source reflection
coefficient s.

Figure 3 shows the circuit to be analyzed. The ideal
transmission line of length I is driven by a digital source
of internal resistance Rs and loaded with a resistive load
RL. The characteristic impedance of the line appears as
a pure resistance,
Zo= ..JLIC
to any excitation.

The ideal case is when Rs = Zo = RL. The maxi­
mum energy transfer from source to load occurs under
this condition, and no reflections occur. Half the energy
is dissipated in the source resistance, Rs, and the other
half is dissipated in the load resistance, RL (the line is
lossless).

If the load resistor is larger than the line's charac­
teristic impedance, extra energy is available at the load
and is reflected back to the source. This is called the
underdamped condition, because the load under-uses
the energy available. If the load resistor is smaller than
the line impedance, the load attempts to dissipate more
energy than is available. Because this is not possible, a
reflection occurs that signals the source to send more
energy. This is called the overdamped condition. Both
the underdamped and overdamped cases cause negative
traveling waves, which cause standing waves if the ex­
citation is sinusoidal. The condition Zo = RL is called
critically damped.

The safest termination condition, from a systems
design viewpoint, is the slightly overdamped condition,
because no energy is reflected back to the source.

Line Voltage For a Step Function
To determine the line voltage for a step function

excitation, you apply a step function to the ideal line

and analyze the behavior of the line under various load­
ing conditions. The step function response is important
because any pulse can be represented by the superposi­
tion of a positive step function and a negative step func­
tion, delayed in time with respect to each other. By
proper superposition, you can predict the response of
any line and . load to any width pulse. The principle of
superposition applies to all linear systems.

According to theory, the rise time of the signal
driven by the source is not affected by the charac­
teristics of the line. This has been substantiated in prac­
tice by using a special coaxially constructed reed relay
that delivers a pulse of 18A into 50n with a rise time of
0.070 ns (Reference 1 pg. 162).

The equation representing the voltage waveform
going down the line (Figure 3) as a function of distance
and time is
VL(X, t) = VA(t) U(t- X tpd) for t< To Eq.14

VA(I) ~ vs(t{ 2
0

:
0
Rs) Eq. 15

where
V A = the voltage at point A
X = the voltage at a point X on the line
I = the total line length
tpd = the propagation delay of the line in nanQseconds
per foot
To = I tpd, or the one-way line propagation delay
U (t) = a unit step function occurring at x = 0
V 8(t) = the source voltage

When the incident voltage reaches the end of the
line, a reflected voltage, VL', occurs if RL does not
equalZo. The reflection coefficient at the 10ad,pL, can
be obtained by applying Ohm's Law.

The voltage at the load is VL + VL', which must
be equal to (IL + IL')RL. But

1L= VL
Zo

and
VL' Ii' = - _.-
Zo.

(The minus sign is due to IL being- negative; i.e., IL is
opposite to the current due to VL.) Therefore,

VB= VL+ VL,=[VL_ VL')RL
Zo Zo

Eq.16

By defmition:
_ reflected voltage VL'

PL - incident voltage VL

Solving for, VL' /VL in Equation 16 and substituting
in the equation for PL yields

RL- Zo
PL= RL+ Zo Eq.17

The reflection coeffiCient at the source is
Rs- Zo

ps= Rs+ Zo Eq. 18

1-6

Rearranging Equation· 16 yields

, (VL') VB= VL+ VL = 1+ VL VL Eq.19

= (1+ f)L) VL

Equation 19 describes the voltage at the load (VB)
as the sum of an incident voltage (VL) and a reflected
voltage (pL VI) at time t = To. When RL = Zo, no
voltage is reflected.· When RL < Zo, the reflection coef­
ficient at the load is negative; thus, the reflected voltage
subtracts from the incident voltage, giving the load volt­
age. When RL > Zo, the reflection coefficient is posi­
tive; thus, the reflected voltage adds to the incident volt­
age, again giving the load voltage.

Note that the reflected voltage at the load has been
defined as positive when traveling toward the source.
This means that the corresponding current is negative,
subtracting from the current driven by the source.

This piecewise analysis is cumbersome and can be
tedious. However, it does provide an insight into what is
physically happening and demonstrates that a complex
problem can be solved by dividing it into a series of
simpler problems. Also, eliminating the exponentials­
which provide phase information in the classical trans­
mission line equations - simplifies the mathematics. To
use the piecewise method, you must do careful book­
keeping to combine the reflections at the proper time.
This is quite straightforward, because a pulse travels
with a constant velocity along an ideal or low-loss line,
and the time delay . between reflected pulses can be
predicted.

The rules to keep in mind are that at any location
and time the voltage or the current is the algebraic sum
of the waves traveling in both directions. For example,
two voltage waves of the same polarity and equal
amplitudes, traveling in opposite directions, at a given
location and time add together to yield a voltage of
twice the amplitude of one wave. The same reasoning
applies to all points of termination and discontinuities
on the line. The total voltage or current is the algebraic
sum of all the incident and reflected waves. Polarities
must be observed. A positive voltage reflection results
in a negative current reflection and vice versa.

A
~X ~I

B

j+ -. Zo -. I + Rs IA IB

VA
VB(-X) RL

S t IA IB 1 .- .-
SOURCE LINE LOAD

Figure 3. Ideal Transmission Line Loaded and Driven

Step Function Response of the Ideal Line
Before examining reflections at the source due to

mismatches between the source and line impedances,
consider the behavior of the ideal line with various
loads when driven by a step function. The circuit for
analysis appears in Figure 3. Figure 4 shows the voltage
and current waveforms at point A (line input) and point
B (the load) for various loads. (These values are drawn
from Reference 1 pg. 158 - 159.) Note that Rs = Zo and
that V A at t = 0 equals V sl2. This means that no im­
pedance mismatch exists between the source and the
line; thus, there is no reflection from the source at t =

2To. To is the one-way propagation delay of the line.
The time-domain response of the reactive loads are

obtained by applying a step function to the LaPlace
transform of the load, then taking the inverse transform.

Note that the reflection coefficient at the load is
not the total reflection coefficient (a complex number)
but represents only the real part of the load. The
piecewise method eliminates the complex (jrot) terms by
performing the bookkeeping involving the phase
relationships, which the complex terms account for in
classical transmission line analysis.

Note that for the open-circuit condition in Figure
4b, ZL = infinity, so that PL = +1. The voltage is
reflected from the load to the source (at amplitude Vo
= Vsl2). Thus, at time = 2 To, the reflected voltage
adds to the original voltage, V 0 = V sl2, to give a value
of 2V 0 = V s. While the voltage wave is traveling down
to and back from the load, a current of

I - Vo _ Vs Z
0- Zo - 2 0

exists. This current charges up the distributed line
capacitance to the value V s, then the current stops.

The waveforms at the source and load for the series
RC termination shown in Figure 4 g are of particular in­
terest because this network dissipates no DC power;
you can use this network to terminate a transmission
line in its characteristic impedance at the input to a
Cypress IC. Figure 4h represents the equivalent circuit
of a Cypress IC's input. Combining both networks
models a Cypress IC driven by a transmission line ter­
minated in the line's characteristic impedance, when the
values of Rand C are properly chosen.

Reflections Due to Discontinuities
Figure 5 illustrates three types of common discon­

tinuities found on transmission lines. Any change in the
characteristic impedance of the line due to construc­
tion, connectors, loads, etc., causes a discontinuity,
which causes a reflection that directs some energy back
to the source. The amount of energy reflected back is
determined by the discontinuity's reflection coefficient.
Because discontinuities are usually small by design,
most of the energy is transmitted to the load.

In general, a discontinuity has series inductance,
shunt capacitance, and series resistance. An example is

1-7

a via from a signal plane through a ground plane to a
second signal plane in a multilayer PCB or module. IC
sockets and other connectors can also cause discon­
tinuities.

Ideal Transmission Line's Pulse Response
Consider next the behavior of the ideal transmis­

sion lIne when driven by a pulse whose width is short
compared to the line's electrical length - when the
pulse width is less than the line's one-way propagation
delay time, To.

Figure 6 shows another series of response
waveforms for the circuit in Figure 3, this time for a
pulse instead of a step (drawn from Reference 1 pg. 160
- 161). Note that Rs = Zo and that VA at t = 0 equals
V sl2. This means that there is no impedance mismatch
between the source and the line; thus, there is no reflec­
tion from the source at t = 2To.

Finite Rise Time Effects
Now consider the effects of step functions with

finite rise times driving the ideal transmission line.
During the rise time of a pulse, half the energy in the
static electric field is converted into a traveling mag­
netic field and half remains as a static electric field to
charge the line.

If the rise time· is sufficiently short, the voltage at
the load changes in discrete steps. The amplitude of the
steps depends on the impedance mismatch, and the
width of the steps depends on the line's two-way
propagation delay.

As the rise time and/or the line gets shorter
(smaller To), the result converges to the familiar RC
time constant, where C is the static capacitance. All
devices should be treated as transmission lines for tran­
sient analysis when an ideal step function is applied.
However, as the rise time becomes longer and/or the
traces shorter, the transmission line analysis reduces to
conventional AC circuit analysis.

Reflections From Small Discontinuities
Figure 7 shows a pulse with a linear rise time and

rounded edges driving the transmission line of Figures
5a and 5b. The expressions for Vr are derived on pages
171 and 172 of Reference 1. The reflection caused by the
small series inductance is useful for calculating the
value of the inductor, L', but little else.

The reflection caused by the small shunt capacitor
is more interesting. If this capacitor is sufficiently large,
it can cause a device connected to the transmission line
to see· a logic Zero instead of a logic One.

The Effect of Rise Time on Waveforms
Next, consider the ideal line terminated in a resis­

tance less than its characteristic impedance and driven
by a step function with a linear rise time. The stimulus,
the circuit, and the response appear in Figures Sa, b and
c, respectively. Once again, note that because the source

(a) Series Inductance

(b) Shunt Capitance

(c) Series Resistance R

~"-----'t z,
VA -t------' +2 (R + 2 0)

VA R 2Z

I- 1'-+\
l'

2Tol

+ + 0

Figure 5. Reflections from Discontinuities with an Applied Step Function

resistance equals the line characteristic impedance,
there are no reflections from the source.

The resulting waveforms are similar to those of Fig­
ure 4c when modified as shown in Figure8c. The wave­
form's final value must be the same as before (Figure 4c).

The resultant wave at the line input (Vin)is easily
obtained by superposition of the applied wave and the
reflected wave at the proper time. In Figure 8, because
the step function's rise time is less than the line's two­
way propagation delay, the input wave reaches its final
value, Vs/2. At t = 2To, the reflected wave arrives back
at the source and subtracts from the applied step func­
tion (the load reflection coefficient is negative). Figure9
illustrates waveforms for two relationships between the
step function rise time and the propagation delay.

Multiple Reflections
Now consider the case of an ideal transmission line

with multiple reflections caused by improper termina­
tions at both ends of the line. The circuit and
waveforms appear in Figure 10. The reflection coeffi­
cients at the source and the load are both negative­
the source resistance and the load resistance are both
less than the line characteristic impedance.

When the switch is initially closed, a step function
of amplitude

Vs20
Vo= Vin= Rs+ 20

1-9

appears on the line and travels toward the load. After a
one-way propagation delay time, To, the wave reflects
back with an amplitude of PL V 0.

This first reflected wave than travels back to the
source, and at time t = 2To, the wave reaches the input
end of the line. At this time, the first reflection at the
source occurs, and 'a wave of amplitude ps (pL Va)
reflects back to the load. At time t = 3To, this wave
again reflects from the load back to the source with
amplitude

PL ps (pL Vo) = ps PL2 Vo
This back and forth reflection process continues

until the amplitudes of the reflections become so small
that they cannot be observed. Then, the circuit is said to
be in a q uiesce~t state.

Effective Time Constant
Voltage reflections in small increments and of short

durations approximate an exponential function, as indi­
cated by the dashed line in Figure lOb. The smaller and
narrower the steps become, the more closely the
waveform approaches an exponential curve.

The mathematical derivation is presented on pages
178 and 179 of Reference 1. The time constant is

K= - 2To Eq.20
1- ps PL

··b D :1 n
.. ~ 2TO o

To
. ,

"1'1--[-·-1 w.

To

r 6:-°1 •. """
TO '

Figure 6. Pulse Response of Figure 3 for Various Terminations
_,-;-;:;- (RL- 2 0)

VA = Vs/2, 10 = VO/Zo, To = hLC, PL = (RL+ 2
0

)

1-10

Thus, the resultant voltage waveform at the load can be
approximated by

V(t)= voe(i) Eq.21

For Equation 21 to be accurate, PL and ps must be
reasonably large (approaching ± 1) so that the in­
cremental steps are small. Because the product PSPL is
a positive number, less than one, the time constant is a
negative number, which indicates that the exponential
decreases with time. This is usually the case in transient
circuits.

Both reflection coefficients must also have the same
sign to yield a continually decreasing or increasing
waveform. Opposite signs give oscillatory behavior that
cannot be represented by an exponential function.

From Transmission Line to Circuit Analysis
When a transmission line is terminated in its char­

acteristic impedance, the line behaves like a resistor. It
usually does not matter if you use transmission line or
circuit analysis, provided that you take the propagation
delays into account.

(a) Applied Pulse
from Generator

(b) Reflections
from Small Series
Inductor L'

(c) Reflections
from Small Shunt
Capacitance C'

L'VA
V=-­

')20 T,

Figure 7. Reflections From Small Discontinuities with
a Finite Rise Time Pulse

1-11

Consider the case of a short-circuited transmission
line driven by a step function with a source impedance
unequal to the characteristic line impedance. The
general case is shown in Figure lOa. For RL = 0 the
reflection coefficients are

Zs- Zo
ps = Zs + Zo PL = - 1

The approximate time constant is
_ k= 2To ~ To (Zs+ Zo)

1 - ps PL 1 + ps Zs
ToZo

or - k= To+ -­
Zs

Recall that
To= l-fLC
(one-way delay) and
Zo= ...JLIC

Eq.22

where 1 is the physical length of the line, and L and C
are the per-unit-Iength parameters. Substituting these
variables into Equation 22 yields

- k= To+ l~
Zs

Vs

Vs
"2

APPLIED STEP
FUNCfION

Zo

TR 2To

Reflected Wave

Vs~
Rz+ Z"

Figure 8. Effect of Rise Time on Response of

Mismatched Line with Rl < Zo

Yin

2To=T R 4To

(a) TR = 2To

Yin

2To TR 4T

Reflected Wave

V
Rl s---

Rl+ Zo

Reflected Wave

Rl
VS--­

Rl+ Zo

1--1

1
VI

!
RI

(a) circuit

Yo-+-----,

- R/
~ __ ~----~----4_----~--~--~--~VsR/+R,

(b) Yin 2To 4To 6To t

2To 4To 6To

(b) TR > 2To

Figure 9. Effects of Rise Time on Response for

Rl < Zo

(c) tin~: current

(I+PL)VO~

V
R/ s-­.. R/+ [.

It is necessary to have Zs smaller than 20. Thus, the
reflection coefficients have the same sign to give ex­
ponential behavior. Opposite signs give oscillatory be­
havior.

If Zs < 20, the exponential approximation be­
comes more accurate. If Zs is very small compared to
Zo, then To is negligible compared to 1 Ll20, so that
Equation 22 reduces to

k= - l~
Zs

But 1 L is the total loop inductance, and Zs is the
circuit's total series impedance. The time constant is
then

L'
k= -

Rs-
This is the. same time constant you would obtain by

a circuit analysis approach if you considered the line a
series combination of L' and Rs. By open-circuiting the
line and performing a similar analysis, it can be shown
that an RC time constant results.

1-12

2To 4To 6To
(d) load voltage

Figure 10. Step Function Applied to Line Mismatched

on Both Ends; Shown for Negative Values of ps and PL

Types of Transmission Lines
The types of transmission lines include
Coaxial cable
Twisted pair
Wire over ground
Microstrip lines
Strip lines

Coaxial Cable
Coaxial cable offers many advantages for distribut­

ing high-frequency. signals. The well-defined and
uniform characteristic impedance permits easy match­
ing. The cable's ground shield reduces crosstalk, and
the' low attenuation at high frequencies make the cable
ideal for transmitting the fast rise- and' fall-time signals

generated by Cypress CMOS ICs. However, because of
its high cost, coaxial cable is usually restricted to ap­
plications that permit no alternatives. These applica­
tions usually involve clock distribution systems on PCBs
or backplanes.

Because coaxial cable is not easily handled by
automated assembly techniques, its application requires
human assemblers. This requirement further increases
costs.

Coaxial cables have characteristic impedances of
50,75,93, or 150n. These values are the most common,
although special cables can be made with other im­
pedances.

Coaxial cable's propagation delay is very low. You
can compute it using the formula
Tpd= 1.017 -{e,: (nsl/t) Eq.23

where er is the relative dielectric constant and depends
upon the dielectric material used. For solid Teflon and
polyethylene, the dielectric constant is 2.3. The
propagation delay is 1.54 ns per foot. For maximum
propagation velocity, you can use coaxial cables with
dielectric Styrofoam or polystyrene beads in air. Many
of these cables have high characteristic impedances and
are slowed considerably when capacitively loaded.

Twisted Pair
You can make twisted pairs from standard wire

(A WG 24 - 28), twisted about 30 turns per foot. The
typical characteristic impedance is lIOn.

Because the propagation delay is directly propor­
tional to the characteristic impedance (Equation 5), the
propagation delay is approximately twice that of coaxial
cable. Twisted pairs are used for backplane wiring,
sometimes for driving differential receivers, and for
breadboarding.

Wire Over Ground
Figure 11 shows a wire over ground. This configura­

tion is used for breadboarding and backplane wiring.

h

Ground ~
Wff$!;/$////ff;///;/$l~

Z = ~ln(4h)
o {i;d

Figure 11. Wire Over Ground

1-13

The characteristic impedance is approximately 120n.
This value can vary as much as ± 40 percent, depending
upon the distance from the ground plane, the proximity
of other wires, and the configuration of the ground.

Microstrip Lines
A micros trip line (Figure 12) is a strip conductor

(signal line) on a PCB separated from a ground plane
by a dielectric. If the line's thickness, width, and dis­
tance from the ground plane are controlled, the line's
characteristic impedance can be predicted with a
tolerance of ± 5 percent.

The formula given in Figure 12 has proven to be
very accurate for width-to-height ratios between 0.1:1
and 3.0: 1 and for dielectric constants between 1 and 15.

The inductance per foot for micros trip lines is

L = (Zo)2 Co Eq. 24

where Zo is the characteristic impedance and Co is the
capacitance per foot.

The propagation delay of a micros trip line is
Tpd = 1.017...J 0.45 er + 0.67 (nsl/t) Eq.25

Note that the propagation delay depends only upon
the dielectric constant and is not a function of the line
width or spacing. For G-10 fiberglass epoxy PCBs
(dielectric constant of 5), the propagation delay is 1.74
ns per foot.

Strip Line
A strip line consists of a copper strip centered in a

dielectric between two conducting planes (Figure 13). If
the line's thickness, width, dielectric constant, and dis­
tance between ground planes are all controlled, the
tolerance of the characteristic impedance is within ± 5
percent. The equation given in Figure 13 is accurate for
W/(b - t) < 0.35 and tlb < 0.25.

The inductance per foot is given by the formula

L = (Zo)2 Co

The propagation delay of the line is given by the
formula
T pd = 1.017 -{e,: (nsl/I) Eq. 26

Zo= __ 8_7_ln(~)
..Jer+ 1.41 O.8w+ t

Figure 12. Microstrip Line

For 0-:10 fiberglass epoxy boards, the propagation
delay is 2.27 ns per foot. The propagation delay is not a
function of line width or spac·ing.

Modern PCBs
Most PCBs employ microstrip, stripline, or some

combination .ofthe two. Microstrip construction on a
double-sided board with power and ground nets can
suffice for low- to medium-performance, and low-den­
sityPCBs.

For high-performance, high-density PCBs, stripline
construction is preferred. Power planes isolate signal
layers from each other and provide higher-quality
power and grounds than those of a two-layer board.
Manufacturing quality control assures that. the metaliza­
tion is of uniform thickness and that the layers are
properly laminated, thus ensuring uniform, predictable
electrical characteristics.

When to Terminate Transmission Lines
Transmission lines should be terminated when they

are long. From the preceding analysis, it should be ap­
parent that

L L · Tr
ong me> -2T

pdL

where T pdL is the loaded propagation delay of the line
per unit length. For Cypress CMOS and BiCMOS
products, the rise time, Tr, is typically 2ns.

For stripline construction (multilayer PCBs), the
line length at which voltage reflections occur has been
shown to vary from 4.73 inches for a lO-pF load to 3.05
inches for an 80-pF load (see Equation 13 and Table 1).

Not all lines exceeding these lengths need to be ter­
minated. Terminations are usually required on control
lines (such as clock inputs, write and read strobe lines
on SRAMs and FIFOs) and chip select or output­
enable lines on RAMs, PROMs, and PLDs. Address
lines and data lines on RAMs and PROMS usually have
time to settle because they are normally not the highest­
frequency lines in a system. However, if very heavily
loaded, address and data bus lines might require ter­
minations.

Zo= ~ln(4b 1
-Ie; 0.671t~ 0.8 + .;)

Figure 13. Strip Line Construction

1-14

Line Termination Strategies
There are two general strategies for transmission

line termination:
Match the load impedance to the line impedance
Match the source impedance to the line. impedance
In other words, if either the load reflection coeffi-

cient or the source reflection coefficient can· be made· to
equal zero, reflections are eliminated. From a systems
design viewpoint, strategy 1 is' preferred. Eliminating
the reflection at the load (i.e., dissipating the excess
energy) before the energy travels back to the source
causes less noise, electromagnetic interference (EMI),
and radio frequency interference (RFI).

Multiple Loads, Buses, and Nodes
In the case where multiple loads are connected to a

transmissiOn line, only one termination circuit is re­
quired. The termination should be located at the load
that is electrically the greatest distance from the source.
This is usually the load that is the greatest physical dis­
tance from the source.' A point-to-point or daisy chain
connection of loads is preferred.

Bidirectional buses should be terminated at each
end with a circuit whose impedance equals the intrinsic,
characteristic line impedance. The reason is that each
transmitting device sees the characteristic impedance of
the line when the device is transmitting.

Consider next a line that has three bidirectional
nodes: one on each end and one in the middle. The
middle node, when driving the line, sees an impedance
equal to Zo/2, because the node is looking into' two lines
in parallel with each other. The end nodes, however, see
an impedance of Zo. In this case, as in a backplane,
each end of the line should be terminated in an im­
pedance equal to Zo/2.

Types of Terminations
There are three basic types of terminations: series

damping, pull-up/pull-down, and parallel At termina­
tions. Each has its advantages and disadvantages.

Except for series damping, the termination network
should be attached to the input (load) that is electrically
the greatest distance from the source. Component leads
should be as short as possible to prevent reflections due
to lead inductance.

Series Damping
Series damping is accomplished by inserting a small

resistor (typically 10 to 75.Q) in series with the transmis­
sion line, as close to the source as possible (Figure 14).
Series damping is a special case of damping in which
the series resistor value plus the circuit output im­
pedance equals the transmission line impedance. The
strategy is to prevent the wave reflected back from the
load from reflecting back from the' source. This is done
by making th,e source reflection coefficient equal to
zero.

~
~~~OID~~~~~~~~~~~~~~~~~S~y~s~te~Dl~S~D~es~i~g~n~C~o~n~si~d~e~r~a~ti~o~n~s 

Zo 
A B C 

Figure 14. Series Damping Termination 

The channel resistance (On resistance) of the pull­
down device for Cypress lCs is 10 to 200, depending 
upon the current-sinking requirements. Thus, subtract 
this value from the series damping resistor, Rd. 
Zo = Rs+ Rd Eq.27 

A disadvantage of the series damping technique, as 
illustrated in Figure 15, is that during the two-way 
propagation delay time of the signal edges, the voltage 
at the input to the line is halfway between the logic 
levels, due to the voltage divider action of Rd. The "half 
voltage" propagates down the line to the load and then 
back from the load to the source. This means that no 
inputs can be attached along the line, because they 
would respond incorrectly during this time.· However, 
you can attach any number of devices to the load end of 
the line .because all the reflections are absorbed at the 
source. If two or more transmission lines must be driven 
in parallel, the value of the series damping resistor does 
not change. 

The advantages of series termination are 
Requires only one resistor per line 

Consumes little power 

Permits incident wave switching at the load after a 
To propagation delay 

A v \ 
r\ 

I<t-To To-

B V/2 I\. 
V/2 "' 

C V \ , 

Provides current limiting when driving highly 
capacitive loads; the current limiting also helps 
avoid ground bounce 
The disadvantages of series termination are 
Degrades rise time at the load due to increased RC 
time constant 
Should not be used with distributed loads 
The low input current required by Cypress CMOS 

lCs results in essentially no DC power dissipation. The 
only AC power required is to charge and discharge the 
parasitic capacitances. 

Pull· Up/Pull·Down Termination 
The pull-up/pull-down resistor termination shown 

in Figure 16 is included for historical reasons and for 
the sake of completeness. For TTL driving long cables, 
such as ribbon cables, the values Rl = 2200 and R2 = 

33m are recommended by several bus interface stand­
ards. If the cable is disconnected, the voltage at point B 
is 3V, which is well above the 2V minimum High TTL 
specification. Because most control signals are active 
Low, a disconnected cable results in the unasserted 
state. 

The maximum value of Rl is determined by the 
maximum acceptable signal rise time, which is a func­
tion of the charging RC time constant. The minimum 
value of Rl is determined by the amount of current the 
driver can sink. The value of Rz is chosen such that a 
logic High is maintained when the cable is disconnected 
and the equivalent Thevenin resistance is 

Rr= RIR2 
Rl+ R2 

The value of Rl and R2 in parallel is slightly less 
than the cable's characteristic impedance. Ribbon 
cables with characteristic impedances of 15()Q are typical. 

If both resistors are used, DC power is dissipated 
all the time. If only a pull-down resistor (R2) is used, 

II 
J 

CI-- To To-

~V--

V 
J 

Figure 15. Series Damping Timing 

1-15 



DC power is dissipated when the input is in the logic 
High state. Conversely, if only a pull-up resistor (Rl) is 
used, power is dissipated when. the . input is in· the Low 
state. Due to these power dissipations, this termination 
is not recommended. 

If an unterminated control signal on a PCB is 
suspected of causing a problem,a resistor whose value 
is slightly less than the characteristic impedance of the 
line (e.g., 470) can be connected between the input pin 
and ground. Be sure that the driver can source suffi­
cient current to develop a TIL High voltage level 
(2.0V) across the resistor. 

In special cases where inputs should be ~ither 
pulled up (High) for logic reasons or because of very 
slow rise and fall times, you can use a pull-up resistor to 
Vee in conjunction with the terminating network shown 
in Figure17. DC power is dissipated when the source is 
Low. 

Parallel AC Termination 
Figure 17 illustrates the recommended general-pur­

pose termination. It does not have the disadvantage of 
the ~a1f-voltage levels of series damping terminations, 
and It causes no DC power dissipation. You can attach 
loads anywhere along the line, and they see a full volt­
age swing. 

The disadvantage is that a parallel AC termination 
requires two components, versus the one-component 
series damping termination. 

Commercially Available RC Networks 
A variety of combinations of Rand C values are 

available as series RC networks in SIP packages from at 
least two sources. 

Bourns calls these networks the Series 701 and 702 
RC Termination Networks. You can obtain data sheets 
by calling the factory in Logan, Utah (801-750-7200) or 
a local sales office. 

Thin Film Technology also refers to the networks 
as RC Termination Networks. You can obtain data 
sheets by calling the factory in North Mankato, Min­
nesota at 507-635-8445. 

Vee 

Zo Rl 

A B 

Figure 16. Pullup/Pulldown 

1-16 

Low-Pass Filter Analysis 
The parallel AC termination has another ad­

vantage: It acts as a low-pass filter for short pulses. You 
can verify this by analyzing the response of the circuit 
illustrated in Figure 18 to a positive and a negative step 
function. The positive step function is generated by 
moving the switch from position 2 to position 1. The 
negative step function is generated by moving the switch 
from position 1 to position 2. The response of the cir­
cuit to a pulse is the superposition of the two separate 
responses. The input impedance of the Cypress circuits 
connected to the termination network are so large that 
they can be ignored for this analysis. 

Classic circuit analysis is usually assumes an ideal 
source (Rl = R2 = 0). In real-world digital circuits, 
the source output impedance is not only non-zero, but 
also varies depending upon whether the output is 
changing from Low to High or vice versa. 

For Cypress Ies, lOOn. > Rl > 50n. and 20n. > 
R2 > lOn., depending upon speed and output current­
sinking requirements. 

Positive Step Function Response 
The initial voltage on the capacitor is zero. At t = 

0, the switch is moved from position 2 to position 1. At t 
= 0+, the capacitor appears as a short circuit, and the 
voltage V is applied through Rl to charge the load 
(R3C). The voltage across the capacitor Vc(t), is 

Vc(t) = V( 1- J (Rl: ~3)C]) Eq.28 

In theory, the voltage across the capacitor reaches 
V when t equals infinity. In practice, the voltage reaches 
98 percent of V after 3.9 RC time constants. You can 
verify this by setting Vc(t)/V = 0.98 in Equation 28 and 
solving for t. 

Negative Step Function Response 
The capacitor is charged to approximately V. At t 

= 0, the switch is moved from position 1 to position 2, 
and the capacitor is discharged. The voltage across the 
capacitor, Vc(t) is 

Vc(t) = vJ (R2: ~3)C] Eq.29 

Zo 

Figure 17. Parallel AC Termination 



The voltage decays to 2 percent of its original value 
in 3.9 RC time constants. You can verify this by setting 
V c(t)/V = 0.02 in Equation 29 and solving for t. 

The Ideal Case 
Consider the ideal case, where Rl = R2 = O. Let 

R3 = R in Equations 28 and 29. If a positive pulse of 
width T is applied to the modified circuit of Figure 18, 
the pulse disappears if 4RC > T. 

Because the discharging time constant is the same 
as the charging time constant for the ideal case, a nega­
tive-going pulse of width T also disappears if 4RC > T. 
That is, if the applied signal is normally High and goes 
Low, as does the write strobe on an SRAM, the ter­
mination filters out all negative glitches less than 4 RC 
time constants in width. 

The maximum frequency that the circuit passes is 
1 

F(max.) = 2T Eq. 30 

This is true because the charging and discharging time 
constants are equal for the ideal case. 

Capacitance for the Ideal Case 
The value of the capacitor, C, must be chosen to 

satisfy two conflicting requirements. First, the capacitor 
should be large enough to either absorb or supply the 
energy contained or removed when positive-going or 
negative-going glitches OCClJr. Second, the capacitor 
should be small enough to avoid either delaying the sig­
nal beyond some design limit or slowing the signal rise 
and fall times to more than 5 ns. 

A third consideration is the impedance caused by 
the capacitor's capacitive reactance, Xc. The digital 
waveforms applied to the AC termination can be ex­
pressed as a Fourier Series, so that they can be manipu­
lated mathematically. However, because these signals 
are not periodic in the classical meaning of the word, it 
is not clear that the AC steady-state analysis model of 
Xc applies here. 

In most applications, the degradation of the signal's 
rise and fall times beyond 5 ns determines the maximum 
value of the capacitor. The procedure is to calculate the 
rise time between the 10- and 90-percent amplitude 
levels, equate this rise time to 5 ns, and solve for C in 
terms ofR: 

V(t) = V ( 1- J ~~] ) 
for t yields 

t= RCln[ __ l_] Eq.31 
1- V(t) 

V 

V(t) _ 
For V - 0.1, t= 0.10RC. 

V(t) _ 
For V - 0.9, t= 2.3RC. 

1-17 

V 

~ Rl 

'\ 
I V(t) 

2 

12 I:' 
Source Load 

Figure 18. Lumped Load; AC Termination 

The time for the signaf to transition from 10 to 90 
percent of its final value is then T = 2.2 RC. Solving for 
C yields 

T 
C = 2.2R Eq.32 

For T = 5 ns, Table 2 can be constructed. This 
table indicates that 500 transmission lines on PCBs that 
are terminated with RC networks should use a 47Q 
resistor and a capacitor of 48 pF max; 47· pF is a stand­
ard value. This network eliminates glitches of 9 ns or 
less. The table's second column applies to wirewrapping 
construction, which is not recommended for systems 
operating at frequencies over 10 MHz. An exception is 
if the system consists of less than six MSI or SSI ICs. 

The Real World 
To go from the ideal to the real world, calculate the 

values of Rl and R2 from the curves on the data sheet 
of the device driving the line. Rl is the slope of the out­
put source current vs. output voltage between 2 and 4V. 
R2 is the slope of the output sink current vs output volt­
age between 0 and 0.8V. 

Add the value of Rl to 470 and calculate C, using 
Equation 32. Then check to see that the RC charging 
time constant does not violate some minimum positive 
pulse-width specification for the line. If so, reduce C. 

Add the value of R2 to 470 and calculate C. Then 
check to see if the discharging RC time constant vio­
lates some minimum pulse-width specification for the 
line. If so, reduce C. 

Schottky Diode Termination 
In some cases it can be expedient to use Schottky 

diodes or fast-switching silicon diodes to terminate 



Table 2. Termination Values for an Ideal Case 

PCB Wirewrapped 

Zo(O) 50 120 

R (0) 47 110 

C (max., pF) 48 20 

RC (ns) 2.25 2.2 

4RC (ns) 9 8.8 

lines. The diode switching time must be at least as fast 
as the signal rise time. Where line impedances are not 
well dermed, as in breadboards and backplanes, the use 
of diode terminations is convenient and can save time. 

A typical diode termination appears in Figure 19. 
The Schottky diode's low forward voltage, Vf (typically 
0.3 to 0.45V), clamps the input signal to a Vf below 
ground (lower diode) and Vee + Vf (upper diode). This 
significantly reduces signal undershoot and overshoot. 
Some applications might not require both diodes. 

The advantages of diode terminations are: 
Impedance matched lines are not required. 
The diodes replace terminating resistors or RC ter­
minations. 
The diodes' clamping action reduces overshoot and 
undershoot. 
Although diodes cost more than resistors, the total 
cost of layout might be less because a precise, con­
trolled transmission-line environment is not re­
quired. 
If ringing is discovered to be a problem during sys­
tem debug, the diodes can be easily added. 
As with resister or RC terminations, the leads 

should be as short as possible to avoid ringing due to 
lead inductance. 

A few of the types of Schottky diodes commercially 
available are 

IN4148 (switching diode) 
IN5711 
MBD 101, MBD 102 (Motorola) 
SN74S1050152'56 (TI, single-diode arrays) 
SN74S1051/53 (TI, double-diode arrays) 

Un terminated Line Example 
The following example is presented to illustrate the 

procedure for calculating the waveforms when a 
Cypress PLD generates the write strobe for four 
Cypress FIFOs. The PLD is a PAL C 16L8 device and 
the FIFOs are CY7C429s. 

The equivalent circuit appears in Figure20 and the 
unmodified driving waveform in Figure 21. The rise and 
fall times are 2 ns. The length of the stripline trace on 
the PCB is 8 inches and the intrinsic characteristic line 
impedance is 500. The voltage waveforms at the source 
(point A) and the load (point B) must be calculated as 
functions of time. Stripline construction is used for this 

1-18 

Vee 

Figure 19. Schottky Diode Termination 

example because in most modem high-performance 
digital systems, the PCBs have multiple layers. 

The equivalent On channel· resistance of the PLD 
pull-up device, 620, is calculated using the output 
source current versus voltage graph, over the region of 
interest (2 to 4V), from the PAL C 20 series data sheet. 
The equivalent resistance of the pull-down device, 110, 
is calculated in a similar manner, using the output sink 
current versus output voltage graph, over the region of 
interest (0.4 to 2V), also on the data sheet. 

The equivalent input circuit for the FIFO is con­
structed by approximating the input and stray 
capacitance with a lO-pF capacitor and the input resis­
tance with a 5-MO resistor. The input leakage current 
for all Cypress products is specified as a maximum of 
± 10 J..I.A, which guarantees a rhlnimum of 500 KQ at Yin 
= 5V. Typical leakage current is 10 pA. 

Because the PLD is driving four FIFOs in parallel, 
the equivalent lumped capacitance is 4 X 10 pF = 40 
pF, and the equivalent lumped resistance is 5,000,000/4 
= 1.25 MO. 

The next step is to calculate the propagation delay 
and the loaded characteristic impedance of the line. 
The unloaded propagation delay of the line is calcu­
lated using Equation 26 with a dielectric constant of 5: 
Tpd = 2.27 nslft 

To calculate the loaded line propagation delay, the 
intrinsic capacitance must first be calculated using 
Equation 5. 
Tpd= Zo Co 
where Zo is the intrinsic characteristic impedance, and 
Co is the intrinsic capacitance. 

C = !..J!!!...= 2.27 nslft = 454 FI'" 
o Zo 50 . P Jt. 

Because the line is loaded with 40 pF, Equation 6 is 
used to compute the loaded propagation delay of the 
line. 
TpdL= TpdV1+ CDICo 

r-------~_=----

40pF 
TpdL = 2.27 nsljt 1 + 8 . 

45.4 pF/.tt x 12 ~n./. 
m·lft 

TpdL = 3.46 nslft. 



Note that the capacitance per unit length must be 
multiplied by the line length to arrive at an equivalent 
lumped capacitance. 

The intrinsic line impedance is reduced by the 
same factor by which the propagation delay is increased 
(1.524; see Equation 7): 

Zo' = :~~ = 32.80. 

Initial Conditions 
At time t = 0, the circuit shown in Figure20 is in a 

quiescent state. The voltage at points A and B must be 
the same. By inspection: 

VA = VB = (Vee - Vf) (~) 
Rs+ RL 

= (5 - 1) ( 5 X 10
6 J = 4V 

28+ 5 x 106 

At t = 0, the driving waveform changes from 4V to 
approximately OV with a fall time of 2 ns. This is shown 
in Figure20 by the switch arm moving from position 1 to 
position 2. 

The wave propagates to the load at the rate of 3.46 
ns per foot and arrives there 

4 '.f. 8 in. 23 To= 3. 6nslJt x 12in.lft = . ns 

later, as illustrated in Figure22b. 
Because the reflection coefficient at the load is pL 

= 1, an early equal and opposite polarity waveform is 
propagated back to the source from the load. The 
reflection arrives at t = 2To = 4.6 ns (Figure 22a). 
Note that the fall time is preserved. 

The reflection coefficient at the source is: 
Rs - Zo' 11- 32.8 

ps = Rs + Zo' 11 + 32.8 - 0.498 

To simplify the calculations that follow, consider -
0.5 to be the Low-level source reflection coefficient. 

Vee = 5V 

r Zo = 500. 
1V 

1
62

0. I: ~IB 

foF 
I = 8" i + 40 pF 1.25 (" rn 

J.- J.-
Figure 20. Equivalent Circuit for Cypress PAL Driving 

1-19 

The magnitude of the reflected voltage at the source is 
then 
VS1 = - 4Vx (- 0.5) = 2V. 

This wave propagates from the source to the load 
and arrives at t = 3To. The wave adds to the OV signal. 
The rise time is preserved, and thus the time required 
for the signal to go from 0 to 2V is 

2Vx 2ns 
tr= 4V = 1 ns. 

The signal at the load thus reaches the 2V level at time 
t= 3To+ 1 ns= 7.9 ns. 
and remains at that level until the next reflection occurs 
at 
t= 5To 
The wave that arrives at the load at 3To reflects back to 
the source and arrives at 
t= 4To= 9.2ns. 

The 2V level adds to the -4V level, for a total of 
-2V. The rise time is preserved, so that this level is 
reached at 
t = 4T 0 + 1 ns = 10.2 ns. 
and maintained until the next reflection occurs at 
t= 6To. 

The 2V wave that arrives at the source at t = 4To 
reflects back to the load and arrives at t = 5T o. The 
portion that is reflected back to the load is 
V S2 = 2 x (- 0.5) = - 1 V. 

This value subtracts from the 2V level to give 2 - 1 
= 1 V. Because the fall time is preserved, the time re­
quired for the signal to go from 2 to 1V is 

1Vx 2ns 
if= 4V = 0.5 ns. 

The IV level is thus reached at time 
t= 5To + 0.5 ns = 12 ns. 

VA(t) 
24 I-

4V 

0 

1--- 20 ---1 

0 2 22 

Figure 21. V A(t), Unmodified 

~I 

24 



4 

3 

2 

o 

-1 

-2 

-3 

-4 

4 

2 

o 

-1 

-2 

-3 

-4 

To 
2.3 

4.3 3To 7.9 
6.9 

Figure 22(a). Unterminated Line Example; VA(t) 

5To 
11.5 

7To 
16 

9To 
W.7 

o 2 
To 
2.3 

Figure 22(b). Unterminated Line Example; VB(t) 

3To 
6.9 

8 

4 



At t = 6To, the IV wave arrives back at the source, 
where it subtracts from the - 2V level to give -IV. The 
rise time is 
tr = 1 x 0.5 ns/V = 0.5 ns. 
The signal at the source reaches the IV level at 
t= 6To + 0.5 = 14.3 ns. 

The IV wave that arrives at the source at t = 6To 
is reflected back to the load and arrives at t = 7T o. The 
portion that is reflected back is 
VS3= 1 x (- 0.5) = - 0.5V. 

This value subtracts from the IV level to give 0.5V. 
The fall time is 0.25 ns. The 0.5V level remains until the 
next reflection reaches the load at 
t= 9To 

At t = 8To the 0.5V wave that reflects from the 
load at t = 7To arrives back at the source, where it 
subtracts from the - IV level to give - 0.5V. The rise 
time is 0.25 ns. The portion that reflects back to the 
load is 
VS4= 0.5 x (- 0.5) = - 0.25V. 

The -0.25V signal arrives at the load at t = 10To 
23 ns and subtracts from the 0.5V signal to give 0.25V. 

This process continues until the voltages at points 
A and B decay to approximately OV. 

Observations 
The positive reflection coefficient at the load and 

the negative reflection coefficient at the source result in 
an oscillatory behavior that eventually decays to accept­
able levels. The voltage at point A reaches -IV after 6 
To delays and the voltage at point Breaches 0.5V after 
7 To delays. 

The reflection at the load that causes the voltage to 
equal the TTL minimum One level (2V) at T = 3To 
causes a problem. The actual input voltage threshold 
level is 1.5V for TTL-compatible devices that do not ex­
hibit hysteresis. 

The voltage at the load falls from 4 to OV in 2 ns, 
beginning at t = To. Because To = 2.3 ns, the voltage 
reaches zero at 
2.3 ns + 2 ns = 4.3 ns. 
The 1.5V level occurs at 

2ns 
4.3 ns - 4'V x 1.5V = 3.55 ns. 

The rising edge begins at 
t= 3To = 6.9 ns. 
The 1.5V level occurs at 

2ns 
6.9 ns + 4'V x 1.5 = 7.65 ns. 

The time difference (7.65 - 3.55 = 4.1 ns) is long 
enough for the FIFO to interpret the signal as a Low. 

Next, consider the width of the positive pulse that 
begins at the load at t = 3To. Because the rise time is 
preserved, the signal takes 1 ns to reach 2V, or 0.75 ns 
to reach 1.5V. The signal begins to fall at t = 5To, 
reaching 1.5V at 

1-21 

t= 5To + 0.25 ns= 11.75 ns. 
The difference (11.75 - 7.65) is 4.1 ns, which is wide 

enough for the FIFO to interpret as a second clock. To 
eliminate this pulse, the line must be terminated. 

Strobe Shortening Considerations 
In this example the width of the negative strobe is 

22 to 24 ns. If a CY7C429-20 FIFO is used, the write 
(or read) strobe must not be shorter than 20 ns. Even if 
the FIFO does not recognize the 4.1-ns negative pulse, 
the shortening of the write strobe by 5T 0 = 11.5 ns is 
sufficient to violate the minimum negative-pulse-width 
specification. 

This strobe-shortening phenomenon might also 
occur on other active-Low control lines such as output 
enables and chip selects. Clock lines must also be 
analyzed for this problem; in general, these lines should 
be terminated. 

The Rising Edge of the Write Strobe 
Now consider an analysis of the write strobe's rising 

edge to assure that the reflections associated with this 
edge do not cause multiple clocks or false triggering of 
the FIFO. At t = 22 ns, the rising edge of the write 
strobe begins, which is the equivalent of closing the 
switch in Figure20 in the 1 position. For this analysis, it 
is convenient to start the time scale over at zero, as ap­
pears in Figures22a and 22b. 

If the forcing function were a step function, the 
equations of Figure 4h would apply. The time constant 
in the eq uation is 

RZo'Ce 
T = R + Zo' Eq. 33 

Because 
R> Zo' ,T= Zo'Ce 
where Zo' = 32.80, and Ce = 45.4 pF. 

This is the equivalent of saying that you can ignore 
the 1.25-MQ device input resistance for transient circuit 
analysis. Substituting Zo' and Ce into the preceding 
equation yields a time constant ofT = 1.489 ns. 

Writing the equation for the voltages for the circuit 
of Figure20 yields 

VB(t) = iZo' + c1 J t i dt Eq. 34 
e 0 

Also, 
VB(t) = KtU(t) - K(t- Tl) U(t- Tl). Eq.35 
where Kt is the rising edge of the write strobe (K = 

2V/ns) applied at t = 0 using a unit step function, U(t); 
and-K(t - Tl) represents an equal but opposite 
waveform applied at t = T1 (after the rise time) using a 
unit step function, U(t - Tl). 

Equating the expressions and taking the LaPlace 
transforms of both sides yields 

K Ke-
Tls 

J(s) ( 1 ) 7- - ---;:-= Zo' J(s) + Ces = Zo' + C
es 

J(s) 

Eq.36 



However, 

VB(t) ~ C
1
e f to i dt, or, VB(S) = /(s) 

, Ces 

Therefore, 

K Ke- Tis ( 1 ) ;- -;= Zo' + Ces CeSVB(S). 

Solving for VB(S) yields 

$( 1- e- TIS
) 

VB(S) = , '1 
Ce S (Zo + C

e 
S) 

which is equivalent to 

--L( 1 _ - TIS) 
Zo'Ce e 

Taking the inverse LaPlace transform yields 

VB(t) = [ KZo'Ce( e- Zo!C. - 1) + KtJ U(t) 

Eq.37 

Eq.38 

Eq.39 

- [ KZo'Ce( J -t:c~l) J - 1) + K(t- Tl) ] U(t- Tl) 

Eq.40 
The ftrst term in Equation 40 applies from time zero up 
to and including Tl, and the second term applies after 
Tl: 

KZo'Ce( f~J ) K 
VB(t) = T1 eLzo'C. - 1 + T1(t) Eq.41 

for t~ Tl 

KZ'C( fnJ)f-tJ 
VB(t) = ~ 1- eL zo'c. eL Zo'C. + K1 Eq.42 

for t> Tl 
where Kl is the fmal value, which is 4V. 

Substituting the correct values for t = Tl = 2 ns 
yields 

VB(t=Tl)= 2x32.8x 45.4x 10-
12 

(e-1.489 _ 1) 
2x 10- 9 

+ 2V x 2ns 
ns 

= - 1.15 + 4 = 2.85V. 
If the forcing function is a step function, the equa­

tion is 

VB(t) = 4~ 1- Iz~,~.J) Eq.43 

at t = 2 ns, VB = 3V, which is more than the 2.85V 
calculated using Equation 41. , 

At t = 22 ns + To, the voltage waveform begins to 
build up at the load and continues to build until the first 
reflection from the source occurs at t = 3To. 

1-22 

Equation 42 is used to calculate the voltage at the 
load at t = 2To, because 1 To is used for propagation 
delay time: 
VB (t=2To) = 

0-12 
-2Vx 32.8 x 45.4x 1 (1- e-1.489)(e- 2)+ 4 

2x 10- 9 

;;;: - 1.489(0.774) (0.1353) + 4 
= - 1.559 + 4 = 3.84V. 

The voltage at the load remains' at this value until 
the first reflection from the source reaches the load at t 
= 3To• 

Meanwhile, at t = To, the wave at the load reflects 
back to the source and arrives at t = 2To. The wave 
subtracts from the 4V level at the source, as illustrated 
in Figure6c. The.amplitude of the droop is given by 

C 'Zo' Vo 
Vr = -2- Tr . Eq.44 

for Rs = Zo. 
If Rs does not equal Zo', Equation 44 must be 

modified. Instead of Vo/2, the voltage is 

Vo
( RS:

S 
20' J 

so that Equation 44 becomes 

V - C 'Zo'Vo Rs J Eq.45 
r- Tr Rs+ Zo' 

where C' = 40 pF, Zo' = 32.80, Rs = 620, TR = 2 
ns, and Vo = 4V. Substituting these values into Equa­
tion 45 yields 
Vr = 1.716V. 

Because 4V - 1.716 = 2.284, the voltage does not 
drop below the minimum TTL VIH level of 2V, but the 
voltage does come close. 

The reflection coefftcient at the source is 
Rs- Zo' 

ps= Rs+ Zo' 

where Rs = 62.Q, Zo' = 32.80, ps = 0.308. 
The amount of voltage reflected from the source 

back to the load is then 
VSl = 1.716 x 0.308 = 0.53V. 

The 40-pF capacitor reduces the rise time of the 
waveform at the load. The reflection at the source 
caused by the load capacitor is insufficient to reduce 
the 4V level to less than the TTL One level (2V). 

The reflection coefficient at the source is small 
enough so that the energy reflected back to the load is 
insufficient to cause a problem. 

References 
1. Matick, Richard E. Transmission Lines for Digital 

and Communications Networks. McGraw Hill, 1969. 
2; Blood, Jr., William R. MECL System Design 

Handbook. Motorola Inc., 1983. 



CYPRESS 
SEMICONDUCTOR 

Power Characteristics of Cypress Products 

This application note presents and analyzes the 
power dissipation characteristics of Cypress products. 
The knowledge and tools presented here will help you 
manage power when using Cypress CMOS products. 

Design Philosophy 
The design philosophy for all Cypress products is 

to achieve superior performance at reasorlable power 
dissipation levels. The CMOS technology, circuit design 
techniques, architecture, and topology are carefully 
combined to optimize the speed/power ratio. 

Power Dissipation Sources 
Power is dissipated both inside and outside ICs. 

The internal and external power have a quiescent (or 
DC) component and a frequency-dependent com­
ponent. The relative magnitudes of each depend upon 
the circuit design objectives. 

In circuits designed to minimize power dissipation 
at low to moderate performance, the frequency-depend­
ent component is signifigantly greater than the DC com­
ponent. In the high-performance circuits designed and 
manufactured by Cypress, the frequency-dependent 
power component is much lower than the DC com­
ponent. This is because a large percentage of the inter­
nal power is dissipated in linear circuits such as sense 
amplifiers, bias generators, and voltage/current refer­
ences, which are required for high performance. 

Frequency-Dependent Power 
CMOS circuits inherently dissipate significantly less 

power than either bipolar or NMOS circuits. The ideal 
CMOS circuit has no direct current path between Vee 
and V ss. In circuits using other technologies, such paths 
exist, and DC power is dissipated while the device is in 
a static state. 

The principal component of power dissipation in a 
power-optimized CMOS circuit is the transient power 
required to charge and discharge the capacitances as-

1-23 

sociated with the inputs, outputs, and internal nodes. 
This component is commonly called C V2 power and is 
directly porportional to the operating frequency, f. 

The charge, Q, stored in a capacitor, C, that is 
charged to a voltage, V, is given by the equation: 
Q= CV Eq.l 

Dividing both sides of Equation 1 by the time re­
quired to charge and discharge the capacitor (one 
period, or T) yields: 
Q_CV 
T- T Eq.2 

By definition, current (I) is the charge per unit time and 

f= 1-
T 

Therefore, 
1= C Vf Eq.3 

The power (P = V I) required to charge and dis­
charge the capacitor is obtained by multiplying both 
sides of Equation 3 by V: 

P= VI= CV2 f Eq.4 
It is standard practice to assume that the capacitor 

is charged to the supply voltage (Vee), so that 

P=Vee I=CVee2 f Eq.5 
The total power consumption for CMOS systems 

depends upon the operating frequency, the number of 
inputs and outputs, the total load capacitance, the inter­
nal equivalent (device) capacitance, and the static 
(quiescent) or standby power consumption. In equation 
form: 

Pd = [CINT FINT + Cload Fload] Vee2 + lee Vee Eq. 6 
The first four quantities are frequency dependent, 

and the last is not. This same equation can be used to 
describe the power dissipation of every IC in the sys­
tem. The total power dissipation is then the algebraic 
sum of the individual components. 

The relative magnitudes of the various terms in the 
equation are device dependent. Note that Equation 6 



Table 1. Types of Input Buffers 

BUFFERTYPE ICC (MAX. IN rnA) 

A 1.3 

B 0.8 

C 0.6 

must be modified if all of the internal nodes or all of the 
outputs are not switching at the same frequency. 

Transient Power 

Cypress devices incorporate N-well CMOS in­
verters that can affect the devices' transient power con­
sumption. In an ideal N-well CMOS inverter, the P­
channel pull-up transistor and the N-channel pull-down 
transistor (which are in series with each other between 
Vee and V ss) are never on at the same time. Thus, 
there is no direct current path between Vee and 
ground, and the quiescent power is very nearly zero. 

In the real world, when the input signal makes the 
transition through the linear region (i.e., between logic 
levels) both the n-channel and p-channel transistors are 
partially turned On. This creates a low-impedance path 
between Vee and Vss whose resistance equals the sum 
of the n- and p-channel resistances. 

DC or Static Power 

In addition to conventional gates, Cypress devices 
contain sense amplifiers; input and output buffers; and 
bias and reference generators that all dissipate power. 
RAMs and FIFOs also have memory cells that dissipate 
standby power whether the IC is selected or not. 
PROM and PAL products have EPROM memory cells 
that do not dissipate as much standby power as a RAM 
cell. 

Power-Down Options 

Five Cypress static RAMs offer a power-down op­
tion that enables you to reduce the devices' power dis­
sipation by approximately an order of magnitude when 
they are not accessed. The power-down technique dis­
ables or turns off the input buffers and sense amplifiers. 

Power Dissipation Model 
The rest of this application note presents power 

dissipation models for various Cypress CMOS products 
as well as information on each product's typical and 

n 

worst-case power dissipation. The information is 
presented as functions of frequency, Vee, and tempera­
ture. 

A general-purpose power dissipation model for all 
Cypress ICs appears in Figure 1. 

To obtain power dissipation data on an IC, you 
must isolate the three components of power dissipation 
included in Equation 6 by controlling the Ie's inputs. 
The standby current (Ice) is measured with the inputs 
to the IC at OAV or less. Under this condition, the input 
buffers arid unloaded output buffers draw only DC 
leakage currents. All other direct currents derive from 
the substrate bias generator, sense amplifiers, other in­
ternal voltage or current references, and NMOS 
memory circuits. 

At Yin = 1.5V, the input buffers draw maximum 
Ice. To find the total input buffer Ice current, you 
measure the total current and subtract the quiescent 
current. You can then calculate the current per input 
buffer by dividing the total input-buffer current by the 
number of input buffers. 

Input Buffers 

Cypress products use· three different types of input 
buffers. For purposes of illustration, they are referred to 
as types A, B, and C. Table 1 lists the buffer types used 
in various products. 

Figure 2 shows schematics and input characteristics 
for the three types of buffers. A circle on a transistor's 
gate means that the transistor is a P-channel device. 

As Figure2 shows, the input buffers draw essential­
ly zero Ice when Yin is OAV or less. This is also true 
when Yin is 4V or more, except for type A. In other 
words, if the inputs are driven rail to rail, the B and C 
input buffers dissipate power only during the input sig­
nal transitions. 

Core and Output Buffers 

The standby power dissipation of an IC's core 
derives from the substrate bias generator, reference 
generators, sense amp lifers , and polyload RAM cells or 
EPROM cells. This current is measured with Yin = OV, 
so that the input buffers draw no current. Under these 
conditions, the output buffers draw only leakage current 
and dissipate essentially no power. 

Programming either PROMs or PALs stores 
charge on the floating gate of. an NMOS transistor, 
which increases the transistor's threshold voltage. This 

m 

'::t INPUT CORE OUTPUT .. 
~ I 

BUFFERS J... BUFFERS 'I 
~CIN ,*C1NT ~CL 

INPUTS OUTPUTS 

Figure 1. Power Dissipation Model 

1-24 



Power Characteristics 

Vee 

VlNl 
1.3 

0.8 0.6 

~ ~ ~ TYPE A .- TYPEB .-5 .§, .§, 
0 0 .!:r> 0 ..Y ..Y 

0 0 0 
0 0.6 2.0 0 0.5 1.5 3.5 ".0 0 0.5 1.5 3.5 

VIN (V) VIN (v) VIN (v) 

Figure 2. Three ButTer Types 

higher threshold prevents the transistor from turning on 
during normal operation; unprogrammed transistors do 
tum on. Therefore, unprogrammed PALs and PROMs 
draw more current and dissipate more power than 
programmed devices. 

The output buffers on Cypress products have n­
channel pull-up devices that cause the output voltage 
level to reach 
VOH = Vcc - VT = 5V - IV = 4V 

The capacitance of the output buffers, including 
stray capacitance, is typically 10 pF. If 
CL = 10 pF, VOH "= 4V 

Again, using E~uation 3, 
Icc(f) = 40 x 10-1 f 
for the output buffers. 

Current Measurement 
Figure 3 illustrates the instantaneous current drawn 

by a Cypress RAM. The instantaneous power is calcu­
lated by multiplying this current times the constant 
supply voltage, V cc. Most of the power is dissipated 
during the access time. This is also true for PROMs and 
PALs. 

The current measurement unit in an automatic 
tester integrates the instantaneous current over the 
measurement cycle and arrives at an equivalent average 
current. In other words, the average current, Iz. during 
time 'fCy equals the area between the instantaneous 

1-25 

current, i(t), and the X axis during Tcy. Thus, because 
the "current pulse" is effectively spread over a longer 
time when the frequency is decreased, the average cur­
rent is proportionately lower. 

Note that the preceding calculations have not ac­
counted for any DC loads. You must calculate these 
separately. 

ADDRESS / OAT A 

ICC 

f-------TCy-------t 

1 I = Quiescent Icc 
12 = Average Icc 

i(t) = Instantaneous Icc 

Figure 3. RAM Icc 

t-



Table 2. Static RAMs 

"uffer No. No. CINT Icc Icc 
Part No. Type Inputs Outputs (Q) (max 

(pF) (rnA) (rnA) 

CY7C122/123 A 16 4 24 50 90 

CY7C128 B 14 8 27 59 120 

CY7C147 B 15 1 34 28 90 

CY7C148/149 B 12 1 32 45 90 

CY7C150 B 18 4 20 44 90 

CY7C1611162 B 22 4 300 13 70 

CY7Cl64 B 20 4 300 13 70 

CY7C166 B 21 4 300 13 70 

CY7C167 C 17 1 75 25 70 

CY7C168/169 C 18 4 75 50 70 

CY7C170 B 18 4 50 33 90 

CY7C1711172 B 18 4 100 27 70 

CY7C185/186 B 25 8 330 13 100 

CY7C187 B 19 1 150 7 100 

CY7C189/190 B 10 4 21 32 90 

Product Characteristic Tables 
Tables 2 through 5 allow you to calculate the cur­

rent requirements for Cypress products. CINT is the 
equivalent device internal capacitance, lce(Q) is the 
quiescent or DC current, and IcC(MAX) is the maximum 
Icc (as specified on the data sheet) for the commercial 
operating temperature range. Conditions are Vee = 
5V and TA = 25°C. 

Note that for the 16L8, 16R8, 16R6, and 16R4 
PALs, the number of inputs and outputs is user con­
figurable. All the PALs use type B buffers. 

SRAM Calculation Example 
To illustrate how to use Tables 2 through 5, con­

sider an example of estimating the typical Icc for the 
CY7C169-35 RAM at room temperature (TA = 25°C) 
and Vee. Assume the duty cycle is 100 percent at the 
specified acces time. The procedure shown here calcu­
lates the typical and worst-case Icc with all inputs and 
outputs changing and with output loading of 10 pF. 

From the RAM product characteristic table: 
Number of inputs = 18 
Number of outputs = 4 
CINT = 75 pF 
Iee(Q) = 50 rnA 

1-26 

Because the input buffers on the CY7C 169 are type 
C, the average current is 0.3 rnA. If the input-signal­
level transitions are 4V and the transition times are 
2V/ns, the transition time is 

4V 
Tt= 2V/ns = 2ns 

The duty cycle is then 
2 n~5'nS = 0.057 

Each input buffer thus draws 
OJ rnA x 0.057 = 0.0171 rnA 

If all inputs change, the total transient input buffer 
current is 
18 x 0.0171 = 0.31 rnA 

To calculate the CVf input buffer current: 
1= CVf 
CIN = 5 pF 
1= 0.57 rnA 
V= 4V 
f = 1/35 ns 
TOTAL = 18 x 0.57 = 10.28 rnA 

To calculate the internal CVf current: 
1= CVf 
CINT = 75 pF 
1= 10.71 rnA 
V= 5V 
f = 1135 ns 

To calculate the output CVf current: 
1= CVf 
COUT = 10 pF 
1= 1.15 rnA 
V= 4V 

Table 3. PROMs 

Buffer No. No. 
Part No. Type Inputs Outputs 

[1] 

CY7C225 B 12 8 

CY7C235 B 13 8 

CY7C245 B 13 8 

CY7C251 C 18 8 

CY7C254 C 18 8 

CY7C26113/4 C 14 8 

CY7C268 C 19 118 

CY7C269 C 17 118 

CY7C2811282 B 14 8 

CY7C2911292 B 14 8 

[I]/Bidirectional pins 

CINT 

(pF) 

32 

35 

35 

43 

43 

60 

60 

60 

35 

35 

Icc 
(Q) 

(rnA) 

35 

35 

50 

9.5 

35 

45 

60 

60 

35 

50 

Icc 
(max 
(rnA) 

90 

90 

90 

100 

100 

100 

100 

100 

100 

100 



f = 1/35 ns 
TOTAL = 4 x 1.15 = 4.6 rnA 

The quiescent current is 50 rnA. The total current 
at Tey = 35 ns is: 

Input Transient 0.31 rnA 
Input CVf 10.28 rnA 
Internal CVf 10.71 rnA 
Output CVf 4.6 rnA 
Ouiescent 50 rnA 
Total Icc 75.9 rnA (all inputs/outputs changing) 

Note that the worst-case transient current is 25.9 
rnA. If half the inputs and outputs change, the worst­
case transient current decreases to 12.95 rnA, which 
gives a total current of 63 rnA (typical Icc). 

Note also that the input CVf current the the output 
CVf current have the same values for a bipolar device. 

Worst-, Worst-, Worst-Case ICC 
Now consider a procedure for estimating Icc for 

worst-case Vee and low temperature, in addition to all 
inputs and outputs changing. Then you can compare the 
result with the Icc specified on the data sheet. 

Icc is greater at high Vee, which is 5.5V, or 1.1 
times the nominal 5V Vee. Because the increase in Icc 
due to the lower temperature is 3 percent, the total in­
crease is 13 percent. These factors apply to the internal 
CVf current (10.71 rnA), the output CVf current (4.6 
rnA), and the quiescent current (50 rnA), which 
together total 65.31 rnA. 

Power Characteristics 

Table 4. PALs 

Part No. CINT 
(pF) 

P ALC16L8/R8!R6!R4 40 

PLDC20G10 50 

PALC22VlO 50 

IPLDCY7C330 300 

Total Icc = Input Transient Icc 
+ Input CVflee 

Icc (Q) 
(rnA) 

25 

30 

40 

42 

Icc (max) 
(rnA) 

45 

55 

80 

120 

+ [Internal CVf + Output CVf + Ice(Q)] x 1.13 
Icc = 0.31 + 10.28 + [65.31] x 1.13 = 84.4 rnA 

This value is approximately 94 percent of the 90 
rnA specified on the data sheet. Note, however, that the 
data sheet Icc maximum does not include the output 
CVf current. 

ICC-Versus-Frequency Characteristic 
The Ice-versus-frequency curves for all Cypress 

products have the same basic shape, which is illustrated 
by the PAL 16R8 curve in Figure4. The current remains 
essentially constant at the quiescent Icc value until the 
frequency increases to the point where the capacitances 
begin to cause appreciable currents. The location of this 
point depends upon the input, internal, and output 
capacitances; the number of inputs and outputs; the 
rate at which the inputs and outputs change; and the 
voltage levels the inputs and outputs are switched be-

I TYPICAL I Icd VS FREQUENCY FOR PAL 16R8 

...: 
E 
~ 

0 
...Y 

120 

100 

80 

60 

40 

25 
20 

o 
10KHz 

Icc VS f 

1(0) 

100KHz 

ALL INPUTS / OUTPUTS CHANGE 
Vcc=5V. TA=25OC. VIL=O.8V. VIH=2V 1 

J/ 
! ..,. 

V'det=sop, 
(OUTPUTS 

AR'{ 
EN~BL1D) 

Jt~ ~ I 

~ S«\I' o· 
~~ I 

~ ~CJ=O~F ,."", ~. 
-' (~ 

ct:i( B 

~TYfl 
1 t.lHz 10t.lHz 100t.lHz 

FREOUENCY IN HERTZ 

Figure 4. Typical Icc vs f 

1-27 



Table S. Logic Products 

Part No. Buffer No. No. CINT Icc 
Type Inputs Outputs (pF) (Q) 

[1] 
. (rnA) 

CY7C401 B 6 6 53 30 

CY7C402 B 7 7 53 30 

CY7C403 B 7 6 53 30 

CY7C404 B 8 7 53 30 

CY7C408 B 11 12 100 42 

CY7C409 B 11 13 100 42 

CY7C428/9 C 14 12 190 18 

CY7C510 C 24 19/16 60 30 

CY7C516 C 28 16/16 60 30 

CY7C517 C 28 16/16 60 30 

CY3341 B 6 6 53 30 

CY7C601 C 25 19/64 950 89 

CY7C901 C 24 10/4 160 25 

CY7C909 C 21 5 80 25 

CY7C910 C 22 16 150 2.6 

CY7C911 C 13 5 80 25 

CY7C9101 C 36 22/4 70 30 

CY7C9116 C 22 1120 1000 35 

CY7C9117 C 38 114 1000 35 

[l]/Bidirectional pins 

Icc 
(max 
(rnA); 

75 

75 

75 

75 

135 

135 

80 

100 

100 

100 

45 

600 

80 

55 

70 

55 

60 

150 

150 

1-28 

tween. For Cypress products, this point is in the I-to 
1O-MHz range. 

The PAL 16R8 devices that were tested to optain 
the data for the curve were exercised such that all in­
puts and outputs changed every cycle. Curve A sho:ws 
the total Icc for a 50-pF load on each of the eight out­
puts. Curve B shows the total Icc when the outputs are 
disabled. The B curve results from the input and the 
internal capacitances. In most applications, ·the actual 
operation of the device falls somewhere between the A 
and B curves. 

You can extrapolate the A and B curves backwards 
until they intersect the quiescent current, which occurs 
at point C in Figure 4. Point C is approximately 5.6 
MHz. This gives you an easy-to-use formula for cal­
culating Icc. For frequencies less than 5.6 MHz: 
Icc = Icc(Q) = 25 rnA 

For frequencies greater than 5.6 MHz: 
Icc = Icc(Q) + 3.5 rnAlMHz(alI outputs changing) 
or 
Icc = Icc(Q) + 0.5 rnA/MHz (no outputs changing) 



CYPRESS 
SEMICONDUCTOR 

Tips for High-Speed Logic Design 

This application note provides tips and makes sub­
stantive suggestions for designing high-speed logic cir­
cuits that operate reliably. The tips and suggestions are 
organized under the headings: 

Noise Considerations 
Clock Distribution 
Buses and Memories 

Care and Feeding of PLDs 
PCB Effects 

Metastability and Crosstalk 
As electronic system clock rates reach ever higher, 

logic designers who were engineering lO-MHz, l00-ns­
cycle-time systems are finding themselves working with 
systems running at speeds upwards of 20 MHz, with 50-
ns cycle times. These designers are discovering that 
adequate techniques for work at 10 MHz are no longer 
appropriate at 20 MHz and beyond. At 10 MHz, you 
can utilize sluggish and relatively well-behaved LS TTL 
logic with its leisurely set up and hold parameters; long 
propagation delays; forgiving output enable and disable 
times; and high-output current-drive capacity. 

As an alternative, designers turned to faster bipolar 
logic families, but found that power dissipation rose 
proportionally. To save power and enhance reliability, 
today's designers are changing to CMOS components. 
Designers are happy to find that CMOS can deliver the 
speed they require at the low power levels they desire. 

In the quiescent state, CMOS logic 
(ACt ACTIFCT) draws three to five orders of mag­
nitude less power than bipolar logic (LSI ALSI AS). At 1 
MHz, CMOS logic dissipates about 0.1 mW per gate, 
while LS TTL logic dissipates about 2.0 mW per gate. 
CMOS technology has truly rewritten the speed/power 
rules set forth in the bipolar era. 

Plenty of challenges still face the high-speed logic 
designer, however. For example, high-performance logic 
families are sensitive to system noise and generate noise 
themselves. As a result of the effort to make these 
devices as fast as possible, they often have anemic out­
put drive capacity. Clock distribution becomes much 
more of an issue at high frequencies because skew and 

1-29 

slow rise times degrade operating margins. As bus 
cycles tighten, it becomes increasingly difficult to avoid 
bus clashes (multiple devices driving a bus). Very fast 
SRAMs and FIFOs require read and write pulse widths 
that are very difficult to synthesize using synchronous 
logic; hence the appearance of self-timed memory 
devices. PLDs have become ubiquitous in modern 
board-level designs, but high-speed designers must 
carefully consider PLDs' relatively long propagation 
delays and slow switching speeds. 

You can no longer think of printed circuit boards 
as an ideal electrical interconnect. In the high-speed 
realm, you must account for the effects of distributed 
capacitance, inductance, and propagation delay on the 
PCB. To mitigate the effects of ringing, resistive ter­
mination of critical signals becomes a practical necessity 
above 20 MHz. In the days of old, it wasn't appropriate 
to factor loading into propagation delays. Today, con­
servative designers account for loading when calculating 
worst-case prop delays and worst-case signal skew. 
Heavy capacitive bypassing and low-inductance decou­
pIing is essential to minimize switching noise above 20 
MHz. 

Metastability, a phenomenon not widely ap­
preciated until recently, is a critical issue in high-fre­
quency systems. It is essential to be able to resolve 
asynchronous events quickly and reliably in high-perfor­
mance designs. Finally, crosstalk is a substantial con­
cern with high-slew-rate and noise-sensitive CMOS 
logic. 

Noise Considerations 
High-speed CMOS logic tends to be noisier than 

LS TTL for two reasons: CMOS voltage swings are rail­
torail, and small-geometry, dual-layer-metal CMOS 
technology makes possible faster edge rates (2V per ns 
and faster). 

The classic ground-bounce noise situation arises 
when several outputs of a CMOS logic device switch 
from High to Low. The simultaneous switching causes a 
relatively large sink current from the load capacitance 
to flow to ground through the device package induc­
tance. The potential developed momentarily across this 



Figure 1. Maintaining Duty Cycle Symmetry 

inductance equals the product of the package induc": 
tance and the sink current's rate of change. This 
ground-bounce voltage spikes the Low state held on the 
quiescent outputs. The spike can often exceed the input 
Low-level maximum voltage (0.8V), causing the 
downstream logic device to switch erroneously. Both the 
chip ground reference and the chip Vee reference are 
spiked, but because. more energy is switched through 
the ground-lead inductance, it is much more common to 
see a problem in a quiescent Low-state output. 

Here are some procedures that minimize ground 
and Vee bounce noise: 

1. Pursue any steps that reduce the parasitic induc­
tance between the package and ground and Vee. These 
steps includes using a PCB with ground and Vee planes 
or, at the very least, power distribution elements. Avoid 
use of sockets, but do use low-inductance decoupling 
and bypass capacitors. On critical parts, use a standard 
ceramic decoupling capacitor (0.01 to 0.1 ~) along 
with a high-frequency filtering capacitor (approximately 
470 pF). The Rogers Corp. MiCro/Q 1000 Series high­
frequency, low-inductance caps are optimal for this pur­
pose. Surface-mount packages have lower package in­
ductance than DIP packages. So-called rotated-die 
devices with center Vee and ground pins also have lower 
inductance. 

2. Whenever possible, design synchronous 'circuits. 
The ground bounce produced by an octal register, for 
instance, is triggered by the clock. If the register feeds 
another registered device, then the noisy output has 
unp.l a set-up time before the next clock to settle. When 
you must drive an asynchronous signal with an octal 
driver, use an output pin close to the package ground 
pin. The output pin next to the Vee pin can have as 
much as SO% more ground-bounce noise than the out­
put pin next to the ground pin. 

3. Use various techniques to slow switching or tran­
sition edge rates and, therefore, the sink. and source 
currents' rate of change. This can be accomplished with 
series damping resistors or by increasing the inductance 
or capacitance between the driving device's output pin 
and the receiving device's input pin. PCB traces exhibit 
parasitic ground-path capacitance and inductance that 
depend on trace length and topology'; 'these factors are 
thus difficult to predict. The most common technique is 
to use series damping resistors in the 2S to 3S0 range; 

330 is a standard value. Series resistors also limit signal 
overshoot and undershoot. 

4. Try to avoid. running control signals through a 
device that drives data and address lines. When using a 
10-output PLD such as a 22VlO in an 8-bit bus-oriented 
application, for instance, you might be tempted to use 
the extra two outputs for control signals. If the eight 
data lines switch simultaneously, however, the control 
lines will probably be disturbed. Using devices that fea­
ture input hysteresis adds to the noise margin. Input 

,hysteresis can typically provide 200 m V of additional 
noise immunity. 

1-30 

Note that mixing logic families can compromise 
noise immunity margins. For comparison purposes, the 
margin for a specific logic family is the magnitude dif­
ference between the family'S guaranteed input threshold 
and the guaranteed output voltage for the High and 
Low states: 

N.. . Vil- Vol 
Olse Immumty = V ih - V oh 

When possible, use a logic family that can drive 
son (commercial) transmission lines directly. This 
specification is characteristic of devices that can switch 
sufficient current to guarantee so-called incident-wave 
switching. Switching that occurs on the incident wave is 
faster than having to wait for the reflected wave. 

In addition to caUSing false triggering of 
downstream sequential logic and glitches in downstream 
combinatorial logic, ground-bounce noise can . also 
cause registers in the bounced device to "forget" their 
stored state. This is due to the momentary disturbance 
in the chip's ground and Vee reference. The switching of 
multiple outputs can also skew the device's propagation 
delay by approximately 200 ps per switched output. 
With an octal or lO-bit device, this 1 to 2 ns additional 
delay should be included in worst-case ,timing analyses. 

Clock Distribution 
Adequate clock distribution is essential for 20-MHz 

and faster systems because skew can eat up precious 
nanoseconds and because high-speed logic devices are 
sensitive to clock waveform distortion and slow rise 
times. 

All physical devices exhibit, an edge-dependent 
propagation delay asymmetry; the Low-to-High edge 
propagates more quickly than the High-to-Low edge, or 
vice versa. For example, the c1ock-to-Q propagation 
delay for a Signetics 74F74 ranges from 3.8 to 6.8 ns 
Low to High, and 4.4 to 8.0 ns High to Low. The data 
sheet for the Texas Instruments 74AS1000 NAND 
driver specifies a 1-to-4-ns range for both Low-to-High 
and High-to-LoW edges, but any specific physical devic,e 
shows some asymmetry. 

It is possible to maintain duty-cycle symmetry· in a 
buffered-cIock distribution network by cascading two 
inverting drivers. The two drivers must both be in the 
same package, as shown in Figure 11. Because the two 



drivers are in the same package, their prop delay char­
acteristics track, and the High-to~Low and Low-to-High 
differential delays tend to cancel. 

Limit the fanout from a clock buffer to eight to 15 
devices. Fanout calculations must account for both AC 
and DC loading. The AC characteristics for logic com­
ponents are specified at 50 .pF of load capacitance and 
occasionally at 300 pF of load capacitance. Propagation 
delays and output-enable times increase by ap­
proximately 1 ns per each 50 pF of additional load 
capacitance. The input capacitance of bipolar logic 
families is higher (approximately 10 pF) than that of 
CMOS (approximately 5 pF). If the sum of the 
capacitance being driven exceeds 50 pF, derate the 
driver's AC characteristics appropriately. 

Input current is the important DC electrical char­
acteristic for loading purposes. The driving device must 
be able to sink the sum of the Low-level input currents 
to which it is connected (101 at Vol). The driving device 
~ust also be able to source the sum of the High-level 
mput currents to which it is connected (Ioh at V oh). 

. ~e Low-level input current for bipolar logic 
famihes ranges from -400 to -100 JlA, while the Low­
level input current for modem CMOS logic families 
ranges from -5 to -1 JlA. The High-level input current 
for bipolar logic families ranges from 50 to 20 JlA, while 
the High-level input current for modem CMOS logic 
families ranges from 5 to 1 JlA. 

Because the 101 at Vol for bus drivers is often as 
high as 48 rnA, and the Ioh at Voh is often as high as -24 
rnA, input current loading is seldom an issue, except 
when driving a parallel (resistor) terminated load. For 
example, a 220Q pull-up resistor requires about 22 rnA 
worst case (Vol = OV, Vee = 5V), and a 330Q pull­
down resistor requires about 15 rnA worst case (Voh = 
5V, Gnd = OV). Consider using an AC termination 
scheme if this additional current cannot be tolerated. 

If a single buffer cannot safely supply a sufficient 
clock fanout, use parallel drivers (Figure 22. When dis­
tributing a clock signal,attempt to load each of the 
parallel lines equally. Unequal loading increases the 
skew between lines. 

Buses and Memories 
When you design buses in high-performance sys­

tems, it is important to consider the effects of AC and 
DC loading. The input and output capacitance of 
CMOS SRAMs, PROMs, and DRAMs ranges from 5 
to 7 pF. This capacitance can become a concern with 
large memory arrays. 

Be especially careful when using SRAM modules, 
which might have high input and output capacitances 
due to the multiple devices connected to each signal 
line. Because the signals that drive large memory arrays 
(such as the address, RAS, CAS, and data lines) tend to 
have long PCB traces, it is common practice to series­
terminate these lines to minimize ringing, undershoot, 
and overshoot. 

1-31 

Figure 2. Parallel Clock Drivers 

The input load or leakage currents for CMOS 
SRAMs, PROMs, and DRAMs is approximately 10 JlA, 
sink and source. When you use high-output-current bus 
drivers (24 rnA 101 or greater), DC loading is rarely an 
issue. 

As system cycle times shorten, it becomes more dif­
ficult to avoid bus clash situations. Bus clash or bus 
contention occurs on a shared bus when one three-state 
device fmishes its output-enable time before a second 
device finishes its output-disable time. For a short 
period of time,. both devices drive the bus. Because the 
output stages of memories and logic components can 
typically withstand at least 20 rnA of current, the excess 
current does not shorten the devices' useful lives.· Bus 
clash does cause large positive and negative current 
changes in the device Vee and ground paths, however. 
The demand for current induces Vee and ground 
bounce noise just like the simultaneous switching situa­
tion previously discussed. Thus, avoid more than 5 ns of 
overlap in the worst-case output enable and output dis­
able times. 

You can use CMOS components' low input current 
to advantage on buses when hold time is deficient. For 
example, consider a CMOS memory connected to a 
CMOS octal register. The memory is read, the IOE (or 
the ICE) deasserted, and the data clocked into the 
register. Ordinarily, the data should be clocked into the 
register before IOE is deasserted because the memory's 
worst-case output-disable time could be very short. 
When the memory is read in this case, however, the dis­
tributed capacitance presented by the register inputs, 
the PCB. trace, and the memory's own outputs is 
charged. Because the memory's output leakage current 
and the register's input current are very low (5 to 10 
JlA), this distributed capacitance remains charged for 
some time. In effect, the data is held long enough to 
make up for the deficient timing. 

High-speed SRAMs and FIFOs have timing re­
quirements that are often difficult to meet using 
synchronous circuits. In such situations, there are 
asynchronous alternatives to consider. You can use the 
delay lines supplied by various manufacturers by com­
binatorially gating the output taps to synthesize the re­
quired signal. Delay lines are typically calibrated by 



comparing the input's rising edge to the various delayed 
outputs' rising edges; the delay times for the falling 
edges are less accurate. If a decoded signal _ uses falling 
edges, make sure that the design can tolerate a few 
nanoseconds of inaccuracy. 

The Engineered Components Company makes a 
family of pulse-generator modules (POMs), which issue 
a precise pulse when presented with a positive-going 
edge. The company offers standard PGMs, fast­
recovery PGMs that have a higher maximum repetition 
rate, and delayed PGMs, which wait for a specified 
period before issuing the pulse. Both delay lines and 
PGMs have propagation delays that range from 5 to 10 
ns. 

Care and Feeding of PLDs 
Programmable Logic Devices (PLDs) are exceed­

ingly useful for designing high-performance systems, but 
their characteristics and shortcomings must be well un­
derstood. The set-up time for most registered PLDs is 
usually just less than the propagation delay. This is be­
cause the signal to be latched must propagate through 
the AND array as well as the OR/XOR gate before 
reaching the flip-flop, while the clock is connected 
directly from the pin to the flip-flop. Accordingly, the 
hold time for this type of PLD is 0 ns minimum worst 
case and several nanoseconds negative, typically. This 
negative hold time implies that the PLD samples the 
state of the inputs as they existed several nanoseconds 
before the clock's rising edge. You can take advantage 
of this phenomenon when the device feeding the PLD is 
hold-time deficient with respect to the PLD clock. 

PLD outputs usually do not have the drive capacity 
of standard logic. When you use a PLD to generate a 
critical signal, such as a FIFO-read or shift-out pulse, 
buffer the signal with a fast, hard~driving gate. Bear in 
mind, too, that identical equations implemented in the 
same PLD can exhibit· different propagation delays due 
to different on-chip path lengths. PLD propagation 
delays are especially dependent on capacitive loading. 

PCB Effects 
The most conservative way to handle PCB signal 

distortion effects. is to consider every substrate intercon­
nect .. as a transmission line. In practice, this approach 
only works when the unloaded signal transition time ap­
proaches the round-trip substrate propagation delay. 
_ -For ordinary PCB materials (0-10 fiberglass 
epoxy), t~e round-trip propagation delay is ap­
proximately 0.3 ns per inch. Therefore, for 3-ns transi­
tion times, you should' consider any PCB trace longer 
than 10 inches as a transmission line. 

A transmission line presents a characteristic im­
pedance and has distributed inductance and 
capacitance. You can ~~imize ringing on a transmis­
sion line by closely matching the output impedance of 
the driving device to the line's characteristic impedance. 
According to the micros trip model, for a lO-rnil-wide, 

1-32 

Table 1. Pull-Up and Pull~Down Values 

RESISTOA/ ALUES THEVENIt-EQUIVALENT 

220Q PULL UP 1320 
330Q PULL DOWN 

330Q PULLUP 194.Q 
470Q PULL DOWN 

I-oz. copper line 1.5 mils thick over a ground plane 
separated by a dielectric of 0-10 fiberglass epoxy 62.5 
mils thick, the theoretical unloaded characteristic im­
pedance is approximately non. In reality, PCB trace 
characteristic impedances can range from 50 to 200n. 
Capacitive loading reduces the characteristic im­
pedance, increases the delay, and slows the rise time on 
a transmission line. 

The conventional method for reducing reflections 
on transmission lines is with some form of termination, 
the most common being the so-called Thevenin type. 
This termination consists of a pull-up resistor to Vee 
and a pull-down resistor to ground. The goal is to 
match the two resistors' Thevenin equivalent to the 
trace's characteristic impedance. 

Table 1 lists common values for the pull-up and 
pull-down resistors. Both of the termination pairs shown 
in the table pull toe line to a logic High of approximate­
ly 3V when the dHver is disabled. Place the termination 
resistors as close as possible to the receiver. Keep in 
mind that many CMOS logic components have input 
and output clamp diodes to help damp overshoot and 
undershoot. 

Metastability 
The output of a latch or flip-flop can go into an 

undefined or metastable state (neither High or Low) 
when the set-up time or hold time for the device is vio­
lated. The metastable condition typically occurs when 
an asynchronous signal is being synchronized. It occurs 
in all process technologies and is impossible to com­
pletely eliminate. 

The two important metastability parameters to con­
sider in design work are the mean time between failures 
(MTBF ) at maximum operating frequency and the 
average or typical resolution or settling time, T sw. The 
latter is the time the device takes to resolve from a 
metastable state to a stable state. These parameters 
and/or the equations for deriving them should be avail­
able from a device's manufacturer. 

Metastability performance is proportional to a 
technology's Vih-to-Vn slew time. High-speed CMOS 
registers such as those found in Cypress PLDs have very 
fast slew times and typical settling times that range from 
100 to 600 ps, depending on the device type. 

By double-latching asynchronous inputs, you can 
dramatically increase a system's MTBF and reduce the 
probability of a metastable event causing system mal-



functions. When determining the length 'of time to delay 
before clocking the second register, multiply the pub­
lished typical settling time by two or three to create an 
extra margin of protection. 

Crosstalk 
Crosstalk is the undesirable coupling of a transition 

on an active line (talker) onto an inactive line (listener). 
The crosstalk amplitude is proportional to the talker 
edge rates, the physical proximity between signal lines, 
and the distance over which the two lines are parallel or 
adjacent. 

Crosstalk results from two important . physical 
causes: mutual impedance and velocity differences. 
Mutual impedance is due to the mutual inductance and 
capacitance between adjacent signal lines and is a trans­
former-like effect. Velocity differences arise when a sig­
nal propagates along a conductor that is in contact with 
two materials. of differing dielectric constants, such as 
fiberglass epoxy and air in PCBs. The wave propagating 
at the copper-to-epoxy interface travels slower than the 
wave propagating at the copper-to-air interface. A pulse 

1-33 

. develops whose duration is twice the difference in the 
arrival times of the two waves; thus, the magnitude of 
the disturbance increases when the length of the paral­
lel or adjacent traces increases. 

Due to CMOS's fast edge rates, crosstalk is a 
legitimate concern. You can take the following steps to 
reduce forward and reverse crosstalk: 

1. Maximize the distance between traces, and mini­
mize the distance over which traces are parallel or ad­
jacent. When possible, make the signals on adjacent 
PCB layers perpendicular. Use the power and ground 
layers as shields between the signal layers. On two-layer 
PCBs, run ground lines between adjacent, parallel sig­
nallines. 

2. Make every other conductor a ground line when 
using flat ribbon cable. Protect critical signals such as 
clock lines with a dedicated ground strip on PCBs or 
with a ground tWisted pair on backplanes. 

3. Use Thevenin termination of a line to its charac­
teristic impedance to reduce crosstalk amplitude by 50 
percent 



Protection, Decoupling, and Filtering 
of Cypress CMOS Circuits 

This application note explains how to protect your 
ICs with a low-cost zener diode and why it is good in­
surance against inadvertent voltage transients. Also ex­
plained is the reason why decoupling and high-frequen­
cy-filtering capacitors are required. A method is 
provided for determining the capacitors' values. 

Zener Diode Protection 
Linear power supplies can cause large voltage tran­

sients. When caused by the collapse of a magnetic field, 
the transient is negative. When the supply is turned on, 
the resulting transient is positive. 

Some commercially available laboratory bench sup­
plies behave the same way. When they turn on, they can 
over-shoot several volts. When they turn off, lead induc­
tance can cause a negative transient voltage at the Vee 
pin. If sufficient energy is available, internal gate oxides 
can break down, either destroying or weakening the IC 
such that it might fail later. 

You can avoid this problem by adding a 20¢ zener 
diode (also called a voltage-regulator diode) between 
V cc and ground. Connect the diode's cathode to V cc 

and the anode to ground (Figure 1). A 400-mW, 6.2V 
lN525 or equivalent is recommended. You can also use 
the IN753, a 5OD-mW, 6.2V zener diode. 

If a voltage greater than the zener voltage (6.2V) 
occurs on V cc, the diode breaks down, clamping the 
voltage to 6.2V and shunting the current to ground (Fig­
ure 2). The diode can be destroyed if the current multi­
plied by the zener voltage exceeds the diode's power 

Figure 1. Zener Diode Connection 

1-34 

rating. Because zener diodes always fail· shorted, they 
cause the power supply to "crowbar" and thus protect 
the ICs. 

A negative voltage on the V cc line puts a forward 
bias on the· diode. This turns on the diode, which 
clamps the voltage to approximately -O.8V. If the nega­
tive voltage times the current exceeds the diode's power 
rating, the diode fails shorted, as in the reversed-bias 
case, and protects the ICs. 

High-Frequency Filtering 
In addition to the protection offered by zener 

diodes, decoupling and high-frequency-flltering 
capacitors are required on high-performance CMOS 
circuits. To use these capacitors effectively, you must 
understand why they are required. 

To realize the fast rise and fall times that Cypress 
CMOS integrated circuits are capable of achieving, the 
power-distribution system must be able to supply the in­
stantaneous current required when the device outputs 
switch from Low to High. The energy converted to cur­
rent is stored as charge on the local decoupling 
capacitors. They decouple or isolate the circuit from the 
power-distribution system. It is standard practice to use 
one decoupling capacitor for each IC that drives a 
transmission line and one capacitor for every three 
devices that do not. 

The PCB trace inductance plus the IC lead induc­
tance can "current-starve" the output circuits, causing 

Vr v 

Figure 2. Zener Diode Characteristic 



Figure 3. Simplified Capacitor Equivalent Circuit 

rise-time degradation. Remember that the current 
through an inductor cannot change instantaneously. 
Therefore, you must minimize any series inductance, in­
cluding the lead inductance of the decoupling 
capacitor s. 

Decoupling-Capacitor Calculations 
To determine the value of the decoupling 

capacitor, you must estimate the instantaneous current 
required when all the outputs of an IC switch from Low 
to High, assuming a reasonable droop of the voltage on 
the capacitor. The charge stored on the local decou­
piing capacitor is 

Q= CV 
Differentiating yields 

i(t) = EQ= c dV Eq.l 
dt dt 

The characteristic impedance of a typical transmis­
sion line is 50.0. Lines with a heavy capacitive load have 
a lower characteristic impedances. 

Next, assume that the IC is a nine-output FIFO, 
such as the CY7C429. The outputs reach 

Vee - Vt = 5V - IV = 4V 
Each output thus requires 4V/50n = 80 rnA. Be­

cause the FIFO has nine outputs, it requires a total of 
720 rnA during the rise times of the outputs. 

Solving Equation 1 for C yields 

c= i dt Eq.2 
dv 

102 

1\ \ // 
J 

'\ \ LX v 
---
/ 

\ \ V V K 1I 

f 
Z (Ohms) 

./ 

'\ \ /7 / V \/ 
\ / \ V 

L--- L--~ ~ 
IV ~ --K IVV Ipr 

~ i( o ul 10 ~ 

10 102 1al 104 lOS 106 107 108 109 1010 

Frequency (Hz) 

Figure 4. Capacitor Impedance Versus Frequency 

1-35 

The last step is to assume a reasonable, tolerable 
droop in the capacitor voltage. Assume dV = 100 m V. 
Additionally, the signal rise and fall times are 2 ns. Sub­
stituting these values in Equation 2 yields 

720x 1O- 3 x 2x 10- 9 

c= 100x 10-3 

= 14.4 X 10- 9 

= 0.0144~ 
It is standard practice to use 0.01 to 0.1-~ decou­

piing capacitors. A 0.1-~ capacitor can supply 5A 
under the conditions assumed in the preceding calcula­
tions. Another way to look at the situation is that a 0.1-
~ capacitor supplies 720 rnA of instantaneous current 
in 2 ns with only 14.4 mV of voltage droop across the 
capacitor. 

Decoupling capacitors for high-speed Cypress 
CMOS circuits should be of the high-K ceramic type 
with a low effective series resistance (ESR). Capacitors 
using 5 ZU dielectric are a good choice. 

High-Frequency Filter Capacitors 
The 0.1 to 0.01-~ decoupling capacitors usually do 

not provide high-frequency decoupling or filtering. 
These capacitors do not behave like capacitors at high 
frequencies because their series resonance frequency is 
not high enough. This is primarily because of lead in­
ductance in their construction, which is a result of the 
capacitor's relatively large value. 

For high-frequency filter analysis, you can use the 
simplified equivalent cirCuit of a capacitor shown in Fig­
ure 3. Rs is the effective series resistance (ESR), L is 
the effective series inductance (ESL), and C is the 
capacitance. 

The impedance of the simplified equivalent cirCuit 
is: 

Zc= Rs+ jroL + .1C Eq.3 
l ro 

Zc= Rs+j [roL- ro
1
c] Eq.4 

The magnitude of the impedance is 

Zc~ "'-I RI + [0> L - .:c l' Eq.5 

At the series resonant frequency: 

roL= _1_ 
roC 

or, 

1 
ro= -::riC 

At the resonant frequency, Zc = Rs, which is the 
minimum impedance. 

Figure 4 shows how the impedance varies with fre­
quency. The series resistance usually increases as the 



F?l. Protection, Decoupling, and Filtering 
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

capacitance decreases. Also as the capaCitance 
decreases, the inductance typically decreases, which 
means that. the resonant frequency increases. This. is 
usually due to the capacitor's physical construction. 
Note that a surface-mounted capacitor's lead induc­
tance is at least an order of magnitude less than that of 
an axial-lead capacitor. 

,The next step in high-frequency fllter analysis is to 
determine a typical system's expected high-frequency 
components. Begin by assuming that the circuit is driven 
by a series of digital pulses with finite rise and fall 
times, then perform a Fourier transform on the series to 
determine their frequency components. 

Fourier Transform of a Periodic Pulse 
Figure 5 illustrates a periodic pulse of amplitud~ A, 

period T, rise and fall times of tr, and pulse width of T p, 
as measured between the SO-percent-amplitude points. 

The approximate frequency-domain transform ap­
pears in Figure 6. The amplitude of the frequency­
domain voltage is a function of the signal's amplitude 
and duty cycle in the time domain. The fundamental 
frequency, Fa, is related to the pulse train's period. The 
first harmonic, FI, is of equal energy and is a function 
of the pulse width. The second harmonic, F2, contains 
half the energy of Fo and is a function of the, pulse rise 
time. 

The rise and fall times of Cypress's CMOS and 
BiCMOS circuits are 2 ns, by design. If a Cypress PLD 
is driving the write- or read-strobe inputs . of a 
CY7C429-20 FIFO at the maximum frequency of 33.3 
MHz (T = 30 ns) with a 10-ns/30-ns-duty-cyc1e signal 
(Tp = 10 ns), the following signal frequencies are 
generated: 

1 1 
Fo= -= 10.61 MHz 

1t T 3.1416 x 30 x 10- 9 

A 

O.SA 

Figure S. Periodic Pulse Waveform 

1 1 
FI= --= 31.83 MHz 

1t Tp 3.1416x lOx 10- 9 

1 
F2= -= 9= 159.15MHz 

1t tr 3.1416 x 2 x 10-
Within the IC, signal rise and fall times can be as 

fast as 300 ps (picoseconds), which means that F2 = 
1.061 GHz (1,061 MHz) .. In some ICs short timing pul­
ses are generated internally, but they are usually longer 
than the 300-ps rise time, so. the preceding F2 is the 
highest harmonic present. 

Because the IC's data outputs can normally change 
no faster than those of the inputs, the outputs do not 
generate additional higher-frequency harmonics. 

Parallel the Filter Capacitors 

You cannot fmd a· capacitor whose three series 
resonant frequencies correspond to Fa, FI, and F2. In­
stead, select three separate capacitors with the ap­
propriate resonant frequencies and connect them in 
parallel between Vee and ground, as close to the IC as 
possible. The capacitors act as a bandpass fllter, shunt­
ing the unwanted, high-frequency signals to ground. The 
sum of the capacitors' values should be greater than or 
equal to the capacitance value given by Equation 2. The 
total high-frequency flltering capacitance is usually be­
tween 100 and SOO pF. 

Low-Frequency Filter Capacitors 

A solid tantalum capacitor of 10 JlF is recom­
mended for every SO to 100 ICs to reduce power-supply 
ripple. Place this capacitor as close as physically pos­
sible to where the Vee and ground enter the PCB or 
module. 

2Aa a= Ie. 
T 

Aa t I I 0 
Fo FI F2 f-

Figure 6. Fourier Transform of Periodic Pulse 

1-36 



Section Contents 

Page 
Modules 
Choosing Packages in High-Density Module Designs ........................................ 2-1 
The Multichip Family of Universal JEDEC ZIP/SIMM Modules .............................. 2-7 





4 -= CYPRESS 
, SEMICONDUCTOR 

Choosing Packages 
in High-Density Module Designs 

This application note describes the various packages 
in which high-density memory modules are available and 
reviews some of the application areas where specific 
packages find use. Module outline drawings accompany 
the text. 

You can use high-density memory modules in place 
of multiple monolithic les to minimize space, achieve 
better performance, and obtain single-device solutions. 
These modules are now available in a variety of package 
styles, each of which satisfies different needs in high-per­
formance systems. Table 1 summarizes the characteristics 
of the different package types. 

There are two general module types. The first type 
uses plastic-encapsulated les mounted on an epoxy­
fiberglass substrate. The monolithic les on the modules 
can be mounted in Sale, VSOP, or SOJ packages, which 
are small-outline parts with either gull~wing or J-bend 
leads. The second module type offers hermetically sealed 
Lee (leadless chip carrier) les mounted on ceramic sub­
strates. 

Modules built on epoxy-fiberglass substrates offer 
economic advantages over modules with ceramic sub­
strates. In general, however, ceramic substrates can ac­
commodate more components than epoxy-fiberglass sub­
strates. Further, when assembled using military-grade 

TopY'_ 

components, ceramic modules can be used in military ap­
plications. For all applications, the ceramic-substrate 
devices have better thermal characteristics than non­
ceramic types. 

SIPs 
The single in-line package, or SIP, is a vertically 

mounted module with a single row of pins along one edge 
for through-hole mounting. The pins are on a lOa-mil 
pitch. Note in Figure 1 that the footprint of this plastic 
package is only 0.66 square inches. 

SIPs are typically used in low-pin-count applications 
and are often used where high component density is re­
quired. These modules' vertical orientation and accom­
modation of components on both sides can increase com­
ponent density by a factor of four or more over designs 
that use monolithics. In addition to meeting space con­
straints, this higher density can also improve memory sys­
tem performance by reducing path lengths from chip to 
chip. 

Another chief source of appeal for the SIP module is 
fast, easy access to state-of-the-art package technology. 
That is, a design's main circuit board can be implemented 
in conventional, high-yield, through-hole technology, 
while the system, overall achieves superior component 

I" ~ '1 

~ 
0.175 

DDDDDDDDD~ . b{=l 

0.100 
TYp. 

0.035 
0.075 

.M12 
0,022 

Figure 1. SIP 

2-1 

0.040 
TYP 

0.01 
TV? 



-I 0."" I--
4.440 T I MAX I 

D[JLJLJ[j I }1PI~~ 

o ~ 
0.1750.100 ~ . ..2:.Q.1! 

TYp. 0.075 0:026 

Figure 2. Flat SIP 

.Q.QQZ 
0.013 

density and high performance by employing fully-tested 
modules whose fine-pitch, surface-mount components are 
mounted on a multilayer, tight-tolerance substrate. 

Flat SIPs 

which they are mounted. Flat SIPs' advantage is their low 
profile; they are typically used where component height 
above the main board is constrained. Flat SIPs range in 
height from 0.300 to 0.38 inch. 

ZIPs Flat SIPs are virtually identical to SIPs, except that 
their single rows of pins have a 90· bend (Figure 2). 
Therefore, flat SIPs lie close and parallel to the board on 

ZIP modules are similar to SIPs. However, the ZIP 
module has pins on 100-mil centers along both sides of 

Table 1. Module Package Characteristics 

Package Typical Typical Board Space 
Type Pin Count Height (in.) Mil Advantages Disadvantages (sq. in.) 

Min Max Min Max FR4 Cer 

SIP 24 50 0.5 0.9 N Vertical orientation; FR4 or ceramic Limited pin count 1.2 0.9 

FSIP 24 50 0.2 0.4 N Very low profile; mechanical Lower density due to 2.7 2.4 
stability; FR4 or ceramic horizontal orientation 

ZIP 24 100 0.5 0.9 N Vertical orientation; JEDEC standard 1.2 N/A 
pinouts; pinout compatible with 
SIMM 

SIMM 24 100 0.5 0.9 N Vertical orientation; socket 1.2 N/A 
mounting; pinout compatible with 
ZIP 

VDIP 36 104 0.5 0.95 y Vertical orientation 1.2 0.9 

DIP 24 60 0.17 0.37 y Low profile; excellent mechanical Horizontal 2.9 2.9 
ruggedness 

QUIP 48 200 Y Low profile; excellent mechanical Horizontal 2.9 2.9 
ruggedness; increased number of pins 

QFP 68 144 Y Surface mount; low profile; excellent Surface mount 3.1 3.1 
mechanical ruggedness;large teohnology required; 
number of pins in small area horizontal; comp~ments 

on one side only 

PGA 68 144 Y Large number of pins in through- Multilayer boards; 2.9 2.9 
hole technology; low profile; horizontal; components 
excellent mechanical ruggedness on one side only 

Notes: Mil entries indicate whether a hermetic, military version is available 

~ Board space is the mother board area that the package occupies when the module carries eight to 28 components 

2-2 



~'§r""'" Packages In High.Density Module Designs 
~ SEMlCONDUCfOR ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;= 

BotIomVl_ 

--1' ~ -\ --I 0.350 I-

;~~iftlmlI W 
=r;j I:-~ .... .+. ~ ... -1~[ .... -1 J--.~W •••• ;lJ--~ J ~ 

I I 0.100 

I · · · · · · · · · · · · · .. . ........ · · · · · · · TYP 
Pin 1 

Figure 3. ZIP 

the substrate (Figure 3). Pins on alternate sides are stag­
gered by 50 mils. The dual row of staggered pins allows a 
higher connection density than the SIP, while maintaining 
lOO-mil spacing between adjacent pins. The staggering 
provides additional separation for the lead vias and sup­
ports between-lead traces. At the same time, pin count is 
doubled over that of SIPs. 

Many ZIP modules have a vertical dimension of 
0.500 inch maximum. This low profile makes them can­
didates for VME systems, where there is a maximum al­
lowable component height. 

SIMMs 
Single in-line memory modules, or SIMMs, are also 

similar to SIPs, except that SIMMs have no pins for 
through-hole mounting (Figure 4). Instead, the module's 
bottom edge effectively acts as an edge connector, which 
is part of the substrate material. 

Contacts directly opposite each other are connected 
together. Some SIMMs have contacts on lOO-mil centers; 
others have 50-mil centers. 

The typical application for SIMM modules· requires 
socket-mounted components, either for repair or for 
upgrades in the field. Some SIMM sockets hold the 
SIMM at an angle, which reduces the height of the 
module on the board. 

0.125 DIA. 
+.001 2 PLCS 

Some module devices are available in· both ZIP and 
SIMM packages with the same form factor. The pin out is 
such that the footprint of some SIMM sockets matches the 
footprint of corresponding ZIP modules. This allows sys­
tem prototypes to use socketed SIMMs, and production 
systems to use through-hole-soldered ZIPs, with no 
change in the motherboard. 

Some SIMMs and matching ZIPs have presence­
detect pins, whose unique combination of no-connects or 
grounds can be used by external logic to identify the 
module's memory capacity. Thus, the system can deter­
mine the amount of memory present without user input. 

DIPs 
DIP modules have identical footprints and similar 

form factors to standard IC DIPs. The modules are typi­
cally taller than the DIP packages used for monolithics. 
Components are mounted on both the top and bottom of 
the substrate. 

Generally, these modules are used in anticipation of 
monolithic devices that will someday fit the same 
footprint. DIP modules allow engineers to design-in 
monolithic devices that do not yet exist by employing the 
modules to meet immediate production needs. Practically, 
even after monolithic devices become· available, the 
modules generally continue to find utility while initial 

0.145 REF 

PIN 64 
...-------"--"---- 3.35 (64 PINS)-------------.{ 

Figure 4. SIMM 

2-3 



0.345 

M 

L~II 
f 0100 -1 L -1L 0.015 

~~ 
__ I I 0.013 

0.1~ 1-. 
TYP ~ TvP I I II 0:025 

0.175 

(a) 

~I·-----------------------~------------------------~ 

DO D L.-__ .... DO DO 

0.050 
lYP 

(b) 

Figure 5. VDIP (a) and HVDIP (b) 

production ramp-up of the monolithic devices keeps sup­
plies short. 

VDIPs 
VDIP modules typically have the largest pin out of 

any modules. Similar to ZIPs, VDIPs are vertically 
mounted modules with plastic-encapsulated components 
and epoxy-encapsulated chips (Figure 5a). 

VDIP modules have pins along both sides of the sub­
strate, with the pins on alternate sides aligned. Spacing 
along each row and across the module is 100 mils. The 
dual row of pins allows a higher connection density than 
SIPs, while maintaining lOO-mil minimum spacing be­
tween adjacent pins. 

Like ZIPs, VDIPs are useful in high-pin-count 
devices, where the host board is designed to normal 
through-hole design rules. VDIPs help retain the density 
advantages of vertical packages, while providing a low 
profile. 

Ceramic Modules 
For harsher environments, several types of modules 

are available with ceramic substrates and side-brazed 
leads.· These modules sometimes have sealed metal lids to 
protect directly-mounted IC chips or utilize hermetically 
sealed LCC-packaged ICs. Four hermetic packaging styles 
are available: HVDIPs, HDIPs, PGAs, and QFPs. 

HVDIPs 
Hermetic vertical DIPs (HVDIPs) are vertically 

mounting ceramic modules with pins along both edges for 

2-4 

through-hole mounting (Figure 5b). Components are her­
metically encapsulated. Used in both low- and high-pin­
count applications, they are especially attractive when 
high component density is required on the main board. 

As with the plastic VDIP, pins on opposite sides of 
the module are aligned, and spacing in both directions is 
100 mils. 

HDIPs 
Hermetic DIP (HDIP) modules have ceramic sub­

strates with the same pin arrangements and footprints as 
standard IC DIPs (Figure 6). Hermetic components are 
mounted on both sides of the substrate. Hermetic DIP 
modules range in. size from 24-pin devices with 300-mil 
widths to 60-pin, 600-mil devices to 900-mil special 
modules. 

The QUIP 
The quad in-line package (QUIP, Figure 7) is similar 

to. the DIP except that the QUIP has a dual row of pins 
along the package edge. In-row and row-to-row spacing is 
100 mils, with pins in adjacent rows aligned directly 
across from one another. The QUIP is a low-profile pack­
age with excellent mechanical ruggedness and the added 
advantage over DIPs of higher pin density for the same 
package length. 

PGAs and QFPs 
Pin grid arrays (pGAs, Figure 7) and quad flat packs 

(QFPs Figure 8) are ceramic-substrate packages similar to 
those used for monolithic devices, except that the 



modules' cavities house more than one die. Each die is 
individually bonded to pads. The customized substrate 

provides the die-to-die interconnect and the connection to 
the I/O pins. 

• 1.414 .. I ~ I 

II~bJCII~~ [[~: 
0.285 ~0230 

II ~ I I 0.100 
-i I- 0.021 -i I- TYP 

1.010 
O.tto 

·000000000' 
-0 I e-
·0 0' 
·0 0-
'0-+,-0-
'0 llOOC 0-
• 0 0'0'01 TYP 0 -
-0 -' DIA 0· 
-000000000-

A 000000000 

Figure 6. HDIP 

0..350 DIA 
WltDOW 

/, 2 l "' ~ , 7 I , '0" " "t BOno ... Vltw TOP VIEW A' 

Figure 7. PGA Module 

.180 

t 
HEAT SINK 

Figure 8. QUIP 

2-5 

SEAL RING 

t 
.115 MAX 

t 
. 600 J L .100 TYP . 



~~RESS Packages in High-Density Module Designs 
49' ~COIDUcr~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.. -
~---------!g-----------

... -
1-----------8g----------~· 

~-------;~--------~ """, 

N ... 

i-------~~=------_i 
g"!i 

11 

2-6 

!! 

!llgj l-:i 
-:i 
o 
3: 

1:S 
1fT'! 
I~ 



The Multichip Family 
of Universal JEDEC ZIP/SIMM Modules 

This application note describes three Cypress memory 
modules, their special features, and how to use the 
modules as universal memory building blocks. The three 
modules are the CYM1821, CYM1831, and CYM1841, 
which provide 512K, 2M, or 8M of static RAM. 

The CYM1821, CYM1831, and CYM1841 provide 
the versatility to design many different systems with the 
same memory modules. The pin out and footprints allow 
you to use the same module in 8-, 16-, or 32-bit systems 
in ZIP or SIMM form factors using a single board layout. 

History 
The JEDEC Solid State Products Engineering Council 

approved four series of SRAM ZIP/SIMM module pin 
outs for balloting 1 in December, 1987. The 64-pin 
module included definitions for 4 x 16K x 8, 4 x 64K x 8, 
and 4 x 256K x 8 generations. 

The JEDEC definition established the industry stand­
ard for the mechanical specifications and pin outs of the 
three generations of modules (Figure 1). The CYM1821, 
CYM1831, and CYM1841 follow the JEDEC definition. 

Variable Width 
The JEDEC pin-out definition includes four chip­

enable pins that each control a byte-wide block of 
memory (Figure 2): 

CS1, on pin 32, enables 1100 through 1107 
CS2, on pin 31, enables 1I0s through 11015 
CS3, on pin 34, enables 11016 through 11023 
CS4, on pin 33, enables 11024 through 11031 

Table 1. Memory Configurations 

Word Width 

x8 x16 x32 

CYM1821 64Kx8 32Kx16 16x32 

CYM1831 256Kx8 128x16 64Kx32 

CYM1821 1Mx8 512Kx16 256Kx32 

2-7 

You can use each generation as a x32, x16, or x8 
memory block by driving the chip enables as address pins 
and connecting the 110 pins in parallel. This scheme al­
lows the memory configurations shown in Table 1. 

Variable Depth 
The three modules provide additional flexibility in 

memory depth. All three are 64-pin modules with com­
patible pin outs. The CYM1821 has four no-connect pins: 
29, 30, 35, and 36. Pins 29 and 30 are address pins on the 
CYM1831, and pins 35 and 36 are still no-connects. On 
the CYM1841, pins 35 and 36 are address pins. This al­
lows the modules to function as memory options in a 
design. 

The module family's variable depth is enhanced by 
the inclusion of two presence-detect pins: PDo and PD1 on 
pins 2 and 3, respectively. These pins provide unique 
logic conditions for a system to automatically sense the 
amount of memory present, which permits the system to 
adapt automatically to the module that is plugged in. The 
presence-dectect pins are either tied to ground on the 
module or left open, according to the information in 
Table 2. 

Figure 3 shows a simple circuit that decodes the 
presence-detect pins and generates depth-indicator status 
signals. 

Layout Considerations 
The three modules are available in either ZIP or 

SIMM form factors. Additional versatility is included in 

Table 2. Presence-Detect Pins 

POI PDO 

No Module OPEN OPEN 

CYMl821 OPEN GND 

CYM1831 GND OPEN 

CYM1841 GND GND 



~~RE$ 
~ If!' SEMiCQIDucrOR 

ZIP/SIMM Modules 

the module footprint to allow ZIP or SIMM modules to fit prototyping and testing various memory depths in the 
into the same board layout. The ZIP pins are arranged in same socket. 
the same hole pattern as a SIMM socket. If the board Reference layout fits a SIMM socket, such as the AMP 821825-1, a 
ZIP plugs right in. This capability is useful for board JEDEC Solid State Products Engineering Council, 

Committee Letter Ballot JC-42.3-88-9, 16 January 1988. 

4x256Kx8 4 x 64K x 8 4 x 16K x 8 4 x 16K x 8 4x 64K x 8 4 x 256K x 8 

GND GND GND 
PDo(GND) PDo(OPEN) PDo(GNO) 

3 PO, (OPEN) po, (GNO) PO, (GND) 

1/0 0 1/00 1/00 4 5 1/04 1/04 I/O. 
1/0, I/O, 1/0, 6 7 I/Os I/Os II0s 
1/02 1/0 2 .1/02 8 

9 1/0, I/O, I/O, 
1/03 1/03 1/03 10 11 1/07 1/07 IIOr 
Vee Vee Vee 12 13 Ao Ao Ao 

A7 A7 A7 14 15 A, A, A, 

As As As 16 
17 A2 A2 A2 

Ag Ag ~ 18 19 00,2 00,2 D012 
1/011 I/Oe 1/011 20 21 00,3 00,3 00'3 
II0g I/Og 110g 22 23 00'4 00'4 00,4 

1/0,0 1/0,0 1/0'0 24 
25 00,5 00'5 00,5 

I/O" I/O" I/O" 26 27 GND GNO GND 
WE WE WE 28 

29 NC A,s A,s 

A'4 A'4 NC 30 
~2 ~2 "CS2 31 

~, ~, "CS, 32 

~3 
33 ~4 ~4 ~4 

~3 ~3 34 
NC A'7 35 NC 

AliI NC NC 36 
37 ~ ~ M 

GND GND GNO 38 
39 1/020 1/020 1/0 20 

1/0,8 1/0,8 1/0,8 40 
41 1/021 1/021 1/021 

1/0'7 110 ,7 1/°,7 42 
43 1/022 1/°22 1/022 

1/0'8 1/0 ,8 1/0111 44 
45 11021 1/021 1/0 23 

1/°'9 1/0 ,9 1/0'8 46 
47 A3 A3 A3 

A,O A,O A,a 48 
49 A4 Ac A4 

A" A11 A" 50 
51 As As A5 

A'2 A,a A,a 52 
53 Vee Vee Vee 

A'3 A'3 A'3 
~ ~ ~ 

1/024 1/024 1/024 56 
1/028 1/028 11028 

1/025 1/025 1/025 58 
1/021 1/021 1/021 

1/026 1/026 1/°26 60 
61 1/030 1/030 1/030 

1/027 1/°27 1/027 62 
1/03, 110" 1/03, 

GND GND GND 64 

Figure 1. 6~·Pin SRAM Module Pinout 

2-8 



ADDRESS 
~ 

WE 

- x4 ~ 1/00 -1/03 

..... 
x4 ~ ~- SRAM r-- SRAM 

-r-~ -r--
I I 

r-
~ I/Oa- I/O" 

- x4 ~ -~ 
x4 --SRAM SRAM 

~-r- ~--
I 

- P:- 1/016 -1/019 

I-- x4 P:--- x4 -i--
f----

SRAM f--- i--
SRAM 

J 

- '--
x4 -,,:- 1/024 - 1/027 

x4 ~ '--- SRAM '--- SRAM 
~ L.--

1 I 

Figure 2. 64·Pin SRAM Module Block Diagram 

Vee 

PDo -..1..-..,---------...,.--1 NO MODULE 

16Kx32 

64Kx32 

256Kx32 

Figure 3. Depth Indicator Circuit 

2-9 





Section Contents 

Page 

ECL and TTL BiCMOS 
Noise Considerations in High-Speed Logic Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-1 
Using ECL in Single + 5V TIL Systems ................................................... 3-4 
BiCMOS TIL and ECL SRAMs Improve High-Performance Systems ......................... 3-7 
PLCC and CLCC Packaging for High-Speed Parts ......................................... 3-15 
A New Generation of BiCMOS High-Speed TIL SRAMs ................................... 3-20 
Access Time vs. Load Capacitance for High-Speed BiCMOS TIL SRAMs . . . . . . . . . . . . . . . . . . .. 3-23 
Combining SRAMs Without an External Decoder ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-27 
BiCMOS TIL SRAMs Improve MIPS R3000 and R3000A Systems .......................... 3-30 
Memory and Support Logic for Next-Generation ECL Systems .............................. 3-33 





CYPRESS 
SEMICONDUCTOR 

Noise Considerations 
in High-Speed Logic Systems 

This application note explains why ECL is a lower­
noise logic family than TTL or CMOS logic, both inter­
nally at the circuit level and externally at the system level. 
Also presented are the implications of ECL for your 
design needs. 

In state-of-the-art logic system design, clock frequen­
cies of 50 MHz and beyond are not uncommon and give 
rise to many noise problems that were not significant in 
the past. Due to the nature of TTUCMOS logic, operating 
at these faster clock rates is inherently noisier and requires 
high-power output drivers with their associated ground­
bounce problems. 

Fortunately, ECL solves these problems. It is built for 
speed and is available in a low-power BiCMOS process 
technology. Since ECL was designed for high-speed ap­
plications in 1962, a number of design iterations have im­
proved ECL devices. Consequently, it is the premier high­
speed logic family. 

ECL's Internal Advantages 
Internally, ECL steers current and compares input 

signals to a voltage level instead of switching transistors 
on and off over a wide voltage excursion, as do other 
logic families. ECL's small voltage swings and low-cur­
rent switching in signal paths minimize crosstalk and 
noise generation (Figures 1 and 2). ECL generates less 
noise switching logic levels due to the smaller dV/dt in 
the I = CdV/dt equation, where C is the coupling 
capacitance between signal paths, I is crosstalk current, dt 
is the rise/fall time, and dV is logic swing. 

dt 3.6V 

-O.9V 
-1.7V 

EeL 
TTL __ O_V_--r 

Additionally, built-in temperature and voltage com­
pensation provides constant noise immunity in lOOK 
devices, so that noise margins are flat. In these devices, 
temperature compensation is designed into the DC input 
thresholds by voltage regulation. A correction factor 
designed into the current source, along with added cir­
cuitry between the output transistors' bases, make lOOK 
ECL's output voltage levels insensitive to temperature. 
These corrections rely on opposing positive or negative 
temperature-tracking-coefficient circuits. In both lOOK 
and 10KH ECL devices, voltage compensation is done by 
regulating an internal reference voltage, supplying a con­
stant current source, and making both functions inde­
pendent of supply voltage. These compensations result in 
a 3x improvement over T1L noise immunity. 

Additional anti-noise features include differential 
pairs, which prevent large current spikes when switching 
logic states, provide clean power supplies, and reduce 
ground bounce. Differential paths also cancel internal 
parasitic charging currents. 

Finally, ECL's more constant power dissipation - in­
dependent of operating frequency - keeps power-supply 
surges to a minimum. Supply current drain is governed by 
the constant-current sources that provide operating current 
for the differential switches and level-shifting networks. 
Thus, ECL's current drain remains the same regardless of 
the state of the switches. The high ratio of ECL noise im­
munity to internally generated noise also contributes sig­
nificantly to reliable system operation. 

1= C dV/dt 
Crosstalk current I is less for ECL than 

TTL due to smaller dV and dt 

Figure 1. Effects of Rise and Fall Time 

3-1 



5;;= -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~N;;;o;;;is;;;e;;;C~OD;;;s;;;i;;;de;;r;;;a;;;tI;;;;;;· o;;;;;;D;;;;;;s;;;;;;iD;;;;;;;;;;;;;H;;;;;;i;;;;:;g;;;;;;;;h;;;;;;-S;;;;p;;e;;;;;;e;;;;;;d;;;;;;L;;;;;;o;;;;;g;i;;;;;;c ;;;;;;S;y;;;;;;st;;;;;;e;;;;;;m;;;;;;;;s ~ SEMlcamUCfOR_ 

5.0V 

3.6V 3.6V Br'ov 
EeL ~,-_-....:::;O.:.:...9V,-= -L dv 

___ -~1.~7V~~~~ ________ ~8=OO V 

TTL----'O'--'-V-...J 

CMOS 
,---

SLEW RATE = dV!dt 
RISEIF ALL TIME = dt 
LOGIC SWING = dV 

Therefore, time is saved because the logic swings 
are smaller and rise/fall time faster 

Figure 2. Effects of Slew Rate 

ECL in the System Environment 
In the ECL system environment, low-impedance 

open-emitter outputs and high current capacity allow you 
to use board-level transmission-line techniques that reduce 
reflections and decrease roll-off of high-speed rise and fall 
times. To understand these system-level advantages, con­
sider that voltage-mode circuits have a High-state output 
impedance between 50 and 150n and exhibit an output­
stepped characteristic. They fIrst reach 50 percent of the 
final value, then later reach the fmal value, which can be 
3.5V and above. 

In contrast, ECL output impedances are less than lOn 
and ensure a full-valued signal into transmission lines. 
The signal only needs to be 800 mV.OutPuts are also 
capable of supplying 50 rnA, which is required to drive 
passive terminations. Because ECL gives you the built-in 
ability to drive controlled-impedance PCB traces, you can 
make tradeoffs among power dissipation, speed considera­
tions, and PCB trace width. 

Some ECL devices have skew-free differential or 
complementary outputs for common-mode noise rejection 
at the receiving ena of either board traces or twisted-pair 
wire. As mentioned earlier, ECL's smaller logic transi­
tioris lower crosstalk between board-level signal traces, as 
well as at the IC level. 

The smaller transitions also prevent the emitter-fol­
lower outputs from generating ,large current spikes when 
switching logic states, unlike TTL totem-pole outputs. 
TTL current spikes are also related to I = CdV/dt. For 
ECL, C is the capacitive load. TrL ground bounce results 
from the current spikes and the inductance (L) between 
the board and the device's pins and bond wires. The 
bounce voltage (V) equals -Ldildt, which can be severe 
(see the' Reference) and can cause the chip's ground to 
rise. Because ECL's. einjtter followers provide superior 
output current and the lower capacitance of characteristic­
impedance transmission lines, ECL solves the problem of 
power-supply droop and spikes when a large number of 
transistors change state. 

Logic Family of Choice 
The factors described here make ECL the logic fami­

ly of choice when 'designing systems at 50 MHz or greater 
clock/data rates. As !l percentage of total logic swing, 
ECL provides superior noise margin in the system en­
vironment compared to both TrL and CMOS logic. 

In a typical TrL/CMOS system, board-level noise 
can be 800 m V or higher due to ground bounce and other 
switching noise. The Reference explains this effect for 
both CMOS and TTL and includes actual measurements 

OUTPUT VOLTAGE 
LEVELUMITS 

~""""""""""""'" - Va.. (min.) .' INPUT TRANSITION 
REGION UMITS 

Note: VNH and VNL are the High- and Low-level device noise margins. Because ECL system noise is much lower than TTL 
system noise, the smaller ECL device noise margins are still better than the TTL margins. 

Figure 3. Identifying Specification Limits on Input and Output Voltage Levels 

3-2 



Table 1. System Noise Generated by Logic 

Parameter TTL CMOS lOOK 10K 

HIGH "I" (VNH) (m V) 400 400 140 145 

LOW "0" (VNL) (mV) 400 400 145 175 

Typ. System Noise (mV) 800 800 20 20 

Logic Swing 3.5V 5V 900mV 

Percent Noise! 22.8% 16% 2.2% 

Ipercent Noise = (system noise/logic swing) x 100 

of ACL (CMOS) devices. In an ECL system, the noise is 
closer to 20 mY. As shown in Table 1 and Figure 3, 
EeL's overall system or board-level noise is at a much 

lower percentage of total signal swing than in TTUCMOS 
systems. ECL is therefore less susceptible to logic errors 
at high speeds (Figures 4 and 5). 

EeL's full temperature and voltage compensation 
results in relatively constant signal levels and thresholds; 
improved noise margins over chip-to-chip temperature and 
voltage variations; and a tighter AC window in the system 
environment. Another benefit of reduced noise generation 
is the improvement in electromagnetic interference (EMI) 
and radio-frequency interference (RFI) in ECL systems 
versus TTL and CMOS. 

Reference 
"EDN's advanced CMOS logic ground-bounce tests," 

David Shear, EDN, March 2, 1989. 

ns 101.840 ns 126.B40 ns 
.-------,------_.-

_________ ~L _______ ---'_. __ --'-_'--__ -1_______ _ ... ~ ___ . ___ . __ .. _____ . __ .. __ ._ ... _ .. __ .. __ . __ . ________ .. _. _,_,_ .. _ 
Ct!. 3 ~ 200.0 mVolts/div 
Timebase - 5.00 ns/div 
Ch. 3 Peremeters Freq. - 80.8538 NHz 

Figure 4. EeL Signal 

76_8400 ns 101.840 ns 

I 
___ .1-____ . _____ _ 

Ch. 3 - 600.0 mVolts/dlv 
Timebase - 5.00 ns/dlv 
Ch. 3 Parameters Freq. - 80.6530 MHz 

Figure 5. TTL Signal 

3-3 

Of fset 
Oelay 

Offset 
Delay 

a 622.5 mVults 
101.840 ns 

126.B40 n!\ 

- 258.7 mVolts 
101.840 flS . 



:z 
.. CYPRESS 

, SEMICONDUCTOR 

Using EeL in Single +5V TTL Systems 

The advent of very high speed, low-power, ECL­
compatible BiCMOS SRAMs and PLDs is causing an 
evolution in high-performance systems. ECL's inherent 
speed and noise improvement is well documented, but 
questions . and misconceptions concerning the devices 
might occur. These questions stem from the fundamental 
problems 6f mixing CMOS logic and bipolar ECL circuits 
on the same die and from interfacing ECL devices in 
single +5V supply CMOS/TTL systems. 

Chip-Level Considerations 
At the chip level, it is possible to integrate both ECL 

and . CMOS logic with negligible noise coupling. This 
compatibility is mainly due to the absence of noisy high­
drive output devices between the device's CMOS sections 
and the ECL lIOs. 

The combined ECL/CMOS chips exhibit very low in­
terconnect capacitance between devices on-chip, and the 
drive requirements are minimal. The devices generate less 
noise than occurs between devices at the board level. The 
noise magnitude on the chip VEE line equals approximate­
ly 20 m V worst case, in contrast to SOO m V of noise in 
typical high-speed, board-level CMOSITfL designs. 

Further, the unique configuration that Cypress Semi­
conductor employs to connect the device ECL circuit 
ground (V cc) and ECL output ground (V CCA) reduces 
noise coupling between the internal CMOS circuitry and 
the ECL output drivers. Because the devices have a low 
overall noise level and employ internal supply decoupling, 
both the ECL and CMOS sections of Cypress devices run 
successfully on the same power pin. 

Board-Level Considerations 
At the board level, using ECL-I/O-type devices in 

single +5V TTL systems is possible with off-the-shelf 
level translators. These translators are made specifically to 
run standard ECL devices in a pseudo-ECL logic mode, 
with switching levels pulled up to the range between the 
+SV supply and ground. 

3-4 

ECL normally uses a -S.2V supply for 10K- and 
10KH-compatible devices or a -4.SV supply for 100K­
compatible devices. Pulling ECL circuits and memories up 
to a single positive 5V level instead of using the nonnal 
supply does not change any performance or absolute-value 
logic levels so long as all the ECL device V cc pins are 
tied to +5V, and the device VEE pins are tied to ground. 

The translators have separate supply pins and either 
separate or common ground pins for the circuit's EeL and 
TTL portions. This feature isolates the noisy TTL supplies 
from the ECL section, which runs at much faster speeds 
and with tighter noise margins. 

ECL-TTL-ECL Translation 
The Brooktree Bt501 (lOKH ECL compatible) and 

Bt502 (lOOK compatible) octal transceivers and trans­
latorsperform bidirectional ECL/TTL transfers. These 
devices offer the option of supplying +5V only to the 
circuit's ECL portion (Figure 1). This arrangement makes 
it possible to design the system with only one power 
source and simplifies the task of adding ECL circuitry to a 
TTL board. 

You can isolate the ECL section from the TTL sec­
tion in much the same way you isolate analog and digital 
sections on a mixed-signal board. To isolate the TTL­
generated noise from the ECL +5V supply lines, you must 
maintain separate ECL and TTL power lines; you can 

~--I-- BC.(DO.D7) 

DIR 

11'L vee TIL GND IiCL VIlB sa. vee 

Figure 1. Bt501l502 TTL/ECL Transceiver 



~RffiS -;;;;;;=========;;;;U;;;s;;;;in;;;g~E;;;;C;;;;L;;;;;;;;I·n;;;;S;;;;i;;;;n;;;;gl;;;;e;;;;+;;;;5;;;;V=T;;;;T;;;;L;;;;S;;;;;:;y;;;;;;s;;;;te;;;;m;;;;;;;.s -==:t!!If., SEMICONDUCTOR .;;; 

(a) MC10H350 

10 

15 

Vec (+5.0 Vclcl - 1'1 ... lind 111 
Gnd - Pin 8 

(b) MC10H351 

Bin IfOui 

II GUI 

A in AOUi 
4 Aoul 

o in 12 111 00Ui 
17 0001 

C in 14 19 ~ 

Common 9 18 C GUI 
Slrobe 

VCC ( ... S.O Vdcl - Pins II. 11, 15.20 
Gnd = Pin 10 

Figure 2. ECL to TTL (a), TTLINMOS to ECL (b) 

have common or separate ground planes. Employ normal 
power-supply decoupling for ECL devices. 

The Brooktree devices have the advantage of provid­
ing eight sets of transceivers for both translation directions 
in one IC package. A disadvantage is speed. The 
Bt501l502 devices have maximum propagation delays of 
7 ns when translating from TTL to ECL and 11 ns in the 
other direction. In some applications this might be too 
slow. 

For a faster set of translators that run on single 5V 
supplies, try the Motorola MCI0H350 and MCI0H351 
(Figure 2). The MCI0H350 only translates in the ECL-to­
TTL direction, but it is faster than the Brooktree parts, 
with a 5-ns maximum propagation delay, and includes dif­
ferential inputs. The MCI0H351 is the TTL-to-ECL con­
verter, offering a maximum delay of 2.1 ns. These devices 
have separate ECL and TTL supply pins, but have com­
mon ground-pin connections. 

+5Vdc 

Figure 3. TTL to ECL 

3-5 

+5Vdc 

= 160 

= 
Figure 4. ECL to TTL 

Another method of translation is to use all discrete 
components or a combination of discrete and integrated 
products. The purely discrete approach speeds up the 
translation but introduces the risk that noise from the 
TTL-to-ECL sections might feed through the power and 
ground connections. You also have to consider the lack of 
temperature andlor voltage compensation, which affects 
noise margins. 

For translating TTL signals to ECL, use a simple 
voltage divider network, whose primary purpose is to 
reduce the TTL levels to ECL-Ievel logic transitions (Fig­
ure 3). In the other direction, a high-speed PNP transistor 
increases the logic swing to accommodate TTL-logic-level 
transitions (Figure 4). . 

A faster approach appears in Figure 5, where a dif­
ferential pair consisting of two PNP transistors takes ad­
vantage of the ECL differential outputs. The choice of 
transistors greatly influences the propagation delay 
through these translators. Motorola manufactures some 

+5Vdc 

Figure 5. ECL to TTL 



very fast RF-type PNP transistors and matched PNP pairs 
that can serve well in the circuits shown. 

CYIOE383/101E383 Full-Duplex Translator 
For the ultimate in speed and flexibility, the Cypress 

CYlOE383/CYlOlE383 is a new-generation, full-duplex, 
TTL-to-ECL and ECL-to-TTL logic~level translator 
designed for high-perfonnance systems (Figure 6). The 
CYlOE383/CYlOlE383 has many features to satisfy a 
variety of applications. 

In the past, lev~l translators suffered from having an 
insufficient number of channels or supply options. This 
caused skew and noise problems that made the use of 
high-speed ECL logic levels in TTL systems highly un­
desirable. The CYlOE383/CYlOlE383 contains ten inde­
pendent TTL-to-ECL translators and ten independent 
ECL-to-TTL translators for high-speed, bidirectional, full­
duplex data-transmission, mixed-logic, and bus applica­
tions. The CYlOE383/CYlOlE383 is especially well 
suited to driving ECL backplanes between TTL system 
boards. 

The translator is implemented with differential ECL 
va to provide balanced, low-noise operation over control­
led-impedance buses between TTL and/or ECL subsys­
tems. The part features a delay of only 2 ns max from 
TTL to ECL arid 3 ns max from ECL to TTL, with mini­
mum skew between channels. 

The CYlOE383/CYlOlE383 comes equipped with in­
ternal 2-K..Q pull-down resistors tied to VEE (ECL supply) 
to decrease the number of external components. For sys­
tem testing purposes or for driving light differential loads, 
the pull-down resistors are the only termination, thus 
eliminating up to 20 external resistors. You can also use 
standard ECL terminations with the internal pull-down 
resistors and still adhere to standard 10K/10KH and lOOK 
logic levels. Additionally, the translator contains an ECL 
VBB reference voltage output, which you can use to. tie 
half of the ECL inputs for single-ended operation. 

The device is designed with ample ground pins to 
reduce bounce and has separate ECL and TTL 
power/ground pins to reduce noise coupling between logic 
families. The CYlOE383/CYlOlE383 can operate in 
single or dual supply configurations while maintaining ab­
solute 10K/10KH and lOOK level swings to be used with 
either TTL-type (+SV) or ECL-type (-S.2V) supplies or 
both. 

The translators are offered in standard 10K/lOKH 
(lOE) and lOOK (lOlE, lOOK levels with up to -S.2V 
power supply) EeL-compatible versions. The TTL VO is 

3-6 

vee 
00 
Do 

DIFFERENTIAL 01 
ECllNPUTS 01 
EeL SUPPLY ~~ 

03 
153 
04 
& 
os 
05 
os 
t56 
07 
07 
os 
08 
D9 
~ 

010 

Dll 

012 

013 

014 

TIL INPUTS 015 

TTL SUPPLY 016 

011 

018 

019 

~ 

..... 

" 

". ., 
> 
~ 

.~ 
.~ 

> 
> 
> 
> 
:> 

> 

~i ~i~i ~i i 

QO 

01 

02 

as 
TTl OUTPUTS 

Q4 

as TIL SUPPLY 

06 

07 

08 

as 
010 
010 
011 
011 
Q12 
012 
013 
013 
.014 
014 
015 OIFFEFlENTIAL 
015 
016 ECLOUTPUTS 

ala ECLSUPPLV 
017 
017 
018 
018 
OHl 
'O19 

Figure 6. CYIOE383 Full-Duplex TTLIECLITTL 
Translator 

fully TTL compatible. The CYlOE383/CYlOlE383 is 
packaged in an 84-pin, surface-mountable PLCC. 

Reference 
Blood, William R., Jr., "Motorola MECL System 

Design Handbook," (Motorola Semiconductor Products 
Inc., Fourth Edition, 1988.) 



CYPRESS 
SEMICONDUCTOR 

BiCMOS TTL and ECL SRAMs 
Improve High-Performance Systems 

A new BiCMOS process based on clean-slate ap­
proaches to implementing ECL or TTL logIc with bipolar, 
BiCMOS, and CMOS transistors in single devices is 
revolutionizing the speed/density characteristics of 
SRAMs. Historically, BiCMOS technologies were 
developed as either CMOS speed enhancers or bipolar 
power misers. The resulting BiCMOS processes were 
patches on either CMOS or bipolar process flows, and 
performance for the complementary bipolar or MOSFET 
components was sub-optimal. 

In contrast, Cypress's STAR M2 is a third-genera­
tion, 0.8Jl BiCMOS technology in which the baseline 
process is BiCMOS. In the STAR process, nonvolatile 
elements such as polysilicon loads and TiW fuses are easi­
ly incorporated into the baseline process. This results in 
high-density SRAMs, high-speed PLDs, and high-density 
EPROMsIPLDs. 

Figure 1 shows a simplified cross section ·of the 
STAR M2 BiCMOS process. This I8-mask, double-poly, 
double-metal technology utilizes a thin· epitaxial layer to 
achieve NPN Ft greater than 10 GHz and CMOS latch-up 
immunity. The MOSFETs both use lightly doped drains 
for high performance and reliability. 

In contrast to the architectures of SRAMs made using 
first-generation BiCMOS processes, STAR's poly silicon 

bipolar emitter is the same poly used for MOS gates. This 
enhances NPN performance and decouples the NPN from 
the poly load module used for 4T SRAM cells. By utiliz­
ing this poly load resistor, STAR allows for an 85-square­
micron memory cell. This third-generation process beats 
second-generation BiCMOS technologies in terms of 
product performance, density, and manufacturability. 

SRAMs area key technology driver, and BiCMOS 
fills the gap between the power-hungry pure bipolar ECL 
and the very high density, medium-speed CMOS. To indi­
cate the performance of the Cypress process, Table 1 sum­
marizes gate delays as a function of logic family and 
fanout. 

Table 1. Gate Delays 

Gate 
Tpd (ps), psiFanout 

Fanout = 1 

CMOS 110 70 

BiCMOS 240 12 

ECL 95 30* 

*ECL delay varies with the square root of fanout 

Figure 1. STAR M2 BiCMOS Process, Simplified 

3-7 



5if;cvm:ss BieMOS SRAMs Improve High-Performance Sy· stems 
~~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Read Cycle No. 1

too

ADDRESS)()(

t-- toHA ~
DATA our PREVIOUS DATA VALID '*XX)(DATA VALID

Write Cycle No. I <WE Controlled)

___________ -:_ +---- tSD ----4 t.o

DATA IN

Figure 2. Balanced ReadlWrite Cycle Timing Diagrams

This performance comparison shows that you can use
the gates according to functional capabilities. ECL gates
are fastest. They use the most power, but because they can
drive 50n loads and have low offset voltages, they are
usually used for I/O or other high-drive paths. CMOS
gates' internal propagation delays are short for small-load
logic functions, but their outputs are less suited for driving
heavy loads. However, the CMOS gates' small size make
them attractive for memory arrays. BiCMOS gates are
used where medium loading has an effect on speed, such
as for internal logic between I/O and the memory array.

Cypress STAR combines . bipolar ECL I/O with
bipolar, BiCMOS, and CMOS internal functions. This
helps parts such as Cypress's industry-standard
CYI0E474/CYI00E474 lK x 4 BiCMOS SRAMs draw
275 rnA, while exhibiting world-class access times of 3.5
ns (285 MHz). The STAR process makes possible a low­
power version (190 rnA) exhibiting 5-ns access times.

STAR also combines CMOS 110 with the bipolar,
BiCMOS, and CMOS internal functions for TTL com­
patibility and faster access. For example, a BiCMOS TTL
implementation of an industry-standard SRAM such as a
64K common-I/O device has an access time of 8 ns and
runs on 130 rnA max., 40 rnA standby. The majority of
the power is consumed driving the outputs at fast switch­
ing times. At 40 MHz, the part runs at 100 rnA. (These
specifications are for Cypress's CY7B 166 TTL-com­
patible devices.)

3-8

TTL BiCMOS
In a Cypress TTL BiCMOS SRAM (for a basic

layout, see Figure 1 in "A New Generation of BiCMOS
TTL SRAMs"), CMOS provides a small cell size, which
in tum gives high yields and lower cost than pure bipolar.
Consequently, the memory array consists of pure CMOS
for low power and high density.

For the sake of good frequency response, low offset
voltage, . and high gm (Iout/Vin), the sense amp that reads
the memory cell is all bipolar.

Special attention has been given to the read/write
paths to achieve an overall balanced read and write cycle.
Figure 2 shows timing diagrams of the balanced
read/write cycle for a Cypress 8-, 10-, or 12-ns TTL
BiCMOS SRAM. The access time on a read cycle (tRC) is
the same duration as the write cycle (twc), which consists
primarily of write· 'pulse width. Such a balanced cycle
reduces overall design complexity by maintaining a 50-
percent duty cycle for the system timing clocks.

Because .the bit-line paths that the sense amp drives
are highly capacitive, the high-drive current and small
ECL-type voltage swings provided by bipolar NPN tran­
sistors is essential for fast access times. Further, the low­
offset feature of a bipolar differential-pair amplifier makes
it possible to resolve small memory-cell output voltages
quickly.

The write amplifier, on the other hand, is BiCMOS,
which can use supply-voltage levels to write the memory

~ ---'~if1 CYPRESS BiCMOS SRAMs Improve High-Performance Systems
~~ ~CaID~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

locations. Additionally, BiCMOS's fanout characteristics
enhances write cycle timing. Other internal logic gates
with highly capacitive nodes, such as output buffers,
decoders, and wordline and write drivers are all BiCMOS.
Control functions with small fanouts are CMOS.

The high internal speeds obtained by mixing bipolar,
BiCMOS, and CMOS transistors allows the outputs to
switch more slowly to achieve a given access time. This
reduces noise and ground bounce, making the BiCMOS
SRAMs easier to use.

The I/O architecture for TIL BiCMOS appears in
Figure 3a. I/O circuitry for the TTL devices is CMOS for
compatibility with existing products. However,· bipolar
transistors are employed as diodes in conjunction with the
CMOS output transistors to keep output swings within
traditional TTL levels, instead of the full 5V swing typical
of CMOS. This further reduces ground bounce.

On the input side in Figure 3a, the CMOS devices
are labeled M2 and M4. Input clamping diodes are in­
cluded to serve as ESD protection devices and to meet
MIL STD-883C Method 3015 static discharge voltages of
2001 V. The inputs meet standard CMOS specifications.

TTL INPUT

ECLINPUT

(a)

(b)

The output bipolar transistors Q2 and Q3 drop two
Vbe levels (1.6V) to reduce the High-level output swing.
One device is tied base-to-collector as a diode and the
other is the High-level drive transistor. This arrangement
limits the voltage swing to TTL-type levels, which in­
creases speed and limits noise by decreasing the total
dV/dT rate of change in the output swing. The Low-level
pull-down resistor is M18, an N-type MOSFET.

ECLBiCMOS
In ECL BiCMOS SRAMs, a larger percentage of

pure bipolar circuitry is used than in TTL BiCMOS, but
CMOS and BiCMOS are still used extensively. ECL I/O
is shown in Figure 3b. The inputs consist of an NPN tran­
sistor used as an emitter follower (Ql) tied to one side of
a differential pair (Q2 and Q3). The output is an open
emitter NPN transistor that can be tied to an external pull­
down resistor to drive transmission lines.

It is not difficult to integrate both ECL and CMOS
logic on a chip with negligible noise coupling. This is
mainly due to the absence of noisy high-drive output
devices between the device's CMOS sections and the

vcca TTL OUTPUT

QOUT

ECLOUTPUT

_______ Out

Figure 3. I/O Architectures

3-9

~
o

WE --f> ,-
ODD

r--I Dl In
In

READ ' __ _ Addr ___ J
I Sh1ft

RegIster
I

djD2 ~,-
i _ SEL u

1:

NUX

~ D to
~. I In

= W ~ D2 0
~ 0 I~
~ SEL u
~ 1:
~ NUX
6
~
~
~
~
~
~

< E
~
I:Il

~
§ ShIft

RegIster

tn
tn

lJJ
o I--­o

SEL u
1:

MUX

I..

Clock 1 (180 MHz)

- Clock 2 I ,
,..

UjA N
N _ V

- WE ~
o

~D1n >-u

RAM

L-IA N
N _ V

.. I IWE ~
o

~D1n ~
RAM

f-----,

......

A ~

nWf~1--"
o

D1n ~
RAM

Set/Reset
Latch f

~ • 360 MHz I -- I
D, :g

tu

gt-

NUX

- ,

u
1:

L-f-I DI ~

r

Btl08
~ DAC

l&J

rHD2 ~ J.4
I USEL ~

MUX
EVEN
READ --..J

Addr lJJ
o
o J---l
u
1:

MI

If')
If')

ua

y
__ ~===J=X ~II~ __ 1 I Rr' ~ I ?---R/W

L........f DI

I .L.---J- D2
L-ISEL

" ~~ §fjl
~
'"

e=
~
~ o
00
00
~
;>
~
I:Il

1-04 e
~
111

~
('D

==
~

I

"'C
('D
111
~
111

i
n
('D

00
t..od
I:Il

"'" ('D

e
t"I:l

Samp Ie Clock

Waveform Addresses

J
Waveform Data

• I
lPF I I [b]

r- -

~~ b L~>outPut

Figure 5. Waveform Synthesis System

ECL I/Os. Interconnect capacitance between devicell on
the chip is very low, and drive requirements are minimal.
Consequently, noise is not generated at the high levels en­
countered between discrete devices installed on a board.
The noise magnitude on the chip Vee line is approximate­
ly 20 m V worst case, rather than the 800 m V encountered
in typical high-speed, board-level CMOS/TTL designs.
With a low overall noise level and internal supply decou­
pIing, both the ECL and CMOS sections of Cypress
devices run successfully on the same power pin.

Cypress employs a unique configuration to connect
the device ECL circuit ground (Vee) and ECL output
ground (V cca). This configuration further reduces noise
coupling between the internal CMOS circuitry and the
ECL output drivers. The configuration also inhibits output
oscillation in response to slow or noisy input signals.

BiCMOS ECL and TTL SRAM Applications
Applications for ECL and TTL SRAMs include

graphics and image processing, waveform generation via
direct digital synthesis (DDS), and fast ~ systems.

In video graphics, ECL memory stores color image
information. In waveform. generation and DDS, ECL
memory stores digital representations of analog
waveforms before they are fed to a digital-to-analog con­
verter (DAC).

In a typical raster-graphics video system (Figure 4),
3.5-ns CYlOOE422 ECL SRAMs are used as color look­
up tables (LUTs) to drive a Brooktree BTl08 video DAC.
The SRAMs are interleaved to achieve the necessary
speed and to supply the 8-bit words required for 3D solids
shading. Motorola MClOOE155s, which have clock-to­
output delays of 1 ns, are used as 2: 1 mux latches.

3-11

In operation, read and write addresses and data are
fed to the SRAMs from the octal 2: 1 multiplexer/latches,
and the color pixel data from the memories is sent to the
DAC. This path is one of three in which the DAC drives
the intensity of the display's red, green, or blue (RGB)
electron gun drivers. This system's 360-MHz speeds are
sufficient to drive 2K x 2K displays.

The waveform synthesis system in Figure 5 can be
controlled by either a microprocessor or a numerically
controlled oscillator (NCO). Another part of the system
writes waveform data to memory. Then the processor
commands an address sequencer, whose output controls
the memory, and the data read out is fed to the DAC,
which outputs an analog waveform. This type of fast digi­
tal waveform synthesis finds many applications in satellite
communications and video and test equipment.

The 8-, 10-, and 12-ns speeds of the TTL 16K x 4
CY7B 166 SRAM have improved the throughput of such
systems. The system could also use ECL BiCMOS for in­
creased speed, but the resolution of available high-speed
ECL DACs is not as high as available TTL DACs.

For analog-to-digital applications, ECL and TIL
SRAMs are used with high-speed flash ND converters.
Some of converters have ECL outputs, whose clock rates
range from 20 MHz to 1 GHz. Other converters have TTL
outputs as fast as 25 MHz. In applications such as HDTV,
phased-array radar, digital oscilloscopes, and single-event
digitizers, the SRAMs create high-speed specialty
memories such as self-timed SRAM, pipelined SRAM,
and interleaved SRAM.

Further applications for ECL and TTL SRAMs are
found in high-performance workstations, file servers, and
high-end embedded controllers. Figure 6 shows an ex­
ample based on Mips Computer's lOOK ECL version of a

~ BiCMOS SRAMs Improve High-Performance Systems
. ~~~~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~==~~~

/' -
Instruction BUS Control

~r ,
Y Bus

....... Instruction
FloatIng ~ Floating

....... Point Point
jJII"""" Cache -- Controller ~ MultIplier

If)
:l

X Bus , , 10
If)
If)
4)

• l L.
U
U
-<

CPU ~ Data System Bus If)
:::J Cache Controller m

~
E
!!
If)

III

j ~ J ..

Secondary -I...a.... Cache -
Data Bus

.'-'

Figure 6. RISe System

commercial RISC microprocessor, which has a clock fre­
quency of 67 MHz and is rated in a general-purpose ap­
plication mix at 55 MIPS. The cache and TAG blocks are
implemented using ECL BiCMOS SRAMs.

The system uses standard memories to provide two
levels of data cache. The primary caches include 64
Kbytes of storage for instructions and 16 Kbytes for data,
using the fastest 64-Kbit, 8-ns, CY100E494 SRAMs.
Cache control is part of the integer unit. With primary 8-
ns caching, the R6000 CPU can fetch both an instruction
and a data word every cycle, instead of having to wait
several cycles for main memory to keep pace. The. slower
512-KByte secondary cache is made up of 20-ns devices.

A general-purpose cache-TAG implementation using
standard EeL memories (Figure 7) uses two Cypress 1K
x 4 CY100E474 ECL SRAMs (3.5 ns max access time).
Two Motorola MC100E107 quint XORlXNOR gates (800
ps max prop delay D to F) perform the compare function.
The speed of the SRAMs and logic correspond to a 4.5 ns
address to match comparison time. Note that the outputs
of ECL PLDs or logic are wire ORed to save one addi­
tional component.

Alternatively, one CY100E302 (16P4) ECL PLD
could be programmed to implement the 8-bit compare

3-12

function in approximately 3 ns and save board space.
Other memory sizes (e.g., 16K x 4) could be used to in­
crease depth, and word width could be optimized by cas­
cading devices.

Figure 8 shows the critical path for a TTL 80386-
based cache system with a two-phase clock. The path con­
sists of a DRAM controller implemented in a gate array,
address generation configured in PLDs, cache SRAM, and
cache TAG. Table 2 shows how the speed of cache tag
and cache RAM affects path speeds.

Table 2. Path Speeds for 80386 Cache

Bus Cycle Time (MHz)

Device 33 40 50

Gate array 17.5 15.0 12.0

TILPLDs 7.5 7.0 5.0

Cache RAM enable 15.0 12.0 10.0

Cache TAG 20.0 15.0 13.0

Total 60.0 50.0 40.0

+ 2-phase clock 30.0 25.0 20.0

~
=- ~~RESS BiCMOS SRAMs Improve High-Performance Systems
~~~COID~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

As bus cycle times decrease because of faster ~ 
clocks, the speed of the cache TAG and cache RAM be­
come very important in achieving path speeds. For today's 
TIL ~s, BiCMOS TTL SRAM implementations reduce 
access times to meet cycle time requirements. An example 
is shown in using the Cypress CY7B160 16K X 4 TIL 

Ul 

as 
~ 
E 
r. 
c: IK x 4 
iii 
~ 
::J 
0. 
u 

~ 
u 

~ 
'<I' ,... 
'<I' 
w 

IK x 4 ~ ... 
0 
0 

;: 
U 

:::l 
Q. 

U 4 
E 

~ 

BiCMOS SRAM. It is an 8-, 10-, and 12-ns device with 
internal decoding to enable easy memory expansion 
without sacrificing speed. Figure 9 shows how to use four 
devices to create an 8-, 10-, or 12-ns 64K X 4 memory 
and a 32K X 8 memory. Additional configurations are 
also easily implemented using no external decoding. 

1----------, 
I 
I 
I 

Wire 
I OR 
1- _.., 
II 

II I 
I L __ 

I 

I 
I I 
L _________ I 

Implement using 
two MCI00l10El07 
x5 XOR/XNOR gates 
or one Cypress 
CY 1 0011 OE302 PLD) 

Figure 7. General.Purpose Cache·TAG Implementation 

[ache 
RAM 

, . 
PlD 

L DRAMs I 
80386 

~ 
Gate Array RowlColumn 

2-Phase DRAM Controller ...... Address A .. 
Clock strobe l 

M 

~A 
Cache 

Tag 

Figure 8. 80386 Cache System Critical Path 

3-13 



~ 
~ 

32K x 8 RAM CONFIGURED WITH FOUR CY78160s 
~ ___ A_,~.rili---;-, 

. GJilljrn ~ 1 
V~CE4 : i 
VCC:S~_L~J 1/00-1/03 

Ao-A" 

CY7Bl60A 

D I 

Ii 
f! 
R I 

Ao-A" 

CE tlT CY7Bl60B 

Ao -A'3 AlLJrn D I 1/00-1/0, 
Au GMjrn ! i 

VCC:CE4 :: 
VCClCE5 R! 
--., .... _--......... 

AO-A 13 

tlT CY7Bl60C 

Glillfrn---i-j 1/0.-1/0, 
G~ rn ~ i TRUTH TABU 

L-__ ._~A~"~:CE4 fl 
VCC: CE5 .: • 14 ABC --. - _______ J 1/°

0
-1/°

3 

A.-A' 3 
o 0 

m CY7Bl60D 0 0 

D 

o 

64K X 4 RAM CONFIGURED WITH FOUR CY78160s 
All EE2---;T 
A rn ~! 
V~ CE4 : i 
V.Q;; ~~~ ___ ~J 1/00-1/03 I---

I"- A,-A .3 

~ m CY7Dl60A 

AlSlrn D i 
~rn ~ 

- Au CE4 : I 
1/°0-1/°3 V~CE5 • I p..-________ J 

~~ A,-A'3 

CE 
tlT CY7Bl60B 

A,-A" 

G~:-fl 
I/O.-I/Ol 

A,. 

A •• ICE4 : i 
C I A •• v~ ~~_~ __ ~.l 1/°0-1/°3 ~ 

"'~ A,-A .3 

~ m CY7BI60C TRUTH TABLE Cl!!!m'-iD 1A15 AI4 A 

GJill rn ~ i 
0 0 1 t\tt CE4 : i 

hIS CE5 .: 
0 I 0 _________ 1 I/OO-I/03i"'--

- A.-'" I 1 0 0 

Wm CY7Bl60D 111 0 

B C 

0 0 

0 

0 1 

0 0 

Figure 9. Example Memory Configurations 

D 

0 

0 

0 

1 

, 
,~~ 
.~~ 

n 
~ 

t= ... 
('i 

~ 
0 
f:I') 

f:I') 

~ 
> 
~ 
rI.l 
~ a 

"'CS 
"'1 
0 
-< 
f't) 

== ... 
(J'C:I 

=-• 
~ 
f't) 
"'1 

0' 
"'1 a 
~ = n 
t'D 
f:I') 
~ 
rI.l 
~ 
f't) a 
rI.l 



==-~ ~ .iii CYPRESS 
, SEMICONDUCTOR 

PLCC and CLCC Packaging 
for 'High-Speed Parts 

The semiconductor industry is constantly searching 
for package options that enhance the capabilities of high­
performance devices. For fast device performance with 
minimal ground bounce, electrical characteristics must in­
clude low inductance and capacitance from external pin to 
die bond-wire pad. A package should also furnish good 
thermal characteristics for reliability overextended 
temperature ranges. 

Other major properties sought after are low cost, as 
well as standardized outline/pin configurations for com­
patibility, ease of manufacturing, and handling throughput. 
The package must also work with surface mount technol­
ogy and have a small footprint to save board space. 

The package that best meets all these requirements is 
the PLCC (plastic leaded chip carrier). In the past, utiliza­
tion of PLCCs was not practical for high-power, bipolar 
devices. However, the advent of low-power bipolar and 
BiCMOS ECL-compatible SRAMs and PLDs now 
provides the opportunity for high-volume usage. As 
manufacturers switch from bipol.ar to BiCMOS, the lower 
power dissipation of high-density ECL SRAMs and com­
plex PLDs promise to give PLCC packages a bright fu­
ture. For military applications and extended temperature 
environments or for devices with higher power dissipa­
tion, you can substitute the CLCC (ceramic leaded chip 
carrier). 

The PLCC has many desirable qualities: 
Suitable for surface mounting with J-type leads 
Small footprint to save board space 
Low inductance and capacitance for high speed with 
little ground-bounce 
Good thermal characteristics for reliability over 
temperature range 
Ease of manufacturing and handling for production 
throughput 
Low cost compared to CERDIP, flatpack, LCC 
Standard package outline and pin-configuration com­
patibility 
The PLCC's J-type surface-mount leads have the ad­

vantage over gull-wing leads, which are susceptible to 

fatigue. J leads also enhance handling ease in test and 
burn-in fixtures. The PLCC's I-pF capacitance compares 
favorably with the 3 and 6 pF for plastic DIPs and 
CERDIPs, and inductance is equally impressive: 2 nH 
versus 6 and 11 nH for plastic DIP and CERDIP. Unlike 
flatpacks, PLCCs are available in standard tooling. PLCCs 
come in a variety of pin configurations, from 18 to over 
200 pins, versus a maximum of 40 pins for plastic DIPs. 

The Ceramic Leaded Chip Carrier 
For high-temperature environments and high-power 

devices, you can make use of the ceramic leaded chip car­
rier (CLCC, Y package), which can also be surface 
mounted. The Y package has the same footprint and J 
leads as the PLCC (Figure 1) and works well for the 
faster PLDs and SRAMs. 

If you do not know system temperature in the early 
stages of a design, you can substitute the Y package for 
the PLCC and vice versa, so long as the device's die junc­
tion temperature does not exceed IS0°C. The Y package is 
slightly more expensive than the PLCC, but with a ther-

. mal resistance from junction to ambient (8JA) of 3SoC/W 
at SOO LFPM, the Y package can dissipate heat more effi­
ciently. 

3-15 

Reliability 

Cypress's bipolar and BiCMOS products in PLCC 
and CLCC packages go through extensive burn-in and 
testing at elevated temperature to guarantee package in­
tegrity. Cypress strongly recommends 500-LFPM system 
forced air flow but guarantees reliability in systems with 
or without the flow if the ambient air does not cause the 
junction temperature (TJ) to exceed IS0'C. 

The PLCC's 8JA is approximately 4SoCIW. The 
SRAMs have power dissipation that ranges from 780 m W 
max for the CYlO0E422L-S up to 1097 mW max for the 
CYI0E474L-S. This dissipation results in junction 
temperature rises from 3S to 49°C. The 16P4-type PLD 
(CYl00E302L-6) has a temperature rise of 39°C, and the 



,LTd 
o.~ I ~ 

28-uad Plastic uaded Chip Carrier J64 

DIMENSIONS IN INCHES 

O.Oo&S 

RIGHT SlOE 
VIet( 

"'ilO56 

~=}!1'0.'3 
0.021 r---..... _ 

~ 
0.430 

.---J 
~ 

0.020 MIN. 

0090 

"O':'i'2O ~ 
0.180 

28-Pin Ceramic Leaded Chip Carrier Y64 

TOPV1EW 

DIMENSIONS IN INCHES 
MAX. 
'MiN. 

DETAIl. 0F>-

Figure 1. Diagrams of 28-Lead Chip Carriers 

3-16· 



~ 

~~~OID~~~~~~~~~~~~~~~~~~~P~L~C~C~a~n~d~C~L~C~C~P~a~c~k~a~g~in~g 

16P8-type PLD (CYlOE301L-6) has a temperature rise of
47°C. The CLCC package's aJA equals 3YC/W for
temperature rises of up to SSoC (CYlOE474-3).

Finding Chip-Level Junction Temperature

The following relationship determines chip-level
junction temperature for the PLCC package:
TJ = ~T + TA
where
~T= Pn x aJA
and
aJA = aJC + acs + aSA

To calculate worst case junction temperature (TJ) use
maximum supply VEE and lEE for power dissipation and
maximum TA for the temperature range of interest. For
the 10KllOKH CYlOE301L in a PLCC, for example,
device lEE = 170 rnA max and VEE = S.46V max for Pn =
928 mW. Add IS mW per output for a total output Pn =
120 mW. Therefore, the total Po = 1048 mW.

For a PLCC, aJA = 4SoC/W at SOO LFPM, and aJA =
64°C/W for still air.

For a CLCC, aJA = 3SoC/W at SOO LFPM, and aJA
= S4°C/W for still air.

Because
TJ = total Po x aJA + TA
and
TA = 7SoC worst-case commercial temperature range, for
the PLCC:
TJ = (1.048 W)(4SoC/W) + 75°C = 122°C at 500 LFPM
TJ = (1.048 W)(64°C/W) + 75°C = 142°C in still air

This calculation is for absolute worst-case data sheet
conditions. The bum-in temperature used by Cypress (TJ)
is much higher than the device will ever see in a system.
Note that rrwst systems will not run at worst case due to
guard-banding. For this reason, use VEENOM = S.2V or
4.SV and IEENOM = (IEEMAX)(8S%) for nominal-condition
calculations.

Real-World Values
Obviously, most systems do not operate at the worst­

case conditions. Therefore, Figures 2 through 5 show
graphs over different operating conditions to determine
failures in time (FITs) and mean time between failure
(MTBF) for a typical system or in a worst-case scenario.

3-17

The graphs are based on a linear method of interpret­
ing the failures observed at bum-in and indicate the long­
term reliability of Cypress devices. You can use the
graphs to determine MTBF and FITs for any Cypress
device in any package after calculating the appropriate
~T.

The X-axis on the graphs indicates junction tempera­
ture. These values are determined by adding the L\ T to
ambient temperature, as described earlier. As an example,
Figures 2 and 3 note the following critical points for a
CY10E301L ECL PLD under three different operating
conditions:

Point A-10Kl10KH typical data sheet conditions:
2SoC ambient, nominal VEE and lEE, son loads, SOO
LFPM air flow, TJ = 64"C, FITs = 7, MTBF =

18,000 yrs.
Point B -10Kl10KH typical operating conditions:
5SoC ambient, nominal VEE and lEE, son loads, SOO
LFPM air flow, TJ = 94°C, FITs = 45, MTBF = 2800
yrs.
Point C - 10KlKH absolute worst-case conditions:
7SoC ambient, S.46 V max and 170 rnA max, son
loads, 500 LFPM air flow, TJ = 122°C, FITs = 22S,
MTBF = S2S yrs.
The activation energy used for the MTBF and FITs

information is 0.7 eV. This is an average number for die­
surface-related defects, such as metal and oxide pinholes,
etc., but is very conservative for silicon defects or
mechanical interfaces to packages. The number is usually
1.0 eV. A small change here results in a significant
change in MTBF or FITs. A change to 0.8 eV equates to a
33% reduction in FITs rate or a SO% increase in MTBF.

The Packages of Choice
The PLCC and CLCC are accepted as the packages

of choice by many manufacturers of high-speed devices.
Motorola Semiconductor uses the PLCC as the only pack­
age for the company's very high speed ECLINPS ECL
logic family, which stands for "ECL in picoseconds" and
is pronounced "eclipse." This family has set-up times and
propagation delays in the sub-nanosecond range, with
power dissipation of over 1W. Fully compatible with
Cypress SRAMs and PLDs, the ECLINPS family includes
many 10K, 10KH, and lOOK standard logic gates, build­
ing blocks, and transceivers.

~RESS PLCC and CLCC Packaging
~, SEMICOIDUCTOR ============================;;;;;;;;;;;;;;;;;;;;

ATs

ECLPLD FITs vs. Tj

----------- ----------- ----------- ------------------------ ----------- ----------- ----------- -----------

1 +-------r-----~r_--~_+------~------4_------+_----~-------+------~

60

MmF
!'years)

10 80 90 100 110 120

Junction T etql (deg C)

Figure 2. Failures in Time vs Junction Temperature

Eel PlD MTBF vs. Tj

130 140 150

100 +------;------;------4------~----~r_----~------~----~----__1

60 70 80 90 100 110 120 130 140 150

Ti,Junction T eIq) (deg C)

Figure 3. Mean Time Between Failures vs Junction Temp.

3-18

RTs

1000

MTBF
(Years)

60

100000

10000

1000

Eel SRAM FITs vs. Tj

70 80 90 100 110 120 130 140 150

Ti.Junction T eIq) (deg q
Figure 4. Failures in Time vs Junction Temperature

Eel SRAM MTBF vs. Tj

----~;-------- ----------- ----------- ----------- ----------- ----------- ----------- -----------

----------- ----:~ ----------- ----------- ----------- ----------- ----------- ----------- -----------

111111111~111~·1~1~~~1 ~~~ ::mll11.1 ~11111·~~11 :1:::~111111:::!1111.:
r---

100 +-------+-------~----~~-----4-------+------_r------_r------~----~

50 70 80 90 100 110 120 130 140 150

Ti. Junction T eIq) (deg C)

Figure 5. Mean Time Between Failure vs Junction Temp.

3-19

CYPRESS
SEMICONDUCTOR

A New Generation of BiCMOS
High-Speed TTL SRAMs

This application note profiles the Cypress CY7B166
family of TTL-I/O 64K SRAMs, which are ushering-in a
new era of high-performance memory devices. These are
the world's fastest BiCMOS RAMs, with address access
times as low as 8 ns.' Arranged in 16Kx4 and 8Kx8 ar­
chitectures, the.pevices are functionally equivalent to their
industry-standatd, TTL-compatible, CMOS counterparts;
there is no difference in 110 logic-level minimax
specifications. In addition, on-chip features provide supe-

c: c:
UJ UJ
LL 0
LL 0
::::l ()

____ ~~~ m ~I ___ "~

~ uJ
a.. c: z a..
~ X

c:
UJ
o
o

l1li-----l1li ()

UJ
o
X

CONTROL LOGIC

rior ground-bounce characteristics and faster propagation
delays than is possible with rail-to-rail output swings.

BiCMOS Technology
BiCMOS technology employs CMOS inputs for com­

patibility with existing products and bipolar on-chip bus
interconnects and sense amplifiers to speed the internal
access timing. The resulting throughput improvement al­
lows more time for the outputs to slew load capacitance.

_______) BIPOLAR

CMOS

_BiCMOS

c:
UJ
LL
LL
::J

f--__ m
I-:
::::l a..
I-:
::::l o

Figure 1. 64K TTL SRAM Circuit Technology

3-20

~

~~~OIDucr~~~~~~~~~~~~~~B~I~·C~~~O~S~H~i~gh~-~S~p~e~ed~T~T~L~S~R~A~~~s 

CDJT 

TTL CMOS INPUT TTL BiCMOS OUTPUT 

Figure 2. CY7C166C BiCMOS Family 1/0 Architecture 

Further, BiCMOS uses both CMOS and bipolar transistors 
on the outputs to optimize drive capability. 

Figure 1 shows how the parts of the memories are 
partitioned by technology. On the outputs, two bipolar 
transistors drop two Vbe levels (approximately 1.6 V) to 
reduce the High-level output swing. One device is tied 
base to collector as a diode, and the other is the High­
level drive transistor. Both transistors cause the output to 
conform to standard TIL logic levels (not CMOS rail-to­
rail). This output structure appears in Figure 2. The diode 
is the bipolar transistor Q3, and Q2 is the High-level drive 
transistor. M18 is an output Low-level pull-down MOS­
FET (n-type). Keeping the output from swinging to the 
power supply rail saves time when changing states, as 
shown in Figure 3. 

Figure 2 also shows the SRAM's input structure. The 
CMOS devices are M2 and M4. The input structure in­
cludes bipolar-type input clamping diodes, which act as 
ESD protection devices and meet MIL-STD-883C Method 
3015 static discharge voltages of 2001V. The inputs ad­
here to standard CMOS specifications. The outputs in­
clude the same diodes and are an improvement over 
CMOS-type diodes. The diodes also clamp transmission­
line reflections in mis-matched board traces. 

Compatibility and Improvements 
To reduce ground-bounce noise problems associated 

with full-swing, high-speed CMOS devices-and TIL 
parts to a lesser degree-the CY7B 166 SRAMs include 
an internal supply-bypass capacitor between the power 
supply pin and the ground pin. In parallel with this 
capacitor, an inductor of equal value to package lead in­
ductance cuts in half the overall inductance associated 
with output-swing ground bounce. Both the capacitor and 
inductor decreases the magnitude of the bounce on the 
output-logic swing's falling edge. 

In conclusion, to illustrate BiCMOS compatibility 
and improvements, Figure 4 shows I/O waveforms for 
BiCMOS and CMOS devices. These waveforms show that 
no compatibility problems arise when substituting 
BiCMOS-type TTL devices for CMOS parts in a new or 
existing TTL-I/O system. On the contrary, upgrading from 
a CMOS 64K TTL-I/O SRAM to Cypress' BiCMOS 
device family increases speed and noise immunity and 
decreases noise generation, for an overall system 
improvement. 

3.8V S.OV dv 

C110S __ ~.l5~V __ ~_----------~~­

SLEW RATE = dv/dt 
RISE/FALL TIME = dt LOGIC SWING = dv 
THEREFORE TIME IS SAVED BECAUSE THE 

LOGIC SWINGS ARE SMALLER 

Figure 3. Speed Increase from Reduced Logic Swing 

3-21 



3X Attenuation 

1/01 
100.0 

10 pF 
son 
scop 

-=-

TEST SETUP 

ADDR 

DATA 

7~8 ns 15 ns 

TTL BiCMOS OUTPUT TIL CMOS OUTPUT 
Figure 4. CY7B166 BiCMOS Output vs 64K TTL CMOS Output 

3-22 



~ = CYPRESS 
~., SEMICONDUCTOR 

Access Time vs Load Capacitance 
for High-Speed BiCMOS TTL SRAMs 

This application note provides a technique for analyz­
ing a system's load capacitance and shows how to deter­
mine access time (Taa) degradation. You can also deter­
mine other output-related specifications such as tDOE 
using this method. 

The BiCMOS process has made available a new 
generation of 8-, 10-, and 12-ns 'J'TL-I10-compatible 
SRAMs. In the past, the most significant speed barrier in 
SRAMs was the propagation delay through the device. 
This delay is now becoming quite small. Consequently, 
the time the device takes to slew the output load 
capacitance is a substantial portion of overall delay and 
must be understood to determine optimum system timing. 
The techniques presented here can thus help you maxi­
mize your system's throughput. 

Although many TTL and CMOS components are 
specified for 30- to 50-pF drive requirements, the actual 
characteristics of modern high-speed systems are quite 
different. In a system environment using good transmis­
sion lines and termination techniques, the drive require­
ment depends on the characteristics and. length of the 
transmission lines, the number of succeeding device pack­
ages, and where devices are physically distributed along 
the line. For testing purposes, however, you can ap­
proximate the effective capacitance seen at the output of 
high-speed SRAMs as a lumped capacitance connected 
directly to the output. This lumped value is from 10 to 30 
pF in most board-level systems. 

The graph in Figure 1 represents the additional ac­
cess time requirements for various lumped-output-

164K TIL SiGMOS SRAM I 
DELTA taa 

(ns) 

0.8 -------------------
0.7 -------------------
0.6 - - - - - - - - - - - - - - - - - - -
0.5 -------------------
0.4 -------------------
0.3 - - - - - - - - - - - - - - - - - - -
0.2 - - - - - - - - - - - - - - - - - - -
0.1 -------------------o ~~~~~~~~~~~~~~++~r+~-r~~~;_~~_r++~~~-r~ 

-0 1 - - - - -. . - - - - - - - - - - . - - . - - - - - - - - - - . - - - -.- - - - - - . - - - - . - - - - -
-0:2 0 - - - - - .5. - - - - - '0 - - - - -'5. - - - - .20- - - - - 25- - - - - 30 - - - - -35 - - - - _40. - - - - .45- - - - - 50 
-0.3 - - - - - - - CL Total Load Capacitance ( pF ) 

Jj ~~~~~~~~;;~~~~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~~~~~~~l~~~~~~l~~~~~~ 
-0.9 -- --------------- ------ ------ ------------ ------ ------

-1 ----------------- ------ ------ ------------ ------ ------
-1.1 ------------------- ------ ------ ------------ ------ ------

Figure 1. Normalized DELTA T aa vs Load Capacitance 

3-23 



~~ Access Time vs Load Capacitance for BiCMOS SRAMs 
~ ~~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

31 AUt'Du8iion 

]/01 1001'\ 

lOOp, Mil 

SCOPE 

TEST SETUP 

Figure 2. Test Load to Determine T aa vs CL 

capacitance values. This graph applies to the CY7Bl60, 
CY7B161, CY7B162, CY7Bl64, CY7B166, CY7B185, 
and CY7B186. Data is shown for the falling edge only 
because this edge is eff~ted most by load capacitance. 
The graph is normalized to 20 pF and can be used for all 
speed grades. For the -8 devices with no capacitive load, 
for example, the Taa is 6.9; at 20 pF it is 8 ns; and at 50 
pF it is 8.8 ns. 

The setup· used to get the values in Figure 1 ap­
proximates son terminated transmission lines and is 
shown in Figure 2. To avoid loading the output, a lOOn 
resistor is put in series with the termination resistor. This 
adds a 3X attenuation factor but does not alter the results. 

Using the following measurement techniques and a 
reasonable number of device loads, you can derive any 
system's characteristic capacitance. This allows load ad­
justment to optimize time degradation to keep address ac­
cess to a minimum. You can also use this technique to 
determine other specifications that depend on output rise 
and fall time, such as tDOE. 

Measuring Load Capacitance 
Now that the capacitance's effect on the device speed 

is known, the 20-pF approximation can be used to deter­
mine Taa. This requires a method for measuring the sys­
tem load capacitance. A simple method is to use time­
domain reflectometry (1DR), which determines 
capacitance on a transmission line by measuring the pulse 
reflection the capacitance causes. 

The TOR test system (Figure 3) consists of a fast 
pulse generator and oscilloscope with son terminated in­
puts. The oscilloscope's channel A measures the reflected 
voltages, and channel B measures the setup of rise time, 
logic swing, and pulse width. A single device or a critical 

Power Djvider (optional) 

Pulse Generator 
HP 80B2A or 
Equivalent 

GND 

Test 
Pin 

! 

Cable B 
Zo = non 

DEV)CE 

Cable A 

CabJe C 

Dynamjc 
Test 
Board 

Figure 3. Test Setup for TDR Capacitance Measurement 

3-24 

Channel A 

D1G1TIZ1NG 
OSCII.J..OSCOPE 
HP54120 OR 
EQUIVALENT 

Channel B 



~RESS Access Time vs Load Capacitance for BiCMOS SRAMs 
~~ ~COND~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Pulse Width DO ns 

,-------------..,..--+----- Vih +3.0 V 
90% 

50% 

10% 
'------ViI +OAV 

tr = 2 ns __ ----34 

Figure 4. Setup Pulse on Channel B (nothing in the path) 

path with various loads can be measured to determine 
dynamic capacitive loading. 

Note that although the length of cables A and C is 
not critical to the measurement, the time it takes the pulse 
to traverse cable B must be much greater than the pulse's 
maximum rise time. This ensures that reflections are 
measured after the pulse has stabilized and not during a 
transition. Also note that the test point is any input or out­
put to a PCB transmission line or device and that outputs 
must be forced to a Low state to be measured. 

Figure 4 shows the setup pulse on channel B with no 
device or board in the path. The setup waveform cor­
responds to the SRAM's output characteristics. Figure 5 
shows an example reflection, indicating the /). V reflected 
voltage measurement and position on cable B. 

You can determine capacitance values from the test 
data using the following equation: 
CD= 4(tr)(/).V) 

ZNl Eq.1 

100% Zone 

t 

2X Length 
of Cable B 

where /). V = Maximum reflected voltage at channel A, tr = 
Rise time of incident pulse, Zo = 50n, VI = Logic swing 
of incident pulse 

The equation includes the 2X attenuation factor intro­
duced by the test circuit. 

Measuring Capacitance Values Exactly 
The line capacitance along with the load capacitance 

found using Equation 1 determine the total capacitance 
and time delay added to the access time. Two ways to 
determine the additional delay are to calculate the extra 
time and add the result to the no-load access time or cal­
culate the load capacitance and use the graph in Figure 1. 

These approximations for total capacitance are ade­
quate in most situations, but you can also measure actual 
line and load capacitance using a high-frequency LCR 
meter. Usually this equipment is unavailable and/or ex­
pensive due to the frequency range needed to get an ac­
curate measurement. 

6V = Ma.ximum 
Reflected 
Voltage 

Figure 5. DELTA V Reflected Voltage Measurement 

3-25 



~""'" Access Time vs Load Capacitance for BiCMOSSRAMs 
~~COID~OR ~~~~~~~~====~==============~~==~~~~~~~~~~~~~ 

Another approach is to determine the transmission 
line's capacitance per foot by analyzing the line's charac­
teristics based on the type of line and board construction. 
A typical 50n microstrip line has approximately 35 pF/ft. 
(3 pF/in.) based on the equation: 
Co 1.017 x 1O-9(0.45er+ 0.67)(·5) 

ZOpFITt. 
Eq.2 

where Zo = 50n and er = 3 for G-10 fiberglass-epoxy 
PCBs 

The distributed load and line capacitance interact for 
an overall transmission-line propagation delay equivalent 
to: 

{ C J(0.5) 
tpd = 1.0 17 (er) (0.5'L 1 + C~ nVft. Eq.3 

where CD = Distributed capacitance 
This line length and load-dependent delay can be 

added to the no-load (0 pF) access time from Figure 1 to 
derive system timing. For example, for a 3-in. micros trip 
transmission line (Co = 35 pF/ft.) with a 12-ns device 
driving one load (5 pF), the total delay is: 
taa @20 pF- 1.1 ns = 12ns - 1.1ns 

~ 10.9ns 
= No-load access time 

3-26 

!pd ~ 1.0 17 (3)(O.'{ 1 + ;5]""5) "-'ft 

- 1 88 n~ 3 in. 
-. ftX 12 in. 

=0.47 ns 
taa total = 0.47 ns + 10.9 ns 

= 11.4 ns 
Another way to determine delay is from the overall 

load capacitance, including line and distributed load: 
J CD)(O.S) 

Ctotal = C~ 1 + Co Eq. 4 

where Ctotal = Total line capacitance 
You can use Ctotal to determine the additional access 

time from the graph in Figure 1. For example, for a 3-in. 
50n micros trip transmission line (Co = 35 pF/ft.) driving 
one load (CD = 5 pF/ft.), the total capacitance is: 

( 
5 )(0.5) 3 in. 

Ctotal = 35 pF!ft. 1 + 35 x 12 in. 

= 9.35 pF 
Using the graph, the access time decreases by 0.41 

ns, for an access time of 11.6 ns. If the line is 6 in. long 
with two loads, the total capacitance is' 19.8 pF, for an 
increased access time of 11.95 its. Using Equatibn 3 gives 
11.4 ns and 11.9 ns for the two examples. 



CE 

• 

~~.::z 
~ = CYPRESS 

, SEMICONDUCTOR 

Combining SRAMs 
Without an External Decoder 

32K x 8 RAM CONFIGURED WITH FOUR CYl8160s 

CEI CY7B160B 

AO-AI3 

CEI CY7BI6OC 

GNDr~-D 
GNnl~ ~ I 

L---IH-"A:l.:...;14:..., CE4 ~: 
vee C~~J 14 ABC D 

o 1 0 1 0 

CEI CY7B160D 1 0 1 0 1 

Figure 1. 32 Kbit x 8 

3-27 

An internal decoder with four chip-enable in­
puts helps designers retain the 8/1O-ns access times 
of the CY7B160 16K x 4 BiCMOS SRAM in mul­
tiple-chip memory configurations. Without this 
capability, denser memory arrays require external 
logic, which adds 3 or more nanoseconds to the 
access time. This application note describes how to 
use the 16K x 4 SRAM to create 64K x 4, 32K x 
8, or 64K x 8 memories without an external 
decoder. 

In the x4 configuration, only one Cypress 
CY7B160 is active at a time. In the x8 configura­
tions, two chips are active at once. Devices that are 
deselected power-down to less than 40 rnA of 
standby current from a maximum operating current 
of 120 rnA. 

Figures 1, 2, and 3 show how two additional 
address lines, connected to the memories' chip­
enable (CE) inputs, permit multiple-SRAM con­
figurations without using an external decoder. You 
can use a fifth chip-enable input to power-down all 
devices. 

The decoder works without external logic be­
cause two of the CE inputs (/CE2 and ICE3) are 
active Low, and two (CE4 and CES) are active 
High. When any CE pin is pulled out of its active 
state, the chip is deselected. Any CE pin can 
deselect and power-down the. device independently 
of the other CE pins. 

1991 Electronic Design. Reprinted by per­
mission. 



A,,~ 

~eEIT ~I 
~CE4 gl 

,1100-110" 
'(tx: Q;LU 1/°0-1/°3 

- A.-A" 

~ tE" CY7B160A 

f-
~~~ ~I 
~CE4 ~I
V..cc1CE5 = I 1/°0-1/°3

1/'1.-110"

r-" _A.-A 13

CE tE" .CY7B160B

TRU'I1:I TABLE

At6 ~14 A B C D E F G H

A.-A,. A"j-~
A .. A,~I~ E' A,& V.~CE4 ~ I

vee CE5 R I 1/°0-1/°3
,110,-110,

'-=-= ---'

i-

0 0 t 0 t 0 0 0 0 0

0 t 0 t 0 t 0 0 0 0

1 0 0 0 0 0 1 0 1 0

1 t 0 0 0 0 0 1 0 t

~ A.-A 13

~ "CEI CY'1B16OC

GNDr~ .'
~ S~~I

A,. CE. g I
vee CE5 = I 110,110, => __ .J

1/%-1/%

~ Ao-A'3
1/0.-1/0,

~ tE" CY7Bl60D

Au-~ 0

~§~ ~I
V~CE4 g I

~ ~g;~!J 1/°0-1/°3
,!tn.-I/O,

- A.-A
'3

....ll tE" CY'1B160E

GNDr~
fl GNnl~

A;;1CE4 & I
i!

10- -!it CEc:. 1/°0-1/°3 1/01)-110,
.J - Ao-A'3

~ tE" CY7B160F

A rm-
GND1Cil3 i I
~CE'

g,

AI6 CE5 !I
1/°0-1/°3 II/O.-J/O,

-' -
~ A.-A,.

~ m- CY'1B160G

~:,~ i'
A;;iCE4 gl

- ~ CEo :J
1/%-1/°3 1/(11"1/0,

~ A.-A '3

'-- "CEI CY?B160H

Figure 2. 64 Kbit x 8

3-28

-..
~

~'~RESS Combining SRAMs With ought External Decoder
, SEMlcamucroR =;;;=;;;;;;;;;;;;;~=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;===;;;;;;;;;;;;;;;;;;

64K X 4 RAM CONFIGURED WITH FOUR CY78160s

A 15'--CE2 ~ 1

AI.4 CE3 ~ I

v~ CE4 ~ I
v~ CE5 ~ I]/0

0
-]/0

3 f--_ J

Ao-A 13

~ CEl CY78160A

A15r~ 1)1

GNDI CE3 E I c
~CE4 o I

V~ICE5 il]/00-]/0
3

t--_ J

AO-Aj3

CE
CEl CY7B160B

Ao-Ats
Au CE2~ I

1/°0-]/°3
Aj4 GND I CE3 ~ I

AI5 1CE4 ~ I
AI!; V~JCE5 il 1/°0-1/°3 I--_J

Ao-A 13

It--- CEl CY7B160C TRUTH TABLE
r--

G1!Q CE2 D 1 A15 A14 A

G]J2 CE3 g:
0 0 1 A 14 CE4 D

A 15 CE5 ~ I
f--_ J 1/00 -1/°3

0 1 0

BCD

000

100

Ao-A 13
1 0 0 010

'--- CEl CY78160D 1 1 0 001

Figure 3. 64K x 4

3-29

CYPRESS
SEMICONDUCTOR

BiCMOS TTL SRAMs
Improve MIPS R3000 and R3000A Systems

This application note analyzes the speeds required for
the cache SRAMs used in RISC systems. The focus here
is on the R3000/R3000A RISC processor architecture
from MIPS Computer Systems Inc.

One of the goals of RISC-type machines is to execute
one instruction per CPU cycle. To achieve this goal, RISC
processors employ a compact and unified instruction set, a
deep instruction pipeline, and careful adaptation to op­
timizing compilers. However, these benefits can be
rendered useless without an efficient cache memory sys­
tem composed of fast SRAMs.

DATA

DATA

R3000/R3000A
ruse M]CROPROCESSOR

MAIN MEMORY

ADDRESS

ADDRESS

Figure 1. R30001R3000A System with
High-Performance Cache

3-30

Design Overview
A block diagram showing the memory components of

an R3000A cache system appears in Figure 1. The
memory system is designed for maximum bandwidth by
utilizing separate instruction and data caches and an exter­
nal write buffer for main memory. The high-speed cache
is physically close to the processor and holds instructions
and data that are repetitively accessed by the CPU; this
reduces the number of times that slow main memory must
be utilized.

The R3000 can handle up to 256 Kbytes in 64K
entries. The processor provides cache control, which is
direct mapped. The processor also provides tag control to
verify that the correct data is read from cache. The con­
troller can refill multiple words when a cache miss occurs.

With separate data and instruction caches on the same
bus the processor can access or write data and instructions
at the CPU's cycle rate. The separate cache architecture
for instruction and data memory means that each are alter­
nately accessed during each CPU cycle. This makes cache
access time equal to half the cycle-time clock period.

As the processor speed increases from 25 MHz for
the R3000 to 33 and 40 MHz for the R3000A, the time
allowed for instruction and data fetches from cache
memory decreases. The clock period is 30 ns for the 33-
MHz system and 25· ns for the 40-MHz system. This
leaves 15 ns to access and/or read/write data for the 33-
MHz system and only 12.5 ns for the 40-MHz system

To further illustrate the cache timing, a sample read
critical path in a 64-Kbyte cache system appears in Figure
2. Path 1 is the access time from the R3000 through the
373A latch and into the CY7B166 SRAMs. Path 2 is the
time it takes data to be Valid after an IRd signal is
received from the R3000.

The extemallatch between the R3000A and the
cache address inputs provides part of the pipelining used
in the R3000 system and also minimizes loading between
the addresses of cascaded memories and the R3000. This

DATA. BUS -
I I
I !- TAG BUS

-! L I I
...--1 I- I AUJ(LO 1::!.!J3 - -

l l 'I: ? ...::: ,.. ""~
- Tnnl- Tnnl-

pan!'M ~:~ Al1DRII:I DIItB pIIn!'M
UMt'h llltlltP UMt'h

373A
T_aP

f1:r--- lClIl 1lC'.Ik r-- 3'73A

"" ~7~ L7 ~ ... ~"" ~

11 • n.Id • 1IOIt. .,."'. n .,. ...
R3OOO~QOA

CY''1IH66 fE-
me ssor

M CY7Df66 QB\ lJllf\ DR'" o.m
Imrll"lleUoD

"1\ ~ lW, D'lr\ ~ WE\. 'Dah
Cache Cache

PATH 2 PATH 1

Clllb9;y.

~
,7 , 7''''-...7'''-...7 C1I2IIS:In, jf-=-

.,- lID\ ClIlt'tR'll

~
Clocks 21-:-

L SpOut\ ClII2:xPllI :3
:;;
;; M..r,[20] JI .. 1\ ~

MmJM C]:dPt'\
Nemory ;; MmI..,\ Ibm\ ::.. Co-
Inler1at"e

.....
::- JlafBua;T ~ Processors !txt'\

; Wr'Ba...,.\ Cp'llaa: ..L

.... CpCanIlIO] CpCandl:J I] ;
S 1Iu1lBrTar\]m. ... I~DJ A

r- I 8BJ'dwBrt!

I Inlerupts

Figure 2. Data and Instruction Cache Critical Paths

extra device causes the memory's access time to become
critical, however.

As shown in Figure 3, data is fetched from the data
SRAM (path 2 for data cache) while the address for the
instruction SRAM is set up (path 1 for instr. cache).
During the next half cycle, the opposite operation is per­
formed. This arrangement allows use of shared pins on the
processor, which save up to 64 I/O lines; however, bus
bandwidth requirements are doubled. You must therefore
keep signal lines short and loading as low as possible to
minimize capacitance.

For a 40-MHz system, critical path 1 in Figure 2 in­
cludes 3.9 ns for a 74PCT373A latch, which leaves only
8.6 ns for the memory, board trace, and address set-up.
'Fortunately, memory access can overlap into the read
cycle by 3 ns. Path 2 for a read cycle includes the time it
takes the R3000 to send the IRd. signal to the CY7B166,
the CY7B166 OE-Low-to-data-valid time (tDOE), and the
R3000's data set-up time. The set-up time for the 40-MHz
R3000A is 4 ns, and the read signal takes 3 ns to
generate. This leaves only 5.5 ns for tDOE and for slewing
the output load capacitance.

3-31

Table 1 lists the time constraints for critical paths 1
and 2 for different system speeds. This data indicates that
fast SRAMs are essential to keep up with the 33- and 40-
MHz processors. Fortunately, BiCMOS processes now fill
this need with 8-, 10-, and 12-ns TIL-liO-compatible
SRAMs with reduced internal propagation delays and im­
proved driving capability.

CY7B166 16K x 4 BiCMOS SRAM
The CY7B166 SRAM is optimized using a BiCMOS

process to achieve 12-, 10-, and 8-ns access times. Bipolar
and CMOS technology combines to speed-up critical
paths and boost output drive (see the block diagram in
Figure.1 of "A New Generation of BiCMOS TTL
SRAMslt). CMOS technology reduces memory array size
and keeps power to a minimum, while bipolar technology
speeds-up critical paths.

BiCMOS technology allows the inputs to be CMOS
for compatibility with existing products, while the on-chip
bipolar bus interconnects and sense amplifiers speed the
internal access timing to allow more time for the outputs
to switch. On the outputs, two bipolar transistors drop two

Table 1. Delays Through Two Critical Paths

PNWElER 25 MHz 33 MHz 40 MHz
P
A tAV R3000 1.5 ns I ns I ns

T tpd 373A 5.5 ns 4.1 ng 3.9 ng

H
tAA CY7B166 12 AS 10 ns 8 ns

1 En6fI)

IElA'IS"' 2BS 2 ns 1.5 lIS

ACCESS
15 ns 12.5 ns CYCLE 20 n.

TIME

l1Rd\R3000A 5.0 ns 3.75 ns 3.125 ns
p

A lOOE CY7B166 6 ns 5 ns 4 ns
T
H lOS R3000/A 6 ns 4.5 ns 4ns

fOIrR)
3.0 ns 1.75n. 1.375 ns

2 IElA'IS"'
READ
CYQ.E 2Q ns 15 ns 12.5 BS
TIME

CLOCK PERIOD 40 ns 30ns 25ns

Hoard delays are cntlcal as speed lDcreases. The access
time needed by the SRAM can overlap the path cycle
time by 3 ns to make up for loss in board delays.

33MHz CLOCK 15ns

40 MHz CLOCK 12.5n&

RISC UP CLOCK

ADDRESS BUS

PATH

DATA BUS

PATH 2

Vbe levels (approximately 1.6V) to reduce the High-level
output swing. One transistor is tied base-to-collector as a
diode and the other transistor is the High-level drive tran­
sistor. Both transistors cause the output to conform to
standard TTL-type logic levels (not CMOS rail to rail).
(See Figure ~. in "A New Generation of BiCMOS TIL
SRAMs" for a diagram of this output structure.) The diode
is the bipolar transistor Q3, and Q2 is the High-level drive
transistor. M18 is an output Low-level pull-down MOS­
FET (n type). Keeping the output from swinging to the
power supply rail saves time when changing states and
makes the ramp rate slower (as shown in Figure 3 of "A
New Generation of BiCMOS TIL SRAMs").

The CY7B166's input side includes CMOS devices
M2 and M4. Input clamping diodes are also included to
provide ESD protection and meet MIL-SID-883C Method
3015 static discharge voltages of 2001 V. The inputs meet
standard CMOS specifications.

To reduce ground-bounce noise problems associated
with full-swing, high-speed CMOS devices - as well as
TIL parts to a lesser degree - the CY7B 166 incorporates
an internal supply-bypass capacitor between the power
supply pin and the ground pin. The device also includes
an inductor, whose value equals that of the package lead
inductance, in parallel with the bypass capacitor to cut the
overall inductance associated with output-swing ground
bounce in half. Both the capacitor and inductor decrease
the magnitude of the bounce on the falling edge of the
output logic swing.

Substituting BiCMOS type TIL devices for CMOS
parts in a new or existing TTL-I/O system creates no
compatibility problems. Upgrading from a CMOS 64K
TIL SRAM to Cypress' BiCMOS family of devices in­
creases speed and noise immunity, while decreasing noise
generation for overall system improvement.

D

D

Figure 3. Cache Interleaved InstructionlData Timing

3-32

CYPRESS
SEMICONDUCTOR

Memory and Support Logic
for Next-Generation EeL Systems

This application note describes the characteristics and
use of ECL-lIO technology. Available for many years, this
technology is now breaking into mainstream applications
due to innovative process technologies. The high power
requirements and low device density that once banished
ECL to high-speed niche markets are fading with ad­
vanced technology and circuit designs. Table 1 shows
how performance and power utilization are evolving.

As system clocks pass 50 MHz, it becomes hard for
TTL to provide the necessary low-noise drive capability
for fast rise times, and ECL becomes essential. Happily,
new BiCMOS SRAMs, gate arrays, and improved bipolar
PLDs combine ECL lIO speed with higher density and
lower power requirements.

A bipolar ECL implementation of an industry-stand­
ard PLD such as the l6P4, for example, draws a modest
220 rnA (max), while exhibiting propagation delays of 3
ns (333 MHz). These specifications are for Cypress's
CYlOE302 and CYlOOE302 lOKH- and lOOK-compatible
devices. Low-power (170 rnA) versions with 4-ns
propagation delays are also available.

EeL and BiCMOS
BiCMOS combines bipolar ECL I/O with both

bipolar and CMOS internal functions. This helps parts
such as Cypress's CYl0E474/CYlOOE474 lK x 4 static
RAMs draw only 275 rnA, while exhibiting access times
of 3.5 ns. Low-power (190 rnA) versions exhibit 7-ns ac­
cess times.

This performance is based on new approaches to
combining ECL and CMOS in single devices. Historical­
ly, BiCMOS technologies were developed as either
CMOS speed enhancers or bipolar power misers. The
resulting BiCMOS processes were based either on CMOS
or bipolar process flows, and performance for the com­
plementary bipolar or MOSFET components was less than
optimal.

In contrast, Cypress's STAR M2 process is a third­
generation, 0.8J.l BiCMOS technology in which the
baseline process is BiCMOS. (See Figure 1 in "BiCMOS
TIL and ECL SRAMs Improve High-Performance Sys­
tems" for a simplified cross section of the STAR M2
BiCMOS process.) The STAR process utilizes a modular
architecture. That is, polysilicon loads, TiW fuses, or
other non-volatile elements are easily incorporated into
the baseline process. This results in high-density SRAMs,
high-speed PLDs, or high-density EPROMsJPLDs, respec­
tively.

The STAR M2 process is an l8-mask, double-poly,
double-metal technology that utilizes a thin epitaxial layer
to achieve excellent production performance for NPNs (Ft
greater than 10 GHz) and CMOS latch-up immunity. The
MOSFETs use lightly doped drains for high performance
and reliability.

Unlike first-generation BiCMOS processes, which
were limited to SRAMs, STAR's poly silicon bipolar emit­
ter is the same poly used for MOS gates. This enhances
NPN performance and decouples the NPN from the poly

Table 1. ECL Families

Parameter lOKH lOOK ECLPSTM Cypress STAR ™
Ext. Gate Delay (ps) 500 400 500 500

Flip-Flop (MHz) 250 400 800 800

Gate Power (m W) 25 30 8 3

Speed(X)Power (pJ) 25 12 2.4 0.6

3-33

EeL PLD
D1strlbut1on
or R/W and Clock
S1gnals

Address
Sequencer

Figure 1. High-Speed A-to-D Application

load module used for 4T SRAM cells. Use of. tpis poly
load resistor allows for an 85-square-micron memory' cell
and small die size.

The advantages of the STAR M2 process over
second-generation BiCMOS technologies include higher
product performance and greater density and manufac­
turability.

Applications for ECL and BiCMOS ECL
Applications for ECL PLDs and SRAMs include

graphics and image processing, waveform generation, and
direct digital synthesis (DDS). In the case of video, ECL
memory stores images. In waveform generation and DDS,
ECL memory· stores digital representations of analog
waveforms before feeding the information to a digital-to­
analog converter (DAC).

In both image and waveform applications, PLDs are
used for address generation/decoding, data manipulation,
and clocking schemes/timing control. These functions pre­
viously had to be either built discretely with ECL gates or
added onto the DAC or memory on the same die. How­
ever, high~speed video DACs (greater than 125 MHz) use
bipolar process technology, which does not lend itself to
high density due to power dissipation problems. It is
easier . to implement the functions in ECL PLDs and
BiCMOS SRAMs.

For analog-to-digital conversion, ECL PLDs work
with high-speed· flash AID ·converters (ADCs) that have
EeL outputs. These converters' clock rates range from 20
MHz up to 1 GHz. Applications include HDTV, phased­
array radar, ... digital 'oscilloscopes, and single-event
digitization .. ' Here, PLD~ help create high-speed· specialty
memories such· as self-timed SRAM, pipelined SRAM,
and intetleaved SRAM. '

Using the design shown in Figure 1, you can imple­
ment a·· fast· digital oscilloscope to· display analog
waveforms on a PC. The flash ADC contains a string of
comparators that split the signal into a digital "ther­
mometer" code. From there the digital codes are usually
decoded into 8 bits, which are latChed on the outputs
every· clock period. The flash AID converter feeds
BieMOS SRAMs, which can be interleaved for maximum'
speed. The ,PLDs are programmed as address decoders
and counters to change the EeL SRAM's address location
every clock period . .similar to the way a cache memory
works, the memory stores'the digital information from the

3-34

ADC at top speeds. After the memory is full, you can load
the data at a slower rate to a PC or digital oscilloscope for
manipulation and/or measurements in software.

Instead of using the ECL PLD to implement the
SRAMs' address sequencer, it might once have been
necessary to incorporate the sequencer as part of the
memory chip or use discrete logic. Neither approach was
satisfactory, in the one case because of power dissipation
and in the other because of the speed limitations imposed
by multiple levels of discrete logic.

Further applications for ECL PLDs and SRAMs are
found in high-performance workstations, file servers, and
high-end embedded controllers. In fact, the next genera­
tion of high~end workstations will require ECL support
logic. Figure 2 shows an example based, on Bipolar In­
tegrated Technology's 10K-ECL version of Sun Microsys­
tems Inc.'s. SPARC processor. In this 80-MHz SPARe
implementation, based on Bipolar Integrated Technology's
ECL SPARe chip, cache and tag memories use BiCMOS
SRAMs and the cache control, memory management unit
(MMU), and cache data path (COP) are implemented with
ECLPLDs.

The BIT system is bipolar and consists of the main
integer unit (IU), a floating-point coprocessor interface
chip, a multiplier and accumulator floating point chip set,
and a register file chip. The IU can handle off-chip cache
of almost any size with complementary sets of 30n cache
address drivers to split the cache into two banks. This
minimizes trace length, reduces noise, and improves cycle
time. The 4K or 64K BiCMOS ECL SRAMs implement
the cache memory and reduce system power dissipation.
The IU has· a 12.5"ns cycle time and provides a Data
Ready clock signalthat allows a 15-ns cache access time.
This access time makes up for trace propagation delays.
The design can use SRAMS with access times from 3 to
12 ns, depending on the required cache size and power
requirements; these SRAMs can easily keep up with the
IU, as can the 3-ns PLDs.

Designing with ECL
Because ECL PLD propagation delays are as short as

3 ns, and output rise/fall times are in the sub-nanosecond
region, you must adhere to striet system layout guidelines.
ECL speed and noise performance are enhanced, with cor­
rect transmission-line design and power-supply bypassing
techniques. The underlying objectives are to minimize the

I
ag Memory Mgt & Comm

r Read SPARC -I -Data Cache

T

~ ECL .. Control -
"

Tag ..,r- v. ~~ Unit ~Control
Hi h

Add. Low g -v. - T

16

16,{ l'17 t , , Phys ic al
s I Addres

I rr-~ ..
r SPARC SPARC -

---- ECL
72 Integer MMU I/O Data

~ Cache r-
,

Unit ~~~ (PLD)
~ Cache

Read
Data Data "'~3 6

Cache
64

Write 32

72 o4~ - J ... H • - r Data SPARC
/ SPARC ...

Fl Pt

T
B

SYS
Bus

'r
TL System
us Interface

,
~ -- COP ,

72

64/ ..
/

Fl Pt Bus In

- ~ !-

r--, Contro ller
I

36/ Control
64

/ CP Bus
I

-30 I
SPARC
Fl Pt

...

Subsystem Fl Pt Control

Figure 2. SO-MHz SP ARC Implementation

capacitive loading that slows data, prevent ringing and
reflections from impedance mismatch, and minimize volt­
age drops that add system noise and reduce noise margin.

ECL-I/O circuits achieve the best possible match to
transmission lines for maximum energy transfer. The out­
put stage consists of a low-impedance, open-emitter tran­
sistor that can effectively drive different values of trans­
mission-line Zo with the addition of a pull-down termina­
tion resistor. The pull-down resistor is also necessary for
operation of the output transistor and can serve a dual role
as the transmission-line termination. ECL input pins are
connected to a transistor's high-impedance (DC) base,
which appears as a small capacitive load to a properly ter­
minated transmission line.

It is always a good idea to use transmission lines, but
they are essential when line propagation delay to the

3-35

receiving end and back again is greater than or equal to
the signal's rise time. Basic calculations for different
etched circuit board (ECB) lines appear in Figure 3, along
with an equation for propagation delay through the trans­
mission line. Table 2 lists common values for the
dielectric constant.

Stripline is used in multi-layered boards and between
ground planes; it consists of a trace buried between
ground/power planes. The strip line calculations assume
that W/(H - T) is less than 0.35 and that T!H is less than
0.25. Single and composite microstripline is used on the
top and/or bottom of single- or double-ground boards; it
consists of a trace on the surface, with the ground or
power plane buried.

Other common high-speed practices are to use equal
line lengths from device to device and rounded comers on

QC'IPRE$ Memory and Support Logic for EeL Systems
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.L ~ 
H 

H 
~ t 

j 1nt 
5.98H ) Zo = 

+ 1.41 O.8W of- T 

B == 1.016·.J7; ns/ft 

where 0 = propagation delay 

Ee = 0.475 Er + 0.67 

Figure 3. Zo for Microstrip and Stripline 

Table 2. Common Values for Dielectric Constant 

Material £r 

Duroid 2.56 

Quartz 3.78 

0-10 (FO Epoxy) 4.7 

Alumina 9.7 

Silicon 11.7 

3-36 

traces. Component lead lengths should be short, with sur­
face-mount passive and active components used as much 
as possible. 

Terminations 
Transmission-line terminations must match the line's 

characteristic impedance to minimize reflections. The ter­
mination is usually also used as the pull-down resistor for 
the open-emitter ECL outputs. These outputs allow Zo 
values from 50 to 150.0. This means that ECL can accom­
modate 75.0 video systems as well as 50.0 communica­
tions systems. Some ECL outputs even allow 25.0 trans-



a. Parallel 

b. Thevenin ~ __ 

c. Series 

Vee 

(lOKH) I n = number of lines 

I 

(lOOK) I 

: Rt = Zo· IOn 

zo 

I luru~_-r.r""--------------' 

-5.2 or -4.5 V 

R = 2.6 Zo (l0KH) 
2 2.26 Zo (lOOK} 

.B.1... (lOKH) 
R _ 1.6 

1 - R fig (lOOK) 

Figure 4. Three Types of Transmission Line Terminations 

3-37 



Table 3. ECL Output Transistor Power 

and TerminatinglPull-Down Resistor Power 

Dissipation in 

Terminating ECL Output Terminating 
Resistor Value Transistor Resistor 

(0) (mW) (mW) 

Parallel Termination 

150 5.0 4.3 

100 7.5 6.5 

75 10 8.7 

50 15 13 

Thevenin Termination 

82/130 15 140 

Series Termination 

2K 2.5 7.7 

lK 4.9 15.4 

680 7.2 22.6 

510 9.7 30.2 

mission lines to drive doubly terminated 500 bus lines in 
backplane applications. 

Figure 4 shows the types of terminations with cal­
culations. The different options have tradeoffs that in­
clude routing, power dissipation, loading, and ease of use. 

The parallel· termination (Figure 4A) is simple: The 
terminating resistor at the far end of the transmission line 
equals the line's Zo. In reality, the line and Rt always 
exhibit some mismatch caused by the ECL device's input 
capacitance. This termination offers the fastest perfor­
mance and lowest power dissipation, but requires an addi­
tional power supply for the termination resistor (Rt). 

An advantage of parallel terminations over series ter­
minations (Figure 4C) is that you can use the former with 
ECL loads distributed along the length of the transmission 
line. This is because the parallel termination is installed at 
the transmission line's receiving end and absorbs most all 
reflections. 

The Thevenin equivalent (Figure 4B) of the parallel 
termination (called the Thevenin termination) requires two 
resistors but needs no separate supply because the ter­
mination relies on the system power bus. Although this 
feature is convenient for small systems, the Thevenin ter­
mination draws 11 times more power per termination than 
does the parallel termination. 

The series termination is potentially the most power­
efficient. It matches Zo by means of a resistor (Rt) in 
series with the driving ECL gate's output impedance, 
which is 100 in STAR devices). Instead of totally 
preventing any reflections at the far end of the line, the 
series termination allows pulses to be reflected by the 
high impedance there, absorbing them when they are 
reflected back to the near end. 

3-38 

The series termination's efficiency depends on the 
value of RE. The power dissipated by a small RE can ex­
ceed the power dissipated in the parallel termination. A 
large RE can slow negative-going transitions because the 
input capacitance of the following gates (typically 4 pF) 
are being charged through the resistor. A large RE can 
also reduce noise margins. 

Note that, in this case, RE does not have to equal the 
transmission-line impedance. Table 3 shows a tabulation 
of ECL output transistor power and RE power dissipation. 

Because the series termination is installed at the near 
end of the transmission line, only lumped loads can be 
used. Distributed loads cause problems because the full 
value of the pulses are seen only at the far end of the line 
and not along the length of the trace, as with the parallel 
and Thevenin terminations. 

Typically, you can have up to 10 lumped loads at the 
end of the line. Thus, you must choose RE to supply 
enough current to drive the loads. However, you must also 
consider the voltage drop in the series terminating resistor. 
One way to minimize dissipation is to make the series ter­
mination drive two or more lines with lumped loads in 
parallel (as in Figure 4c). 

Measurements 
After prototyping transmission lines and terminations, 

you can make waveform measurements on a sample board 
to uncover any mismatches. Simple time domain reflec­
tometry (TDR, Figure 5) can show the position of discon­
tinuities or mis-matches along the line and the type of 
reactance or termination needed to correct them. Discon­
tinuities, such as gate input capacitances distributed along 
the line, appear as small glitches on the output waveform. 
The reflection's amplitude is proportional to the 
capacitance. You can therefore calibrate the test setup 
using a series of standard capacitances. Also, test equip­
ment with TDR capability, which simplifies measure­
ments, is available from HP. 

Interfacing and Prototyping 
With the increased use of ECL in new and next­

generation systems, many connector and cable companies, 
such as W. L. Gore & Associates, are offering controlled­
impedance coax ribbon cable and wrappable coax cable 
for prototypes and final design. 

Although most ECL system prototyping is done on 
PC boards, alternatives exist. ECL and mixed-TTL/ECL 
wire-wrapping boards with extensive ground planes are 
available from MUP AC Corporation. You can use wrap­
pable coax on these boards between signal pins, with ad­
ditional connections to adjacent ground pins. 

Programming EeL PLDs 
Cypress's current ECL PLDs are bipolar devices with 

proven TiW fuses. This means that, unlike the company's 
erasable CMOS PLDs, the ECL PLDs are one-time fuse­
programmable. You can program the devices using Data 
I/O, Stag, and Logical Devices PLD programmers; you 



Vreflect f".lf------IHH~.=... 

Power 
,.....-----.. Dlvider 

Pulse 
Generator 

v "800 mV 
Tr " 2 ns 
T " 50 ns 

200 MHz (or faster) 
Scope 

Term inat ion 

Figure 5. Time Domain Reflectometry Setup 

can also use Cypress's QuickPro II. Development 
software, including simulation models, is available from 
Data I/O (ABEL) and Logical Devices (CUPL). 

3-39 





Section Contents 

Page 
SRAMs 
RAM 110 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-1 
Understanding Dual-Port RAMs .......................................................... 4-7 
Using Dual-Port RAMs Without Arbitration ............................................... 4-19 
Using Cypress SRAMs to Implement 386 Cache ........................................... 4-23 





~4 
~ .= CYPRESS 

, SEMICONDUCTOR 

RAM 1/0 Characteristics 

This application note describes the function and I/O 
standards of Cypress high-speed static RAMs. Manufac­
tured using a speed-optimized CMOS technology, these 
RAMs meet and exceed the performance of competitive 
bipolar devices, while consuming significantly less power 
and providing superior reliability. While providing identi­
cal function, the RAMs exhibit slightly different input and 
output characteristics, which permit you to improve over­
all system performance. 

Product Description 
The five parts represented in Figure 1 constitute three 

basic devices of 64, 1024, and 4096 bits. The CY7C189 
and CY7C190 feature inverting and non-inverting outputs, 
respectively, in a 16 x 4-bit organization. Four address 
lines address the 16 words, which are accessed via 
separate input and output lines. Both of these 64-bit 
devices have separate active-Low select and write-enable 
signals. 

The 256 x 4 CY7C122 is packaged in a 22-pin DIP, 
and features separate input and output lines, both active­
Low and active-High select lines, eight address lines, an 
active-Low output enable, and an active-Low write 
enable. 

Both the CY7C148 and CY7C149 are organized as 
1024 x 4 bits and feature common pins for data input and 
output. Both parts have 10 address lines, a single active­
Low chip select, and an active-Low write enable. The 
CY7C148 features automatic power-down whenever the 
device is not selected, while the CY7C149 has a high­
speed, 15-ns chip select for applications that do not re­
quire power control. 

This family of high-speed static RAMs is available 
with access times of 15 to 45 ns with power in the 300- to 
500-mW range. These RAMs are designed from a com­
mon core approach and share the same memory cell, input 
structures, and many other characteristics. The outputs are 
similar, with the exception of output drive and the com­
mon I/O optimization for the CY7C148 and CY7C149. 

4-1 

For more detailed information on these products, refer to 
the Cypress Data Book. 

Generic I/O Characteristics 
Input and output characteristics fall generally into 

two categories: when the area of operation falls within the 
normal limits of Vee and V ss plus or minus approximate­
ly 600 mY, and abnormal circumstances, when these 
limits are exceeded. Under normal operating conditions, 
inputs switch between logic Zero and logic One. This ap­
plication note considers operation in a positive-True en­
vironment, and therefore a One is more positive than a 
Zero. 

The RAMs provide TTL-compatible I/O. Therefore a 
One is 2.0V, while a Zero is 0.8V. To be considered a 
One, the input of a device must be driven greater than 
2.0V, but not exceeding Vee + 0.6V. To be considered a 
Zero, the input must be driven to less than 0.8V, but not 
less than Vss - 0.6V. 

Output characteristics represent a signal that drives 
the input of the next device in the system. Because the 
RAM levels are TTL compatible, you can assume that the 
VIL and VIR values of 0.8V and 1.0V referenced above 
are valid. 

In consideration of noise margin, however, driving 
the input of the next stage to the required VIL or VIR is 
not sufficient. Noise margins of 200 to 400 mV are con­
sidered more than adequate. Thus, an adequate VOH is 
2AV and VOL is OAV, providing a noise margin of 400 
mY. 

Because the driven node consists of both a resistive 
and a capacitive component, output characteristics are 
specified such that the output driver is capable of sinking 
IOL at the specified VOL, and capable of sourcing IOH at 
VOH. Because the values of IOL and IOH differ depending 
on the device, these values are shown in Table 1. 

Outputs have one other characteristic to be aware of: 
output short-circuit current (Ios). This is the maximum 
current that the output can source when driving a One into 



DO DO 

0, D, 

02 02 

03 D3 

Ao AO 

00 00 

A, 
0, 

A, 
0, 

Ai 
02 A2 

02 

A3 
0] 

A3 
0] 

ES B 

Wl WE 

7C189 7C190 

AO 

A, 
Ae 110 0 

A2 
AS 

A7 I/O, 
A3 

AS 
A. 

AS I/Oi 

A. 
1/03 

A~ 

AG 
CS 

A7 

WE 

7C122 7C148/9 

Figure 1. RAM Block Diagrams 

v SS. You need to be aware of los for two reasons. First, 
the output should be capable of supplying this current for 
some reasonable period of time without damage. Second, 
this is the current that charges the capacitive load when 
switching the output from a Zero to a One and will con­
trol the output rise time. 

Because memories such as these are often tied 
together, you also need to consider the output charac­
teristics when the devices are deselected. All of the RAMs 
in the family feature three-state outputs; when deselected 
the outputs are in a high-impedance condition that does 
not source or sink any current. In this condition, as long 
as the input is driven in its normal operating mode, a 
three-state output appears as an open, with less than 10 
IJA of leakage. Thus, to any other device driving this 
node, the output does not exist. 

4-2 

Technology Dependencies and Benefits 
. Some of the products described in this application 
note were originally produced in a bipolar technology. 
They have since been re-engineered in NMOS technology, 
arid Cypress has now produced them in a speed-optimized 
CMOS technology. 

Both technology dependencies and benefits associated 
with each technology relate to the design of input and out­
put structures. When you use these products, you should 
know about these characteristics and how they can benefit 
or impede a design effort. 

One of the most obvious factors is that both NMOS 
and CMOS device inputs are high impedance, with less 
than 10 J.LA of input leakage. Bipolar devices, however, 
require that the driver of an input sink current when driv-



RAM I/O Characteristics 

Table 1. DC Parameters 

CY7C122 CY7C148/9 CY7C189190 
Parameters Description Test Conditions Units 

Min. Max. Min. Max. Min. Max. 

VOH Output High Voltage Vee = Min., IOH = -5.2 rnA 2.4 2.4 2.4 V 

VOL Output Low Voltage Vee = Min., IOL = 8.0 rnA 0.4 0.4 0.4 V 

VIH Input High Voltage 2.1 Vee 2.0 Vee 2.0 Vee V 

VIL Input Low Voltage -3.0 0.8 -3.0 0.8 -3.0 0.8 V 

IlL Input Low Current Vee = Max., VIN = Vss 10 10 10 I.lA 

IIH Input High Current Vee = Max., VIN = Vee 10 10 10 IlA 

IOFF 
Output Current 

VOL < VOUT < VOH, TA = Max. -10 +10 -10 +10 -10 +10 J.I.A (High Z) 

Output Short-Circuit Vee = Max., O°C < TA < 70°C -70 -90 -275 rnA 
los Current VOUT = Vss, -55°C < TA < 125°C -80 -90 -350 rnA 

ing to VIL, but appear as high impedance at VIH levels. 
This is because the input of a bipolar device is the emitter 
of a bipolar NPN-type device with its base biased posi­
tive. The bias (l.5V) establishes the point at which the 
input changes from requiring current to be sourced to 
presenting a high impedance. This switching level is the 
reason that AC measurements are done at the 1.5V level. 

Although NMOS and CMOS device inputs do not 
change from low to high impedance, great care is taken to 
balance their switching threshold at 1.5V. This allows you 
to consider only capacitive loading for MOS device 
fanout, while bipolar has both. a capacitive and DC com­
ponent. 

The other· input characteristic that differs between 
bipolar and MOS is the clamp diode structure, which ex­
ists in both MOS and bipolar. However, in MOS devices 
that use bias generator techniques (all high-speed MOS 
devices), the diode does not become forward biased until 
the input goes more negative than the substrate bias gen­
erator plus one diode drop. Because the bias generator is 
usually at about -3V, this factor removes the clamping ef­
fect. 

CMOS/NMOS/Bipolar Input Characteristics 
Although NMOS, CMOS, and bipolar technologies 

differ widely, the I/O characteristics are the TTL deriva­
tives that have been covered above and are documented in 
Table 1. With the exception of the differences in input 
impedance between MOS and bipolar devices, all three 
technologies are used to produce TTL-compatible 
products. 

Another group of devices provide a true CMOS inter­
face, where signals swing from Vss + 1.5V. In addition, 
loads are primarily capacitive. Only devices produced in a 
CMOS technology are capable of behaving in this man­
ner. CMOS devices can, however, handle both TTL and 
CMOS inputs. 

Devices such as the ones described in this application 
note have input characteristics such as those depicted in 
Figure 2. While operated in the TTL range, these devices 

4-3 

perform normally. Operated in full CMOS mode, the 
devices save power because the current consumed in the 
input converter decreases as the input voltage rises above 
3.0V or falls below 1.5V. Because the input signal is in 
the 1.5V-to-3.0V range only when transitioning between 
logic states, the power savings in a large array with true 
CMOS inputs can be significant. With input signals on 
over half of the pins of a device, significant savings in a 
large system can be realized by using CMOS input volt­
age swings even in TTL systems. 

Although this application note does not directly deal 
with the AC characteristics of high-speed RAMs, the 
input and output characteristics of these devices have a 
great deal to do with the actual AC specifications. Con­
ventionally, all AC measurements associated with high­
speed devices are done at l.5V and assume a maximum 
rise and fall time. This eliminates the variations associated 
with the various usage configurations (as a figure of merit 
when testing the device), but does not mean that you can 
ignore these influences when designing a system. 

Maximum rise and fall time is usually included on 
every data sheet. For the products referred to in this ap­
plication note, a lO-ns maximum rise and fall time is 
specified for all devices with access times equal to or 

3.5 

3.0 

2.5 

2.0 

1.S 

1.0 

0.5 

o 
0.0 

! 

r -.....~ 
I \ 

/ ~ 
If \. J 

/ " 1.0 2.0 3.0 4.0 s.o 6.0 

INPUT VOLTAGE - V 

Figure 2. Input Voltage vs Current 



RAM I/O Characteristics 

ACLoad High Impedance Load 

Rl 470 S1 R14700 

5V~ Thevenin Equivalent 

5V~ OUTPUT . 
152S1 

OUTPUT 

30pF R2 OuTPUT ~1.62V 
5 pF R2 r -= 2240 r ~ 224" 

Figure 3. Test Loads 

greater than 25 ns. All devices with access times less than 
25 ns have a 5-ns maximum rise and fall time. 

The AC load and its Thevenin equivalent in Figure 3 
represent the resistive and capacitive load components that 
the devices are specified to drive. With either of these 
loads, the device must source or sink its rated output cur­
rent or its specified output voltage. The capacitance stres­
ses the ability of the device output to source or sink suffi­
cient current to slew the outputs at a high enough rate to 
meet the AC specifications. 

The high-impedance load is a convenience to testing 
when trying to determine how rapidly the output enters a 
high-impedance mode. The resistive divider charges the 
capacitance until equilibrium is reached. Allowing for 
noise margin, testing for a 500 m V change is normal. By 
using a smaller capacitance than normal, you can make 
the change occur more quickly, allowing a more accurate 
determination of entry into the high-impedance state. 

Switching-Threshold Variations 
Along with input rise and fall times, switching­

threshold variations can affect the performance of any 
device. Input rise and fall times are under your control 
and are primarily affected by capacitive loading or the 
driver and bus termination techniques. Switching 
threshold is affected by process variations, changes in 
Vee, and temperature. Compensation of these variables is 
the responsibility of the manufacturer, both at the design 
stage and during the manufacture of the device. Combined 
threshold shifts over full military temperature ranges and 
process variations average less than 100 m V. This trans­
lates directly to VIL and VIR variations that track well 
within the noise margins of normal system design, par-

ticularly because the VOL and V OR changes track to the 
same 100 mY. 

Electrostatic Discharge 
Because of extremely high input impedance and rela­

tively low breakdown voltage (approximately 30V), MOS 
devices have always suffered from destruction caused by 
ESD (electrostatic discharge). This problem has had two 
effects. First, major efforts to design input protection cir­
cuits without impeding performance have resulted in MOS 
devices that are now superior to bipolar devices. Second, 
care in handling semiconductors is now common practice. 

Interestingly enough, bipolar products that once did 
not differ from ESD have now become sensitive to the 
phenomenon,primarily because new processing technol­
ogy involving shallow junctions is in itself sensitive. MOS 
devices are in many cases now superior to bipolar 
products. A sampling of competitive bipolar and NMOS 
64-bit, 1-Kbit, and 4-Kbit products reveals breakdown 
voltages as low as ±150V and greater than ±2001V. 

The circuit in Figure 4 protects Cypress products 
against ESD.The circuit consists of two thick-oxide field 
effect transistors wrapped around an input resistor and a 
thin-oxide device with a relatively low breakdown voltage 
(approximately 12V). Large input voltages cause the field 
transistors to turn on, discharging the ESD current harm­
lessly to ground. The thin oxide transistor breaks down 
when the voltage across it exceeds 12V; this transistor is 
protected from destruction by the current limiting of Rp. 

The combination of these two structures provides 
ESD protection greater than 2250V, the limit of available 
testing equipment. Repeated applications of this stress do 
not cause a degradation that could lead to eventual device 
failure, as observed in functionally equivalent devices. 

TTL TO 

~ ....... ---,..---...--JV'o.f'Ir--"-----'------T-- ~~~~ERTER 
"'-----' 

'Thick Oxide Field Transistor 
"Substrate Diode 

RSUB RSUB 

VSUB 

Figure 4. Input Protection Circuit 

4-4 

THIN OXIDE 
TRANSISTOR 



Output Driver 

n-MOS 

PULL-DOWN n-MOS 
DEVICE /PULL-UP 'h OUTPUT LS DEVICE 

n+ DIFFUSION AND p+ DIFFUSION 
n- WELL GUARD RING GUARD RING 

LATERAL npn BIPOLAR 
TRANSISTOR 

Vee 

PARASITIC 
RESISTANCE 

RAM I/O Characteristics 

CMOS Inverter 

OUTPUT INPUT 

Figure 5. CMOS Cross Section and Parasitic Circuits 

CMOS Latch-Up 
The parasitic bipolar transistors shown in Figure 5 

result in a built-in silicon-controlled rectifier (Figure 6). 
Under normal circumstances the substrate resistor RSUB is 
connected to ground. Therefore, whenever the signal on 
the pin goes below ground by one diode drop, current 
flows from ground through· RSUB, forward biasing the 
lower transistor in the effective SCR. If this current is suf­
ficient to turn on the transistor, the upper PNP transistor is 
forward biased, which turns on the SCR and normally 
destroys the device. 

Two possible solutions are to decrease the substrate 
resistance or add a substrate bias generator (Figure 7). 
The bias generator technique has several additional 
benefits, such as threshold voltage control, which in­
creases device performance. The bias generator is thus 
employed in all Cypress products. Also used are guard 
rings, which effectively isolate input and output structures 
from the core of the device and thus decrease the substrate 
resistance by short-circuiting the current paths. 

Vee 

cjJ 
Figure 6. Parasitic SCR and Bias Generator 

4-5 

Latch-up can be induced at either the inputs or out­
puts. In true CMOS output structures such as the ones pre­
viously discussed, the output driver has a PMOS pull-up 
resistor that creates additional vertical bipolar PNP tran­
sistors, which compound the latch-up problem. Additional 
isolation using the guard ring technique can solve this 
problem at the expense of additional silicon area. Because 
all the devices of concern here require TTL outputs, the 
problem is totally eliminated through the use of an NMOS 
pull-up resistor. 

Inducing Latch-Up for Testing Purposes 
Exercise care in testing for latch-up because it is typi­

cally a destructive phenomenon. The normal method is to 
power the device under test with a current-limited supply, 
so that when latch-up is induced, insufficient current ex­
ists to destroy the device. Once this setup exists, driving 
the inputs or outputs with a current and measuring the 
point at which the power supply collapses allows non­
destructive measurement of latch-up characteristics. 

In actual testing, with the device under power, in­
dividual inputs and outputs are driven positive and nega-

10 

1.0 

0.1 

c( 

E 0.0 
co 
co 

0.00 

0.000 

, 
1 

, 
1 0.0000 

-5.0 

I 

-4.0 

~ I""""" 

L ~ 

i/ 

I , 

-3.0 -2.0 -1.0 

VBB -v 

Figure 7. Bias Generator Characteristics 

0 



o. 0 

I 
0 

/ 0 1/ 
-1. 

1 -2. 

1 

-3.0 

J Vee = 5.0V 

J 
-4.0 

-6.0 0.0 6.0 12.0 

VINPUT (VOLTS) 

Figure 8. Input VII Characteristics 

tive with a voltage. The current is measured at which the 
device latches up. This provides the DC latch-up data for 
each pin on the device as a function of trigger current. 

Measuring .. the latch-up characteristics of devices 
should encompass ranges of reasonable positive and nega­
tive currents for trigger sources. Depending on the device, 
latch-up can occur at sink or source currents as low as a 
few milliamperes to as high as several hundred mil­
liamperes. Devices that latch at trigger currents of less 
than 20 to 30 rnA are in danger of encountering system 
conditions that cause latch-up failure. 

Competitive Devices 
Although few devices compete directly with the 

Cypress devices covered in this application note, the 
latch-up characteristics of the closest functionally similar 
devices were measured. The results show devices that 
latch-up at trigger currents as low as 10 rnA all the way to 
devices that can sustain greater than 100 rnA without 
latch-up. The Cypress devices covered in this applicatiori 
note can sustain greater than 200 rnA without incurring 
latch-up, which is far more than it is possible to encounter 
in any reasonable system environment. 

Eliminating Latch-Up in Cypress RAMs 
The latch-up characteristic inherently exists in any 

CMOS' device. Thus, rather than change the laws of 
physics, semiconductor manufacturers design to minimize 
latch-up effects over the operating environment that the 
device must endure. The environmental variables include 
temperature, power supply, and signal levels, as well as 
process variations. 

Several techniques are employed to eliminate the 
latch-up phenomenon. One approach is to move the trig­
ger threshold outside the operating range so that the volt­
age level never approaches this threshold. This can be 

4-6 

0.0 

-1.0 

w 
to-

!i -2.0 
w 
w 
~ 
C( 
! -3.0 

1 

-4.0 

Vee = 5.0V 

-5.0 

-6.0 0.0 6.0 12.0 

VINPUT (VOL lS) 

Note: Output is in a High Impedance Condition. 

Figure 9. Output VII Characteristics 

done using low-impedance, epitaxial substrates andlor a 
substrate bias generator. 

The use of a low-impedance substrate increases the 
undershoot voltage required to generate the trigger current 
that causes latch-up. A substrate bias generator has two 
effects that help to eliminate latch-up. First, by biasing the 
substrate at a negative (-3.0V) voltage, the parasitic 
devices cannot be forward biased unless the undershoot 
exceeds -3.0V by at least one diode drop. Second, if un­
dershoot is this severe, the impedance of the bias gener­
ator itself is sufficient to deter enough trigger current from 
being generated. 

The bias generator has one additional noticeable char­
acteristic: It effectively removes the input clamp diode. 
This is due to the anode of the diode connecting to the 
substrate that is at -3.0V. Therefore, even though the 
diode exists, as shown in Figure 4, DC signals of -3.0V 
do not forward-bias the diode and exhibit the clamp con­
dition. The benefits of the bias generator are apparent in 
higher noise tolerance, as substrate currents due to input 
undershoot do not occur. 

Figures 8 and 9 represent the voltage and current 
characteristics of the devices discussed in this application 
note. Figure 8 is characteristic of an input pin, and Figure 
9 an output pin in a high-impedance state. In Figure 8, the 
input covers +12V to -6V - well outside the +7V to -3V 
specification. 

Figure 4 helps explain these characteristics. When the 
input voltage goes negative, the thin-oxide transistor acts 
as a forward~biased diode, and the slope of the the curve 
is set by the value of Rp. As the input voltage goes posi­
tive, only leakage current flows. The output characteristics 
in Figure 9 show the same phenomenon, except that, be­
cause this is not an input, no protection circuit exists and 
therefore no Rp exists. An equivalent thin-film device acts 
as a clamp diode that limits the output voltage to ap­
proximately -IV at -5 rnA. 



CYPRESS 
SEMICONDUCTOR 

Understanding Dual-Port RAMs 

This application note examines the evolution of 
multi-port memories and explains the operation and 
benefits of Cypress's dual-port RAMs. 

A dual-port RAM is a random-access memory that 
can be accessed simultaneously by two independent en­
tities. In digital ICs, this implies a dual-port memory 
cell that can be accessed at the same time using two 
independent sets of address, data, and control lines. 

A Brief History of Multi-Port Memories 
The first multi-port memories were probably used 

in the CPU of the first computers. Many two-operand 
instructions are efficiently implemented using dual-port 
registers for the operands and the result. 

For example, consider Equation 1, which describes 
a typical two-operand operation in the ALU (arithmetic 
logic unit) of a CPU: 
( C ) = ( A ) [ OPERATOR] ( B ) Eq. 1 

A and B could be either the operands (Le., the 
data) or the addresses of the operands, in which case 
the data could be either in memory or in registers. In 
any case, Equation 1 describes two pieces of data, A 
and B, being operated upon by the OPERA TOR and 
the results designated as C. C could also be the data, a 
register, or a memory location. OPERATOR could be 
arithmetic or logical. 

The Combinatorial ALU 

The 74181 was the first integrated circuit ALU. In 
this IC, the 4-bit operands, A and B, . are operated upon 

Figure 1. **901 Dual-Port Memory (Simplified) 

4-7 

according to a 4-bit command; the result, C, is output. 
The chip also provides a carry-in input, a carry-out out­
put, and A = B outputs. A mode-control pin selects 
either logical or arithmetic operations. The 74181 is 
combinatorial; no storage is provided. 

Early computers used the contents of a memory 
location as one operand and an accumulator in the 
CPU as the second operand. The results were usually 
stored in the accumulator. 

Bringing the Registers On Chip 

The 67901 was the first 4-bit slice that brought 16 
4-bit registers onto the chip. The MMI 67901 was 
second-sourced by AMD and became the 2901. At one 
point, five vendors offered this industry-standard 
bipolar ALU. The Cypress CMOS CY7C901 is the 
highest-performance, TTL-compatible, 4-bit slice that is 
form, fit, and functionally equivalent to the original 901. 

The 16-word deep, 4-bit wide register array is func­
tionally equivalent to a 16 x 4 dual-port memory. Four 
A address lines and four B address lines select the con­
tents of two of the 16 registers, whose outputs are ap­
plied to transparent latches. The latch outputs are then 
applied to 3: 1 multiplexers, whose outputs drive the 
ALU inputs. The ALU outputs can be sent off chip, 
entered into a temporary register (Q), or written back 
into the register file, thus replacing one of the operands. 
This architecture is shown in the CY7C901 block 
diagram in the Cypress data book. 

CY7C901 Dual-Port Memory Operation 
A simplified CY7C901 block diagram appears in 

Figure1. The device's A and B addresses select the con­
tents of two registers, whose outputs are applied to two 
4-bit latches. When the clock (CP) is High, the latch 
outputs follow their data inputs (Le., are transparent). 
When the clock is Low, the ALU outputs are written 
(WE) into the register array at the location specified by 
the A or B addresses, depending upon the instruction 
being executed. A Low on the clock causes the data in 
the latches not to change, so that the ALU outputs are 



stable when they are written back into the re,gister 
array. 

Note that the CY7C901 does not perform the 
three-port function described by Equation 1. In the 
CY7C901, the C operand equals either the A or B 
operand, depending upon the instruction being ex~ 
ecuted. In fact, the A and B addresses can be the same. 
An old programming trick is to Exclusive-OR the con­
tents of a register with itself, which clears the register. 

Additionally, the CY7C901 ...... s dual-port memory 
does not use a dual-port memory cell. This type of cell 
is not required because the CY7C901 does not need the 
ability to simultaneously write independently to two 
separate memory locations. 

Dual-Port Memory Using Single-Port RAM 
Before the dual-port memory cell existed, designers 

created dual-port RAMs from single-port RAMs by ad­
ding a multiplexer between the RAM and the two en­
tities that shared the RAM. Figure 2 illustrates a block 
diagram of such an arrangement. Two processors, MPI 
and MP2, share the RAM. If each processor has access 
to the RAM half the time, the resource is shared equal­
ly and is said to be allocated according to a fairness 
doctrine. 

This time division multiplexing assures that there is 
no contention for the RAM. However, performance suf­
fers if the RAM's access time does not equal 1/2 or less 
of the processors' clock period, assuming that the 
processors are clocked from the same source, 

For example, consider two processors clocked from 
the same 25-MHz source, for a period of 40 ns. Because 
the processors are closely coupled, only one operating 
system is in memory. In this case, the maximum access 
time of the dual port has to be 20 ns or less. The 
highest-speed dual-port RAM available has a 25-ns ,ac­
cess time. Therefore, each processor suffers a WOfst­
case 20% performance degradation. 

Dual-Port RAM Applications 
The first" applications for dual-port memories were 

for CPU register files. Dual-port RAMs can also serve 
as data or instruction cache memories. However, the 
largest usage of dual-port RAMs is in communications, 
which includes the exchange of' data between proces­
sors, processes, and systems. 

Virtual Dual-Port RAM 

Communication between systems does not require 
physical dual-port RAMs. Instead, a conventional RAM 
memory is partitioned into virtual data-storage areas 
(buffers), ,usually to store at least two data packets. 
These buffers are shared between the communications 
controller and the intelligent element that assembles the 
packets and stores them (usually ,a microprocessor). 
The communications controller can also bea 
microprocessor. It reads the data from memory, con­
verts the data from parallel to serial form, encodes the 

4-8 

~ 
RAM 

~ 1 
MPl MUX MP2 

Figure 2. Dual-Port Memory Using Single-Port Ram 

data, converts the data to analog form, and sends the 
data out over the communications channel on the trans­
'mit side. If the system contains only one processor, the 
data buffers are not shared, and the system needs 
neither a virtual nor a physical dual-port RAM. 

Control information associated with each data buff­
er tells the communications controller the number of 
words in the buffer and the starting address of the data 
in the buffer. The control information resides in one or 
more memory locations whose addresses have been pre­
viously agreed upon by the two processors. 

This simple software-based buffer example requires 
a second level of control- a mechanism or procedure 
that prevents the two microprocessors from getting in 
each other's way. In other words, the system needs a 
procedure control mechanism. 

Another way of analyzing this requirement intro­
duces the concept of data ownership. Say, for example, 
that processor A assembles and stores messages and 
thus owns the data while performing these tasks. 
Likewise, the communications processor B owns the 
data while performing its tasks. The procedure control 
mechanism amounts to a technique for transferring data 
ownership between processor A and B. 

In large systems, where many processors perform 
many different operations, the processing of the infor­
mation is called a job or a procedure. The procedure is 
divided into many tasks, which can be performed by dif­
ferent processors. The tasks can either be scheduled 
and assigned by a processor dedicated to that task or be 
performed by any' available processor. These alterna­
tives are referred to as autocratic and egalitarian sys­
tems, respectively. The term egalitarian implies that the 
processors are treated equally. In either case, the 
processors must have access to, a shared memory loca­
tion used for message passing. 

Synchronizing sequential processes is the 
cornerstone of concurrent programming, which applies 
to multi-tasking, single-processor systems; distributed­
processor networks; and tightly-coupled mUltiprocessor 
systems. 

Message Passing 

In the two-processor system under consideration, 
synchronization can be achieved by using a lockword or 
lockvariable. The lockvariable can apply either to data 
(as in this example) or to executable instructions. 

The, lockvariable is a location in shared memory 
that is operated upon using two synchronization primi-



tives: LOCK (v) and UNLOCK (v), where (v) is the 
location operated upon. These are simple binary switch 
operations. If a processor wishes to lock or own a criti­
cal section of code or data, the processor indivisibly sets 
the lockvariable if testing shows the lockvariable to be 
zero. If the lockvariable is not zero, then the operation 
is repeated until the lockvariable is zero. To unlock the 
critical section, a processor sets the lockvariable to zero 
and continues. 

Most modern processors have indivisible 
read/modify/write instructions, also called test and set 
(TAS) instructions. In Reference 1, however, E. W. 
Dijkstra shows that lockvariables can be implemented 
without using a read/modify/write instruction. And in 
Reference 2, he develops the semaphore, a technique for 
managing a queue of tasks waiting for a resource. Lock­
variables surround or bracket semaphores and thus pro­
vide entry and exit control on a mutual exclusion basis. 

Typical TAS Instruction 

The current example assumes that the processors 
have a T AS instruction. A typical TAS instruction 
operates as follows: Read, test, and set to X. The ad­
dressed memory location is read, and if its contents are 
zero, the value X is written into that location. If the 
contents are not zero, the contents are returned to the 
processor, and the value in the memory location is not 
disturbed. 

The usual convention is that a value of zero in the 
lockvariable means that the resource associated with it 
is available. A non-zero value means that another 
processor temporarily owns the resource and that the 
resource is not available. After performing the task as­
sociated with the lockvariable, the processor sets the 
lockvariable's value to zero. The system is initialized 
with alilockvariables set to zero. 

In the current example, processor A performs a 
T AS operation on the lockvariable and, fmding the 
lockvariable zero, sets the lockvariable to a one. This 
tells processor B that the message is in the process of 
being assembled in the memory buffer area and is not 
ready to be transmitted. Processor A then assembles the 
message. After the message is assembled, processor A 
clears the lockvariable, sends a message to processor B 
saying that the message is ready to be transmitted, and 
gives the data's location and the number of bytes to be 
sent. Processor B reads the message from processor A 
and performs a TAS operation on the lockvariable; 
finding the lockvariable zero, processor B sets it to a 
two. This tells processor A that the message is in the 
process of being transmitted. Processor B then trans­
mits the message and clears· the lockvariable. Processor 
B sends processor A a message that the transmission 
task has been completed. After receiving the message 
from processor B, processor A performs a TAS opera­
tion on the lockvariable; finding the lockvariable zero, 
processor A concludes that the message has been suc­
cessfully transmitted. 

4-9 

Note that this procedure does not require the use 
of a dual-port RAM. The procedure does require each 
processor to perform a TAS instruction, clear the lock­
variable, and send a message to the other processor. 
Sending a message implies writing to a location in 
shared memory. To know that a message is waiting, the 
processor receiving the message must either read the 
memory location periodically (referred to as polling a 
mailbox) or the act of writing to the mailbox must 
generate an interrupt to the receiving processor. The in­
terrupt-driven alternative is usually preferred because 
the receiving processor does not have to waste time in a 
polling sequence. 

Dual-Port RAM Cell History 
The first dual-port RAM ICs to use a dual-port 

RAM cell were the Synertek SY2l30 and SY213l, intro­
duced in 1983. These products are organized as 1024 
words of 8 bits and use n-channel, double-poly silicon 
technology to achieve 100-ns access times. The SY2130 
has an automatic power down feature controlled by the 
chip enables, and the SY2131 does not. The smaller 
(512 X 8) SY2132 and SY2133 were similar but unsuc~ 
cessful. 

The original dual-port RAMs include two mail­
boxes for message passing. When written to from one 
port, a mailbox generates an interrupt to the opposite 
port. Additionally, on-chip arbitration logic generates a 
busy signal to the loser when both left and right ports 
address the same memory location. If the loser was at­
tempting to write, the write is suppressed. 

Most of the dual-port RAMs on the market today 
are functionally equivalent to the original Synertek 
products. The "new features" added to several dual-port 
RAM products by Motorola and Integrated Device 
Technology (IDT) include dedicated semaphore 
registers. These semaphores are unnecessary, however, 
and the products that use them do not have second 
sources. 

The SY2l30 was second-sourced by IDT in 1984 
and Advanced Micro Devices (AMD) in 1985. IDT also 
doubled the density to 2K X 8 and called the new part 
the IDTI132. Due to pin limitations (48 pins), the inter­
rupt functions were deleted. 

The AMD part (Am2130, 1024 X 8) had at least 
three logic errors. A busy-going-active indication failed 
to reset the interrupt when both ports addressed the 
same mailbox location. Additionally, busy going inactive 
failed to retrigger the address transition detection cir­
cuitry at all locations. And finally, when contention oc­
curred and both ports were attempting to write, the 
losing port was not· prevented from writing. The data 
sheet for this device does not explicitly state these con­
ditions, but they must occur for the device to make logi­
cal sense (more on this later). 

In 1985 IDT added slave companion parts to the 
company's dual-port family. The IDT7l40 (1024 X 8) is 
the slave to the IDT7130, and the IDT7142 (2K X 8) is 



the slave to the IDT7132. The slave device provides 
word-width expansion. Busy is an input to the slave 
from the master, and the slave contains no arbitration 
logic. One master can drive many slaves. .This arrange­
ment avoids the classic deadly embrace problem. This 
arrangement avoids the classic deadly embrace problem 
described in the next section. 

The Deadly Embrace 
The deadly embrace can. occur when two masters 

are connected in parallel to make a wider word. If the 
left and right port addresses match, and the left and 
right port chip enables then become active to both chips 
at approximately the same time, it is possible to have 
one port of one master lose and the opposite port of the 
other master also lose. In other words, if an address 
match occurs and both ports are enabled during a small 
time window, or aperature of uncertainty, the dual-port 
RAM cannot determined which port wins or loses. 

Under these conditions, if the corresponding left 
and right port busy pins are connected together, both 
ports of both masters are active (Low). This condition 
occurs because the busy outputs are open drain, and the 
loser pulls the node Low. 

This condition is the simplest example of the deadly 
embrace. So far as the external world is concerned, 
both ports are busy, and the system remains locked up 
indefinitely, with each port waiting to be released by the 
other. Each master's arbiter section thinks it has lost 
the arbitration and is waiting to be. released by the 
other. 

In general, the deadly embrace occurs under two 
conditions: a processor requires one or more resources 
to perform a task, and one or more of the required 
resources is temporarily owned by another processor, 

which requires one ot more of the same resources to 
perform its task. 

For example, if processor A owns resource X and 
processor B owns resource· Y, and both resources are 
required to accomplish the task, a stalemate occurs. in 
which each processor waits for the other to relinquish 
the required resource. This is the simplest example. J'he 
concept extends to n processors and m resources. 

The solution to the deadly embrace depends upon 
whether the system is autocratic or eglitarian, the tasks' 
priorities, etc., and is beyond the scope of this discus­
sion. In the case of dual-port RAMs, however, the solu­
tion is simple: Do not cascade two masters in width; use 
a master and a slave. 

The Cypress Dual-Port RAM Family 
Table 1 lists the members of the Cypress dual-port 

RAM family. The package designator D26 stands for 
600-mil ceramic DIP, and P25 stands for 600-mil plastic 
DIP. The 48-pin ceramic leadless chip carrier (LCC) is 
designated as L68. The 52-pin packages are designated 
as L69 for ceramic LCC and J69 for plastic LCC 
(PLCC). 

Note that the interrupt function is not available at 
the 2048 X 8 level in a 48-pin package. This is due to 
pin limitations. At the 2-Kbyte level, each port requires 
an additional address pin for the address's most sig­
nificant bit. 

The MIS column in Table 1 indicates whether the 
device is a master or slave. The difference between 
these devices is that the masters have arbitration logic 
and· the slaves do not. The busy signals are outputs from 
the master and inputs to the slave. (The ramifications of 
this are examined later.) 

Table 1. The Cypress Dual-Port RAM Family 

Packa2e Options 

Configuration Part Number MIS 48-pin Dual In-Line Pkg 48-pin 52-pin Square 
Square 

Ceramic Plastic LCC LCC PLCC 

IKX8 CY7C130 M D26 P25 L68 --- ---
CY7C131 M --- --- --- L69 J69 

CY7C140 S D26 P25 L68 --- ---
CY7C141 S --- --- --- L69 J69 

2KX8 CY7C132 M D26 P25 L68 --- ---

CY7C136 M --- --- --- L69 J69 

CY7C142 S D26 P25 L68 --- ---
CY7C146 S --- --- --- L69 J69 

Note: The nterru t function IS not available at the 2KX8 level In a 48-PIn package p 

4-10 



Figure 3. Dual-Port RAM Block Diagram 

Cypress Dual-Port RAM Operation 
A simplified block diagram of the Cypress dual 

port RAM appears in Figure 3. The device interface in­
cludes three types of signals: address, data, and control. 
There are two sets of these signals: those of the left port 
and those of the right port. Each signal has either the 
subscript L or R to designate left or right, respectively. 

The address pins are designated AO through A9 
(1024 X 8) and AD through AIO (2048 X 8), where AO 
is the least significant bit (LSB) and A9 or AlO is the 
most significant bit (MSB). The address pins ~ 
unidirectional inputs to the device; their states specify 
the memory location to be read from or written into. 

The data pins are designated 1I0D through 1I07, 
where 1I00 is the LSB and 1I07 is the MSB. The data 
pins are bidirectional; their states represent either the 
data to be written or the data to be read. 

The control pins are chip enable (CE'), readlwnte 
(R/ W), and output enable (00). Two flags are also 
provided, INT and BUSY; both have open-drain out­
puts and require external pull-up resistors. A Low on 
the chip enable input allows that port to become func­
tional. Data is either read from the internal dual-port 
RAM array or written into it, depending upon the state 
of the read/write signal; a Low initiates a write opera­
tion. The three-state data output drivers are enabled by 
a Low output enable. 

When one port writes to a pre-determined mailbox, 
an interrupt to the other port is generated. When the 

LEFT 'ID 

ADDlEn 

(OPEl lUll) 

'-------' 

(DPlI DUUI 

Figure 4. Interrupt Logic 

IIIHT SIIE 

ADDlElS 

4-11 

interrupted port reads that memory location, the inter­
rupt is reset. 

When both ports address the same memory loca­
tion and both chip enables are active (Low), contention 
occurs for that address. An arbitration is then per­
formed, and ownership of the memory location is as­
signed to the winner. An active (Low) busy signal 
notifies the loser of the arbitration. 

Dual-Port RAM Functional Description 
An important aspect of the Cypress dual-port 

RAM s is their interrupt logic. A simplified logic 
diagram of this logic appears in Figure 4, with the chip 
enables deleted. A port's chip enable must be asserted 
for the port to either read from or write to any location, 
including the mailboxes. Note that you can use the mail­
box locations as conventional memory by not connecting 
the interrupt line to the appropriate processor. 

The upper two memory locations (7FF and 7FE for 
2K x 8; 3FF and 3FE for IK x 8) can be used for mes­
sage passing. The highest memory location serves as the 
mailbox for the right processor. When the left processor 
writes to this mailbox, the interrupt (request) to the 
right processor, INTR, goes Low. When the right 
processor reads its mailbox, the flip-flop is reset, and 
INTR goes High. 

The second highest memory location serves as the 
mailbox for the left processor. When the right processor 
writes to this mailbox, the interrupt (request) to the left 
processor, INTL, goes Low. When the left processor 
reads its mailbox, the flip-flop is reset, and INTL goes 
High. 

Note that each port can read the other port's mail­
box without resetting the associated flip-flop. If your ap­
plication does not require message passing, leave the 
appropriate pin open. Do not connect a pull-up resistor 
to the pin, and do not connect the pin to the processor's 
interrupt request pin. 

Note that the active state of the busy signal 
prevents a port from setting the interrupt to the winning 
port. Additionally, an active busy signal to a port 
prevents that port from reading its own mailbox and 
thus resetting the interrupt. These operations are 
ramifications of the data-ownership concept. 

If both ports address the same memory location at 
the same time, the master performs an arbitration, so 
that one port wins and the other loses. Because each of 
the two ports can be in either the reading or writing 
state, there are four possible combinations of ports and 
states (Table 2). 

Both Ports Reading 

If both ports read the same location at the same 
time, you would assume that both ports should read the 
same data. This is true for all dual-port ICs. When ar­
bitration occurs as a result of contention in a Cypress 
dual-port RAM, the port that wins the arbitration gets 
temporary ownership of the memory location. The 



Table 2. Functional Operation of Duill .. Port Masters 

OPERATION RESULT OF OPERATION AFTER ARBITRATION (MASTER) 

CASE LEFTPORT RIGHT PORT AMD CYPRESS and IDT 

1 READ READ BOTH PORTS READ BOTH PORTS READ 

2 READ WRITE LOSER WRITES, WINNER IF LOSER PREVENTED FROM 
READING, MIGHT HAVE WRITING. IF LOSER IS 

3 WRITE READ 
CORRUPTED DATA AND READING AND PORTS ARE 
NOT KNOW IT ASYNCHRONUS, DATA 

4 WRITE WRITE 

losing port can read the memory location but is told 
that it lost the arbitration by the busy signal. 

To guarantee data integrity in a multiprocessor sys­
tem, it is standard practice to apply the concept of data 
ownership. This ownership can apply to executable 
code, data, or control locations in memory. The control 
locations in memory can be associated with a resource, 
such as a printer, tape drive, disk drive, or communica­
tions port. 

One Port Reading. the Other Writing 

In the AMD dual-port RAM, the losing port is not 
prevented from writing. In the Cypress and IDT 
devices, the losing port is prevented from writing. All 
dual-port RAMs assert a busy signal to the losing port, 
so that this port can tell that the data might be cor­
rupted. 

In the Cypress dual-port RAMs, the losing port is 
prevented from writing so that the data cannot be cor­
rupted. Busy is asserted to the losing port, so that the 
port can tell that its read or write operation might not 
have been successful. 

Both Ports Writing 

In the AMD dual-port RAMs, both are allowed to 
write. Busy is asserted to the losing port, indicating that 
the data might be corrupted. However, the winning port 
is not told that the data it just wrote might be corrupted 
by the writing of the losing port. This situation can 
cause system errors. 

In the Cypress and IDT dual-port RAMs, the 
losing port is prevented from writing, so that the data 
cannot be corrupted. Busy is asserted to the losing port, 
indicating that its write operation was unsuccessful. 

Arbitration Logic 
Figure5 shows the arbitration logic used in Cypress 

dual-port RAM masters. The arbitration logic has three 
functions: to decide which port wins and which loses if 
the addresses are equal simultaneously; to prevent the 
losing port from writing; and to provide a busy signal to 
the losing port. 

4-12 

READ MIGHT NOT BE VALID 

The arbitration logic consists of left and right ad­
dress equality comparators with their ass~iated delay 
buffers; the arbitration latch formed by the cross­
coupled, three-input NAND gates labeled L and R; and 
the gates that generate the busy signals. 

Operation With Unequal Addresses 
When the addresses of the right and left ports are 

not equal, the outputs of the address comparators 
(nodes A and B) are both Low, and the outputs of the 
gates labeled Land R (nodes C and D) are both High. 
This condition forces both Busy signals High and both 
Wnte InhibIt signals High. The arbitration latch does 
not function as a latch. 

Left Port Camped on an Address 

Next, consider the condition where the left-port ad­
dress and chip enable are quiescent, and the right port 
address changes to an address equal to that of the left 
port. Nodes A and B are initially Low. 

Because the right-port address does· not go through 
the delay buffer, the output of the right-address com-

ADDRESS L ADDRESS(R) 

WRITEINHIBIT(L} WRITEINHIBIT(R) 

Figure 5. Arbitration Logic 



~ 
~~~am~~~~~~~~~~~~~~~~U~n~d~e~r~s~ta~n~d~i~n~g~D~u~a~1~-P~o~r~t~R~A~~~s 

parator (node B) goes High before node A goes High
by a delay interval, d. The delay must be greater than
the delay through the R gate, so that when node B goes
High, node D goes Low, causing node C to remain
High. CE(R) and CE(L) are both High; they are the
inverse of the chip enable inputs. Node D going Low
causes the output of the BR gate to go Low, which tells
the right port that the memory location it just addressed
belongs to the left port. A write-inhibit signal is also
generated that prevents the right port from writing into
the addressed memory location.

In summary, when the right port addresses a
memory location that is already being addressed by the
left port, a delay occurs that equals the sum of the
propagation delays of the right-address comparator, the
R gate, the BR gate, and the output driver (not shown
in the diagram). Then the busy signal to the right port is
asserted. Nodes A, B, and C are now High, and node D
is Low. BUSY is asserted to the right port.

Due to the symmetry of the arbitration logic, the
device operates the same when either the right or left
ports are camped on an address.

Right and Left Addresses Equal Simultaneously

In the general case, it is possible to have both ports
access the same memory location simultaneously, unless
this is guaranteed not to occur by the design of the sys­
tem. When nodes A and B go from Low to High at ex~
actly the same instant, .the arbitration latch· settles into
one of two states and determines which port wins and
which port loses. The latch is designed such that its two
outputs are never Low at the same time. It also has a
very fast switching time.

The dual-port RAM imposes a minimum time dif­
ference between either of two events: the two chip
enables going from inactive to active and the two sets of
addresses going from mismatch to equal. If the events
are close together in time, the probability of each port
either winning· or losing the arbitration is approximately
equal. This parameter is called port set-up time for
priority and· is abbreviated as tps on the data sheets.
The specified value is 5 ns. (Note, though, that Cypress
product engineers have measured tps at· room tempera­
ture and nominal Vee (5V) and found a value of ap­
proximately 200 ps.) In other words, if one port addres­
ses a memory location 5 ns before the other port, the
first port is guaranteed to win. If not, the result of the
subsequent arbitration is unpredictable.

Other Key Busy Parameters
Several other key parameters are specified with

respect to the busy signal. For example, Busy Low from
address match, tBLA, is the maximum time it takes busy
to go Low, as measured from the time the two port ad-.
dresses are the same. This is the time from an address
match until the losing port is notified that it has lost the
arbitration. Obviously, the sooner this occurs the better.
If the value· of tBLA is greater than the memory cycle

4-13

ADDRR ==>C!J56RESS !'lATCH >K ______ _
I

'viER ---------~---------------------
! I k~

--O-_Il-_[)--~~~~~:~~==*~-----
i t i r i

ADDRI_ ===X: __ ~_!'~QQB~!?? __ ~~k_~!i. _____ · ___________ _
~tJ~.xr.oj ~t..stJ·ol.,·-l-···I"

BUSYL ---..;... -I-\.oI~ll~Jmmi:r .•. ~-.~-.. f"'->i-

! vtrUN/li/M'i i" >.c DOUTL

I ~········-l!lYr ~~~.d
.---'-i /

DEL "'----./
Figure 6. Busy Timing

time, another cycle must be added to detect the condi­
tion, which can severely reduce performance. This time
is less than the minimum cycle time for all speed grades
of all Cypress dual-port RAMs.

Another parameter, Busy High from address mis­
match, tBHA, is the maximum time it takes busy to go
from Low to High, as measured from the time the two
port addresses do not match until the busy signal goes
High. ,The comments of the preceding paragraph also
apply here;

The next two parameters are similar to the preced­
ing two. The difference is that the chip enable controls
the busy signal. The parameters are Busy Low from CE
Low, tBLC, and Busy High from CE High, tBHC. Both of
these parameters are less than the minimum cycle time
for all speed grades of all Cypress dual-port RAMs.

Busy High to valid data, tBDD, is the maximum time
it takes the data to become valid to the losing port after
Busy goes away. This parameter's value equals the ad­
dress access time, tAA, because a read cycle is initiated
to the losing port when its Busy signal transitions from
Low to High. An action by either port can cause the
busy transition. The winning port can either change its
address or deassert its chip enable.

To illustrate the last two parameters, Figure 6
shows the timing for the right port performing a write
operation and· the left port asynchronously moving to
the same address and attempting to perform a read
operation. The . first parameter of interest is tDDD ,
which is the maximum time between the stabilization of
the data to be written by the winning port and that same
data becomin~lid at the outputs of the port that
received the Busy. The second parameter of interest is
tWDD, which is the maximum time between the High-to­
Low transition of the winning port's write strobe and
the data becoming valid at the outputs of the port that
received the Busy.

It is possible for the losing port to read either the
old data,the new data, or some random combination of

5~ Understanding Dual-Port RAMs . ~~~================~~~~~==~==~
the two under these circumstances: the two ports are
operating asynchronously (i.e., with independent
clocks), and the conditions illustrated in Figure6 occur
(winning port writing and losing port reading). If the
read occurs early with respect to the write, old data is
read. If the read occurs late with respect to the write,
new data is read. And, if the read occurs at the same
time the data is changing from old to new, the data read
is not predictable. However, all is not lost There are
two general solutions. Both use the fact that the busy
signal is asserted to the losing port, telling the port in
this instance that the data it is reading might not be
valid.

One solution is to use the High-to-Low transition
of the busy signal to the losing port to generate an inter­
rupt to the processor (or state machine) so that opera­
tion can be repeated. The drawback of this technique is
that a snapshot of the states of the losing port's address
lines and readlwnte line must be taken, so that the
processor can tell what load/store operation caused the
interrupt Taking this snapshot requires latches or flip­
flops for the data and control logic for doing the sam­
pling, and the technique uses up an interrupt line. The
processor must also be able to read the sampled data
later.

A second solution is to use the Low level of the
Busy signal to the losing port to prompt one of three
types of delays: delay the reading of data until the data
becomes valid, which occurs an access time after the
Low-to-High transition of Busy; insert wait states until
Busy goes High; or stretch the clock until Busy goes
High. Any of these methods probably. require less
hardware and control logic than the preceding ap­
proach. Use of these methods does mean that the Busy
signal must eventually go from Low to High. This hap­
pens when the winning port either changes its address
or deasseru its chip enable. For this reason, as well as
for system noise immunity and power-saving considera­
tions, it is recommended that blocks of addresses be
decoded to generate chip enables for the dual-port
RAMs.

Because the losing port has no control over the
winning port in the general case, however, a question
arises: What can the losing port do to successfully read
the data just written, assuming the winning port does
not change its address, write, or chip-enable signals?
There are two possible operations:

1. Change an address line to a different address,
then change back to the original address. This toggles
the busy signal to the losing port

2. Change the state of the chip enable. This also
toggles the busy signal to the losing port

Address Transition Detection
Why does changing the address or chip enable

allow a losing port to read data successfully? All
Cypress dual-port RAMs, both masters and slaves, use
a circuit design technique called Address Transition

4-14

IDLE ------,
l

DETEClEVENT

TURN· ON CIRCUITS
~

PERFORMOPERATION
l

TURN-OFF CIRCUITS

1
Figure 7. Simplified ATD Sequence

Detection (ATD) to improve performance and reduce
power dissipation.

A TD improves performance by equilibration of dif­
ferential paths, pre-charging critical nodes, and forcing
the outputs to a high-impedance state. Equilibration
and pre-charging bias critical nodes to voltage levels ap­
proximately in the mid-point of the small-signal operat­
ing range; when the data is sensed, it takes a shorter
amount of time to transition to the Zero or One level.
Forcing the outputs to their high-impedance states im­
proves speed slightly, but more importantly, the techni­
que reduces output switching noise by eliminating crow­
bar current and separating the output current into two
pulses instead of one.

A TD minimizes power consumption because it
turns on power-hungry circuits only when they are re­
quired. Slightly over 50 percent of a RAM's circuits are
linear, and approximately 70 percent of the power is
dissipated in the sense amplifiers during a read opera­
tion. When the RAM is operating at its . maximum fre­
quency, the ATD circuits are constantly triggered, so
the power savings are minimal. At lower speeds or
smaller duty cycles, however, the power savings are sig­
nificant

A diagram representing a typical A TD sequence is
illustrated in Figure 7. The event that triggers the A TD
sequence for either port is the transition of any address,
chip-enable, or read/wnte signal. Equilibration and pre­
charging are performed next, followed by either turning
on the sense amplifiers and latching the data (read
operation) or pulling the BIT and BIT lines to the re­
quired levels (write operation) at the addressed loca­
tion. The master clock pulse lasts from 7 to 11 ns,
depending upon temperature, supply voltage, and the
distributions of IC processing parameters. At the end of
the pulse, the data is latched and the appropriate cir­
cuits are turned off.

Master Stand-Alone Operation
Figure8 presents a block diagram of a system using

two 8-bit microprocessors, the Cypress CY7C132 dual­
port RAM, static RAM, and EPROM. The address
lines of each microprocessor are decoded to generate
the chip enables to the dual-port RAM, the SRAM, and
the EPROM. Note that pull-up resistors are required
on the· interrupt requests to the microprocessors and

VCC
Q

INT (L) IN T (L) INT (R.l INT (R)
ADDR A (L) A (R) ADDR
DAT A

D (L) D (R) ~ .. DATA po

WR
..

WE (L) WE (R)~ WR ..
po CE (L) CE (R) -

WAIT - BUSY (L) BUSY (~ J
po WAIT

MREQ f-
DUAL-PORT 2K x Ie MREQ

8-BIT iii 8-BIT p L
CY7C132

~ . TV C C
~~ . ~

CHI P -. ADDR ADDR .. CHIP
ENABLE ,..-- -. DATA DATA ~ - ENABLE
DECODE n -. WE WE ~ I DECODE

CE CE
I-- RAM RAM ,..--

l+ ADDR ADDR f+-
---+ DATA DATA ~ .. CE C E ..

po -
EPROM EPROM

Figure 8. Typical 8-Bit Microprocessor

the busy signals, which go to the microprocessors' wait
inputs.

Slave Word-Width Expansion
The block diagram in Figure 9 shows how to inter­

connect a CY7C132 (2K x 8) master and a CY7C142
(2K x 8) slave to form a 16-bit-wide word. The diagram
does not show the interfaces to the processors or the
connections for the interrupt signals. As previously ex­
plained, the interrupt outputs are not available at the
2K X 8 level in the 48-pin DIP due to pin limitations. In
the LCC and PLCC packages, the interrupt outputs are
available from both the master and the slave devices.
You can use either one. You do not have to tie the cor­
responding interrupt pins of the master and the slave
together.

Delaying the Write Strobe
In width expansion, the write signals to the slave

devices must be delayed by an interval at least equal to
tBLA, which is the time required for the master to assert
the busy signal to the slave after an address match. The
delay prevents the slave data at the address in conten­
tion from being overwritten. Both the write and read

4-15

cycle times must be increased by this amount of time. In
equation form:
twc = tPWE + tBLA Eq.2
where the delay must be at least equal to tBLA.

Note that if you add more slaves to make a wider
word, (e.g., 24 or 32 bits) the delay elements' outputs
can connect directly to the write-strobe inputs. Addi­
tional delay elements are not required.

Slave Stand-Alone Operation
Some applications might require that you give one

port permanent and absolute priority over the other.
You can easily do this. by implemen~ the memory
using only slave dual-port RAMs. The Busy input to the
priority port must be tied High by either connecting it
directly to Vee or to Vee through a lO-Kn pull-up resis­
tor. You can connect the -ow priority port's Busy input
to the high-priority port's read/write input.

In this configuration, the busy (read/write) signal to
the lower-priority port always prevents the port from
writing when the high-priority port is writing to any
location. The data of the Lower priority port is over­
written when the two ports operate asynchronously, the
lower-priority port is writing, and the higher-priority

port simultaneously writes. This is not a very elegant
solution because the Busy input to the low-priority port
is not qualified by comparing the addresses of the two
ports or their chip enables. However, this approachsug­
gests how the slave dual-port RAMs can be used with
external arbitration logic. The busy inputs can be used
by control logic or under program control to dynamical-
ly change the port priorities. '

If the lower-priority port is read only, you can tie
its Busy input High by either connecting it directly to
Vee or to Vee through a pull-up resistor.

Dual-Port Design Example
The following design example illustrates the

methodology to follow when designing with Cypress
dual-port RAMs. In this example, a dual-port memory
is used for message passing and bus. snooping for many
bus masters on a 32-bit-wide system bus. The dual-port
RAM s interface to a 32-bit system bus on the right side
and a 16-bit processor on the left side. From the right
port, the memory appears as 8K 32-bit words, and from
the left port the memory appears as 16K 16-bit words.

The memory has the following characteristics:
1. The memory location corresponding to address

zero for both ports is the same.
2. The data read from and written to the memory

from both ports is in the same order. Thus, DO of the
right port corresponds to DO of the left port. Addition­
ally, D16 of the right port appears as DO of the left port
in address location 2048.

3. The minimum cycle time is 35 ns.
4. To conserve power, blocks of addresses are

decoded to generate the required chip selects.

(L)
(L)

LJ.)
A

(L) D U,A L
)

D .. (L) .. WE RAM

5. The CY7C132 and CY7C142 dual-port RAMs
are used. Part of the design task is to specify the num­
ber of masters and slaves required and the way they
must be interconnected. .

6. The appropriate Busy signals must be generated
to the correct port when contention occurs.

7. All possible mailbox locations that can be used
for message passing 'are used.

8. The right port signals are ARO ... ARI2,
DRO ... DR31, ~; and BusyR. The left port signals are
ALO ... AL13, DLO ... DLI5, eEL, and BusyL.

A simplified logic diagram of the memory appears
in FigurelO. A total of 16 2K X 8 dual-port RAMs are
required. The devices labeled MA (master, bank A)
through MD (master, bank D) are CY7C132 masters.
The devices labeled SU (slave, upper half-word) and SL
(slave, lower half-word) are CY7C142 slaves. The
memory cpnsists of' four masters and twelve slaves,
along with the required control logic.

From the right port The memory is configured as
8K 32-bit words, with a master' controlling three slaves.
The one-of-four decoder labeled RB (right bank)
generates. chip-enable signals for each bank of 2K 32-bit
words. Data is written (sampled) on the bus side, and
the only reads performed are from the mailbox
locations.

A general-purpose, right-port, control-logic block
generates control signals that conform to the timing
diagram shown in Figure 11. The diagram does not show
the generation of the output-enable control signals, but
they are similar to the RB decoder signals. If your ap­
plication does not require message passing to the right
port, you can tie the right-port output-enable pins of all
of the dual-port RAMs directly to Vee.

A
PO R T D

CHIP WE

(R)
(R) -
(R)~

AID - AD (R)
D7 - DO (R)
WE (R)

AID - AD
D7 - DO

WE (L
OE (L

CHIP ENABLE
BUSY (L

)

{ L
_ ..

OE (L)
o E (R)
CHIP ENABLE (R) CY7C132 DE (R)~

BUS Y CR)

.. (L) (R) :::
)

' CE 2K x 8 CE

l
BUSY (L)MAS T E R BUSY ('1
~

I Vee

v

1\ DELAY DELAY :j

I..LI)
1-+ A eL) \j' A (R) f4-

--"' , (L) DUAL PO R T D (R) ~ . D D15 - D8 D15 - D8 (R)

I,' 4 WE (L) .RAM CHIP WE (R) f4-
~ OE (L) CY7C142 OE (R) ~

~ CE (L) 2K x 8 CE (R) ~
---.;.

{'L)S L A V E BUSY (t . BUSY ..,

Figure 9. Expansion (2K x 16) With Slave

4-16

From the left port, the memory is configured as
16K 16-bit words. For this organization, you might think:
that the slave dual-port RAMs in the second column
from the right in Figure 10 should be masters. If this
were the case, however, you would have to defeat the
arbitration logic in them when the right port addressed
the same address; this would add logic, reduce the
speed, and complicate the design. Therefore, this design
uses a combination of left-bank decoding (LB, 1-of-4
decoder) and upper-lower 16-bit word decoding (UL, 1

of 8 decoder) to cause the bank master to arbitrate
when the right port is addressing the same bank as the
left port (more on this later).

ALII
ALl!
ALll

AL(O.lD)

.-

~ LEFT POIT

~ COITIOL
LOIIe

~

Id

EIAILI·
.----

A • • I iEr
C I

I I&--
U L 4 I&--

I I&-

• !G-II 7
I OF •
DECODE

A •
I 1

I
~ II

L.
I

1 OF 4
DECODE

L-...c

DL' - DLll

yec 0

DLD ILl

Right-Port Operation
For purposes of this discussion, "word" refers to the

32-bit word at the right-port system-bus interface. At
the 16-bit processor interface, the 32-bit word is
referred to as either the lower half word (right-port bits

--<~ r------c~---c~--<~ AI(O.lD
AL(D.lI) AL CD .10) -- I/O-L -- I/O-L

--< CE- L I. C E- L
OE- L DE. L

I-I I-I f--
1/11-1 >-f- 1/11-1 I>--

1(0.11) 1(O.lO) ~
I/O-I - 1/0-1 ~

CE-I C E·I l>-
II-I o E·I l>-
I. L 1- L I--

U SU I--
'----- L---

r---<~CO f----<~I--
i--- AL(D.U) ALCD.IG) I--
~ I/O-L I-- I/O-L

t--< CE- L r CE- L

Ir OE·L OE-L
1-1 '-1 I--

1/11-1 l>- I/II· I P-
1(0.10) 1(0.10) I--

1/0-1 I-- 1/0-1 I--
CE-I C E· I P-
IE-I o E-I P-

I-L I-L l-
- "' SU I--

'---- '----

--c~co
i--<~f-

AL(D.lI) AL (0 .10) ~ - I/D-L ~ I/O-L
--c CI- L II. CI- L

OI-L OI-L

'-1 '-1 I--
1/11-1 ~ 1/11- I l>-

1(0.11) ICO .10) I--
1/0-1 - 1/0-1 ~

CE-I C E-I l>-
DE-I o E- I l>-

I-L '-L I--
IC SU I--

'----- '----

~cc
I/II-L i--<~i--

I-- AL(D .10) ALU.IO) I--
'--- 1/O-L I- 1I0-L

- AL CD .10) -- 1/0-L

--< CE- L -
>----(OE·L -
--< I-I -
f- 1/11- I >--
~ 1(0.1'0) ~

1/0-.1 i""-
f- CI-I ~
f- DE-I ~
f---< 1- L l-

SL
'-----

f----<~I--
I-- AL(OaU) I--
I- I/O-L

...-< CE - L f--
f---< OE-L I--
f---< I-I I--
I-- 1/11-1 l>-
I-- I CO .10) I--

1/0-1 I--
I-- CE-I l>-
t- OE -I l>-
I-- '-L I-

SL
'-----

i--<~f-
~ AL(O.U) I--
~ I/O-L

--< CI-L i--

f---< DE· L l-
f-c '-1 I--
i-- 1/11-1 ~

i-- ICO.IO) i--
1/0-1 i-

i-- CE-I ~

I-- DE -I l>-
f---< '-L I--

SL
'-----

I--<~i""-
I- AL(O.IO)i--

'--- 1/0-L

-- AL(D.l0)
_ I/O-L

-< CE-L
-< DI-L
-< I-I

- 1/11-1 0----- I(O.lO) -
I/D· I I"'""

i- C E-I ~f-
i- DE-I ~
i- I-L

SL
'-----

I--<~
I-- AL(O.lI)

~ 1/0- L

I--< CE-L

I--c o E- L

I--< '-1
f-- 1/11. I I>-
I-- I CO. 10) I--

I/O •• I--
t- CE-I I>-
t- DE-I l>-
-< I-L

SL
'----

I--<~
i-- ALCO.lO)
I-- 1/0-L
I--< Cl-L
I- OI-L

I- '-1

i""- 1/11-1 ~

i- ICO.IO) i-
110-1 i-

i- CE-I ~
f- a E·I ~
I--< '-L

SL
'-----

I-~
i-- AL(O.IO)

-- 1I0-L

f-

~
rE

III IT POI ~
CDUIOL ~ LOIIC

~

1~
ElAILE-1

0 A .. I--
1 . .. I--
I ..
J u"

I OF 4
DECODE

o E·

.......
-.....J

Aill
AUI

'---- CE- L II. CE- L r-' CE - L I-- I---< C E- L
OI-L OE- L +-- DE - L I-- I---< OI-L

'-1 1- I i-H- I-I i- t--< 1- I
1/11-1 1>--1- 1/11-1 I>-H- I/II-I l>- I-- 1/11-1 P-

I(O.lD) ICO .10) I-1-1- ICDalD) l- i--- I Co. 10) l- t-
1/0-1 I-- I/O-I I-- 1/0-1 I-- 1/0- I i-

CE-I C E- I P- 1-1-- CE-I P- I-- C E· I P- I--
IE-I 01-1 P- I-f-- 01-1 l>- I-- 01-1 l>-
I- L J '-L I-- I-f---< '-L l- i---< '-L

10

YeC}

su I-- SL 5L
'---- '---- '-----

01!4 - Dill 011' DIU 01' 01 .. 010 - .17

Figure 10. Logic Diagram for Dual-Port Example

4-17

ADDRESS _______ X ______________________ XL ____________ _

CE,OE.'vIE u
Figure 11. Dual-Port Timing for Example

o through 15) or the upper half-word (right-port bits 16
through 31).

The bank-selection process employs the chip
enables. Specifically, the l-of-4 RB decoder decodes
the four combinations of the upper two right-port ad­
dress-bus signals and generates four active-Low chip
enables to each bank of four dual-port RAMs. Bank A
contains addresses 0 through 2047, bank B contains ad­
dresses 2048 through 4095, bank C contains addresses
4096 through 6143, and bank D contains addresses 6144
through 8191. In other words, bank A addresses 0 to
2K, bank B 2K to 4K, bank C 4K to 6K, and bank D 6K
to 8K.

The lower 11 right-port address lines, AR(0:10),
are connected to the AO through A10 right-port address
pins of all the dual-port RAMs.

Figure 11 does not show the generation of the write
strobe, but does show the signal's timing. The write
enable is applied directly to all the masters in parallel,
then buffered, and th~n applied to all the slaves. The
minimum propagation delay of the buffer must be at
least as large as tSLA, which is the time required for the
master to assert the busy signal to the slaves after an
address match occurs.

Note that all the right-port output-enable pins are
connected together. These pins should be driven if
reading is required; otherwise connect them to Vee.

The open-drain busy outputs of the right port
masters must be pulled up to Vee using resistors. A
value of 3300 is recommended. The master busy out­
puts connect to all the right-port slave busy inputs for
each bank.

For the data bus interface, the I/O pins of each
RAM column connect to their respective I/Q pins on
each bank. This OR-tie connection is allowed because
the bank-selection chip enable causes the output buffers
of the un-selected banks to go to the high-impedance
state.

4-18

Left-Port Operation
The l-of-4 decoder labeled LB performs bank

selection for the left port. The upper two left-port ad­
dress lines, AL13 and AL12, decode bank-select chip­
enable signals for the four masters only. Bank A cor­
responds to addresses 0 through 4095, bank B cor­
responds to addresses 4095 through 8191, bank C cor­
responds to addresses 8192 through 12,287, and bank D
corresponds to addresses 12,288 through 16,383.

To perform upper and low~r half-word selection,
the I-of -8 decoder labeled UL decodes the upper three
right-port address signals. The decoder then generates
eight chip-enable signals with a resolution of 2048. The
chip enables connect to the slaves' chip-enable and out­
put-enable pins (2048 resolution) and to the masters'
output enable_ Because the master chip-enable resolu­
tiqn is 4096, the master arbitrates for two block~ of 2048
16-bit half words.

The lower eleven left-port address lines, AL(O: 10),
connect to left-port address pins AO through A10 of all
the dual-port RAMs.

At the 16-bit interface, writing is only required if
the left port wishes to send a message to the right port.
Otherwise, you can· connect the left-port write pins of
all the dual-port RAMs to V ce.

To implement the left-port data bus interface, the
left port's data I/O pins are connected together in the
same manner as those of the right port for all RAMs in
the same column. In addition, to multiplex a 32-bit data
word to a 16-bit half word, the least-significant bytes
and the most-significant bytes of each 2048-word group
are connected together_ The UL decoder that controls
the left-port output enable performs the selection_

Jf you use the masters' interrupt pins, pull them up
to Vee through a 3300 resistor and connect them to the
processor interrupt-request input. You can leave the
slaves' interrupt pins IlDconnected.

If the control signal connections from their source
to the dual-port memory constitute electrically long
lines, they might require proper termination to avoid
voltage reflections· due to impedance mis-matches.
Refer to the application note "Systems Design Con­
siderations When Using Cypress CMOS Circuits" in this
book for further information;

References
1. Dijkstra, E.W., "Solution of a Problem in Con­

current Programming Control." CACM, Vol 8, no.9,
Sept. 1965, p 569.

2. Dijkstra, E.W., "Co-operating Sequential Proces­
ses." Programming Languages, F. Genyus (Ed.)
Academic Press, New York, 1968, pp 43 - 112.

CYPRESS
SEMICONDUCTOR

Using Dual-Port RAMs Without Arbitration

This application note offers several ways to imple­
ment dual-port RAMs to facilitate communication be­
tween processors. The applications covered include com­
munication with general-purpose processors; video and
radar equipment; digital sigrial processors; and bit-slice
processors.

The most common application for dual-port RAMs is
to provide a high-speed memory resource that can be
shared between two processors in a system. Figure 1·· il­
lustrates how the two processors communicate by passing
data and commands via the shared memory. Both proces­
sors benefit by having access to the dual-port RAM be­
cause it is mapped just like any other memory device on
the board.

Fast, local access to the shared memory eliminates
the need to arbitrate for and access the system bus, when
reading . or writing a common resource area such as a
shared memory card. In fact, many mUltiprocessor em­
bedded-control systems implement dual-port RAMs for
interprocessor communication and eliminate the system
bus entirely. Removing the burden of a system bus, which
only exists to hook the processors together, reduces the
complexity of the system as well as the part· count and
power consumption.

Dual-Port Overview
Incorporating dual-port RAMs into a design such as

the dual-processor example is straightforward. But it is
important to consider the case of an address contention or
busy situation that can arise when both. processors simul­
taneously attempt to access the exact same location.

Cypress dual-port RAMs have several mechanisms
that simplify simultaneous access. The simplest approach
to resolving contention is to use the dual-port RAM's
Busy output lines. Both right and left ports provide a Busy
output signal. The arbitration logic inside the dual-port
RAM activates Busy when the logic senses a match be­
tween the left and right address lines. Assertion of Busy
indicates that both ports have attempted to access the
same location in the RAM.

In the case of a dual-processor system, these signals
can easily be gated with the processor's local Wait signal

4-19

to generate a hold to the microprocessor until Busy is
deasserted. Adding an occasional wait state to a
microprocessor generally has no effect on the overall sys­
tem performance.

Gating the Wait line and generating a hold to the
processor resolves the logical problem of simultaneous ad­
dress conflicts but does not address the system-level is­
sues that can cause the conflicts. The two-processor ex­
ample serves to illustrate a common underlying cause of a
Busy state. Say that processor A attempts to read an array
of data that was generated by processor B, but the system
contains no mechanism to alert processor A when the data
is ready or valid. Therefore, processor A might be updat­
ing a RAM location while processor B is reading the same
address or vice versa.

This lack of overall synchronization or interprocessor
communication can manifest as stale data or incomplete
arrays of data in the shared memory. In a few cases, stale
or incomplete date is tolerable, but in most cases it is
fatal.

Locking a processor or processors out of specific
memory areas until data is available guarantees that
processors never receive stale data. To implement such
address-space restrictions, you must provide a level of ac­
cess protection above the basic gating-of-Busy technique.
In mpst cases, you must add external hardware that sig­
nals the processors when new data is available or when

Processor DUAL PORT Processor
ADDRESS RI\Iot ADDRESS

"'" "B"

DATA DATA

allY Il,IIY
" ,

, INT!RIU>T INT!RRLPT"
.... ,

Figure 1. Dual-Processor Communication

~= Using Dual Port RAMs Without Arbitration
~~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;; 

Table 1. CY7C132 Interrupt Line Usage 

Function, Result 

Write to left Address 7FFh Asserts Int_ right 

Read from Right Address Removes Int_ right 
7FFh 

Write to Right Address Asserts IntJeft 
7FEh 

Read from Left Address Removes IntJeft 
7FEh 

permission is granted to access a certain area of the dual­
ported device. 

Interrupts serve well as a simple means of alerting or 
synchronizing interdependent system elements that pass 
d~ta ~ia a shared memory. Cypress dual-port RAMs pro­
VIde. mte?Upt outputs to simplify the task of interrupting 
or signalmg the processors; this relieves you of the need 
to create your own interrupt mechanism. Assertion and 
deas~ertion ?f these interrupt lines is accomplished by per­
fo~ng wnte and read operations to special locations 
withm the dual-port RAM. Table 1 lists the read and write 
operations. 

The data word written to in these devices, 3FEh and 
3FFh, . can be used as a status word or semaphore. This 
word IS presented to the data bus during the read opera­
tion of an interrupt removal cycle. The status word 
provides additional system-level information that aug­
men~ the h.ardware inteu:upt signal by passing along some 
!lleanmg ~Ith the actual mterrupt event. More simply, the 
mterrupt line alerts the processor that some action is re­
quired, and the status word provides additional informa­
tion about exactly what happened or what needs to be 
done. 

The actual. meaning of the status byte is defined by 
the system desIgner. Generally, the status byte is used to 
indicate that data is ready, to lock a processor out of a 
specific range of addresses, or to prompt a processor for 
new data. Using the interrupt, along with status informa­
tion, is an easy way of avoiding busy conditions by 

VIdeo RAM 

. synchronizing processes or restricting address spaces via 
software. 
. You now have tW? m~in options for dealing with 

sImultaneous address SItuations: Use Busy in a strictly 
hardware solution, or couple interrupts with status words 
for a software solution. Regardless of your preference for 
a hardware. or so~tware approach, Cypress dual-port 
RAMs provIde all SIgnals and functions necessary to en­
sure a simple and effective system solution that maintains 
data integrity and system sanity. 

Using Dual-port RAMs Without Arbitration 
Wait states and interrupts are a good solution for sys­

tems with microprocessor-like elements that are not af­
fected by an occasional wait state. However, a much 
broader class of systems and applications cannot tolerate 
any type of data flow interruption or busy condition. Typi­
cally, these systems are dedicated function units that are 
~gidly pipelined and operate on continuous or nearly con­
tmuous streams of data. 

A high-speed video processor is a good example of a 
system whose elements cannot be wait-stated due to the 
requirement that a data word or pixel be processed in 
every clock cycle. The block diagram in Figure 2 shows a 
video data transform or look-up table. 

This implementation uses a very common dual­
banked or "ping-pong" RAM to realize a look-up-table 
translation function (Figure 3). A continuous stream of 
video data drives the address lines of RAM bank O. The 
output or transformed data of bank 0 flows downstream to 
the post-processor units. Meanwhile, as continuous video 
data flows through RAM bank 0, the transform table of 
bank 1 is updated by a processor element, without inter­
fering with the video data flow. 

Dual banks make it impossible for a busy condition 
or address conflict to exist, because each system element 
essentially has its own discrete dedicated RAM. The 
processor finishes updating the look-up table, then swaps 
RAM banks by toggling the bank-select line. The PAL 
then changes the state of the buffer-enable signals which 
redirects the data flow pattern of the two RAM banks. 

The ping-pong arrangement is effective, but the im­
plementation is very costly in terms of real estate. The 

Data ---~ ~-~--~A D~-~~--~ 
TransforMed 
Data Out 

(Bank 01 

RAM 
Processor 
Address 

Bus -----~A 

(Bank 11 

Figure 2. Video Look-Up Table 

4-20 



Table 2. Dual-Port vs. Ping-Pong RAM 

Device Otv Power (rnA) Size (Sa.in.) 

FCT244 6 15 0.4 

FCT245 2 10 0.4 

PALI6L8-D 180 0.4 

2Onsx8 RAM 2 140 0.52 

Total 11 570 4.64 

CY7C142-35 120 1.5 

design requ~es at least 11 very high speed devices, using 
standard static RAMs. 

Replacing the buffers, logic, and SRAMs with a 
single dual-port RAM (Figure 4) simplifies the design 
sub.stantially. Video data utilizes the device's left port, 
while the processor communicates with the right port. 
Raving two ports eliminates the need for any type of data 
and address steering buffers. During processor update 
cycles, however, there remains the problem of simul­
taneous address accesses and busy conditions. 

RAM segmentation eliminates the possibility of a 
busy conflict and provides the key to implementfug a 
dual-banked RAM within a single dual-port RAM. A 
single inverter segments the RAM. The Bank select sig­
nal from the processor drives the left address -port MSB, 

Video Dota 

Y,o" .... 

~lLi::O' AReo:., 

TrOll.forMd 
DotaCklt 

IlR(O:71~----~Gm'm' 

Figure 4. Video Lookup with Segmented Dual-Port 
RAM 

and the Bank_select signal's inverse drives the right MSB. 
The dual-port RAM is now segmented into two lK ad­
dress spaces that do not overlap. The RAM appears as two 
totally separate RAMs, as it did in the ping-pong im­
plementation. Again, because the left address can never 
equal the right address due to the opposite state of their 
MSBs, a busy condition is not possible. 

. Using a dual-port RAM does more than simplify the 
deSIgn. Table 2 shows the tremendous savings in real es­
tate and power consumption. Specifically, a single dual­
port device reduces the board area by 68 percent and 
reduces the power consumption by almost 80 percent. In 
terms of MTBF, system reliability benefits greatly from 

Ran_Bank Se'80t --T---t-----L--+----t--+--------.J 
~_,,....-----4-----4Cpu.Data 

Ran.Bank.SIII.t ---r-+--I--+-----L-~ 

Figure 3. Ping-Pong RAM Array 

4-21 



Dua ~Y~~~~2Ra" 1--____ 'ilALIO:1I DLIO:" 

DRIO'" 

Figure 5. Data Descrambler 

Or ...... 
0. •• 0.. 

having fewer components and significantly lower power 
dissipation. 

The multitude of buffers and transceivers that steer 
data and address signals in a ping-pong memory array 
take up relatively large amounts of board space as well as 
adding to the data propagation delay. The latter forces you 
to use very high speed RAMs. Dual-port RAMs do not 
suffer from the burden of buffer delays and can therefore 
operate at significantly lower speeds. 

Handling Video or Radar Data 
Many types of high-speed data-processing applica­

tions can benefit form the use of dual-port RAMs. For 
example, high-speed video or radar data is often trans­
mitted in nonsequential or cross-interleaved order. The 
receiver must first descramble or reorder the data before 
the data can be used. Again, the incoming data stream 
cannot be stopped in the event of an address contention. 

Figure 5 shows that a dual-port RAM is an ideal 
solution for this type of problem. Incoming data is written 
into the RAM's left port in the received order. The pixel 
counter provides sequential addresses to the left side of 
the dual-port RAM and increments after each pixel. At the 
end of the first line, the counter reaches terminal count 
and initiates a bank toggle via aT-type flip-flop. After the 
banks switch, the new data is accessible via the right port. 

A FIFO stores the reordering sequence and thus 
drives the right port's address lines to read-out the stored 
video data. PROMs and counters can also implement the 
descrambling function, but this approach requires more 
parts and is much less flexible. Using a FIFO eliminates 
the need to generate addresses for the reordering sequence 
table. The CPU initializes the descrambling FIFO at boot 

Using Dual-Port RAMs Without Arbitration 

4-22 

~:8iU::~ 
ce· 
oe· 
RIV 

, 
Addu .. 

I ' 
Dua~Y~~~t2R." 

~ ALIO", 1lL10")~ Da •• 

ALlIO) 

~ RIV-L ~ 
,E-L 

CE.L 

- - -
~~:::::::;i 

RIV_R 

"'''noW' OI!..R DRco:" 

" .--Ji 
CE..R 

HlIIOI 
V 

~r:- ""0:11 

Figure 6. CPU/Pipelined Processor Interface 

up. Initialization is only required once because the FIFO 
utilizes its retransmit function (described in the CY7C429 
FIFO data sheet), unless the data ordering changes. Be­
cause this design implements the dual-port RAM as a seg­
mented memory, you can ignore the problems caused by 
address contention. 

For DSPs and Bit-Slice Processors 
Interfacing a system's CPU to a high-speed, pipelined 

digital signal processor or bit-slice processor is another 
common system interface problem. Coefficients and com­
mands must be passed to the pipelined processor, and 
fmal results read back by the CPU. Dual banks of RAM 
are often furnish a solution because they provide a shared 
memory space that both system elements. can use without 
address contention. 

Because the machines involved are rigidly pipelined, 
they cannot easily be stopped or interrupted. Thus, a 
single, segmented, dual-port RAM (Figure 6), or several 
dual-port RAMs in parallel with no additional glue logic, 
provides a simple, cost-effective solution to this problem. 

If two banks of data are too restrictive, you can seg­
ment the dual-port RAM into multiple address spaces by 
restricting more of the upper-address-line pairs. This 
scheme allows the processor to easily and quickly com­
municate with the pipeline processor without using large 
amounts of real estate and power. 



~ ~ --...... 
-':] .~ .. '= CYPRESS ____ iiiii", SEMICONDUCTOR 

Using Cypress SRAMs to Implement 386 Cache 

Because the 80386 is the most commonly used 32· 
bit microprocessor available today, this application note 
discusses some 386 cache implementations that take ad­
vantage of special features offered by Cypress's SRAM 
products. This application note does not offer a broad 
treatment of cache memories, however, and it assumes 
that you have a fundamental understanding of cache 
memories and the terminology associated with them. 

Mainframe computers have used cache memories 
for several years. Desktop systems did not require 
caches until the advent of 32-bit microprocessors, such 
as the 80386, that run at clock frequencies of 20 MHz 
and above. A cache allows you to make full use of the 
microprocessor's available throughput. This is because 
the processor's bandwidth is greater than the bandwidth 
available from commonly available DRAMs. 

In a memory hierarchy, a cache is a small, fast 
memory placed between the processor and main 
memory. A cache stores the most often. used data and 
instructions to avoid accesses to main memory. Because 
of speed requirements, a cache is usually implemented 
with fast static RAM. The goal, then, is to implement 
the memory subsystem such that the processor's effec­
tive average access time approaches that of the cache, 
while the memory subsystem's cost per bit approaches 
that of the main memory. 

Computer programs exhibit temporal and spatial 
locality, which make cache memories possible. Tem­
poral locality refers to a program's tendency to re-refer­
ence the elements referenced in the recent past. Loops, 
temporary variables, and stacks are examples of con­
structs that conform to this property. Spatial locality 
refers to a prograJ1l'S tendency to access a portion of 
the address space in the neighborhood of the last refer­
ence. Sequential program execution and repeated ac­
cess to array variables are examples of this property. 

In addition to discrete cache implementations, 
several VLSI cache controllers are available today for 
the 80386. This application note describes two of the 
most popular: the Intel 82385 and the Chips and Tech­
nologies 82C307. A discrete cache implementation using 
Cypress products is covered first. 

4-23 

Discrete Implementation 
You can implement a cache memory without using 

a VLSI. cache controller. This discrete approach has the 
advantage of allowing you to custom tailor the cache 
subsystem to your specific requirements instead of 
being limited by a VLSI cache controller's capabilities. 
You can implement a low-cost cache subsystem or a 
cache with higher performance characteristics than can 
be achieved with today's VLSI cache controllers. 

The discrete approach also has drawbacks. It 
makes high-speed caches more difficult to implement 
due to the delays incurred by discrete ICs input and 
output· buffering, as well as trace delays introduced by 
the printed circuit board: Discrete solutions can also in­
crease board-space and power requirements, and trans­
mission line and noise effects become a more significant 
problem. 

Figure 1 shows a block diagram of a simple, 64-
Kbyte, direct-mapped, write-through cache. You can 
implement the control logic in programmable logic or a 
gate array (which are not detailed here). The cache tag 
or directory into the cache data is implemented in the 
CY7Cl50 lK X 4 resetable SRAM. The CY7B185 8K X 
8 SRAM serves as the cache data RAM. CY7C408A 64 
X 8 FIFOs are used as write buffers, which reduce the 
number of processor stalls in the write-through cache. 

This example assumes that no memory references 
are made above 1 Gbyte. Thus, only the lower 30 ad­
dress bits of the 80386 are used. Because the tag direc­
tory has lK entries, and the data cache is organized as 
8K X 32, the line size for this example is eight words or 
32 bytes. 

The 80386 supports two modes of local bus opera­
tion: pipelined and non-pipelined. With address pipelin­
ing enabled, the processor puts the address of the next 
memory access on the bus during the current access. 
This effectively gives the memory subsystem an extra 
clock cycle to decode the address. This approach has 
two drawbacks, however. First, entering pipeline mode 
incurs an additional wait state. Wait states also occur 
during branches, after periods when the processor's 



~ 
.~~R~ Using Cypress SRAMs to Implement 386 C ... ache 

~~~~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

..
mn lIT

cucu,

J
14

11 .• 111 ' .. At

JLL.U ' .. IS mInE

~ ~ LIm
U .. tI

Inri nmu cumu
VE 14 14

- 'E ,..LU- 0 .. lIZ

~ -IS 11 .. 11 111 .. 117

~cs
JO .. II

~ VE m FIE ~

,-11 II

ll- m 'r-II II

I ill- CEZ ,-/IE an
'r-lill IF

,..--

~ cmlll
l,m Tt

- UII
1110 II

~

-r-----

Uti r-- nmUl - 14

U .. AIt II. ".1118 .. 1 11 .. 117 -
1Et .. 1El / 111 •• 111 ~
.... 131 I II ?=, II

mUll

V-I~:I an
IllY .# rr-II If ,----"

r--

I~
1l1'
'---

Figure 1. A Discrete Cache Implementation

pre-fetch queue is full, and after another bus master,
such as a DMA controller, relinquishes the local bus to
the ·processor. The second drawback is that the address
and' some of the control signals must b.eextemally
latched, requiring additional board space and com­
plexity. Thus, for simplicity and increased performance,
the 80386's address pipelining feature is disabled in this
example.

. During . memory read accesses, address bits 5
through 14 index one of the entries in the tag RAM.
Simultaneously, address bits 2 through 14 access the
data RAM. After time tAA of the tag RAM, the address
tag appears at the comparator inputs. This tag is
qualified by the valid bit and compared with 80386 ad­
dress bits 15 through 29. The ~atch output is fed to the

4-24

cach~ control logic. If a match is found, and the cache
lin~ .. is valid (i.e., a read hit occurred), the cache RAMs
supply data to the 80386, and the cache control log~c
asserts /386 ROY. If a match is not detected, or the
cach~ line; i~-invalid (Le., a read miss occurred), the out­
put enable of the cache ~AMs is de-asserted, and a
main memory access, is initiated. The cache control
logic causes the cache line to . be updated from main.
memory. The control logic then updates .. the valid bit
and supplies the requested data as well as /386 ROY to
the processor. . . -

T!lis cache implements. a. write-through, no-write-al­
locate' policy. Therefore,' for. write hits, both the cache
RAM and main memory; are updated before the 386

Table 1. Worst-Case Timing Calculations with the
82385

CALE : 82385 Cache Address Latch Enable
CS(3:0)# : Cache Select 3:0
COEA#,COEB# : Cache Output EnaBles A,B
WEA#, WEB# : Cache Write Enables A,B

Read Timinlf
tAA (max) non-vivelined mode

4 CLK2 periods = 4 x 15 ns

CALE valid from CLK2 (max)

386 data set up time (max)

tAA (max)

COE(A.Bl#. CS(3:0)# to Data Valid

4 CLK2 periods = 4 x 15 ns

CS(3:0)# valid from CLK2

386 data set up time

COE(A,B)#, CS(3:0)# to data valid

t()P (max)

2 CLK2 periods = 2 x 15 ns

COE(A,B)# active from CLK2 (max)

386 data set up time (max)

tOE (max)

Write Timin!!
WEA#, WEB# pulse width (min)

60ns

- 15 ns

...::..i!!§
40ns

60ns

- 25 ns

- 5 ns --
30ns

30ns

- 15 ns

- 5 ns --
10 ns

20ns

can continue execution. On write misses, only main
memory is updated.

Write buffers between the processor and main
memory improve write performance. During write
cycles, the processor writes to the write buffers, and the
cache control logic updates main memory as a back­
ground task. While main memory is updated, the
processor can continue executing as long as it executes
read hit cycles or write cycles and as long as the write
buffer has room. After a read miss, the processor halts
until the write buffer has been completely flushed to
main memory. Otherwise, the processor might access
stale data from main memory.

The write buffers are implemented with Cypress
CY7C408A 64 X 8 FIFOs. This device features speeds
up to 35 MHz. It is deep enough that a full write buffer
condition seldom occurs, and its output enable makes
external three-state devices unnecessary.

The CY7C150 SRAM has two features that are
beneficial in cache tag applications. First, access time is
very fast. This product is available with a tAA as fast as

4-25

10 ns. This speed is important, because the tag logic can
prove to be the critical speed path in the design.
Second, the CY7C150 has a memory reset function that
allows the contents of the entire tag to be flushed within
two memory cycles. Therefore, a cache flush operation
can be performed much faster than if the processor had
to invalidate the tag RAM on a line-by-line basis.

The CY7B185 SRAM is fabricated in Cypress's
high-performance BiCMOS process and is organized as
8K X 8. The device is available with access times as fast
as 10 ns and comes with a variety of packaging options.
This part's X 8 width allows you to implement the en­
tire data cache with only four devices.

Cypress provides a wide variety of memory width
and depth configurations, all available with fast access
times. You can thus implement the configuration that
best suits your specific design requirements.

82385 Implementation
The 82385 is a VLSI cache controller offered by

Intel that is specifically designed to work with the
80386. The device supports a 32-Kbyte cache and can
be configured to operate in direct mapped or two-way
set-associative modes by strapping the 2W/D# pin. Ap­
pendix A provides information for strapping the 82385.

The CY7C184 cache RAM connects directly to the
Intel 82385 and 80386 with no external glue logic. You
can configure the CY7C184 as a 2 X 4K X 16-bit device
for set-associative implementations or as an 8K X 16
device for direct-mapped implementations.

During read misses, the 82385 invokes the 80386's
pipeline mode to reduce the miss penalty. Therefore,
the processor's address must be externally latched. The
CY7C184 contains address latches, eliminating the need
for discrete latches. Using discrete 4K X 4 SRAMs to
implement the two-way set-associative configuration
would require 18 ICs for the data cache and address
latches. Only two CY7C184s can implement the same
function in a space-saving 52-pin PLCC package.

The CY7C184 is configured by strapping the
MODE pin High for set-associative operation or Low
for direct-mapped operation. In set-associative mode,
address bit A12 is a Don't Care and should be external­
ly grounded. Figures 2 and 3 show the connections for
two-way set-associative and direct-mapped modes,
respectively.

Table 1 illustrates some worst-case· timing calcula­
tions for a 33-MHz system. As the CY7C184 data sheet
shows, the -25 part meets or exceeds all the worst-case
requirements. For the 33-MHz configuration, there is
no difference in the 82385 timing specifications for set­
associative and direct-mapped operation. Therefore,
set-associative operation is recommended, because it
yields higher hit rates. For some lower-speed grades of
the 82385, the timing is less stringent for direct-mapped
operation. Therefore, slower, less-expensive cache can
be implemented for direct-mapped operation. Thus, you
must make a price/performance decision.

f5r:~CCIDK:TOR =;;==;;;;;;;;;;;U;;;;sl;;;;·n;;;::g;;;;;C;;;;y:;;;;:p:;;;r;;;;e;;;;s;;;;s;;;;S;;;;R;;;;A;;;;M;;;;;;;;;;;s;;;;t;;;;o;;;;I;;;;m;!p;;;;le;;;;m;;;;;;;;;;;en;;;;t;;;;3;;;8;;;6;;;;;;;;;;C;;;;a;;;;ch;;;;e;;;;;

CY7C184
A2 A J AO - All

386
ADORES
BUS

!) AU

82385
CACHE
CONTRO

386
ADDRESS
BUS

82385
CACHE
CONTROL

r-
ALE D I" II 1 II 1I'J1 DO -lOp
IIIEA
10EI
IIIEI
ICSl
ICSO

.:!:.ll..... MODE

~ ICE

*
CY7C184

AO - All

r- AU
CALE ALE

DO - D I" nn n 1 iii
ICOEA 10EA
ICVEA IIIEA
ICOEI lOEB

l JeVEB IVEB
ICS! I CSl
ICS2 ICSO
Jest I .±.l.L MODE
ICSO

~ ICE
~

Figure 2. Set Associative Operation with the 82385

CY7C184
~~~~ ________________________ ~AO - AIZ 

~ __________ ~ALE 

~-4+-________ ~/CSO 
MODE 
ICE 

CY7C184 
~~~~ ________ AO - A1Z 

-L~~-H~~~ ______ ~ALE
-L~~-H __ ~~ ________ /OEA
-L~~-H __ ~~ ________ /IIEA

+ V lOEB
+ IIIEB

~~L-______________ ~/CSI

~~L-______________ ~/CSO

MODE
ICE

Figure 3. Direct Mapped Operation with the 82385

4-26

386
DATA
BUS

386
DATA
BUS

5~CYPR!SS Using Cypress SRAMs to Implement 386 Cache
~CaID~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

82C307 Implementation
The 82C307 is a combination cachelDRAM con­

troller offered by Chips and Technologies. The device is
part of a chip set designed to offer a high-performance
IBM PC/AT -compatible system with a minimum num­
ber of components. Because the 82C307 has a two-way
set-associative cache-mapping policy, strap the
CY7C184 MODE pin High for proper operation.

The cache organization for the 82C307 is
2 X 4K X 32 bits. Two CY7C184s implement the entire
data cache. The 82C307 also makes use of the
CY7C184's built-in address latches when pipelined
mode is required. The 82C307 has a programmable fea­
ture that allows either chip select or output enable to· be
supplied to the cache data RAM. This feature should
always be programmed to generate a chip select when
using the CY7C184. Figure 4 illustrates how to use the
CY7C184 with the 82C307. The Chips and Technologies
82C306 is used to latch the 80386 byte enables.

Table 2 illustrates some worst-case read timing cal­
culations for a 25-MHz system in both non-pipelined
and pipelined modes. As the CY7C184 data sheet
shows, the -25 part meets or exceeds the worst-case re­
quirements for non-pipelined mode, and the -45 part
does the same for pipelined mode. Again, you must
make a price/performance decision based on these op­
tions.

PCB Layout Considerations
As with any high-speed system, you must pay care­

ful attention to the layout phase of a 386 cache project.
The following rules of thumb help reduce noise
problems and radiated EM!. A multilayer board with
both power and ground planes is strongly recom­
mended. Power and ground planes provide good, low­
inductance paths for the power connections to the
devices on the PCB. These paths help minimize ground
bounce and other noise problems. Sandwiching power
or ground planes between signal layers greatly· improves
the circuit board's noise characteristics. Ground-loop
currents are minimized, which reduces capacitive and
inductive signal coupling. A maximum center-to-center
spacing of 8 mils between signal and power layers is
recommended.

Good high-frequency decoupling on power and
ground connections is very important for reliable high­
speed operation. High-frequency bypass capacitors with
NPO or X7R dielectrics are recommended. These
devices store charge and supply. instantaneous power
required by the active devices on the PCB. For the
CY7C184, one O.1-JlF and one 0.01-JlF capacitor are
recommended per device. Surface-mount capacitors are
preferred because of the lower lead inductance these
devices exhibit. Additionally, you can place surface­
mount devices on the back of the PCB in the center of
the device they are intended to decouple. This place­
ment reduces the inductance between the capacitor

4-27

Table 2. Worst-Case Timing Calculations with the
82C307

CRD(1:0)# : 307 Cache Read 1:0

Read Timing-

tAA (max) non-oioelined mode

4 CLK2 periods = 4 x 20 ns 80ns
CRD(1:0)# from CLK2 (max) - 12 ns
386 data set up time (max) ~
tAA (max) 61 ns

10£ (max) non-vipelined mode

1.5 CLK2 periods = 1.5 x 20 ns 30ns
CRD(1:0)# active from CLK2 (max) - 12 ns
386 data set up time _ 7 n"

tOE (max) 11 ns

fAA _(max) vipelined mode

6 CLK2 periods = 6 x 20 ns 120ns
CRD(1:0)# from CLK2 (max) - 12 ns
386 data set up time (max) -70s

tAA (max) 101 ns

toP. . (max) vivelined mode

3 CLK2 periods = 3 x 20 ns 60ns
CRD(1:0)# active from CLK2 (max) - 12 ns
386 data set up time (max) -=-2m.
tOE (max) 41 ns

leads and the actIve deVIce's power and ground connec­
tions.

Avoid sockets whenever possible because of the
extra inductance introduced. If sockets are necessary,
high-quality sockets with gold-plated contacts are
recommended.

Pay careful attention. to the routing of traces. In
general, traces should be kept as short as possible to
reduce transmission-line effects. Point-to-point connec­
tions are recommended, as opposed to stubbed or tree­
type connections. The latter causes discontinuities in
the transmission line, which create reflections. Instead
of 90· bends, traces should be curved; or use two 45·
bends. This help~ reduce EM!.

Critical signals, such as clocks and control lines,
should be routed first. Whenever possible, keep these
signals on the same layer, because vias cause transmis­
sion-line discontinuities. Routing these signals on the

386
ADDRESS
BUS

82C307
CACHE
CONTRO

82C306

'7 , ~

CALE
ICROO
leWED

L ICRDI
ICWEI
IlRE3
ILBE2
ILIEI
ILBED

~

.tlL

~
~

r---

I .tlL

~
~

CY7C184
AO - All
Al2
ALE
10EA

DD

IWEA
10EI
lWEI
ICSI
ICSO
MODE
ICE

CY7C184
AO - All
A12
ALE
10EA

DO

IWEA
lOEB
IWEB
ICSI
ICSO
MODE
ICE

. 0.5D1II

- o [S D D

D31

DtS

386
DATA
BUS

Figure 4. Operation with the 82C307

inner layers reduces radiated emissions. To minimize
transmjssion-line effects, keep these traces to a maxi­
mum of six inches in length. To minimize crosstalk, a
center-to-center minimum spacing of 16 mils is recom­
mended for critical traces.

The signal quaiity of the system clock is a very im­
portant consideration. Pay careful attention to clock
loading and skew. For high-speed clocks, it is usually
recommended to supply each clock input from a
separate driver. The clock drivers should be in a
monolithic package, such as a hex inverter, so that clock

skew is minimized. Keeping clock traces approximately
the same length also helps minimize clock skew.

Series damping resistors in the 10 to 270. range
might be required on clock traces to achieve good sig­
nal quality. If so, use as low a value as possible. Ex­
perimentation determines the optimal value.

Once control lines have been routed, address and
data lines can be routed. These signals are somewhat
less critical, because some settling time is . usually
provided in the worst-case timing. However, these sig­
nals should still be routed point to point, and trace
length should be minimized.

Appendix A
Strapping Information for Different Steppings of the Intel 82385

Intel manufactures different versions (steps) of the 82385 cache controller. For example, the C step activates the
output enables to the cache RAMs whenever the write enable signals are asserted. Step B, on the other hand, inhibits
OE# while WE# is Low. StepSB, one of the new revisions, allows you to control the state of the OE# output during
write cycles. Cypress recommends that pin A14 be tied Low; then OE# is de-asserted during write. There are two
reasons for this:

Although the 7C183 three-states its outputs (tHZWE = 15 - 20 ns) after WE# is asserted, even if the OE# input is
active, the write pulse ' width (tpWE) in some systems might not be long enough to satisfy the tSD requirement after
tHZWE is satisfied. .

Assuming tPWE is long ,enough to satisfy tSD, you must contend with another problem. After the 7C183 three-states
its outputs, the noise caused by its buffers drives the VIR level to 3V. In other words, any inputs less than 3V might
not be recognized as a High level. If you want to avoid this condition, pull OE# High 10 ns before asserting WE#.

4-28

Section Contents

Page
PROMs
Pin-out Compatibility Considerations of SRAMs and PROMs 5-1
Introduction to Diagnostic PROMs .. 5-4
Interfacing the CY7C289 to the AM29000 ... 5-10
Interfacing the CY7C289 to the CY7C601 ... 5-23

~ = CYPRESS F SEMICONDUCTOR

Pin-Out Compatibility Considerations
of SRAMs and PROMs

This application note discusses the non-electrical
parameters of pin-out and programming involved in
finding socket-compatible second sourc~s for PRO~s.
Included here is an example of a venfied converSIOn
from the Motorola 68764 to the Cypress 7C264, a
PROM conversion that is not address-line compatible.

An SRAM Comparison
To understand how to choose second-source

PROMs, consider a comparison with . the process of
choosing second-source SRAMs. Ignonng the AC~
characteristics, rmding a second source for an SRAM IS
relatively simple. So long as the power, ground, control
(chip select, read, write), address, and data lines ar~ on
the same pins, the. devices should be compatible.
Specifically, on SRAMs, the address and data lin~s need
not be numbered identically between the two deVIces for
them to function identically in the same socket. As an
example, on several Cypress SRAMs, the addre~s pin
numbering is not the same as some of our competItors.

Consider a simplified example that illustrates why
address pin numbering is not a problem: Assume you
have a new device, the 2-bit x 4-location SRAM shown
in Figure 1. Note that the inferior pin-out chosen by the
Brand "X" 2 x 4 assigns address . line 2 (A2) to pin 1,
while the superior pin-out used by the Cypress device
has Al at pin 1, etc.

Assume that your engineering staff designed an .in­
frared scanning-pattern-recognizing toaster oven usmg
the Brand "X" SRAM, working only from the device's
data sheet. Just as your company is about to ramp into

Cypress
2x4

1 FI>ll3
2~4

Brand 'X"
2x4

1~3
2~4

Figure 1. Example 2x4 Simplified SRAMs

volume production, Brand "X" sends out an ~nd Of
Life notice on the 2 x 4, because the company IS con­
verting all of its capacity to making DRAM~.

At this point, because you have no deSIre to layout
a new PCB, take a look at how the Cypress and Brand
"X" SRAMs would look in your design (Figure 2). In the
figure, J.1P designates a microprocessor interfacing to
the SRAM. The important thing to notice in Figure2 is
that the data read from an address generated by the
microprocessor is the same as data ~tten k? the same
location earlier. With an SRAM, any mconslStency be­
tween the address and data line numbering does not
matter because the data read is the same as the data
previously written.

To illustrate the point further, suppose that you
write a value of 1 (J.1P:D2,Dl = 0,1) at location 2
(J.1P:A2,A1 = 1,0). If you read location 2, you obtain
the value 1 that was written, because the address
presented to the SRAM during the read is the same as
the address for the previous write. Similarly, the data
read is in the same bit order as presented during the
previous write to the location. So far as the system is
concerned, the two SRAM devices are compatible.

Although not significant to the system, the devices
differ in where they internally store the data. In the

5-1

Brand 'X" Board

uP---A2------l ~ 3-----D2------uP

UP--Al-----2~ 4----------DI---uP

Brand "x" Board with Cypress 2 x 4

uP--A2------1 [A1Dil3----D2--------up

uP--Al-----2 ~4---------Dl--------up

Figure 2. Example System with 2x4 SRAMs

~~ ~~~~~~~~P~in~-~O~u~t~C~o~m~p=a~ti~b~il~it~y~fu~r~S~R~A~M~s=a=n=d=P=R=O=M~s ~... SEMICONDUCTOR;;;;;;

Cypress device, the J1P address of 2 (J,JP:A2,A1 = 1,0)
actually stores the data at SRAM location 1
(Cypress:A2,A1 = 0,1). The Brand "X" RAM physically
stores the data at address 2.

The address translation is transparent to the J1P,
however. Because the same location is accessed for the
subsequent reads, the difference in address numbering
between the two devices does not matter to the system.
Similarly, any numbering difference on the data lines
does not matter either. All writes and reads are
generated in your system; thus, s? ·lon~ . as . the a?dress
and data lines are on the· same pms, differences m the
numbering do not matter.

Second-Sourced PROMs
For PROMS, the scenario becomes slightly more

complex. Because you program PROMS using a
programmer that is separate from the system. in which
they are used, it is more difficult to substitute PROMs
that do not have the same address- and/or data-pin num-
bering. ..

Assume, for example, that the high-tech toaster
oven's 2 x 4's are PROMS. If you program each location
with data, you find that the Cypress device does not
work properly when used in the Brand "X"-designed
socket. In this case, the PROM programmer puts the
data at location 2, and the board reads this data when
the microprocessor requests the data at location 3. Addi­
tionally the data bits are swapped on this read. What a
mess! It becomes apparent that it is easiest to replace
this PROM with a device that has the same address- and
data-line numbering.

There are methods that allow you to use the Cypress
2 x 4 PROM in the Brand "X" socket, however. The ob­
jective in trying. to make the Cypress PROM work in the
foreign pin-out socket is to have the system read the
same data as when the Brand "X" device is used. In the 2
x 4 example, you encounter two problems: mismatches in
the numbering of address lines and data lines.

Correcting Data-Line Mismatch
First consider the data-line mismatch. As it stands,

data programmed in as bitl,bit2 is read as bit2,bitl. You
could fix this problem by swapping the printed traces for
Dl and D2. Unfortunately, this would also disallow the
use of the Brand "X" device.

If you could internally swap the data bits
prograiruned into the Cypress device, they would be in
the correct order when read. You can, in fact, swap the
data bits in the Cypress device through several means.
First, you might modify your programming adapter such
that D2 and D 1 are swapped when programming the
part. Then when the device is read, you get the bits in
the same order as presented by the Brand "X" device.
This is not a recommended method of solving the prob­
lem, because modifying prog~ammers tends to make the
manufacturer of the programmer unhappy.

5-2

1) Brand "X" 2 x 4 : Bit 2, Bit 1

2) Programmer (Cypress) : Bit 1, Bit 2

3) Cypress 2 x 4 : Bit I,Bit2

4) System Board uP : Bit 2, Bit 1

Figure 3. PROM Bit Swapping with Programmer

A second method of solving this problem is to alter
the binary image of the PROM contents such that bits
D 1 and D2 are swapped in a file on your computer's
disk· this altered binary image file is then used to pro­
gr~ the Cypress PROM. This approach is less likely to
cause damage. than modifying a programmer, but re­
quires some skill in altering the binary. file.

Finally, the easiest solution to this problem is to
trick the PROM programmer into swapping the bits for
you. If you set your programmer for the Cypress device
type, read a programmed Brand "X" device into memory,
then program the Cypress part with the image in
programmer memory, the bits are swapped for you. ."

You can see how this bit swapping works by exanun­
ing Figure 3. The bits in the Brand "X" device are stored
in the order Bit2,Bitl - the same order in which the
toaster's J1P reads them. When you set the programmer
to read the Cypress part, the data lines are logically
swapped from the Brand "X" ordering. Thus, when you
read the Brand "X" part, the data bits are swapped as
shown.

When the Brand "X" part is removed from the sock­
et, and the Cypress device is plugged in and
programmed, the bits are programmed into the Cypress
part in this same "reversed" order .. When you place t~e
Cypress part into your board, the bIts are swapped agam
due to the difference in numbering between the Cypress
part and the board layout, and the J1P gets the data in
the correct order.

Correcting· Address-Line Mismatch
The second problem in substituting PROMs is the

difference in address-line numbering. You can resolve
this problem in exactly the sam~ manner as the data
swap problem. By simply setting the programmer to the
Cypress device type, reading the Brand "~" pcu:t, then
programming the Cypress part, any addresslOg dIfferen­
ces are solved. The location of data words are swapped
to allow for the difference in pin-outs, just as the bits
were swapped in the data-line mismatch.

Working with PROM Programmers
Many programmers allow you to read a device dif­

ferent than the part selected, complaining only duri~g
programming if the device types do not match. WIth

PIN Cypress 7C264 Motorola 68764

21 AIO Al2

19 All AlO

18 A12 All

Figure 4. Cypress 7C264 vs. Motorola 68764 Pin-out

such a programmer, carrying out the procedures to con­
vert a PROM should not present a problem.

Some programmers, however, do not allow you to
read a device if it is different from the part selected.
These programmers prevent the conversion method
from working. Fortunately, the Cypress CY3000 Quick­
Pro programmer does permit use of the conversion
method. Cypress Field Applications Engineers, sales of­
fices, and distributors can use their QuickPro program­
mers to generate a· Cypress master PROM that you can

use as a source for copying with uncooperative
programmers.

Conversion Example
As an example of a PROM conversion, consider

the Motorola 68764 8K x 8 PROM. It has a similar pin­
out to the Cypress CY7C264, with the exception of ad­
dress lines 10, 11, and 12.

To program a Cypress CY7C264 to work properly
in a socket designed to accept the Motorola device, use
this procedure:

Invoke the Cypress QuickPro or other appropriate
programmer and select the Cypress CY7C264 as the
device to be programmed.

Place the Mqtorola part in the programmer adapter
socket and read the device. Optionally, write the device
contents to a disk file.

Place a Cypress CY7C264 in the programmer adapter
socket, and program the part Optionally, you can read
the contents of the disk file as the source for program­
ming.

The programmed device now works in the socket
designed for the Motorola part.

5-3

CYPRESS
SEMICONDUCTOR

Introduction to Diagnostic PROMs

This application note provides a basic understanding
of the concept of a diagnostic PROM, as well as a brief
introduction to possible applications.

Beginning with a short tutorial on system diagnostics,
this application note presents the reason for incorporating
diagnostics into a design and the special testability
problems associated with sequential designs. The concept
of shadow-register-based diagnostics is presented, and the
benefits of this approach are outlined.

Next, a description of diagnostic PROMs is given.
This covers the similarity of diagnostic PROMs to stand­
ard registered PROMs, as well as the fundamental opera­
tion of a diagnostic PROM. Next is a description of the
Cypress CY7C268 and CY7C269 8K x 8 diagnostic
PROMs. An application example is also included.

Introduction to System Diagnostics
As electronic systems continue to grow in size, func­

tion, and complexity, it is becoming increasingly difficult
to test them and determine their reliability, as well as to
service the end product in the field. One way to simplify
the task of testing electronic systems is to design some
form of testability into the system.

Controllability and observability are the key points of
testability. These two qualities are easily obtained for a
combinatorial system in which the outputs are strictly a

INPUTS

COMBINATORIAL
LOGIC

INTERNAL STATE fEEDBACK

t----f----.OUTPUTS

CLK

SEOUENTIAL SYSTEM

STATE
OUTPUTS

Figure 1. Simple Sequential Machine

5-4

function of the current inputs. Test vector methods are
easily devised and implemented for combinatorial sys­
tems. But, for a sequential system, in which the outputs
are a function of both the current inputs and the previous
state(s), controllability and observability can be lost due to
lack of access to the internal states of the machine. Conse­
quently, building testability into a system means being
able to control and observe all possible states of the system.

Consider the simple sequential machine in Figure 1.
Access to internal states is either denied or difficult to ob­
tain. The obvious way to add testability to this system is
to permit access to these internal states.

One way to gain this access is through addition of a
diagnostic shadow register, as shown in Figure 2. Obser­
vability is effected by adding a serial data output path
(SDO) to allow shifting internal state information out of
the system. Controllability is gained by permitting a serial
data input path (SDI) to set the state of the internal
registers. As a result, relatively simple test vector methods
can be used to test the system.

INPUTS
!-_-r-_____ -+OUTPUTS

SEQUENTIAL SYSTEM

Figure 2. Simple Sequential Machine
with Diagnostic Capability

STATE
OUTPUTS

SYSTEM INPUTS .-------------------------------• I

I · : ,
I

• • I
I
I 01 · • ·---------------2---------------

OUTPUTS

OUTPUTS

~-------------------------------~
Figure 3. Complex Sequential Machine

Consider, for example, the complex sequential
machine shown in Figure 3. This system would be virtual­
ly impossible to test in the current configuration because
you cannot control or observe the machine's internal
states. To increase this machine's testability, observability
must be added at points 01, 02, and 03. If this were ac­
complished, you would be able to observe the internal
states of the machine. Additionally, controllability must be
added at points Cl, C2, and C3. This would allow you to
set the internal states of the machine.

This controllability and observability can be attained
by adding shadow registers, as depicted in Figure 4. The
result is a complex sequential machine with a high degree
of testability. As a result of these actions, simple test vec­
tor methods can now be used to fully test the machine.
For instance, the state of the register at point Cl can be
set, the machine can be clocked through some known
number of cycles, and the state of the machine can be
observed at points 01, 02, and 03.

Knowing what state the machine should be in at a
specific time at each observation point (the machine's
"known-correct" state) can be compared with the observed
machine state. This comparison determines if the machine
is functioning correctly, and if it is not, which. "machine
primitive" is not functioning correctly (fault detection).

Note that this approach to sequential design also per­
mits testing to see what the machine would do if a glitch
caused a jump into an unused state. This capability makes
the design task of forcing the machine back into a known
state much less complex.

The real advantage of this approach is that it requires
no changes in architecture, minimal hardware changes,

5-5

and results in a minimal (5 - 10 percent) area penalty
when integrated into existing integrated circuits.

Diagnostic PROMs
Diagnostic PROMs are a relatively minor migration

from standard registered PROMs. A block diagram of a
diagnostic PROM appears in Figure 5. The addition of
diagnostic capability to a registered PROM includes the
addition of:

Shadow register
Multiplexer
MODE pin
SDI (Serial Data In) pin
SDO (Serial Data Out) pin
Diagnostic clock
The shadow register is dynamically configured, based

on the value of the mode signal. If the mode is set to input
data to the PROM, the shadow register is configured as
serial-in, parallel-out; if you want to extract information
from the PROM, the shadow register is configured as a
parallel-in, serial-out.

The shadow register thus serves two purposes. First,
it can be configured to serially receive state information
that will appear at the outputs during the next cycle. This
feature allows you to preset a condition to be sent through
the part of the system fed by the PROM; i.e., you can
insert state information into the system. This feature adds
controllability to the system.

The second purpose that the shadow register serves is
to allow you to transfer state information from the register
and to serially shift that data out of the PROM. This fea­
ture adds observability by allowing you to observe the
state of the PROM's pipeline register at any given time.

Mode. SOl, SDQ, and DCLK for each "Machine Primitive"

Figure 4. Complex Sequential Machine with Diagnostic Capability

Including the features listed above in a registered
PROM can therefore add testability to any system. Note
that this increase in function is effected without loss of
other desirable registered-PROM features, such as
programmable initialization, programmable output enable,
etc.

Cypress Diagnostic PROMs
Cypress Semiconductor manufactures two diagnostic

PROMs: the CY7C268 and CY7C269. These 64K-byte-

wide diagnostic PROMs are manufactured in CMOS for
an optimum speed/power tradeoff.

Both PROMs contain an edge-triggered pipeline
register and on-chip diagnostic shift register. Both PROMs
can withstand 2001 V ESD. Both PROMs are produced in
Cypress's EPROM-based process, which allows testing
for lOO-percent programmability. Both PROMs are avail­
able in PLCC/LCC and dual-inline packages, and both
PROMs are available in a windowed package for
reprogrammability .

.--~

STATE
OUTPUTS

I
I

Figure 5. Diagnostic PROM Block Diagram

5-6

MODE

PCLK
CONTROL

LOGIC
SOl

SDO

Table 1. CY7C268 Pin Functions

Name 110 Function

Ao-A12 I Address Input

00-07 0 Data Lines

ENA I Synchronous or
Asynchronous Output Enable

--
INIT I Asynchronous Initialize

MODE I Sets PROM to Operate in
Pipelined or Dia~nostic Mode

DCLK I Diagnostic Clock (Used to
Clock the Shadow Register)

PCLK I Pipeline Clock (Used to
Clock the Output Re~isters)

SDI I Serial Data In (Used to
Serially Shift Data into the
Diagnostic Register)

SDO 0 Serial Data Out (Used to
Serially Shift Data Out of the

Figure 6. Condensed Block Diagram of the CY7C268 Diagnostic Register)

Table 2. CY7C268 Operational Modes

Data Flow Description Mode ENA[l] SDI SDO DCLK PCLK

Normal Operation[l] L H,L Data In SDO -- Rising Edge

Shadow to Pipeline[l] H H,L X SDI -- Rising Edge

Pipeline to Shadow H L L SDI Rising Edge --
Data In to Shadow H H L SDI Rising Edge --
Shift Shadow Reg. [1] L H,L Data In SDI Rising Edge --
No Operation[1] H H,L H SDI Rising Edge --
Note: 1. For the asyn~hronous-enable operation, data out is enabled on the first Low-to-High clock transition after E is
brought Low. When E goes from Low to High (enable to disable), the outputs go to the high-impedance state after a
propagation delay if the asynchronous enable was programmed. If the synchronous enable was selected, a Low-to-High
transition is required.

The CY7C268 features full diagnostic capacity and is
available in 32-lead PLCC/LCC or 32-pin O.5-inch DIPs.
The CY7C269 features limited diagnostic capability and is
available in 28-lead PLCC/LCC or 28-pin O.3-inch DIPs.

For an in-depth description of the PROMs' functions,
refer to the data sheets. The following discussion briefly
describes the diagnostic functions available in each
device.

CY7C268

A condensed block diagram of the CY7C268 appears
in Figure 6. Table 1 lists the pin names and functions of
the CY7C268.

5-7

Note that full diagnostic capability is realized through
the use of four control signals: SDI (Serial Data In), SDO
(Serial Data Out), MODE, and DCLK (diagnostic clock).
Including both DCLK and PCLK ensures that serial data
can be shifted into or out of the diagnostic register while
the PROM is operating in normal pipeline fashion. As a
result, the CY7C268 has three possible modes of opera­
tion:

Normal (pipelined)
Diagnostic
Pipelined and diagnostic simultaneously
Table 2 summarizes the operational modes of the

CY7C268.

MODE

Ell

CLOCK

CONTROL
lOGIC

8

8'~--------------~

SOl

soo

Table 3. CY7C269 Pin Functions

Name I/O Function

Ao-A12 I Address Input

00-07 0 Data Lines
--
E,I I Enable or Initialize

Clock I Pipeline and Diagnostic
Clock

MODE I Sets PROM to Operate in
Either Diagnostic or
Regular Pipelined Mode

SDI I Serial Data In

SDO 0 Serial Data Out

Figure 7. Condensed Block Diagram of the CY7C269

CY7C269

A condensed block diagram of the CY7C269 appears
in Figure 7. The CY7C269 has reduced diagnostic func­
tion relative to the CY7C268. The CY7C269 is ideal for
applications requiring limited diagnostics with a premium
on board-space conservation. This PROM is available in
28-pin, 300-mil DIPs (windowed or opaque) and in 28-
lead PLCC/LCC packages. The pin names and functions
of the CY7C269 are listed in Table 3.

Note. that limited diagnostic capability is realized
through inclusion of three diagnostic signals: MODE,
SDI, and SDO. Because there is only one clock, the
regular and diagnostic modes are mutually exclusive.
Table 4 summarizes the operating modes of the
CY7C269.

Design Example

As an example of using diagnostic PROMs, consider
the complex sequential machine presented earlier. This
machine could be easily implemented using CY7C268s or
CY7C269s, as shown in Figure 8. Note that the block
labeled "diagnostic control" could consist of PLDs,
PROMs, a sequencer, or a small microcontroller. Choos­
ing between the CY7C268 and the CY7C269 is based on
the complexity of the diagnostic function required. For
full diagnostics that can function simultaneously with
regular pipelined operation, use the CY7C268. For an ap­
plication where limited diagnostic capability is required -
perhaps only a function at power-up or some other well­
defined time - use the CY7C269.

Table 4. CY7C269 Operating Modes

-
Data Flow Description Mode E,I Clock SDI SDO

Normal Operation L [1],[2] Rising Edge X HighZ

Shadow to Pipeline H L Rising Edge L SDI

Pipe or Bus to Shadow H L Rising Edge H SDI

Shift Shadow H H Rising Edge Data In SDO

Notes:
1. The E or I function is selected during programming.
2. If I is selected, the outputs are always enabled. If E is selected, the outputs are enabled synchronously or asynchronous-
ly, as"'programmed. _
3. If I is selected, the outputs are always enabled. If E is selected, during diagnostic operation the data outputs remain in
the state they were in when the mode was entered. When enabled, the data outputs reflect the outputs of the pipeline
register. Any changes in the data in the pipeline register appear on the output pins.

5-8

SYSTE ... INPUTS

"2

~I ADDRESS DECODER I
I PROGRA ABLE ARRAY I

B! J.
~--+I DIAGNOSTIC MUX I

I
8! (I

DlAGNOSnC CONTROL CONTROL

" LOGIC rl PROG. INITIALIZE WORD I ,

r---I B - BIT PIPELINE REGISTER I 8 - BIT DIAGNOSTIC ~
I+-- SHIFT REGISTER

I-- t1 I

~l ~ B

" I
8

2 7

" 3

I ADDRESS DECODER I
PROGRA ABLE ARRAY I I ADDRESS DECODER I

PROGRAW ... ABLE ARRAY

8! 8!

---+f + -H +
DIAGNOSTIC "'UX I DIAGNOSTIC "'UX I

I I
8 8 8! B

CONTROL CONTROL

.... LOGIC -+f PROG. INITIALIZE WORD I 4- lOGIC H PROG. INITIALIZE WORD I
-+18 - BIT PIPELINE REGISTER I 8 - BIT DIAGNOSTIC ~ H 8 - BIT PIPELINE REGISTER I 8 - BIT DIAGNOSTIC ~

SHIFT REGISTER SHIFT REGISTER

I I
t1 J

- ~ 8 - ~
8

B 8

2
8 8

2
6 6

Figure 8. Complex Sequential Machine Implemented with Cypress Diagnostic PROMs

5-9

~ ~~~~~~~ iii CYPRESS ==
, SEMICONDUCTOR

Interfacing the CY7C289 to the AM29000

This application note describes how to use high­
speed Cypress CY7C289 PROMs to design an instruc­
tion memory system with virtually zero wait states for a
33-MHz AMD AM29000. The design includes 1 Mbyte
of CY7C289 PROMs in addition to the inteiface cir~
cuitry used to support processor bursts. A. logic
schematic and the equations for the PLDs used m the
memory interface are included.

Traditionally, PROMs have been much slower than
RAMs. System designers used PROMs only for the
boot process, immediately transferring the information
into RAMs once power-up was complete. This ineffi­
cient solution wasted a considerable amount of board
space, but system performance was generally con­
sidered more important.

The need for this tradeoff is now evaporating.
Cypress PROMs have narrowed the speed gap between
RAMs and PROMs to almost nothing. The CY7C289
PROMs use a fast-column-access. architecture to
produce on-page access ti~es of just 20 .ns (f~r
registered mode) at a 512-Kblt (64K x 8) denSIty. ThIS
architecture takes advantage of the burst mode feature
common in many current microprocessors. Because
most 32-bit processors burst just 16 bytes in a. w~ap­
around fashion, the burst mode accesses fall wlthm a
single page of the CY7C289 PROMs. Thus, each access
in a burst to the PROM is always completed in 20 ns.

Even with a prOcessor that generates bursts consid­
erably longer than 16 bytes, the CY7C289 can supply all
the data in a burst from a single page. An excellent ex­
ample of this capability is the 29000 instruction memory
design described in this application note. Even though
29000 bursts can be up to 1 Kbyte long, the memory
design described here never requires a wait s.tate dur~g
a processor burst. Wait states .are only.re9-urred dunng
an initial access,· and the . maxImum . walt· In a 33~MHz
system is just two clock cycles.

Figure 1 displays a block diagram of the ins~ction
memory system design for the 29000. The deSIgn has
three basic blocks: the 29000 microprocessor, the con­
trollogic, and 1 Mbyte of CY7C289 PROM.

5-10

CY7C289 PROMs
The CY7C289 is one of four new 64K x 8

reprogrammable PROMs offered by Cypress Semicon­
ductor. Two of these PROMs, including the CY7C289,
feature the unique fast-column-access architecture. On
these devices, the PROM array is divided into 1024
pages that are each 64 bytes long. Any consecutive ac­
cess to the same CY7C289 page requires just 20 ns to
complete. If an access cr~ss~s an internal. P~OM pa~e,
the device delivers data wlthm 65 ns. To mdlcate an m­
ternal page crossing to the external circuitry, the
CY7C289 generates a W AIT\ signal.

Along with the unique array architecture, the
CY7C289 provides a variety of programmable features
to simplify the memory interface. Among these
programmable features. is the ability to capture the
input address with on-chip registers or latches.

If you select the address latch option, the address
flows into the PROM during the active portion of the
ALE signal and is captured when ALE is deas.serted
(the ALE signal's polarity is programmable). ThIS ?P­
tion is appropriate for most CISC processors, whIch
supply a valid address after the system clock's rising
edge. The ALE option can improve system perfor­
mance by allowing the PROM to capture the ad.~ess as
soon as it becomes available, as opposed to wattmg for
the system clock's next rising edge. The ?raw?ack to the
address latch· option is that external lOgIC mIght be re­
q uired to generate the ALE signal.

If you select the CY7C289's registered option, the
address at the input is captured at the CLK input's
rising edge. The advantage of the registered ~ode is
that the memory interface is often simpler. ThIS con­
figuration is particularly useful when interfacing to
RISC processors. Most of these processors generate ad­
dresses arouhd the risillg edge of a system clock,
making it easy to capture the address with the CY7~89
input registers. (See the application note, "Interfacmg
the CY7C289 to the CY7C601.")

Another important CY7C289 feature is the ability
to program the polarity of two chip selects (CS 1 and

-... : CY7C289 PROM
CONTROL LOGIC (4 BANKS) -

-
AM29000

....
10-131 (00-031

..... r- - - - - -
(ROY WAIT
IREQ : LOGIC :

ALE IBREQ

~ :
AZ-AS

niL M - - - - - -
AO-A5. U ./ cst.CSC X

-v-

..... COUNTER I) v :

: " I- - - - - -
AIO-A31 :) A6-h15

: : ..

: .. :

I
I

I

Figure 1. AM29000 Instruction Memory Block Diagram

CS2), which facilitates automatic bank selection for up
to four banks of PROM. Proper use of the chip selects
also allows you to extend the PROM page's length
beyond 64 words when using multiple banks of PROM.
This capability improves the system's performance by
effectively increasing the size of a page in the
CY7C289s (more on this later).

Here is a complete list of the programmable fea­
tures available on the CY7C289:

The input address can be either registered at
CLK's rising edge or latched by the ALE input.

You can program the address set-up and
hold window.

You can program the WAIT output's polarity.

You can program the ALE input's polarity.

The WAIT output can be generated off the
falling or rising edge of CLK for the registered­
mode CY7C289.

5-11

You can program the polarity of both chip
selects (CSl and CS2).

You can set each of these options by appropriately
programming a reserved PROM location. Therefore,
the devices are configured at the same time the array is
programmed.

AM29000 Microprocessor
The 29000 is a 32-bit general-purpose microproces­

sor used mainly in embedded controller applications.
The version used in this design operates at 33 MHz­
the highest-speed 29000 currently available. The
processor's pipelined RISe. architecture attempts ~o ex­
ecute an instruction in every clock cycle. To dQ thIS, the
29000 relies heavily on burst-mode accesses.

The 29000 contains three buses, one each for ad­
dress, data, and instruction. During a normal access, the
three-bus architecture behaves essentially like a two-bus
system (address and data), because the dedicated in­
struction and data buses must wait for the shared ad­
dress bus. In burst mode, however, only the initial data

·ESEtT~--~----~----------~--~~----------------------------,

He

II
4.71

. 14 uu
cn ~
·U~ ,,~

liE >--t-t-------'I"()C u· ~
.n

r---~--rHr-----------------------~~AlE
.ill.ll.L....

+-----'2"-l1 f f ~ T74FII
~-------'

;ll--
CpreLl I sn 11 lin
c Ll II! I/O HIT, -iAL7iEr--+-'

I HUT S I I/O 11 PRUET Uf

'--+--t4-+t+-~~I~. EO;.t--i4H II G.! 11 C LlH RESET I r-:-- If VA IT 5 • 15 D II LL t+--lI;';'IE~E • .!...-H2 II II PlIT. -'c"-5-------IC E
'----H--t+f-7IT.IL~O .. AD;-.H I ,1 rrr-imQ +-HH1;-i-ILi'-l'l--'i-i, IZ IZ 17 C4

~ III UITOUT 7 ~ I': ru-CITCU -++l---;A~l E _~; U :: ~
+-+--11L! ~C ll' ,~ :m 11 t I10 12 C'UCI I • ,-,t1L~--;""" H :; Ol:c;.;~:,;",; --+-+----I~m

WAIT->---+-+-4---~ I~I '-rri"r- .,-,~,....:t--: It II Z OZ DUTZ ,r I t .. ~ Cl 11 g.
liD T 74 FI 12 H-l-++f-_________________ -+I--I-__ -+I+f+t-____ ---............... -lI- l

-. _____ --l

lUI

~.rA
II!ill:)[IlUIRRf1l I>--H--+---.!...jZ • , • r-L­

c..-..!. Cll· IE SET I,J!.L- 11

f rt-L
IIEI Z II U >tr c,

.--________ -' r-------H-~+__7IHIL;"_l ---ilH IZ U 7 CI
A! 4 U :: ;lL

Uf #--:' II I' 0l3!++'..;"-!---I-----lOUT
17 • II " 14 01 .UTI

T 74F74

t---------l

CID l itA
'~D ,.~

~ !l/eLl OJ #.-

:: i!i !!H
AI 7 15 o,~~

"* ~ ~~ :~ I z :~ ::~~
ff • It
C 11 110

lii:"a
A7 t II za.
AI 10 17 :~ II 7

AU!!L.J.. cu·
At 11:: OJ ~

+--+---!I~I~LL~I~2 110 • 10 ~
liE. ~: 111 fCC :!f-om

.... lIZ Ie zt-t .. r-1--llll--T 74F74

~------'

::ll: :~ .:~ ~.
"lZZUO 110

Figure 2. Control Logic for the 29000 Instruction Memory

or instruction address is sent to the corresponding
memory space, and the task of incrementing the address
is left to the interface circuitry. Thus, during burst, both
the data and instruction buses can operate simul­
taneously without having to wait for the shared address
bus. In: other words, a 29000 in burst mode can fully
utilize the separate data and instruction bus
architecture. '

Although· the 29000 achieves maximum throughput
during bursts, AMD did impose a limit, on a burst's
length: The 29000 only' performs bursts within a 1-
Kbyte boundary. Therefore, an 8-bit counter suffices to
increment the burst addresses. Note that a 29000's max­
imum burst length depends on where it begins. For ex-

5-12

ample, if a burst begins four words before the end of a
1-Kbyte boundary, the burst can at most be four words
long.

Control Logic
The memory interface logic required for this design

is detailed in Figure2 and appears symbolically in Figure
3. In addition, PLD ToolKit source code for the PLDs
used in the control logic appears in Appendices A
through D.

Referring to the block diagram in Figure 1, note
that the interface circuitry performs two' primary func­
tions. One is to generate all necessary interface signals,
and the other is to increment the instruction address to

support processor bursts. The hardware required to im­
plement the interface consists of two SSI devices (a
74F74 and a 74F112) and four small PLOs. The 22VlO
PLO is a 15-ns version, while the remaining three PLOs
(one 16R4 and two 16L8s) have a maximum propaga­
tion delay of 5 ns.

Memory Interface

The 29000 has a few peculiarities that affect the
memory system design. For example, the instruction bus
is unidirectional. The 29000 can only READ from in­
struction memory. This limitation makes it difficult to
use RAMs for instruction memory, because there is no
mechanism to load the instructions into the RAMs to
begin with, but the nonvolatile nature of PROMs makes
them ideal for this application.

One way to use RAM fpr the instruction memory is
to trick the 29000 into thinking it is writing to data
memory (the data bus is bidirectional), but route the in­
formation back to the RAMs in instruction memory.
Implementing this memory subsystem requires two 32-
bit 2: 1 multiplexers on the data and instruction buses, in
addition to the associated glue logic necessary to con­
trol the transfer. To use the memory subsystem, the sys­
tem copies the instruction information (from boot
PROMs located elsewhere on the board) onto the data
bus and subsequently into the RAMs on the instruction
side of memory. This solution is costly, wastes board
space, and slows system operation by adding multi­
plexer delays into both the instruction- and data-bus
paths.

A much better solution is to use PROMs in the in­
struction memory. Because they are nonvolatile, the in­
struction information is programmed into the device
prior to assembling the system, eliminating the extensive
logic needed to write to the instruction bus. Further,
with the CY7C289's high speed, the system has no need
for shadow RAMs. The resulting circuit occupies much
less board space than the RAM-based version and
provides better system performance. Moreover, lessen­
ing the number of components improves the circuit's
reliability.

Another unusual 29000 feature is the processor's
ability to suspend bursts to instruction memory. At any
time during an instruction burst, the 29000 can suspend
the sequence by deasserting the burst request signal
(IBREQ\). The instruction memory must respond by
discontinuing its operation while the IBREQ\ signal is
inactive. When the processor reasserts IBREQ\, the
memory system must resume from the point at which
the burst was suspended. Note that because the 29000
does not send a new address at this point, the interface
logic has to remember the address at which the proces­
sor suspended the burst. An instruction burst is not
complete until the 29000 asserts the instruction request
signal (IREQ\) and sends a new address. The interface
logic described in this design fully supports suspended
bursts.

5-13

PROM Configuration
In this application, 16 CY7C289 PROMs constitute

a I-Mbyte instruction memory, distributed in four
banks. The CY7C289s' 22-ns access time (in latch
mode) allows on-page accesses to complete in a single
clock cycle at 33 MHz. Proper use of the programmable
chip selects ensures that all burst accesses fall within
the same PROM page and never require a processor
wait cycle.

The CY7C289s are configured with address latches
to take full advantage of the 29OO0's mid-clock address
release. Latch mode minimizes the number of wait
cycles during a single access or during a burst's first ac­
cess. The set-up and hold window for the address
latches should be programmed to minimize the hold
time required after latch close. This setting is critical to
proper operation of the address increment circuitry.

The CY7C289s' chip selects are programmed on a
bank-to-bank basis, such that each bank has a unique
polarity combination of CS 1 and CS2. This arrangement
permits PROM bank selection without external address
decoding. The other applicable programmable features
on the CY7C289 are the polarity of the W AIT\ and
ALE signals. In the design implemented here, W AIT\
is active Low and ALE is active High.

Address Connection Scheme
For the most part, the placement of the CY7C289

PROMs in this design is straightforward. However,
there are two important memory design features that
bear clarification. The first is the address connection
scheme used for the CY7C289 PROMs. In Figure 3's
display of the address input to the CY7C289s, notice
that the addresses fed to the PROMs are not entirely
sequential. This non-sequential addressing scheme is
used with the chip selects to extend the effective PROM
page length to 1 Kbyte, and thus achieve no-wait-state
burst performance.

To understand how this is done, consider some in­
ternal details of the CY7C289. In this PROM, the
lowest six address inputs (AO - A5) designate a· specific
byte within a 64-byte internal PROM page. Inputs A6 -
A15 select one of 1024 PROM pages. When any of the
inputs at pins A6 - A15 changes, a new page is selected,
and the CY7C289 asserts the W AIT\ output.

You can think of the CY7C289's chip selects (CSl
and CS2) as additional address inputs in a multi-bank
memory system. Like AO - A5, changes at these inputs
do not result in an internal CY7C289 change. With four
banks of PROM, you have a total of 8 address bits (AO
- A5, CSl, and CS2) that do not affect the internal
PROM page, as opposed to just 6 (AO - A5) when using
one bank of PROM. The 8 bits of on-page addresses
translate into a PROM page length of 256 words, or 1
Kbyte, which equals the 29000's maximum possible
burst.

The schematic in Figure 3 reveals how this page­
lengthening scheme is implemented. Note that all the

Figure 3. AM29000 Instruction Memory Design

outputs from the control logic (O~ - 09) connect to
CY7C289 inputs that do not cause a page change (AO ~
A5, CSI, and CS2). The lowest address connected
directly from the CPU to the PROMs is AlD. The 29000
is guaranteed never to change AIO - A31 during a burst,
because this would constitute crossihga I-Kbyte bound­
ary. All the addresses that can change during burst con­
nect to AO - A5, CSI, and CS2; thus, the CY7C289
never crosses an internal page-and never causes a wait
state-during a 29000 burst. The chip selects in this

5-14

design effectively quadruple the PROM page length, al­
lowing a· greater percentage of single accesses and all
burst accesses to finish within a single clock cycle.

To make the. extended page useful, note that you
need . to locate sequential code on the same PROM
page. Because this design extends each PROM page
across all four banks, you must segment code into page­
length blocks; this is analogous to using interleaved
DRAMs. Because each CY7C289 PROM has a 64-byte
internal page, your code must be separated into 64-

word blocks. In other words, place the first 64 words of
code in bank 1, the next 64 words in bank 2, and so on.
You can accomplish this segmentation with a simple
program.

Using the WAIT\ Signal
The second memory design issue that bears

clarification is the connection of the CY7C289's W A11\
signal. The CY7C289 asserts this signal when the input
address crosses an internal page boundary (at least one
of the inputs A6 - A15 changes). W A11\ tells the 29000
that the PROMs need an additional clock cycle to
deliver the requested instruction.

Note in the schematic in Figure 3 that only one
W A11\ output connects to the control logic. This is be­
cause all the PROMs examine the same upper-order
address inputs to determine if an internal page has been
crossed. Therefore, only one PROM is required to
identify a page crossing and assert the W AI1\ signal,
even if the chip selects (CSI and CS2) are deasserted at
the time. The only time the PROM does not generate
W A11\ is when the chip enable signal (CE\) is inactive
during an address change.

Burst Counter
The 22VlO and the two 16L8s support the 290oo's

burst mode capability. The 22VI0 implements an 8-bit
loadable counter, which loads a new address from the
29000 when the IREQ\ signal is asserted. On each sub­
sequent clock rise in which IBREQ\ is active, the
22VlO increments the current address and delivers the
result to a multiplexer. Note that the clock to the 22VlO
is not the system clock. The 16R4 generates a special
counter clock that properly times the loading of the
counter and halts the count during a suspended burst.

The pair of 16L8s are utilized primarily as two
high-speed multiplexers. Each 16L8 implements a 4-bit
2: 1 multiplexer that selects the ins truction address from
the 29000 or the counter. During an initial access
(IREQ\ Low), the 16L8s feed the processor address to
the instruction memory. When the 29000 is bursting, the
counter address is routed to the PROMs.

Signal Generation
The primary function of the remaining interface

logic (the 16R4, 74F74, and 74F112) is to generate the
necessary system control signals. These signals include
the instruction ready signal (IRDy\) to the 29000 and
the address latch enable signal (ALE). for the PROMs.
The IRDy\ input to the 29000 halts the processor when
accessing slower memory. Based on the W A11\ output
from the CY7C289s, the interface circuitry deasserts
IRDy\ when the PROM. requires more time to com­
plete an access. Because this design never requires a
wait during a burst access, the control logic simply
holds IRDy\ Low while a burst is in progress. For the
PROM interface, IRDY\ is only used during a single
access or during a burst's initial access.

5-15

The ALE input controls the input of addresses to
the CY7C289s. The CY7C289's latch mode takes full
advantage of the 29000's mid-clock address release and
minimizes wait states during the initial access. The
drawback to latch mode is that an ALE signal must be
generated externally. In this design, the 16R4 creates
ALE based on the input clock, IRDY\, W A11\, and
IBREQ\. The remaining signals generated by the 16R4
control the burst counter logic implemented in the
22VI0 and the 16L8s.

Note that most of the logic displayed in Figure 2 is
required regardless of the memory device you choos'e.
Implementing the burst-counter interface to the 29000
requires the 22VI0, both 16L8s, and a portion of the
16R4. Thus, only the two SSI components and part of
one 16R4 are needed to create the appropriate com­
munication signals between the 29000 and the CY7C289
PROMs.

System Timing

Figures 4 and 5 illustrate the communication be­
tween processor and memory that supports burst mode
and inserts wait states. The 29000 generates the instruc­
tion request (lREQ\) and instruction burst request
(IBREQ\) signals to initiate instruction accesses. To
begin an access, the 29000 asserts IREQ\ and places a
valid address on the address bus a maximum of 12 ns
after CLK's rising edge. If this is the beginning of an
instruction burst, the processor asserts IBREQ\ no
more than 10 ns after the system clock's falling edge. At
each subsequent rising edge of CLK, the 29000 samples
the instruction ready (IRDy\) input before reading
data. Therefore, by deasserting IRDY\, the external
memory system can hold the CPU until an access is
completed.

When the access is finished, the memory system
must assert IRDY\ at least 10 ns before CLK's next
rising edge. The data must appear on the bus at least 4
ns before CLK's rising edge.

No-Wait Timing
The control logic in this design generates IRDy\

based on the W A1T\ output from the CY7C289
PROMs and the IREQ\ and IBREQ\ signals from the
processor. During a single access or a burst's first ac­
cess, the interface automatically inserts one wait cycle
due to the 29000's late delivery of valid address; com­
pleting a single access without a wait state would re­
quire a 12-ns PROM access time. The interface inserts
the wait state by deasserting IRDy\ in the cycle in
which IREQ\ was asserted. In the scenario illustrated
in Figure 4, this access falls on the same page as the
previous PROM access and therefore does not generate
a W A11\. The interface logic asserts IRDy\ in the fol­
lowing cycle, and data is delivered prior to CLK's next
rising edge. The CY7C289 PROMs' 22-ns on-page ac­
cess time is well within the 44-ns window that results
from the single inserted wait state.

CPUCLK

ADR

I REO

IBREO

I ROY

DATA
4:4

ALE

VAIT

Figure 4. Instruction Memory Timing (WAIT deasserted)

Once the initial access is delivered, the memory can
complete each burst access within a single cycle. The
control logic therefore keeps IRDY\ asserted as long as
the IBREQ\ signal from the CPU is active. In Figure4,
note that the· 29000 temporarily deasserts IBREQ\-the
method the processor uses to suspend an instruction
burst In response, the instruction memory suspends
data delivery until the IBREQ\ is reasserted. When
IBREQ\ reasserts, the data is delivered from . the point
at which the burst was suspended, as illustrated in the
timing diagram in Figure4.

To govern the operation of the instruction PROMs,
the control logic generates the address latch enable sig­
nal (ALE), also shown in Figure 4. In this design, the
ALE input is programmed as active High. Thus, when

5-16

the ALE input is active, the latch is transparent, and the
address at the input flows into the PROM. On the tran­
sition of ALE from High to Low, the PROMs latch the
address and ignore further changes to the address while
ALE is Low.

In this design, the ALE input remains active (open)
until a burst sequence begins. During a burst, the ALE
signal advances the counter and controls the loading of
the counter address into the PROM. Because ALE's
falling edge increments the count, the PROM's address
inputs change only after the address latch closes.

Note in the schematic in Figure 3 that the 16R4
generates the clock input to the AM29000. This clock
arrangement ensures that the ALE and CPUCLK sig-

~
=- ~~0ID~~~~~~~~~~~~I~n~te~r~fa~c~in~g~th~e~C~Y~7~C~2~89~to~t~h~e~A;~~2~9~O~OO

CPUCLK

AOR
VALtD

IBREO

IROY

DATA

ALE

\lAIT

Figure 5. Instruction Memory Timing (WAIT asserted)

nals track each other and are as closely synchronized as
possible.

PROM Wait Timing

If W AIT\ is asserted during a single access or
during the initial access of a burst, the control logic in­
serts one additional wait cycle (Figure 5). This wait
cycle occurs if a PROM address crosses a page bound­
ary; the W AIT\ signal is then asserted a maximum of 21
ns after the address is loaded. The control logic dis-

5-17

played in Figure 2 uses this W AIT\ output's falling edge
to send an additional wait signal to the 29000. This wait
signal is created by keeping the IRDY\ signal High for
one additional cycle.

As shown in Figure 5, this added wait provides a
total of 74 ns for the PROM to complete the access. An
access that involves crossing an internal PROM page
actually requires only 65 ns. Note once again that after
the initial data has been delivered, all subsequent burst
accesses are delivered within a single clock cycle.

'5):= Interfacing the CY7C289 to the AM29000
__ ~COID~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CI6R4;

{Norman Taffe
Cypress Semiconductor
April 23, 1990

Appendix A. PLD Toolkit Source Code for the 16R4

Control Logic for CY7C289 PROM interface to the AMD 29000. }

CONFIGURE

{inputs}

CLK, CLKIN, RESET, IREQ, WAIT, INLOAD, WAITOUT, DIBREQ, KILL, OE(node= 11),

{outputs}

IRDY(node= 12), ALE, PRESET, CLRJK, DKILL, DIREQ, COUNTCLK, CPUCLK,

EQUATIONS;

lPRESET = < sum> !INLOAD & lRESET;

lDIREQ = < sum> !IREQ & lRESET;

lALE = < oe>
< sum> lDIREQ & lWAITOUT & lCLKIN & lRESET

lDIBREQ & lWAITOUT & lCLKIN & lRESET;

lCPU CLK = < oe>
< sum> lCLKIN & lCLKIN & lCLKIN & lCLKIN

lCLKIN & lCLKIN & lCLKIN & lCLKIN;

!IRDY = < oe>
< sum> WAIT & lWAITOUT & lDIBREQ & lRESET

WAIT & lWAITOUT & lPRESET & lRESET
lWAITOUT & lDIBREQ & lDKILL & lRESET
lWAITOUT & lPRESET & lDKILL & lRESET
lCLRJK & !RESET;

lCLRJK = < sum> lPRESET & WAITOUT & lRESET;

lCOUNTCLK= <oe>
< sum> lWAITOUT & DIBREQ & PRESET & CLRJK & DIREQ

CLKIN &lWAITOUT & PRESET & CLRJK;

lDKILL = < sum> lCLRJK & lRESET;

5-18

~

=- ~RFSS Interfacing the CY7C289 to the AM29000
~,.. SEMICONDUCTOR .;;;:::;;;=;;;;;;;;;;;;;;;;;;=;;;;;;;;;=~

Appendix B. PLD Toolkit Source Code for the Upper 16L8

C16L8;

{ Norman Taffe
Cypress Semiconductor
April 23, 1990
Control Logic for 285/9 PROM interface to AMD 29000. }

CONFIGURE;

{inputs}

RESET, IREQ, KILL, ALE, A2, A3, A4, A5, C2, C3(node= 11),
DIBREQ(node= 16), C4, C5,

{outputs}

02(node= 12),03,04,05, CE(node= 19),

EQUATIONS;

!02= < oe>
< sum> !RE SE T & !A2

!03 = < oe>

!IREQ & !KILL & ALE & !A2
RESET & !ALE & !C2
RESET & KILL & !C2
RESET & IREQ & !C2
!A2& !C2;

< sum> !RESET & !A3

!04 = < oe>

!IREQ & !KILL & ALE & !A3
RESET & !ALE & !C3
RESET & KILL & !C3
RESET & IREQ & !C3
!A3 & !C3;

< sum> !RESET & !A4

!05 = < oe>

!IREQ & !KILL & ALE & !A4
RESET & !ALE & !C4
RESET & KILL & !C4
RESET & IREQ & !C4
!A4 & !C4;

< sum> !RE SE T & !A5

!CE = < oe>

!IREQ & !KILL & ALE & !A5
RESET & !ALE & !C5
RESET & KILL & !C5
RESET & IREQ & !C5
!A5 & !C5;

< sum> !IREQ # !DIBREQ;

5-19

Sir;= Interfacing the CY7C289 to the AM29000
... SEMICOIDUCfOR ===============;;;;;;;;;;;;;;;;;:;=======;;;;;;;;;;;;;;;==;;;;;;;;=;;;;;;.

Appendix C. PLDToolkit Source Code for the Lower 16L8

C16LS;

{ Norman Taffe
Cypress Semiconductor April 23, 1990
Control Logic for 2S5/9 PROM interface to AMD 29000. }

CONFIGURE;

{inputs}

RESET, IREQ, KILL, ALE, A6, A7, AS, A9, C6, C7(node= 11), CS(node= 17), C9,

{outputs}

06(node= 12),07, OS, 09, ALEBAR,

EQUATIONS;

!06 = < oe>
< sum> !RESET & !A6

!07 = < oe>

lIREQ & !KILL & ALE & !A6
RESET & !ALE & !C6
RESET & KILL & !C6
RESET & IREQ & !C6
!A6& !C6;

< sum> !RESET & !A7

!OS = < oe>

lIREQ & !KILL & ALE & !A 7
RESET & !ALE & !C7
RESET & KILL & !C7
RESET & IREQ & !C7
!A7 & !C7;

< sum> !RESET & !AS

!09 = < oe>

lIREQ & !KILL & ALE & !AS
RESET & !ALE & !CS
RESET & KILL & ICS
RESET & IREQ & ICS
!AS & !CS;

< sum> !RESET & !A9
!IREQ & !KILL & ALE & IA9
RESET & !ALE & !C9
RESET & KILL & !C9
RESET & IREQ & !C9
!A9 & !C9;

!ALEBAR = < oe>
< sum> ALE;

5-20

Appendix D. PLD Toolkit Source Code for the 22VI0

C22V10;

{ Norman Taffe
Cypress Semiconductor
April 25, 1990
8-bit counter for AMD29000 PROM interface. }

CONFIGURE;

{inputs}

CLK,A2,A3,A4,A5,A6,A7,A8,A9,KILL,IREQ,

{outputs}

09(node= 14),08,07,06,05,04,0 3,02,Q 1 (noreg),

EQUATIONS;

!Ql:= < sum> !KILL & !IREQ;

!09:= < oe>
< sum> 02 & 03 & 04 & 05 & 09 & 08 & 07 & 06 & Ql

!02 & !09 & Q 1
!03 & !09 & Q 1
!04 & !09 & Q 1
!05 & !09 & Q 1
!09& !06& Ql
!09 & !07 & Q 1
!09 & !08 & Ql
A2 & A3 & A4 & A5 & A6 & A 7 & A8 & A9 & !Q 1
!A2 & !A9 & !Q 1
!A3 & !A9 & !Q 1
!A4 & !A9 & !Q 1
!A5 & !A9 & !Q 1
!A6 & !A9 & !Q 1
!A 7 & !A9 & !Q 1
!A8 & !A9 & !Ql;

!08:= < oe>
< sum> 02 & 03 & 04 & 05 & 08 & 07 & 06 & Ql

!02 & !08 & Q 1
!03 & !08 & Q 1
!04 & !08 & Ql
!05 & !08 & Ql
!08 & !06 & Q 1
!08 & !07 & Q 1
A2 & A3 & A4 & A5 & A6 & A 7 & A8 & !Q 1
!A2 & !A8 & !Q 1
!A3 & !A8 & !Q 1
!A4 & !A8 & !Q 1
!A5 & !A8 & !Q 1
!A6 & !A8 & !Q 1
!A7 & !A8 & !Ql;


~~~~~~~~~~~~_In_t_e_r[_a_C_in~g~t_h_e_C_Y~7_C_2_8_9_to~th_e_A~·~_2_9_0_0~O 
Appendix D. PLD Toolkit Source Code for the 22VIO (cont.) 

107:= < oe> 
< sum> 02 & 03 & 04 & 05 & 07 & 06 & Ql 

# !02& !07 & Ql 
# !03 & !07 & Q 1 
# !04 & !07 & Q 1 
# !05 & !07 & Ql 
# !07 & !06& Ql 
# A2 & A3 & A4 & AS & A6 & A 7 & !Q 1 
# !A2 & !A 7 & !Q 1 
# !A3 & !A 7 & !Q 1 
# !A4 & !A 7 & !Q 1 
# !A5 & !A 7 & !Q 1 
# !A6 & !A7 & !Ql; 

!06:= < oe> 
< sum> 02 & 03 & 04 & 05 & 06 & Q 1 

# !02& !06& Ql 
# !03&!06&Ql 
# !04 & !06 & Q 1 
# !05 & !06& Ql 
# A2 & A3 & A4 & AS & A6 & !Q 1 
# !A2& !A6& !Ql 
# !A3 & !A6& !Ql 
# !A4 & !A6 & !Q 1 
# !A5 & !A6 & !Ql; 

!05:= < oe> 
< sum> 02 & 03 & 04 & 05 & Ql 

# !02& !05 & Ql 

!04:= < oe> 

# !03 & !05 & Ql 
# !04 & !05 & Ql 
# A2 & A3 & A4 & AS & !Q 1 
# !A2 & !A5 & !Q 1 
# !A3 & !A5 & !Q 1 
# !A4 & !A5 & !Ql; 

< sum> 02 & 03 & 04 & Q 1 
# !02 & !04 & Q 1 
# !03 & !04 & Q 1 
# A2 & A3 & A4 & !Q 1 
# !A2 & !A4 & !Q 1 
# !A3 & !A4 & !Ql; 

!03:= < oe> 
< sum> 02 & 03 & Q 1 # !02 & !03 & Q 1 # A2 & A3 & !Q 1 

# !A2 & !A3 & !Ql; 

!02:= < oe> 
< sum> 02 & Ql # A2 & !Ql; 

5-22 



CYPRESS 
SEMICONDUCTOR 

Interfacing the CY7C289 to the CY7C601 

This application note describes how to use high­
speed CY7C289 PROMs to design an instruction 
memory for a 40-MHz CY7C601 RISC processor. The 
design features 1 Mbyte of PROM and requires no in­
terface circuitry. Utilizing a unique fast-column-access 
architecture, the CY7C289 supplies data in a 40-MHz 
system .with only occasional wait states. A schematic of 
the design is included at the end of this application 
note. 

Because microprocessor performance improve­
ments have outpaced access-time advances in high-den­
sity memory devices, system designers have resorted to 
memory interleaving and high-speed SRAM caches to 
more fully utilize a processor's performance capability. 
In embedded control applications, the alternative has 
been to compromise system performance by slowing 
every processor access to PROM memory with wait 
states or by using PROMs only for the boot process and 
running instruction code from SRAMs. The necessity 
for faster, nonvolatile memory in high-performance em­
bedded applications has prompted Cypress to design 
high-speed PROMs that you can easily interface to a 
variety of microprocessors. 

Using the CY7C289, high-speed embedded ap­
plication s can run code directly from PROM and 
eliminate the extra board space, cost, and logic required 
to transfer code into ." shadow" RAMs. To achieve this 
level of performance, the CY7C289 PROMs employ an 
innovative architecture that accentuates local speed. 
The memory array is split into 64-byte pages that allow 
on-page access times of just 20 ns in a 512-kbit (64K x 
8) PROM. This performance equals that of the fastest 
static RAMs at similar densities. SRAM-like perfor­
mance, combined . with the non-volatility of EPROM 
technology, makes these devices ideal for high-perfor­
mance embedded control applications. 

Another important CY7C289 feature is the 
availability of on-chip address registers. The CY7C601 
memory design presented in this application note is an 
example of the address registers' usefulness. Like many 
RISC architectures, the CY7C601 delivers its address 
and memory signals unlatched prior to the system 

5-23 

clock's rising edge. Ordinarily, you must latch these sig­
nals externally with several 74F74s or the like. However, 
the CY7C289's on-chip registers capture the address 
bits at the system clock's rising edge. This feature, as 
well as the CY7C289's automatic WAIT-signal genera­
tion, allow for a straightforward connection between the 
memory and the processor. 

Figure 1 displays a block diagram of the instruction 
memory system design for the CY7C601. As the 
diagram shows, the design has only two major com­
ponents: the CY7C601 32-Bit RISC Processor and one 
Mbyte of CY7C289 PROM. 

CY7C289 PROMs 
The CY7C289 is part of a high-density (512K), 

high-speed CMOS PROM family offered by Cypress 
Semiconductor. The CY7C289, along with another of 
the family members, features a unique fast-column-ac­
cess architecture. The PROM array is arranged into 
1024 pages, each 64 bytes long. Consecutive accesses to 
the same page require only 20 ns to complete. When an 
access crosses a page within the PROM, the data is 
delivered in 65 ns. The 7C289 generates a WAIT signal 
to alert external circuitry of an off-page access. 

The CY7C289 emphasizes fast local accesses­
within a 64-byte page. The principle behind the 
CY7C289 derives from a statistical approach to perfor­
mance improvement. Many microprocessors linearize 
memory access requests because of on-chip cache 
burst-fill modes or instruction pre-fetch queues, in ef­
fect localizing the instruction fetch sequences. In the 
CY7C289, Cypress uses the fast-column-access architec­
ture to improve local performance and take advantage 
of instruction stream linearity and locality. Fast access is 
possible when consecutive PROM retrievals are within 
the current page. 

When a memory cycle requests data that is not on 
the current page, the chip must power up the correct 
page. Because processor code tends to be linear in na­
ture, though, PROM accesses usually fall on the same 
PROM page and therefore require only 20 ns to 
complete. 



CY7C289 PROM r-
i--

( 4 BANKS) -
CY7C601 

00-031 V 00-D31 ~ I-- - - - - -
MHOLD WAIT 

I MOS 

- - - - - -
A2.-A9 AO-A5. 

.... CS1 . CS2 

"" r-- - - - -'- -
AIO-A31 ) A6-A15 

.... 

I 
I 

I 

Figure 1. Block Diagram of CY7C601 Memory Design 

Along with the unique array architecture, the 
CY7C289 simplifies system design by providing the on­
chip logic necessary to generate a WAIT signal. This 
signal is used to automatically insert microprocessor 
wait states during an off-page access. 

To simplify the memory interface with a variety of 
microprocessors, the CY7C289 contains a rich set of 
programmable features. For example, you can latch the 
input address with the ALE input or register the ad­
dress at CLK's rising edge. The CY7C289 provides a 
programmable bit to select between latched and 
registered address inputs. The default is registered in­
puts, which samples the address on CLK's rising edge 
and captures the address in the address register. This 
configuration suits most RISC processors, which 
generate addresses around the system clock's rising 
edge. 

When in LATCH mode while the ALE pin is ac­
tive, the PROM recognizes any address changes and 

5-24 

latches the address into the address registers on the 
user-defined edge of ALE. This option is particularly 
useful when interfacing with CISC processors (see Ref­
erence). Most CISC processors generate a valid address 
some time following the system clock's rising edge. In­
stead of waiting for the next rising clock edge (and 
sacrificing perfonnance), you can capture the address 
immediately using the ALE input. The drawback to 
LATCH mode is that it might require external interface 
circuitry. If you do select the ALE function, you can 
define the ALE signal's polarity, with the default being 
positive, 

To eliminate external bank decoders, the CY7C289 
includes two programmable chip selects (CSl and CS2). 
The polarity of these inputs is user programmable, 
facilitating automatic bank selection of up to four banks 
of PROM. The programmable chip selects provide an 
additional advantage for multibank PROM designs. If 
you arrange them correctly, you can effectively extend 



the length of the CY7C289 pages from 64 to as many as 
256 words. This extension improves system performance 
by increasing the likelihood of on-page PROM accesses 
(more on this feature later). 

The CY7C289 includes these programmable fea­
tures: 

1. You can either register the input address at 
CLK's rising edge or latch the address using the ALE 
input. 

2. You can program the address set-up and 
hold window. 

3. You can program the WAIT output's polarity. 
4. You can program the ALE input's polarity. 
5. You can generate the WAIT output from CLK's 

falling or rising edge for the registered-mode CY7C289. 
6. You can program the polarity of both chip 

selects (CS 1 and CS2). 
Each of these options is set by appropriately 

programming a reserved PROM location. Therefore, 
the devices are configured at the same time the array is 
programmed. 

CY7C601 Microprocessor 

The CY7C601 is a 32-bit general-purpose 
microprocessor that offers extremely high performance 
for embedded controller applications. The system 
described in this application note, for example, operates 
at 40 MHz. The CY7C601 is Cypress's CMOS im­
plementation of Sun Microsystems' SPARC (Scalable 
Processor Architecture). This architecture achieves 29 
MIPS by executing most instructions in a single clock 
cycle. 

A CY7C601 architectural feature that affects the 
memory interface is an internal pipeline. To achieve an 
instruction execution rate approaching one instruction 
per clock cycle, the CY7C601 uses a four-stage instruc­
tion pipeline. All four stages operate in parallel, work­
ing on up to four different instructions at a time. The 
stages are: 

1. Fetch-The processor sends out the instruction 
address to fetch an instruction. 

2. Decode-The instruction is placed in the instruc­
tion register and decoded. The processor reads the 
operands from the register file and computes the next 
instruction address. 

3. Execute-The processor executes the instruction 
and saves the results in temporary registers. 

4. Write-The processor writes the result to the 
destination register. 

A basic single-cycle instruction enters the pipeline 
and completes four cycles later. Normally, once the 
pipeline is full, an instruction is executed during every 
clock cycle. The existence of the instruction pipeline af­
fects the memory interface (as described in the System 
Timing section of this application note). Otherwise, the 
memory interface design is straightforward. 

5-25 

PROM Configuration 
In this application, four banks (16 CY7C289s) of 

PROM are used to provide 1 Mbyte of memory. Like 
most RISC architectures, the CY7C601 sends out valid 
address information immediately preceding a rising 
clock edge (and removes it soon afterward). Thus, the 
CY7C289s are configured in registered mode. The on­
chip address registers capture the input at CLK's rising 
edge and ignore all unclocked address changes. 

The chip selects on the CY7C289s are programmed 
on a bank to bank basis. Each bank is programmed with 
a unique polarity combination of CSI and CS2 to per­
mit PROM bank selection without external address 
decoding. 

The other programmable features relevant to this 
design involve the CY7C289's WAIT signal. For com­
patibility with the CY7C601, the WAIT signal should be 
active Low and generated with respect to CLK's falling 
edge. 

PROM Interface 
Because this design involves no glue logic, the 

CY7C289 PROM's circuit connections are relatively 
straightforward. The CY7C601 communicates with ex­
ternal memory via a 32-bit address bus and a 32-bit 
data/instruction bus. Note, in Figure2, however, that the 
addresses fed to the PROMs are not entirely sequential. 

The reason for the nonsequential addresses lies in 
the way the CY7C289 is organized. To improve the 
system's performance, the CY7C289 chip selects (CSI 
and CS2) are used to extend the effective PROM page 
length to 256 32-bit words (1 Kbyte). To understand 
how this is done, consider that the CY7C289's lowest six 
address inputs (AO - AS) designate a specific byte 
within a 64-byte internal PROM page. The CY7C289 
uses inputs A6 - A15 to select one of 1024 PROM 
pages. When any of the inputs at pins A6 - A15 chan­
ges, a new page is selected and the CY7C289 asserts the 
W Al1\ output. 

You can think of the CY7C289's chip selects as ad­
ditional address inputs in a multibank memory system. 
As with AO - AS, changes at the chip select inputs do 
not result in an internal page change. 

With four banks of PROM, you have a total of 8 
address bits (AO - AS, CS1, CS2) that do not affect the 
internal PROM page, as opposed to just 6 (AO - AS) 
when using one bank of PROM. The 8 bits of on-page 
addresses translate into a PROM page length of 256 
words or 1 Kbyte. 

The schematic in Figure 2 reveals how this page­
lengthening scheme is implemented. Note that the 
lowest 8 address bits from the CPU (A2 - A9) connect 
to the CY7C289 inputs that do not cause a page change 
(AO - AS, CS1, CS2). The lowest address that connects 
directly from the CPU to the PROMs is AI0. The chip 
selects in this design have effectively quadrupled the 



CY7C601 

40 MHZ· .. r 
".LF 

Figure 2. CY7C601 Memory Design 

5-26 



PROM page length, allowing a greater percentage of 
PROM accesses to complete within a single clock cycle. 

Note that the extended-page-Iength feature of this 
design affects the software that runs on the system. To 
make the extended page useful, sequential code needs 
to be located on the same PROM page. In this design, 
where each PROM page extends across all four banks, 
c?de .mus.t be segmented into page-length blocks. This 
situatIon is analogous to interleaving DRAMs. Because 
each ,CY7C289 PROM has a 64-byte internal page, the 
users code must be separated into 64-word blocks. In 
other words, place the first 64 words of code in bank 1 
the next 64 words in bank 2, and so on. A simple pro~ 
gram can accomplish this segmentation. 

Another design issue that bears clarification is the 
connection of the W AI'I\ signal generated by the 
CY7C289. This signal is asserted when the input ad­
dress crosses an internal page boundary on the PROMs. 
W AI'I\ connects directly to the CPU's Memory Hold A 
(MHOLDA\) and Memory Data Strobe (MDS\) in­
~uts to .tell the CY?C601 that an additional clock cycle 
is reqUlred to dehver the requested instruction from 
PROM .. In the schematic in Figure 2, only one W AIT\ 
output is connected to the CY7C6010 This is because all 
16 PROMs examine the same upper-order address in­
puts to determine if an internal page has been crossed. 
Therefore, only one PROM is needed to assert the 
yv AIT\ signal when an off-page access is detected. It is 
lmporta~t to no~e that the PROM will not generate 
W AlT\ if the ChiP enable signal (CE\) is inactive when 
the address changes. This ensures that when the CPU 
addresses some other portion of memory such as 
RAM, the internal PROM page does not ch~ge and a 
W AIT\ signal is not generated. ' 

CY7C601 Interface 
As shown in Figure2, the instruction memory inter­

face requires only two control inputs (MHOLDA\, 
MDS\). MHOLDA\ freezes the clock to the instruc­
tion pipeline during a cache miss (for systems with 
cache) or when accessing a slow memory, such as the 
65-ns page-miss operation in the CY7C289. Whenever 
the CY7C289 generates a W Am signal, MHOLDA\ is 
asserted and the instruction pipeline is frozen. The 
processor freezes with the next instruction's address on 
the address bus. MHOLDA\ must be presented to the 
CY7C601 at the beginning of each processor clock cycle 
and be stable during the processor clock's falling edge. 

The other control signal, MDS\, signals the proces­
sor when slow or missed (cache-miss) data is ready on 
the bus. The signal must be asserted only while the 
processor is frozen by either MHOLDA\ or Memory 
Hold B (MHOLDB\). Assertion of MDS\ enables the 
clock to the on-chip instruction register during an in­
struction fetch and effectively strobes the valid data into 
the CPU. 

5-27 

System Timing 
This section provides a brief description of the 

CY7C601 timing interface to the CY7C289 PROMs. 
The .ti~ng diagram in Figure3 illustrates a typical com­
mUfllcatIon sequence between the CPU and the 
PROMs. 

The memory interface's timing depends on whether 
or not the access is on the same page as the previous 
access. !h~ case w~ere an internal PROM page is 
crossed is illustrated m the left side of Figure 3. Ad­
dress 1 (displayed as A1) is an access to PROM that 
causes an internal page change. W Am is asserted by 
the CY7C289 to freeze the processor until the PROMs 
can deliver valid data. Note in Figure 3 that WAIT\ is 
not asserted until the next processor clock cycle. This 
delay is possible, using either MHOLDA\ or 
~OLDB\, because of the CY7C601's pipelined ar­
chitecture. The delay allows memories or interface logic 
more time to examine the address and determine if a 
wait state is required. 

The processor samples MHOLDA\ on the proces­
sor clock's falling edge. An active MHOLDA\ indicates 
that the adru:ess in the previous clock cycle requires at 
least one Walt state to complete. However, as shown in 
Figure 3, by the time MHOLDA\ is detected active, the 
processor has already read the data corresponding to 
Al. Reading this false data is perfectly acceptable due 
to the CY7C601's internal instruction pipeline. The 
CPU has the time to invalidate the erroneous data 
before it reaches the execution stage. The MDS\ signal 
strobes in the correct data when the data becomes 
available. 

The CY7C289s are configured to generate the 
W AlT\ signal with respect to CLK's falling edge to en­
sure proper operation of the wait-state mechanism. If 
the rising-edge option were selected, it is possible that 
the W AIT\ signal would be generated too early by the 
PRO~s. Consequently the CY7C601 would recognize 
~ a~tIve level on MHOLDA\ during the first cycle and 
mvahdate the data from the bus cycle prior to the 
PROM access. Generating the W AI'I\ signal from the 
falling edge ensures that the CPU does not detect the 
hold until the access's second cycle. 

Another important aspect of the memory 
interface's operation during a PROM page change is 
that W AIT\ connects directly to MDS\ as well as to 
MHOLDA\. This arrangement causes MDS\ to be as­
serted for two clock cycles instead of just one, but this 
does not affect the system's operation. Although the 
CY7C601 copies data erroneously during the first cycle 
of MDS\, the erroneous data is overwritten with valid 
data in the next cycle. This approach works because 
MHOLDA\ remains asserted and does not allow the 
internal pipeline to advance until the correct data ar­
rives. The advantage to feeding W AIT\ directly into 
MDS\ is that it avoids the use of any external logic for 
the memory interface. 



QCI'I'IOSS. Interfacing the CY7C289 to the CY7C601 
·SEMlcamucrOR ,==========;;;;;;;~~~;:;;~;;;;;;;;~;;;;;;;~~;;;;;;;~~;;;;;;;;= 

elK 

ADR A2 

t\HOLDA 
3 

/'\DS 

DATA 
INV~LIO 

<~--~----~~-65----------~ 

VAlID 

'WAIT ~19U--..--.;-__ --,1 

Figure 3. Memory Interface Timing 

Figure 3 . also displays some of the speed require­
ments that must be met in the instruction memory inter­
face. In the case of an internal page, change, the 
CY7C289 'PROMs require two wait cycles to complete 
an access. The 40-MHz CY7C601 requires 2 ns of data 
setup time before the system clock's rising edge. This 
sequence results in a total of 73 ns available for the 
memory' to return valid data. The CY7C289 meets this 
requirement with the 65-ns off-page access· time. 

5-28 

Th,e relatively trivial timing of sequential accesses 
falling on the same PROM page is illustrated in the 
right portion of Figure 3 .. The PROM latches A2' into 
the on-chip registers at CLK's rising' edge and delivers 
data a maximum of 20 ns later. 

Reference 
For information on using the CY7C289 in latched 

mode, see the application note entitled "Interfacing the 
CY7C289 to the AM29000." 



Section Contents 

Page 
PLDs 
Introduction to Programmable Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-1 
CMOS PAL Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-10 
Are Your PLDs Metastable? ............................................................. 6-21 
PLD-Based Data Path For SCSI-2 ........................................................ 6-40 
PAL Design Example: A GCR EncoderlDecoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-63 
1'2 Framing Circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-76 
Using CUPL with Cypress PLDs ......................................................... 6-93 
Using ABEL to Program the Cypress 22V10 .............................................. 6-119 
Using ABEL to Program the CY7C330 ................................................... 6-139 
Using ABEL 3.2 to Program the Cypress CY7C331 ........................................ 6-147 
Using Log/IC to Program the CY7C330 .................................................. 6-154 
State Machine Design Considerations and Methodologies .................................. 6-173 
Understanding the CY7C330 Synchronous EPLD ......................................... 6-213 
Using the CY7C330 in Closed-Loop Servo Control ........................................ 6-233 
FDDI Physical Connection Management Using the CY7C330 ............................... 6-247 
Bus-Oriented Maskable Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-259 
Using the CY7C330 as a Multi-channel Mbus Arbiter ..................................... 6-270 
Using the CY7C331 as a Waveform Generator ............................................ 6-279 
CY7C331 Application Example: Asynchronous, Self-Timed VMEbus Requestor .............. 6-286 
Understanding the 361 ................................................................. 6-295 
Using the CY7C361 as an Mbus Arbiter ................................................. 6-305 
TMS320C30/VME Signal Conditioner Using the CY7C361 ................................. 6-315 
DMA Control Using the CY7C342 MAX EPLD .......................................... 6-327 
Interfacing PROMs and RAMs to High-Speed DSP Using MAX . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-345 
FIFO RAM Controller with Programmable Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-351 





CYPRESS 
SEMICONDUCTOR 

Introduction to Programmable Logic 

Why Use a PLD? 
ASICs (Application Specific Integrated Circuits) 

are one of the fastest growing segments of the semicon­
ductor market for good reason. In addition to increas­
ing packaging density and reducing board real estate by 
integrating SSIIMSI logic functions, ASICs reduce 
power requirements, improve reliability, and provide 
product secrecy. 

ASICs include several different types of devices: 
full-custom devices, standard cells, gate arrays, and 
PLD s. Full-custom devices offer the greatest degree of 
integration, but they are expensive, and the develop­
ment cycles can be on the order of nine months to a 
year. Full-custom designs are justified only for very 
large volume applications. 

Standard cell devices can be turned around much 
more quickly (in about four months) and cost less than 
full-custom devices. However, the level of integration, 
and thus the speed, are lower than with the full-custom 
product. 

Gate arrays offer even less dense integration, but 
because only two metal masks must be fabricated, the 
design turnaround can be as short as six weeks. One 
drawback of all these ASICs is that the design logic 
must be set at the start of the fabrication cycle. If the 
design changes, the whole product cycle must start over. 
In addition, because each device is application specific, 
you must watch inventory very carefully to make sure 
that just enough of each device is ordered to meet 
demand. 

An alternative to custom or semicustom devices is 
the PLD (Programmable Logic Device). Although 
PLD s do not offer the same level of integration as the 
other ASICs, the board-space reduction is still sig­
nificant. The reduction factor is application dependent 
and ranges from 4: 1 and 10: 1 for smaller PLDs (20 to 
24 pins) to 75: 1 for high-density/pin-count devices such 
as the LCA or MAX families. Additional benefits in­
clude reduced parts inventory, faster design and turn­
around times, and simplified timing considerations. 

Because a PLD is sold as a "generic" array of logic, 
customized by the user, you can use the same PLD in 
many different applications, spanning any number of 
projects. Cypress's PLDs are based on EPROM tech-

6-1 

nology, thus making them EPLDs, which are erasable 
using an ultraviolet light source. You can make design 
changes at any point in the product cycle more easily 
than you can with other ASICs. The design cycle of a 
moderately complex PLD can be a week or less, and 
after the one-time purchase of a good development 
software package and programmer, the parts are rela­
tively inexpensive. PLDs simplify logic timing because 
all logical functions take approximately the same path 
through the device. Thus, the same propagation delays 
apply to all device outputs (more on this later). 

PLD Technology 
All Cypress EPLD families except the CY7C360 

family utilize the familiar sum-of-products architecture. 
You can implement Boolean transfer functions of this 
form by programming the AND array whose output 
terms feed a fixed OR array. This scheme can imple­
ment most combinatorial logic functions and is limited 
only by the number of product terms available in the 
AND-OR array. PLDs come in a variety of different 
sizes and with additional architectural features such as 
flip-flops. 

TTL PLDs use a fuse as their programmable ele­
ment. During the manufacturing process, fuses are built 
into all the connections between input pins and product 
terms. All unwanted connections are then blown during 
the programming process. Bipolar products are 
programmed using 20V pulses from 50 ~s to 100 ms 
long. These 100- to 300-mA pulses blow unwanted 
fuses. Fuses are blown one at a time so that the heat 
generated does not damage or weaken the IC. Because 
of the high currents required, bipolar PLDs have to be 
programmed one at a time. Because physical fuses are 
blown, you can program these devices only once. 

In contrast, the Cypress CMOS EPLD family uses 
an EPROM cell instead of fuses. This structure allows 
Cypress to functionally test and then erase all devices 
prior to packaging, thus facilitating 100-percent 
programming yields. The EPROM cell used by Cypress 
serves the same purpose as the fuse used in most 
bipolar PLD devices. Before programming, the AND 
gates (product terms) are connected via the EPROM 
cells to both true and complement inputs. 





1 1 Z 24 Z 
1 LoODO I 7 J ...... 

I 
it 

t 
LoUt --

7 1 
11 ~ 

I 3 
LOll12 

..... 
7 ~ 17 ... 

I 4 Loft. ...... 

7 .J 
~ , 11 

I 
..-1014 -

7 .J II ~ 

I • UtlD 
J 7 14 ~ 

I 7 
L15U 

..... 
7 .J lIS ~ 

• unt -
7 J 

lZ ... 
• - 11 

Figure 4. The 16L8 Block Diagram. 

The official, standardized version of a fuse map is 
called a JEDEC map. This map can contain various in­
formational fields and/or comments in addition to the 1s 
and Os. FigureS shows the JEDEC map that implements 
the function shown in Figures 2 and 3. Each number 
starting with L in the leftmost column represents the 
first fuse number in that row. An N denotes a note or 
comment. QF precedes the total number of fuses in this 
device-QF2048 in this example. FO means that the fuse 
default is 0, or unprogrammed. GO specifies an un­
programmed security fuse, whereas G 1 denotes a 
programmed security fuse (more on this later). C 
precedes a checksum value for the file. An * specifies 
the end of a field. A JEDEC file can also contain test 
vectors, which are not shown here. 

For more information on the JEDEC Standard, 
refer to "JEDEC Standard No.3-A, Standard Data 
Transfer Format Between Data Preparation System and 
Programmable Logic Device Programmer" available 
from: 

Solid State Products Engineering Council 
2001 Eye Street N.W. 
Washington, DC 20006 

Most PLD design packages compile the design and 
translate it into a JEDEC map. The map is then 
downloaded to the programming hardware, which 
programs the device(s) accordingly. 

6-3 

Introduction to Programmable Logic 

~YPle!~C~~C file fie: P D .J)rodqced· 1211989 

~ 
re s TooJklt C 100* F204~ ~O* Secunt bittln ro ammed* 

000 111111111111111)111111) 1 Ilfll11lO*N OE PT pin: 19* 
LOO032 10011111111111111111111111111111*N Sum pt, pin= 19* 
LOO064 Oll0l111111111111111111111111111*N Sum PT, pin= 19* 

[gg?i~ ~ggggggw088gg:~ ~~~~: pi~: l§: 
LO016O OOOOOOOoooOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, gin= 19* 
LO0192 OOOOooooooOOOOOOoooooooooOOOoooO*N Sum PT pin= 19* 
L00224 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT: pin= 19* 
L00256 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N OE PT pm= 18* 
L00288 ooooOOooooOOOOOOOOOOOOOOOOOOOOOO*N Sum pt, pin= 18* 

[g~m~ gggggggoo~~gggggggg:~ ~~~, pi~: l~: 
LOO384 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT: gin= 18* 
L00416 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 18* 
LOO448 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 18* 
LOO480 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 18* 
L00512 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N OE Pfrtpm= 17* 
[gg~~~ 888o~~gggggggggggggggg:~ ~~ PT' pi~: g: 
L00608 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT' pin= 17* 
LO0640 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT: pin= 17* 
[gg~6a gggggggggo0888gggoo00W0gggggggggg:~ ~~~ ~: pi~: g: 
L00736 OOOOOOOOOOOOOOOOoooOOOOOOOOOOOOO*N Sum PT, ~in= 17* 
LOO768 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N OE PT pm= 16* 
L00800 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum pt, pin .. 16* 
L00832 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin .. 16* 
L00864 OOOOOOOoooOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 16* 

[88g~~ gggo088ggg8880oggggggggggggggggggg:~ ~~~ ~: pi~: l~: 
L00960 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, gin= 16* 
LOO992 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 16* 
LOI024 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N OE I'L,pm= 15* 
LOI056 ooooOOOOOOOOOoooOOOOOOOOOOOOOOOO*N Sum 1'1, pin: 15* 
L01088 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 15* 
L01120 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 15* 
L01152 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 15* 
LOl184 OOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 15* 
L01216 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin: 15* 
L01248 ooooOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 15* 
L01280 OOOOOOOOOOOOOOOOOOOOOOOO*N OE I'L,pm= 14* 
L01312 OOOOOOOOOOOOOOO*N Sum 1'1, pin: 14* 
LOl344 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 14* 
L01376 OOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 14* 
L01408 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 14* 
LOl44000000000000000000000000*N Sum PT, pin= 14* 
L01472 OOOOOOOOOOOOOOOOOOOOOOOOOOOON Sum PT, pin= 14* 
L01504 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 14* 
L01536 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N OE PT pm= 13* 
L01568 ooooOOOOOOOOOOOOOOOOOOOOOOOOoooO*N Sum pt, pin: 13* 
L01600 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 13* 
L01632 OOOOOOOOOOOOOOOOOOO()()QOOOOOOOOOO*N Sum PT, pin= 13* 

[gl~~ ~~ggggoo~ggggg:~ ~~~, pi~~ B: 
LOl728 OOOOOOOOOOOOOoooOOOOOOOOOOOOOOOO*N Sum PT: ~in= 13* 
L01760 OOOOOOOOOOOOOOOOoooOOOOOOOOOOOOO*N Sum PT, pin= 13* 
L01792 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N OE ~pm= 12* 
[g~~~~ ggj~ggjgggggggggggjgggggjggjgg:~ ~~~ PT' pi~~ g: 
L01888 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT: gin= 12* 
L01920 OOOOOOOOOOOOOOOOOOOOOOOOOOOOoooO*N Sum PT, pin= 12* 
L01952 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 12* 
L01984 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 12* 
~~~\~ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum PT, pin= 12* 

0000
Figure 5. A 16L8 JEDEC Map.

First-Generation PLDs
The ftrst PLDs were strictly combinatorial logic

with three-state outputs, like the PALC16L8. Then D
flip-flops, a clock input, and internal feedback were
added, allowing a single PLD to implement sequential
logic or state machines. The 16L8, 16R4 (four
registered outputs), 16R6 (six registered outputs), and
16R8 (eight registered outputs) became industry-stand­
ard parts.

Testability was a problem in some of the earlier
devices. Because a blank device had all fuses intact, out-

~~
~, SEMICQIDUCI'OR

PTERM

PRODUCTS

FEEDBA K
TO ARRAY

ASYNC RESET
GLOBAL CLOCK

SYNC PRESET

Cl

Introduction to Programmable Logic

PIN

Figure 6. The 22VIO Macrocell.

put enables were all turned off, configuring all device
pins as inputs. This scheme made it difficult to test
blank devices and to check whether the fuses could be
blown without actually blowing any of them;

To . get around these problems, a phantom array
was added to the device. The 16L8, for example, has
256 additional bits in its phantom array. These bits are
used to test the PLD functionally and verify dynamic
(AC) operation after the chip is packaged, without
using the normal array. The phantom array is so named
because it does not function in regular operating. mode.
The device must be in a special mode to access the
phantom array.

The phantom array is usually programmed and
verified as part of the final relectrical test procedure
during the manufacturing process. This procedure
verifies both . the PLD programmability and function.
Cypress's EPLDs are programmed, tested, and then
erased before they are packaged. You can also use the
phantom array as part of incoming inspection.

Another feature of today's PLDs is register
preload, which loads data into the registers of
registered devices for testing purposes. This arrange­
ment greatly simplifies and shortens the testing proce­
dure. You can use this feature to check illegal state
resolution -a state machine's ability to pass from an ac­
cidental illegal state to a legal one. Preloading is ac­
complished by applying a super-voltage (usually in the
range of 12 to 14V) pulse of at least 100-lls duration to
a specific pin, while holding a second pin at VIH. The
super voltage acts as a write strobe, which clocks data
applied to the I/O pins into the corresponding registers.

A security fuse has also become a standard PLD
feature. In addition to writing a' fuse map into a device,
any good device programmer can read a device's fuse
map. This capability tends to negate the PLO's ad­
vantage of hiding proprietary logic from observers. But
if you do not want your PLDs to be read by a program­
mer,You can program the security bit, which discon-

6-4

nects the lines used to verify the array. In' a Cypress
EPLD, the security EPROM cell is designed to retain
its charge longer than any of the other cells in the array.

The Programmable Macrocell
The basic 20-pin PLOs of the past still had some

limitations. For instance, they provided no way to con­
trol output-pin polarity without doing DeMorgan opera­
tions on the logic equations. Quite often the OeMorgan
version has too many product terms to fit in such as
device, even after several hours of reduction using a
logic-optimization program. .

Another drawback is that you have to stock a
variety of the basic 20-pin PLDs and/or their 24-pin
equivalents to get the best fit for a given'design. Often
extra registers are left unused when the design is
fmished. Even though these PLOs tend to be pin
limited, the pins ·.associated . with the extra registers end
up being wasted because you .cannot use them for any­
thing else.

The 24-pin 22VlO overcame earlier limitations and
revolutionized PLDs by introducing the programmable
macrocell (Figure 6). The programmable macrocell al­
lows you to select one of four output configurations:
combinatorial inverting, combinatorial noninverting,
registered inverting, and registered noninverting. You
can use the "output" pin as an input or for bidirectional
I/O if you specify the macrocell as combinatorial.

Each of the 22VI0's .ten I/O pins have all four con­
figuration options. You select the option using two
fuses, or cells, identical to those in the array. These .20
bits (two for each of ten macrocells) appear at the bot­
tom of the fuse map that represents the array.

Another innovation of the 22VlO is that some pins
have a larger sum of products than others-an ap­
proach called variable product term distribution. In· the
22VlO, I/O pins have sums from eight to 16 product
terms wide. This variable distribution accommodates

~

<;~~ -=., SEMICGIDUCfOR

applications such as D flip-flop counters, where several
outputs require a large number of product terms.

The 22VI0 offers yet another improvement over
PLDs such as the 16R8, which powers up with all
registers in the reset state. The only way you can .chan~e
this is by clocking in new data. The 22VlO aVOids thIS
problem by adding two extra product terms. One sets
all registers, the other resets all registers. Because the
set and reset are each a product term, they can be
programmed to be the AND of any array input(s). For
additional flexibility, the set is designated as a
synchronous operation, and the reset is asynchronous.

Because of the 22VI0's versatility, it has become
something of an industry standard. It is available in
TTL, CMOS, and GaAs. Many companies have intro­
duced similar architectures with slightly different fea­
tures. For example, the Cypress PLDC20G 10 uses a
similar macrocell that· adds the capability to choose be­
tween a product-term output enable and a pin-control­
led output enable. To make the PLDC20G 10 faster and
less expensive than the 22VlO, Cypress has reduced the
array to nine product terms per I/O macrocell and
removed the set and reset product terms.

Another device introduced around the same time
as the 22VI0 is the 20RAI0, which targets asynchronous
registered applications. Like the 22VlO, the 20RAI0
has I/O pins with programmable polarity bits. You can
configure the 20RAlO's I/O pins as registered or com­
binatorial, but not with dedicated fuses. Instead, each
I/O pin has a sum of four product terms that c~nnects,
through a polarity switch, to the D input of a flip-flop.
Each of these flip-flops has dedicated product terms
connected to its clock, set, and reset functions. When
both the set and reset of a flip-flop are asserted (High),
the flip-flop becomes transparent, thus making the out­
put combinatorial.

In addition, the 20RAlO has an unusual output­
enable scheme. Pin 13 is inverted and ANDed with an
output-enable product term. If pin 13 is High, all I/O
pins are at high impedance. The 20RAlO also offers a
synchronous register preload in operating mode. When

Introduction to Programmable Logic

pin 1 goes Low, any data driven onto an I/O pin is
latched into the corresponding flip-flop. An 20RAI0's
I/O pin is illustrated in Figure 7. This device's flexibility
and asynchronous nature make it ideal for bus-arbiter
and interrupt-controller applications.

Second-Generation PLDs
The architectural features introduced by the 22VI0

greatly enhance PLD flexibility, but this. device still has
some limitations. It offers only D-type flIp-flops, for ex­
ample, which are cumbersome for applications such ~s
counters. Further, each flip-flop and its feedback sull
use a pin, even if the flip-flop's output is not needed
outside the PLD. Bidirectional, registered pins cannot
be implemented. High-speed applications often require
flip-flops outside the PLD's inp~ts to latch data bec.ause
propagation delays impose relatIvely long set-up urnes
for output flip-flops.

Cypress solves all these problems with the
CY7C330. In addition to· the output registers on the I/O
pins, each pin except power and groun? ~as an input
register with a choice of two clocks. ThIS mput macro­
cell makes the 28-pin CY7C330 ideal for pipelined con­
trol and high-speed state machine applications.

Another CY7C330 feature is its ability to emulate T
and JK flip-flops-a useful alternative in counter
designs. In each I/O macrocell, the sum of products
from the array drives one input of an exclusive-OR
(XOR) gate. The second input to the XOR gate is
another product term. This gate's output connects to
the D input of the output flip-flop in the macrocell (Fig­
ure 8). If the flip-flop's Q output is fed back and con­
nected to the single product term driving the XOR gate,
the sum-of-products acts as the T input of a T flip-flop.
The macrocell can also emulate a JK flip-flop in this
way, using the relation T = J!Q + KQ. If you require a
D flip-flop, you can use the XOR gate to control
polarity.

Close examination of Figure 8 reveals two paths
into the array. The first is a multiplexer that selects
feedback from either the output register or the input

OUTPUT ENABLE
(FROM PIN 13)

PRELOAD
(FROM PIN 1)

OE~~UL ________________ -r __________ ~~
eLO K PTERM

RESET PTERM

CO

TO~~L-____________ ~~==~ __ ~ __ ~
Figure 7. The 20RAIO Macrocell.

6-5

SET
·E SET

JCL\Cl
JCLKO

OCLK
OE

Introduction to Programmable Logic

OE p~~ ______________________ ~~~~-+~

XOR

SUM~~ ______ -R~

,
TO

C3 'h.~~~ 1np.t

FROM ADJACENT
MACROCELL

Figure 8. The CY7C330 Macrocell.

register's Q output. This multiplexer is called the feed­
back mux. The inputs to the second path, called the
shared input mux, are the Q outputs of input registers
belonging to adjacent I/Omacrocells. This path allows
you to feed back the Q output of a macrocell's output
register, and still utilize' the pin associated with that
macrocell as an input. You can do this for six of the 12
I/O macrocells. If you need more registers for an ap­
plication, the CY7C330 contains four additional buried
registers. These registers are identical to the output
register portion of the 1/0 macrocell, except they are
not connected to any pin.

Just as the CY7C330 can be considered as' an ex­
tended, enhanced version of the 22VI0, the CY7C331
represents an extension of the lORAI0.· The lORAI0
has many of the same limitations as the 22VI0, with the
additional limitation that the sum of products is only
four product terms wide. The CY7C331 has 12 I/O
macrocells. In addition to the 20RAI0-like output flip­
flops, the CY7C331 has identical flip-flops in the input
path. As in the lORAI0, each flip-flop has a product­
term-controlled clock, set, and reset. If the set and reset
product terms are both asserted, the flip-flop' becomes
transparent. The 20RAlO polarity fuse has been
replaced in the CY7C331 by an XOR gate, which has as
inputs the sum of products and a dedicated product
term. Thus, you can control the output's polarity or
have the flip-flops emulate T or JK flip-flops, as in the
CY7C330. The CY7C331 macrocell appears in Figure 9

Like the 22VI0 and CY7C330, the CY7C331 has
variable-product-term distribution with sums from four

6-6

to .12 product terms wide. The CY7C331 borrows the
shared· input mux and output enable schemes from the
CY7C330. The CY7C331 does not support the
lORAI0's operating mode preload, but you can preload
the CY7C331's registers using a super voltage.

The CY7C331 is designed especially for self-timed
applications such as high-speed 1/0 interfaces. The
device supports self-timed designs with programmable
clock inputs, well-controlled internal timing relation­
ships, and ultra-fast metastable resolution. No other
PLO has this self-timed capability.

Another PLO architectural. trend, is to put
registered inputs in combinatorial devices. These PLDs
generally serve in sophisticated decoding applications,
where the address or data is only stable for a short time.

In the past, an MSI chip with latches or flip-flops
was used to capture transient data, and the latched data
fed into a PLO. Now PLOs such as the CY7C332 fea­
ture an input macrocell that you can program as com­
binatorial, registered, or . latched. You have a choice of
two clocks, and you can program the clock polarity as
well.

The CY7C332 I/O macrocell (Figure 11) incor­
porates. the input macrocell and a combinatorial output
path. The latter includes a variable sum of products that
drives one input of an XOR gate; a dedicated product
term drives the XOR's other input. An output-enable
mux allows a product term (pin 14) to control the out­
put enable. This combinatorial output path can act as
an input to the programmable-input register/latch, thus
allowing you to create state machines.

OE PTERM

OUT SET PTERM

OUT ClK PTERM

OUT RESET PTERM

IN ClK PTERM

IN SET PTERM

TO INPUT B FFER

TO INPU~~~~~

Introduction to Programmable Logic

OE (pIN 14)

CO

register

FROM ADJACENT
MACROCELl

Figure 9. The CY7C331 Macrocell.

OE PLk~--------4-~

XOR P~
SUM F

PRODUCTS

C4 >-+-________________ ~ ~~~----~--~uOLJO PIN

TO INPU~T~B~~~ __ ~~

C2
OE (PIN 14) ClK!

ClK2

Figure 10. The CY7C332 Macrocell.

High-Density PLDs
Because of its low power consumption, CMOS can

achieve higher integration than can bipolar tech­
nologies. Several manufacturers are taking advantage of
this fact to produce very high density PLDs. The
CY7C342, for example, is a 68-pin member of the new
MAX family and contains 128 flip-flops and over 1000
product terms. Up to 256 additional latches can be con-

6-7

figured using expander product terms. Each of these
product terms is called a logic array block (LAB). The
CY7C342 contains eight LABs, which connect together
via a programmable interconnect array (PIA).

The CY7C342 macrocell (Figure12) contains a sum
of three product terms driving one input of an XOR.
The other XOR input is a dedicated product term. The
XOR drives a programmable flip-flop, which you can

P T 'UU'-'<-.---i

P T '-"-----1

P T 'UU'""----i

CLOC --L..Io.Jl..<L_--1

5 ET 'l....-I:....LIi.JUl._-j

RST~'-'-"""""_--1

Introduction to Programmable Logic

~ __ -+-r __ ~ ____ ~ ________________ +-~~PIA
TO ARRAY

SYSTEM CLOCJ(

Figure 11. The CY7C342 Macrocell.

configure as a D, T, JK, or SR flip-flop or as a latch.
The flip-flop has asynchronous set and reset product
terms. It also offers a choice of asynchronous clock
product term or a synchronous clock. Alternatively, the
macrocell provides a combinatorial path.

The CY7C342's block diagram appears in Figure
13. In addition to a high level of integration, the device
is fast. Its typical clock frequency equals 50 MHz. This
combination of density, speed, and flexibility allows the
CY7C342 to replace over 50 standard TTL devices.

PLD Software Packages
Parts as sophisticated as the MAX chips require

equally sophisticated design software. The
MAX+PLUS software offers schematic capture,

6-8

state machine syntax, Boolean algebra entry, logic
reduction, synthesis and fitting, and timing simulation.
Similar packages that support a variety of devices are
available from Data I/O, MINC, and several CAD
software vendors.

More conventional support is available from IS­
DATA's LOGiC, Data I/O's ABEL, and Logical
Devices' CUPL. These packages offer Boolean equation
entry and logic reduction, as well as various higher-level
language constructs, state machine syntax, and simula­
tion. All these packages cover a variety of devices from
several vendors.

Cypress offers a support package called the PLD
ToolKit. This software supports all Cypress PLDs, with
the exception of the MAX devices.

Introduction to Programmable Logic

Figure 13. The CY7C342 Block Diagram.

6-9

CMOS PAL Basics

This application note provides a basic description of
the Cypress CMOS PAL C devices, including their ar­
chitecture and design, the technology used in their fabrica­
tion and programming, and how their reliability is guaran­
teed. The PAL C devices are functionally equivalent, pin
compatible, and superior in performance to their bipolar
counterparts.

This application note also furnishes information on
the design techniques that Cypress uses on all products to
eliminate latch-up and improve ESD (electrostatic dis­
charge) protection.

PAL Definition
The functional structure of a PAL (programmable

array logic) consists of a programmable AND array,
whose outputs feed into a fixed OR array. The pertinent
parameters are the number of inputs, the number of out­
puts, the number of factors (width) in the AND array, and
the width of the OR array. The Boolean equation imple­
mented by a PAL is a sum of products, or min term form.

The first PALs included only combinatorial logic.
Then someone realized that adding latches (D flip-flops),
a clock input, and internal feedback made it possible to
implement a programmable, sequential state machine in a
single package. Three-state outputs, the "security fuse,"
flip-flop initialization, and testability were added later.
Today, you have many PAL options to chose from.

Applications and User Benefits
PALs are used to replace SSIIMSI chips and glue

logic, primarily to increase packaging density. A single
PAL is the functional equivalent of many SSI ICs (up to
200 - 500 equivalent gates). Therefore, when you use
PALs to replace standard logic gates, the resulting reduc­
tion in PC card area is significant. The reduction factor is
application dependent and varies between 4 to 1 and 10 to
1. That is, one 20- or 24-pin PAL (in a OJ-inch DIP)
replaces between four and 10 14-pin ICs. Secondary
benefits include reduced parts inventory, reduced power,

6-10

higher reliability, faster design and turnaround time,
product secrecy, and equal (matched) propagation delays
through the AND-OR array.

PALs give you more functions and, more important­
ly, more interconnections within a single Ie. This affects
the reliability of your designs. Studies have proven that
system reliability is inversely proportional to the number
of interconnections among system elements. However, the
reliability of ICs is not a function of their complexity.

The failure rate of mature ICs in volume production,
during their useful life - the nearly horizontal part of the
bathtub-shaped curve - is 0.1 percent per 1000 hours.
This figure has remained essentially constant over the last
20 years, in spite of the fact that circuit complexity has
increased by more than two orders of magnitude.

IC manufacturers have put more functions and inter­
connections in a single package, which results in a system
with fewer components and, therefore, higher reliability.
A definite benefit to you.

Programming
A ramification of using PALs is that they must be

programmed. You can either design and build a program­
mer or buy a commercially available one for $4,000 to
$10,000 from one of a dozen or so companies.

The programming process puts stress on the PAL,
especially if fuses are blown. Bipolar PROMs have his­
torically used fuses; the same technology has been applied
to bipolar PALs.

All of the connections in a PAL are made during the
wafer fabrication process. Then the unwanted connections
are "unmade" by blowing fuses during the programming
process. The first fuse materials were nichrome com­
pounds and suffered from reliability problems. If the right
amount of energy was not used to blow the fuse, the
residue ash could become conductive over a period of
time (100 - 500 operating hours) and the fuse could
"regrow." These problems have been corrected, and
materials such as platinum, silicide, and polysilicon are

currently used for the fuse material. However, the
programming technique is the same: blowing fuses.

Bipolar PALs are programmed using 20V pulses last­
ing from 50 j.lS to 10 ms and carrying from 100 to 300
rnA. One fuse is blown at a time, primarily because so
much heat is generated that blowing more than one could
either permanently damage the IC or stress it so much that
it could fail later. In fact, some programming algorithms
take into account the physical locations of the fuses and
avoid sequentially blowing fuses that are physically close
to each other; this prevents excessive localized heating of
the chip. Because of the high currents required, bipolar
PALs are not "gang" programmed, as are EPROMs.

Programming Cypress CMOS PALs
Cypress PALs are programmed by storing charge on

the floating gate of a FAMOS (Floating Gate Avalanche
Metal On Oxide) transistor in an EPROM cell. Thus,
during programming Cypress PALs are stressed sig­
nificantly less than fuse programmable PALs. In addition,
every cell is programmed, tested and erased as part of the
manufacturing process. This 100-percent testing guaran­
tees a 100-percent programming yield to you, which is
impossible to guarantee with bipolar PALs.

The storage mechanism is well understood. Products
using it have been in volume production for the past 15
years. Numerous reliability studies have been performed
by many independent organizations and all have con­
cluded that the technology is reliable.

Cypress PAL C devices are programmed using 13.5V
pulses lasting from 100 J..ls to 10 ms, during which 50 rnA
of current exist. Eight bits are programmed at the same
time and, because of the lower currents required, 10 to 20
devices can be gang programmed in parallel.

Before programming, AND gates or product terms
are connected via EPROM cells to both true and comple­
ment inputs. Programming an EPROM cell disconnects an
input from a gate or product term. Selective programming
of these cells enables a specific logic function to be im­
plemented. PAL C devices are supplied in four functional
configurations: 16L8, 16R8, 16R6, and 16R4. These func­
tional variations offer you the choice of combinatorial as
well as registered paths to implement logic functions.

Cypress PAL C devices are fabricated using an ad­
vanced 0.8J..l N-well CMOS technology. The use of proven
EPROM technology to achieve memory non-volatility,
combined with novel circuit design and a unique architec­
ture, provides you with a superior product in terms of per­
formance, reliability, testability, and programmability.

Cypress PAL Functions
The variations of PAL C functions available appear

in Table 1. The 16L8, for example, is purely com­
binatorial and consists of eight groups of seven-input
AND gates; each group can have up to 32 possible inputs;
One of the AND gates in each group enables the output
driver, so that the other seven AND gates each feed one
OR gate, whose output is inverted.

6-11

CMOS PAL Basics

The 16R8 is similar to the 16L8, except that the out­
puts are latched using D flip-flops (with a common clock),
the inputs to the eight OR gates are the outputs of eight
AND gates, and the three-state output drivers are enabled
by a common enable input.

All PAL C devices are manufactured using the same
masks, except for the metal mask.

Refer to the PAL C data sheet for a more detailed
description of the other members of the family. The 16R4,
16R6, and 16R8 have four, six, or eight registered outputs
with feedback.

Register Preload
In registered devices, the preload function loads data

into the internal register for testing purposes. This sig­
nificantly simplifies and shortens the testing procedure.

Loading is accomplished by applying a supervoltage
(13.5V) pulse of at least 100 J..ls duration to pin 5 as a
write pulse while pin 11 is held at VIH and data is applied
to pins 12 through 19.

Security Function
The security function prevents the contents of the

regular array from being electrically verified. This enables
you to safeguard proprietary logic. The EPROM technol­
ogy prevents the state of the cell from being visually as­
certained.

The security function is implemented by program­
ming an EPROM cell that disconnects the lines that are
used to verify the array. This cell has been designed to
retain its charge longer than any of the other cells in the
array.

Arrays
There are 2048 EPROM cells in the regular PAL

array that are used to select up to 32 inputs for eight
groups of seven-input AND OR gates and up to 32 inputs
for eight AND output enable gates. In normal usage, no
more than 16 inputs are connected to any AND gate, be­
cause connecting both a true and a complement input of
the same signal to the input of an AND gate results in a
constant Low output.

The PALs have an additional 256 bits in a phantom
array that are used to test the PAL functionally. These bits
also serve to verify dynamic (AC) operation without using
the normal array and after the PAL chip is packaged.

The phantom array is programmed and verified as
part of the final electrical test procedure during the
manufacturing process. You can use it as part of an in­
coming inspection to verifyprogramrnability as well as
operation. Three input pins are used to verify operation of
the phantom array. One (pin 2) has a worst-case (longest
physical length) propagation delay path through the
regular array.

You program the phantom array in the same manner
as the regular array. Both are addressed as byte arrays for
programming. The normal array has 256 bytes to program
and the phantom array has 32 bytes.

Programming the PAL C EPROM Cell mance because .the . read and write transistors are op­
timized for their respective functions. The cell measures
20.4 by 6.7Jl. Note that the' selection gates, the floating
gates, and the sources of both transistors are connected
together.

A schematic of the two-transistor EPROM cell used
in all PAL C devices appears in Figure 1. Conventional
EPROMs use one transistor per cell. The transistor's
design is a compromise between being able to program
(write) rapidly and read. Cypress uses a two-transistor cell
that enables the PAL C devices to achieve superior perfor-

In the unprogrammed state,' the read transistor has a
threshold voltage of approximately IV and the program
transistor, approximately 3.5V.

Table 1. PAL C Selection Guide

Commercial Parts
Generic Icc (rnA) tPD (ns) ts (ns) tco

++
Part Logic Output Enable Outputs (ns)

Number L STD -25 -35 -25 -35 -25 -35

16L8 (8) 7-wide AND-OR- Programmable
(6) Bidirectional 45 70 25 35 -- -- -- --Invert (2) Dedicated

16R8 (8) 8-wide AND-OR Dedicated Registered Inverting 45 70 -- -- 20 30 15 25

(6) 8-wide AND-OR Dedicated Registered Inverting
16R6 (2) 7-wide

Programmable Bidirectional
45 70 25 35 20 30 15 25

AND-OR-Invert
(4) 8-wide AND-OR Dedicated Registered Inverting

16R4 (4) 7-wide Programmable Bidirectional
45 70 25 35 20 30 15 25

AND-OR-Invert

(10) 8-wide AND-OR- Programmable Programmable
20GlO Bidirectional or -- 55 25 35 15 30 15 25

Invert with MACRO or Dedicated
Registered

(10) variable AND- Programmable
22VlO OR-Invert with Programmable Bidirectional or 55 90 25 35 15 30 15 25

MACRO Reigistered

Military Parts
Generic Icc tPD (ns) ts (ns) tco (ns) +

Part Logic Output Enable Outputs (rnA
-20 -25 -30 -40 -20 -25 -30 -40 -20 -25 -30 -40 Number

16L8 (8) 7-wide Programmable (6) Bidirectional
70 20 NA 30 40 -- NA -- -- -- NA -- --AND-OR-Invert (2) Dedicated

16R8 (8) 8-wide
Dedicated

Registered
70 -- NA -- -- 20 NA 25 35 15 NA ZO 25 AND-OR Inverting

(6) 8-wide
Dedicated

Registered

16R6
AND-OR Inverting

70 20 NA 30 40 20 NA 25 35 15 NA 20 25
(2) 7-wide Programmable Bidirectional AND-OR-Invert

(4) 8-wide
Dedicated Registered

16R4
AND-OR Inverting

70 20 NA 30 40 20 NA 25 35 15 NA 20 25
(4) 7-wide Programmable Bidirectional
AND-OR-Invert
(10) 8-wide Programmable

20GI0 AND-OR-Invert Programmable Bidirectional or 80 NA -- 30 40 NA -- 25 35 NA -- 20 25
with MACRO Registered
(10) variable Programmable

22VI0 AND-OR-Invert Programmable Bidirectional or 100 NA 25 30 40 NA 20 25 35 NA 20 20 25
with MACRO Registered

6-12

A (INPUT TERt.I)

--+---...-... PROGRAt.4

--+-~i--"'-'" (~:gDUCT TERt.I)

Figure 1. PAL EPROM Cell Schematic

To program the cell, you raise the input line (A) to
15V, which causes charge to be stored on the floating gate
of the program transistor. This in turn causes the program
transistor's threshold to increase to approximately 7V. Be­
cause the floating gates of both transistors are connected
together, the threshold of the read transistor increases by
the same amount (7 - 1 = 6V).

To read from the cell, you raise the input line (A) to
5V. If the cell has been programmed, this voltage is not
sufficient to tum on the read transistor. However, if the
cell has not been programmed, the read transistor turns on.

CMOS PAL Basics

Under this condition, the current through the read transis­
tor is 120 to 150 J..LA - approximately an order of mag­
nitude greater than that used in a conventional EPROM
cell. The larger current is required to achieve the specified
performance.

Operational Overview
The PAL operates in two basic modes: PAL and Pro­

gram. In the PAL mode, either the regular array or the
phantom array can be used along with the data inputs to
determine the state of the outputs. In the Program mode,
either the regular array or the phantom array can be
programmed using the eight outputs (pins 12 - 19) as data
inputs and pins 2 - 9 as address inputs.

Table 2 illustrates the various modes of operation for
the PAL C 20 Series devices. The modes are decoded by
high-voltage-sensitive on-chip circuits. You can go from
any of the modes to any other mode. Note that the normal
data output pins (12 - 19) serve as data input pins for
programming.

Programming
Tables 3 and 4 indicate how the regular and the phan­

tom arrays are addressed. The regular array is addressed
as a 256-word (8 X 32-bit) memory. The phantom array is

Table 2. PAL C 20 Series Operating Modes

Pin Name Vpp PGMiOE A1

Pin Number (1) (11) (3)

Operating Modes

PAL X X X
Program PAL Vpp Vpp X
Program Inhibit Vpp VIHP X
Program Verify Vpp VILP X
Phantom PAL X X X

Program Phantom PAL Vpp Vpp X
Phantom Program Inhibit Vpp VIHP X
Phantom Program Verify Vpp VILP X
Program Security Bit Vpp Vpp Vpp

Verify Security Bit X X Note 8

Register Preload X X X

Notes:
1. Vpp = 13.5 ±O.5V, Ipp = 50 rnA, Veep = 5 ±O.25V,

VIHP = 3V, VILP = OAV.
2. Measured at 10 and 90% points.
3. Vss < X < Veep.
4. All "X" inputs operational per normal PAL function.
5. Address inputs occupy pins 2 through 9 inclusive; for

both programming and verification, see programming
address Tables 3 and 4.

6. All "X" inputs operational per normal PAL function
except that they operate on the function that occupies
the phantom array.

A2

(4)

X

X
X

X

X

X

X
X

X
Vpp

X

6-13

A3 A4 AS D7-DO
(5) (6) (7) (12-19) Notes

X X X Programmed Function 3,4

X X X Data In 3,5

X X X High Z 3,5

X X X Data Out 3,5

X Vpp X Programmed Function 3,6

X X Vpp Data In 3,7

X X Vpp HighZ 3, 7

X X Vpp Data Out 3,7

X X X HighZ 3

X X X HighZ 3
Vpp X X Data In 3,9

7. Address inputs occupy pins 2 through 9 inclusive; for
both programming and verification, see programming
address Tables 3 and 4. Pin 7 is used to select. the
phantom mode of operation and must be taken to Vpp
before selecting phantom program operation· with Vpp
on pin 1.

8. The state of pin 3 indicates whether the security func­
tion has been invoked. If pin 3 = VOL, security is in
effect. If pin 3 = VOH, the data is unsecured and can
be directly accessed.

9. For testing purposes, the output latch on the 16R8,
l6R6, and l6R4 can be preloaded with data from the
appropriate associated output line.

selected using the same addresses as columns 0, 1, 2,
and 3, but with pin 7 at V pp (as shown in Tables 2 and
4).

For either the normal or phantom array, the
product terms are addressed in groups of eight, as
shown in Table 3. There is a one to one correspondence
between the data to be programmed and the DO - D7
inputs and the product terms, as modified modulo 8, by
the address on pins 2, 3, and. 4 (Figure 2). In other
words, a One on DO corresponds to deselecting the
product term input at input line 0 and product term O.
A One on D1 corresponds to de-selecting the product
term input at input line 0 and product term 8, etc.

One method of programming the array is to pro­
gram and verify the bits corresponding to the first
product term address, then increment a counter that
generates the OR gate addresses (pins 2, 3, and 4), then
program and verify the second row of Table 3, and con­
tinue this process eight times until all 64 product terms
associated with input line 0 have been programmed and
verifIed. To select the second (1) input term, address
pins 6, 7, 8, and 9 are held Low (as before) and pin 5 =
High. The preceding sequence is then repeated 31 more
times, incrementing pins 5 through 9 in a binary se­
quence to program and verify the entire array. The
other members of the PAL C family are programmed in
an identical manner.

Figure 3 shows a simplifIed block diagram of a 16L8
PAL C. Figure 4 shows the method of programming and
sensing.

Table 3. PAL C 20 Series Product Term Addresses

Product Term Addresses

Binary Address

Pin Numbers Line Number

(4) (3) (2)

VILP VILP VILP 0 8 16 24 32 40 48 56

VILP VILP VIHP 1 9 17 25 33 41 49 57

VILP VIHP VILP 2 10 18 26 34 42 50 58

VILP VIHP VIHP 3 11 19 27 35 43 51 59

VIHP VILP VILP 4 12 20 28 36 44 52 60

VIHP VILP VIHP 5 13 21 29 37 45 53 61

VIHP VIHP VILP 6 14 22 30 38 46 54 62

VIHP VIHP VIHP 7 15 23 31 39 47 55 63

DO .D1 D2 D3 D4 :D5 D6 D7

Programmed Data Input

6-14

Table 4. PAL C Series Input Term Addresses

Input Term Addresses

Input Binary Addresses

Term Pin Numbers
Numbers (9) (8) (7) (6) (5)

0 VILP VILP VILP VILP VILP

1 VILP VILP VILP VILP VIHP

2 VILP VILP VILP VIHP VILP

3 VILP VILP VILP VIHP VIHP

4 VILP VILP. VIHP VILP VILP

5 VILP VILP VIHP VILP VIHP

6 VILP VILP VIHP VIHP VILP

7 VILP VILP VIHP VIHP VUIP

8 VILP VIHP VILP VILP VIIi>

9 VILP VIHP VILP VILP VIHP

10 VILP VIHP VILP VIHP VILP

11 VILP VIHP VILP VIHP VIHP

12 VILP VIHP VIHP VILP VILP

13 VILP VIHP VIHP VILP VIHP

14 VILP VIHP VIHP VIHP VILP

15 VILP VIHP VIHP VIHP VIHP

16 VIHP VILP VILP VILP VILP

17 VIHP VILP VILP VILP VIHP

18 VIHP VILP VILP VIHP VILP

19 VIHP VILP VILP VIHP VIHP

20 VIHP VILP VIHP VILP VILP

21 VIHP VILP VIHP VILP VIHP

22 VIHP VILP VIHP VIHP VILP

23 VIHP VILP VIHP VIHP VIHP

24 VIHP VIHP VILP VILP VILP

25 VIHP VIHP VILP VILP VIHP

26 VIHP VIHP VILP VIHP VILP

27 VIHP VIHP VILP VIHP VIHP

28 VIHP VIHP VIHP VILP VILP

29 VIHP VIHP VIHP VILP VIHP

30 VIHP VIHP VIHP VIHP VILP

31 'VIHP VIHP VIHP VIHP VIHP

PO VILP VILP Vpp X X

PI VILP VIHP Vpp X X

P2 VIHP VILP Vpp X X

P3 VIHP VIHP Vpp X X

-£~~Rffi')
~., SEMICONDUCTOR

CMOS PAL Basics

INPUTS 10 - 31)

-t>
POP,P2P3 o 1 2 3 • 1.7 , • lOll 12131411 18"1.1. 20212223 2UnU7 28213031

0

~ J.. 1
2
3 ~ •
I

• ~ 7

19

A

> t----

• ~

~ • 10 -11
12
13 R l'
II

18

..
~ A

~r---

I'
11

E~ I'
I'
20 H-
21

~R 22
23

17

.. ...
.> ~J----

2. r-

21 .H ~ J. 28
27 H ~ 28

16

28
~ ~ 30

31 ,......"

> c:_

32

~
33

" 3Ii
31
37

15

31
31 ~ .. A
~

40
.....

~ " '2 ., R .. .,
14

..
-t

p .,
..... ..

eg

~~ &0

;~ 'I
52
53

13

..
55~

... ...
58

.....
57

~ 5'
51
60
81 9 82

6'

12

...
~ c: 11

~

POP,P2 P3 0' 23 .567 "'011 1213'415 111171.19 20212223 24252127 2121303.1

Figure 2. Functional Logic Diagram of PAL C 16L8A

6-15

Programming Operation
In a PAL C device, pins 5 - 9 are decoded (Table 4)

in a one of 32 decoder, whose outputs correspond to the
inputs labeled 0 -31 in Figure 2. For programming, 15V is
applied to the bottom of the word line through a weak­
depletion-mode device. The EN (enable) signal to all of
the three-state drivers is Low, which prevents the normal
PAL input signals from driving the word lines during
programming. The DO - D7 inputs (pins 19 - 12) drive the
program transistors (0, 8, 16, 24, etc.) as selected by pins
2,3, and 4 (Table 3). To disconnect a word line from a bit
line, the program transistor is forward biased, which in­
creases the threshold of the read transistor.

Verify Operation
To verify the programmed cells, the device must go

from the Program PAL mode to the Program Inhibit mode
to the Program Verify mode. This is accomplished by
reducing the voltage on pin 11 to VIHP (3V) and then to
VILP (O.4V). Inside the device (Figure 4), the voltage
changes disable the l-of-32 decoder, bring the EN signal
Low, and put 31 of the 32 input term lines at OV. The line
being verified is at 5V. The input address lines (pins 2
through 9) do not need to change when going from Pro­
gram to Verify mode.

Because the Ones that were programmed cause the
thresholds of the R transistors to increase, these transistors
do not tum on during Verify mode. The unprogrammed.
transistors do tum on, however; the complement (inverse)
of the data programmed is thus read during verify.

Regular (Normal) PAL Operation
The PAL implements the programmed function when

no supervoltages are applied to any of the pins. During
regular PAL operation, the l-of-32 decoder and the DO -
D7 decoder are disabled, the EN signal is High, and all 32
input term lines are at 5V. Under these conditions, the

CMOS PAL Basics

data at the PAL C input pins is applied to all 64 of the
product term lines. If any of the P transistors (16 per
product term line) have not been programmed, they tum
on and pull the lower input of the corresponding sense
amplifier (SA) to 2V or less. Because this voltage is lower
than the reference (V ref), the sense amplifier's output is
Low.

The reference is an unprogrammed EPROM cell that
tracks the same process, voltage, and temperature varia­
tions that affect all the cells in the array. The reference is
approximately 3V at room temperature and nominal Vee
(5V).

Phantom PAL Operation
The PAL is in the Phantom PAL operation mode

when a supervoltage (Vpp = 13.5V) is applied to pin 6.
The phantom array is programmed as shown in Figure 2.
When the device is· in Phantom PAL mode, you can
measure the worst-case propagation delay from the pin 2
input to the outputs (pins 12 through 17). The truth table
for the phantom array appears in Table 5.

Reliability
Reliability is designed into all Cypress products from

the beginning by using design techniques to eliminate
latchup and improve ESD and by paying careful attention
to layout. All products are tested for all known types of
CMOS failure mechanisms.

Failure mechanisms can be either classified as those
generic to CMOS technology or those specific to EPROM
devices. Table 6 lists both categories of failures, their
relevant activation energies, Ea in electron volts, and the
detection method used by Cypress. In both cases, the
mechanisms are aggravated by HTOL (high temperature
operating life) tests and HTS (high temperature storage)
tests.

14

8
7-INPUT

NOR
CATES

8
OUTPUT
DRIVERS

PROGRAM

8
PINS

12-19

Figure 3. 16L8 Device Simplified Block Diagram

6-16

Table 5. Phantom Array Truth Table

Inputs Outputs
Pin 2 3 4 19 18 17 16 15 14 13 12

0 0 1 X X 1 1 1 1 1 1
1 0 1 X X 0 o· 0 0 0 0

0 1 X 1 0 X X X X X X

0 1 X 0 1 X X X X X X

Specific EPROM failure mechanisms include charge
loss, charge gain, and electron trapping. Thermal energy
and field emission effects accelerate charge loss.

Thermal charge loss failures usually occur on random
bits and are often related to latent manufacturing defects.
In many instances a dramatic difference between typical
and worst-case bits are observed. Field emission effects
are generally detected as weakly programmed cells. The
high voltages used to program a selected bit might disturb
an unselected bit as a result of a defect.

Charge gain is due to electrons accumulating on a
floating gate as a result of bias or voltage on the gate.

PINS 5- 9

This results in a reduced read margin. The effects of this
mechanism are generally negligible.

Electrons might become trapped in the gate oxide
during programming and cause diminis~ed re~rog~am­
mability. For one-time-programmable deVIces, thIS faIlure
mode has little significance. This is because Cypress PAL
C devices are programmed only three times: twice during
manufacture and once by the customer.

HTOL Testing
High temperature operating life test (or burn-in)

detects most generic CMOS failure mechanisms. Units are
placed in sockets under bias conditions with power ap­
plied and at elevated temperatures for a specific number
of hours. This test weeds out the "weak sisters" that would
fail during the fIrst 100 to 500 hours of operation under
normal operating temperatures. HTOL tests are also used
to measure parameter shifts to predict and screen for
failures that would occur much later.

HTS Testing
High temperature storage tests are used to thermally

accelerate charge loss. These tests are performed at the

1 OF' 32 DECODER
(INPUT TERMS)

1 CORRESPONDS TO
INPUTS 0.1 OF' riG. 2

00-07

---4--1---.... --+--1 fO~~~~~~AM

5V F'OR NORMAL AND VERIFY OPERATIONS
15V F'OR PROGRAMMING

Figure 4. Programming Method

6-17

ONLY

wafer level and under unbiased conditions. Both pass/fail
data as well as shifts in thresholds are measured. For. a
more detailed discussion of charge loss screening, see the
References.

The generally accepted screening. method for iden­
tifying charge loss is a 168-hour bake at 250·C. This cor~
relates with more than 220,000 years of normal operation
at 70·C using a failure activation energy of 1.4 ev. The
sample size chosen guarantees that at least 99 percent of
the units will not fail during their useful operating life.

Initial Qualification
The process in general and the PAL C design specifi­

cally was qualified using HTS (bake) at 250·C for 256
hours, in conjunction with an HTOL .test at 125·C for
1000 hours.

In the qualification process, four wafers were erased
using ultraviolet light, and the linear thresholds of the
cell's read transistors measured at 25 sites on each wafer.
The wafers were then programmed, and the linear
thresholds measured and recorded.

The wafers were alternately baked at 250·C and the
linear thresholds measured and recorded at 0.25,0.5, 1,2,
4, 8, 16, 32, 64, 128, and 256 hours. The number of
device hours was therefore 100 x 256 = 25,600. .

The results of this process revealed that the average
threshold reduction due to charge loss was 0.66V. The
range was 8 to 10 percent of the average initial threshold
of 7.7V. This reduced threshold is more than 4V above
the sense amplifier voltage reference. There were no
failures.

If the charge loss failure activation energy is assumed
to be 1.4 ev, the HTS time of 256 hours at 250·C trans-

lates to 438,356 years of. operation at 70·C. This time
translation was computed using the industry-standard Ar­
rhenius equation, which converts the time to failure
(operating lifetime) at one temperature and time to another
temperature and time.

To summarize the results:
Sample size: 100
Device hours: 25,600
HTSconditions: 256 hours at 250·C
Average initial threshold: 7.7V
Average threshold decrease: 0.66V
Standard deviation: 0.12
Lifetime (1.4 ev): 438,356 years at 70·C
These results confirm that the data retention charac­

teristics of the EPROM cell used in all Cypress PALs and
PROMs guarantees a minimum operating lifetime of
438,356 years for activation energies of 1.4 ev.

Production Screen
Units from the same population were assembled

without being subjected to HTS and were subjected to an
HTOL of 150·C for 1000 hours. The units were tested at
12,24,48,96, 168, 336, and 1008 hours and the measure­
ments recorded. Variations in the thresholds of the
EPROM cells were measured and correlated to the units
tested in the HTS test to determine a maximum acceptable
rate of charge loss. This data allows Cypress to guarantee
data retention over the devices' normal operating lifetime.

PAL C Advantages Over Bipolar PALs
The most pertinent data sheet parameters of Cypress

PAL C devices are compared with those of representative
bipolar PALs in Table 1. The supply current and propaga-

Table 6. Generic CMOS Failure Mechanisms

Mechanism Activation Energy (eV) Detection Method

Surface charge 0.5 to 1.0 HTOL, Fabrication monitors

Contamination 1.0 to 1.4 HTOL, Fabrication monitors
Electromigration 1.0 HTOL
Micro-cracks -- Temperature cycling

Silicon defects 0.3 HTOL
Oxide breakdown 0.3 High-voltage stress, HTOL

Hot electron injection -- LTOL (low-temperature operating life)

Fabrication defects -- Bum in

Latchup -- High-voltage stress, bum in, characterization

ESD -- Characterization

Charge loss 0.8 to 1.4 HTS (high-temperature storage)

Charge Gain (oxide hopping) 0.3 to 0.6 HTOL

Electron trapping in gate oxide -- Program/erase cycle

Table adapted from "An Evaluation of 2708, 2716, 2532, and 2732 Types of U -V EPROMs, Including Reliability and Long
Term Stability." Danish Research Center for Applied Electronics, Nov. 1980.

6-18

TTL TO
~ __ ~ ____ ~ ______ ~ __ ~~ __ ~ __________ ~ ____________ ~ __ --+CMOS

·Thick Oxide Field
Transistor

• ·Substrate Diode

VSUB

CONVERTER

THINO)(IOE
TRANSISTOR

Figure 5. Input Protection Circuit

tion delay specifications are compared under identical test
conditions. The output current sinking specifications are
also identical. Cypress PAL C devices are clearly superior
to bipolar PALs.

The lower power advantage of the PAL C results in
several benefits:

Lower capacity power supplies, which therefore cost
less
Reduced cooling requirements
Increased long term reliability due to lower die junc­
tion temperatures
You can further reduce the power dissipation by driv­

ing the PAL C inputs between 0.5V or less and 4V or
more. This reduces the power dissipation in the input
TIL-to-CMOS buffers, which dissipate power when their
inputs are between 0.8 and 3V.

PAL C Technology
The PAL C devices' 0.8~, double-Iayer-polysilicon,

single-layer-metal, N-well, CMOS technology has been
optimized for performance. Careful attention to design
details and layout techniques has resulted in superior-per­
formance products with improved ESD input protection
and improved latch-up protection.

The circuit shown in Figure 5 is used at every input
pin in all Cypress products to provide protection against
ESD. This circuitry withstands repeated applications of
high voltage without failure or performance degradation.
This is accomplished by preventing the high ESD voltage
from reaching the internal transistors' thin gate oxides.

The circuit consists of two thick-oxide field transis­
tors wrapped around an input resistor (Rp) and a thin­
oxide gate transistor with a relatively low breakdown volt­
age (12V). Large input voltages cause the thick-oxide
transistors to turn on, discharging the ESD current to
ground. The thin-oxide transistor breaks down when the
drain-to-source voltage exceeds 12V. This transistor is
protected from destruction by the current-limiting action
of Rp. Experiments confirm that this input protection cir­
cuitry results in ESD protection in excess of 2000V.

Latch-up
Latch-up is a regenerative phenomenon that occurs

when the voltage at an input or output pin is either raised
above the power supply voltage potential or lowered
below the substrate voltage potential, which is usually

6-19

ground. Current rapidly increases until, in effect, a short
circuit from Vee to ground exists. If the current is not
limited, it will destroy the device, usually by melting a
metal trace.

The CMOS processing used to fabricate both N- and
P-channel MOS transistors also inherently creates
parasitic bipolar transistors - both NPNs and PNPs.
Latch-up is caused when these parasitic transistors are in­
advertently turned on.

So long as the voltages applied to the package pins of
the CMOS IC remain within the limits of the power supp­
ly voltages (usually 0 to 5V), the parasitic bipolar transis­
tors remain dormant. However, when either negative vol­
tages or positive voltages greater than the Vee supply volt­
age are applied to input or output pins, the parasitic
bipolar transistors might tum on and cause latch-up.

Figure 6 shows a cross section of a typical CMOS
inverter using a P-channel pull-up transistor and an N­
channel pull-down transistor. Also shown is an N-channel
output driver that is isolated from the CMOS inverter by a
guard ring (channel stopper). The latter is necessary to
prevent parasitic MOS transistors between devices. P+
guard rings surround N-channel devices, and N+ guard
rings surround P-channel devices. The parasitic SCR
(PNPN) and bias generator appear in Figure 7, which
does not show the output driver schematic.

For latch-up to occur, two conditions must be satis­
fied: The product of the betas of the NPN and PNP tran­
sistors must be greater than one, and a trigger current
must exist that turns on the SCR.

Because the SCR structure in bulk CMOS cannot be
eliminated, the task of preventing latch-up is reduced to
keeping the SCR from turning on. If either Rwell or Rsub
equal 0, the SCR cannot turn on. This is because the base
and emitter of the PNP transistor are tied together and
thus the base/emitter junction cannot be forward biased;
and the base/emitter junction of the NPN cannot be for­
ward biased because the base is connected to ground.
Note, however, that the NPN can be turned on by a nega­
tive voltage on the output pin if the right end of Rsub is
grounded.

Preventing Latch-Up
The traditional cures for latch-up include increased

horizontal spacing, diffused guard rings, and metal straps

Vee

Substrate Bias Generator -.

Figure 6. Parasitic SCR and Bias Generator

to critical areas. These solutions are obviously opposite to
the goal of greater density.

A brute-force approach that has been successful in
reducing latch-up has been to increase the conductivity of
the N well and the substrate. Changing the well conduc­
tivity is unacceptable because it affects the characteristics
of the P-channel MOS transistors. Using an epitaxial layer
to reduce the substrate resistivity (Rsub) is also unaccep­
table because the price per wafer with a P+ epi-Iayer is
approximately three times the cost of the industry-stand­
ard 5-inch, son per square, P- wafer.

Cypress uses several design techniques in addition to
careful circuit layout and conservative design rules to
avoid latch-up.

Conventional CMOS technology uses a P-channel
MOS transistor as a pull-up device on the output drivers.
This has the advantage of being able to pull the output
voltage High to within 100 mV of the positive voltage
supply. However, this is of marginal value when TIL

Output Driver

n-MOS

PULL-DOWN n-MOS
DEVICE /PULL-UP 'n OUTPUT "1..J DEVICE

n+ DIFFUSION AND p+ DIFFUSION
n- WELL GUARD RING GUARD RING

LATERAL npn BIPOLAR
TRANSISTOR

compatibility is required. In addition, the P-channel pull­
up transistor is sensitive to overshoot and introduces
another vertical PNP transistor that further compounds the
latch-up problem. Cypress uses N-channel pull-up transis­
tors that eliminate all of these problems and still maintain
TIL compatibility.

Cypress is the fIrst company to use a substrate bias
generator with CMOS technology. The bias generator
keeps the substrate at approximately -3V DC, which ser­
ves several purposes.

The parasitic diodes shown in Figure 5 cannot be for­
ward biased unless the voltage at an input pin is at least
one diode drop more negative than -3V. This translates
into increased device tolerance to undershoot at the input
pins caused by inductance in the leads. If the undershoot
is larger than 3V, the output impedance of the bias gener­
ator itself is sufficient to prevent trigger current from
being generated.
, The same reasoning applies to negative voltages at
the output pins (Figure 7). To tum on the NPN transistor,
the voltage at the output pin must be at least one VBE
more negative than -3V.

To protect the core of the die from free-floating holes
and stray currents, Cypress uses a diffused collection
guard ring that is strapped with metal and connected to
the bias generator. This provides an effective wall against
transient currents that could cause mis-reading of the
EPROM cells.

References
Woods, Murray H. "An E-PROM's integrity starts

with its cell structure," Electronics magazine, August 14,
1980, pg. 132.

Rosenberg, Stuart. "Tests and screens weed out
failures, project rates of reliability," Electronics magazine,
August 14, 1980, pg. 136.

CMOS Inverter

Vee OUTPUT INPUT

Figure 7. CMOS Cross Section and Parasitie Circuits

6-20

~ ~ -----­~.!~~~ .. = CYPRESS
, SEMICONDUCTOR

Are Your PLDs Metastable?

This application note provides a detailed description
of the metastable behavior in PLDs from both circuit and
statistical viewpoints. Additionally, the information on the
metastable characteristics of Cypress PLDs presented here
can help you achieve any desired degree of reliability.

Metastable is a Greek word meaning "in between."
Metastability is an undesirable output condition of digital
logic storage elements caused by marginal triggering. This
marginal triggering is usually caused by violating the
storage elements' minimum set-up and hold times.

In most logic families, metastability is seen as a volt­
age level in the area between a logic High and a logic
Low. Although systems have been designed that did not
account for metastability, its effects have taken their toll
on many of those systems.

In most digital systems, marginal triggering of
storage elements does not occur. These systems are
designed as synchronous systems that meet or exceed their
components' worst-case specifications. Totally synchronous
design is not possible for systems that impose no fixed
relationship between input signals and the local system
clock. This includes systems with asynchronous bus ar­
bitration, telecommunications equipment, and most I/O in­
terfaces. For these. systems to function properly, it is
necessary to synchronize the incoming asynchronous sig­
nals with the local system clock before using them.

Figure 1 shows a simple synchronizer, whose
synchronous input comes from outside the local system.
The synchronizer operates with a system clock that is
synchronous to the local system's operation. On each
leading edge of this system clock, the synchronizer at­
tempts to capture the state of the asynchronous input. Fig­
ure 2 shows the expected result. Most of the time, this
synchronizer performs as desired.

ASUCHROIOUI
, T

IflCHIOlun

ITiCHlOIOUI
OUTPUT

LOCALLY

SYICHIOIOUI

- ---+------------i nSTU

Figure 1. Simple Synchronizer

6-21

CLOCK

ASYlle
111. ur

\'-------/
Figure 2. Expected Synchronizer Output

Digital systems are supposed to function properly all
the time, however. But because there is no direct relation­
ship between the asynchronous input and the system
clock, at some point the two signals will both be in transi­
tion at very nearly the same instant. Figure 3 shows some
of the synchronizer's possible metastable outputs when
this input condition occurs. These types of outputs would
not occur if the synchronizer made a decision one way or
the other in its specified clock-to-output time. A flip-flop,
when not properly triggered, might not make a decision in
this time. When improperly triggered into a metastable
state, the output might later transition to a High or a Low
or might oscillate.

When other components in the local system sample
the synchronizer's metastable output, they might also be­
come metastable. A potentially worse problem can occur
if two or more components sample the metastable signal
and yield different results. This situation can easily cor­
rupt data or cause a system failure.

Such system failures are not a new problem. In 1952,
Lubkin (Reference 1) stated that system designers, incIud-

CLOCK

ASYNC
INPUT

SYNC
OUT

I UTlSTAIU I HITlSTAILE I HETASTAILE
lUOLVE TO 0 RESOLVE TO 1 OSCILLATIU OUTPUT

Figure 3. Possible Metastable States of Synchronizer

ing the designers of the ENIAC, knew about metastability.
The accepted solution at that time was to concatenate an
additional flip-flop after the original synchronizer stage
(Figure 4). This added flip-flop does not totally remove
the problem but does improve reliability. This same solu­
tion is still in wide use today.

Recovery from metastability is probabilistic. In the
improved synchronizer, the first flip-flop's output might
still be in a metastable state at the end of the sample clock
period. Because the flip-flops are sequential, the prob­
ability of propagating a metastable condition from the
second flip-flop stage is the square of the probability of
the first flip-flop remaining metastable for its sample
clock period. This type of synchronizer does have the
drawback of adding one clock cycle of latency, which
might be unacceptable in some systems.

As system speeds increase and as more systems util­
ize inputs from asynchronous external sources, metas­
tability-induced failures become an increasingly sig­
nificant portion of the total possible system failures. So
far, no known method totally eliminates the possibility of
metastability. However, while you cannot eliminate
metastability, you can employ design techniques that
make its probability relatively small compared with other
failure modes.

Explanation of Metastability
In a flip-flop, a metastable output is undefined or os­

cillates between High and Low for an indefinite time due
to marginal triggering of the circuit. This anomalous flip­
flop behavior results when data inputs violate the
specified set-up and hold times with respect to the clock.

In the case of a D-type flip-flop, the data must be
stable at the device's D input before the clock edge by a
time known as the set-up time, ts. This data must remain
stable after the clock edge by a time known as the hold
time, th (Figure 5). The data must satisfy both the set-up
and hold times to ensure that the storage device (register,
flip-flop, latch) stores valid data and to ensure that the
outputs present valid data after a maximum specified
clock-to-output delay teo_max. As used in this application
note, teo_max refers to the interval from the clock's rising
edge to the time the data is valid on the outputs. In most
cases, teo_max equals the maximum teo found in data
sheets, as opposed to the average or typical teo value.

If the data violates either the set-up or hold specifica­
tions, the flip-flop output might go to an anomalous state
for a time greater than teo_max (Figure 5). The outputs can

snCIlOIUII

LOCALLY

S'.CHUIOUI

IfnER

Figure 4. Two-Stage Synchronizer

6-22

take anywhere from an additional few hundred
picoseconds to tens of microseconds to reach a valid out­
put level. The amount of additional time beyond teo. max
required for the outputs to reach a valid logic level is
known as the metastable walk-out time. This walk-out
time, while statistically predictable, is not deterministic.

Figure 6, from Reference 2, shows the variation in
output delay with data input time. The left portion of the
graph shows that when the data meets the required set-up
time, the device has valid output after a predictable delay,
which equals teo. The middle portion of the graph indi­
cates the metastable region. If the data transitions in this
region, valid output is delayed beyond teo max. The closer
the input transitions to the center of the metastable region,
violating the device's triggering requirements, the longer
the propagation delay. If the data transitions after the
metastable region, the device does not recognize the input
at that clock edge, and no transition occurs at the output.
As given in Reference 3, you can predict the region tw,
where datil transitions cause a propagation delay longer
than t, from the formula:

t w= t coe 't Eq.l

where 't depends on device-specific characteristics such as
transistor dimensions and the flip-flop's gain-bandwidth
product.

Figure 7 shows another way of looking at metas­
tability. A flip-flop, like any other bistable device, has two
minimum-potential energy levels, separated by a maxi­
mum-energy potential. A bistable system has stability at
either of the two minimum-energy points. The system can
also have temporary stability - metastability - at the
energy maximum. If nothing pushes the system from the
maximum-energy point, the system remains at this point
indefinitely.

A hill with valleys on either side is another bistable
system. A ball placed on top of the hill tends to roll
toward one of· the minimum-energy levels. If left undis­
turbed at the top, the ball can remain there for an indeter­
minate amount of time. As this figure indicates, the char­
acteristics of the top of the hill as well as natural factors
affect how long the ball stays there. The steepness of the
hill is analogous to the gain-bandwidth product of the flip­
flop's input stage.

ta • -.,
'1_.'.

CLOCK

INPUT 1 1 I~ __ --.-J

OUT P UJ"·· "'_"0'

I

1 1'-----
I r--:::-: ..
~I
1 I

Figure 5. Triggering Modes of a Simple Flip-Flop

Causes of Metastability
Systems with separate entities, each running at dif­

ferent clock rates, are called globally asynchronous sys­
tems (Reference 4). The entities might include keyboards,
communication devices, disk drives, and processors. A
system containing such entities ~s. asynchronous because
signals between two or more entItIes do not share a fixed
relationship.

Metastability can occur between two co?currently
operating digital systems tha~ lack a. common ti~e. refer­
ence. For example, in a multlprocessmg system, It IS pos­
sible that a request for data from one system can occur at
nearly the exact moment that this signal is sampled by
another part of the system. In this case, the request ~ght
be undefined if it does not obey tlle set-up and hold time
of the requested system.

When globally asynchronous systems co~unicate
with each other, their signals must be synchrofllzed. Ar­
bitration must occur when two or more requests for a
shared resource are received from asynchronous systems.
An arbiter decides which of two events should be serviced
first. A synchronizer, which is a type of arb~ter w~~ a
clock as one of the arbited signals, must make Its declSlon
within a fixed amount of time. A device can synchronize
an input signal from an external, asynchronous device in
cases such as a keyboard input, an external interrupt, or a
communication request.

Care must be taken when two locally-synchronous
systems communicate in a globally-asynchronous environ­
ment. A synchronization failure occurs when one system
samples a flip-flop in tlle other system that has. an. un­
defined or oscillating output. This event can distnbute
non-binary signals through a binary system (Reference 5).

In synchronizers, tlle circuit must decide the state of
the data input at the clock input's rising edge. If these two
signals arrive at the same time, the circuit can produce an

V
A
L
I
D

D
A
T
A

o
U
T
p
U
T

T
I
M EI--....--__ _

NORMAL
DELAY
1 <leo

1w(1)

METASTABLE
REGION

'2r

I

DATA TRANSITION TIME

NO TRANSITION

Figure 6. Output Propagation vs. Data Transition

6-23

Figure 7. Graphical View of a Bistable System

output based on either decision, but ~ust decide one way
or the otller within a fixed amount of tIme.

Attacking Metastability
The design of synchronous systems is much different

than the design of globally-asynchronous systems. The
design of a synchronous digital syste~ is based on kn~wn
maximum propagation delays of fhp-flops and IO~ICal
gates. Asynchronous systems by definition have no fIxed
relationship with each other, and therefore, any propaga­
tion delay from one locally-synchronous system to the
next has no physical meaning.

Two different methods are available to produce local­
ly-synchronous systems from globally:asynchro~ous sys­
tems. The first method involves creating self-umed sys­
tems. In a self-timed system, the entity that performs a
task also emits a signal tllat indicates tlle task's comple­
tion. This handshaking signal allows the use of the results
when they are ready instead of waiting for the wo:st-~ase
delay. Such handshaking signals allow commUfllcatlOns
between locally-synchronous systems.

The advantage of the self-timed method is tllat it per­
mits . machines to run at tlle average speed instead of the
worst-case speed. The disadvantages are that a self-timed
system must have extra circuitry to compute its own com­
pletion signals and e.xtra circuitry to che~~ for tlle comple­
tion of any tasks asSIgned to external entitles.

Petri Nets data flow machines, and self-timed
modules all us: the self-timed method of communication
among locally-synchronous systems. Self-timed structures
do not completely eliminate metastability, however, be­
cause they can include arbiters that can be metastable.
Most systems do not include self-timed interfaces due to
tlle additional circuitry and complexity.

The· second method of producing locally-synchronous
systems from globally-asynchronous systems is the simple
synchronizer. This is the most com~on way of com­
municating between asynchronous objects. The metas­
tability errors that might arise from these systems must .be
made to play an insignificant role when compared WIth
other causes of system failure.

Many metastability solutions involve special circuits
(References 6 and 7). Some of these solutions do not
reduce metastability at all (Reference 13 and 8). Others,
however, do reduce metastability errors by pushing .the
occurrence of metastability to a place where sufficl~nt
time is available for resolving the error. Most of these Clf­

cuits are system dependent and do not offer a universal
solution to metastability errors.

The easiest and the most widely used solution is to
give the synchronizing circuit enough time to both

INfTlAUZA TION

PHASE

RESOlVING
PHASE

Figure 8. Two Phases of Metastability

synchronize the signal and resolve any possible metastable
event before other parts of the system sample the
synchronized output. This solution requires knowledge of
the metastable characteristics of the device performing the
synchronization.

Many semiconductor companies have developed cir­
cuits such as arbiters, flip-flops, and latches that are
specifically designed to reduce the occurrence of metas­
tability. Although these parts might have good metas­
tability characteristics, they have very limited application.
The circuits can only function as flip-flops or arbiters and
do not have the flexibility of PLDs. Cypress Semiconduc­
tor has designed the flip-flops in the company's PLDs to
be metastable hard. This allows you to use Cypress PLDs
in a wide range of systems requiring synchronization.

Circuit Analysis of Metastability
Many authors have written papers detailing the

analysis of metastability from a circuit standpoint (Refer­
ence 5,7,8,9,10,11, and 12). In Reference 11, for ex­
ample, Kacprzak presents a detailed analysis of an RS
flip-flop's metastable operation. He states that a flip-flop
has two stages of metastable operation (Figure 8).

During the initialization phase, the Q and 'Q outputs
move simultaneously from their existing levels to the
metastable voltage V m, which is the voltage at which
Vq = Vq.

The second or resolving phase occurs when the out­
puts once again drift toward stable voltages. Once a flip­
flop has entered a metastable state, the device can stay
there for an indeterminate length of time. The proba~ility
that the flip-flop will stay metastable for an unusually
long period of time is zero; however, due to factors such
as noise, temperature imbalance, within the chip, transistor
differences, and variance in input timing. During the
second phase of metastability, for very small'deviations
around the metastable voltage, V m, the flip-flop behaves
like two cross-coupled linear amplifier stages that gain
Vd = Vq - Vq. When the gain of the cross-coupled loop
exceeds unity, the differential voltage increases exponen~
tially with time. '

The length of time the flip-flop takes to resolve can­
not be exactly determined. The probability that the flip­
flop will resolve within a specific length of time, how­
ever, can be predicted. This probability depends on the
electrical parameters of the flip-flop acting as a linear
amplifier around the metastability voltage. The solution
(Reference 11) to the differential voltage V d(t) driving the

6-24

resolving phase is given by ,
(t-to)

V d(t)=V d(to)e-'t- Eq.2

where 't depends directly on the amplifier gain and
capacitance, and where V d(to) represents the differential
voltage at some time to. You can use this equation to
determine the length of time that the output voltage will
take to drift from the metastable voltage V m to a specified
voltage difference V d.

Horstmann (Reference 5) states that a flip-flop, like
any other system with two stable states, can be described
by an energy function with two local energy minima
where P(x) = 0 (Figure 9). Any bistable system has at
least one metastable state, which is an unstable energy
level within the system and represents the local maximum
of the energy function. The' system's gradient can be rep­
resented by a force, F(x), that is zero at stable and metas­
table states (inflection points of the energy function).

Figure 10 shows a simplified first-order model of an
RS flip-flop used to predict and visualize metastability. A
flip~flop energy transfer curve (Figure 11) shows the
relationship between the' two outputs. The two stable
states are local energy minima of the system. The metas­
table state, M, is a local energy maximum and represents
an unstable state with loop gain near M that is greater
than one.

Figure 12 show the trigger line for the first-order ap­
proximation of the flip-flop. The dashed line RS repre­
sentsthe device's normal trigger line, which does not fol­
low the transfer curve because, during triggering, the feed­
back loop has not been established. If at varying points
along the trigger line the feedback loop is re-established,
the nodes of the device follow the curves that lead to the

I P(x), F(x)

t

Figure 9. Energy/Force Function of a Bistable System

line So - Sl. Once on this line, the circuit exponentially
drifts toward stability at either So or Sl, depending on
which side of the line Q = Q the feedback loop was re-es­
tablished. The curves are solutions to the fIrst-order model
circuit equations for the device shown in Figure 10.

When the feedback loop is restored near the line
Q = Q, the system moves toward the unstable state M and
can take an indefinite amount of time to exit from this
metastable state. You can see this from the graph by
noticing that So and Sl are equally likely solutions for
system stability from M. Once the feedback loop is re-es­
tablished, the system exponentially decays toward M and
then exponentially grows toward So or Sl.

Figure 13 shows the system's possible trigger events
using the implied time scale of the state-space curves. The
solution of these simplifIed flrst-order equations indicates
that the fastest metastable resolution time occurs when the
circuit's gain-bandwidth product is maximized.

Flannagan (Reference 12), in an attempt to maximize
the gain-bandwidth product, solves simplifIed flip-flop
equations to determine the phase trajectory near the
metastable point. His results, which are supported by other
authors, indicate that p and n devices with equal
geometries produce the optimal gain-bandwidth product
for metastable event resolution.

Statistical Analysis of Metastability
To begin the analysis of metastability, assume that

the flip-flop's probability of resolving its metastable state
does not depend on its previous metastable state. In other
words, the metastable device has no memory of how long
it has been in a metastable region. The analysis of metas­
tability also assumes that the flip~flop'sprobability of
resolving its metastable state in a given time interval does
not depend on the metastable resolution in another disjoint
time interval. The probability that a metastable event will
resolve in a given interval (O,t) is only proportional to the
length of the interval.

These assumptions yield an exponential distribution
that describes the probability that the flip-flop resolves its
metastability at a time t. The exponential distribution has
the form

Eq.3

where J.L is the expected value of metastability resolution
per unit time (settling rate).

:: ~: ::::: :.
~

Figure 10. First-Order Flip-Flop Approximation

6-25

Voull ; r stable

=Vsnl

. .•........... ~

~ rstable ---
Vin) =Voua.

Figure 11. Energy Transfer Diagram of Simple RS
Flip-Flop

Using this equation and given that the flip-flop was
metastable at time t = 0, the probability of a metastable
event lasting a time t or longer is

P(mettimett=O)= [J.Le -Iltdt=e -Ill Eq.4
t

The next part of the analysis involves the probability
that the flip-flop is metastable at time t = 0. This part of
the analysis assumes that the probability that the data tran­
sitions in a given time interval depends only on the length
of the interval. A Poisson process with rate fd describes
the probability of the data transitioning at a time t:

e-fdtUdt)x
p (x) Eq.5

x!
where x is the number of transitions.

If a data transition within a bounded time interval, W,
of the clock edge causes a metastable condition, the ex­
pected number of transitions of this Poisson process with
rate fd in time interval W is

Vout1

Voul2

Figure 12. Energy Transfer Curves showing Trigger
, Paths

00 -fdWif W)x
E (X) = L x ex! did W Eq.6

x=o
Because this expected number of transitions is the

same as the probability that the flip-flop is metastable at t
= 0, the equation for the probability at t = 0 is

P(mett=O)=ldW Eq.7
Using Equations 5 and 7, the probability that a given

clock cycle results in metastability that lasts at most a
time t is

P(metr) =P(mettlmett=o)P(mett=O) Eq.8

=ldWe-Y.t

Substituting _1_ for Jl. allows this variable to be ex-
tsw

pressed as a settling time constant of the flip-flop. Further,
a' synchronization failure for a given clock cycle exists
whenever a metastable event lasts a specified time (tr) or
longer. Using these two substitutions, the probability that
the flip-flop is metastable in a given clock cycle is:

_·t,

P (faill clock) =1 d We t::: Eq. 9
Because the data transitions are independent, the

number of failJ.ll'es in n clock cycles has a binomial dis­
tribution with an expected number of failures:

E (fail n cycles) = n P (faill cycle) Eq. 10
Assuming a sample clock frequency, fe, that repre­

sents the number of clock cycles, n, per unit time, the ex­
pected number of failures per unit time is

-t,
E (fail unit time) =1 cl d Wet;; Eq. 11

Assuming that all data transitions are independent
and that the clock has a fixed period, the mean time be­
tween failures (MTBF) is

.!.:!..
MTBF .1 etsw

E (fazl unit time) I cl d W
Eq.12

where MTBF is a measure of how often, on the average, a
metastable event lasts a time tr or longer.

/~
".. ...

5 I

~

Figure 13. Time 'Scale Showing Trigger Paths

6-26

lVIetastability Data
Equation 12 shows a strong resemblance to Equation

2 that is based on.the predictions of the first-order circuit
analysis of an RS flip-flop. In fact, the metastability
resolving time constant, tsw, is directly related to the vari­
able 't, which is based on the flip-flop's gain-bandwidth
product .

The device-dependent variable W depends mostly on
the window of time within which the combination of the
input and clock generate a metastable condition. This
parameter also depends on process, temperature, and volt­
age levels. The MTBF equation is usually plotted with tr
(the resolving time allowed for metastable events) on the
X axis and the natural log of the MTBF plotted on the Y
axis (Appendix); Because the metastability equation' is
plotted on semi-log paper, the graph of tr vs In(MTBF) is
a line described by the equation

tr
In (MTBF)=- -In([c!dW) Eq.13

t sw.

Graphically, the parameter tsw is l/slope of the line
on this graph. The equation for tsw from the graph is

t r l-t,2
t sw In (MTBF 1) -In (MTBF 2) Eq. 14

To determine how often, on the average, a given
synchronizer in a system will go metastable (MTBF), you
must know the two device-specific parameters Wand T sw,
which should be available from the manufacturer. Table 1
lists these values for Cypress PLDs. Additional values you
need are the average frequency of both the system data
and the synchronizer clock and the amount of time after
the synchronizer's maximum clock-to-Q time that is al­
lowed to resolve metastable events.

For example, consider the method for determining the
MTBF for a Cypress P ALC22V 10 registered PLD used as
a synchronizer in a system with the following charac­
teristics:

W = 0.125 ps
tsw = 190 ps
fc = system clock frequency = 25 MHz
fd= average asynchronous data frequency = 10 MHz
In addition to these values, the PLD's maximum

operating frequency, fmax, is taken directly from the data
sheet. The frequency is specified as the internal feedback
maximum operating frequency. It is calculated as

1 I max = --= 41.6 MHz
t cf+ t s

where tee is the clock-to-feedback time. If the data sheet
does not specify tee, you can use teo as tee's upper bound.

Using fmax, you calculate the amount of time that a
metastable event is allowed to resolve, tr, with

1 1 1 1
t,= Ic Imax 25 MHz 41.6 MHz = 16ns

Now you enter these values into the MTBF equation,
making sure to keep all units in seconds:

Loti THRESHOLD

Figure 14. Intermediate Voltage Sensor

.!.!..
MTBF=~

fcfdw
16xl0-9 s

e 190 x 10- 12 s

25 x 10 6s- 1 X 20 x 10 6s -1 x 0.125 x 10 - 12s

= 59.7 x 10 33s = 1.89 x 10 27years=Almostforever
If the operating frequency of the system, fe, is simply

changed to 33.3 MHz,

MTBF

6x 1O-9s

e 190 x 10-12 s

33.3 X 106s- 1 x 20 x 10 6s -1 x 0.125 x 10 - 12s

= 623 x 10 9 s
the system fails, on the average, about every 19,700 years
- still beyond the system's normal lifetime.

And if fc is changed to fmax (41.6 MHz),

oxlO- 9 s

MTBF = e 190 x 10 -12 s
41.6 x 10 6s - 1 X 20 x 10 6s -1 x 0.125 x 10 - 12s

the system fails, on the average every 9.62 ms.
A 16-ns difference in resolve time, tr, results in al­

most 36 orders of magnitude difference in MTBF. Ob­
viously, accurate data is needed to design a system with a
high degree of reliability without being overly cautious.

Characterization of Metastability
Many authors (References 6, 8, 9, 10, 11, and 12)

have performed numerous experiments on circuits to
predict the likelihood of device metastability. These re­
searchers have used several testing theories and apparatus

rDD

Figure 15. Output Proximity Sensor

6-27

DELAY

Figure 16. Late Transition Sensor

that can be classified into three basic types (Reference
14) .

Intermediate voltage sensors constitute the first type.
Two voltage comparitors determine whether the output
voltage, Q, lies between two given voltages. The fixture
produces an error output if Q has a level that is neither
High nor Low, hence metastable. Figure 14 shows an in­
termediate voltage sensor.

The second type of apparatus uses an output
proximity sensor to determine if the Q and Q outputs have
approximately the same voltages, which would indicate
that the device is metastable. Figure 15 shows an output
proximity sensor.

The last type of apparatus uses a late-transition sensor
to test for metastability. Note that if one or more gates
separate the sensor from the metastable signal, the metas­
tability might not be detected. The test circuitry must infer
the occurrence of metastability by some other means. Fig­
ure 16 shows an example of a late-transition sensor. The
sample input is detected at time tl, then at a later time t2.
If these two signals disagree, the device under test was
metastable at tl.

Information from Manufacturers
Many semiconductor companies provide metastability

data on their parts. However, most companies do not
present the data in a format the engineer can use. They
either present inconclusive and incomplete data or they as­
sume the engineer can use the data without further ex­
planation. Few companies compare their devices with
similar devices to provide correlation between comparable
devices.

PLD manufacturers provide little data largely because
of a fear that telling the design community that devices
can fail in synchronizing applications will cause designers
to use a competitor's parts. The truth: No company can
provide a device that is guaranteed not to become metas­
table if used as a synchronizer. At a given operating fre­
quency, with a given asynchronous input, and given
enough time, the device becomes metastable.

Cypress provides you with data you can use to build
a system to any given level of reliability when using
Cypress PLDs. Cypress has performed numerous tests and
collected extensive data on Cypress PLDs, as well as
PLDs from other companies. This data gives you a
perspective of the parts that are best suited for a specific
application. Specific data on the metastability charac­
teristics of Cypress PLDs is found in this application note

~

~~~~~~~~~~~~~~~~~~~~~A~r~e~Y~o~u~r~P~L~D~s~~~e~ta~s~ta~b~l~e~? 
STAU 

nlCHlOUln IIUSTIU 

Figure 17. Metastability Test Circuit 

in the "Test Results" section. Metastability data collected 
by Cypress for other companies' PLDs is available upon 
request. 

The Test Circuit 
Cypress uses a test that falls into the category of the 

late-transition detection. Directly measuring the outputs of 
the flip-flop in a PLD are impossible due to the additional 
circuitry that lies between the flip-flop and the outside 
world. The metastability detection circuitry must, instead 
infer the flip-flop's state. ' 

Fig~re 17 shows the metastability test circuit imple­
mented m each test PLD. This circuit allows the PLD 
under test to effectively test itself. The device under test 
will both produce and record metastable conditions. 

Figure 18 is a state diagram showing the operation of 
the device. During normal operation, the two flip-flops' 
outputs. (F1, F2) transition between states Sl and S2, 
dependmg on the synchronizer's state. During normal 
operation, the Exclusive-OR on these outputs produces a 
High. This indicates either that metastability has not oc-

SUCI • 0, fl/'2 • 01 

SUCI • N, fl/fl • 11 

S"CH • N, fl/fl • II 

curred within the device or that metastability that has oc­
curred has resolved before the next clock cycle. 

If a metastable event cannot resolve before the next 
clock cycle, the state machine move to states S3 or S4. In 
this case, the state flip-flops have interpreted the signal 
from the synchronization register differently; Exclusive­
~R.ing. this signal produces a Low at the device's output, 
mdicatmg that unresolved metastability has occurred. 

This test circuit does not catch all metastable events. 
Specifically, it does not record metastable events that 
resolve before the next clock cycle. But metastability 
causes an error only when it has not resolved by the time 
the signal is needed. The Cypress tests thus reveal the in­
formation designers need to know: how often metas­
tability creates an error in the system. 

The test circuit :also includes the ability to check the 
maximum operating frequency of the device under test 
(Figure 19). At each clock edge, the frrst register's output 
toggles. When the device reaches its maximum operating 
frequency, the PLD array cannot resolve the changing sig­
nal fast .enough. to produce a valid output. At this speed, 
o~e reglster mlght resolve the signal correctly and one 
~ght not, or both might produce invalid signal resolu­
nons. In any case, when Exclusive-ORing the state T1/T2 
of the two maximum-frequency testing registers results in 
anything other than a High, the part's maximum operating 
frequency is exceeded. 

The Test Board 
A four-layer printed circuit board with two signal 

planes, a ground plane, and a power plane is used to per­
form the metastability measurements. Using this four-

S'ICI • 0, '1/fI • 01 

S'ICI • I, fl/fl • 00 

"ICI • N, fl/F2.· 00 

S'ICN • I, fl/t2 • GO 

"ICN • I, 'lin· 10 

Figure 18. Metastability Testing State Diagram 



layer board gives a quiet testing environment with reli­
able, repeatable results. Figure 20 shows a block diagram 
of the test board, with the complete schematic shown in 
Figure 21. The device under test (DUT) is decoupled with 
0.01-~ and ·IOO-pF capacitors. The test circuit is 
designed to fit all industry-standard and Cypress­
proprietary PLDs. The socket allows DUT pins 1,2, and 4 
to serve as clock pins. Pin 3 is the device's asynchronous 
input. The ~ condition is located on pin 27 of a 
28-pin device, and the :FAIL condition is on pin 20. Two 
additional outputs, Fl and F2, monitor the state of the 
metastability test circuit flip-flops. 

All inputs and outputs connect with BNC connectors 
located around the. board. The clock line, which is ter­
minated with a 50n resistor to match the coax input im­
pedance, is buffered with a 74AS04 and isolated from 
other signals by a ground trace. The input line is also ter­
minated with a 50n resistor and buffered with a 74AS04. 
Four PLDs drive a four-digit LED display that counts 
metastability occurrences. 

After going Low in response to a metastable event, 
the ERROR signal automatically transitions High again at 
the next system clock. This Low-to~High pulse produces a 
clock to the input of the first PLD, which in turn incre­
ments the display of metastable events. When a digit 
reaches 9, the next occurrence of metastability generates a 
cascade signal to the next higher digit. 

In this way, the test board can record a maximum of 
9,999 metastable events. If a metastable event is received 
at 9,999, all LEDs switch to E, indicating that an overflow 
condition occurred. A reset button resets all counters and 
initializes the DUT. 

Test Setup 

Figure 22 shows a block diagram of the test setup 
used for metastability testing. Two independent pulse gen­
erators (Hewlett-Packard 8082As) produce the CLOCK 
and the ASYNC IN signal to the test board. A Tektronix 
DAS9200 logic -analyzer records metastable events. A 
2465 CTS digital oscilloscope with frequency counter ac­
curately determines the DUT's maximum operating fre­
quency and the ASYNC _IN and CLOCK frequencies. 

Test Procedure 

Cypress has tested all its· PLDs of 28 pins or less. The 
fastest speed grades of each device type were tested be­
cause these devices have the best metastable resolution 
time and thus make the best synchronizers. Several parts 
from each device type were tested to ensure an average 

Figure 19. Maximum Operating Frequency Test 

6-29 

metastability characteristic for that product. Where pos­
sible, parts from different date codes were selected to 
eliminate variations among different wafer lots. 

Testing for a specific device starts by creating the 
equations used to program the device. Figure 23 lists the 
equations for programming the 22VlO. All devices were 
tested using bit maps produced by the PLD ToolKit, ex­
cept for the CY7C344. The MAX+PLUS development en­
vironment was used to produce a design file for this 
device. 

Each part is programmed, then tested for its maxi­
mum operating frequency, fmax• By attaching the FAIL 
output to the oscilloscope and observing the clock fre­
quency at which the device started to malfunction (FAIL 
going Low periodically), the maximum operating frequen­
cy for that part is determined. fmax indicates the maximum 
rate at which metastability measurements can be taken 
with accurate results. Above this frequency, metastable 
events are indistinguishable from errors caused by exceed­
ing fmax• 

To determine each device's metastability charac­
teristics, measurements are taken of the number of metas­
table events that occurred in a given time interval for 
several different clock and data frequencies. 

Equation 13 can be used to describe the graph of the 
metastability characteristics of the device: 

tr 
In ( MTBF ) = - -In (f c! d W) 

tsw 

The slope of the line, tsw, can be determined only by 
forcing the Y intercept of the graph (In (f c! d W» to a 
constant value when using Equation 14: 

t r l-t r 2 t sw= -----...:-=--~---
In ( MTBF 1 ) -In ( MTBF 2 ) 

Note that tsw is a constant, device-specific parameter. 
Because W is also a constant, device-specific 

parameter, it is only necessary to hold the product feid 
constant to make In (f c! d W) constant. The independent 
variable tr is varied by changing fc to produce changes in 
the dependent variable In(MTBF). Decreasing the frequen­
cy fc from its fmax value increases the metastable resolu-

IV liT BBBS 
~ METASTA.ILlLlTY 

COURTue 
RES ET lWUT DISPLAY 

L I ERIORI 

METASTABILITY 
ASYIC -II f1 

TESTIII 

CLOCI f'Z 

L IIAXIIIUIi FAI LI 

FREQUUCY 

TESTI .. 

Figure 20. Metastability Test Board Block Diagram 



tion time, tr, and decreases the probability that a metas­
table event will last longer than tr. 

As fc is . decreased below a certain limit, the MTBF 
becomes too large to measure accurately. A metastable 
event occurring every minute is chosen as the upper limit 
for MTBF measurements. The range of clock rates. for. 
metastability testing is then between fmax and the metas­
table-event-per-minute clock rate. Between these· two 
rates, a selected frequency constant (fcfd) ensures that no 
point in this range has a clock frequency less than twice 
the data frequency. This is because a data signal that tran­
sitions more than once per clock period cannot be effec­
tively sampled. 

After determining this constant, data is taken from 
several test points within the test range by varying fc and 
fd. The data at each test point is averaged among all test 
devices, and the equation for the line through these points 
is determined using a linear regression analysis. The cor­
relation· between the line and the data points verifies that 
the metastability equation accurately describes the test 
data. From the calculated results, the constants W and tsw 
are extracted. 

Test Results 

Table 1 and the Appendix list the results of the metas­
tability analysis of Cypress PLDs. Table 1 also lists the 
maximum data book operating frequency, fmax; the metas­
tability equation constants, Wand tsw; the metastability 
resolVe time, tr, required for a lO-year MTBF; and the 
process for th:at part. . 

You can· use this data to determine· the maxirilUm 
metastability resolve time (tr) that you must use in a sys­
tem to yield a given. degree of reliability. The graphs and 
constants (Wand tsw)can be used with any speed grade 
of the device, but it is suggested that the fastest speed 
grade of the specific··· . PLD . be used· for optimum 
synchronizer performance. These graphs indicate the time 
(tr) and the device's minimum clock period that must be 
used to produce a desired degree of reliability. 

For example, to determirie the operating parameters 
of the Cypress PALC22VlO-20 from Table 1 when using 
the deviee as a synchronizer, determine the desired 
MTBF. With a 10-yr (315 x 10 6 s) MTBF, for instance, a 
synchronization failure will occur once every 10 years on 
the average. The maximum operating frequency (fmax) 

~I YC~~U-~=+==~~JlllIt~~==lC 
I 0 ;:::J 

.. KANA 

.aOUND 

I 0 ~--~ 
I 0 
I 0 

~ : t=t::t:tt:W 
I 0 
YSS IDE 

. PALl .. 
el 

.010 , 

Figure 21. Metastability Test Board Schematic 

6-30 

.01oF 



I II' 101lA I"' IOIIA lllAStlOO LOIlC I TIIII 
'ULIE In 'ULIE III ANALYZER EJ 

I - - - - - -1- - -
YOLUIl 

I 
ICC 

SUPPLY 
DEVICE 

§·~·§·§ll I CLOCK UIDEI 

TEl 

I 
TUT nUT DISPLAY 

24 .. CTS 
AlflC 

OSCILL I FA! Lf 1 TEST BOARD 
- - - - - - J 

Figure 22. Metastability Test Setup 

from the P ALC22V 10' s data sheet is 41.6 MHz. From this 
information, you can determine the minimum time (tr) 
beyond the device's minimum operating period that must 
be added for metastability resolution: 

t r = t sw ( In ( MTBF ) + In (f c! d W) ) 

t r =(0.190x 1O-9s) [In(315x 10 6s) 

+ In ( 41.6 x 10 6 x 41.6 x 10 6 x 0.125 x 10 -12) ] 

=4.73 ns 

instead of 4.74 ns for tr. The synchronizer's maximum 
operating frequency, fe, in this system is then 

11· 
Ie= 37.0 MHz 

t s + t ef+ trIO ns + 12 ns + 5 ns 
The effective MTBF using these new values for tr 

and fe is 

5x10- 9 s 

MTBF= eO.190x10-9s 

37.0 x 106s- 1 x 37.0 X 106s- 1 x 0.125 x 1O- 12s 

= 1.57 x 10 9 = 49.7 yrs 
Another example focuses on the CY7C330-50 used 

as a synchronizer in a system whose output registers are 
clocked at an fe of 35.7 MHz, and the data has an average 
frequency of 10 MHz. The MTBF for this device used as 
a synchronizer is calculated by fIrst determining the 
metastable resolution time, tr, allowed for synchronization. 
The maximum operating frequency of the part is specified 
in the Cypress Data Book as 

1 . 
Imax=---

teo + t is 
where teo in this case specifies the clock-to-feedback 
delay, and ts specifIes the set-up time of the output 
registers. tr is calculated with the equation: 

tr=-.L __ 1_ 1 1 8ns 
I e I max 35.7 MHz 50.0 MHz 

With this result, the MTBF is 

8x10- 9s 

MTBF 
e 0 .. 290 x 10 - 9 S 

This analysis assumes that the clock, fe, operates at 
fmax (41.6 MHz) and that the average asynchronous data 
frequency is no more than half the clock frequency. The 
latter condition ensures effective data sampling by the 
synchronizer. fd, as explained in the section "Statistical 
Analysis of Metastability," represents the rate at which the 
data changes state. fd is twice the average frequency of 
the asynchronous data input because, during any given 
asynchronous data period, the asynchronous data changes 
state twice: once from Low to High and again from High = 1.31 x 10 9 s = 41.6 yrs 
to Low. Because either of these state changes can cause a This equation uses the same values for W and tsw 
metastable event, fd must be set to twice the average with this 50-MHz device as with the 66-MHz device 
asynchronous data frequency when determining the worst- listed in Table 1. As stated previously, the constants listed 
case MTBF. in Table 1 are valid for all speed grades of a specific 

Due to the real-world uncertainty in factors such as device. Also note that the 10-MHz average data frequency 
trace delays and the skew in clock generators, 5 ns is used is doubled to produce the frequency of data transitions, fd. 

Table 1. Metastability Characteristics of Cypress PLDs 

DEVICE Fmax (MHz) W (s) tsw (s) tr for 10vr MTBF Process 

PALC16R8-25 28.5 9.503E-12 .515E-9 14.68nS PROM 1 

PALC20G10-20 41.6 3.73E-12 .173E-9 4.91nS PROM 1 

PALC20RA10-15 33.3 2.86E-12 .216E-9 5.87nS PROM2 

P ALC22V10C-10 90.0 8.08E-15 .547E-9 13.0nS BICMOS 

PALC22V10B-15 50.0 55.76E-12 .26IE-9 8.19nS PROM2 

PALC22V10-20 41.6 .125E-12 .190E-9 4.73nS PROM 1 

CY7C330-66 66.6 1.02E-12 .290E-9 8.12nS PROM2 

CY7C331-20 31.2 .298E-9 .184E-9 5.91nS PROM2 

6-31 



CV;CYi= .. ---;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;A;;;;;r;;;;;e;;;;;Y;;;;;;;;;;;;;;o;;;;;ur;;;;;;;;;;;;;;P;;;;;L;;;;;D;;;;;s;;;;;M;;;;;;;;;;e;;;;;ta;;;;;s;;;;;t;;;;;ab;;;;;l;;;;;e;;;;;? 
~ SEMICOIDUCI'OR_ 

The last example illustrates how to use a Cypress 
PALC22VlOC~10 as a synchronizer. For a 10-year 
MTBF, assuming the maximum fc from the Cypress Data 
Book and fd, the required tr is 

/e= 1 
/max +tr 

41.6 MHz 
1 

90.9 MHz + 13.0 ns 

t r =(0.547xlO- 9s)[ln(315xI0 6s) Two-Stage Synchronization 

+ In ( 90.9 x 10 6 x 90.9 x 10 6 x 8.08 x 10 -15) ] 

= 13.0 ns 

As explained earlier, you can use a second register in 
series to perform two-stage synchronization (Figure 4). 
This is accomplished by feeding the output of the first 
synchronization register to the input of the second 
synchronization register. In PLDs, this method is common 

Using . this result, the synchronizer's maximum 
operating frequency is reduced from 90.9 MHz to 

C22VI0; 
{ 
Cypress Semiconductor 
Revision: 06/28/90 
These are the equations to perform metastability testing on the PALC22VIO 

} 

CONFIGURE; . 

CLOCK, 
ASYNC IN(node=3), 
RESET(node=5), 
TSYNC(node= 15), 
Tl(node=17), 
T2(node= 18), 
F AIL(node= 16), 
SYNC(node=19), 
Fl, 
F2, 
ERROR, 

EQUATIONS; 

ISYNC 

IFI 

IF2 

IERROR 

ITSYNC 

ITl 

IT2 

IFAIL 

{CLOCK input on pin I} 
{Asynchronous input signal} 
{RESET signal} 
{Synchronization for Fmax } 
{State node for Fmax} 
{State node for Fmax} 

{Fmax indication} 

<oe> 

{Synchronization for Meta test} 
{State node for Meta test} 
{State node for Meta test} 
{Metastable Event indication} 

{Synchronize Asynchronous input} 

<sum> SYNC; {Have two registers hold the} 

<oe> 
<sUm> ISYNC; 

<oe> 
<sum> lRESET * Fl * IF2 

+ /RESET * IFI * F2 
+ RESET * ERROR; 

<sum> TSYNC; 

<sum> TSYNC; 

<sum> /TSYNC; 

<oe> 
<sum> Tl * IT2 

+ ITI * T2; 

{true and inverted sense of } 
{the synchronization register} 

{ERROR# goes low when the XOR } 
{ofFI and F2 is false, ERROR#} 
{also toggles on RESET} 

{Fmax reg toggles on every clock} 

{Have two registers hold the} 
{true and inverted sense of } 

{Fmax reg} 

{F AIL# goes low when the XOR} 
{of Tl and T2 is false, indicating } 

{Fmax has been exceeded} 

Figure 23. PLD Equations for Metastability Testing 

6-32 



because the first synchronization stage can synchronize 
the asynchronous input signal, and the second 
synchronization stage can perform a Boolean function on 
a combination of the input and output signals. Boolean 
functions can be performed at either stage; the metas­
tability characteristics listed in Table 1 apply to PLD 
registers' asynchronous inputs that are used directly as 
well as asynchronous inputs used as a Boolean combina­
tion of existing inputs and outputs. 

When implementing a two-stage synchronizer in a 
PLD, the probability that a synchronizer is metastable 
after the second stage of synchronization is the square of 
the probability that a synchronizer is metastable after the 
first stage of synchronization. The MTBF equation is 

MTBF=(~)2 
fc!dW 

From this result, the equation for tr becomes 

t sw ( In (MTBF) + 2 x In (f ef dW) ) 
tr= 2 

Using this result for a two-stage synchronizer in a 
Cypress PALC22VlOC, the tr fora 10-year MTBF is 
reduced from 13.0 ns to 

t r = (0.5 ) (0.547 x 10 -9 s) [In ( 315 x 10 6s ) 

+ In ( 90.9 x 10 6 x 90.9 x 10 6 x 8.08 x 10 -15) ] 

= 7.65 ns 

The maximum fc increases from 41.6 MHz to 

1 1 
fe 53.6 MHz 

1 1 
f max + t r 90.9 MHz + 7.65 ns 

This example shows that if the cycle of latency 
caused by the additional synchronization stage is accept­
able, you can dramatically increase the synchronizer's 
maximum operating frequency. 

References 
1. Lubkin, S., (Electronic Computer Corp.), 

"Asynchronous Signals in Digital Computers," Mathemati­
cal Tables and Other Aids to Computation, Vol. 6, No. 
40, Oct 1952, pp. 238 - 241. 

2. Nootbaar, Keith, (Applied Microcircuits Corp.), 
"Design, Testing, and Application of a Metastable-Har­
dened Flip-Flop," WESCON 87 (San FranCisco, CA, Nov. 
17 - 19, 1987), Electronic Conventions Management, Los 
Angeles, CA 90045. 

3. Stoll, Peter A., "How to Avoid Synchronization 
Problems," VLSI Design, November/December 1982, pp. 
56 - 59. 

6-33 

4. Chapiro, Daniel M., Globally-Asynchronous Local­
ly-Synchronous Systems, Department of Computer Science 
Report No. STAN-CS-84-1026, October 1984. 

5. Horstmann, Jens U., Eichel, Hans W., Coates, 
Robert L., "Metastability Behavior of CMOS ASCI Flip­
Flops in Theory and Test," IEEE Journal of Solid-State 
Circuits, Vol 24, No 1, Feb 1989, pp. 146 - 157 

6. Wormald, E.G., "A Note on Synchronizer or Inter­
lock Maloperation," Professional Program Session Record 
16, WESCON 87, November 17 - 19, 1987, Electronic 
Conventions Management, Los Angeles, CA 90045. 

7. Pechouchek, Miroslav, "Anomalous Response 
Times of Input Synchronizers," IEEE Trans. Computers, 
Vol. C-2S, No.2, Feb 1976, pp. 133 - 139. 

8. Chaney, T. J., "Comments on 'A Note on 
Synchronizer or Interlock Maloperation,'" IEEE Trans. 
Computing, Vol C-28, No 10, Oct. 1979, pp. 802 - 804. 

9. Couranz, George R., Wann, Donald F., "Theoreti­
cal and Experimental Behavior of Synchronizers Operat­
ing in the Metastable Region," IEEE Trans. Computers, 
Vol C-24, No.6, June 1975, pp. 604 - 616 

10. Veendrick, Harry I.M., "The Behavior of Flip­
Flop Used· as Synchronizers and Prediction of Their 
Failure Rate," IEEE Journal of Solid-State Circuits, Vol 
SC-15, No.2., April 1980, pp. 169 - 176. 

11. Kacprzak, Tomasz, Albieki, Alexander, "Analysis 
of Metastable Operation in RS CMOS Flip-Flops," IEEE 
Journal of Solid-State Circuits, Vol SC-22, No 1, Feb 
1987, pp. 57 - 64. 

12. Flannagan, Stephen T., "Synchronization 
Reliability in CMOS Technology," IEEE Journal of Solid­
State Circuits, Vol. SC-20, No.4, Aug 1985, pp. 880 -
882. 

13. Wakerly, John F., A Designers Guide to 
Synchronizers and Metastability, Center for Reliable 
Computing Technical Report, CSL TN #88-341, February, 
1988Computer Systems Laboratory, Departments of 
Electrical Engineering and Computer Science, Stanford 
University, Stanford, CA. 

14. Freeman, Gregory G., Liu, Diek L., Wooley, 
Bruce, and McClusky, Edward J., Two CMOS Metas­
tability Sensors, CSL TN# 86-293, June 1986, Computer 
Systems Laboratory, Electrical Engineering and Computer 
Science Departments, Stanford University, Stanford, CA. 

15. Rubin, Kim, "Metastability Testing in PALs," 
WESCON 87 (San Francisco, CA, Nov. 17 - 19, 1987), 
Electronic Conventions Management, Los Angeles, CA 
90045. 16/1. 



1.0E+09 

1.0E+08 

M 
1.0E+07 

T 1.0E+06 
B 

1.0E+05 F 

i 1.0E+04 

n 1.0E+03 

s 1.0E+02 
e 1.0E+01 c 
0 1.0E+OO 
n 
d 1.0E-01 
s 1.0E-02 

1.0E-03 

1.0E-04 

1.0E+09 

1.0E+08 

M 
1.0E+07 

T 1.0E+06 
B 

1.0E+05 F 
1.0E+04 

n 1.0E+03 

s 1.0E+02 
e 1.0E+01 c 
0 1.0E+OO 
n 
d 1.0E-O 1 
s 1.0E-02 

1.0E-03 

1.0E-04 

Appendix. Metastability Graphs of Cypress Devices 

CYPRESS PALC16R8-25 

0 2 4 6 8 10 12 14 16 

tr (ns) • 1/fc - 1/fmax 

CYPRESS PLDC18G8-12 

0 1 2 34567 

tr (ns) • 1/fc - 1/fmax 

6-34 

8 9 10 



M 
T 
B 
F 

i 
n 

s 
e 
c 
0 
n 
d 
s 

M 
T 
B 
F 

i 
n 

s 
e 
c 
0 
n 
d 
s 

Appendix. Metastability Graphs of Cypress Devices 

CYPRESS PALC20G10-20 
1.0E+09 

1.0E+08 

1.0E+07 

1.0E+06 

1.0E+05 

1.0E+04 

1.0E+03 

1.0E+02 

1.0E+01 

1.0E+OO 

1.0E-01 

1.0E-02 

1.0E-04 
o 1 234 5 6 

tr (ns) • 1/fc - 1/fmax 

CYPRESS PALC20RA 10-15 
1.0E+09 

1.0E+08 

1.0E+07 

1.0E+06 

1.0E+05 

1.0E+04 

1.0E+03 

1.0E+02 

1.0E+01 

1.0E+OO 

1.0E-01 

1.0E-02 

1.0E-03 

1.0E-04 

1.0E-05 
0 1 234 5 6 7 

tr (ns) • 1/fc - 1/fmax 

6-35 



.-. 

45i~~~~~~~~~~~~~~~~~~~~A~r~e~Y~O~U~r~p~L~D~S~~~et~a~s~ta~b~l~e~? 
Appendix. Metastability Graphs of Cypress Devices 

CYPRESS PALC22V10-20 
1.0E+09 

1.0E+08 

M 1.0E+07 
T 1.0E+06 B 
F 1.0E+05 

i 1.0E+04 
n 

1.0E+03 
s 

1.0E+02 /" 
e 
c 1.0E+0 1 0 
n 1.0E+00 d 
s 1.0E-0 1 /" 

1.0E-02 
1.0E-03 111;;;;;;;I;;;;;;;;;;1;;;;;;;;IIII;;;;;;;;;;;;;;;;;;1 

o 1 234 5 

tr (ns) • 1/fc - 1/fmax 

CYPRESS PALC22V10B-15 
1.0E+09 
1.0E+08 
1.0E+07 

M 1.0E+06 
T 
B 1.0E+05 
F 1.0E+04 

i 1.0E+03 
n 1.0E+02 

s 1.0E+0 1 
e 1.0E+00 
c 1.0E-01 0 
n 1.0E-02 
d 1.0E-03 s 

1.0E-04 
1.0E-05 
1.0E-06 

0 2 4 6 8 10 

tr (ns) • 1/fc - 1/fmax 

6-36 



Are Your PLDs Metastable? 

Appendix. Metastability Graphs of Cypress Devices 

CYPRESS PALC22V10C-10 
1.0E+09 

1.0E+08 ...!" 

M 1.0E+07 ./ 

T 
B 1.0E+06 ./ 

F 
1.0E+05 ./ 

i 
./ n 1.0E+04 

s 1.0E+03 ./. 

e 
./ c 1.0E+02 

0 
n 1.0E+01 
d 
s 1.0E+OO .;1 

1.0E-01 ./ 

1.0E-02 
0 2 4 6 8 10 12 14 

tr (ns) • 1/fc - 1/fmax 

CYPRESS CY.7C330-66 
1.0E+09 

1.0E+08 

M 
1.0E+07 

T 1.0E+06 
B 

1.0E+05 F 

i 
1.0E+04 

n 1.0E+03 

s 1.0E+02 
e 1.0E+0 1 c 
0 1.0E+00 
n 
d 1.0E-O 1 
s 1.0E-02 

1.0E-03 

1.0E-04 
0 2 4 6 8 10 

tr (ns) • 1/fc - 1/fmax 

6-37 



Are Your PLDs Metastable? 

Appendix. Metastability Graphs of Cypress Devices 

CYPRESS CY7C331-20 
1.0E+09 
1.0E+08 
1.0E+07 

M 1.0E+06 
T 
B 1.0E+05 
F 1.0E+04 

i 1.0E+03 
n 1.0E+02 

s 1.0E+01 
e 1.0E+OO 
c 1.0E-O 1 0 
n 1.0E-02 
d 1.0E-03 s 

1.0E-04 
1.0E-05 
1.0E-06 

0 1 23456 7 

tr (ns) • 1/fo - 1/fmax 

CYPRESS CY7C332-15 
1.0E+09 

1.0E+08 

M 
1.0E+07 

T 1.0E+06 
B 

1.0E+05 F 

i 
1.0E+04 

n 1.0E+03 

s 1.0E+02 
e 1.0E+O 1 c 
0 1.0E+OO 
n 
d 1.0E-O 1 
s 1.0E-02 

1.0E-03 

1.0E-04 
0 2 4 6 8 10 

tr (ns) • 1/fo - 1/fmax 

6-38 



Appendix. Metastability Graphs of Cypress Devices 

CYPRESS CY7C344-20 
1.0E+09 
1.0E+08 
1.0E+07 

M 1.0E+06 
T 1.0E+05 B 
F 1.0E+04 

1.0E+03 

n 1.0E+02 
1.0E+O 1 

s 1.0E+OO 
e 1.0E-01 c 
0 1.0E-02 
n 1.0E-03 
d 
s 1.0E-04 

1.0E-05 
1.0E-06 
1.0E-07 

0 2 46 8 
tr (ns) • 1/fc - 1/fmax 

6-39 



CYPRESS 
SEMICONDUCTOR 

PLD-Based Data Path for SCSI-2 

This application note begins by describing the 
major differences between the original SCSI standard 
and the new SCSI-2 document, with special emphasis 
on SCSI-2's high-speed signal timing. This information 
is then put to use in a PLD-based, high-speed data-path 
design for a SCSI-2 host bus adapter. 

Small Computer System Interface 
The SCSI-2 standards document is based on the 

original SCSI-l standard (ANSI X3.131-1986) 
developed by the X3T9.2 Accredited Standards Techni­
cal Subcommittee. The SCSI-2 specification, generated 
by this same subcommittee, offers substantial improve­
ments over the existing SCSI-l standard in documenta­
tion, function, performance, interoperability, and com­
mand-set standardization. 

With the new SCSI-2 ANSI standard, companies 
that use SCSI for their peripheral I/O now face difficult 
decisions: Which of the new capabilities offered by 
SCSI-2 should they support? 

The changes in the SCSI-2 document affect both 
hardware and software. Although it is possible to imple­
ment the changes affecting software drivers over time, 
as these new features appear in peripherals delivered to 
the marketplace, companies must decide now which 
hardware features a host bus adapter (HBA) should 
support. After deliveries to customers, hardware chan­
ges made as field upgrades or retrofits always bear high 
costs and often present a negative picture to the cus­
tomer. 

The physical differences between the original SCSI 
and the new standard fall into four main categories: 
SCSI-l options that are now requirements, new connec­
tor/cable options, faster transfer rates, and wider data 
buses. 

SCSI-! Options 
To be considered SCSI-2 compliant, an HBA must 

support both the parity and arbitration options of SCSI-
1. SCSI-2-compliant HBAs should be software con­
figurable by SCSI device address to allow use of older 
SCSI-l peripherals that do not have both capabilities. 

6-40 

Connectors/Cables 

SCSI-2 documents a 50-mil-pitch connector system. 
This connector family allows fully shielded assemblies 
for the 50-wire A cable and optional 68-wire B cable. 
Many SCSI manufacturers use this micro-D-type con­
nector in .volume. You can use the cable/connector 
scheme in a mix-and-match system with SCSI-I connec­
tor/cable types through the use of adapter cables that 
have different connector types on each end. 

One of the de facto (non-ANSI-standard) SCSI 
cable schemes, the 25-pin D-sub connector made 
popular by the Apple Macintosh, does not support 
SCSI's differential signal implementation. This cable 
system achieves its low pin count by removing a large 
number of the ground signals specified for single-ended 
operation. Because the single-ended transmission 
scheme is not recommended for SCSI-2's fast 
synchronous information transfer mode, users of this 
connector/cable system limit the data rates, cable 
lengths, and noise margins at which they can operate. 

Transfer Rates 

SCSI supports two types of information transfer; 
asynchronous (interlocked) and synchronous (data 
streaming/offset interlock). 

In asynchronous transfers, a four-way handshake 
occurs between the SCSI peripheral (target) and the 
HBA (initiator) for each piece of information trans­
ferred on the SCSI bus. The SCSI bus's REQ (request) 
and ACK (acknowledge) control signals are used in this 
handshake operation, with the SCSI I/O signal deter­
mining the direction of information flow. This 
asynchronous transfer mode is the default mode for all 
SCSI devices and is required for all MESSAGE, COM­
MAND, and STATUS transfers. On SCSI systems im­
plemented with very short cables and fast turn-around 
times in both the target and the initiator, theoretical 
burst-transfer rates can exceed 10 Mtransfers/s. None of 
the commercial LSI SCSI controller chips available at 
this time support this high rate for asynchronous trans-



fers. Most of these controllers handle asynchronous 
transfers at 50 Ktransfers/s to 3 Mtransfers/s. 

SCSI-2 implements the synchronous transfer mode 
to remove device turn-around time and cable and 
transceiver delays as factors affecting transfer rates. Un­
like asynchronous transfers, which are limited by the 
interface's four-way path delay, synchronous transfers 
are limited by interface skew-the difference in trans­
mission delays among signals on the interface. 

SCSI-2 allows use of the synchronous method only 
for data transfers and only after enabling it with a SCSI 
MESSAGE negotiation between the initiator and target. 
Synchronous transfers exist in SCSI-I, but few commer­
cial LSI SCSI controllers or peripherals implement this 
capability. The SCSI-1 implementation defines 
synchronous transfers for data transfer periods of 200 
ns and slower. This specification limits the synchronous 
data rate to 5 Mtransfers/s. 

With tighter-tolerance parts and low-pair-to-pair­
skew cables now available, SCSI-2 defines an additional 
form of synchronous data transfer with a 100-ns mini­
mum period. This change pushes the SCSI-2 maximum 
data rate to 10 Mtransfers/s. Because of the tighter 
timing defined for the fast synchronous transfer mode, 
the SCSI-2 document does not recommend this mode's 
use with single-ended transceivers, even for short cable 
lengths. 

Wide Data Bus 

The last hardware addition allows use of wider 
SCSI data buses. In SCSI-1 the interface's data-bus por­
tion was only eight bits wide. SCSI-2 allows two addi~ 
tional bus widths of 16 and 32 bits. Because of these 
different bus widths, SCSI-2 information transfer rates 
are usually specified in transfers/second rather than 
bytes/second. You determine the bytes/second rate by 
multiplying the SCSI data-bus width in bytes by the 
number of transfers per second on the interface. 

The wide SCSI bus is currently defined as a secon­
dary 68-signal B cable that can contain an additional 
three bytes of bus width. Because this B cable contains 
only the SCSI control signals necessary for information 
transfer, you must use it in conjunction with a 50-signal 
A cable for proper communications. 

Use of the wide SCSI option at the maximum 32-bit 
data-bus width, along with the fast synchronous transfer 
mode, provides data transfer operations as high as 40 
Mbytes/s. 

New Problems 

SCSI users who require no more performance than 
they currently have need not make any changes to ac­
commodate SCSI-2. The SCSI-1 standard's capabilities 
exist as a subset of SCSI-2. However, users experiencing 
an I/O bottleneck imposed by their current SCSI im­
plementation must implement one or more of the new 
SCSI-2 features to get additional performance. 

6-41 

PLD-Based Data Path For SCSI-2 

The vast majority of the SCSI-2 changes are not 
really changes at all, just better definitions of items 
documented in the existing SCSI-1 standard. The ar­
bitration and parity capabilities carry over unchanged 
from the SCSI-1 standard. The connectors and cables 
are now well defmed, with multiple component sources. 
The wide bus options require only a replication of exist­
ing data-path hardware, but the data-path hardware it­
self has undergone a significant change. 

The new fast synchronous data-transfer mode re­
quires much tighter timing control than was necessary 
with SCSI-I. If you plan on using the fast synchronous 
transfer capability, you must contend with differential 
transceivers, low-skew cables, three data-transfer modes 
(asynchronous, synchronous, and fast synchronous), and 
short set-up and hold times. 

With all these challenges, it might seem doubtful 
whether anyone will use the fast synchronous transfer 
mode. However, a system analysis shows that im­
plementing fast synchronous mode will cost less than 
any of the wide-bus implementations and still yield a 
burst data rate as high as 10 Mbytes/s with the standard 
50-pin cables. This data rate is twice the maximum· of­
fered in SCSI-1 and equal to that offered by the com­
peting Intelligent Peripheral Interface (IPI) in its 2-
byte-wide standard implementation. The wide-bus re­
quirement of a second cable also causes problems in 
weight, cost, and space. Many of the newer 3.5-in. 
peripherals just do not have room for an additional 68-
pin connector. . 

SCSI Transfer Timing 
Of the 23 different interface timing values specified 

in the SCSI-2 document, 11 apply directly to the dif­
ferent forms of information transfer. These values are: 
Cable skew delay 10 ns 
Deskew delay 45 ns 
Synchronous REQ/ ACK assertion period 90 ns 
Synchronous data hold time 45 ns 
Synchronous REQ/ ACK negation period 90 ns 
Synchronous/fast synchronous transfer period Selectable 
Fast synchronous REQ/ ACK assertion period 30 ns 
Fast synchronous cable skew delay 5 ns 
Fast synchronous deskew delay 20 ns 
Fast synchronous data hold time 10 ns 
Fast synchronous REQ/ ACK negation period 30 ns 

Of these 11 timing values, only the cable skew delay 
and the deskew delay apply to the asynchronous mode 
of information transfer. The remaining values apply to 
the two modes of synchronous data transfers. 

These timing values are all specified for the trans­
mitting end of the SCSI interface. Sufficient margins are 
included in these values to allow proper interface 
operation under worst-case configurations of transmit­
ters, receivers, and cables. The fast synchronous mode 
cuts many of the timing parameters by half or more 
from those of the synchronous mode. Because the inter­
face must still operate over the same distance (up to 



ec~CYPRF$ 
~, SEMlCCtIDUCTOR PLD-Based Data Path For SCSI-2 

TIMING AT TARGET 
DB[ 0 .. 7. Pl ~ID DATA ON BUS X tEXT VALID DATA 

~1E==!5!5n. __ -~1. ~!5!5n1~ REQ .'nlllu----..J~------, _lnlllUII ~ 

ACK I ~ 

TIMING AT INITIATOR 
DB[O .. 7.Pl~ ~ 
REQ I ,~ ____ __ 

ACK I ,'-__ _ 

Figure 1. Asynchronous Transfer Timing, Target Transmit 

25m), usage of fast synchronous mode demands tighter 
tolerances for many of the electrical components. 

SCSI Transfers 
All information transfers on the SCSI bus are con­

trolled by the target device. The initiator cannot send or 
receive information until it flrst has received a valid 
REQ signal from the target device. 

Asynchronous Mode Transfers 
The interface timing for asynchronous transfers is 

common to all SCSI devices. Because MESSAGE, 
COMMAND, and STATUS transfers require support 
for this mode, all SCSI devices must support it. The in­
terface timing for asynchronous operation varies slight­
ly, depending on whether the SCSI initiator or SCSI tar­
get is sending information. 

When the target sends information, it must flrst 
place the correct data on the SCSI bus, delay a mini­
mum of 55 ns, then assert REQ. The 55-ns delay ac­
counts for all possible data-transmission-time variations 
caused by transceivers, bias and. termination networks; 
cables, and the information present on them. Because 
the data has been on the SCSI bus for at least this long 
prior to· REQ's assertion, the initiator knows that the 
data present at its inputs is supposed to be valid when it 
receives the asserted REQ signal. Because no set-up 
time is guaranteed at the initiator, it should not assert 
its ACK signal to respond to the REQ signal until after 
delaying long enough to ensure that it (the initiator) can 
properly. capture the data (Figurel). 

When the initiator sends information; it must first 
wait until it receives the REQ signal from the target. 
This is necessary because the bus phase, which deter­
mines . the information to be sent and the direction of 
the SCSI bus, does not begin until the REQ signal is 
asserted for that phase's first transfer. After receiving 
this flrst REQ, the initiator can place its· data on the 
SCSI bus, delay a minimum of 55 ns, and respond by 
asserting ACK. The SCSI target must delay its negation 
of REQ until it has captured the data. 

6-42 

Because the initiator is not supposed to drive the 
SCSI bus until a transfer's first REQ occurs, the total 
delay for this first transfer is longer than the delay for a 
flrst transfer from the target to the initiator. To get 
around this longer delay, many initiators prestage the 
data for subsequent transfers. The initiator does this by 
driving the data bus with the next byte of information as 
soon as the REQ signal from the previous transfer goes 
Low (Figure2). 

Synchronous Mode Transfers 
The synchronous mode of information transfer is 

an option for SCSI-I and SCSI-2 devices. This mode is 
only usable for data transfers and is not valid for MES­
SAGE, COMMAND, and STATUS transfers. 

SCSI target devices with the ability to use 
synchronous mode default to asynchronous transfer 
mode following either a SCSI reset or power-up se­
quence. To allow synchronous transfers to occur, the 
target device must fIrst be placed into synchronous 
mode through a MESSAGE negotiation sequence with 
an initiator. This sequence sets both the minimum 
synchronous transfer period and a maximum 
REQI ACK offset count. 

The synchronous transfer period specifies the mini­
mum period between successive leading edges of any 
two consecutive REQ pulses or ACK pulses while 
operating with synchronous transfers. If the negotiated 
period is less than 200 ns but not less than 100 ns, the 
data . transfer is specified as operating in the fast 
synchronous mode and must meet the interface timing 
requirements specified for fast synchronous transfers. If 
the negotiated period is 200 ns or longer, the data trans­
fer is specified as operating in the synchronous mode 
and must meet the interface . timing requirements 
specified for . synchronous transfers. If the negotiated 
period is ever set to zero, the data transfer mode reverts 
to asynchronous. 

Unlike asynchronous transfers, . where REQ and 
ACK are directly interlocked to each other to control 
the transfer's speed, synchronous mode data transfers 
impose no direct timing relationship between the 



PLD-Based Data Path For SCSI-2 

TIMING AT TARGET 
DB[0 .. 7.Pl~ )() 

\.. 
\\-_----~~ 

REO J \\-------~I 

ACK ______________ ~I 

TIMING AT INITIATOR 
DB[ 0 .. 7. Pl 
REO 

XXXXXXXX VALID DATA ON BUS X NEXT VALID DATA 

ACK 
Figure 2. Asynchronous Transfer Timing, Initiator Transmit 

Offset 
Count 

REQ 
2 J " ~ 6 7 6 666 

ACK __ --'-_______ _ 

Figure 3. REQI ACK Offset Count 

target's REQ pulses and the initiator's ACK pulses. In­
stead, the initiator uses a count relationship, known as 
the REQI ACK offset count, to slow the transfer. Main­
tained by both the initiator and the target, this count 
keeps track of the difference between the number of 
REQ and ACK pulses. When the count in the target 
device reaches the negotiated maximum value (Figure 
3), the target device stops sending REQ pulses until the 
initiator brings the count below the maximum by return­
ing an ACK pulse. A proper synchronous transfer re­
quires that an equal number of REQ and ACK pulses 
be sent. 

The timing relationships of the REQ and ACK pul­
ses and the data passed with them is specified by the 
two values used for asynchronous transfers and values 

specifically identified for synchronous transfers. SCSI 
synchronous-mode transfers do not require a 50-percent 
duty cycle for REQ or ACK timing. When operated at 
or near the maximum transfer rate the required inter­
face timings approach this ratio, but at slower rates the 
duty cycle is allowed wide variability. 

When the target sends information in synchronous 
mode, the target must place it's data on the SCSI bus a 
minimum of 55 ns before asserting REQ. The target can 
then remove or change the data a minimum of 100 ns 
following REQ's assertion. REQ must remain active for 
a minimum of 90 ns and, once negated, cannot be reas­
serted for a minimum of 90 ns. In addition to these re­
quirements, the minimum negotiated period must be 
maintained. A data transfer is completed when the tar­
get has no more data to send and the REQI ACK offset 
count has returned to zero. As with the asynchronous 
transfer mode, the specified delays guarantee valid data 
at the initiator on REQ's leading edge and not before 
(Figure4). 

When the initiator sends information to the target, 
the initiator must wait until it receives the REQ signal 
from the target. Once the initiator receives REQ's lead-

TIMING AT TARGET 
DB[ 0 .. 7. Pl ~D DATA ON BUS J NEXT VALID DATA 

~~55nl 100ni mln~' REO minimum 

ACK 

TIMING AT 
DB[ 0 .. 7. Pl ~~~~~mK==~~Z=~~ 
REO 
ACK 

Figure 4. Synchronous Transfer Timing, Target Transmit 

6-43 



PLD-Based Data Path For SCSI-2 

TIMING AT TARGET 
D8[ 0 .. 7. P1 
REO 
ACK 

08[0 .. 7. P1 
REO 
ACK 

TIMING AT 

Figure 5. Synchronous Transfer Timing, Initiator 
Transmit 

ing edge, the REQI ACK Offset count in the initiator is 
no longer zero. So long as the initiator has data avail­
able to send and the REQI ACK Offset count is non 
zero, the initiator can continue to send data to the 
target. 

The timing for this transfer (Figure5) is like that of 
the transfer from the target described above. 
Synchronous"mode provides valid data at the SCSI bus's 
receiving end during" a 45~ns interval immediately fol­
lowing REQI ACK reception. 

Fast Synchronous Mode Transfers 
Fast synchronous transfers function the same as 

synchronous transfers but with different timing 
parameters. These transfers only exist for REQI ACK 
pulse periods shorter than 200 ns and longer than or 
equal to 100 ns. 

With fast synchronous transfers, the REQI ACK 
minimum assert and negate times decrease to one third 
their previous size. Thus, SCSI-2 permits REQ and 
ACK pulses as short as 30 ns when operating in fast 

synchronous mode. Additionally, the minimum data set 
up prior to transmitting a REQI ACK pulse decreases to 
25 ns, and the data hold time after REQI ACK' s leading 
edge is only 35 ns. This timing provides data specified 
as valid, at the receive end of the SCSI bus, for only 10 
ns immediately following REQI ACK reception. See 
Figures 6 and 7 for fast synchronous mode timing 
diagrams. 

SCSI-2 Data Path Design 
Synchronous and asynchronous data transfers, IO­

ns timing windows, fixed and variable delays, and 
programmable pulse widths are all necessary functions 
of a SCSI-2 data path. The simpler techniques used 
with SCSI-l's 45-ns data-availability windows are quite 
different from those needed to operate with SCSI-2's 
10-ns windows. Fortunately, designing a data path that 
handles all possible SCSI-2 information transfer modes 
is not as difficult as it might appear. By carefully select­
ing some of the newer PLD and interface parts, you can 
implement the design quite efficiently. 

TIMING AT TARGET 
DB [ 0 .. 7. Pl ~D DATA ON BUS , NEXT VALID DATA 

~1E==2!Sn. 3!!1ns min =;j' 
REO minimum 

ACK 

TIMING AT 
DB[ 0 .. 7. Pl =~~~~~==tX~=~~ 
REO 
ACK 

Figure 6. Fast Synchronous Transfer Timing, Target 
Transmit 

6-44 



PLD-Based Data Path For SCSI-2 

TIMING AT TARGET 
DBf o .. 7. Pl 
REO 
ACK 

DBf 0 .. 7. Pl 
REO 
ACK 

Figure 7. Fast Synchronous Transfer Timing, Initiator 
Transmit 

To successfully meet the needs of fast transfer rates 
and operability for a wide variety of peripherals, the 
SCSI-2 design must be capable of: 

Asynchronous data transfers at up to 5 Mtransfers/s 
Synchronous data transfers at a maximum transfer 
rate of 5 Mtransfers/s, with selectable lower trans­
fer rates for peripherals that cannot operate at the 
maximum synchronous rate 
Fast synchronous data transfers at a maximum 
transfer rate of 10 Mtransfers/s, with selectable 
lower transfer rates between 10 and 5 Mtransfers/s 
for peripherals that cannot operate at the maximum 
fast synchronous rate, yet can operate faster than 
the maximum synchronous rate 
Operation with differential transceivers 

Design Partitioning 
Correct partitioning is probably the most critical 

part of achieving an efficient implementation of any 
SCSI design. When partitioning the design, list the 
necessary functions and, where possible, combine multi­
ple functions into a single, more global function. A 
SCSI-2 data path must include these functions: 

SCSI interface transceivers 
Receive data register 
Transmit data register 
Receive data buffer 
Transmit data buffer 
REQI ACK offset counter 
Asynchronous receive control 
Asynchronous transmit control 
Synchronous receive control 
Synchronous transmit control 
Fast synchronous receive control 
Fast synchronous transmit control 
Although the transmit and receive control functions 

must operate with different timing values, the 
asynchronous, synchronous, and fast synchronous con-

6-45 

trol operations for receive or transmit must perform the 
same function: receiving or transmitting information. 
Grouping the receive and transmit control functions 
into two separate and more generalized functional units 
reduces the design's complexity. 

The necessary operations of the receive control 
function are: 

Clocking information into the receive data register 
Returning and removing the ACK signal at the 
proper time 
Writing the received data into the data buffer 
The necessary operations of the transmit control 

function are: 
Reading the data from the data buffer and clocking 
the data into the transmit data register 
Returning and removing the ACK signal at the 
proper time 
Timing the necessary data set-up time 
Timing the necessary data hold time 
Timing the necessary ACK assertion time 
Timing the necessary ACK negation time 
The data buffer function is another area where 

some consolidation can· occur. Because the SCSI inter­
face cannot send and receive data at the same time, a 
single common buffer is used for both transmit and 
receive functions. 

With these functions combined, the design now 
comprises seven functions: 

SCSI interface transceivers 
Receive data register 
Transmit data register 
Data buffer 
REQI ACK offset counter 
Receive control 
Transmit control 

SCSI Interface Transceivers 

The SCSI interface supports both single-ended and 
differential transceiver types. The single-ended variety is 



most common today because it is relatively inexpensive 
and most commercial LSI SCSI controller chips incor­
porate this type. Single-ended transceivers suit cable 
lengths less than 6m long and synchronous data rates of 
5 Mtransfers/s or less. 

SCSI devices using fast synchronous mode require 
differential transceivers. This transceiver type meets the 
electrical specifications of the EIA RS-485 standard. 
Operating from a single +5V supply, these transceivers 
can handle large swings in common mode noise, are 
guaranteed glitch free during power-up and -down 
operations, and have short-circuit and thermal-shut­
down protection. SCSI applications that use cables 
longer than 6m also require differential transceivers. Al­
though currently limited in the SCSI standard to opera­
tion at no more than 25m, this transceiver type can 
drive signals much farther, as shown by the Intelligent 
Peripheral Interface usage of the same parts at 65m. 

Differential transceivers have one other advantage 
that is often overlooked. Because two differential sig­
nals determine the output state of each receiver, it is 
possible to achieve either active High or active Low 
TTL inputs and outputs by reversing the connection of 
the + and - differential signal lines on the SCSI bus. 
This programmable inversion can often eliminate the 
need for an inverter, and its associated delay, from 
many of the differential signals paths. 

All existing SCSI applications that use differential 
transceivers place these parts external to the LSI SCSI 
controller chips. This practice is due primarily to the 
transceivers' power dissipation and partially analog 
operation. Until recently you could only get differential 
transceivers in singles-one transmitter and receiver in 
an 8-pin part. This packaging required 18 parts to im­
plement the transceivers for a SCSI-l bus. 

Due to the growing usage of these parts and im­
provements in power control technology, manufacturers 
now offer triple and quad transceiver parts. Some of 
these parts are designed specifically for the SCSI en­
vironment. To allow for the selection and arbitration se­
quences, for example, the trapsceivers have separate 
transmitter enables that allow individual transmitters to 
be turned on within the part. These transceivers meet 
all signal and skew requirements of the SCSI-2 fast 
synchronous mode. 

Receive Data Register 

The information from the transceivers is used for 
arbitration, selection, and reselectionsequences, as well 
as information transfers. Of the transfer· sequences, the 
fast synchronous transfer mode has the most stringent 
timing concerns. 

Because of the fast synchronous mode's· lOons data­
availability window, the receive data register must have 
a very short set-up and hold time. The 74F823, a 9-bit 
D-type register, fits this application nicely. With a maxi­
mum set-up-and-hold-time total of 5.5 ns, the register 
leaves room for a 4.5-ns skew in clock timing for proper 

6-46 

PLD-Based Data Path For SCSI~2 

operation. Because of this timing, the clock path to the 
receive data register can afford only a single gate delay. 
To meet the defined lOons data window and work with 
the 74F823, the single gate must have a minimum 
propagation delay of 3 ns and a maximum delay of 7.5 
ns for the Low to High output transition. Depending on 
the gating function needed, any parts such as the 74F08, 
74Fll, or 74F32 meet the timing window. 

Transmit Data Register 
The same part type, 74F823, also works on the 

transmit side of the interface. Because both the transmit 
and receive data registers are as wide as the full SCSI 
data bus, they implement a nearly seamless design. 

Data Buffer 
You can implement the data buffer for a SCSI in­

terface in many ways. Host bus adapters that support 
data-caching functions might require a large piece of 
memory. Because the data cache usually exists several 
logic levels away from the physical SCSI interface, the 
HBA needs a smaller piece of memory to act as a "rub­
ber band" between the SCSI target and the host or 
HBA memory. Using such a front-end buffer allows 
data to move quickly on the SCSI physical interface. 

Because the SCSI interface is asynchronous to most 
of the logic activity in any HBA, the cleanest form of 
this front-end data buffer has an asynchronous inter­
face, which permits the buffer to accept data as the data 
becomes available. Memories of this type fall into two 
categories: dual~port RAMs and FIFOs. The . latter is an 
excellent fit because the information transferred over 
the SCSI interface is order dependent and does not 
contain memory-address information. The FIFO 
eliminates any need for address-sequencing logic for 
moving information in and out of the data buffer. 

The data buffer must also be bidirectional to allow 
the HBA to send and receive information. You can cre­
ate a. bidirectional FIFO using unidirectional FIFO 
memories with external bus-steering and control logic. 
Unfortunately, a bidirectional FIFO built in this manner 
requires many extra parts, power, and board space. A 
much better· choice is to use a monolithic bidirectional 
FIFO. 

Although most available bidirectional FIFOs are 
register programmable and require a· processor connec­
tion to control their operation, the Cypress CY7C439 
bidirectional FIFO does not. This 2K x 9-bit FIFO sup­
ports the full 9-bit SCSI data bus, in addition to the pin 
programmability necessary for simple state machine 
control. 

REQIACK Offset Counter 

The HBA uses the REQ/ ACK offset counter (Fig­
ure 8) for synchronous and fast synchronous transfers. 
The counter keeps track of how many unanswered REQ 
pulses the HBA has received and must respond to. 
Both transmit and receive operations employ this logic. 



Just how big a counter is needed? Although it 
would be easy to pick an arbitrary number, you can cal­
culate the size of the counter needed to keep the SCSI 
interface operating at its peak rate. This task requires a 
counter of N bits, where R outstanding REQ and ACK 
pulses can be active, such that R=2N-1. This same R 
valu~applies to the target device as the maximum 
REQI ACK offset count. 

The value of R depends on the SCSI cable's length, 
the velocity of the cable signals' propagation (Vp), the 
fastest synchronous period to be used, the turnaround 
time of a REQ pulse to an ACK pulse in the initiator, 
and the recognition time for an ACK pulse in the tar­
get. Many of these values are specified or can be calcu-.. 

a.aac 

...uN 

E!CI!D 

1 

1 

1 

JCr..JIIMI 
41 

1 

I 
1 

I 
I 
1 

1 

I 

L 

PLD-Based Data Path For SCSI-2 

lated from the information in the SCSI-2 document. 
You can approximate the remaining values to arrive at a 
number accurate to within a power of 2 (1 counter bit). 

The cables specified for the SCSI interface use a 
solid dielectric whose Vp ranges from 60 to 66 percent. 
Additionally, the use of twisted-pair cables is strongly 
recommended to reduce crosstalk. When wires are 
twisted together to form a cable, longer wires are 
needed to reach a specific physical cable length. 
Depending on the amount of twist in the pairs, the 
longer wires can lengthen the physical signal from 2 to 
30 percent. The cables specified for fast synchronous 
transmission have a very tight pair-to-pair signal skew 
specification that is partially achieved by having a very 

---
PAL22V10C 

II!I1..IN 

1P..INt 

/tI' 

taUN 

IXMLDII 

D£MI 

III 
QI 
II! 

1-----I~-7 DII'I" 

Figure 8. REQI ACK Offset Counter 

6-47 



loose twist in the signal pairs. In these cables, each 
line's internal physical signal length is approximately 2 
to 10 percent longer than the external physical length. 

With a. maximum external cable length of 25m, the 
calculated one-way maximum signal delay through the 
cable is 

t = (25m + 2.5m) * 5.56 ns/m 
t = 153 ns 

Because the SCSI target does not know that an 
ACK has occurred until the ACK propagates to the 
target's end of the cable, this one-way delay must be 
doubled to allow for the return path time. 

In addition to cable delay, the transceivers themsel­
ves contribute a major portion of the total loop delay. 
The data sheet for a DS36954 quad differential 
transceiver lists a maximum delay value of about 20 ns 
for each transmitter and receiver that the REQ and 
ACK signals pass through. This delay adds 80 ns to the 
loop delay. 

The next delays to consider are the turnaround and 
recognition times in the initiator and target. These 
delays must be approximated by examining the opera­
tions that must occur. Because both the REQ and ACK 
signals are asynchronous when they are received, they 
must go through a metastable-prevent circuit before 
they can be used. The faster forms of TTL-compatible 
logic can execute a metastable prevention procedure in 
less than 20 ns and still provide a reasonable MTBF. 
Following this procedure, a counter must operate on 
the signal and generate a status value, which determines 
whether the transfer can proceed or must suspend. For 
worst-case operations, a miss must be assumed for the 
first stage of the metastable-prevent circuit. This as­
sumption yields a maximum REQ/ ACK offset counter 
delay of 80 ns. 

The REQ/ ACK send delay is the last piece of the 
delay loop. The REQ/ ACK send delay assumes the 
necessary data set-up time before generation of the 
REQ or ACK pulse to send the data. For the fastest 
transmission mode, this delay could be as long as 70 ns. 

Adding these values yields a loop delay of 
306 ns Cable delay 
80 ns Transceiver delay 
80 ns Initiator REQ/ ACK offset counter delay 
80 ns Target REQ/ ACK offset counter delay 
70 ns Data set-up delay 
616 ns Total loop delay 

Considering this figure and the 100-ns Inlmmum 
period for fast synchronous transmission, achieving con­
tinuous data flow demands that there be at most six out­
standing REQ pulses at the target. This task requires a 
minimum of a 3-bit REQ/ ACK offset counter to main­
tain data streaming for fast synchronous transfers. 

This counter must operate under the following 
rules: 

1. Each received REQ pulse generates a single 
count up. 

6-48 

PLD-Based Data Path For SCSI-2 

2. Each generated ACK pulse generates a single 
count down. 

3. The counter does not change if REQ and ACK 
are recognized simultaneously. 

Although the simplest approach would be to run 
the REQ signal from the receiver straight into the 
metastable-prevent circuit, this could cause problems in 
some systems. Because the REQ signal is allowed to be 
as narrow as 30 ns at the cable's transmitting end, this 
pulse might shrink under some conditions such that the 
received pulse is less than the 20-ns sample period (plus 
set-up and hold time). This situation could occur under 
worst-case conditions of intersymbol interference, cable 
imbalance, and bias distortion, causing the the 
REQ/ ACK offset counter to miss the REQ pulse and 
create a transmission error. 

To make sure the counter does not miss the REQ 
pulse, you need to add a D flip-flop, configured as an 
edge detector, just before the metastable-prevent cir­
cuit. This flip-flop forces the received REQ signal to 
remain at the counter input until it is recognized. 

Although you can build the REQ/ ACK counter 
with a small handful of MSI/SSI parts, a superior ap­
proach is to use a single Cypress PAL22VlOC PLD. 
This one part can include the entire 3-bit up/down 
counter, two single-count-per-pulse filters, and both 
REQ and ACK metastable-prevent structures. Because 
of the PAL22VlOC's synchronous operation, the 
asynchronous edge-detector function still requires a 
single 74F74 flip-flop external to the PAL22VlOC 
REQ/ ACK offset counter. The equation list for this 
PLD appears in Appendix A. 

Receive Control 
Data reception from the SCSI bus is handled the 

same for all modes of information transfer. This is pos­
sible because the information on the SCSI bus is always 
valid at REQ's leading edge for asynchronous, 
synchronous, and fast synchronous transfer modes. 
Every received REQ pulse can thus clock the receive 
data register. Even when the initiator sends data to the 
target, and therefore clocks invalid data into the receive 
data register, the next REQ pulse overwrites the invalid 
data. 

It is necessary to delay the received REQ signal's 
leading edge by a gate delay that matches the 74F823 
Received Data Register's set-up and hold times. The 
74F08 fits nicely here with a 3-ns minimum delay on 
Low-to-High transitions and a 6.6-ns maximum delay. 
This delay still gives a 900-ps margin for fast 
synchronous transfers, judging from worst-case com­
mercial specifications. 

Because timing is so tight when doing fast 
synchronous transfers, take care to avoid destroying any 
designed-in margins with poor circuit layout. The stand­
ard FR4 substrates used for most circuit boards exhibit 
a dielectric constant of about 5. With this high number, 
circuit trace delay exceeds 2 ns/foot. To prevent infor-



mation transfer errors, make sure the REQ signal's 
routing length to the receive data register is never more 
than 5 in. shorter or longer than, any of the data-path 
signals. 

Once information has been captured in the receive 
data register, it must be written into the data buffer. 
The I/O signal in this state indicates that the SCSI bus 
direction is set for input to the initiator. 

With these conditions met and REQ present, a 
FIFO write operation must occur. For a correct write to 
occur, the CY7C439 FIFO requires a pulse on the 
ISTBB pin with a minimum width of 30 ns. With SCSI-1 
peripherals, you could build a small asynchronous state 
machine to generate a write FIFO pulse of this mini­
mum width; the state machine could utilize the false 
state of the REQ signal that occurs after each REQ 
pulse. If you use this method, you need some external 
logic to terminate the last write to the memory. 

To support SCSI-2 peripherals that use fast 
synchronous transfers, you need a different method. Be­
cause the REQ pulse's transmitted false state for fast 
synchronous transfers can be as small as 30 ns, a pulse 
of this same width cannot be guaranteed at the receive 
end. 

You can choose among many methods for generat­
ing fixed-width pulses: delay lines, TTL delay elements 
(74LS31), strings of gates, counter chains, one shots, 
and standard TTL parts feeding R-C circuits. Each cir­
cuit type has its inherent problems. One shots are 
notorious for not triggering at all or mistriggering, 
lumped-constant delay lines have high field failure rates, 
and TTL delay elements have a too-wide margin of 
variability for a manufacturable design. In this case, 
however, a new type of reprogrammable CMOS 
synchronous state machine PLD, the Cypress CY7C361, 
can easily generate the required pulse. 

The CY7C361 is a programmable state machine 
that allows multiple concurrent and interacting state 
machine s to operate in the same part. Based on a Petri 
Net or token-passing philosophy, the CY7C361 can con­
tain as many state machines as its state registers, inputs, 
and outputs support. This part contains 32 separate 
state registers that can operate at internal frequencies 
as high as 125 MHz. The CY7C361 also contains an in­
ternal clock doubler, which makes it unnecessary to 
generate and distribute frequencies upwards of 100 
MHz in a TTL environment. Because this part is 
designed for interface operations, it also contains 
metastable-hardened input structures. 

By operating from the same 50-MHz clock used 
with the REQ/ACK offset counter (doubled internally 
to 100 MHz), a CY7C361-based 4-state machine can 
generate a 40-ns pulse to write the information into the 
FIFO memory. 

The state machine must account for the procedure 
used to govern writes to the FIFO. Although FIFO 
writes can occur even if the FIFO is half full, as deter­
mined by the FIFO status flags, the ACK signal that al-

6-49 

PLD-Based Data Path For SCSI-2 

lows the interface to continue operation is held up until 
the host reads enough information from the FIFO to 
bring the FIFO state below half full. This governing 
procedure is used for asynchronous and synchronous 
operations. For synchronous operations, data continues 
to be written into the FIFO even after reaching the half­
full state. Although ACK pulses are no longer returned 
to the target when the FIFO is at or above half full, the 
FIFO writes are only suspended when the REQ/ACK 
Offset counter in the target reaches its maximum and 
stops sending REQ pulses. 

Figure 9 shows the simple state diagram for writing 
information into the FIFO. The diagram includes four 
active states (1 - 4) and a reset state (0). When in the 
reset state, the CY7C361 continuously watches for a 
REQ signal to occur while the SCSI bus's I/O signal is 
asserted (SCSI bus direction = IN). When this condi­
tion occurs, the state machine advances to state 1 and 
continues through states 2, 3, 4 and back to reset. The 
CY7C361 implements this state machine using three of 
the 32 available state registers, labeled here as WO, WI, 
and W2. State registers WI and W2 also serve as FIFO 
strobe-delay states for FIFO read operations. 

Figure 10 shows, through three FIFO write cycles, 
how the CY7C36I's state registers change to achieve a 
fixed 40-ns delay. The outputs of the three state 
registers are logically ORed together in the CY7C361. 
Unlike many other register-based state machines, the 
CY7C361's internal design allows you to OR together 
adjacent but nonoverlapping state-register outputs to 
generate a glitch-free output signal. 

Next to each state register label in Figure lOis 
either an s, t, or w. These letters represent which of the 
three possible CY7C361 state register configurations is 
used for that specific state register. An s (start) 
specifies that the state register becomes active for exact­
ly one clock cycle each time the required input condi­
tions are met. A t (toggle) specifies that the state 
register changes state on each clock cycle while the re­
quired input conditions are met. The t-type state 
registers allow very efficient construction of counters. 
The last type of state register, w (wait for terminate), is 
set only by a carry in signal generated in the immedi­
ately preceding state register; the w-type state register is 
cleared when its required input conditions are met. 

Transmit Control 

Transmitting information to the SCSI target is by 
far the most complex function. The procedure requires 
controlled interval timing for reading data from the 
FIFO data buffer, placing the data in the transmit data 
register and on the SCSI bus, and generating multiple­
width ACK pulses. 

Because of these operations' controlled timing and 
concurrency, the CY7C36I is again called into service. 
The earlier application of this part used three of the 32 
available state registers. The transmit function uses 
many of the part's remaining states to generate the 



\/0 
\J 1 l 
\/2 l 

Figure 9. FIFO Write State Register Timing 

necessary delays for asynchronous, synchronous, and 
fast synchronous transfers. 

For the SCSI transmit cycles to occur at the maxi­
mum rate, the HBA must stage or pipeline data so that 
the data is immediately available for transmitting. This 
operation requires that the HBA handle concurrent 
asynchronous events. As one transfer is occurring on 
the SCSI bus, the next piece of information must be 
read out of the FIFO and be available for the next bus 
~n.sfer. These FIFO read functions operate in two very 
smular sequences: one for asynchronous SCSI writes 
and one for synchronous SCSI writes. 

Figure 11 shows the state diagram for FIFO read 
operations. This state diagram has a similar reset state 
(0) and the same delay states (2, 3, and 4) as the FIFO 
write state machine. The two entry states are for 
asynchronous (1) and synchronous (7) SCSI write 
operations. For asynchronous SCSI writes, the FIFO 
read' starts when synchronous operations are not 
enabled, data is available in the FIFO, the bus direction 
is set to out, and a FIFO read is not currently active. 
For synchronous SCSI writes, the FIFO read starts 
when the REQI ACK Offset counter is non-zero 
synchronous operations are· enabled, data is available ~ 
the FIFO, the bus direction is set to out, and a FIFO 
read is not currently active. 

The FIFO read operation uses five more state 
registers in the CY7C361. The state-register timing 
diagram in Figure12 shows these new states: 

RO starts the FIFO read for' asynchronous SCSI 
writes 
RSO starts the FIFO read for synchronous SCSI 
writes 

Figure 10. FIFO Load State Diagram 

PLD-Based Data Path For SCSI-2 

Figure 11. FIFO Read State Diagram 

Rl serves as the FIFO strobe signal (ORed with 
state registers WO, WI, and W2) and notes internal­
ly that a FIFO read is currently active 
ES ends the FIFO read when the minimum delay 
has passed (delay states 2, 3, and 4) and the trans­
mit data register contains no valid data 
DATA specifies that the transmit data register con­
tains valid data 
Figure 12 shows two sequences: RO starts an 

asynchronous FIFO read, and RSO starts a synchronous 
FIFO read. In normal operation, consecutive FIFO read 
cyc!es . are .of the same type and overlap with data being 
available In the transmit data register. Because the 
FIFO output does not change (following the minimum 
output delay time) until the FIFO strobe is removed 
this strobe's' trailing edge is used to directly clock th~ 
data from the FIFO into the transmit data register. 

With the FIFO data now in the transmit data 
register and driven out onto the SCSI bus, the HBA 
must generate specific and precise delays to allow the 
ACK signal to be sent at the proper time. From the 
time. ~at the data clocks into the transmit data register, 
a mlnInlUm of 60 ns must be timed for asynchronous 
SCSI writes, 40 ns for fast synchronous SCSI writes, and 
90 ns for synchronous SCSI writes. 

To create these delays and permit programmable 
synchronous data rates slower than the maximum al­
lowed, part of the CY7C361 is used to create a loadable 
delay counter. This counter operates as a hardware sub­
routine within the CY7C361, providing all the necessary 
delays for ACK timing. 

For asynchronous SCSI writes, the state machine 
?alls the delay routine as soon as information is .placed 
In the transmit data register. When the timer times out 
(returns to zero), the ACK signal is sent .For 
synchronous SCSI writes, the state machine calls the 
delay routine both to set and remove the ACK signal. 

The CY7C361 implements the delay hardware as a 
4-bit count-up toggle counter, which provides 15 dif­
ferent synchronous timing periods ranging from 100 to 
380 ns. Table 1 lists the values that load into the counter 



VI to -IUl n..n 
V2 to -----II n 
Ria a Jl 

RSIa • n 
RI to ~ 
ES sa n n 

DATA w L 

Figure 12. FIFO Read State Register Timing 

to provide these periods. The load value for the counter 
enters the CY7C361 via four input pins. When the delay 
subroutine is called, the signal levels on these four pins 
load into four state registers, which in turn load into the 
counter. 

Figure 13 shows the state transition diagram for the 
delay counter. From the reset state (0) the delay 
counter enters a load state (L). Because the delay 
counter has 15 possible start points, the load state must 
have 15 possible exits. When the counter has reached its 
maximum value (1111), the counter enters an exit state 
(X) to toggle the ACK signal on or off. 

This loadable delay counter uses nine. more state 
registers in the CY7C361. Four of these state registers 
(CEO, CEl, CE2, and CE3) serve as counter enable bits 
that load the four toggle state registers (CTO, cn, CTI, 
and CT3). The ninth state register is used for the exit 
state (CTX). 

Two count sequences appear in Figure14. The first 
sequence shows the shortest timing interval, created by 
loading 1111 into the counter. The second sequence 
shows a longer delay, which results from loading 0101. 

Because the delay counter has overhead states, the 
shortest interval the counter can time is 30 ns. To get 
the widest range of synchronous transfer periods from 
the delay counter, a fill state is generated at the start of 
each ACK cycle to stretch this minimum interval to 40 
ns. The 40-ns interval determines the shortest possible 

Figure 13. Loadable Delay Counter State Diagram 

6-51 

PLD-Based Data Path For SCSI-2 

ACK Low interval when operating in fast synchronous 
transfer mode with a lOO-ns period. To generate the 
ACK delay for asynchronous mode, the SCSI specifica­
tion for writes requires· two more delay states to get 60 
ns. This added delay is achieved by setting the delay 
counter inputs to 1101. 

Figure15 shows the state diagram for asynchronous 
SCSI write operations. The first active state (1) is the 
fl11 state, which the state machine enters as soon as the 
FIFO read completes and valid data is in the transmit 
data register. The delay subroutine call appears as a 
single state (2) that loops until the delay is complete. 
Once the delay counter times out, the state machine ad­
vances to state 3, where ACK is transmitted. The state 
machine remains in this state until the REQ signal is 
removed. This clears the ACK signal and returns the 
state machine to the reset state (0). 

The state register timing for this sequence appears 
in Figure 16. This timing diagram shows not only the 
state registers used for generating the ACK signal, but 
all the state registers used in the CY7C361. You can 
therefore see the interaction of the FIFO read, delay 
counter, and asynchronous ACK control state machines. 

Figure 16 shows three tranjf~J'S. The ES state, 
which ends the FIFO read operation, starts the ACK 
delay state machine. As soon as this state machine is 
started, the next FIFO read is also started. The ACK 
cycle is terminated by the ATA state register, which 
monitors the REQ and ACK signals. When the ACK 
cycle completes, the next FIFO data is clocked into the 
transmit data register, and another ACK cycle is 
started. 

The state diagram for synchronous transfers ap­
pears in Figure 17. This sequence starts the same as an 
asynchronous transfer, except that the termination of 
the first ACK delay starts a second delay to remove the 
ACK signa1. When this second delay times out, the 
ACK state ends. Meanwhile, the ongoing FIFO read 
operation has put data into the FIFO. The end of the 
ACK state prompts the FIFO read to complete and 
start the next ACK cycle. Two fill states, 4 and 5, are 

CTX s .---fl ~ 

CEI2J s Jl n 
CEI s Jl 
CE2 s Jl n 
CE3 s 

CTI2J l 
CTI l 
CT2 l 
CT3 l 

Figure 14. Delay Counter State Register Timing 



Figure 15. Asynchronous Write State Diagram 

ORed with the ACK state to meet the timing require­
ments 'of synchronous transfers. 

By carefully selecting the data-enable, set-up, hold, 
and ACK duty cycle, you can use the same state 
machine for synchronous and fast synchronous trans­
fers. Figure 18 shows the, state register timing for three 
transfers in fast synchronous mode, with a 100-ns data 
period. Compare these transfers with Figure 19, which 
shows the state register timing for two synchronous 
transfers, with a 200-ns data period. The only difference 
between the two types of transfers is the amount of time 
spent in the delay counter. Additionally, the FIFO read 
portion of the waveforms shows that the synchronous 
FIFO read state register, RSO, starts the FIFO read in­
stead of the RO state register used with asynchronous 
SCSI writes. 

As configured thus far, the CY7C361-based state 
machine generates the FIFO strobe signal for FIFO 
read and write operations and the ACK signal for 
asynchronous, synchronous, and fast synchronous SCSI 
writes. As for SCSI read operations, the HBA generates 
the ACK signal for asynchronous reads by returning the 
REQ signal as ACK. For synchronous reads, however, 
the HBA must use a different mechanism. 

w • ______________________ ~----------
VJ t. ~ nJ"l'-_____________ _ 
V2 t. ~ r-1L-~ ____________ _ 

R8 • -I"L--.J1 nL-____ __,_----------

~B .:=J===LS=======LJ=======L:========== RJt.~ LJ 

ES • ---flL======:;-'nL-======;-"LJnL======:;----DATA w ---1- LJ- r- L...-M • ___________________ __ 
CClVNw _____________________ __ 

ACKSJ • --1"1'---__ ---' '--__ ---' L-____ _ 

M:J( t. ___ ~__' 
ATA • _______ ----' '---__ ---' '--__ ---' 

ACKS2. _________ -'--_________ __ 
IIO<.A. _________________________ __ 
ACKB. _____________________________ __ 

CTX • n'-___ --'nL ___ --'n'-__ _ 

CEB • ---D ___ ---'nL ___ --'n'-___ _ 
CEJ • ___________________ -..,... _______ __ 

CE2 • ---D'--__ ---'nL ___ --'nL.. ___ _ 
CES • ---D n n'-___ _ 
CTB t. nJ"l nJ"l nJ"l'-____ _ 
CTJ t. r-1L.. _____ --'r-1L __ ---'r-1'-__ _ 
CT2 t. roL.. __ ---lro'-___ ---JroL.. ____ _ 

CTS t. " " roL.. ____ _ 

Figure 16. Asynchronous Write State Register Timing 

6-52 

PLD-Based Data Path For SCSI-2 

Figure 17. Synchronous Write State Diagram 

The ACK sequence needed for synchronous SCSI 
reads has the same timing as the ACK generated for 
SCSI writes, except that the initiator places no data on 
the SCSI bus. Because the CY7C361 outputs do not 
control the enables of the SCSI transceivers, or the 
receive and transmit data registers, the same ACK con­
trol state sequence used for synchronous SCSI writes 
can also serve for'synchronous SCSI reads. 

The return of an ACK on a SCSI read is based on 
the FIFO having room rather than the HBA having data 
available. Thus, a new state register must be added' to 
start the ACK cycle. Additionally, a signal, is needed to 
decrement the REQI ACK Offset counter. Although you 
might expect to use the output ACK signal for this pur­
pose, it does not occur early enough in the cycle to 
count down the REQI ACK Offset counter before the 
next ACK cycle is ready to start. 

Figure 20 shows the state register timing for a fast 
synchronous SCSI read operation. The DOWN state 

Table 1. Synchronous Data Rates 

Load Synchronous Data Data Transfer 

Value Period Rate Mode 

1111 lOOns 10.0MUs Fast Synchronous 

1110 120ns 8.33MUs Fast Synchronous 
1101 140ns 7.14MUs Fast Synchronous 

1100 160ns 6.25MUs Fast Synchronous 
1011 180ns 5.55MUs Fast Synchronous 

1010 200ns 5.00MUs Synchronous 

1001 220ns 4.54MUs Synchronous 
1000 240ns 4.16MUs Synchronous 

0111 260ns 3.84MUs Synchronous 

0110 280ns 3.57MUs Synchronous 

0101 300ns 3.33MUs Synchronous 

0100 320ns 3. 12MUs Synchronous 
0011 340ns 2.94MUs Synchronous 

0010 360ns 2.77MUs Synchronous 

0001 3800s 2.63MUs Synchronous 



w. ________________ _ 
VI t. 
V2 t. 

IS. ________________ _ 
OO\INw ________________ _ 

1tO<S1 • --fl'--__ --..I '-__ ----' L-____ _ 

N:J<. t. ___ ----l 
ATA. ________________ _ 

AC<S2 • ___ ----lnL-__ -lnL-__ -lnL-___ _ 

AO<A • _____ --'n'-__ ----'nL-___ ~ 

ACI<B. ~ 
CTX • ___ ----l 

CE0 • ___ ----' 
CEI • ___ ---' 
CE2 • ___ ---' 
CE3. ___ ---' 
CTIlI t. ___ -' 
CTI t. ___ -' 
CT2 t. ___ --' 
CT3 t. ___ --' 

Figure 18. Fast Synchronous Write State Register 
Timing 

register, generated at the start of the ACK delay, counts 
down the REQI ACK offset counter. The DOWN state 
is ORed with the Rl state to generate the count-down 
signal sent to the REQI ACK offset counter. The full 
CY7C361 equation list, which describes this DOWN 
state and the other configured state registers, appears in 
Appendix B. 

External ACK Control 
With the CY7C361 handling the time delays for an 

asynchronous transfer, the transfer sequence so far con­
sists of these steps: information is read from the FIFO, 
placed in the transmit data register, and delayed for 60 
ns, then ACK is generated. 

To handle some SCSI possibilities not considered 
so far, this sequence must be modified. In asynchronous 
mode, for instance, the information being transmitted 
can be changed as soon as REQ is removed. The infor­
mation assertion delay can be started at this point, but 
the ACK signal sent to the target cannot be transmitted 
until REQ is received. Although CY7C361 state transi­
tions could handle this type of gating mechanism, the 
additional delays caused by recognition and metastable­
prevent functions would slow the interface. A single 
AND function of these two signals might appear to cor­
rect the problem, but the REQ signal can react very 
quickly to the returned ACK signal. If the REQ reac­
tion occurs fast enough, the state machine could miss 
the transition and continue to wait for a signal that has 
already occurred. 

6-53 

PLD-Based Data Path For SCSI-2 

The solution is to construct a small latch external to 
the CY7C361. The latch allows the ACK signal to be 
generated as soon as possible, but only transmitted on 
the SCSI bus after the REQ signal is received. The 
latch's output prompts the CY7C361 to terminate the 
current ACK when the CY7C361 sees an external ACK 
present and REQ not active. 

Now another SCSI possibility must be considered. 
When the HBA receives information on the SCSI bus in 
asynchronous mode, the ACK signal is just a repeated 
REQ signal. The repeated REQ must still be justified 
by the half-full signal from the FIFO. This extra 
qualifier requires use of another latch to handle the fol­
lowing sequence: If an ACK is returned when the FIFO 
half-full state is reached, the ACK being sent remains 
active until REQ is removed, but another ACK is not 
sent until the half-full flag changes and REQ is present. 

This same circuit must also give synchronous trans­
fers a bypass path for generating an ACK pulse that is 
not tied to REQ. Gating the latch with the SYNC sig­
nal, which specifies synchronous operation, it is possible 
to disable the latch for synchronous operations and 
enable a different path at the same time. 

These complex gating functions are again an excel­
lent fit for a PLD. Because the ACK signal is part of 
the asynchronous transfers' round-trip path, this ap­
plication needs a fast part to limit the delays and skew 
between data and clock. The best choices are probably 
parts running at lO-ns or faster, such as the members of 
the PAL18G8, PAL20GI0, or PAL22VIOC families. Al­
though many of these parts are only available with ac­
tive-Low outputs, you can correct the signal polarity at 
the SCSI transceiver by reversing the differential signal 
lines. Figure 21 shows the necessary gating function for 
the ACK signal. 

w • _________________ _ 
VI l-ILn--JLn ____________ __ 
V2 l ---rL-JI ____________ __ 

~ . -------------------
RSIa.-I'L--.Jl'-============t======== RIl~-

DA~ : ~::============~~;:============:;-L--
~ . ------------------OOVN ow _________________ _ 

IICKSI. ~ 
AD< l 

n 

ATA. _________________ _ 
ACKS2 • _________ ---'n'-______ -'nL ___ _ 

I\O<.A • ________ --' ~ ______ I"L_ 

ACI<B • _________ --' '-______ -' 
CTX. _____ ---' 

CElli • _________________ _ 

CEI • CEZ. _________________ _ 

CES. 
CTlIIl _____ -' 
CTI l ___ ---' 
CT2 l ___ ---' 
CTS l ___ ---' 

Figure 19. Synchronous Write State Register Timing 



vra • ..1"1...-.--I1'__ ____________ _ 

VI to ~'__ ___________ _ 
V2 to ~ ______ ___'_ _____ _ 
RIII. ___________ --'-______ _ 

~ . -------------------Rl to ____ ....,.... ______ ~---'--'----ES. _________________ _ 
DATA w ____________ --'--____ _ 

IS • --fl'__ __ -' '-__ ---J '___--'--___ _ 

IXMII w 
ACKSI • --.n'----__ -' '-__ ---J '--____ _ 

/10( -to -,--__ --.J 
ATA • ________________ _ 

AO<S2 • ___ --.Jrl .... __ ----'n'-__ ---.JnL-. ___ _ 

IO<A .. _____ --'n'-__ ---J '----__ -Jr"L--

AO(B. IL--
CTX • ___ ---J 

CEB. __ --' 
eEl • __ --' 
CE2. __ --' 
CES • __ ----' 
CTBto ___ -, 
CTI t. ___ -' 
CT2 t. ___ -' 
CTS t. ___ ...J 

Figure 21. Fast Synchronous Read State Register 
Timing 

Putting It All Together 
All the necessary SCSI-2 data-path functions are 

now accounted for. Interconnecting these pieces as 
shown in the overall schematic (Figures22 and 23) com­
pletes the data-path design. The fIrst sheet of this 
schematic (Figure22) details the physical SCSI interface 
connection and interface transceivers. The second sheet 
(Figure 23) contains the data-path logic functions. Al­
though these two pages form a very compact and fast 

6-54 

PLD-Based Data Path For SCSI-2 

SYNC )------1 ....... --'->1 
REQ )---...-+--+---I 

IHF >---+-+-1-+----1 

I ACK >-----,-+-+-I_+_~ 

1I0>-----~ 

Figure 20. External ACK Gating/Latch 

ActCOUT 

data path, additional functions are needed to complete 
the host bus adapter. For example, you need control 
circuitry to· operate the transceiver enables; read and 
write the FIFO on the host bus side; monitor the SCSI 
bus and change the FIFO direction when necessary; 
control the selectionlreselection sequences; and similar 
operations. 

This data-path design meets its performance goals 
with a minimal amount of circuitry. Because much of it 
is implemented in PLD-type devices, you do not have to 
redesign the HBA to handle almost any change to 
SCSI-2 or future SCSI versions that affects interface 
timing; instead, you can simply reprogram the existing 
parts. This PLD flexibility provides the faster time to 
market necessary to remain competitive in today's 
markets. 



!:eU,? PI 

(TIR\ .,7.P I; 

~ 
(fQ 

= "'I 
~ 

N 
~ 

TIR4 

0 
<: 
~ 
"'I 

en ~ 
0, rJ:J 
01 (") 

::r 
~ 

= a 
n° +5V 

rJ:J IR2 
::r IK 

~ (;.ocour a 
~ I (SELECTED 

Dlfferenll.,l SCSI 
I nt-erF oce Conn .. clor 

J2 

~2 l@D 

~2' 29~ 

~2e 25 ci®=J 

Dl 
3A 

F1 
IA 

+5V tSV 

02 

~~ 

-< -XJ\T1'LEN > 

~28 21~ 

~311 ~ 
~ 

~32 -8SY 

r-==~::;~~~~~~~JI-------<'+BSY 

+OST 
-ASG 

~~~~~=i~~~~~~~~~~~~+~ -SEL 

:~;~
,~-~------~.

~-~ '1_

"5 ;~' ~~ =
CYPRESS SE~ICONDUCTOR
TITLE

SCSI-2 HOST BUS ADAPTER
FlN:TION

PHYSICAL INTERFACE
SIZE C I St£ET 1 CF 2 REV

II,
~~

i~
f;J

l-d

b
~
~
rJ:J
f'D
c:lo

~
~
f"to
~

l-d
~
f"to ::r
~ o ...
00
Ci
00
~
N

SET...DIR

~ -I\..RESE:T

B REa..IN

REo~i~E
REGISTER

~
IJCl

I~

l .--r-!-!-'R
1-4 GI

cJ.!.. IC2
[E0 2 ~23
~~22
~r--21

~~~ 
~r--Ie 
~'----17 

~ I: !~ 

= "1 
!'I> 
N 
~ 

-- -
~_0~7.P 

~ 
0 
~ 

q> 
"1 

(J1 
~ 

CJ) 
r:J':l 
!") 

=-!'I> 

= a 
n' 

~~'* ~ Cl 3 361 ~ 
·REgET • '-g 
~ 5 T. 

~~ ~ 

>-~ 
SYNC 

CONTRCL 

"* r-4- Ts 
SYNC 

I. 

@=> 
14 1'4-

C3 
15 16 

-r:J':l 

=-!'I> 

~ 
N 

IO_IN 

ILSr-~ P,",L ~ 
~ 3 •• VI8C ~ 

4 21 
5 ~ 

-4 DIFFERENCE ~ 

=1 CD..NlER ~ f?-
~ 

~ 

::E: VDI 

RCB8 er-
~ ?4F2e8 
> RCB2 I B PARI TV 
~ O£J<ER 

t::~ :~ ~~~ +-
~ 
t RIB' • ""'TA --- BUFnR 

ROOO 5-18 
AmI 

41 III Rrn2 3 CY?C439 12 
ROO3 2 I. 
Rtfl< I H 
Fal5 ~~ 1 ~ i :~ RIBS 

ROO' 2~ 17 
RIB' 25 18 

~IT 2' STe' 6 ElF" 24 
REGISTER 20 B'IP' 

H'" l' 
1:~J -!.' 

STBB e....:.L. SYPB ,.., 
I .. GI '----
13 1C2 

R(B82~23 £EfI 
~~~ 

ROO. 4 ~

~~t~~
~-~
~-~

RIB' 10 == !L. I!E.

-;".

.5V I LSr- J 2 PAL Z3

~
~ •• vlce g...

IK :m:
---i ~

nl'~ ~ ~ CONTRIl. ~

=i 1i=
-iT "iT =tt =-
'---

~

+ - 1lE1\..alSI.", pJ

I'EI\.. /eLIllSI
I'El\..IllS2
I'El\..I3U53
I'El\..IlJS.4
1'EI\..!lJS6
/£fLIIUS6
1'El\..9JSr
1'El\..8USP

~
:D

P~R [TY O .. EDCCLOCK
P/IR..O.K

m;KM..Ell£..TRf.NSMT ~

I CYPRESS CTOR SEf\ICONOUC
I TITLE SCS I -2 HOST BUS ADAPTE R

FlKT[ClII
DATA PATH ANO CONTROL

SIZE C I St£ET 2 CF 2 I REV

!'
~
~

~

b
~
~
t:'-l
rD
Q..

~
~
~

~
~
=­
~ o .,
00-n
00-
74
N

PLD-Based Data Path For SCSI-2

C22VIO;

{SCSI2DIF.CYP}

Appendix A. PLD Toolkit Source Code for the
REQI ACK Offset Counter

{***
* *
* difference counter - keeps track of how many REQUEST pulses *
* have been received vs. how many ACKNOWLEDGE pulses have been *
* sent. The single output DIFF, is used only during synchronous *
* data transfers. When DIFF = 1 there exists a received REQUEST *
* pulse that has not been responded to by an ACKNOWLEDGE pulse. *
* The circuit contains two metastable prevent circuits to *
* capture the REQUEST and ACKNOWLEDGE signals. These signals *
* are filtered to be enables to a 3 bit up down counter. These *
* signals can occur at the same time. If they do the counter *
* should not count. Only one count cycle is allowed per enable. *
* *
**}

CONFIGURE;

CLOCK(node=l),
REQ(node=2),
SELECTED(node= 3),
!CT DOWN(node=4),
SYNC(node=5),

{outputs}
DIFF(node= 14,noreg,ninv),
Q2(ninv),
Ql(ninv),
QO(ninv),
DOWN (ninv),
DOWN INH(ninv),
ACK :rN(ninv),
/UP, -
UP INH(ninv),
RE<t IN(ninv),

EQUATIONS;

REQ_IN <oe>

{50 MHz system clock (20ns period)}
{SCSI Request signal, used for count up}
{used to reset the registers an counter}
{down count pulse from CY7C361}
{synchronous operation enabled}

{equals 1 if counter is non zero}
{stage 3 of the counter}
{stage 2 of the counter}
{stage 1 of the counter}
{qualified ACK or fifo strobe}
{inhibit for ACK to limit to one clock}
{latched ACK signal}
{qualified REQ, clears edge detector}
{inhibit for REQ to limit to one clock}
{latched REQ signal}

<sum> REQ & SYNC;

UP INH <oe>
<sum> REQ_IN;

UP = <oe>
<sum> REQ_ IN & !UP _ INH;

6-57

PLD·Based Data Path For SCSI·2

Appendix A. PLD ToolKit Source Code for the
REQI ACK Offset Counter (continued)

ACK _ IN = <oe>
<SUIIl> ICT_DOWN;

DOWN _ INH = <oe>
<SUIIl> ACK_IN;

DOWN = <oe>
<SUIIl> ACK IN & !DOWN _ INH;

{3 bit counter}
QO = <oe>

<SUIIl> SYNC * UP & !DOWN & !QO
SYNC * DOWN & IUP & IQO
SYNC * UP & DOWN & QO
SYNC * !UP & !DOWN & QO;

Q1 <oe>
<SUIIl> SYNC * UP & !DOWN & IQ1 & QO
SYNC * UP & !DOWN & Q1 & !QO
SYNC * DOWN & !UP & IQ1 & !QO
SYNC * DOWN & !UP & Q 1 & QO
SYNC*UP&DOWN&Q1
SYNC & !UP & !DOWN & Q 1;

Q2 <oe>
<SUIIl> SYNC * UP & !DOWN & !Q2 & Q1 & QO
SYNC * UP & !DOWN & Q2 & !Q1
SYNC * UP & !DOWN & Q2 & !QO
SYNC * DOWN & !UP & !Q2 & !Q1 & !QO
SYNC * DOWN & !UP & Q2 & Q1
SYNC * DOWN & !UP & Q2 & QO
SYNC * UP & DOWN & Q2
SYNC & !UP & !DOWN & Q2;

DIFF <oe>
<SUIIl> Q2
Q1
QO;

6-58

PLD-Based Data Path For SCSI-2

Appendix B. PLD ToolKit Source Code for ACK and FIFO Strobe Control

CY7C361;
{**
* SCSI2 FIFO and ACK timing controller. Supports asynchronous *
* writes and synchronous and fast synchronous reads and writes *
***}

CONFIGURE;
{reset control}
/RESET(node= 3,ireg),
GLBRST(node=64),

{clock control}
CLKIN(node=4),
CLKDB(node= 74,dbl clk),
IENA(node=29), -
IENB(node= 30),
IENC(node=31),

{inputs}
ZERO(node=73),
REQ(node=5,iireg),
ACK _ IN (node=6,iireg),
10 _IN(node=10,ireg),
DIFF(node=9,ireg),
HF(node= 11 ,iireg),
EF(node= 12,iireg),
SYNC(node= 13,ireg),

{counter inputs}
CO(node= 1,ireg),
C1(node=2,ireg),
C2(node= 14,ireg),
C3(node= 15,ireg),

{outputs}
/ ACK _ OUT(node=16),

/CT DOWN(node= 17),
/FIFO _ STRB (node= 18),

{state nodes}

{FIFO Write State Machine}
WO(node=32,start),
W1(node=33,tog),
W2(node=36,tog),

{FIFO Read State Machine}
RSO(node= 34,s tart),
RO(node= 37, start),
R1(node=35,tog),

ES(node=38,start),

{low asserted reset, single reg}
{global reset control node}

{system clock}
{enable clock doubler}
{input clock enable for nodes 3,5,6,9}
{input clock enable for nodes 10,1l,12,13}
{input clock enable for nodes 1,2,14,15}

{internal tie point for enables}
{asynchronous SCSI request signal}
{gated ACK output signal, latched by REQUEST}
{SCSI bus set to O=out, 1=in}
{difference count <> O}
{room for data in FIFO - write}
{data in fifo - read}
{synchronous transfer mode}

{LSB (bit 0) of ACK length counter}
{bit 1 of ACK length counter}
{bit 2 of ACK length counter}
{MSB (bit 3) of ACK length counter}
{all low is an illegal value for CO,C1,C2,C4}

{ACKNOWLEDGE signal, used for asynchronous
SCSI writes and synchronous SCSI reads/writes}

{count down pulse for DIFF counter}
{FIFO strobe for SCSI writes, FIFO reads}

{starts FIFO write sequence}
{delay state for FIFO strobe}
{delay state for FIFO strobe}

{start of sync FIFO read}
{start FIFO read strobe}
{stays active until transmit register is marked
as empty, uses delay states from FIFO write machine}

{ends FIFO read strobe and sets data
in output latch}

6-59

PLD-Based Data Path For SCSI-2

Appendix B. PLD ToolKit Source Code for ACK and FIFO Strobe Control (Continued)

DATA(node=39,cin,tenn),
ACKSl(node=43,start),
ACK(node=47,tog),
AT A(node=42,start),
ACKS2(node=47,start),
ACKA(node=40,start),
ACKB(node=41,start),
AS(node=44,start),
DOWN(node=45,cin,tenn),

{4 bit loadable counter}
CEO(node=54,start),
CTO(node=56,tog),

CE 1 (node=57 ,start),
CT1(node=58,cin,tog),

CE2(node=59,start),
CT2(node=60,cin,tog),

CE3(node=61 ,start),
CT3(node=62,cin,tog),

CTX(node=63,start),

{data in output latch}
{start fIrst ACK delay}
{ACK active}
{ACK Terminate, Async}
{start second ACK delay}
{synchronous ACK stretch I}
{synchronous ACK stretch 2}
{start ACK for sync SCSI read}
{count down pulse for SCSI reads}

{load counter bit O}
{counter bit O}

{load counter bit I}
{counter bit I}

{load counter bit 2}
{counter bit 2}

{load counter bit 3}
{counter bit 3}

{terminal count reached (1111)}

EQUATIONS;

{CONTROL}
GLBRST
IENA

<prod> RESET; {global reset set to RESET signal}
{allow input clocks}

IENB
IENC

{STATES}
{start}
WO =

{tog}
WI =

{tog}
W2 =

{start}
RSO =

<inv SUIll> lZERO;
<inv _sum> lZERO; {allow input clocks}
<inv _SUIll> lZERO; {allow input clocks}

<prod> 10 IN * REQ;

<prod>

{WO starts all FIFO write sequences when a REQuest is
received with the bus direction set to IN, used as part
of the FIFO STBX signal for FIFO writes}

<inv yrod> IWO * /WI * /w2 * IRO * IRSO;
{WI is triggered by WO and continues to toggle until WI
and W2 return to 0, used as part of the FIFO STBX
signal for FIFO writes}

<prod> WI; {W2 is triggered by WI for two clocks,
used as part of the FIFO STBX signal for FIFO writes}

<prod> 110 IN * SYNC * EF * DIFF * IRl;
- {synchronous FIFO read started when the bus is in the proper

direction, synchronous' mode is active, data is in the FIFO, at
least one ACK is pending (DIFF) and a read is not in progress}

6-60

{start}
RO =

{tog}
Rl =

{start}
ES =

{cin,term}
DATA =

{start}
AS =

{cin,term}
DOWN

{start}
ACKSl

{tog}
ACK

{start}
ATA =

{start}
ACKS2

{start}
ACKA

{start}
ACKB

PLD-Based Data Path F()r SCSI-2

Appendix B. PLD ToolKit Source Code for ACK and FIFO Strobe Control (Continued)

<prod> /10 IN * ISYNC * EF * IR1;
- {asynchronous reads are started when the bus is in the proper

direction (OUT), synchronous mode is not active, there is data
in the FIFO (EF) and a read is not in progress (R l)}

<prod>
<inv yrod> IRO * IRSO * IES;

{set a read in progress with RO or RSO, end same with ES when
read is complete and no data is in the output latch, used
as the FIFO STBX signal for FIFO reads}

<prod> Rl * IWl * IW2 * IDATA;
{end read strobe and sets DATA in output latch}

<prod> ACK
<invyrod> ICTX * lATA;

{data in latch set when FIFO read is
ended and cleared by end of ACK cycle}

<prod> 10 _IN * HF * DIFF * IDOWN * lACK;
{start new ACK cycle if DIFF<>O and
cycle not active with room in FIFO}

<prod> CTX; {end counter down count}

<prod>
<inv yrod> IES * lAS; {start the delay counter for the

leading edge of the ACK signal}

<prod>
<inv yrod> ICTX * lATA; {tum ACK on and off}

<prod> ACK IN * ISYNC * IREQ;
- {ACK Terminate Async is triggered when an external ACK is

present and REQUEST has dropped, this occurs a minimum of 3
clocks after ACK is set due to metastable prevent pipeline
delays. One more cycle occurs to remove ACK and DATA}

<prod> SYNC * / ACK * CTX;
{used only in synchronous modes, starts
delay counter for terminate of ACK}

<prod> CTX * ACK;
{lengthen the ACK signal by two clock periods to allow data
to change at the trailing edge of output ACK signal}

<prod> ACKA; {lengthen the ACK signal by 2nd clock}

6-61

{start}
CEO =

{start}
CE1 =

{start}
CE2 =

{start}
CE3 =

{tog}
CTO =

{cin,tog}
cn =

{cin,tog}
CT2 =

{cin,tog}
CT3 =

{start}
CTX =

{OUTPUTS}
leo

IC1

1C2

PLD-Based Data Path For SCSI-2

Appendix B. PLD ToolKit Source Code for ACK and FIFO Strobe Control (Continued)

<prod> CO
<inv yrod> IACKS1 * IACKS2;

{latch bit a of counter for preset}

<prod> C1
<inv yrod> lACKS 1 * I ACKS2;

{latch bit 1 of counter for preset}

<prod> C2
<inv yrod> lACKS 1 * I ACKS2;

{latch bit 2 of counter for preset}

<prod> C3
<inv yrod> lACKS 1 * I ACKS2;

{latch bit 3 of counter for preset}

<prod>
<inv yrod> ICTO * Icn * ICT2 * ICT3 * ICEO;

{toggle bit a of counter when any bit set}

<prod> CTO; {toggle bit 1 of counter when bit a is set}

<prod> CTO * CT1; {toggle bit 2 of counter when bits 1 and a are set}

<prod> CTO * cn * CT2; {toggle bit 3 of counter when bits 0, 1, and 2 are set}

<prod> CTO * cn * CT2 * CT3;
{counter has completed count up to 1111}

{disable output driver to allow CO as input}

{disable output driver to allow Cl as input}

{disable output driver to allow C2 as input}

{disable output driver to allow C3 as input}

<inv_sufi> lACK * IACKA * IACKB; {ACKNOWLEDGE signal}

FIFO STRB = <inv SUfi> IWO * IWI * IW2 * IRl;
- {FIFO read/write strobe}

CT DOWN <inv SUPl> lAS * /DOWN * IRl;
- {count down input for difference counter}

6-62

~ = CYPRESS
, SEMICONDUCTOR

PAL Design Example:
AGCR Encoder/Decoder

This application note describes the procedure used to
encode/decode serial digital data for recording/reading
from one-quarter-inch magnetic tape. The design
presented here uses a Cypress CMOS PAL C 16R6 to im­
plement the logic.

Digital data encoding and decoding is often used to
increase the reliability of data transmission and storage.
One such area is the transformation between data stored
on one-quarter inch magnetic tape and serial digital data.

A Little History
The recording format and the Group Code Recording

(GCR) code used in this design have been adopted and
incorporated in a series of standards. The standards are set
by the QIC (Quarter Inch Cartridge) Committee, com­
posed of manufacturers and users of quarter-inch tapes
and cartridges. The committee's purpose is to ensure com­
patibility between manufacturers and reliability to end
users.

PULSE
OtT.

DRIVE

Quarter-inch tape cartridges are used extensively to
backup or archive data from hard disks. Most drives are
operated in a continous or streaming mode (for reasons
discussed later). Data is recorded at 10,000 FRPI (flux
reversals per inch) in a serpentine manner on seven to 14
channels. The tape moves at 30 to 90 ips (inches 9per
sec~nd), and the error rates achieved are one in 10 or
101

. A cartridge holds 2000 to 3000 feet of O.OOl-inch­
thick tape and stores 20 to 80 Mbytes of data.

A Typical System
Figure 1 shows a block diagram of a typical tape

drive system. The interface with the host (or host adapter)
is bidirectional. The interface has a byte-wide data path
and 10 to 20 control signals, depending upon the interface
standard. Data rates are 300 KBytes/s to 1 MBytes/s.

The formatter or tape controller performs serial/paral­
lel conversion and encoding/decoding as well as error
checking; in some cases, the data is also error corrected.
Control is usually provided by· a state machine, which

TAPE
rORIo4ATIER

OR
CONTROLLER

rORIo4ATIER

HOST
1+-...,...-+1 ADAPTER HOST

HOST
QIC-24/36 QIC-02
QIC-50 SCSI
QIC-59 IPI

Interface
Standards

Interface
Standards

Figure 1. Typical Tape Drive System

6-63

GCR Encoder/Decoder

o o o o o o

'--------'Rl_----'

o o o o
READING FRO ... TAPE

Figure 2. GCR Signal

handles the handshaking with the host as well as control
of the tape. Data is written in blocks of various lengths
(depending upon the standard), and a read-after-write
check is usually performed. Buffer storage of at least two
blocks of data is usually provided using static RAMs,
FIFOs, or some combination of the two.

The drive electronics include digital signals for con­
trolling and sensing the tape motion and analog signals for
the read and write paths. The interface between the drive
electronics and the formatter is digital and varies depend­
ing on the standard used.

Reading and Writing on Tape
To write on the tape, a current of 100 rnA or less is

used to change the direction of magnetization. To read
from the tape, a coil of wire (the read head) is held
against the tape; changes in direction of the tape's mag­
netic flux induce a voltage (10 mV or less) in the coil.

Recording Codes
All codes used for recording on magnetic mediums

are classified as Franaszek Run Length Limited (RLL)
codes of the form:

(D, K)
where D = the minimum number of Zeros between con­
secutive Ones, and K = the maximum number of Zeros
between consecutive Ones.

D controls the highest frequency that can be
recorded, and K controls the lowest frequency.

Using the Franaszek notation, the OCR code is (1, 2).
As illustrated in Figure 2, a flux reversal signifies a One,
and the absence of a flux reversal signifies a Zero. This is
true for all codes.

Peak Detection and Data Separation
OCR recording equipment detects peaks instead of

zero crossings because peak-detection circuits are less
sensitive to noise. The output of the peak detector goes to
the most critical analog circuit in the drive: the data
separator.

The data separator provides Ones and Zeros that
occur at a precise frequency. The circuit does this using a
phase locked loop (PLL). First the data separator
synchronizes itself to a crystal-controlled reference clock.
Then the circuit attempts to lock itself to the maximum
data frequency on the tape. This is done by finding the

6-64

phase difference between the data separator's own fre­
quency and the peak detector's data output, then adjusting
a voltage controlled oscillator (VCO) until the VCO's fre­
quency equals that of the data.

The reference clock's frequency must be at least
twice (2t) that of the highest frequency to be read (t). The
PLL is synchronized to the 2f reference frequency when
not in use.

Before a block of data is recorded, a string of Ones is
recorded, which is called the preamble. When the com­
mand to read is given, the 2f reference frequency is
removed from the data separator, and the· signal from the
peak detector applied. The PLL then attempts to lock to
the preamble - a procedure called getting bit sync.

Just after the preamble, a code violation is recorded
so that the formatter can recognize where valid data
begins. The detection of the code violation is referred to
as obtaining byte sync.

PLLs typically exhibit frequency and phase offsets
during preamble acquisition. Phase errors also occur after
lock, during the reading of the data field. Differences in
tape speed during record and playback (as well as from
unit to unit) result in frequency differences between the 2f
reference and the data read from the tape. Random phase
errors caused by noise, intersymbol interference (bit
crowding), timing errors, and other transients might also
get the PLL out of lock.

The data separator's PLL is susceptible to these er­
rors because it must satisfy two conflicting conditions: it
must lock quickly enough to detect the preamble, but it
must not over-correct phase for a single misaligned bit.

Strings of Zeros cause the PLL's phase to shift. If the
shift is larger than the bit window, an error occurs. The
QIC-24 standard calls for up to a 37-percent bit-shift
tolerence, which means that the data separator must be
able to recognize a One (flux transversal) that deviates
±18.5 percent from its expected time position without
causing a data error. To achieve this performance, a 4-bit
binary nibble is encoded into a 5-bit OCR code word,
which is written onto the tape.

The Purposes of GCR Code
The 5-bit OCR code format encodes data such that no

more than two consecutive Zeros occur in the serial data.
This encoding relaxes the performance requirements of
the PLL and loop filter, so that the system can achieve the
desired performance.

GCR encoding also compensates for the speed varia-
tion of the tape due to:

Mechanical Tolerences in cartridges and tape thick­
ness (±3 percent)
Tape elasticity and wear
Motor speed variation
Temperature and humidity
These static tolerences can result in a (±10-percent

tape-speed variation.
In addition to the static tolerences, instantaneous

speed variations (ISVs) occur. These result from discon­
tinous tape release at the unwind spool (10 - 20 percent),
guide/back stick slip (5 percent), and shuffle ISV (vibra­
tion) due to start/stop (5 - 30 percent). The shuffle ISV
can be avoided by operating the tape in a continous
(streaming) mode. If these dynamic tolerences are added
together they can result in (±15-percent speed variation.

The electronics in the tape controller and the drive
are designed to compensate for the tape-speed variations
due to mechanical tolerences.

The compensation is accomplished by:
Data encoding and error detection and correction
PLL design .
Bit-window tolerence

Sequence of operations
During a write operation, the following sequence

occurs:
1. Idle (hold)
2. Convert 4-bit parallel input to 5-bit GCR code and

load into 5-bit register
3. Shift-out 5 bits to write amplifier.
During a read operation, the following sequence

occurs:
1. Idle (same as during write)
2. Shift-in 5 bits
3. Detect sync mark, set/clear invalid flag, convert

5-bit serial input to 4-bit binary value, and load
value into register

Note that the read clock and the write clock are not
the same. Additionally, the logic must keep up with the
tape data rate. Finally, the read and write operations are
mutually exclusive. This means that the storage elements
(D flip-flops) can be time-shared and that read and write
operations require five clocks.

The GCR design requires a total of five states be­
cause the idle state is common to both read and write
operations. Therefore, the design requires three control
lines. It is convenient to designate one control line as an
enable line (active Low) and the other two lines as mode­
control signals.

This application note does not describe the control of
these lines or the required clock synchronization. This is
because at the next level of control, you must implement
in hardware the responses to error conditions. These
response choices tend to be application dependent as well
as subjective.

The diagrams in Figure 3 show the flow of data
under control of the ENABLE signal and the MO and Ml

6-65

GCR Encoder/Decoder

Table 1. GCR Code

4-BitCode S-BitCode
LlneNumber D D D D Y Y Y y S

(For Ref.) 3 2 1 0 3 1 1 0 0

0 0 0 0 0 1 1 0 0 1
1 0 0 0 1 1 1 0 1 1
2 0 0 1 0 1 0 0 1 0
3 0 0 1 1 1 0 0 1 1
4 0 1 0 0 1 1 1 0 1
5 0 1 0 1 1 0 1 0 1
6 0 1 1 0 1 0 1 1 0
7 0 1 1 1 1 0 1 1 1
8 1 0 0 0 1 1 0 1 0
9 1 0 0 1 0 1 0 0 1

10 1 0 1 0 0 1 0 1 0
11 1 0 1 1 0 1 0 1 1
12 1 1 0 0 1 1 1 1 0
13 1 1 0 1 0 1 1 0 1
14 1 1 1 0 0 1 1 1 0
15 1 1 1 1 0 1 1 1 1

A A A A B B B B B
3 2 1 0 0 1 2 3 4

~ode-control signals. The GCR code used in this design
IS part of the QIC-24 Standard and is also the ANSI
X3.54 standard (1976). The MSB (leftmost bit) is
recorded fIrst. Note that there are a maximum of two con­
secutive Zeros in the 5-bit code recorded on the tape.

Design Procedure
The procedure for designing the GCR circuits is to

map the code conversions using Venn diagrams and write
the logic equations as the sum of products, or in minterm
form. Because the design requires six flip-flops, the logic
is implemented using a CY7C16R6 PAL. Because the
~ AL has inverting. output buffers, the Zeros are mapped
mstead of the Ones. The D flip-flops require an extra term
to hold their states when the ENABLE is HIGH.

For a conventional D flip-flop, for example, the form
of the logic equations is:
D = ENABLE 1 (Q) ; RECIRCULATE

PRESENT STATE
+ ENABLE 2 (F2) ; FUNCTION 2
+ ENABLE 3 (F3) ; FUNCTION 3

where the ENABLE controls are mutually exclusive.

4-bit to 5-bit Conversion for Y3 Output
At the bottom of Table 1, the 5-bit code columns are

labeled BO through B4 to help show how the 4-bit code is
mapped. In addition, the line numbers are labeled 0
through 15, which correspond to the values of the 4-bit
binary code.

Figure 4a shows how the 4-bit binary code is mapped
on .the Venn diagram. For example, reference line zero,
WhICh corresponds to binary value zero, is located in the
lower right hand comer.

The Venn diagram in Figure 4b shows the conversion
for the Y3 output, which is labeled the BO input to the D
flip-flop. Note that the parallel nibble (see Figure 3) is
reversed end for end so that the MSB is written first when
the nibble is shifted out.

GCR Encoder/Decoder

ENABLE M 1 MO OPERATION DATA FLOW DIAGRAM

x X HOLD

~~~lf?lf? 
Y3 Y2 Yl YO SO 

o o 0 SERIAL 
SHIrT IN E~ SIN 

Y3 Y2 Yl YO so 

o 1 0 CONVERT 
5-BIT TO 4-BIT 

Y3 Y2 Yl YO SO 

03 01 

0 1 1 CONVERT 

Y Y 
4-BIT TO 5-BIT 

Y3 Y2 Yl YO SO 

0 o 1 SERIAL 
SHIrT OUT 

Y3 Y2 Yl YO SO 

Figure 3. Data Flow Diagrams 

6-66 



DO DO DO ...- r---
....::; /' V y-... 

3 11 10 2 , 0 0 1 0 1 1 0 

01 01 
01 

1 0 0 1 7 15 14 6 
0 1 1 0 

"- --' 02 
02 02 

0 1 1 1 
5 13 12 4 1 0 1 1 '----' 

1 1 1 1 

1 9 8 0 1 0 1 1 
\.......-' 03 

03 03 Y2 -IiI = ronl .j.IDD2DO 

(a) Binary Values (b) Y3 Map (c) Y2Map 

DO DO DO 

Dt 

.p., r-;1 1 1 0 

1 1 0 oJ 
'- I---' 

1 1 0 1 

1 1 0 1 
'---" 

02 

01 

(0 0 0 o) 

~ 
1 1 1 1 

1 1 1 1 

1(0 0 0 or 

1 1 1 1 

1 1 1 1 

/""'. 
(0 

~ 
0" 1 I 01 

1 0 1 I 0 J 
'----' 

01 

02 

D3 03 03 

Y'f=1I!=m Y!l = Ii3 = DUil IXl ... D3 D1 DO + D215T DO So=fi4-D100+DJIXl 

(d) YIMap (e) YOMap (I) So Map 

Figure 4. 4- to 5-Bit Conversions 

In Figure 4b, the Ones and Zeros in column BO are 
mapped. For example, reference line zero has the value 
One in column BO of Table 1. Therefore, a One is placed 
in the square corresponding to binary value Zero in Fig­
ure 4b. In a similar manner, reference line 15 has a value 
of zero in column BO, so a Zero is placed in the square 
corresponding to binary value fifteen. 

Writing the Equation 
If the output of the 16R6 PAL were positive-true 

logic, the equation would include all the Ones on the 
Venn Diagram. However, because the PAL output is 
negative logic (active Low), the equation includes all the 
Zeros. When the PAL inverts the signals, the Zeros are 
changed to Ones, so that the final outputs are positive-true 
logic. By inspection: 
BU=D3 DO+D3 Dl 
or, 
Y3 = D3 DO + D3 Dl 

5- to 4-bit Conversion for Y Outputs 
A 5- to 4-bit conversion for Y outputs requires two 

16-square Venn diagrams, because 25 
= 32 possible binary 

values exist. Note in Table 1, however, that the 5-bit code 
columns do not use all 32 possible combinations. The un-

6-67 

used combinations are Don't Cares, which are represented 
by Xs in the Venn diagrams. Don't Cares can be either 
Ones or Zeros, which further reduces or simplifies the 
logic equations. 

The procedure is to plot the Ones and Zeros, put Xs 
in the blank squares, and write the equations for the Zeros 
(Figure 5). 

Serial Shift In 
During serial shift in (both mode control signals 

Low), the data separator's data output goes to the 
formatter's input. The signal is called SIN and is applied 
to the SOUTflip-flop's D input. The SOUT flip-flop's out­
put goes to the YO flip-flop's D input, whose output goes 
to the Yl flip-flop's input, etc. After five read clocks, the 
MSB of the 5-bit GCR coded data is in Y3, and the LSB 
is in SOUTo 

Serial Shift Out 
During a write operation, after the 4-bit data is con­

verted to 5-bitdata and reversed, the data is shifted out 
using the write clock and written on tape. The shift direc­
tion is opposite to that in serial shift in. Note that the data 
is right-shifted "end around" (see Figure 3) so that after 
five write clocks the same data appears in the register. 



GCR Encoder/Decoder 

YO YO YO YO 

(x 0 X X) I---- reX 0 0 X) X I X X X 1 1 X 

n n YI YI 

I 1 X X I X 0 I I I X X I X I , 
yz Y2 Y2 Y2 

I I X X I 0 0 I ro 0 x x 0 0 0 
X I 

ex 0 X X). r--- l--(X 0 x X) II 0 X X X 0 0 x J 
SO=O Y3 Y3 SO=I 50=0 Y3 Y3 50= 1 

VJ=AJ=Y!+Y3So Y2 - A2 = Y1 

(a) Y3 Map (b) Y2Map 

yO YO 

-------
YO YO 

r--~ ,--~ 
X I X X X I 0 X 

x 0 x x X I , X 

YI YI 
YI YI 

II' rr ~~ I----- v'--" l0 "' I I 0 0 

Y2 

I I~ W X 1 ~ ~ 0 

.r-, 
0 0 X X I X 0 , 

Y2 

0 0 X X I , 0 , YZ 
Y2 

x I X X X I X X 
K 0 X X X I I X 

'----- f-----' '----- I--

so-O Y3 Yl 
SO=I 

so=o Y3 Y3 50= I 

YT ~ AI = YO + Y3 Y2 YO=M=YJY2YO+SO 

(c) Yl Map (d) YOMap 

Figure 5. 5· to 4·Bit Conversions 

Invalid Flag (INV Flip-Flop) 
The Invalid flip-flop is set to a One when an invalid 

5-bit code is read from the tape. This tells the tape format­
ter that the next data read is the beginning of the data 
block. Because INV is a negative-true signal, the logic 
equations are written for Ones on the Venn diagram. 

The 16 binary values not listed in Table 1 are plotted 
as Ones in Figure 6. Squares corresponding to valid 5-bit 
codes contain Zeros; the rest of the squares contain Ones. 
The equation for the Ones is: 
INV = YO SOUT+ Y3 Y2 + Y3 YI YO 

+ Y3 Y2 Y1 YO Sout 
The Invalid flip-flop is enabled by a signal called CIF 

(Control Invalid Flag) and reset when CIF is Low. 

Synchronization Mark Detection 
Bit synchronization is achieved when the illegal 5-bit 

code of all Ones is read from the tape. This condition is 
the logical AND of all 5 bits, or 
BS = Y3 Y2 Y1 YO SOUTo 

Implementing the Design 
Once the conceptual design is complete, it must be 

reduced to practice. This process has two main steps: 
Describe the logic using a high-level language, and Pro­
gram the PAL 

6-68 

Several design programs that run on the IBM PC (or 
equivalent) or the V AX computer are available from 
either semiconductor manufacturers or from third-party 
software vendors. The ftrst such program, called 
PALASM (PAL Assembler) was developed by Monolithic 
Memories. The program enables you to describe the logic 
in terms of Boolean equations, truth tables, or state 
diagrams using a language whose syntax is comparable to 
a microcomputer assembly language. 

Appendix A shows the equations for the GCR design, 
written in the P ALASM syntax. This ASCII file was 
created using Wordstar in the non-document mode. 

The PALASM file ·(GCREX.PAL) is· then translated 
to the syntax of the ABLE design program using the 
TOABEL program. The format of the command is: 
TOABEL -IB:GCREX -OB:GCREXT 

The TOABEL program converts the GCREX.P AL 
file to a file named GCREXT.ABL, whose listing appears 
in Appendix B. 

ABEL consists of an executive and several overlay 
programs that are executed by typing in: 
ABEL B:GCREXT 

The ABEL program was developed by a programmer 
manufacturer, Data I/O Corporation. ABEL can simplify a 
source file (logic reduction), perform logic simulation, and 
generate test vectors. Table 2 lists the ABEL programs. 



~RESS GCR Encoder/Decoder 
-==-~ SEMICGIDOCTOR ~=============================~ 

INV = YO sour + Y3 Y2 + Y3 VI Yl) + Y3 Y2 Yl YO SOUT 

Figure 6. Binary Values Not Listed in Table 1 

The ABEL output mes for this design based on the 
PAL C 16R6 (Figure 7) are: 

GCREXT.LST 
GCREXT.OUT 
GCREXT.DOC (see Appendix C) 
GCREXT.SIM (This design was not simulated.) 
P16R6.JED (see Appendix D) 
The last me is in JEDEC (JC-42.1-81-62) format and 

is suitable for loading into a PLD programmer. The listing 
appears in Appendix D. The DOCUMENT program output 
appears in Appendix C. Note that, although the file list 
includes a simulation me, this design was not simulated. 

The CY7C16R6 that implements the design was 
programmed using the Data I/O model 29B programmer 
operated in the remote mode to the PC. The design was 
then verified by testing the device on the bench. 

PAL Advantages 
This design example illustrates the space-saving ad­

vantage of Cypress CMOS PALs. The FUSEMAP pro-

CK 1 Vee 
t.41 2 BS 

t.40 3 sour 
03 " Y3 

02 5 Y2 

01 6 Y1 

00 7 YO 

EN 8 INV 

elF 9 SIN 

GND 10 11 E 

Figure 7. PAL C 16R6 

6-69 

gram printed out that 40 of the device's 64 available 
product terms were used. 

If the P ALASM input equations shown in Appendix A 
are implemented in two-input gates, approximately 30 
gates are required for each of the six D flip-flop inputs, or 
a total of 6 X 30 = 180 two-input gates. The logic equa­
tions alone would then require 180/4 = 45 14-pin DIPs. 
The six flip-flops would require three 14-pin DIPs, for a 
total of 48 DIPs. Thus, one 20-pin Cypress PAL replaces 
approximately 50 14-pin DIPs. 

This design also illustrates the Cypress PAL's power­
saving advantage. The 16R6 PAL's maximum Icc current, 
under worst-case conditions, is 45 rnA. In contrast, the 
total Icc for 50 TIL packages would be 500 rnA, assum­
ing 10 rnA for the typical Icc per package. The worst-case 
Icc for the TIL system could be as high as 20 rnA per 
DIP, which would mean a total of lA for the system. 

The Cypress CMOS PAL reduces system power by a 
factor of 10 to 15, depending upon whether typical or 
worst-case numbers are compared. 

Table 2. ABEL Programs 

PROGRAM 
FUNCTION NAME 

PARSE Read source file; check syntax; expand 
macros; act upon assembler directives 

TRANSFOR Convert the description to an 
intermediate form 

REDUCE Perform logic reduction 

FUSEMAP Create the programmer load (JEDEC) 
me 

SIMULATE Simulate the operation of a 
programmed device 

DOCUMENT Create a design documentation me 



Appendix A. PALASM Equations 

PALI6R6 
PATOOI 

DESIGN EXAMPLE FILENAME: GCREX.PAL 

4B-5B ENCODER/DECODER 
CYPRESS SEMICONDUCTOR 

BRUCE WENNIGER 9/17/85 

CK MI MO D3 D2 DI DO lEN ICIF GND 
IE SIN IINY YO YI Y2 Y3 SOUT IBS YCC 

ISOUT := EN*/SOUT + ; HOLDIRECIRCULATE 
IEN*IMI *IMO*/SIN + ; SERIAL SHIFT IN 

IEN*/MI * MO*/YO + ; SERIAL SHIFT OUT 
IEN* MI */MO*/SIN + ; CONY. SIN & LOAD 
IEN* IMI* MO* DI*/DO + ; CONY. PAR. & LOAD 
IEN* IMI* MO* D3*IDO ; DITTO 

IYO := EN*/YO + ; HOLD 
IEN*/MI *IMO*ISOUT + ; SERIAL SHIFT IN 
IEN*/MI * MO*/YI + ; SERIAL SHIFT OUT 
IEN* MI */MO*ISOUT + ; CONY. SIN & LOAD 
IEN* MI */MO* Y3* Y2*/YO + ; DITTO 
IEN* MI* MO*D2*IDI* DO + ; CONY. PAR. & LOAD 
IEN* MI* MO* D3*IDI* DO + ; DITTO 
IEN* MI * MO*ID3*/DI */DO ; DITTO 

IYI := EN*/YI + ; HOLD 
IEN*/MI */MO*/YO + ; SERIAL SHIFT IN 
IEN*/MI * MO*/Y2 + ; SERIAL SHIFT OUT 
IEN* MI */MO*/YO + ; CONY. SIN & LOAD 

. IEN* MI */MO* Y3* Y2 + ; DITTO 
IEN* MI * MO*/D2 ; CONY. PAR. & LOAD 

IY2 :=EN*/Y2 + ; HOLD 
IEN*/MI */MO*/YI + ; SERIAL SHIFT IN 
IEN*/MI * MO*/Y3 + ; SERIAL SHIFT OUT 
IEN* MI */MO*/YI + ; CONY. SIN & LOAD 
IEN* MI * MO*!D3* DI + ; CONY. PAR. & LOAD 
IEN* MI * MO*!D3* D2* DO ; DITTO 

IY3 :=EN*/Y3 + ; HOLD 
IEN*/MI *IMO*/Y2 + ; SERIAL SHIFT IN 
IEN*/MI* MO*ISOUT + ; SERIAL SHIFT OUT 
IEN* MI *IMO* Y3* SOUT + ; CONY. SIN & LOAD 
IEN* MI */MO*/Y2 + ; DITTO 
IEN* MI * MO* D3* DO + ; CONY. PAR. & LOAD 
IEN* MI* MO* D3* DI ; DITTO 

INY :=/CIF* INY +; HOLD INY FLAG (ACTIVE LOW) 
CIF* MI *IMO*/Y3*/Y2 + ; SET IF INY ALID 
CIF* MI*IMO*/Y3*/YI*/YO + ; DITTO 
CIF* MI */MO*/YO*/SOUT + ; DITTO 
CIF* MI*/MO* Y3* Y2* YI* YO* SOUT ; DITTO 

BS = Y3* Y2* YI * YO* SOUT ; BIT SYNC. (ACTIVE LOW) 

6-70 



Appendix B. ABEL Listing 
module gcrext; 
title -

flag '-rO'; 

'PAL16R6 
PAT001 

DESIGN EXAMPLE FILENAME: GCREX.PAL 
BRUCE WENNIGER 9/17/85 

4B-5B ENCODER/DECODER 
CYPRESS SEMICONDUCTOR 
-Translated by TOABEL-'; 
P16R6 device 'P16R6'; 

" declarations 
TRUE,FALSE = 1,0; 
H,L = 1,0; 
X,Z,C = .x.,.Z.,.C.; 

GND,VCC 
pin 10,20; 

CK,Ml,MO,D3,D2,Dl,DO,EN,CIF,E 
pin 1,2,3,4,5,6,7,8,9,11; 

INV,YO,Y1,Y2,Y3,SOUT 
pin 13,14,15,16,17,18; 

SIN,BS 
pin 12,19; 

equations 
ISOUT := lEN & ISOUT 

#EN & IMI & IMO & ISIN 
# EN & IM1 & MO & IYO 
# EN & Ml & IMO & ISIN 
# EN & Ml & MO & Dl & IDO 
# EN & Ml & MO & D3 & IDO ; 

" HOLD/RECIRCULATE 
" SERIAL SHIFT IN 
" SERIAL SHIFT OUT 
" CONY. SIN & LOAD 
"CONV. PAR. & LOAD 
" DITTO 

IYO := lEN & IYO 

"HOLD 

# EN & IMI & IMO & ISOUT 
# EN & IMI & MO & IYl 
#EN &Ml & IMO& ISOUT 
# EN & M1 & IMO & Y3 & Y2 & IYO 
# EN & Ml & MO & D2 & IDI & DO 
# EN & M1 & MO & D3 & IDI & DO 
#EN &Ml &MO & ID3 & IDI & IDO; 

" SERIAL SHIFT IN 
" SERIAL SHIFT OUT 
"CONV. SIN & LOAD 
" DITTO 
"CONV.PAR. & LOAD 
" DITTO 
" DITTO 

6-71 



Appendix B. ABEL Listing (Continued) 

!Yl := !EN & !Yl 

"HOLD 

#EN & lMl & lMO& lYO 
# EN & lMl & MO & lY2 
#EN &Ml & !MO & !YO 
# EN & Ml & lMO & Y3 & Y2 
#EN &Ml &MO& !D2; 

" SERIAL SHIFT IN 
" SERIAL SHIFT OUT 
" CONY. SIN & LOAD 
" DITTO 
" CONY. PAR. & LOAD 

lY2 := !EN & lY2 
#EN & !Ml & !MO & !Yl 
# EN & lMl & MO & !Y3 
#EN &Ml & lMO & !Yl 
# EN & Ml & MO & !D3 & Dl 
#EN &Ml &MO & lD3 &D2 &DO; 

"HOLD 
" SERIAL SHIFT IN 
" SERIAL SHIFT OUT 
" CONY. SIN & LOAD 
" CONY. PAR. & LOAD 
" DITTO 

!Y3 := !EN & !Y3 

"HOLD 

#EN & !Ml & !MO & !Y2 
# EN & !Ml & MO & lSOUT 
#EN &Ml & !MO & Y3 & SOUT 
#EN &Ml & lMO & !Y2 
#EN &Ml &MO&D3 &DO 
#EN &Ml &MO &D3 &Dl; 

" SERIAL SHIFT IN 
" SERIAL SHIFT OUT 
" CONY. SIN & LOAD 
" DITTO 
" CONY. PAR. & LOAD 
" DITTO 

lINY := CIF & !INY 
# !CIF &Ml & !MO & lY3 & !Y2 
# lCIF &Ml & !MO & lY3 & lYl & lYO 
# !CIF & Ml & lMO & lYO & !SOUT 
# !CIF & Ml & !MO & Y3 & Y2 & Yl & YO 

&SOUT; 
" HOLD INY FLAG 
" SET IF INY ALID 
" DITTO 
" DITTO 
" DITTO 

!BS = Y3 & Y2 & Yl & YO & SOUT ; 
" BIT SYNC. 

end _gcrext; 

6-72 



Appendix C. Document File 

Page 1 
ABEL(tm) Version 
PAL16R6 

1.10 - Document Generator 17-Sept-85 8:30 AM 
DESIGN EXAMPLE FILENAME: GCREX.PAL 

PATOOI BRUCE WENNIGER 9/17/85 
4B-5B ENCODER/DECODER 
CYPRESS SEMICONDUCTOR 
-Translated by TOABEL­
Equations for Module _gcrext 

Device P16R6 

Reduced Equations: 

SOUT:= !(IEN & !SOUT 
#EN & !MO & !Ml & !SIN 
# EN & MO & !Ml & lYO 
#EN & IMO &Ml & ISIN 
# IDO &Dl &EN & MO &Ml 
# IDO & D3 & EN & MO & Ml); 

YO := 1(IEN & lYO 
# EN & IMO & IMI & ISOUT 
# EN & MO & IMI & lYl 
#EN & IMO & Ml & ISOUT 
# EN & IMO & Ml & lYO & Y2 & Y3 
# DO & IDI & D2 & EN & MO & Ml 
# DO & IDI & D3 & EN & MO & Ml 
# IDO & IDI & ID3 & EN & MO & Ml); 

Yl := I(lEN & lYI 
# EN & lMO & IMI & lYO 
# EN & MO & lMI & lY2 
# EN & lMO & Ml & lYO 
# EN & IMO & Ml & Y2 & Y3 
# ID2 & EN & MO & Ml); 

Y2 := 1(IEN & lY2 
# EN & IMO & IMl & lYl 
#EN &MO & lMI & lY3 
# EN & lMO & Ml & lYl 
# Dl & lD3 & EN & MO & Ml 
# DO & D2 & ID3 & EN & MO & Ml); 

Y3 := 1(IEN & lY3 
# EN & lMO & IMI & lY2 
#EN &MO& IMI & ISOUT 
# EN & IMO & Ml & SOUT & Y3 
# EN & IMO & Ml & lY2 
# DO & D3 & EN & MO & Ml 
# Dl & D3 & EN & MO & Ml); 

INY := I(ClF & lINY 

6-73 

GCR Encoder/Decoder 



Appendix C. Document File (Continued) 

Page 2 
ABEL(tm) Version 1.10 - Document Generator 17 Sept-85 8:30 AM 
PAL16R6 DESIGN EXAMPLE FILENAME: GCREX.PAL 
PATOOI BRUCE WENNIGER 9/17/85 
4B-5B ENCODER/DECODER 
CYPRESS SEMICONDUCTOR 
-Translated by TOABEL-
Equations for Module _gcrext 

Device P16R6 

# IClF& IMO&Ml & IY2& IY3 
# IClF& IMO&Ml & IYO& IYI & IY3 
# IClF & IMO & Ml & ISOUT & IYO 
# IClF & IMO & Ml & SOUT & YO & Yl & Y2 & Y3); 

BS = I(SOUT & YO & Yl & Y2 & Y3); 

Chip diagram for Module _gcrext 

Device P16R6 

PALC16R6 

CK 1 Vee 
~1 2 as 
~O 3 SOUT 

03 .- Y3 
02 5 Y2 

01 6 Yl 

DO 7 YO 
EN 8 INV 

elr 9 12 SIN 

GND 10 11 E 

end of module _gcrext 

6-74 



ABEL(tm) Version 1.10 JEDEC fIle for: P16R6 
Created on: 17-Sep-85 8:30 AM 

Appendix D. JEDEC File 

GCR Encoder/Decoder 

PAL16R6 DESIGN EXAMPLE FILENAME: GCREX.PAL 
PATOOI BRUCE WENNIGER 9/17/85 
4B-5B ENCODERIDECODER 
CYPRESS SEMICONDUCTOR 
-Translated by TOABEL-* 
QP20* QF2048* 
LOOOO 
11111111111111111111111111111111 
11111101110111011101110111111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111110111111111111111110111111 
10111011111111111111111101111110 
10110111111111111111111001111111 
01111011111111111111111101111110 
01110111111111110111101101111111 
01110111011111111111101101111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111011111111111110111111 
10111011111111101111111101111111 
10110110111111111111111101111111 
01111001110111111111111101111111 
01111011111111101111111101111111 
01110111011111111111011101111111 
01110111011111110111111101111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111011111111111110111111 
10111011111111101111111101111111 
10110110111111111111111101111111 
01111001110111111111111101111111 
01110111111111011111111101111111 
01110111011111111111011101111111 
01110111011111110111111101111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111011111111111110111111 
10111011111111101111111101111111 
10110110111111111111111101111111 
01111001110111111111111101111111 
01111011111111101111111101111111 
01111111111111111111011101111111 
01110111011111110111111101111111 
00000000000000000000000000000000 
11111111111111101111111110111111 
10111011111111111110111101111111 
10110111111011111111111101111111 
01111011111111111110111101111111 
01110111101111110111111101111111 

6-75 

JEDEC Listing (Continued) 

01110111101101111011011101111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111111111110111110111111 
10111011111111111111111001111111 
10110111111111101111111101111111 
01111011111111111111111001111111 
01111011110111011111111101111111 
01110111111110111111111101111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111111111111111010111111 
10111010111111111111111101111111 
10110111111111111110111101111111 
01111011111111111111111101111111 
01111011110111011111111001111111 
01110111111101111011011101111111 
01110111011111111011011101111111 
01110111101111111011101101111111 
11111111111111111111111111100111 
01111011111011101111111111111011 
01111011111011111110111011111011 
01111010111111111111111011111011 
01111001110111011101110111111011 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000* 
C8E51* 
D15A 



CYPRESS 
SEMICONDUCTOR 

T2 Framing Circuitry 

This application note describes the design of a 1'2-
based transmission system. This system adds control char­
acters to an image processor's data stream so that the 
resulting output can be slotted into a 1'2 channel. DS-2 
transmission equipment is then used to relay this informa­
tion onward. 

At receiving locations, the control bits are used to 
synchronize the site's circuitry to the incoming characters. 
The data is then restored to its original form, before being 
routed to its final destination. A block diagram of this sys­
tem appears in Figure 1 ~ 

Overview of Tl and T2 
Digital transmission systems in North America are 

hierarchical in structure. Each carrier is multiplexed into 
higher bandwidth carriers. The lowest level is known as 
11. This typically consists of 24 64-Kbitls pulse code 
modulation (PCM) telephone channels multiplexed 
together into frames. A single framing (F) bit precedes 
every Tl frame to· allow for features such as synchroniz­
ing channels, sending control characters, and generating 
cyclic redundancy code (CRC) bits. 

Thus, each frame contains 24 8-bit channels plus an 
additional framing bit, for a total of 193 bits per frame. 
The bit rate for a T1 channel equals the rate of a bit in the 
frame multiplied by the total number of bits in the frame: 

24 Xl~OOO x 193 = 1.544 Mbits/s 

The maximum data rate in a T 1 channel is therefore 

1.544 x ~~; = 1.536 Mbits/s 

You can achieve this maximum data rate for T1 
transmission when using the Extended Super Frame for­
mat. This format <;iedicates all 8 bits of every channel to 

F 
1 

-
Ch Ch .9 te 
1 2 

.a B 

F = F BIT (one bit) 
Channel data = 8 bits 
Number of channels = 24 

Ch F Ch 
24 1 1 

B B 

Figure 2. T1 Frame Structure 

Ch .. 
2 

B 

user data instead of reserving the eighth bit for channel 
signaling. Figure 2 illustrates the composition of a T1 
frame. 

The next level in the digital communications hierar­
chy is referred to as T2. Four T1 frames constitute a 1'2 
Multi-frame. These frames are arranged as four sub­
frames, each having six blocks of 49 bits. The leading 
character of every block is used for control purposes, and 
the following 48 bits consist of data. In total, a Multi­
frame comprises 1176 characters. 

This format includes three control features: 
Multi-frame alignment, provided by a 0111 pattern in 
each of the four sub-frames. These four bits are 
referred to as M bits. The fourth M bit location can 
also serve as an alarm service digit, if required. 

Frame alignment, implemented by alternating be­
tween logic level 0 and· 1. Each sub-frame contains 
two of these bits, which are referred to as F bits. 

Justification: Three bits, referred to as Stuffing In­
dicator bits (C), are inserted into every sub-frame for 
justification purposes. Positive, negative, and no jus­
tification are possible by inserting the correct code 
into the relevant locations. 

IMAGE 

PROCESSOR 

T2 
TRANSMIT 

INTERFACE 

DS-2/T2 

LINK 

T2 
RECEIVER 

INTERFACE 

FINAL 

DESTINATION 

Figure 1. System Overview 

6-76 



T2 MULTI-FRAME 

M = MULTI-FRAME ALIGNMENT BITS (M1, M2, M3 and M4) 
C = STUFFING INDICATOR (Cj1, Cj2 and Cj3) 
F = FRAME ALIGNMENT BITS (FO=O, F1=1) 

Figure 3. T2 Frame Structure 

Figure 3 shows how the data and control bits inter­
leave. Figure 4 illustrates the sequence in which control 
bits occur. 

The bit rate of T2 information bit rate is 6.312 
Mbitls. The corresponding data rate in a T2 channel is 
therefore: 

6.312 x 48 6.183 Mbits/s 
49 
Further levels exist within the communication hierar­

chy, but they are not relevant to this design. CCnT G743 

provides further details of all the framing structures men­
tioned here. 

Transmitter Site Circuitry 
In the example T2 system, the machine from which 

data originates can operate at frequencies as high as 10 
MHz. The data is sourced to the T2 system at 6.183 MHz, 
which is the data rate of a T2 line. At 10 MHz, stopping 
and starting artifacts would arise from the disparity be­
tween the source and the transmission medium. The out­
put from the transmitter circuitry is maintained at 6.312 
MHz to allow the inclusion of control characters into the 
data stream. Phase-lock-loop design techniques ensure that 
the clocks in the T2 system and the data source are tightly 
coupled. 

Figure 5 shows the transmitter block diagram. Infor­
mation feeds into a FIFO, ICl, under control of 
TXCLKIN (6.183 MHz, the source's clock). TXCLKOUT 
(6.312 MHz) retrieves data from ICI. IC2 (TXCNTRL 
PAL) controls the insertion of control bits into the data 
stream at every 49th time slot. IC4 is a PROM that holds 
a unique 24-bit control pattern. 

A counter, IC3 (PROMADDR PAL), provides the ad­
dress to the PROM. ICS (DIVBY49 PAL) is programmed 
as a counter that increments on successive clock pulses. 
When this counter reaches its terminal count (49), a carry-

Ml--. Cll --. FO --. C12 --. C13 --. Fl --. M2 --. C2l --. FO --. C22 --. C23 ---. Fl --. 

o 

M3 --. C31 -. FO 

o 
--. C32 --. C33 -. Fl -. M4 -. C41 --. FO 

o 

Figure 4. Control Bit Sequence 

IMAGE IPDATA ... 

PROCESSOR 1------1~~ FIFO 
IC1 

FIFODATA 

... HFUll 
~ 

--. C42 -. C43 --. Fl 

PL~~S~ RDClK tr-l_RC-I.

l

_

K 

_"----1---, TO DS-2 

LOOP L OPDATA INTERFA~E 
L:C~IR~C~U~IT~R~Y~J-___ T_xc_lK_oUT ____ -t~~ TXCNTRL t-_-B.A------~~ 

1~ _____ ~~=Cl~KI~N ________ ~. PAL ~ WUT 

r------------------------~~ IC2 ~~ 

~'~'l ~ 
PROMADDR 

PAL 
IC3 

PURt 

~~ 
WNTROL 

PROM BITS 
ADDRESS 

BITS 
Ao-A4 .... PROM -
A5-~-+ IC4 

TXCLKOUT --+ 
(GND) 

Figure S. Transmitter Site Circuitry 

6-77 

DIVBY 49 
(COUNTER) 

IC5 

ETC 



out signal is produced (FBITLOAD), which serves three 
purposes: 

It causes the counter to reload its base count (zero) 
It indicates that a control bit has to be inserted into 
the data stream 
It serves as an input to the state machine in the IC2 
PLD, which is the control-bit sequencer that governs 
when the PROM address generator has to be incre­
mented. A decode of one of the sequencer's states, 
INCF ADD, causes the PROM address to increase by 
one. 
The listings for the design's PALs appear in Appen­

dices A through J. 

Receiver Site Circuitry 
The most obvious way to detect a valid pattern of 1'2 

data· and control characters is to serially shunt them 
through a shift register with 1176 stages. Outputs from the 
first, 50th,. 99th, etc. through the 1128th location can then 
be continuously monitored for the relevant character se­
quence .. This approach is very wasteful in terms of cir­
cuitry because monolithic shift registers provide either 
eight or 16 stages. 

Fortunately, you can achieve the same result with one 
FIFO and two PALs. The principle is to arrange the in­
coming information so that a pattern recognition circuit 
periodically samples the most recent, the 50th, the 99th, 
the 148th, and the 197th bits. This circuitry then compares 
the information to that expected. When a complete frame 
of control characters has been detected, the incoming in­
formation is frame aligned with the circuitry at the 
receiver site. 

ICLK3 

PUR 

ICLK3 

PUR 

CLK3 

CLK3 

PUR 

00-04 

01-04 

A1-A4 

ALlGNF 

CLKGEN 
IC3 

RD 

WR 

DSTAGGR 

RDCLK, WRCLK 
CLK3,ICLK3 

IPFIFO' 
IC1 

The devices required to implement these tasks appear 
in Figure 6.ICI (IPFIFO) is a FIFO whose input source is 
the data and control character stream from the transmit 
site. The FIFO holds the most recent 196 bits of informa­
tion entering the receiver circuitry. 

IC2 (DATASORT PAL) provides the commands that 
control this operation and acts as an intermediate buffer 
stage between the information presented to the FIFO and 
the characters subsequently read from that device. The 
outputs of IC3 (CLKGEN PAL) are the Read and Write 
clocks for the FIFO. 

IC4 (ALIGNDET PAL) and IC5 (FRAMCHEK PAL) 
perform pattern recognition. IC4 compares the expected 
control bit pattern to the stream of characters appearing at 
the FIFO's outputs. IC5 interprets the results and sets a 
flag whenever frame alignment is attained. IC5 also indi­
cates if alignment is subsequently lost. 

Frame alignment is declared when four pre-deter­
mined bit patterns have been recognized. Thereafter, the 
circuit makes continuous checks to ensure that alignment 
is maintained. In total, the circuit seeks 12 bit patterns. If 
any check yields a negative result, alignment ha's been 
lost. A locally generated reset pulse then sets the relevant 
circuitry to its initial state, and the process of alignment 
detection begins once again. 

For a short period following the application of power, 
an initialization signal, RESET, is active. This signal en­
sures that the outputs ofIC5 (FRAMCHEK PAL) and IC6 
(DSCOUNT PAL) are driven to their initial states and the 
FIFO (ICl) has all of its internal memory locations and 
control registers cleared to zero. Once the power-up 

ALlGNDET 
IC4 

00 

ROCLK 

WRCLK 

START 

RESET 

START 

RESET 

MTRUE 

FTRUE 

OPFIFO 
Ica 

MB,MA 

E,D,C 

CLK3 ALlGNF 

FRAMCHEK 

OPHFULL 

DATAOUT 

JC5 

TO FINAL 
DESTINATION 

Figure 6. Receiver Site Circuitry 

6-78 



Figure 7. YX Sequencer 

routine has completed, the process of writing information 
into the FIFO commences. 

All data entering the receiver is initially fed to the 
first input stage of the FIFO (D4) via a register in IC2. 
This ensures that the FIFO's set-up parameter is not vio­
lated. Every time a character enters the FIFO, a counter in 
IC6 increments once. When the terminal count (49) is 
reached, the counter's carry-out pin (NEXT) goes active. 
This condition causes the YX sequencer in IC2 to move 
from its initial state 0 position to state 1 (Figure 7). A 
decode of this state enables the strobe RD, which retrieves 
stored data from the FIFO. Thereafter, the data from the 
FIFO's first output stage (A4) is coupled, via IC2, to the 
FIFO's second input port (03). 

After two further occurrences of NEXT going active, 
the FIFO's second and third output stages (A3 and A2) 
are coupled to the third and fourth input ports (02 and 
D1), respectively. The YX sequencer goes to state 2. Fig­
ure 8 shows the FIFO's contents when NEXT becomes 
active for the fourth and final time. At this point, the pat­
tern recognition circuitry can be enabled. 

IC2's five data output pins (D4 - DO) effectively per­
form the same function as a shift register with 197 stages. 
IC4 monitors this information until it detects the first oc­
currence of 01000. These control bits are 
M1IFlIC43/C42IFO, which are the signals present on D4 -
DO of the FIFO after the transmission of 1176 characters. 
This pattern could correspond to the detection of 01000 in 
IC4 for the first time. However, it is also quite probable 
that this sequence could randomly occur in the data 
stream. Thus, further checks are needed before assuming 
that the valid recognition pattern has been detected. 

As soon as the receiver recognizes the 01000 pattern, 
a signal labeled START goes active. This term enables a 
six-stage counter in IC7 (CBITCNTR PAL). The counter 
counts to 48, then issues a carry-out signal (LD49). A 
seven-state EDC sequencer (Figure 9) in IC5 recognizes 
every occurrence of this signal and thus always moves to 
its next stable position (state 1 in this case). 

POR 

LD41 

Figure 9. EDC Sequencer 

6-79 

04 

'" '15 

03 
'47 
'48 

02 
II 
rr 

01 .. 
48 

04 03 02 01 

IPFIFO 

00 
1----'-

Figure 8. Contents of Receiver Site FIFO 

A second check is made in IC4 to determine whether 
the second valid control bit pattern has been detected. IC4 
uses the control bits E, 0, C, MA, and MB from IC5's 
EDC and M sequencer (Figure 10) to determine whether 
the incoming data has been aligned. These control bits 
represent the state of the sequencers in IC4 and determine 
the control sequence that should exist on the D4 - DO in­
puts. 

The second valid control pattern, 10001, is now 
sought on the bits F1, C43, C42, FO, and C41. If the pat­
tern is not detected, a global reset is issued, and the search 
for the 01000 pattern recommences. Conversely, if the 
10001 pattern is detected, the EOC sequencer assumes 
state 3. Further, FTRUE becomes true. This signal exists 
for one clock period and causes the sub-frame detector 
implemented by the F sequencer (Figure 11) to move to 
its next stable state. A further 147 clocks are allowed to 
elapse before the next control bit pattern check is carried 
out. 

By this time, the EDC sequencer is in state 6. The 
occurrence of a 11000 pattern for M4, Fl, C33, C32, and 
FO provides further proof that alignment has been at­
tained, and the F sequencer moves to its next stable posi­
tion, state 3. As before, a negative result causes the circuit 
to issue a global reset. The checking process would then 
continue with a 10000 pattern for F1, C33, C32, FO, and 
C31 being sought when a further 49 clock periods had 
elapsed (EDC sequencer in state 7). 

In this case, the occurrence of the correct pattern 
causes the M sequencer (multi-frame detector) to progress 

MTRUE 

MTRUE MTRUE 

MTRUE 

Figure 10. M Sequencer 



~ 

~~~~~~~~~~~~~~~~~~~~~~~~~T~2~F~r~a~m~i~n~g~C~ir~c~u~it~r~y 

Figure 11. F Sequencer

from its state 0 start position to state 1. The F sequencer's
state diagram shows that the sequencer assumes state 2
after the next occurrence of an active LD49 signal, fol­
lowed one clock period later by a return to the start posi­
tion, state O.

As stated previously, the declaration of alignment is
made only when four consecutive bit patterns - com­
mencing with the start condition on MO, F1, C3, C3, and
FO - have been sequentially detected. When these criteria
have been satisfied, the ALIGNF flag is raised. This flag
is held in its active state until one of the ensuing checks
produces a negative result. In such an event, the RESET
term goes active, thereby forcing certain areas of the
receiver's circuitry into the same conditions as occurred at
power-up.

Immediately following the receiver's alignment of the
incoming data stream, the ensuing information is written
into a second FIFO (IC8, OPFIFO). This action is a
preface to restoring the data to its original form, i.e.,
removing the control bits added by the transmitter. Once
this operation has been completed, the data can be passed
to its final destination. As in the transmitter's design, the
receiver's source (IPCLK, 6.312 MHz) and sink
(PLLOPCLK, 6.183 MHz) clocks must be locked
together. A phase lock loop circuit performs this function.

IC3 provides the control and strobe signals for
removing control bits from the data stream. The equations
in the source code for this device (Appendix D) reveal the
following facts:

6-80

Control bits are not written to IC8 (OPFIFO); they
coincide with the occurrence of an active ID49
(counter carry-out) signal. Thus, although a data bit is
read out of the IPFIFO, the occurrence of LD49
prevents a write strobe (WRCLK) from being
generated and the data bit from being written into
OPFIFO.
The process of removing data from IC8 commences
as soon as that device is half full, indicated by OPH­
FULL. This prevents invalid data from being passed
to the next stage when the FIFO empties.
The frequency of the FIFO's write (WRCLK) and
read (RDCLK) strobes are 6.312 and 6.183 MHz,
respectively.

Other Considerations
The T2 system requires interfaces at both the transmit

and receive sites between the hardware described here and
the relevant DS-2 equipment. Rockwell's industry-stand­
ard DX-33B"4 (CLNS-95-297) and DX-33K-3 (CLNS-95-
308) boards suit this task. The latter is fitted with a ter­
mination network that matches the receiver's input im­
pedance to that of the transmission medium.

Transmitter:
IC1 = CY7C433
IC2 = CY7C22VlO
IC3 = CY7C22V10
IC4 = CY7C225
IC5 = CY7C22VlO

Receiver:
IC1 = CY7C433
IC2 = CY7C22V10
IC3 = CY7C22VlO
IC4 = CY7C22V10
IC5 = CY7C22VlO
IC6 = CY7C22V10
IC7 = CY7C22V10
IC8 = CY7C433

Parts Lists

Appendix A. PAL Equations For TXCNTRL

PAL 22VlO
T2 TRANSMITIER CONTROLLER (lC2)
CYPRESS SEMICONDUCTOR

ITXCLKIN /PUR ITXCLKOUT HFULL FBIT IFBITI..OAD FIFODATA NC8 NC9 NC10 NC11 GND
NC13 WRCLK /RDCLK IENREAD OPDATA lEN IB IA IINCFADD NC22 NC23 VCC

EQUATIONS
WRCLK = TXCLKIN

RDCLK = TXCLKOUT*ENREAD*/PUR

ENREAD := IENREAD*HFULL */PUR
+ ENREAD*/PUR

; TXCLKIN = 6.183 MHz
; TXCLKOUT = 6.312 MHz
; HFULL = FIFO HALF-FULL FLAG
; PUR = POWER-aN-RESET SIGNAL
; WRCLK = FIFO SHIFT-IN
; RDCLK = FIFO SHIFT-OUT

OPDATA:= IOPDATA*FBIT*EN
+ IOPDATA*FIFODATA*IEN
+ OPDATA*IFBIT*EN
+ OPDATA*FIFODATA*/EN

; FBIT = FRAMING BIT FROM PROM
; EN = SELECTS DATA OR FRAMING BIT
; FIFODATA = DATA RETRIEVED FROM FIFO
; OPDATA = DATA PASSED TO DS-2 INTERFACE
; FBITLOAD = FRAMING BIT TO BE INSERTED INTO DATA STREAM
; INCFADD = CAUSES PROM ADDRESS TO BE INCREMENTED
; BA SEQUENCER = CONTROLS SELECTION OF FRAMING BITS

A:= IB*IA*FBITLOAD*/PUR
+/B*A*/PUR

B:= IB*A*/PUR
+ B*IA*/PUR

EN = IB*A

INCFADD = B* A

; STATE DIAGRAM FOR BA SEQUENCER
;; EN INCFADD
; PUR---- FBITLOAD ----
; ---->1 0 1-------->-------1 1 1------>-----1 3 1------->------1 2 1

---------------------------<--------------------------

6-81

Appendix B. PAL Equations For DIVBY 49

PAL 22VI0

DIVIDE BY 49 COUNTER (IC 5)
CYPRESS SEMICONDUCTOR

ITXCLKOUT NC2 NC3 NC4 NC5 NC6 NC7 NC8 NC9 NCI0 NCl1 GND
NC13 IFBITLOAD QO Ql Q2 Q3 Q4 Q5 NC21 NC22 NC23 VCC

EQUATIONS

QO := IQO*/FBITLOAD

Ql := IQl *QO*/FBITLOAD
+ Ql */QO*/FBITLOAD

Q2 := IQ2*Ql *QO*/FBITLOAD
+ Q2*/Ql */FBITLOAD
+ Q2*/QO*/FBITLOAD

Q3 := IQ3*Q2*Ql *QO*/FBITLOAD
+ Q3*/Q2*/FBITLOAD
+ Q3*/Ql */FBITLOAD
+ Q3*/QO*/FBITLOAD

Q4 := IQ4*Q3*Q2*Ql * QO/FBITLOAD
+ Q4*/Q3*/FBITLOAD
+ Q4*/Q2*/FBITLOAD
+ Q4*/Ql*/FBITLOAD
+ Q4*/QO*/FBITLOAD

Q5 := IQ5*Q4*Q3*Q2*Ql *QO*/FBITLOAD
+ Q5*/Q4*/FBITLOAD
+ Q5*/Q3*/FBITLOAD
+ Q5*/Q2*/FBITLOAD
+ Q5*/Ql */FBITLOAD
+ Q5*/QO*/FBITLOAD

FBITLOAD = Q5*Q4*/Q3*/Q2*/Q1 */QO

; T2CLKOUT = 6.312 MHz
; QO-Q4 = COUNTER OUTPUTS
; FBITLOAD = USED TO INSERT FRAMING BITS INTO DATA STREAM

(EVERY FORTY-NINTH LOCATION)

6-82

~

~~~~~~~~~~~~~~~~~~~~~~~T~2~F~r~a~D1~in~g~C~ir~c~u~i~tr~y 

PROM 
FILENAME:PROM 

CONTROL BIT GENERATOR (lC 4) 
CYPRESS SEMICONDUCTOR 

Appendix C. PROM Equations 

ADDRESS PROM CONTENTS 
(HEX) (HEX) 
00 00 
01 00 
02 00 
03 00 
04 00 
05 01 
06 01 
07 00 
08 00 
09 00 
OA 00 
OB 01 
OC 01 
OD 00 
OE 00 
OF 00 
10 00 
11 01 
12 01 
13 00 
14 00 
15 00 
16 00 
17 01 

6-83 



Appendix D. PAL Equations For PROMADDR 

PAL 22VIO 

FILENAME:PROMADDR 
PROM ADDRESS GENERATOR (IC 3) 
CYPRESS SEMICONDUCTOR 

ITXCLKOUT /PUR IINCFADD NC4 NC5 NC6 NC7 NC8 NC9 NC10 NCll GND 
NC13 AO A1 A2 A3 A4 /RELOAD NC20 NC2I NC22 NC23 VCC 

EQUATIONS 

AO := IAO*INCFADD*/RELOAD 
+ AO*/INCFADD*/RELOAD 

Al := IAI*AO*INCFADD*/RELOAD 
+ A1 *1 AO*/RELOAD 
+ A1 */INCFADD*/RELOAD 

A2:= IA2*AI*AO*INCFADD*/RELOAD 
+ A2*/A1 */RELOAD 
+ A2*1 AO*/RELOAD 
+ A2*/INCFADD*/RELOAD 

A3:= IA3*A2*A1*AO*INCFADD*/RELOAD 
+ A3*1 A2*/RELOAD 
+ A3*1 A1 */RELOAD 
+ A3*1 AO*/RELOAD 
+ A3*/INCFADD*/RELOAD 

A4:= IA4*A3*A2*AI*AO*INCFADD*/RELOAD 
+ A4*/A3*/RELOAD 
+ A4 *1 A2*/RELOAD 
+ A4 *1 A1 */RELOAD 
+ A4*/AO*/RELOAD 
+ A4*/INCFADD*/RELOAD 

RELOAD = PUR 
+ Q4*Q3*/Q2*/Q I */QO 

; T2CLKOUT = 6.312 MHz 
; PUR = POWER-ON-RESET 
; INCFADD = INCREMENT ADDRESS COUNT 
; AO-A4 = PROM ADDRESS 
; RELOAD = LOAD COUNTER Willi BASE COUNT 

6-84 



Appendix E. PAL Equations For DATASORT 

PAL 22VlO 

F~ENAME;DATASORT 

ARRANGE DATA READY FOR PATTERN DETECTOR (IC 2) 
CYPRESS SEMICONDUCTOR 

/ICLK3 A4 A3 A2 Al INPUT !NEXT /PUR NC9 NClO NCII GND 
NC13 /Y /X IDSTAGGR D4 D3 D2 Dl DO REGIN NC23 VCC 

EQUATIONS 

X:= /X*/Y*NEXT*/DSTAGGR*/PUR 
+ X*/Y*/PUR 
+ X*/NEXT*IPUR 
+ X*DSTAGGR*IPUR 

Y:= /Y*X*NEXT*/DSTAGGR*/PUR 
+ Y*X*IPUR 
+ Y*/NEXT*IPUR 
+ Y*DSTAGGR*IPUR 

DSTAGGR:= IDSTAGGR*Y*/X*NEXT*/PUR 
+ DSTAGGR*/PUR 

; STATE DIAGRAM FOR YX SEQUENCER 
, 
;PUR ---- NEXT*/DSTAGGR ---- NEXT*IDSTAGGR ---- NEXT*/DSTAGGR ---­
; ---->1 0 1------------>-------------1 1 1------------>------------1 3 1------------>------------1 2 1 

NEXT*IDSTAGGR 
---------------------------------------------<---------------------------------------------

; YX SEQUENCER = CONTROLS ARRANGEMENT OF DATA IN FIFO 
; DSTAGGR = INDICATES WHEN DATA READY FOR PATTERN RECOGNITION 
; PUR = POWER-ON-RESET 
; NEXT = COUNTER O/P, CONTROLS DATA ORGANISATION INTO/OUT OF FIFO 

REGIN := INPUT 

DO := IDSTAGGR 
+ IDO*Al*DSTAGGR*/Y*/X 
+ DO*Y 
+ DO*X 
+ DO*Al 

Dl := /Y*IDSTAGGR 
+ IDl *Y*X*/DSTAGGR 
+ IDl *y*/x* A2*/DSTAGGR 
+ IDl */Y*/X* A2*DSTAGGR 
+ Dl*A2 
+Dl*X 
+ D 1 *Y*DSTAGGR 

6-85 



AppendixE. PAL Equations For DATASORT (cont.) 

D2 := /Y*IDSTAGGR 
+ 1D2*Y*/X* A3*/DSTAGGR 
+ 1D2*/Y*/X*A3*DSTAGGR 
+ D2*A3 
+ D2*Y*DSTAGGR 
+ D2*X*DSTAGGR 

D3 := /Y*/X*IDST AGGR 
+ 1D3*X*A4*IDSTAGGR 
+ 1D3*Y*/X*A4*IDSTAGGR 
+ 1D3*/Y*/X*A4*DSTAGGR 
+ D3*A4 
+ D3*X*DSTAGGR 
+ D3*Y*DSTAGGR 

D4 :=REGIN 

; DO-D4 = OUTPUTS TO PATTERN RECOGNITION CIRCUITRY, ALSO 
; REGISTERED DATA BEING FED BACK INTO FIFO lIP STAGES 
; AO-A4 = FIFO OUTPUTS BEING FED TO REGISTER 
; INPUT = SERIAL DATA STREAM FROM RECEIVER liP STAGE 
; REGIN = REGISTERED liP DATA 

6-86 



Appendix F. PAL Equations for CLKGEN 

PAL 22V10 
FILENAME;CLKGEN 

CLOCK GENERATOR FOR DATA SORTING CIRCUITRY AND OPFIFO (lC 3) 
CYPRESS SEMICONDUCTOR 

IIPCLK IY IX IDSTAGGR PLLOPCLK /PUR OPHFULL ILD49 I ALIGNF NC10 NC11 GND 
NC13 ICLK3 IICLK3 fWR /RD ICLK4 IICLK4 IENREAD RDCLK WRCLK NC23 VCC 

EQUATIONS 

CLK3 = IPCLK 

ICLK3 = IIPCLK 

CLK4 = PLLOPCLK 

ICLK4 = /PLLOPCLK 

WR = IICLK3 

RD = IY*X*/DSTAGGR*ICLK4 
+ Y*/DSTAGGR *ICLK4 
+ IY*/X*DSTAGGR*ICLK4 

; IPCLK = MASTER CLOCK FROM DS-2 INTERFACE (6.312MHz) 
; YX SEQUENCER = USED TO CONTROL WHEN FIFODATA RETRIEVED 
; DSTAGGR = USED TO CONTROL WHEN FIFO DATA RETRIEVED 
; PLLOPCLK = O/P FROM PHASE LOCK LOOP CIRCUIT (6.183 MHz), 
; DERIVED FROM 6.312 MHz MASTER CLOCK 
; CLK3/ICLK3 = DERIVATION OF MASTER CLOCK (6.312 MHz) 
; CLK4/ICLK4 = DERIVATION OF PHASE LOCKED O/P (6.183MHz) 
; WR = lIP STAGE FIFO SHIFT-IN 
; RD = liP STAGE FIFO SHIFT-OUT 

WRCLK = ALIGNF*/LD49*/CLK3 

RDCLK = ENREAD*CLK4 

ENREAD := IENREAD* OPHFULL */PUR 
+ ENREAD*/PUR 

; WRCLK = SHIFT-IN SIGNAL TO O/P STAGE FIFO 
; RDCLK = SHIFT-OUT SIGNAL TO O/P STAGE FIFO 
; ENREAD = CONTROLS WHEN DATA CAN BE READ FROM O/P STAGE FIFO 
; ALIGNF = "ALIGNMENT" INDICATOR 
; LD49 = O/P STAGE FIFO SHIFT-IN DISABLE TERM 
; OPHFULL = INDICATES WHEN O/P STAGE FIFO IS HALF FULL 
; PUR = POWER-ON-RESET 

6-87 



Appendix G.PAL Equations For DSCOUNT 

PAL 22VIO 
FILENAME; DSCOUNT 

DIVIDE-BY-49 COUNTER FOR DATA SORTING PROCESS (IC 6) 
CYPRESS SEMICONDUCTOR 

IICLK3 /PUR IDSTAGGER NC4 NC5 NC6 NC7 NC8 NC9 NC10 NCl1 GND 
NC13 QO Q1 Q2 Q3 Q4 Q5 lNEXT NC21 NC22 NC23 VCC 

EQUATIONS 

QO:= IQO*IDSTAGGR*/NEXT 
+ QO*DSTAGGR*INEXT 

Q1 := IQ1 *QO*/DSTAGGR*/NEXT 
+ Ql */QO*/NEXT 
+ Q1 *DSTAGGR*/NEXT 

Q2:= IQ2*Q1 *QO*/DSTAGGR*/NEXT 
+ Q2*/Q1 */NEXT 
+ Q2*/QO*/NEXT 
+ Q2*DSTAGGR*/NEXT 

Q3:= IQ3*Q2*Q1*QO*/DSTAGGR*/NEXT 
+ Q3*/Q2*/NEXT 
+ Q3*/Q1 */NEXT 
+ Q3*/QO*/NEXT 
+ Q3*DSTAGGR */NEXT 

Q4 := IQ4*Q3*Q2*Q1 *QO*/DSTAGGR*/NEXT 
+ Q4*/Q3*/NEXT 
+ Q4*/Q2*INEXT 
+ Q4*/Q1*/NEXT 
+ Q4*/QO*/NEXT 
+ Q4*DSTAGGR*/NEXT 

Q5:== IQ5*Q4*Q3*Q2*Q1 *QO*/DSTAGGR*/NEXT 
+ Q5*/Q4*/NEXT 
+ Q5*/Q3*/NEXT 
+ Q5*/Q2*/NEXT 
+ Q5*/Q1 *INEXT 
+ Q5*/QO*/NEXT 
+ Q5*DSTAGGR*/NEXT 

NEXT = PUR 
+ Q5*Q4*/Q3*/Q2*/Q1 *IQO*IDSTAGGR 

; ICLK3 = 6.312 MHz CLOCK DERIVED FROM DS-2 INTERFACE 
; DSTAGGR = INDICATES WHEN DATA IS READY TO BE INTERROGATED BY 
; PATTERN RECOGNITION CIRCUITRY 
; PUR = POWER-aN-RESET 
; QO-Q5 = O/P STAGES OF COUNTER 
; NEXT = LOAD-ALL-ZEROES COMMAND TO COUNTER 

6-88 



Appendix H. PAL Equations ForCBITRCNT 

PAL 22V10 
FILENAME; CBITRCNT 

CONTROL BIT REMOVAL INDICATOR/COUNTER (IC 7) 
CYPRESS SEMICONDUCTOR 

ICLK3 IRE SET ISTART NC4 NC5 NC6 NC7 NC8 NC9 NClO NCll GND 
NC13 QO Q1 Q2 Q3 Q4 Q5 ILD49 NC21 NC22 NC23 VCC 

EQUATIONS 

QO := IQO*START*/LD49 
+ QO*ISTART*ILD49 

Q1 := IQ1 *QO*START*/LD49 
+ Q1 */QO*/LD49 
+ Q1 *ISTART*ILD49 

Q2 := IQ2*Q1 *QO*START*/LD49 
+ Q2*/Q1 */LD49 
+ Q2*/QO*/LD49 
+ Q2*ISTART*ILD49 

Q3 := IQ3*Q2*Q1 *QO*START*/LD49 
+ Q3*/Q2*/LD49 
+ Q3*/Q1 */LD49 
+ Q3*/QO*/LD49 
+ Q3*ISTART*ILD49 

Q4 := IQ4*Q3*Q2*Q1 *QO*START*/LD49 
+ Q4*/Q3*/LD49 
+ Q4*/Q2*/LD49 
+ Q4*/Q1 */LD49 
+ Q4*/QO*/LD49 
+ Q4+ISTART*/LD49 

Q5 := IQ5*Q4*Q3*Q2*Q1 *QO*START*/LD49 
+ Q5*/Q4*/LD49 
+ Q5*/Q3*/LD49 
+ Q5*/Q2*/LD49 
+ Q5*/Q1 */LD49 
+ Q5*/QO*/LD49 
+ Q5*ISTART*ILD49 

LD49 = Q5*Q4*/Q3*/Q2*/Q1 */QO 
+ RESET 

; CLK3 = 6.312 MHz CLOCK DERIVED FROM THE DS-2 INTERFACE 
; RESET = LOCALISED RESET GENERATED WHEN "ALIGNMENT" IS LOST 
; START = INDICATES THAT THE FIRST CONTROL BIT SEQUENCE (01000) 
; HAS BEEN DETECTED 
; QO-Q5 = COUNTER O/P STAGES 
; LD49 = LOAD-ALL-ZEROES COMMAND 

6-89 



Appendix I. PAL Equations For ALIGNDET 

PAL 22VI0 
FILENAME; ALIGNDET 

FRAME ALIGNMENT DETECfOR (IC 4) 
CYPRESS SEMICONDUCTOR 

ICLK3 DO Dl D2 D3 D4 /PUR IE ID IC ILD49 GND 
NC13 NC14 IMTRUE /FTRUE ISTART !RESET NC19 NC20 NC21 1MB IMA VCC 

EQUATIONS 

START := ISTART*ID4*D3*ID2*/DI */DO 
+ START*!RESET 

FTRUE = IE*/D*C*LD49*/D4*IDI * START 
+ E*D*/C*LD49*D4*/D1*START 

MTRUE = E*D*C*LD49*D4*D3*IDO*START*IMB 
+ E*D*C*LD49*D4*D3*IDO*START*MB*MA 
+ E*D*C*LD49*ID4*D3*IDO*START*MB*IMA 

RESET = PUR 
+ E*D*C*LD49*/D4*START*/MB 
+ E*D*C*LD49*/D3*START*/MB 
+ E*D*C*LD49*DO*START*IMB 
+ E*D*C*LD49*/D4*START*MB*MA 
+ E*D*C*LD49*/D3*START*MB 
+ E*D*C*LD49*DO*START*MB 
+ E*D*C*LD49*D4*START*MB*IMA 
+ IE*ID*C*LD49*D4*START 
+ IE*ID*C*LD49*/D1*START 
+ E*D*/C*LD49*ID4*START 
+ E*D*/C*LD49*Dl*START 

; CLK3 = 6.312 MHz CLOCK DERIVED FROM DS-2 INTERFACE 
; DO-D4 = DATA CHANNELS ON WHICH CONTROL-BIT-PATTERN-RECOGNITION 

IS CARRIED OUT 
; PUR = POWER-ON-RESET 
; EDC = SEQUENCER USED WHEN SEEKING "ALIGNMENT" 
; LD49 = INDICATES WHEN COMPARISON BETWEEN DATA CHANNELS 

AND EXPECTED PATTERN SHOULD BE CARRIED OUT 
; MTRUE = MULTI-FRAME DETECTION INDICATOR 
; FTRUE = SUB-FRAME DETECTION INDICATOR 
; START = INDICATES THAT THE FIRST CONTROL BIT PATTERN HAS BEEN 

DETECTED 
; RESET = ASSERTED WHEN ACTUAL AND EXPECTED CONTROL BIT PATTERNS 

ARE NOT IN AGREEMENT 
; MBMA = SEQUENCER ASSOCIATED WITH MULTI-FRAME DETECTION 

6-90 



Appendix J. PAL Equations For FRAMCHEK 

PAL 22VIO 
FILENAME; FRAMCHEK 

FRAME ALIGNMENT CHECKER AND OPFIFO WRITE CONTROLLER (IC 5) 
CYFRESSSEMICONDUCTOR 

ICLK3 IRE SET IMTRUE IFTRUE ILD49 NC6 NC7 NC8 NC9 NClO NCll GND 
NC13 1MB IMA IFB IFA IE ID IC IALIGNF NC22 NC23 VCC 

EQUATIONS 

MB := IMB*MA*MTRUE*/RESET 
+ MB*MA*/RESET 
+ MB*IMTRUE*/RESET 

MA := IMA*/MB*MTRUE*/RESET 
+ MA*IMB*IRESET 
+ MA*IMTRUE*IRESET 

; M SEQUENCER STATE DIAGRAM 
, 
; RESET --- MTRUE --- MTRUE --- MTRUE ---
; ---------->1 0 1------->-------1 1 1-------->-------1 3 1------->--------1 2 1 

MTRUE 
------------------------------<------------------------------

FB:= IFB*FA*FTRUE*/RESET 
+ FB*/FA*IRESET 
+ FB*/E*IRESET 
+ FB*D*/RESET 
+ FB*/C*/RESET 

FA:= IFA*/FB*FTRUE*/RESET 
+ FA*IFB*IRESET 
+ FA*IE*/RESET 
+ FA*D*/RESET 
+ FA*/C*IRESET 

; F SEQUENCER STATE DIAGRAM 
, 
; RESET --- FTRUE --- FTRUE --- E*ID*C --­

------>1 0 1----->-----1 1 1----->------1 3 1----->-----1 2 1 

E*ID*C 
-----------------------<------------------

E := IE*D*/C*LD49*/RESET 
+ E*D*/RESET 
+ E*/C*/RESET 

6-91 



Appendix J. PAL Equations For FRAMCHEK 

D:= ID*/E*C*LD49*/RESET 
+ D*/E*IRESET 
+ D*/C*/RESET 
+ D*/LD49*/RESET 

C := IE*/D*/C*LD49*/RESET 
+ E*D*/C*LD49*IRESET 
+ IE*/D*C*/RESET 
+ E*D*C*/RESET 
+ IE*C*/LD49*/RESET 

; EDC SEQUENCER STATE DIAGRAM 

; RESET --- LD49 --- LD49 --- LD49 --- LD49 --- LD49 --- LD49 --­
------->1 0 1--->---1 1 1--->---1 3 1---->--1 2 1-->---1 6 1--->---1 7 1--->---1 5 1 

, 
; 1 

-----------------------------------<-----------------------------------

ALIGNF := IALIGNF*E*/D*C*/RESET 
+ ALIGNF*/RESET 

; ALIGNF STATE DIAGRAM 
; ALIGNF 
; RESET --- E*/D*C ---
; --------->1 0 1------>-----1 1 1 

; SEQUENCE OF EVENTS PRIOR TO ALIGNMENT DECLARATION: 
, 
; START-LD49-STRUE-LD49-LD49-LD49-STRUE-LD49-LD49-MTRUE 

; CLK3 = 6.312 MHz CLOCK DERIVED FROM DS-2 INTERFACE 
; RESET = ISSUED IF ACTUAL AND EXPECTED CONTROL BIT PATTERNS DO 
; NOT AGREE 
; MTRUE = MULTI-FRAME DETECTION INDICATOR 
; FTRUE = SUB-FRAME DETECTION INDICATOR 
; LD49 = INDICATES WHEN COMARISON BETWEEN ACTUAL AND EXPECTED 
; CONTROL BIT PATTERNS SHOULD TAKE PLACE 
; MBMA = SEQUENCER ASSOCIATED WITH MULTI-FRAME DETECTION 
; FBFA = SEQUENCER ASSOCIATED WITH SUB-FRAME DETECTION 
; EDC = SEQUENCER USED IN DETERMINATION OF "ALIGNMENT" 
; ALIGNF = WHEN TRUE INDICATES "ALIGNMENT" HAS BEEN ATTAINED 

6-92 



CYPRESS 
SEMICONDUCTOR 

Using CUPL With Cypress PLDs 

This application note covers the following topics: 
CUPL package components 
CUPL programming language syntax 
CUPL examples, using Cypress PLDs 
CUPL compiling 

A high-level universal language for programmable 
logic devices (PLDs), CUPL works with schematic cap­
ture packages such as SCHEMA and OrCAD-SDT 
and can port to UNIX-based systems. 

CUPL Package Components 
The CUPL package consists of CUPL (Universal 

Compiler for Programmable Logic), CSIM (CUPL 
Simulator), CBLD (CUPL Build), and PTOC 
(PALASM to CUPL Translator). 

CUPL 
The major component of the CUPL package is the 

CUPL program. This me allows you to compile logic 
description files that can be downloaded to a device 
programmer. CUPL supports Cypress's entire 20-pin 
PAL family, the PAL C 22VIO, the PAL C 20GIO, 
and the CY7C33x family of parts. 

In addition to providing a programming syntax 
similar to that of other PLD programming packages, 
CUPL helps implement lists, address ranges, and bit 
fields efficiently. CUPL includes state machine syntax 
(SMS) and truth-table input capability, allowing you to 
enter complex designs easily into Cypress's PLDs. 
CUPL also has four levels of minimization for logic 
reduction. 

CUPL comes with a menu-driven interface and a 
DOS command-line interface (the latter is explained in 
the last section of this application note). The menu in­
terface integrates all the features necessary for efficient 
design implementation, including a program and 
JEDEC file editor, compiler, and simulator (Figurel). 

CSIM 
CSIM, the file simulator for CUPL, takes an ASCII 

file as input (filename.SI) and outputs a file called 
filename.SO. The input file functionally describes the 
part by specifying the device's input and expected out-

6-93 

put. The output file contains a comparison of the 
device's expected output with its actual output; this is 
based on a file created by CUPL during compilation 
called the absolute file, filename.ABS. The comparison 
file contains the original header information found in 
filename.SI, all vectors that compared positively, and all 
discrepancies. CSIM flags the discrepancies with the 
values determined from the original logic equations. 

The CSIM command line is shown in Figure 2. 
When running CSIM with the -w or -d flag, you can 
change the view of the waveform by using the keys 
shown in Figure3. 

CBLD 
The CBLD program allows you to maintain and 

personalize CUPL device libraries. Figure 4 shows the 
CBLD command line. You can use CBLD to create 
custom library files consisting, for example, of only the 
parts you currently use. The structure of this ASCII text 
file appears in FigureS. 

CBLD also checks to see if the current CUPL ver­
sion matches the current version of the device library. If 
the key in the library does not match the CUPL version, 

OMd'it!mmwmu, 
* CoIIplle aJPL rile 
* Look at DOC rile 
* Rev Ie.. error LST r lie 
• JEDEC f lie ed i tor 
• Inpllt sbulatlon file 
• Shoul"te CUPL tHe 
• \llew SI .... I.tlon ReSlllt" 
* Deu jce Select ion 
• Help (aJPL Qulclc Reference) 
• Tutorial for PLD's 
• QIllt 

sage Center 

Allows YOIl to edit or conuert 
a design file. 

Figure 1. Menu Interface Screen 



CSIM [flags] [library] source 

Where: 
[-flags] may have the following values 

-1 
-j 

-v 
-u 
-w 

-d 

create listing file 
append test vectors to JEDEC 
file 
display simulation to screen 
use specified library 
(MS-DOS only) create listing 
file and display waveforms 
(MS-DOS only) display an 
existing simulation output 
file in waveform format 

[library] is the name of the library 
that contains the device which was 
used when CUPL compiled the original 
source file. 

source is the name of the ASCII 
source file 

Figure 2. CSIM Command Line 

... Scroll Right .. Scroll Left 

t Scroll Up 

+ Scroll Down 
Fl Decrease scale horizontally 
F2 Enlarge scale horizontally 
F3 Grid on/off 
F4 Exit to DOS 
F5 Shift screen left 
F6 Shift screen right 
F9 Create waveform hardcopy 
FlO Waveform legend 

Figure 3. CSIM Waveform Viewing Commands 

CBlD generates an error message, and compilation is 
aborted. The file CUPL.DL contains a description of all 
devices supported by the current version of CUPL. 

CUPL Programming Language Elements 

The CUPL programming language's elements and 
syntax are very similar to those of other languages. 
Reserved words that cannot be used as variable names 
are listed in Figure6. 

You can use alternate number bases in CUPL by 
putting the base's name within single quotes immedi~ 
ately before the number. The designations for the sup­
ported number bases appear in Table 1. For example, to 
assign the hexadecimal value 16 to the variable "A," 
write: 

A = 'h'16 

6-94 

CBLD [flags] [build] [library) [devic'es] 

Where: .. 
[flags] may have the following values 

-b generate library using build 
file 

-1 list long contents of library 
-m list allowable macros by pin 
-t list short contents of library 
-u use specified library 
-e list allowable extensions for 

devices 

[Build] is the name of the build file 
to be used with the -b option flag 

[Library] is a device library name 
and path name to be used with the -u 
option 

[Devices] is one or more device names 
to be used with the -t or -1 option 

Figure 4. CBLD Command Line 

You can place ~n. "X" within any number to indi­
cate a Don't Care value. Appendix A shows an example 
of using the Don't Care specification within truth tables. 

Comments are delimited with 1* and *1. The CUPL 
compiler ignores everything between these characters. 
For example, to put a paragraph of explanation within a 
program, enclose the entire paragraph in a set of com­
ment delimiters. You do not have to put delimiters on 
every line, as in some packages. 

CUPL also supports list notation. Enclose all items 
in the list in square brackets:. 

[variable, variable, variable, ... ] 
When using sequentially numbered lists, you can 

abbreviate the format to 
[variablem .. n] 

CUPL 's format can be considered in three major 
parts: the header, pin/node defmition, and equations 
sections. The· header section contains general informa­
tion about the design. The pin/node section assigns vari­
able names to the device's pins and nodes. The equa­
tions section declares the device's function and can in­
clude truth tables, state machine syntax, Boolean equa­
tions, or a combination of these three. (Sample CUPL 
programs are listed in the appendices and are described 
later in this application note.) 

Header Section 

Figure 7 shows the header format. The NAME 
descriptor must be followed by the· name for the 
JEDEC map output, and the DEVICE descriptor must 



TARGET library 
SOURCE library1 

devices I * 
SOURCE library2 
devices I * 

Where: 
TARGET identifies the new library. 

SOURCE identifies the source 
libraries. 

library indicates the target library 
name. 

library1 and library2 indicate source 
library names 

devices describes devices that are 
contained in the libraries 

* is used to describe all devices in 
a library 

Figure 5. CBLD Custom Library Build File Format 

specify the device library for use during compilation. If 
you specify a different device file on the command line 
when you invoke the compiler, this file overrides the 
name found after DEVICE in the programming fIle. 

Pin/Node Section 
The pin declaration assigns specific pins to variable 

names using the format 
PIN pin n = [!]var; 

Both pin nand var can be lists. Use the "!" with 
inputs to indicate an active Low. The compiler chooses 
the signal's inverted sense when it is indicated as active 
in the logic equations. Use the "!" with outputs to indi­
cate an active-Low output, and write the equations in a 
logically true form. In this case, the compiler performs 
DeMorgan's Theorem on the output variable to ensure 
that the output is a Low-asserted signal. 

APPEND FORMAT PIN 
ASSEMBLY FUNCTION PINNODE 
ASSY IF PRESENT 
COMPANY JUMP REV 
CONDITION LOC REVISION 
DATE LOCATION SEQUENCE 
DEFAULT MACRO SEQUENCED 
DESIGNER MIN SEQUENCEJK 
DEVICE NAME SEQUENCERS 
ELSE NODE SEQUENCET 
FIELD OUT TABLE 
FLD PARTNO 

Figure 6. CUPL Reserved Words 

6-95 

Table 1. Number Base Representation 

Base Name Base Prefix 
Binary 2 'b' 
Octal 8 ' 0' 

Decimal 10 ' d' 
Hexadecimal 16 'h' 

Table 2. CUPL Logical Operators 

Operator Example Description 
! !A NOT 
& A&B AND 
# A#B OR 
$ A$B XOR 

The NODE declaration statement tells the com­
piler that a variable is needed to hold some kind of 
state information within the. device. This variable's out­
puts are not assigned to any output pin. You can use 
the NODE statement to assign variable names-and 
thus functions-to the buried registers in the CY7C330. 
Or you might use the NODE statement to arbitrarily as­
sign a variable name to any unused macrocell in a PAL 
C 22VlO. This statement has the form 

NODE [!]var; 
Because the NODE statement arbitrarily assigns a 

register to the specified variable name, it might be more 
desirable to force the assignment of a variable to a 
specific node. You can do this with the PINNODE 
statement: 

PINNODE node_n = ![var] 
The FIELD assignment assigns a group of signals 

to one variable name. This feature is useful for address 
decoding and with truth tables, as shown in Appendix A. 
The FIELD statement has the form: 

FIELD var = [var,var, ... ,var] 
The MIN declaration overrides the minimization 

level for a specific variable. This is useful, for example, 
in designs where a portion of the design should not be 
minimized. The MIN declaration has the form 

NAME; 
PARTNO; 
REVISION; 
DATE; 
DESIGNER; 
COMPANY; 
ASSEMBLY; 
LOCATION; 
DEVICE; 
FORMAT; 

MIN var[.ext] = level; 

Figure 7. CUPL Header Format 



CUPL also contains several preprocessor com­
mands that operate on the source file before the fIle is 
passed on to the parser. These commands perform 
functions such as string· substitution, fIle inclusion, and 

Ext Side 

.D L 

.L L 

.J L 

.K L 

.S L 

.R L 

.T L 

.DQ R 

.LQ R 

.AP L 

.AR L 

.SP L 

.SR L 

.CK L 

.OE L 

.CA L 

.PR L 

.CE L 

.LE L 

.OBS L 

.BYP L 

.DFB R 

.LFB R 

.TFB R 

.IO R 

.INT R 

.CKMUX L 

.OEMUX L 

.TEC L 

· IMUX L 

.Tl L 

.T2 L 

.IOD R 

.IOL R 

· IOCK L 

· IOAR L 

· IOAP L 

· IOSR L 

.IOSP L 

.ARMUX L 

. APMUX 

.LEMUX L 

Description 

D input of D flip-flop 
D input of latch 
J input of JK flip-flop 
K input of JK flip-flop 
S input of SR flip-flop 
R input of SR flip-flop 
T input of T flip-flop 
Q output of D flip-flop 
Q output of a latch 
Asynch preset of flip 

-flop 
Asynch reset of flip-flop 
Synch preset of flip-flop 
Synch reset of flip-flop 
Programmable clock of 
flip-flop 
Programmable OE 
Complement array 
Programmable preload 
CE input of enabled D-CE 

type flip-flop 
Programmable latch enable 
Programmable observability 

of buried nodes 
Register bypass 
D feedback selection 
Latch feedback selection 
T feedback selection 
Pin feedback selection 
Internal feedback selec 

tion 
Clock MUX selection 
Tri-state MUX selection 
Technology-dependent fuse 

selection 
Input MUX selection of 

two pins 
Tl ~nput of 2-T flip-flop 
T2 input of 2-T flip-flop 
Pin feedback path through 

D register 
Pin feedback through 

Latch 
Clock for pin feedback 
register 
Asynchronous reset for 

pin feedback register 
Asynchronous preset for 
pin feedback register 
Synchronous reset for pin 

feedback register 
Synchronous preset for 

pin feedback register 
Asynchronous reset MUX 

selection 
Asynchronous preset MUX 

selection 
Latch enable MUX selection 

Figure 8. CUPL Variable Extensions 

6-96 

conditional compilation. The commands allow you to 
develop general-purpose descriptions or modular por­
tions of descriptions and customize them for different 
applications. Appendix D shows how to use the 
preprocessor command $DEFlNE to assign numbers to 
state variables. 

CUPL Programming Language Syntax 
This section focuses on CUPL's equation section. 

The program's logical and arithmetic operators (Tables 
2 and 3, respectively) resemble those used in other 
programming languages. 

A variable's function depends on the extension 
added to it in the logic equation. These extensions 
define such capabilities as flip-flop descriptions and 
programmable three-state enables. The first column of 
Figure8 lists the extension that is used after the variable 
name. The second column indicates the side of the 
equation on which the extension is used. The third 
column briefly describes the extension's function. For 
example, the .OE extension controls the output-enable 
function for all Cypress PLDs with I/O pins; the 
.CKMUX extension selects the source for the input­
register clock in the CY7C330 and CY7C332; and .D 
selects registered output on devices that have both com­
binatorial and registered outputs. 

To see the extensions you can use with a specific 
Cypress part, use the CBLD program. To see all the 
possible extensions for use when programming the PAL 
C 22VlO, for example, the command line is 

CBLD -e CUPL P22VlO 
You can use the APPEND statement to assign 

more than one expression to a variable. This is the same 
as logically ORing the variable's present state with the 
expression that follows the APPEND statement. The 
latter has the form 

APPEND [!]var[.ext] = expr; 
CUPL also has several powerful set operations that 

you can use to increase code readability and decrease 
the amount of equation input. These set operations 
serve in the equations section to simplify equation 
input. For example, 

[varl, var2, var3] & var4; 
equates to 

[varl&var4, var2&var4, var3&var4] 

Table 3. CUPL Arithmetic Operators 

Operator Example Operation Priority 

+ A+B Add 1 

- A-B Subtract 1 

* A*B Multiply 2 

I AlB Divide 2 
% A%B Modulus 2 

** A**B Exponent 3 



TABLE var list 1 
{ --

input_1 
input_2 

Where: 

=> 

=> 
=> 

output_1 
output_n 

var_list_1 are the input variables 
var list 2 are then output variables 
inp~t_n is the value of the inputs 

(hex by default) 
output_n is the value of the outputs 

Figure 9. Truth Table Entry Format 

Use set operations such as this with caution to en­
sure that when CUPL expands an expression, the result 
represents the minimum amount of logic needed to 
completely specify the desired operation. To see if a set 
of variables equals a constant, type 

[varl, var2, var3]:constant 
Or to check whether a set of variables lies between 

a range of constants, type 
[varl, var2, var3]:[constant 10 .. constant hi] 

CUPL supports truth tables with the fo~at shown 
in Figure 9. Truth tables are one of the easiest ways to 
express device function, and they are among the most 
easi1?, modified methods of design entry. You specify 
the mput and output variable lists, then specify a one­
to-one assignment from the value of the input variable 
list to the value of the output variable list. You can use 
Don't Care values in the input specifications to make 
design entry easier. An example of truth tables with 
Don't Care values is shown in Appendix A. 

The state machine syntax of CUPL has the general 
form of 

SEQUENCE state var list 
{ PRESENT state_l 

statements; 

PRESENT state n 
statements; 

} 
where SEQUENCE is the state space, and PRESENT 
indicates the device's present state and the function the 
machine should perform based on that state. 

The state machine syntax can be divided into six 
parts: 

1. Unconditional Next Statement (Figure 10): If the 
machine is in state _n, then transition to state JD. 

PRESENT state n 
NEXT state m; 

2. Conditional Next Statement (Figure 11): If the 
machine is in state _nand if expr _1 is true, then transi-

6-97 

PRESENT 'b'Ol 
NEXT 'b'10; 

Figure 10. Unconditional Next State Diagram 

tion to state _ m, else if expr _ n is true, transition to 
state _y, else transition to state z. 
PRESENT state n -

IF expr J NEXT state _ m; 

IF expr _ n NEXT state_y; 
[DEFAULT NEXT state z;] 

3. Unconditional Synchronous Output Statement 
(Figure 12): This statement describes a transition from 
the present· state to a next state with a synchronous out­
put accompanying the transition. 
PRESENT state n 

NEXT state n OUT [!]var ... OUT[!]var; 
4. Conditional S"'*ynchronous Output Statement (Fig. 

ure 13): This statement describes a condition transition 
with its associated synchronous outputs. 
PRESENT state n 

IF expr NEXT state_lOUT [!]var ... OUT [!]var; 

IF expr NEXT state_n OUT [!]var; .. OUT [!]var; 
[DEF AUL T NEXT state· m OUT [!]var;] 

5. Unconditional Asynchronous Output Statement 
(Figure 14): This statement describes the asynchronous 
outputs associated with a specific state. 
PRESENT state n 

OUT [!jVar ... OUT [!]var; 
6. Conditional Asynchronous Output Statement 

(Figure 15): This statement describes a conditional 

~ In 
INPUTA ~PUTA 

8 C) 
PRESENT 'b' 01 

IF INPUTA NEXT 'B'10; 
IF !INPUTA NEXT 'B'll; 

Figure 11. Conditional Next Statement Diagram 



PRESENT ' b' 01 
NEXT 'B'10 OUT Y OUT !Zi 

Figure 12. Unconditional Synchronous Output 
Diagram 

asynchronous output associated with a specific state and 
a specific input. 
PRESENT state n 

IF expr 'OUT [!]var ... OUT [!]var; 

IF expr OUT [!]var ... OUT [!]var; 
[DEFAULT OUT [!]var ... OUT [!]var;] 

CUPL Examples Using Cypress PLDs 
The two examples described here both implement 

the functions of a Thunder~ird's (T-Bird's) tail lights­
including the sequentially flashing directional signals. 
The . examples present this function in both the truth 
table and state machine formats to give you models of 
these CUPL syntax structures. 

Truth Table Example 
The first example shows how to configure a 22VlO 

so that it makes two three-segment T-Bird tail lights 
perform flashing, braking, left turn, right turn, and a 
combination of these functions. 

Consider the truth table example· first. This ex­
ample illustrates both the Truth Table syntax and 
CUPL's pin declarations. Note that when you· use a 
truth table, you must assign all inputs to a variable name 

PRESENT 'b'01 
IF INPUTA NEXT 'B'10 OUT Yi 
IF !INPUTA NEXT 'B'll OUT !Zi 

Figure 13. Conditional Synchronous Output Diagram 

6-98 

PRESENT 'b'01 
OUT Y OUT !Zi 

Figure 14. Unconditional Asynchronous Output 
Diagram 

using the FIELD statement. Similarly, you must assign 
all outputs to a variable name. All the inputs and out­
puts in the body of the truth table must be specified 
without commas, brackets, or variables. The CUPL 3.2 
source code for this example is shown in Appendix A. 

CUPL's simulator verifies that this truth table 
operates correctly. When compiling the source code, 
you must use the -A flag to produce an absolute file for 
the simulator's use. The simulator also needs an input 
file, filename.SI, which contains the test vectors. To 
simulate a design with output going to both the screen 
and a listing file, filename. SO, type 

CSIM -L -v FILENAME 
Appendices B and C list the input and output 

simulation fIles, respectively. 

State Machine Examples with the CY7C330 
The second example performs the same function as 

the first, but is coded in CUPL's state machine syntax 
instead of truth tables. This second example also differs 
in that it employs Cypress's CY7C330. 

The CY7C330 is a high-performance, erasable 
programmable logic device (EPLD). Through the use of 
the user-configurable output macroce11, bidirectional 
I/O capability, input registers, and three separate 

~_X ____ I_N~P~_T_B_Y ____ -J 

~'t!Z 
PRESENT 'b'01 

IF INPUTA OUT Xi 
IF !INPUTB OUT Yi 
DEFAULT OUT Z; 

Figure 15. Conditional Asynchronous Output With 
Default 



clocks, Cypress has tailored the CY7C330's architecture 
to implement high-performance state machines. 

This 28-pin device contains 11 dedicated input 
macrocells, whose input registers can be controlled by 
either of two input-register clocks. The 12 I/O macro­
cells (see Figure 1 in "Using ABEL to Program the 
CY7C330") contain an output register that is controlled 
by a dedicated state-register clock, output-enable con­
trol, an exclusive-or product term, an input register, and 
feedback selection. Each macrocell has between nine 
and 19 product terms you can use for design implemen­
tation. Each pair of macrocells also has a shared input 
multiplexer, which allows you to bury an output register 
while still utilizing the I/O pin as a device input The 
CY7C330's output enable can be controlled by either 
pin 14 or a product term. The device also provides four 
buried registers that can hold state information. 

The T-Bird design requires only four flip-flops 
[QO .. 3] to specify all possible tail-light combinations. 
Note that assignments such as LEFf.D = 'b'OOI are 
not allowed in the main body of the state machine struc­
ture. Instead, all outputs must be handled individually 
with the OUT command The source code for this ex­
ample appears in Appendix D. 

An additional CY7C330 example shows the ex­
tended function of this PLD family. The CY7C330, un­
like the PAL C 22VI0, has more nodes than pins. Thus, 
the additional nodes must be assigned node numbers so 
that they can be referenced in the design. Table 4 lists 
the node names. Numbers 33 to 44 refer to the output 
register associated with each pin. IMUXI refers to the 
shared input multiplexer between pins 28 and 27. 

The second CY7C330 design example is an 
up/down counter with preloadable limits. The lower 
limits are loaded the dedicated input registers on the 
rising edge of the lower-limit clock (lLC), and the 
upper limits are loaded the I/O macrocells' input 
registers on the rising edge of the upper-limit clock 
(ULC). The waveforms for preloading the upper limits 
and lower limits are shown in Figure16. 

When preloading is done, the counter counts up­
ward from the last loaded limit until the other limit is 
reached. The counter then counts in the opposite direc­
tion until reaching the other limit The waveforms for 
counting between the preloaded limits of 4 and 8 are 
shown in Figure17. If the input register on a specific pin 
is not being used, you can reference the output register 
by referring to the I/O pin name. This is shown on pins 
20 and 23. 

The CY7C330's shared input multiplexer is used to 
select an additional input into the product term array 
from either of a macrocell pair's input registers (and 
thus either macrocell's I/O pin). When referencing this 
input-signal name in the equations section, you must use 
the MUX name instead of the actual input signal name. 

Another important CY7C330 feature is the XOR 
product term. During DeMorgan minimization, CUPL 

6-99 

uses the XOR term to invert an equation's polarity 
when an active-Low output signal is specified. Using the 
XOR term in this example greatly reduces the number 
of product terms needed to specify the design. By con­
necting the signal name to the XOR product term, as 
shown in the equations, the equations represent a T 
flip-flop. 

For example, the equations for CNT2 specify that 
the flip-flop toggles (a) when preloading the lower limit, 
for CNT2 not equal to LL2, (b) when preloading the 
upper limit, for CNT2 not equal to UL2, (c) when 
counting UP, for CNTO and CNTI High, and (d) when 
counting DOWN, for CNTO and CNTI Low. It is im­
portant to keep in mind that UP, UEQUAL, and LE­
QU AL are Low-asserted internal signals. 

The part utilization for this design is shown in Ap­
pendix E. The CUPL design file appears in Appendix F. 

CY7C332 State Machine Example 
The last example uses the Cypress CY7C332. This 

versatile combinatorial PLO has 25 array inputs: 13 
dedicated inputs and 12 I/O inputs. Each input has a 
macrocell that you can configure as a register, latch, or 
simple buffer. Outputs have polarity and three-state-

Table 4. Cypress CY7C330 Node Assignments 

PIN NODE 

BRO 29 

BRI 30 

BR2 31 

BR3 32 

28 33 

27 34 

26 35 

25 36 

24 37 

23 38 

20 39 

19 40 

18 41 

17 42 

16 43 

15 44 

IMUXI 45 

IMUX2 46 

IMUX3 47 

IMUX4 48 

IMUX5 49 

IMUX6 50 



~ 
~~~~~~~~~~~~~~~~~~U~S~in~g~C~U~P~L~VVJ=I~th~C~yP~re~S~S~P~L~D=S 

CLK L...ILJI..Jl .JL .JL ..JLJL .JL n n J I J 1
lit LLC
~ ULC
1'1 LLO
~ LU

~ LL3
tl LL3
19' LL4
ILO LL5

1 LL6

1L2 LL7
1t3 LPL I
1'10 ULO
fJ5 UL1
[39 UL2
a6 UL3 u
~? UL4
;J8 UL:5

8 ·UL6
~:5 UL7
~? UPL
its CHTO 1

:5 CHT1 f1
~6 CHT2

? CHT3
9 CHT4 II

............................. : ...
1 LL6
2 LL?

3 LPL
~O ULO
~5 UL1
p9 UL2
~6 UL3
P? UL4
p8 UL:5

8 UL6
:5 UL7

~? UPL n
Ft8CHTO •
~:5~C~H~T~1----r-------~~--~~1 r I r~==~--~
~6 CHT2

? CHT3
9 CHT4

~4 CHT:5
~O CHT6
ra:3 CHT?
~4 UEQUAL
IU UP
~3 PLDOHE J
~2 LEQUAL

4 I'CHTOE
1t6 I'RESET

Figure 17~ . Up Down Counter Operation Waveforms

6-100

o E PT -=--=Ec..:.R"-'M-=---____ -I----i

XOR p~
SUM OF

PRODUCTS

TO INPUT BUFFER

C4

OE (PIN 14)

::>O ___ --+_-t-T""-=O~I 0 PIN

ClKl
ClK2

Figure 19. The CY7C332 I/O Macrocell

control product terms. Figure 18 shows the IJO macro­
cell. Each macrocell has up to 19 product terms to ac­
commodate complex applications.

In this example, the CY7C332 serves as a simple
decoder (Appendix G). The device decodes a group of
address lines to select one of four "windows" in memory.
Inputs are implemented in each of the possible macro­
cell configurations. When reviewing the example code,
it is important to note the use of the .CKMUX,
.LEMUX, .DQ, and .LQ extensions.

CUPL Compilation
The input to the CUPL system is an ASCII text file

with extension .PLD. The various outputs include a

6-101

JED file for programming, a .LST error listing, and a
.DOC equations-and-utilization file. You can compile a
fIle either from the DOS command line, or from the
CUPL menu structure. The· compilation command and
its description are shown in Figure19.

References

This Application Handbook provides a more
detailed explanation of the up/down counter example
using the CY7C330 in "Understanding the CY7C330
Synchronous EPLD." More information on the
CY7C33x family can be found in Cypress's
BiCMOS/CMOS Data Book.

cupl [-flags] [library] [device]
source

Where -flags is the following set of
compiler options

-j JEDEC download format
-n use source filename as JEDEC

filename
-h ASCII-HEX download format
-i HL download format
-a create absolute file (for

simulation purposes)
-1 create listing file
-x create expanded product-terms

in documentation file
-f create fuse plot/chip diagram

in documentation file
-p create PDEF database

interchange format file
-b create Berkeley PLA format file
-d deactivate unused OR terms
-r disable product term merging
-g program security fuse
-u use specified library for

compilation
-s perform logic simulation after

compile
-e create expanded macro

definition file
-x generates a part usage

documentation file (filename.DOC)
-w perform simulation with

waveform output (PC only)
-mO no minimization
-ml quick minimization (default)
-m2 minimization level 2 (Quine-

McCluskey)
-m3 minimization level 3 (Presto)
-m4 minimization level 4 (Espresso)
-c create PALASM format file

Library is the library name including
the path that should be used other
than the default library. This op­
tion is used in conjunction with the -
u flag.

Device is the CUPL mnemonic name of
the device which should be used when
compiling the source file. This op­
tion over rides the name used in the
CUPL source file.

Source is the user-created ASCII
logic description file (filename.
PLD) .

Figure 20. CUPL Compilation

6-102

Name
Partno
Revision
Date
Designer
Company
Location
Assembly
Device

/*

Appendix A. T -Bird Truth-Table CUPL Code for PALC22VI0

TBIRD_TT.PLD;
PALC22V10;
01;
04-08-90;

Joe Designer;
Cypress Semiconductor;
U1;
Test;
P22V10;

This program implements the control signals for the tail lights
of a Thunderbird. The lights have three segments for both the
left and right tail light. The control signal into the device
include a Left and Right signal, a Flash signal (Hazard), a brake
signal, and a ignition signal (IGN). The outputs of the device
are the six separate tail light segments. A Truth Table is used
to specify the control logic.

*/

PIN 1 CLK; /* Clock for Device */
PIN 4 LT; /* Left turn signal */
PIN 5 RT; /* Right turn signal */
PIN 6 BRAKE; /* Brake signal */
PIN 7 FLASH; /* Hazard flash singal */
PIN 8 IGN; /* Ignition input */

PIN 21 RI; /* Right inside tail light
PIN 22 RM; /* Right middle */
PIN 23 RO; /* Right outside */
PIN 16 LI; /* Left inside */
PIN 15 LM; /* Left middle */
PIN 14 LO; /* Left outside */
PIN [17 .. 20]= [QO .. 3]; /* State variable holders */

FIELD INPUTS [IGN,FLASH,LT,RT,BRAKE,LO,LM,LI,RI,RM,RO];
FIELD OUTPUTS [LO.D,LM.D,LI.D,RI.D,RM.D,RO.D];

TABLE INPUTS => OUTPUTS
{

/* Quiescent state */

'B'11000XXXXXX => 'B' 0;
'B'OlXXOXXXXXX => ' B' 0;

/* Flash */

'B'XOXXX111111 => ' B' 0;
'B'XOXXXOOOOOO => 'B'llllll;

6-103

*/

Appendix: A. T -Bird Truth-Table CUPL Code (cont)

/* Brake */

'B'X1001XXXXXX => 'B'llllll;

4'
/* Left turn */

'B'l1lOOOOOXxx => 'B'OOlOOO;
'B'11100001XXX => 'B' 011000;
'B'll100011XXX => 'B'111000;
'B'lllOOlllXXX => 'B'O;

/* Right turn */

'B'l1010XXXOOO => 'B'OOO100;
, B' 11010XXX100 => 'B'OOOl10;
, B' 11010XXX110 => 'B' 000111;
, B' 110l0XXX111 => ' B' 0;

/* Left turn and brake */

'B'11101000XXX => 'B'OOllll;
'B'11101001XXX => 'B'Olllll;
'B'11101011XXX => 'B'111111;
'B'11101111XXX => 'B' 000111;

/* Right turn and brake */

'B'11011XXXOOO => 'B' 111100;
'B'11011XXX100 => 'B'111110;
'B'11011XXX110 => 'B'l11111;
'B'11011XXX111 => 'B'111000;

/* Both turn - light flash in reverse sequence */

'B'l1110000000 => 'B'11111l;
, B'llll0111111 => 'B' 011110;
, B' 11110011110 => 'B'001100;
, B' 11110001100 => 'B'O;

/* Illegal condition - All on */

'B'll11l000000 => 'B'lOOOOl;
, B' 11111100001 => 'B'OlOOlO;
'B'lllllOlOOlO => 'B'OOllOO;
'B'11111001l00 => 'B'O;

6-104

Name
Partno
Revision
Date
Designer
Company
Location
Assembly
Device

Appendix B. T -Bird Simulator Input

TBIRD_TT.PLD;
PALC22V10;
01;
04-08-90;

Joe Designer;
Cypress Semiconductor;
U1;
Test;
P22V10;

ORDER: "INPUTS- , CLK, IGN, FLASH, LT, RT, BRAKE,

VECTORS:

OUTPUTS- ", LO, LM, LI, RI, RM, RO;

$MSG " QUIESCENT STATE - 1";
C11000 LLLLLL
$MSG " QUIESCENT STATE - 1";
C01XXO LLLLLL

$MSG ""i
$MSG " FLASH HIGH";
C 0 0 X X X H H H H H H
$MSG " FLASH LOW";
C 0 0 X X X L L L L L L
$MSG " FLASH HIGH" ;
C 0 0 X X X H H H H H H

$MSG "";
$MSG " BRAKE";
C X 1 0 0 1 H H H H H H

$MSG "";
$MSG " LEFT TURN OFF";
C11100 LLLLLL
$MSG " LEFT TURN 1";
C 1 1 1 0 0 L L H L L L
$MSG " LEFT TURN 2";
C 1 1 1 0 0 L H H L L L
$MSG " LEFT TURN 3";
C 1 1 1 0 0 H H H L L L
$MSG " LEFT TURN OFF";
C 1 1 1 0 0 L L L L L L

$MSG "" i
$MSG " RIGHT TURN 1";
C 1 1 0 1 0 L L L H L L
$MSG " RIGHT TURN 2";
C 1 1 0 1 0 L L L H H L
$MSG " RIGHT TURN 3";
C 1 1 0 1 0 L L L H H H
$MSG " RIGHT TURN OFF";
C 1 1 0 1 0 L L L L L L

6-105

Appendix B. ,T·BirdSimulator Input (cont)

$MSG "";
$MSG " BRAKE AND LEFT TURN 1";
Clll0l LLHHHH
$MSG " BRAKE AND LEFT TURN 2";
Clll0l LHHHHH
$MSG " BRAKE AND LEFT TURN 3";
C 1 1 101 H H H H H H
$MSG " BRAKE AND LEFT TURN OFF";
Clll0l LLLHHH

$MSG "";
$MSG " BRAKE AND RIGHT TURN OFF";
C 1 1 0 1 1 H H H L L L
$MSG " BRAKE AND RIGHT TURN 1";
C 1 1 0 1 1 H H H H L L
$MSG " BRAKE AND RIGHT TURN 2";
C 1 1 0 1 1 H H H H H L
$MSG " BRAKE AND RIGHT TURN 3";
C 1 1 0 1 1 H H H H H H

6-106

Appendix C. T -Bird Simulator Output

CSIM: CUPL Simulation Program
Version 3.2a Serial# MD-32A-6295
Copyright (C) 1983,1989 Logical Devices, Inc.
CREATED Mon Apr 09 09:32:04 1990

LISTING FOR SIMULATION FILE: tbird_tt.si

1 :
2 :
3:
4 :
5:
6 :
7 :
8 :
9 :

Name
Partno
Revision
Date
Designer
Company
Location
Assembly
Device

TBIRD_TT.PLD;
PALC22V10;
01;
04-08-90;

Joe Designer;
Cypress Semiconductor;
U1;
Test;
P22V10;

10:
11:
12:
13:
14:

ORDER: "INPUTS- ", CLK, IGN, FLASH, LT, RT, BRAKE,
OUTPUTS- ", LO, LM, LI, RI, RM, RO;

Simulation Results

QUIESCENT STATE - 1
0001: INPUTS- C11000 OUTPUTS- LLLLLL

QUIESCENT STATE - 1
0002: INPUTS- C01XXO OUTPUTS- LLLLLL

FLASH HIGH
0003: INPUTS- COOXXX OUTPUTS- HHHHHH

FLASH LOW
0004: INPUTS- COOXXX OUTPUTS- LLLLLL

FLASH HIGH
0005: INPUTS- COOXXX OUTPUTS- HHHHHH

BRAKE
0006: INPUTS- CX1001 OUTPUTS- HHHHHH

LEFT TURN OFF
0007: INPUTS- C11100 OUTPUTS- LLLLLL

LEFT TURN 1
0008: INPUTS- C11100 OUTPUTS- LLHLLL

LEFT TURN 2
0009: INPUTS- C11100 OUTPUTS- LHHLLL

LEFT TURN 3
0010: INPUTS- C11100 OUTPUTS- HHHLLL

LEFT TURN OFF
0011: INPUTS- C11100 OUTPUTS- LLLLLL

6-107

Appendix C. T-BirdSimulator Output (cont)

RIGHT TURN 1
0012: INPUTS- Cll010 OUTPUTS- LLLHLL

RIGHT TURN 2
0013 : INPUTS- Cll010 OUTPUTS- LLLHHL

RIGHT TURN 3
0014: INPUTS- Cll010 OUTPUTS- LLLHHH

RIGHT TURN OFF
0015: INPUTS- Cll010 OUTPUTS- LLLLLL

BRAKE AND LEFT TURN 1
0016: INPUTS- Cll101 OUTPUTS- LLHHHH

BRAKE AND LEFT TURN 2
0017: INPUTS- Cll101 OUTPUTS- LHHHHH

BRAKE AND LEFT TURN 3
0018: INPUTS- Cll101 OUTPUTS- HHHHHH

BRAKE AND LEFT TURN OFF
0019: INPUTS- Cll101 OUTPUTS- LLLHHH

BRAKE AND RIGHT TURN OFF
0020: INPUTS- Cll011 OUTPUTS- HHHLLL

BRAKE AND RIGHT TURN 1
0021: INPUTS- Cll011 OUTPUTS- HHHHLL

BRAKE AND RIGHT TURN 2
0022: INPUTS- C11011 OUTPUTS- HHHHHL

BRAKE AND RIGHT TURN 3
0023: INPUTS- CllOll OUTPUTS- HHHHHH

6-108

C~RE3S Using CUPL With Cypress PLDs
~, SEMICCNDUCfOR =;;:;;!;;;=

Name
Partno
Revision
Date
Designer
Company
Location
Assembly
Device

/*

Appendix D. T -Bird State-Machine CUPL Code For CY7C330

TBIRD_SM.PLD;
CY7C330;
01;
04-07-90;

Joe Designer;
Cypress Semiconductor;
U1;
Test;
P7C330;

This program implements the control signals for the tail lights
of a Thunderbird. The lights have three segments for both the
left and right tail light. The control signal into the device
include a Left and Right signal, a Flash signal (Hazard), a brake
signal, and a ignition signal (IGN). The outputs of the device
are the six separate tail light segments. A State Machine is used
to specify the control logic.

*/

PIN 1
PIN 2
PIN 4
PIN 5
PIN 6
PIN 7
PIN 9

PIN 28
PIN 27
PIN 26
PIN 25
PIN 24
PIN 23
PINNODE [29 .. 32]=

FIELD OUTPUTS
OUTPUTS.OE
OUTPUTS.SR
OUTPUTS.SP

CLK; /* Clock for Device */
INCLK; /* Clock for Inputs */
LT; /* Left turn signal */
RT; /* Right turn signal */
BRAKE; /* Brake signal */
FLASH; /* Hazard flash singal */
IGN; /* Ignition input */

RI; /* Right inside tail light
RM; /* Right middle */
RO; /* Right outside */
LI; /* Left inside */
LM; /* Left middle */
LO; /* Left outside */

[QO .. 3]; /* State variable holders */

[LO,LM,LI,RI,RM,RO];
'B'l;
'B' 0;
'B'O;

*/

/* Using the $DEFINE statement to assign variable name to state values */

$DEFINE SO 'B'OOOO
$DEFINE Sl 'B'OOOl
$DEFINE S2 'B'0010
$DEFINE S3 'B'OOll
$DEFINE S4 'B'0100
$DEFINE 85 'B'0101
$DEFINE S6 'B'0110
$DEFINE S7 'B'Olll
$DEFINE S8 'B'1000

6-109

Appendix D. T .. Bird State-Machine CUPL Code (cont)

$DEFINE S9
$DEFINE S10
$DEFINE Sll
$DEFINE S12
$DEFINE S13
$DEFINE S14
$DEFINE S15

'B'1001
'B'1010
'B'101l
'B'1100
'B'll0l
'B'l110
'B'1111

1* The state machine construct where QO .. 3 are the state variables */

SEQUENCE [QO .. 3]
{

1* Initial state all lights off */

PRESENT SO
OUT !LO.D OUT !LM.D OUT !LI.D OUT !RI.D OUT !RM.D OUT !RO.D;
IF (FLASH) NEXT S15;
IF (BRAKE & ! (LT * RT» NEXT S15;
IF (IGN & LT & !BRAKE) NEXT Sl;
IF (IGN & RT & !BRAKE) NEXT S4;
IF (IGN & LT & BRAKE) NEXT S7;
IF (IGN & RT & BRAKE) NEXT Sll;
DEFAULT NEXT SO;

1* Left turn */

PRESENT Sl
OUT !LO.D OUT !LM.D OUT LI.D OUT !RI.D OUT !RM.D OUT !RO.D;
IF (IGN & LT) NEXT S2;
DEFAULT NEXT SO;

PRESENT S2
OUT !LO.D OUT LM.D OUT LI.D OUT !RI.D OUT !RM.D OUT !RO.D;
IF (IGN & LT) NEXT S3;
DEFAULT NEXT SO;

PRESENT S3
OUT LO.D OUT LM.D OUT LI.D OUT !RI.D OUT !RM.D OUT !RO.D
NEXT SO;

/* Right Turn * /

PRESENT S4
OUT !LO.D OUT !LM.D OUT !LI.D OUT RI.D OUT !RM.D OUT !RO.D;
IF (IGN & RT) NEXT S5;
DEFAULT NEXT SO;

PRESENT S5
OUT !LO.D OUT !LM.D OUT !LI.D OUT RI.D OUT RM.D OUT !RO.D;
IF (IGN & RT) NEXT S6;
DEFAULT NEXT SO;

6 .. 110

Appendix D. T-Bird State-Machine Code (cont)

PRESENT S6
OUT !LO.D OUT !LM.D OUT !LI.D OUT RI.D OUT RM.D OUT RO.D;
NEXT SO;

/* Brake and Left Turn */

PRESENT S7
OUT !LO.D OUT !LM.D OUT LI.D OUT RI.D OUT RM.D OUT RO.D;
IF (IGN & LT) NEXT S8;
DEFAULT NEXT SO;

PRESENT S8
OUT !LO.D OUT LM.D OUT LI.D OUT RI.D OUT RM.D OUT RO.D;
IF (IGN & LT) NEXT S9;
DEFAULT NEXT SO;

PRESENT S9
OUT LO.D OUT LM.D OUT L1.D OUT R1.D OUT RM.D OUT RO.D;
IF (IGN & LT) NEXT S10;
DEFAULT NEXT SO;

PRESENT S10
OUT !LO.D OUT !LM.D OUT !L1.D OUT R1.D OUT RM.D OUT RO.D;
IF (IGN & LT) NEXT S7;
DEFAULT NEXT SO;

/* Brake and Right Turn */

PRESENT Sll
OUT LO.D OUT LM.D OUT L1.D OUT R1.D OUT !RM.D OUT !RO.D;
IF (IGN & RT) NEXT S12;
DEFAULT NEXT SO;

PRESENT S12
OUT LO.D OUT LM.D OUT L1.D OUT R1.D OUT RM.D OUT !RO.D;
IF (IGN & RT) NEXT S13;
DEFAULT NEXT SO;

PRESENT S13
OUT LO.D OUT LM.D OUT L1.D OUT R1.D OUT RM.D OUT RO.D;
IF (IGN & RT) NEXT S14;
DEFAULT NEXT SO;

PRESENT S14
OUT LO.D OUT LM.D OUT LI.D OUT !RI.D OUT !RM.D OUT !RO.D;
IF (IGN & RT) NEXT Sll;
DEFAULT NEXT Sll;

/* Brake and/or flash tail lights on */

PRESENT S15
OUT LO.D OUT LM.D OUT LI.D OUT RI.D OUT RM.D OUT RO.D;
IF (BRAKE & ! (RT # LT)) NEXT S15;
DEFAULT NEXT SO;

6-111

S}:CY>= -==-- SEMICOIDUCTOR
Using CUPL With Cypress PLDs

Appendix E. UplDown Counter Part Utilization

CY7C330 Resources Planning Sheet

Project : Up/Down Counter with Limits

Input Input

Register Register Register

Pin Function Clock Function
1 State Clk
2 Clk 1
3 Clk 2
4 LLO 1
5 LLI 1
6 LL2 1
7 LL3 1
8 VSS
9 LL4 1
10 LLS 1
11 LL6 1
12 LL7 1
13 PRELOAD LOW 1
14 COUNTER OE
15 ULI 2 CNTl
16 Reset 1
17 UL3 2 CND
18 UL6 2
19 UL4 2 CNT4
20 CNT6
21 VSS
22 VCC
23 CND
24 ULS 2 CNT5
25 UL7 2
26 UL2 2 CNT2
27 PRELOAD HIGH 2
28 ULO 2 CNTO
HI None Up Equals
H2 None UH Prel'Done
H3 None Down Equals
H4 None Up Count

Notes :Input Register Clock #1 is pin 2
#2 is pin 3

See the Application Note for the meaning of the pin names.
Output Enable = 14 means the asynchronous pin 14 direct enable.
Z means the pin is never active

6-112

Output

Enable

Pin 14
Z
Pin 14
Z
Pin 14
Pin 14

Pin 14
Pin 14
Z
Pin 14
Z
Pin 14
None
None
None
None

of

PTerms

9
19
11
17
13
15

15
13
17
11
19
9
19
11
17
13

~

~~~OID~~~~~~~~~~~~~~~~U~si~n~g~C~U~P~L~VVJ~lt~h~C~yp~r~e~s~s~P~L~D~s 

Name 
Partno 
Revision 
Date 
Designer 
Company 
Location 
Assembly 
Device 

1* 

Appendix F. UplDown Counter CUPL Code for the CY7C330 

COUNTER.PLD; 
PALC22V10; 
01; 
02-25-90; 

Joe Designer; 
Cypress Semiconductor; 
U1; 
COUNTER; 
P7C330; 

This design is an up/down counter with prelaodable limits. The Lower limits 
are loaded into the dedicated input registers on the rising edge of LLC and 
the upper limits are loaded into the input registers found in the 1/0 macrocells 
on the rising edge of ULC. The counter begins counting, when pre loading is done 
upwards until the upper limit is reached, and then, begins counting downward. 
This design, because the equations are already minimized and in sum of products 
form, should be compiled with the -MO flag (no minimization). 

*1 

PIN 1 CLK; 1* Clock used for counting *1 
PIN 2 LLC; 1* Clock for pre loading lower limit *1 
PIN 3 ULC; 1* Clock for pre loading upper limit *1 

PIN [4 .. 7] [LLO .. 3]; 1* Lower limit hold registers */ 
PIN [9 .. 12]= [LL4 .. 7]; 
PIN 13 LPL; 1* Lower limit preload indications *1 

1* 
Counter output registers. Pin assignments are based on the number of 
product terms are available on that pin. 

*1 

PIN 28 CNTO; 1* Also used for Upper limit loading *1 
PIN 15 CNT1; 1* Also used for Upper limit loading *1 
PIN 26 CNT2; 1* Also used for Upper limit loading *1 
PIN 17 CNT3; 1* Also used for Upper limit loading *1 
PIN 19 CNT4; 1* Also used for Upper limit loading *1 
PIN 24 CNT5; 1* Also used for Upper limit loading *1 
PIN 20 CNT6; 
PIN 23 CNT7; 
PIN 18 UL6; 1* Used for Upper limit loading *1 
PIN 25 UL7; 1* Used for Upper limit loading *1 
PIN 27 UPL; 

PINNODE 29 UEQUAL; 1* Upper limit has been reached *1 
PINNODE 30 PLDONE; 1* Preloading has finished *1 
PINNODE 31 LEQUAL; 1* Lower limit has been reached *1 
PINNODE 32 UP; 1* Count direction *1 

PIN 16 !RESET; 1* Reset signal clears all registers *1 
PIN 14 !CNTOE; 1* 1/0 pin OE used for loading upper limit 

6-113 

*1 



PINNODE 45 
PINNODE 46 
PINNODE 47 
PINNODE 48 
PINNODE 49 
PINNODE 50 

ULO.IMUX 
UL2.IMUX 
UL5.IMUX 
UL4.IMUX 
UL3.IMUX 
UL1.lMUX 

ULO 
UL2 
UL5 
UL4 
UL3 
UL1 

UPL.CKMUX 
LPL.CKMUX 
RESET.CKMUX 
[CNTO .. 5] .CKMUX 
[UL6 .. 7] .CKMUX 
[LLO .. 7] .CKMUX 

Appendix F. UplDown Counter Code for CUPL (cont) 

ULO; 
UL2; 
UL5; 
UL4; 
UL3; 
UL1; 

CNTO.IOD; 
CNT2.IOD; 
CNT5.IOD; 
CNT4.IOD; 
CNT3.IOD; 
CNTl. lOD; 

CNTO.lOD; 
CNT2.IOD; 
CNT5.lOD; 
CNT4.IOD; 
CNT3.lOD; 
CNTl.lOD; 

ULC; 
LLC; 
LLC; 

ULC; 1* 
ULC; 1* 
LLC; 1* 

1* Shared input MUX definition *1 
1* Shared input MUX definition *1 
1* Shared input MUX definition *1 
1* Shared input MUX definition *1 
1* Shared input MUX definition *1 
1* Shared input MUX definition *1 

1* These definitions are used to *1 
1* indicate which pin will be fed *1 
1* through the share feedback Mux.*1 

1* These definitions are used to *1 
1* Simulate the design properly *1 

Pin 3 will be used for upper preload 
Pin 3 will be used for upper preload 
Pin 2 will be used for lower preload 

*/ 
*1 
*/ 

[CNTO .. 7] . SR RESET.DQ; 1* Count register will be reset by pin 16 *1 

[CNTO .. 7] .OEMUX CNTOE; 1* OE will be controlled by pin 14 */ 

1* 
Count equations. Note how the use of the XOR terms significantly reduces the 
number of product terms that are needed. This allows this complex design to fit 
fit into the device. 

*1 

CNTO.D 
$ 

* * * * 
CNTl.D = 

$ 

* * * * * 

CNTO 
PLDONE 
!LLO.DQ & LPL.DQ & CNTO 
!CNTO.IOD& ULO & UPL.DQ 
LLO.DQ & LPL.DQ & !CNTO 
CNTO.lOD& !ULO & UPL.DQ ; 

CNTl 
!LLl.DQ & LPL.DQ & !PLDONE & CNT1 
LLl.DQ & LPL.DQ & !PLDONE & !CNT1 
UPL.DQ & !PLDONE & lULl & CNT1 
UPL.DQ & !PLDONE & ULl & !CNTl 
CNTO.IOD& PLDONE & !UP 
!CNTO.IOD& PLDONE & UP 

6-114 



CNT2.D = 
$ 

* * * * * 
CNT3.D = 

$ 

* * * 
* * 

CNT4.D = 

$ 

* * * * * 
CNTS.D = 

$ 

* 
* * * 
* 

CNT6.D = 

$ 

* * * * * 
CNT7.D = 

$ 

!CNT1; 

* * * * * 

Appendix F. UplDown Counter Code for CUPL (cont) 

CNT2 
! LL2 . DQ & LPL. DQ & CNT2 & ! PLDONE 
LL2.DQ & LPL .DQ & ! CNT2 & ! PLDONE 
UPL.DQ & CNT2 & !UL2 & !PLDONE 
UPL.DQ & !CNT2 & UL2 & !PLDONE 
CNTO.IOD& PLDONE & !UP & CNTl 
!CNTO.IOD& PLDONE & UP & !CNT1; 

CNT3 
!LL3.DQ & LPL.DQ & !PLDONE & CNT3 
LL3.DQ & LPL.DQ & !PLDONE & !CNT3 
UPL.DQ & !PLDONE & !UL3 & CNT3 
UPL.DQ & !PLDONE & UL3 & !CNT3 
CNTO.IOD& CNT2 & PLDONE & !UP & CNTl 
!CNTO.IOD& !CNT2 & PLDONE & UP & !CNT1; 

CNT4 
!LL4.DQ & LPL.DQ & !PLDONE & CNT4 
LL4.DQ & LPL.DQ & !PLDONE & !CNT4 
UPL.DQ & !PLDONE & !UL4 & CNT4 
UPL.DQ & !PLDONE & UL4 & !CNT4 
CNTO.IOD& CNT2 & PLDONE & !UP & CNT3 & CNTl 
!CNTO.IOD& !CNT2 & PLDONE & UP & !CNT3 & !CNT1; 

CNTS 
!LLS.DQ & LPL.DQ & CNTS & !PLDONE 
LLS . DQ & LPL . DQ & ! CNT S & ! PLDONE 
UPL.DQ & CNTS & !ULS & !PLDONE 
UPL.DQ & !CNTS & ULS & !PLDONE 
CNTO.IOD& CNT2 & PLDONE & CNT4 & !UP & CNT3 & CNTl 
!CNTO.IOD& !CNT2 & PLDONE & !CNT4 & UP & !CNT3 & !CNT1; 

CNT6 
! LL6 .DQ & LPL .DQ 
LL6.DQ & LPL.DQ 
UPL.DQ & !PLDONE 
UPL.DQ & !PLDONE 
CNTO.IOD& CNT2 & 
!CNTO.IOD& !CNT2 

CNT7 

& ! PLDONE & CNT6 
& !PLDONE & !CNT6 

& CNT6 & !UL6.DQ 
& !CNT6 & UL6.DQ 
CNTS & PLDONE & CNT4 & !UP 
& !CNTS & PLDONE & !CNT4 & 

!LL7.DQ & LPL.DQ & CNT7 & !PLDONE 
LL7.DQ & LPL.DQ & !CNT7 & !PLDONE 
UPL.DQ & !UL7.DQ & CNT7 & !PLDONE 
UPL.DQ & UL7.DQ & !CNT7 & !PLDONE 

& CNT3 & CNTl 
UP & !CNT3 & !CNT1; 

CNTO. IOD& CNT2 & CNTS & PLDONE & CNT6 & CNT4 & !UP & CNT3 & CNTl 
!CNTO.IOD& !CNT2 & !CNTS & PLDONE & !CNT6 & !CNT4 & UP & !CNT3 & 

6-115 



Appendix F. UplDown Counter Code for CUPL (cont) 

/* Direction of count */ 

UP.D 
$ 
41: 

41: 

41: 

UP 
!UEQUAL & !UP & PLDONE 
!LEQUAL & UP & PLDONE 
UPL.DQ & !PLDONE & !UP 
LPL.DQ & !PLDONE & UP; 

/* Has the lower limit been reached */ 

LEQUAL.D LL6.DQ & !CNT6 
41: !LL7.DQ & CNT7 
41: LL7.DQ & !CNT7 
41: LL3.DQ & !CNT3 
41: !LLS.DQ & CNTS 
41: LLS.DQ & !CNTS 
41: !LL1.DQ & CNTl 
41: LLO.DQ & !CNTO 
41: !LL2.DQ & CNT2 
41: !LL4.DQ & CNT4 
41: LL4.DQ & !CNT4 
41: !LLO.DQ & CNTO 
41: LL1.DQ & !CNTl 
41: !LL6.DQ & CNT6 
41: !LL3.DQ & CNT3 
41: LL2.DQ & !CNT2; 

1* Has pre loading finished */ 

PLDONE.D = !LPL.DQ & !UPL.DQ 

/* Has the upper limit been reached */ 

UEQUAL.D !CNT6 & UL6.DQ 
41: !UL7.DQ & CNT7 
41: UL7.DQ & !CNT7 
41: UL3 & !CNT3 
41: CNTS & !ULS 
41: !CNTS & ULS 
41: lULl & CNTl 
41: !CNTO.rOD & ULO 
41: CNT2 & !UL2 
41: !UL4 & CNT4 
41: UL4 & !CNT4 
41: CNTO. rOD & !ULO 
41: ULl & !CNTl 
41: CNT6 & !UL6.DQ 
41: !UL3 & CNT3 
41: !CNT2 & UL2; 

6-116 



Appendix G. Decoder CUPL Code 

Name 
Partno 
Revision 
Date 
Designer 
Company 
Location 
Assembly; 
Device 

DCOLUMNS332.PLD; 
P7C332; 
01; 
10-09-90; 
Joe Designer; 
Cypress Semiconductor; 
332 DCOLUMNSR; 

P7C332; 

1* 
This design is a simple decoder. Agroup of address lines are decoded 
to select one of 4 "windows" in memory. The inputs have been configured 
in each of their possible configurations. Although this application would 
not be used in a real design, this example shows how to configure the 
input registers in each of their possible modes. 

*1 

PIN 1 
PIN 2 
PIN [3 .. 7] 
PIN [9 .. 13] 
PIN 14 
PIN [15 .. 20] 
PIN [23 .. 26] 
PIN 27 
PIN 28 

[!WINDOWO .. 3] .OEMUX 
NOTME.OE 
[AD16 .. 19] .CKMUX 
[AD20 .. 23] .CKMUX 
[AD24 .. 27] .LEMUX 
[AD28 .. 31] .LEMUX 

CLK; 
LTCHEN; 
AD16 .. 20]; 
[AD21. .25]; 
!COE; 
[AD26 .. 31]; 
! [WINDOWO .. 3] ; 
!NOTME; 
!DCDEN; 

COE; 
'b'l; 
CLK; 
!CLK; 
LTCHEN; 
!LTCHEN; 

1* Clock pin *1 
1* Latch enable pin */ 
I*Address lines *1 

1* Output enable *1 

1* Window selection output 
1* No window selected *1 
1* Decode enable *1 

1* OE controlled by pin 14 
1* Notme always on bus *1 
1* Clocked on rising edge 
1* Clocked on falling edge 
1* Latched when high *1 
1* Latched when low */ 

*1 

*1 

*1 
*1 

1* Window selection Equations *1 

WINDOWO 

WINDOW1 

WINDOW2 

DCDEN.DQ & AD31.LQ & AD30.LQ & AD29.LQ & AD28.LQ & 
AD27.LQ & AD26.LQ & AD25.LQ & AD24.LQ & 
AD23.DQ & AD22.DQ & AD21.DQ & AD20.DQ & 
!AD19.DQ & !AD18.DQ & !AD17.DQ & !AD16.DQ; 

DCDEN.DQ & AD31.LQ & AD30.LQ & AD29.LQ & AD28.LQ & 
AD27.LQ & AD26.LQ & AD25.LQ & AD24.LQ & 
AD23.DQ & AD22.DQ & AD21.DQ & AD20.DQ & 
!AD19.DQ & AD18.DQ & !AD17.DQ & !AD16.DQ; 

DCDEN.DQ & AD31.LQ & AD30.LQ & AD29.LQ & AD28.LQ & 
AD27.LQ & AD26.LQ & AD25.LQ & AD24.LQ & 
AD23.DQ & AD22.DQ & AD21.DQ & AD20.DQ & 
AD19.DQ & !AD18.DQ & !AD17.DQ & !AD16.DQ; 

6-117 



WINDOW3 

NOTME 
$ 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

Appendix G. Decoder CUPL Code (cont) 

DCDEN.DQ & AD31.LQ & AD30.LQ & AD29.LQ & AD28.LQ & 
AD27.LQ & AD26.LQ & AD25.LQ & AD24.LQ & 
AD23.DQ & AD22.DQ & AD21.DQ & AD20.DQ & 
AD19.DQ & AD18.DQ & !AD17.DQ & !AD16.DQ; 

'B'l 
DCDEN.DQ & AD16.DQ 
DCDEN.DQ & !AD16.DQ & AD17.DQ 
DCDEN.DQ & !AD31.LQ 
DCDEN.DQ & !AD30.LQ 
DCDEN.DQ & !AD29.LQ 
DCDEN .DQ & !AD28.LQ 
DCDEN.DQ & !AD27.LQ 
DCDEN.DQ & !AD26.LQ 
DCDEN.DQ & !AD25.LQ 
DCDEN.DQ & !AD24.LQ 
DCDEN.DQ & !AD23.DQ 
DCDEN.DQ & !AD22.DQ 
DCDEN.DQ & !AD21.DQ 
DCDEN.DQ & !AD20.DQ; 

6-118 



Using ABEL to Program the Cypress 22VIO 

Introduction 

This application note presents a compilation of ex­
amples using the popular PALC22V10 programmable 
logic device. The examples demonstrate the 22V10's ad­
vanced features and some of the high-level logic 
description techniques of the ABEL programming lan­
gauge. 

Each of the first seven. examples illustrates a specific 
22V10 feature and lists the ABEL programming lan­
guage statements necessary to implement the feature. 
The ABEL files also contain test vectors that exercise 
the feature. The remaining examples describe complete 
22V10 designs that combine many of the individual fea­
tures. All the examples have been tested, and you can 
obtain the code for them on floppy disk from· Cypress 
Semiconductor. The design examples provided are: 

Asynchronous reset/synchronous preset from single 
inputs 

Asynchronous reset/synchronous preset from 
product terms 

Asynchronous reset/synchronous preset used to 
load predetermined non-zero values, employing is­
type statements 

Output-enable control from a single input 

Output-enable control from product terms 

Using 16 product terms-an 8-bit identity com­
paritor 

Using feedback to realize more than 16 product 
terms in a 9-bit single-output identity comparitor 

Bidirectional I/O-bus interface with answer-back 

10-bit address generator/multiplexer 

Three state machines in one 22V10 

You can use these examples as a design reference. They 
are excellent tools for designers new to programmable 
logic as well as for veteran PLO users. Add the files to 
your ABEL source-file library, and include any part of 
the ftleS in your own designs. You can use the files as a 
template by editing them using any text editor in the 
non-document mode. Conversion to the CUPL or 
PLO ToolKit ToolKit programming language is easily 
accomplished due to these languages' syntactical 
similarity. For conversion to other languages, consult 
your user's guide. 

Notes on the ABEL Programming Language 

Before examining the application examples, consider an 
introduction to the structure and syntax of the ABEL 
programming language. A rudimentary understanding 
of the ABEL language is necessary to fully appreciate 
the example files included here. 

An ABEL source file provides the information neces­
sary to describe a PLO design's logical operation. You 
can see these files' keywords and structure in any of the 
examples. The ABEL language processor processes 
source files to generate a JEDEC programming file and 
design documentation. The language processor also 
uses test vectors, which you generate as part of the 
source file, to test the design's function. 

ABEL Design Entry Methods 

6-119 

The ABEL programming language offers three methods 
for defming the logical operation of a given design. 
These methods are: 

Boolean Equation 

Truth table 

State diagram 



A source file can include any or all of these design entry 
methods. The following sections describe the Boolean 
equation, truth table, and state diagram entry· methods 
as well as the operators and notation conventions used 
in the source files. 

ABEL Operators and Notation Conventions 

In addition to the standard AND and OR logical 
operators, ABEL supports several high-level logic 
definitions. ABEL interprets "+" and "*,, signs-which 
in standard Boolean notation stand for OR· and AND 
operations, respectively-to indicate arithmetic addition 
and multiplication. This convention greatly simplifies 
the design of counters and ALU logic. Table 1 shows 
the logical operators ABEL supports. The labels A, B, 
and C in the examples can be either individual pins or a 
set of pins, as defined in the source file. 

Note that you can use these operators with operands of 
more than one bit on a bit-by-bit basis. For example, 
logically ORing hexidecimal values of 8 and 2 yields 
hexidecimal value A: 

"h08 # "h02 = "hOA 

Specifying Alternate Number Bases 

The "h symbols in the example above instruct the lan­
guage processor to interpret the value following the 
symbol as base 16 (hex). The default number base in 
ABEL is decimal, but you can change the base for in­
dividual expressions with "b for binary, "0 for octal, 
"d for decimal, or "h for hexidecimal. You can also 
use the "@ radix" command to change the default num­
ber base to binary, octal, decimal, or hexidecimal for all 
subsequent statements in a source document. All the 
source files in. this application note include the com­
mand "@ radix 16" to set the number base to 
hexidecimal. 

Table 1. ABEL Logical Operators 

Qp~[atQ[ Definition Example 

NOT: ones compliment C= !A; 

& AND C= A&B; 

# OR C= A# B; 

$ XOR: exclusive OR C= A$B; 

!$ XNOR: exclusive NOR C= A!$B; 

Arithmetic Operators 

ABEL provides arithmetic operators to allow for easy 
implementation of math and shifting functions. Table 2 
lists the arithmetic operators supported by ABEL. 

Shifting operations are unsigned, and zeros are shifted 
into the side of the expression opposite the direction of 
the shift. Also note that ABEL interprets the symbol "1" 
as an unsigned division operation. Other programmable 
logic }anguages use this symbol to indicate inversion. 
The symbol "%" gives the remainder of the division 
operation performed by "/". 

Relational Operators 

Relational operators perform various comparisons of 
elements in an expression and yield a Boolean true or 
false based on the result of the comparison. These 
operators greatly simplify the description of magnitude 
comparisons and reduce an identity comparison to a 
single statement. All relational operations are unsigned; 
take care when you represent negative numbers in twos 
compliment. Table 3 lists the relational operators. 

Relational operators are frequently used where ranges 
of values cause a given output. For example, if you want 
to decode an active-low chip-select line (CSl) for any 
address from "h2000 to "h2FFF, you can write the 
logic for this output in a single line: 

6-120 

!CSt = (ADD >= "h2000) & (ADD<="h2FFF);. 

Assignment Operators 

Note that all example operations shown so far are for 
purely combinatorial outputs. The structure for com­
binatorial equations is: 

OUTPUT(s) = Expression(s) and/or Condition(s); 

Table 2. ABEL Arithmetic Operators 

Qp~ratQr D~finitiQn ~ 
2s complement C= -A; 

subtraction C= A-B; 

+ addition C= A+ B; 

* multiplication C= A *B; 

integer division C= AlB; 

% remainder C= A%B; 

< shift left C= A< 2; 

(shift left 2 bits) 



Table 3. ABEL Relational Operators 

Qp~[ato[ Definition ~ 
equal C=(A==B); 

!= not equal C=(A!=B); 

< less than C=(A<B); 

> greater than C=(A>B); 

< = less than or equal C=(A<=B); 

The assignment operator is the U=U sign, meaning that 
OUTPUT(s) combinatorially follow the evaluation of 
the expressions and conditions. If an output or set of 
outputs is registered (changing synchronously with the 
clock's rising edge), use the assignment operator u:=u. 
The structure of a registered equation, shown below, is 
essentially the same as a combinatorial equation but 
with this assignment operator: 

OUTPUT(s) := Expression(s) and/or Condition(s); 

Operator Priority 

Operators in an expression are evaluated using a 
priority hierarchy. If two or more operators with equal 
priority appear in a single expression, they are 
evaluated in the order listed, from left to right within 
the expression. Table 4 lists the priority of all operators. 

You can use parentheses as in normal mathematics to 
alter the order of evaluation. ABEL performs the 
operation in the innermost parentheses ftrst. 

Special Constants 

ABEL supports several special constants that ease the 
writing of equations and test vectors. Table 5 lists these 
special constants and their functions. 

To use several of these constants in an abbreviated form 
and enable the symbols Hand L to represent binary 
Ones and Zeros, place the following statement in the 
labels section of the source document, as in the ex­
amples in this application note: 

H,L,X,C,z = 1,O,.X.,.C.,.Z.; 

Logic Reduction Levels 

At the beginning of every source me in this brief ap­
pears the statement 

flag' -r4' 

6-121 

Table 4. ABEL Operator Priority 

HighestPriority 

- Twos compliment, IlQ1 subtraction 

! Inversion, ones compliment 

Second Highest Priority 
< Shift left 

> Shift right 

* Multiply 

/ Unsigned division 

% Remainder from division 

Third Highest Priority 

+ Add 

- Subtract 

# OR 

$ XOR 

!$ XNOR 

Lowest Priority 

All Relational Operators 
(==, !=, <, >, <=, >=), 

This statement signals the language processor to use 
logic reduction level 4. In cases where you need 
propagation delays of a speciftc length, use the state­
ment 

flag '-rO' 

Table 5. ABEL Special Constants 

Special Constant Definition 

.C. Clock: causes a low-high-Iow 
transition at a selected input for 
testing. 

.F. Floating input or output 

.K. Same as .C., but high-low-high 

.P. 

.x. 

.Z. 

Register preload 

Don't care condition 

Tests input or output for high 
impedance 



which tells the language processor to use no reduction. 
ABEL provides four logic reduction levels, as listed in 
Table 6. 

ABEL Design Entry: Boolean Equations 

Boolean equations are the most common method of 
design entry. To use them, you give a name to each pin 
required for the application. If a design requires the 
special functions available in many devices (i.e., reset 
and preset), you also identify and name the nodes that 
control these functions. (The 22VlO has two such 
nodes: asynchronous reset at node 25 and synchronous 
preset at node 26.) Groups of pins and/or frequently 
used constants can also be given labels to facilitate writ­
ing equations. 

Following the keyword EQUATIONS in the source me, 
you describe the required logic with Boolean equations 
that use the pin, node, and/or label names. 

If an output has an output-enable term associated with 
it, you can write an equation for that term by using the 
pin name with the extension II .OE" followed by the 
equation for the term. An example of this is: 

Level 
o 

2 

3 

4 

OUT1.0E = !RD & (INPUTS == 0); 

Table 6. ABEL Logic Reduction Levels 

Statement 
flag '-rO' 

flag '-rI' 

flag' -r2' 

flag '-r3' 

flag'-r4' 

Description 
No reduction. All equations 
must be in sum-of-products 
form. 

Equations are expanded to 
sum-of-products form and 
reduced with standard Boolean 
algebra. This is the default. 

Includes level 1 reduction plus 
the PRESTO algorithm. This 
process is iterative, so process­
ing time is increased sig­
nificantly. 

The PRESTO algorithm is per­
formed on a pin-by-pin basis. 
This is faster than standard 
PRESTO reduction. 

This reduction level uses the 
ESPRESSO reduction algo­
rithm. 

This statement enables OUTl if pin RD is Low and the 
group of pins (can be any number of pins) labeled IN­
PUTS are all Low. If these conditions are not met, the 
output remains three-stated. 

The 22VlO has a separate combinatorial output-enable 
product term for each I/O pin. The output enable is 
therefore easily controlled by either a single selectable 
pin or from a product term. To make an output enable 
synchronous or to expand the number of product terms 
available, you can dedicate an I/O macrocell to realize 
the appropriate logic; the macrocell's output feeds back 
to control the output-enable product term. This method 
causes additional propagation delay, however, due to 
the extra pass through the AND/OR array. 

The use of the enable equations is purely optional; in 
the absence of these equations, the ABEL language 
processor automatically enables any I/O pin defined in 
the Boolean equations as an output and disables any 
I/O specified as an input. The outputs appear on the 
left side of the equations. 

This application note outlines the operators and syntax 
of all Boolean equations. You can find additional infor­
mation in the ABEL Language Reference and User's 
Guide supplied with the ABEL software. 

ABEL Design Entry: Truth Tables 

A truth table is a list of input combinations and the 
resulting outputs. Normally, the inputs are listed in as­
cending binary order from the minimum value to the 
maximum value. This format takes all possible input 
situations into account and prevents any undefined 
input combinations from producing undesirable outputs. 

The keyword TRUTH_TABLE marks the beginning of 
the table within the source file. Immediately following 
the keyword, you list the input(s) and output(s) labels in 
parentheses with an arrow (a minus sign and a greater 
than sign "_>") between the inputs and outputs. If you 
specify more than one input or output, you must enclose 
the set in square brackets "[ l". 

Figure 1 shows the statements required to implement a 
3-to-8-line decoder. Note the use of the set identifier 
Q7 .. QO. This can be written out as 
Q7,Q6,Q5,Q4,Q3,Q2,Ql,QO. 

The main advantage of the truth table entry method lies 
in writing test vectors. You can block-copy the entire 
truth table to the source fIle's test-vector section. 

6-122 

Any design specified by a truth table can also be 
entered as Boolean equations. For example, the output 



Q6 in the above example could be represented by the 
Boolean equation: 

Q6 = 12 & 11 & no; 

ABEL Design Entry: State Diagrams 

One of the most powerful features of the ABEL 
programming language is its ability to compile state 
diagrams directly. By allowing direct state-diagram 
entry, ABEL frees you from the tedious task of generat­
ing Boolean equations with the expressions and condi­
tions that cause each possible transition for each in­
dividual state register. 

You can implement several state machines in a single 
device, and you might have a set of outputs for each 
state machine. The state diagram for each set of outputs 
begins with the keyword STATE_DIAGRAM, followed 
by the pin names or labels that make up the state out­
puts. You then list each state. followed by any opera­
tions to be performed while in that state and at least 
one transition statement. A transition statement can be 
in any of three forms: 

GOTO, for unconditional transitions to the next 
state 

IF .. THEN .. ELSE , for two-way branching 

CASE .. ENDCASE·, for N -way branching 

You can chain IF .. THEN .. ELSE statements to achieve 
n-way branching. but the CASE .. ENDCASE construct 
accomplishes the same objective with less typing. By 
using labels for state outputs and condition inputs, you 
can implement even the most complex designs with 
ease. 

truth_table 

([12,11,10] -> [Q7 .. QO]) 

[0,0,0] -> [0,0,0,0,0,0,0,1]; 

[0,0,1] -> [0,0,0,0,0,0,1,0]; 

[0,1.0] -> [0,0,0,0,0,1,0,0]; 

[0,1,1] -> [0,0,0,0,1,0,0,0]; 

[1,0,0] -> [0,0,0,1,0,0,0,0]; 

[1,0,1] -> [0,0,1,0,0,0,0,0]; 

[1,1,0] -> [0,1,0,0,0,0,0,0]; 

[1,1,1] -> [1,0,0,0,0,0,0,0]; 

Figure 1. Truth Table for 3:8 Line Decoder 

As an example, consider a bidirectional, 3-bit counter 
with inputs UP and DOWN and outputs Q2, Q1, and 
QO. If UP or DOWN is High, the counter counts in the 
direction specified. If both UP and DOWN are High, 
the counter holds the current count. If both UP and 
DOWN are Low, the counter resets to zero. In addi­
tion, output MAX is High if the counter is in the UP 
mode and the count equals 7 or if the counter is in the 
DOWN mode and the count equals zero. Convenient 
labels for implementing this design appear in Figure 2, 
and Figure3 lists the source code for the state diagram. 

You can add another statement, WITH .. ENDWITH, to 
any transition statement to set additional outputs to any 
given state when the transition preceding the 
WITH .. ENDWITH statement is executed. In the pre­
vious state diagram, for example, assume the transition 
from state S5 to S6 is to set a pin called FLAG. To 
achieve this result, the S5 diagram is modified as shown 
in Figure4. 

P ALC22VIO Design Examples 

The design examples present~d here exploit the various 
features of the 22V10 PLD. The ftrst seven designs 
focus on speciftc features and illustrate the techniques 
for using and testing these features. The last three 
designs combine several of the features to demonstrate 
the device's versatility. It is the 22VlO's tremendous ver­
satility that has made it the most popular of all Cypress 
PLD s. Each of the last three designs, if implemented in 
SSI and MSI TTL, would require from seven to 13 
packages. 

Asynchronous Reset/Synchronous Preset 

As shown in Figure5, this example defmes pins 2 and 3 
to be the asynchronous reset and synchronous preset in­
puts, respectively. Eight inputs deftned as 
INPUT7 .. INPUTO are given the label INPUTS. Eight 

"labels 

6-123 

OUTS = [Q2 .. QO]; 

MODE = [UP,DOWN]; 

CNTUP = "b10; CNTDWN = "bOI; 

RST = "bOO; HOLD = "bll; 

SO "bOOO; Sl = "b001; S2 = "bOlO; 

S3 "bOll; S4 = "b100j S5 = "blOI; 

S6 = "bllO; S7 = "blllj 

Figure 2. State Machine Labels for Counter Example 



state_diagram OUT 

state SO: MAX. = (MODE == CNTDWN); 
case (MODE = = CNTUP): SI; 

(MODE = = CNTDWN): S7; 
(MODE = = HOLD) : SO; 
(MODE = = RST) : SO; 

endcase; .. 

state SI : MAX = 0; 
case (MODE = = CNTUP) : S2; 

(MODE = = CNTDWN) :SO; 
(MODE = = HOLD) : SI; 
(MODE = = RST) : SO; 

endcase; 

state S2 : MAX = 0; 
case (MODE = = CNTUP) : S3; 

(MODE = = CNTDWN):SI; 
(MODE = = HOLD)' : S2; 
(MODE = = RST) : SO; 

endcase; 

state S3 : MAX = 0; 
case (MODE = = CNTUP): S4; 

(MODE = = CNTDWN) :S2; 
(MODE = = HOLD) : S3; 
(MODE = = RST) : SO; 

endcase; 

state S4 : MAX = 0; 
case (MODE = = CNTUP): S5; 

(MODE = = CNTDWN): S3; 
(MODE = = HOLD) : S4; 
(MODE = = RST) : SO; 

endcase; 

state S5 : MAX = 0; 
case (MODE = = CNTUP) : S6; 

(MODE = = CNTDWN): S4; 
(MODE = = HOLD) : S5; 
(MODE = = RST) : SO; 

endcase; 

state S6 : MAX = 0; 
case (MODE = = CNTUP): S7; 

(MODE = = CNTDWN): S5; 
(MODE = = HOLD) : S6; 

. (MODE = = RST) : SO; 
endcase; 

state S7 :MAX = (MODE == CNTDWN); 
case (MODE = = CNTUP): SO; 

(MODE = = CNTDWN): S6; 
(MODE = = HOLD) : S7; 
(MODE = = RST) : SO; 

endcase; 

Figure 3.· ABEL Source Code for Counter Example 

corresponding outputs, OUTPUT7 .. OUTPUTO, are 
labeled OUTPUTS. Note how the use of labels enables 
the logic for all eight outputs to be written in a single 
equation. The equation: 

OUTPUTS := INPUTS; 

causes the data at INPUTS to be registered in OUT­
PUTS on the· rising edge of CLK. The . assignment 
operator ":=" indicates that the operation is clocked 
(registered). The 22VI0 clock input is, by definition, pin 
1. 

The pin assignments section identifies the predefined 
node numbers for the reset and preset functions. The 
equations for the nodes, in terms of the selected pins, 
are then written in the file's equations section. 

Asynch.Reset and. Synch. Preset from 
Product Terms 

This example (Figure 6) implements an asynchronous 
reset and synchronous preset, as does the example in 
Figure 5. In this case, however, product terms activate 
the reset and preset nodes. Specifically,. the reset node 
is High (active) only when INPUTS equal 55 hex. 
Similarly, INPUTS equaling AA hex control the preset 
term. Note how the test vectors distinguish and test the 
synchronous versus the asynchronous operations. 

Reset and Preset Load Predetermined Values 

The examples in Figures 5 and 6 use the macrocells' 
positive, registered output for the pins represented by 
OUTPUI'S. Under this arrangement, the asynchronous 
reset causes all outputs to go Low and the synchronous 
preset causes them to go High. 

This example demonstrates how you can use istype 
statements in the pin assignments section to set any pat­
tern of Ones and Zeros, either asynchronously with 
reset or synchronously with preset. To understand this 
operation, note in Figure7 that the 22VI0 provides four 

state S5 : MAX = 0; 
case (MODE = = CNTUP) : S6 

with FLAG:= 1; 
endwith 

. (MODE = = CNTDWN): SO; 
(MODE = = HOLD) : S5; 
(MODE = = RST) : SO; 

endcase; 

Figure 4. WITH •• ENDWITH Example 



~RESS Using ABEL to Program the 22VIO 
~, SEMICCNDUCTOR =================;;;;;;;======;;;;;;;======;;;;;; 

"Cypress Semiconductor Corp. 11/10/1987 

"Module name test 

flag '-r3' "Logic Reduction level r3, fast PRESTO 

title ' Asynchronous Reset / Synchronous Preset Control From A Single Input 

Ul device 'P22VI0'; 

CLK 

RST 

PRE 

INPUT7,INPUT6,INPUT5,INPUT4 

INPUT3,INPUT2,INPUTl,INPUTO 

OUTPUTI ,OUTPUT6,OUTPUT5,OUTPUT4 

OUTPUT3,OUTPUT2,OUTPUTl,OUTPUTO 

reset,preset 

H,L,X,C,Z 

INPUTS 

OUTPUTS 

@radix 16; 

equations 

1,0,.X.,.C.,.Z.; 

[INPUT7 .. INPUTO]; 

[OUTPUTI .. OUTPUTO]; 

pin 1; 

pin 2; 

pin 3; 

pin 4,5,6,7; 

pin 8,9,10,11; 

pin 23,22,21,20; 

pin 19,18,17,16; 

node 25,26; 

"Device designator and type 

"Pin assignments 

"Clock input 

"Defines async reset pin 

"Defines sync preset pin 

"Pre-assigned node #s 

"Labels 

"This command forces the default 

"number base to HEX. 

reset 

preset 

OUTPUTS .-

!RST; 

PRE; 

INPUTS; 

"Async reset when pin RST low 

"Sync preset if pin PRE is high during the rising edge of CLK 

'The := indicates that this a clocked (synchronous) operation 

test_vectors 

"Test reset and preset 

([CLK,RST,PRE,INPUTS] -> OUTPUTS) 

[C,R,L,55] -> 55; 

[L,H,L,OAA] 

[C,H,L,OAA] 

[C,H,L,OFF] 

[L,L,L,OFF] 

[C,H,H,O] 

end Rst_Prel 

-> 

-> 

-> 

-> 

-> 

55; 

OAA; 

OFF; 

0; 

OFF; 

"Test outputs by clocking in 55 

"Test registers hold old data (55) 

"Clock AA (leading zero necessary for hex digits A-F) 

"Set all outputs high (FF) 

"RST low asynchronously 

"PRE high synchronously 

Figure 5. ResetlPreset from Single Pins 

6-125 



end 

"Cypress Semiconductor Corporation, 11110/1987 

"Module name test 

flag' -d' "Logic Reduction level r3, PRESTO algorithm by pin 

title 'Asynchronous Reset / Synchronous Preset Example 2, Reset and Preset generated from Product terms' 

Ul device 'P22VI0'; 

CLK 

"************************************************************. 
"* This Example will Asynchronously Reset all registers when the inputs 

"* Synchronously Set all registers when the inputs equal AA 

"************************************************************. 
"Device designator and type 

"Pin assignments 

pin 1; "Clock input 

INPUT7,INPUT6,INPUT5,INPUT4 

INPUT3,INPUT2,INPUT1,INPUTO 

OUTPUT7 ,OUTPUT6,OUTPUT5,OUTPUT4 

OUTPUT3,OUTPUT2,OUTPUTl,OUTPUTO 

pin 4,5,6,7; 

pin 8,9,10,11; 

pin 23,22,21,20; 

pin 19,18,17,16; 

reset,preset 

H,L,X,C,Z 

INPUTS 

OUTPUTS 

node 25,26; "Pre-assigned node #s 

1,0,.X.,.c.,.z.; 

[INPUT7 .. INPUTO]; 

[OUTPUTI .. OUTPUTO]; 

"Labels 

@radix 16 ; "command forces the default number base to be HEX 

equations 

reset 

preset 

OUTPUTS 

test_vectors 

([CLK,INPUTS] 

[C,O] -> 

[L,OFF] -> 

[C,OFF] -> 

[L,55] -> 

[L,OAA]-> 

[C,OAA]-> 

Rst_Pre2 

-> 

0; 

0; 

OFF; 

0; 

0; 

OFF; 

(INPUTS==55); 

(INPUTS==OAA); 

INPUTS; 

"Async reset when input = 55 

"Sync preset if inputs = AA during the rising edge of CLK 

'The:= indicates that this a clocked (synchronous) operation 

OUTPUTS) 

"Test reset and preset 

"Test outputs by clocking in 0 

"Test registers hold old data (0) 

"Clock in FF (note leading zero for hex digits A thru F) 

"RST low asynchronously on inputs = 55 

"No change, PRE is synchronous 

"PRE acts synchronously on inputs = AA 

Figure 6. Reset I Preset From Product Terms 

6-126 



paths from the macrocells to the I/O pins: the Q and 
Q\ outputs of the macrocell's register and the true and 
inverted combinatorial terms that bypass the register. 
All these paths pass through a 4:1 multiplexer, which is 
controlled by architecture bits CO and Cl. 

The istype statements allow you to select which channel 
of the multiplexer is routed to the I/O pin. Table 8 
shows the choices available. 

An additional parameter in the istype statement allows 
you to select feedback paths. The choices are 
feed_term, feed_reg, and feedyin. An example show­
ing this parameter is: 

OUTPUT6 istype 'pos,com,feed yin'; 

Specifying a feedback path for the 22V10 is redundant, 
however. This is because the 22V10 selects a feedback 
path using the same architecture bit (C1) that controls 
the selection of registered or combinatorial outputs. 
The 22V10 does not offer a feedback path from product 
terms. 

Table 8. Macrocell Configuration Selections 

.cL co.. Configuration istllle Values 

o 

o 

o 

o 

Reg,Active Low 'neg,reg' 

Reg,Active High 'pos, reg' 

Comb,Active Low 'neg, com' 

Comb,Active High 'pos, com' 

ASYNC RESET 
GLOBAL CLOCK 

SYNC PRESET 
OUTPUT ENABLE 

PTERM 
-L-

SUM OF s 
D q 

PRODUCTS QB 
R 

~ 
FEEDBACK o I 0 

TO ARRAY s 1 

T 
C 1 

Note from the test vectors in Figure 8 that the use of 
istype statements does not affect the outputs' polarity as 
described by the Boolean equations. Conversely, if you 
define an output as active Low through a Boolean equa­
tion, as in: 

!OUTPUT6 := INPUT6; 

the state of the register is inverted for normal operation 
and for reset and preset conditions. 

A final note on using istype statements in conjunction 
with the reset node: The 22V10 resets when Vee is first 
applied to the chip. Istype statements and active-Low 
Boolean equations give you the opportunity to force the 
device's outputs to any desired state upon power up. 

Output Enable Controlled by One Pin 

The example in Figure 9 defines pin 2 as the output 
enable pin for all outputs. Note the use of special con­
stant" .Z." which is redefined as simply "Z" in the file's 
labels section. The constant is used in the test vectors to 
verify that the outputs are three-stated (high-Z) under 
the appropriate conditions. 

Product-Term-Based Output Enable 

While Figure 9 illustrates gang control of all output 
enables via an input pin, FigurelO shows several outputs 
with individual output enables generated from separate 
product terms. 

As with reset and preset, you can make output enables 
synchronous or extend the number of product terms by 
using a macrocell to generate the necessary logic and 

I 10 ~~ TO 
r- 0 

Ii c1~ I 

co 

PIN 

Figure 7. The PALC22VIO Macrocell 

6-127 



module Rst_ Pre3 
flag '-r3' 

"Cypress Semiconductor Corporation, 11/10/1987 

"Module name test 
"Logic Reduction level r3, PRESTO algorithm by pin 

end 

title' Asynchronous Reset/Synchronous Preset Example 3, Using Reset and Preset to Load to Predetermined States 

"************************************************************************ 
"* This Example will Asynchronously Load a Value of 55 and Synchronously Load 

"* Value of AA by using 'istype' statements to invert alternating output registers 
* 
* 

"************************************************************************ 
"Device designator and type 

Ul device 'P22VI0'; 

"Pin assignments 

CLK pin 1; "Clock input 

RST pin 2; "Defines async reset pin 

PRE pin 3; "Defines sync preset pin 

INPUT7,INPUT6,INPUT5,INPUT4 

INPUT3,INPUT2,INPUTl,INPUTO 

OUTPUT7,OUTPUT6,OUTPUT5,OUTPUT4 

OUTPUT3,OUTPUT2,OUTPUT1,OUTPUTO 

OUTPUT7 ,OUTPUT5,OUTPUT3,OUTPUTI 

OUTPUT6,OUTPUT4,OUTPUT2,OUTPUTO 

reset,preset 

pin 4,5,6,7; 

pin 8,9,10,11; 

pin 23,22,21 ,20; 

pin 19,18,17,16; 

istype 'pos,reg'; "Odd regs positive logic 

istype 'neg,reg'; ''Even regs negative 

node 25,26; "Pre-assigned node #s 

H,L,X,C,Z 

INPUTS 

OUTPUTS 

@radix 16; 

equations 

reset 

preset 

OUTPUTS 

test_vectors 
.-

"Labels 

1,0,.x.,.C.,.Z.; 

[INPUT7 .. INPUTO]; 

[OUTPUT7 .. OUTPUTO]; 

!RST; 

PRE; 

INPUTS; 

"command forces the default number base to be HEX 

"Async reset when pin RST low 

"Sync preset if pin PRE is high during the rising edge of CLK 

"The := indicatese that this a clocked (synchronous) operation 

([CLK,RST,PRE,INPUTS] -> OUTPUTS) 'Test Reset and Preset 

[C,H,L,55] -> 

[L,H,L,OAA] -> 

[C,H,L,OAA] -> 

[C,H,L,OFF] -> 

[L,L,L,OFF] -> 

[C,H,H,O] 

Rst Pre3 

55; 

55; 

OAA; 

OFF; 

55; 

-> OAA; 

"Test outputs by clocking in 55 

"Test registers hold old data (55) 

"Clock in AA (note the leading zero necessary for hex digits A thru F) 

"Set all outputs high (FF) 

"RST low asynchronously (bits 6,4,2,0 inverted) 

"PRE high synchronously (bits 6,4,2,0 inverted) 

Figure 8. Resetting and Presetting to Predetermined Values 

6-128 



~ 

£ ~RESS Using ABEL to Program the 22VIO 
~~ ~COID~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

"Cypress Semiconductor Corporation November 10, 1987 

module Out_Enable 1 "Module name 

end 

flag' -r3' "Logic Reduction level r3 

title 'Output Enable from Single Input Example' 

"*********************************************** 
"* This example demonstrates the Output Enable, 

"* Function being controlled by a single input 
* 
* 

"*********************************************** 
U1 device 'P22V10'; 

CLK 

OE 

"Device designator and type 

"Pin assignments 

pin 1; 
pin 2; 

"Clock input 

"Output enable input 

INPUT7,INPUT6,INPUT5,INPUT4 

INPUT3,INPUT2,INPUT1,INPUTO 

OUTPUT7 ,OUTPUT6,OUTPUT5,OUTPUT4 

OUTPUTI,OUTPUT2,OUTPUT1,OUTPUTO 

reset,preset 

pin 4,5,6,7; 

pin 8,9,10,11; 

pin 23,22,21,20; 

pin 19,18,17,16; 

node 25,26; "Pre-assigned node #s 

H,L,X,C,Z 

INPUTS 
OUTPUTS 
OUTENA 

OUTENB 

@radix 16; 

equations 

OUTENA 

OUTENB 

OUTPUTS 

test_ vectors 

([CLK,OE,INPUTS] 

[C,L,55] -> 

[L,H,OAA] -> 

[L,L,OAA] -> 

[C,L,OAA] -> 

[C,H,OFF] -> 

[L,L,x] -> 

Out Enable1 

"Labels 
1,0,.x.,.C.,.Z.; 

[INPUT7 .. INPUTO]; 
[OUTPUT7 .. OUTPUTO]; 

[OUTPUT7 .OE,OUTPUT6.0E,OUTPUT5.0E,OUTPUT4.0E]; 

[OUTPUT3.0E,OUTPUT2.0E,OUTPUTl.OE,OUTPUTO.OE]; 

10E; 

10E; 

INPUTS; 

"This command forces the default number base to be HEX 

"Outputs enabled only if pin OE is low 

"Test output enables 

-> OUTPUTS) 

55; "Test outputs by clocking in 55 (outputs enabled) 

Z; "Test outputs go to high-Z state on OE high 

55; "Test registers hold old data (55) 

OAA; "Clock in AA (note the leading zero necessary for hex digits A thru F) 

Z; "Set all outputs high (FF) but tri-stated 

OFF; "Tum outputs on and read FF 

Figure 9. Output Enable Controlled by a Single Input 

6-129 



module Out_ Enable2 

"Cypress Semiconductor Corp. 11/10/1987 

"Module name 

flag' -r3' "Logic Reduction level r3 

title 'Output Enable From a Product Term Example' 

"*********************************************** 
"* This example demonstrates the Output Enable 

"* Function being controlled by a product term 
* 
* 

"*********************************************** 
Ul device 'P22VI0'; "Device designator and type 

"Pin assignments 

CLK, OE 

INPUT7,INPUT6,INPUT5,INPUT4 

INPUT3,INPUT2,INPUT1,INPUTO 

OUTPUT7 ,OUTPUT6,OUTPUT5,OUTPUT4 

OUTPUT3,OUTPUT2,OUTPUTl,OUTPUTO 

reset,preset 

pin 1,2; "Clock and Output Enable inputs 

H,L,X,C,Z 

INPUTS 

OUTPUTS 

@radix 16; 

equations 

OUTPUTO.OE 

OUTPUT2.0E 

OUTPUT4.0E 

OUTPUT6.0E 

pin 4,5,6,7; 

pin 8,9,10,11; 

pin 23,22,21,20; 

pin 19,18,17,16; 

node 25,26; "Pre-assigned node #s 

1,0,X.,.C.,.Z.; 

[INPUT7 .. INPUTO]; 

[OUTPUT7 .. OUTPUTO]; 

"Labels 

"This command forces the default number base to be HEX 

"Each Output individually enabled if the corresponding digital code is applied at 

"inputs and OE is low 

(INPUTS 0) & !OE; OUTPUT1.0E (INPUTS 1) & !OE; 

(INPUTS 2) & !OE; OUTPUTI.OE (INPUTS 3) & tOE; 

(INPUTS 4) & !OE; OUTPUT5.0E (INPUTS 5) & IOE; 

(INPUTS 6) & !OE; OUTPUT7.0E (INPUTS 7) & !OE; 

OUTPUTS := INPUTS; 

test_vectors 

([CLK,OE,INPUTS] -> [OUTPUT7 .. OUTPUTO]) 
[C,H,55] -> [Z,Z,Z,Z,Z,Z,Z,Z] ; 

[L,H,O] -> [Z,Z,Z,Z,Z,Z,Z,Z] ; 

[L,L,O] -> [Z,Z,Z,z,Z,z,z,I] ; 

[L,L,I] -> [Z,Z,Z,Z,Z,Z,O,Z] ; "Loads 55, checks OE high overrides 

[L,L,2] -> [Z,Z,Z,Z,Z, I,Z,Z]; "all enable terms, then enables and 
[L,L,3] -> [Z,Z,Z,Z,O,Z,Z,Z] ; "checks all outputs one at a time 

[L,L,4] -> [Z,Z,Z,1 ,Z,Z,z,z]; 

[L,L,5] -> [Z,Z,O,Z,Z,Z,Z,z] ; 

[L,L,6] -> [Z,I,Z,Z,Z,Z,Z,Z]; 

[L,L,7] -> [O,Z,Z,Z,Z,Z,Z,Z] ; 

end Out_ Enable2 

Figure 10. Separate Output Enables Controlled by Product Terms 

6-130 



looping back the term via a feedback path. This method 
incurs additional propagation delay due to passing 
through the AND/OR array twice, however. 

The special constant" .Z." is used in the test vectors for 
this design to verify the operation of outputs in the 
three-stated (high-Z) mode. 

An 8-Bit Identity Comparitor 

This example (Figure 11) points out how the 22VI0's 
variable-product-term architecture permits you to 
directly implement logic that would otherwise require 
multiple feedback terms in standard PLDs. The 22VI0 
offers 16 product terms maximum, compared to only 
eight product terms per output for standard 20-pin 
PLDs. 

An n-bit comparitor requires 2n product terms to im­
plement. This example achieves 8-bit comparison by 
decomposing the 8 bits into two 4-bit comparisons and 
using I/O pins 18 and 19 for each 4-bit comparison. 
These pins have 16 product terms each. The results of 
each 4-bit comparison are available at the pins one tpd 
after a match is detected 

Note in Figure 11 how the inputs and outputs are used 
in more than one label. This practice facilitates writing 
equations and test vectors for the individual 4-bit fields 
and the complete 8-bit fields. 

Single-Output, 9-Bit Identity Comparitor 

This example is very similar to the example in Figure 11 , 
except this example rearranges the DATA inputs to 
AND the two 4-bit comparitor outputs with the result of 
the single, 9th-bit compare. The result is a single DATA 
= INPUTS output called INEQDATA. The source 
code for this example appears in Figure12. 

The disadvantage of this implementation is that it incurs 
an additional tpd by feeding the individual 4-bit com­
paritor outputs back through the ANDIOR array. Note 
that although the terms fed back to INEQDAT A repre­
sent 34 (16 + 16 + 2) product terms, only three of the 
eight product terms available at I/O pin 23 are used; 
each of the three individual compares have already 
been reduced to single signals by the time they reach 
the AND/OR array for pin 23. You can also use the 
extra product terms along with a separately defined 
input for cascading the design to n-bit length. 

Bus Interface Data Trap with Answer-back 

This example demonstrates the 22VlO's bidirectional 
I/O capabilities (Figure 13). In this example, an 8-bit 

pattern is supplied to INPUTS and is continuously com­
pared to the data on DATA7 .. DATAO. 

This design is intended for an application in which 
DATA7 .. DATAO is a Z80 microprocessor's data bus. If 
the interrupt is enabled (pin INTRENBL is High), the 
8-bit comparitor output drives pin INTR active (Low). 
In response, the Z80 drives pin IDREQ High. This ac­
tion asks the device that initiated the interrupt to place 
its 8-bit ID code on the data bus. In this example, the 
ID code used is I\hSS. You can use any code by 
modifying the equation for DATA in the source file. 

6-131 

Counter/Address Generator/Multiplexer 

This lO-bit counter, address generator, and multiplexer 
example (Figure 14) implements the address-generation 
circuitry for the front end of a high-speed data-acquisi­
tion module. The design requires two modes of opera­
tion: In ACQUIRE mode, counters generate the ten 
address lines. In READ mode, a microprocessor's ad­
dress lines generate the same addresses. 

A discrete version of this application employs quad 2:1 
multiplexers to select whether the counters or 
microprocessor provide the address information. The 
entire discrete circuit, excluding the SRAM being ad­
dressed, consists of 11 SSI and MSI TTL components. 
The example given here implements the equivalent cir­
cuitry in a single 22VI0. 

Note how the MODE pin in the equations for the 
AOUT outputs controls the source of the addresses. 
Also note the use of the asynchronous reset node: the 
reset term is generated when the MODE is set for 
microprocessor access (Low) and the processor address 
itself is zero. Although the effect at the outputs (all out­
puts = zero) is the same as if the reset term were not 
included, the asynchronous reset gives the processor a 
way to reset all the registers to a known state before 
allowing the counters to free-run again. 

Timing Diagram 

One of the more interesting features of the ABEL 
SIMULATE program is its ability to generate timing 
diagram s for specified pins based on the test vectors in 
a source file. Although a timing diagramdoes not show 
propagation delays, it can help you verify a device's in­
circuit operation with a logic analyzer. The SIMULATE 
output file shown in Figure 15 is generated with the 
command line: 

simulate -iaddmux.out -oaddmux.sim -t4 -
wl,2,3,4,S,13,14,IS, 16, 17, 18 



"Cypress Semiconductor Corporation November 10, 1987 

module AllTerms "Module name 

flag' -r3' "Logic Reduction level r3, PRESTO algorithm by pin 

title 'Using 16 Product Terms; An 8-bit Identity Comparitor ' 

U1 device 'P22V10'; 

"*************************************************************************** 
"* In this design, an 8-bit word is presented at 1/0 pins 23,22,21,20,17,16,15 and 14. 

"* These pins are used for inputs only in this example. The 8-bit word is compared, 4 bits 

"* at a time, to inputs INPUT7 .. 0. Combinatorial outputs COMPHI and COMPLO show 

"* the result of each 4-bit comparison. Pins 19 and 18 are used as the comparitor outputs 

"* since these pins have enough Product Terms (16) for the required 4-bit comparisons. 

"*************************************************************************** 
"Device designator and type 

"Pin assignments 

CLK 

INPUT7,INPUT6,INPUT5,INPUT4 

INPUT3,INPUT2,INPUTI,INPUTO 

DATA7,DATA6,DATA5,DATA4 

DATA3,DATA2,DATA1,DATAO 

COMPHI,COMPLO 

pin I; 

pin 4,5,6,7; 

pin 8,9,10,11; 

pin 23,22,21,20; 

pin 17,16,15,14; 

"Clock input (NOT used) 

pin 19,18; "Comparator outputs 

reset,preset 

H,L,X,C,Z 

INPUTSH 

DATAH 

INPUTSL 

DATAL 

DATA 

INPUTS 

@radix 16; 

equations 

COMPHI = (INPUTSH 

COMPLO = (INPUTSL 

node 25,26; "Pre-assigned node #s 

I,O,.X.,.C.,.Z.; 

[INPUT7 .. INPUT4]; 

[DATA7 .. DATA4]; 

[INPUT3 .. INPUTO] ; 

[DATA3 .. DATAO]; 

[DATA7 .. DATAO]; 

[INPUT7 .. INPUTO] ; 

DATAH); 

DATAL); 

"High-order nibble 

"Low-order nibble 

"All 8 bits 

"High-order nibble compare 

"Low-order nibble compare 

test_vectors 

([DATA,INPUTS] -> [COMPHI;COMPLO]) 

[0,0] -> [H,H]; 

. [4,4] -> [H,H]; 

[OE,OE] -> [H,H]; 

[7,7] -> [H,H]; 

[OFO,O] -> [L,H]; 

end AlITerms 

[1,1] -> 

[8,8] -> 

[00,00] -> 

[O,OF] -> 

[OFO,OFF]-> 

[H,H]; 

[H,H]; 

[H,H]; 

[H,L]; 

[H,L]; 

[2,2] -> [H,H]; 

[OF,OF] -> [H,H]; 

[OB,OB] -> [H,H]; 

[OFO,OF]-> [L,L]; 

Figure 11. Using 16 Product Terms : An 8-Bit Identity Com pari tor 

6-132 



--==--
!fft. ;~RESS Using ABEL to Program the 22VIO 
~, ~~~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

"Cypress Semiconductor Corporation November 10, 1987 

module CompFB "Module name 

flag' -r3' "Logic Reduction level r3, PRESTO algorithm by pin 

title 'Using Feedback to Realize more than 16 Product Terms; A Single Output, 9-bit Identity Comparitor ' 

"**************************************************************************** 
"* In this design, an 9-bit word is presented at pins 23,22,21,20,17,16,11,10 and 9. * 
"* These pins are used for inputs only in this example. The 8 LSBs of the 9-bit word are * 

"* compared, 4 bits at a time, to inputs INPUT7 .. 0. Combinatorial outputs COMPHI and * 
"* COMPLO show the results of each 4-bit comparison. Pins 19 and 18 are used as the * 
"* comparitor outputs since these pins have enough Product Terms (16) for the required * 
"* 4-bit comparison. The MSBs (bit 8) of DATA and are compared at output COMPMSB. * 
"* Outputs COMPMSB, COMPHI, and COMPLO are ANDED together to form output * 

"* INEQDATA. * 
"**************************************************************************** 

U1 device 'P22V10'; 

pin 1,2,3,4,5; 

pin 6,7,8,9; 

"Device designator and type 

"Pin assignments 
INPUT8,INPUT7 ,INPUT6,INPUT5,INPUT4 

INPUT3,INPUT2,INPUT1,INPUTO 

DATA8,DATA7,DATA6,DATA5,DATA4 

DATA3,DATA2,DATA1,DATAO 

COMPH,COMPL,COMPMSB,INEQDATA 

reset,preset 

pin 10,11,13,14,15; 

pin 16,17,20,21; 

H,L,X,C,Z 

INPUTSH 

DATAH 

INPUTSL 

DATAL 

DATA 

INPUTS 

@radix 16; 

equations 

COMPH 

COMPL 

COMPMSB 

INEQDATA 

test_vectors 
([DATA,INPUTS] 

[0,0] -> 

[22,22] -> 

[88,88] -> 

[0,100] -> 

[lFE,lFF] -> 

end CompFB 

pin 19,18,22,23; "Comparator outputs 

node 25,26; "Pre-assigned node #s 

1,0,.x.,.C.,.Z.; 

[INPUT7 .. INPUT4]; 

[DATA7 .. DATA4]; 

[INPUT3 .. INPUTO] ; 

[DATA3 .. DATAO]; 

[DATA8 .. DATAO]; 

[INPUT8 .. INPUTO] ; 

(INPUTSH == DATAH); 

(INPUTSL == DATAL); 

(INPUT8 == DATA8); 

COMPH & COMPL & COMPMSB; 

"High-order nibble 

"Low-order nibble 

"All nine bits 

"High-order nibble compare 

"Low-order nibble compare 

"MSB compare 

"Logical AND of all comparisons 

-> [COMPH,COMPL,COMPMSB,INEQDATA]) 

[H,H,H,H]; [111,111] -> [H,H,H,H]; 

[H,H,H,H]; [44,44] -> [H,H,H,H]; 

[H,H,H,H]; [IFF, IFF] -> [H,H,H,H]; 

[H,H,L,L]; [IFF,OFF] -> [H,H,L,L]; 

[H,L,H,L]; [lFE,lEE] -> [L,H,H,L]; 

Figure 12. Realizing More Than 16 Product Terms Through Feedback: A 9-Bit, Single-Output Identity Comparitor 

6-133 



"Cypress Semiconductor Corp., 11/10/1987 
module BiDirect "Module name test 

flag' -r3' "Logic Reduction level r3, PRESTO algorithm by pin 
title 'Bi-Directional I/O A Bus Interface Data Trap with Answer-Back' 

"**************************************************************************** 
"* This example compares the pattern at pins INPUTS to the data on data bus pins * 
"* D AT A 7 .. D A TAO. Pin INTR is driven low if they match and INTRENBL (interrupt 
"* enable) is high. Input IDREQ is then driven high, requesting ID code (" h55 in 
"* this example) to be put on the data bus 
"**************************************************************************** 

Ul device 'P22VlO'; 

IDREQ, INTRENBL 
COMPL,INlR 
INPUT7,INPUT6,INPUT5,INPUT4 
INPUT3,INPUT2,INPUTl,INPUTO 
DATA7,DATA6,DATA5,DATA4 
DATA3,DATA2,DATAl,DATAO 

pin 2,3; 
pin 19,18; 
pin 4,5,6,7; 
pin 8,9,10,11; 
pin 23,22,21,20; 
pin 17,16,15,14; 

", Output Enable, Interrupt Enable 
"Used in comparision of 4 LSBs 

reset,preset node 25,26; "Pre~assigned node #s 
H,L,X,C,Z = 1,0,X.,.C.,.Z.; 
INPUTS = [INPUT7 .. INPUTO]; "All inputs 
INPUTH = [INPUT7 .. INPUT4]; "High order nibble of INPUTS 
INPUTL = [INPUT3 .. INPUTO]; "Low order nibble of INPUTS 
DATA = [DATA7 . .DATAO]; "All data I/Os 
DATAH = [DATA7 .. DATA4]; "High order nibble of DATA 
DATAL = [DATA3 .. DATAO]; "Low order nibble of DATA 
DATAOEA = [DATA7.0E,DATA6.0E,DATA5.0E,DATA4.0E]; 
DATAOEB = [DATA3.0E,DATA2.0E,DATA1.0E,DATAO.OE]; 
IDCODE "h55; "Identification code 

IDREQ; "Enables ID output onto data bus 
IDREQ; 
IDCODE; "Identification code for device ("h55) 
(DATAL == INPUTL); "4 LSBs compare 

* 
* 

equations 
DATAOEA= 
DATAOEB= 
DATA = 
COMPL= 
!INlR = (DATAH = = INPUTH) & COMPL & INTRENBL; "INTR active low, All bits equal and 

"interrupt enabled (INTRENBL high) 
test_vectors 
([IDREQ,INTRENBL,DATA,INPUTS] -> [COMPL,INlR,DATAD 
[L,H,"hOF ,"h IF] -> [H,H,X]; 
[L,H, "hOFO, "hOFl] -> [L,H,X]; 
[L,L, "hOAA, "hOAA] 
[L,H, "hOAA, "hOAA] 
[L,H, "h55, "h55] 
[H,H,Z,X] 

end BiDirect 

-> 
-> 
-> 
-> 

[H,H,X]; 
[H,L,X]; 
[H,L,X]; 
[X,X,IDCODE]; 

"Low nibble equal,high not equal 
"High nibble equal, low not equal 
"Test Interrupt Enable 
"DATA = INPUTS, INlR goes active (low) 

"DATA pins output IDCODE ("h55) 

Figure 13. BiDirectional I/O : Bus Interface Data 

6-134 

* 



module AddGenMux flag '-r3' "Cypress Semiconductor Corporation November 10, 1987 

end 

title ' lO-bit Address Generation / Multiplexer IC' 

AdrsGen device 'p22v10'; 

CLK 

"******************************************************** 
"* This PLD design generates Address signals AO-A9. 

"* If Control signal MODE is high, the address signals 

"* are the output of a 10-bit counter. If MODE is low 

"* the device passes uP Address lines UPADDO-UPADD9 

* 
* 
* 
* 

"******************************************************** 

pin 1; "System Master Clock 

AO,A1,A2,A3,A4,AS,A6,A 7,A8,A9 pin14,15,16,17,18,19,23,22,21,20; 

UP ADDO,UPADD1,UP ADD2,UP ADD3 

UP ADD4,UPADD5,UP ADD6,UP ADD7 

UP ADD8,UPADD9 

pin 2,3,4,5; 

pin 6,7,8,9; 

pin 10,11; 

MODE 

reset,preset 

H,L,X,C,Z 

AOUT 

UPADD 

@radix 16; 

equations 

reset 

AOUT .-

test_ vectors 

([CLK,UP ADD,MODE) 

[X,O,L) -> 0; 

[C,X,H) -> 1; 

[C,X,H) -> 5; 

[C,X,H) -> 9; 

[C,X,H) -> OD; 

[C,lll,L)-> 111; 

[C,2EE,L)-> 2EE; 

[C,155,L)-> 155; 

[C,OFF,L]-> OFF; 

[C,lFF,L)-> IFF; 

[C,2FF,L]-> 2FF; 

[C,3FF,L]-> 3FF; 

AddGenMux 

1,0,.X.,.C.,.Z.; 

[A9 .. AO); 

pin 13; 

node 25,26; 

[upADD9 .. UPADDO); 

(UP ADD == 0) & !MODE; 

«AOUT + 1) & MODE) 

# (UP ADD & !MODE); 

-> AOUT) 

[C,X,H) -> 2; [C,X,H] -> 

[C,X,H) -> 6; [C,X,H) -> 

[C,X,H) -> OA; [C,X,H) -> 

[C,X,H) -> OE; [C,X,H) -> 

[C,222,L)-> 222; [C,44,L) -> 

[C,lDD,L) -> 1DD; [C,3BB,L)-> 

[C,2AA,L) -> 2AA; [C,3FF,L)-> 

[C,X,H] -> 100; 

[C,X,H) -> 200; 

[C,X,H] -> 300; 

[C,X,H] -> 0; 

"Address Outputs 

"uP Address Lines 

"Boolean equations 

"Reset if uP Address = 00 and MODE is low 

"Count up if MODE high or 

"Pass UP ADD if MODE low 

"Check Operation 

"Checks Reset Function 

3; [C,X,H] -> 4; 

7; [C,X,H]-> 8; 

OB; [C,X,H]-> OC; 

OF; [C,X,H]-> 10; 

44; [C,88,L]-> 88; 

3BB; [C,377 ,L]-> 377; 

3FF; [C,222,H)-> 00; 

"Load to states where all 8 LSBs 

"are high (uP mode), then toggle in 

"counter mode 

Figure 14. 10-Bit Address GeneratorlMultiplexer 

6-135 



The "_i" indicates the input file, which in this case is the 
intermediate output file created by ABEL's FUSEMAP 
program. The II -Oil tells SIMULATE which file to write 
the results into. The II -t4" specifies the trace level where 
waveforms are displayed, and the "-w1..18" indicates 
which pins to show in the waveform output. 

You can find more information on SIMULATE in the 
ABEL User's Guide and Language Reference supplied 
with the ABEL software from DataI/O. 

Three State Machines in One 22VIO 

This final example demonstrates the power of the 
22VlO when used as a synchronous state machine. The 
application involves the redesign of a radar system's 
timing circuitry. The system performs 12 discrete 
Fourier transforms on each set of quadrature data 
returned in three antenna beams that are gated for nine 

V 0001 
V 0002 

V 0003 

V 0004 

VOOOS 
V 0006 

V 0007 
VOOOS 
V 0009 

V 0010 

V 0011 

V 0012 

V 0013 
V0014 
V001S 

V 0016 

V 0017 

VOO1S 

V 0019 
V 0020 

V 0021 
V 0022 

ABEL Version 2.00b Data 1/0 Corp. 

Address Generation I Multiplexer IC 

Simulate device AdrsGen, type 'P22V10' 

u u u u 
p p p P 
A A A A M 

C D D D D 0 
L 

K 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 
C 

C 

C 

C 

C 

C 

C 

C 

C 

D D 
o 

I I 
I I 

'- I 
J I_ 

I _I 
I I 
I L 

'- J 

D D 
2 3 

I 
I 
L 
J _ 

L 
I 

D A A 

E 0 

L L 
I J 
I I I 
I J J 
I 1_ I 
I J I 
I 1_ I 
I J J 
I 1_ I 
I J I 
I 1_ I 
I J J 
I I I 
I J I 
I 1_ I 
I J J 
J L I 

I J I_ 
I I J 
I I I 
I I I_ 
I 1_ _I 

A A 
2 3 

I 
I 
I 
I 

I I 
I I 
I I 

_I I 
I I 
I I 
I I 
I I 

I I 
I I 
I I 

J J 
I I 
I I 

'- I 
J '-

1- I 
I I 

Figure 15. ABEL Simulated Waveform 

ranges. The nonbinary nature of these numbers (three 
beams, nine ranges, and 12 speed bins) make generating 
the timing signals with counter circuits cumbersome. 

This example creates three state machines in a single 
22VlO. As you can see from the state diagrams (Figure 
16), the filter state machine is free running. The beam 
state machine only changes states when the filter out­
puts are in their maximum condition. Similarly the gate 
information changes only if both the filter and beam 
outputs are at their maximum values. 

Note the combined use of Boolean equations and state 
diagram s. A separate state diagram describes each state 
machine, but the transitions depend upon the condition 
of the other state outputs. Also of note is the extreme 
use of labels for pins, groups of pins, and the state out­
puts. This approach greatly simplifies the writing of the 
state diagrams and test vectors. 

When this design was first compiled, the ABEL 
FUSEMAP routine indicated several outputs that had 
too many terms for the physical array of the cor­
responding I/O pin. The design was made to fit by care­
fully arranging the lIOs. The flag "_r3" reduction state­
ment made the fit possible without the tedium of 
generating and manually reducing Boolean equations 
from the state diagrams. 

The test vectors for this design are of particular inter­
est Note how the @REPEAT command cycles through 
35 states to make the gate state outputs toggle. This 
powerful command helps describe 325 test vectors in a 
concise and manageable manner. 

6-136 



"Cypress Semiconductor Corporation November 10, 1987 
module Statexam flag '-r3' 

title 'Timing Generation TRIPLE State Machine for DFT Processor using a Cypress Semiconductor PAL C22VIO' 
"********************************************************************* 
"* BEAM STATES - 0, 1,2 (3 not used), GATE STATES - 0,1,2,4,5,6,8,9, A 
"* (3,7,B,C,D,E,F not used), FILTER STATES - 0,1,2,4,5,6,8,9, A, C, D, E 
"* (3,7,B,F not used) 
"********************************************************************* 

Ul device 'P22VI0'; 
SYSCLK 
START 
ABO,AB1,AB2,AB3,AB4 
AB5,AB6,AB7,AB8,AB9 
reset,preset 
ABO,AB 1,AB2,AB3,AB4 
ABS,AB6,AB7,AB8,AB9 
H,L,X,C,Z 
ABall 
FILT 
BEAM 
GATE 
@radix 16; 

pin 1; 
pin 2; 
pin23,14,22,IS,21; 
pin 16,18,19,20,17; 
node 2S,26; 
istype 'pos,reg'; 
istype 'pos,reg'; 

l,O,.X.,.C.,.Z.; 
[AB9 .. ABO]; 
[AB3 .. ABO]; 
[ABS,AB4]; 
[AB9 .. AB6]; 

"Used for reset/power-up 
"Pins are non-sequential to take advantage of 
"The variable number of product terms in the 22VI0 
"Pre-assigned node #s 
"Unnecessary because ABEL will set architecture bits 
"automatically - shown for example purposes only 

"Filter States - note missing states 
FO = 00; F1 = 01; F2 = 02; F3 = 04; F4 = 05; FS = 06; F6 = 08; 
F7 = 09; F8 = OA; F9 = OC; FlO = OD; F11 = OE; 

"Beam States 
BO = 00; Bl = 01; B2 = 02; 

"Gate States 
GO = 00; G1 = 01; G2 = 02; G3 = 04; G4 = OS; G5 = 06; G6 = 08; G7 = 09; G8 = OA; 
equations 
reset = START; "Initialize to all lows on START 
state_diagram FIL T 
State FO: GOTO Fl; State F1: GOTO F2; State F2: GOTO F3; State F3: GOTO F4; 
State F4: GOTO FS; State F5: GOTO F6; State F6: GOTO F7; State F7: GOTO F8; 
State F8: GOTO F9; State F9: GOTO FlO; State FlO: GOTO Fl1; State Fl1: GOTO FO; 
state_diagram BEAM 
State BO: case (FILT -- "blll0) : Bl; 

(FILT 1= "blll0) :BO; 
endcase; 

State Bl: case (FILT == "blll0) :B2; "Increment ONLY if 
(FILT 1= "b1ll0) : B1; "FILT is at max (OE) 

endcase; 
State B2: case (FILT -- "bIllO) :BO; 

(FILT 1= "bl1lO) :B2; 
endcase; 

Figure 16. Triple State Machine (part!) 

6-137 



state_diagram OAm "Increments ONLY if BEAM and FILT are at max 

State 00: case «BEAM == Abl0) & (FILT == Ab1110» : 01; 

endcase; 

State 01: case 

endcase; 

«BEAM != AblO) # (FILT != Ab1110» : 00; 

«BEAM == AblO) & (FILT == Ab1110» 
«BEAM != AblO) # (FILT != Ab11lO» 

:02; 
: 01; 

State 02: case «BEAM == AblO) & (FILT == Abl110» : 03; 
«BEAM != AblO) # (FILT != Abl1l0» : 02; 
endcase; 

State 03: case «BEAM -- Abl0) & (FILT == Ab1110» : 04; 

«BEAM != AblO) # (FILT != AblllO» : 03; 
endcase; 

State 04: case «BEAM -- AblO) & (FILT == Abl110» : 05; 
«BEAM != AblO) # (FILT != Ab11lO» :04; 

endcase; 

State 05: case «BEAM -- Abl0) & (FILT == Ab1110» : 06; 
«BEAM != AblO) # (FILT != Abl110» : 05; 

endcase; 

State 06: case «BEAM -- Abl0) & (FILT -- AblllO» :07; 
«BEAM != AblO) # (FILT != Abl1l0» : 06; 

endcase; 

State 07: case «BEAM -- AblO) & (FILT == Ab1110» : 08; 
«BEAM != Abl0) # (FILT != AblllO» :07; 

endcase; 

State 08: case «BEAM == AblO) & (FILT == Abl110» :00; 
«BEAM != Abl0) # (FILT != Abl1l0» :08; 

endcase; 
test_vectors "Verifies devices operation 

([SYSCLK,ST ARll -> [GATE,BEAM,FILT)) 

[X,H] -> [GO,BO,FO]; [C,L] -> [GO,BO,Fl]; [C,L] -> [GO,BO,F2];[C,L] -> [GO,BO,F3]; 

[C,L] -> [GO,BO,F4]; [C,L] -> [GO,BO,F5]; [C,L] -> [GO,BO,F6];[C,L] -> [GO,BO,F1]; 

[C,L] -> [GO,BO,F8]; [C,L] -> [GO,BO,F9]; [C,L] -> [GO,BO,FIO];[C,L] -> [GO,BO,Fll]; 

[C,L] -> [GO,Bl,FO]; [C,L] -> [GO,Bl,Fl]; [C,L] -> [GO,Bl,F2];[C,L] -> [GO,B1 ,F3]; 

[C,L] -> [GO,Bl,F4]; [C,L] -> [GO,Bl,F5]; [C,L] -> [GO,Bl,F6];[C,L] -> [GO,B1 ,F1]; 

[C,L] -> [GO,Bl,F8]; [C,L] -> [GO,Bl,F9]; [C,L] -> [GO,Bl,FlO];[C,L] -> [GO,Bl,Fll]; 

[C,L] -> [GO,B2,FO]; [C,L] -> [GO,B2,Fl]; [C,L] -> [GO,B2,F2];[C,L] -> [GO,B2,F3]; 

[C,L] -> [GO,B2,F4]; [C,L] -> [GO,B2,F5]; [C,L] -> [GO,B2,F6];[C,L] -> [GO,B2,F1]; 

[C,L] -> [GO,B2,F8]; [C,L] -> [GO,B2,F9]; [C,L] -> [GO,B2,FIO];[C,L] -> [GO,B2,Fll]; 

[C,L] -> [Gl,BO,FO]; "Gate output changes state here 

@REPEAT 11035 {[C,L] -> [X,x,X]; } [C,L] -> [G2,BO,FO];@REPEAT 11035 {[C,L] -> [X,x,X]; } [C,L] -> [G3,BO,FO]; 

@REPEAT 11035 {[C,L] -> [X,x,x]; } [C,L] -> [G4,BO,FO];@REPEAT 11035 {[C,L] -> [X,x,X]; } [C,L] -> [G5,BO,FO]; 

@REPEAT 11035 {[C,L] -> [X,x,X]; } [C,L] -> [G6,BO,FO];@REPEAT 11035 {[C,L] -> [X,x,X]; } [C,L] -> [G7,BO,FO]; 

@REPEAT 11035 {[C,L] -> [X,x,X]; } [C,L] -> [G8,BO,FO]; 

@REPEAT II 035 {[C,L] -> [X,x,x];} [C,L] -> [GO,BO,FO]; "Check the final state rolls over to the first 

"This completes a run-through of ALL states, the following 2 vectors retest reset (STAR1) 

[C,L] -> [GO,BO,Fl]; [C,H] -> [GO,BO,FO]; 

end Statexam Figure 16. Triple State Machine (continued) 

6-138 



CYPRESS 
SEMICONDUCTOR 

Using ABEL to Program the CY7C330 

This application note describes how to access all the 
features of the Cypress CY7C330 using ABEL. Examples 
show how to put the features to work. ABEL is a versatile 
logic design tool that can program over 300 different 
devices. 

The Cypress CY7C330 is a powerful PLD. Features 
such as input and buried registers allow the CY7C330 to 
fit into a wide variety of applications. Although, the same 
features can make programming the device a challenge, 
this application note should minimize the challenge. 

ABEL 3.0 Bug 
If you are still using ABEL 3.0 and trying to program 

the CY7C330 for the fIrst time, note that the supplied 
device driver has a fatal flaw. Both Cypress and Data I/O 
offer updated device drivers. 

ABEL 3.1 also supplies a correct device flIe, with a 
new name. P330 was used for revision 3.0, and P330A for 
3.1, although 3.1 still compiles with the P330 device 
name. The only difference between these two device flIes 
is the syntax for specifying the shared feedback mux. 

Input Registers 
The CY7C330 contains 11 dedicated input registers. 

An input register is also associated with each one of the 
12 output registers (more on this later). 

Pin 3 can serve as an input register or a clock input. 
In fact, ten of the 11 input registers can be clocked from 
two different sources: pins 2 or 3. You can program the 
choice of the clock source individually, ona register-by­
register basis. If an application requires only one input 
clock source, you can use pin 3 as a normal input. If an 
application requires both input clocks, however, you must 
use pin 3 as a clock input. A confIguration bit must be 
changed to enable pin 3 as a clock input. 

Like pin 3, pin 14 is a dual-function pin; it can be 
used as a registered input or a global, asynchronous, out-

6-139 

put-enable line. Control of the CY7C330's output enable 
can originate from the product term array or from pin 14. 
You can program the choice on a register-by-register 
basis. (The I/O macrocell section of this application note 
gives more information on controlling the output enable.) 

You can control the input-register clock mux in two 
ways. The most descriptive way is to use the".C" suffix, 
as shown in the DEM0330.ABL example file supplied 
with ABEL. This method works for the dedicated input 
registers (pins 4 - 7 and 9 - 14) but does not work in 
ABEL 3.1 for the input registers in the I/O macrocells. 
The reason for this problem is that for the 12 I/O macro­
cells, ABEL thinks the clock mux is for the output or state 
register and not the input register. 

Thus, the recommended method for controlling the 
input-register clock mux is to use macro commands. The 
macro file supplied with ABEL 3.0 does not include the 
complete macro list needed to program all the clock 
muxes, but you can get the complete file from Cypress. 
This file, P330.INC, contains the macros needed to pro­
gram all the clock muxes, including the input registers. A 
listing of the macro file appears in Appendix A. ABEL 
versions 3.1 and higher come with the complete macro 
flIe. 

After you reference the macro file in the ABEL 
source flIe, the command CLK2 must enable the pin-3 
clock. Then you set specifIc clock muxes by entering 
CLK2 n, where n is the input register's pin number. For 
example: 

LIBRARY 'p330'; 
"allows use of p330.inc macro file 

CLK2; 
"enables pin 3 as a clock input 

CLK2 5; 
- "pin 5 input reg uses the pin 3 clock 

CLK2 15; 
- "pin 15 input reg uses the pin 3 clock 



You do not need a macro statement to specify the use 
of clock 1 (pin 2) for input registers, because clock 1 is 
the clock mux default setting for both the dedicated input 
registers and the I/O macrocell input registers. 

ABEL handles the accessing of data from one of the 
dedicated input registers (pins 3 - 14) the same as for a 
straight buffered input. The only difference is that for the 
dedicated input registers, input data is not available in the 
product term array until after the appropriate input clock 
pulse is received. 

Controlling the Output Enable 
You specify an output enable by appending the suffIx 

".oE" to the appropriate pin name. You must define 
whether control of the output enable mux comes from pin 
14 or the product term array. Configuration bit CO con­
trols this choice, and you make the selection using the 1S­
TYPE statement: 

OUT1,OU'f2,OUT3,OUT4 pin 15,16,17,18 ; 
"I/O pins 

OUT1.0E,OUT2.0E ISTYPE 'EQN'; 
"OE is product-term controlled 

OUT3.0E,OUT4.0E 1STYPE 'PIN'; 
"OE is controlled by pin 14 

When controlling the output enable with a product 
term, you have the option of setting it always on, always 
off, or making it a combination of some number of inputs 
or outputs. All three choices are illustrated in this code: 

[OUT1.0E,OUT2.0E] = [1,1]; 
"permanently enable outputs 

OUT3.0E= 0; 
"permanently disable output 

OUT4.0E = IN1 & IN2 & OUT1 ; 
"OE controlled by IN1, IN2, OUT1 

Using Set and Reset 
The CY7C330 has global synchronous set and. reset 

capability. When used, it sets or resets all 12. state 
registers and the four buried registers. Watch out for two 
conditions when using set or reset: First, when you reset 
the registers, all the outputs go High if they are· enabled 
because of the inverter between the state register and the 
output (Figure 1). Second, be aware that the reset does 
not occur for two clock pulses if an input is designated as 
the set/reset pin. This occurs because the reset data must 
be clocked into the product term array using one of the 
two input clocks fIrSt. The output registers must then be 
clocked to cause the reset or set to occur. 

You can accesS the CY7C330's set and reset 
capability in two ways: First, you can append the suffix 
"PR" for preset or ".RE"for reset to any output-pin or 
buried-register node name. The syntax is: 

OUT1, INP1, INP2 PIN 16, 5, 6; 
OUT1.PR = INP1 ; 

"preset all output nodes on INP1=1 
OUT.RE = INP2; 

"reset all output nodes on INP2=1 

The second way to utilize set and reset is to employ 
the node notation shown in the following code, in which 
the set and reset product terms are designated node 30 and 
29, respectively. 

6-140 

SET, RESET NODE 30, 29 ; 
SET = INPl; 

"preset all output nodes on INP1=1 

RESET = INP2; 
"reset all output nodes on INP2=1 

Even though the reset and preset functions are 
synchronous, an error occurs while parsing the equations 
if you use the ":=" notation, which signifies a registered 
operation. 

Using the MacroceII as an Output Only 
When using the I/O macrocell as an output, you need 

to consider two parameters. The fIrst is the setting of the 
macrocell feedback mux, as controlled by configuration 
bit Cl. The second parameter is the control of the output 
enable, as described in the previous section. As with the 
output-enable control, you set the configuration bit for the 
feedback mux using the 1STYPE statement. When the 
input register is not used, data from the output register is 
typically fed back to the product-term array through the 
macrocell feedback mux. When this feedback arrangement 
is used, 1STYPE is followed by the FEED_REG attribute: 

OUTl PIN 15; 
"located in initial pin definitions 

OUT1 1STYPE 'FEED REG'; 
"sets C1=0, allowing feedback mux 
"to pass data from state register 

OUT1:= INP1 $ «INP1 & INP2 )# INP3); 
"sample eq from'equations' section 

The ABEL default for the feedback mux configura­
tion bit (C1) is to take data from the state register. Thus 
the "1STYPE 'FEED_REG';" statement is not· required, 
but it is recommended that the defaults be documented. 

Using the MacroceII as an Input Only 
When you use the I/O macrocell as an input register, 

the syntax differs from that of the previous example. 
Specifically; the output buffer most be three-stated, and 
the macrocell feedback mux must be set to accept data 
from the input register(Cl must be set to 1). The follow­
ingexample assiImes that the output register is not used at 



Table 1. Node Numbers for Shared Input Multiplexers 

Node Number Mux Between Pins 

35 15, 16 

36 17, 18 

37 19,20 

38 23,24 

39 25,26 

all. Keep in mind that the input register clock defaults to 
clock 1 (pin 2) unless specifically changed. 

INPl, INP2, oun PIN 5, 15, 16 ; 

INP2 ISTYPE 'FEED PIN'; 
"set Cl=l, allowing feedback mux to 
"take data from the input register 

INP2.0E ISTYPE 'EQU'; 
"set CO=O for product term OE 

EQUATIONS 

INP2.0E = 0; 
"three-state output buffer permanently 

oun:= INPI & INP2; 

Shared Input Mux 
Each pair of I/O macrocells has a shared input mux. 

This mux feeds data from the input pin into the product­
term array if both registers are fed back in an I/O macro-

cell. A configuration bit (C3) controls whether the mux's 
input is from an even- or odd-pin-number macrocell. The 
ABEL default is that the data is supplied from the even­
pin-number macrocell. Changing to an odd pin requires 
that you invoke macros located in the P330.INC file. (The 
example in the next section shows how to make this 
change.) 

The purpose of the shared input mux is to provide 
another input path to the product-term array, when 
registered feedback is used, without losing input 
capability . 

Using the Input and Output Registers 
When using both the input and output registers in the 

I/O macrocell, the most difficult task is to get the data 
into the product-term array. 

You can use two muxes to feed data from the 
registers into the product-term array. The state-register in­
formation must be fed back through the feedback mux 
controlled by configuration bit Cl. You can route input­
register data through the feedback mux or through the 
shared input mux (Figure 1). 

The state-register output is referred to by the pin 
name associated with the macrocell. The data clocked into 
the input register is referred to by using the node name 
assigned to the shared input mux. Table 1 lists the node 
numbers of the shared input muxes. 

In ABEL, the configuration bit controlling the shared 
input mux (C3) defaults to an even I/O pin. When the 
input data is on an odd pin, you can use a macro in the 
P330.INC macro file to change the C3 configuration bit. 

SET 
RESET 

I C L K1 

ICLKO 
oeLl 

OE 

OE PTL~E~R~M ________________________ +-~~-+-r~ 

, 
TO 

C3 
FROM ADJACENT 

MACROCELL 

Figure 1. The CY7C330 Macrocell 

6-141 

T PIN 



The following example also uses clock 2 (pin 3) to clock 
the input register: 

BREG PIN 15; 
"BREG is output register for pin 15 

INP1 NODE 35; 
"INP1 is the input register for pin 15 

BREG ISTYPE 'FEED REG'; 
"C1 is set to 0, mux routes Q of BREG 

BREG ISTYPE 'EQN'; 
"OE is product term controlled 

LIBRARY 'P330' ; 
"enables use of the P330.INC file 

CLK2; 
"enables pin-3 clock 

CLK2 15; 
- "enables CLK2 on pin-15 input reg 

FEEDPIN 15; 
"shared input InUX control bit (C3) set 
"This gives pin 15 an input path 

EQUATIONS 

BREG.OE = 0; 
"disable output 

BREG := BREG $ (INP1 & INP2); 
"BREG is fed back and INP1 is an input 

The Exclusive-OR Gate 
The CY7C330 provides an exclusive-OR (XOR) gate 

on the D input of the 12 IJO-macrocell output registers 
and the four buried registers. You can use this gate for 
two purposes. First, you can invert the polarity of a signal 
going into the output register. This inversion is ac­
complished by setting one of the XOR inputs to a logic 1, 

SET 
RESET 

using the ABEL "$" symbol for XOR. In ABEL, you can 
use the following format: 

OUT1 := 1 $ (INP1 & INP2 & INP3); 

In ABEL versions before 3.1, however, the reduction 
algorithms do not recognize a 1 mixed with variables in 
an equation. The equivalent expression for earlier versions 
is: 

OUT1 := (INP1 # !INP) $ (INP1&INP2&INP3); 

The second use for the XOR gate is to emulate JK or 
T flip-flops in software. T flip-flops are more efficient 
than D flip-flops for implementing counters and state 
machines. You can emulate T -type flip-flops by feeding 
back the output register's Q output and tying it to the 
XOR product term. The sum-of-products input to the 
XOR becomes the T input (Figure 2). You can configure 
this emulation with Boolean equations: 

1FLOP:= TFLOP $ (T input expression); 

where "T input expression" is a legal sum-of-products ex­
pression. A JK flip-flop is emulated using the same con­
figuration, and the relationship: 

T=J!Q#KQ 
The second way to configure an output flip-flop as a 

T-type flop is to use an ISTYPE statement such as the one 
in the next example. The following syntax describes a 
simple 2-bit counter: 

CLK, INSTB, fOE PIN 1, 2,3, 14; 
QO, Ql PIN 28, 27; 
QO, Ql ISTYPE 'REG _ T' ; 
QO.OE, Q1.0E ISTYPE 'PIN'; 
CNT = [Ql,QO]; 
EQUATIONS 
QO.OE= OE; 
Q1.0E = OE; 
CNT = (CNT + 1); 

ICLKI 
ICLKO 

OCLK 
OE 

OE P~~---------------------r4-~-+~~ 

S U" --"-'---t---i1--' 

TO 
INPUT MUX 

Figure 2. The CY7C330 Macrocell as a T -Type Flip-Flop 

6-142 



55 

OE (FROM PIN 14) 
CllO 

C l K1 
elK! 

SR 

Figure 3. A Buried Register 

Buried Registers 
As mentioned before, the CY7C330 contains four 

buried registers. You access these registers by assigning a 
name to the buried register node number. Table 2 lists the 
node numbers, and Figure 3 shows a diagram of a buried 
register. 

To use a buried register, assign a name to the node 
and use it as if it were a normal output. The only dif­
ference is that the I/O macrocell has an inverter between 
the state register and the output pin, which causes ABEL 
to handle the polarity differently (more on this in the next 
section). 

Polarity Conventions 
As shown in later examples, you typically do not 

have to worry about signal polarity except when sending 
data to an output pin. This is because all data enters the 
product-term array in both the non-inverted and inverted 
states. ABEL chooses the right polarity to obtain the out­
put as specified by the equations. 

When you export data from the device via an output 
pin, polarity is more critical-especially when using the 
set or reset. As shown by the block diagrams, the macro­
cell includes an inverter between the output register and 
output pin. Therefore, if you use the reset capability, the 
registers' Q output goes Low, and the output pins go 
High. If your application requires all the outputs to start 
out Low, use preset instead of reset. 

In the following example, the output is defmed as 
positive, and a 1 and a 0 are passed through the device. 

Table 2. Node Numbers of Buried Registers 

Buried Register Node Number Product Terms 
1 31 13 
2 32 17 

3 33 11 

4 34 19 

6-143 

ABEL compensates for the lack of inversion in the output 
by inverting the data coming out of the input register. 

"inputs 
CKS, CK1, CK2, INP PIN 1, 2, 3, 4; 
"output 
OUT PIN 15; 

EQUATIONS 
OUT := INP; 

TEST VECTORS 
([CKS~CK1,CK2,INP] -> [OUT]) 
[0, 
[C, 
[C, 
[0, 
[C, 
[C, 

END 

C, 0, 
0, 0, 
0, 0, 
C, 0, 
0, 0, 
0, 0, 

0] -> [X]; 
X] -> [0]; 

X] -> [0]; 
1] -> [0]; 
X] -> [1]; 
X] -> [1]; 

When using state machine syntax, ABEL does not 
handle the polarity of the buried registers correctly. Not 
only do the equations not work, but the simulation also 
fails. You can easily flx the problem, however, by negat­
ing the names in the node declaration: 

CLK1, CLK2, CLK3 PIN 1,2,3; 
INP, OUT PIN 4,15 ; 

"hidden register declaration (negated) 
!C1, !C2, !C3 NODE 31,32,33; 

As with the state machine syntax, when using the 
"COUNT = COUNT +1" syntax, you also must invert the 
polarity of any buried registers. The easiest place to ac­
complish the inversion is at the node definitions state­
ment, as shown in the previous example. Additionally, 
refer to the counter example at the end of this application 
note. 

State Machine Syntax 
ABEL supports state machine syntax on the 

CY7C330. The only drawback is that you can only use 
the toggle flip-flop emulation mode for very simple state 
machines. Up to revision 3.1, the results of using state 
machine syntax with T flip-flop emulation are unpre­
dictable. 

The T flip-flop is efflcient for state machines because 
it holds its state unless told otherwise and thus needs a 
product term only for a state change. In contrast, a state 
machine using D flip-flops needs a product term both to 
change states and to hold states. Even with this limitation, 
the CY7C330 contains from nine to 19 product terms per 
output and usually handles a medium-size state machine 
with ease. 

Simulation Caveat 
Be aware of a limitation to what ABEL can simulate. 

Speciflcally, when writing simulation test vectors, you can 
use only one of the three clock lines on a single test-vec-



tor line. The following example does not simulate 
correctly: 

TEST_VECTORS 

([CKS,CKl,CK2,INP] -> [OUT]) 
[ C , C , 0 , 0] -> [ 0] ; 

The following modified 
correctly: 

TEST VECTORS 
([CKS~CKl,CK2,INP] 
[O,C,O,O] 
[C,O,O,X] 

version does simulate 

-> [OUT]) 
-> [X] ; 
-> [0] ; 

ABEL supports the preload function. Refer to the 15-
bit counter example for more information on how to use 
it. 

I6-Bit Up/Down Counter 
This application, COUNTER6, is an example of a 15-

bit up counter with a terminal-count output The applica­
tion shows how to use ABEL's "COUNT = COUNT + 1" 
syntax and corrects the polarity problem that crops up 
when combining normal I/O macrocell output registers 
and buried registers. This example also illustrates how to 
use the preload function. The ABEL source code for this 
example appears in Appendix B. 

State-Machine-Based Modulo-II Counter 
This example is a state machine application im­

plementing a modulo-II counter using state machine syn­
tax. This example again shows how to handle polarity 
using both normal registers and buried registers. Appendix 
C lists the ABEL source code for this example. 

Appendix A. P330.INC -- Macro Listing 

" P330.INC 
"The following select Clock 2 (pin 3) for the Output Macrocell Input register. 

CLK2_28 macro () {FUSES[17030] = I;} 
CLK2_27 macro 0 {FUSES[17034] = I;} 
CLK2 26 macro 0 {FUSES[17037] = I;} 
CLK2=25 macro 0 {FUSES[17041] = I;} 
CLK2 24 macro 0 {FUSES[17044] = I;} 
CLK2-23 macro 0 {FUSES[17048] = I;} 
CLK2=20 macro 0 {FUSES[17051] = I;} 
CLK2 19 macro 0 {FUSES[17055] = I;} 
CLK2)8 macro 0 {FUSES[17058] = I;} 
CLK2_17 macro 0 {FUSES[17062] = I;} 
CLK2_I6 macro 0 {FUSES[I7065] = I;} 
CLK2_15 macro 0 {FUSES[17069] = I;} 

"The following enables clock 2 (pin 3) 
CLK2 macro 0 {FUSES[17070] = I;} 
CLK2_4 macro 0 {FUSES[17072] = I;} 
CLK2 5 macro 0 {FUSES[I7073] = I;} 
CLK2=6 macro 0 {FUSES[17074] = I;} 
CLK2_7 macro 0 {FUSES[17075] = I;} 
CLK2 9 macro 0 {FUSES[17076] = I;} 
CLK2-10 macro 0 {FUSES[17077] = I;} 
CLK2-U macro 0 {FUSES[17078] = I;} 
CLK2-12 macro () {FUSES[17079] = I;} 
CLK2-13 macro () {FUSES[17080] = I;} 
CLK2)4 macro 0 {FUSES[17081] = I;} 

"The following program the C3 bit in the Output Macrocell and selects feedback from the lower pin. 
FEEDPIN 27 macro 0 {FUSES[17031] = I;} 
FEEDPIN-25 macro 0 {FUSES[17038] = I;} 
FEEDPIN-23 macro 0 {FUSES[17045] = I;} 
FEEDPIN-19 macro 0 {FUSES[17052] = I;} 
FEEDPIN -17 macro 0 {FUSES[17059] = I;} 
FEEDPIN)5 macro 0 {FUSES[17066] = I;} 

6-144 



Appendix B. ABEL Source Code for the 16·Bit Counter Example 

module counter6 
title 'Counter application for CY7C330 application note· Cypress Semiconductor June 19,1989' 

counter6device 'p330'; 
" This is example of a 15 bit counter showing: 
"I. How to handle the polarity when combining normal output registers and buried regs. 
"2. How to use the' count = count + l' syntax. 
"3. How to use preload for simulation vectors and handle the polarity inversion for the 
" buried registers. 

" inputs pins 
clk,clk1,c1k2,preset pin 1,2,3,4 ; 

" output pins 
cO,c1,c2,c3,c4,c5,c6 pin 15,28,26,17,24,19,20 ; 
c11,c12,cI3,c14 pin 25,18,16,27 ; 
tci pin 23 ; 
spreset node 30 ; 
!c7,!c8,!c9,!c10 node 31,32,33,34 ; 

" macros 
c cntr = [c14, c13, c12, ell, c10, c9, c8, c7, c6, c5, c4, c3, c2, c1, cO] ; 
- " this is used to handle the preload inversion of the buried registers. See test vectors below. 

c_cntrs = [c14, c13, c12, c11, !clO, !c9, !c8, !c7, c6, c5, c4, c3, c2, c1, cO] ; 
c,x,p 

equations 
spreset 
c_cntr '­
tci 

.c., .x., .p.; 

preset; 
(c cntr + 1) ; 

- (c_cntr == 2346) ; 

" Example of using preset with simulation 

test vectors 
([clk,clkl,preset,c _ cntrs] -> [c _ cntr,tci]) 
[0,0 , x • x ] -> [ x , x]; 
[0. c , 1 • x ] -> [ X • x]; 
[c.O , x • x ] -> [ 0 .0]; 
[0. c , 0 x ] -> [ 0 ,0]; 
[c.O • x x ] -> [ 1 .0]; 
[c.O • x x ] -> [ 2 .0]; 
[c.O • x x ] -> [ 3 ,0]; 
[c.O • x x ] -> [ 4 .0]; 
[c.O • x , x ] -> [ 5 ,0]; 
[P.O. x • 62 ] -> [ x .0]; 
[0.0 • x • x ] -> [ 62 .0]; 
[c,O • x • x ] -> [ 63 .0]; 
[c.O • x • x ] -> [ 64 .0]; 
[c.O • x • x ] -> [ 65 .0]; 
[c.O • x • x ] -> [ 66 ,0]; 
[c,O , x , x ] -> [ 67 ,0]; 
[c,O • x , x ] -> [ 68 ,0 ]; 
[p,O , x ,2345] -> [ x ,0 ]; 
[0,0 , x , x ] -> [ 2345 , 0 ]; 
[c,O , x , x ] -> [ 2346 , 0 ]; 
[c,O , x x ] -> [ 2347 , 1 ]; 
[c,O , x x ] -> [ 2348 ,0]; 
[c,O , x , x ] -> [ 2349 ,0]; 

end 

6-145 



Appendix C. ABEL State Machine Source Code for Modulo 11 Counter 

module statem 
title' Application Note State Machine Example - Cypress Semiconductor 5-12-89' 

statem device 'P330'; 

elk 1 ,c1k2,cIk3 
cl,c2 
res 
reset 
!c3,!c4 
count 
c4,c3,c2,cl 
c,x,z,h,l 

pin 
pin 

1,2,3 ; 
15,16 ; 

pin 4; 
node 30; 
node 31,32; 

[c4,c3,c2,cl] ; 
istype 'feedJeg'; 
.c.,.x.,.z.,I,O; 

" This is an example of implementing a modulo counter using state machine syntax. 
" This example also shows how to use the hidden registers. 

" counter states 
sO = AbOOOO; s3 = AbOOll s6 = AbOll0 s9 = Abl00l; 
sl = AbOOOI ; s4 = AbOlOO s7 = AbOlll slO = AblOlO ; 
s2 = AbOOlO; s5 = AbO 10 1 s8 = Abl000 

equations 
c4.pr 

state diagram [c4,c3,c2,cl] 
- state sO: goto sl ; 

state sl: goto s2 ; 
state s2: goto s3 ; 
state s3: goto s4 ; 
state s4: goto s5 ; 
state s5: goto s6 ; 
state s6: goto s7 ; 
state s7: goto s8 ; 
state s8: goto s9 ; 
state s9: goto s10 ; 
state s 10: goto sO ; 

test vectors 
([elkl,clk2,res] -> [count]) 
[0 , c , 1 ] -> [15 ]; 
[c , 0 , 0 ] -> [ 0 ]; 
[0 , c , 0] -> [ 0 ]; 
[c , 0 , 0 ] -> [ I ]; 
[c , 0 , 0] -> [ 2 ]; 
[c , 0 , 0 ] -> [ 3 ]; 
[c , 0 , 0] -> [ 4 ]; 
[c , 0 , 0 ] -> [ 5 ]; 
[c , 0 , 0] -> [ 6 ]; 
[c , 0 , 0] -> [ 7 ]; 
[c , 0 , 0 ] -> [ 8 ]; 
[c , 0 , 0] -> [ 9 ]; 
[c ,0 ,0] -> [ 10]; 
[c , 0 , 0 ] -> [ 0 ]; 

end 

res; 

6-146 



Using ABEL to Program 
the Cypress CY7C331 

This application note describes how to program the 
CY7C331 using Data I/O's ABEL. Each section of the 
application note describes a configuration and presents 
the relevant ABEL source code. (You can obtain all the 
examples presented in this application note from the 
Cypress Bulletin Board at (408) 943-2954. Retrieve the 
file 331APNT.EXE; it unarchives itself automatically.) 

The information presented here can simplify the 
jobs of circuit designers, who are under a lot of pres­
sure to shorten design cycles and fit numerous functions 
into a small footprint. The latest programmable logic 
devices (PLOs) give you the ability to increase circuit 
density with a reduced design cycle. When you combine 
multiple types of PLDs from multiple vendors on the 
same board, using a general programmable logic com­
piler such as ABEL makes a lot of sense. 

Unfortunately, as PLOs get more complex, the con­
cept and implementation of a universal compiler be­
comes non-trivial. A compiler vendor such as Data I/O 
must define a syntax that is both easy to use and power­
ful enough to accommodate hundreds of different 
PLO s. The ABEL PLO compiler succeeds with a vast 
array of features. It does an admirable job of supporting 
over 300 different types of PLD source equations with a 
multitude of different architectures. 

The architecture covered in this application note is 
that of the Cypress CY7C331. This device belongs to a 
family of high-speed, high-density, 28-pin PLOs. Fea­
tures such as individual set, reset, and clock product 
terms for each of the 24 registers make the device one 
of the most versatile PLDs on the market today. 

Controlling the Output Enable 
The CY7C331 has two different methods ofcon­

trolling the output enable on each of the twelve outputs 
(see the CY7C331 diagram in Figure 1 of "Using the 
CY7C331 as a Waveform Generator"). Either pin 14 or 
a product term can control each output enable. Con­
trolling the output enable by a product term means 
using any combination of inputs and outputs ANOed 

together. Because only one term is available, OR terms 
are not allowed in the equation. 

The advantage to using pin 14 rather than a 
product term is that the pin enables or disables the out­
put buffers 5 ns faster. This is because the output 
enable signal does not travel through the array. 

Any I/O pin (pins 15 - 28) used on the left side of 
an equation, by default, has its output enable 
programmed as asserted. For example: 

Il, OUT15 PIN 1, 15; 
EQUATIONS 

OUT15 = 11 ; 
is the same as 

11, OUT15 PIN 1, 15; 
EQUATIONS 

OUTI5 = 11; 
OUT 15.0E = 1; 
If you use the direct connection to pin 14, the sig­

nal must be configured as active Low. The way ABEL 
configures the output enable mux depends on the equa­
tions. If the right hand side of an ".QE" equation has 
just an inverted pin 14 on it, ABEL assumes you want 
to use the direct connection to pin 14. For example, the 
following equations use the direct connection to pin 14 
(CO = 1): 

6-147 

Il4,115 PIN 14,15; 
OUTI5, OUT16 PIN 15,16; 

EQUATIONS 
[OUT15,OUT16].OE = !Il4; 
The same example uses the product term array if 

you change the equation to: 
[OUTI5,OUTI6].OE = 115; OR 
[OUT15,OUT16].OE = Il4 & Il5; 

or even: 
[OUTI5,OUT16].OE = Il4; 

In some cases, you might want to use pin 14 to con­
trol the output enable, but for timing reasons use the 
product term array instead of the direct connection. 
ABEL allows you to do this by using an ISTYPE state­
ment. In the following example, the output enable for 



pin 16 goes through the product term array, and pin 17 
uses a direct connection: 

12,114 PIN 2,14; 
OUTI6, OUT17 
OUTI6.0E 

EQUATIONS 

PIN 16,17; 
ISTYPE 'EQN' ; 

[OUT16,OUTI7].OE = !Il4; 
OUT16 = 12 ; 
OUT 17 = 12 ; 
TEST VECTORS 

([12,114] -> [OUT16,OUTI7]) 
[ X , 0] -> [ z , z ]; 
[ 0 , 1 ] -> [ 0 , 0 ]; 
[ 1 , 1 ] -> [ 1 , 1 ]; 
Note that in most cases when an output register is 

buried and the I/O pin serves as an input, ABEL does 
not automatically disable the output enable. In fact, you 
cannot disable the output enable unless you defme it 
with an ISTYPE 'EQN' statement. 

In the following example, the OUTI5.0E = 0 
statement does not disable the output enable unless the 
statement is preceded with OUTI5.0E ISTYPE 'EQN': 
" The following code is for testing 
" polarity on the CY7C331. 
"input pins 

I1,CLK 
RES,PRE,OE 
"output pins 

OUTI5,OUTI6 
OUTI7,OUT18 
"constants 

C,X,Z 
OUTI5.0E 

EQUATIONS 

PIN 1,2; 
PIN 4,5,6; 

PIN 15,16; 
PIN 17,18; 

= .C., .x., .Z.; 
ISTYPE 'EQN'; 

" the example below shows using the 
" feedback from register 15 to 
" control the preset and set of 
" register 16. 

OUT15 11; 
OUTI5.C = CLK; 
OUTI5.RE = RES; 
OUTI5.PR = PRE; 

" The following statement is ignored 
" without previous istype'eqn'. 

OUTI5.0E 0; 
OUTI6.RE OUT15; 
OUTI6.PR !OUTI5; 
OUTI6.0e 1; 

TEST VECTORS 
([Il,CLK,RES,PRE] -> [OUT15,OUTI6]) 
[ 0, 0, 0, 0 ] -> [ Z , 1]; 
[ 0, C, 0, 0] -> [Z, 0]; 
[ 1, C, 0, 0] -> [ Z , 1]; 

" This tests what happens to the 
" polarity of the register feedback 
" when you go from register to 

" transparent. 
[0,0, 1, 1 ] -> [ Z, 0]; 
[ 1, 0, 1, 1 ] -> [ Z, 1]; 
In general, it is advisable to use the ISTYPE 'EQN' 

for all I/O pins that use a product term to control the 
output enable, especially when trying to disable an out­
put buffer. 

Registered Output Only 
You can use the CY7C331 macrocell as a 

registered output, without using the input register, as il­
lustrated in the following example: 
"input pins 

D INP, CLK PIN 1, 2 ; 
"output pins 

OUT15 PIN 15; 
"constants 

C,X,Z 
EQUATIONS 

OUT 15 
OUTI5.C 

TEST VECTORS 

= .C., .x., .Z. ; 

:= D INP ; 
= CLK;-

([0 INP,CLK] -> OUTI5) 
[ X,O] -> 1; 
[ 0, C ] -> 0; 
[ 1, C ] -> 1; 
As shown in this example, the minimum require­

ment to configure an output into a register is the OUT­
PUT := INPUT equation and an equation describing 
where the clock is coming from. The latter is necessary 
because the CY7C331 has no dedicated clock pin. 

6-148 

Because the following equations are ABEL 
defaults, you do not need to explicitly define them: 

OUTI5.RE = 0; "disable reset 
OUTI5.PR = 0; "disable preset 

" permanently enable output buffer 
OUT15.oE = 1; 
The next example uses all the output register's fea­

tures. For example, you can dynamically switch from 
registered mode to combinatorial and back to 
registered. Although the ABEL simulation always shows 
the register returning to the same state when switching 
from combinatorial to registered mode, the. actual state 
varies from device to device. 

Also note that this example adds OUT17. to show 
that even when the pin 15 output buffer. is disabled, the 
register's state still feeds back to the product term array 
via the feedback mux. The ABEL default for the feed­
back mux in the registered mode is to take information 
from the register (Cl = 0). 
"input pins 

D INP,·CLK 
RES, PRE, OE 

"output pins 
OUTI5, OUT16 
OUTI7, OUT18 

"constants 
C,X,Z 

PIN 1,2; 
PIN 3,4,5; 

PIN 15,16; 
PIN 17,18; 

= .C., .x., .Z.; 



EQUATIONS 
" OUT15 is using the output register in both registered 
"and combinatonal mode by manipulating the 
" set and reset terms. 

OUTIS 
OUTI5.C 
OUTI5.RE 
OUT 15.PR 
OUTI5.0E 
OUT17 

TEST VECTORS 

:= D INP ; 
= CLK; 
= RES ; 

PRE ; 
OE ; 
OUT15 

When you configure the output register as 
transparent, the input register path data is automatically 
fed to the product term array (C1 = 1). Because ABEL 
also defaults to transparent input registers, the data fed 
to the product term array is not the same as the 
registered output data. 

You can feed data back to the product term array 
from before the output buffer-even when the output 
register is configured as transparent-by using an IS­
TYPE 'FEED REG' statement: 

([15 INP,CLK,RES,PRE,OE] -> [OUT15,OUTI7]) 
"input pins 

16,17 PIN 6,7 ; 
[0 ~O ,0 ,0,0] -> [Z , 1 ]; 

"with no external help, the registers initialize to the 
"reset state, which means the outputs are high, 
" because of the non-bypassable inverter in 
"the output path. 

[ 0 , 0 , 0 ,0, 1] -> [ 1 , 1 ]; 
[ 0 , 0 , 0 , 1 , 1] -> [ 0 , 0 ]; 
[ 0 , 0, 1 ,0, 1] -> [ 1 , 1 ]; 
[ 0 , C , 0 , 0, 1] -> [ 0 , 0 ]; 
[ 1 , C , 0 , 0, 1] -> [ 1 , 1 ]; 

" The register becomes combinatorial 
" when the reset and preset are both asserted 

[ 0 ,0, 1 , 1 , 1] -> [ 0 , 0 ]; 
[ 1 , 0, 1 , 1 , 1] -> [ 1 , 1 ]; 

" this is the state the register returned to 
" when going from combinatorial to registered mode. 

[ 0 , 0 , 0 , 0 , 1] -> [ 0 , 0 ]; 
Remember that the ABEL default for the feedback 

mux in the registered mode is to take information from 
the register (Cl = 0). This is not the case when you 
configure the output register as transparent, however, as 
shown in the next example. 

Combinatorial Output Only 
ABEL allows you to configure the output register 

as transparent by using the "=" symbol instead of ":=" 
in the equations, as this example shows: 
"input pins 

11 PIN 1; 
"output pins 

OUT15 
"constants 

PIN 15; 

C, X, Z = .C., .x., .Z.; 
EQUATIONS 

OUT15 = 11 ; 
TEST_VECTORS 

( 11 -> OUT15 ) 
o -> 0; 
1 -> 1 ; 
In this example, the following equations are ABEL 

defaults, and you do not have to write them. Including 
these equations does not cause an error. 

OUT 15.PR 1; "set and reset 
OUT 15.RE 1; "high = transparent. 
OUTI5.0E = 1; "enable on. 

"output pins 
OUT16, OUT18 PIN 16,18; 

"constants 
C,X,Z 
OUT16 

EQUATIONS 
OUT16 
OUT16.0E 
OUT18 

TEST VECTORS 

= .C., .x., z. ; 
ISTYPE 'FEED_REG'; 

= 16 ; 
= I7; 
= OUT16 

([16,17] -> [OUT16,OUT18]) 

6-149 

[ 0, 0] -> [ Z , 0]; 
[ 1,0] -> [ Z , 1]; 
[ 0, 1] -> [ 0 , 0]; 
[ 1, 1] -> [1, 1]; 
If you omit the FEED_REG statement, an error 

occurs in the simulation. The FEED REG statement 
changes the feedback-mux configuration bit from One 
to Zero (Cl = 0). 

Transparent Input Only 
The ABEL 3.2 default is to make the input register 

transparent. Thus, to specify an I/O macrocell as a com­
binatorial input, place the specification on the right side 
of an equation: 
"INPUTS 

INP16, OUT18 PIN 16, 18; 
EQUATIONS 

OUT18 = INPI6; 
TEST VECTORS 

(INP16 -> OUTI8) 
o -> 0; 
1 -> 1 ; 
In this example, only one operator (=) serves to 

configure both registers as transparent. This method 
works because the equals sign controls only the output 
register configuration (OUT18), which is possible be­
cause the default configuration for an input register is 
transparent. Changing the "=" to ":=" changes the pin-
18 output register from transparent to registered, but 
does not affect the pin-16 input register. 

The Macrocell as a Registered Input Only 
To change an input register from transparent to 

registered, you configure the register using its node 



=e:~RESS Using ABEL 3.2 to Program the Cypress CY7C331 
~, ~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

number. Table 1 lists. the node assignment for each 
register. 

To use an input register as a register, place the sig­
nal on the right side of the equation and add the rest of 
the terms needed. In the following example, INP17 is a 
registered input pin. The register itself is called 
INP17REG. OUT19 is a transparent or combinatorial 
output 
"pin definitions 

INP17, RESET 
SET, CLK 
OUT19 
INP17REG 

EQUATIONS 
OUT19 
INP17REG.C 
INP17REG .PR 
INP17REG.RE 

= INP17 ; 
= CLK; 
= SET; 
= RESET 

TEST_VECTORS 
([INP17,CLK,SET,reset] -> 
[ X ,X, 0, 1] 
[ X ,X, 1 , 0] 
[ 0 ,C, 0, 0] 
[ 1 ,C, 0, 0] 
[ 0 ,X, 1, 1] 

-> 
-> 
-> 
-> 
-> 

PIN 17,3; 
PIN 4,5; 
PIN 19; 
NODE 145; 

out19) 
0; 

1 . , 
0; 
1 ; 
0; 

[ 1 ,X, 1, 1] -> 1; 
To access the data stored in an input register, use 

the pin name. Access the set, reset, and clock using the 
input register node name. 

Burying the Output Register/Registered 
Input 

The CY7C331 allows you to bury an output register 
and still use the pin as a registered input by using the 
shared-input mux. The CY7C331 provides a· shared­
input mux between pins 15 and 16, 17 and 18, 19 and 20, 
etc. Thus, there are three paths into the product term 
array for every pair of macrocells. You therefore cannot 
bury both of a pair's output registers and still use the 
pin as an input. If you bury the output register at pin 15 
and use the pin for an input, for example, you cannot 
bury the output register at pin 16 and also use the pin 
for an input. 

Use the pin name to access the information fed 
back to the product term array from the output register. 
Use the node number of the shared-input mux to access 
the input data coming from the pin and passing through 
the input register. The shared-input mux node number 
assignments appear in Table 2. 

The shared-input mux can take information from 
one of the two macrocells. ABEL defaults to selecting 
the macrocell of the even pin number. However, macros 
are available that select the odd pin's macrocell. You 
can access these macros by using the following syntax: 

LIBRARY 'P331'; 
FEEDPIN_27; 

Table 1. CY7C331 Input Register Node Assignments 

Pin Number Re2ister Node 

15 143 

16 144 

17 145 

18 146 

19 147 

20 148 

23 149 

24 150 

25 151 

26 152 

The 
LIBRARY statement inserts a copy of all the possible 
CY7C331 macros into the source during compilation. 
You can observe the result by looking at the listing file 
(.LST). The FEEDPIN _27 statement selects pin 27 to 
pass through . the shared-input mux, overriding the 
default, which is pin 28. 

The following code is the complete listing of a test 
program that shows how to bury a register and employ 
the pin as an input, using macros to change the shared­
input mux: 

6-150 

module test3 
title 'CY7C331 test programs for applications note 
Cypress Semiconductor Inc. 3/16/90' 

TEST3 DEVICE 'P331'; 
"This is an example of burying the output register 
"of a CY7C331 and using the I/O pin as an input. 
"input pins 

11, CLK1, CLK2 
RES, PRE, OE 
CLK3 

"output pins 
OUT1S, OUT16 
OUT 17, OUTI8 

"constants 

PIN 1,2,3; 
PIN 4,5,6; 
PIN 7; 

PIN 15,16; 
PIN 17,18; 

C,X,Z .= .C.,X.,Z.; 
"LIBRARY statement is used to access the macros 
"needed to change the shared-input mux selection. 
LIBRARY 'P331'; 
"Data from pin 1 gets clocked through the buried 
"register on pin 15, and output on pin 16. 
"Output register 15 is configured as a register and the 
"pin 16 output register is transparent. 
"Data also gets input on pin 15 and output on pin 17. 
"Both are configured as registers. 



5?l Using ABEL 3.2 to Program the Cn!ress CY7C331 ~~m~~~~~~~~~~~~~~~~~~~~~~~~~~ 

INP1SREG 
INP1SMUX 
OUT1S.0E 
OUTPUTS 
FEEDPIN 15; 

EQUATIONS 
OUT17 
OUT17.C 
INP1SREG.C 
.cUTIS 
OUT1S.C 
OUT1S.RE 
OUT1S.PR 
OUT1S.0E 
OUT16 

NODE 143; 
NODE 29; 
ISTYPE 'EQN'; 

[OUT16,OUT17]; 

:= INPlSMUX 
= CLK3 ; 
= CLK2 ; 
:= II; 
= CLKI ; 
= 0 ; " disable reset, 
= 0 ; " preset, and oe 
= 0 ; 
= OUTlS ; 

TEST VECTORS 
([I1,CLK1,OUT1S,CLI(2,CLK3] 
[X, 0, 0 , 0,0] 

-> [OUTPUTS]) 
-> [1,1]; 

[0, C, x , 0,0] -> [0,1]; 
[1, C, X , 0,0] -> [1,1]; 
[X, 0, 0 , C,O] -> [1,1]; 
[X, 0, x , O,C] -> [1,0]; 
[X, 0, 1 , C,O] -> [1,0]; 
[X, 0, x , O,C] -> [1,1]; 

END 
The ABEL 3.2 compiler contains a bug that relates 

to this example. If you remove the line OUT1S.0E IS­
TYPE 'EQN';, the code compiles and simulates correct­
ly. However, if you look at the resulting ,JEDEC map 
for the equations, the output buffer for pin 15 is 
enabled, which should cause the simulation to fail. Con­
tact Data I/O for more information. 

When you use macros, be cautious about several 
aspects of ABEL. In equations, for instance, the ABEL 
parser allows spaces between the end of the equation 
and the semicolon. However, you must place a semi­
colon immediately after a library statement and a 
macro. The parser does not allow a space between a 
semicolon and a library statement or a macro. 

Additionally, because the key words of the macros 
that are accessed using the library statement are in 

, Table 2. CY7C331 Shared Input Mux Node 
Assignment 

Pin Numbers Shared Input 
Mux Node 

15116 143 

17118 144 

19/20 145 

23/24 146 

25/26 147 

6-151 

upper case, you must put all references to the macros 
(e.g., FEEDPIN_27) in upper case. This is the only 
place where ABEL is case sensitive. 

Finally, although you can put the library statement 
anywhere in the source code's declaration section, you 
must put macros last in the declaration section, before 
the equations section. 

Transparent Output with Registered Input 
This example shows how to configure a buried 

transparent output register with a registered input As 
described in the earlier section on transparent output 
registers, when you configure the output as transparent, 
the feedback to the product term array passes through 
the input register, unless programmed otherwise. The 
following code shows how to override the default using 
the ISTYPE 'FEED REG' statement. 

(Note that in the input section of the simulation, 
OUTlS represents the data being input on pin 15. This 
representation is somewhat confusing because in the 
equations OUT1S refers to the information coming 
from the pin-IS output register. See the simulation sec­
tion of this application note for an explanation of this 
apparent discrepancy.) 
"input pins 

II, CLK2 
CLK3 

"output pins 
OUT 15, OUT16 
OUTI7, OUT18 

"constants 
C,X,Z 

LIBRARY 'P331'; 

PIN 1,2; 
PIN 3; 

PIN 15, 16; 
PIN 17,18; 

= .C., X., z.; 
"Input data from pin 1 goes through the buried 
"register on pin 15, and is output on pin 16. 
"Output registers 15, 16 are configured as transparent. 
"Data is also input on pin 15 and output on pin 17. 
"Pin 15 input, pin 17 output are registered. 

INP15REG NODE 143 ; 
INPI5MUX NODE 29 ; 
OUT1S ISTYPE 'FEED_REG'; 
FEEDPIN 15; 

EQUATIONS­
OUT17 
OUTI7.C 
INPlSREG.C 
OUT 15 
OUT15.0E 
OUT16 

.- INPl5MUX; 
= CLK3 ; 
= CLK2 ; 
=I1; 
= 0 ; 
= OUT15 

TEST VECTORS 
([iI,OUT1S,CLK2,CLK3] 
[O,X,O,O ] 
[1,X ,0,0] 
[l,O,C,O ] 
[1,X,O,C] 
[1,1 ,C ,0] , 
[1 ,X ,O,C] 
"end 

-> [OUT16,OUTI7]) 
-> [ 0, 1]; 
-> [ 1, 1]; 
-> [ 1, 1]; 
-> [ 1, 0]; 
-> [ 1, 0]; 
-> [ 1, 1]; 



Si;a= --;;;;;;====;;;;;;;;;U;;;s;;;in~g~AB~E;;;L;;;;;3;;;.;;;2;;;to~P;;;r;;;o;:;gr;;;a;;;m~th;;;e;;;;;;C;;;yp:;:;;;r;;;;;es;;;;s;;;;;C;;;Y7=C;;;3;;;;;3;;;;;;;1 
~ SEMICCtIDUCTOR_ 

Using the CY7C331 for Counting 
You can use the CY7C331 to create a synchronous 

counter. The only limitation to using the device in a 
synchronous mode is that all feedback must be internal 
to the part, because the input-data hold time is not 
compatible with the output-data hold time. 

ABEL provides many ways to implement a counter, 
including describing it explicitly in D or T flip-flop 
form. 

The following example shows how to use the "count 
= count + 1" capability with the CY7C331 to imple­
ment a basic counter. The ABEL compiler uses the 
CY7C331's XOR gate to implement T flip-flops without 
any external instructions such as ISTYPE 'REG _ T'. 
"input pins 

11, CLK2, CLK3 
RES, PRE, OE 

"output pins 
OUT15, OUT16 
OUT17, OUT18 

"constants 
LIBRARY 'CONSTANT'; 

PIN 1,2,3; 
PIN 4,5,6; 

PIN 15,16; 
PIN 17,18; 

COUNT =[OUT18, OUT17, OUT16, OUT15]; 
EQUATIONS 
" Example of 4-bit counter 
" that starts and wraps around at 15. 

COUNT.C = CLK2; 
COUNT := COUNT + 1; 

" Example of how to use set and reset with this form 
COUNT.RE RES; 
COUNT.PR = PRE; 

TEST VECTORS 
(CLK2 

o 
-> COUNT) 
-> 15; 

C -> 
C -> 
C -> 
C -> 

TEST VECTORS 
([CLK2, RES, PRE] 
[0,0,0] 
[0,0,1] 
[0, 1,0] 
[0,0,1] 
[C,O,o] 
[C,O,O] 
[C,O,O] 
"end 

0; 
1; 
2; 
3; 

-> COUNT) 
-> 
-> 
-> 
-> 
-> 
-> 
-> 

3; 
0; 
15; 
0; 
1; 
2; 
3; 

Polarity Issues 
The CY7C331 's outputs do not have programmable 

polarity control in the same sense as the 22V10. The 
CY7C331 has a hard-wired inverter between the output 
register and the output pin that results in an active low 
output. You generally control the device's polarity using 
the XOR gate located in front of the output register. 

ABEL makes polarity control transparent by allow­
ing you to write equations with both positive- and nega­
tive-polarity outputs. Most of the examples in the pre­
vious sections, for instance, had active-High outputs. 
But hard-wired polarity becomes an issue when using 
set and reset. Keep in mind that a reset causes the out­
put to go High. 

ABEL takes care of the necessary inversions in the 
device to get the correct output polarity. This operation 
can be tricky when the internal feedback from a register 
controls another register's set or reset. Because both 
polarities are available in the product term array, it is 
not obvious which polarity should be used. Refer to the 
last example in the "Controlling the Output Enable"sec­
tion of this application note for an example of indirect 
set and reset control. 

Although the CY7C331 has active-Low outputs, 
defining the outputs active High (using OUT15 ISTYPE 
'POS') sometimes causes ABEL's Reduce module to 
create equations that suit the CY7C331 better. This ef­
fect is especially true when you use the XOR gate. 
Refer to pages 3 - 4 in the ABEL 3.2 User Notes for 
more information. 

6-152 

Simulation 
Simulation is very important with a part as versatile 

as the CY7C331. All the examples in this application 
note have been simulated to verify their function. 

The ABEL simulator is powerful enough to simu­
late most of the configurations possible with the 
CY7C331. For example, the simulator supports multiple 
clock inputs controlling different registers. An applica­
tion that illustrates this capability is a ripple counter. 
This counter has the clock input driven from the pre­
vious stage's output, with the least-significant bit driven 
by an external clock. 

The following is an example of a 4-bit decrement­
ing ripple counter implemented in the CY7C331. 
"input pins 

CLK2, RESET 
"output pins 

OUT 15, OUT16 
OUT17, OUT18 

"constants 

PIN 2,3; 

PIN 15,16; 
PIN 17,18; 

LIBRAR Y 'CONSTANT'; 
COUNT =[OUT18, OUT17, OUT16, OUT15]; 

EQUATIONS 
"example of a 4·bit ripple counter that starts at 15 
"and wraps around at O. 

COUNT.RE 
OUT15.C 
OUT15 
OUT16.C 
OUT16 
OUTI7.C 
OUT17 
OUT18.C 
OUT18 

= RESET; 
= CLK2; 
:= !OUTI5; 
= OUT15; 
:= .!OUT16; 
= OUTI6; 
:= !OUT17; 
= OUT17; 
:= !OUTI8; 



5?~a< .;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;V;;;;;;S;;;;;;iD;;;;g::;;;;;AB;;;;;;;;;;;E;;;;;;;;;;;L;;;;;;3;;;;;;_2;;;;;;;;;;;to;;;;;;;;;;;P;;;;;;r;;;;;o;;:g;;;;;ra;;;;;m;;;;;;;;;;;t;;;h;;;e;;;;;;C;;;yp~r;;;;e;;;ss~C;;;;Y7~C;;;3;;3;;;,1 
TEST VECTORS 

([CLK2,RESET ] -> COUNT) 
[ 0, ° ] -> X; 
[ 0, 1 ] -> 15; 
[ C, ° ] -> 14; 
[ C, ° ] -> 13; 
[ C, ° ] -> 12; 
[ C, ° ] -> 11; 
[ C, ° ] -> 10; 
[ C, ° ] -> 9; 
The CY7C331 powers-up with all registers in the 

reset state. The simulator, in most cases, mimics the 
device power-up characteristics. However, in certain 
applications, including the previous one, the simulation 
consistently initializes to a non-reset state. 

Another interesting problem with simulating the 
CY7C331 is naming the input data when you bury the 
output register and use an I/O pin as an input. Al­
though the input-register data is accessed in the equa­
tions using a node name, the ABEL simulator only 
works with pin names. In this application note's 
"Transparent Output with Registered Input" section, the 
example's equations section uses the node name 
(INP15MUX) to access the data being input on pin 15; 
the pin name (OUT15) is used to represent the data 
from the output register, which is fed back to the 
product-term array and then to pin 16. In the simulation 
section, however, OUT15 now represents the data being 
input on pin 15. The ABEL simulator is smart enough 
to know which data you are referring to. 

Remember that simulation preload does not work 
with registered asynchronous parts such as the 
CY7C331 or 20RAlO. However, if your design has an 
extra input, you can preset to a specific value by using 
the set and preset product terms individually. For ex­
ample: 

6-153 

"input pins 
CLK, PRE PIN 2,3; 

"output pins 
OUT15, OUT16 PIN 15,16; 
OUT17, OUT18 PIN 17,18; 
OUTI9, OUT20 PIN 19,20; 

"constants 
LIBRARY 'CONSTANT'; 
COUNT = [OUT20, OUT19, OUT18, 

OUT17, OUT16, OUT15]; 
PRESET = [OUT20, OUT19, OUT18, 

OUT 17, OUT16, OUT15].RE; 
RESET = [OUT20, OUT19, OUT18, 

OUTI7, OUT 16, OUT15].PR; 
EQUATIONS 

COUNT.C 
COUNT 

= CLK; 
:= COUNT + 1; 

WHEN (PRE == 1) 
THEN PRESET = [1,0,1,0,1,1]; 

WHEN (PRE == 1) 
THEN RESET 

TEST VECTORS 
= [0,1,0,1,0,0]; 

(CLK -> ° -> 
C -> 
C -> 
C -> 
C -> 

TEST VECTORS 
([clk,pre] -> 
[0, 0] -> 
[C ,0] -> 
[0, 1] -> 
[C , 0] -> 
[C , 0] -> 
"end 

COUNT) 
63; 
0; 
1; 
2; 
3; 
"preload simulation test 

count) 
3 ; "remembers from previous sim. 
4 ; 

43 ; 
44; 
45 ; 



CYPRESS 
SEMICONDUCTOR 

Using LOG/iC to Program the CY7C330 

This application note provides you with a running 
start towards using the LOO/iC design synthesis tool for 
designs using the Cypress CY7C330 programmable 
logic device. 

Of the steps required for implementing designs 
using PLDs, generating JEDEC files from high-level 
descriptions is probably the most time consuming. Un­
fortunately, the documentation that comes with many 
high-level synthesis packages does not provide enough 
detailed information to use advanced PLDs without a 
significant learning curve. Although the LOO/iC 
documentation is quite good, this application note 
should help flatten the LOO/iC learning curve further. 

Isdata's LOO/iC is an advanced universal logic syn­
thesis program that generates designs targeted for 
PROMs, PLDs, and gate arrays. The LOO/iC package's 
basic algorithms were developed in the Electrical En­
gineering Department of the University of Karlsruhe, 
West Oermany. Although a relative newcomer to the 
PLD software market in the U.S., LOO/iC has become 
very popular in Europe. 

LOO/iC is available for a variety of operating en­
vironments including PC DOS and SP ARC-based 
SUNoS platforms. The software is available as four dif­
ferent packages with two options. The first (PLC) pack­
age supports PAL designs. It offers input in either 
equations or tables with syntax constructs that include 
address ranges and functional blocks. Also available are 
hexadecimal, decimal, octal, and binary representations. 

The second (PLUS) package extends the first and 
supports the design of sequential controllers via in­
clusion of their FSM (finite state machine) syntax. This 
package includes an automatic test vector generation 
feature. 

Package three (PERFECT) extends support to in­
clude designs partitioning across multiple devices. Pack­
age four (OATES) supports the design of multi-Ievel­
structure gate arrays by producing netlists from the 
various input formats. The two option packages offered 
are the Functional Verifier and PLD Database. 

This application note deals with the functions avail­
able in package two (PLUS). 

LOG/iC Language Overview 
LOO/iC offers three different entry methods: 

Boolean equations, truth tables, and FSM. Declarations 
partition an input me into sections. Additionally, 
designs can be logically partitioned into functional 
blocks within a LOO/iC design me. These options are 
described briefly before proceeding to CY7C330-
specific information. 

Declarations 
Declarations are directives to the LOO/iC compiler 

that identify the design, indicate the inputs and outputs, 
specify compiler options, assign pin numbers to vari­
ables, and specify the type of input format. These decla­
rations separate the input me into discrete sections that 
describe the· design's various aspects. LOO/iC declara­
tions consist of a key word preceded by an asterisk (*). 

6-154 

The frrst section is the *Identification section, 
where you enter comments regarding the function of the 
design, etc. Variable declarations follow this informa­
tion. LOO/iC supports input, output, local, and state 
variables for both Mealy and Moore machines. You can 
specify variables in ranges for compacmess of expres­
sion, such as Address[O . .31]. Variables can also have 
special function extensions that control the function of 
the device, such as RAS.OE. 

Following the variable declarations is the design 
description. It is denoted by the declaration *Boolean 
Equation s, *Function-Table, or *Flow-Table for 
Boolean, truth table, and FSM entry methods, respec­
tively. In the design description, you specify the circuit's 
function. Drawing an analogy to programming a com­
puter in a high-level language, you could say that most 
of the other declarations describe the circuit's variables. 
The design description implements the algorithm to 
perform the function you wish to create. 

Next are the *PLD, *PINS, *Run-Control, and 
*END sections. The *PLD declaration describes the 
device type targeted for use in this design. *PINS con­
trols the assignment of the external variables to device 
pins. Finally, *Run-Control provides compiler direc­
tives, and *END signifies the end of the design file. 



Table 1. LOG/iC Operators 

Operation 
Unregistered Output 
Registered Output 
Negation 
AND 
OR 
XOR 
Constant 1 
Constant 0 

Symbol 

1 
& 
+ 
# 
VCC 
GND 

Boolean Design Entry 

Example 
z = X; 
Z:= X; 
Z = IX; 
Z = X & Y; 
Z = X + Y; 
Z = X # Y; 
Z = VCC; 
Z GND; 

The simplest design entry method is by Boolean 
equation s. Table 1 shows the operators supported by 
LOG/iC in order of precedence. The labels X, Y, and Z 
can represent either a single variable or a range of vari­
ables. 

Logic polarity often creates an amazing amount of 
confusion for a methodology that has only two values. 
LOG/iC removes the burden of considering whether a 
given signal is active Low or High, because Boolean 
equation s always have a positive polarity. Thus, if a 
given input variable is specified without a 'I', that vari­
able is deemed to be true independently of the active 
level of the signal on the pin. 

LOG/iC deals with signals that are active Low via 
the *Level declaration. You therefore write equations 
for an active-Low signal exactly the same as those for an 
active-High signal. The *Level section identifies the 
polarity of given input signals and manages nega­
tive/positive polarity issues for you. 

Another useful aspect of Boolean entry is the use 
of ranges, which provide a compact method of referring 
to many variables in a succinct fashion. Typical ex­
amples include references to address or data buses. Fig­
ure 1 shows an example of Boolean entry that utilizes 
variable ranges. This example features an 8-bit data bus 
whose values are captured in a register when a load 
command is issued. 

Truth Table Entry 

Truth table entry represents one of the most com­
pact entry methods to describe a combinatorial system. 
With this entry format, you map the outputs as a func­
tion of the input variables. The basic format of truth 
tables appears in Figure2. 

This example contains several noteworthy charac­
teristics. The first is the ordering of the inputs and out­
puts. Note that the labels after the key word "*Function­
Table" are comments, indicated by the leading semi­
colon (;). Thus, the ordering of the X and Y variables in 
the *X-Names and *Y-Names declarations specifies 
their ordering in the function table. 

If you want some other ordering, you can specify it 
with a header. A header is a logical line preceded by 
the dollar sign symbol ($). When using a header, you 
separate the variables into fields delimited by commas. 

*Identification 
Parallel Load Register with acknowledge 
MMA - Cypress Semiconductor 

*X-Names 
Load, Data[O .. 7]; 

*Y-Names 
Qout[O .. 7],ACK; 

*Boolean-Equations 
Qout[O .. 7] := Load & Data[O .. 7]; 
ACK = Load; 

Figure 1. Boolean Entry Example 

Figure 3 shows an example in which a header chan­
ges the variable ordering. This example uses two impor­
tant constructs that can assist in reducing the logic 
design to the minimum number of product terms. The 
first construct is the Don't Care entries designated by a 
hyphen (-), which appear on both the input and output 
sides of the table. 

The use of the Don't Care input is unique to the 
function table entry method and can significantly im­
prove the compiler's ability to produce minimized logic. 
Note that Don't Cares are only available when using bit 
fields and that the table ends with word "REST" on the 
input side. The use of the rest statement stems from the 
fact that, to uniquely identify all possible ~put Matterns 
with N input variables, you would requrre 2 table 
entries. A single Don't Care in any given line represents 
two entry lines rather that one. The rest statement 
provides a brief way to specify all remaining possible 
input values and the output the values should produce. 

6-155 

The header line has an additional benefit beyond 
merely changing the order of bit data. You can also use 
the header line to indicate logical groupings of data as 
fields. Data that is not entered in groups must be 
entered as binary data. Grouped variables, however, can 
represent input data that is in binary, octal, decimal, or 
hexadecimal representations. Suffixes that indicate the 

*Identification 
Truth Table Example 
MMA - Cypress Semiconductor 

*X-Names 
X[6 .. 1]; 

*Y-Names 
Y[1..4]; 

*Function-Table 
Input Side Output Side 

X 
6 

X X X X X 
5 4 3 2 1 

Y Y Y Y 
1 234 

o 
1 
o 
1 
o 
o 
REST 

1 0 
o 0 0 

o 1 
1 1 
o 0 
o 0 

1 0 
000 
1 1 
o 1 
100 
100 
1 

Figure 2. Truth Table Example 

, 
1 ; 
0; 
1 ; 
1 ; 
1 ; 
0; 



*Identification 
Truth Table Example with header 
MMA- Cypress Semiconductor 

*X-Names 
X[6 .. 1]; 

*Y-Names 
Y[1..4]; 

*Function-Table 
i Input Side Output· Side 

$ X6, XS, X4, X3, Xl, X2 Y4, Y3, Y2, Yl 
0, -, -, -, 0, 1 
1, 1, 1, 0, 0, ° 
0, 1, -, -, 1, ° 
1, -, -, 1, 1, 1 
0, -, 1, -, 0, ° 
0, -, -, 1, 0, ° 
REST 

-, 0, 
1, 0, 
0, 1, 
1, -, 
1, 0, 
1, 0, 
0, -, 

Figure 3. Truth Table with Header 

-, 1 . , 
0, 0; 
-, 1· , 
1, 0; 
0, 1 ; 
0, 1 ; 
-, 1 ; 

data format appear in Table 2. It is important to note 
that a field is always totally occupied by a number; if 
necessary, leading zeros are added to completely fIll the 
field. 

In addition to fIelds, function tables allow the use 
of ranges. This feature permits effIcient implementation 
of address decoders (Figure 4). The function table for 
this decoder specifIes the address as ordered from 15 .. 0. 
This order is signiflcant because it is the same order as 
that of the hexadecimal numbers entered in the ranges 
below, when you view the hexadecimal numbers as in­
dividual bits. Also note the double parenthesis sur­
rounding the outputs in the header line, which label this 
field as a bit field, eliminating the need· for separating 
commas. 

Finite State Machine Entry 

FSM entry is probably the design methodology that 
correlates best with the CY7C330's target application as 
a high-speed state machine. LOG/iC's documentation 
defInes an FSM as a circuit that has combinatorial logic 
and state registers of arbitrary type that feed back to a 
combinatorial array. Add to this defInition multi-clock­
ed input registers that minimize set-up and hold time 
requirements and you have a high-level description of 
the CY7C330. 

More generally described, state machines have 
memory elements that describe the present condition 
and inputs that influence both the transition to the next 
state and the outputs. FSMs are typically classified in 
two general categories: Moore and Mealy machines. 
LOG/iC differentiates between these types by stating 
that machines whose outputs might change arbitrarily 
within a state, even without a clock pulse, exhibit "Mealy 
behavior." Moore machines; on the other hand, have 
outputs that change only with the state clock and are 
free of glitches. This output is typifled as "Moore be­
havior" and is characteristic of the CY7C330. These out-

Table 2. Numeric Base Indicator SufilXes 

B Binary (default - can be omitted) 
o Octal 
Q Octal (alternate - to eliminate confusion between ° and 0) 
D Decimal 
H Hexadecimal 

puts are tied to the state clock and are referred to in 
LOGlie as Z-variables. 

Four variables describe an FSM's behavior: the 
input variables' values, the present state, the output 
variables' values, and the next state. An FSM's variable 
declarations section has options for all these 
parameters. As in the previous entry methods, *X­
Names describe the circuit's inputs. *Y-Names are 
values that exhibit Mealy behavior. *Z-Names are out­
puts that change relative to the state clock, as do the 
CY7C330's. 

State information can assume one of two forms. 
The most common (and easiest) way to store the 
machine's state is to determine the total number ~ 
states required and dedicate N register bits (where 2 
= the number of states) to maintain state information. 
This method is reliable and produces discrete non-over­
lapping state assignments. The disadvantage is that you 
must dedicate register resources (i.e., macrocells) that 
might have served better in another capacity. 

The second method available for state assignment 
is assignment of states . based purely on the output 
values. This method requires more thought, as it is criti­
cal that all output patterns be .. unique. A design that 
might meet this criteria on first pass, might not be 
realizable if you add features - or remove them, in the 
case of undesirable "features." 

6-156 

*IdentifIcation 
Address Decoder Example 
MMA - Cypress Semiconductor 

*X-Names 
Enable, Adr[O .. IS]; 

*Y-Names 
ROM[1..3], Port[I,2]; 

*Function-Table 
; Input Side : OutPut Side 

$ Enable, (Adr[15 .. 0]) : «ROM[1..3], Port[1..2])); 
1, : 111 -- ; Disabled 
0, OOOOOH .. 007ftH : OIl 11 ; ROM1. Selected 
0, 00800H .. OOfftH : 10111 . ; ROM2 Selected 
0,01000H.,017ftH : 11011 ; ROM3 Selected 
0, 08000H .. 08007H : 111 01 ; I/O Port 1 Selected 
0, 08008H..0800FH : 111 10 ; I/O Port 2 Selected 
0, OfSOOH .. Offfm : 01111 ; ROM1 (Shadow) 
REST : 111 11 ; Disabled 

Figure ( Address Decoder Function Table 



*Identification 
Counter with 247 states and overflow signal 
MMA - Cypress Semiconductor 

*X-Names 
Reset; 

*Y-Names 
Overflow; 

*Z-Names 
Q[1..8] 

*Flow-Table 
S[1..247], X 1, Y 0, Fl ; Reset condition 
S[1..246], X 0, Y 0, F[2 .. 247] ; Count 
S[247], X 0, Y 1, Fl ; Overflow 

Figure 5. FSM Counter 

LOG/iC can implement designs using either type of 
state assignment. The *State-Assignment directive 
provides the options of binary, number, gray, l-out-of­
N, and Z-variables. The binary option dedicates 
registers to state values and encodes the state values in 
binary. LOG/iC can do this encoding automatically, or 
you can specify the encoding explicitly. 

Using the number option ensures that the binary 
code for each state is the same as the state numbers 
used in the high-level description, i.e., state 1 = 001, 
etc. The gray option assigns the states using gray coding 
to minimize transitions. l-out-of-N assignment again 
uses registers but does not binary-encode states; in­
stead, each discrete register represents a single state. 
This approach is especially demanding on macrocell 
resources but minimizes the number of state bits switch­
ing at a single clock edge. Finally, the Z-variable option 
allows the output values themselves to represent the 
states. 

You enter the FSM design as a table after the 
directive *Flow-Table. Each line in the flow table has as 
many as four fields separated by commas. These fields 
represent the present state, inputs, outputs, and next 
state. Not all designs require all four states. Counters 
are good examples of applications that require only 
three fields to describe the machine, because the count 
value is the same as the state value. 

The order in which the fields appear is not sig­
nificant, because a letter indicating the field type 
precedes each field. The letters S, X, Y, and F indicate 
the state-number, input, output, and next-state fields, 
respectively. 

A line in an FSM that describes part of a machine 
might look like this: 

*Flow-Table 

SI, X 0 1, Y - 1, F2; 
When in state 1, with inputs at 0 and 1, this 

machine causes the second output to go True and tran­
sitions to state 2. In this case, the first output is not 
relevant to the design. In a large machine, many of the 

6-157 

inputs and outputs might not be relevant to a subset of 
the machine's sequence of operations. Rather than 
force you to specify the status of all variables, LOG/iC 
has a directive that lets you specify what variables are 
significant. This statement is called Relevant and stays 
in effect until the next Relevant statement or until the 
end of the design. As an example, you can describe the 
simple machine as: 

*Flow-Table 

Relevant = Xl, X2 : Y2; 

51, X 0 1, Y 1, F2; 
Omitting Yl from the Relevant statement indicates 

that Yl is a Don't Care. If, instead, you want Yl always 
to be off for the subsequent lines, you can state Yl = O. 

Another powerful statement is Xrest. Similar to the 
REST statement in function tables, Xrest provides a 
brief way to assign all remaining non-specified input 
patterns and these conditions' desired output and next 
state. 

You can also use ranges in flow tables for compact 
machine descriptions. In only three lines, the counter 
definition in Figure 5 completely specifies a state 
machine with 247 states through the use of ranges. The 
only limitation is the number of states that LOG/iC al-
lows in a machine. . 

The table-driven LOG/iC optimizer allows a maxi­
mum of 1024 states. For most true state machine ap­
plications, you would be hard pressed to fit 1024 states 
into a single PLD. But this syntax's attractiveness for 
use in counters as large as 16 bits (64K states) in the 
CY7C330 can lead you to run up against the 1024-state 
limitation in short order. 

Fortunately, LOG/iC can partition designs into 
blocks. This capability allows you to partition the design 
into smaller chunks that are optimized individually and 
merged after compilation. Blocks also tend to mimic 
optimal approaches to finding solutions by segmenting 
designs into smaller functional units (more on this 
later). 

LOG/iC also includes a simple statement that 
determines the type of flip-flop for implementing the 
state registers via the *Flip-Flop directive. The default 
is D-FlipFlops, but the T-FlipFlops statement can also 
be used. The LOG/iC reduction algorithm automatically 
generates optimized equations for the flip-flop type 
specified. This capability is especially significant for the 
CY7C330, because LOG/iC understands how to use the 
XOR product term for both polarity control and T flip­
flop creation. The CY7C330 can implement large 
counter s extremely efficiently using T flip-flops auto­
matically generated by LOG/iC. 

Optimization Levels 

You control LOG/iC's optimizer via the Compute 
and Nocompute statements, which you can place in the 
design file's *Run-Control section. Optimization levels 
are essentially binary. Nocompute allows you to indicate 



~RffiS --;========;;;;;;;U~si;;;n~g;;;;;;;L;;;;;;;O~G;;;;;/i;;;C;;;;;;;t;;;;;;;o;;;;;;;P;;;;;;;r;;;;;;;o!:;gr;;;;;;;a;;;;;;;m=th;;;;;;;e;;;;;;;C;;;;;;;Y7=C;;;;;;;3;;;;;;;3;;;;;;,O ~, SEMICCffi)UCfOR _ 

outputs for which you desire no reduction. Compute is 
complementary and allows you to explicitly specify the 
outputs you want reduced. Another directive, CPU­
Time = nn, allows you to specify the maximum amount 
of time the compiler can take to attempt an exact solu­
tion. After. this time, the compiler computes ap­
proximated solutions. 

CY7C330 Characteristics 
Cypress's CY7C330 is a high-performance PLD op­

timized for state machine applications. It features a 
pipelined architecture that achieves a 66-Mhz state 
transition speed. The device's 11 dedicated registered 
inputs offer small set-up and hold times. These verslltile 
input registers can be clocked with either of two input 
clocks. You select the input clock by programming a 
configuration fuse unique to each input register. The 
CY7C330 has a total of three clock pins - two for the 
input registers and one for the output/state registers. 
This feature allows you to synchronize input data 
without using an external register. You can tie the clock 
pins together if you need only a single clock source. 

The CY7C330 provides 12 I/O macrocells and four 
buried macrocells. The 12 I/O macrocells have an input 
register structure identical to that of the dedicated in­
puts. 

The outputs from the CY7C330 logic array feature 
variable product-term distribution with nine to 19 
product terms per output. These product terms are 
XORed with an additional product term, which you can 
use for equations that require an XOR, polarity control, 
or T flip-flop implementation. ' 

A fuse-configurable feedback mux allows you to 
program the CY7C330 macrocell for feedback from the 
input register or the output register (buried). The 
device's output enable is configurable for control via a 
product term or pin 14. This pin allows you to enable 
the output buffers asynchronously. Product term OE 
(output enable) is synchronous to the input register 
values that comprise the OE equation. You can also 
program this equation to permanently enable or disable 
the output buffer. 

When the feedback is programmed for state­
register (rather than input register) buried feedback, 
you have an additional feedback connection between 
pairs of I/O macrocel1s. This connection provides an 
input path for the pin that would otherwise be lost. You 
thus have the flexibility of burying six of the 12 I/O mac­
rocells and using the associated' pins as dedicated in­
puts. The four hidden macrocells have the same 
product-term structure as the I/O macrocells, with fixed 
state-register feedback to the logic' array. The CY7C330 
also furnishes two product terms that permit you to set 
or reset all the state registers synchronously. . 

Selecting the CY7C330's Input Clock 

The CY7C330's input registers are clocked with 
either pin 2 or 3. LOG/iC refers to these pins as CLK1 

and CLK2, respectively. The default clock used is 
CLKl. To specify CLK2 instead, use the *Special Func­
tions directive along with the .IC2 pin name suffix. 
Thus, to select CLK2 for input Fred, use the following 
syntax: 

*Special Functions 

Fred.IC2 = YES; 

Controlling Output Enable 

The default for OE in LOG/iC is asynchronous, 
pin-14 control of the output buffer. If you use the mac­
rocell for input only (pure input), the OE-select fuse is 
left intact, which selects OE from the product term. Be­
cause none of the product term fuses are blown, select­
ing OE from the product term results in the output 
driver being turned off. Finally, if you use the macrocell 
for both input and output, the OE again defaults to 
asynchronous, pin-14 control. 

You have several options for changing this default 
behavior. First, you can use the OE special function. If 
the macrocell is called AO, then: 

AO.OE = 0; 

; Sets OE to synchronous product term control and per­
manently turns OFF the driver 

AO.OE = 1 ; 

; Sets OE to synchronous product term control and per­
manently turns ON the driver 

AO.OE = EQN; 

; Sets OE to synchronous product term control, output 
driver is controlled by the specified equation (EQN). 

These constructs should allow you to create any 
desired OE configuration, while maintaining readability. 
You 'can also use the FUSES statement to control the 
OE mux, as follows: 

; BLOWN Selects synchronous product term output 
buffer control 

; INTACT Selects asynchronous pin 14 output buffer 
control 

*Fuses; Pin # 

$17067 = INTACT; 15 

$17063 = INTACT; 16 

$17060 = INTACT; 17 

$17056 = INTACT; 18 

$17053 = INTACT; 19 

$17049 = INTACT; 20 

$17046 = INTACT; 23 

$17042 = INTACT; 24 

$17039 = INTACT; 25 

$17035 = INTACT; 26 

$17032 = INTACT; 27 

$17028 = INTACT; 28 

6-158 



Use oithe XOR Product Term 
LOG/iC supports use of the XOR product term to 

implement polarity control and T flip-flops. Polarity 
control is automatic for all entry formats and is control­
led via the *Level directive. LOG/iC uses the XOR to 
create T flip-flops by using the *Flip-Flops directive 
and specifying T-FlipFlops. The LOG/iC optimizer then 
automatically produces reduced equations targeted at T 
flip-flops. 

Macrocell Feedback 

LOG/iC defaults to selecting feedback from the 
state register. If you use the macrocell as a pure input, 
feedback is automatically routed from the input pin 
register. Designs that use the macrocell state register 
and the input pin register can specify feedback via the 
.FBK function or FUSES statements. 

As an example, say you use the state register as an 
adder, and the associated macrocell input-pin register 
holds a base value. In this case, you want to drive the 
result onto the output pins during normal operation, 
while the macrocell input register uses the feedback 
path to provide the base value to the adder equations. 
During base-value updates, you three-state the output 
buffers and clock a new value into the macrocell input 
registers. LOG/iC defaults to selecting feedback from 
the state register. The following statements configure 
the desired feedback: 
SUM3.FBK = PIN; 

or 
; BLOWN Selects feedback from macrocell input 
register 
; INTACT Selects feedback from macrocell output 
register 
*Fuses; Pin # 
$17068 = BLOWN; 15 
$17064 = BLOWN; 16 
$17061 = BLOWN; 17 
$17057 = BLOWN; 18 
$17054 = BLOWN; 19 
$17050 = BLOWN; 20 
$17047 = BLOWN; 23 
$17043 = BLOWN; 24 
$17040 = BLOWN; 25 
$17036 = BLOWN; 26 
$17033 = BLOWN; 27 
$17029 = BLOWN; 28 

Controlling Synchronous Reset and Preset 

The CY7C330 has a single product term that con­
trols the synchronous resets of all of the state/output 
registers. Similarly, a single product term controls all 
the state/output registers' synchronous presets. These 
two product terms are controlled via the $PS and $RS 

statements in the *Boolean-Equations section. Avoid a 
potential pitfall by remembering that resetting the 
register to Zero causes a value of One to appear on the 
output pin because of the inverting output buffer. 

6-159 

The following code shows the usage of the preset 
and reset statements, where variable Paul presets the 
register, and variable Ray resets the register. 
*Boolean-Equations 

$PS = Paul; 
$RS = Ray; 

Using the Shared-Input Feedback Mux 

As mentioned previously, the CY7C330 has a 
shared-input feedback mux, which allows you to use a 
given macrocell for both input and output. This feature 
is useful for several configurations, such as when the 
state register is buried as an internal state bit that is fed 
back to the array, and the pin serves as a dedicated 
input. In this case, the OE product term is typically con­
figured to disable the output buffer. 

Another good application for the shared-input 
feedback mux occurs when you use the input register to 
hold a seldom-changed value used by the machine. For 
example, a counter might have an upper limit that is 
loadable. During normal operation, the output buffer 
OE is enabled and the count appears on the output 
pins. When a new limit is desired, the output is three­
stated, and the limit value is clocked into the input 
register. The machine can then access this value via the 
shared-input feedback mux. 

LOG/iC deals with these situations by referring to 
the state register as a buried node. LOG/iC provides a 
list of the node numbers and the pins they correspond 
to. The input to the macrocell is assigned to the pin 
number. Using this notation, LOG/iC automatically uses 
the shared-input feedback mux for the input. The fol­
lowing statements correctly configure and use the 
shared-input feedback mux for a buried macrocell that 
has a variable assigned to the state register named S1 
and an input named X29: 
*X-names 

X29; 

*Y-names 
Sl; 

; Design entry here 

*Pins 

X29 = 27; 

*Nodes 
Sl = 15; 
Remember that the shared-input feedbackmux is 

available for only one of every pair of macrocells. Node 
numbers, the corresponding pin numbers, and their 



available product terms are as follows (hI - 4 are the 
hidden macrocells): 
Node: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Pin: hI h2 h3 h4 15 16 17 18 19 20 23 24 25 26 27 28 
PTs: 19 11 17 13 09 19 11 17 13 15 15 13 17 11 19 09 

Design Examples 
An old adage about designing asserts that good en­

gineers borrow and great engineers steal! Most often 
used to describe the practice of re-using existing 
software in a new design, this proverb applies equally 
well to doing new PLD designs. Also, examples tend to 
be the best way to flatten the learning curve for a new 
language. The examples that follow highlight features of 
LOG/iC and the CY7C330. 

Example 1: Modulo-ll Counter 

The ability of the CY7C330's XOR product term to 
implement T flip-flops proves ideal for building com­
plex counters. This first example is a small counter that 
counts to 11 and resets to O. The design also features a 
clear, a hold, and count-up/down controls. Appendix A 
shows the LOG/iC source code for this design. This 
counter is an excellent example of the expression com­
pactness with which LOG/iC describes designs. 

The counter's four inputs are CLR, UP, HOlD, 
and OE. CLR resets the counter to zero when asserted. 
UP determines the direction in which the counter 
operates. HOlD causes the counter to stop at its cur­
rent count value until HOLD is released. OE is tied to 
pin 14 and serves as an asynchronous output enable. 
The outputs are count bits QO - Q3. 

Note that the *Level statement has been used to 
indicate that OE and CLR are active Low. As noted 
earlier, the design needs no polarity conversion; 
LOG/iC automatically creates the proper reduced 
equations for these active-Low inputs. 

Because each output value is unique, this design 
uses Z-Values state assignment. Thus, the states are the 
counter values. Examining the flow table, you can see 
that whenever CLR is active, the counter goes to state 
1, which has a value of zero. Entered this way, the flow 
table values cause LOG/iC to use the macrocell product 
term s to implement the CLR function. You could use 
the CY7C330's preset and reset product terms to 
achieve the same result. This design falls well within the 
limit of nine to 19 product terms per output, however, 
and the design is very readable in the current format. 

The next line in the flow table shows the counting­
down state: If in state 1, wrap around to state 11; if in 
any other state, move to the next lower state. The third 
line does not have to restate the state section of the 
flow table, because no change occurs from the second 
line. The third line specifies the design's up counter: If 
in state 1 - 10, go to the next higher state; if in state 11, 
wrap around to state 1. 

The flow table's last line shows the hold state. 
Notice that the file contains statements for both T and 

D flip-flops. This practice allows you to comment one 
of the two out easily and see the number of product 
term s necessary for each type of design implementation. 
As expected, the T flip-flop design generates a more ef­
ficient counter implementation. 

Example 2: 15-Bit Counter with Carry Out 

The. previous example generated a counter with a 
very compact design expression. If you want a larger 
counter, you might wish to borrow that example and 
edit the numbers to provide· more count bits. Doing so 
quickly runs you into the wall of the 1024-states maxi­
mum, however. The solutions is to use LOG/iC's block 
structure to partition the task into multiple smaller 
counter s that cascade to form a large counter. An ex­
ample of this technique appears in Appendix B. 

This design consists of three smaller design blocks 
named CTR1, CTR2, and CTR3 - all identical. The 
design has global inputs called RESET, HOlD, and 
UP that perform obvious functions. Global outputs in­
clude 15 bits of counter value and a carry out. Between 
the design blocks are two local variables, INTl and 
INTI, which provide carry out internally between 
counter blocks. The *Link statement reconciles all the 
global variables and the local variables that each block 
declares. 

Although this design looks rather large, bear in 
mind that when the optimization is complete, the inter­
nal variables completely disappear, and only two 
product terms are required per output. Finally, note the 
block titled HW RESET. This block uses the CY7C330 
preset product term to reset all the output pins to zero. 

6-160 

Example 3: T-Bird Tail Lights via Truth Table 

The T-Bird tail lights example is a simple design 
that emulates the function of the early 1960s Ford 
Thunderbird tail lights. The original design used a 
motorized assembly that caused the left or right cluster 
of three lights to tum on sequentially from the inside to 
the outside when the driver activated the directional sig­
nal. 

The design presented here has five inputs: left tum 
(LT), right tum (RT), ignition (IGN), brake, and flash. 
For this design, the six output lights are also listed as 
inputs, because the truth table uses them to determine 
present state - similar to Z-values in an FSM. The six 
output lights are designated the right and left inside, 
middle, and outside. The brakes and emergency flashers 
operate regardless of whether or not the ignition is ac­
tive. The tum signals, however, operate only with the 
ignition on. The brake and tum inputs activate all the 
lights on the side that is nof sequencing through a tum 
indication. 

This design introduces the concept of a bus 
through the constructs LEFT = LO,LM,LI and 
RIGHT = RI,RM,RO. Also note that the design uses 
string substitution to describe the output states. Appen­
dix C shows this example. 



Example 4: T-Bird Tail Lights via Flow Table 

FSM syntax can also implement the T-Bird tail 
lights. For this approach, state bits are assigned to 
guarantee that all states are unique and non-overlap­
ping. The CY7C330's hidden macrocells are ideal for 
this use. Refer to Appendix D for this design. 

Although this FSM implementation is safer than 
the truth-table version from the aspect of uniquely as­
signed states, the FSM approach is not without cost. 
Specifically, the truth table implementation was able to 
incorporate additional functions for invalid conditions 
such as LT and RT active simultaneously. 

Example 5: 8-Bit Adder for Servo Control 

This servo example is covered in detail in the ap­
plication note, "Using the CY7C330 as a Closed-Loop 
Servo Controller." The basic idea is that you can use the 
CY7C330 to calculate the difference between the 
desired position and the actual position to provide feed­
back to the servo loop. 

In the servo application, the target position is 
loaded into the I/O macrocell's input register during a 
special update cycle. During this cycle, a microproces­
sor provides data to the dedicated inputs as a delta 
from the current position. The CY7C330 adds the posi­
tion value to the current position and makes the result 
available at the output pins in three clocks. Then the 
second input clock is toggled once to load the new 
desired position into the I/O-macrocell input registers. 
This operation is possible because the outputs are driv­
ing the macrocell input registers. 

This design uses nearly all of the registers in the 
CY7C330. To provide a difference between desired and 
current position during normal operation, the input 
values are furnished in two's complement form and 
added to the target position stored in the I/O 

6-161 

macrocell's input registers. Appendix E shows the 
source code for this example. 

One difference between this example and the ear­
lier ones is that both the X and Y input sections contain 
the variables A[O .. 7]. This arrangement is due to the fact 
that the same macrocells provide the desired position 
(input) and the difference value (output). The *Local 
attribute identifies intermediate values that are not 
needed for output but are used to generate the correct 
results via substitution into other equations. Because the 
basic equation for an adder uses an XOR to calculate 
the sum, this example specifies the .XRB attribute to 
use the CY7C330's XOR product term as an XOR - a 
technique that reduces the number of other product 
terms required. 

The adder completes an 8-bit add in three clock 
cycles, producing two intermediate carry bits, which are 
generated and stored in two of the four internal hidden 
registers. The special functions attributes .IC2 and .FBK 
configure the output macrocell appropriately. 

Summary 
The examples presented here frequently optimized 

to levels exceeding results produced previously. The 
ability to specify Don't Cares for output cases, along 
with LOG/iC's table-driven optimizer, produced results 
much more quickly than has previously been typical. 
Documentation, an Achilles heel for many PLD tools, 
proved quite readable in this case and minimized the 
dreaded learning curve. LOG/iC's finite state machine 
syntax allows compact descriptions of complex designs 
that produced correct results - quite a contrast to pre­
vious experiences. 

Clearly, LOG/iC can implement designs that use all 
the features available in the CY7C330. LOCtiC has 
quickly become an essential tool for Cypress PLD 
designs. 



Appendix A. LOG/iC Source Code for Modulo-ll Counter 

*IDENTIFICA TION 
Bit - modulo 11 counter using LOG/iC FSM entry 
Z-Value state assignment used to specify absolute output value associated with each of the 11 states 
MMA - Cypress Semiconductor 

*X-NAMES 
CLR, UP, HOLD, OE; 

*Z-NAMES 
Q[3 .. 0]; 

*LEVEL 
LOW == CLR,OE; Active low level for these pins 

*Z-VALUES 
S[1..11] = [0 .. 10]; 

CLR, UP, HOLD; 
*FLOW-TABLE 

RELEVANT = 
S[1..11],X 1 
S[1..11], X 0 0 

-, F1 ; Clear counter to zero 
0, F[11,1..10] ; Count Down 
0, F[2 .. 11,1] ; Count Up X 0 1 

S[1..11],X 0 1, F[1..11] ; Hold Counter value 

;Spacing between X variables above added only to improve clarity 

* STATE-AS SIGNMENT 
Z-Values; 

*FLIP-FLOPS 
D-FlipFlops; 
D-F/F uses total of 22 Product Tei'rnS 

T-FlipFlops; 
T-F/F uses total of 16 Product Terms 

*PLD 
TYPE = PLD7C330; 

*PINS 
Q[3 .. 0] 
CLR 
UP 
HOLD 
OE 

[28 .. 25], 
3, 
4, 
5, 
14; 

*RUN-CONTROL 
PROG = JEDEC; 
LIST = PLOT, EQUATIONS, PINOUT, FUSEPLOT; 

*END 

6-162 



Appendix B. IS·Bit Counter with Carry Out 

*Identification 
15 bit counter· Using 7C330 hardware Reset 
Using Block Syntax to implement large counter w/FSM input Syntax (bypasses problem with exceeding maximum 
number of states when building large counters • block structure adds NO extra product terms to compiled design. 
INTI & 2 are completely elinunatea.) 
MMA 
Cypress Semiconductor 

CTRI CTR2 
HOLD CNT CY ~------~CNT CY~------~ 

01 06 
02 07 
03 08 
04 09 
05 010 

RESET RESET 

RESET~--------------~--------------~ 

*X-Names 
RESET, HOLD, UP; 

*Y-Names 
CARRY,Q[1..15]; 

*Local 
INT[I,2]; 

*Link 
RESET 
RESET 
HOLD 
UP 
CARRY 
INTI 
INTI 
Q[1..5] 
Q[6 .. 10] 

Q[I1..15] 

CTRl:R,CTR2:R,CTR3:R; 
HW RESET:R; 
C'rRi:CNT; 
CTRl:UP,CTR2:UP,CTR3:UP; 
CTR3:CY; 
CTRl:CY,CTR2:CNT; 
CTR2:CY,CTR3:CNT; 
CTRl:QQ[1..5]; 
CTR2:QQ[1..5] ; 
CTR3:QQ[1..5] ; 

;*** First 5-bit counter stage here ************ 
@BLOCK = CTRl; 

*X-Names 
CNT,R,UP; 

*Y-Names 
CY; 

*Q-Names 
QQ[5 .. 1]; 

6-163 

CTR3 
CNT CY CARRY 

OIl 
012 
013 
Q14 
015 

RESET 



Appendix B. 1S-Bit Counter with Carry Out (continued) 

*Flow-Table 
;Using '330s Internal Reset 
Relevant = CNT,UP:CY; 
S[1..32],X ° -, Y 0, F[l..32] ;Hold Condition 
S[1..31],X 1 1, Y 0, F[2 .. 32] ;Counting 
S[32], XII, Y 1, Fl ;Maximum Count Reached 
S[32 .. 2],X 1 0, Y 0, F[31..1] ;Counting 
S[1], X 1 0, Y 1, F32 ;Minimum Count Reached 

*Flip-Flops 
T-FLIPFLOPS; 

*State-Assignment 
binary; 

@ENDBLOCK = CTRl; 

;*** Second 5-bit counter stage here ************ 
@BLOCK = CTR2; 

*X-Names 
CNT,R,UP; 

*Y-Names 
CY; 

*Q-Names 
QQ[5 .. 1]; 

*Flow-Table 
; Using '330s Internal Reset 

Relevant = CNT,UP:CY; 
S[1..32], X ° -, Y 0, F[1..32];Hold Condition 
S[1..31],X 1 1, Y 0, F[2 .. 32];Counting 
S[32], XII, Y 1, Fl ;Maximum Count Reached 
S[32 .. 2],X 1 0, Y 0, F[31..1];Counting 
S[I], X 1 0, Y 1, F32 ;Minimum Count Reached 

*Flip-Flops 
T-FLIPFLOPS; 

* State-Assignment 
Binary; 

@ENDBLOCK = CTR2; 

;*** Third 5-bit counter stage here ************ 
@BLOCK = CTR3; 

* X-Names 
CNT,R,UP; 

*Y-Names 
CY; 

6-164 



Appendix B. IS-Bit Counter with Carry Out (continued) 

*Q-Names 
QQ[5 .. 1]; 

*F1ow-Table 
; Using '330s Internal Reset 

Relevant = CNT,UP:CY; 
S[1..32],X ° -, Y 0, 
S[1..31],X 1 1, Y 0, 
S[32], XII, Y 1, 
S[32 .. 2],X 1 0, Y 0, 
S[1], X 0, Y 1, 

*Flip-Flops 
T -FLIPFLOPS; 

* State-Assignment 
Binary; 

@ENDBLOCK = CTR3; 

F[1..32] ;Hold Condition 
F[2 .. 32] ;Counting 
Fl ;Maximum Count Reached 
F[31..1] ;Counting 
F32 ;Minimum Count Reached 

;******* End of Counter Blocks *********** 

@BLOCK = HW _RESET; 

*X-Names 
R; 

*Boolean Equations 
$PS = R; 

@ENDBLOCK 

*PLD 
Type = PLD7C330; 

*Pins 
REGCLK 
INPCLK 
Q[5 .. 1O] 
Q[11..15] 
CARRY 
RESET 
HOLD 
UP 

1, 
2, ! needed for creating testvectors 
[15 . .20], 
[23 .. 27], 
28, 
4, 
5; 
6; 

*Nodes 
Q[l..4] = [1..4]; 

*Run-control 
Listing 
Progformat = 

* END 

Pinout, Plot; 
Jedec; 

6-165 



Appendix C. T -Bird Tail Lights Example 

*IDENTIFICA TION 
Thunderbird sequencing Taillights example for 7C330 using ISDATA LOG/IC 
Truth Table Implementation 
MMA 
Cypress Semiconductor 

*X-NAMES 
LT, RT, BRAKE, FLASH, IGN, RI, RM, RO, LI, LM, LO; 

*Y-NAMES 
RI, RM, RO, LI, LM, LO; 

*BUS 
LEFT = LO,LM,LI; 
RIGHT = RI,RM,RO; 

*LEVEL 
LOW = FLASH; 

;Macros for All desired output combinations: 
*STRING 

ON 
OFF 
LEFT 1 
LEFT2 
RIGHTl 
RIGHT2 
ONE 
TWO 
THREE 
TRI 

1, 1, 1; 
0, 0, 0; 
0, 0, 1; 
0, 1, 1; 
1, 0, 0; 
1, 1, 0; 
1, 0, 0; 
0, 1, 0; 
0, 0, 1; 
-, ., 

*FUNCTION-TABLE 
$ IGN,FLASH,LT,RT,BRAKE,LEFT ,RIGHT 
;Quiescent 
1, 0, 0, 0, 0, 'TRI' , 'TRI' 
0, 0, -, -, 0, 'TRI' , 'TRI' 

;Flash 
-, 1, -, -, -, ON', 'ON' 
-, 1, -, -, -, 'OFF', 'OFF' 

;Brake 
-, 0, 0, 0, 1, 'TRI', 'TRI' 
0, 0, -, -, 1, 'TRI', 'TRI' 

;Left Tum 
1, 0, 1, 0, 0, 'OFF' ,'TRI' 
1, 0, 1, 0, 0, 'LEFTl', 'TRI' 
1, 0, 1, 0, 0, 'LEFT2', 'TRI' 
1, 0, 1, 0, 0, 'ON', 'TRI' 

: LEFT ,RIGHT 

'OFF' ,'OFF'; 
'OFF','OFF'; 

'OFF','OFF'; 
'ON','ON'; 

'ON','ON'; 
'ON','ON'; 

'LEFTl', 'OFF'; 
'LEFT2' ,'OFF'; 
'ON','OFF'; 
'OFF','OFF'; 

6-166 



Appendix C. T-Bird Tail Lights Example (continued) 

;Right Turn 
1, 0, 0, 1, 0, 'TRI' , 
1, 0, 0, 1, 0, 'TRI', 
1, 0, 0, 1, 0, 'TRI', 
1, 0, 0, 1, 0, 'TRI', 

;Left Turn + Brake 
1, 0, 1, 0, 1, 'OFF', 
1, 0, 1, 0, 1, 'LEFT1', 
1, 0, 1, 0, 1, 'LEFT2', 
1, 0, 1, 0, 1, 'ON', 

;Right Turn + Brake 
1, 0, 0, 1, 1, 'TRI', 
1, 0, 0, 1, 1, 'TRI', 
1, 0, 0, 1, 1, 'TRI', 
1, 0, 0, 1, 1, 'TRI', 

'OFF' 
'RIGHTl' 
'RIGHT2' 
'ON' 

'TRI' 
'TRI' 
'TRI' 
'TRI' 

'OFF' 
'RIGHTl' 
'RIGHT2' 
'ON' 

;Both Turn - lights flash in reverse sequence 
1, 0, 1, 1, 0, 'OFF', 'OFF' 
1, 0, 1, 1, 0, 'ON', 'ON' 
1, 0, 1, 1, 0, 'LEFT2', 'RIGHT2' 
1, 0, 1, 1, 0, 'LEFT1', 'RIGHT1' 

;ll1egal condition, All ON 
1, 0, 1, 1, 1, 'OFF', 'OFF' 
1, 0, 1, 1, 1, 'ONE', 'THREE' 
1, 0, 1, 1, 1, 'TWO', 'TWO' 
1, 0, 1, 1, 1, 'THREE', 'ONE' 

*FLIP-FLOPS 
D-FLIPFLOPS; 
T-FLIPFLOPS; 

*PLD 
TYPE PLD7C330; 

*PINS 
LT 4, 
RT 5, 
BRAKE 6, 
FLASH 7, 
IGN 9, 

RI 23, 
RM 24, 
RO 25, 
LI 20, 
LM 19, 
LO 18; 

*RUN-CONTROL 
PROG = JEDEC; 

'OFF','RIGHT1'; 
'OFF' ,'RIGHT2'; 
'OFF' ,'ON'; 
'OFF' ,'OFF'; 

'LEFT1','ON'; 
'LEFT2' ,'ON'; 
'ON','ON'; 
'OFF','ON' ; 

'ON' ,'RIGHT1'; 
'ON' ,'RIGHT2'; 
'ON','ON'; 
'ON' ,'OFF'; 

'ON','ON'; 
'LEFT2' ,'RIGHT2'; 
'LEFT 1 ' ,'RIGHT1'; 
'OFF','OFF'; 

'ONE','THREE'; 
'TWO','TWO'; 
'THREE' ,'ONE'; 
'OFF','OFF'; 

LIST = PLOT, EQUATIONS, PINOUT, FUSEPLOT; 

*END 

6-167 



Appendix D. T-Bird Tail Lights via FlowTable 

*IDENTIFICA TION 
Thunderbird sequencing Taillights example for 7C330 using ISDATA LOG/IC 
State Machine Implementation 
MMA 
Cypress Semiconductor 

*X-NAMES 
LT,RT,BRAKE,FLASH,IGN; 

*Z-NAMES 
LO,LM,LI,ru,RM,RO; 

*LEVEL 
LOW = FLASH; 

*Q-NAMES 
Q[I . .4]; 

*Z-VALUES 
SI OOOOOO;AIllights off or Flash Off 
S2 001000; Left Tum 1 
S3 011000; Left Tum 2 
S4 111000; Left Tum 3 
S5 000100; Right Tum 1 
S6 000110; Right Tum 2 
S7 000111; Right Tum 3 
S8 001111; Brake + Left Tum 1 
S9 011111; Brake + Left Tum 2 
SlO = 111111; Brake + Left Tum 3 
S11 = 000111; Brake + Left Tum 4 
S12 = 111100; Brake + Right Tum 1 
S13 = 111110; Brake + Right Tum 2 
S14 = 111111; Brake + Right Tum 3 
SIS = 111000; Brake + Right Tum 4 
S16 = 111111; Brake or Flash On 

*FLOW-TABLE 
Sn, LT RT Brake Flash IGN, Fn 
SI, X 0 0 0 0 -, Fl; All Lights Off 

X - 1 -, FI6; 
X 0 0 1 0 1, FI6; 
X - 1 0 0, FI6; 
X 1 0 0 0 1, F2; 
X 0 1 0 0 1, F5; 
X 1 0 1 0 1, F8; 
X 0 1 1 0 1, F12; 
XREST, FI; 

S2, X 1 1, F3; Left Tum Sequence 
XREST, FI; 

S3, X 1 1, F4; 
XREST, Fl; 

S4, XREST, Fl; 

6-168 





RI 23, 
RM 24, 
RO 25, 
LI 20, 
LM 19, 
LO 18; 

*NODES 
Q[1..4] [1..4]; 

*RUN-CONTROL 
PROG = JEDEC; 

Appendix D. T -Bird Tail Lights via Flow Table (continued) 

LIST = PLOT, EQUATIONS, PINOUT, FUSEPLOT; 

*END 

6-170 



Appendix E. 8·Bit Adder Example 

*Identification 
8-Bit multi-stage adder - as detailed in 7C330 Servo control Application Note 
Mark Aaldering 
Cypress Semiconductor 

*X-Names 
CIN,C2,C5,A[0 .. 7],B[0 .. 7]; 

*Y-Names 
A[O .. 7],C2,C5,CARRY; 

*Local 
C[0 .. 1,3 . .4,6 .. 7] ; 

*Boolean-Equations 

A[0 .. 7].XRB = A[0 .. 7]; 

AO = BO # CIN; 
CO = (AO & BO) + (AO & CIN) + (BO & CIN); 

A[1..7] = B[1..7] # C[0 .. 6]; 
C[1..6] = (A[1..6] & B[1..6]) + (A[1..6] & C[0 .. 5]) + (B[1..6] & C[0 .. 5]); 

CARRY = (A7&B7) + (A7&C6) + (B7&C6); 

*Flip-Flops 
D-FLIPFLOPS; 

*PLD 
Type = PLD7C330; 

*Nodes 
C2 = 1; 
C5 = 3; 

*Pins 
OUTCLK 
INCLK 
ACLK 
CIN 
B[0 .. 7] 
AO 
Al 
A2 
A3 
A4 
A5 
A6 
A7 
CARRY 

1, 
2, 
3, 
4, 
[5 .. 7,9 .. 13], 
28, 
15, 
20, 
17, 
26, 
23, 
19, 
24, 
18, 

* Special-Functions 
AO.IC2 = Yes; 
A1.IC2 = Yes; 
A2.IC2 = Yes; 

6-171 



~CYPR!Ss . . Using LOG/iC to Program the CY7C330 
~ SEMlCOIDucrOR =============;;;;;;;;;;:;;;;======;;;;;;:;;=======;;;;;; 

A3.IC2 = Yes; 
A4.IC2 = Yes; 
A5.IC2 = Yes; 
A6.IC2 = Yes; 
A7.IC2 = Yes; 

AO.FBK = Pin; 
A1.FBK = Pin; 
A2.FBK= Pin; 
A3.FBK = Pin; 
A4.FBK = Pin; 
AS.FBK = Pin; 
A6.FBK = Pin; 
A7.FBK= Pin; 

*RUN-CONTROL 
PROG = JEDEC; 

Appendix E. 8-Bit Adder Example (continued) 

LIST = PLOT, EQUATIONS, PINOUT, FUSEPLOT; 

*END 

6-172 



~ ~ ---. 
~~II-~~:} .~a -'iii CYPRESS 

F SEMICONDUCTOR 

State Machine Design Considerations 
and Methodologies 

The use of state machines provides a systematic 
way to design complex sequential logic circuits-an in­
creasingly popular approach since the advent of PLD 
(Programmable Logic Device) circuitry. This applica­
tion note describes the many options encountered 
during the state machine design cycle. By exhaustively 
walking through the PLD-based design example 
presented here, you can weigh the merits of several 
design approaches. 

Definitions of Commonly Used Terms 
1. External input vector-External signals (stimulus) ap­
plied to the state machine. 
2. System outputs-Signals generated by the state 
machine that are explicitly designed for availability to 
the external system (hardware outside of the state 
machine). Registered system outputs can also be fed 
back into the state machine as part of the State Vector, 
which is then used in the decode of the state machine's 
next state. 
3. State registers-Registers used exclusively for deter­
mining the next state of the machine (feedback). 
4. State outputs--Outputs of the state registers that are 
available to the external system. (They are typically 
available to the external machine for debug or due to 
the lack of buried registers.) 
5. State vector or machine state-The registered feed­
back information defining the present state of the 
machine and required to determine the next state of the 
machine. 
6. State path-The transitional condition that must be 
met for the state machine to progress from one state to 
another. The state path typically consists of one or more 
product terms generated from external inputs, although 
other state paths are possible. 

6-173 

7. Total input vector-The combination of the external 
input vector and the state vector. The total input vector 
is decoded to generate the next state of the machine. 

State Machine Entry Methods 
There are many ways of describing a state 

machine, each with distinct advantages and disad­
vantages. Three popular description methods are state 
diagrams, state tables, and high-level languages (HLLs). 
The state diagram provides an easily observable flow 
description of the state machine. Because the ability to 
view the flow of states provides distinct documentation 
advantages, state diagrams will be used throughout this 
application note to describe the example state machine. 

Upon completing a state diagram, you can easily 
convert the diagram's visual information into the other 
types of state machine description or directly into 
Boolean equations. Several available software programs 
accept their own forms of state table, HLL, and/or 
Boolean entry. You can enter all these formats easily via 
your favorite text editor. The software then translates 
the inputs into suitable forms (usually a JEDEC map) 
for hardware implementation. 

Another method of describing a state machine, the 
state table, offers perhaps the most concise description. 
Its major advantage over the other entry methods is the 
availability of state table reduction methods (see Refer­
ence 1). When applied to your state table definition, a 
reduction program generates a minimal model for the 
function. The software used for state machine synthesis 
throughout this application note uses the state table 
method of entry. The program is called LOG/iC from 
ISDATA Corporation. 

Finally, high level language (HLL) state machine 
entry is probably the most popular forro of state 



~ State Machine Design Considerations and Methodologies 
~ ~~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

machine design. HLLs typically offer C-language-Iike 
instructions (e.g., case,if-then-else, etc.) to describe the 
machine. 

An Example State Machine 
The example state machine is a clock generator for 

a pipelined (three system execution stages), bit-slice­
based, central processing unit (CPU). Each of the three 
system execution stages contains two clocks for a total 
of six system clocks for every instruction execution. 
With pipelining enabled, each instruction takes an 
average of two clock periods. Further, external 
hardware unaffected by CPU wait and stop states (e.g., 
cache memory) needs both polarities of an additional 
free-running clock. 

To minimize clock edge skew, the state machine 
provides both versions of the clock. To put the timing of 
this application into perspective, executing each 
pipeline stage in an 80-ns period (or 12.5 MHz) re­
quires the state machine to run at 25 MHz. This speed 
is well within the range of the available PALs, EPLDs 
and PROMs that can be used to implement the state 
machine. 

Each of the pipeline's three execution stages has a 
specific function. Briefly, the frrst stage of the pipeline 
accesses the Writable Control Store (WCS) RAM. The 
Arithmetic Logic Unit (ALU) execution occurs during 
the second stage of the pipeline. Finally, the third 
pipeline stage clocks status and memory address 
registers. The function(s) performed during each of the 
three stages are described in greater detail in the "State 
Machine Output Definition" section of this application 
note. 

If this design only generates a simple set of 
pipelined clocks, why not use shift registers and miscel­
laneous glue logic instead of a state machine? There are 
two reasons to consider a state machine. First, it is 
usually desirable to minimize the number of chips re­
quired; the state machine in PLD form might need ex­
ternal glue logic, but significantly less than the shift 
register solution. 

The second reason for considering a state machine 
is that this application requires more then just a simple 
set of pipeline clocks. The function of the clock signals 
is to provide control of the CPU in multiple modes of 
operation. The desired modes of operation are as fol­
lows: 

PIPELINED RUN Mode 

In this mode, the CPU simultaneously performs 
the instructions in all three stages of the pipeline. For 
example,: while instruction n does an ALU operation, 
instruction n+1 accesses WCS, and instruction n-1 
clocks ALU status. 

NONPIPELINED RUN Mode 

NONPIPELINED RUN mode performs all three 
stages of instruction execution without overlap. The 

time to complete one nonpipelined instruction equals 
the average of three pipelined instructions. 

CPU STOP 

The system must have a way to perform· an orderly 
stop of CPU execution from both of the above run 
modes. This stop might be the result of several possible 
conditions, including a utility stop from a system control 
unit, a single step, a breakpoint, or a response to exter­
nal hardware (e.g., a logic analyzer). The free-running 
clocks continue to run during the CPU STOP mode and 
remain running at all times, except during a reset condi­
tion. 

CPU WAIT 

In CPU WAIT mode, an external condition causes 
a delay in an instruction's execution. The instruction 
pauses until the external condition is removed. One ap­
plication for the CPU WAIT mode is to handle a cache 
miss. When a cache miss occurs, the CPU remains in 
the CPU WAIT mode until the cache completes its 
memory transfer. 

SINGLE STEP 

The ability to execute one instruction at a time is 
needed to debug the CPU. You can easily implement 
SINGLE STEP external to the clock state machine by 
pulsing the RUN signal. SINGLE STEP mode is 
described further in the State Machine Input Definition 
section of this application note. 

6-174 

INTERRUPT 

A variety of system conditions can interrupt the 
CPU out of its normal execution sequence and immedi­
ately start the execution of the interrupt handler. The 
influence of the INTERRUPT mode on the system 
clocks will be discussed in greater detail later in this 
application note. 

REPEAT INSTRUCTION 

The REPEAT INSTRUCTION mode is a CPU 
debug feature.· It is a good idea to implement this mode 
external to the clock state machine. By dubbing the 
clock to the instruction register and the interrupt line to 
the clock state machine, the CPU continually executes 
the instruction in the instruction register. 

Synchronous vs. Asynchronous Machine 
At this point in the state machine design, an ap­

propriate type of state machine must be chosen to 
match the application. Two major types are the 
asynchronous and the synchronous implementations. 
The asynchronous machine changes state when one or 
more of its inputs changes from a previously stable 
input state. After a state change, the outputs of the state 
machine settle, while the machine stabilizes once again. 
A basic example of an asynchronous state machine 
would be a simple SR latch built from two NAND gates 
(Figure 1). For the clocking application considered in 
this application note, the asynchronous state machine 



~ 

£ ~~ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;S;;;;;ta;;;;;t;;;;;e;;;;;M;;;;;;;;;;a;;;;;C;;;;;h;;;;;in;;;;;e;;;;;D;;;;;e;;;;;s;;;;;ign;;;;;;;;;;;;C;;;;;o;;;;;n;;;;;si;;;;;d;;;;;er;;;;;a;;;;;t;;;;;io;;;;;n;;;;;s;;;;;a;;;;;n;;;;;d;;;;;M;;;;;;;;;;e;;;;;th;;;;;o;;;;;d;;;;;O;;;;;IO;;;;;gI;;;;;'e;;;;;s;;;;;;;;;;= 
~ SEMIcaIDUCTOR.;;;;; 

STATE 
IIIPUTS 

s 

R-----l 

STATE 
OUTPUTS 

Q 

Q 
Figure 1. SR Latch, Asynchronous State Machine 

Example 

implementation would be a poor choice, due to the in­
stability of the system outputs. 

The synchronous state machine offers a better 
choice. A synchronous state machine block diagram ap­
pears in Figure 2. Generally, a synchronous state 
machine samples the total input vector at specific 
periods to determine the machine's next state. When 
designing synchronous state machines, it is important to 
avoid state register metastability. External inputs to the 
machine must be synchronized to guarantee stable state 
register inputs, and the feedback time plus data setup 
time to the state register clock must be less then or 
equal to the state clock period. 

The modem theory of synchronous state machines 
was pioneered by Mealy and Moore (see Reference 1). 
Mealy and Moore machines differ slightly from each 
other in they way they control the system outputs. 
During a specific machine state, a Mealy machine al­
lows the input conditions to alter the system outputs 
(the outputs depend on the "total" input state). In con­
trast, a Moore machine system outputs depend only on 
the present machine state. Thus, the system outputs 

TOTAL 
STATE IIIPUT 
YECTOR YECTOR 

:.:::::::::::::: ;::::::::::::: 

remain stable until the next time period, when the 
Moore machine samples the total input vector.to deter­
mine the next state. If all design conditions are met (ex­
ternal inputs are stable prior to the next state clock), 
the Moore machine provides glitch-free system out­
puts-a desirable characteristic for the CPU system 
clock. The design described here is therefore imple­
mented as a Moore machine. 

Clock Generator Output Definition 

As explained earlier, each of the three system ex­
ecution stages contains two clocks for a total of six sys­
tem clocks for every instruction execution. The naming 
convention for these clocks is 

CLK xy 
where x = 1, 2, or 3, representing the first, second, or 
third stage of the instruction execution 
and y = A or B, representing the first or second half of 
the execution stage. 

Following this convention, the state machine's two 
free-running clocks are named CLK_A and CLK_B. 
These clocks run at half the state clock frequency and 
180 degrees out of phase. The free-running clocks occur 
at the same time as their respective CLK _ xA and 
CLK xB clocks. 

The major clock functions for this application are: 
CLK _IB: The leading edge of this clock updates the in­
struction register. 
CLK 2A: This clock's leading edge marks the start of 
ALU - execution. The information on the ALU input bus 
clocks into the appropriate input registers at this time. 
The instruction cycle is considered recoverable up 
through and including CLK _ 2A (Le., the status of the 
machine from the previous instruction has not been 
altered). 

~---------4~-~ 
STATE 

REU TER 

MEALY SYSTEM 
OUTPUTS 

ElTERIIAL 
INPUT 
VECTOR 

11111111 ..... -
MACHINE 
STATE 

OPTIOIIAL 
STATE 
OUTPUTS 

SYNCHRONOUS 
EXTERNAL 
IIIPUTS 

ASYIICHROIIOUS 
EXT ERIAL 
INPUTS 

& 

SYSTEM 
OUTPUT 
DECODE 

STATE CLOCK ____ -J ________________________________________ ~ 

Figure 2. Synchronous State Machine Block Diagram 

6-175 

OPTIONAL 
SYSTEM 
OUPTPUT 
FEEDBACK 

MOORE SYSTEM 
OUTPUTS 



State Machine Design Considerations and Methodologies 

CLK 2B: Used to control the second half of the ALU 
execUtion stage, this clock initiates a write to RAM, 
triggers counters, gates ALU output into its latch, and 
clocks the ALU output information into any of the dis­
tributed destination registers. 
CLK 3A: On this clock the memory address register 
can be updated. The ALU output bus status and ALU 
status is also clocked into the CPU status register. 

Clock Generator Inputs 
A set of inputs (external stimulus to the state 

machine) controls the state machine. The clock state 
machine described here has eight external inputs, in­
cluding the state machine clock. These inputs are: 

STA TECLK: The state machine clock. 
RESET: An asynchronous or synchronous reset 

input that can be connected directly to the state 
registers' preset or clear or to all clocked register inputs 
(D or T input). If connected to the preset or clear, 
RESET need not be synchronized. In this case, RESET 
forces the state machine into the machine's initial state, 
regardless of the present state. RESET can result from 
any combination of the following sources: 
1. Power up circuit (system reset) 
2. System controller software decodes system reset 
3. System controller software decodes module reset 
4. CPU software decodes module reset 

RUN: This signal controls the start and stop se­
quence of the CPU clocks. In PIPELINE RUN mode, 
the start sequence generates the proper clock progres­
sion to fill up the pipeline registers, and the stop se­
quence empties the pipeline. RUN is externally manipu­
lated to implement the single step and breakpoint func­
tions. 

NPL: Used to select NONPIPELINED RUN vs. 
PIPELINED RUN modes, this signal must be set to the 
selected mode prior to activating the RUN signal. Set­
ting NPL = 1 selects NONPIPELINED RUN mode, 
and NPL = 0 selects PIPELINED RUN mode. The 
single step function operates properly in NON­
PIPELINED RUN mode only. 

INTR: This signal indicates an external interrupt. 
When INTR is received, and lEN (interrupt enable, 
described below) is active, the CPU executes its inter­
rupt handler. An interrupt inhibits the instruction 
register update clock (CLK _lB) and the ALU update 
clock (CLK 2B). CLK lA for the interrupt instruction 
executes on -the next cycle. The interrupt condition has 
priority over a wait condition and therefore starts 
generating clocks to permit execution of the interrupt 
instructions. 

lEN: This interrupt enable signal qualifies INTR. 
lEN is likely to be a bit in the instruction word, allowing 
the user to define sections of un-interruptable code. 

WAIT: The wait condition is initiated when both 
WAIT and WEN (wait enable, described below) are ac­
tive. The CPU remains in the wait condition until 
WAIT goes inactive. 

WEN: This wait enable signal qualifies WAIT for 
entrance into the wait condition. Like lEN, WEN is 
usually a bit in the instruction word, allowing the user to 
define sections of wait-sensitive code. 

State Machine Partitioning 
When architecting a state machine, it is generally a 

good practice to break up large machines into workable 
blocks, with each of the smaller machines containing 
states that require common inputs and generate com­
mon outputs. The example clock state machine is small 
enough to be designed as a single state machine, al­
though it would be trivial to design logic to generate the 
free-running clocks as a separate machine from the rest 
of the clock state machine. Equations for the free-run­
ning clocks are: 

CLK _ A := lRESET * ICLK _ A 

CLK B := lRESET * CLK A 
where ":=" indicates a registered output. 

By examining these output equations, you can see 
that the free-running clocks have only two dependencies 
in common with the remaining portion of the clock state 
machine, i.e., RESET and STA TECLK. The free-run­
ning clocks are required as inputs to the other state 
machine to synchronize the additional system outputs, 
however. 

The example presented here implements the free­
running clocks and the other system outputs within the 
same state definition. The resulting output equations 
can be verified against the equations for the free-run­
ning clocks alone. 

The I nitial Machine State 

Regardless of the preferred state machine entry 
method, attacking the problem starts with defming the 
initial state of the machine. This initial state (INIT in 
the example) must be consistent with the power-on con­
dition and/or an external input used to initialize the 
machine (RESET). 

The state of the machine can be decoded from the 
present values of the system outputs, state registers, or a 
combination of the two. (The advantages and disad­
vantages of the state defmition options will be discussed 
in greater detail later in this application note.) The ini­
tial machine state is generally, but not always, a decode 
of all Os or all 18. In the example design, INIT is the 
decode of all Os. 

6-176 

Naming the States 

With the exception of INIT, each state in the ex­
ample design is named to indicate the active system 
clocks occurring during that state. For example, during 
state A, only CLK_A is active. Similarly, state 123B has 
only CLK_lB, CLK_2B, CLK_3B, and CLK_B active. 
Additionally, an "N" suffix designates a nonpipelined 
state and a "w" suffix designates a wait condition state; 
this convention differentiates between states with identi­
cal active system outputs. 



~ State Machine Design Considerations and Methodologies ~~~ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~ 2&, SEMIcc::mucrOR ;;; 

CPU Inactive States 
The RESET input causes the state machine to 

enter the INIT state from any state in the machine. 
From the INIT state, the machine unconditionally starts 
to generate the free-running clocks. As shown in Figure 
3, a line pointing from the INIT .sta.te to the A stat~, 
with a path equation equal to 1, mdlcates an uncondi­
tional branch. The state machine progression continues 
from the A state unconditionally into the B state. In the 
B state a multi-branch condition exists. If the RUN 
input remains inactive, then the A and B sta~es continue 
to toggle, generating only the free-runnmg clocks. 
Hence the INIT, A, and B states are referred to as 
"CPU inactive states". 

Nonpipelined States 
If the NPL input is active while the RUN input be­

comes active, the state machine operates in NON­
PIPELINED RUN mode and follows the model 
portrayed in Figure4. 

Pipelined States 

If the NPL input is inactive when the RUN input 
goes active, thus indicating PIPELINED RUN mode, 
the state machine operates as depicted in Figure5. 

Unique States 

When the RUN input goes active, the next state 
executed is either the 1A or the 1AN state, depending 
upon the value of the NPL input (refer to Figures4 and 
5). Notice that the active system outputs in these two 
states are identical. Why generate two identical states­
when an additional state register might be required to 
differentiate between the states? (This assumes you use 
the system outputs to decode the machine's states.) The 
redundant states are not a problem because the addi­
tional state register needed to differentiate between the 
states is not an issue. There are two reasons for this. 
First, if you eliminate the redundant states, the state 
machine would require at least one additional state 
register anyway to differentiate between the B and the 
BW or BWN states, which would be needed without 1A 
and 1AN. (Separation of states BW and BWN from 
state B is required for correct functionality.) Second, 
adding another state only increases the number of state 
registers if the new total number of states exceeds an 

RESET 
(path from all .tat •• ) 

., 
TO PIPELINE MACHINE ., 

TO NON-PIPELINE MACHINE STATES 

Figure 3. CPU Inactive States 

FROM STATE B 

TO STATE A 

Figure 4. Non-Pipelined States 

additional binary boundary (2, 4, 8, 16, ... ). This is not a 
problem here. 

You might also choose to widen your state 
machine (increase the number of state registers) to 
reduce the number of product terms to the state or sys­
tem output registers. This decision should take into ac­
count the desired circuit implementation (PLDs, 
PROMS, discrete hardware, etc.) and is often an itera­
tive process. In general, you can initially architect the 
state machine in the manner that is the easiest for you 
to understand, then make additional changes or small 
adjustments later if they become necessary. 

State Description Verification 

6-177 

Now that all the pieces of the state machine are 
functionally defmed (refer to Figure6 for the .c0!llpleted 
state diagram), consider methods for verifymg the 
validity of the design. Some software you can use to 
describe and implement state machines would already 
offer verification at this point in a design. For other 
methods, read on! 

One way to verify a state machine design is to 
recognize a rule of thumb: Out of every state, there 
should be a state path to another state for every pos­
sible combination of relevant external inputs. For ex­
ample, there are two paths out of st,ate 123B, with 
INTR and IEN as the relevant external mputs: 
Path 1 = INTR * IEN 
Path 2 = IINTR + INTR * lIEN 



~ State Macbine Design Considerations and Methodologies 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

I
N
T
R

*
I
E
N

-

* 'NPL

_/INTR +
INTR * /IEN

RUN *
(lWAIT +
WAIT * /WEN)

FROM STATE B

WAIT * WEN

/RUN *
(lWAIT +
WAIT * /WEN)

TO STATE A

Figure 5. Pipelined States

If there are no known restrictions on the external
inputs, a simple method of verifying the above rule of
thumb is to generate an equation where all of the paths

----ouror-a-state are ORed together as follows:
OUT _ STATE _123B = Path 1 + Path 2;
OUT_STATE_123B = (INTR * IEN)

+ IINTR
+ (INTR * lIEN);

OUT_STATE_123B = 1

6-178

If the equation's terms equal 1 after Boolean
reduction, then every state path out -of the state is ac­
counted for. The main advantage to this verification
method is that you can easily do it using readily avail­
able Boolean reduction software.

If there are known restrictions to the external in­
puts, you can use this information to reduce the com­
plexity of the machine. If it is impossible for the INTR *
lIEN condition to occur externally, for example, then
you can leave this condition out of the Path 2 equation.

State Machine Design Considerations and Methodologies

In that case, the reduction of the OUT STATE 123B
equation yields a non-l result --

Because the method of verification just described
does not detect redundant path equations, it is useful to
revise the original rule of thumb to: Out of every state,
there should be one and only one state path to another
state for every possible combination of relevant external
inputs.

This revised condition is not as easily verified as
the original statement. The easiest way to verify the
more restrictive case is to simulate the state machine.

RESET~_~
(pith fro. 111 .tlt ••) ~

+- _ !INTR +
INTR * !IEN

RUN *
(lI/AIT +
WAIT * !WEN)

!RUN *
(lVAIT +
WAIT * !WEN)

To do this, you must generate a test vector for every
possible external input that is relevant to each state
simulated. Automatic test vector generation programs
are available that produce every possible combination.
After running the vectors against the design, you must
visually inspect the output to verify that the machine
never enters an illegal state.

System and State Register Output Generation
The model defming the clock state machine is

complete, but there are still quite a few important

,
U
N

Figure 6. CPU Clock State Machine

6-179

State Machine Design Considerations and Methodologies

decisions to be made regarding the fmal circuit im­
plementation. Some of the major alternatives for final
implementation are:

System output vs.exclusive state register state
"decode

D flip-flop vs. T flip-flop implementation
PLD vs. PROM implementation
To· gain some insight into these choices, consider

how the output or feedback equations are assembled.
Take, for example, the generation of CLK _ 3A using a
D flip-flop (FF) implementation. By referring to Figure
6, you can find all the states in which CLK 3A is active.
These are 123A, 3A, and 3AN. The CLK.=-3A output is
generated by ORing the state decodes that, when
ANDed with their respective state paths, advance the
state machine into the three states listed above. Specifi­
cally:
eLK 3A :=

- (Decode of 12B)*(/INTR+INTR*/IEN) ;-123A
+(Decode of BW) * (/W AIT) ;-123A
+(Decode of 23B)*(1) ;-3A
+(Decode of 2BN)*(/INTR+INTR*I1EN);-3AN

When you defme the state decodes, the CLK 3A
equations are completely specified in terms of the state
machine inputs (state path), state registers, and/or sys­
tem outputs (state decode). Typically, you then multiply
the equation out to form a sum of products. This format
provides for easy implementation in a PLD, which has a
sum of products architecture, and also provides a useful
foundation for further equation reduction.

State Decode

As discussed earlier, the next state of the machine
can be decoded from the present values of the system
outputs, the state registers, or a combination of the two.
The choice typically comes down to weighing the maxi­
mum number of product terms verses the maximum
number of flip-flops available in an implementation. For
a Moore machine, with registered system outputs, using
the system outputs to uniquely define the states uses the
smallest number of flip-flops to define the state
machine. However, it is often necessary to add one or
more state registers to uniquely define the states.

State assignment for this state decoding method is
quite simple, but also rigidly defmed, allowing limited
flexibility when assigning the additional state registers.
Mter reduction, the feedback and output equations of
this "narrow" state machine might contain too many
product terms to be implemented in a specific PLD, al­
though product term complexity is never a problem with
a PROM implementation.

Exclusive State Registers

Another consideration in state machine design is
that you might be able to distribute the number of
product terms more evenly among the equations im­
plementing the state machine by using state registers ex­
clusively to decode the states. Because the state

decodes in the state registers can be selected to assist in
Boolean reduction, proper state assignment enables the
more complex equations to fit into a specific implemen­
tation.

This type of decode is useful in a PLD implemen­
tation, where there is a shortage of product terms for a
specific state flip-flop, but extra flip-flops. are available.
Adding "an extra state register can simplify the decode
logic enough to fit the design ina singlePLD.

The total number· of exclusive state registers re­
quired to implement a state machine varies from a mini­
mum of LOG(2)X (rounded up to the nearest integer)
to a maximum of X, where X is the total number of
states in the machine. You can iteratively change this
number, along with the state assignment, to obtain a
suitable solution.

The state assignment itself is a non-trivial issue,
with almost limitless possibilities and no known method
of obtaining the optimal solution. There are, however,
some guidelines that can be used to obtain workable
solutions:
1. Two or more states that potentially enter the same
state with identical path equations should be adjacent
(their binary codes differ in exactly one position). As an
example, refer to Figure 5. States 12B and 123B both
proceed into state 1A if the path condition INTR * lEN
is true. When generating the CLK_1A equation, two of
the terms of the equation look like this:
CLK lA :=

(Decode of 12B) * (INTR * IEN) ;-IA
+ (Decode of 123B) * (INTR * lEN) ;-lA

If the decode of 12B and 123B differ in exactly one
position, then Boolean reduction (which uses the A *B
+ I A *B = B relationship) converts the two product
term s into one smaller product term.
2. Two or more states that might proceed into different
states with identical path equations, and an identical ac­
tive output, should be adjacent. This situation occurs in
the previous CLK _ 3A equation, shown again here:
CLK_3A :=

(Decode of 12B)*(/INTR+INTR*I1EN) ;-123A
+(Decode of BW)*(/W AlT) ;-123A
+(Decode of 23B)*(1) ;-3A
+(Decode of 2BN)*(/INTR+INTR*I1EN);-3AN

Note that if states 12B and 2BN are adjacent, then
you can reduce the CLK _3A equation to three product
terms.

Clock Generator Implementation
As mentioned earlier, there are many ways to im­

plement state machines. The following sections discuss
some of the pros and cons associated with some of the
more common state machine implementations.

D Flip-Flop Implementation

There are more products available that support a
D flip-flop solution than any other implementation.

6-180

State Machine Design Considerations and Methodologies

Table 1. Optimized Results for Clock Generator:

T Flip-Flop Implementation

LOG/IC OPTIMIZATION SUMMARY

CPU TIME QUOTA PER FUNCTION:

FUNCTION !NY

NO
CLK_1AT

YES

NO
CLK lB.T

YES

NO
CLK 2AT

YES

NO
CLK_2B.T

YES

NO
CLK 3AT

YES

NO
CLK_3B.T

YES

NO
CLK AT

YES

NO
CLK_B.T

YES

NO
QQ1.T

YES

NO
QQ2.T

YES

C: Constant Function
FACT MINIMIZATION:

P-
CPU-

TERMS
TIME

6 <1

7 1

4 1

3 1

5 1

4 <1

4 1

3 <1

5 <1

6 2

4 <1

2 <1

2 1

1 <1

3 <1

5 1

6 <1

11 2

11 SEC

(FACT)

100 SEC

FLAGS

C

C

Therefore, it is usually the most cost-effective solution
for a state machine.

Table 1 lists the number of product terms per out­
put obtained by compiling the clock generator state
machine definition with the LOG/iC software, using D
flip-flops. The compiler input file appears in Appendix
A. Optimizing the design (Table 2) significantly reduces
the number of product terms needed.

T Flip-Flop Implementation
Even though D flip-flop solutions are more widely

available, there are times when the logic needed for this
implementation is prohibitively complex. Under these
circumstances, a T flip-flop implementation might be
more cost effective, because using T flip-flops reduces
the logic significantly.

6-181

Table 2. Non-optimized Results for Clock Generator:

D Flip-Flop Implementation

LOG/IC OPTIMIZATION SUMMARY

CPU TIME QUOTA PER FUNCTION:

FUNCTION !NY

NO
CLK 1A.D

YES

NO
CLK lB.D

YES

NO
CLK_2AD

YES

NO
CLK 2B.D

YES

NO
CLK_3A.D

YES

NO
CLK_3B.D

YES

NO
CLK AD

YES

NO
QQ1.D

YES

NO
QQ2.D

YES

N: No Optimization
T: Trivial Function
FACT MINIMIZATION:

P-
CPU-

TERMS
TIME

12 <1

27 <1

5 <1

34 1

8 <1

31 <1

7 <1

32 <1

8 <1

31 <1

6 <1

33 <1

6 <1

5 <1

10 <1

9 <1

2 SEC

(FACT)

100 SEC

FLAGS

N

N

N

N

N

N

N

N

N

N

N

N

NT

NT

N

N

N

N

The best example of this situation is a simple
synchronous binary counter. While the most significant
bit (MSB) of an N-bit counter in a D flip-flop im­
plementation requires N product terms, the T flip-flop
solution requires only one product term. Note that the
Cypress family of CY7C33x devices offers you a con­
figurable T or D type implementation if you place an
XOR gate prior to the D flip-flop; route the AND/OR
array to one of the XOR's inputs and the flip-flop's Q
output (via an additional product term) to the other
XOR input.

It isn't clear from simple observation, however,
whether the T flip-flop implementation is beneficial for
the clock generator state machine. One way to clarify
this question is to change three command lines in the
state machine description shown in Appendix A and
recompile to produce a T flip-flop implementation.
Table 3 contains the product term results using T flip-

State Machine Design Considerations and Methodologies

flops. A quick study of the results reveals that the op­
timized version using D flip-flops (Table 2) requires
fewer product terms than the T flip-flop version.

PLD Implementation

With the LOG/iC PLD Database option. the
software assists in selecting a PLD. and it shows that
the non-optimized version of the clock state machine
fits in a PALC22V10 without further reduction. If the
equations are reduced using Boolean reduction. how­
ever. a lower-cost solution is available. The results
shown in Table 3 indicate that the less expensive
PALC2OG10 would work. Appendix A shows the listing
for the 20G10 LOG/iC implementation. Waveforms for
the completed design appear in Appendix B. You. can
verify the CLK _ A and CLK _ B equation results against
the equations generated in the State Machine Partition­
ing section of this application note.

PROM Implementation

You can obtain very high speed solutions by im­
plementing state machines using PROMs. A PROM
uses a look-up table to decode the machine's next state,
as opposed to the AND/OR array in a PLD. The main
advantage of using a look-up table to decode the next
state is that every combination of the inputs can be
decoded. Thus, you can create an extremely complex
machine, without equation reductions.

The look-up table's drawback is that the PROM's
depth grows exponentially (2N, where N = # of inputs
to the look-up table) with every additional input to the
look-up table. To determine the depth required, notice
that the present total input vector provides the inputs to
the look-up table. The clock generator state machine
has seven external inputs, six system outputs, and two
state outputs, which indicates a feasible implementation
using the CY7C277 (32K X 8) registered PROM.

Using a registered PROM such as the CY7C277 to
implement the machine also helps to reduce the parts
count, because the PROM implements both the state
and system output registers. LOG/iC offers support for
implementing state machines in PROMs, and only a few
minor changes to the state machine description shown
in Appendix A are required. *PROM replaces the *p AL
command, some simple statements indicating the
CY7C277 architecture (INPUTS = 15 AND OUT­
PUTS = 8) replaces the TYPE = statement, and
PROGFORMAT = INTEL-HEX.

CY7C361 Implementation
A new way to obtain high-speed operation· of state

machine s became available with Cypress
Semiconductor's development of a revolutionary ar­
chitecture that enables a CMOS PLD state machine
part to operate at speeds in the 125-MHz range. The
first part in this family is the CY7C361. The architec­
tural innovations used to obtain 125-MHz operation re­
quire that you approach state machine design slightly

6-182

Table 3. Optimized Results for Clock Generator:

D Flip-Flop Implementation

LOG/IC OPTIMIZATION SUMMARY (FACT)

CPU TIME QUOTA PER FUNCTION: 100 SEC

P-
CPU-

FUNCTION INV TERMS
TIME

FLAGS

NO 6 1
CLK_1A.D

YES 11 2

CLK 1B.D
NO 3 1

YES 4 <1

NO 4 1
CLK_2A.D

YES 7 <1

CLK 2B.D
NO 3 1

YES 4 <1

NO 4 1
CLK_3A.D

YES 9 1

NO 3 <1
CLK_3B.D

YES 3 1

NO 1 <1
CLK_A.D

YES 2 <1

NO 1 1
CLK_B.D

YES 2 <1

NO 3 <1
QQ1.D

YES 3 1

NO 6 16
QQ2.D

YES 6 2

FACT MINIMIZATION: 29 SEC

differently than you would when designing with tradi­
tional PLD architectures.

To fully understand the information in this section,
consult the Cypress Semiconductor application note,
"Understanding the CY7C361."

Using the clock generator state machine example,
this section shows how you can generate a state diagram
for the CY7C361 by following some simple rules. This
diagram allows you to determine whether the design
can fit in a CY7C361. The rule of thumb is that a state
diagram with 32 or fewer state nodes will probably fit.
(The likelihood of the implementation at. that point
depends totally upon split-input-array fitting issues.)
You can convert the state diagram directly into Boolean
equation s (with no Boolean reduction required) and
compile the equations into JEDEC code for the final
implementation.

State Machine Design Considerations and Methodologies

The CY7C361's condition-decode array has been
optimized for use in state machine applications. As
shown in Figure 7, the CY7C361 condition decoder con­
tains the necessary logic to generate two kinds of state
machine operations. The Entering a State operation
should look familiar. The process used to generate the
system output and state register equations (in the Sys­
tem and State Register Output Generation section of
this application note) utilizes a similar equation form.
There are two small differences, though.

First, the Entering a State equation shown in Fig­
ure 7 assumes the present state conditions are available
as single entities on the input array. That is, one state
register uniquely defmes each state, and therefore the
present state is not encoded using multiple flip-flops, as
is typical in traditional state machines. There is a spe­
cial case, however, that allows you to encode the states

!~~~ ~~ ;I2 ~~::;) s:~o~g~~~l~~~v:~~;d:ctm~::~:
state register is required in the decode of the next state.
An example of this is a simple synchronous 32-bit bi­
nary counter using the TOGGLE (or T flip-flop) con­
figuration.

The second design difference with the CY7C361 is
that the Entering a State equation also shows all states
(SA, SB, SC) that have an identical state path to SO.
This is not necessarily the case when designing with
traditional PLDs (as shown in Figure6). The CY7C361,
however, requires a machine definition in which all state
paths into any given state are identical. You can easily
convert an existing state diagram and satisfy the new
condition by simply adding additional states for those
states that do not meet the above condition.

To remain consistent with the naming conventions
already defmed for the clock generator example, two
additional suffixes, "X" and "Y", indicate the additional
states. For example, state BW in Figure 6 has two state
paths entering into it WAIT * WEN from state 123A
and a path from state AW. To meet the design condi­
tions for the CY7C361, you add an additional state,
BWX, such that state A W enters BWX with a state
path of 1, and state 123A enters state BW with a state
path of WAIT * WEN.

The CY7C361 implementation of the clock gener­
ator state machine appears in Figure 8. Note that both
of the new states (BW and BWX) have exits with the
same state path equation. Thus, the number of states in
the state machine does not grow geometrically due to
this new methodology.

In addition to the normal Entering a State equa­
tion, the CY7C361 supports operations in which multi­
ple state paths go from one state to another, and each
state path term contains only one input. Figure 9 shows
a diagram of this condition.

Another operation, called Leaving a State, proves
especially useful in conjunction with the (Wait Until)
TERMINATE state macrocell configuration in the

6-183

Leaving a state
(a+b+c)*SO

(SA+SB+SC)*(a*/b)
Entering a state

Figure 7. The Condition Decoder - Optimized for Two
State Machine Operations

CY7C361. The flip-flop in this macrocell configuration
is unconditionally set by the active previous state mac­
rocell. The flip-flop remains set until the condition
decoder equation (a Leaving a State equation) for the
TERMINATE macrocell goes active. Figure 10 shows
how the TERMINATE configuration looks within a
state diagram.

When implementing the. clock generator state
machine in the CY7C361 using the conversion techni­
ques discussed above, the number of states slightly ex­
ceeds 32. But by allowing the machine's pipelined and
nonpipelined portions to share common states, (lA, 1B,
and 3B) the total number of states reduces to less than
32.

Note that you can use this same kind of state
reduction for the original implementation (refer to the
Unique States section). Figure 8 shows the resulting
state diagram.

It is a simple matter to convert information from
the state diagram to PLD ToolKit Equations (refer to
Appendix C for the PLD ToolKit source file). You must
generate an Entering a State equation for every state
node in the diagram. (The TERMINATE configuration
was not used in this example, but it can be useful for
implementing wait states.)

You generate the equations in Appendix C using
the <PROD> and <INY PROD> connectives for
the AND and NAND terms, respectively. Then
generate the system outputs by ORing the appropriate
states in the OR-based output array. For example, the
CLK lB output is active during the lB, 12B, 123B, or
123BX states. The PLD ToolKit connective for the OR
array is <INY SUM>. The CY7C361 implementation
of the clock generator state machine was simulated
using the PLD ToolKit (see Appendix D).

Reference
1. Donald D. Givone, Introduction to Switching Cir­

cuit Theory (New York: McGraw-Hill, Inc., 1970)

(SAME
PATHS OUT
AS 1ZU)

State Machine Design Considerations and Methodologies

Figure 8. CY7C361 Implementation, CPU Clock State Machine

ENTERING A STATE
E Q. I 2

(SA) (a+/b+c)

adjacent
.>state

/ macrocells

Figure 9. Entering a State Along Multiple Paths

6-184

Figure 10. Leaving a State (TERMINATE
Configuration)

~
~ ~ State Machine Design Considerations and Methodologies'
~;r~~OID~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix A. LOG/iC PLD Source Code: Clock State Machine

LOG/iC-PAL ReI 3.212-2328-1721100034 # 32-5955 90/03/15 23:49:45

LOG/iC - COPYRIGHT (C) 1985,1988 BY ISDATA GMBH, 7500 KARLSRUHE WEST-GERMANY

Cypress Semiconductor LICENCE FOR IBM-PC/XT/AT

Data Set: OD20G 10.DCB

1 1: *IDENTIFICATION
2 2: PIPELINED CLOCKING SYSTEM OD2OO 10 ·317/90
3 3: ERIC B. ROSS
4 4: CYPRESS SEMICONDUCTOR
5 5: NAMING CONVENTION
6 6: OD = SYSTEM OUTPUTS ARE DFLOPS AND ARE USED FOR STATE DEF
7 7: 20010 = PALC2OOI0 IMPLEMENTATION
8 8: *PAL
9 9: TYPE= PALC2OOI0
10 I 10:
11 11: *X-NAMES
12 I 12: ;--
13 I 13: ;INPUT DEFINITIONS:
14 I 14:; RUN = START & STOP EXECUTION OF OUTPUT CLOCKS (NORMAL, SINGLE
15 I 15:; STEP, & BREAK PT. EXECUTION
16 I 16:; NPL = PIPELINED VS NON-PIPELINED MODE OF EXECUTION
17 I 17:; INTR = EXTERNAL INTERRUPT CONDITION (TLB MISS, PARITY ERROR, ...)
18 I 18:; lEN = INTERRUPT ENABLE
19 I 19: ; WAIT = WAIT ENABLE (CACHE MISS)
20 I 20: ; WEN = WAIT ENABLE
21 I 21: ;--
221 22:;
23 23: RUN, NPL, INTR, lEN, WAIT, WEN, RESET;
24 I 24:
25 25: *Z-NAMES
26 I 26: ;--
27 I 27: ;OUTPUT DEFINITIONS:
28 I 28:;
29 I 29: ; 3 CLOCK STAGES 1, 2, 3
30 I 30:; 2 CLOCKS PER ST ATE A, B
31 I 31:; CLK XX WHERE XX = lA,lB,2A,2B,3A,3B
32 I 32: ; -
33 I 33:; 2 FREE RUNNING CLOCKS
34 I 34:; CLK A, CLK B
35 I 35:; - -
36 I 36:; ADDITIONAL REGISTERS FOR STATE DEFINITION
37 I 37:; QQl, QQ2
38 I 38: ;--
39 I 39:;
40 40: CLK lA, CLK lB, CLK 2A, CLK 2B, CLK 3A, CLK 3B, CLK A, CLK B, QQ 1, QQ2;
41 I 41: - - - - - - - -

42 42: *Z-VALUES
43 I 43:

6-185

~ State Machine Design Considerations and Methodologies
~~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. LOG/iC PLD Source Code: Clock State Machine (Continued) 

44 I 44: ; ADDITIONAL OUTPUTS 
45 I 45: ; SYSTEM OUTPUTS FOR STATE DEFINITION 
461 46:; 
47 I 47:; 
48 I 48: ; 
49 I 49: ; 
501 50:; 
51 I 51:; 
521 52:; 
53 I 53: 

CCCCCCCC QQ 
LLLLLLLL QQ 
KKKKKKKK 12 
112233AB 
ABABAB 

54 54: SI = 0 0 0 0 0 0 0 0 
55 55: S2 = 0 0 0 0 0 0 1 0 0-
56 56: S3 = 0 0 0 0 0 0 0 1 0-
57 I 57: 
58 58: S4 = 1 0 0 0 0 0 1 0 - 0 
59 59: S5 = 0 1 0 0 0 0 0 1 - 0 
60 60: S6 = 10100010 
61 61: S7 = 010-10001 
62 62: S8 = 10101010 
63 63: S9 = 0 1 0 1 0 1 0 1 
64 64: SIO = 000 1 0 1 0 1 
65 65: Sl1 = 0 0 0 0 1 0 1 0 - 0 
66 66: S12 = 0 0 0 0 0 1 0 1 - 0 
67 67: S13 = 000000 1 0 1 0 
68 68: S14 = 00000001 10 
69 I 69: 
70 70: S15 = 

71 71: S16 = 
72 72: S17 = 
73 73: S18 = 
74 74: S19 = 
75 75: S20 = 
76 76: S21 = 
77 77: S22 = 
78 I 78: 

10000010 -1 
01000001 -1 
00100010 
00010001 
00001010 -1 
00000101 -1 
00000010 11 
0000000111 

79 79: *STRING 
80 80: INIT = 1 
81 81: SA = 2 
82 82: SB = 3 
83 I 83: 
84 84: SIA = 4 
85 85: SIB = 5 
86 86: S12A = 6 
87 87: S12B = 7 
88 88: S123A = 8 
89 89: S123B = 9 
90 90: S23B = 10 
91 91: S3A = 11 
92 92: S3B = 12 
93 93: SAW 13 
94 94: SBW = 14 
95 I 95: 

; INIT COMMON STATES 
; SA - INACTIVE 
; SB MODE STATES 

;SIA 
; SIB 

PIPELINE STATES 

; S12A 
;SI2B 
; S123A 
; S123B 
; S23B 
;S3A 
; S3B 
; SAW 
;SBW 

; SIAN 
;SIBN 
;S2AN 
;S2BN 
;S3AN 
;S3BN 
; SAWN 
;SBWN 

NON-PIPLINE 

COMMON STATES 
-INACTIVE MODE 
STATES 

; PIPELINE STATES 

6-186 



~ =- :rCYPRESS State Machine Design Considerations and Methodologies aas, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Appendix A. LOG/iC PLD Source Code: Clock State Machine (Continued) 

96 96: SIAN 15 
97 97: SlBN = 16 
98 98: S2AN = 17 
99 99: S2BN = 18 
100 100: S3AN = 19 
101 101: S3BN = 20 
102 102: SAWN = 21 
103 103: SBWN = 22 

; NON-PIPLINE 

104 104: LASTSTATE = 22; 
105 1105: 
106 106: *FLOW-TABLE 
107 1107: ; 
108 I 108: ;-----------------------------------------------------------------------
109 I 109: ;RESET STATE 
110 I 110: ;ALL STATES MUST RESET TO TIm INITIAL STATE (ALL OUTPUTS REGISTERS 0) UPON 
111 I 111: ;AN ACTIVE RESET INPUT. SINCE TIm 20G1O HAS NO GLOBAL OR INDIVIDUAL 
112 I 112: ;RESETS TO THE OUTPUT REGISTERS, RESET TO INITIAL STATE MUST BE EMBEDDED 
113 I 113: ;INTO THE STATE MACHINE 
114 1114: ; 
115 115: RELEVENT = RESET ; 
116 116: S[1 .. 'LASTSTATE'], Xl, F 'INIT' ;ALL STATE INIT UPON RESET 
117 138: RELEVENT = RESET = 0 
118 1139: ; 
119 I 140: ;-----------------------------------------------------------------------
120 I 141: ;INACTIVE MODE STATES 
121 142: RELEVANT = RUN, NPL , 
122 143: S'INIT' ,X - - ,F 'SA' ;INITIAL STATE AFTER RESET 
123 1144: 
124 145: S 'SA' , X - -
125 1146: 
126 147: S 'SB' , X 0 -
127 148: Xl 0 
128 149: XII 
129 1150: 

,F'SB' ;INACTIVE MODE STATE, ONLY 

, F 'SA' ;FREE RUN CLKS A & B ARE ACTIVE 
, F 'SlA' ; PIPELINE VS. 
, F 'SIAN' ; NON-PIPELINE DECISION 

130 I 151: ;-----------------------------------------------------------------------
131 I 152: ;PIPELINE MODE STATES 
132 1153: 
133 154: RELEVANT = INTR, lEN ;*PRIMING THE PIPELINE * 
134 155: S 'SlA' ,X - - ,F 'SIB' 
135 1156: 
136 157: S 'SlB' , X - -
137 1158: 
138 159: S 'S12A' ,X - -
139 1160: 
140 161: S 'S12B' ,X 11 
141 162: Xl 0 
142 163: X 0-
143 1164: 

,F'S12A' ; 

,F'S12B' ; 

, F 'SlA' ; INTERRUPT CONDITION? YES 
, F 'S123A' ; NO 
, F 'S123A' ; NO 

144 165: RELEVANT = RUN, INTR, lEN, WAIT, WEN; *FULL PIPELINE * 
145 166: S 'S123A' ,X - - - 1 1 , F 'SBW' ; WAIT CONDITION 
146 167: X 0 - - 0 - , F 'S23B' ; IRUN COND., EMPTY PIPELINE 
147 168: X 0 - - 10, F 'S23B' ; IRUN COND., EMPTY PIPELINE 
148 169: X 1- - 0 -, F 'S123B' ; RUN CONDITION 
149 170: X 1 - - 1 0, F 'S123B' ; RUN CONDITION 
150 1171: 

6-187 



State ,Machine Design Considerations and Methodologies 

Appendix A. LOG/iC PLD Source Code: Clock State Machine (Continued) 

151 172: S 'S123B' ,X - 1 1 - - , F 'SlA' ; INTERUPT CONDITION 
152 173: X - 0 - - - , F 'S123A' ; RUN CONDITION 
153 174: X - 10- - , F 'S123A' ; RUN CONDITION 
154 1175: 
155 176: RELEVANT = RUN ; *EMPTY PIPELINE * 
156 177: S 'S23B' ,X - ,F 'S3A' 
157 1178: 
158 179: S 'S3A' ,X - ,F 'S3B' 
159 1180: 
160 181: S'S3B' ,X - ,F 'SA' ; BACK TO INACTIVE STATE 
161 I 182: 
162 183: RELEVANT = WAIT ; *PIPELINE WAIT STATES* 
163 184: S 'SBW' ,X 1 ,F 'SAW' ; WAIT 
164 185: X 0 , F 'S123A'; /W AIT 
165 1186: 
166 187: S 'SAW' , X - ,F 'SBW' ; 
167 1188: 
168 I 189: ;-----------------------------------------------------------------------
169 I 190: ;NON-PIPELINE MODE STATES 
170 1191: 
171 192: S 'SIAN' ,X - , F 'SlBN' ; 
172 1193: 
173 194: S 'SlBN' ,X - ,F 'S2AN' ; 
174 1195: 
175 196: RELEVANT = WAIT, WEN ; 
176 197: S 'S2AN' ,X 11 ,F 'SBWN' ; WAIT CONDITION 
177 198: X 0 - ,F 'S2BN' ; /WAIT CONDITION 
178 199: Xl 0 ,F 'S2BN' ; /WAIT CONDITION 
179 1200: 
180 201: RELEVANT = INTR, lEN , 
181 202: S 'S2BN' ,X 11 ,F 'SIAN' ; INTERRUPT CONDITION 
182 203: X 0 - , F 'S3AN' ; /INTERRUPT CONDITION 
183 204: X 10 ,F 'S3AN' ; /INTERRUPT CONDITION 
184 1205: 
185 206: RELEVANT = RUN 
186 207: S 'S3AN' ,X - , F 'S3BN' ; 
187 1208: 
188 209: S 'S3BN' ,X 1 ' ,F 'SIAN' ; 
189 210: X 0 ,F 'SA' ; BACK TO INACTIVE STATE 
190 I 211: 
191 212: RELEVANT = WAIT ;*NON-PIPELINED WAIT STATES* 
192 213: S 'SBWN' ,X 1 , F 'SAWN' ; REMAIN IN WAIT 
193 214: X 0 , F 'S2AN' ; END OF WAIT CONDITION 
194 1215: 
195 216: S 'SAWN' ,X - , F 'SBWN' ; REMAIN IN WAIT 
196 I 217: 
197 218: *STATE-ASSIGNMENT 
198 219: Z-VALUES 
199 I 220: 
2001221: 
201 222: *PIN 
202 223: STATECLK = 1, RUN = 2, NPL = 3, INTR = 4, lEN = .5, WAIT = 6, WEN = 7, 
203 223: RESET = 8, CLK 1A = 14, CLK IB = 15, CLK 2A = 16, CLK 2B = 17, 
204 223: CLK 3A = 18, CLK 3B = 19, CLK A = 20, CLK B = 21, QQ 1-== 22, QQ2 = 23; 
205 1224: - - - -

6-188 



State Machine Design Considerations and Methodologies 

Appendix A. LOG/iC PLD Source Code: Clock State Machine (Continued) 

206 225: *RUN-CONTROL 
207 226: LISTING= LONG,SYMBOL-TABLE,EQUATIONS,PINOUT; 
208 227: PROGFORMAT= L-EQUATIONS 
209 228: OPTIMIAZATION= P-TERMS; 
210 229: *END 

LOG/IC SYMBOL TABLE 

SYMBOL TYPE REG LEVEL PIN/NODE 

GND LOCAL - HIGH 
VCC LOCAL - HIGH 
RUN X-VARIABLE - HIGH 2 
NPL X-VARIABLE - HIGH 3 
INTR X-VARIABLE - HIGH 4 
IEN X-VARIABLE - HIGH 5 
WAIT X-VARIABLE - HIGH 6 
WEN X-VARIABLE - HIGH 7 
RESET X-VARIABLE - HIGH 8 
CLK 1A X-VARIABLE - HIGH 14 
CLK-lB X-VARIABLE - HIGH 15 
CLK-2A X-VARIABLE - HIGH 16 
CLK-2B X-VARIABLE - HIGH 17 
CLK-3A X-VARIABLE - HIGH 18 
CLK-3B X-VARIABLE - HIGH 19 
CLK-A X-VARIABLE - HIGH 20 
CLK-B X-VARIABLE - HIGH 21 
QQ1 X-VARIABLE - HIGH 22 
QQ2 X-VARIABLE - HIGH 23 
CLK 1A.D Z-VARIABLE DFF HIGH 14 
CLK-lB.D Z-VARIABLE DFF HIGH 15 
CLK-2A.D Z-VARIABLE DFF HIGH 16 
CLK-2B.D Z-VARIABLE DFF HIGH 17 
CLK-3A.D Z-VARIABLE DFF HIGH 18 
CLK-3B.D Z-VARIABLE DFF HIGH 19 
CLK-A.D Z-VARIABLE DFF HIGH 20 
CLK-B.D Z-VARIABLE DFF HIGH 21 
QQCD Z-VARIABLE DFF HIGH 22 
QQ2.D Z-VARIABLE DFF HIGH 23 

EXPANDED FUNCTION TABLE (INCLUDING LOCAL VARIABLES): 

: CCCCCC 
: LLLLLLCC 

CCC CCC : KKKK KKLL 
RLLL LLLC C: KK QQ 

I W EKKK KKKL L :ll2233 QQ 
GVRN NIA W S K KQQ : ABAB ABAB 12 
NCUP TEIE E 112233 QQ : ......... . 
DCNL RNTN TABA B"ABA B12 : DDDD DDDD DD 

6-189 



State Machine Design Considerations and Methodologies 

Appendix A. LOG/iC PLD Source Code: Clock State Machine (Continued) 

---- ---- 1000 0000 0-- : 0000 0000 --; 11 116 
---- ---- 0000 0000 0-- : 0000 0010 0-; 2/ 143 
---- ---- 1000 000100- : 0000 0000 --; 31 117 
---- ---- 0000 0001 00- : 0000 0001 0-; 41 145 
---- ---- 1000 0000 10- : 0000 0000 --; 51 118 
--0- ---- 0000 0000 10- : 0000 0010 0-; 6/ 147 
--10 ---- 0000 0000 10- : 1000 0010 -0; 71 148 
--11 ---- 0000 0000 10- : 1000 0010 -1; 81 149 
---- ---- 1100 0001 0-0 : 0000 0000 --; 91 119 
---- ---- 0100 0001 0-0 : 0100 0001 -0; 101 155 
---- ---- 1010 0000 1-0 : 0000 0000 --; 111 120 
---- ---- 0010 0000 1-0 : 1010 0010 --; 12/ 157 
---- ---- 1101 0001 0-- : 0000 0000 --; 131 121 
---- ---- 0101 0001 0-- : 0101 0001 --; 141 159 
---- ---- 1010 1000 1-- : 0000 0000 --; 151 122 
---- 11-- 00101000 1-- : 1000 0010 -0; 16/ 161 
---- 10-- 0010 1000 1-- : 1010 1010 --; 171 162 
---- 0--- 0010 1000 1-- : 1010 1010 --; 181 163 
---- ---- 1101 0101 0-- : 0000 0000 --; 191 123 
---- --11 0101 0101 0-- : 0000 0001 10; 201 166 
--0- --0- 0101 0101 0-- : 0001 0101 --; 211 167 
--0- --10 0101 0101 0-- : 00010101 --; 22/ 168 
--1- --0- 0101 0101 0-- : 01010101 --; 231 169 
--1- --10 010101010-- : 01010101 --; 241 170 
---- ---- 1010 1010 1-- : 0000 0000 --; 251 124 
---- 11-- 0010 1010 1-- : 1000 0010 -0; 26/ 172 
---- 0--- 0010 1010 1-- : 1010 1010 --; 271 173 
---- 10-- 0010 1010 1-- : 1010 1010 --; 281 174 
---- ---- 1000 1010 1-- : 0000 0000 --; 291 125 
---- ---- 0000 1010 1-- : 0000 1010 -0; 301 177 
---- ---- 1000 01010-0 : 0000 0000 --; 311 126 
---- ---- 0000 0101 0-0 : 0000 0101 -0; 32/ 179 
---- ---- 1000 0010 1-0 : 0000 0000 --; 331 127 
---- ---- 0000 0010 1-0 : 0000 0010 0-; 341 181 
---- ---- 1000 0001 010 : 0000 0000 --; 351 128 
---- ---- 0000 0001 010 : 0000 0001 10; 36/ 187 
---- ---- 1000 0000 110 : 0000 0000 --; 371 129 
---- --1- 0000 0000 110 : 0000 001010; 38/ 184 
---- --0- 0000 0000 110 : 1010 1010 --; 39/ 185 
---- ---- 1100 0001 0-1 : 0000 0000 --; 401 130 
---- ---- 0100 0001 0-1 : 0100 0001 -1; 41/ 192 
---- ---- 101000001-1 : 0000 0000 --; 42/ 131 
---- ---- 00100000 1-1 : 0010 0010 --; 43/ 194 
---- ---- 10010001 0-- : 0000 0000 --; 441 132 
---- --11 0001 0001 0-- : 0000 0001 11; 45/ 197 
---- --0- 0001 0001 0-- : 0001 0001 --; 46/ 198 
---- --10 0001 0001 0-- : 0001 0001 --; 471 199 
---- ---- 1000 1000 1-- : 0000 0000 --; 48/ 133 
---- 11-- 0000 1000 1-- : 1000 0010 -1; 49/ 202 
---- 0--- 0000 1000 1-- : 0000 1010 -1; 501 203 
---- 10-- 0000 1000 1-- : 0000 1010 -1; 51/ 204 
---- ---- 1000 0101 0-1 : 0000 0000 --; 5V 134 
---- ---- 0000 01010-1 : 0000 0101 -1; 53/ 207 
---- ---- 1000 0010 1-1 : 0000 0000 --; 54/ 135 
--1- ---- 0000 0010 1-1 : 1000 0010 -1; 55/ 209 

6-190 



State Machine Design Considerations and Methodologies 

Appendix A. LOG/iC PLD Source Code: Clock State Machine (Continued) 

--0- ---- 0000 0010 1-1 : 0000 0610 0-; 56/ 210 
---- ---- 1000 0001 011 : 0000 0000 --; 571 136 
---- ---- 0000 0001 011 : 0000 000111; 581 216 
---- ---- 1000 0000 111 : 0000 0000 --; 591 137 
---- --1- 0000 0000 111 : 0000 001011; 601 213 
---- --0- 0000 0000 111 : 0010 0010 --; 61/ 214 
REST : ---- ---- --; 62 

1234 5678 9012 3456 789 1234 5678 90 

STATE ASSIGNMENT: 

CCCC CC 
LLLLLLCC 
KKKKKKLL 

KKQQ 
112233 QQ 
ABAB ABAB 12 

0000 0000 --; 1 
0000 0010 0-; 2 
0000 00010-; 3 
1000 0010 -0; 4 
0100 0001 -0; 5 
1010 0010 --; 6 
0101 0001 --; 7 
1010 1010 --; 8 
0101 0101 --; 9 
0001 0101 --; 10 
0000 1010 -0; 11 
0000 0101 -0; 12 
0000 0010 10; 13 
0000 0001 10; 14 
1000 0010 -1; 15 
0100 0001 -1; 16 
0010 0010 --; 17 
0001 0001 --; 18 
0000 1010 -1; 19 
0000 0101 -1; 20 
0000 0010 11; 21 
0000 0001 11; 22 

EXPANDED FUNCTION TABLE (LOCAL VARIABLES REMOVED): 

: CCCCCC 
: LLLLLLCC 

C CCCC C : KKKK KKLL 
RL LLLL LCC KK QQ 

I W EK KKKK KLL :-IT22 33 QQ 
RNNI A WS KKQ Q : ABAB ABAB 12 
UPTE lEE 1-1223 3- Q Q : ......... . 
NLRN TNTA BABA BAB1 2 : DDDD DDDD DD 

6-191 



State Machine Design Considerations and Methodologies 

Appendix A. LOG/iC PLO Source Code: Clock State Machine (Continued) 

---- --100000 000- - : 0000 0000 --; 11 116 
---- --00 0000 000- - : 0000 0010 0-; 'll 143 
---- --100000 0100 - : 0000 0000 --; 31 117 
---- --00 0000 0100 - : 0000 0001 0-; 41 145 
---- --100000 0010 - : 0000 0000 --; 51 118 
0--- --00 0000 0010 - : 0000 0010 0-; 6/ 147 
10-- --00 0000 0010 - : 1000 0010 -0; 71 148 
11-- --00 0000 0010 - : 1000 0010 -1; 81 149 
---- --11 0000 010- 0 : 0000 0000 --; 91 119 
---- --01 0000 010- 0 : 0100 0001 -0; 101 155 
---- --10 1000 001- 0 : 0000 0000 --; 11/ 120 
---- --00 1000 001- 0 : 1010 0010 --; 1'll 157 
---- --11 0100 010- - : 0000 0000 --; 131 121 
---- --01 0100 010- - : 0101 0001 --; 141 159 
---- --10 1010 001- - : 0000 0000 --; 151 122 
--11 --00 1010 001- - : 1000 0010 -0; 16/ 161 
--10 --00 1010 001- - : 1010 1010 --; 171 162 
--0- --00 1010 001- - : 1010 1010 --; 181 163 
---- --11 0101 010- - : 0000 0000 --; 191 123 
---- 1101 0101 010- - : 0000 0001 10; 201 166 
0--- 0-01 0101 010- - : 0001 0101 --; 21/ 167 
0--- 1001 0101 010- - : 0001 0101 --; 221 168 
1--- 0-01 0101 010- - : 0101 0101 --; 231 169 
1--- 1001 0101 010- - : 01010101 --; 241 170 
---- --10 1010 101- - : 0000 0000 --; 251 124 
--11--00 1010 101- - : 1000 0010 -0; 26/ 172 
--0- --00 1010 101- - : 1010 1010 --; 271 173 
--10 --00 1010 101- - : 1010 1010 --; 281 174 
---- --100010101- - : 0000 0000 --; 291 125 
---- --00 0010 101- - : 0000 1010 -0; 301 177 
---- --100001010- 0 : 0000 0000 --; 31/ 126 
---- --00 0001 010- 0 : 0000 0101 -0; 3'll 179 
---- --100000 101- 0 : 0000 0000 --; 331 127 
---- --00 0000 101- 0 : 0000 0010 0-; 341 181 
---- --100000 0101 0 : 0000 0000 --; 351 128 
---- --00 0000 0101 0 : 0000 0001 10; 36/ 187 
---- --10 0000 0011 0 : 0000 0000 --; 371 129 
---- 1-00 0000 0011 0 : 0000 0010 10; 381 184 
---- 0-00 0000 0011 0 : 1010 1010 --; 391 185 
---- --11 0000 010- 1 : 0000 0000 --; 401 130 

EXPANDED FUNCTION TABLE (LOCAL VARIABLESREMOVED)- continued: 

---- --01 0000 010- 1 : 0100 0001 -1; 41/ 192 
---- --10 1000 001- 1 : 0000 0000 --; 4'll 131 
---- --00 1000 001- 1 : 00100010 --; 431 194 
---- --10 0100 010- - : 0000 0000 --; 441 132 
---- 1100 0100 010- - : 0000 0001 11; 451 197 
---- 0-00 0100 010- - : 0001 0001 --; 46/ 198 
---- 1000 0100 010- - : 0001 0001 --; 47/ 199 
---- --100010 001- - : 0000 0000 --; 481 133 
--11 --00 0010 001- - 1000 0010 -1; 491 202 
--0- --00 0010 001- - 0000 1010 -1; 501 203 
--10 --00 0010 001- - 0000 1010 -1; 51/ 204 
---- --10 0001 010- 1 0000 0000 --; 5'll 134 

6-192 



State Machine Design Considerations and Methodologies 

Appendix A. LOG/iC PLD Source Code: Clock State Machine (Continued) 

---- --00 0001 010- 1 : 0000 0101 -1; 53/ 207 
---- --100000 101- 1 : 0000 0000 --; 54/ 135 
1--- --00 0000 101- 1 : 1000 0010 -1; 55/ 209 
0--- --00 0000 101- 1 : 0000 0010 0-; 56/ 210 
---- --100000 01011 : 0000 0000 --; 57/ 136 
---- --00 0000 0101 1 : 0000 0001 11; 58/ 216 
---- --10 0000 0011 1 : 0000 0000 --; 59/ 137 
---- 1-00 0000 00111 : 0000 001011; 60/ 213 
---- 0-00 0000 0011 1 : 00100010 --; 61/ 214 
REST : ---- ---- --; 62 

1234 5678 9012 3456 7 1234 5678 90 

PIPELINED CLOCKING SYSTEM OD2OG10 3/7/90 
ERIC B.ROSS 
CYPRESS SEMICONDUCTOR 
90/03/15 23:49:45 

**************************************************** 
*** NET DESCRIPTION TABLE FOR AND/OR STRUCTURE *** 
**************************************************** 

: CCCCCC 
: LLLLLLCC 

C CCCC C : KKKK KKLL 
RL LLLL LCC: KK QQ 

I W EK KKKK KLL -: 112233 QQ 
RNNI A WS KKQ Q : ABABABAB 12 
UPTE IEEl-1223 3- Q Q : ......... . 
NLRN TNTA BABA BAB12 : DDDD DDDD DD 

INV ......... . 
REG DDDD DDDD DD 

---- 0-0- --0- 0-11 0 : A. ........ ; 1 
1--- --0- --0- 1--- 1 : A ......... ; 2 
---- --0- 1--- ---- 0 : A ......... ; 3 
---- --0- 1-1- ---- - : A ......... ; 4 
--11 --0- --1- 0--- - : A ......... ; 5 
1--- --0- 0-0- 0-10 - : A. ........ ; 6 
---- --01 ---0 ---- - : .A ........ ; 7 
1--- -001 ---- ---- - : .A ........ ; 8 
1--- 0-01 ---- ---- - : .A ........ ; 9 
---0 --0- 1--- ---- - : .. A ....... ; 10 
--0- --0- 1--- ---- - : .. A ....... ; 11 
---- 0-0- --0- 0-11 - : .. A ....... ; 12 
---- --0- 1-0- ---- - : .. A. ...... ; 13 
---- 0-0- -1-- ---- - : ... A ...... ; 14 
---- -00- -1-- ---- - : ... A ...... ; 15 
---- --01 -1-0 ---- - : ... A ...... ; 16 
---0 --0- --1- ---- - : .... A ..... ; 17 
--0- --0- --1- ---- - : .... A ..... ; 18 
---- --0- 0-1- 1--- - : .... A ..... ; 19 

6-193 



~ State Machine Design Considerations and Methodologies 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. LOG/iC PLD Source Code: Clock State Machine (Continued)

---- 0-0- 0-0- 0-11 0 : A ; 20
---- 0-0- ---1 ---- - : A ; 21
---- -00- ---1 ---- - : A ; 22
---- --0- -0-1 ---- - : A ; 23
---- --0- ---- -0-- - : A. ..; 24
---- --0- ---- -1-- - : A .. ; 25
---- ---- ---- -1-1 - : A.; 26
---- ---- ---- 0-11 - : A.; 27
---- ---- -1-- ---- - : A.; 28
---- ---- --0- 1--- - : A; 29
---- ---- 0-1- 0--- - :A; 30
---- ---0 -1-- ---- - : A; 31
---- ---- -0-- -1-- 1 : A; 32
-1-- ---00--00--0 - : A; 33
---- ---- 00-- 0--1 1 :A ; 34

1234 5678 9012 3456 7 : 1234 5678 90
PIPELINED CLOCKING SYSTEM OD2oo 10 3/7/90
ERIC B.ROSS
CYPRESS SEMICONDUCTOR
90103/15 23:49:45

**
*** BOOLEAN EQU A TIONS ***
**

CLK lA.D '-
- IWAIT & /RESET & ICLK 2B & ICLK_3B & CLK B

& QQl &/QQ2 -
+ RUN & IRESET & ICLK 2B & CLK_3B & QQ2
+ /RESET & CLK lB & iQQ2
+ /RESET & CLK-IB & CLK 2B
+ INTR & lEN -& IRESET & eLK 2B & ICLK 3B
+ RUN & /RESET & ICLK lB &-/CLK 2B &-/CLK 3B

& CLK_B &/QQl ; - -

CLK lB.D '-
- IRESET & CLK lA & ICLK 3A
+ RUN & lWEN & IRESET &. CLK lA
+ RUN & IWAIT & IRESET & CLK')A

CLK 2A.D '-
- lIEN & /RESET & CLK lB
+ IINTR & /RESET & cLk lB
+ IWAIT & IRESET & ICLK-2B & ICLK_3B

& QQl -
+ /RESET & CLK_IB & ICLK_2B

CLK 2B.D '-
- IW AIT & IRE SET & CLK 2A
+ lWEN & /RESET & CLK 2A
+ /RESET & CLK_IA & CLK_2A

6-194

S;~ State Machine Design Considerations and Methodologies
~~ ~~OID~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix A. LOG/iC PLD Source Code: Clock State Machine (Continued)

CLK 3A.D :=
- lIEN & IRESET & CLK 2B
+ IINTR & IRESET & CLK 2B
+ IRESET & ICLK lB & -CLK 2B & CLK 3B
+ IWAIT & IRESE-T & ICLK lB - & ICLK 2B - & ICLK_3B

& CLK_B & QQ1 & !QQ2 -

CLK 3B.D .-
- /WAIT & IRESET & CLK 3A
+ lWEN & IRESET & CLK 3A
+ /RESET & ICLK_2A & CLK_3A

CLK A.D '-
- IRESET & ICLK_A

CLK B.D '-
- IRESET & CLK_A ;

QQl.D := CLK A & QQ1
+ ICLK 3B- & CLK B & QQ1
+ CLK=2A -

QQ2.D := ICLK 2B & CLK 3B
+ ICLK lB- & CLK 2B- & ICLK 3B
+ ICLK-1A & CLK-2A
+ ICLK-2A & CLK-A & QQ2
+ NPL - & ICLK 1A - & ICLK lB & ICLK _3A

& ICLK 3B - & IQQ 1 -
+ ICLK_lB - & ICLK_2A & ICLK_3B & QQ1 & QQ2

PIPELINED CLOCKING SYSTEM OD2OGlO 3/7/90
ERIC B. ROSS
CYPRESS SEMICONDUCTOR

90/03/15 23:49:45

PALC2OG10

STATECLK 24 @VCC

RUN 2 23 QQ2

NPL 3 22 QQ1

INTR 4 21 CLK_B

lEN 5 20 CLK_A

WAIT 6 19 CLK_3B

WEN 7 18 CLK_3A

RESET 8 17 CLK_2B

6-195

~
~ ~ . State Machine Design Considerations and Methodologies
~;r~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix A. LOG/iC PLD Source Code: Clock State Machine (Continued)

@09 9 16 CLK_2A

@10 10 15 CLK_lB

@11 11 14 CLK_IA

@GNO 12 13 @OE

PIPE LINED CLOCKING SYSTEM 00200 10 3/7/90
ERIC B. ROSS
CYPRESS SEMICONDUCTOR

90/03/15 23:49:45

S
T
A
T

I E @
NNRCVQQ
TPULCQQ
RLNKC21

432 1282726

5

lEN 6

WAIT 7 23 CLK 3B
PALC2oo10 -

8 22 CLK_3A
LCC

WEN 9 21 CLK_2B

RESET 10 20 CLK_2A

11 19

12 13 14 15 16 17 18

@@@@@CC
011GOLL
901NEKK

D
1 1
AB

PIPELINED CLOCKING SYSTEM 00200 10 3/7/90
ERIC B. ROSS
CYPRESS SEMICONDUCTOR

90/03/15 23:49:45

6-196

....::=-....

%;~RFSS State Machine Design Considerations and Methodologies
-=:::!!!!I!!f" SEMlCONDOCTOR =============================;;;;;;

Appendix A. LOG/iC PLD Source Code: Clock State Machine (Continued)

S
T
A
T
E @

NRC V Q
P U L C Q
L N K C 2

432 1282726

INTR 5 25 QQ1

lEN 6

WAIT 7 23 CLK A
PALC2OGlO -

WEN 8 22 CLK 3B
PLCC -

RESET 9 21 CLK_3A

@09 10 20 CLK_2B

19 CLK 2A 11

12 13 14 15 16 17 18

@@@@CC
11GOLL
01NEKK

D

LOG/iC - PAL CPU TIME USED: 45 SEC

6-197

State Machine Design Considerations and Methodologies

Appendix B. LOG/iC Simulation: Clock State Machine

PIPELINED CLOCKING SYSTEM OD200 10 317190
CCCC CC

ES R LLLL LLCC
vt W E KKKK KKLL
eaR N N I A W S K K
n t U PTE lEE C C 2- 2- 3- 3-
teN L R N TNT A B A B A -B -A B

0-10-10-10-1 0-10-10-1: 0-1 0-1 0-1 0-1 0-10-10-10-1 0

Top of trace buffer
1 lIU::
1 1 IC :
1 lIU:
2 lIU:
2 1 IC:
2 lIU:
3 lIU:
3 lIC:
3 2IU:
4 2IU:
4 2IC:
4 3IU:
5 3IU:
5 3 IC:
5 2IU:
6 2IU:
6 2IC:
6 3IU:
7 3IU:
7 3 IC:
7 4IU:
8 4IU:
8 4IC:
8 5IU:
9 5IU:
9 5IC:
9 6IU:
10 6IU:
10 6IC:
10 7IU:
11 7IU:
11 7IC:
11 8IU:
12 8IU:
12 8IC:
12 9IU:
13 9IU:
13 9IC:
13 8IU:
14 8IU:
14 8IC:
14 9IU:

6-198

State Machine Design Considerations and Methodologies

Appendix B. LOG/iC Simulation: Clock State Machine (Continued)

PIPE LINED CLOCKING SYSTEM OD2oo 10 3/7/90
CCCC CC

ES R LLLL LLCC
vt W E KKKK KKLL
ea RNNI AWS KK
n t U PTE lEE C C 2- 2- 3- 3-
teN L R N TNT A B A B A -B -A B

0-10-10-10-1 0-10-10-1: 0-1 0-1 0-1 0-1 0-10-10-10-1 0

15 9IU:
15 9IC:
15 8IU:
16 8IU:
16 8IC:
16 10 IU :
17 10 IU :
17 10IC:
17 11 IU :
18 11 IU :
18 11 IC :
18 12IU:
19 12IU:
19 12IC:
19 2IU:
20 2IU:
20 2IC:
20 3IU:
21 3IU:
21 3 IC :
21 2IU:
22 2IU:
22 2IC:
22 3IU:
23 3IU:
23 3IC:
23 15IU:
24 15IU:
24 15 IC:
24 16IU :
25 16IU :
25 16IC:
25 17 IU :
26 17IU :
26 17IC:
26 18IU :
27 18IU :
27 18 IC:
27 19IU:
28 19IU:
28 19IC:
28 20IU:
29 20IU:
29 20IC:
29 15IU :

6-199

fir:~OR ======s;;;;;t;;;;;a;;;;;te=M=aC;;;;;h;;;;;i;;;;;D;;;;;e;;;;;D;;;;;es;;;;;· ;;;;;ign=C=OD;;;;;s;;;;;i;;;;;d;;;;;er;;;;;a;;;;;t;;;;;io;;;;;D;;;;;S;;;;;a;;;;;D;;;;;d=M;;;;;e;;;;;t;;;;;h;;;;;Od;;;;;O;;;;;I;;;;;O;;;;;gI;;;;;·e;;;;;s=;;;;;;;;;

Appendix B. LOG/iC Simulation: Clock State Machine (Continued)

PIPELINED CLOCKING SYSTEM OD2OG 10 317/90
CCCC CC

ES R LLLL LLCC
vt W E KKKK KKLL
eaR N N I A W S K K
n t U PTE lEE C C 2- 2- 3- 3-
teN L R N TNT A B A B A -B -A B

0-10-10-10-1 0-10-10-1: 0-1 0-1 0-1 0-1 0-10-10-10-1 0

30 15IU :
30 15IC:
30 16 IV :
31 16 IV :
31 16IC:
31 17 IV :
32 17 IV :
32 17 IC:
32 18 IV :
33 18 IV :
33 18IC:
33 19 IV :
34 19 IV :
34 19 IC:
34 20 IV :
35 20 IV:
35 20IC:
35 15 IV :
36 15IU :
36 15IC:
36 16 IV :
37 16 IV :
37 16IC:
37 17 IV :
38 17 IV :
3817IC:
38 18 IV :
39 18 IV :
39 18IC:
39 19IU:
40 19 IV :
40 19IC:
40 20 IV :
41 20IU :
41 20IC:
41 2 IV :
42 2IU:
42 2IC:
42 3IU:
43 3 IV:
43 3IC:
43 2 IV:

6-200

.-..
£. :;~RESS State Machine Design Considerations and Methodologies
~, ~COID~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix B. LOG/iC Simulation: Clock State Machine (Continued)

PIPELINED CLOCKING SYSTEM OD2OG 10 317/90
CCCC CC

ES R LLLL LLCC
vt W E KKKK KKLL
eaR N N I A W S K K
n t V PTE lEE C C 2- 2- 3- 3-
teN L R N TNT A B A B A -B -A B

0-10-10-10-1 0-10-10-1: 0-1 0-1 0-1 0-1 0-10-10-10-1 0

44 2IV:
44 2IC:
44 3IU:
45 3IU:
45 3IC:
45 4IU:
46 4IU:
46 4IC:
46 5IU:
47 5IU:
47 5IC:
47 6IU:
48 6IU:
48 6IC:
48 7IU:
49 7 IV :
49 7IC:
49 8IU:
50 8IU:
50 8IC:
50 9IU:
51 9IU:
51 9IC:
51 8 IV :
52 8 IU :
52 8IC:
52 9IU:
53 9IU:
53 9IC:
53 4IU:
544IU:
54 4IC:
54 5IU:
55 5IU:
55 5IC:
55 6IU:
56 6IV:
56 6IC:
56 7 IU :
57 7IU:
57 7IC:
57 8IU:
58 8IU:
58 8 IC:
58 9IU:
59 9IU:
59 9IC:

6-201

State Machine Design Considerations and Methodologies

Appendix B. LOG/iC Simulation: Clock State Machine (Continued)

PIPELINED CLOCKING SYSTEM OD2OG 10 3/7/90
CCCC CC

E S R LLLL LLCC
vt W E KKKK KKLL
ea RNNI AWS KK
n t U PTE lEE C C 2- 2- 3- 3-
teN L R N TNT A B A B A -B -A B

0-1 0-1 0-1 0-1 0-1 0-1 0-1 : 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0

59 8IU:
60 8IU:
60 8 IC :
60 9IU:
61 9IU:
61 9IC:
61 8IU:
62 8IU:
62 8IC:
62 14 I :
63 14 I :
63 14IC:
63 13 I :
64 13 I :
64 13IC:
64 14 I :
65 14 I :
65 14IC:
65 13 I :
66 13 I :
66 13IC:
66 14 I :
67 14 I :
67 14IC:
67 8IU:
68 8IU:
68 8IC:
68 9IU:
699IU:
69 9IC:
69 8IU:
70 8IU:
70 8 IC:
70 9IU:
71 9IU:
71 9IC:
71 1IU:
72 1 IU :
72 1 IC:
72 1IU:
73 lIU:
73 1 IC :

6-202

State Machine Design Considerations and Methodologies

Appendix B. LOG/iC Simulation: Clock State Machine (Continued)

PIPELINED CLOCKING SYSTEM OD2OG 10 317/90
CCCC CC

E S R LLLL LLCC
vt W E KKKK KKLL
eaR N N I A W S K K
n t U PTE lEE C C 2- 2- 3- 3-
teN L R N TNT A B A B A -B -A B

0-10-10-10-1 0-10-10-1: 0-1 0-1 0-1 0-1 0-10-10-10-1 0

73 1IU:
74 1 IU :
74 1 IC:
74 2IU:
75 2IU:
75 2IC:
75 3IU:
76 3IU:
76 3IC:
76 4IU:
77 4IU:
77 4 Ie:
77 5IU:
78 5IU:
78 5IC:
78 6IU:
79 6 IV:
79 6IC:
79 7IU:
80 7IU:
80 7 IC:
80 4IU:
81 4IU:
81 4IC:
81 5IU:
82 5IU:
82 5IC:
82 6IU:
83 6IU:
83 6IC:
83 7IU:
84 7IU:
84 7IC:
848IU:
85 8 IV :
85 8 IC :
85 9IU:
86 9IU:
86 9IC:
86 8IU:
87 8IU:
87 8IC:
87 9IU:
88 9IU:
88 9IC:
88 8IU:
89 8IU:

6-203

~ State Machine Design Considerations and Methodologies
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix B. LOG/iC Simulation: Clock State Machine (Continued) 

PIPELINED CLOCKING SYSTEM OD2OG10 317/90 
eccc CC 

ES R LLLL LLCC 
vt W E KKKK KKLL 
eaR N N I A W S K K 
n t V PTE lEE C C 2- 2- 3- 3-
teN L R N TNT A B A B A -B -A B 

# # 0-10-10-10-1 0-10-10-1: 0-1 0-1 0-1 0-1 0-10-10-10-1 0 

89 8IC: 
891IV: 
901IV: 
90 1 IC: 
902IV: 
91 2 IV : 
91 2IC: 
91 3 IV : 
923IV: 
92 3 IC: 
92 15 IV : 
93 15 IV : 
93 15IC: 
93 16 IV : 
94 16 IV : 
94 16IC: 
94 17 IV : 
95 17 IV: 
95 17 IC: 
95 18 IV : 
96 18 IV : 
96 18IC: 
96 15 IV : 
97 15 IV : 
97 15 IC: 
97 16 IV : 
98 16 IV : 
98 16IC: 
98 17 IV : 
99 17 IV: 
99 17 IC: 
99 221 : 
100 22 I : 
100 22IC : 
100 21 I : 
101 21 I : 
101 21 IC : 
101 22 I : 
102 22 I : 
102 22IC: 
102 21 I : 

6-204 



State Machine Design Considerations and Methodologies 

Appendix B. LOG/iC Simulation: Clock State Machine (Continued) 

PIPELINED CLOCKING SYSTEM OD2OG 10 317/90 
CCCC CC 

E S R LLLL LLCC 
vt W E KKKK KKLL 
ea RNNI AWS KK 
n t U PTE lEE C C 2- 2- 3- 3-
teN L R N TNT A B A B A -B -A B 

# # 0-10-10-10-1 0-1 C-1 0-1 : 0-1 0-1 0-1 0-1 0-10-10-10-1 0 

103 21 I : 
103 21IC: 
103 22 I : 
104 22 I : 
104 221C : 
104 17IU : 
105 171U: 
105 171C: 
105 18IU: 
106 181U: 
106 181C: 
106 19 IU : 
107 19IU: 
107 191C: 
107 20 IU : 
108 20lU : 
108 201C: 
108 151U: 
109 151U: 
109 151C: 
109 161U: 
110 161U : 
110 161C: 
110 171U: 
111 17 IU : 
11117IC: 
111 181U: 
112 18IU: 
112 18IC: 
112 19IU : 
113 191U: 
113 191C: 
113 20IU : 
114 20IU : 
114 20IC: 
114 21U: 
115 21U: 
115 21C: 
115 31U: 
116 31U: 
116 31C: 
116 21U: 

6-205 



t;F;~ --;;;;;=====s;;;;;;ta;;;;;;t;;;;;;e;;;;;;M=a;;;;;;C;;;;;;h;;;;;;iD;;;;;;e;;;;;;D;;;;;;es=ign=;;;;;;C;;;;;;O;;;;;;D;;;;;;Si;;;;;;d;;;;;;er;;;;;;a;;;;;;t;;;;;;iO;;;;;;D;;;;;;S;;;;;;a;;;;;;D;;;;;;d;;;;;;M=e;;;;;;th;;;;;;o;;;;;;d;;;;;;O;;;;;;IO;;;;;;gI;;;;;;·;;;;;;es== 
~ SEMICQIDUCTOR_ 

Appendix C. Cypress PLD ToolKit: CY7C361 Implementation 

CY7C361; 

{PIPELINED CLOCKING SYSTEM AN1 361 4/27/90 
ERIC B. ROSS -
CYPRESS SEMICONDUCTOR} 

CONFIGURE; 

{ --------------------------------------------------------------------------------------------------- ----------------------------
; INPUT DEFINITIONS: 
; RUN = START & STOP EXECUTION OF OUTPUT CLOCKS (NORMAL, SINGLE STEP, 
, & BREAK PT. EXECUTION 
; NPL = PIPELINED VS NON-PIPELINED MODE OF EXECUTION 
; INTR = EXTERNAL INTERUPT CONDITION (TLB MISS, PARITY ERROR, ... ) 
; lEN = INTERRUPT ENABLE 
; WAIT = WAIT ENABLE (CACHE MISS) 
; WEN = WAIT ENABLE 
; RPT_EO = USED TO DUB CLK_1B, CLK USED TO UPDATE THE EO REG 

; ---------------_ ... _--------------------------------------------------------------------------------- ----------------------------
;OUTPUT DEFINITIONS: 
, 
; 3 CLOCK STAGES 1,2,3 
; 2 CLOCKS PER STATE A, B 

CLK_XX WHERE XX = 1A,lB,2A,2B,3A,3B 
, 
; 2 FREE RUNNING CLOCKS 

CLK_ A, CLK _ B 

;--------------------------------------------------------------------------------------... ------------ ...... _-----------------------
} 
RUN(node= 3), STATECLK, NPL, INTR, 
IEN(node= 9), WAIT, WEN, RESET, 
IRPT_EO, 

ICLK A(node= 16), ICLK B, ICLK lA, 
ICLK-2B(node= 24), ICLK IB(and~ ICLK 2A, /CLK 3A, 
ICLK)B, - --

{*INPUTS*} 

{*OUTPUTS*} 

{LOCAL 8 LOCAL 8 HALF 16 GLOBAL 32 *STATE MACROCELLS* 
FEEDBACK FEEDBACK FEEDBACK FEEDBACK 

AX(node= 32), A, 
lA, lAX, 

BW, 
BWX, 

AW, 

B, 
12A, 

12B, 

AWN, BWN, 2AN, 

23B, 
3A, 

BWNX(node= 53),2ANX, 

23BX, 
3AN, 

2BNX, 
3ANX, 

1B, 
123A, 

START = DEFAULT} 

{LOCAL 8 = 1, HALF = 1} 

123AX, {LOCAL 8 = 2, HALF = 1} 
123A Y(node= 47), 

123B, 
123BX, 

2BN, 
3BN, 

6-206 

{LOCAL 8 = 1, HALF = 2} 

{LOCAL 8 = 2, HALF = 2} 



State Machine Design Considerations and Methodologies 

Appendix C. Cypress PLD ToolKit: CY7C361 Implementation (Continued) 

IENA(node= 29),IENB, 
GLBRST(node= 64), 
GND(NODE= 73), 
CLKDB(NODE= 74) 

EQUATIONS; 

{*MISC*} 

{*MISC*} GLBRST = < prod> RESET; 

IENA = < INV _SUM> IGND; 

IENB = < INV_SUM> IGND; 

AX = < prod> IRESET; {*STATE MACROCELLS} 

A < prod> IRUN 
< invyrod> IB * 13BN; 

B < prod> 
dnvyrod> lAX * IlAX 

lB < prod> 
< invyrod> IlA * IlAX; 

lA < prod> INTR * IEN 
< invyrod> Il23B * Il23BX * Il2B * 12BN; 

lAX < prod> RUN 
< inv yrod> IB * 13BN; 

l2A < prod> INPL 
< invyrod> 11B; 

l23A < prod> IINTR 
< invyrod> Il2B * Il23B * Il23BX; 

BW < prod> WAIT * WEN 
< invyrod> 1123A * 1123AX * Il23A Y; 

AW < prod> WAIT 
< invyrod> IBW * IBWX; 

l2B = < prod> 12A; 

l23AX= < prod> INTR * lIEN 
< invyrod> 112B * 1123B * Il23BX; 

BWX = < prod> AW; 

l23A Y = < prod> IW AIT 
< inv yrod> IBW * IBWX; 

AWN = < prod> WAIT 
< invyrod> IBWN * IBWNX; 

6-207 



State Machine Design Considerations and Methodologies 

AppendixC. Cypress PLD ToolKit: CY7C361 Implementation (Continued) 

BWN < prod> WAIT * WEN 
< inv""prod> 12AN; 

2AN < prod> NPL 
< inv""prod> IlB; 

123B = < prod> RUN * IWAIT 
< inv""prod> 1123A * 1123AX * 1123AY; 

BWNX = < prod> AWN; 

2ANX = < prod> IW AIT 
< inv""prod> IBWN * IBWNX; 

123BX = < prod> RUN * WAIT * lWEN 
< inv""prod> 1123A * 1123AX * 1123AY; 

23B < prod> IR UN * WAIT * lWEN 
< inv""prod> 1123A * 1123AX * 1123AY; 

23BX = < prod> IR UN * IW AIT 
< inv""prod> 1123A * 1123AX * 1123AY; 

2BNX = < prod> WAIT * lWEN 
< inv""prod> 12AN * 12ANX; 

2BN < prod> IW AIT 
< invyrod> 12AN * 12ANX; 

3A < prod> 
< invyrod> 123B * 123BX; 

3AN = < prod> IINTR 
< inv yrod> 12BN * 12BNX; 

3ANX = < prod> INTR * lIEN 
< inv""prod> 12BN * 12BNX; 

3BN < prod> 
< invyrod> 13A * 13AN * 13ANX; 

6-208 



State Machine Design Considerations and Methodologies 

Appendix C. Cypress PLD ToolKit: CY7C361 Implementation (Continued) 

CLK_A = < iny sum> IA * lAX * 11A, * 11AX * {*OUTPUTS*} 
- 112A * 1123A * 1123AX * 

1123AY * lAW * 13A * 12AN * 
12ANX * lAWN * 13AN * 13ANX; 

< iny sum> IB * IlB * 112B * 1123B * 
- 1123BX * IBW * IBWX * 123B * 

123BX * 12BN * 12BNX * IBWN * 
IBWNX * 13BN; 

CLK_IA = < iny sum> 11A * 11AX * 112A * 1123A * 
- 1123AX * 1123AY; 

CLK_IB = < inY_sum> liB * 112B * 1123B * 1123BX; 

CLK_2A = < iny sum> 112A * 1123A * 1123AX * 
1123A Y * 12AN * 12ANX; 

CLK_2B = < inY_sum> 112B * 1123B * 1123BX * 
123B * 123BX * /2BN * /2BNX; 

CLK_3A = < inY_sum> 1123A * 1123AX * 1123AY * 
/3A * 13AN * 13ANX; 

CLK_3B = < inY_sum> 1123B * 1123BX * 123B * 
123BX * 13BN; 

6-209 



~ State Machine Design Considerations and Methodologies 
~', ~~amucroR =============================;;; 

Appendix D. Cypress PLD TooIKit:.CY7C361 Simulation 

6-210 



State Machine Design Considerations and Methodologies 

Appendix D. Cypress PLD ToolKit: CY7C361 Simulation (Cont.) 

6-211 



~ 

£:: ~RESS State Machine Design Considerations and Methodologies 
~, ~~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix D. CypressPLD ToolKit: CY7C361 Simulation (Coot.) 

6-212 



~ 
.iii CYPRESS 

, SEMICONDUCTOR 

Understanding the CY7C330 
Synchronous EPLD 

This application note provides basic information on 
the CY7C330 and presents four design examples: a 
high-speed up/down counter with limits, a 16x16 
crossbar switch, a pipelined buffer, and a simple toggle 
counter. Also included is an internal product term num­
bering c'hart. All example source code is in Cypress 
PLD ToolKit syntax. 

The Cypress CY7C330 is the flrst in a family of 
high-speed, application-optimized CMOS EPLDs. This 
fully synchronous part is designed to implement state 
machines and other clocked systems. The CY7C330 of­
fers new solutions for systems designers, with a truly 
usable high clock rate, 39 total registers, and 17,000 
programmable bits providing up to 1200-gate com­
plexity. 

Other devices in the family are the CY7C331 and 
the CY7C332. All family members are packaged in 28-
pin, 300-mil dual in-line and LCC/PLCC packages. The 
technology is low-power CMOS and UV erasable. The 
application-specific family from Cypress provides the 
CY7C330 for sequential state machine applications, the 
CY7C331 for general-purpose asynchronous designs, 
and the CY7C332 for decoders and combinational logic 
applications. 

This family of high-speed devices provides the op­
timal solution for each system design using Cypress's 
0.8-micron, dual-level-metal, CMOS technology. Sys­
tems using other types of programmable logic devices 
for synchronous state machine applications can use the 
CY7C330 as a higher-density, lower-power solution at 
speeds up to 66 MHz. 

The Cypress P ALC22VlO, PLDC20G 10 and 
PAL20 devices proved the popularity of high-speed, 
low-power, erasable CMOS logic. The CY7C330 builds 
on that base. One CY7C330 can easily replace four 
PALC22VIOs because the CY7C330 extends the num­
ber of state registers to 16, extends the number of 
product terms per output to 19 maximum, adds an 
XOR logic function, and provides the ability to use pins 
as bidirectional 1/0. 

The CY7C330 increases the speed of synchronous 
systems to 66 MHz. This is the actual usable speed, as 

6-213 

determined by the total 15-ns feedback time from the Q 
output of a flip-flop to the D input of any flip-flop in 
the device. To ensure the 66-MHz operation, all 23 in­
puts to the device have registers. This structure permits 
pipelined operations, which allow external data to be 
synchronized or CPU bus-oriented data to be latched. 
Input registers can be clocked from either of two input 
clock sources on either pin 2 or 3. 

The CY7C330 offers 258 variable product terms for 
16 state registers. This allows you to design very com­
plex sequential machines with virtually no limitation of 
product terms. These designs can easily exceed the size 
you want to manage with Kamaugh mapping. However, 
the new generation of advanced EPLD compilers can 
manage very complex state machine designs on worksta­
tions such as the IBM PC/XT . 

Overview of the CY7C330 
An easy way to picture the CY7C330 is with the 

block diagrams in Figure 1. On the input side of the 
CY7C330 (pins 1 - 7 and 9 - 14) are 11 input registers 
and three clocks. Pin 1 is the state clock. Each of the 11 
input registers is edge triggered, and each can use 
either device pin 2 (clock 1) or pin 3 (clock 2) (shown 
in Figure 2) as a clock. An architecture bit for each 
input register controls the selection of the input clock. 
This approach allows input data to be synchronized to a 
clock edge or loaded into the device from a CPU data 
bus, with the clocks being decoded I/O-write signals. 
The registers' setup and hold times are very short, al­
lowing high system throughput. Note that the outputs of 
the registers feed the device's AND-OR-XOR array. 

Pin 14 has an additional function that affects the 
input register: You can use the pin as a fast, 
asynchronous output enable to the device, allowing a 
CPU to move data in the state machine registers onto a 
bus, for example. 

On the I/O side of the device (pins 15 - 20 and 23 -
28) are 12 macrocells. Each I/O macrocell (see Figure 1 
in "Using ABEL to program the CY7C330") contains a 
D-type register, an input register with clock controls, 
and output-enable resources. Architecture bits for feed-



TO UPPER SECTION 

T 0 LOWE R SEC T' 0 N 

Figure 1. The CY7C330 Block Diagram 

back selection, output-enable configuration, and input­
register clock selection allow you to configure each 
macrocell independently. 

Each adjacent 110 macrocell shares an input multi­
plexer (Figure 3). This allows either macrocell register 
to be hidden, while the 110 pin is used as an input. In 
addition, four hidden register macrocells (see Figure 3 
in "Using ABEL to Program the CY7C330") provide 
additional state registers without direct output connec­
tions. 

The AND-OR-XOR array in Figure1 has 66 inputs 
and 244 product terms driving 16 OR-XOR gates. The 

PiN 

I i FINS 1. .? •.. 14 

i LiD l ....... I~n· 'IU ..... , ......... '1' I !! ""'" y 

I l S 0r-r 
! (4 

I CU::'2 FROl\ PIN :3 
eLKl FRD1'\ PiN 2 

Figure 2. The CY7C330 Input Macrocell 

6-214 

16 OR gates have from nine to 19 inputs (variable 
product terms), which allow complex designs to fit into 
each stage. An XOR product term for each OR output 
permits equations to be solved either with D or T flip­
flops in the output stage, or for active-High or active­
Low equations. 12 product terms provide the output­
enable function. A global reset and preset is also 
generated out of the array. Each product term forms an 
AND function with up to 66 inputs. The 66 inputs are 
the true and complement signals of 33 internal nodes in 
the CY7C330. 

INPUT TO 
ARRAY 

FRO~ UPPER ~ACROCELL 

~0"""..1 o 
1 

··············r·········· .. 
C3 

FRO~ LO~ER ~ACROCELL 

Figure 3. The CY7C330 Shared Input Multiplexer 



Pin 1 

Pin 1 

~~~~r 
~~~~r 

~D~a~ 
~>CLi(! 

! arOJ 
-1u k o~ 
~~H.tt ! 

! 'f0J 
,.............. 

----..cia 0: 
l. ...... ~~.jpln 2/3 

Pin 1 

~~~~r -----' 
~~~~r a 0 

CL Pin 2/3 

~
" .. .! ....... ~ 

.. ·0 PR o .. ---c>-
Pin 1 CLK 

MO 

1~~~E 

Pin 1 

t~~~ __ ----l 

~~~~~ -----! 

Pin 2/3

Pin 2/3

Figure 4. Four CY7C330 I/O Macrocell Configurations

Macrocell State Registers
The CY7C330's OR-XOR gates feed into 16 state

registers. These registers are edge-triggered D flip-flops
with pin 1 serving as clock. The outputs from these state
registers feed back into the array, allowing you to con~
struct high-speed state machines. The total feedback
time period from Q to D and the array delay from input
register to state register is 15 ns, allowing a full, usable
clock rate of 66 MHz.

Four of the CY7C330's state registers are always
hidden inside the device. A hidden register lets you
build intermediate states or other functions without
loading an I/O pin. Of the 12 remaining registers, up to
six can be hidden. This gives a total of 10 maximum
usable hidden registers, while allowing the 28-pin device
to have 17 dedicated input pins, six I/O pins, and many
other combinations. Valid I/O macrocell configurations
appear in Figure4.

Each I/O macrocell (pins 15 - 20 and 22 - 28) also
has an edge-triggered input register with either pin 2 or

6-215

pin 3 serving as clock. The total register count is 39-16
state registers and 23 input registers. To keep the
device speed as high as possible, the number of inputs
to the array is limited to 33 (x2); six of the array inputs
from the I/O macrocells are multiplexed (shared). Thus,
three feedbacks are provided for the two output and
two input registers for each set of two I/O pins. The
easiest way to understand the net result is that the maxi­
mum number of hidden registers in the 12 I/O macro­
cells is six. Output registers that have no feedback to
the array are useful for data outputs or single-clock­
delayed Mealy outputs from the state machine.

The 12 macrocells have 24 registers total and 18
feedbacks. When you assign functions in your applica­
tion to physical pins in the device, consider the number
of feedbacks available and the number of product terms
required.

Center Pinning
All Cypress CY7C330 family products use center

pins for Vee and V ss connections. In addition, the V ss

for the intemal logic and the V ss for the output drivers
are on different pins. Center power pins eliminate noise
generated by both TIL and CMOS devices. This noise
is inductive noise proportional to the package lead in­
ductance. Moving the power pins to the center lowers
pin inductance and noise by a factor of 3 compared
with corner-pin power connections.

Splitting ground lines-with the ground for input
and logic on pin 8 and the ground for output drivers on
pin 21-has additional noise benefits. Ground-bounce
noise is caused when outputs switch from High to Low.
The more pins switching at the same time, the more
noise generated. Several hundred millivolts can be in­
duced on the chip's internal ground from this effect. Al­
though the level is low enough to meet output Vol specs,
the noise voltage must be considered when designing
the input buffers on a chip because the noise influences
the Vii spec of 0.8V. 400 mV of ground-bounce noise
shifts the AC effective Vii to 1.2V.

By separating the input reference ground from the
output ground where the noise is generated, ground
noise compensation is lowered or eliminated. This per­
mits Cypress offer a faster input buffer. Externally, the
two grounds are connected together. Also, by placing
the Vee pin close to the GND pin, external 0.1 J.LF
capacitors (as usual, one per chip) can be very close to
the actual device power pins.

All Cypress EPLDs permit the registers to be
preloaded into any configuration. This capability can
vastly reduce the test time and allows all patterns
programmed into an EPLD to be completely tested.
Without preload, for example, testing a multibit counter
that has no reset product term could be very slow or
impossible.

CY7C33X Family Technology
The CY7C330 and most other new Cypress

products are built in the Cypress 0.8 micron, N-well
CMOS, high-speed technology. New Cypress EPLDs
use a dual-metal-layer connection method to further in'­
crease speed. This technology allows Cypress to build
static RAMs with 7-nsaccess times, 35-MHz FIFOs, a
33~MHz RISC processor, and many other high-perfor-
mance products. '

Cypress uses an EPROM technology (as distinct
from fuse-link, or EEPROM technology) for all its
EPLD sand (E)PROMS because of the tremendous in.;
crease in manufacturing yields and 100-percent tes­
tability offered by EPROM technology. This UV­
erasable EPROM technology provides proven data
retention, testability, and manufacturability.

, In addition, the Cypress 2T (2 transistor) cell
design allows very high speed circuits to be built.
Cypress uses this 2T cell design for performance. One
transistor is used only for programming and the other
for reading, with each optimized for only one function.
The program transistor can be larger and slower. It is
designed to withstand 15V source to drain, which is the

maximum program charge on the floating gate. The
read transistor can be very small and fast. Because the
read bit line is only switching between 0 and 5V, the
sense amp is smaller and faster, and no high-current
15V driver MOSFETs are present. The result is very
fast (sub 10 ns) array times.

All Cypress devices offer protection against static
discharge (ESD). This means the devices are no more
sensitive than bipolar devices. By using a unique -3V
substrate bias generator (Vbb), Cypress devices are
protected from latchup caused by transient voltages
below ground, which are commonly seen in TIL sys­
tems. This internally generated Vbb also allows the
device to maintain high speed over a wide temperature
range by controlling switching thresholds. No current
flows in an input even under extreme undershoot situa­
tions, and the input transistor requires no recovery time
after an undershoot.

In addition to substrate bias for latchup elimina­
tion, Cypress uses a stacked TIL output driver. This
feature removes the pin-to-P-channel-transistor connec­
tion, a major source of latchup. Reducing the energy in
High-to-Low transitions also improves overshoot and
noise generation. Virtually all high-performance systems
using TIL or CMOS adhere to the TIL standard volt­
age specification-2.0V for a TIL High and 0.8V for a
TTL Low. Thus, a P-channel output transistor that pulls
the output to Vee causes more problems than it solves
because it overdrives the output. The lower voltage out­
put from a stacked N-channel output drive of 3.5V vs.
5.0V causes less noise on the High-to-Low transition
because less energy needs to be switched.

Cypress uses stacked N -channel transistors on the
outputs of all devices, eliminating latchup and fast tran­
sition to an overly high output 1 level. The devices are
more compatible with the TIL devices Cypress
replaces.

Resource Planning
Planning the assignment of functions to pins in the

CY7C330 is an important step in a CY7C330 design.
The resource planning sheet presented in Table 1
should be helpful for this procedure. Examples of its
use are included with each application presented here.

The decision on which pin to use is based on:
1. Asynchronous output enable, set to pin 14 or

synchronous enable with a product term
2. State clock is pin 1
3. Input clock is pin 2
4. Second input clock is pin 3, or use pin 3 as a normal

input if pin 2 will be the only input clock
5. Input only on pins 4 -7,and 9- 13
6. Device outputs: Assign pins keeping in mind that

they have different product term widths. The widths
are: 9, 11, 13, 15, 17, 19 for pins 28/15, 26/17, 24/19,
23/20,25/18,27/16, respectively

7. Use of hidden registers:

a. Four registers - H 1 to H4 - are always hidden

b. Up to six additional hidden registers can be
defined; Cypress suggests this sequence: 25, 18, 27,
16,23,20

c. Assign input names to these six registers that are
defined. Cypress suggests this sequence: 25, 18, 27,
16,23,20

d. Assign input names to these six registers that are
different from the physical device pin names

e. The optionally hidden registers can be viewed if
their output enable is made active and the external
logic driving the pin is in a high-impedance state;
otherwise the OE (output enable) product term of
the hidden register must be set to Zero
(NAME.ENA = 0)

Table 1. A CY7C330 Resource Planning Sheet

CY7C330 Resources Planning Sheet
Project: Your project name

Input Input
Register Register Register Output # of

Pin Function Clock Function Enable PTerms
1 State Ok

2 Clk 1

3 Input/Clk 2 1 if Input
4 Input 112

5 Input 112

6 Input 112

7 Input 112
8 VSS

9 Input 112
10 Input 1/2
11 Input 112
12 Input 112

13 Input 112
14 Input/OE 112 if Input

15 Input 112 if Input Output Pin 141Ptenn 9

16 Input 112 if input Output Pin 141Ptenn 19

17 Input 112 if input Output Pin 141Ptenn 11
18 Input 112 if input Output Pin 14/Ptenn 17

19 Input 112 if input Output Pin 141Ptenn 13
20 Input 112 if Input Output Pin 141Ptenn 15

21 VSS

22 VCC

23 Input 112 if input Output Pin 141Ptenn 15

24 Input 112 if input Output Pin 14/Ptenn 13

25 Input 112 if input Output Pin 14/Ptenn 17

26 Input 112 if input Output Pin 141Ptenn 11

27 Input 112 if input Output Pin 141Ptenn 19

28 Input 112 if input Output Pin 14/Ptenn 9

HI None None 19

H2 None None 11

H3 None None 17

H4 None None 13

Notes : Input Register Clock #1 is pin 2

#2 is pin 3

See the Application Note for the meaning of the pin names.

Output Enable = 14 means the asynchronous pin 14 direct enable.

Z means the pin is never active

6-217

~CYI'R!SS CY7C330 Synchronous EPLD
~~R~~~==~====~~~-~~~

8. The remaining visible registers can still be used in
applications where both inputs of a macrocell pair
are used. However, one of the output registers of
each adjacent Pair cannot have a feedback; it is used
only as an OQtput synchronized by the state clock on
pin 1. If, after this assignment, the compiler or as­
sembler complains that not enough product terms
are available, some pins might have to be re-assigned

Software Design Tools
You can compile logic for the CY7C330 with a

number of packages available from independent
software vendors® These packages include ABEL V3",,0
from DATA 110 and LOG/iC V3.0 from ISDATAIIII.
Cypress has developed the PLD ToolKit (CY7C3101),
which you can use to design any PLD that Cypress
makes. All these packages are logic compilers capable
of converting state machine or binary logic descriptions
into a JEDEC file that can program the device.

The JEDEC file is the standard interface from a
software development tool to a logic programmer. See
the examples section for more detail on the software
tools.

Logic Programmers
The CY7C330 can be programmed today on the

QuickPro plug-in board for IBM and compatible per­
sonal comp~ters. So~n you will also be able to use the
DATA 110 , STAG ,and other programmers.

Some software tools require you to set fuses or bits
in the device to enable certain functions, whereas others

eLKS

15

19

CLKl

CLK2

.. · .. ·t· .. · .. ·

r----0i9

t---020

[.......... 023

r 024
'-.....or-...

····· .. ·v·· .. · .. \

i 025

r----026

1 .. ··· · .. Q27

......................]Q28

Figure 5. Pipelined Buffer Block Diagram

set the architecture bits automatically. Note that bit
17070 requires special attention: it must be set to 1 if
any input register uses a clock from pin 3. This require­
ment will disappear in {uture releases of the software
packages, and the bits will be set automatically.

Pipelined Buffer
The Pipe330 example is a two-stage pipeline that

shifts parallel data from the inputs to the outputs (Fig­
ure 5). This example demonstrates the overall Cypress
PLD ToolKit source syntax and shows how macrocells
are configured.

In the Pipe330 example, the output enable for
specific macrocells is under control of either pin 14 or
the associated product term. The latter case is the
default. To control the output enable of a·· macrocell
with pin 14, add NENBPT to the list of attributes fol­
lowing. the· node assignment in the configuration section.

If NENBPT does not appear in the attribute list for
a node, the expression that follows . the construct
<OE> in the equations controls the output enable. If
<OE> . is not part of the equation, the output is per­
manently disabled. If <OE> is present, but no expres­
sion follows it, the output is permanently enabled.

The pin 1 signal always clocks the output registers
in the CY7C330. Either the pin 2 or 3 signals can clock
the input registers. Because pin 2 is the default clock,
no special attributes are required for this configuration.
If you wish to clock an input register with pin 3, the
attribute list for that node must contain ICLK= 3.

The resource planning sheet for the pipelined buff­
er appears in Table 2, and the source code appears in
Appendix A.

Test patterns for the Pipe330 example are relatively
simple, but keep in mind a few guidelines. At first, for
example, the state of the registers in the device is un­
known, and all registers are put in a known state before
any outputs are checked (non-X). Another aspect of
CY7C330 simulation is the need to consider multiple
clocks. The input and output clocks should be treated
separately, because the simultaneity of clock assertion is
not guaranteed in programmers---or in any real system,
for that matter.

UplDown Toggle Counter with Preloads
The Tog330 example shows how you can use the

CY7C330's XOR product terms to emulate aT-type
flip-flop. The statement:

Q = < XSUM> Q
< SUM> T;

programs the XOR product term with the feedback of
the register output, making the register into a T type .
The T-type register configuration is active Low because,
by architecture, all the outputs are active Low. You can

. emulate a JK-type flip-flop by using the configuration
above with the following relation:

T = J!Q + KQ

6-218

5/!cvmss CY7C330 S.r!!chronous EPLD
-=- SEMICCNDUCTOR =====================;;;;;!;=======;;;;;;

Table 3 presents the resource planning sheet for
the toggle counter example, and the source code ap­
pears in Appendix B. Figure 6 shows the block diagram
for the design.

UplDown Counter with Limits
The up/down counter example shows how you can

assign the pins for maximum use in the CY7C330. This
counter operates at 66 MHz, counting up until reaching
the value stored in the 8-bit upper-limit register, then
down until reaching the lower limit. Also included is a

device reset and a method to preload the counter to
either the upper or lower limit.

Consider an application in which the two 8-bit limit
registers are loaded from a CPU. The lower limit is on
pins 4 to 12, with a 9th bit for preload on pin 13. The
clock for this lower limit is on pin 2. The upper limit is
loaded via pins 15 - 27, with pin 27 providing 9th
preload bit. These pins are also used for reading out the
counter value, and pin 14 is the output enable for the
up/down counter.

Table 2. Resource Planning Sheet for Pipelined Buffer

CY7C330 Resources Planning Sheet

Project: Pipelined Buffer

Input

Register

Pin Function
1 State Clk
2 Clk 1 (LHS)

3 Clk 2 (RHS)

4 14

5 15

6 16

7 17

8 VSS
9 19
10 110

11 III
12 112
13 113
14 OE

15

16

17

18

19

20
21 VSS

22 vce
23
24

25

26

27

28

HI None

H2 None

H3 None

H4 None

Notes: Input Register Clock

Input

Register

Clock

1
2
2

2
2

#lispin2

#2 is pin 3

Register

Function

Q19
Q20

Q23

Q24
Q25

Q26

Q27

Q28

Output

Enable

Z
Z
Z
Z
Pterm (Eqn)

Pterm (Eqn)

Pterm (Eqn)

Pterm (Eqn)

Pin 14

Pin 14

Pin 14
Pin 14

None
None

None
None

of

PTerms

9

19

11

17

13

15

15
13

17

11
19

9
19

11

17

13

See the Application Note for the meaning of the pin names.

Output Enable = 14 means the asynchronous pin 14 direct enable.

Z means the pin is never active

6-219

'7

L.. .. · .. ·· .. ·in~ Q0 8fIo.

IT! m
iT:? Q?'

~-~;T3 03 i--~~1111-r · L i~ .. ?'
t. .. j

CLR
Figure 6. Toggle Counter Block Diagram

Four buried registers detect equality of the counter
with the limits to maintain up/down direction and to
detect the preload request as an edge-triggered signal.
By using the XOR product terms, the counter needs
only nine total products even on the most significant bit.
Without XOR, the 8th bit would need 18 product terms
because of the two preload sources. Due to the large
number of product terms per output in the CY7C330,
this counter can operate at 66 MHz.

The counter's contents can be read out when pin 14
(direct output enable) is Low. In a bus-oriented system,
a microprocessor can read the register if a decoded I/O
read signal is applied to pin 14. Note that the other
method of output enable, via the array, requires a clock
edge to load the enable input condition into the input
registers. When pin 14 is High, the upper-limit register
can be loaded-from a processor bus, for example. The
lower-limit register can be loaded at any time.

Prelo .. d L­
Prelo .. d H­
Resel--

Pin 2 Pin 3

<' """---1----Pin 1

L-_~-~~t_~-Pln 14

8

Figure 7. UPIDOWN Counter Block Diagram

Figure 8. 16X16 Crossbar Switch Block Diagram

Figure 7 shows the block diagram for this design.
The resource planning sheet appears in Table 4, and the
code is in Appendix C.

In operation, the up/down counter counts between
the limits stored in two registers. Lower-limit (LL) data
is loaded on the positive edge of the pin 2 clock. There
are 8 data bits plus 2 control bits, LPL and Reset. If
LPL is Low, only the limit compare register is changed.
If LPL is High, the LL data is loaded into the counter
on the next clock edge, and the counter counts up. The
LL data is one count higher than the actual lower limit.
If RESET is active, all internal registers are reset to 0,
so long as the reset bit is set in the LL register.

6-220

Upper-limit (UL) data is loaded on the positive
edge of the pin 3 clock. This part of the counter uses 8
data bits plus a preload control bit, UPL. If UPL is
Low, only the limit-compare register is changed. If UPL
is High, the UL data is loaded into the counter on the
next clock edge, and the counter counts down. UL data
is multiplexed with the counter output data. The UL
data is one count lower than the actual upper limit. Pin
16 is the RESET input. Pin 14 is the active-Low output
enable for the counter; the counter can be read at any
time. Pin 1 is the clock for the counter. Pins 18 and 20
are connected together for data bit 6. Pins 23 and 25
are connected together for data bit 7.

The buried (hidden) registers are used as follows:
HI is loaded with the result of the comparison between
the counter and UL. H2 is UPL or LPL, delayed by one
clock edge; H2 serves as an edge detect. H3 is loaded
with the result of the comparison between the counter
and LL. H4, when High, forces the counter to count up.

16 x 16 Crossbar Switch
A data switch capable of multiplexing 16 inputs

into four outputs can be built with one CY7C330. The
66-MHz clock rate allows even asynchronous input sig­
nals of up to 33 MHz to be switched through the ~evice.
The compact 300-mil package saves PCB space, In con­
trast to the space such a multiplexer would otherwise

need. At least 40 pins would normally be required, par­
titioned as follows:

16 input pins,
4 output pins,
4 x 4 = 16 selection inputs
4 pins for power and clock connections

No other PLD today can perform this function
using a single device, due to the logic requirement (the
number of product terms required per output) as well
as the timing requirement.

The crossbar switch uses 12 state registers plus four
input registers to act as the 4 x 4-bit selection registers.
Each output channel needs a 4-bit register to select one
of 16 input channels. A 4-stage, 4-bit-wide shift register
implemented in the device holds the select status. This
allows the 4 x 4 selection bits to be loaded via only four
pins, without needing any address pins.

When the PL (PRELOAD) signal on pin 3 is Low,
input data bits 0 to 3 become the selector data lines;
five clock pulses shift the select data through the device

Table 3. Resource Planning Sheet for Toggle Counter

CY7C330 Resources Planning Sheet
Project: 4 Bit Toggle Counter

Input

Register

Pin Function
1 State Clk

2 Clk 1

3 Clear

4

5

6

7

8 VSS

9

10

11

12

13
14

15

16

17

18

19

20

21 VSS

22 VCC

23

24

25

26

27

28

HI None

H2 None

H3 None

H4 None

Notes: Input Register Clock

Input

Register

Clock

1 is pin 2

#2 is pin 3

Register

Function

!QO

!QI

!Q2

!Q3

Output

Enable

Pterm
Pterm
Pterm
Pterm
Z
Z

Z
Z
Z
Z
Z

Z
None

None

None

None

of

PTerms

9

19

11

17

13

15

15

13

17

11

19

9

19

11

17

13

See the Application Note for the meaning of the pin names.

Output Enable = 14 means the asynchronous pin 14 direct enable.

Z means the pin is never active

6-221

into selectors 1, 2, and 3, as well as the output pins.
Setting pin 3 High after the fifth pulse loads the signals
on the output data· pins into select register O. This last
load operation utilizes· the function of pin 3 as a data
pin as well as a clock. Setting the signal on pin 3 Low
switches the internal logic from a selector into a shift
register; the clock edge created by applying a High to
pin 3 loads the data. outputs into the input registers as­
sociated with output pins 16, IS, 25, and 27.

This design buries the output registers of several
110 macrocells and uses the pin as an input by utilizing

a shared-input mux. The source file's configuration sec­
tion specifies this arrangement by first assigning the
name of the output register to the macrocell node num­
ber. Because the default configuration is for the output
register's Q output to feed back into the array, no other
configuration attributes are needed here. Next, the
input's name is assigned to the node number of the
shared .. input mux adjacent to the pin. The default for
the shared input muxes is to pass the data on the even­
numbered pin into the array. If the input should come
from an odd-numbered pin, YOll must add the attribute

Table 4. Resource Planning Sheet for UplDown Counter

CY7C330 Resources Planning Sheet
Project: UplDown Counter with Limits

Input Input
Register

Pin Function
lState Clk
2Clk 1
3Clk2
4ll.01
5ll.11
6ll.21
7ll.31
SVSS
9LIA1
1Oll.51
1lll.61
12ll.n
13PRELOAD LOW1
14COUNTER OE-
15UL12CNTlPin 14 9
16Resetl-Z19
17UL32CNT3Pin 1411
ISUL62-Z17
19UL42CNT4Pin 1413
20--CNT6Pin 1415
21VSS
22VCC
23--CNT7Pin 1415
24UL52CNT5Pin 1413
25UL72-Z17
26UL22CNT2Pin 1411
27PRELOAD HIGH2-Z19
2SUL02CNTOPin 149
H1None-Up EquaisNone19
H2None-UH Prel'DoneNone11
H3None-Down EqualsNone17
H4None-Up CountNone13

Register
Clock

Notes :Input Register Clock #1 is pin 2
#2 is pin 3

Register
Function

See the Application Note for the meaning of the pin names.

6-222

Output
Enable

of
PTerms

SRC=N (where N is the pin number) to the list of at­
tributes in parentheses following the node name. For an
example of this syntax, refer to dl0 and sa2 in the
source file.

The space advantage of the CY7C330 in this
crossbar switch application becomes especially impor­
tant as the size of the matrix increases. A 32 x 32 matrix
requires only 16 devices vs. 64 PALC22VI0s or 96 TIL
parts. You can easily load the internal data selection
registers with a Cypress 24-pin EPLD, the PLDC2OGlO,

and a FIFO. A CPU can load the 16 x 4-bit selector
information into the FIFO, and the PLDC20G 10 can
move the data from the FIFO into the device. One
PLDC2OGI0 and one 16 x 4 (or larger) FIFO is re­
quired. The Cypress CY7C403 is an ideal FIFO for this
application

Table 5 shows the resource planning sheet for the
16 X 16 crossbar switch, and a block diagram of the
design appears in Figure 8. The source code can be
found in Appendix D.

Table 5. Resource Planning Sheet for Crossbar Switch

CY7C330 Resources Planning Sheet
Project :16 X 16 Crossbar Switch

Input
Register

Pin Function
1 State Clk

2 Clk 1

3 Sel PRELOAD

4 Data 0

5 Data 1

6 Data 2

7 Data 3

VSS

Data 4

10 Data 5

11 Data 6

12 Data 7

13 Data 8

14 Data 9

15 Data 10

16 Select DO

17 Data 11

18 Select CO

19 Data 12

20

21 VSS

22 VCC

23

24 Data 13

25 Select BO

26 Data 14

27 Select AO

28 Data 15

HI None

H2 None

H3 None

H4 None

Notes: Input Register Clock

Input
Register
Clock

1

2

2

1

2
1

2

1 is pin 2

#2 is pin 3

Register
Function

Select A2

Output 3

Select Al

Output 2

Select Cl

Select Dl

Select B2

Select A2

Output 1

Select C2

Output 0

Select D2

Select A3

Select B3

Select C3

Select D3

Output
Enable

Z
Pterrn
Z
Pterrn
Z
Z

Z
Z
Pterrn
Z
Pterrn
Pterrn
None

None

None

None

of
PTerms

9

19

11

17

13

15

15

13

17

11

19

9

19

11

17

13

See the Application Note for the meaning of the pin names.

Output Enable = 14 means the asynchronous pin 14 direct enable.

Z means the pin is never active

6-223

· Reading the CY7C330 JEDEC Map
Table 6 should help you read the JEDEC map of a

CY7C330. The pin or node reference number is on the
left. These numbers correspond to the pin and node
numbers on the block diagram in Figure 1.

The column labeled Input True gives the sequential
number (left to right) of the column corresponding to

the non-inverted input to the array. If the number is
even, then the false input is the next-higher integer; if
the number is odd, then the false input is the next lower
integer.

The table lists the number of product terms in each
output stage, along with the JEDEC offset (sequential
fuse position) for each.

Table 6. The CY7C330 Internal Array Reference List

Pin or Function Input # of 1st
Node True Pterms OE XOR OR

1 State Clock

2 Input Clockl

3 Input Clock2 0
4 Input Register 2
5 Input Register 4

6 Input Register 6

7 Input Register 8

VSS

9 Input Register 10
10 Input Register 12
11 Input Register 14

12 Input Register 16
13 Input Register 18
14 Input Register 20

15 110 Regs, mux 65 9 L16236 Ll6302 Ll6368
N-35 mUll input(node) 62
16 IJO Regs, mux 61 19 L14850 Ll4916 L14982
17 IJO Regs, mux 59 11 Ll3992 Ll4058 Ll4124
N-36 mux input(node) 56
18 110 Regs, mux 55 17 Ll2738 Ll2804 Ll2870

19 IJO Regs, mux 49 13 L9636 L9702 L9768

N-37 mUll input(node) 46

20 110 Regs, mux 45 15 L8514 L8580 L8646

21 VSS

22 vce
23 IJO Regs, mux 39 15 L5280 L5346 L5412

N-38 mUll input(node) 36

24 IJO Regs, mux 35 13 L4290 L4356 L4422

25 IJO Regs, mux 33 17 L3036 L3102 L3168

N-39 mux input(node) 30

26 IJO Regs, mux 29 11 L2178 L2244 L2310

27 110 Regs, mux 27 19 L792 L858 L914

N-40 mUll input(node) 24

28 IJO Regs, mux 23 9 L66 L132 Ll98

N-29 Sync. Reset LO
N-30 Sync. Preset Ll6962

N-31 Buried Register 40 13 Ll1814 Ll1870

N-32 Buried Register 42 17 Ll0626 Ll0692

N-33 Buried Register 50 11 L7722 L7788

N-34 Buried Register 52 19 L6402 L6468

6-224

CY7C330;

CONFIGURE;

CkS (node=l),
Ckl,
Ck2,
10 (iclk=3),
11 (iclk=3),
12 (iclk=3),
I3 (iclk=3),
14 (node=9),
15,
16,
17,
OEl,
IOE2(node=14),
Q7,
Q6,
Q5,
Q4,
Q3(nenbpt),
Q2(nenbpt),
Ql(node=23,nenbpt),
QO(nenbpt),
lRST(iop),
reset(node=29),

EQUATIONS;

reset = RST;

lQO <SUfi> !IO;

lQI <SUfi> !II;

lQ2 <SUfi> !I2;

lQ3 <SUfi> !I3;

lQ4 <oe> OEI &
< sum> !I4;

lQ5 <oe> OEI &
< sum> !I5;

lQ6 <oe> OEI &
< sum> !I6;

OE2

OE2

OE2

lQ7 <oe> OEI & OE2
< sum> !I7;

Appendix A. PLD ToolKit Source Code for Pipelined ButTer

{Pipe330}

{Output register clock}
{Input register clock I}
{Input register clock 2}
{Input 0, clocked by Ck2 (pin 3)}
{Input 1, clocked by Ck2 (pin 3)}
{Input 2, clocked by Ck2 (pin 3)}
{Input 3, clocked by Ck2 (pin 3)}
{Input 4, clocked by Ckl (pin 2)}
{Input 5, clocked by Ckl (pin 2)}
{Input 6, clocked by Ckl (pin 2)}
{Input 7, clocked by Ckl (pin 2)}
{output enable for Q<7:4>}
{direct output enable for Q<7 :0> }
{Output 7, clocked by CkS, enabled by OEl&IOE2}
{Output 6, clocked by CkS, enabled by OEl&IOE2}
{Output 5, clocked by CkS, enabled by OEl&IOE2}
{Output 4, clocked by CkS, enabled by OEl&IOE2}
{Output3, clocked by CkS, enabled: pinl4}
{Output2, clocked by CkS, enabled: pinl4}
{Outputl, clk: CkS, OE: pinl4}
{OutputO, clocked by CkS, enabled: pinl4}
{low asserted reset, I/O macrocell as input}
{internal reset node}

{end of file}

6-225

CY7C330;

CONFIGURE;

CkS,
Ckl,
!elr,
!OE(node 14),
!QO(nenbpt),
!Ql(nenbpt),
!Q2(nenbpt),
!Q3(nenbpt),
reset(node=29),

EQUATIONS;

reset = Clr;

QO <XSUlll> QO
< sum> ;

Ql = <xsum> Ql
< sum> QO;

Q2 = <XSUlll> Q2
< sum> Ql & QO;

Q3 <XSUlll> Q3

Appendix B. PLD ToolKit Source Code for a Toggle Counter

{Tog330}

{Count clock, This is pinl since it is fIrst in the list.}
{Input clock, This is pin2 since it is next.}
{Low true clear, Pin3 is next in sequential order.}
{Low asserted output enable pin, pin 14}
{QO-Q3 are the counter outputs - pins 15-18.}

{The reset product term is node 29.}

{Feeding the register output back into the XOR emulates a T flop.}
{T input - No expression after the connective < sum> means always asserted}

{Feeding the register output back into the XOR emulates a T flop.}
{T input}

{Feeding the register output back into the XOR emulates a T flop.}
{T input}

< sum> Q2 & Q 1 & QO;
{Feeding the register output back into the XOR emulates a T flop.}

{T input}

{end of fIle}

6-226

Appendix C. PLD ToolKit Source Code for UplDown Counter

CY7C330;
CONFIGURE;

{File: COUNTER.CYP Date: 11/9/1988 }

CLK(node=I), LLC(node=2), ULC(node=3), {Count clock, Lower Limit Clock, Upper Limit Clock}
LLO(node= 4, iclk= 2), LL1, LL2, LL3, {The Lower Limit register is clocked by pin 2-LLC- by default.}
LL4(node= 9), LL5, LL6, LL7, {The register is located at pins 4-7, 9-12 - pin 8 is Vss.}
LPL(node=13), {Lower limit PreLoad}
ICNTOE (node=14), {Counter output enable on pin 14}
CNTO (node= 28, nenbpt, oclk= l,iclk= 3), {The counter itself is in the output register of various 1/0 macrocells}
CNTI (node=15, ,nenbpt, iclk=3), {as noted in the node numbers after the names. Pin 1 always clocks the}
CNT2 (node=26, nenbpt, iclk=3), {output registers-oclk = 1 was included once for documentation.}
CNT3 (node=17, nenbpt, iclk=3), {'nenbpt' specifies that the output enable is controlled by pin 14}
CNT4 (node=19, nenbpt, iclk=3), {rather than the output enable product terms in each macrocell}
CNT5 (node= 24, nenbpt, iclk= 3), {Most of these rnacrocells will be bidirectional, with the Upper Limit}
CNT6 (node=20, nenbpt), {register residing in the input registers. 'iclk = 3' specifies that pin 3}
CND (node=23, nenbpt), {clocks the input registers. This overrides the default, pin2.}

ULO (node=40, src=28),
ULI (node=35, src=15),
UL2 (node=39, src=26),
UL3 (node=36, src=17),
UL4 (node=37, src=19),
UL5 (node=38, src=24),
UL6 (node=18, iop,iclk=3),
UL7 (node=25, iop, iclk=3),
UPL (node=27, iop, iclk=3),
lreset (node=16, iop),
node29 (node=29),
UP (node=31),
LEQUAL (node=32),
PLDONE (node=33),
UEQUAL (node=34),

EQUATIONS;

ICNTO= < XSUM> ICNTO
< SUM> ILPL & IUPL
< SUM> IPLDONE

{The output register is fed back into array by default.}
{ULO is the input reg of pin28, routed thru shared input mux-node40}
{ULI is the input reg of pinl5, routed thru shared input mux-node35}
{UL2 is the input reg of pin26, routed thru shared input mux-node39}
{UL3 is the input reg of pinl7, routed thru shared input mux-node36}
{UL4 is the input reg of pinl9 routed thru shared input mux-node37}
{UL5 is the input reg of pin24 routed thru shared input mux-node38}
{UL6 is the input reg of pinl8, 'iop' selects array input from input reg}
{UL7 is the input reg of pin25, 'iop' selects array input from input reg}
{Upper limit PreLoad, array input from input reg, clocked by pin 3}
{Low asserted clear, array input from input reg, clocked by pin 2}
{The reset product term is node 29}
{buried node 31 selects the counter direction, clocked by pin I}
{buried node 32 compares counter with lower limit, clocked by pin I}
{buried node 33 is the preload done flag, clocked bypin I}
{buried node 34 compares counter with upper limit, clocked by pin I}

< SUM> ILLO & LPL & CNTO
< SUM> ICNTO & ULO & UPL
< SUM> LLO & LPL & ICNTO
<SUM> CNTO & /ULO & UPL;

ICNT1= < XSUM> ICNTI
< SUM> ILPL & CNTO & IUPL & IUP
< SUM> ILPL & ICNTO & IUPL & UP
< SUM> ILLI & LPL & PLDONE & CNTI
< SUM> LLI & LPL & PLDONE & ICNTI
< SUM> UPL & PLDONE & lULl & CNTI
< SUM> UPL & PLDONE & ULI & ICNTI
< SUM> CNTO & IPLDONE & IUP
<SUM> ICNTO & IPLDONE & UP;

6-227

~C'tPRE$ CY7C330 Synchronons EPLD
~ SEMlcnIDUCI'QR ;;!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;=;;

Appendix C. Source Code for Up/Down Counter (continued)

leNT2=: < XSUM> ICNT2
< SUM> ILPL & CNTO & /uPL & /uP & CNTl
< SUM> ILPL & ICNTO & /uPL & UP & ICNTl
< SUM> ILL2 & LPL & CNT2 & PLDONE
< SUM> LL2 & LPL & ICNT2 & PLDONE
< SUM> UPL & CNT2 & /uL2 & PLDONE
< SUM> UPL & ICNT2 & UL2 & PLDONE
< SUM> CNTO & IPLDONE & IUP & CNTl
<SUM> ICNTO & IPLDONE & UP & ICNTl;

ICNT3= < XSUM> ICNT3
<SUM>ILPL&CNTO&/UPL&CNT2&/UP&CNTl
<SUM>ILPL&/CNTO&IUPL&/CNT2&UP&/CNTl
< SUM> ILL3 & LPL & PLDONE & CNT3
< SUM> LL3 & LPL & PLDONE & ICNT3
< SUM> UPL & PLDONE & /uL3 & CNT3
< SUM> UPL & PLDONE & UL3 & ICNT3
<SUM>CNTO&CNT2&/PLDONE&IUP&CNTl
<SUM>/CNTO&/CNT2&IPLDONE&UP&/CNTl;

ICNT4= <XSUM> ICNT4
< SUM> ILL4 & LPL & PLDONE & CNT4
< SUM> LL4 & LPL & PLDONE & ICNT4
< SUM> UPL & PLDONE & /UL4 & CNT4
< SUM> UPL & PLDONE & UL4 & ICNT4
<SUM> ILPL' & CNTO & IUPL & CNT2 & IUP & CNT3' & CNTl
<SUM> /LPL & ICNTO & IUPL & ICNT2 & UP & ICNT3 & ICNT
< SUM> CNTO & CNT2 & IPLDONE & /uP & CNT3 & CNTl
<SUM> ICNTO & ICNT2 & IPLDONE & UP & ICNT3 & ICNTl;

ICNT5= <XSUM> ICNT5
< SUM> ILL5 & LPL & CNT5 & PLDONE
< SUM> LL5 & LPL & ICNT5 & PLDONE
<SUM> UPL & CNT5 & /UL5 & PLDONE
<SUM> UPL & ICNT5 & UL5 & PLDONE
< SUM> ILPL & CNTO & IUPL & CNT2 & CNT4 & IUP & CNT3 & CNTl
< SUM> ILPL & ICNTO & /uPL & ICNT2 & ICNT4 & UP & ICNT3 & ICNTl
< SUM> CNTO & CNT2 & IPLDONE & CNT4 & /uP & CNT3 & CNTl
< SUM> ICNTO & ICNT2 & IPLDONE & ICNT4 & UP & ICNT3 & ICNTl;

ICNT6= <XSUM> ICNT6
< SUM> ILL6 & LPL & PLDONE & CNT6
< SUM> LL6 & LPL & PLDONE & ICNT6
< SUM> UPL & PLDONE & CNT6 & /uL6
< SUM> UPL & PLDONE & ICNT6 & UL6
< SUM> ILPL&CNTO&/UPL&CNT2&CNT5&CNT4 & IUP & CNT3 & CNTl
< SUM> ILPL & ICNTO & IUPL & ICNT2 & /CNT5 & ICNT4 & UP & ICNT3 & ICNTl
< SUM> CNTO&CNT2&CNT5&/PLDONE&CNT4 & IUP & CNT3 & CNTl
< SUM> ICNTO & /CNT2 & ICNT5 & IPLDONE & ICNT4 & UP & ICNT3 & ICNTl;

6-228

Appendix C. Source Code for UplDown Counter (continued)

ICNT7 = <XSUM> ICNTI
< SUM> ILL7 & LPL & CNT7 & PLDONE
< SUM> LL 7 & LPL & ICNT7 & PLDONE
<SUM> UPL & !UL7 & CNTI & PLDONE
<SUM> UPL & UL7 & ICNTI & PLDONE
< SUM> ILPL & CNTO & IUPL & CNT2 & CNTS & CNT6 & CNT4 & IUP & CNT3 & CNTl
<SUM> ILPL & ICNTO & /UPL & ICNT2 & ICNTS & ICNT6 & ICNT4 & UP & ICNT3 & ICNTl
< SUM> CNTO & CNT2 & CNT5 & IPLDONE & CNT6 & CNT4 & IUP & CNT3 &CNTl
< SUM> ICNTO & ICNT2 & ICNT5 & IPLDONE & ICNT6 & ICNT4 & UP & ICNT3 & ICNTl;

node29 = <SUM> reset;

UP= < XSUM> UP
<SUM> lUEQUAL & IUP
<SUM> lLEQUAL & UP
< SUM> UPL & PLDONE & IUP
< SUM> LPL & PLDONE & UP;

PLDONE= < SUM> ILPL & IUPL;

LEQU AL= < SUM> LL6 & ICNT6
< SUM> ILL 7 & CNT7
< SUM> LL 7 & ICNT7
< SUM> LL3 & ICNT3
< SUM> ILLS & CNTS
< SUM> LL5 & ICNT5
< SUM> ILLl & CNTl
< SUM> LLO & ICNTO
< SUM> ILL2 & CNT2
< SUM> ILL4 & CNT4
< SUM> LL4 & ICNT4
< SUM> ILLO & CNTO
< SUM> LLl & ICNTl
< SUM> ILL6 & CNT6
< SUM> ILL3 & CNT3
< SUM> LL2 & ICNT2;

UEQU AL= < SUM> ICNT6 & UL6
< SUM> IUL 7 & CNT7
< SUM> UL7 & ICNT7
< SUM> UL3 & ICNT3
< SUM> CNT5 & IUL5
< SUM> ICNTS & ULS
< SUM> lULl & CNTl
< SUM> ICNTO & ULO
< SUM> CNT2 & IUL2
< SUM> IUL4 & CNT4
< SUM> UL4 & ICNT4
< SUM> CNTO & IULO
< SUM> ULl & ICNTl
< SUM> CNT6 & IUL6
< SUM> IUL3 & CNT3
< SUM> ICNT2 & UL2;

6-229

Appendix D. Source Code for Crossbar Switch

CY7C330;

configure;
clk (node=l), iclk, pI,
dO, dl, d.2, d3,
d4 (node =9), d5, d6, d7, d8,d9,
dlO (node=35,src=15), dll (node=36, src=17),
d12 (node=37,src=19), d13 (node=38, src=24),
d14 (node=39, src=26), d15 (node=40, src=28),
sal (node=17), sa2 (node=15), sa3 (node=34),
sbl (node=24), sb2 (node=23), sb3 (node=33),
scI (node=19), sc2 (node=26), sc3 (node=32),
sdl (node=20), sd.2 (node=28), sd3 (node=3l),
yO(node=27 ,iop,iclk= 3),
yl(node=25,iop,iclk=3),
y2(node=18,iop,iclk=3),
y3(node= l6,iop,iclk=3),

EQUATIONS;

Isal = <SUM> Ipi & Isa2
<SUM> pI & Isal;

/sa2 =<SUM> /pi & sa3
<SUM> pI & /sa2;

sa3 = <SUM> Ipi & dO
<SUM> pI & sa3;

Isbl= <SUM> /pi & /sb2
<SUM> pI & Isbl;

Ish2= < SUM> /pi & sb3
<SUM> pI & /sh2;

sb3 = <SUM> /pi & dl
<SUM> pI & sb3;

/sel= < SUM> /pi & /sc2
<SUM> pI & /scl;

Isc2 < SUM> Ipi & sc3
<SUM> pI & Isc2;

sc3 < SUM> /pi & d2
<SUM> pI & sc3;

sdl = < SUM> /pi & /sd2
<SUM> pI & Isdl;

Isd.2 < SUM> /pi & sd3
<SUM> pI & Isd.2;

sd3 < SUM> Ipi & d3
< SUM> pI & sd3;

{Input reg is saO}
{Input reg is sbO}
{Input reg is scO}
{Input reg is sdO}

6-230

ly3 =

1y2 =

Appendix D. Source Code for Crossbar Switch (continued)

< OE> IpI
<SUM> pI & Ida & Isa3 & Isb3 & Isc3 & Isd3
<SUM> pI & Idl & sa3 & Isb3 & Isc3 & Isd3
<SUM> pI & 1d2 & Isa3 & sb3 & Isc3 & Isd3
<SUM> pI & Id3 & sa3 & sb3 & Isc3 & Isd3
<SUM> pI & Id4 & Isa3 & Isb3 & sc3 & Isd3
<SUM> pI & Id5 & sa3 & Isb3 & sc3 & Isd3
<SUM> pI & Id6 & Isa3 & sb3 & sc3 & Isd3
<SUM> pI & Id7 & sa3 & sb3 & sc3 & Isd3
<SUM> pI & Id8 & Isa3 & Isb3 & Isc3 & sd3
<SUM> pI & Id9 & sa3 & Isb3 & Isc3 & sd3
<SUM> pI & Isa3 & sb3 & Isc3 & sd3 & IdlO
<SUM> pI & sa3 & sb3 & Isc3 & sd3 & Idll
< SUM> pI & Isa3 & Isb3 & Idl2 & sc3 & sd3
<SUM> pI & Idl3 & sa3 & Isb3 & sc3 & sd3
<SUM> pI & Idl4 & Isa3 & sb3 & sc3 & sd3
<SUM> pI & Idl5 & sa3 & sb3 & sc3 & sd3
<SUM> IpI & sdl;

< OE> IpI
< SUM> pI & Ida & sd2 & sc2 & sb2 & sa2
< SUM> pI & Idl & sd2 & sc2 & sb2 & Isa2
< SUM> pI & Id2 & sd2 & sc2 & Isb2 & sa2
< SUM> pI & Id3 & sd2 & sc2 & Isb2 & Isa2
< SUM> pI & Id4 & sd2 & Isc2 & sb2 & sa2
< SUM> pI & Id5 & sd2 & Isc2 & sb2 & Isa2
< SUM> pI & Id6 & sd2 & Isc2 & Isb2 & sa2
< SUM> pI & Id7 & sd2 & Isc2 & Isb2 & Isa2
< SUM> pI & Id8 & Isd2 & sc2 & sb2 & sa2
< SUM> pI & Id9 & Isd2 & sc2 & sb2 & Isa2
< SUM> pI & Isd2 & sc2 & Isb2.& IdlO & sa2
< SUM> pI & Isd2 & sc2 & Isb2 & Idll & Isa2
< SUM> pI & Isd2 & Isc2 & sb2 & Idl2 & sa2
< SUM> pI & Isd2 & Isc2 & Idl3 &sb2 & Isa2
< SUM> pI & Isd2 & Isc2 & Idl4 & Isb2 & sa2
< SUM> pI & Isd2 & Idl5 & Isc2 & Isb2 & Isa2
<SUM> IpI & scI;

Iyl = < OE> IpI
< SUM> pI & IdO & sbl & sdl & scI & sal
< SUM> pI & Idl & sbl & sdl & scI & Isal
< SUM> pI & Id2 & Isbl & sdl & scI & sal

< SUM> pI & Id3 & Isbl & sdl & scI & Isal
< SUM> pI & Id4 & sbl & sdl & Isel & sal
< SUM> pI & Id5 & sbl & sdl & Isel & Isal
< SUM> pI & Id6 & Isbl & sdl & Isel & sal
< SUM> pI & Id7 & Isbl & sdl & Isel & Isal
< SUM> pI & Id8 & sbl & Isdl & sel & sal
< SUM> pI & Id9 & sbl & Isdl & scI & Isal
< Sl!M> pI & Isbl & Isdl & scI & sal & IdlO
< SUM> pI & Isbl & Isdl & scI & Idll & Isal
< SUM> pI & sbl & Isdl & Idl2 & Iscl & sal
< SUM> pI & sbl & Id13 & Isdl & Isel & Isal
< SUM> pI & Idl4 & Isbl & Isdl & Isel & sal
< SUM> pI & Idl5 & Isbl & Isdl & Iscl & Isal
<SUM> IpI & sbl;

6-231

Appendix D. Source Code for Crossbar Switch (continued)

lyO = < OE> Ipl
< SUM> pI & IdO & lyO & Iyl & lil & ly3
< SUM> pI & Idl & yO & Iyl & lil & ly3
< SUM> pI & Id2 & lyO & yl & lil & ly3
< SUM> pI & Id3 & yO & yl & lil & ly3
< SUM> pI & /d4 & lyO & Iyl & il & ly3
< SUM> pI & IdS & yO & Iyl & il & ly3
< SUM> pI & Id6 & lyO & yl & il & /y3
< SUM> pI & Id7 & yO & yl & il & 1y3
< SUM> pI & IdS & lyO & Iyl & lil & y3
< SUM> pI & Id9 & yO & Iyl & lil & y3
< SUM> pI & lyO & yl & lil & y3 & IdlO
< SUM> pI & yO & yl & lil & IdB & y3
< SUM> pI & lyO & Iyl & Idl2 & il & y3
< SUM> pI & yO & Iyl & Idl3 & il & y3
< SUM> pI & lyO & Idl4 & yl & il & y3
< SUM> pI & IdlS & yO & yl & il & y3
<SUM> IpI & sal;

6-232

Using the Cypress CY7C330 in Closed-Loop
Servo Control

This application note examines a cornmon facet of
engineering design - control systems - and offers an
alternative to cornmon implementations. Along with an
overview of the subject, this application note explores
the tradeoffs among several implementation strategies.

Also included here is a description of a PLD-based
method that offloads the processing bandwidth require~
ments of a controlling CPU. Implemented in a Cypress
CY7C330 PLD, this method has been successfully
employed in a high-speed customer application - a
laser mirror-positioning servo.

Control System Concepts
Control system theory is applied to areas as diverse

as pneumatic controls and economic models. Analyzing
control system behavior mathematically relies heavily on
an understanding of Laplace and Z-transforms (see the
References). However, this application note deals with
the subject on a more practical level.

Control systems fall into two major categories:
open loop and closed loop. An open-loop system
generates outputs based on input conditions, but has no
feedback from the output to verify or correct the output
condition. Examples of open-loop systems include light
switches (although you could reasonably argue that the
human is the feedback loop) and self-timed, free-run­
ning traffic-control signals.

Closed-loop systems, on the other hand, provide in­
formation on system status to the controller. Examples
of closed-loop systems include the eye-brain system you

INPUT
REFERENcE

POINT

DI STURB"NCES

FEEDBACK

Figure 1. Closed·Loop Servo System

OUTPUT

6-233

are using to read this line of text, the engine thermostat
in most automobiles, and the print head of a dot-matrix
printer. The closed-loop application described later in
this application note consists of a motor-driven mirror
that can rotate 360 degrees in either direction.

Closed-loop systems use information from the en­
vironment under control to influence the output. Block
diagrams such as the one in Figure 1 typically represent
such a control system.

Control System Influences
In a closed-loop design, numerous factors influence

the system behavior. Among them are:
Input, I(t): The system input is the signal from an

external source that references the desired steady-state
behavior. In the mirror servo system, the steady-state
output is the absolute position at a given location within
a given accuracy. The input is also known as the refer­
ence or set point.

Summing function: This is the section of the control
system that determines the amount of error, E(t), cur­
rently in the system. It is the difference between the ref­
erence point and the controlled environment's present
state. In a motor servo system, E(t) is the difference be­
tween the target reference position and the motor's
present position. In an analog circuit, an operational
amplifier usually implements the summing function.

Controller. Most control systems incorporate a con­
troller that receives the error signal as an input and
generates. an output that attempts to reduce this error
to within a specific tolerance (ideally 0). The controller
has a control mode that determines how the controller
should manipulate the error signal to produce a control
signal. Cornmon control modes include proportional, in­
tegral, differential, and the combination of these three
- PID. Approximately 80 - 90 percent of industrial
control implementations use variations of the PID
method.

Controlled device: The. object of the control system
is to have a controlled device perform satisfactorily.
This is the motor, in the case of the mirror servo.

Output, Oft): This is the physical characteristic to
be controlled. In ·an automobile thermostat system, O(t)
is the engine's temperature. In the mirror servo, O(t) is
the mirror's position.

Disturbance, D(t): Any influence on the system that
negatively affects the desired output is called a distur­
bance. In an automobile, operation in bumper-to­
bumper traffic that reduces airflow through the radiator
is a disturbance to the thermostat.

This is only a partial list of the influences in a
closed-loop control system, but the factors mentioned
are the most significant for the mirror servo. (For more
complete information, consult any of the References.)

Control System Parameters
Some of the parameters used to quantize control

system behavior are:
Accuracy: the difference between ideal and actual

steady-state system behavior.
Settling time: the time required to reach steady state

after the reference point is changed or set.
Percentage overshoot: the difference between the

reference point and the maximum excursion after pass­
ing through the reference point.

Jitter. a condition that occurs when the controlling
element improperly overcompensates for an overshoot
of the reference point. The overcompensation results in
an undershoot that is . again overcompensated for and
produces overshoot. Jitter can increase the system's set­
tling time or result in unstable· oscillations that never at~
tain the reference point.

Rise time: the time required for the system's output
to increase from 10 to 90 percent of the final value.

Control System Implementations
Control system implementations vary from purely

analog to completely digital.· Many popular implementa­
tions use a hybrid of digital and analog techniques. The
approach described here uses a digital element to per­
form the summing, the control, and part of the feedback
function. This approach and the pure-analog method
are possibly the most often used.

Each approach has its own tradeoffs. Because
analog systems continuously perform the summing func­
tion (usually with an op-amp), they are immune to the
problems associated with data quantization. Thus
analog systems usually offer excellent stability.

Digital hybrids offer good senSitivity, immunity to
noise, resolution, and flexibility, along with minimized
drift. These systems are usually easier to design at a
lower cost, compared to alternatives. Microprocessors
make it relatively easy to implement the system's con­
troller and summing function on one chip.

When you use a microprocessor, you can take ad­
vantage of several algorithms for generating the control
signal. The simplest is proportional control, in which
the correction made is proportional to the error signal.
The value by which the error is scaled is the system's

proportionality constant or gain. Proportional control
offers an intuitively reasonable solution: the larger the
error, the larger the corrective signal.

Another control algorithm is integral control,
where the corrective signal is based on the error's time
integral multiplied by a weighting factor. You typically
calculate this value using a numeric approximation. In­
tegral control is usually combined with proportional
control to increase accuracy or reduce steady-state
error.

One other control algorithm, derivative control,
employs a corrective signal comprised of the error
signal's derivative over time multiplied by a weighting
factor. Again, a numeric approximation is used to calcu­
late the derivative. Combining this method with propor­
tional control contributes a stabilizing influence to the
system. However, noisy systems often omit the deriva­
tive function because it amplifies high-frequency distur­
bances.

When all three control algorithms are combined,
they constitute proportional· + integral + derivative, or
PIO control. You can verify the influences of the in­
tegral and derivative methods on PIO with analysis
based on Laplace transforms. A PIO tradeoff is that it
reduces the processor bandwidth available to perform
other tasks. PIO systems also require a fmite amount of
time to calculate the output value.

Another factor to consider in a hybrid control sys­
tem is the system's sampling/processing rate. Several
reference books indicate that the sampling rate for a
closed-loop control system should be significantly above
the minimum dictated by Shannon's sampling theorem.
Thus, rather than operating at the Nyquist frequency
(twice the highest frequency sampled), the sampling
rate would be eight to ten times the highest sampled
frequency. The reasons for this practice include an un­
certainty associated with determining the sampled
signal's highest frequency component, the possibility of
aliasing, and the decrease in system stability that can
result from a too-low sampling rate. Unfortunately, in­
creasing the sampling rate quickly consumes the avail­
able bandwidth of a microprocessor-based implementa­
tion.

6-234

Using the CY7C330 in Servo Control
The Cypress CY7C330 can help offload the

microprocessor in a high-speed servo control system.
The application described here positions a mirror to
form images with a laser beam. A previous implementa­
tion of this system used a 68000 microprocessor in the
servo loop. But as the number of tasks on the 68000
increased, the processor's ability to maintain a stable
servo system became marginal. The CY7C330-based
version maintains servo loop stability as well as freeing
processor system throughput with a minimum of addi­
tional cost and complexity.

Several features of the CY7C330 are fundamental
to understanding this design (see the CY7C330 block

ClK1

ClK2

I------~D 0

~---nCLK

o

INPUTS

TO

LOGIC

ARRAY

Figure 2. CY7C330 Dedicated Input Register

diagram in Figure 1 of "Understanding the CY7C330
Synchronous EPLD"). The dedicated input registers
(Figure2), for example, allow data to be loaded into ~e
chip with either of two data input clocks - CLKl (pm
2) or CLK2 (pin 3). You choose the input clock at pro­
gram time via an EPROM configuration fuse.

The macrocells (Figure 3) also feature input
registers, again with two clocks for data entry. The
ability to three-state the macrocell output drivers and
load data into the macrocell input register allows you to
use these macrocell input registers to hold reference
values. This is handy in applications such as up/down
counter s, where the input registers can hold the counter
upper/lower limit.

In the mirror-servo design, the macrocell input
registers store the mirror's calculated target position
and are clocked by CLK2. While actively controlling the
servo, this design uses the dedicated input registers for
loading the present mirror position from the servo loop.
In command mode, though, the dedicated input
registers hold data from the microprocessor that is used
to calculate a new target position. In either case, CLKl
loads the dedicated input registers.

Mirror Servo Fundamentals

As Figure 1 shows, the basic mechanism of control
loops is proportional feedback of the error signal. If this
loop acts as a self-contained coprocessor to the main
CPU, the CPU is only required to input the reference
point to which the mirror should be moved. Now. the
CPU no longer needs to perform the control algorithm
at a pace equal to the sampling rate. Essentially, the
processor can "set and forget" the servo coprocessor.

One way to implement this servo coprocessor is to
add another microprocessor. This would add software
and hardware (CPU, RAM, ROM, clock, 110, interrupt
control, etc.), and possibly require an in-circuit
emulator for development if a low-cost microcontroller
is used. Another possibility is to use an analog servo
controller, but the accuracy requirements preclude this
when drift is considered.

Another approach is to use several simple PLDs in
a hybrid control-loop implementation. The system block

6-235

Figure 3. CY7C330 I/O Macrocell

diagram in Figure 4 shows the general approach used.
The design employs three CY7C330s that each generate
an 8-bit accumulate for 24-bit precision. The
microprocessor provides the CY7C330s with a 24-bit
position reference target for the mirror. The CY7C330s
latch this 24-bit value into their on-board registers.

The CY7C330s perform the control loop's summing
and proportional feedback functions. The PLDs com­
pare the 24-bit desired position to the present position,
which is maintained in an external 24-bit present-posi­
tion counter. The result is the error multiplied by a
fixed unity gain. This proportional control signal is then
converted to an analog signal, which is converted to a
current level to control the positioning mirror's motor.

The motor's shaft has an optical encoder that
creates a sin-cos analog signal. When converted to digi­
tal form, this signal indicates the direction of rotation
and provides a pulse that increments or decrements the
external 24-bit present-position counter. This allows the

Figure 4. CY7C330 Servo Control Loop

loop to operate as fast as the slowest of the following
elements: the CY7C330s configured as a multistage ac­
cumulatorlsubtractor, the DI A converter, or the AID
converter. The host microprocessor is completely
decoupled from the servo loop. Should the
microprocessor halt, the servo circuitry continues to
maintain the desired reference position without inter­
vention.

Details of the Mirror Servo
Getting into the inner workings of the mirror servo

loop, the CY7C330 macrocell output registers act essen­
tially as an accumulator. Depending on the mode of
operation, the accumulator generates a value that is
either a new servo-motor target position or the propor­
tional error feedback value to the servo.

When the system starts, the macrocell input
registers wake up with an initial value of O. These
registers are dedicated to holding the motor's present
target position. At the same time, the external position
counter is set to zero. Then the microprocessor steps
the target position until the laser targets an alignment
sensor.

The following steps accomplish this sequence: First,
the outputs of the external 24-bit position counter are
placed in a three-state condition. These outputs and the
microprocessor's . outputs act as inputs to the
CY7C330's dedicated input registers. The processor
drives a step value onto the inputs, and CLKI clocks
the value into the CY7C330's dedicated input registers.
On CLK1's rising edge, this value is added to the
present value in the macrocell input registers. The

MICROPROCESSOR

POSITION
DEDICATED

I/\PUT
DATA REGISTER

LOGIC

ARRAY

PROGRAMMED
WITH

ACCUMULATOR
EQUATIONS

CLK1 C In· 0

result of this addition moves to the macrocell output
registers, and CLK2 clocks it into the same macrocell
input registers that were a source value for the add.

Thus, in this mode, the CY7C330s use the present
value on the dedicated input pins to adjust the target
position in the macrocell input registers with an ac­
cum~late cycle. This target-position update cycle is pic­
tured in Figure 5. The microprocessor always provides
data as a delta or step from the present position. The
accumulate can be either an add or subtract. Subtracts
are accomplished by providing the step data from the
microprocessor in 2's-complement form. Mter align­
ment, the position and accumulator values are reset to
zero, and the system is ready for operation.

In operation, the outputs from the microprocessor
are three-stated, and the value from the 44-bit position
counter is loaded into the the dedicated input registers.
This value is. always provided in a 2's-complement form
by inverting the position counter's outputs (1' s comple­
ment) and setting the carry in (Cin) input to one. The
position-counter value is thus subtracted from the
present-target-position value stored in the macrocell
input registers; this forms the proportional error feed­
back. value used to control the servo motor. Figure 6 il­
lustrates this servo control mode.

Note that the D/A converter does not need a 24-bit
digital value for control. In practice, the circuit uses an
8-bit DI A value biased such that the eighth bit provides
direction control (clockwise vs. counterclockwise). In
the actual design, the upper 16 bits from the two most­
significant CY7C330s are tested for rail High and Low
conditions and generate generate two offscale bits each

MACROCELL

OUTPUT so
REGISTER

0 a
ClK
AIlDER

RESULT

Q D
TARGET

POSITION MACROCELL

ClK lilPUT
REGISTER

CLK CLK2

Figure 5. Target Update Mode Operation Sequence

(1) With external position counter's output three-state, host microprocessor drives position step data.
(2) Step data (provided in 2's complement form if a subtract is desired) is loaded intO the 330 with CLKI. ..
(3) Step data is added or subtracted from present target position with logic equations to create new target pOSItion.
(4) New target position is clocked into macrocell output registers with CLK.
(5) On CLK2, the new target position is clocked into the macrocell input register.

6-236

for these conditions. The seven low-order bits, along
with the four offscale bits, are passed to a second PLO
(22VI0), which drives the output to the 01 A in the cor~
rect direction (eighth bit) and with the correct mag­
nitude. If the four offscale bits indicate that the upper
bits are all close to 0, the seven bits to the 01 A are
masked to O. Likewise, if the upper bits are mostly 1,
the DI A bits are set to 1.

The offscale bits are generated to minimize the
number of inputs required for the subsequent PLO that
feeds the DI A converter. The determination of how to
use the offscale bits for compensation in the second
PLD is specific to a given application.

The Accumulator Design
The backbone of the logic in this design is the

CY7C330-based accumulator. The logic that imple­
ments this synchronous full adder is described by an
equation for the sum and an equation for the carry of a
given bit. The equation for the sum (S) at bit position n,
with inputs A, B, and carry in (Cin) is:

Sn = (An XOR Bn XOR Cin).
The equation for the carry out is:

COUTn = (An * Bn) + (An * Cin) + (Bn * Cin)
Figure 7 shows the equations for a 4-bit

synchronous adder, whose sequence completes in four
clocks. Because the objective is to calculate a complete
24-bit sum as quickly as possible, the equation for carry
out (CO) from the adder's first bit can be substituted

COUNTER LOGIC
DEDICATED

POSITION INPUT ARRAY
DATA REGISTER

0 a PROGRAMMED
ClK WITH

0" ACCUMULATOR
EQUATIONS

ClK! eln = I

into the equation for the adder's second bit This arran­
gement allows the first two bits to be added in a single
clock cycle. Similarly, the equation for the carry out
from the second bit can be substituted into the equation
for the third sum, and so on. The resulting equations for
three bits of substitution appear in Figure8.

The CY7C330's XOR product term is useful for
reducing the number of product terms required for a
given sum bit. However, even after Boolean reduction
and utilization of the XOR product term, the fourth bit
of the adder requires 30 product terms for the sum bit
and 31 product terms for the carry out bit to generate a
4-bit result in a single clock cycle. Because a given
CY7C330 macrocell provides a maximum of 19 product
terms, the device must run the accumulate process over
multiple 3-bit stages. The addition of the first three bits
fmishes after one clock cycle, the second three bits after
two cycles, and so on. Implemented in three CY7C330s,
the complete 24-bit accumulate therefore requires nine
clock cycles. With 66-MHz devices, nine clock cycles
translates to a complete calculation cycle of 120 ns.

Appendix A lists the minimized equations for one of
the three 8-bit adder stages. The syntax used in this ex­
ample is that of the Cypress PLD ToolKit Variables BO
- B7 are the eight dedicated inputs sourced from either
the microprocessor or the 24-bit position counter.
INCLK is the CLKI pin on the CY7C330 used to clock
in the BO - B7 variables. Cin is the carry in from external
logic (set to one for subtraction when in control mode

MACROCEll
PROPORTIONAL

OUTPUT SO ERROR

REGISTER
FEEDBACK

0 a
ClK
ADDER
RESULT

Q MACROCEll
TARGET I !'-PUT

POSITION REGISTER

ClK

Figure 6. Control Mode Operation Sequence

(1) CLKI loads external 24-bit position data (in l's complement form) into CY7C330's dedicated input register.
(2) With carry in set to 1, logic equations subtract current position from t(Jfget position to form error amount.
(3) Error result is clocked into macrocell output register with CLK and is available to servo motor interface.

6-237

/* Four Bit Adder - General Case *'
Inputs: An, Bn ; Inputs to be added at Bit n

CIN ; Carry in to Adder

Outputs: Sn ; Sum out for Bit n
Cn ; Carry out from adder stage n

'* Equations to be reduced *'
so = AO XOR BO XOR CIN

CO= (AO * BO) + (AO * CIN) + (BO * CIN)

SI = Al XOR BI XOR CO

CI = (AI * BI) + (AI * CO) + (BI * CO)

S2 = A2 XOR B2 XOR CI

C2 -= (A2 * B2) + (A2 * C1) + (B2 * C1)

S3 = A3 XOR B3 XOR C2

C3 = (A3 * B3) + (A3 * C2) + (B3 * C2)

'* C3 == Carry Out of Four Bit Adder *'
Figure 7. Equations for Four-Bit Adder

on the first 8-bit adder stage) or from the previous stage
of the adder.

AO - A 7 are the sum outputs for either target up­
date or control mode. If the processor is updating the
target position by a step incremen4 AO - A7 are loaded
into the macrocell input registers with CLK2 (named
ACLK). When this new position update is being loaded,
the output drivers of the macrocells are not three-stated
with the OE pin or a product term equation. This al­
lows ACLK to load the macrocell output registers
(which have the newly calculated target position) into
the macrocell input registers (which are used to hold
the target position).

C2 and C5 are internal carry-out bits generated
from the ftrst and second 3-bit adder stages, respective­
ly. Finally, COUT is the carry out generated as either
the final carry out or as the input to the next 8-bit adder
stage's carry in.

Appendix B shows the implementation of the two
upper CY7C330 stages. The equations for the ac­
cumulator function are the same as in the previous
equations. The additions here are the equations for
detecting rail conditions and generating the offscale

bits.
Note that the intent here has been to focus on a

different approach to implementing a closed-loop servo

/* Synchronous 3 bit adder - derivative of General Case *' '* Uses substitution of Carry Out in ftrst 3 bits to generate 3 bit
result in one clock cycle *'
SO = AO XOR BO XOR CIN

, * CO= (AO * BO) + (AO * CIN) + (BO * CIN) *'

Sl = Al XOR B1 XOR [(AO * BO) + (AO * CIN) + (BO * CIN)]

'* C1 = (AI * B1)
+ (AI * [(AO * BO) + (AO * CIN) + (BO * CIN)])

+ (B1 * [(AO * BO) + (AO * CIN) + (BO * CIN)]) *'

S2 = A2 XOR B2 XOR

{(AI * BI)

+ (AI * [(AO * BO) + (AO * CIN) + (BO * CIN)])

+ (BI * [(AO * BO) + (AO * CIN) + (BO * CIN)])}

C2 = (A2 * B2)

+ (A2*

{(AI * B1)

+ (AI * [(AO * BO) + (AO * CIN) + (BO * CIN)])

+ (B1 * [(AO * BO) + (AO * CIN) + (BO * CIN)])})

+ (B2 *
{(AI * B1)

+ (AI * [(AO • BO) + (AO * CIN) + (BO * CIN)])
+ (BI * [(AO * BO) + (AO * CIN) + (BO * CIN)])}

Figure 8. Equations for a Synchronous 3-Bit Adder

controller, with the CY7C330 as the central element,
and to disclose the details unique to the CY7C330.
Many hardware implementation details are left to the
designer, including the D/A design, feedback design,
and the lead/lag compensation.

References
Houpis & Lamont, Digital Control Systems - Theory,

Hardware, Software (New York: McGraw-Hill, 1985)
Ball & Prat4 Engineering Applications of Microcom­

puters (Prentice Hall Int'l (UK) Ltd, 1986)

6-238

Kuo, Digital Control Systems (New York: Holt,
Rinehart, & Winston, Inc., 1980)

Gayakwad & Sokoloff, Analog and Digital Control
Systems (Prentice Hall, 1988)

Bollinger & Duffie, Computer Control of Machines
&Processes (New York: Addison - Wesley, 1988)

For more information on implementing the
CY7C330-based, 24-bit up/down position counter men­
tioned in this application note, consult the application
note, "66-MHz CY7C330 Synchronous State Machine."

Appendix A. PLD ToolKit Code for an 8-Bit Accumulator

{Mark Aaldering - Cypress Semiconductor - 8-bit accumulator - June 14, 1989}

CY7C330;

CONFIGURE;

Outclk(node=I),
Inclk(node=2),
Aclk(node=3),
CIN(node=4),
BO(node=5),
Bl(node=6),
B2(node= 7),
B3(node=9),
B4(node=10),
B5(node=11),
B6(node= 12),
B7(node=13),
oe(node=14),

{ Dedicated input registers. Default configuration is use of pin 2 for clock}

{Output nodes assigned to maximize available product term utilization. In the following declarations, the 7C330's
macrocell outputs are configured as follows:

ireg--This sets the macrocell feedback MUX for feedback from the macrocell input register instead of the
(default) macrocell output register (rgd)

iclk=3--This selects the clock on pin 3 instead of the default (used for the inputs above) of clock on pin 2 for the
macrocell input register

IOP--Same as ireg.

nenbpt--Selects OE control from pin 14 instead of a product term}

AO(node=28,iop,iclk=3,ireg,nenbpt),
Al (node= 15,iop,iclk=3,ireg,nenbpt),
A2(node=20,iop,iclk=3,ireg,nenbpt),
A3(node=17,iop,iclk=3,ireg,nenbpt),
A4(node=26,IOP,iclk=3,ireg,nenbpt),
A5(node=23,IOP,iclk=3,ireg,nenbpt),
A6(node= 19 ,IOP,iclk=3,ireg,nenbpt),
A 7 (node=24,IOP ,iclk=3,ireg,nenbpt),
COUT(node= 18,nenbpt),
C2(node= 32),
C5(node= 34),

{ Available nodes # P.T.'s}
{ I/O macrocell - 16 - 19 }
{ I/O macrocell - 25 - 17 }
{ I/O macrocell - 27 - 19 }
{ hidden macrocell - 31 - 13 }
{ hidden macrocell - 33 - 11 }

{End of configuration section}

{ Sum 0 / Accum. Feedback Register 0 }
{ Sum 1 / Accum. Feedback Register 1 }
{ Sum 2 / Accum. Feedback Register 2 }
{ Sum 3 / Accum. Feedback Register 3 }
{ Sum 4 / Accum. Feedback Register 4 }
{ Sum 5 / Accum~ Feedback Register 5 }
{ Sum 6 / Accum. Feedback Register 6 }
{ Sum 7 / Accum. Feedback Register 7 }

{Carry out }
{ Carry 2 - Hidden }
{ Carry 5 - Hidden}

6-239

Appendix A PLD ToolKit Code for an 8-Bit Accumulator (continued)

{Logic equation section}

EQUATIONS;

{AO: 2 product terms, pin 28: 9 P.T. Available}

lAO < XSUM> CIN
< SUM> lAO * IBO

+ AO* BO;

{AI: 6 product terms, pin 15: 9 P.T. Available}

IAI < XSUM> IAt
< SUM> Bl * IBO * ICIN

+ IBI * BO * CIN
+ IB 1 * AO * CIN
+ IBI * AO * BO
+ B 1 * lAO * ICIN
+ B 1 * lAO * BO;

{A2: 14 product terms, pin 20: 15 P.T. Available}

IA2 < XSUM> IA2
< SUM> B2*/AI */BI

+ IB2 * B 1 * BO * CIN
+ IB2 * Al * BO * CIN
+ fB2* Bl* AO* CIN
+ IB2 * Al * AO * CIN
+ IB2 * B 1 * AO * BO
+ IB2 * At * AO * BO

+ B2 * IBI * IBO * ICIN
+ B2 * IAt * IBO * ICIN
+ IB2* Al* Bl
+ B2 * IBI * lAO * fCIN
+ B2 * fAI * lAO * fCIN
+ B2 * fB 1 * lAO * IBO
+ B2 * fAI * fAO * fBO;

{C2: 15 product terms, virtual pin 32: 17 P.T. Available}

C2 < SUM> B2 * B 1 * BO * CIN
+ A2 * Bl * BO * CIN
+ B2 * Al * BO * CIN
+ A2 * Al * BO * CIN
+ B2 * B 1 * AO * CIN
+ A2 * B 1 * AO * CIN
+ B2 * Al * AO * CIN
+ A2 * Al * AO * CIN
+ B2 * B 1 * AO * BO
+ A2 * B 1 * AO * BO
+ B2'" Al * AO * BO
+ A2 * Al * AO * BO
+ B2 * Al * Bl
+ A2 * Al * Bl
+ A2 * B2;

6-240

Appendix A PLD ToolKit Code for an 8-Bit Accumulator (continued)

{A3: 2 product terms, pin 17: 11 P.T. Available}

IA3 = < XSUM> C2
< SUM> IA3 * IB3

+ A3 * B3;

{A4: 6 product terms, pin 26: 11 P.T. Available}

IA4 = < XSUM> IA4
< SUM> B4 * IB3 * IC2

+ IB4 * B3 * C2
+ IB4 * A3 * C2
+ IB4 * A3 * B3
+ B4 * I A3 * IC2
+ B4 * I A3 * B3;

{A5: 14 product terms, pin 23: 15 P.T. Available}

IA5 = < XSUM> IA5
< SUM> B5 * IA4 * IB4

+ IB5 * B4 * B3 * C2
+ IB5 * A4 * B3 * C2
+ IB5 * B4 * A3 * C2
+ IB5 * A4 * A3 * C2
+ IB5 * B4 * A3 * B3
+ IB5 * A4 * A3 * B3
+ B5 * IB4 * IB3 * IC2
+ B5 * IA4 * IB3 * IC2
+ IB5 * A4 * B4
+ B5 * IB4 * I A3 * IC2
+ B5 * IA4 * IA3 * IC2
+ B5 * IB4 * IA3 * IB3
+ B5 * I A4 * I A3 * IB3;

{C5: 15 product terms, virtual pin 34: 19 P.T. Available}

C5= < SUM> B5 * B4 * B3 * C2
+ A5 * B4 * B3 * C2
+ B5 * A4 * B3 * C2
+ A5 * A4 * B3 * C2
+ B5 * B4 * A3 * C2
+ A5 * B4 * A3 * C2
+ B5 * A4 * A3 * C2
+ A5 * A4 * A3 * C2
+ B5 * B4 * A3 * B3
+ A5 * B4 * A3 * B3
+ B5 * A4 * A3 * B3
+ A5 * A4 * A3 * B3
+ B5 * A4 * B4
+ A5 * A4 * B4
+ A5 * B5;

6-241

Appendix A. PLD ToolKit Code for an 8·Bit Accumulator (continued)

{A6: 2 product terms, pin 19: 13 P.T. Available}

IA6 = < XSUM> CS
< SUM> IA6 * IB6

+ A6* B6;

{A7: 6 product terms, pin 24: 13 P.T. Available}

IA7 = < XSUM> IA7
< SUM> B7 * IB6 * ICS

+ IB7 * B6 * C5
+ IB7 * A6 * CS
+ IB7 * A6 * B6
+ B7 * I A6 * ICS
+ B7 * I A6 * B6;

{COUT: 7 product terms, pin 18: 17 P.T. Available}

ICOUT = < SUM> IB7 * IB6 * ICS
+ I A 7 * IB6 * ICS
+ IB7 * I A6 * ICS
+ I A 7 * I A6 * IC5
+ IB7 * I A6 * IB6
+ I A 7 * I A6 * IB6
+ IA7 * IB7;

{End of file.}

6-242

Appendix B. PLD ToolKit Code for an Accumulator with Rail Condition

{Mark Aaldering - Cypress Semiconductor - 8-bit accumulator with rail condition outputs - June 14, 1989}

CY7C330;

CONFIGURE;

Outclk(node=I),
Inclk(node=2),
Aclk(node=3),
Cin(node=4),
BO(node=5),
Bl(node=6),
B2(node= 7),
B3(node=9),
B4(node= 10),
B5(node=11),
B6(node=12),
B7 (node= 13),
oe(node=14),

{ Dedicated input registers. Default configuration is use of pin 2 for clock }

{Output nodes assigned to maximize available product term utilization. In the following declarations, the 330's
macrocell outputs are configured as follows:

ireg--This sets the macrocell feedback MUX for feedback from the macrocell input register instead of the
(default) macrocell output register (rgd)

iclk=3--This selects the clock on pin 3 instead of the default (used for the inputs above) of clock on pin 2 for the
macrocell input register

IOP--Same as ireg.

nenbpt--Selects OE control from pin 14 instead of a product term }

AO(node=28,iop,iclk=3,ireg,nenbpt),
Al (node= 15,iop,iclk=3,ireg,nenbpt),
A2(node=20,iop,iclk=3,ireg,nenbpt),
A3(node=17 ,iop,iclk=3,ireg,nenbpt),
A4(node=26,iop,iclk=3,ireg,nenbpt),
A5(node=23,iop,iclk=3,ireg,nenbpt),
A6(node=19,iop,iclk=3,ireg,nenbpt),
A 7 (node=24,iop,iclk=3,ireg,nenbpt),
COUT(node= 18,nenbpt),
C2(node= 32),
C5(node= 34),
RO(node= 16,nenbpt),
R l(node= 25,nenbpt),

{ Available nodes # P.T.'s}
{ I/O macrocell - 27 - 19 }
{ Hidden macrocell- 31 - 13 }
{ Hidden macrocell - 33 - 11 }

{End of configuration section}

{ Sum 0 I Accum. Feedback Register 0 }
{ Sum 1 I ACCUID. Feedback Register 1 }
{ Sum 2 I ACCUID. Feedback Register 2 }
{ Sum 3 I ACCUID. Feedback Register 3 }
{ Sum 4 I Accum. Feedback Register 4 }
{ Sum 5 I ACCUID. Feedback Register 5 }
{ Sum 6 I ACCUID. Feedback Register 6 }
{ Sum 7 I ACCUID. Feedback Register 7 }
{Carry Out}

{ Carry 2 - Hidden }
{ Carry 5 - Hidden}

{Rail Bit O}
{ Rail bit 1 }

6-243

~~ -;~~~~~~~~~~C~Y7~C~3~3~O~:~C~lo~s~ed~.~L~o~o~p~S~e~rv~o~C~on~t~r=ol -==l!Ir SEMICOIDUCTOR_

Appendix B. PLD ToolKit Code for an Accumulator with Rail Condition (continued)

{Logic equation section}
EQUATIONS;

{AO: 2 product terms, pin 28: 9 P.T. Available}

I AD = < XSUM> CIN
< SUM> lAO * IBO

+ AO * BO;

{AI: 6 product terms, pin 15: 9 P.T. Available}

IAI = < XSUM> IAI
< SUM> Bl * IBO * ICIN

+ IB 1 * BO * CIN
+ IBl* AO* CIN
+ IBI * AO * BO
+ B 1 * lAO * ICIN
+ B 1 * lAO * BO;

{A2: 14 product terms, pin 20: 15 P.T. Available}

IA2 = < XSUM> IA2
< SUM> B2 * IAI * IBI

+ IB2 * B 1 * BO * CIN
+ IB2 * Al * BO * CIN
+ IB2 * Bl * AO * CIN
+ IB2 * Al * AO * CIN
+ IB2 * Bl * AO * BO
+ IB2 * Al * AO * BO
+ B2 * IB 1 * IBO * ICIN
+ B2 * IAI * IBO * ICIN
+ IB2* Al* Bl
+ B2*/BI * lAO */CIN
+ B2 * IAI * lAO * ICIN
+ B2*/Bl*/AO*/BO
+ B2*/Al*/AO*/BO;

{C2: 15 product terms, virtual pin 32: 17 P.T. Available}

C2= < SUM> B2 * B 1 * BO * CIN
+ A2 * B 1 * BO * CIN
+ B2 * Al * BO * CIN
+ A2 * Al * BO * CIN
+ B2 * B 1 * AO * CIN
+ A2 * Bl * AO * CIN
+ B2 * Al * AO * CIN
+ A2 * Al * AO * CIN
+ B2 * B 1 * AO * BO
+ A2 * Bl * AO * BO
+ B2 * Al * AO * BO
+ A2 * Al * AO * BO
+ B2 * Al * Bl
+ A2 * Al * Bl
+ A2 * B2;

6-244

Appendix B. PLD ToolKit Code for an Accumulator with Rail Condition (continued)

{A3: 2 product terms, pin 17: 11 P.T. Available}

IA3 = < XSUM> C2
< SUM> IA3 * IB3

+ A3 * B3;

{A4: 6 product terms, pin 26: 11 P.T. Available}

I A4 <XSUM> I A4
< SUM> B4 * IB3 * IC2

+ IB4 * B3 * C2
+ IB4 * A3 * C2
+ IB4 * A3 * B3
+ B4 * I A3 * IC2
+ B4 * I A3 * B3;

{AS: 14 product terms, pin 23: lS P.T. Available}

IA5 = < XSUM> IA5
< SUM> BS*IA4*/B4

+ IB5 * B4 * B3 * C2
+ IB5 * A4 * B3 * C2
+ IB5 * B4 * A3 * C2
+ IB5 * A4 * A3 * C2
+ IBS * B4 * A3 * B3
+ IB5 * A4 * A3 * B3
+ B5 * IB4 * IB3 * IC2
+ B5 * I A4 * IB3 * IC2
+ IBS * A4 * B4
+ BS * IB4 * IA3 * IC2
+ BS * IA4 * IA3 * IC2
+ B5 * IB4 * I A3 * IB3
+ B5 * IA4 * IA3 * IB3;

{CS: lS product terms, virtual pin 34: 19 P.T. Available}

C5 = < SUM> BS * B4 * B3 * C2
+ A5 * B4 * B3 * C2
+ B5 * A4 * B3 * C2
+ AS * A4 * B3 * C2
+ BS * B4 * A3 * C2
+ AS * B4 * A3 * C2
+ B5 * A4 * A3 * C2
+ A5 * A4 * A3 * C2
+ BS * B4 * A3 * B3
+ AS * B4 * A3 * B3
+ B5 * A4 * A3 * B3
+ AS * A4 * A3 * B3
+ B5 * A4 * B4
+ A5 * A4 * B4
+ A5 * B5;

6-245

5y.:~ .;;;;;;;;;;;=========;;;;;C;;;;;Y7=C;;;;;3;;;;;3;;;;;O;;;;;:=C;;;;;lo;;;;;;s;;;;;;ed;;;;;;-;;;;;;L;;;;;;o;;;;;o!;;;p;;;;;;S;;;;;;e;;;;;;rv;;;;;o;;;;;;C=oD;;;;;;t;;;;;;;r=ol

Appendix B. PLD ToolKit Code for an Accumulator with Rail Condition (continued)

{A6: 2 product terms, pin 19: 13 P.T. Available}

IA6 = < XSUM> C5
< SUM> IA6 * IB6

+ A6 * B6;

{A7: 6 product terms, pin 24: 13 P.T. Available}

IA7 = < XSUM> IA7
< SUM> B7 * IB6 * IC5

+ IB7 * B6 * C5
+ IB7 * A6 * C5
+ IB7 * A6 * B6
+ B7 * I A6 * IC5
+ B7 * I A6 * B6;

{COUT: 7 product terms, pin 18: 17 P.T. Available}

ICOUT = < SUM> IB7 * IB6 * IC5
+ I A 7 * IB6 * IC5
+ IB7 * I A6 * IC5

+ I A 7 * I A6 * IC5
+ IB7 * I A6 * IB6

+ I A 7 * I A6 * IB6
+ IA7 * IB7;

{RO: rail bit 0; Arbitrarily equation chosen to detect when upper 5 bits are all 1 - this decision is a matter of
preference output active low}

IRO = < SUM> A 7 * A6 * A5 * A4 * A3;

{ R1: rail bit 1; Again, arbitrarily chosen to reflect value of carry out, therefore this is a redundant output - active 10\
output}

IRI = < SUM> COUT;

{End of me}

6-246

~4 ;;;;;; .= CYPRESS
, SEMICONDUCTOR

FDDI Physical Connection Management
Using the CY7C330

This application note shows how you can use the
Cypress CY7C330 programmable logic device (PLD) to
implement the Physical Connection Management
(PCM) state machine specified in the Station Manage­
ment (SMT) of the Fiber Distributed Data Interface
(FDDI) standard. Along with a brief overview of the
FDDI standard, this application note explains the
CY7C330's features, the design methodology used in
this design, and an example of how you can synthesize a
complex function into this device. Note, however, that
this is not meant to be an in-depth tutorial of the FDDI
standard and its various layers.

FDDIOverview
FDDI is a lOO-Mbits/s dual token ring network that

can connect as many as 500 nodes with a maximum link­
to-link distance of 2 km and a total network circum­
ference of about 100 km. The network employs a
primary and a secondary ring. The primary ring handles
data transmission, and the secondary ring mainly
provides fault tolerance, but can be used for data trans­
mission as well.

FDDI is a token ring network, in which rotating a
token grants network access. The node with the token
can transmit data. This arrangement ensures a deter­
ministic, collision-free network, independent of the
number of stations in the network.

Because of the dual-ring topology, FDDI defines a
fault-recovery mechanism. If a fault is detected, such as
a broken fiber-optic cable, the network can be restored
by routing around the break with the second ring. This
function is largely controlled by the state machine
shown later, which is implemented with the CY7C330.

The ANSI X3T9.5 standards committee controls
the FDDI standard, which was developed using the
Open Systems Interconnection (OSI) model; FDDI im­
plements the model's physical and data-link layers. The
four FDDI layers are Physical Media Dependent
(PMD), Physical (PRY), Media Access Control
(MAC), and Station Management (SMT).

The state machine example described later in this
application note was developed with the December 2,

1988 update of the SMT specification. The final FDDI
specification might differ slightly, but the design
methodology remains the same.

The PMD layer is the lowest and specifies the
network's connectors, transceivers, and bypass switches.
The PRY layer specifies the type of encoding used on
the data (4B/5B) and specifies a set of line states. These
line states implement a handshake mechanism between
PRYs of adjacent nodes. The MAC layer performs
higher-level, peer-to-peer communications. It also
provides for system timer support, packet framing, and
responses to various types of errors in the network. The
SMT layer controls the activities of the MAC, PHY,
and PMD. SMT includes functions such as connection
management (CMT), fault detection, and ring recon­
figuration.

The CMT is the portion of Station Management
that controls the insertion, removal and logical connec­
tion of the PRY entities. Within the CMT is an area
known as the Physical Connection Management (PCM).
A chart showing a hierarchical view of the location of

I SMT I I CMTII PCM

I MAC I
I PHY I
I PMD I

Figure 1. FDDI Hierarchy

6-247

~

==-~~~~~~~~~~~~~~~~~~~~F~D~D~I~U~S~in~g~th~e~C~Y7~·~C~3~30

the PCM appears in Figure 1. The PCM provides the
signals to perform the following functions:

Initialize a connection
Reject a marginal connection
Support maintenance
Figure 2 shows the synthesized state machine that

performs these activities. This state machine is based on
version 9.1 of the PCM state machine described in the
SMT specification.

To keep within the CY7C330's 25 I/O constraint, a
small amount of logic is implemented outside the
CY7C330. For instance, the PCM uses two timers. The
CY7C330 does not include these timers,but two
decoded signals (timerl and timer2) indicate that the
timer has reached specific values. The timerl and
tirner2 signals are inputs to the CY7C330. The chart in
Figure 3 shows all the macrofunctions, how they are
decoded, and their functions.

Introduction to the CY7C330
The CY7C330 is a synchronous, 28-pin PLD. It is

packaged in a 300-mil DIP as well as several types of
surface mount packages, including a leadless ceramic
chip carrier (LCC) and a plastic leaded chip carrier

~~.---.. (QU +HLS+YLS) -Till E1

QLS+(IIU*TIIIU)

hall

QLS+HLS+TIIIEI+II0ISE

(PLCC). The device is fabricated with the Cypress 0.8-
micron CMOS process and is available in speeds of 33,
50, and 66 MHz. The CY7C330 is also available as a
military device in speeds of 33, 40, and 50 MHz. The
device is optimized to implement high-speed state
machine designs.

The CY7C330's features can be generalized into
four groups:

1. Dedicated input cell
2. Product term array
3. I/O macrocell
4. Hidden state-register macrocell
The CY7C330 contains 11 of the dedicated input

macrocells. This cell (Figure 4) contains a D flip-flop
and a programmable multiplexer (mux) that allows a
choice of two iriput clocks. The two input clocks are
CKI and CK2, which come directly from pins 2 and 3 of
the device, respectively. Note that you cannot bypass
any of the CY7C330's registers. The device is purely
synchronous in nature.

As with any PLD, the CY7C330's product term
array (see the CY7C330 block diagram in Figure 1 of
"Understanding the CY7C330") synthesizes the logical
connections of the design. The product terms control a

H LS

QLS+HLS+IO ISE

Figure 2. PCM State Machine

6-248

MACRD NAME

MLS

ILS

HLS

QLS

pc_start

pCJeject

scjoin

pcstop

pcmaint

time 1

time2

SYNTHESIZED

!MLS

!ILS

!HLS

!QLS

!pcO & !pel

!pcO & pcl

pcO & !pcl

!pc_stop

!pc_maint

!timerl

!timer2

SIGNAL FUNCTION
Master Line State

Idle Line State

Halt Line State

Quiet Line State

State PCM State Machine

Enter Reject State

Incorporate connection into token path

PCM state machine to enter OFF state

Enter maintenance state

See timer explanations below.

See timer explanations below.

n_neCL1O

n_~7

!nO & !nl

!nO & nl

Counter indicating 10 bits of data have not been received or transmitted

Counter indicating 7 bits have been transmitted or received

n_~9 nO & !nl Counter indicating 9 bits have been transmitted or received

n_~lO nO & nl Counter indicating 10 bits have been transmitted or received

noise

vaIn

vaI8

vaI9

Timer 1

Oms
0.2ms

480ns

15 us

25 ms
200ms

Timer 2:

100ms

!noise _count

Val_n

!VaI 8

!VaI_9

Noise counter threshold

Transmitted value n

Transmitted or Received value = 8
Transmitted or Received value = 9

TIMER VALUES

TB_Min

A Max

LS Min

LS_Max

I_Max

T_next(9)

TOut

Minimum break time for link.

Maximum time required to achieve signal aquisition.

Length of time reception of ILS

Max time required for line state recognition

Max optical bypass insertionldeinsertion time

Default time for MAC loopback

Signalling Timeout

Figure 3. Macro Definitions

global reset, a global preset, an Exclusive-OR gate, the
output enables, and the product terms that go to the D
input of the flip-flops in the output macrocells. (Most of
these features are covered ·later in the explanation of
the macrocell.) The device offers product term distribu­
tion that varies between nine and 19, depending on
which output macrocell is being addressed. The 19
product terms become the limiting factor in the com­
plexity of the design.

register, which can clock data from the I/O pin into the
array. This flip-flop can be clocked from CKI or CK2,
as with the dedicated input cell.

The I/O macrocell (see Figure] in "Using ABEL to
program the CY7C330") contains two D flip-flops. One
of the D flip-flops clocks data from the array to either
the output pin or back to the array and is intended to
be a state register. The I/O macrocell has a different
clock than the input registers, called CLK, which comes
directly from pin 1. The other D flip-flop is an input

6-249

FROM

INPUT PIli TO

INPUT BUFFER

CLK2 FROM PIN 3

CLKl FROM Pili 2

Figure 4. Input Macrocell

As mentioned earlier, the product term array feeds
an XOR gate, which in turn feeds the D input of the
state register. This gives you quite a bit of design
flexibility. For example, you can use the XOR as an in­
verter by setting the XOR product term to a One. You
can use the XOR to make the flip-flop a D, T, or JK
type. Wrapping the Q output back to the XOR input
changes the flip-flop from D to T, for instance. The
design example described later uses this feature.

The output macrocell also allows you to choose the
output-enable control for the pin. The output enable
can come from a product term or directly from pin 14.
The CY7C330 provides 12 I/O macrocells.

The hidden-state macrocell (Figure 5) contains a
state register with no output pin associated with it. The
CY7C330 contains four hidden-state macrocells. You
can use these macrocel1s to synthesize a small 4-bit in­
ternal state machine or perform any function that is re­
quired only internally to the device itself.

The timing required for this design is 12.5 MHz,
which allows use of the slowest CY7C330 version (33
MHz). The design requires one clock, although two
pins are dedicated for clocks in the CY7C330. In this
design, pins 1 and 2 are tied together extemally,con­
neeting the input-register and state-register clocks
together. In the ABEL source code described below,
the labels for the two clocks are CKS and CKI.

Design Methodology
The PCM design is implemented using the state

machine syntax in ABEL version 3.0. The first-pass
ABEL source code appears in Appendix A. Note that
the state machine requires 31 states. This means that
the state machine is implemented with 5 bits, which
gives 32 total states and leaves one illegal state. When
the design is run at reduction level 4 - the maximum
reduction in ABEL - the software responds that the
design requires more than 30 product terms per output.
This is far more than the 19 product terms that are pos­
sible on anyone output.

I 0 'L-II:...LJU1.IlL-..4'r---.
SUM)-+-+-++-+-+--1

SS

OE (FIlOM PIlI 14)
ClKO

ClKl
elK!

SR

Figure 5. The CY7C330 Buried Register

Case 1.
Decimal Binary
6 000110
9 001001

(4 bits toggle)
Case 2.

6 000110
7 000111

(1 bit toggles)

Figure 6. State Change Comparison

At first glance, you might assume that the design is
far too complex for the CY7C330. But further proce­
dures make this implementation possible. To under­
stand these procedures, it is necessary to understand
some facts about ABEL.

ABEL reduces a design to a sum of products and
does not make use of the XOR gate in the macrocell.
To use the XOR gate, you must specify it in Boolean
equation form and run the reduction at level O. Specify­
ing T flip-flops in version 3.0 also causes ABEL to
reduce to a sum of products and not create T flip-flops
using the XOR gate. ABEL 3.1 accepts T flip-flops,
however, and corrects this situation.

Product Term Squeezing
The first method for reducing the number of

product terms is to increase the number of bits in the
state machine from 5 to 6 bits. Although the. state
machine only requires 31 states, a much broader range
of choice results from having 64 possibilities for placing
the states.

The next procedure involves changing from D flip­
flops to T flip-flops. T flip-flops are more effIcient be­
cause when the T input is High, the flip-flop toggles.
Otherwise, the flip-flop retains its previous state.

Because a T flip-flop only needs one product term
for a transition to occur, the state machine can be op­
timized by choosing state transitions that use a mini­
mum number of bits. For example, a transition between
states 6 and 9 requires more bits to change than a tran­
sition between states 6 and 7 (Figure 6).

6-250

The 6-to-9 transition requires four product terms,
while the 6-t0-7 transition requires only one product
term. Because the number of total states has been in­
creased from 32 to 64 by adding one more bit to the
state machine, you gain much more flexibility in choos­
ing states. Carefully choosing the states in a state
machine is the easiest way to reduce the number of
product terms required.

Another way to make the design implementation
more effIcient is to use the CY7C330's synchronous
global reset and preset to deal with illegal states. (Ini­
tially, the state machine is in state 0 because the
CY7C330 has a power-on reset) It is good design prac­
tice to make provisions for illegal states. Although an

illegal state should never occur, the state machine
should be able to recover from such a state. Many times
the recovery mechanism is built into the state machine
itself, which requires more product terms.

If an illegal state is detected in this design, the state
machine re-initializes itself and goes to state O. Instead
of building this requirement into the design, you can use
a hidden register to detect the occurrence of illegal
states. The signal from that register controls the
CY7C330's synchronous reset, which returns the state
machine to state O. The CY7C330's synchronous nature
causes the state machine to go to state 0 two clocks
after the illegal state is encountered. One clock is re­
quired to detect the illegal state, and one clock is re­
quired to reset the device. This requirement is accept­
able for this application.

In this design, it was noticed that the condition
pcmaint was encountered in every state; the state
machine was unconditionally required to go to this
state. To reduce the state machine further, the state as­
signed to this condition is 63 (111111 binary). The
synchronous preset is used to detect this signal. The
assertion of pcmaint forces the state machine to state
63, thus avoiding the use of any product terms in the
main body of the design.

This design requires several synchronous resets: an
external pin (RST), the illegal state detect, and the sig­
nal pc _stop. Because only one product term is allowed
for the device's synchronous reset, the other two resets
must be developed by ANDing the reset signal with
every product term associated with the outputs that are
to be reset. This performs the same function as having
multiple p terms for the synchronous reset but does not
utilize any additional resources in the CY7C330.

Keep in mind that the CY7C330 has varied product
term distribution. The state registers associated with
pins 16 and 27 have 19 product terms. Put the state out­
puts that require the most product terms to these pins.
In this example, QO requires 18 product terms, and Q5
requires 17. These outputs are assigned to pins 27 and
16. The remaining outputs are placed in the same
manner.

Converting the state machine to Boolean equations
is a straightforward procedure. By examining the state
transitions, you can extract the Boolean equations. The
reduced design is shown in Figure7.

6-251

State !S48: if (HLS) then !S52
else if (QLS # time2) then !S32
else !S48;

48 = 110000 (binary)
52 = 110100

Q2 is the only bit that transitions

Therefore, a product term of:

Q5 & Q4 & !Q3 & !Q2 & !Q1 & !QO & HLS
\ /

state 48

would be added to the equation for Q2.

To continue the example:

48 = 110000
32 = 100000

Q4 is the only bit that transitions

Therefore, the product terms of:

Q5 & Q4 & !Q3 & !Q2 & !Q1 & !QO & QLS
Q5 & Q4 & !Q3 & !Q2 & lQl & lQO & time2

\ /
state 48

would be added to the equation for Q4.

Figure 7. Boolean Equation Extraction Example

The Cypress PLD ToolKit· is used as the develop­
ment platform for the reduction process. The PLD
ToolKit is a low-cost software development system for
all Cypress PLDs. Although the reduced equations
could have been obtained using ABEL, in many ways
the PLD ToolKit is easier to use and more tailored to
the Cypress devices. The PLD ToolKit source file ap­
pears in Appendix B. The PLD ToolKit also features a
mouse-driven, interactive, simulator/waveform editor
that makes design verification easy.

Appendix A. Orignal Abel Source Code

module pcm flag '-r3'
title 'Physical Connection Management (PCM) state Machine version 9.1
Steve Traum Cypress Semiconductor March 27, 1989'

"Inputs

"Outputs

" declarations

"Qstate
SO
S5
S10
S15
S20
S25
S30
S35
S40
S45
S50
S55
S60

I\bOOOOOO;
"bOOOlO1;
I\b001010;

I\bOOllll;
"b010100;
"b01lO01;
"bOll 110;
I\b100011;
"b lO 1000;
"blOll01;
"bllOOlO;
I\b 110 11 1;
I\b1 11 100;

MLS MACRO {(!mls)};
1LS MACRO {(!ils)};
HLS MACRO {(!hIs)};
QLS MACRO {(!qls)};

U1 device 'P330';

CKS,Ck1,rst
pcO,pc1 -
timer 1
timer2
mls,ils,hls,q Is
Val n
nO,n1
Val 8
Val-9
noise_count
pc_stop
pc. maint
nC
Val 8
Val=9
noise_count

pin 1,2,3;
pin 4,5;
pin 6;
pin 7;
pin 9,10,11,12;
pin 13;
pin 14,15;
pin 16;
pin 17;
pin 18;
pin 19;
pin 20;

istype 'feedyin';
istype 'feed yin';
istype 'feedyin';
istype 'feedyin';

Reset node 29;
Q5,Q4,Q3,Q2,Q1,QO pin28,27,26,25,24,23;
Q5,Q4,Q3,Q2,Q1,QO istype 'pos,reg';
Qstate = [Q5,Q4,Q3,Q2,Q1,QO];

High,Low
H,L,C,X,Z

Sl = "bOOOOO1;
S6 = "bOOO 11 0;
Sl1 "bOOlO11;
S16 "b010000;
S21 "bOlO101;
S26 "b011010;
S31 I\bOl 11 11;
S36 "b100100;
S41 = "b101001;
S46 = "biOI 110;
S51 = I\b11OOll;
S56 = I\b1ll000;
S61 = "b11ll01;

= 1,0;
= 1,0, .C.,X.,.Z.;

S2 = I\bOOOO 1 0;
S7 = "bOO0111;
S12 "bOOll00;
S17 "b010001;
S22 "bOlOll0;
S27 "bOl1011;
S32 I\blOOOOO;
S37 "blOOlOl;
S42 I\blOl0l0;
S47 I\b10ll11;
S52 I\bl10100;
S57 I\bl1l001;
S62 I\b1 11 110;

6-252

S3 = "bOOOOll; S4 = "bOOO100;
S8 = "bOO 1000; S9 = I\bOOl00l;
S13 I\bOO1101;S14 = I\bOOlll0;
S18 "bOl00lO;S19 = "bOl0011;
S23 I\b010111;S24 = "b011000;
S28 I\b011100;S29 = "b01ll01;
S33 I\b100001;S34 = I\b1000lO;
S38 "b100110;S39 = I\b100ll1;
S43 "b1010ll;S44 = "b10ll00;
S48 "bllOOOO;S49 = I\b11OOO1;
S53 I\bll0101;S54 = I\b110110;
S58 I\b1ll0lO;S59 = "bll10ll;
S63 I\bllllll;

Appendix A. Original Abel Source Code (continued)

pc_start MACRO {(!pcO & Ipc1)};
pCJeject MACRO {(!pcO & pc1)};
scjoin MACRO {(pcO & Ipc1)};
pcstop MACRO {(!pc_stop)};
pcmaint MACRO {(!pc maint)};
time1 MACRO {(Itimer!)};
time2 MACRO {(!timer2)};
n_necL)O MACRO {(!nO & In1)};
n eq 7 MACRO {(!nO & n1)};
n=eq) MACRO {(nO & In1)};
n_e<LlO MACRO {(nO & n1)};
noise MACRO {(!noise count)};
valn MACRO {(Val n)};
val8 MACRO {(!V af 8)};
val9 MACRO {(IVal-=-9)};

state diagram Qstate
- state ISO:

if (pc start) then IS32
else in pcmaint) then IS31
else ISO;

state IS1:
if (HLS) then IS32
else if (pcstop) then ISO
else if (pcmaint) then IS63
else IS1;

state IS2:
if (time1) then IS3
else IS2;

state IS3:
if (time1) then IS19
else if (pc reject) then IS1
else IS3; -

state !S63:
if (pc_stop) then ISO
else IS63;

state IS6:
goto IS38;

state !S8:
if (QLS # HLS # noise) then IS32
else if (pc stop) then ISO
else if (pc maint) then IS63
else if (pc-start) then !S32
else IS8; -

state IS9:
if (sc join&time1) then IS8
else if (pc reject # MLS) then IS1
else IS9; -

state IS16:
if (Val 9) then IS48
else !S32;

state IS17:
goto !S18;

6-253

Q""" FDDI Using the CY7C330
~~~~==============~==~~~~~==== 

Appendix A. Original Abel Source Code (continued) 

state !SI8: 
if ( QLS # time2 ) then !S32 
else if ( MLS ) then !S6 
else if (Ill..S) then !S22 
else !SI8; 

state !SI9: 
if (n_neCLlO ) then !S51 
else if (n_eCL7) then !S27 
else if (n_ eCL9) then !S59 
else if (n_e<L10) then !S16 
else !SI9; 

state !S22: 
goto !S38; 

state !S27: 
if (val8 == High) then !S54 
else !S39; 

state !S39: if ( HLS # MLS # timel ) then !S55 
else !S39; 

state !S32: if « QLS # HLS # MLS) & timel ) then !S33 
else if (pc stop ) then ISO 
else if ( pc - maint) then !S63 
else !S32; -

state !S33: 
if ( HLS ) then !S35 
else if (ILS) then !S32 
else !S33; 

state !S34: 
if ( ILS ) then !S2 
else if ( QLS # (MLS & time2» then !S32 
else !S34; 

state !S35: 
if ( timel ) then !S34 
else !S35; 

state !S36: 
if ( MLS ) then !S44 
else if ( QLS # time2 ) then !S32 
else if (pc stop) then ISO 
else if (pc - maint) then !S63 
else !S36;-

state !S38: 
if (timel) then !S34 
else !S38; 

state !S40: 
if ( ILS ) then !S41 
else if ( QLS # HLS # time2 # noise ) then !S32 
else !S40; 

state !S41: 
if ( timel ) then !S9 
else !S41; 

state !S44: 
if ( timel ) then !S40 
else !S44; 

6-254 



Appendix A. Original Abel Source Code (continued) 

state !S48: 
if (HLS) then !S52 
else if (QLS # tirne2) then !S32 
else !S48; 

state !S50: 
goto !S18; 

state !S51: 
if ( vain == High) then !S17 
else !S50; 

state !S52: 
if ( time1 ) then !S36 
else !S52; 

state !S55: 
goto !S51; 

state !S59: 
if (va18) then !S54 
else !S51; 

state !S54: 
if ( HLS # MLS # time1 ) then !S55; 
else !S54; 

state !4: goto ISO; 
state !5: goto ISO; 
state !7: goto ISO; 
state !10: goto ISO; 
state !11: goto ISO; 
state !12: goto ISO; 
state !13: goto ISO; 
state ! 14: goto ISO; 
state !15: goto ISO; 
state !20: goto ISO; 
state !21: goto ISO; 
state !23: goto ISO; 
state !24: goto ISO; 
state !25: goto ISO; 
state !26: goto ISO; 
state !28: goto ISO; 
state !29: goto ISO; 
state !30: goto ISO; 
state !31: goto ISO; 
state !37: goto ISO; 
state !42: goto ISO; 
state !43: goto ISO; 
state !45: goto ISO; 
state !46: goto ISO; 
state !47: goto ISO; 
state !49: goto ISO; 
state !53: goto ISO; 
state !56: goto ISO; 
state !57: goto ISO; 
state !58: goto ISO; 
state !60: goto ISO; 
state !61: goto ISO; 
state !62: goto ISO; 

equations 
Reset !rst_; 

end pcm 

6-255 



Appendix B. Cypress PLD ToolKit Source File 

CY7C330; 
{This file is the Cypress ToolKit Source Code for FDDI Design } 

CONFIGURE; 

CKS,Ckl,RST • 
peO, pcl, timeii, timer2. MLS (node= 9). ILS, HLS, QLS. 
Val_n, nO. nl(iop,ireg), !QO, Val_8(iop,ireg), !Ql. Val_9(iop.ireg), !Q2, 
!Q3 (node=23). noise_count(iop.ireg). !Q4, pc_stop(iop,ireg). !Q5. 
pc_maint(iop,ireg), RST, SET. ILSTATE (node= 34), 

{************************************************************************} 

EQUATIONS; 

SET = fpc _ maint; 

ILSTATE = # Q2 & !QI & !Q4 & !Q5 & pc stop 
# Q2 & QO & !Q4 & !Q5 & pcjtop 
# QI & Q3 & !Q4 & !Q5 & pc stop 
# !QI & Q2 & Q4 & !Q5 & pc-stop 
# QO & Q2 & Q4 & !Q5 & pcjtop 
# Q3 & !QI & Q4 & !Q5 & pc_stop 
# Q3 & !QO & Q4 & !Q5 & pc_stop 
# Q3 & QI & !Q4 & Q5 & pc_stop 
# QO & !QI & Q2 & !Q4 & Q5 & pc stop 
# !QI & Q3 & Q4 & Q5 & pc_stop -
# !QI & QO & Q4 & Q5 & pc_stop 
# Q3 & !QO & Q4 & Q5 & pc_stop; 

QO '- < oe> 
<xsum> QO & !ILSTATE & pc stop 
# !Q5 & !Q4 & !Q3 & !Q2 & !Ql & QO & !HLS & !ILSTATE & pc stop 
# !Q5 & !Q4 & !Q3 & !Q2 & Ql & !QO & !timer! & !ILSTATE & Pc_stop 
# !Q5 & !Q4 & Q3 & !Q2 & !QI & QO & pcO & !pcl & !timer! & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & !QI & QO & !ILSTATE & pc stop 
# !Q5 & Q4 & !Q3 & !Q2 & QI & QO & nO & nl & !ILSTATE & pc stop 
# Q5 & Q4 & Q3 & !Q2 & Ql & QO & !Val 8 & !ILSTATE & pc stop 
# Q5 & Q4 & !Q3 & Q2 & QI & !QO & !ReS & !lLSTATE & pc -stop 
# Q5 & Q4 & !Q3 & Q2 & QI & !QO & !MLS & !lLSTATE & pc-stop 
# Q5 & Q4 & !Q3 & Q2 & Ql & !QO & !timerl & !ILSTATE & pc_stop 
# !Q5 & Q4 & Q3 & !Q2 & Ql & QO & Val_n & !lLSTATE & pc_stop 
# Q5 & !Q4 & !Q3 & !Q2 & !Ql & !QO & !QLS & !timerl & !lLSTATE& pc stop 
# Q5 & !Q4 & !Q3 & !Q2 & !Q 1 & !QO & !HLS & !timerl & !lLSTATE & pc-stop 
# Q5 & !Q4 & !Q3 & !Q2 & !Ql & !QO & !MLS & !timerl & !lLSTATE & pc-='stop 
# Q5 & !Q4 & !Q3 & !Q2 & !Ql & QO & !ILS & !lLSTATE & pc stop 
# Q5 & !Q4 & !Q3 & !Q2 & Ql & QO & !timerl & !lLSTATE & pc stop 
# Q5 & !Q4 & Q3 & !Q2 & !QI & !QO & !ILS & !lLSTATE & pc_stop 
# Q5 & Q4 & !Q3 & !Q2 & Ql & QO & !Val_n & !lLSTATE & pc_stop 
# Q5 & Q4 & Q3 & Q2 & Ql & QO & !pcO & !pcl & !lLSTATE & pc_stop; 

6-256 



QI 0-

Q2 0-

Q3 0-

Appendix B. Cypress PLD ToolKit Source File (continued) 

< oe> 
<xsum> QI & !ILSTATE & pc stop 
# !Q5 & !Q4 & !Q3 & !Q2 & Ql & QO & !pcO & pcl & !ILSTATE & pc_stop 
# Q5 & Q4 & Q3 & Q2 & QI & QO & !pcO & !pcl & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & !Ql & QO & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & QI & !QO & !QLS & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & QI & !QO & !timer2 & !ILSTATE & pc stop 
# !Q5 & Q4 & !Q3 & !Q2 & QI & QO & nO & nl & !ILSTATE & pc-stop 
# Q5 & !Q4 & !Q3 & !Q2 & !QI & QO &"!HLS & !ILSTATE & pcji"op 
# Q5 & !Q4 & !Q3 & !Q2 & QI & !QO & !QLS & !ILSTATE & pc stop 
# Q5 & !Q4 & !Q3 & !Q2 & QI & !QO & !timer2 & !MLS & !ILSTATE & pc stop 
# Q5 & Q4 & !Q3 & !Q2 & QI & QO & Vatn & !ILSTATE & pc_stop; -

< oe> 
<xsum> Q2 & !ILSTATE & pc_stop 
# Q5 & Q4 & Q3 & Q2 & QI & QO & !pcO & !pcl & !ILSTATE & pc_stop 
#!Q5 & Q4 & !Q3 & !Q2 & QI & !QO & lHLS & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & QI & !QO & !MLS & !ILSTATE & pc_stop 
# Q5 & Q4 & Q3 & !Q2 & QI & QO & !Val_8 & !ILSTATE & pc_stop 
# !Q5 & Q4 & Q3 & !Q2 & QI & QO & !ILSTATE & pc_stop 
# Q5 & !Q4 & !Q3 & Q2 & !QI & !QO & !QLS & !ILSTATE & pc stop 
# Q5 & !Q4 & !Q3 & Q2 & !QI & !QO & !timer2 & !ILSTATE & Pc stop 
# Q5 & !Q4 & !Q3 & Q2 & QI & !QO & !timerl & !ILSTATE & pc stop 
# Q5 & !Q4 & Q3 & Q2 & !QI & !QO & !timerl & !ILSTATE & pc-stop 
# Q5 & Q4 & !Q3 & !Q2 & !Ql & !QO & !HLS & !ILSTATE & pc3top 
# Q5 & Q4 & !Q3 & Q2 & Ql & QO & !ILSTATE & pc_stop; 

< oe> 
<xsum> Q3 & !ILSTATE & pc stop 
# Q5 & Q4 & Q3 & Q2 & Ql &-QO & !pcO & !pcl & !ILSTATE & pc stop 
# !Q5 & !Q4 & Q3 & !Q2 & !QI & !QO & !QLS & !ILSTATE & pc stop 
# !Q5 & !Q4 & Q3 & !Q2 & !QI & !QO & !HLS & !ILSTATE & pc-stop 
# !Q5 & !Q4 & Q3 & !Q2 & !Ql & !QO & !noise count & !ILSTATE & pc stop 
# !Q5 & !Q4 & Q3 & !Q2 & !Ql & QO & !pcO &-pcl & !ILSTATE & pc_stop 
# !Q5 & !Q4 & Q3 & !Q2 & !Ql & QO & !MLS & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & Ql & QO & !nO & nl & !ILSTATE & pc stop 
# !Q5 & Q4 & !Q3 & !Q2 & Ql & QO & nO & !nl & !ILSTATE & pc-stop 
# Q5 & Q4 & Q3 & !Q2 & QI & QO & !ILSTATE & pc stop -
# Q5 & !Q4 & !Q3 & Q2 & !Ql & !QO & !MLS & !ILST-ATE & pc_stop 
# Q5 & !Q4 & Q3 & !Q2 & !Ql & !QO & !QLS & !ILSTATE & pc_stop 
# Q5 & !Q4 & Q3 & !Q2 & !Ql & !QO & !HLS & !ILSTATE & pc_stop 
# Q5 & !Q4 & Q3 & !Q2 & !Ql & !QO & !timer2 & !ILSTATE & pc_stop 
# Q5 & !Q4 & Q3 & !Q2 & !Ql & !QO & !noise_count & !ILSTATE & pc_stop; 

6-257 



Q4 .-

Q5 

{end of file} 

Appendix B. Cypress PLD ToolKit Source File (continued) 

< oe> 
<xsum> Q4 & m.,sTATE & pc_stop 
# !Q5 & !Q4 & !Q3 & !Q2 & QI & QO & !timerl & !lLSTATE & pc_stop 
# Q5 & Q4 & Q3 & Q2 & QI & QO & !pcO & !pcl & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & !QI & !QO &Vat9 & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & QI & !QO & !QLS & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & QI & !QO & !timer2 & !lLSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & QI & !QO & tMLS & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & Q2 & QI & !QO & !ILSTATE & pc stop 
# !Q5 & Q4 & Q3 & !Q2 & QI & QO & !Val n & !ILSTATE & pc stop 
# Q5 & !Q4 & !Q3 & Q2 & QI & QO & !HLS & !ILSTATE & pcj'top 
# Q5 & !Q4 & !Q3 & Q2 & QI & QO & !MLS & !ILSTATE & pc_stop 
# Q5 & !Q4 & !Q3 & Q2 & QI & QO & !timerl & !ILSTATE & pc_stop 
# Q5 & Q4 & !Q3 & !Q2 & !QI & !QO & !QLS & !ILSTATE & pc stop 
# Q5 & Q4 & !Q3 & !Q2 & !QI & !QO & !timer2 & !lLSTATE & pc_stop 
# Q5 & Q4 & !Q3 & Q2 & !QI & !QO & !timerl & !ILSTATE & pc_stop; 

< oe> 
<xsum> Q5 & !ILSTA TE & pc_stop 
# !Q5 & !Q4 & !Q3 & !Q2 & !Ql & !QO & !pcO & !pcl & !lLSTATE & pc_stop 
# !Q5 & !Q4 & !Q3 & !Q2 & !QI & QO & !HLS & !ILSTATE & pc_stop 
# !Q5 & !Q4 & !Q3 & Q2 & QI & !QO & !ILSTATE & pc_stop 
# !Q5 & !Q4 & Q3 & !Q2 & !Ql & !QO & !QLS & !ILSTATE & pc_stop 
# !Q5 & !Q4 & Q3 & !Q2 & !QI & !QO & !HLS & !ILSTATE & pc_stop 
# !Q5 & !Q4 & Q3 & !Q2 & !QI & !QO & !noise count & !ILSTATE & pc stop 
# !Q5 & Q4 & !Q3 & !Q2 & !Ql & !QO & !ILSTATE & pc stop -
# !Q5 & Q4 & IQ3 & IQ2 & Ql & IQO & IQLS & !ILSTATE & pc_stop 
# !Q5 & Q4 & IQ3 & IQ2 & Ql & !QO & !timer2 & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & QI & QO & InO & !nl & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & Ql & QO & nO & lnl & IILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & Q2 & Ql & !QO & !ILSTATE & pc stop 
# !Q5 & Q4 & Q3 & IQ2 & Ql & QO & !ILSTATE & pcjtop 
# Q5 & !Q4 & !Q3 & !Q2 & Ql & !QO & !ILS & !ILSTATE & pc_stop 
# Q5 & IQ4 & Q3 & !Q2 & !Ql & QO & !timerl & !ILSTATE & pc stop 
# Q5 & Q4 & !Q3 & !Q2 & Ql & !QO & !ILSTATE & pc stop -
# Q5 &Q4 & !Q3 & !Q2 & Ql & QO & Vatn & !ILSTATE & pc_stop; 

6-258 



Bus-Oriented Maskable Interrupt Controller 

This application note illustrates the design 
flexibility of Cypress's CY7C331 PLD by describing a 
single-chip interrupt controller based on the PLD. 

Virtually all microprocessor designs require some 
type of interrupt support. Co~plex applications c~ 
take advantage of a dedicated mterrupt controller ChIp 
from the microprocessor family. But for simple applica­
tions or where special requirements exist, a standard in­
terrupt controller can prove inadequate or represent 
overkill for the design. 

In such cases, you generally implement a custom­
designed controller using some combination of MSI 
logic and PLDs. The single-chip design described ~ere 
is implemented in two stages: The first stage compnses 
a simple 4-channel controller, which includes the major 
functional blocks. In the second stage, another control­
ler is cascaded from the stage-l design to provide sup­
port for up to eight interrupt channels. 

The interrupt controller's design features include: 
1. Programable-polarity, level-sensitive inputs 
2. Interlocked REQI ACK handshake 
3. Simple MPU bus attachment for read and write 
4. Masking of individual channels 
5. Prioritized interrupt vector 
6. Fully asynchronous operation 

Design Description 
The interrupt controller attaches to the MPU data 

bus and is controlled by the system processor through 
read and write ports on the data bus. The read port 
provides interrupt status and a prioritized vector for the 
processor, and the write port allows the processor to 
selectively mask individual interrupt channels. The con­
troller provides a separate interrupt request line to the 
processor to signal a pending interrupt.. Figure 1 sho~s 
the bit assignments for the read and wnte ports. In FIg­
ure 2. you can see the interrupt controller's major func­
tional blocks. 

6-259 

CY7C331 Description 
The device used to implement the interrupt con­

troller is the CY7C331, an asynchronous PLD packaged 
in a 28-pin, 300-mil DIP. The device features 12 I/O 
macrocells and 13 dedicated inputs. The I/O macrocell 
has a separate input and output flip-flop, which is highly 

Mask Word (Write) 

7 16 Is 14 b 

o -> ENABLED I ~CHO 
MASK 
CH1 

760 

STATUS BIT I I L Vector 
o -> No LSB 

Interrupt Vector Vector 

Figure 1. Data Bus Bit Assignments 

useful in bus-oriented applications. 
Each flip-flop has a separate product term for the 

clock, set, and reset. The output flip-flop's D input in­
corporates an XOR with the sum-of-products array. 
This allows you to select polarity or implement a toggle 
or JK flip-flop. 

The macrocell flip-flops also offer a unique 
transparency feature: When the set and reset inpu!s are 
both asserted, the flip-flop's Q output follows Its D 
input. Thus, you can use the flip-flop as a. clocked 
register with independent clock, set and reset mputs or 
as a combinational path. 



£i.~RESS Bus-Oriented Maskable Interrupt Controller 
~, ~~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 2. Interrupt Controller Block Diagram 

Additionally, the CY7C331 includes six shared 
input multiplexers, which allow you to bury up to six 
output flip-flops without giving up any pins. Figure 3 
shows a block diagram of the CY7C331. A diagram of 
the device's I/O macrocell appears in Figure 1 of the 
application note "Using the CY7C331 as a Waveform 
Generator." 

Four-Channel Interrupt Controller 
The interrupt controller's operation is quite simple. 

On reset, all interrupt channels are masked off, and no 
interrupts are permitted. The processor then loads the 
mask register with the desired interrupt-channel mask 
bits cleared. If the channel is not masked when an inter­
rupt request occurs, the request is prioritized, and the 
controller asserts the Interrupt Request (IRQ) to the 
processor. 

The processor responds to the IRQ by reading the 
interrupt vector port When the interrupt controller 
detects . the read, the controller latches the current in­
terrupt priority and places the priority vector on the 
data bus. Latching the current priority while the vector 
is being read prevents the vector from being altered 
during the read cycle. In addition, the controller 
decodes the vector and asserts the corresponding 
channel's acknowledge line. 

The acknowledge remains asserted until detected 
by the interrupting element, which responds by deas­
serting its interrupt request. This interlocking hand­
shake ensures that a pending interrupt is not lost or 
responded to more than once. The controller also uses 
the acknowledge internally to disable the interrupt re­
quest into the priority encoder; this is done in the time 
between the interrupt acknowledge and the interrupt 
request being deasserted. A simple example of the 
timing sequence· for a single interrupting channel ap­
pears in Figure 4. 

Figure 5 defmes the pin assignments for the fIrst­
stage interrupt controller. 

Data Bus Interface 
The data bus interface requires bidirectional opera­

tion. When CS and WE are asserted Low, the controller 
writes data into the mask register. When CS is asserted 

6-260 

Figure3. CY7C331 Block Diagram 

Low and· WE remains High, the controller holds the 
current priority vector and interrupt status and places 
them on the data bus. TheCY7C331's I/O macrocell is 
readily adapted to this requirement, as illustrated in 
Figure 6. 

The INTERRUPT status generation requires a dif­
ferent inlplementation. If any interrupt requests are 
pending when the controller detects a read cycle (CS 



INTn 

IRQ 

CS 

DiB L..L...~~~~~LL...LLj-<~ 

ACK __ -+_~ 

Figure 4. Timing Sequence for Single Interrupt 
Channel 

Low, WE High), the interrupt status bit must be as­
serted High. Moreover, new interrupt requests are held 
off until the end of the read cycle. This requires a 
clocked implementation of the interrupt status bit on 
the data bus, as shown in Figure 7. 

Acknowledge Generation 
Acknowledge generation requires that the control­

ler decode the priority vector placed on the data bus 
and assert the corresponding acknowledge line until the 
interrupt request line is deasserted. The controller must 
handle the timing carefully for correct operation. 
Specifically, because a valid priority vector is not avail­
able until after CS is asserted Low, the controller can­
not decode the correct channel until the priority vector 
register has settled. Thus, a delay is required before the 
controller can generate an acknowledge. 

The controller can generate a delay by taking ad­
vantage of the following sequence: If there is a pending 
interrupt request, the interrupt status bit is always as­
serted one propagation delay after CS is asserted on a 
read cycle. The interrupt status signal is then passed 
through an internal strobe stage, which causes an addi­
tional propagation delay. The internal strobe then in­
itiates the acknowledge-generation sequence. 

The delayed strobe assures that the priority vector 
value has settled and the setup requirements for decod-

1 
2 

3 
1 C S 4 
1 W T 5 

1 R S T 6 
7 
8 

REQ3 9 
REQ2 10 
REQI 11 
REQO 12 

13 
14 

28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 

IRQ 

DTB3 
DTB2 

DTBl 
DTBO 

ACK3 
ACK2 
ACKl 
ACKO 

Figure 5. Interrupt Controller Pin Assignments 

6-261 

ICS*W~E _________________ , 

CE 
WE 

~~_=DATA BUS" 

R S T'-____ ---, 

MASK"-" ____ -1 

CE 
WE 

Figure 6. Mask/Priority Vector Function 

ing have been met. An SR flip-flop implements the ac­
knowledge-generation function for each channel. The 
flip-flop is set when a read cycle occurs, the priority 
vector corresponds to the channel, and the delayed in­
ternal strobe occurs. The flip-flop is reset when the in­
terrupt request for the channel is de asserted. 

A logic diagram for the internal strobe generation 
and a single acknowledge-generation block appears in 
Figure 8. The timing diagram in Figure 9 illustrates a 
typical operation. 

Logic Equations 
The Cypress PLD ToolKit assembles the Boolean 

equation s for the interrupt controller (Appendix A). 
The equations are heavily commented for clarity. Be­
cause the PLD ToolKit does not currently support "De­
Morgan ization," and because the CY7C331 contains in­
verting output buffers, the Boolean equations for output 
flip-flops are written for negative logic (i.e., solving for 
zero). In addition, the inversion requires swapping of 
the SET and RESET functions on the output flip-flops. 
Thus, the logical Boolean equation required to set the 
flip-flop must be implemented on the flip-flop's reset 
input. Similarly, the equation required to reset the flip­
flop must be implemented on the flip-flop's set input. 

Adding Cascade Capability 
You can readily extend the interrupt controller 

design to accommodate four additional channels by in-

les * V~E~ _________________ -, 

REQ3 
REQZ 

REQI 
REQO 

RST _____________ __ 

MASK3 ____________ ~ 

·0· 

Figure 7. Interrupt Status Generation 

ISTAT 



5r~ =========B;;;;;;U;;;S;;;;.O~rl;;;· e;;n;;;te;;d~M;;;a;;;s;;;k;;;a;;;b;;le~I;;;n;;;te~r~r~u!p~t~C~o~n~tr~o~l~le~r 

ICS 
WE 

PRIORITY 
VECTOR 

CS 

INTERNAL STROBE 

Figure 8. Internal Strobel Acknowledge Generation 

corporating a cascade mechanism. You can then attach 
a second interrupt controller to to the ftrst (Figure 10). 
The additional channels require an extension to the for­
mats of the mask register and the interrupt vector (Fig­
ure 11). 

The lower interrupt controller supports the lower­
priority interrupt channels, generates the IRQ to the 
processor, and places the interrupt status and priority 
yector on the data bus during a read cycle.· The upper 
mterrupt controller supports the higher-priority chan­
nels and passes its current status and priority vector 
down to the lower interrupt controller. 

The interrupt status line is asserted High when the 
upper interrupt controller has a non-masked interrupt 
request pending. To permit the host processor to write 
into the upper interrupt controller's mask register, the 
controller monitors the data bus's upper four bits. Be­
cause the upper interrupt controller passes its priority 
vector directly to the lower interrupt controller, how­
ever, the upper interrupt controller does not need to 
output any data on the bus during a read cycle. 

i~T c ~~. ___ ~_} ___ ,d' 

5 r ,A,TU,:> ''-T1 c'ef>---

INTERNAL . . 
STROBE .. t. I --~ '--.Iclf>-'--

ACKn I <,' 

.rL 
------alt'~-; 

REOn L---

Figure 9. Timing Diagram 

REO! 4 .. 7') _-7-4_~ ~--I-- DTB! 4 .. 7 ) 

liE 

UPPER 
INTERRUPT 

CONTROLLER 

REO! ~ .. 3 ) -+-~ 

LOIJER 
INTERRUPT 

CONTROLLER 

~rRQ 
,",,--·-1--31- DTB! ~ .. 3 ) r ACK(i2I .. 3) 

cs 

I 

Figure 10. Cascading Interrupt Controllers 

In operation, the lower interrupt controller must 
monitor the status interrupt line from the upper con­
!£Oller. The lower controller incorporates the interrupt 
mto the IRQ to the host processor and into the inter­
rupt vector placed on the data bus during a read cycle. 

Modifying the interrupt vector is straightforward. 
Because the upper interrupt channels have higher 
priority, when the interrupt status from the upper con­
troller is asserted, the interrupt vector's lower two bits 
are the two vector bits from the upper controller. When 
the status is not asserted, the interrupt vector's lower 

6-262 

MSK \lORD 
(\/RITE 1 

7 65"; 3 2 I 0 

19iil~fi"ITr;I:i~JQl11fD;l.[f~grQ£iJQijJ 

I1l_ENI\8LED 

I-MSKED 

INTERR'UPT VECTOR 
(READ) 

7 6 5 4 3 2 I 0 

CKT..ITXT2-:-J:s V2-1--vT'V0' _UTL 
i VECTOR LSB 

I 
'----- VECTOR 2SEl 

--------------- VECTOR /'ISEl 

'------- STATUS 

3-> NO iNTEHRUPTS 

I ~ VECTOR !S VAllO 

Figure 11. Extended Interrupt Vector 



two bits are the lower priority interrupt vector encoded 
from the lower interrupt controller. The interrupt 
vector's third bit is simply the state of the interrupt 
status signal from the upper controller. The modified 
interrupt controller equations for the lower element ap­
pear in Appendix B. and the upper element equations 
in Appendix C. 

Summary 
The interrupt controller described in the applica­

tion note can serve as the basis for flexible low-to-

moderate-complexity interrupt controllers. You can ex­
tend the design as required for different request 
polarity levels, edge-sensitive inputs, or additional 
channels. 

Simulations of the interrupt controller show that 
the design works as expected. You can obtain the PLD 
source files for the design from your local Cypress sales 
office. 

6-263 



~CYPRISS Bus-Oriented Maskable Interrupt Controller 
~~m~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. PLD ToolKit Source Code 
Stand Alone Interrupt Controller 

{Stand Alone Interrupt Controller} 
CY7C331; {declare device type} 

CONFIGURE; 

CS(node = 4), {pin 4, chip select} 
{pin 5, write enable} 
{pin 6, reset} 

WE(node = 5), 
RST(node = 6), 
REQ3(node = 9), 
REQ2(node = 10), 
REQ l(node = 11), 
REQO(node = 12), 

{pin 9, interrupt request channel 3} 
{pin 10, interrupt request channel2} 
{pin 11, interrupt request channell} 
{pin 12, interrupt request channel O} 

!IRQ(node = 27), 
ISTAT(node = 28), 
PVEC2(node = 26), 
PVEC1(node = 24), 
PVECO(node = 20), 
ACK3(node = 18), 
ACK2(node = 17), 
ACK1(node = 16), 
ACKO(node = 15), 
MSK3(node = 34,SRC = 

MSK2(node = 33,SRC = 
MSK1(node = 32,SRC = 
MSKO(node = 31,SRC = 

{pin 27, interrupt to processor} 
{pin 28, data bus 3 - interrupt status} 
{pin 26, data bus 2 - priority vector bit 2} 
{pin 24, data bus 1 - priority vector bit I} 
{pin 20, data bus 0 - priority vector bit O} 

{pin 18, acknowledge channel3} 
{pin 17, acknowledge channel2} 
{pin 16, acknowledge channell} 
{pin 15, acknowledge channel O} 

28), {shared input mux for pin 28} 
26), {shared input mux for pin 26} 
24), {shared input mux for pin 24} 
20), {shared input mux for pin 20} 

ISTB(node = 25), 

EQUATIONS; 
IRQ = < oe> 

{pin 25, internal strobe} 

< set_out> {make FF transparent} 
< clr_out> {make FF transparent} 
< xsum> {force invert} 
< sum> REQ3 & IACK3 & IMSK3 

# REQ2 & IACK2 & IMSK2 
# REQ1 & lACK 1 & IMSKl 
# REQO & IACKO & IMSKO; 

!ISTAT = < oe> ICS & WE 
< xsum> {force invert} 
< set_out> CS & ISTAT {FF output is reset} 
< ck out> ICS & WE 
< seCin> IRST {interrupt is masked on reset} 
< ck in> lWE & ICS 

< sum> REQ3 & IACK3 & IMSK3 
# REQ2 & IACK2 & IMSK2 
# REQ1 & !ACK1 & !MSK1 
# REQO & !ACKO & !MSKO; 

IPVEC2 = < oe> ICS & WE 
< set out> {always zero} 
< set-in> !RST {interrupt is masked on reset} 
< ck ,=-in> lWE & !CS; . 

6-264 



~= Bus-Oriented Maskable Interrupt Controller 
~ .~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. PLD ToolKit Source Code 
Stand Alone Interrupt Controller (continued) 

IPVECl = < oe> ICS & WE 
< xsum> {force invert} 
< ek out> ICS & WE 
< suiID. IACK3 & REQ3 & IMSK3 

# IACK2 & REQ2 & IMSK2 
< set in> IRST {interrupt is masked on reset} 
< ek]n> lWE & ICS; 

IPVECO = < oe> ICS & WE 
< xsum> {force invert} 
< ek out> ICS & WE 
< sum> !ACK3 & REQ3 & !MSK3 

# !ACKl & REQ 1 & IMSKl & MSK2 # IMSKl & IACKl & REQ 1 & IREQ2 
< set_in> !RST {interrupt is masked on reset} 
< ek _in> lWE & ICS; 

IACK3 = < oe> 
< elr_out> !CS & WE & PVECl & PVECO & ISTB & IACK3 {FF output is set} 
< set_out> CS & ACK3 & !REQ3; {FF output is reset} 

IACK2 = < oe> 
< elr_out> !CS & WE & PVECl & IPVECO & ISTB & IACK2 {FF output is set} 
< set_out> CS & ACK2 & IREQ2; {FF output is reset} 

IACKl = < oe> 
< elr_out> ICS & WE & IPVECl & PVECO & ISTB & IACKl {FF output is set} 
< set_out> CS & ACKl & IREQl; {FF output is reset} 

IACKO= < oe> 
< elr_out> ICS & WE & IPVECl & IPVECO & ISTB & IACKO {FF output is set} 
< set_out> CS & ACKO & IREQO; {FF output is reset} 

!ISTB = < oe> 
< elr _out> 1ST A T & !ISTB {FF output is set} 
< set_out> CS & ISTB; {FF output is reset} 

6-265 



1i1:CYPRISS Bus-Oriented Maskable Interrupt ControUer 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix B. PLD ToolKit Source Code
Cascadable Interrupt Controller-Lower Element

{Cascaded Interrupt Controller - Lower Element}
CY7C331; {declare device type}

CONFIGURE;
UST A T(node = 1),
RVECl(node = 2),
R VECO(node = 3),
CS(node = 4),
WE(node = 5),
RST(node = 6),
REQ3(node = 9),
REQ2(node = 10),
REQl(node = 11),
REQO(node = 12),

!lRQ(node = 27),
1ST A T(node = 28),
PVEC2(node = 26),
PVECl(node = 24),
PVECO(node = 20),
ACK3(node = 18),
ACK2(node = 17),
ACKl(node = 16),
ACKO(node = 15),
MSK3(node = 34,SRC =
MSK2(node = 33,SRC =
MSKl(node = 32,SRC =
MSKO(node = 31,SRC =

ISTB(node = 25),

EQUATIONS;
IRQ = < oe>

{pin 1, upper element interrupt status}
{pin 2, ripple vector bit 1 from upper element}
{pin 3, ripple vector bit 0 from upper element}

{pin 4, chip select}
{pin 5, write enable}
{pin 6, reset}

{pin 9, interrupt request channel3}
{pin 10, interrupt request channel2}
{pin 11, interrupt request channell}
{pin 12, interrupt request channel O}

{pin 27, interrupt to processor}
{pin 28, data bus 3 - interrupt status}
{pin 26, data bus 2 - priority vector bit 2}
{pin 24, data bus 1 - priority vector bit I}
{pin 20, data bus 0 - priority vector bit O}

{pin 18, acknowledge channel3}
{pin 17, acknowledge channel2}
{pin 16, acknowledge channell}
{pin 15, acknowledge channel O}

28), {shared input mux for pin 28}
26), {shared input mux for pin 26}
24), {shared input mux for pin 24}
20), {shared input mux for pin 20}

{pin 25, internal strobe}

< set_out> {make FF transparent}
< clr _out> {make FF transparent}
< xsum> {force invert}
< sum> REQ3 & !ACK3 & !MSK3

REQ2 & !ACK2 & !MSK2
REQ 1 & IACKl & IMSKl
REQO & IACKO & !MSKO
USTAT;

!ISTAT = < oe> !CS & WE
< xsum> {force invert}
< set_out> CS & ISTAT {FF output is reset}
< ck out> ICS & WE
< se~in> IRST {interrupt is masked on reset}
< ck in> lWE & ICS
< sum> REQ3 & IACK3 & !MSK3

REQ2 & IACK2 & !MSK2
REQ 1 & IACKl & !MSKI
REQO & !ACKO & IMSKO
USTAT;

6-266

~RESS Bus-Oriented Maskable Interrupt Controller
~~ ~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix B. PLD ToolKit Source Code
Cascadable Interrupt Controller-Lower Element (continued)

lPVEC2 = < oe> lCS & WE
< xsum> {force invert}
< ck out> lCS & WE
< sum> USTAT
< set in> lRST {interrupt is masked on reset}
< ck .In> lWE & lCS;

lPVECl = < oe> lCS & WE
< xsum> {force invert}
< ck out> lCS & WE
< sum> lACK3 & REQ3 & lMSK3 & lUSTAT

lACK2 & REQ2 & lMSK2 & lUSTAT
RVECl & USTAT

< set in> lRST {interrupt is masked on reset}
< ck]n> lWE & lCS;

lPVECO = < oe> lCS & WE
< xsum> {force invert}
< ck out> lCS & WE
< sum> lACK3 & REQ3 & lMSK3 & lUSTAT

lACKl & REQ 1 & lMSKl & MSK2 & lU STAT
lMSKl & lACKl & REQI & lREQ2 & lUSTAT
RVECO & USTAT

< set in> lRST {interrupt is masked on reset}
< ck]n> lWE & lCS;

lACK3 = < oe>
< elr_out> lCS & WE & lPVEC2 & PVECI & PVECO & ISTB & lACK3 {FF output is set}
< set_out> CS & ACK3 & lREQ3; {FF output is reset}

lACK2 = < oe>
< elr_out> lCS & WE & lPVEC2 & PVECI & lPVECO & ISTB & lACK2 {FF output is set}
< set_out> CS & ACK2 & lREQ2; {FF output is reset}

lACKl = < oe>
< clr out> lCS & WE & lPVEC2 & lPVECl & PVECO & ISTB & lACKl {FF output is set}
< sei='out> CS & ACKI & lREQl; {FF output is reset}

lACKO = < oe>
< clr out> lCS & WE & lPVEC2 & lPVECl & lPVECO & ISTB & lACKO {FF output is set}
< se(.out> CS & ACKO & lREQO; {FF output is reset}

lISTB = < oe>
< clr out> 1ST A T & !ISTB {FF output is set}
< se(. out> CS & ISTB; {FF output is reset}

6-267

~
9! ~~RESS Bus-Oriented Maskable Interrupt Controller
~, ~~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix C. PLD ToolKit Source Code
Cascadable Interrupt Controller-Upper Element

{Cascaded Interrupt Controller - Upper Element}
CY7C331; {declare device type}

CONFIGURE;

CS(node = 4),
WE(node = 5),
RST(node = 6),
REQ3(node = 9),
REQ2(node = 10),
REQ l(node = 11),
REQO(node = 12),

PVEC3(node = 28),
PVEC2(node = 26),
PVEC1(node = 24),
PVECO(node = 20),
ACK3(node = 25),
ACK2(node = 23),
ACK1(node = 19),
ACKO(node = 17),
1\1SK3(node = 34,SRC =

MSK2(node = 33,SRC =
MSKl(node = 32,SRC =
MSKO(node = 31,SRC =

ISTB(node = 27),

{pin 4, chip select}
{pin 5, write enable}
{pin 6, reset}

{pin 9, interrupt request channel3}
{pin 10, interrupt request channel2}
{pin 11, interrupt request channell}
{pin 12, interrupt request channel O}

{pin 28, data bus 3 - always zero}
{pin 26, data bus 2 - always zero}
{pin 24, data bus 1 - always zero}
{pin 20, data bus 0 - always zero}
{pin 25, acknowledge channel3}
{pin 23, acknowledge channel 2}
{pin 19, acknowledge channell}
{pin 17, acknowledge channel O}

28), {shared input mux for pin 28}
26), {shared input mux for pin 26}
24), {shared input mux for pin 24}
20), {shared input mux for pin 20}

{pin 27, internal strobe}

USTA T(node = 18), {pin 18, interrupt status output}
ISENSE(node = 30,SRC = 18), {shared input mux for pin 18}

{internal interrupt sense to generate input for ISTB}

RVECl(node = 16),
RVECO(node = 15),

{pin 16, ripple vector bit 1 output}
{pin 15, ripple vector bit 0 output}

EQUATIONS;
!PVEC3 = < set out> {always zero}

< set in> iRST {interrupt is masked on reset}
< ck ,=-in> !WE & !CS;

!PVEC2 = < set out> {always zero}
< set in> iRST {interrupt is masked on reset}
< ck.=-in> !WE & !CS;

!PVEC1 = < xsum> {force invert}
< ck out> !CS & WE
< sum> !ACK3 & REQ3 & !MSK3

!ACK2 & REQ2 & !MSK2
< set in> !RST {interrupt is masked on reset}
< ck 3n> !WE & !CS;

!PVECO = < xsum> {force invert}
< ck_out> !CS & WE

6-268

2:~RESS Bus-Oriented Maskable Interrupt Controller
-=JII' SEMlcamUCfOR =========================;.;;;;=====;;;;;;

Appendix C. PLD ToolKit Source Code
Cascadable Interrupt Controller-Upper Element (continued)

< sum> IACK3 & REQ3 & IMSK3
IACKl & REQl & IMSKl & MSK2 # IMSKl & IACKl & REQl & IREQ2

< set_in> IRST {interrupt is masked on reset}
< ek_in> lWE & ICS;

IACK3 = < oe>
< elr out> ICS & WE & PVECl & PVECO & ISTB & IACK3 {FF output is set}
< se(out> CS & ACK3 & IREQ3; {FF output is reset}

IACK2 = < oe>
< elr_out> ICS & WE & PVECl & IPVECO & ISTB & IACK2 {FF output is set}
< set_out> CS & ACK2 & lREQ2; {FF output is reset}

IACKl = < oe>
< elr_out> ICS & WE & IPVECl & PVECO & ISTB & lACK! {FF output is set}
< set_out> CS & ACKl & IREQl; {FF output is reset}

lACKO = < oe>
< elr_out> ICS & WE & IPVECl & IPVECO & ISTB & IACKO {FF output is set}
< set_out> CS & ACKO & IREQO; {FF output is reset}

lUSTAT = < oe>
< xsum> {force invert}
< set_out> {make FF transparent}
< elr_out> {make FF transparent}
< sum> REQ3 & IACK3 & IMSK3

REQ2 & IACK2 & IMSK2
REQ 1 & IACKl & IMSKl
REQO & IACKO & lMSKO

< ek in> ICS & WE
< elr-=. in> CS & ISENSE;

lR VECl = < oe>
< xsum> {force invert}
< set_out> {make FF transparent}
< elr _out> {make FF transparent}
< sum> IACK3 & REQ3 & !MSK3

!ACK2 & REQ2 & IMSK2;

IR VECO = <oe>
< xsum> {force invert}
< set_out> {make FF transparent}
< elr out> {make FF transparent}
< ek -out> ICS & WE
< sum> !ACK3 & REQ3 & !MSK3

!ACKl & REQ 1 & IMSKl & MSK2
IACKl & REQ 1 & IMSKl & !REQ2;

!ISTB = < oe>
< elr out> ISENSE & !ISTB {FF output is set }
< se(out> CS & ISTB; {FF output is reset}

6-269

CYPRESS
SEMICONDUCTOR

Using the CY7C330 as a Multi-channel Mbus
Arbiter

This application note discusses the use of the
CY7C330 as a bus arbiter for an Mbus system based on
the Cypress SPARC CY7C600 RISC processor. The
CY7C330 is a high-speed synchronous erasable
programmable logic device (EPLD) optimized for fmite
state machine (FSM) applications.

The Cypress SPARC system utilizes a CY7C601
RISC processor, a CY7C602 floating point unit (FPU),
four CY7C604 cache controller and memory manage­
ment units (CMU), and eight CY7C157 16K x 16 cache
RAM s for a 256-Kbyte cache. The arbiter uses a com­
bination of techniques to resolve Mbus access conten­
tion for a system with four CMU bus masters. Figure 1
shows a block diagram of the Mbus system.

CY7C330 Brief Description
The CY7C330 is a 66-MHz, high-performance PLD

with 11 input latches, 17,000 programmable bits, four
buried state registers, and 12 user-configurable output
macrocells. It is manufactured using a CMOS 0.8-
micron, double-metal processing technology that is UV
erasable. The CY7C330 comes in 28-pin, 300-mil dual
in-line and LCClPLCC packages. You can partition it
into multiple functional blocks, as shown in this applica-

Figure 1. Mbus System Block Diagram

tion.(See Figure 1 in "Understanding the CY7C330
Synchronous EPLD" for a block diagram of the
CY7C330.)

6-270

Mbus Description
The Mbus is a system bus defined to be a SPARC

standard main memory interface for the Cypress
CY7C604 SPARC cache/memory management unit.
The M in Mbus stands for module and emphasizes the
multi-processor module support .that SPARC offers.

The Mbus is a high-speed synchronous, 64-bit, mul­
tiplexed address/data bus that operates at the
CY7C601 's clock rate. Mbus accesses are initiated by a
master and responded to by a slave. Generally, a bus
transaction takes place between a master and main
memory, but in the case of direct data intervention,
transactions can occur between masters.

The handshake between the CY7C604 CMMU and
the arbiter utilizes a request line (MRQO-3) and a grant
line (MGTO-3) for each master. A busy line (MBB) is
common to all masters and indicates that the bus is in
use.

Figure 2 shows the multiple Mbus request se­
quence. By design, bus mastership and resolution of
multiple requests are performed outside the realm of
Mbus and SP ARC. This allows you to implement the
arbitration scheme that best fits your system require­
ments. The application example presented here
describes only one such implementation.

Mbus transfers are synchronous with respect to the
system clock. The data transactions across the bus con­
sist of a single-clock-period address phase and a multi­
ple-clock-period data phase. The bus transfers data in
word (64-bit), multi-word burst, or. atomic-load-store
formats. All signals are valid and sampled on the system
clock's rising edge. The address phase is validated by
the memory address strobe (/MAS) signal, which
denotes the start of the actual data transfer. Bus states
are indicated by three status lines and convey the cur­
rent bus operation as well as error status. Figure 3
shows Mbus data transfer waveforms.

Timing Considerations
To meet the Mbus timing specifications, the ar­

bitrator must be able to: accept a request, resolve any
access contention, and grant bus rights to a master, all
in a single Mbus clock cycle. In this application, a 66-
MHz CY7C330 implements the arbiter, whose input
registers run at the same 33-MHz clock rate as the
CY7C601 and CY7C604s. This speed allows the arbiter
inputs to meet the Mbus masters' timing requirements.
The output registers (including the state machine) are
clocked at twice the rate of the bus masters (66 MHz),
enabling the arbiter to sample requests with the input
latches on one Mbus clock cycle's rising edge, transfer
from one state to another, and grant access before the
Mbus clock's next rising edge. Figure 4 illustrates the
timing relationship between Master 0 (CY7C604 at 33
MHz) and the 66 MHz CY7C330 arbiter.

Arbitration Scheme
You can employ several resolution techniques for

the arbitration function. Fixed priority, rotating priority,
least recently used (LRU) , and random priority prove
successful, although each has its own faults. A fixed
priority, for instance, favors one requester more than
the others. Rotating priority provides a simple but not
always fair approach to arbitration. An LRU arbitration
scheme represents the fairest form of contention resolu­
tion but requires a highly complex implementation. The
random technique does not allow predictable arbitra­
tion results and could result in performance problems.

A combination of methods minimizes the as­
sociated problems. The circuit presented here, for ex­
ample, employs both a random and a fixed priority
scheme. The random scheme uses a 2-bit counter that
increments every clock cycle and varies the priority ac­
cordingly.

You can set the priority function such that the
processor can specify which master has the highest
priority; the processor does this by loading a value into
the CY7C330 via a store instruction. To support the
processor in this function, the interface to the processor
must provide a latched and decoded chip select, along

CLOCK

/ ~ROl ---,l--_
/~R00 ---,L-_____ ----l
/~GTI

/~GT0

/~BB

Figure 2. Mbus Multiple Request Sequence

6-271

SHRE IJRITE ACCESS. ~ ~AIT STATES

~TA ~---;.---.;-----;--

INS ~
ItlWf L-..l.--Jr---+------+--
II\I£lRY

Itmm

I~ ~4:--~-~---'~--~----~­
iE-1IIII!I~MIAAfII~

\6-BYTE BlffiT READ. [J£ ~AIT STATE
~OJIK

MDBSIDATA mal

INS ~~~--~----~--~-

IMfNlf

lNURY

IlIEJRR

I~ ~~: __ -,-_---.: __ -,-_-,-:..--,r:-
iE-1IIII!I~'/IIlIX1£~WA:"'~

Figure 3. Mbus Data Transfer Waveforms

with a latched write enable connected directly to the ar­
biter. The priority function can be of value if the preset
highest-priority Mbus master is fetching a program's
critical data from main memory. The remaining chan­
nels follow a preset priority defined in Table 1.

The Random Priority Counter employs the same
priority scheme used for preset priority and operates
only when the latched priority is disabled by the priority
selection block via the EN signal.

Design Partitioning
The arbiter design is partitioned into four function­

al blocks that are designed separately (Figure 5). The
first block is the priority latch, which is a synchronous
register using the decoded and latched chip select (lCS)

CY7C331l IN'UT
a f8..6 IllIK
CY7C331l rurrur

!lOCK

/I\R00

/I\GT0

/1\88
MEHlER
STAlE

Figure 4. CY7C604 & CY7C330 Timing for Master 0

~
:.n~ucrOR =====;;;;;;;;U;;;s;;;;in;;:g;;t;;;;h;;;;e;;;;;C;;;;;Y~7;;;C;;;;3;3;;;;;O;;;;;;;a;;;;s;;;;;;;a;;;;;;M;;;;;;;;u;;;;lt;;;;;;i-;;;;;;c;;;;;h;;;;;a;;;;;D;;;;;;De;;;;;I;;;;;M;;;;;;;;;;;h;;;;;u;;;;s;;;;;A;;;;;r;;;;;h;;;;;it;;;;;e;;;;;;r

Figure 5. Arbiter Block Diagram

II\GTII
II\GTI
11\GT2
IIIGT3

and write enable (/WE) signals from the CY7C601 to
generate an enable signal.

The priority latch accepts three data lines from the
processor bus (one for the priority enable and two for
the high-priority bus master's value). The latch loads
the values into dedicated registers.

The random counter, a minor portion of the design,
is a free-running counter that supplies a 2-bit binary
value to the priority-select block. The count changes
every output clock (CLKl) cycle and provides a "seed"
for the random priority function.

The priority-select block chooses between the
priority latch outputs (LPO - 1) and the random counter
value (CTO - 1) using the EN signal as the selection
criteria. The two outputs (PRIO - 1) feed to the hand­
shake state machine and arbitrate between bus masters
when more than one simultaneous request occurs.

The handshake state machine monitors the request
(MRQO - 3) and busy (MBB) inputs and generates the
grant (MGTO - 3) signals that give an Mbus master
ownership of the bus.

Priority Latch, Select and Random Counter
As described previously, the priority latch is a

synchronous register loaded by the processor. When the
active-Low write enable (/WE) and chip select (/CS)
signals are both Low, the latch loads three data bits
from the bus to the three macrocells dedicated to the
priority latch. When either lWE or ICS are inactive
(High), each register's output value is continuously
reloaded every clock cycle, thus retaining the proper
value. The equations for the priority latch are:
EN= ICS */WE*D2 + ICS*/WE*Dl + ICS*/WE*DO
+ EN*WE + LPI *WE + LPO*WE + EN*CS; +

LPI *CS; +LPO*CS;
EN = LPl= LPO;

The random counter is simply a 2-bit counter that
changes state every output clock (CLKl) transition. The
counter clears when lRESET is Low and counts in a

6-272

FID\ 11lE. GTLVAIT. GT2.VAIT (J' GlUAIT

IftIB ACTIVE

TO GTlUl

TOGTIJI TOGT3Jl
TO GT2JJ

Figure 6. Bus Master 0 State Diagram.

0-1-2-3 sequence. The equations for the random
counter are:
cn = CTO = + CTI */CTO + ICTO; + ICTI *CTO;

The priority selection block selects between the
priority latch and the random counter. This block is a
registered multiplexer that loads its register outputs
with the priority latch value if EN = 1, or the counter's
current state if EN = O. The outputs are updated every
clock and fed to the handshake state machine.

Handshake State Machine
The handshake state machine controls Mbus hand­

shake and arbitration. The machine cycles through 13
discrete states in performing its function. On power-up
or reset, the state machine enters the idle state, waiting
for a bus request. Upon receiving a request (/MRQO,
for instance), the machine enters a wait mode (state
GTO 0). In wait mode, the arbiter looks for busy
(!MBE) to go inactive, while driving the IMGTO output
active. When !MBB goes inactive, the machine goes to
state GTO 1 and holds IMGTO active, while waiting for
the granted master to· assert !MBB. When IMBB is

Table 1. Mbus Channel Priorities

Latched PRIORITY

Value FIRST 2ND 3RD LOWEST

11 master3 master2 masterl master4

10 master2 masterl masterO master3

01 masterl masterO master3 master2

00 masterO master3 master2 masterl

~~ ;;U~si~n!g~t;;;he~C;;;Y;;;7;;;C;;;3;;3;;;O;;;;;;a;;;s;;;;;;a;;M~u;;;lt;;;;i;;;.c;;;;;;;;h;;;;;a;;;;;;;;nn;;;;;;;;e;;;;;;;;I;;;;;;;;M;;;;;;;;;;;;;;;b;;;;;;;;;;;;;;;us ;;;;;;;;A;;;;;;;;r;;;;;;;;b;;;;;;;;it;;;;;;;;;;;er
~ SEMJeamUCTOR;;;;

detected, the machine goes to state GTO _WAIT and
looks for another request. The MGTO grant line is held
active during and after the sequence, allowing the
master to maintain bus ownership until another master
requests ownership.

Figure 6 shows the bus master 0 state diagram and
the request/grant handshake. The operation is identical
for each of the four bus masters.

The equations for the handshake state machine can
be produced from a state transition table that also in­
cludes the arbiter's priority encoding. The table can be
reduced to a manageable number of minterms using a
public-domain optimizer called McBOOLE .. (see the
Reference). Appendix A shows the state tranSItIon table.
The sum-of-products format equations are then merged
into the Cypress PLD ToolKit design file with the
priority -latch, random-counter, and priority -se~ection
equations. The PLD ToolKit design file appears m Ap­
pendix B.

Design Verification
The CY7C330 four-channel Mbus arbiter design

was entered and verified using the PLD ToolKit. Design
verification was performed using the PLD ToolKit's in­
teractive simulator. A mouse was used with pop-down
menus to create the circuit stimuli by drawing the
waveform on the graphics screen for a each CY7C330
node or pin. The SIMULATE command was then
selected, and the response waveforms were visu~ly in­
spected, giving a high degree of confidence m the
design's function before programming a part.

Reference
"McBOOLE: A New Procedure For Exact Logic

Minimization," M.R. Dagenias, V.K. Agarwal, N.C.
Rumin, IEEE transactions on CAD of Circuit and Sys­
tems, vol. CAD-5, N.I, January 1986, p.229.

6-273

5:1;= Using the CY7C330 as a Multi-channel Mbus Arbiter
~CaID~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix A. Mbus Handshake! Arbiter State Transition Table.

I*STATE TABLE FOR MBUS ARBITER HANDSHAKE STATE MACHINE -names:
MBB,MRQ3,MRQ2,MRQ1.MRQO,PRI1,PRIO,STI,ST2,ST1,STO,MGTI,MGT2,MGT1,MGTO; input
STI,ST2,ST1,STO,MGTI,MGT2,MGT1,MGTO; output
*1

1* PRESENT NEXT
STATE STATE
(INPUTS) (OUTPUTS)

MMMMPP MMMM MMMM

MRRRRRRSSSSGGGG SSSSGGGG
BQQQQll I I I I I I I I II II II II
B32101032103210 32103210*1
XllllXXOOOOOOOO OOOOOOOO I*W AlT FOR MRQx *1
XI110XXOOXOXXXX 01000001 I*GOTO GTO *1
XllOlXXOOXOXXXX 01000010 I*GOTO GTt *1
XIOlIXXOOXOXXXX 10000100 I*GOTO GT2 *1
XOIIIXXOOXOXXXX 10001000 I*GOTO GTI *1
XOOOOOOOOXOXXXX 01000001 I*GOTO GTO *1
XOOO1 OOOOXOXXXX 10001000 I*GOTO GTI *1
XOO100000XOXXXX 01000001 I*GOTO GTO *1
XOO110000XOXXXX 10001000 I*GOTO GTI *1
X01000000XOXXXX 01000001 I*GOTO GTO *1
XO 10 1 OOOOXOXXXX 10001000 I*GOTO GTI *1
XOllOOOOOXOXXXX 01000001 I*GOTO GTO *1
X10000000XOXXXX 01000001 I*GOTO GTO *1
Xl00l0000XOXXXX 10000100 I*GOTO GT2 *1
XI0l00000XOXXXX 01000001 I*GOTO GTO *1
XllOOOOOOXOXXXX 01000001 I*GOTO GTO *1
XOOOOO100xOXXXX 01000010 I*GOTO GTt *1
XoooI0100XOXXXX 01000010 I*GOTO GT1 *1
XOOI001 OOXOXXXX 01000001 I*GOTO GTO *1
XOOI10100XOXXXX 10001000 I*GOTO GTI *1
XO 10001 OOXOXXXX 01000010 I*GOTO GTt *1
XO 10 101 OOXOXXXX 01000010 I*GOTO GTt *1
X01100100XOXXXX 01000001 I*GOTO GTO *1
X10000100XOXXXX 01000010 I*GOTO GTt *1
X1OO10100XOXXXX 01000010 I*GOTO GTt *1
XI0loo100XOXXXX 01000001 I*GOTO GTO *1
Xl1ooo100XOXXXX 01000010 I*GOTO GTt *1
XOOOOloooXOXXXX 10000100 I*GOTO GT2 *1
XooolloooXOXXXX 10000100 I*GOTO GT2 *1

X0010 l000XOXXXX 10000100 I*GOTO GT2 *1

Xooll1000XOXXXX 10000100 I*GOTO GT2 *1

XO 100 1 OOOXOXXXX 01000010 I*GOTO GTt *1
X01011OOOXOXXXX 01000010 I*GOTO GTt *1

XOll 0 loooXOXXXX 01000001 I*GOTO GTO *1

Xlooo1oooXOXXXX 10000100 I*GOTO GT2 *1
XlOOl1000xOXXXX 10000100 I*GOTO GT2 *1
X10101000XOXXXX 10000100 I*GOTO GT2 *1

X11OO1OOOXOXXXX 01000010 I*GOTO GTI *1
XOOOO11 ooXOXXXX 10001000 I*GOTO GTI *1
Xoooll100XOXXXX 10001000 I*GOTO GTI *1
XOO101100XOXXXX 10001000 I*GOTO GTI *1

6-274

-s;):CYPRESS Using the CY7C330 as a Multi-channel Mbus Arbiter
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix A. Mbus Handshake/Arbiter State Transition Table.

XOOllll00XOXXXX 10001000 '*GOTO G1'3 *'
X01001100XOXXXX 10001000 '*GOTO G1'3 *'
XOI011100XOXXXX 10001000 '*GOTO G1'3 *'
XO 110 11 OOXOXXXX 10001000 '*GOTO G1'3 *'
Xl0001100XOXXXX 10000100 '*GOTO GT2 *'

Xl00l1100XOXXXX 10000100 '*GOTO GT2 *'
XlOI01100XOXXXX 10000100 '*GOTO GT2 *'
X 1100 11 OOXOXXXX 01000010 '*GOTO GTI *'

'*CH 0 STATES *'

OXXXXXXOI000001 01000001 '*GTO_O, WAIT ONMBB= 1 IN GTO_O*'

lXXXXXXOl00000l 00010001 '*GTO_O, GOTO GTO_l *'

1 XXXXXXOOO 1 0001 00010001 '*GTO_l, WAIT ON MBB= ° *'
OXXXXXXOOOI 000 1 00100001 I*GTO_l, GOTO GTO_WAIT *'

Xll11XXOOl00001 00100001 I*GTO_WAIT *'

'*CH 1 STATES *'
OXXXXXXOl000010 01000010 I*GTl_O, WAIT ONMBB= lINGTl_O*1

lXXXXXXOlooooI0 00010010 I*GTl_O, GOTO GTl_l *1

lXXXXXX00010010 00010010 I*GTl_l, WAIT ON MBB= ° *'
OXXXXXXOOOl0010 00100010 I*GTl_l, GOTO GTl_WAIT *1
XI111XXoolooolO 00100010 I*GTl_ WAIT *'

'*CH 2 STATES *'
OXXXXXXI 00001 00 10000100 I*GT2_0, WAIT ON MBB= 1 IN GT2_0*1
1 XXXXXX 1 0000100 00010100 I*GT2_0, GOTO GT2_1 *'
lXXXXXXoooI0loo 00010100 I*GT2_1, WAIT ONMBB = ° *1
OXXXXXXoooI01oo 00100100 I*GT2_1, GOTO GT2_WAIT *1
XIIIIXX00100100 00100100 '*OT2_WAIT *'

'*CH3 STATES *'
OXXXXXX 1000 1000 10001000 I*OT3_0, WAIT ONMBB= lINOT3_0*'
1 XXXXXX 1 000 1000 00011000 '*GT3_0, GOTO OT3_1 *'
lXXXXXXOOOll000 00011000 I*OT3_1, WAIT ONMBB = 0*'
OXXXXXX00011000 00101000 '*GT3_1, OOTO GT3_WAIT *1
XllllXXool0l000 00101000 '*G1'3_WAIT *'

6-275

57~ =;;;V;;;;;;;S;;;;;;;iD;:g::;t;;;;;;;h;;;;;;;e;;;;;;;C;;;;;;;Y;;;;;;;;;;;;;7;;;;;;;C;;;;;;;3;;;;3;;;;;;;O;;;;;;;a;;;;;;;S;;;;;;;a;;;;;;;M;;;;;;;;;;;;;u;;;;;;;lt;;;;;;;i-;;;;;;;c;;;;;;;h;;;;;;;a;;;;;;;D;;;;;;;D;;;;;;;el;;;;;;;M=h;;;;;;;u;;;;;;;s;;;;;;;A;;;;;;;r;;;;;;;h;;;;;;;it;;;;;;;e;;;;;r

CY7C330;

CONFIGURE;

CLKl,
CLK2,
!RESET,
MBB,
MRQO,
MRQl,
MRQ2,
MRQ3(node=9),
CS,
WE,
DO,
01,
02,

!MGTO(node= 15),
!MGTl,
!MGT2,
IMGT3,
lEN,
IPRIO(node=23),
!PRIl,
!CTO,
!cn,
!LPO,
!LPt,
INT RST(node=29),
STO(node=31),
STl,
ST2,
ST3,

EQUATIONS;

INT _ RST = RESET;

Appendix B. PLD ToolKit Source File for Mbus Arbiter

{DESIGN FILE: FOUR CHANNEL MBUS ARBITRATION UNIT WITH
RANDOM PRIORITY COUNTERS AND SYNCHRONOUS PRIORITY ENABLE}

{INPUTS}

{Output Clock 2x CLK2 }
{Input Clock = MBUS System Clock }
{Reset, Active Low}
{MBUS Busy, Active Low}
{MBUS Channel 0 Request, Active Low}
{MBUS Channel 1 Request, Active Low}
{MBUS Channel 2 Request, Active Low}
{MBUS Channel 3 Request, Active Low}
{Decoded Processor Chip Select}
{Processor Write Enable}
{Data Bus Bit 0, Lalched Priority Bit O}
{Data Bus Bit 1, Latched Priority Bit I}
{Data Bus Bit 2; Latched Priority Enable Bit}

{OUTPUTS}

{MBUS Channel 0 Grant, Active Low}
{MBUS Channel 1 Grant, Active Low}
{MBUS Channel· 2 Grant, Active Low}
{MBUS Channel 3 Grant, Active Low}
{Settable Priority Enable Bit}
{Priority Selection Bit O}
{Priority Selection Bit I}
{Random Counter Bit O}
{Random Counter Bit I}
{Latched Priority Bit O}
{Latched Priority Bit I}
{Sync Reset Node}
{State Variable Bit O}
{State Variable Bit I}
{State Variable Bit 2}
{State Variable Bit 3}
{End of configuration section}

{MBUS Request/Grant Handshake State Machine Equations}

ST3 = <SUIll> IMRQ3*MRQl *MRQO*/PRIl *IST3*IST2*ISTO
+ IMRQ3*PRIl *PRIO*IST3*IST2*ISTO

+ IMRQ3*MR QO*/PRIl */PRIO*IST3*IST2*ISTO
+ IMRQ3*MRQ2*MRQl*MRQO*IST3*IST2*ISTO
+ IMRQ2*PRll*/PRIO*IST3*IST2*ISTO
+ MRQ3*/MRQ2*MRQl*MRQO*IST3*IST2*ISTO
+ MRQ3*/MRQ2*MRQO*/PRIO*IST3*IST2*ISTO

+ MRQ3*/MRQ2*PRIl*IST3*IST2*ISTO
+ IMBB*ST3*IST2*ISTl*ISTO*/MGT3*MGT2*/MGTl*/MGTO
+ IMBB*ST3*IST2*ISTl*ISTO*MGT3*/MGT2*/MGTl*/MGTO;

6-276

~
~~RESS Using the CY7C330 as a Multi-channel Mbus Arbiter
~;r~~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix B. PLD ToolKit Source File for Mbus Arbiter

ST2 <SU1ll> MRQ2*/MRQl *PRIl */PRIO*IST3*IST2*ISTO
+ MRQ2*MRQ 1 */MRQO*/PRIO*IST3*IST2*ISTO
+ IMR Q 1 */PRIl *PRIO*IST3*IST2*ISTO
+ IMRQO*/PRIl */PRIO*IST3*IST2*ISTO
+ MRQl*/MRQO*/PRIl*IST3*IST2*ISTO
+ MRQ3*MRQ2*/MRQ 1 *MRQO*IST3*IST2*ISTO
+ MRQ3*MRQ2*/MRQl*PRIl*IST3*IST2*ISTO
+ MRQ3*MRQ2*MRQ 1 */MRQO*IST3*IST2*ISTO
+ IMBB*IST3*ST2*ISTl *ISTO*/MGT3*/MGT2*/MGTl *MGTO
+ IMBB*IST3*ST2*ISTl *ISTO*IMGT3*/MGT2*MGTl */MGTO;

STl <sum> IMBB*IST3*IST2*ISTl *STO*/MGT3*/MGT2*MGTl */MGTO
+ IMBB*IST3*IST2*/ST1 *STO*IMGT3*MGT2*/MGTl */MGTO
+ IMBB*IST3*IST2*ISTl *STO*MGT3*/MGT2*/MGTl */MGTO
+ IMBB*IST3*IST2*ISTl*STO*/MGT3*/MGT2*/MGTl*MGTO
+ MRQ3*MRQ2*MRQl *MRQO*IST3*IST2*STl *ISTO*/MGT3*/MGT2*MGTl */MGTO
+ MRQ3*MRQ2*MRQl*MRQO*IST3*IST2*STl*ISTO*/MGT3*MGT2*/MGTl*/MGTO
+ MRQ3*MRQ2*MRQ 1 *MRQO*IST3*IST2*STl *ISTO*/MGT3*/MGT2*/MGTl *MGTO
+ MRQ3*MRQ2*MRQl*MRQO*IST3*IST2*STl*ISTO*MGT3*IMGT2*/MGTl */MGTO;

STO = <sum> MBB*IST3*IST2*ISTl *STO*/MGT3*/MGT2*/MGTl *MGTO
+ MBB*IST3*/ST2*ISTl *STO*IMGT3*/MGT2*MGTl */MGTO
+ MBB*/ST3*IST2*/STl *STO*/MGT3*MGT2*/MGTl *IMGTO
+ MBB*IST3*/ST2*ISTl *STO*MGT3*/MGT2*/MGTl */MGTO
+ MBB*IST3*ST2*ISTl *ISTO*/MGT3*/MGT2*MGTl *IMGTO
+ MBB*ST3*IST2*ISTl */STO*/MGT3*MGT2*/MGTl */MGTO
+ MBB*/ST3*ST2*/STl*ISTO*/MGT3*/MGT2*/MGTl*MGTO
+ MBB*ST3*/ST2*/STl *ISTO*MGT3*/MGT2*/MGTl */MGTO;

MGT3=<oe>
<sum> /MRQ3*MRQl *MRQO*/PRIl *IST3*/ST2*ISTO
+ IMRQ3*PRIl *PRIO*/ST3*IST2*/STO
+ IMRQ3*MRQO*/PRIl */PRIO*/ST3*/ST2*ISTO

+ /MRQ3*MRQ2*MRQ 1 *MRQO*IST3*IST2*/STO
+ MBB*IST3*IST2*/STl *STO*MGT3*IMGT2*/MGTl */MGTO
+ IMBB*/ST3*/ST2*/STl *STO*MGT3*/MGT2*/MGTl */MGTO
+ MRQ3*MRQ2*MRQ 1 *MRQO*IST3*/ST2*STl */STO*MGT3*/MGT2*/MGTl */MGTO
+ MBB*ST3*IST2*/STl */STO*MGT3*/MGT2*/MGTl */MGTO
+IMBB*ST3*IST2*/STl *ISTO*MGT3*IMGT2*IMGTl */MGTO;

MGT2 = <oe>
<sum> MBB*IST3*IST2*/STl *STO*/MGT3*MGT2*IMGTl */MGTO

+ IMBB*/ST3*IST2*ISTl *STO*/MGT3*MGT2*/MGTl */MGTO
+ IMRQ2*PRIl */PRIO*IST3*IST2*ISTO
+ MRQ3*/MRQ2*MRQ 1 *MRQO*IST3*IST2*ISTO
+ MRQ3*MRQ2*MRQ 1 *MRQO*IST3*IST2*STl *ISTO*/MGT3*MGT2*/MGTl */MGTO
+ MRQ3*/MRQ2*MRQO*/PRIO*IST3*IST2*ISTO
+ MRQ3*/MRQ2*PRIl */ST3*IST2*ISTO
+ MBB*ST3*IST2*ISTl *ISTO*/MGT3*MGT2*/MGTl */MGTO
+ IMBB*ST3*IST2*ISTl *ISTO*/MGT3*MGT2*/MGTl */MGTO;

MGTl = <oe>
<sum> MBB*IST3*IST2*ISTl *STO*/MGT3*/MGT2*MGTl */MGTO

+ IMBB*IST3*IST2*ISTl *STO*/MGT3*/MGT2*MGTl */MGTO
+ MRQ2*/MRQl *PRIl */PRIO*IST3*IST2*ISTO
+ IMRQ 1 */PRIl *PRIO*IST3*IST2*ISTO
+ MRQ3*MRQ2*/MRQl*MRQO*IST3*IST2*ISTO
+ MRQ3*MRQ2*/MRQ 1 *PRIl *IST3*/ST2*/STO
+ MRQ3*MRQ2*MRQ 1 *MRQO*IST3*/ST2*STl */STO*/MGT3*/MGT2*MGTl */MGTO
+ IMBB*/ST3*ST2*ISTl */STO*/MGT3*/MGT2*MGTl */MGTO
+ MBB*/ST3*ST2*/STl *ISTO*/MGT3*/MGT2*MGTl */MGTO;

6-277

~
~~RESS -;;;V;;;;;;;;;;;;;;;si;;;;D;:;g;;;;t;;;;he;;;;;;;;;;;;;;;C;;;;Y;;;;7;;;;C;;;;3;;;;3;;;;O;;;;a;;;;s;;;;a;;;;M;;;;;;;;;;;;;;;ll;;;;It;;;;i-;;;;c;;;;h;;;;a;;;;D;;;;ne;;;;I;;;;M;;;;;;;;;;;;;;;h;;;;ll;;;;s;;;;A;;;;r;;;;h;;;;it=er ~, SEM!camucrOR _

Appendix B. PLD ToolKit Source File for Mbus Arbiter

MGTO = <oe>
<SUlll> MBB*IST3*IST2*ISTl *STO*/MGT3*/MGT2*IMGTl *MGTO

+ IMBB*IST3*IST2*IST1 *STO*IMGT3*IMGT2*IMGTI *MGTO
+ MRQ2*MR Q 1 */MR QO*/PRIO*IST3*IST2*ISTO
+ IMRQO*IPRIl */PRIO*IST3*IST2*ISTO
+ MRQ 1 */MRQO*IPRIl *IST3*IST2*ISTO
+ MRQ3*MRQ2*MRQ 1 */MRQO*IST3*IST2*ISTO
+ MRQ3*MRQ2*MRQ 1 *MRQO*IST3*IST2*STI *ISTO*/MGT3*/MGT2*IMGTI *MGTO
+ IMBB*IST3*ST2*ISTI *ISTO*/MGT3*IMGT2*IMGTI *MGTO
+ MBB*IST3*ST2*ISTI *ISTO*/MGT3*IMGT2*/MGTI *MGTO;

{Random Counter Equations}

CTl = <oe>
<SUlll> CTI */CTO

+ ICTl*CTO;

CTO <oe>
<SUlll> ICTO;

{Latched Priority Equations}

EN <oe>
<SUlll> ICS*IWE*D2

+ EN*WE
+ EN*CS;

LPI = <oe>
<SUlll> ICS*IWE*Dl

+ LPl*WE
+ LPl*CS;

LPO = <oe>
<SUlll> ICS*IWE*DO

+ LPO*WE
+ LPO*CS;

{Priority Selection Latch}

PRIl <oe>
<SUlll> IEN*CTl

+ EN*LPl;

PRIO = <oe>
<SUlll> IEN*CTO

+ EN*LPO;

{End of file}

6-278

CYPRESS
SEMICONDUCTOR

Using the CY7C331as a Waveform Generator

This application note demonstrates the ability of the
Cypress CY7C331 CMOS Erasable Programmable Logic
Device (EPLD) to implement a design requiring multiple
clocks, input registers, buried registers, and independent
control of individual registers' set and reset inputs. Com­
bined with this design flexibility, the CY7C331 provides
high-speed performance-an unprecedented combination.

The application example described in this application
note shows how to use the CY7C331 as a programmable
waveform generator.

CY7C331 Background
The CY7C331 is a member of the Cypress slimline

28-pin family of high-performance CMOS EPLDs, which
are characterized by high speed, increased I/O, and high
integration. The CY7C331 has a highly flexible architec-

OE RM

OUT SET PTERM

PRODUCTS

OUT ClK PTERM

OUT RESET PTERM

IN ClK PTERM

IN SET PTERM

TO INP T B FFER

IN RESET PTERM

TO INPUT BUFFER

ture that supports asynchronous and general-purpose glue­
logic integration applications.

The CY7C331 has a 192-product-term array and 12
I/O-logic macrocells. Each macrocell has two D-type flip­
flops with asynchronous set, reset, and bypass capability.
You can individually program the flip-flops' clock, set,
and reset inputs, as well as each macrocell's logic polarity
and output enable control. The CY7C331 easily supports
combinatorial and registered inputs, along with buried
states.

The ability to bury registers and associated gates is
highly desirable because it helps increase the number of
usable gates in an EPLD. Typically, if you use an I/O pin
as an input, you waste the output register and its support­
ing product term structure. This loss occurs because con­
ventional devices provide only one macrocell feedback

OE (PIN 14)

CO

r-------+-------~ ~r-~~L-~~PIN

reg1 ster

FROM ADJACENT
MACROCEll

Figure 1. The CY7C331 I/O Macrocell and Shared Input Mux

6-279

path. Using this path as an input makes it impossible to
feed the contents of the register back into the array.

The CY7C331's dual-muxing structure eliminates this
limitation by allowing you to use the shared input mux
(Figure 1) as an I/O path into the array, while simul­
taneously feeding back the register contents using the
separate macrocell feedback mux. Because you can make
the CY7C331's output register transparent by asserting
both the register's set and clear nodes, you can also
achieve simultaneous combinatorial feedback. Using this
feature, you can implement bidirectional I/O in both
registered and combinatorial configurations.

Configuring the CY7C331
Figure 2 lists PLO ToolKit source code that con­

figures a CY7C331 I/O macrocell as bidirectional, with
feedback from the output. The I/O pin corresponding to
the macrocell is labeled 10 PIN, and the path from the
I/O pin to the macrocell is :iN PATH. The code includes
explanatory comments. -

Note that the source code assigns 10 PIN to node 28
and IN_PATH to node 34, with pin 28 as-a source. In the
PLO ToolKit simulator, you must add the input waveform

on the trace corresponding to node 28, even though that
trace is named 10 PIN. IN PATH's node 34 is a read­
only node. This is true even If you configure 10 _PIN as a
buried register, and IN PAlH is always an input. The
reason is that node 34 is just a mux, and the register as­
sociated with the input belongs to node (pin) 28. If you
want to see the output register's value when the pin is an
input, you can create a view node for the mux node. This
arrangement allows you to probe several different places
inside a macrocell (see the Reference for more informa­
tion on view nodes).

The CY7C331 as a Function Generator
Waveform generators are useful in a variety of ap­

plications, primarily in the test and diagnostic areas. Any
time you need to create high-speed digital waveforms, a
programmable waveform generator is the ideal solution.
The CY7C331 design described here allows you to
generate waveforms of frequencies greater than 30
MHz.

This waveform generator builds waveforms with
respect to a system clock called SYS CLK. To use the
generator, you load into LOW _ REG(2:0) the number of

{***}
CY7C331; {The first line of code selects the device}
CONFIGURE; {In this section pin and node names are specified, along with configuration information}

INCLK, OUTCLK, IINCLR, IINSET, OEI, IOE2, INPUT, IOUTCLR(NOOE=9), 10UTSET,
{The input names are listed above. Pin I will be the input clock, pin 2 will be the output clock. Pins 3 and

4 will be the input register's clear and set signals respectively. Pins 5 and 6 will be output enables, OEI is high
asserted, IOE2 is low asserted. Pin 7 is a straight input. We skip pin 8 because it is Vss. Pins 9 and 10 will be
the input register's clear and set signals.}
10 PIN(NOOE=28, IREG), IN PATH(NOOE=34, SRC=28), OUT(NODE=27),

- {Pin 28 is the actual bidirectional pin. The IREG attribute specifies that the input to the array comes from
the output register, rather than the pin. Node 34 is the shared input mux for nodes 27 and 28. IN PATH is the
input path to the array from pin 28. Pin 27 is a simple output.} -
EQUATIONS; {This is where the array is specified.}

OUT =

<SUM> INPUT {When 10 PIN is an output, it follows Pin 7.}
<SET OUT> OUTSET -
<CLR-OUT> OUTCLR
<CLK - OUT> OUTCLK
<OE> OEI * OE2 {Outputs are enabled when OE_l is high, and IOE_2 is low.}
<CLK IN> INCLK
<CLR -IN> INCLR
<SET]N> INSET;

<OE> {Listing the connective alone sets the product term to "I", always asserted.}
<SET OUT> {When both the set and reset product terms are asserted, the register}
<CLR-=. OUT> {becomes transparent. Thus, this is a combinatorial output.}
<SUM> IN PATH; {This output always shows the value of the input register at pin 28.}

- {If the register is in combinatorial mode, the value on pin 28 will be shown.}

Figure 2. PLD ToolKit Source Code for
a Bidirectional Pin With Feedback

6-280

SYS _ CLK cycles that you want the output waveform
(OUT W AVE) to remain Low. HI REG(2:0) contains the
number of SYS CLK cycles that you want OUT WAVE
to be High. For this implementation. the values must be
between 2 and 7.

When the START signal is asserted. OUT WAVE
goes low. and LOW REG(2:0) is loaded into a counter.
When the count is almost O. the signal TERM CNT is
deasserted. then reasserted when the count reaches O. This
toggles OUT WAVE and loads a second counter with the
value in HIJlliG(2:0). The cycle repeats. alternating be­
tween HI REG(2:0) and LOW REG(2:0) until SYS CLK
is withheld. or new values are loaded into HI REG(2:0)
and LOW _REG(2:0). and START is reissued:- Figure 3
depicts the waveforms for this design.

HI _ REG(2:0) and LOW _ REG(2:0) are loaded using
IDS and ADDR(7:0). You can specify any address for
these registers. In this example. HI REG(2:0) is at
ADDR(7:0) = 00 Hex. and LOW-REG(2:0) is at
ADDR(7:0) = 01 Hex. -

LOW _ CLK _ IN is the clock input for
LOW _ REG(2:0). The clock results from decoding the ac­
tive low IDS (data strobe) and ADDR(7:0) ;., 01 Hex.
HI _ CLK _IN is similarly decoded from IDS and
ADDR(7:0) = 00 Hex.

LOW CNT (2:0) and HI CNT (2:0) form two 3-bit
counters. These counters are iOaded-with the contents of

the LOW _ REG(2:0) and HI_ REG(2:0) registers. respec­
tively. via each flip-flop's individual set and reset.
LOW CNT (2:0) is loaded when /TERM CNT is Low
and OUT WAVE is High. Similarly, HI-CNT (2:0) is
loaded when /TERM CNT is Low and OUT ViA VE is
Low. SYS CLK clockS both counters. -

lTERM CNT is also clocked by SYS CLK and
detects when either of the counters equals 1. -When this
occurs. lTERM CNT goes Low for one clock. then goes
High again. -/TERM CNT's rising edge clocks
OUT WAVE. which toggles on every clock.

Implementing this design requires two separate 3-bit
input registers. decoding logic for the input-register
clocks, two separate 3-bit counters, logic. and two miscel­
laneous registers. All the counter flip-flops must be in­
dividually settable or resettable. In addition. there are four
separate clocking functions. Figure 4 shows an im­
plementation of this design using small-scale
integration.

This type of design is usually difficult to implement
in a PLD. The flip-flops in most PLDs permit neither the
use of the individual set and reset inputs nor separate
clocking. Because the CY7C331 has these features. how­
ever. it implements the design effortlessly.

PLD ToolKit Implementation

ADDR(7:0) XZ\ 00 ~~ ______________ ~P~Oa"_'T~C~A~R~E ________________________ __

IDS ~

HI_REG(2:0) ~~~~~~ __ ___

LOW_REG(2:0) ~~~~~~XX~-L __ _

START --------~;--\~----------~------------------------------

\'--------'/ \~ __ ____J/

x x x \ /

Figure 3. Waveform Generator Internal and External Timing

6-281

Appendix A contains the Cypress PLD ToolKit source
code for the waveform generator. Two aspects of the code
require some clarification: the pin assignments and
polarity.

output. Because this is the defaul~ it does not need to be
specifie~ but it is included here for documentation pur­
poses. The same is true for TERM CNTt IHI CNT 0,
and /LOW CNT 1. - --

The pin assignments for nodes (pins) 1 through 14
are straightforward. Pin 8 has been skipped because it is a
Vss pin. Otherwiset these pins are the CY7C33rs com­
binatorial inputs and thus require no configuration infor­
mation.

OUT_WAVE is assigned to pin 16. "lOP" following
the node assignment indicates that the feedback mux is
programmed to feed back the OUT_WAVE registert s Q

Notice that -HI IN 1 and LOW IN 0 have the at­
tribute "!REO" listed after the node assignment. This at­
tribute specifies that these pins are dedicated inputs; the
feedback mux selects the Q output of the input register
associated with the pint as opposed to the output register's
Q output. This is an override of the default discussed
above.

SYI t_1

IDI r--....
1&11111"
LAURI

I LA ,aDDI. """ ua ••
LADJIJII }-L-A.i -C L ,_" ~
LllDR4
IADDU ~F=I

,I,
lADDIl " _ IIBY lIa,w
LADDR7 ~h -Tra. tllT-
.LUl11

r8
ftIiT~

.1111 tiT - IIr-"
LOII_RU

~II~ -PD- " 1I0T lIa ••
,-, TOIiriT

J.JIJI..I.I

~ ,.
lIo .. ua ••

LOll_lEi t:op>-~ ,I, I L 1111 t I , II T"'. " IT

r~ \' I ~ .', IIUT IIJ
1.011 II D, , .

r~ ..
~ LOII_UU '"oT lIa ••

~)--I- _C LI_II ~
,I,

" '8"., "a.,
~h -

HI 'I II

r8
'8".,-"aVIr

.. , .,.T ~ I ..
II_RUI

~~ .. -PD- ,. IHI elT It I ,,,,, .. "av~
hT-.--'. tiT

.HI II 1

r8 ..
'II"" uav.

II_REI

t:op>-b®J~
..... -tIlT

'A"" uav~
Tn.-tIlT

HI II ! II ,

YE

QI

START II_REn

S'fS eLla.

Figure 4. Schematic of the Waveform Generator

6-282

wn Using the CY7C331 as a Waveform Generator
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

The rest of the assignments are of the same form as 
IHI CNT 2 and HI IN 2. IHI CNT 2 is assigned to node 
18,-with an attribute of IOP.-As mentioned earlier, this 
configures the feedback mux to select feedback from 
IHI CNT 2 as the array input. HI IN 2 is assigned to 
node 30, -which is an additional mux that serves as an 
input path from the input register on either pin 18 or 17. 
The notation "SRC = 18" specifies that HI_IN _2 is as­
signed to the input register on pin 18. The default is that 
the even pin is always selected, and thus "SRC = 18" is 
included primarily for documentation purposes. This 
method for utilizing both a pin's input and output registers 
is used four times in this design. In each case, the output 
register is buried (not accessible to the pin). Figure 5 
shows the CY7C331 footprint with all external pin signals 
labeled. 

A close look at the file in Appendix A might also 
raise questions concerning polarity conventions in the 
PLD ToolKit. Polarity on inputs is fairly straightforward. 
Note that the "I" in ISTART denotes a Low-asserted sig­
nal. When START appears in the EQUATIONS section 
(refer to lOUT _ WAVE and /TERM _ CNT equatio~s) 
without the "I", the signal is interpreted as ISTART bemg 
asserted. Thus, when ISTART = 0, the OUT_WAVE 
register is set 

The output feedback polarity can cause more con­
fusion. Polarity on the CY7C331 is programmed using the 
XOR in the array. Thus, when TERM _ CNT is specified in 
the CONFIGURATION section, the output register is ac­
tually /TERM _ CNT, because an inverter lies between the 

6-283 

IDS NO CONNECT 
ADORa lOll III 0 - -
ADDRt lOll III 1 - -ADDRZ / lOI/_ CNT - 1 
ADDR3 lOll III Z -
ADDU /HI_ CNT - 0 
ADDRS Vee 

Vss Vss 
ADDU HI IN a -
ADDR7 HI IN 1 - -
START HI IN 2 - -

SYS ClK TERM CNT 
NO CONNECT OUT IIAYE -

SYS CLEAR NO CONNECT -
Figure 5. Footprint of the CY7C331 Waveform 

Generator 

register output and the pin. Further, when . you set 
TERM CNT, the pin is Low. How, then, do you specify 
that TERM CNT is asserted when it appears on the right 
of an equation? You refer to the polarity present on the 
pin. Thus, in the lOUT_WAVE equation's <CK_OUT> 
portion, TERM _ CNT is specified. This means that 
lOUT WAVE is clocked when pin 17 (TERM _ CNT) ex­
hibits a rising edge. 

Reference 
PLD ToolKit Manual, Chapter 4.3. Available from 

Cypress Semiconductor. 



~ 
~~RESS --,;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;V;;;;;;;;;;;;;si;;;;D;;g;;;;t;;;;he;;;;;;;;C;;;;Y;;;;7;;;;C;;;;3;;;;3;;;;1;;;;a;;;;s;;;;a;;;;;;;;W;;;;a;;;;v;;;;e;;;;fo;;;;;;;r;;;;m;;;;;;;;G;;;;e;;;;D;;;;;;;er;;;;a;;;;t;;;;;;;;;;;;or 
~, SEMICQIDUCTOR _ 

Appendix A. PLD ToolKit Code for the Waveform Generator 

CY7C331; 

CONFIGURE; 
IDS, 
ADDRO, ADDR1, ADDR2, ADDR3, ADDR4, ADDRS, 
ADDR6(NODE=9), ADDR7, 

{Low asserted data strobe} 
{address bits 0,1,2,3,4,S,} 
{address bits 6 and 7} 

ISTART, 
SYS CLK, 
SYS-CLEAR(NODE=14), 
OUT W A VE(NODE=16,IOP), 
TERM CNT(NODE= 17 ,lOP), 
IHI CNT 2(NODE=18,IOP), 
HI IN 2(NODE=30,SRC=18), 
He IN -1(NODE=19,IREG), 
IHI CNT 1 (NODE=20,IOP), 
HI IN 0(NODE=31,SRC=20), 
IHI CNT. 0(NODE=23,IOP), 
ILOW CNT 2(NODE=24,IOP), 
LOW -IN 2(NODE=32,SRC=24), 
ILOW CNT 1 (NODE=2S,IOP), 
LOW -IN 1(NODE=33,SRC=26), 
ILOW CNT 0(NODE=26,IOP), 
LOW]N _ 0(NODE=27,IREG), 

EQUATIONS; 

LOW_CNT_O := <SUM> /LOW CNT 0 
<CK OUT> SYS CLK 

{start sequence} 
{counter clock} 
{initialize OUT WA VE,TERM CNT to a quiescent state} 
{output wave rOiro} -
{terminal count decode register} . 
{high counter bit 2, a buried register} 
{high register input bit 2} 
{high counter input bit I} 
{high· counter. bit 1, a buried register} 
{pin 20 acts as high register input bit O} 
{high counter bit O} 
{low counter bit 2, a buried register} 

{pin 24 is low register input bit 2} 
{low counter bit I} 
{pin 26 acts as low register input bit I} 

{low counter bit 1, a buried register} 
{low register input bit O} 

<CK -IN> DS* mDRO*1 ADDR1 *1 ADDR2*1 ADDR3*1 ADDR4*1 ADDRS*I ADDR6*1 ADDR 7 
<SET OUT> ILOW IN 0 * lOUT WAVE * lTERM CNT 
<CLR-='OUT> LOW,=-IN=O * IOUT=WAVE * lTERM'=-CNT; 

<CK_IN> DS*ADDRO*/ADDR1*/ADDR2*/ADDR3*/ADDR4*/ADDRS*/ADDR6*/ADDR 7; 

LOW CNT 1 := <SUM> LOW CNT 1 
- - <XSUM> LOW CNT 0 

<SET OUT> ILOW IN 1 * lOUT WAVE * lTERM CNT 
<CLR- OUT> LOW-IN-1 * lOUT-WAVE * lTERM-CNT 
<CK OUT> SYS CLK - - -
<OE>; -

LOW CNT 2 := <SUM> LOW CNT 2 
- - <XSUM> LOW CNT 0 * LOW CNT 1 

<SET OUT> ILOW IN 2 * lOUT WAVE * lTERM CNT 
<CLR-OUT> Low1N-2 * lOUT-WAVE * ITERM-CNT 
<CK OUT> SYS CLK - - -
<CK=IN> DS*AI5DRO*/ADDR1 */ADDR2*/ADDR3*/ADDR4*/ADDRS*/ADDR6*/ADDR7; 

<SUM> OUT WAVE 
<CK OUT> TERM CNT 
<SET OUT> START 
<CLR-='OUT>SYS_CLEAR 

6-284 



C~RESS Using the CY7C331 as a Waveform Generator 
~, ~C~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. PLD ToolKit Code for the Waveform Generator 

/TERM CNT:= <SUM> /LOW CNT 0 * LOW CNT 1 * LOW CNT 2 
- <SUM> /HI-CNT 0 * HI CNT 1 * HI-CNT-2 

/HI_IN_l = 

HI_CNT_2:= 

<CK OUT;SYS -CLK - - - -
<CLR OUT> START 
<SET -OUT> SYS CLEAR 
<OE>; -

<SUM> /HI CNT 0 
<CK OUT>-SYS -CLK 
<OE; -
<CLR OUT> HI IN 0 * OUT W AVE * /TERM CNT 
<SET'=-OUT> /HCIN-=,O * OUT-='WAVE * /TERM-='CNT; 

<SUM> HI CNT 1 
<XSUM> HI CNT 0 
<SET OUT>/HI IN l*OUT WAVE*/TERM CNT 
<CLR-OUT> HCIN-l *OUT-WA VE*/TERM-CNT 
<CK OUT> SYS- CLK - -
<CK=IN> DS*/ ADDRO*/ADDRI */ ADDR2*/ ADDR3*/ ADDR4*/ADDRS*/ ADDR6*/ ADDR7; 

<CK_IN> DS*/ADDRO*/ADDRl*/ADDR2*/ADDR3*/ADDR4*/ADDRS*/ADDR6*/ADD R7; 

<SUM> HI CNT 2 
<XSUM> HI CNT 1 *HI CNT 0 
<SET OUT>/HI IN 2*OUT VIA VE*/TERM CNT 
<CLR-OUT> HI-IN-2*OUT-WA VE*ITERM-CNT 
<CK OUT> SYS- CLK - -
<CK=IN> DS*/ADDRO*/ADDRl*/ADDR2*/ADDR3*/ADDR4*/ADDRS*/ADDR6*/ADD R7; 

6-285 



CYPRESS 
SEMICONDUCTOR 

CY7C331 Application Example: Asynchronous, 
Self-Timed VMEbus Requester 

This application note describes how to use the 
Cypress CY7C331 CMOS erasable programmable logic 
device (EPLD) to support asynchronous, self-timed 
designs. The CY7C331 is ideal for implementing 
asynchronous, self-timed, and general-purpose logic· in­
tegration applications. The application example 
described here is an asynchronous, self-timed VMEbus 
requester. 

The CY7C331 is a member of the Cypress slim-line, 
28-pin family of high-performance CMOS EPLDs. 
Family members are characterized by high speed, in­
creased I/O, and high integration. The CY7C331 has a 
highly flexible architecture with a 192-product-term 
logic array and 12 I/O-logic macrocells. Each macrocell 
provides two D flip-flops with asynchronous set, reset, 
and bypass capability. The flip-flop's Clock, set, and 
reset inputs are individually programmable, as are each 
macrocell's logic polarity and output-enable control. 
The CY7C331 easily supports combinatorial and 
registered inputs and outputs and buried states. 

Additionally, the CY7C331 has the uncommon 
ability to self-time asynchronous, sequential applica­
tions. A self-timed design performs a sequential task 
without the presence of a clock to synchronize each 
step in the sequence. This design approach usually 
results in higher performance compared to synchronous 
designs. The main application for self-timing is in high­
performance I/O interfaces. The CY7C331 supports 
self-timed designs because its clock inputs are program­
mable, internal timing relationships are well-controlled, 
and metastable resolution is ultra-fast. 

The VMEbus is a common, high-performance 
asynchronous bus. The VMEbus request function is 
asynchronously initiated and sequential. In addition to 
showing the CY7C331 's ability to handle asynchronous, 
self-timed tasks, this application example demonstrates 
the use of many unique CY7C331 features. 

CY7C331 Brief Description 
The CY7C331 is available in a 28-pin slim-line (300 

mil wide) plastic or windowed DIP and in 28-pin PLeC 
and LCC packages. The windowed version is UV 

erasable and reprogranunable, and the plastic DIP, 
PLCC, and LCC versions are one-time programmable. 
The CY7C331 is available with TpD and Teo specified 
at 20 ns max and with register set-up times of 12 or 2 
ns, depending on whether the register connects to an 
input pin or to the device's .logic array. Other commer­
cial and military speed grades are also available. 

The CY7C331 is based on a programmable sum-of­
products (AND-OR) logic-array architecture. The logic 
array consists of 192 programmable product terms, each 
having as input the true and complement versions of 31 
logic inputs. The product terms connect to one of 
twelve I/O logic macrocells, and each of these macro­
cells connects to a device pin. The product terms are 
allocated with a variable distribution to the macrocells. 

The CY7C331 provides 13 combinatorial inputs to 
the array from dedicated input pins, one of which (pin 
14) can also be used as an output-enable control. The 
macrocells and six shared input muxes each provide an 
input to the array. A shared input mux selects the input 
from one of two adjacent macrocells (Figure1). 

The CY7C331's I/O-logic macrocell sums array 
product terms, selectively inverts the sum, and provides 
the result to the D input of a D flip-flop. The flip-flop's 
output (Q) connects through an inverting three-state 
buffer to a device pin and can be fed back to the array. 
The I/O macrocell also provides a second D flip-flop 
that latches data from the same device pin. This flip­
flop's Q output connects to the macrocell input-select 
mux and to the shared-input mux (see Figure1 in "Using 
the CY7C331 as a Waveform Generator"). Both flip­
flops have asynchronous set (S) and reset (R) inputs, as 
well as bypass capability. A flip-flop bypasses the D 
input to Q when S and R are both High. Separate 
product terms drive both flip-flops' clock, S, and R 
inputs. 

6-286 

A multi-input OR ogate sums the product terms. 
The number of product terms input to the OR gate 
depends on the macrocell (Figure1). A dual-input XOR 
gate selectively inverts the sum. The XOR gate's second 
input is a product term that controls selective inversion. 
You can control a macrocell's output enable (OE) by 



Figure 1. Cypress CY7C331 Block Diagram 

using pin 14 or a product term. The OE mux selects one 
of these two options. Another mux, the FB mux, selects 
the macrocell array input Each OE, FB, and shared­
input feedback mux . has an associated· programmable 
configuration bit that controls mux selection. 

CY7C331 Self-Timed Capability 
The main application for self-timed functions is in 

high-performance I/O interfaces, where clocking restric­
tions prevent performance requirements from being 
satisfied. These applications might not have an available 
clock, the clock might be too slow, or synchronization 
time might have to be minimized. 

A self-timed design implements a state machine 
without the presence of a clock to synchronize each 
state transition. The implementation of a self-timed 
design must meet two· basic requirements: 

1. It must time and perform state transitions. 
2. It must synchronize asynchronous inputs. 
As in any state machine, a self-timed design must 

meet minimum state flip-flop set-up times before per­
forming a state transition. Without the benefit of a 
clock, the design must generate self-timing clocks based 
on the state data change due to a state transition itself. 
Thus, clock initiation and data changes are coincident, 
and the design must delay a clock to allow data to settle 
and meet minimum set-up time requirements. 

6-287 

The simplest example of self-timing appears in FiEf 
ure 3. This circuit clocks a logic 1 into a D flip-flop on 
the input's rising edge. The design works if the clock 
delay time is long enough to allow the data input to be 
set up. This simple circuit illustrates how the CY7C331 
supports self-timed designs; the CY7C331 allows you to 
program the timing relationship between the flip-flop's 
D-input logic and clock input logic to guarantee satis­
faction of minimum set-up time requirements. The 
CY7C331 synchronizes asynchronous inputs in the same 
manner, except that the set-up time is longer to allow 
for metastable resolution. The CY7C331 can also per­
form self-timed synchronization because metastable 
resolution is ultra-fast 

The approach used in the CY7C331 to self-time 
state transitions is to delay a clOCk signal by passing it 
through the logic array one additional time; this arran­
gement allows data to meet set-up time requirements. 
To guarantee that this approach works, the extra delay 
in the clock path must be programmed to delay the 
clock as long as possible (Figure 4). In general, a self­
timed design should set up data as fast as possible and 
delay the clock long enough to guarantee that data is set 
up. But delay time in the CY7C331 is sensitive to the 
logic function programmed. Guaranteeing that data is 
set up as fast as possible restricts the logic functions the 
device can perform. You can avoid this limitation by 
placing restrictions on the clock path. You can program 
any logic function if the clock delay path is slow enough. 

To perform self-timed synchronization, the clock is 
delayed by two extra passes· to provide the extra delay 
required for metastable resolution (Figure 5). Program 
both clock delay elements to be as slow as possible so 
you can configure any logic function. With these restric­
tions, the mean time to failure (MTF) due to a metas­
table condition is greater than 10 years. 

Clock Delay Programming 
In the CY7C331, a product term generates an out­

put transition from Low to High faster than from High 
to Low. A transition caused by a single input and a 
single product term is faster than those caused by multi­
ple inputs and/or product terms. The shortest delay 
time through a CY7C331 occurs when a single input 



triggers a single product term to transition from Low to 
High. The. slowest clock path results from placing 
restrictions on how the extra level of clock delay is 
programmed. These restrictions are: 

The clock delay should use a logic path through 
multiple product terms, OR gates, and XOR gates 
to a bypassed flip-flop. 

Clock delay logic should make product term out­
puts transition from High to Low. 

All product terms to the OR gate should be 
programmed identically to implement clock logic. 
The OR gate should have the same or more inputs 
than associated data-path OR gates. 

The programmable XOR input should be set Low. 
The clock delay element shown in Figure 4 il-

lustrates each of the four programming restrictions. 

Self-Timed VMEbus Requester 
Bus requesters are used in common bus systems 

that support multiple processors controlling bus trans­
fers. A processor that controls bus transfers is typically 
referred to as a bus master. The bus requester requests 
permission for a master to control the data bus and in­
dicates to the master when data bus control has been 
granted. The VMEbus supports multiple bus masters. 

A self-timed design approach for a VMEbus re­
quester is appropriate because the VMEbus is 
asynchronous and offers high performance. The bus-re­
quest function is asynchronously initiated and is sequen­
tial. A self-timed design self-synchronizes to initiate the 
request and self-times the rest of the request sequence 
at CY7C331 device sp~d. A synchronous approach re­
quires an external clock· to synchronize and time the se­
quence, for which the VMEbus provides a 16-MHz sys­
tem clock. However, a CY7C331 self-timed design 
provides much higher performance than a synchronous 
design using the system clock. 

VME Background 
The VMEbus i~ defmed to support multiple bus 

masters, although only one master can control the bus 
at a time. The VMEbus provides an arbitration subsys­
tem in which a central bus arbiter determines which 
master is granted the data bus. Each master contains a 
bus requester to request control of the bus from the 
arbiter. 

The arbitration subsystem is supported on the 
VMEbus with six bused lines and four daisy-chained 
lines. All these lines are active Low, which is indicated 
by a"_" suffix on a line name. The bused lines are Bus 
Busy (BBSY-), Bus Clear (BCLR-), and Bus Request 3 
- 0 (BR3- through BRO-). 

When the daisy-chained lines enter a board, they 
are designated Bus Grant 3-0 In (BG3IN- through 
BGOIN-), and when leaving are designated Bus Grant 3 
- 0 Out (BG30UT- through BGOOUT-). (The terms 

BRx-, BGxIN-, and BOxOUT- are used when refer­
ences are not to a specific line or lines; x. is any value 
from 0 to 3.) The highest priority is allocated to number 
3 lines and lowest to number 0 lines. The BGxOUT­
lines that leave a board in slot n enter the board in slot 
n+l as BGxIN- lines. The bus arbiter must always 
reside in the first slot of a VMEbus-based system to in­
itiate BGxOUT - generation. 

All masters in the system drive BBSY - when they 
have control of the bus. Within each bus-grant daisy 
chain, all masters drive the same BRx- line. Multiple 
masters on a bus grant daisy chain can request the data 
bus at the same time by simultaneously driving their as­
sociated BRx- lines. When this occurs, the requester 
furthest up in the daisy chain gets the bus grant. The 
remaining master(s) on the daisy chain can continue to 
assert BRx- until they receive a bus grant. 

A simple VMEbus requester initiates a request 
after detecting an on-board request (OBR). (A 
simplified bus-request state diagram and timing 
diagram appear in Figures6 and 7.) The requester then 
drives the BRx- line active and waits for the associated 
BGxIN- line to become active. Once the requester 
detects BGxIN- active, BBSY~ and the appropriate 
DMA Grant . line (DMAGRx-) are driven active, while 
BRx- is released to inactive. The active DMAGRx line 
indicates to an on-board master that it has. the bus and 
can perform a a data transfer. 

6-288 

While data is being trarisferred, the bus master as­
serts the Data Transfer (DTR-) input to the CY7C331 
bus requester. When the master has finished using the 
bus, the DTR input is deasserted. The requester then 
releases the bus by deasserting BBSY- and OBO. Even 
if one of the other on-board masters wants the bus, the 
requester deasserts BBSY- and waits for a new BGxIN­
before granting the bus to this· master. This extra over­
head allows other requesters that might be further up 
the daisy chain to obtain the bus between on-board bus 
requests. 

If the bus grant input (BGxIN-) becomes active 
while none of the on-board request lines are active, the 
requester must pass the request down the daisy chain. 
This is accomplished by asserting the bus grant out 
(BGxOUT-) signal. 

The VMEbus specification includes a few timing 
and requester design restrictions. A VMEbus requester 
must satisfy the two timing requirements displayed in 
Figure6. BBSY- must be driven for a minimum of 90 ns, 
and the release of BRx- must occur at least 30 ns before 
BBSY - is released. The primary design requirements 
are that BBSY - and BRx- must use open-collector 

I N OUT 

Figure 2. A Self-Timed Element 



IllS OUT 

RESET PTERM 

..... t PT • I 

IIAII DELAY 

Figure 3. CY7C331 Self-Timed Element 

drivers, and BGxOUT - must never glitch during opera­
tion. The restriction on BGxOUT - ensures avoidance of 
inadvertent bus grants. 

Requester Design 
The requester supports overlapped bus requests; It 

also releases the data bus every transfer cycle to allow 
the central arbiter to grant the bus to a higher-priority 
requester, if one exists. 

The CY7C331 VMEbus requester supports three 
on-board DMA request lines (DMARQ2- through 
DMARQO-). All the DMARQx- lines can generate a 
bus request on the BRx- line. The requester supports 
three on-board grant lines (DMAGR2- through 
DMAGRO-), one for each request line. When a bus 
grant is received on BGxIN-, the requester must deter­
mine which DMAGRx- line to activate. The requester 
prioritizes the DMARQx- lines and grants the bus to 
the highest priority request; DMARQO- has the highest 
priority and DMARQ2- the lowest. The selected 
DMAGRx- line is not activated until the previous data 
transfer is complete. 

If any of the DMARQx- lines are active when a bus 
grant is received, the requester drives BBSY - active. 
For overlapped operation, BBSY - is released as soon as 

RESET PURH 

possible to facilitate the next bus arbitration. BBSY - is 
not released, however, until the following criteria are 
met BBSY- is driven for at least 90ns, BGxIN- is inac­
tive, and the previous data transfer is complete (DTR­
is deasserted). If none of the DMARQx- lines is re­
questing the bus when a grant is received, the requester 
passes the grant onto BGxOUT - for the next requester 
on the daisy chain. The requester also recognizes a sys­
tem reset (SYSRESET -) and initializes the device ap­
propriatel y. 

A logic diagram of a self-timed VMEbus requester 
using the CY7C331 appears in Figure8. BRx- is the OR 
of the DMARQx- lines. 

Requester Operation 
If any DMARQx line becomes active, BRx- be­

comes active, signifying to the arbiter that one of the 
masters on this board wants the data bus. An external 
open-collector driver drives BRx-. 

Self-timed operation begins when the incoming 
BGxIN- line becomes active. The three on-board DMA 
request lines (DMARQ2- through DMARQO-) are self­
synchronized to the BGxIN- line. BGxIN's falling edge 
serves as a clock to register the DMARQx- lines and 
toggle a flip-flop from High to Low to initiate an inter-

f----"-"'-T 

Figure 4. CY7C331 Self-Synchronizing Element 

6-289 



~CYPRIi$ CY7C331 Asynchronous VMEbus Reguester 
~aNOOcr~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

nal. self-timed clock signal (STCP). The DMARQx­
lines must be synchronized. because BGxIN- can be ac­
tivated when any BRx- line becomes active or when 
BBSY - is released. For example. if DMARQO- causes 
the associated BRx- to initiate bus arbitration. and 
DMARQ2- attempts to become active at the same time 
BGxIN- becomes active. DMARQ2's resulting state 
could be an indeterminate metastable condition that 
needs time for resolution. The pair of internal clock 
delays provides this time before the DMAGR2- output 
register samples the state of DMARQ2-. 

Two CY7C331 delay elements delay the internal. 
self-timed clock signal to provide enough time to self­
synchronize the requests. The requests are prioritized 
during the clock delay time. The resulting delayed clock 
(STCP2) then asserts BBSY - if any of the DMARQx­
lines are active. If none are active. the BGxOUT - line is 
asserted to send the grant to the next requester in the 
daisy chain. Using the delayed clock to generate BBSY­
and BGxOUT - guarantees that both lines are 
synchronized and cannot glitch. 

BBSY - is driven onto the bus with an external 
open-collector driver. The prioritized requests are 
clocked into registers to create the DMAGRx-· signals 
on the delayed STCP' s rising edge. if the previous data 

B R x -L- 'I 3 0 " s mX" 
B G x I N-=---1L. __ --' 

B B S Y _ II 90" s 

B G.x 0 U , -

Figure 6. VME Arbitration Timing 

transfer has completed. or on the rising edge of DTR­
when the data transfer completes. An internal flip-flop 
toggles at the same time. The flip-flop output indicates 
transfer completion (TC). 

The registered BBSY - line feeds into an external 
90-ns delay line to guarantee that BBSY - is active for 
the minimum required time. The delay mechanism 
should be designed such that the delay circuit has no 
effect if the data transfer requires more than 90 ns to 
complete. One way to implement this feature is to use a 
one-shot triggered by the falling edge of the CY7C331's 
BBSY- signal. The one-shot's output is ORed with the 
BBSY- signal from the CY7C331 to generate the 

SYSRESET _ 
~~-----------.--------------------------~ 
,~ -

IOBR- & IBGxIN-
IBRx-. IBGxOUT-. 

IBBSY -. IOBG-

BGxIN- & IOBR- OBR-

- .-

BGxOUT- BRx-
~GxIN-

BGxIN-

IBGxIN- -
BBSY -. IBRx. OBG-

iBGxtN- + DTR-

IBGxIN- & IDTR-

Figure 5. VME Bus Requester State Diagram 

6-290 



Yf::~ =========;;C;;;Y;;;7;;;;C;;;;3;;;3;;;1;;;A~sy~n~c;;;;h~r~on~o~u~s~V~M~E~b~u~s~R~e~q~u~e~s~te~r 
BBSY - signal to the VMEbus. The VME BBSY - signal 
is inactivated when the 90-ns delay has elapsed 
provided that TC is True and OTR- and BGxIN- ~ 
inactive. The requester is initialized for another self­
~~d. operation at the same time. The requester also 
lmtializes when the SYSRESET input is asserted. 

This design uses the 9O-ns delay circuit because an 
~bsolute dela~ is required to meet the VME specifica­
tion. A self-timed delay can yield only relative results 
because there is no way to determine how many delay 
levels are required to obtain a 9O-ns delay. Anyone 
delay is usually much faster than the worst-case 
specification, but the delay might be that slow. You can 
emulate the delay on-chip by creating a digital delay, 
but accuracy would be poor because you would have to 
synchronize BBSY - to an absolute time base, such as 
the 16-MHz system clock. 

The .CY7C331 can emulate the external open-col­
lector drivers, but the emulation would not meet the 
VMEbus specification's drive requirements. To emulate 
an open-collector driver, use the signal output to the ex­
ternal driver to drive the output enable of an on-board 
inverting, three-state driver (with the input tied High). ' 

n-ll , 110 

CY7C331 Implementation 
The bus requester can be implemented and simu­

l~ted using the source code in Appendix A, generated 
Vla the Cypress PLO ToolKit software package. A close 
examination of the code reveals how many of the 
CY7C331's features are utilized. 

The DMARQx- lines use two CY7C331 pins for 
each line---one combinatorial and one registered. The 
registered input .pins are used to conserve output logic 
for other functions. The three macrocells associated 
with the registered inputs also perform the internal self­
timed clock generation and delay functions; most other 
PLO s require six outputs to implement these functions. 
In addition, the CY7C331's individually programmable 
clocks allow the input register flip-flops to be clocked 
on BGxIN's falling edge. 

BBSY is assumed to be the input to the external 
delay line, and the CY7C331 input BBSY90 is assumed 
to connect to the delay line output. 

The source code defines the self-timed clock 
generation and delay logic needed to meet the require­
ments of CY7C331 self-synchronization. 

.I-n , III , /11 

.0 .. ..'.lI 
(.,,'ar •• ' ) 

Figure 7. Self-Timed VMEbus Requester 

6-291 



Appendix A. PLD ToolKit Source Code for VMEbus Requester 

CY7C331; 

{ Norman Taffe 

} 

Cypress Semiconductor 
6120/1990 
Cypress PLD Toolkit 
VME Bus Requester 

CONFIGURE; 

DMARQ2(node= 1), 
DMARQ1(node= 2), 
DMARQO(node=3);. 
BGxIN(node= 4), 
SYSRESET(node= 6), 
BBSY90(node= 7), 
DTR(node= 9), 
node 14(node= 14), 
IINIT(node= 15), 
IOBG(node= 16,ireg), 
ISTCP(node= 17), 
IBBSY(node= 18), 
IBGxOUT(node= 19,ireg), 
IBRx(node= 20,ireg), 
IDMAGRO(node= 23), 
IDMAGR1(node= 24), 
IDMAGR2(node=25), 
IRDMARQ1(node= 26), 
IRDMARQ2(node= 27), 
IRDMARQO(node= 28,ireg), 
STCP2(node= 33), 
STCP1(node= 34,src= 27), 
TC(node= 30,SRC= 17), 

EQUATIONS; 

INIT = < OE> 
< SET .OUT> 
< CLR-OUT> 

{ On-board Request Lines} 

{ VME Bus Grant Input} 

{ Externally delayed BBSY signal} 
{ Signifies a Data Transfer in progress} 

{ Requester initialize signal} 
{ Signals board that it has the bus } 
{ Self timed CLK input register } 
{ Assert Bus Busy when taking the bus } 
{ Send Bus Grant down the daisy chain if not wanted} 
{ Signal arbiter that this board wants the bus} 

{ On-board grant lines } 

{ Registered On-Board Request lines} 

{ Second delay stage of self timed clock} 
{ First delay stage of self timed clock } 
{ Resets the INIT signal} 

<SUM>- BGxIN*BBSY90*TC*D1R 
<SUM> ISYSRESET; 

STCP < CK OUT> RDMARQ1 & DTR 
<CLR OUT> - INIT 
< CK -IN> IBGxIN 
<CLR - IN> INIT 
<SUM>; 

BBSY < OE> 
<CK OUT> RDMARQ1 
< CLR _OUT> INIT 

{Output Register is used for TC} 

6-292 



<SUM> RDMARQO 
<SUM> ISTCPl 
<SUM> ISTCP2; 

BGxOUT = < OE> 
<CK OUT> RDMARQl 
<CLR OUT> BGxIN 
<SUM> IRDMARQO*STCPl *STCP2; 

BRx = < OE> 
< SET OUT> 
< CLR-OUT> 
< XSU~1> 
<SUM> DMARQ2*DMARQl *DMARQO 

< SUM> BBSY; 

DMAGRO = < OE> 
<CK OUT> RDMARQl 
< CLR OUT> INIT 
<SUM>- RDMARQO; 

DMAGRI = < OE> 
<CK OUT> RDMARQl 
< CLR OUT> INIT 
<SUM; IRDMARQO*ISTCP2; 

DMAGR2 = < OE> 
<CK OUT> RDMARQl 
<CLR OUT> INIT 
<SUM> IRDMARQO*ISTCPl *STCP2; 

RDMARQl = < SET OUT> 
< CLR OUT; 
< CK iN> IBGxIN 
< CLR IN> INIT 
< SUM> RDMARQ2 
<SUM> RDMARQ2 
<SUM> RDMARQ2 
< SUM> RDMARQ2 
<SUM> RDMARQ2 
<SUM> RDMARQ2; 

RDMARQ2 = < SET OUT> 
< CLR OUT; 
< CK iN> IBGxIN 
< CLR IN> INIT 
< SUM> TC 
<SUM> TC 
<SUM> TC 
<SUM> TC 
<SUM> TC 
< SUM> TC 
<SUM> TC 
<SUM> TC 
<SUM> TC 

{ output register for STCP2 } 
{ Note that XSUM is set to zero and } 
{ p-term transitions are from high } 
{ to low, to maximize self-timed delay } 

{ Use all 6 p-terms to add to delay} 

{ output register for STCPl } 
{ Note that XSUM is set to zero and} 
{ p-term transitions are from high } 
{ to low, to maximize self-timed delay} 

{ Use all 12 p-terms to add to delay} 

6-293 



$.i;CYPI<ISS CY7C331 Asynchronous VMEhus Requester 
__ ~~~OR.; ~~~~~~~~~~~~~~~~=-~~~~~~~~~~ 

<SUM> TC 
<SUM> TC 
<SUM> TC; 

RDMARQO = <CK IN> IBGxIN 
<CLR IN> lNIT 
<XSU'Kh; 

OBG = < OE> 
< CLR OUT> 
< SET-OUT> 
< xsu1.1> 
< SUM> DMAGRO 
< SUM> DMAGRI 
< SUM> DMAGR2; 

6-294 



CYPRESS 
SEMICONDUCTOR 

Understanding the CY7C361 

The Cypress CY7C361 UV-erasable PLD employs 
a revolutionary architecture that allows internal speeds 
as high as 125 MHz. The part comes in a 28-pin, 300-
mil DIP and a 28-pin (P)LCC. The CY7C361 has eight 
input pins with macrocells, four bidirectional pins with 
input macrocells, one clock input with doubler, six 
"pure" outputs, and four Mealy macrocell outputs. Inter­
nally, there are 32 state registers. 

Control-logic clocks usually run at twice the sys­
tem-clock frequency in high-performance systems. Thus, 
for a 33-MHz system, a CY7C330 running at 66 MHz 
works fine. But 40-MHz RISC CPUs are now available, 
and even faster clock rates are right around the comer. 
Because control logic often does not stabilize until late 
in the design cycle, a PLD solution beyond 66 MHz is 
needed. The CY7C361 is that solution. 

How does the CY7C361 achieve speeds up to 125 
MHz? Through a combination of state-of-the-art 
process technology, circuit design, and architectural in­
novation (see Figurel). 

Traditional Architectures 
To understand how the CY7C361 achieves its high 

level of performance, . consider some common PLD ar­
chitectures and their limitations. 

The PAL 
Figure 2 shows a simplified block diagram of a 

traditional PAL architecture. When you implement a 
state machine in a PAL, two components contribute to 
the worst case !MAX. The first is ts, which is the delay 
through the AND array and the fixed OR plus the 
register set-up time. The second factor is tCF, which is 
the clock-to-feedback time. Although you cannot 
measure tCF directly, it is slightly less than the clock-to­
output time, tco. The maximum frequency for a state 
machine implemented in this device is: 

!MAX = 1/(ts + tcF) Eq. 1 
Substituting the minimum ts and the maximum tcF 

yields the worst case !MAX. Typical nu.mbers for these 
parameters are ts = 18 ns and tCF = 13 ns. The 

(INPUT) CON D I T ION DECOD RRAY 

32 STATE REGISTERS 

OUTPUT ARRAY 

Figure 1. Block Diagram of the CY7C361 

6-295 



C~RES') Understanding the CY7C361 
-===r II' SEMlcamUCTOR ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

dominant parameter is always ts, primarily due to the 
delay through the AND array. Thus, the key to improv­
ing fMAX lies in minimizing the propagation delay 
through the AND array. 

The FPLS 
Figure 3 shows a simplified block diagram of an 

FPLS-another architecture commonly used to imple­
ment state machines. The method for computing fMAX 
for the FPLS is similar to that for the PLD. In this case 
ts is approximately twice the corresponding value for a 
PAL, because the FPLS value includes delays through 
two arrays (the AND and OR) instead of just one. This 
makes ts even more of a dominant parameter in the 
!MAX calculation. The higher ts value is the tradeoff for 
some extra flexibility in implementing the state machine, 
due to having an OR array rather than a fixed-OR 
scheme. 

General Limitations 
Another major barrier to speed in both PAL and 

FPLS state machine designs is the design methodology 
itself. Traditionally, efficiency of state machine im­
plementation has been the overriding concern for desig­
ners. The goal was to use as few flip-flops as possible. 
In such devices, the required number of states (S) is 
encoded into N flip-flops, where N is the smallest in-

AND 
ARRAY 

Figure 2. A Simplified PAL Block Diagram 

Input (AN 
Array 

Condition 
Array 

Figure 3. A Simplified FPLS Block Diagram 

teger such that S<=2N. The actual control signals must 
be decoded from the state machine inputs and registers. 
This adds extra latency time. 

With the advent of high-density PLDs and the 
shrinking of cycle times, the minimal-flip-flop strategy is 
no longer viable. A Petrie net (see Reference) or token­
passing methodology suits high-speed state machine 
design better. In the token-passing methodology, each 
state has its own register, and these registers are direct­
ly connected, as in a shift register. Passing from one 
register to the next, a token signifies the present state by 
its position. Branching results from passing the token to 
a new process, which is enabled by an input condition. 

6-296 

This approach removes the necessity for the encod­
ing/decoding logic in the traditional state machine in 
two ways: because the token passes directly from one 
state register to the next, and usually the control signals 
can be taken directly from the state-register outputs. 

The CY7C361 Architecture 
Cypress Semiconductor developed the CY7C361 

architecture by modifying and streamlining the architec­
tures discussed earlier. Direct connections between 
state register macrocells allow implementation of the 
token-passing methodology. But the CY7C361 removes 
the FPLS's primary speed barrier-that all inputs and 



~ 

£ :~RESS Understanding the CY7C361 
:::, ~cam~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

feedback propagate through two arrays before reaching 
the registers. The CY7C361 removes the barrier by 
placing the state register macrocells between the two 
arrays, with feedback going directly to the input array. 
This strategy cuts ts in half and minimizes tCF, along 
with providing state-decoding logic on chip, if needed. 

Even reduced by half, however, ts is still a 
dominant factor in the fMAx calculation shown in Eq. 1. 
But because the propagation delay through a program­
mable array is directly proportional to the array's size, 
streamlining the array further reduces ts. In the 
CY7C361, state-register feedback accounts for 64 array 
inputs; actual chip inputs account for only 24 array in­
puts. 88 inputs makes for a fairly large array. How can 
the array size be reduced without sacrificing inputs or 
state registers? 

You can implement most state machines with four 
or fewer registers, and you can usually break larger 
state . machines into several smaller processes that pass 
control back and forth. And although all registers need 
to have access to the inputs, in most cases feedback is 
local to a specific process. 

The CY7C361 takes advantage of these facts by im­
plementing feedback in stages. The state-register mac­
rocells have been separated into eight groups of four, 
each with its own local reset. In each of the groups, one 
register has feedback available to all 32 registers, one 
register has feedback available to a group of 16 
registers, and the other two registers have feedback 
available to eight registers. You can break a large state 
machine into several processes, with local feedback 
used within an individual process. Arbitration among 
the smaller processes is accomplished with global feed­
back or the direct connections between adjacent state 
macrocell s. This distribution allows the effective array 
size to shrink to 56 input lines, without sacrificing the 
number of inputs. Figure4 illustrates the concept. 

The Condition Decoder 
Array size has two components, the .. number of in­

puts and the number of product terms. In PAL ar­
chitecture design, one of the most critical tradeoffs is 
speed vs. the number of product terms. Thus, the 
second part of the challenge of minimizing ts is to pro­
vide only as many product terms as needed to imple­
ment state machines. Most PALs offer a minimum of 
seven product terms per register. (The CY7C330 offers 
a range between nine and 19.) However, seven product 
terms for each of 32 registers (224 product terms total) 
is obviously not the answer for a high-speed device. 

Because the CY7C361 is designed specifically for 
state machine applications, Cypress Semiconductor 
analyzed state machine operations to find out what logi­
cal functions are necessary for state machine implemen­
tation. Cypress found that all state machine operations 
fall into two classes: entering a new state from one of 
several states based on a condition or leaving the 
present state for one of several other· states based on a 
condition. 

6-297 

... 
liZ 

!t 

f--' 

.A 

1 

f-J 

f--'" 

I 

I--"" 

..... 

I 

t---' 

t---' 

... I 

Figure 4. Global vs. Local Feedback 

As illustrated in Figure 5, both operations lend 
themselves to the form: 

(a+b+c .. +n) & (N .. & X & y & Z) Eq. 2 
Thus, in state machine applications, the standard 

sum of products construct can be replaced with the 
more efficient construct shown in Figure 6. The 
CY7C361 uses the version pictured on the right, be­
cause that implementation is faster in CMOS. This cir­
cuit is called the Condition Decoder. 

Replacing the standard sums of products with con­
dition decoders reduces the number of terms in the 
array to 64 for state registers, plus 16 terms used for 
local resets, and two terms for the global reset. This 
permits a total input array size of 56 x 82. This is small 



Leaving a state 
(a+b+c)·SO 

Entering a state 
(SA+SB+SC)· (a· / b) 

Figure 5. The Two Kinds of State Machine Operations 

enough to make possible a ts + tcF of 8 ns or under. A 
tp of 8 ns means an fMAX of 125 MHz. 

The Output AlTay 
The CY7C361's output array is OR based. The 

state macrocell outputs are driven in complemented 
form only, and the pure and bidirectional outputs are 
product terms. This structure results in a logical NOR 
for the overall output array function because: 

!A & !B = !(A + B) Eq. 3 
The output enables are Low asserted and fed by 

product terms. When taken with the complemented in­
puts to the output array, the output enables are an OR 
function of any state register output(s). Mealy output 
terms are NAND terms (more on this later). Each of 
the output types appears in Figure 7. 

State Macrocells 
As mentioned earlier, the CY7C361 has 32 state 

macrocell s. The state macrocells each have a single con­
dition-decoder input, and they all share the same clock 
and a global reset-condition decoder. For each group of 
four state macrocells there is also a local reset-condi­
tion decoder. Additionally, each state macrocell has a 
C)N input and a C _OUT output that connect macro­
cells to their adjacent macrocells. In addition to 
C_OUT, the macrocell output is driven directly back to 

Figure 6. The Condition Decoder 

CLOCK 
FROM INPUT 

TO NPUT 
MACROCELL 

BIDIRECTION~URE MEALY 
I/O OUTPUT OUTPUT 

Figure 7. Portions of the Output Array and Output 
Types 

the input array, in both true and complement form, and 
to the output array in complement form only. 

There are three possible configurations for the 
state macrocell: START, TOGGLE, and TER­
MINATE. 

The START Configuration 
Figure 8 shows the CY7C361 state macrocell in its 

START configuration, which causes the macrocell to 
act like a one-shot circuit. Configuration bit C2 selects 
whether C IN is a logic 0 or C OUT from the previous 
macrocell. -The activating signal is the logical OR of the 
C IN signal and the condition decoder. When these sig­
nais activate the input, the macrocell output is asserted 
for one clock period only. You can use this macrocell 
configuration to start a process or as a state in an un­
branching sequence. 

The TOGGLE Configuration 
The CY7C361 state macrocell in its TOGGLE con­

figuration acts like a toggle flip-flop. Once again, con­
figuration bit C2 selects whether C _IN is a logic 0 or 
C OUT from the previous macrocell. The activating 
signal is the logical OR of the C _IN signal and the con­
dition decoder. While this input is active, the macrocell 
changes state on the rising edge of every clock. If the 
input is not active, the macrocell retains its state (see 
Figure 9). You can use the TOGGLE configuration for 
binary counters and other traditional state machine im­
plementations. 

6-298 

The (Wait Until) TERMINATE Configuration 
The third configuration of the CY7C361 state mac­

rocell is TERMINATE. The TERMINATE configura­
tion differs from those already described in that you 
must configure C2 such that C _IN is the C _OUT of the 
previous macrocell. Asserting C _IN activates the circuit, 
causing the output to become asserted on the next 



Fro .. 
P"evious Stage 

To Input Arra 

To Next Stage 

C 1. CO 10 

Cond1t1on+C 

C 1 • CO 00 START 

CLOCK 

Condition+C 

Q 0 u,--'t=--_---J 

Figure 8. The START Macrocell Configuration 

Stlge 

TOGGLE 

LOCAL RESET 
6 OBAL RESET 

C LOC Ie 

Figure 9. The TOGGLE Macrocell Configuration 

6-299 



From LOCAL RESET C I 
Prevtous Stage G OIAL RESET 

Q 0 U '"--__ -' 

T TPUT 
ARRAY 

Next 

C 1 • CO 01 (WAIT UNTIL) TERMINATE 

Figure 10. The TERMINATE MacroceU Configuration 

rising clock edge. The macrocell remains in this state 
until the condition decoder becomes asserted. This 
causes the output to be deasserted (terminated) on the 
clock's next rising edge. Figure10 shows this configura­
tion. You can use 1ERMINA1E to insert wait states in 
a process. 

The Input Macrocell 
The CY7C361 contains 12 input macrocells, of 

which. four are straight inputs, four are inputs from pins 
that are also connected to the Mealy macrocells, and 
four constitute the input path of the bidirectional pins. 

The input macrocell of the CY7C361 avoids metas­
tability problems and provides for flexibility in the 
timing of inputs. Metastability has always been a prob­
lem in asynchronous systems, but with cycle times 
shrinking dramatically, metastability is becoming more 
of an issue in high-speed synchronous design as well. 
The CY7C361 inputs are designed to be very metas­
tability resistant. That is, metastability occurs rarely, and 
when it does happen, the device resolves it quickly. 

The input macrocell (Figure 11) has three possible 
configurations. The fITst (default) is a nonregistered 
configuration that can be used to cascade the CY7C361 
with other high-speed devices. If you use the CY7C361 
inputs in this mode, however, be careful not to violate 
the state registers' set-up and hold time specs. This 
timing is tight, and violating either spec could lead to 
metastability conditions in the state macrocells. The 
second configuration of the input macrocell is single-

6-300 

registered mode, which you can use for pipelining in­
puts. The last configuration is double-registered mode. 
It is used to synchronize asynchronous signals. Note that 
the clock/or the registered modes is the same as the inter­
nal state clock. Thus, if you enable the clock doubler, 
the input registers are clocked at twice the frequency of 
the external clock. The input-macrocell configuration­
bit settings appear in Table 1. 

The input macrocells also have a clock-enable func­
tion. Each of the three groups of macrocells has its own 
input enable, which come from three product terms in 
the output array. Because the enables are Low asserted, 
and the output array inputs are all in complemented 

FROM INPUT PIN 
TO 

INPUT 
BUFFER 

~ __ +-__ ~ __ +-__ ~ _______________ CLOCK 
~ ______ ~ ______ ~ _______________ CLOCK 

ENABLE 

Figure 11. The CY7C361 Input MacroceU 



FROM 
INPU 

FROM 
ARRAY 

Figure 12. The CY7C361 Mealy Macrocell 

form, the logical function of these clock enables is an 
OR. 

The Mealy Macrocell 
The CY7C361 provides four macrocells that allow 

you to build Mealy machines-one of the two general 
classes of state machine. (The other is the Moore 
machine, in which outputs depend only on the present 
state of the registers.) In a Mealy machine, outputs 
depend on both present state information and the 
state machine inputs. The CY7C361's Mealy mac­
rocell appears in Figure 12. 

The Mealy macrocells have two inputs, one from 
the output array and the other from a dedicated input 
pin (before the macrocell). As mentioned earlier, the 
array outputs have an extra inverter in the path. This is 
because the Mealy macrocells have programmable 
polarity; the default configuration has an inverter in the 
path. These two inverters cancel each other, effectively 
making the Mealy macrocell's straight output a logical 
NOR, just like the other outputs. 

In addition to programmable polarity, the Mealy 
output s offer configurations of output only; AND of 
input and output; OR of input and output; or XOR of 
input and output. Table 2 shows the Mealy macrocell 
configuration bit settings. 

Table 1. Input Modes for the CY7C361 

Cl CO Inout Macrocell Mode 

0 0 Combinatorial 

0 1 Single Registered (pipeline Mode) 

1 X Double Registered (Synchronizer Mode) 

6-301 

TRIG 

lOT 
couuu, 

eNT-7 

coupru 

..... ..... ..... 
..... ..... ..... 

Figure 13. State Diagram of the Pulse-Triggered 
Counter 

Example: Pulse-Triggered Counter 
An example application of the CY7C361 illustrates 

the use of most of the features discussed in this applica­
tion note. In this circuit, an asynchronous trigger, 
!1RIG, starts a 3-bit binary counter. Because only one 
count cycle can be triggered at It. time, the circuit ig­
nores any !TRIG pulses received in the middle of a 
count cycle. !TRIG is synchronized· using the double­
registered input macrocell configuration. 

The counter outputs, COUNT(2:0), cycle from 0 to 
7 and reset to O. Note that each instance of 
COUNT(2:0) is High asserted. The outputs are thus as­
signed to Mealy macrocells, where the polarity can be 
controlled. 

When the circuit accepts a !'fRIG pulse, the fourth 
Mealy output is used to generate an acknowledge sig­
nal, !1RQACK. The clock for this circuit is called 
CLKlN, and the clock doubler circuit is activated. !RST 
is a Low-asserted global reset signal. Because the timing 
of !RST is not critical for this example, the input macro­
cell is configured as combinatorial. 

Table 2. Mealy Macrocell Configuration Settings 

C2 Cl CO Mealy Configuration 

0 0 0 loin = input NAND array out 

0 0 1 loin - input NOR array out 

0 1 0 loin = input XNOR array out 

0 1 1 Ipin - INV array out 

1 0 0 I pin - input AND arrav out 

1 0 1 Ipin = input OR array out 

1 1 0 loin = input XOR array out 

1 1 1 loin = array out 



~CYffiESS . Understanding the CY7C361 
-===r .... SEMlcamUCfOR ======================;;;;;;:;=====;;;;;; 

Two state machines implement this design. The 
fIrst, a supervisory machine, consists of two states: SO 
and S1. SO is a START macrocell, triggered by !TRIG. 
Sl is a (wait until) 1ERMINATE macrocell, with 
C OUT from SO connected to C IN. Thus, !TRIG in­
itIates a token in SO, which then passes the token to S1. 
Sl acts as an enable for the counter, which is imple­
mented using three TOGGLE macrocells, C(2:0). The 
outputs COUNT(2:0) come directly from C(2:0). When 
the counter reaches 7, Sl's terminate condition is met 
and the circuit is ready for the next !TRIG. Figure 13 
shows the state diagram for this example. 

macrocells. For the CY7C361, this includes input mac­
rocells, state macrocells, Mealy macrocells, and the 
clock doubler. 

This example uses two input macrocell confIgura­
tions. When configuring an input register, the default is 
combinatorial. To override the default, specify IREG 
for a single register or IIREG for double registers. In 
this example, !RST is assigned to node (pin) 12 and 
configured as single registered. !TRIG is assigned to 
node (pin) 13 and configured as double registered. 

!TRGACK is to be asserted only when the circuit 
receives !TRIG and· SI is not asserted. The Mealy mac­
rocell is chosen so that !TRIG is the input, and it is 
programmed as an OR gate. The output term is IS 1. 

CLKIN is assigned to node 4, the dedicated clock 
input. Node 74 is the clock doubler. The default is that 
the doubling function is not enabled. To enable it, as­
sign the DBL_CLK attribute to node 74. 

Figure 14 shows the physical implementation of this 
circuit, and Appendix A lists the PLO ToolKit source 
file. The source me's CONFIGURE .section must list 
configuration information· for all the state machine's 

The internal state macrocells for this design are 
S(l :0) and C(2:0). SO is assigned to node 32 and con­
figured as a start macrocell by specifying the START 
attribute. START is the default, but it is specifIed here 
for completeness. Sl is assigned to node 33, and con­
figured as a terminate macrocell with the attribute 

ClKIN ClKDB nOde=74,dbLck) 
x 

~I rlHs_O~(n_O_OO_=_32~,s_ta_rt~) __ ~-+ __ -4 __ -4 __ ~ 
..:....t1+--H_-++_+t--++-++-H--+11-++---I~ Sdl=<prod> TRIG&lSO; 

-+t--H-++--H-lIH&*f--++-++~~-'" C OUTtCd)C IN S1(node=33,tenn) 

, ~1+-·<-pr-Od~>~S~1~&C~O~&~C~1~&~C~-~--r--+----r 

U=~~~~------rC~I~N~=~'1 

~. ~~c_o(_nO_OO_=3_4,t_~_)~ __ T--+ __ +--' 
. ...I.'-f+--H----lf+--++-f+-lf+-H-++-4+-I 1=<prod>S1 ; 

~ C IN= 

~~HC_1~(n_Od_e_~_5~,t~~~) __ ~ __ +-__ +-__ ~ __ ~ 
• ...1.' ++---H---:-I+--++-++-If+-H-H-++--f J=<prod>S 1 &CO; 

~ C IN= I 

~ ~~C_2_(n_OOO~=3~6~,ro~g~)~~~~~~~r---r 
...... '++---tt---I+--+i-t+-iH-tt-+t-+t--I~ ~ t<prOd>S1 &CO& .... C_1_; "*"' __ +-__ -+-__ -+ __ _+_ 

~) . 
-t+--Hr---+t--+t-+t-+t-HI-+t-++-I CLKDB node..., 7 
~!I§III ~~IEN~Q~q==LQ 
o ,QT, G rrJJ.c~td!J,T1 

Figure 14. PhYSical Implementation of the Pulse-Triggered 
Counter 

6-302 

NTO 



TERM. CIN must also be specified for every macrocell 
configured as terminate. The C(0:2) macrocells are as­
signed to nodes 34, 35, and 36. Because these macro­
cells make up a counter, they are configured as toggle 
macrocells by specifying the TOG attribute. 

This example uses all four Mealy macrocells. The 
COUNT(2:0) macrocells are assigned to nodes 19, 20, 
and 24. In this case, no logical function is used. This is 
the default, although it is not configuration 00. The 
Mealy macrocells are used to make the outputs High 
asserted. The toggle macrocells, C(2:0), are inverted 
going into the output array, then inverted again going 
into the Mealy macrocell. The macrocell contains one 
other inverter, which the attribute NINV bypasses. 

!TRGACK, the OR function of !S1 and !TRIG, is 
assigned to the fourth Mealy macrocell at node 25. The 
OR attribute is specified, and the NINV attribute 
bypasses the inverter in the Mealy macrocell path. 

IBN and GLBRST are both internal nodes. IBN is 
assigned to node 30, which is the input-enable term for 
pins 10 - 13. GLBRST is the global reset term for all 
internal registers. Node 73, OFF in this example, is used 
for tying anything in the output array Low. 

The source file's EQUATIONS section contains 
equations for both the condition-decode array and the 
output array. The legal connectives for the condition­
decode array are <PROD> for the AND product 
term and <INV PROD> for the NAND (or OR) 
product term. This example uses only <PROD> 
terms, and the logic/miser bits are automatically 
programmed to enable the condition decoders. 

The two legal connectives for the output array are 
< INV SUM> , which is used for all outputs and input 
enables: and <INV OE>, which is used for the output 
enables on the bidlfectional pins. The output-array con­
nectives are somewhat confusing unless you remember 
that the entire output array is an OR array, and all the 
state inputs are Low-asserted only. Thus, if you wanted 
to assert an output only while SI is asserted, the equa­
tion would use <INV OE> !SI. Because the output 
enable is Low asserted,-the sum of !S1 and nothing else 
serves in this example. 

The equations are fairly straightforward. TRIG 
triggers SO. SI is terminated by C2, Cl, CO = 7. The 
toggle macrocells, C(2:0), are configured as a toggle 
counter with S 1 as an enable. GLBRST is assigned to 
RST. 

The input clock enable is always enabled. Because 
it is Low asserted, lEN is assigned to node 73, GND. 
The counter outputs, COUNT(2:0), connect directly to 
the outputs of the toggle macrocells, C(2:0), which are 
inverted. TRGACK is assigned to pin 25-the Mealy 
macrocell connected to pin 13, which is !TRIG. The 
array input is !Sl. The NOR function is selected in the 
source file's CONFIGURE section. 

6-303 

Reference 
Murata, Tadao, "Petrie Nets: Properties, Analysis, 

and Applications" (Proceedings of the IEEE, VOL. 77, 
NO.4, April 1989) 



CY7C361; 

CONFIGURE; 

CLKIN(node=4), 

!RST(node= 12,ireg), 

!TRIG(iireg), 

lEN (node=30), 

CLKDB(node= 74,dbl_ clk), 

COUNTO(node= 19,ninv), 

COUNT 1 (ninv), 

C0UNT2(node=24,ninv), 

!TRGACK(or,nirtv), 

SO(node=32,start), 

Sl(cin,term), 

CO(tog), Cl(tog), C2(tog), 

GLBRST(node=64), 

OFF(node=73) 

EQUATIONS; 

SO = <prod> TRIG; 

SI = <prod> CO * C1 * C2j 

CO = <prod> SI; 

Cl = <prod> CO * Sl; 

C2 = <prod> CO * C1 * Sl; 

GLBRST = <prod> RST; 

COUNTO 

COUNT 1 

<iIiv _sum> ICO; 

<inv_sum> IC1; 

COUNT2 = <inv _sum> IC2; 

lEN = <inv_sum> IOFF; 

TRGACK = <inv_sum> lSI; 

Appendix A. PLD ToolKit Source File for 
Pulse-Triggered Counter 

{system clock} 

{low asserted reset, no input regiSter} 

{asynchronous trigger, iireg means double registered} 

{node 30 is the clock enable for inputs 1~13} 

{node 74 is the clock doubler, enabled here} 

{nodes 19,20,24,25 are the mealy outputs} 

{COUNT(2:0) are not inverted, no logical function is used} 

{!TRGACK is an OR function of pin 13 (!TRlG), and the 
output assigned below, no invert of output is performed} 

{state register 32, configured as START (one shot)} 

{state register 33, C IN enabled, 
configured as (wait until) TERMINATE} 

{state registers 34,35,36, configured as TOG (toggle flops) 
the internal counter} 

{node 64 is the global reset condition decoder} 

{node 73 is used to tie signals low} 

{SO is triggered by TRG} 

{SI is triggered by C_IN from SO, released when C(2:0)=7} 

{CO, least significant bit of counter, enabled by SI} 

{C1, middle bit of counter, enabled by Sl and CO} 

{C2, most significant bit of counter, enabled by Sl, CO, Cl} 

{RST selected as a global reset} 

{counter outputs, connected to ICO, ICl, IC2 respectively} 

{inverted once more before mealy macrocell, } 

{high asserted on pins} 

{input clocks always enabled} 

{TRGACK is a mealy and of TRG and lSI} 

6-304 



CYPRESS 
SEMICONDUCTOR 

Using the CY7C361 as an Mbus Arbiter 

This application note discusses the use of the 
CY7C361 as a bus arbiter for a Cypress SPARC 
CY7C600 RISC-processor Mbus system. The Cypress 
CY7C361 is a very high-speed synchronous Erasable 
Programmable Logic Device (EPLD) optimized for 
state machine applications. The Cypress SP ARC system 
utilizes a CY7C601 40-MHz RISC processor, a 
CY7C602 Floating Point Unit (FPU) , four CY7C604 
Cache Controller and Memory Management Units 
(CMU), and eight CY7C157 16K x 16 cache RAMs 
make up a 256-Kb cache. The arbiter resolves Mbus ac­
cess contention for a system with four CMU bus 
masters. Refer to Figure 1 for a block diagram of the 
Mbus system. 

MASTER 0 

CY7C361 
MBUS 

ARBI TER 

MASTER 

MBUS 

CY7C361 Brief Description 
The CY7C361 is a high-performance PLD with 32 

state macrocells, a condition-decode array, an output 
array, 12 input macrocells for eight dedicated inputs 
and four bidirectional inputs, six dedicated outputs and 
four Mealy output macrocells. The CY7C361 also has a 
clock-doubler circuit, which allows up to 125-MHz in­
ternal operation. Packaged in a 28-pin, 300-mil DIP or 
LCC/PLCC package, the CY7C361 is manufactured 
using a CMOS 0.8-micron, double-metal-processing 
technology that is UV erasable. Please consult the 
Cypress application note, "Understanding the 
CY7C361," for an in-depth description of the CY7C361 
architecture. 

MASTER 2 

MA I N 
MEMORY 

MASTER 3 

S 

Figure 1. Mbus System Block Diagram 

6-305 



~~ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~U~s~in~g=t~h~e~C~Y~7~C~3~6~1~a~s~a~n;;;;;;;M;;;;;;;;;;;;;;h;;;;;;;us;;;;;;;A;;;;;;;;;;;;;;rh;;;;;;;i=te ~ SEMlcnIDUCTOR;;;;;;; 

Mbus Description 
The Mbus is a SPARC standard main-memory in­

terface for the Cypress SP ARC CachelMemory 
Management Unit device (the CY7C604). The M in 
Mbus stands for module and emphasizes the multi­
processor module support that SP ARC offers. It is a 
high-speed, synchronous, 64-bit, multiplexed address 
and data bus that operates at the CY7C601's clock rate. 

Mbus accesses are initiated by a master and 
responded to by a slave. Generally a bus transaction 
takes place between a master and main memory, but in 
the case of direct data intervention, transactions can 
occur between masters. The handshake between the 
CY7C604 CMU and the arbiter consists of a request 
line (IMBR(3:0» and a grant line (IMBG(3:0» for each 
master. A busy line (/MBB) is common to all masters 
and indicates that the bus is in use. 

Mbus arbitration uses the following procedure: A 
master asserts its request line. The arbiter decides 
whether to grant the request. The request is gran~ed 
when the arbiter asserts the master's correspondmg 
grant. As soon as the grant is received, the master can 
deassert its request. The newly granted master watches 
the IMBB (busy) signal. When IMBB is deasserted, the 
new master must drive IMBB Low on the next clock 
cycle to take control of the bus or risk losing its ~hance 
for mastership. The new master can now start Its bus 
transaction. When the transaction is completed, the 
master deasserts IMBB. The arbiter continues to assert 
the grant until another request is received. This allows 
the master to perform multiple transactions without 
repeating the arbitration sequence. Refer to Figure 2 for 
the Mbus multiple request sequence. 

Mbus transfers are synchronous with respect to the 
system clock. The data transactions across the bus co~­
sist of a single-clock-period address phase and a mul~­
ple-clock-period data phase. Data transfers ~an occur m 
word (64 bit), multi-word-burst, or atOmIc-load-store 
formats. All signals are valid and sampled on the system 
clock's rising edge. The Memory Address Strobe 
(!MAS) signal validates the address phase and den~tes 
the start of the actual data transfer. Three status lmes 
indicate bus states and convey the current bus opera­
tion, as well as error status. Figure 3 shows the Mbus 
data-transfer waveforms. 

CLOC It 

!MIRO 

!MIRl 

!MUO 

!MIU 

!MBI ------,\....-..JII.L,& ...... t ...... LLr--"-...... ~ 1 

Figure 2. Mbus Multiple Request Sequence 

By design, the details of bus mastersh~p and resolu­
tion of multiple requests are handled outsIde the re~m 
of Mbus and SP ARC. This approach allows you to Im­
plement any arbitration scheme that suits the system re-
quirements. . . 

Two arbitration schemes fit the Mbus specification. 
The . simplest is concurrent arbitration, in which the bus 
is granted to a master, and the master performs its bus 
transaction. If requests are pending when the master 
completes its transaction, the bus is re-arbitrated, and 
the new master takes over. In this arbitration scheme, 
the current master's grant is asserted during the bus 
transaction and deasserted after the transaction is 
fmished. The bus arbitration happens between bus 
transactions, causing several cycles of latency between 
transfers. 

The second arbitration scheme is pre-arbitration, 
which is more efficient on Mbus but trickier to imple­
ment. In pre-arbitration, the arbitration happens before 
the previous bus cycle completes. The bus is granted to 
a master, and the master starts its transaction. If other 
requests are pending, the grant is withdrawn ~d ~e 
bus is rearbitrated Once the new master receIves Its 
grant, it waits until. IMBB is deasserted and then takes 
control of the bus by asserting IMBB on the next cycle. 
At this point the bus can be arbitrated again. This 
means that as long as requests are pending, IMBB is 
inactive for, at most, one cycle at a time. This takes 
more work to implement because the arbiter must have 

6-306 

.IIUS CLOCK 

Stngle Write Access 
No Wait States 

ADDIESS/DATA , 

/MAS ~ 
/III Of : : '----!-J 
/MITY ; ; : 
/ ME II : : : ,--______ _ 
/1111 "\ , , 'I 

;addr ••• dattl 
~h •• r.ph ••• , 

IIIUI CLOCK 

'MAS 
/IiIDY 

'MITT 
'ME II 
/MII 

16-Byte Burst Read 
One Waft State 

-------.,., 

,~ ____________ ~r----

Figure 3. Mbus Data Transfer Waveforms 



~ 

£;~Rffi<) Using the CY7C361 as an Mbus Arbiter 
___ , ~~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

MBUS CLOC 

CY7C361 CLO 

IMBRO 

IMBGO 

\~----~--------~--------~I 
I 

--~--------~--------~:~\~~~~~~~~~S~ 

~tc Om a x~ 
IMBB 

ARB I T E R S T A TL.!:-E _.J\....AI!...&..1jL-1J'~L..l....lil\¥....!E..,.~'~.,.JL..!IIU\.IIUL.I~a..¥-"'-'-'LJ\........J£.-¥-!t..J'-......L:!LJ~----k ....... J'----'--'"--"'---"~...,\ 

Figure 4. CY7C604 & CY7C361 Timing for Master 0 

two different arbitration modes: one for when the bus is 
idle, (e.g., immediately after power up), the second for 
normal operation. 

The arbiter described in this application note uses 
the pre-arbitration scheme. 

Timing Considerations 
Because this arbiter uses pre-arbitration, the ar­

biter need not be able to accept a request, resolve ac­
cess contention, and grant bus rights to a master in a 
single Mbus clock cycle. In this application, the arbiter's 
clock input runs at the same 40-MHz clock rate used by 
the CY7C601 and the CY7C604s. This clock rate allows 
the arbiter inputs to meet the timing requirements of 
the Mbus masters. Internally, the CY7C361 that imple­
ments the arbiter is clocked at 80 MHz by virtue of the 
on-chip clock doubler. 

Figure 4 shows the timing relationship between 
master 0 (a CY7C604 at 40 MHz) and the CY7C361 
arbiter. This figure also illustrates the first arbitration 
cycle after a reset. 

Arbitration Scheme 
With the arbitration function left to the designer, 

there are several resolution techniques you can employ. 
Fixed priority, rotating priority, least recently used, and 
random priority are all contention-resolution schemes 
that have proven successful, yet each has its own faults. 
A fixed priority, for instance, favors one requester more 
than the others. Rotating priority provides a simple, but 
not always fair approach to arbitration. A least recently 
used arbitration scheme represents the fairest form of 
contention resolution but requires a highly complex im­
plementation. The random technique does not guaran­
tee arbitration results. To help simplify this example, it 
uses fixed priority, with master 0 having the highest 
priority, and master 3 the lowest. 

Design Partitioning 
The design is partitioned into three functional 

blocks (Figure 5). The first block is the condition 
decoder or input array. The second block is the hand­
shake state machine, which keeps track of requests 

(IMBR(3:0» and the bus-busy input (IMBB). The 
CY7C361's state macrocells implement this block. The 
third block is implemented in the output array, which 
generates the grant (IMBG(3:0» signals that give an 
Mbus master ownership of the bus. 

Handshake State Machine 
Because the condition decode array uses the feed­

back from the handshake state machine, consider the 
state machine first. The machine controls Mbus hand­
shake and arbitration. The arbiter cycles through 26 dis­
crete states in performing its function and thus takes 26 
state macrocells to implement. The first two states, 
BEGIN and IDLE, can be thought of as supervisory 
states. Their state diagram appears in Figure 6. Each 
master has its own grant sequence of six states for a 
total of 24 (Figure7). 

You need to consider a number of issues when fit­
ting a design into the CY7C361. The fIrst is the place­
ment of the state macrocells with relation to each other. 
All (wait until) TERMINATE macrocells must be 
preceded by another macrocell to provide a way to pass 
the token into the cell. 

6-307 

Because no grants are asserted on power-up or 
reset, the machine starts a token in BEGIN and passes 
the token to IDLE on the next clock. IDLE is a (wait 
until) TERMINATE macrocell. This means that the 
previous state macrocell (BEGIN in this case) passes a 
token to IDLE, which keeps the token until certain con­
ditions are met (more on this shortly). 

When the machine receives a request (IMBRn, 
where n = 0, I, 2, 3), priority is decided and a token is 
created in a START macrocell called GTn PRI. Be­
cause the priority selection happens as a condition to 
GTn PRI, a condition for GTO PRI is that IMBRO is 
asserted. Further, a condition -for GT3 PRI is that 
/MBR3 is asserted and not the other requests. 

The token from GTn PRI is immediately passed to 
TERMINATE macrocell-GTn WAIT. The GTn PRI 
macrocell must be placed first, because it is the START 
macrocell that creates the token. OTn PRI is immedi­
ately followed by the GTn _ WAIT macrocell, which is 
essentially a timing loop that waits until the bus can be 



Output 

Array 

State 
Microcel s 

Figure S. Arbiter Block Diagram 

arbitrated. GTn _WAIT . terminates under two condi­
~ons: wh~n IDLE is active, meaning that no bus activity 
IS occumng or when IMBB goes active, meaning that 
the bus can be arbitrated. At this point GTn WAIT 
passes the token to one of two processes. -

If IDLE is still active, the token passes to 
IDLn_SGT. This is another START macrocell, which 
passes the token to the adjacent TERMINATE macro­
cell, called IDLn _ TGT. These two states produce the 
IMBGn signal. IDLn TGT and IDLE both terminate 
when IMBB is asserted, (meaning that master n is now 
controlling the bus), and any GTn WAIT state is as­
serted (meaning that another request is pending). 

no reques s 

/MBB-O 
and 

GTn WAIT 

Figure 6. Supervisory State Machine: BeginlIdle 

6-308 

This sequence is only used for the fIrst two arbitra~ 
tions immediately after a reset, or if there has been a 
lapse in bus requests. The sequence fInishes as soon as 
the master takes control of the bus. 

If IDLE is not active, GTn _WAIT passes the token 
to NRMn_SGT. This is a START macrocell, which pas­
ses the token to the adjacent TERMINATE macrocell 
called NRMn_ TGT. Like the equivalent IDLn SGT 
and IDLn_ TGT . states, these two states produce the 
IMBGn signal. However, NRMn TGT terminates when 
IMBB is deasserted (signaling -that the current bus 
transaction has completed and master n will control the 
b~s ~ext), and any GTn _WAIT state is asserted (in­
dicating another pending request). The next grant is as­
serted as soon as master n asserts IMBB. 

This sequence is the normal mode of operation. It 
terminates as soon as the previous bus transaction com­
pletes. On the next cycle, the granted master takes con­
trol of the bus while the arbiter is issuing the next grant. 

Note that both modes allow for bus parking, which 
allows a master to do multiple bus transactions without 
re-arbitrating, so long as no other requests are pending. 
This is why GTn_ W AIT is used to terminate the grant 
line. 

Figure 8 shows the. waveforms for two consecutive 
arbitrations, the fIrst starting from the IDLE state and 
using the idle mode, the second proceeding in normal 
operation mode. 

The Condition Decode Array 
The condition decode array implements the control 

logic for the handshake state machine. This array's in­
puts consist of the true and complement of all input 
pins along with the true and complement of the state 



/MBRO. /MBRI-I. 
/MBR2-0 

NOTES: 

/MBRO-I. /MBRI-O 

/MaRO-I. /MaRI-I. 
/MaR2-1. /MBR3-0 

MBGn - IDLn SGT + IDLn TGT + NRMn SGT + NRMn TGT; so 
IMBGn - /IDLn_SGT * IIDLn_TGT * /NRMn_SGT * 7NRMn_TGT: 

IDLn_TGT terminates when a GTn_WAIT state is asserted and /MBB-O. 
NRMn_T6T terminates when a 6Tn_WAIT state 1s asserted and /MBB-I. 

Figure 7. State Diagram of the Mbus Arbiter 

6-309 



QREss Using the CY7C361 as an Mbus Arbitel 
.• SEMIcamUCTOR =;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

macrocell feedback. The state macrocell feedback terms 
are not all global inputs, however. Every fourth macro­
cell has global feedback, and every third macrocell has 
feedback to 16 of the 32 macrocells. The rest of the 
macrocells have local feedback within their group of 
eight Placement of the states so that there is adequate 
feedback is one of the biggest challenges when using the 
CY7C361. The global feedback in die Mbus arbiter 
comes from the GTn WAIT states. 

The other array- inputs are IMBB, IRE SET, and 
IMBR(3:0). The IMBR(3:0) inputs are single registered. 
Because the input registers have very small set-up and 
hold times (tsu = 2 ns, tH = 3 ns), metastable events 
are unlikely. The combinatorial nature of IRE SET 
makes it suitable to work as a non-registered signal. 
IMBB, on the other hand, is double registered because 
of its importance to the design's internal processes. If 
you can guarantee that IMBB will not change until after 
the falling edge of the system clock, you can single­
register IMBB for slightly better performance. 

All the array inputs mentioned above are Low as­
serted. You specify this fact in Cypress PLD ToolKit 
syntax by the preceding slash when you define the sig­
nals in the source file's configuration section. In the 
source file's equation section, because all signals are 
treated as High asserted, specifying MBB in an equa­
tion is the same as saying that IMBB = 0 on the pin. 

Each state macrocell has two possible inputs. One 
input comes from the previous macrocell. You enable 
this input by specifying CIN in the macrocell's con­
figuration. A TERMINATE macrocell requires the CIN 
designation; otherwise the macrocell cannot be set. 

The other state macrocell input comes from a con­
dition decoder, which is the output of the condition­
decoder array. A condition decoder is the output of an 
AND function, with inputs from a NAND (or 
INY PROD) term and an AND (or PROD) term. OR 
functions are accomplished by inverting the inputs to 
the INY PROD term. 

The -BEGIN state starts a token after a reset, when 
none of the requests (IMBR(3:0». are asserted. This 
state passes the token to IDLE, where it stays until ter­
minated by the combination of a GTn.:_ W AIT state and 
the IMBB line being activated. The PLD ToolKit code 
for this is: 
BEGIN = <PROD> IMBRO * IMBR 1 

* IMBR2 * IMBR3; 

IDLE <PROD> MBB 
<INY PROD> /GTO WAIT * /GTI WAIT 

- * IGT2_WAlT * IGT3_WAIf; 

Keep in mind that, because BEGIN is a START 
macrocell, BEGIN is asserted for one cycle after its 
condition is true. Because IDLE is a TERMINATE 

MBUS CLOCK 

CY7C361 CLOCK 

IMBRO 

IMBRI 

GTO_PRI 

STO_WAIT 

IOLO_S6T 

IOLO_T6T 

" , 

IN BG 0 

6TI_PRI 

6TI_WAIT 

HRMI_S6T 

HRM1_T6T 

IN BG I 

INBB 

IDLE 

" , I I , 

~~----~: ----~:~----~ : 
--7--------7---.:: : 

I I i 

--7-----~--~r--)~----~:----__ ~ ____ ~ ____ ~~: ______ L-____ -L ______ L_ ____ ~ 
" , 

--~----~-----J~~--~i ------~----~----~:----~~----~------~----~ 
--~----~------~:--~r--r~.----~------~----~:------~----~------L-----~ 
__ ~----~------~:--~~V :,~ __ ~~ ____ ~ ____ ~~ __ ~ 
---r------r-----~:----r'~'-;' I~\O~~------r_-----r----~ 

, ~ tc o>:\~--~-------'--------L: -' -----'Y 
-~----~------~----~:------~----~r--'~~: ----~~----~----~----~ 
__ ~ ____ ~ ______ ~ ____ ~: ______ L-____ -L: __ ~~~ ____ ~ ______ ~ ____ _T----~ , , 
__ -'-____ ---L ______ ~ ____ ~: ______ L-____ -L ____ ~r--\~ __ r-____ ~ ______ ~ ____ ~ , 

I 

If anothlr riquist hiS blln rlcetved, 
NRNn_T6T terntnates here, 
and the next grant fs fssued. 

Figure 8. Handshake State Machine Waveforms 

6-310 



macrocell, it is asserted after the previous macrocell is 
asserted; IDLE is deasserted when its condition is true. 

The machine enters the OTn PRI state if this 
state's request is the highest priority -received. OTn _PRI 
passes the token directly to OTn WAIT, which ter­
minates when either IMBB goes active (meaning that a 
bus transaction has started) or IDLE is active (indicat­
ing that no bus transactions have taken place). The 
PLD ToolKit code for OT3 _PRI and OT3 _WAIT is: 
OT3_PRI = <PROD> IMBRO * IMBRl 

* IMBR2 * MBR3; 

OT3 _WAIT = <PROD> 
<INY PROD> IMBB * IIDLE; 

Remember that <INY PROD> is a NAND term, 
and therefore the expression above means that 
OT3 WAIT is terminated when MBB or IDLE is as­
serted (according to the DeMorgan theorem). Also 
note that the OT3 WAIT equation specifies 
<PROD> without an expression. This automatically 
sets the AND term to a logical 1. If the equation did 
not include <PROD>, PLD ToolKit would assume 
that <PROD> equals 0, which would cause the condi­
tion decoder to always be false and OTI _WAIT to 
never terminate. 

At the same time that OTn WAIT is terminated, a 
new token is started in one of-two macrocells. In the 
first case, IDLE is asserted, and the token is created in 
IDLn SOT, a START macrocell. The condition for 
entering IDLn _SOT is that IDLE and the correspond­
ing OTn WAIT state are asserted. IDLn SOT then 
passes the token to the TERMINATE- macrocell 
IDLn TOT. IDLn TOT terminates when MBB is as­
serted- and one or the other handshake. processes is in 
its OTn _ WAIT state. The equations are: 
IDL3 _SOT <PROD> OT3 _WAIT * IDLE; 

IDL3_TOT <PROD> MBB 
<INY PROD> IOTO WAIT 

* IOT1_ WAIT * IOT2 _WAIT; 

This sequence only happens immediately after a 
reset or if there has been a lapse in bus requests. The 
sequence finishes as soon as the master takes control of 
the bus. 

6-311 

The second state the machine can enter from 
OTn WAIT is NRMn SOT. This state is entered when 
the corresponding OTn _WAIT is asserted, MBB is as­
serted, and IDLE is not asserted. NRMn SOT (a 
START macrocell) passes the token to NRMn TOT, 
which is a TERMINATE macrocell. NRMn TOT ter­
minates when MBB is deasserted and one of the other 
OTn _WAIT states is asserted. The equations are: 
NRM3 SOT <PROD> OT3 WAIT * MBB * 
IIDLE;- -

<PROD> IMBB 
<INY PROD> IOTO WAIT 

* /OTl_ WAIT * IOT2 _WAIT; 

This sequence is the normal mode of operation. 
The sequence terminates as soon as the previous bus 
transaction finishes. On the next cycle, the granted 
master takes control of the bus, while the arbiter is issu­
ing the next grant. 

The Output Array 
The CY7C361's output array has the complements 

of all the state registers as its inputs. The terms are 
NAND based and connected directly to the output pins 
or Mealy macrocells, which makes the outputs an OR 
function of the state macrocells. IMBGn (where n = 0, 
1, 2, 3) is produced by ORing states IDLn SOT, 
IDLn _TOT, NRMn _SOT, and NRMn _TOT. -

Design Verification 
The entire CY7C361 Mbus arbiter design was 

entered using the Cypress PLD ToolKit and verified 
using the PLD ToolKit's interactive simulator. Working 
with a mouse and pop-down menus, the designer 
created the circuit stimuli by drawing waveforms on a 
graphics screen for a each CY7C361 node or pin. The 
PLD ToolKit' s SIMULATE command then displays the 
response waveforms, promoting a high degree of con­
fidence in the design's operation before programming a 
part. The PLD ToolKit source file can be found in 
Appendix A. 

Reference 
SPARe Mbus Interface Specification, Revision 1.1, 

Published March 29, 1990 by Sun Microsystems. 



Appendix A. PLD ToolKit Source File for Mbus Arbiter 

CY7C361; 

CONFIGURE; 

CLK (NODE=4), 

IMBB (IIREG) , 

IRESET, 
IMBRO (NODE=10, !REG), 

IMBRI (!REG), 

IMBR2 (!REO), 

IMBR3 (!REG), 

IMBGO (NODE=16), 

IMBG1, 

IMBG2, 

IMBG3 (NODE=28), 

CKENI (NODE=30), CKEN2, 

BEGIN (NODE=34, START), 
IDLE (1ERM, CIN), 

OTO PRI (NODE=38, START), 
OTO = WAIT (1ERM,CIN), 

NRMO SOT (START), 
NRMO=TGT (1ERM,CIN), 

OTt PRI (START), 
OT( W AIT (1ERM,CIN), 

NRMI SOT (START), 
NRMl=TOT (1ERM,CIN), 

OT2 PRI (START), 
OT2 = W AIT (1ERM,CIN), 

NRM2 SGT (START), 
NRM2=TOT (1ERM,CIN), 

GT3 PRI (START), 
OT3=WAIT (1ERM,CIN), 

NRM3 SGT (START), 
NRM3=TGT (1ERM,CIN), 

IDLO SGT (START), 
IDLO = TGT (1ERM,CIN), 

{Mbus Arbiter using the CY7C361} 

{Configuration of macrocells} 
{Inputs} 

{MBus Busy can be single or double registered, 
depending on the system} 

{MBus Request from master 0, single registered} 

{MBus Request from master 1, single registered} 

{MBus Request from master 2, single registered} 

{MBus Request from master 3, single registered} 

{Outputsl 
{MBus Grant for master 0, low asserted output} 

{MBus Grant for master 1, low asserted output} 

{MBus Grant for master 2, low asserted output} 

{MBus Grant for master 3, low asserted output} 

{internal node configuration} 
{clock enables for input macrocells} 

{begin and idle are supervisory states} 
{idle is situated on a global feedback macrocell} 

{prioritization is a condition to this state, 0 is highest priority} 
{waits until a grant can be issued, this rnacrocell has global feedback} 

{These 2 states are the actual grant states for IMBOO } 
{during normal operation} 

{prioritization is a condition to this state, 1 is second highest priority} 
{waits until a grant can be issued, this macrocell has global feedback} 

{These 2 states are the actual grant states for 1MB 0 1} 
{during normal operation} 

{prioritization is a condition to this state, 2 is third highest priority} 
{waits until a grant can be issued, this macrocell has global feedback} 

{These 2 states are the actual grant states for IMBG2} 
{during normal operation} 

{prioritization is a condition to this state, 3 is lowest priority} 
{waits until a grant can be issued, this rnacrocell has global feedback} 

{These 2 states are the actual grant states for IMBG3} 
{during normal operation} 

{These 2 states are the actual grant states for IMBGO} 
{for the first two transactions after an idle state} 

6-312 



Appendix A. PLD ToolKit Source File for the Mbus Arbiter 

{internal node configuration data--continued} 
IDLl SOT (START), 
IDL(TOT (TERM,CIN), 

{These 2 states are the actual grant states for /MBG l} 
{for the first two transactions after an idle state} 

IDL2 SOT (START), 
IDL2=TOT (TERM,CIN), 

{These 2 states are the actual grant states for /MBG2} 
{for the first two transactions after an idle state} 

IDL3 SOT (START), 
IDL3=TOT (TERM,CIN), 

{These 2 states are the actual grant states for /MBG 3} 
{for the flrst two transactions after an idle state} 

ORST (NODE=64), {Global ReSeT node} 

OFF (NODE=73), {internal reference point} 

CLK2X (NODE=74, DBL_CLK), {the internal clock doubler is enabled} 

EQUATIONS; 

ORST = 

OTO PRI 

<PROD> RESET; 

<PROD> MBRO; 

{the equations for the part are specified here} 

{the condition decode array} 

{start macrocell, master 0 has highest priority} 

OTO WAIT = <PROD> {terminate macrocell, <PROD> enables condition decoder} 
<INV PROD> IMBB * IIDLE; {gtO _wait terminates if MBB or IDLE are asserted} 

NRMO _SOT = <PROD> OTO _WAlT * MBB * IIDLE; {grant is issued if request is highest order pending, and} 
{MBB is asserted and IDLE is not asserted} 

IDLO TOT 

OTl PRI = 

OTl WAIT 

<PROD> /MBB {grant terminates when MBB is deasserted,} 
<INV _PROD> IOTl_WAlT * IOT2_WAlT * lOTI_WAlT; {and a request is pending} 

<PROD> OTO _WAlT * IDLE; {grant is issued if request is highest order pending, and 
{IDLE is asserted} 

<PROD> MBB {grant terminates when MBB is asserted, } 
<INV _PROD> IOTl_ W AlT * lOTI _WAlT * lOTI _ WAlT; {and a request is pending} 

<PROD> IMBRO * MBRl; {start macrocell, master 1 has second highest priority} 

<PROD> {terminate macrocell} 
<INV _PROD> IMBB * IIDLE; {gtl_ wait terminates if MBB or IDLE are asserted} 

NRMl_SOT = <PROD> OTl WAlT * MBB * IIDLE; {grant is issued if request is highest order pending, and} 
{MBB is asserted and IDLE is not asserted} 

NRMl_TOT = <PROD> /MBB {grant terminates when MBB is deasserted,} 

IDLl SOT 

<INV _PROD> IOTO _WAlT * IOT2 _WAlT * IOT3 _WAIT; {and a request is pending} 

<PROD> OTl WAlT * IDLE; {grant is issued if request is highest order pending, and 
{IDLE is asserted} 

<PROD> MBB {grant terminates when MBB is asserted,} 
<INV _PROD> IOTO _WAlT * lOTI _WAlT * IOT3 _WAlT; {and a request is pending} 

6-313 



Appendix A. PLD ToolKit Source File for the Mbos Arbiter 

{condition decode array equations--continued} 
Gn_PRI = <PROD> IMBRO '" IMBRI '" MBR2; {start macrocell. master 2 has third highest priority} 

<PROD> {terminate rnacrocell} 
<INV _PROD> IMBB '" IIDLE; {gt2_wait terminates if MBB or IDLE are asserted} 

NRM2 _SOT = <PROD> On_WAIT * MBB * IIDLE; {grant is issued if request is highest order pending. and} 
{MBB is asserted and IDLE is not asserted} 

NRM2 _TOT = <PROD> IMBB {grant terminates when MBB is deasserted.} 

IDL2_S0T 

dNY _PROD> IOTO _WAIT * lOTI_WAIT * lOTI _WAIT; {and a request is pending} 

{grant is issued if request is highest order pending. and 
{IDLE is asserted} 

<PROD> MBB {grant terminates when MBB is asserted.} 
dNY _PROD> IOTO _WAIT * lOTI_WAIT '" lOTI _WAIT; {and a request is pending} 

<PROD> IMBRO * IMBRl * IMBR2 * MBR3; {start macrocell. master 3 has lowest priority} 

<PROD> {terminate macrocell} 
<!NY _PROD> IMBB * IIDLE; {gt3 _wait terminates if MBB or IDLE are asserted} 

NRM3_S0T = <PROD> OTI_ WAIT * MBB * IIDLE; {grant is issued if request is highest order pending. and} 
{MBB is asserted and IDLE is not asserted} 

NRM3_TOT = <PROD> IMBB {grant terminates when MBB is deasserted.} 

IDL3_TOT 

BEOIN = 

IDLE 

CKENl 
CKEN2 

MBOO 

MBOl 
, 
MB02 

MB03 

dNY _PROD> IOTO _WAIT * IOT1_ WAIT * Ion _WAIT; {and a request is pending} 

<PROD> OT3 _WAIT * IDLE; {grant is issued if request is highest order pending. and 
{IDLE is asserted} 

<PROD> MBB {grant terminates when MBB is asserted.} 
<INY _PROD> IOTO _WAIT * IOT1_ WAIT '" lOTI _WAIT; {and a request is pending} 

<PROD> IMBRO * IMBRl * IMBR2 * IMBR3; {begin asserts when there are no requests, 
usually after a reset} 

<PROD> MBB {idle terminates when MBB is asserted,} 
<INY PROD> IOTO WAIT * IOTl WAIT '" lOTI WAIT * lOTI WAIT; 

- - - - {and a request is pending} 

<INY SUM> IOFF; 
<INY=SUM> IOFF; 

{output array equations} 
{input register clocks are always enabled} 

< INY SUM> INRMO SOT * INRMO TOT'" IIDLO SOT'" IIDLO TOT; {each grant is made up 
of these four states} 

<INY _SUM> 1NRM1_ SOT * INRM1_ TOT '" IIDLl_ SOT '" IIDL1_ TOT 

<INY SUM> 1NRM2 SOT * INRM2 TOT'" IIDL2 SOT * IIDL2 TOT;{the output pins are 
- - - - - inverted for the low} 

<INY _SUM> 1NRM3_S0T * 1NRM3_TOT '" IIDL3_S0T '" IIDL3_TOT; {asserted grants} 

{end of ftle}; 

6-314 



~~~Z-=I-I-i~~·~ ~ .. .. ~.~ 
'iii CYPRESS

, SEMICONDUCTOR

TMS320C30/VME Signal Conditioner
Using the CY7C361

The design documented in this application note
shows how to use the Cypress CY7C36I to work with
the TMS32OC30 (,C30) digital signal processor from
Texas Instruments and a VME interface. The design
uses a single CY7C36I to perform 'C30 interrupt signal
conditioning as well as VME DTACK (Data Transfer
ACKnowledge) generation. The CY7C36I performs
these functions at a cost that is generally lower than
would otherwise be possible.

This application note provides a brief introduction
to the CY7C36I and the methods you can use to imple­
ment two different functions in the device. This design
contains six different state machines and uses 30 of 32
available macrocells.

CY7C361 Description
The CY7C36I is a 28-pin, I25-MHz state machine

EPLD. It contains 32 macrocells, eight dedicated in­
puts, four bidirectional pins, six dedicated output pins,
and four Mealy output pins (which you can use as fast
combinatorial outputs).

The CY7C36I is based on a token-passing state
machine methodology, which is distinctly different from
what you might consider the "normal" method of design­
ing state machines (e.g., encoding states). The
CY7C36I's token-passing scheme effects a logical,
streamlined state machine design methodology. In this
scheme, each macrocell typically corresponds to a state.
It is possible, however, to encode states in this device.
But associating each macrocell with a state generally
obviates the need to decode the macrocell outputs to
determine the machine's present state, which eliminates
the need for a state table.

Figure 1. The CY7C361 Condition Decoder

You can configure each CY7C361 state macrocell
in one of three ways. First, in the START configuration,
the macrocell's output pulses High for exactly one cycle
when either of two conditions are asserted: the C IN
signal from the previous macrocell or the output of the
CY7C36I's condition decoder. The start configuration
is useful for starting a sequence.

The second macrocell configuration is the (Wait
Until) TERMINATE configuration. In this configura­
tion, the output goes High when C_IN is received from
the previous macrocell and remains High until the con­
dition decoder's output is asserted. You can use this
configuration to indicate, for example, "I am performing
this function now," where "I" is a state machine imple­
mented in the CY7C361.

In the third macrocell configuration, the TOGGLE
configuration, the macrocell output toggles so long as
the C IN from the previous macrocell or the condition
deco<Jer 's output is asserted. This configuration is useful
for counters.

The condition decoder differs from the traditional
sum-of-products decoder in conventional PLDs. The
CY7C36I condition decoder efficiently facilitates either
entering a state from one of several states based on a
condition or leaving a state based on a condition. The
condition decoder performs, in effect, an AND on an
AND and an OR (Figure 1).

6-315

To keep the CY7C36I 's speed very high, the mac­
rocell feedback structure is divided into three different
feedback types: feedback that routes to all cells in a
group of eight, feedback that routes to all cells in a
group of sixteen, and feedback that routes to all 32
macrocel1s. It is important to be aware of these feed­
back groups when designing with the CY7C361.

Interrupt Signal Conditioning for TMS320C30
The 'C30 has four external interrupt lines (/INTO

through IINT3, referred to here as IINTx). These lines
are active Low, and have specific timing requirements
relative to the internal 'C30 clocks, HI and H3. These
internal clocks derive from the 33-MHz CLKIN signal
and have a period twice as long as CLKIN's period. The

~RESS TMS320C30/VME Signal Conditioner Using the CY7C361
~,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

interrupt lines must be asserted (pulled Low) for at
least one but less than two periods of the HIIH3 clock.
If IINTx is asserted for less than one period, the 'C30
does not respond to the interrupt If IINTx is asserted
for two or more periods, the 'C30 responds to the inter­
rupt twice. Because HI and H3 have a 60-ns period, the
interrupt pulses must be 60 to 120 ns long.

Design Goals

Figure 2 presents the pertinent timing information
for the interrupt signals. CLKIN is the main 'C30 clock
and also drives the CY7C361. DBL CLK is the internal
CY7C361 clock; it runs at twice the frequency of
CLKIN because the VME DTACK circuitry requires
timing resolution to I5-ns intervals. Consequently, the
CY7C361's internal clock doubler is turned on.

Note that an interrupt pulse width of 105 ns (or
seven double-clock periods) has been chosen. This
design detects a falling edge on the external interrupt
pulses (/XINTx), and the CY7C36I provides a condi­
tioned 105-nsactive-Low pulse on IINTx. IXINTx must
toggle high and then Low again to initiate another
IINTx pulse. Double registered for metastable hardness,
all four external interrupt pulses are asynchronous with
respect to each other and CLKIN. .

Implementation in the CY7C361

Although this design's logic is relatively simple, fit­
ting the 'C30 interrupt conditioning circuitry as well as
the VME DTACK generation circuitry in the same
device poses a space challenge. The DTACK circuitry
requires eight macrocells, leaving 24 macrocells avail-

elKIN

able for the 'C30 interrupt circuitry. The method' used
to generate the conditioned interrupt pulses is similar to
the pulse-triggered counter described in the application
note, "Understanding the CY7C361."

The 'C30/VME design requires modifications to
the counter for two reasons: First, the pulse length re­
quired in this implementation is less than the counter's
maximum length, and because there is no way to preset
a macrocell's state, the counter must be reset upon
reaching the desired count (in this case, a count of
seven cycles). Second, two of the interrupt conditioning
circuits must be designed a little differently to take into
account the fact that not all macrocell feedback terms
are available to all other macrocells.

Figure 3 presents a handy tool you can use to effi­
ciently' allocate CY7C36I resources. This diagram
shows all 32 macrocells, and their respective node num­
bers, for use in Cypress's PLD ToolKit. Above each
group of four macrocells appears the internal node
number for that group's local reset. This reset is used to
reset the counters at the end of the count sequence. Fig­
ure 3 also shows the CY7C361 's feedback structure.
Note that each group of eight macrocells has four mac­
rocells that are connected only to the local group-of­
eight feedback path. Two more are visible to all macro­
cells in the group of sixteen. The last two macrocells are
visible to all 32 registers.

As a' brief review of the pulse generator's opera­
tion, consider that each interrupt has an associated con­
ditioner circuit, and each contains two supervisory
states and a 3-bit counter. The supervisory states are

~60ns~

:~(----------- 105 ns

i(120 ns

Figure 2. TMS320C30 External Interrupt Timing

6-316

f~RE$ --;;;;;==;;;;;T;;;M~S;;;3;;;;20;;;C;;;3;;;O;;;;/V;;;;;;;M~E;;;;;;S;;;;i:;gn;;;a;;;;I;;;;;;C;;;;;;o;;;n;;;di;;;;ti;;;;;o;;;;;ne;;;;f;;;;;V;;;s;;;in;;:g==t;;;h;;;;;e;;;;;C;;;Y;;;;;7;;;;;C;:;;;;;3;;;;;6;;;1 -=, SEMICGIDUCI'OR _

Local Reset = N65

N32

N33

N34

N35
Local Reset = N66

N36

N37

N38

N39

N43
Local Reset = N68

N44

N45

N46

N47

N50

N51
Local Reset = N70

N52

N53

N54

N55

N57

N58

N59
Local Reset = N72

N60

N61

N62

N63

Figure 3. CY7C361 Resource Allocation Chart

6-317

~~. TMS320C30IYME Signal Conditioner Using the CY7C361
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

called INTx SO and INTx SI, where x = 0, 1, 2, or 3
for interruptO, 1, 2, or f INTx_SO is in the START
configuration and sends a C _IN to INTx _ S 1 when a fall­
ing edge is detected on IXINTx. INTx_ S 1 is in the
(Wait Until) TERMINATE configuration. Upon
receipt of C_IN from INTx_SO, INTxSI asserts its out­
put, which remains asserted until the count is reached.
The counter is implemented in three macrocells
(labeled INTx CO, INTx Cl, and INTx C2), each of
which is configured in -the TOGGLE - configuration.
When INTx S 1 is asserted, the counter starts counting.
When the counter macrocells' local reset, INTx RST,
detects the fmal count, it resets the counter. Simul­
taneously, INTx Sldeasserts. The output (/INTx) is
decoded directly from INTx SI and also deasserts.

A few words of caution: First, note that INTx SI
must be the next node after INTx SO, because a C-IN
from the INTx SO macrocell triggers INTx S 1. Second,
counter macrocells cannot be shared between any two
interrupt conditioner circuits, because INTl RST could
then reset a bit in INT2's counter (for example), result­
ing in an inaccurate pulse width that could prevent a
response to interrupt 2.

The CY7C361 resource allocation chart for this
section of the design appears in Figure4. As shown, this
design occupies 22 of 24 available macrocells. The INTl
and INT2 counters (located in nodes 40 through 43 and
nodes 44 through 47, respectively) each have an extra
associated macrocell called INTl MON and
INT2_MON. The machine requires these extra states
because not all counter bits are visible to their respec­
tive supervisory states. Appendix A lists the PLD Tool­
Kit source code for this design.

A representation of the PLD ToolKit simulator
output for the generic case appears in Figure5. Because
IXINTx is double registered, INTx SO asserts two cycles
after IXINTx is clocked in. INTx - S 1 becomes asserted
on the next CLKDB cycle, which starts the counter. For
INTO and INT3, when the count equals 5, INTx_Sl
deasserts, and INTx RST resets the counter macrocells.
For INTl and INTI, when the count equals 5,
INTx MON become asserted, which terminates
INTx=Sl. INTx_MON then triggers INTx_RST, and the
counter is reset. Note that IXINTx can remain Low for
any arbitrary time period, and only one count cycle is
triggered

VME DT ACK Generation
DTACK, the VMEbus's Data Transfer

ACKnowledge signal, is active Low. On a VME write,
data is transferred from the master to the slave's local
memory. On a read, data is read from the slave's local
memory and placed on the bus. In either case, the bus
takes a known amount of time to perform the transfer.
The slave uses DT ACK to inform the master that
enough time has passed for the transfer to have taken
place. Thus, on a VME write, the slave asserts DT ACK
when the data has been stored to local memory. On a

VME read, the slave asserts DTACK when the data the
slave has placed on the bus is valid.

Design Goals

The DTACK generator presented here handles two
different speeds of slave local memory. The desired
timing appears in Figure 6. When other circuitry on the
board decodes a valid address for local memory from
the master, the speed of the addressed memory deter­
mines which of two signals is asserted. If the slower
memory on the board was addressed, IGMSELO is as­
serted. For the faster memory, IGMSELl is asserted.
These signals are mutually exclusive because they indi­
cate two different address spaces.

The design goal is to detect a transition on either
IGMSELO or IGMSELI and produce an appropriately
delayed active-High DTACK signal. This signal must
remain asserted until the triggering IGMSEL line tog­
gles back High. Note that on the VMEbus, DTACK is
active Low. It is being shown active High in this ap­
plication note to demonstrate how to use a Mealy out­
put to control a signal's polarity.

Implementation in the CY7C361

In operation, when the 'C30/VME circuit detects a
falling edge on either IGMSEL line, a counter begins to
count. This 4-bit counter is located in a single group of
four macrocells (denoted by DT ACK Cx, where x = 0,
1, 2, 3) as shown in Figure 7. Another -bank of four mac­
rocells implements the supervisory states for IGMSELO
and IGMSELI. Each case requires two supervisory
states.

SELx SO (where x = 1, 2) is in the START con­
figuration :md is triggered when the counter reaches the
desired number. SELx_Sl is configured in the (Wait
Until) TERMINATE configuration, is triggered by
SELx_ SO, and terminates when a rising edge is detected
on IGMSELx. Because IGMSELO and IGMSELI are
never active at the same time, the same counter can
produce both delays.

When IGMSELO is active, the machine requires a
135-ns delay. To produce this delay, the counter counts
to 7. When combined with one clock delay for getting
data into the CY7C361 and one clock delay for assert­
ing DTACK, the count of 7 results in 9 clocks at 15 ns
each, or 135 ns. The assertion of IGMSELl requires a
75-ns delay, produced by a count of 3 when combined
with one clock delay for getting data into the CY7C361
and one clock delay for asserting DTACK. Note that
you could easily modify the counter to produce delays
as high as 255 ns.

When the desired count is reached, SELx SO starts
(which triggers SELx_Sl) and DTACKRST is asserted,
thus resetting the counter. SELx_Sl remains active until
terminated by detection of a rising edge on IGMSELx.
DTACK is asserted when either SELl SI or SEL2 SI
is active. Appendix A shows the PLD ToolKit source file
for this section of the design. A representation of the

£i;C'IPR>$ TMS320C30NME Signal Conditioner Using the CY7C361
~ ~~~;;~~~~~~~~~~~~~~~~~~~~~~~~~~~

N33

N34

N35
Local Reset = N66

INTO 51

INT1 50

INT1 51

N36 ~IN~TO~C~O ________________________ ___

N37 INTO C1

N38 INTO C2

N39 NOT U5ED

CO

N41 C1

N42 INT1 C2

N43 INT1 MaN
Local Reset = N68

N44 ~IN~T~2~C~0~ ________________________ ___

N45 ~IN~T2~C~1 ________________________ ___

N46 _IN_T2~C~2 ________________________ ___

N47 INT2 MON

N49 ~IN~T3~5~1 __________________________ __

N50 ~IN~T2~50~ __ ~ ____________________ __

N51 INT2 51
Local Reset = N70 --------------------------------

N52 _IN_T_3_C_0 __________________________ __

N53 ~IN~T~3~C~1 __________________________ __

N54 ~IN~T~3~C=2 __________________________ _

N55 NOT USED

Reserved for DTACK circuitry

N57 Reserved for DTACK circuitry

N58 Reserved for DTACK circuitry

N59 Reserved for DTACK circuitry
Local Reset = N72

N60 Reserved for DTACK circuitry

N61 Reserved for DTACK circuitry

N62 Reserved for DTACK circuitry

N63 Reserved for DTACK circuitry

Figure 4. Resource Allocation Chart for 'C30 Inierrupt Conditioner Circuit

6-319

W!= .. --;;;==;;;;;;;;;;;T;;;;;M;;;;S;;;3;;;2~O;;;;C;;;;3;;;;O/;;;;;V=M;;;;E~S~ig:;;D;;;;;a;;;1 ;;;-;;C;;;oD;;;d;;;i;;;;ti;;;oD;;;;;;;e;;;;r;;;;;;;V;;;;;s;;;;;;;iD;;;;:;g:;t;;;;;;;h;;;;;;;e;;;;;;;C;;;;;;;Y;;;;;;;';;;;;;;C;;;;;;;3;;;;;;;6;;;;;;;1 SEMICOIDUCTOR _

INTx SO
--+---~~-+~~

INlx S1 II
I~JT x co

I~JTx C1

INTx C2

-i--+--!--+--ii.---i--i-"",r-LJ'i.--~"" ~! ---i--~+--i---!-......j.­
, ...--' , \--'

~!~

I\JTx MON

Figure 5. Output Signals for the Interrupt Controller

PLD ToolKit simulator output is presented in Figures8
and 9.

CY7C361 Configuration Information
Both the configuration and equations parts of the

PLD ToolKit source file in Appendix A contain a sec­
tion for miscellaneous functions. These lines of code
configure a variety of CY7C361 characteristics.

The configuration section contains a required line
that sets up the internal clock:
CLKDB(node= 74, dbl clk),

CLKDB is the name assigned to the CY7C361's in­
ternal clock. Node 74 is the clock's internal node num­
ber. "dbl clk" is an attribute that turns on the
CY7C361'S clock doubler. If you do not want double:'
clock operation, simply leave out the "dbl_ clk" attribute.

Three lines of code configure the input enables:
ienl(node=29),
ien2(node=30),
ien3(node=31),

"ienx" is the name assigned to the nodes. Node 29
enables inputs 10 through I3. Node 30 enables I4
through I7. Node 31 enables the inputs of the bidirec­
tional pins (BO through B3).

One line of code provides a way to tie signals to
ground:
GND(node=73),

You can use this code, for example, to permanently
enable inputs, which the equations section
demonstrates:
ienl <inv_SUlll> /gnd;
ien2 <inv SUlll> /gnd;
ien3 <inv _SUlll> /gnd;

Acknowledgment
The author thanks Steve Heinrichs and Scott Min­

demann for permitting their idea to be used here and
for providing information regarding the TMS320C30's
interrupt structure and timing.

/GMSELO J\..--,,--I\
~ __ ~l~---~~~~:==/-~~~) __ /GMSEL 1

DTACK

~ 135 ns (min) ~75 ns (min) ~

Figure 6. Timing Requirements for DTACK Circuitry

6-320

=C:~RESS TMS320C30/VME Signal Conditioner Using the CY7C361
~, .~~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Local Reset = N65

N32

N33

N34

N35

N57 s_E_L_O_s_l __________________________ __

N58 S~E~L~1~S~O ________________________ ___

N59S =E=L~1~S~1~ ________________________ __
Locol Reset = N72

N60 DTACK CO
N61 DTACK C1
N62 DTACK C2

N63 DTACK C3

Figure 7. Resource Allocation for the DTACK Circuitry

6-321

CLK N

CLKDB

/GMSELO -n I i _

~i ,=,tj~::::~=t=t:t:ti:t:tj:j:::::i:l-~~i-i . i
/GMSEL 1 i i

DTACK --!-!-~--!---~-!-................. ~! I iLL
SELO so -i---+-+-+-.....j,..-4-...;.-4-4--Itl ... ' ~4-...;.-..... .;.-i-o-oo!--!O~-i-ij,..1 _

SELO S1 i , LL
SEL 1 SO Ii'
SEL 1 S1

~~:~: ~~ --!---.;.~-~~-"~---;'~~---;"~--i---i-~-
DTACK C2 i i II ~ -i--~-"'''''''''...,j,.,..~--i--i--i--
DT ACK C3 tl ... : --i-_i_-i--i--i--i-~~-i--":""-
DTACKRST !I ! ;LL

I :
Figure 8. DTACK Timing for IGMSELO

CLKIN

/GMSEL 1

SE~:A~: --!--+~-!-+--!--+li I I U-______ ~~~~----~~~~--~~-----i---__ --~
SELO S1

--~~~~~---;.---;.~~---;..~~--~~~~~~~~

SEL 1 SO ---i-+-~....j-~h,-: -+--i-~i-.;.--i-~-!---+-+--~~~-+--
SEL1 S1 ! j ~

DTACK CO M~"""-+--+--+--i--+--+--i--+-~~-+--+--i--
DTACK C 1 m ... : -+-. -+--+--+--+-+-~+--~ -+--+-+-+-_

DTACK C2 i n,-~ ----!--+-4---!~~_4_~+__4__+_--i-_4_..;.-.
DT ACK C 3 -!---+--+--..;.......;.......;--+-~-!-o!--i---i~--!--i-----!--!--+--!-+-O!--!--
DTACKRST II 1L

1 :

Figure 9. DTACK Timing for IGMSELI

6-322

5):""""" TMS320C30NME Signal Conditioner Using the CY7C361
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. PLD ToolKit Source File for 

TMS320C30NMESignai Conditioner/Generator 
CY7C361; 

{PLD Toolkit source code listing for TMS32OC30NME signal conditioner/generator} 

CONFIGURE; 

{These lines are miscellaneous setup for the 36l.} 
CLKDB(node= 74, dbl_ clk), 

ien1 (node=29), 
ien2(node=30), 
ien3(node=31), 

GND(node= 73), 

CLKIN(node=4), 

GLBL _ RST(node=64), 

/RESET(node=9), 

{Required line. In this case, the clock doubler is ON.} 

{Nodes 29, 30, and 31 are the input enables for the} 
{dedicated inputs and the bidirectional inputs used on} 
{this device.} 

{Used to permanently assert an internal signal.} 

{Clock signal. Feeds both the 361 and TMS32OC30.} 

{Naming the internal global reset node} 

{Pin that will be used to assert GLBL _ RST} 

{This section is the configuration of the interrupt logic for INTO.} 
/XINTO(node=l, iireg), {An interrupt trigger input. Pin 1, double registered.} 

/INTO(node=28), 

INTO SO(node=32, start), 
INTO=Sl(cin, term), 

INTO CO(node=36, tog), 
INTO-C1(tog), 
INTO=C2(tog), 

INTO _ RST(node=66), 

{Massaged interrupt pulse, output on pin 28.} 

{State SO means "not counting", start configuration.} 
{State Sl means "counting", (Wait Until) Terminate} 
{configuration, triggered by C_IN from INTO_SO.} 

{CO, C1, and C2 are the counter bits. They count to} 
{6 and are locally reset to 000 binary, all configured in} 
{the toggle configuration} 

{Local reset for INTO counter. Resets when C2CICO = 110.} 

{This section is the configuration of the interrupt logic for INTl.} 
/XINT1(node=2, iireg), {An interrupt trigger input. Pin 2, double registered.} 

/INTl(node=27), 

INT1 SO(node=34, start), 
INT(Sl(cin, term), 

INT1 CO(node=40, tog), 
INT(Cl(tog), 
INTl_ C2(tog), 

INTl_ MON(start), 

INT1_ RST(node=67), 

{Massaged interrupt pulse, output on pin 27.} 

{State SO means "not counting", start configuration.} 
{State Sl means "counting", (Wait Until) Terminate} 
{configuration, triggered by C_IN from INT1_S0.} 

{CO, C1, and C2 are the counter bits. They count to 5} 
{which triggers INT1_MON, which then causes them to be reset} 
{to 000 binary, all configured inthe toggle configuration} 

{This is the monitor bit for the INTl counter. Configured} 
{as Start and triggered by C2ClCO = lOl} 

{Local reset for INTl counter. Resets when INTl MON is} 
{ asserted. } -

6-323 



~= TMS320C30NME Signal Conditioner Using the CY7C361 
~aw~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. PLD ToolKit Source File for 

TMS320C30IVME Signal Conditioner/Generator (Continued) 

{This section is the configuration of the interrupt logic for INT2. All comments ,from INTI apply here.} 
IXINT2(node=3, iireg), 

IINT2(node=26), 

INT2 SO(node=50, start), 
INT2=Sl(cin, term), 

INT2 CO(node=44, tog), 
INT2 -Cl(tog), 
INT2=C2(tog), 

INT2 _ MON(start), 

INT2 _ RST(node=68), 

{This section is the configuration of the interrupt logic for INT3. All comments from INTO apply here.} 
IXINTI(node=5, iireg), 

IINT3(node=25), 

INTI SO(node=48, start), 
INTI=Sl(cin; term), 

INT3 CO(node=52, tog), 
INTI=Cl(tog), 
INTI _ C2(tog), 

INTI _ RST(node= 70), 

{Configuration of the DTACK circuitry.} 
IGMSELO(node= 10, iireg), 
IGMSELl(node=l1, iireg), 
DTACK(node=19, ninv), 

SELO SO(node=56, start), 
SELO=Sl(cin, term), 

SELl SO(start), 
SELCS1 (cin, term), 

DTACK_CO(tog), 
DTACK _ Cl(tog), 
DTACK C2(tog), 
DTACK=C3(tog), 

DTACKRST(node= 72) 

{Input, pin 10, double registered} 
{Input, pin 11, double registered} 
{Output, pin 19. Mealy output is used to get non-inverting} 
{output} 

{Supervisory state for IGMSELO.} 
{Supervisory state for IGMSELO.} 

{Supervisory state for IGMSELl.} 
{Supervisory s~te for IGMSELl.} 

{LSB of the DTACK delay counter.} 

{MSB of the DTACK delay counter.} 

{Reset term for the DTACK delay counter.} 

6-324 



~CYPDJ:'C"C' ~ ~ == TMS320C30!VME Signal Conditioner Using the CY7C361 
~, ~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. PLD ToolKit Source File for 

TMS320C30NME Signal Conditioner/Generator (Continued) 

EQUATIONS; 

{This section makes sure the inputs are always ENABLED and connects RESET to the internal Global Reset.} 
ienl =<inv sum> Ignd; 
ien2= < iny sum> Ignd; 
ien3 =<inv jum> Ignd; 
GLBL _ RST = <prod> RESET; 

{Equations for the interrupt logic for IINTO.} 
INTO_SO = < inv""prod> IXINTO 

< prod> ; 

INTO CO = <prod> INTO S 1; 
INTO - Cl = <prod> INTO CO * INTO S 1; 
INTO = C2 = <prod> INT(: CO * INTO.=-Cl * INTO _ S 1; 

INTO = <inv sum> IINTO _ S 1; 

{Equations for the interrupt logic for IINTl.} 
INTI_SO = < inv""prod> IXINTI 

<prod>; 

INTI SI 

INTl CO = <prod> INTI S 1; 
INTCCI = <prod> INTI CO * INTI SI; 
INT(C2 = <prod> INTCCO * INTl.=-CI * INTl_Sl; 

INTl_MON = <prod> INTI_C2 * IINTl_CI * INTl_CO; 

6-325 

{Start configuration, triggers on falling} 
{ edge. of IX INTO. < prod> is included} 
{to set the AND term to logic 1. If this} 
{is not done, the condition decoder is} 
{always logic O.} 

{(Wait Until) Terminate configuration,} 
{triggered by C IN from above, } 
{terminated by a count of 6.} 

{LSB of the counter} 

{MSB of the counter} 

{Output equation. Effectively,} 
{/INTO is asserted while INTO SI is} 
{asserted.} -

{Local reset term.} 

{Included since XINTO is an input to a} 
{bidirectional pin. This turns off the} 
{output buffer, making the pin an input.} 

{Start configuration, triggers on falling} 
{edge of IXINT1. <prod> is included} 
{to set the AND term to logic 1. If this} 
{is not done, the condition decoder is} 
{always logic O.} 

{triggered by C IN from above,} 
{terminated when INTl_ MaN is asserted.} 

{LSB of the counter} 

{MSB of the counter} 

{This is the monitor bit. In order to make} 
{the output be 7 clocks long, this must} 
{be triggered at 6 clocks (eg, a count of 5.)} 

{Output equation. Effectively,} 
{lINT 1 is asserted while INTl S I is} 
{asserted.} -
{Counter is reset when INTI_MaN is} 
{asserted.} 



~= TMS320C30!VME Signal Conditioner Using the CY7C361 
. ~C~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. PLD ToolKit Source File for 
TMS320C30NME Signal Conditioner/Generator(Continued) 

XINTl {Included since XINTI is an input to a} 
{bidirectional pin. This turns off the} 
{output buffer, making the pin an input} 

{E,quations for the interrupt logic for IINT2. All comments from lINT I apply here.} 
INT2 _SO = < inv""'prod> IXINT2 

<prod>; 
INTI_SI = <prod> INTI_MON; 

INTI CO . = <prod> INT2 S I; 
INT2 - C1 = <prod> INT2 CO * INT2 Sl; 
INT2=C2 = <prod> INT2,,=-CO * INT2_C1 * INT2_SI; 

INT2_MON = <prod> INTI_C2 * IINT2_C1 * INT2_CO; 

INT2 = dnv _sum> IINT2 _ S 1; 

{Equations for the interrupt logic for IINT3. All comments from IINTOapply here.} 
INT3 _SO = dnv""'prod> IXINTI 

<prod>; 
INT3 _ Sl = <prod> INTI _ C2 * INTI _ CI * IINTI _CO; 

INT3 CO = <prod> INT3 S 1; 
INTI - C1 = <prod> INT3 CO * INT3 Sl; 
INT3 = C2 = <prod> INT3..=-c0 * INT3 ~l * INT3 _ S 1; 

{Equations for the DTACK counter} 
DTACK_ CO = <inv....,prod> IGMSELO * IGMSELI 

<prod>; 
DTACK_CI =<prod> DTACK_CO 

dnv""'prod> IGMSELO * IGMSELl; 

DTACK C2 = <prod> DTACK CO * DTACK C1 
::inv....,prod> IGMSELO *" IGMSEL1; -

{LSB toggles when IGMSELO OR} 
{/GMSEL1 is active.} 

DTACK_C3 = <prod> DTACK_CO * DTACK_C1 * DTACK_C2 
dnv""'prod> IGMSELO * IGMSELl; 

{Equations for DTACK pulse generation.} 
SELO_SO = <prod> IDTACK_C3 * DTACK_C2 * DTACK_C1 * IDTACK..;,.CO * IGMSELI; 
SELO _ S 1 = <prod> IGMSELO; 

SELl_SO = <prod> IDTACK_C3 * IDTACK_C2 * DTACK_C1 * IDTACK_CO * IGMSELO; 
SEL1_S1 = <prod> IGMSELI; 

DTACKRST = dnv""'prod> ISELO_SI * ISELI_S1 
<prod>; 

6-326 



CYPRESS 
SEMICONDUcrOR 

DMA Control Using the 
CY7C342 MAX EPLD 

This application note details the use of a CY7C342 
MAX EPLD as a general-purpose DMA controller for 
a 16-bit microprocessor-based system. The design shoW­
cases the versatility and density you can achieve with 
this type of device, as well as demonstrating a modular 
and hierarchical design approach utilizing the 
MAX+PLUS development system's schematic capture 
and textual design entry capabilities. 

The Cypress Multiple Array MatriX (MAX ) 
EPLD s are a reprogrammable, user configurable, high­
density, high-performance family of logic devices that 
suit a host of applications. The MAX architecture al­
lows you to replace large numbers of small- and 
medium-scale integration (74XXX series) parts, as well 
as programmable logic devices (PLDs) with a single 
CY7C340 MAX family device. 

CY7C342 Description 
The CY7C342 EPLD is functionally equivalent to 

4000 - 5000 logic gates. A block diagram of the chip 
appears in Figure 1. The CY7C342 offers high perfor­
mance, reprogrammability, excellent design tool sup­
port, and fast design tum around. The device has, 128 
flexible macrocells arranged' into eight groups called 
Logic Array Blocks (LABs). You can configure in­
dividual macrocells for combinatorial or registered 
operation, supporting product term control of XOR 
input, register preset, register clear, asynchronous clock, 
synchronous clock, and output enable. 

Additionally, you can augment macrocell product 
terms by the use of expander product terms (ex­
panders). This array of inverted-AND product terms 
feeds back to the macrocell inputs as well as their own 
inputs, allowing the implementation of large s~m-of­
products structures and cross-coupled NAND registers. 

Each LAB contains 16 macrocells and 32 ex­
panders and functions much like a small EPLD. Signals 
are routed between the eight LABs via the program­
mable interconnect array (PIA), which allows you to 
partition a design across several, LABs. The P~'s ro?t­
ing resources feature a single uniform delay, which mm­
imizes the overall impact on device performance. For a 

6-327 

more complete description of the features of the 
CY7C340 MAX family, refer to the Cypress Semicon­
ductor Databook. 

MAX+PLUS Description 
The MAX+PLUS development system is a com­

puter aided design environment used to implem~nt 
designs with the Cypress CY7C340 EPLD famlly. 
MAX +PLUS offers an integrated approach to design 
entry, design verification, and device. programming. 
Running on an IBM PC! AT -compatible platform, 

Figure 1. CY7C342 Block Diagram 



DMA Control Using the CY7C342 MAX EPLD 

Table 1. DMAC Modules 

DMAC Modules I Design Method 

CPU Decoder Text Entry 

Control Register Schematic Entry 

Address Counter Schematic Entry 

Word Counter Schematic Entry 

Three-State Buffers Schematic Entry 

Output Multiplexers Schematic Entry 

Cycle Controller Text Entry 

MAX+PLUS provides all the tools necessary to quick­
ly and efficiently convert complex logic designs into 
functional silicon. 

You enter designs in MAX+PLUS using a power­
ful hierarchical graphic editor that supports both 
schematic capture and high-level text definition. The 
graphical editor gives you the ability to capture 
schematics utilizing standard 74XXX TTL macrofunc­
tions, generic logic primitives, or user-defmed custom 
functions. You can also use a high-level text definition 
written in the Advanced Hardware Description Lan­
guage (AHDL) to defme the function of an entire 
design or just a portion of a design. By incorporatirig 
schematic capture, Boolean equation, state machine, or 
truth table design entry methods, you are free· to choose 
the technique that best fits your application. 

When the MAX+PLUS design entry is complete, 
the design is compiled. The compiler performs several 
tasks as it goes through the design database. The com­
piler performs a minimization function on the logic, fits 
the design into a device, creates files for the simulator, 
and provides an object file for programming a device. 
After compiling the design, you can use the interactive, 
event-driven timing simulator to determine the design's 
function and worst case timing characteristics. 

Application Description 
The application illustrated here is a general-pur­

pose, 16-bit direct memory access controller (DMAC). 
A DMAC shares the address, data, and control buses 
with the central processing unit (CPU) and acts as a 
bus master in place of the CPU when granted bus 
ownership. Generally, a DMAC has access to all system 
resources, including memory, memory-mapped I/O, and 
I/O. Figure2 shows a. typical system block diagram with 
a 16-bit CPU, RAM and ROM memory, I/O devices, 
and the DMAC. 

When an I/O device requires data from memory or 
needs to transfer data to memory, it must. request ser­
vice from the DMAC by asserting a DMA request 
(DREQ). The DMAC (when configured and enabled) 
then requests ownership of the system bus by activating 
its hold request output (HREQ). The DMAC then 
waits until it receives a hold acknowledge (HLDA) 
from the CPU. Next, the DMAC enables its 23 address 

6-328 

CY7C342 
HREQ 

INTP 

CPU 

Figure 2. Typical System Block Diagram 

outputs to access a specific memory location. Depend­
ing on the DMAC's programmed configuration, it either 
reads the memory location's contents and writes the 
data to the I/O device or reads data from the I/O device 
and writes the data into the referenced memory loca­
tion. 

Data transfers between memory and I/O devices 
can occur as single-word operations or as bursts of 
words under CPU program control. A 16-bit counter is 
initialized and maintained to control the number of 
words being transferred. This counter is decremented 
every transfer, allowing a count of zero to generate an 
interrupt. The DMAC also handles memory interface 
timing and transfer control, because the DMAC essen­
tially functions· as the processor when in control of the 
bus. 

Design Partitioning 
The MAX+PLUS development system is a hierar­

chical tool that allows you to partition your design into 
functional blocks, with each block designed as a 
separate module. The DMAC implemented here is par­
titioned into seven functional modules. Table 1 lists the 
modules' names and the design method utilized. In ad­
dition to the main modules, the DMAC uses some glue 
logic, which effectively ties the design together. 

. Figure 3 shows the DMAC block diagram. Each 
module was constructed utilizing the design technique 
which best suits the . application. The modules are 
described here in detail including an explanation of the 
design methodology chosen for each implementation. 

CPU Decoder Module 
Because the DMAC acts as a peripheral until it has 

control of the system bus, the DMAC must respond to 
several I/O commands from the CPU. These commands 
are essential to configure the DMAC properly and to 
successfully transfer data. The CPU decoder module 



DMA Control Using the CY7C342 MAX EPLD 

receives interface signals from the CPU and decodes 
them into write strobes and a read enable. The write 
strobes latch incoming parameters from the data bus 
into the parameters' respective locations (e.g., control 
register, word counter, etc.). The read enable and ad­
dress line MAl allow internally selected registers to be 
multiplexed onto the data bus. The DMAC is con­
figured by the processor via I/O instructions and 
responds to the addresses as shown in Table 2. 

The CPU interface's function is defined using 
AHDL. The resulting ASCII text file describes the CPU 
decoder's behavior without determining the Boolean 
equation s or using the schematic-capture/graphic-design 
entry method. Because MAX+PLUS AHDL provides 
several different ways to specify a module's operation, a 
truth table is used to describe the CPU decoder to 
clearly express which outputs are active when specific 
inputs are asserted. Refer to Appendix A for the CPU 
decoder AHDL text fIle. 

Control Register Module 
The control register module configures the DMAC 

and controls the DMAC's operation. The CPU writes 
to the control register module, which has control bits to 
enable or disable the DMAC, enable an interrupt when 
the word count equals zero, clear the word counter, 
enable burst or single-byte transfers, and define the 

IlDA 
IDRED 

HCLK 

BtHER ADDR 1 

h-;:::==~ C? t:====::;:~ ADDR23 

VORD 
COUNT \E-L----l 

CYCLE 
CONTROL 

DATA1S 

ICS 

I--~>___I.._f__ IIDVR 
I--~>___--L.._ IHlRD 
I--~>----- IHE/1V 
I------C>___-- II1EHR 

lRESET -----~ 

HREO 
DACK 
DHAEN 
INTP 

'-------' 

Figure 3. DMAC Block Diagram 

6-329 

Table 2. DMAC I/O Addresses 

A2 Al CS lORD 10WR OPERATION 

X X I X X No Operation 

0 0 0 I 0 Write Control Register 

0 I 0 I 0 Write Word Count 

I 0 0 I 0 Write Low Mem Addr 

X 0 0 0 I Read Low Mem Addr 

1 I 0 I 0 Write High Mem Addr 

X I 0 0 I Read High Mem Addr 

and DMAC Status 

transfer direction (memory to I/O or I/O to memory). 
The bit defmitions for each DMAC function appear in 
Table 3. 

The processor can read the DMAC's current status 
and configuration. The bit defmitions (Table 4) are es­
sentially the same as the those for the control word. 

MAX+PLUS 's schematic capture capability is 
used to implement the control register function (Figure 
4). This register stores control and configuration infor­
mation from the CPU, with the exception of the clear 
word counter bit. When written by the CPU as a logic 1, 
this bit uses an additional flip-flop to clear itself and the 
16-bit counter. 

Address Generator Module 
The address generator module is a 23-bit 

synchronous counter that provides the system memory 
address for the data transfer operation. The CPU must 
initialize this counter to the 23-bit value that cor­
responds to the transfer's starting memory address. As 

Table 3. DMAC Control Register Bit Definitions 

BIT 

o 

2 

3 

4 

5-15 

DEFINITION 

Enable DMA Controller 

(0 = Disabled, l=Enabled) 

Enable Interrupt 

(O=Disabled, l=Enabled) 

Clear Word Counter 

(l Clears WordCounter and Bit 2 to zero) 

Burst/Single Word Transfer 

(O=Single Transfer, l=Burst Transfer) 

Transfer Direction 

(O=Memory to I/O, 1=1/0 to Memory) 

Not Used 



DMAControi Using the CY7C342 MAX EPLD 

I N PUT vee 

000 ENABL 

I N PUT OUTPUT 

CLRENB 

I RESET 

001 I NT E N 

I N PUT OUTPUT 

002 
WCT _ C L R 

I N PUT 

003 BURST 

I N PUT OUTPUT 

005 I02MEM 

Figure 4. Control Register Schematic 

Table 4. DMAC Status Register Definitions memory transactions take place, the counter is incre­
mented at the end of every memory operation to 
guarantee that the address is set for the next transfer. 
The counter is incremented under the control of the 
cycle controller module. The CPU can read the 23-bit 
address with two 110 read operations, one for the lower 
16 bits and another for the upper 7 bits. 

BIT 

8 

9 

10 
11 

13 

14,15 

DEFINITION 

DMA Controller Enabled 

(0 = Disabled, l=Enabled) 

Interrupt Enabled 

(O=Disabled, l=Enabled) 
-

Not Used = 0 

Burst Transfer Mode 

(O=Disabled, l=Enabled) 

Transfer Direction 

(O=Memory to 110, 1=110 to Memory) 

Not Used 

6-330 

Using the 74XXX TTL macrofunctions available in 
MAX +PLUS , the address generation function is im­
plemented with six 4-bit, 74161-equivalent counters. 
These counters are arranged so that when each 4-bit 
counter increments to a binary count of 1111, its ripple 
carry output (RCO) enables the next higher 4-bit 
counter via the enable P (ENP) and enable T (ENT) 
inputs. The CPU parallel loads these counters via the 
data bus in two operations, one for the lower 16 bits 
and one for the upper 7 bits. Figure5 shows the address 
generator schematic diagram. 



C TEN 

II eLK 

D 0 

D 0 3 

D 0 4 

D 0 5 

Doe 
D 0 7 

Doe 
Do. 
D , 0 
D , , 

D , 2 

D , 3 

IRESET 

IN """ - .. 

I Hlo'(" 

. 

DMA Control Using the CY7C342 MAX EPLD 

~ 
l.....-

C 0 U .. T E R 

~, . 

I~ 
I....--

c au N T E R 

, • , 

~ 
I....--

• O,!... 
..... 

.~~ 
Figure S. Address Generator Schematic 

6-331 

t::::j·~uttT ~.jU~T~:=~~i~ : ~ ~ : : 
I--~::":::"':': .:;.:..:::..:::..~.n::J::I:~ ADO R 0 3 
.... -~:..::...:...:;...::..::...r:J===:lI:> ADD R 0 4 

OUT PUT OUT PUT~ 
OUT PUT ~ 

DUTPur= 

~-

I--

OUT III U , 

OUTPUT~ OUT PUT~ OUT pu,= 
.. -

I--

OUT II U T ............... 

OUT PUT---"""""" OUT PUT~ -I-

OUTPU'= 
OUTPur= 

A D D R 0 . 
A D D R , 0 

A D D R , , 
A D D R , 2 

A D D R , 3 

A D D R , 4 

A D D R , 5 

A D D R , . 

A D D R , 7 

A D D R , e 
A D D R , 8 

A D D R 2 0 

ADDR2' 
ADD R 2 

ADD R 2 



DMA Control Using the CY7C342 MAX· EPLD 

Word Counter. Module 
Because each transfer operation requires a v,vord 

count, a 16-bit word counter monitors the number of 
words to be transferred. The CPU initializes this 
counter to a value representing one less than the total 
number of words to be transferred. This value allows 
the counter to reach zero before. the last transfer and 
terminate the operation at the proper time, with the· 
correct number of words transferred. 

The 16-bit word counter is constructed utilizing 
four 74161 synchronous counter macrofunctiorts. In-. 
itialization of the word· count occurs during set up of 
the transfer. operation. The 16-bit word count value is 
l's complemented (inverted) as it is loaded into the 
counter s. The counter is actually incremented instead of 
decremented, and the RCO output of the last counter 
indicates that the word count has reached zero. This ar­
rangement requires only four macrocells or 3 percent of 
the CY7C342's resources, and thus allows use of the 
74161 macrofunction. Figure 6 shows the word counter 
schematic. 

Three-State Buffers 
Whtm the CPU has ownership of the system bus, 

the DMAC's address, memory, and I/O control lines 
are in a high-impedance state. The data bus must also 
remain in a high-impedance state unlesS the CPU is 
reading the DMAC's internal register. 

An octal three-state buffer implements the high-im­
pedance interface function. The buffer uses eight Tri 
buffers from the macrocell library with the enables all 
tied together. These octal buffers correspond to the 
output portion of the. CY7C342's I/O pins. The cycle 
control module output, DMAEN, enables the· address, 
memory, and I/O control outputs. The RD_ENAB sig­
nal from the CPU decoder module enables the data 
outputs. 

Output Multiplexer. Module 
The CPU must have access to the DMAC's internal 

registers to· monitor operation .. Because the MAX fami­
ly of devices· does not support an internal three-state 
bus, an alternative technique~s employed when driving 
I/O pins from multiple sources wi~in the device. Fo~ 
74157 2: 1 multiplexer macrofunctIons are placed m 
front of the 16 I/O pins for the data bus. With address 
input A1 connected to each 74157 mux's select input, 
either the address generator's lower 16 bits (when A1 
= 0) or upper 7 bits (including the DMAC status inf~r­
mation) are driven onto the data bus during a CPU 
read operation. Figure 7 shows the output multiplexer 
schematic with octal buffers. 

Cycle Control Module 
The cycle control module controls 'DMAC memory 

and I/O operations. This finite state machine (FSM) 
handles the hold request (HREQ) and hold acknow­
ledge (HLDA) handshake with the CPU. It also acCepts 

DMA requests (DREQ) from I/O devices and acknow­
ledges the requests with the output DACK. The FSM 
generates all memory and I/O interface timing, as. well 
as the address/control output enables, counter mcre"' 
. mentldecrementoperations, and interrupt generation 
(when enabled). The FSM is specified as a text design 
fIle and uses the AHDL state machine syntax with 
CASE statements to defme the operation in each state. 
. Figure 8 shows the cycle controller state diagram, ~d 
Appendix B lists the cycle controller AHDL text deSign 
file. 

Examining the state variable declarations in the 
cycle controller text design me ~eveals that all the ~ter­
nal control signals, handshake lmes, and external mter­
face signals are encoded into the FSM's state defini­
tions. This text allows for a clear definition of each state 
using the fewest number of macrocel1s. However, this 
method can sometimes result in each macrocell having a 
complex Boolean expression that requires additional ex­
panders. Thus, you might find it beneficial in some 
cases to allow MAX+PLUS to defme an FSM's state 
definitions utilizing more macrocells, which can reduce 
the number of expanders .. This approach relieves you 
from the responsibility of manually assigning state bits 
and often results in better performance. 

Design Compilation 
Upon completing each DMAC module, you can 

compile'the module to eliminate any errors. If a design 
module contains' an error, MAX+PLUS flags the error 
and takes you' to the error's location in the schematic or 
text file. As each . module compiles successfully, 
MAX +PLUS automatically generates a symbol repre­
senting the module· design. These symbols are then in­
corporated in the DMAC's top-level schematic (Appen­
dixD). 

Once all DMAC blocks are integrated into the 
design, you can perform top-level compilation of the 
DMAC. You can compile the DMAC design from 
within MAX+PLUS 's graphic editor or from the com-
piler itself... . . 

The compiler follows a senes of steps dunng the 
compilation process ranging from netlist extraction. to 
the creation of the object file used by the deVice 
programmer. First, the design processor creates a com­
piler netlist file (.CNF me) and tests for any design rule 
violations (output shorts, syntax errors in AHDL mes, 
inputs and outputs not used, etc.). Next, the compiler 
generates a hierarchy interconnect file (.HIP file), 
which details the design's hierarchical interconnections. 
The database builder then flattens the design into a 
single level, maintaining the original design's func~ion 
and connectivity. A logic synthesizer determmes 
Boole.an expressions for each logic function and. primi­
tive allowing for the sum-of-products form reqUIred by 
the 'MAX EPLD architecture. Proprietary minimization 
algorithms remove redundant logic and reduce the 
number of required product terms. 

6-332 



DMA Control Using the CY7C342 MAX EPLD 

CT EN 
1 N PUT -- " " 

NOT 

WR WC N T 
_I N PUT 

0 

" " -
NOT 

DO 0 
_I N PUT 7 4 1 6 1 

e e I l D N 

NOT It. 

DO 1 
_I N PUT 

B Q It. ~ - ... " 
e Q B ~ 

DO 2 

DO 3 

N Q T 
D Q C ~ _I N PUT 

I - " u II-- E N T Q D I--

NOT I...-- E N P R C 0 ~ 
_I N PUT 

C l R N ....2..£....- u u -
C l K · COUNTER 

NOT 

D04 

DO 5 

_I NPUT 

-Vu" 

I 7 4 1 6 1 
N Q T 

_I N PUT l D N 

- vee " 
NOT B Q It. -

DO 6 
_I NPUT 

C Q B ~ 
- vee 

DO 7 I 
D Q C -N Q T 

4~ E N T Q D -..........-,;-1 N PUT - e e I...-- E N P R C 0 -
C l R N 

C l K · COUNTER 

DO 8 
_I N PUT 

N Or!..., 
7 4 1 6 1 

~ e e I l D N 

NOT It. 

DO 9 ---r"1 N PUT 
B Q A ~ - " " a,..-" 
C Q B I--

D 1 0 

D 1 1 

NOT 
D Q C I--_I N PUT 

I - uu ~.....- E N T Q D I--

NOT '--- E N P R C 0 ~ 
_I NPUT 

C l R N ~ vce 

C l K · COUNTER 

NOT 

D 1 2 

D 1 3 

_I N PUT - " " I 7 4 1 6 1 
NOT 

_I N PUT l D N 
o 0 0 - " " It. 

NOT B Q It. ~ 

D 1 4 ~I N PUT 
C Q B 100-

-V"" 

D 1 5 
r 

D Q C l-
NOT 4....- E N T Q D I-~I NPUT 

_Vuu - I...-- E N P R C 0 
OUTPUT-oo-- Z E R 0 

I RESET 
_I NPUT 
~ vee C l R N 

M C L K 
_I N PUT 

C l K · - uu 

COUNTER 

Figure 6. Word Counter Schematic 

6-333 



r----
ADO 1 

A01 7 

A002 

A01 8 

A003 

A01 9 

A004 

A020 

;--C 

A005 

A021 

A006 

A022 

A007 

A023 

AOO8 

~ 

~ 

RO EN A B 

A 0 1 

AOO9 

EN A B L 
A01 0 

I NT E N 
A01 1 

~ 
A01 2 

BURST 

~ 

'--I--
A01 3 

I 02 ME M 

A01 4 

A01 5 
~ 

A01 6 
~ 

~ 

~ 

"'7 

7 4 1 5 7 
8 E L 

A' 

8' 

At V, 

8 2 V 2 

A 3 V 3 

83 V' 

A. 

8 • 

aN 

MULTIPLEXER 

7 4 1 5 7 
8 E L 

A' 

8 , 

A 2 y, 

8. V' 

A 3 v, 

8 • v. 

A. .. 
aN 

MULTIPLEXER 

7 4 1 5 7 
S E L 

A' 

8 , 

A 2 y, 

8 2 V 2 

A. V. 

8. v. 
A 4 

8 • 

aN 

MULTIPLEXER 

7 4 1 5 7 
S E L 

A' 

8' 

A 2 v, 

8 • V 2 

A' V 3 

8 • v. 

A 4 

8 • 

GN 

.. U L T I P LEX E A 

DMA Control Using the CY7C342 MAX EPLD 

f---

OCT 
L.....-- IN. 

IN' 

I N 2 

I N 3 

IN. 

I N 6 

IN. 

r---- I N 7 - OUT_EN 

~ 

I---

OCT 
'-- I-- IN. 

IN' 

IN. 

I N 3 

IN' 

INS 

IN. 

r--I-- I N 7 

I..-- OUT_EN 

I---

BUF 
OUT a 000 

OUT; 
DO 1 

OUT2 
002 

003 
OUT. 

004 
OUT '0 

005 
o U TOS 

006 
OUT I 

OUT7 
007 

BUF 
OUT a 008 

OUT' 
009 

01 0 
OUT. 

OUT 3 
01 1 

01 2 
OUT 4 

01 3 
OUT S 

01 4 
OUT. 

01 5 
OUT 1 

8 I D I R 

81
V

lfl"R .= 
8 I If I"R -
8 IV 81e R -............. 

8 IV 81e R ............... 

8 I If I"R 

8 IV 8 Ie R ::::::::: 

8 I If t R 

" " 

8IDIR ____ 

8 I If I" R :::::::::: 

8 I 81" R ;;;::;;:::;;:: 

81 IftR-= 

8 I 81"R ......;::..... 

8181"R'= 

81 IfI"R,= 

81 IfI"R,= 

" " 

000 

00 01 

DO 2 

003 

004 

DO 5 

DO 6 

007 

008 

DO 9 

01 0 

01 1 

01 2 

01 3 

01 4 

01 5 

Figure 7. Output Mux Schematic W/Octal Buffers 

6-334 



DMA Control Using the CY7C342 MAX EPLD 

Figure 8. Cycle Controller State Diagram 

A rule-based expert system then groups the 
design's logical requirements into a balanced number of 
macrocells and expanders. MAX+PLUS 's fitter allo­
cates resources within the device, selecting the best 
macrocell location, pin assignments (if not already as­
signed), and interconnection paths. After a successful 
fit, MAX+PLUS creates a programmer object file 
(.POF file), which you can use to program a device. 
Whether the design compiled successfully or not, 
MAX+PLUS also creates a report file (.RPT file) that 
details the utilization of macrocells, expanders, inter­
connects, and I/O pins. 

If the design compiled properly, you can program a 
device or verify the design through simulation. If the 
design did not compile, the compiler provides warnings 
and error messages to aid you in correcting any 
problems. Refer to the Cypress MAX+PLUS User's 
Guide for a complete list of error_ messages and recom­
mended corrective actions. 

Upon initial compilation of the DMAC design, the 
MAX +PLUS fitter determined that two of the LABs 
required more connections from the PIA than are avail­
able. The macrocell interconnection cross reference in 
the report file (Appendix C) revealed that portions of 
the CPU decode function were implemented with ex­
panders in several LABs. This arrangement required 
the routing of many CPU decoder module inputs to 
each LAB. The compiler chose this approach to con­
serve macrocells, enhance performance, and prevent an 

additional PIA delay. However, this extra delay affects 
operation only when the CPU writes to or reads from 
the DMAC. Because the CPU typically requires a slow 
I/O operation to access the DMAC, the extra delay 
would cause no significant performance reduction. 

Using the graphic editor, the DMAC schematic is 
alter:ed by placing an MCELL buffer between each out­
put of the CPU Decoder block and the destination. 
Placing the MCELL buffer after a module forces 
MAX +PLUS to place the logic function preceding the 
buffer in a macrocell. The module's output is then 
routed to all LABs via the PIA, resulting in an addition­
al delay but requiring fewer interconnects. The design 
was recompiled and successfully fit into a CY7C342. 

Design Verification 
Design verification is an important step in the 

development of any programmable logic function and 
can be accomplished in several different ways. One way 
is to take a programmed device, insert it in a circuit, 
and observe it's behavior. This "plug and chug" techni­
que works [me for simple devices performing well­
defined functions; it does not work well for large, com­
plex designs with major portions of the logic buried 
within the device. 

The second, far more sophisticated approach, is to 
model the programmable logic function's behavior and 
simulate the operation before the part goes on a board. 
This design verification procedure is recommended for 
all but the most elementary designs to determine that 
the function and timing characteristics obtained match 
the system's requirements. 

6-335 

The MAX+PLUS simulator provides fast, easy 
design verification. It allows you to input circuit stimuli 
from either a vector or waveform file (.VEC and .SCF 
files, respectively). Output information can be stored in 
a table and compared during later simulation sessions 
or viewed in the waveform editor. You can create batch 
operations to automate the simulation process. 

The simulator is accurate to 100 ps and features 
glitch, oscillation, and ~et-up/hold monitoring on every 
internal node. within the selected device. This capability 
allows you to monitor the device's operation from a 
functional standpoint, utilizing worst-case timing 
parameters to guarantee proper operation in the ap­
plication. 

Although you can obtain "standard" DMA control­
lers, often they are not a good fit for the specific system 
you are designing. A custom gate array solution, with its 
high non-recurring engineering charges and long 
processing delays, is difficult to justify when compared 
to MAX EPLDs. 

The Cypress CY7C340 family of EPLDs offer you 
capabilities far beyond those of earlier PLD genera­
tions. Through the use of the powerful tools in the 
MAX +PLUS development system, you can complete 
complex designs in less time, using fewer components, 
and achieve lower system cost than ever before. 



DMA Control Using the CY7C342 MAX EPLD 

Appendix A. CPU Decoder AHDL Text File 

TITLE "CPU Address Decoder"; % CYPRESS SEMICONDUCTOR INC. % 

%*************************************************************************** 
CPU Interface Decoder for DMA Controller 

***************************************************************************% 

SUBDESIGN cpu _ decd ( 

%*************************************************************************** 
Decoder Inputs 

***************************************************************************% 
ma2, % Address Bit 2 % 
mal, % Address Bit 1 % 
Ics, % Chip Select % 
liowr, % I/O Write Signal % 
liord % I/O Read Signal % 
: INPUT; 

%*************************************************************************** 
Write Strobe Outputs 

***************************************************************************% 
Iwr _ ctrl, % Control Register Write Strobe % 
Iwr wcnt, % Word Count Write Strobe % 
Iwr =ma _0, % Lower Memory Address Write Strobe % 
Iwr _rna _1, % Upper Memory Address Write Strobe % 
rd _ enabl % Output Multiplexer Read Enable % 
: OUTPUT; 

BEGIN 
TABLE 
ma2,ma1,/iord,liowr,/cs = > Iwr ctrl,lwr went,lwr rna O,lwr rna 1,rd enabl; 
% ----------------------------------------=----------=----------=---% 

x, x, 0, 1, 0=> 1, 1, 1, 1, 1; 
0, 0, 1, 0, ° = > 0, 1, 1, 1, 0; 
0, 1, 1, 0, ° = > 1, 0, 1, 1, 0; 
1, 0, 1, 0, ° = > 1, 1, 0, 1, 0; 
1, 1, 1, 0, ° = > 1, 1, 1, 0, 0; 

END TABLE; 
END; 

6-336 



DMA Control Using the CY7C342 MAX EPLD 

Appendix B. Cycle Controller AHDL Design File 

TITLE "Cycle Controller"; % CYPRESS SEMICONDUCTOR INC. % 

%************************************************************************** 
MEMOR Y and I/O Cycle Controller 

**************************************************************************% 

SUBDESIGN cyc _ ctrl( 

%************************************************************************* 
cyc ctrl Input Definitions 

*************************************************************************% 
reset, % reset Input Active High % 
dreq, % DMA Request Input % 
hId a, % CPU Hold Acknowledge % 
zero, % Word Counter Borrow output % 
enabl, % DMA Enable Input % 
inten, % Interrupt Enable % 
dir, % Direction Bit: dir = 0 = MEM TO I/O, dir = 1 = I/O TO MEM % 
burst, % Burst Enable Bit: burst = 0 = single xfers, 

clock % System Clock % 
: INPUT; 

burst = 1 = multiple xfers % 

%************************************************************************* 
cyc ctrl Output Defmitions 

*************************************************************************% 
count, % Count Enable Bit % 
memw, % Memory Write % 
memr, % Memory Read % 
iowr, % I/O Write % 
iord, % I/O Read % 
dack, % DMA Acknowledge % 
dmaen, % DMA Address Enable % 
hreq, % CPU Hold Request % 
setint, % SE T Interrupt Output % 
clrenb % Clear DMA Enable bit % 
: OUTPUT; 

) 



DMA Control Using the CY7C342 MAX EPLD 

Appendix B. Cycle Controller AHDL Design File (Continued) 

VARIABLE 
cye_ctrl: MACHINE OF BITS (q[lO .. O)) 

BEGIN 

WITH STATES ( stidl = B"OOOOOOOOOOO", 
sthld = B"OOOOOOOlOOO", 
stdir = B''OOOOOOllOOO'', 

memO = B"OOlOOlllOOO", 
meml = B "00 llOl 11000", 
mem2 = B''OOOOOll1OOl'', 

ioO = B"OOOOl1l1OOO", 
iol = B"OlOOl 11 lOOO", 
i02 = B"lOOOOll1OOl", 

stend = B"lOOOOOl1OOO", 
stint = B ''0000000 1100", 

endhld = B"lOOOOOOOOOO", 
clenb = B"OOOOOOOOOlO"); 

cye ctrl.clk = clock; % system clock % 
cye _ ctrl.reset = reset; % system reset % 

memw = cye_ctrl.q[9]; 
memr = cye_ctrl.q[8]; 

iowr = cye_ctrl.q[7]; 
iord = cye ctrl.q[6]; 

dack = cye=ctrl.q[5]; 
dmaen = cye ctrl.q[4]; 

hreq = cye=ctrl.q[3]; 
setint = cye ctrl.q[2]; 

clrenb = cye - ctrl.q[l]; 
count = cye=ctrl.q[O]; 

% QlO is a state variable to make all state defmitions unique % 

CASE (cye ctrl) IS 
WHEN stidl = > % Wait for Enable and Request % 

IF enabl & !dreq THEN cye ctrl = sthld; 
END IF; -

WHEN sthld = > % Wait for Hold Acknowledge % 
IF hlda THEN cye ctrl = stdir; 
END IF; -

WHEN stdir = > % Determine which direction % 
IF dir THEN cye ctrl = ioO; % 1/0 to Memory % 
ELSE cye ctrl = -memO; % Memory to I/O % 
END IF;-

WHEN memO = > % Memory Read and 1/0 Write % 
cye_ctrl = meml; 

WHENmeml = > 
cye_ctrl = mem2; 

6-338 



DMA Control Using the CY7C342 MAX EPLD 

Appendix B. Cycle Controller AHDL Design File (Continued) 

WHEN mern2 = > 
cye _ ctrl = stend; 

WHEN ioO = > % 1/0 Read and Memory Write % 
c}'C_ctrl = iol; 

WHEN iol = > 
cye _ ctrl = i02; 

WHEN i02 = > 
cye _ ctrl = stend; 

WHEN stend = > % Determine what to do next % 
IF !dreq & !zero & burst THEN cye _ ctrl = stdir; 
ELSIF dreq & !zero THEN cye ctrl = endhld; 
ELSIF zero & inten THEN cye ctrl = stint; 
ELSIF zero & !inten THEN cye - ctrl = c1enb; 
END IF; -

WHEN stint = > % Set Interrupt, if Enabled % 
cye_ctrl = c1enb; 

WHEN clenb = > % Clear Enable and Counters % 
cye_ctrl = endhld; 

WHEN endhld = > % Wait for end of HOLD/ACK Sequence % 
IF !hlda THEN eye ctrl = stidl; 
END IF; -

END CASE; 
END; 

6-339 



DMA Control Using the CY7C342 MAX EPLD 

Appendix C. DMAC Report File 

C:\MAX_WORK\DMAC_APP\DMAC.RPT 
MAX+PLUS Compiler Report File 
Version 2.03C 01112/90 

***** Design compiled without errors 

Title: DMA CONTROLLER 
Company: Cypress Semiconductor 
Designer: Joe Engineer 
Rev: A 
Date: 12:25a 4-14-1990 
Turbo: ON 
Security: OFF 

IMEMR 
IMEMW 

RESERVED 
RESERVED 
RESERVED 
RESERVED 

GND 
RESERVED 

D04 
D05 

VCC 
D09 
DlO 
D13 
DOO 
DOl 
D02 

lID 
MI I HMD M DMMMMM. 
AOORAAVGCI GRAAAAA 
OWREECCNLCNE22221 
1RDQNKCDKSDQ321 09 

1 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61 
60 
59 
58 
57 
56 
55 
54 
53 

CY7C342 52 
51 
50 
49 
48 
47 
46 
45 
44 

2728293031 3233343536373839404142 43 

DDD MM GGG / H VD MMM MM 
000 AANNN R LCOAAAAA 
3680 0 D DD E DC 7 0 0 0 1 1 

34 SA 28901 
E 
T 

6-340 

I 
I MA07 
I MA06 
I MA05 
I MA18 
I MA17 
I MA16 
I VCC 
I MA15 
I MA14 
IINTP 
I GND 
I D15 
I D14 
I D12 
ID11 
I MA13 
I MA12 
I 



DMA Control Using the CY7C342 MAX EPLD 

Appendix C. DMAC Report File (Continued) 

C:\ MAX _ WORK\ DMAC _ APP\ DMAC.RPT 
** RESOURCE USAGE ** 

External 
Logic Array Block Macrocells I/O Pins Expanders Interconnect 

A: MC1- MC16 8/16( 50%) 8/8(100%) 0/32( 0%) 5/24( 20%) 
B: MC17 - MC32 0/16( 0%) 0/5( 0%) 0/32( 0%) 0/24( 0%) 
C: MC33 -MC48 5/16( 31%) 5/5(100%) 0/32( 0%) 9/24( 37%) 
D: MC49 -MC64 8/16( 50%) 8/8(100%) 0/32( 0%) 16/24( 66%) 
E: MC65 -MC80 14/16( 87%) 8/8(100%) 4/32( 12%) 24/24( 100% ) 
F: MC81- MC96 7/16( 43%) 
G: MC97 - MC112 5/16( 31%) 
H: MC113 - MC128 8/16( 50%) 

Total dedicated input pins used: 
Total I/O pins used: 
Total macrocells used: 
Total expanders used: 

Total input pins required: 
Total output pins required: 
Total bidirectional pins required: 
Total macrocells required: 
Total expanders in database: 

Synthesized macrocells: 

** FILE HIERARCHY ** 

IOCT BUF:1671 
ICYC - CTRL: 1061 
ICm REG:731 
ICPU DECD:751 
IADDR GEN:1231 
IADDR - GEN:123174161:661 
IADDR-GEN:123174161:711 
IADDR-GEN:123174161:701 
IADDR-GEN:123174161:691 
IADDR - GEN: 123174161:681 
IADDR - GEN: 123174161:671 
IWORD- CNT:1251 
IWORD-CNT:125174161:661 
IWORD -CNT:125174161:691 
IWORD-CNT:125174161:681 
IWORD -CNT:125174161:671 
174157:f301 
174157:1321 
174157:1331 
174157:1341 
IOCT BUF:561 
IOCT - BUF:551 
IOCT-BUF:351 
IOCT=BUF:1681 

5/5(100%) 0/32( 0%) 9/24( 37%) 
5/5(100%) 0/32( 0%) 22!24( 91%) 
8/8(100%) 0/32( 0%) 24/24( 100% ) 

51 8 ( 62%) 
47/52 (90%) 
55/128 ( 42%) 
4/256 ( 1%) 

5 
27 
20 
55 
4 

0/128 ( 0%) 

C:\ MAX _ WORK\ DMAC _ APP\ DMAC.RPT 

6-341 



~ 

.r~ DMA Control Using the CY7C342 MAX EPLD 

Appendix C. DMAC Report File (Continued) 

C:\ MAX _ WORK\ DMAC _ APP\ DMAC.RPT 
** INPUTS ** 

Expanders Fan-In 
Pin MCell LAB Primitive Total Shared INP FBK Name 
68 INPUT 0 0 0 0 ICS 
66 INPUT 0 0 ·0 0 DREQ 
24 (49) (D) INPUT 0 0 0 0 DOO 
25 (50) (D) INPUT 0 0 0 0 DOl 
26 (51) (D) INPUT 0 0 0 0 D02 
27 (52) (D) INPUT 0 0 0 0 D03 
18 (33) (C) INPUT 0 0 0 0 D04 
19 (34) (C) INPUT 0 0 0 ·0 D05 
28 (53) (D) INPUT 0 0 0 0 D06 
38 (65) (E) INPUT 0 0 0 0 P07 
29 (54) (D) INPUT 0 0 0 0 D08 
21 (35) (C) INPUT 0 0 0 0 D09 
22 (36) (C) INPUT 0 0 b 0 D10 
46 (81) (F) INPUT 0 0 0 0 D11 
47 (82) (F) INPUT 0 0 0 0 D12 
23 (37) (C) INPUT 0 0 0 0 D13 
48 (83) (F) INPUT 0 0 0 0 D14 
49 (84) (F) INPUT 0 0 0 0 D15 
36 INPUT 0 0 0 0 HLDA 
7 (4) (A) INPUT 0 0 0 0 IIORD 
8 (5) (A) INPUT 0 0 0 0 IIOWR 
9 (6) (A) INPUT 0 0 0 0 MA01 
39 (66) (E) INPUT 0 0 0 0 MA02 
1 INPUT 0 0 0 0 MCLK 

35 INPUT 0 0 0 0 IRE SET 

6-342 



c:~~~ DMA Control Using the CY7C342 MAX EPLD 
~, SEMlCQIDUCTOR 

Appendix C. DMAC Report File (Continued) 

C:\ MAX_ WORK\ DMAC_APP\ DMAC.RPT 
** OUTPUTS ** 

Expanders Fan-In 
Pin MCell LAB Primitive Total Shared INP FBK Name 

4 1 A DFF+ 0 0 2 7 DACK 
5 2 A DFF+ 0 0 4 7 DMAEN 

24 49 D OR2 0 0 1 3 DOO 
25 50 D OR2 0 0 1 3 DOl 
26 51 D OR2 0 0 1 3 D02 
27 52 D OR2 0 0 1 3 D03 
18 33 C OR2 0 0 1 3 D04 
19 34 C OR2 0 0 1 3 D05 
28 53 D OR2 0 0 1 3 D06 
38 65 E OR2 0 0 1 2 D07 
29 54 D OR2 0 0 1 2 D08 
21 35 C OR2 0 0 1 2 D09 
22 36 C OR2 0 0 1 2 DlO 
46 81 F OR2 0 0 1 3 D11 
47 82 F OR2 0 0 1 3 D12 
23 37 C OR2 0 0 1 2 D13 
48 83 F OR2 0 0 1 2 D14 
49 84 F OR2 0 0 1 2 D15 
6 3 A DFF+ 0 0 3 7 HREQ 

51 85 F OUTPUT 0 0 0 0 INTP 
7 4 A DFF+ 0 0 2 8 IIORD 
8 5 A DFF+ 0 0 2 7 IIOWR 
9 6 A DFF+ 0 0 3 3 MAO 1 

39 66 E DFF+ 0 0 3 4 MA02 
30 55 D DFF+ 0 0 3 5 MA03 
31 56 D DFF+ 0 0 3 6 MA04 
58 113 H DFF+ 0 0 3 7 MA05 
59 114 H DFF+ 0 0 3 8 MA06 
60 115 H DFF+ 0 0 3 9 MA07 
40 67 E DFF+ 0 0 3 10 MA08 
41 68 E DFF+ 0 0 3 11 MA09 
42 69 E DFF+ 0 0 3 12 MAIO 
43 70 E DFF+ 0 0 3 13 MAll 
44 71 E DFF+ 0 0 3 14 MA12 
45 72 E DFF+ 0 0 3 15 MA13 
52 97 G DFF+ 0 0 3 16 MA14 
53 98 G DFF+ 0 0 3 17 MA15 
55 99 G DFF+ 0 0 3 18 MA16 
56 100 G DFF+ 0 0 3 19 MA17 
57 101 G DFF+ 0 0 3 20 MA18 
61 116 H DFF+ 0 0 3 21 MA19 
62 117 H DFF+ 0 0 3 22 MA20 
63 118 H DFF+ 0 0 3 23 MA21 
64 119 H DFF+ 0 0 3 24 MA22 
65 120 H DFF+ 0 0 3 25 MA23 
10 7 A DFF+ 0 0 2 9 IMEMR 
11 8 A DFF+ 0 0 2 7 IMEMW 

6-343 



** BURIED LOGIC ** 

Pin MCell 
96 
95 
80 
79 
78 
77 
76 
75 

LAB Primitive 
F DFF 
F DFF 
E DFF+ 
E DFF+ 
E MCELL 
E MCELL 
E MCELL 
E MCELL 

DMA Control Using the CY7C342 MAX EPLD 

Append~ C. DMAC Report File (Continued) 

Expanders Fan-In 
Total Shared INP FBK 
o 0 2 1 
o 0 2 1 
o 027 
4 0 4 8 
o 0 3 0 
o 0 5 0 
o 0 5 0 
o 0 5 0 

C:\ MAX _ WORK\ DMAC _ APP\ DMAC.RPT 

Name 
I CTRL REG:731:9 
I CTRL-REG:731 :33 
I CYC J~TRL:1061 qO 
I CYC_CTRL:1061 q10 
:152 
:153 
:155 
:156 

C:\ MAX WORK\ DMAC APP\ DMAC.RPT 
** STAlE MACHINE ASSIGNMENTS ** -

ICYC CTRL: 1061eye etrl: MACHINE 
OF BITS ( MC079, MCOO8, MCOO7, MCOO5, MCOO4, MCOO1, MCOO2, MCOO3, MC080) WITH 

); 

STAlESI( - - - - - - - -
stidl = B"()()()()()()()(", 

sthld = B ''0000000 10", 
stdir = B"OOOOOO11O", 

memO = B"OO1001110", 
mem1 = B"OO1101110", 
mem2 = B"OOOOOl1l1", 

ioO = B"OOOOll1lO", 
iol = B"010011110", 
io2 = B"lOOOOl1l1", 

stend B"lOOOOO110", 
stint B ''0000000 1 0", 

endhld B" 1 00000000", 
elenb B"OOOOOOOOO" 

6-344 



~ 
iii CYPRESS 

? SEMICONDUCTOR 

Interfacing PROMs and RAMs to a High-Speed 
DSP Chip using MAX 

This application note describes how to interface 
Cypress CY7C128A Static RAMs and CY7C291A 
PROMs to the AT&T DSP16Ausing the CY7C343 64-
Macrocell MAX EPLD. This design illustrates MAX's 
ability to integrate SSI and MSI logic for system cost 
and space savings. 

The DSP16A includes a parallel port, with as­
sociated strobe signals, which is available for interfacing 
to external memory. The parallel port needs an external 
address generator when interfacing to RAM or PROM, 
and an EPLD of MAX's density suits this purpose. 

Design Description 
The conventional method of attaching external 

memory to the DSP16A is through its external memory 
interface, which comprises the following signals: a 16-bit 
ROM address bus; a 16-bit ROM data bus; and a c1ock­
out signal, CKO, which cycles at 25 ns. Bear in mind 
two constraints when using this external memory inter­
face. First, it allows only memory reads; second, it re­
quires extremely fast PROM speeds. With the DSP16A-
25, for example, you must use PROMs with 7 -ns ad­
dress access times (clock cycle - address delay - data set 
up = 25 - 5 - 13 = 7 ns). Memory devices at this per­
formance level are very expensive. 

The DSP16A parallel port provides a non-zero­
wait-state alternative to the device's external memory 
interface, which accommodates both read and write 
memory accesses. A non-zero-wait-state external 
memory subsystem is appropriate because the DSP16A 
has 2K words of RAM . on chip, and the external 
memory can download data or coefficients to the on­
chip memory prior to time-critical computation (or 
equivalently, to upload data or results from the on-chip 
memory following time-critical computation). The 
design outlined in this application Ilote requires four 
cycles (100 ns) to load a starting address, three cycles 
(75 ns) to perform a write operation, and five cycles 
(125 ns) to perform a read operation. 

The DSP16A's 16-bit bidirectional parallel port in­
cludes three associated signals: 

6-345 

PSEL, peripheral select-indicates which one 
of two logical ports, pdxO or pdx1, is used 
during. the current parallel I/O transaction 
PIDS, parallel input data strobe-asserted 
during a read transaction 
PODS, parallel output data strobe-asserted 
during. a write transaction. 

You can program the pulse width of both PIDS and 
PODS to be from one to four times the processor's 
cycle time (abbreviated as T). The pulse width is con­
trolled by two bits in the DSP16A's parallel I/O control 
(pIOC) register. Two other bits in the PIOC define 
PIDS and PODS as either active (output signal) or pas­
sive (input signal). This design assumes that PIDS and 
PODS are in the active mode and that all 16 bits of the 
parallel port bus are configured to be bidirectional 
(PIOC's status/control bit equals 0). 

Because the DSP16A parallel port lacks an address 
bus, it is necessary to create an external one. In this 
design example, the CY7C343 MAX implements an ad­
dress generator and an address decoder. When fully 
utilized, this generator/decoder addresses up to 16K 
words of mixed ROM and RAM. 

Design Details 
Figure 1 shows the block diagram for this design. In 

addition to the PROMs, SRAMs and MAX chip, the 
design requires a discrete 74F08 AND gate (more on 
this later). Note that the MAX chip generates four 
BANK! and four BANK signals. The BANK! lines con­
trol the CY7C128A SRAMs' active-Low chip enable, 
and the BANK lines connect to the CY7C291A 
PROMs' active-High chip select. You can modify the 
number of SRAMs versus the number of PROMs just 
by changing the MAX design, because the bank signals' 
timing is the same for both the active-High (BANK) 
and the active-Low (BANK!) version. 

Figure 2 shows a schematic of the CY7C343 logic. 
The four 74163s make up a 16-bit preloadable, auto-in­
crementing up counter. The 74138 decodes the eight 
memory-chip enables and chip selects, which are condi­
tioned with the PSEL signal. SCLK is the symbol that 



forces the MAX+PLUS compiler to use synchronous 
clocking. 

The DSP16A's physical parallel 110 port connects 
to the two logical ports, pdxO and pdxl, which distin­
guish between address and data transfers. When writing 
code for the DSP16A, you issue an external memory ad­
dress from pdxl. This causes PSEL to go High and 
enables the load function on the 74163s; PODS' rising 
edge clocks the address from the parallel bus (pBOO -
PB13) into the 74163s. The code for the DSP16A then 
reads data in through pdxO or writes data out of pdxO. 

In the case of a read, PSEL goes Low, which dis­
ables. the 74163s' load function and enables the bank 
signal to the memories. Because PIDS is Low, the 
memories are output enabled, data returns to the 
DSP16A on the parallel bus. and PIDS's rising edge in­
crements the 74163s. 

In the case of a write, PSEL again goes Low. Be­
cause PODS is Low, the memories are write enabled, 
data is written from the DSP16A parallel bus, and 
PODS's rising edge increments the 74163s. Appendix A 

DATA 

DSP16A CY7C343 

PI PI AD 
PlOO-P". ADDIISS 

'IDS 0- J CLOCI IAUI I_ PODS 

74F08 
PIlL PilL IAII 1 

14 

Interfacing to DSP Chip with MAJ. 

lists a code fragment that performs the read and· write 
operations described here. . 

This design's conceptual operation is relatively 
straightforward. The· challenge is to design the address­
ing logic in MAX, determine the proper pulse widths 
for the PIDS and PODS strobes, and fmd memories 
with the appropriate speed. 

Timing Diagrams 

The timing diagrams for this design appear in 
Figures 3 and 4, with the corresponding timing 
parameters in Tables 1. 2. and 3. Specifically, Figure 3 
shows an address load and back-ta-back data writes. 
Figure4 show~ an. address load and a single data read. 

I 

The CY7C343-30 timing parameters shown in these 
illustrations were calculated from the internal switching 
characteristics described in the device's data sheet; the 
MAX +PLUS simulator verified the signal timing. The 
address-generator circuit was captured with 
MAX+PLUS 's graphic editor, then compiled and 
simulated. 

I 

t. 
CY7C128A CY7C128 A 

ADOD-ADlO UDR 
UOO-ADIO 

ADDR 

PlOO-Pl07 
DATA PlOI-Pl" DATA 

1 

ts r--- ell r--- cr.1 

.--- WEI .--- ul 

.-- 011 .-- DEI 

• • • • 
• • 

CY7C291A CY7C291 A 

ADOO-ADlO 
ADDI 

ADOO-ADIO 
ADDR 

PI00-'107 
DATA 

PlOI-PllI 
DATA 

CUI CIlI 

CII CII 

+L 
cn 

+L 
cn 

Figure 1. Block Diagram 

6-346 



5i;=-~ SEMlcaIDUCfOR 
Interfacing to DSP Chip with MAX 

P 

~4 +., 
r---, QA • QI 

C IIC 
0 110 

ICO -
~ UP 

~ 
~ UT 

CLl 
~ LOAD 

SCLl ~CLI 
'-nTi'r 
-

IIII 
A QA 

II !m3 • III ffiIf PI C IIC DD 
PIOZ D QD ADO 
PIIU ReO f--- AD03 

mt-< ...- f--- UP ~ '-- EIT AD 5 
PliO eLl dH± 0 LOAD AD 
P 

IIII 
r----< CLI 

II 
>MY-~ 741 ADOt 

Pill -!.!!..L.... 
Pill A 

r--- "l">-----< II'. It 0 mE A Q' '1 4 • QI I ~ 

e Qe 
D QD H>743t 

aco - I'NU 
~ f--- UP 

'-- liT +., - C 
eLl ..--

~IA.ltZ 
f------C 

LOAD 
eLI 

~ 
D 

741 
'-- , YO 

H> 

I Y1 
e yz AIK3 

~d n A Y4 

l1t 
..--

• QI 
II YI 

• ~IA.lt4 e Qe - ~ IU " D QD - IU Y7 
leo -r..-- EI' 7413. ~74DZ 

- £IT IAIKS 
eLl 

~ c 
L--.( LOAD 

eLI ¥ 
~ 

) '-nTi'r IAIU 
D 

l) IA It 

Figure 2. CY7C343 Schematic Diagram 

Note that you could include inside the MAX chip 
the AND gate that uses PIDS and PODS to create the 
clock signal. This forces the MAX+PLUS compiler to 
use asynchronous clocking, however, pushing the I/O 
input hold time out beyond the 10 ns provided by the 
DSP16A (see P13 in the timing diagrams and parameter 
listings). Using an external AND gate allows the macro­
cell clocking to be synchronous, which eliminates the 
hold-time problem. The maximum propagation delay 
through the 74F08 AND gate is taken to be 6 ns (PI4). 

To create the design, you must determine the 
length of the PODS strobe during the address-load 
cycle. The critical requirement is the 34-ns 74163 set-up 
time (P15). Because the PD bus is valid 25 ns after 
PODS goes active (P13 in Figure 3), PODS must be 
programmed for a pulse width of 3T to meet the set-up 
time requirement After the load cycle, PODS must go 
inactive for at least one cycle so that an address load 
takes 4T or 100 ns. 

Similarly, it is necessary to determine the length of 
the PODS strobe during a data write. Using the 

CY7C128A-20 SRAM, the critical requirement is the 
15-ns interval from chip-enable Low to the end of the 
write. With PODS programmed to 2T, the chip-enable­
Low-to-write-end interval is guaranteed to be 18 ns 
(P21). A write to SRAM thus takes 3T, or 75 ns. As 
shown in Figure 3, this configuration also provides a 
write-enable pulse width of 50 ns (P22), data-set-up-to-

Table 1. DSP16A Parallel 110 Read-Cycle Specs 

CKO High to PIDS Low = 15 ns max [PI] 
CKO High to PIDS High = 15 ns max [P2] 
PIDS Low to PSEL valid = 10 ns max [P3] 
PIDS High to PSEL invalid (PSEL hold) = 

25 ns min [P4] 

6-347 

PB valid before PIDS High (data set up) = 

15 ns min [P5] 
PIDS High to PB invalid (data hold) = 

o ns min [P6] 



write-end time of 25 ns (P23), data-hold-from-write-end 
time of 10 ns (P24), address-set-up-to-write-end time of 
53 ns (P25), write cycle time of 53 ns (P26), address-set­
up-to-write-start time of 35 ns (P27), and address-hold­
from-write-end time of 0 ns (P28). 

The next requirement to be determined is the 
length of the PIDS strobe during a read operation. For 
the CY7C291A-20 EPROM, the critical parameter is 
the chip-select-active-to-data-valid time of 15 ns (see 
P29 in Figure 4). To meet this requirement, PIDS must 
be programmed to 4T, thus providing a total EPROM 
read cycle time of 5T, or 125 ns. This also provides an 
address-to-output-valid time of 69.5 ns (P30). 

Now it is necessary to verify that this read cycle 
timing also meets the CY7C128A-20 SRAM's require­
ments. Again, the critical parameter is the chip-select­
active-to-data-valid time, but for the SRAM this 
parameter is 20 ns (P31). As shown earlier, program­
ming PIDS to 4T suffices for this operation, as well, so 
that an SRAM read cycle is also 5T, or 125 ns. As for 
the EPROM, this configuration provides the SRAM an 

--. II ISEC .... 

CLKU 

CLUUT 

Interfacing to DSP Chip with MA: 

Table 2. DSP16A Parallel 110 Write-Cycle Specs 

CKO High to PSEL valid = 8 ns max [P7] 
PSEL valid before PODS Low = 2.5 ns min [P8] 
PODS High to PSEL invalid (pSEL hold) = 

125 ns min [P9] 
,CKOLow to PODS Low = 8 ns max [Pl0] 
CKO Low to PODS High = 8 ns max [Pl1] 
PODS Low to PB valid = 25 ns max [P12] 
PODS High to PB invalid (data hold) = 

10 ns min [P13] 

address-to-data-valid time of 69.5 ns (P32) and an out­
put-enable-to-data-valid time of 69.6 (P33). 

This MAX design is I/O intensive, rather than mac­
rocell intensive. Although the design uses 96 percent of 
the I/O pins, it uses only 34% of the macrocells. Still, 
the CY7C343 in this example integrates five 16-pin and 
two 14-pin TIT- MSI packages into a 44-pin PLCC 

PSEL 

--. P7 .... 

~r----------------------~L-, 
--. PI .... --. PI .... L-___________________ _ 

PODS 

PDI 

CLO C K 

AD. 

P2 I. P2 I .... 
pU --. Pl..... ~ 

~_l_T ____ ZT_~r___ 

1.--____ --11 

ZZZZZZZZZZZZZZZZZZX'-_....JA .... D:.ILD!UU~SL.S ...LY.!I.JALILAI-"-D----'~>CX AD P USS ULI D >0 --. "21 .... ~___'>.J<.J<.JIU.LL-L.!I.JILA-"--_~ 

--. pzO.PI7 .... 

IAIKI ---------------------------~-~~~~I ~C~H~IP~E~.A~.~LE~....J 

CHIP SELECT 
IAN K 

Figure 3. Address Load, Data Write, Data Write 

6-348 



package. In situations where space is at a premium, 
MAX is a very powerful integration tool. 

A discrete implementation of the circuit outlined 
here requires approximately 1.6 square inches of board 
space, while the CY7C343 requires approximately 0.5 
square inches. And with the CY7C343, you also have 
the advantage of design flexibility, especially when the 
CY7C343 is socketed. You could, for instance, change 
the MAX design to include up- and down-count ad­
dressing or accommodate higher density PROMs and 
SRAMs. MAX EPLDs are available in windowed pack­
ages for erasure under UV light; to make a change, you 
simply redesign, recompile, and reprogram the chips. 

Because one MAX part replaces seven TTL parts, 
the MAX implementation offers inherently higher 
reliability. Inventory overhead is reduced, and the 
CY7C343 consumes 155 rnA worst case versus 311 rnA 
worst case for the FITL parts it replaces. 

Acknowledgments 
The AT&T application note "Interfacing External 

RAM to the WE DSP16 Family of Digital Signal 
Processors" outlines a parallel-port implementation 
using discrete logic. Thanks to Daniel Yasi and Jim 
Flynn of AT&T. 

CLln 

CLIOUT 

Interfacing to DSP Chip with MAX 

Table 3. Critical CY7C343 Parameters 

74163 set-up time (110 input) = 

Tio + Tpia + TIad + Trsu - Tin - Tics = 

5 + 16 + 14 + 8 - 7 - 2 = 34 ns [P15] 
74163 set-up time (dedicated input) = 

Tin + Tlad + Trsu - Tin - Tics = 

7 + 14 + 8 - 7 - 2 = 20 ns [P16] 
74163 hold time (110 input) = 

Tin + Tics - Tio - Tpia - TIad + Trh = 

7 + 2 - 5 - 16 - 14 + 8 = 
-18 ns, assume 0 ns [P17] 

74163 hold time (dedicated input) = 

Tin + Tics - Tin - Tlad + Trh = 
7 + 2 - 7 - 14 + 8 = 

-4 ns, assume 0 ns [P18] 
74163 c1ock-to-output time = 

Tin + Tics + Trd + Tod = 

7 + 2 + 2 + 5 = 16 ns [P19] 
74138 propagation time = 

Tfd + Tpia + Tlad + Tcomb + Tad - Tod = 
1 + 16 + 14 + 4 + 5 - 5 = 35 ns [P20] 

PSEL 
~r---------------------------'~~ ______________________________ ~r-----

'OD S 

'DI 

CLocr 

AU 

IAUI 

lAir 

IT ZT 

-. '1 ~ -. PI ~ 

-'P3~ -. '4 
'~L ___ 1T __ ~ __ ~:u~TT~P~UTwl~[I~A~i~~~~ ___ 4T __ ~1 -----------­

-. PI ~ 

-. PH ~ 

ZZZZZZZ X'-_ ...... Ap"'-'pI ........ ES ....... S ....... Y ...... AL~!p'----'XZZZZZZZZZZZZZ >CIfI£XZZZZZZ 
~ 

PI 

~ ________________ ~r---lL ______________________ ~ 
-. P30. PJZ 

ZZZZZZZZZZZZZZZZZZX'--________ AD_D_RE_S-'-S _VA_L_ID ________ --'X'--___ _ 
-. PH,PH ~ 

CMI' ElAILE 

CII' SHICT 

Figure 4. Address Load, Data Read 

6-349 



CPr~ ~ SEMlCCtIDUCTOR 
Interfacing to DSP Chip with MA) 

Appendix A. Code Fragment 

This DSP16A program reads two words from external memory, multiplies them together, and writes the result back to 
external memory. Note that there is a latency of one read cycle during active read because of a double-buffering 
process. When a read statement is encountered, the data on which the program operates is taken from the on-chip 
mput register. As the data is being taken from the input register, a read transaction is initiated on the physical port so 
that, at the end of the read cycle, the correct value is in the input register. 
This program example is pathological because it does not' inake use of any pipelining or parallelism, of which the 
DSPf6A is capable. Ordiiiarily, a large block of data would be downloaded, processed, and uploaded, not just a few 
words. However, this example does illustrate the steps necessary to address, read, and write external memory through 
the parallel port. 

1* Issue Address *1 

pioc=Ox5800 1* not statuslcontrol mode (parallel bus 16-bit *1 
1* bidirectional), PIDS and PODS are outputs *1 
1* (active mode), PIDS and PODS strobe width *1 
1* equals three times the processor cycle time *1 
1* or 3T *1 

pdxl=OxOO 1* address external memory location OxOO *1 

1* Read Data *1 

pioc=Ox7800 1* not sIc mode, PIDS and PODS active, PIDS *1 
1* and PODS strobe width equals 4T *1 

aO=pdxO 1* first read not valid, discard *1 

aO=pdxO 1* second read valid, read first location of *1 
1* external memory into accumulator 0 *1 

al=pdxO 1* read second location of external memory into *1 
1* accumulator 1 *1 

1* Process Data *1 

x=aO 1* put first word into x register *1 

y=al 1* put second word into y register *1 

p=x*y 1* multiply words, result in p register *1 

aO=p 1* put product back into aO *1 

1* Write Data *1 

pioc=3800 1* not sic mode, PIDS and PODS active, PIDS *1 
1* and PODS strobe width equals 2T *1 

pdxO=aO 1* write product to third location in external *1 
1* memory *1 

, 6-350 



CYPRESS 
SEMICONDUCTOR 

FIFO RAM Controller With 
Programmable Flags 

This application note describes a scalable FIFO (fIrst 
in, first out) RAM controller that provides all the control 
circuitry necessary to make a deep FIFO. The design uses 
off-the-shelf dual-port static RAMs (Cypress CY7C130s, 
for example). The controller also features an array of 
programmable flags that you can tailor to the specifIc 
needs of your project. 

FIFOs are often used to buffer data transfers. The in­
creasing volumes of data that must be manipulated and 
transferred between systems has prompted the need for 
large FIFOs. 

FIFO RAM Controller Architecture 
The FIFO RAM controller is implemented here in 

two stages. The first stage illustrates the architecture of 
the controller by implementing a shallow, 8-word-deep 
FIFO using a dual-port RAM. The second stage expands 
this scalable architecture to implement an 8-Kword-deep 
FIFO. 

Typically, FIFOs are based on a dual-port RAM 
structure. This structure includes a memory cell that can 
be written to and read from at the same time. These 
devices are relatively inexpensive and provide the kind of 
asynchronous operation essential to a FIFO. 

The design includes four primary sections: counter 
logicladdress generation, flag generation, overflow con­
trol, and memory (Figure 1). 

Data is written into the left port of the dual-port 
SRAM with an address supplied from the write counter. 
Data is read from the right port of the dual-port SRAM 
using an address supplied from the read counter. 

The core of the design is the dual-port memory. A 
Cypress CY7C130 lK x 8 dual-port SRAM is used here. 
(Refer to "Understanding Dual-Port RAMs" in the Logic 
section of this book for more information on dual-port 
RAMs.) To make a wide FIFO, you add as many 
CY7C130s as necessary and address them in parallel. As 
mentioned earlier, you can implement deep FIFOs (even 
deeper than 8 Kwords) by scaling this design properly. 

6-351 

8-Word FIFO RAM Controller Operation 
For the simple 8-word design, the signal names and 

their definitions are: 
IMR - Master Reset 
lSI - Shift in is the external signal used to write data into 
the FIFO 
ISO - Shift out is the external signal that requests a read 
from the FIFO 
RDADDR(3:0) - The dual-port read address, connected 
to A(3:0)R on the CY7C130 
WRADDR(3:0) - The dual-port write address, connected 
to A(3:0)L on the CY7C130 
FUlL - The flag that indicates when the FIFO is full 
ALMOST FULL - The flag that indicates when the 
FIFO is 75 percent full 
ALMOST EMPTY - The flag that indicates when the 
FIFO is 25 percent full 
EMPTY - The flag that indicates that the FIFO is empty 
ISIINT - Internal shift-in signal for the dual-port RAM; 
connected to RlWL and ICEL of the CY7C130 
ISOINT - Internal shift-out signal for the dual-port 
RAM; connected to 10ER and ICER of the CY7C130 
DATAIN(7:0) - Input data lines connected to I10L(0:7) 
on the CY7C130 
DATAOUT(7:0)-Output data lines connected to 
I10R(0:7) on the CY7C130 
BUSY IN, BUSY OUT - The busy flags on the dual­
port RAM should be used to indicate when data can safely 
be shifted into or out of the device 

Asserting IMR initializes the FIFO. This signal resets 
the write counter and read counter, so that they both point 
to location 0000. A master reset also clears the address 
latches and causes the EMPTY and ALMOST_EMPTY 
flags to be asserted. 

The inverse of the FUlL flag enables ISIINT, so that 
when the FIFO is full, no more data can be shifted in. 
This gated SI signal is connected to the RlWL and ICEL 
pins of the CY7C130. When lSI is asserted, and the FIFO 
has room, the dual-port RAM's left port is enabled and 



put into read mode. Data on 1I0L(7:0) is read into the 
FIFO. 10EL is permanently disabled. 

Applying the fIrst lSI pulse causes data from the 
1I0L(7:0) lines to be latched into memory. When the read 
is completed, the pMPTY flag is deasserted, indicating 
that there is data in the FIFO that can be shifted out. The 
ALMOST EMPTY flag stays asserted if the FIFO con­
tains two or fewer valid words (25 percent full). AL­
MOST EMPTY deasserts when there are three or more 
valid data words in the FIFO. 

If six consecutive shift-in cycles are completed 
without a shift-out cycle, the ALMOST FULL flag is as­
serted. This means that the FIFO is 75 Percent full. After 
eight consecutive shift-in cycles without a shift-out cycle, 
the FULL flag is asserted, signalling that the FIFO is full, 
and no more data can be shifted in. 

The inverse of the EMPTY flag enables ISOINT, so 
that when the FIFO is empty, invalid data is not read. This 
gated SO signal is connected to the 10ER and lCER pins 
of the CY7C130. When ISO is asserted, and the FIFO 
contains valid data, the data is driven to the 1I0R(7:0) 
pins. RlWR is tied high, forcing the right port to read 
mode. 

If the FIFO is full and a shift-out cycle·is completed, 
the FULL flag is deasserted, because the FIFO is no 
longer full. Once there are less than six words in the FIFO 

r 

MlKln 

(less than 75 percent full), the ALMOST_FULL flag is 
deasserted. When there are only two words left in the 
FIFO, the ALMOST EMPTY flag is asserted. If all the 
valid words in the FIFO have been read, the EMPTY flag 
is asserted. Waveforms for this circuit appear in Figure 2. 

Due to the asynchronous nature of dual-port RAMs, 
the FIFO can be written to or read from at any time (un­
less, of course, the FIFO is full or empty). It is a good 
idea to monitor the flags when lSI and ISO are both deas­
serted, however, to give the internal logic time to settle. 
The flags can be safely monitored at any time if you can 
guarantee that only one operation is performed at a time. 
Note that flags are updated when lSI and ISO are High. 

Counter/Address Generation Logic 
The two counters in this design serve as a read 

counter and a write counter (Figure 3). The write counter 
provides an address to the memory port that is being writ­
ten to. This counter is incremented every time an lSI (shift 
in) pulse is received, until the FIFO is full. When the 
FIFO is full, the FULL flag is asserted and the counter is 
inhibited, preventing data overflow. When the FIFO is no 
longer full due to a read, the FULL flag deasserts and the 
write counter is enabled again. 

The read counter provides the address to the memory 
port that is being read from. This counter is incremented 

, 

iiiln 1--...---..1 

"liill 

Will 

Figure 1. Block Diagram of a FIFO RAM Controller 

6-352 



...::=-0.. 

£;~RESS FIFO RAM Controller With Programmable Flags 
~~ ~CaID~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

MENU 

+0_Sns 21 
·················_···i-fr 

..... n .... n._ ... n .... n .... n .. _n ..... n._.n .... n_ .. L.-~----------.L!l!il··i SO 

S1: 1: 

WRADDR1 0 .... _ .......... _ .................. __ ... _ .... _._ ................... __ .................................... ...1 ::!:,:!;;~ 
Pir W ~~ 

)( 

WRADDR2 0 )( L------------------':YH 
L------------------!;i!,!l!l! WRADDR3 0 )( 

WRADDR1: 0 )( 

............ _ .............. _ .. _ .................... _ ........................... _ ....................... _ ... __ ........... _ ... _ ..... _ .................. n ........... n ........ JI ............ !.l ...................................... !,;!:i!··i 

---I III Ii:' 

RDADDR1 0 x 

RDADDR2 0 x 

RDADDR3 0 )( 

RDADDR1: 0 x 

SUB1 0 )( 

SUB2 0 x 

:~~.~~----------~~~~~~:~~~~~:~-~~-III 
SUB3 0 x 

SUB1: 0 )( 

FULL 0 x 

OST_FULL 0 )( 

ST_EHPTY 0 x 

EMPTY 0 x 

SOOUT 0 )( .L.n ... _n .... n. ... n .... n .... n ..... n.J. !;m:!i ·-.--... ·-.·u-. u·_·.·u .... u .. ·.·u· .... u·-.·u-... u·.·_· ........ ·_-...... _ ......................... -............ -................ _. __ ....... _ ....... _ ...... __ ....... - "':"'L' FiUH 

1---_________ ..;;:...... ____ -.-____ ....-___ --. ____ --.-____ -.-__ ·_!II!j'j!lj 
S1:0UT 0 x 

TIME ~.7US 3.3US ~.9US 
CU$Jo :IL.0r'iS. 

Figure 2. Sample Waveforms for the 8 Word FIFO Example 

every time an ISO pulse is received, until the FIFO is 
empty. When the FIFO is empty, the EMPTY flag is as­
serted, and the read counter is inhibited until spme valid 
data has been written to the FIFO. 

Both the read and write counters are forced to 0000 
when IMR is asserted. 

lSI and ISO are Low-asserted signals, as are their in­
ternalcounterparts ISIINT and ISO INT. The counters are 
incremented on the High-to-Low transition of ISIINT or 
ISOINT. Note that SIINT and SOINT clock the counters. 
The counters must be clocked on the signal's rising edge, 
but the external signals are Low asserted; an inverter is 
thus required. With this scheme,the current address is al­
ways stable before the next lSI or ISO pulse. 

The address lines are latched to keep the address 
stable during the Low-asserted lSI or ISO pulse. When lSI 
or ISO deasserts, the latches enable the new address to the 
dual-port RAM. In simple form, the counter is incre­
mented on the falling edge of lSI or ISO, and the new 

6-353 

address is latched-out on the rising edge of lSI or ISO. 
Note that the rising edge of the lSI or ISO signal 
propagates through the CY7C342 PLD used to implement 
this design; the signal continues out to the dual~port RAM 
before the new address appears, thereby allowing the cor­
rect address at the rising edge of lSI or ISO before chang­
ing to the next address. 

so 

SI--IV~'T~ ______ ~ 

Reed Address 

"rtle Addra •• 

Figure 3. Counterl Address Generation Logic and 



~~ ====;;;;;;;;;;;==F_IF=O_R=A;;;;;;M;;;;;;;;;;C;;o;;;n;;;tr;;;o;;;;lI;;;e;;.r.;W;;;;I;;;·t;;h.;P.;r;;;o~gr;;;;a;;;m;;m~a;;;b;;;le;;;F;;;I;;;a==gs 
~===D 
AIR ----Dc:>----I-----. 

'1/1111 

Figure 4. The FULL Flag Circuit 

Flag Control Logic 

FlLL 

The flag control logic consists of several comparators 
and a subtraction circuit, which keeps track of the number 
of valid data words currently in the FIFO. This is done by 
subtracting the value in the read counter from the value in 
the write counter. The output of the subtraction circuit is 
compared with values you supply. The flags result from 
these comparisons. 

Because this is a PLD solution, you can customize 
the flags to suit your needs. This example includes only 
four flags, but you can create as many flags as needed to 
check for any number of words. 

The FUlL Flag 

The FULL flag logic appears in Figure 4. The com­
parator takes its A port inputs from the subtractor. Its B 
port inputs come from tying the fIrst 3 bits high and the 
fourth to ground (0111 binary or 7 decimal). The value of 
0111 is used instead of 1000 (8 decimal) because the fIrSt 
address is 0000, not 0001, and thus the subtract circuit's 
output is actually 1 less than the number of valid words in 
the FIFO. The 0111 value also allows the flag to be 
processed concurrently with other activities. In other 
words, the FULL flag is asserted on the eighth valid word, 
rather than waiting until the ninth, when it is too late. 
Again, you can customize the flag to be asserted when­
ever you need the information. 

The flag comes from an RS latch. The latch is set 
only when the comparator indicates that the subtract logic 
value is equal to or greater than 0111 (7). The 
comparator's greater-than output is not strictly necessary 
here, but it is included as a safeguard. The latch's set 
input is gated by a combination of ISIINT and ISOINT 
that is asserted only when neither lSI or ISO are asserted. 
This arrangement ensures that the flags do not change 
until the counters both settle. Remember that the counters 

.1M ----1')01--+---.. 

'111111 
AUIOST F1.LL 

Figure 5, The ALMOST_FULL Flag Circuit 

change on the falling edge of ISIINT and IS OINT, and 
thus settle by the time lSI or ISO is deasserted. 

The reset input of the FULL flag latch is fed by the 
master reset (/MR), the comparator's less-than output and 
the gating signal discussed above. In other words, the 
FULL flag is reset when the number of valid words is less 
than 8 and both lSI and ISO are deasserted, or when an 
IMR pulse is received. 

The ALMOST _FUlL Flag 
For the AIMOST _ FULL flag (Figure 5), the com­

parator takes its A port inputs from the subtract circuit; 
the comparator's B port inputs are tied to 0101(5). The 
operation of this flag is almost identical the that of the 
FULL flag, except that the AIMOST _ FULL flag is as­
serted when there are 6 or more valid words in the FIFO. 
This is where the comparator's greater-than output comes 
into play. Note that the ALMOST_FULL flag is always 
asserted while the FULL flag is asserted. 

6-354 

The ALMOST_EMPTY Flag 

The ALMOST_EMPTY flag comparator (Figure 6) 
takes its A port inputs from the subtractor and its B port 
inputs from the value 0010 (2). The IMR signal feeds the 
set input of the RS latch, because when the part is reset, 
the FIFO is empty. Because this means there are less than 
2 valid data words in the FIFO, the AIMOST EMPTY 
flag is asserted. The flag is also set by the comparator's 
less-than or equal-to outputs, gated by the deasserted 
ISIINT and ISOINT, as before. Consequently, whenever 
the subtractor gives a value less than or equal to 0010 (2), 
the flag is set. 

The reset of the AIMOST _EMPTY flag is fed by the 
comparator's greater-than output, gated with ISIINT and 
ISOINT. Thus, when the subtractor indicates a value 
greater than 0010 (2), the flag is reset. 

The EMPTY Flag 

The EMPTY flag comparator (Figure 7) takes its A 
port input from the subtractor. The comparator's B port 
input is tied to 0000. The RS latch is set with the /MR 
signal or when the subtractor value is 0000, which indi­
cates that the FIFO is empty. Any other value at the sub­
tract circuit clears the EMPTY flag. Again, ISIINT and 
ISOINT gate all signals except /MR. 

Overflow Control 

The controller contains a simple mechanism to 
prevent data overflow and underflow - the condition 

ISO __ ~ ...... 
lSI 

.1M ---Do---4---. 

'811111 

Figure 6. The ALMOST_EMPTY Flag Circuit 



~ 
=as ~ ~JmiS FIFO RAM Controller With Programmable Flags 
~Jr~CaID~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

where an address that does not contain current, valid data 
is read. Specifically, when the FULL flag goes active, its 
inverse is ANDed with the SI signal to block any further 
shift-in pulses from entering the system. This keeps the 
write address counter from incrementing and the dual-port 
RAM from accepting any more data. When a shift-out 
pulse is received, the FULL flag resets, and data can be 
shifted into the FIFO again. 

When the FIFO is empty, the inverse of the EMPTY 
flag is ANDed with the SO signal to block any further 
shift-out operations. This keeps the read address counter 
from incrementing and disallows any further reads from 
the dual-port RAM. When the next shift-in pulse is 
received, the EMPTY flag resets, and data can be shifted 
out again. 

Referring back to Figure 2, notice that 10 total lSI 
pulses are sent, but only eight ISIINT pulses are 
generated. 

Scaling the Controller to 8 Kwords 
So far this application note has analyzed the basic 

functions of a FIFO RAM controller with a simplified ex­
ample. Next, consider a real-world example of an 8-
Kword-deep FIFO. 

The counters are expanded to provide a 13-bit ad­
dress that drives the dual-port memories. The comparators 
and subtract circuit are also expanded to 13 bits. To 
facilitate the large design, the comparators are eliminated, 
and the desired toggle point is decoded using a 13-input 
AND structure. Put the decoded output into SIR of the 
NORLTCH (a latch made of NORs). The memory core 
now consists of four CY7C132 2K X 8 dual-port RAMS. 

The CY7C344 PLD is used to implement the design's 
first stage. The final implementation scales into the 
CY7C342 in much the same way as the design itself. The 
CY7C344 is a high-density (1250 gate equivalent) 28-pin, 
32-macrocell PLD. The design fits nicely into this device, 
as shown in the design report fIle in Appendix D. All the 
macrocells are used, while still leaving five inputs, two 
outputs, and half the available p-terms unused. 

The MAX+PLUS Tools 
The FIFO RAM controllers described here have been 

implemented using the MAX+PLUS design package. This 
well-integrated, user-friendly package provides schematic 
capture, a high-level design language, simulation, and 
programming facilities. MAX+PLUS also supports hierar­
chical designs. 

The schematic capture utility features an easy-to-use, 
mouse-driven, pull-down menu format. Most of the mac­
rofunctions used in the design come from the 
MAX+PLUS macrofunction library. This library includes 
everything from basic logic components, such as a two­
input AND gate (AND2), to an 8-bit counter (8COUNT) 
and 7400 Series logic. These robust libraries facilitate 
quick, efficient schematic generation. 

The MAX+PLUS package provides a high-level 
design language, AHDL (Advanced Hardware Design 

6-355 

~ ----\'I 

II'R ----no...---I--~ 

EJ\PTY 
'111111111111 

Figure 7. The EMPTY Flag Circuit 

Language). AHDL allows you to create a textual descrip­
tion of your design using Boolean equations, truth tables, 
and state machine syntax. 

If you need a new macrofunction, you can easily cre­
ate exactly what you need using schematic capture, 
AHDL, or a combination of both. When the new macro­
function is completed, a symbol for it can be created auto­
matically. 

Creating a Macrofunction 
Because the MAX+PLUS library contains no subtrac­

tor macro function, the subtract circuit is created using 
AHDL: 
subdesign subtract 
( 
wrcnt[12 .. 0], rdcnt[12 .. 0] : input; 
sub[12 .. 0] : output; 
) 
begin 
("sub [12 .. 0])=(0, 1, wrcnt[ 12 .. 0] )-(0,0,rdcnt[12 .. 0]); 
end; 

The first line of code specifies that this subdesign, or 
macrofunction, is called "subtract." This is an arbitrary 
choice. Next, the inputs and outputs are defmed as being 
13 bits wide (0 through 12). Finally, the required function 
is defmed between the begin and end statements. The term 
"0,1," before wrcnt[12 .. 0] assures that wrcnt is always 
bigger than O,O,rdcnt It is like adding another significant 
digit Thus, when a subtract occurs, this macrofunction al­
ways returns a positive number. This number represents 
the magnitude difference between the write counter and 
the read counter. The subtract function returns a 2's com­
plement number; for simplicity of design, the result 
should therefore always be positive. If the result were 
negative, the comparators would have to be very complex. 
For convenience, the MAX+PLUS Text Editor is used to 
create this fIle, which is called SUBTRACT.1DF. 

After the function is implemented, the design is com­
plied using the COMPILE function in the pull-down 
menu. The logic is automatically generated and a symbol 
created that can now be placed in the design. The com­
piler is run at this stage to tum the subtractor into a 
functioning macrocell, but do not run the compiler on the 
entire design until you have finished total design capture. 

Design Verification and Simulation 
After the entire design has been entered, the 

MAX+PLUS compiler checks the design to detect any 



SI 

YRI TE AOI:RESS 

DATA IN 

~ 
Tew 

,1/ 
I' "'I' 

f------ T.l w ----.., 
-~ 

-
I 

.'-

The~ -

-

Perem.l.r D •• crlpllan 1\1n "ex 
Tew Addr ••• S.l-Up la Yrll. End 21i!1 

The Addr ••• Hold from Yrll. End 2 

Telw Shlfl In Pul •• Yldlh 21i!1 

T.d Dolo S.l-Uc la Yrll. End 15 

Thd D",l", Hold r .. ",m .V .. d: .• End 35 

Todr RI.1ng Edge SI t:.a N.xt:. Addr ••• 65 

Figure 8 Simple FIFO Timing 

design rule violations. When an error is detected, the 
MAX+PLUS software is so well integrated that it jumps 
to the schematic or text editor and highlights the error. 
This feature is extremely helpful during the initial debug 
phase of the design. The compiler also creates all the files 
necessary for design simulation and device programming. 

Simulation 
MAX+PLUS provides a simulation package that al­

lows you to test your design. You can define waveforms 
using tabular entry format or a waveform editor. Vectors 
entered in the tabular format can be converted and dis­
played as waveforms. The MAX+PLUS simulator per­
forms both timing· and logic simulation. The MAX+PLUS 
simulation facility generated the timing diagram shown in 
Figure 2. 

The code used to generate the waveforms is created 
in the MAX+PLUS text editor. The top part of the file 
defines the inputs and outputs. START and STOPcom­
mands permit you. to start. and . stop the simulation at a 
given time. INTERVAL defines the time between the 
lines of code; an interval of 200 means the inputs change 
every 200 ns. The rest of the file consists of columnized 
entries for /MR, ISO, and lSI. Appendix A lists the vector 
file for the 8-word FIFO RAM controller, and Appendix C 
contains the vector fileJor the 8-Kword controller. 

Simulating a design as large as the 8-K word FIFO 
RAM controller takes a prohibitively long period of time 
(16,000 cycles), without some kind of complex simulation 
capability. The MAX+PLUS simulator provides such fea­
tures through the implementation of command and vector 
files. The vector file used to exercise the flags for the 8K 
FIFO appears in Appendix C. 

6-356 

Note that a vector file can run without a command 
file. A typical vector file contains the START, STOP, and 
INTERVAL statements explained earlier. Additionally, a 
PATTERN statement sets up the inputs and the sub­
sequent pattern of Is and Os provides the desired input 
stimulation. This simple compilation of rows of Is and Os 
quickly exercises a design. You can enter the vector file 
in the text editor; the filename must end with a .vEC ex­
tension. 

When you are ready to simulate, you use the pull­
down menu to activate. "FILE," then "VECTOR input," 
followed by "VECTOR file (.VEC)." This sequence of 
commands fetches the vector file as input stimulus. Now 
activate the SIMULATE command. You are prompted for 
the length of the simulation, and simulation begins. When 
the simulation is completed, activate the WAVEFORM 
command to display the results. 

To further aid in complex simulation, you can create 
a command file, which includes the instructions needed to 
execute a. simulation sequence. Appendix B li~ts the com­
mand file used to exercise the flag operation for the 8K 
FIFO. The command file works in conjunction with a vec­
tor file J/tppendix C), 

The frrst line of the command file in Appendix .B 
defines that the GROUP command accepts, ,hex input. 
Next, the VECTOR command uses the given vector file as 
a source of stimulation. GROUP shortens the description 
of a group of inputs/nodes by allowing you to describe 
them in hex format instead of defining every input in­
dividually in binary format. You can type 07FE, for ex­
ample, instead of 00000 11111 i 11110. 

The "SIMULATE 200Oos" command gives the 
amount of time the simulator runs for this section of the 



REm ~ 1'-___ T_a_d_~_1--+-----J>--
DATA QJT < > 

Pa,.am.l.,. c •• c,.lpllan I'\1n J\ex 
T.ad Shlfl cul la Dala Valid 65 
T,.dadd,. Shlfl Oul la Valid Add,. ••• 65 
T,.e R.ed Cyel. Tim. 95 
Tad~ Valid Add,. ••• la cala Valid 25 

Figure 9 Read Cycle 

command file. In this example, the simulation starts by 
running for 2000 ns. As shown in the COMMAND & 
VECTOR files, this resets (MR) the device and allows a 
couple of shift-in operations (SI) to occur. Next, a FORCE 
STICK command forces the RDCNT and WRCNT to a 
desired value. "SIMULATE +100ns" allows this value to 
be implemented. The + in front of the number means that 
this value is for an additional amount of time, or in­
cremental. The absence of the + indicates an absolute 
time. 

Now a FORCE UNSTICK command allows the 
nodes to simulate freely. The next "SIMULATE +1800ns" 
allows for two SIs followed by two SOs. This sequence 
sets the counter to a desired value just before the AL­
MOST_FULL flag activates; the sequence also provides 
SIs to activate the counter and SOs to deactivate it. 

The rest of the code sets counters next to the value 
that toggles flags and activates and deactivates the 
counters. These two files save a great deal of simulation 
effort and compute time. 

TIming Analysis 
The MAX+PLUS software offers valuable timing in­

formation. The timing data from the MAX+PLUS simula­
tion and the information in the CY7C132 data sheet allow 
complete timing analysis of the FIFO RAM controller. 
Figures 8 and 9 show the controller's timing waveforms. 
The pertinent timing parameters and their values are: 
tAW = 20 ns: Dual-port address set-up to write end 
tHA = 2 ns: Dual-port address hold from write end 
tPWE = 20 ns: Dual-port lWE pulse width 
tSD = 15 ns: Dual-port data set-up to write end 
tHD = 0 ns: Dual-port data hold to write end 

6-357 

tADR = 30 ns: CY7C344 lSI to next clock 
tACE = 30 ns: Dual-port ICE Low to data out 
tRDADDR = 30 ns: CY7C344 ISO to valid address 
tRC = 25 ns: Dual-port read cycle time 
tAA = 25 ns: Dual-port valid address to data valid 

Timing simulation data from the VECTOR and 
COMMAND files indicates the worst-case timing from 
lSI or ISO until flags are stable is approximately 95 ns. 
This value, coupled with the normal timing parameters for 
shifting data in and out of the dual-port RAM, gives a 
200-ns FIFO RAM controller system cycle time. 

Because this is a very complex design, you can 
change the logic to add or delete features. Note that you 
can use the minimum lSI or lSI pulse width, but keep the 
overall period at approximately 200 ns. 

Programming Support 
When the design is complete and fully exercised, a 

device can be programmed using the MAX+PLUS 
programmer module in conjunction with the QuickPro II 
programmer hardware. The small design is fitted to a 
CY7C344, and the expanded design is fitted to a 
CY7C342. 

With the proper software and adapters, the QuickPro 
II is versatile enough to program all the MAX devices, as 
well as every PROM and PLD Cypress manufactures. The 
QuickPro II is connected to a PC via a parallel port, leav­
ing the slots in your PC available for other peripherals. 

The complete MAX+PLUS package contains the 
MAX+PLUS software, the QuickPro II programmer and 
software, and adapter sockets for the entire MAX family. 

The designs presented here have been verified by 
simulation. 



Appendix A. Simulation File: 8 Word FIFO RAM Controller 

SIMPLE EXAMPLE SIMULATION CODE 

START 0; 
STOP 9000; 
INTERVAL 200; 
OUTPUTS WRADDR1 WRADDR2WRADDR3 
WRADDR4RDADDR1RDADDR2RDADDR3RDAD­
DR4 SUB1 SUB2 SUB3 SUB4 FULL ALMOST FULL 
ALMOST EMPTY EMPTY FULL SOOUT SIOUT ; 
INPUTS MR SO SI; 
PATTERN 
011 
%RESET% 
1 1 1 
1 1 1 
110 
1 1 1 
110 
1 1 1 
110 
1 1 1 
110 
1 1 1 
110 
1 1 1 
1 10 
1 1 1 
1 10 
1 1 1 
1 10 
1 1 1 
% SHIFTED IN 8-BYTES % 
110 
1 1 1 
110 
1 1 1 
1 1 1 
% SHIFTED 2 EXTRA TIMES TO ENSURE PROPER 
FLAG OPERATION % 
101 
1 1 1 
101 
1 1 1 
101 
1 1 1 
101 
1 1 1 
101 
1 1 1 
101 
1 1 1 
101 
1 1 1 
101 
1 1 1 
% SHIFTED OUT 8-BYTES % 

101 
1 11 
101 
111 
1 1 1 
% SHIFTED OUT 2 EXTRA TIMES TO ENSURE 
PROPER FLAG OPERATION % 
110 
1 11 
110 
1 1 1 
110 
1 1 1 
110 
1 1 1 
1 10 
1 1 1 
110 
1 1 1 
110 
111 
110 
11 1 
% SHIFTED IN 8-BYTES% 
1 10 
1 1 1 
1 10 
1 1 1 
% SHIFTED IN 2 EXTRA BYTES TO ENSURE 
PROPER FLAG OPERATION% 
1 1 1 

6-358 

101 
1 1 1 
101 
11 1 
101 
1 1 1 
101 
1 1 1 
101 
1 11 
101 
1 1 1 
101 
1 1 1 
101 
1 1 1 
%SHIFTED IN 8-BYTES% 
101 
1 1 1 
101 
1 1 1 
%SHIFTED 2 EXTRA TIMES TO ENSURE PROPER 
FLAG OPERATION% 
1 1 1 ; 



Appendix B. Simulation Command File: 8K FIFO RAM Controller 

RADIX HEX 
VECTOR BIGFIF.VEC 

1* This file executes preloads to simplify 
1* simulation of the FIFO RAM Controller 

GROUP CREATE RDCNT = RCNTl3 RCNTl2 RCNTll RCNTlO RCNT9 RCNT8 RCNT7 RCNT6 RCNT5 RCNT4 
RCNT3 RCNT2 RCNTl __ 
GROUP CREATE WRCNT = WCNTl3 WCNTl2 WCNTll WCNTlO WCNT9 WCNT8 

WCNT7 WCNT6 WCNT5 WCNT4 WCNTI WCNT2 WCNTl 

SIMULATE 2000NS 
FORCE STICK WRCNT=07FE 
FORCE STICK RDCNT =0000 
SIMULATE +lOONS 
FORCE UNSTICK WRCNT 
FORCE UNSTICK RDCNT 
SIMULATE +l800NS 

FORCE STICK WRCNT =OFFE 
FORCE STICK RDCNT =0000 
SIMULATE + lOONS 
FORCE UNSTICK WRCNT 
FORCE UNSTICK RDCNT 
SIMULATE +l800NS 

1* initialize, turn EMPTY flag off 
1* force controller to ALMOST EMPTY BOUNDARY 

1* preload 
1* relieve force 

1* do several writes to turn flag on 
1* do several reads to tum flag off 

1* force controller to AlMOST FULL boundary 

1* preload 
1* relieve force 

1* do several writes to tum flag on 
1* do several reads to tum flag off 

FORCE STICK WRCNT = lFFEl* force controller to FULL boundary 
FORCE STICK RDCNT =0000 
SIMULATE +l00NSI* preload 
FORCE UNSTICK WRCNT 1* relieve force 
FORCE UNSTICK RDCNT 
SIMULATE + 1800NSI* do a write to turn flag on, attempt more 
1* do several reads to turn flag off 

6-359 



~RESS FIFO RAM Controller With Programmable Flags 
~, ~~R~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix C. Simulation File: 8K Word FIFO RAM Controller 

% Simulation file for the FIFO RAM Controller 
START 0; 
STOP 399; 
INTERVAL 100; 
% Each cycle is lOOns long 

OUTPUTS 

INPUTS 
PATTERN 
011 

WCNT13 WCNT12 WCNTII WCNTlO 
WCNT9 WCNT8 WCNT7 WCNT6 
WCNT5 WCNT4 WCNT3 WCNT2 
WCNTI RCNTl3 RCNTl2RCNTlI 
RCNTlO RCNT9 RCNT8 RCNT7 
RCNT6 RCNT5 RCNT4 RCNT3 
RCNT2 RCNTI WRADDR13 
WRADDR12 WRADDRII 
WRADDRlO WRADDR9 WRADDR8 
WRADDR7WRADDR6WRADDR5 
WRADDR4WRADDR3WRADDR2 
WRADDRI RDADDR13 RDADDR12 
RDADDRIIRDADDRI0RDADDR9 
RDADDR8 RDADDR7RDADDR6 
RDADDR5RDADDR4RDADDR3 
RDADDR2 RDADDRI 
FULL ALMST EMP ALMST FUL 
EMPTY SIOUT SOOUT ; -
MR SI SO; 

% master reset and initialization 
1 1 1 
1 1 1 
1 11; 

START 400; 
STOP 7500; 
INTERVAL 100; 
INPUTS MR SI SO; 
PATTERN 1 0 1 

101 
1 1 1 
1 1 1 
1 0 1 
101 
111 
111 
1 1 0 
1 1 0 
111 
1 1 1 
1 1 0 
1 1 0 
111 
111 
1 1 1 
111 
1 1 1 
1 0 1 

6-360 

1 0 
1 1 
111 
1 0 1 
1 0 1 
111 
111 
1 1 0 
110 
1 1 1 
111 
110 
1 1 0 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
111 

101 
101 
111 
1 1 1 
101 
1 0 1 
1 1 1 
1 1 1 
1 1 0 
110 
111 
1 1 1 
1 1 0 
110 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 0 1 
1 0 1 
1 1 1 
1 1 1 
1 0 1 
101 
1 1 1 
111 
1 1 0 
110 
111 
1 1 1 
110 
1 1 0 
111 
1 1 1; 



~ 
~ =- ~~RESS FIFO RAM Controller With Programmable Flags -=, SEMICONDUCTOR 

Appendix D. Report File: 8K Word FIFO RAM Controller 

C:\MAX _ WORK\FIFOPLD\BIGFIF.RPT 
MAX+PLUS Compiler Report File 
Version 2.5OC 7/18/90 
***** Design compiled without errors 
Title: DESIGN NAME 

Company: CYPRESS SEMICONDUCTOR 
Designer: MIKE LEWIS 
Rev: A 
Date: 6:41p 11-01-1990 
Turbo: ON 
Security: OFF 

~ ~ ~ 
\0 

0 C"l - 0 00 ~ 

~ 
t- ; ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ p;l ~ p;l 

U 

~ ~ ~ en en en 
~ ~ ~ ~ ~ ~ ~ ~ ~ U - §a §a §a > c.:I c.:I en 

0\ 00 t- \0 II"l "<t ~ ~ - 00 r--- \0 II"l "Of' ~ C"l -\0 1.0 \0 \0 \0 \0 \0 \0 

RESERVED 10 60 RDADDR9 

RESERVED 11 59 RDADDR8 

RESERVED 12 58 RDADDR7 

RESERVED 13 57 RESERVED 

RESERVED 14 56 RESERVED 

RESERVED 15 55 SIOUT 

GND 16 54 VCC 

RESERVED 17 53 FULL 
CY7C342-30JC 

ALMST FUL 18 52 EMPTY 

RESERVED 19 51 RESERVED 

VCC 20 50 GND 

RESERVED 21 49 RESERVED 

RESERVED 22 48 RESERVED 

RESERVED 23 47 SOOUT 

RDADDR1 24 46 RDADDR2 

RDADDR13 25 45 RESERVED 

WRADDR1 26 44 WRADDR5 

~ 00 0\ 0 - ~ ~ "Of' II"l \0 r--- 00 0\ 0 - C"l ~ 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ "<t "<t "<t "<t 

0\ - ~ ~ ~ 

~ ~ ~ ~ 0 U ~ "<t II"l \0 C"l 

~ 
~ - ; ~ =s en U ~ 

~ ~ ~ ~ 
~ ~ p;l, c.:I c.:I c.:I > Cl Cl 

~ ~ ~ E-o 

~ 
en §a §a ~ ~ ~ ~ ~ ~ ~ ~ 

6-361 



sr~ =======F;;;;;;;IF;;;;;;;O=R;;;;;;;A=M=C;;;;;;;O;;;;;;;D;;;;;;;tr;;;;;;;o;;;;;;;lI;;;;;;;e;;;;;;;r;;;;;;;W;;;;I;;;;;;;"t;;;;h;;;;P;;;;r;;;;o;::;gr;;;;a;;;;m;;;;m;;;;;;;;;;;;;a;;;;h;;;;le;;;;;;;F;;;;I;;;;a;;:;;;gs 

Appendix D. Report File: 8K Word FIFO RAM Controller 

** RESOURCE USAGE ** 

Logic Array Block 

A: MCI-MCI6 
B: MCl7 - MC32 
C: MC33 - MC48 
D: MC49 - MC64 
E: MC65 - MC80 
F: MC81 - MC96 
G: MC97 - MC112 
H: MC113 - MC128 

Macrocells 

16/16(100%) 
0/16( 0%) 
lI16( 6%) 

10/16( 62%) 
16116(100%) 
16/16(100%) 

3/16( 18%) 
16/16(100%) 

Total dedicated input pins used: 31 8 ( 37%) 
Total I/O pins used: 32/ 52 ( 61%) 
Total macrocells used: 78/128 ( 60%) 
Total expanders used: 127/256 (49%) 

Total input pins required: 3 
Total output pins required: 32 
Total bidirectional pins required: 0 
Total macrocells required: 78 
Total expanders in database: 74 

Synthesized macrocells: 0/128 ( 0%) 

** FILE HIERARCHY ** 
18COUNT:2841 
INORLTCH:3531 
INORLTCH: 344 1 
INORLTCH: 1411 
INORLTCH: 1351 
IBIGSUB:2611 
18COUNT:1931 
18COUNT:1941 
18COUNT:2831 

I/O Pins 

3/ 8( 37%) 
0/5( 0%) 
lI5( 20%) 

8/8(100%) 
7/ 8( 87%) 
2/ 5( 40%) 
3/5( 60%) 
8/8(100%) 

C:\MAX _ WORK\FIFOPLD\BIGFIF.RPT 

Expanders 

16/32( 50%) 
0/32( 0%) 

16/32( 50%) 
9/32( 28%) 

1O/32( 31%) 
32/32(100%) 
32/32(100%) 
12/32( 37%) 

External 
Interconnect 

15/24( 62%) 
0/24( 0%) 
14/24( 58%) 
12/24( 50%) 
14/24( 58%) 
13/24( 54%) 
14/24( 58%) 
15/24( 62%) 

C:\MAX _ WORK\FIFOPLD\BIGFIF.RPT 

6-362 



~ =- ~~RESS FIFO RAM Controller With Programmable Flags 
~, SEMIcamucroR 

Appendix D. Report File: 8K Word FIFO RAM Controller 

C:\MAX _ WORK\FIFOPLD\BIGFIF.RPT 
** INPUTS ** 

Expanders Fan-In 
Pin MCell LAB Primitive Total Shared INP FBK Name 
68 INPUT 0 0 0 0 MR 
66 INPUT 0 0 0 0 SI 
36 INPUT 0 0 0 0 SO 

C:\MAX _ WORK\FIFOPLD\BIGFIF.RPT 
** OUTPUTS ** 

Expanders Fan-In 
Pin MCell LAB Primitive Total Shared INP FBK Name 
31 56 D OUTPUT 5 3 1 3 ALMST EMP 
18 33 C OUTPUT 16 2 1 14 ALMST-FUL 
52 97 G OUTPUT 16 16 1 14 EMPTY-
53 98 G OUTPUT 16 16 1 14 FULL 
24 49 D DFF 0 0 1 2 RDADDR1 
46 81 F DFF 0 0 1 2 RDADDR2 
38 65 E DFF 0 0 1 2 RDADDR3 
39 66 E DFF 0 0 1 2 RDADDR4 
40 67 E DFF 0 0 1 2 RDADDR5 
41 68 E DFF 0 0 1 2 RDADDR6 
58 113 H DFF 0 0 1 2 RDADDR7 
59 114 H DFF 0 0 1 2 RDADDR8 
60 115 H DFF 0 0 1 2 RDADDR9 
61 116 H DFF 0 0 1 2 RDADDR10 
62 117 H DFF 0 0 1 2 RDADDR11 
63 118 H DFF 0 0 1 2 RDADDR12 
25 50 D DFF 0 0 1 2 RDADDR13 
55 99 G MCELL 16 16 2 14 SIOUT 
47 82 F MCELL 16 16 2 14 SOOUT 
26 51 D DFF 0 0 1 2 WRADDR1 
42 69 E DFF 0 0 1 2 WRADDR2 
4 1 A DFF 0 0 1 2 WRADDR3 

43 70 E DFF 0 0 1 2 WRADDR4 
44 71 E DFF 0 0 1 2 WRADDR5 
5 2 A DFF 0 0 1 2 WRADDR6 

64 119 H DFF 0 0 1 2 WRADDR7 
6 3 A DFF 0 0 1 2 WRADDR8 

27 52 D DFF 0 0 1 2 WRADDR9 
65 120 H DFF 0 0 1 2 WRADDR10 
28 53 D DFF 0 0 1 2 WRADDR11 
29 54 D DFF 0 0 1 2 WRADDR12 
30 55 D DFF 0 0 1 2 WRADDR13 

6-363 



s;:= ~ SEMiCOIDUCTOR 
FIFO RAM Controller With Programmable Flags 

Appendix D. Report File: 8K Word FIFO RAM Controller 

C:\MAX _ WORK\FIFOPLD\BIGFIF.RPT 
** BURIED LOGIC ** 

Expanders Fan-In 
Pin MCell LAB Primitive Total Shared INP FBK Name 

64 D SOFT 2 1 0 2 IBIGSUB:2611:71 
80 E SOFT 1 1 0 4 IBIGSUB:261 1:82 
79 E SOFT 0 0 0 2 IBIGSUB:2611:87 
78 E SOFT 0 0 0 2 IBIGSUB:2611:90 
77 E SOFT 3 2 0 6 IBIGSUB:261 1:94 
76 E SOFT 3 2 0 6 IBIGSUB:2611:97 
75 E SOFT 2 1 0 3 IBIGSUB:2611:107 
74 E SOFT 3 2 0 5 IBIGSUB:2611:119 
73 E SOFT 4 4 0 7 IBIGSUB:2611:131 

(45) 72 E SOFT 4 4 0 7 IBIGSUB:2611:134 
128 H SOFT 2 1 0 3 IBIGSUB:261I: 144 
127 H SOFT 3 2 0 5 IBIGSUB:2611:156 
126 H SOFT 4 4 0 7 IBIGSUB:2611:168 
125 H SOFT 4 4 0 7 IBIGSUB:2611:171 
124 H SOFT 2 1 0 3 IBIGSUB:2611:181 
123 H SOFT 3 2 0 5 IBIGSUB:2611:193 
122 H SOFT 4 4 0 7 IBIGSUB:261 1:205 
121 H SOFT 4 4 0 7 IBIGSUB:261 1:208 
63 D SOFT 2 0 0 3 IBIGSUB:2611:218 
96 F DFF 16 16 2 14 rent 1 
95 F DFF 16 16 2 15 rent2 
94 F DFF 16 16 2 16 rent3 
93 F DFF 16 16 2 17 rent4 
92 F DFF 16 16 2 18 rent5 
91 F DFF 16 16 2 19 rent6 
90 F DFF 16 16 2 20 rent7 
89 F DFF 16 16 2 21 rent8 
88 F DFF 16 16 2 22 rent9 
87 F DFF 16 16 2 23 rentlO 
86 F DFF 16 16 2 24 rent 11 

(48) 83 F DFF 16 16 2 25 rentl2 
(49) 84 F DFF 16 16 2 26 rentl3 

16 A DFF 16 16 2 14 WCNTI 
15 A DFF 16 16 2 15 WCNT2 
14 A DFF 16 16 2 16 WCNT3 
13 A DFF 16 16 2 17 WCNT4 
12 A DFF 16 16 2 18 WCNT5 
11 A DFF 16 16 2 19 WCNT6 
10 A DFF 16 16 2 20 WCNT7 
9 A DFF 16 16 2 21 WCNT8 

(7) 4 A DFF 16 16 2 22 went9 
(8) 5 A DFF 16 16 2 23 went 10 
(9) 6 A DFF 16 16 2 24 went 11 
(10) 7 A DFF 16 16 2 25 went12 
(11) 8 A DFF 16 16 2 26 went13 
(51) 85 F MCELL 32 32 3 13 :242 

6-364 



Section Contents 

Page 
Logic 
Understanding Small FIFOs .............................................................. 7-1 
Understanding Large FIFOs ............................................................. 7-14 
Designing with the CY7C439 Bidirectional FIFO (BIFO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-21 
Microcoded System Performance ......................................................... 7-47 
Systems with CMOS 16-Bit Microprocessor ALUs ......................................... 7-50 





CYPRESS 
SEMICONDUCTOR 

Understanding Small FIFOs 

FIFO is an acronym for first in fIrst out. In digital 
electronics, a FIFO is a buffer memory organized such 
that the fIrst data entered into the memory is the fIrst 
data read from the memory. 

Software FIFOs 
Software FIFOs are used extensively in computer 

programs where tasks are placed in queues waiting for 
execution. Data is also exchanged in a similar manner. 
In programmer's language, the process (program) that 
puts data into the memory is the "producer" and the 
program that takes data out of the memory is the "con­
sumer." In a conventional RAM, the producer and the 
consumer cannot access the memory simultaneously. It 
is the programmer's responsibility to ensure that con­
tention does not occur. 

Data transfer via a shared memory is a standard 
programming technique, but it is not feasible to have 
the processor in the data path for data rates greater 
than 5 Mbytes!s. Higher data rates require use of direct 
memory access (DMA), a FIFO, or some combination 
of these two hardware techniques. 

In system design, once procedures are standardized 
and verified in software, hardware can replace the 
software. The benefits are improved performance, 
reduction of software, ease of design, and usually 
reduced costs. 

A Recent History of Small FIFOs. 
The fIrst monolithic FIFO was the 3341 introduced 

by Fairchild in 1969. This 64 X 4 (64 words of 4 bits 
each) device was fabricated using P-channel MOS tran­
sistors, required +5V, -12V, and ground supplies, had 
a maximum operating frequency of 1 MHz, and was 
packaged in a 16-pin DIP. The 3341 was second­
sourced in P-channel MOS by TI and AMD. In 1973, 
Fairchild introduced the 9403 FIFO, which was also 64 
X 4, but had both serial and parallel inputs and outputs 

7-1 

and was fabricated using bipolar technology. Signetics 
licensed the 9403 from Fairchild. 

In 1979, MMI and NSC came out with an "im­
proved 3341," which they called the 401 and 402. These 
bipolar devices operated at maximum read and write 
frequencies of 15 MHz. The 401 was 64 X 4 with a no 
connect on pin 1, where the 3341 had -12V. Thus, it was 
a pin-for-pin, improved-performance, functionally 
equivalent replacement for the 3341. The 402 was 64 X 
5 and packaged in an 18-pin DIP. Otherwise, it was 
functionally identical to the 401. 

The Register Array Architecture 
The early FIFOs use what is called a register array 

architecture, in which the FIFO is implemented as an 
array of parallel flip-flop registers; the outputs of each 
flip-flop drive the inputs of the next. In parallel with the 
data registers is a single-bit register whose depth equals 
that of the FIFO. When data is written to the FIFO, a 
"valid data bit" is entered into this register; when data is 
read, the bit is cleared. 

Control logic causes the data word at the FIFO 
input to propagate to either the FIFO output or to the 
empty location next to a valid word. Control logic also 
prevents writing into a full FIFO (overrun) but not ex­
plicitly reading from an empty FIFO (underrun). The 
parallel data words are physically propagated serially 
(Le., sequentially in time) through the FIFO registers. 

Figure 1 shows the input stage in the register array 
architecture. This input stage is a I-word by m-bit-wide 
parallel shift register controlled by the input handshak­
ing signals SI (Shift In) and IR (Input Ready). For 
generality, Figure 1 illustrates an m-bit-wide, N-word­
deep FIFO. 

The output stage is also a I-word by m-bit-wide 
parallel shift register, which is controlled by the output 
handshaking signals SO (Shift Out) and OR (Output 
Ready). 



Of the total of 64 parallel registers, the middle 62 
are controlled by signals derived from SI, IR, SO, and 
OR. 

Each word in the FIFO has an associated flag bit 
that tells whether the data stored in that word is valid. 
The usual convention is to set the bit to a One when the 
data is written and to clear it when the data is read. 

F allthrough and Bubblethrough 

The preceding statements regarding input and out­
put stages are not precisely correct under two special 
conditions, which occur when the FIFO is empty or full. 

When the FIFO is empty, the data must enter the 
input stage, propagate through the register array, and 
enter the output stage. The time required to do this is 
called the fall through time and it limits the output data 
rate. 

When the FIFO is full and one word is read, all the 
remaining words must move down one word. The empty 
location propagates from the output to the input. The 
time required to do this is called the bubblethrough 
time, and it limits the input data rate. 

FIFO s that use the register array architecture have 
large fallthrough and bubblethrough times (1.6 J.lS), 
which seriously reduce the FIFO's maximum throughput 
rates. In addition, the maximum input and output fre­
quencies are a function of the number of words in the 
FIFO. This phenomenon is called fullness sensitivity. 

Maximum Throughput Calculations 
The fall through and bubblethrough times limit a 

FIFO's maximum throughput when the FIFO is empty 
and full, respectively. The minimum throughput period 
(T min.) corresponding to the stand-alone period (tA) 
and the fallthrough time (tF) is: 
Tmin. = tA + tF 

Converting to frequency yields 
1 1 

Fmax. = FA + tF 

where Fmax. is the FIFO's maximum throughput fre­
quency and FA is the maximum stand-alone operating 
frequency. 

Rearranging and solving for Fmax. yields 
1 

Fmax. = -1-- Eq. 1 

FA + tF 

Thus,the larger the fall through time, the lower the 
maximum throughput frequency. Also, note that if the 
fall through time can be made equal to zero, then Fmax. 
= FA. This means that you can operate the FIFO con­
tinously at its maximum specified input and output fre­
quencies. Today's FIFOs, referred to as zero­
fallthrough-time FIFOs, all use a dual-port RAM cell 
and pointers to address the RAM. 

For register-array-architecture FIFOs, tF = 1.6 JiS 
and FA = 15 MHz. Substiting these values into Equa-

7-2 

SI 

IR 

SO 
OR 

DATA VALID BIT INPUT 
DATA 

OUTPUT 
DATA 

Figure 1. Register Array Architecture 

1 word 

N -2 
words 

1 word 

tion 1 yields Fmax. = 599.88 KHz, which is considerably 
less that the 15 MHz specified on the data sheet. 

Fullness Sensitivity 
The number of words that can be written into the 

FIFO at the maximum input data rate (15 MHz) during 
an interval equal to the fallthrough time is: 

Fin 15 X 106 

24 words 
Ffallthrough 1 

1.6x 1O~6 

The bubblethrough time is the same as the 
fallthrough time because the same logic is used. There­
fore, 24 words can be read from a full FIFO during an 
interval equal to the bubblethrough time. 

This means that the FIFO can operate at its maxi­
mum data rate (15 MHz) only when the FIFO is be­
tween 24 and 40 words full (noting that 64 - 24 = 40 
words). In other words, the maximum frequency at 
which the FIFO can operate is a function of the FIFO's 
fullness. It must contain 32 ± 8 words to operate at 15 
MHz. To avoid fullness sensitivity, the FIFO must 
operate at or slower than the frequency corresponding 
to the fallthrough/bubblethrough time. This frequency is 
625 KHz. 

FIFO Depth Expansion 
Figure 2 shows the interconnection of two 64 X 4 

FIFO s to form a 128 X 4 FIFO. This depth expansion 
technique is called cascading. Data transfers in parallel 
between the two FIFOs, under control of the handshak­
ing signals. 

Observe that the fIrst FIFO's OR output becomes 
the second FIFO's SI input. Similarly, the second 
FIFO's IR output becomes the fIrst's SO input. Thus, 



IMR 

SI OR f-------.1fo/ SI 

SOI~-----I IR 

DI D,'-4-----M 
IMR 

Figure 2. 128 x 4 FIFO 

the bubblethroughlfallthrough times add serially when 
the FIFOs are connected· together. The maximum 
throughput that can be handled by N FIFOs cascaded 
together is: 

Fmax. = 1 
FA + NtF 

Eq.2 

To make a wider word as well as a deeper FIFO, 
connect the FIFOs as illustrated in Figure3. To use this 
technique, you must generate composite IR and OR sig­
nals using two external AND gates (e.g., 74LS08), which 
compensate for variations in the signals' propagation 
delays from device to device. 

If a Low-to-High transition occurs on the SI pin 
when the IR pin is not High, the FIFO ignores the tran­
sition and does not sample the data. Similarly, if a Low­
to-High transition occurs on the SO pin when the OR 
pin is not High, the FIFO ignores the transition and 
does not output new data. The old data, however, 
remains in the output register. 

TO SO 
~SI OR 

--- DIO 000 

--- Dh DOl 

---Ph D02 

---Ph D03 
IMR 

COMPOSITE 
INPUT READY 

SHIFT IN 

+-0= 
r----

----
----
-------

I 
IR SO 
SI OR 
DIo DOo 
Dh DOl 

Dh D02 
Dh D03 

IMR 

I 

Dual-Port RAM Architecture 
In 1983, Synertek introduced a 1024 X 8 dual-port 

RAM, and Mostek introduced a large (512 X 9) FIFO. 
Both products were based upon a dual-port RAM cell. 
Adding two read and two write transistors to the con­
ventional two-transistor RAM cell makes the read and 
write functions independent. This change obviously in­
creases the RAM cell's size, but simpler control logic 
and greatly improved performance more than compen­
sate for the size disadvantage. A schematic of the dual­
port RAM cell appears in Figure4. 

In 1985, Cypress introduced the CY7C401, 
CY7C402, CY7C403, CY7C404, and CY3341 small 
FIFO s, all of which use the dual-port RAM architec­
ture. The CY7C401, CY7C402, and CY3341 are pin­
compatible, impro\ed-performance, functional equivalents 
of the industry-standard FIFOs. The CY7C403 and 
CY7C404 are Cypress proprietary parts. They feature 
output-enable controls so that the data outputs can 
either be enabled or placed in a high-impedance state. 

Figure 5 shows a simplified block diagram of a 
RAM-based small FIFO. This architecture applies to 
the CY3341, the CY7C401 through CY7C404, and the 
CY7C408/CY7C409 FIFOs, although the latter's flag 
generation logic is not shown. 

The architecture is that of a dual-port RAM ac­
cessed by two pointers - one each for read and write 
- implemented as address registers. The input data 
and the output data do not reside in input or output 
registers, as in the register-array architecture. Instead, 
the pointers address the memory locations of the input 
and output data. Comparators control the IR and OR 
lines to prevent overflow and underflow, as well as to 

IR SO 
SI OR 
DIo DOo 
Dh DOl 

Dh 002 
Dh D03 

IMR 

I 
IR SO 
SI OR 
DIo DOo 
Dh DOl 

Dh D02 
Dh D03 

IMR 

r 

f---. 
f---. 
I-
f---. 

~ 

1-+ 
f-
f-+ 

1-+ 

~ 

SHIFT OUT 

COMPOSITE 
OUTPUT READY 

Figure 3. 64 x 8 FIFO 

7-3 



DODl 
R 
..1 

T 
W 

Vee 

Vss 

R 
..1 

T 
W 

lDO/Dl 

Figure 4. Dual Port RAM CeO Schematic 

generate the Almost FulllEmpty and Half Full flags 
(APE and HF; for the CY7C40S/409 only). 

This architecture reduces the fallthroughlbub­
blethrough time to 65 nanoseconds - 24.6 times faster 
than the register array version's 1.6 J.lS. This dramatic 
improvement occurs because the fallthrough/bub­
blethrough time now represents the time to update the 
pointers, not the time for data to propagate through the 
memory array. In fact, the fallthroughlbubblethrough 
terminology does not really apply to RAM-based 
FIFO s. Data sheets include these terms to· emphasize 
that the RAM-based FIFOs are functionally equivalent 
to their register-array-based ancestors. 

FIFO Reset 
Upon power up, the FIFO must be reset by pulling 

the Master Reset (!MR, active Low) pin Low. This 
asynchronously resets the internal read and write 

IR 

SI 

High transition on the SI input. To acknowledge receipt 
of SI High, the FIFO lowers the IR output within time 
tOUR, the delay from SI High to IR Low . 

Nothing further happens until the producer lowers 
the SI signal. Then, if the FIFO has at least one empty 
location, the device raises the IR output within time 
tOHIR, the delay from SI Low to IR High. 

o utput Handshaking 

The output handshake timing appears in Figure 7. 
Note the similarities between Figures6 and 7. When the 
OR (Output Ready) signal goes from Low to High, ex­
ternal logic should apply the same transition on the SO 
(Shift Out) input. To acknowledge receipt of the SO 
High, the FIFO lowers the OR output within time 
tOLOR, the delay from SO High to OR Low. 

Nothing further happens until the consumer lowers 
the SO signal. Then, if the FIFO contains at least one 
word of data, the device raises its OR output within 
time tOHoR, the delay from SO Low to OR High. 

pointers, causes the FIFO to go to the empty state, and DI 

Data 
In 

Cntrl 
Dual Port 

RAM 

C 
o 
M 
P 
A 
R 
A 
T 
o 
R 
S 

causes the data outputs to go Low. The IR pin goes 
High, signifying that the FIFO is not full, and the OR 
pin stays Low, signifying that the FIFO is empty. Note 
that when the IMR pin is activated, all data within the 
FIFO is lost. 

If adjacent signals couple to the IMR signal, it can 
experience short negative noise pulses that can partially 
reset the FIFO. When this happens, the FIFO locks up 
and must be properly re-initialized with a IMR pulse 
that meets the minimum pulse width, as specified in the 
data sheet. 

Handshaking 
The small FIFOs use what is called the classical 

two-edge handshaking mechanism. It is the most effi­
cient method of exchanging information when acknow­
ledgement of a signal's receipt is required. This is true 
because every signal transition conveys information. 

Input Handshaking 

As illustrated in Figure 6, when the IR signal goes 
from Low to High, external logic should cause a Low to 

MUX Out 

Figure 5. RAM Based FIFO Architechture 

7-4 

DO 

SO 

OR 



TSI 
~I·----------- -----------+. 

1 

-.I x L-tPHS . .:..I _____ .f4I.-----tPLS~ 
I -.IX!+-

SI ~ t'-----I--JI 
1 I I I 

IR J: \'--____ --'{r----
I.-tOLl~ :.--tom~ 

Figure 6. Input Handshaking 

Handshaking Frequency Calculations 
The maximum SI and SO frequencies can be calcu­

lated in several ways. One way is to calculate the mini­
mum SI and SO periods by adding the minimum High 
and Low pulse widths from the data sheet. 

For SI: 
1 

-;:-= Ts[= tpHS[+ tPLS[ Eq.3 
JS[ 

where fSI is the SI frequency, TSI is the SI period, tPHSI 
is the SI High time, and tPLSI is the SI Low time. 

For SO: 
1 

Iso = Tso = tpHSO + tPLSO Eq.4 

where fso is the SO frequency, Tso is the SO period, 
tPHSO is the SO High time, and tPLSO is the SO Low 
time. 

Examining the data sheets for the small FIFOs 
verifies that Equations 3 and 4 are satisfied. Note as 
well that tPHSI = tpHSO, and tPLSI = tpLSO, which are 
req uired for cascadability. 

A second method is to calculate the minimum SI 
and SO periods from Figures 6 and 7. Beginning' with 
the rising edge of SI: 
TSI = tOLIR + (tPHsI - tOLIR) + tOHIR + X Eq. 5 

= tpHSO + tOHIR + X 
where X is the response time of the external logic. 

In a similar manner, beginning with the rising edge 
of SO: 
Tso = tOLOR + (tPHSO- tOLOR) + tOHOR + X Eq. 6 

= tpHSO + tOHOR + X 
Examining the FIFO data sheets verifies that Equations 
S and 6 are satisfied. Note that tPHSI = tpHSO, and 
tOHIR = tOHOR, assuring cascadability. Additionally 
TSI> tPHSI + tOHIR Eq. 7 
and 
Tso > tpHSO + tOHOR Eq. 8 

The difference (X) between the TSI/Tso period 
and the sums represented by Equations Sand 6 are the 
times within which the external logic must respond to 
achieve the performance specified on the data sheet. 

Tso 
I· .. 

1 
-.IX L-tPHs_o ___ ..... 1 .. -----tPLSO 

I -:iX\.-
SO~ t'-----..JI 

I I 1 I 

~J: \'--____ --'{~-
~OLO~ :'--tOH~ 

7-5 

Figure 7. Output Handshaking 

These analyses prove that you can operate the 
small FIFOs at the maximum SI/SO frequencies, as 
guaranteed by the worst-case AC parameters on the 
data sheets. 

Under nominal conditions (Vee = SV, Ta = 2S°C), 
tOLlR = 10 ns, tOHIR = IOns, and !PHSI = S ns for the 
CY7C408/409. 

FIFO Operation 
The FIFO samples input data during the SI signal's 

Low-to-High transition if and only if the IR output is 
High. Internally, the IR signal is logically ANDed with 
the SI input As a result, if external logic generates a 
positive SI pulse when IR is Low, the FIFO ignores the 
pulse. Therefore, the data does not appear at the FIFO 
outputs, and the FIFO appears to drop words, when in 
fact the words were never entered. 

Input Data 
As explained previously, a rising edge on SI causes 

a falling edge on IR. Nothing further happens as long as 
SI is held High. The internal write pointer is incre­
mented on the SI signal's High-to-Low transition. If the 
FIFO is not full, after the write pointer settles the IR 
signal goes High,· indicating that more room is available. 
If the IR signal does not go High within tOHIR (delay, 
SI Low to IR High), the IR Low signifies that the FIFO 
is full. 

Output Data 

Output data appears at the data output pins, then 
the OR output signal goes from Low to High, signifying 
that the data is valid. Internally, the OR signal is logi­
cally ANDed with the SO input. 

As a result, if external logic generates a positive SO 
pulse when OR is Low, the FIFO ignores the pulse. 
Therefore, the read pointer is not incremented, and the 
same data is read, assuming that external logic samples 
the output data on SO's rising edge; this makes the 
FIFO appear to pick up words. In fact, the device that 
generates the SO pulse is reading the words more than 
once. 

As explained previously. a rising edge on SO causes 
a falling edge on OR. The internal read pointer is incre-



mented ,on the SO signal's High-to-Low transition. The 
read pointer now settles, and an interval equivalent to 
an SRAM's address access time passes. Then, if the 
FIFO contains at least one' word of data, the OR signal 
goes High, signifying that more data is available. If the 
OR signal does not go High within tOHOR (delay, SO 
Low to OR High), the OR Low indicates that the FIFO 
is empty. 

Data Timing 
Examination of Figure 8 shows the minimum SI 

period to be: 
TSI = tSSI + tHSI Eq. 9 

Comparing these parameters' values in the data 
sheets for the small FIFOs reveals that the maximum 
input data frequency is considerably greater than the 
frequency represented by Equation 3. This is because 
the control signals go into the IC as well as come out of 
it, which requires more time than simply presenting the 
input data to be sampled. In other words, the maximum 
input frequency is limited' by the propagation delay of 
the control signal path, not the data path. 

Examination of Figure 9 shows the minimum SO 
period to be: . 
Tso = tPHSO + tOHOR Eq. 10 

Comparison of these parameters' values, in the data 
sheets for the small FIFOs reveals that this maximum 
output data frequency is considerably greater than the 
frequency represented by Equation 4, for the same 
reason given for the input data frequency. 

Output Data Set-Up Time 
The difference between tPLSO and tOHOR is the 

set-up time for the output data, tSOR. This .is true be­
cause, when cascading FIFOs, the output data must be 
available a set-up time before· the OR signal goes· from 
Low to High. The data' sheets for the small FIFOs 
specify tSOR asO ns (min.), but you can also calculate it 
yourself. Simply subtracting the data sheet values tpLSO 
- tOHOR does not give a reasonable answer, because 
tPLSO is specified as a minimum and tOHOR as a maxi-

i
,...-_____ TsI ______ ~~I 

~tPHS::...I __ .~I.---tPLSI,··,~,~1 
I 

SI ~'-----'---------'\,---__ ---,r-
I I 

DIN =*'----1--: --.:..... ___ --.:.. __ ---'X~~-
1 ' tHSI J tSSI -+ ~I.----~ .. 
~ T~ J 

Figure S. Input Data Timing 

7-6 

Table 1. Output Data Setup to OR 

CY7C40S/409-xx 

Parameter -15 -25 -35 

Fo 15 25 35 

lIFo 67 40 29 

tPLSO (min) 25 24 17 

tPHSO (min) 23 11 9 

tPLSO (max) 44 29 20 

tPHSO (max) 40 23 16 

tSOR (calc) 4 6 4 

mum. Instead, calculate the maximum value of tPLSO 
using the relationship 

1 
tPLSO (max.) = Fo - tPHsO Eq.ll 

where Fo is the output frequency. 
Then calculate the set-up tirite as 

tSOR = tPLSO (max.) - tOHOR (max.) Eq. 12 
where tOHOR (max.) is the maximum value from the 
data sheet. 

Table 1 summarizes the data and calculations using 
Equations 11 and 12 for the CY7C408 and CY7C409. 

Output data should be sampled using a positive­
edge-triggered flip-flop or register such as the 74AS374 
or equivalent. Clock the register with the SO signal. 

Operation at the Boundary Conditions 
When FIFOs are connected' in parallel to make a 

wider word, under certain conditions,. they might in­
dividually ignore a read or write request The system­
level symptom of this problem is byte mis-alignment. 
When a single FIFO ,is operating alone, the words are 

TSIO 

I·-----~-- ---------~~I 
=---tPHSO'::'_--II~"I.I--__ tPLS~ 
1------.1 r-

S~ \'---__ ~~ 
I II 1,.--__ 

D~a~ta~O~u~t_~ _____ ~~L· __ __ 

tHSD+j I.- 1 ,--__ _ 

I 1 
I.----tOHO~ 

\ 

Figure 9: Output Data Timing 



Figure 10. Forbidden Window 

simply missing. They were either not written or not 
read. 

The problem occurs at the empty condition, when a 
write is immediately followed by a read, and at the full 
condition, when a read is immediately followed by a 
write. 

Operation at the Empty Boundary 

Consider first a FIFO that has been reset and is 
empty. Read operations are inhibited by internal logic, 
so that the read pointer is not incremented, but all 
zeros are read at the data outputs. In the general case, 
the read and write signals are asynchronous. 

Upon completion of a write operation, the FIFO's 
internal state goes from empty to empty + 1. During 
this interval, a read operation might not be recognized. 
If the read precedes the write, the read is ignored; if the 
read follows the write, the read is executed. Between 
these conditions, the FIFO must decide whether to 
recognize the read. During this aperature of uncertain­
ty, you cannot determine whether the read will be ig­
nored or not With one FIFO, this behavior is accept­
able. If two or more FIFOs are connected in parallel to 
make a wider word, however, some might ignore the 
read, and others might not. 

Operation at the Full Boundary 
A similar condition occurs when a single FIFO be­

comes full. Write operations are inhibited by internal 
logic. A read operation immediately followed by a write 
operation causes the FIFO to go from full to full - 1 and 
back to full. During the time the FIFO is going from full 
to full - 1, the write operation might not be recognized. 
The same aperature of uncertainty exists, because the 
FIFO takes a finite amount of time to change internal 
states. If a write command arrives at this instant, it 
might be ignored. 

The most obvious solution to the aperture-of-un­
certainty problems is to not perform the operation at 
the boundary condition. That is, (l) do not perform a 
read immediately after writing the first word into an 
empty FIFO, and (2) do not perform a write immedi­
ately after reading from a full FIFO. 

7-7 

With the small FIFOs, this is easier said than done. 
This is because, with the exception of the CY7C40S/409, 
they do not have full or empty flags. However, the other 
FIFO s do have handshaking signals, and it has been 
shown that the output data is available before OR's 
Low-to-High transition. So long as the consumer 
generates a Low-to-High transition on SO only when 
there is a Low-ta-High transition on OR, proper opera­
tion at the empty boundary (as well as everywhere else) 
is guaranteed. 

Similarly, if the producer generates a Low-to-High 
transition on SI only when there is a Low-to-High signal 
transition on IR, proper operation at the full boundary 
(as well as everywhere else) is guaranteed. 

A Caveat for the CY7C401, 402, 403, and 404 
In addition to the aperture of uncertainty, note that 

the CY7C401 - 404 have a forbidden window of 40 ns 
during which they recognize only one SO pulse. This 
window (Figure 10) is measured from OR's rising edge 
when the fIrst word is written into an empty FIFO to 
the rising edge of the second SO pulse. The forbidden 
window is a consideration only at high speeds (25 
MHz), when a second output system clock could cause 
a second SO pulse within 40 ns of the first OR 
transition. 

One way around this situation is to detect the 
empty and full conditions and delay the appropriate 
clock (SI or SO) the required amount of time. If the 
FIFO is empty, OR does not go High within a 
fallthrough time after SO goes Low; this condition can 
be sensed and used to indicate EMPTY. Similarly, if the 
FIFO is full, IR does not go High within a bub­
blethrough time after SI goes Low, and this condition 
can indicate FULL. 

Interfacing to the FIFO 
This section deals with issues regarding interfacing 

to the small FIFOs. The two areas of concern are (1) 
voltage sensitivity on the SI and SO inputs, and (2) 
metastability when the handshaking signals are used and 
the SI and SO signals are derived from independent fre­
quency sources. The following information applies to all 
of the small FIFOs. 

High-Gain Inputs 

The FIFO data sheets specify the minimum positive 
SI and SO pulse widths as 9 ns for the 35-MHz SI/SO 
versions of the CY7C40S/409 and 11 to 20 ns for the 
other speed grades of all the small FIFOs. At room 
temperature and nominal (5V) V ceo the FIFO operates 
reliably with SI/SO pulses as short as 5 ns, as measured 
at the input threshold level (approximately 1.5V). These 
FIFO s respond to such short pulses because the 
Cypress high-performance CMOS process yields cir­
cuits that have very thin gate oxides. This characteristic 
permits the transistors to have high gains and, conse­
quently, require very little energy to change state. 



L ---DlDI 
SI 

Source 47 pF.L C*lr 
47 Ohms I 

Figure 11. Recommended Termination Network 

Tennination networks are recommended on the SI 
and SO lines (traces) on printed circuit boards (PCBs) 
when the lines from source to load· are long. A long line 
is defined as a line whose "electrical length" is equal to 
or greater than the rise time of its signal divided by the 
two-way propagation delay of the line per unit length. 
When the line is long, a voltage reflection might occur 
that the FIFO can interpret as a clock. 

The tennination matches the load impedance to the 
characteristic impedance of the PCB trace, which is 
typically 50 ohms or less for micros trip or stripline con­
struction on 0-10 glass epoxy material. For minimum 
voltage reflections, a slightly overdamped termination is 
preferred. Cypress recommends a series capacitor of 10 
to 47pF and resistor of 47 ohms connected from the 
input pin (SI/SO) to ground (Figure 11). This tennina­
tion network acts as a low-pass filter for short, high-fre­
q uency pulses and dissipates no DC power. 

If you connect more than one FIFO in parallel to 
make a wider word, only one tennination network isre­
quired. Put it at the input that is electrically the farthest 
from the source. 

For the method of detennining the values of R and 
C for the tennination network, please refer to the low­
pass filter analysis in the "Systems Design Considera­
tions When Using Cypress CMOS Circuits" application 
note in this book. That application note also explains 
how to determine when a line is long. The line length at 
which a voltage reflection might occur is a function of 
the signal rise time, the unloaded. (intrinsic) line 
propagation delay, the load, and the intrinsic line char­
acteristic impedance. 

Synchronous and Asynchronous Operation 
When the SI and SO signals are derived from a 

common frequency source or clock, the FIFO is, by 
definition, operating. in the synchronous mode. This ap­
proach establishes a precise, known relationship be­
tween the SI and SO signals. Conversely, when the SI 
and SO signals are derived from independent frequency 
sources, the FIFO is operating in an asynchronous 
mode. 

In the synchronous mode, you can guarantee that 
the OR signal does not occur within the set-up-and­
hold-time window that normally surrounds the output 
system clock edge or sampling signal. The same reason­
ing applies to the occurance of the IR signal, with 
respect to the input system clock. 

7-8 

A B 

...::.:_RK..:...-~cr;_D_/~_-IA __ ~ 
delay d 

Figure 12. Pulse Synchronizer 

In the asynchronous mode, you cannot assure a 
known relationship between the OR signal and the out­
put system clock, with respect to either frequency or 
phase. It is the responsibility of the designer to ensure 
that, even though the output system clock edge might 
occur at the same time as OR, the FIFO still receives 
an SO clock wide enough for the FIFO to recognize 
reliably. The same reasoning applies to the SI signal 
generated in response to IR, under control of the input 
system clock. 

Pulse Synchronizer 
The circuit shown in Figure n is recommended to 

generate the SO pulse as a function of OR, under con­
trol of the output system clock. Use an identical circuit 
to generate .the SI pulse as a function of IR, under con­
trol of the input system clock. If you want to perform 
control functions on OR or IR, do so before they are 
clocked by the fIrst D flip-flop. 

Figure 13 shows a diagram of the two-stage shift 
register as· a state machine. You can design more com­
plex state machines for the task, but the idea is the 
same: reliably generate a single pulse of a known mini­
mum width for every OR or IR Low-to-High signal 
transition. 

Make the frequency of the clock to the pulse 
synchronizer at least twice the maximum rate at which 
you want to shift data into or out of the FIFO. For ex­
ample, if you want to shift data into the FIFO at a 10-
MHz • SI rate, make the clock to the input pulse 
synchronizer 20 MHz. If you want to shift data out of 
the FIFO at a 15-MHz SO rate, make the clock to the 
output pulse synchronizer 30 MHz. 

If a clock of this frequency is not available, you can 
easily double the frequency of the existing clock by 
delaying it and exclusive-ORing the delayed signal with 
the original signal. A circuit to do this appears in Figure 
14a, with the timing shown in Figure 14b. If dl is the 
propagation delay of the non-inverting buffer in this cir­
cuit and d2 is the XOR gate's delay, the width of the 
strobe is dl + d2. This circuit does not generate a posi-
tive output strobe unless dl > d2. 

You can, of course, replace the non-inverting buff­
er with an even number of inverting buffers. Lumped 
delay elements such as gates act as glitch filters. A gate 



whose propagation delay is d absorbs or filters-out short 
pulses whose width is less than, but almost equal to d. 

When you use the pulse synchronizer shown in Fig­
ure 12 under normal operating conditions, make SO's 
minimum pulse width one cycle of the output clock 
(CLK). However, when OR or IR changes within the 
forbidden window around the clock edge, the flip-flop 
might go into a metastable state (outputs between logic 
One and Zero). The amount of time the flip-flop stays 
in the metastable region is approximately 4X, where X 
is the flip-flop's clock-to-output propagation delay time. 

The minimum pulse width of the SO signal depends 
on the delay, d, through the NOR gate, plus any delay 
you might add (D, shown as a box) in the path from the 
A flip-flop's /Q output to the NOR gate's input The 
NOR gate acts as a low-pass filter and does not pass 
pulses narrower than d. Adding an external delay, D, 
increases the minimum pulse width to d + D. Assum­
ing equal gate turn-on and turn-off times, the maximum 
frequency at which the circuit can operate is 

SO = 1 

Transition Table 

A . B STATE Description 

0 0 0 idle at state 0 

1 0 1 output SO=1 

1 1 3 output So=o 

0 1 2 transition state 

Figure 13. Pulse Synchronizer State Diagram 

7-9 

&( ) _ 1 Eq.13 
Ilmax. - 2(d+ D) 

Choose the total delay such that the FIFO can 
reliably detect the minimum pulse width. If only the 
NOR gate provides the delay, Table 2 lists typical and 
maximum propagation delays under nominal Vee and 
loading (20 pF) conditions. A 74LS02 NOR gate results 
in a minimum pulse width of 10 ns, which reliably 
operates a 25-MHz CY7C403 or CY7C404 FIFO. 

If you want to operate a 10-MHz CY7C401l402, 
you can. invert the A flip-flop's Q output through a 
74LS04 and apply the result to the NOR gate's lower 
input. The minimum pulse width is then 10 + 10 = 20 
ns. You can also use a delay line or RC network to 
delay the signal to the lower input of the NOR gate. 

Use SO's rising edge to sample (clock) the FIFO 
data into a D-type flip-flop. 

Operating FIFOs in Cascade Mode 
When you connect two or more FIFOs together to 

make a deeper FIFO, they are said to be cascaded. 
There are two basic types of cascade mechanisms: serial 
and parallel, used by the small and large FIFOs, respec­
tively. In the parallel method, data is steered between 
FIFO s using an internal token~ In the serial method, 
data is passed serially from FIFO to FIFO using the 
handshaking signals. 

The throughput of serially cascaded FIFOs is 
reduced in proportion to the reciprocal of the product 
of the fallthrough time and the number (N) of cascaded 
FIFO s. See Equation 2. 

The throughput of FIFOs operating in the parallel 
cascade mode is a constant, independent of the number 
of FIFOs and equal to the throughput of a single FIFO 
operating alone. 

Serial Cascade Analysis 

A consideration in cascading FIFOs serially is to 
calculate the maximum SI and SO frequencies using the 
data sheet AC parameters. It is also useful to analyze 
the fallthrough (empty) and bubbletbrough (full) condi­
tions. 

Another aspect of analyzing serially cascaded 
FIFO s is to understand burst mode. In this mode, you 
prevent the FIFOs from "thinking" they are empty, 
which avoids the devices' inherent cascaded frequency 
limitation. 

Figure 15a shows the required interconnections be­
tween FIFOs for correct cascading .. Data (DIA) is input 
to the A FIFO and then transferred to the B FIFO. The 
data flows from left to right, and it is standard practice 
to call FIFO A the upstream FIFO and FIFO B the 
downstream FIFO. 

For the data to transfer reliably from FIFO A to 
FIFO B, the data must be valid at the inputs to FIFO B 
at least a set-up time before the Low-to-High transition 
of FIFO A's OR output. This is because the OR is ap-



A 

LC>------.JB )~ 
dl 

Figure 14a. Digital Frequency Doubler 

I I v,--------.t
l 

I 

Y '-.. -d-l -+-1 ----

~ ~ 
I ! I \ ~B __ _.~I 1'--______ _ 

: ;1 \1 /1 ,---------\t 
C __ --:-'I . I I I '-. --+-1 -' I I i'-

~ dl ~I'" d2~1 1~d2~I'" dl ~I'" d2 ~I 
d2 -.J \.-

Figure 14b. Digital Frequency Doubler Timing 

plied to FIFO B's SI input. As explained previously, 
data is sampled on S1's Low-to-High transition. 

In the cascade configuration, the downstream 
FIFO's m output connects to the upstream FIFO's SO 
input, and the upstream FIFO's OR output connects to 
the downstream FIFO's SI input. These two control 
connections are the only ones required to cascade the 
FIFO s. In theory, you can cascade any number of 
FIFO s in this manner. 

The timing for serieally cascaded FIFOs appears in 
Figure i5b, which does not show the data. The signals 
begin in their quiescent states after a reset (/MR, not 
shown). Both FIFOs are initially empty. 

There is one key difference between the quiescent 
state of a FIFO operati~g alone versus two or more 
FIFO s operating in cascade mode: In the stand-alone 
configuration, SO is Low, whereas in the cascade con­
figuration, the SO inputs of the upstream N-l of N cas­
caded FIFOs are High. This is true for all conditions, 
except when the downstream FIFO is full. As the 
downstream FIFOs fill, their m outputs go Low, in­
dicating that they are full. 

When you cascade two FIFOs, the intrinsic hand­
shaking frequency limitation goes away when the 
downstream FIFO becomes full. 

7-10 

Familv Typical (ns) Maximum (ns) 

LS 10 15 

ALS 5 11 

. HCMOS 8 23 

FACT 5 9.5 

Table 2. Gate Propagation Delay Times 

In operation, the producer samples the mA line 
and, finding it High, presents the data to be written to 
FIFO A. A set-up time later, the producer causes a 
Low-to-High transition on FIFO A's SI input. FIFO A 
samples the data, and the m output goes from High to 
Low. 

Nothing further happens until the producer causes 
a High-to-Low transition on FIFO A's SI input As a 
result, the write pointer is incremented, it settles, the m 
output goes from Low to High, and the FIFO's internal 
state becomes empty + 1. Because FIFO A's SO input 
is High, the data just written is output on the DOA 
pins, and an internal one-shot is fired that causes a 15-
ns pulse to appear on FIFO A's OR output. When the 
one-shot fires, the conditions at FIFO B' s inputs are 
identical to those at FIFO A's inputs when the se­
quence began. 

This cascade handshaking sequence repeats for 
every FIFO in the string. The first N-l FIFOs must go 
from empty to empty + 1 and then back to empty to 
pass the data word to the last (Nth, or output) FIFO. 
This does not mean that the frrst data word must pass 
through aU N or N - 1 FIFOs before the second (or 
subsequent) data words enter the first FIFO. However, 
the frrst FIFO must go from empty to empty + 1 and 
then back to empty before a second data word (rising 
edge on SI) can enter. 

Serial Handshaking Calculations 
Now consider how to calculate the intrinsic hand­

shaking frequency for two or more FIFOs cascaded 
together. On the SIA signal's falling edge, fallthrough 
begins (tBT on the data sheet). When FIFO A's OR 
output goes from Low to High, FIFO B samples the 
input data. In response to the Low-to-High transition 
on FIFO B's SI input, FIFO B's m output goes from 
High to Low. This time is called tDLIR. FIFO A is now 
empty, and FIFO B is empty + 1. 

In equation form: 

F(hs) = tBT + \DLIR Eq.14 



From the CY7C408/409 data sheet for the 35-MHz 
speed grade: 
tBT = 50 ns, tDLIR = 15 ns 

Substituting these values in Equation 14 yields: 
F(hs) = 15.38 MHz 

In practice, you will probably never observe this 
worst-case cascade-handshaking-frequency limitation, 
because the values given in the data sheet are 
"guardbanded." For typical Cypress FIFOs at room 
temperature and Vee = 5V: 
tBT = 20 ns, . tDLIR = 10 ns 

which yields a cascade handshaking frequency of 
33.3 MHz. Note that this value applies to the entire 
string of cascaded FIFOs and is independent of the 
number of FIFOs cascaded together. 

The same cascade-handshaking-frequency limita­
tion occurs when both FIFOs are full and the 
downstream FIFO receives two SO pulses. In this case, 
the downstream FIFO goes from full to full - 1 and back 
to full. The empty location then bubbles through to the 
upstream FIFO, and downstream FIFO's IR output pul­
ses. Internally, the one-shot is fired, and the upstream 
FIFO changes its OR output from High to Low and 
then back High (when the pulse ends). 

A FIFO B FIFO 

OR I--...;:::O=R::..A::L.-::S=IB=---l~ SI OR 
ORB 

SO I4-.;,;;,...SO.:,...A....;,_IR_B'--.--I IR 

DOA D B 

IMR 

Figure 15a. Cascaded FIFOs: Intrisic Handshaking 

IRA 

SIA 

SOA, IRB 

ORA,,_S_I_B_--:-+J 

ORB / 

SOB LOW 

Figure ISh. Cascade Timing: Intrinsic Handshaking 
with FIFO 

7-11 

The cascade handshaking frequency is the recipro­
cal of the sum of the bubblethrough time and the 
propagation delay time from SO going Low to High to 
OR going High to Low (tDLOR). By design, these 
parameters have the same values as the fall through time 
and tOLIR, respectively. Therefore, the cascade hand­
shaking frequency is the same for the full condition as it 
is for the empty condition. 

Burst Input 
It stands to reason that if the cascaded FIFOs can 

be made to think they are not empty, you can enter data 
at a higher rate than the cascade handshaking frequen­
cy. Also, if they can be made to think they are not full, 
you can remove data at a higher rate than the cascade 
handshaking frequency. 

Figure 16a shows how to take advantage of these 
facts by adding an inverter between. the downstream 
FIFO's IR output and the upstream FIFO's SO input. 
Note, however, that every FIFO· whose SO input is the 
inverted IR output of a downstream FIFO has its 
capacity reduced by one word. 

From the timing diagram in Figure 16b, you can see 
that the composite FIFO never goes empty. The cas­
caded handshaking illustrated is essentially the same as 
that of Figure 7, which is the stand-alone output hand­
shaking timing. 

When the fIrst (most upstream) FIFO is empty, 
there is a fallthrough time (tBT) delay after the first 
word is shifted in. Or if the difference between the 
shift-in and cascade handshaking frequencies is great 
enough, the fIrst FIFO goes empty. If the shift-in fre­
quency is sufficently greater than the cascade handshak­
ing frequency, the first FIFO goes full, and a fallthrough 
time (tBT) delay occurs. 

Except for the preceding conditions, adding the in­
verter enables the cascaded FIFOs to be either loaded 
at the stand-alone maximum shift-in frequency, or to be 
burst loaded using the AFE and HF flags of the 
CY7C408/409. 

If you cascade N FIFOs together, inverters are re­
quired on the IR outputs of the N - 1 downstream 
FIFOs. 

With the exception of the full and empty conditions 
of the fIrst FIFO, the cascade handshaking frequency 
with the inverter is: 

f(hsi) = 1 Eq.15 
tDLIR + to 

where f(hsi) is the handshaking frequency with the in­
verter and to is the inverter's Low-to-High propagation 
delay time. 

Comparing Equations 13 and 14 reveals that if the 
inverter's delay is less than the fallthrough time, the cas­
cade handshaking frequency with the inverter is less 
than the intrinsic cascaded handshaking frequency. If 
tOLIR = 10 ns and to = 10 ns, then f(hsi) = 50 MHz. 
This means that because the handshaking frequency is 



greater than the stand-alone SI/SO frequencies. the 
throughput is not limited by the handshaking frequency. 

Care and Handling of Small FIFOs 
The rest of this application note provides general 

guidelines for overcoming any problems you might have 
using the CY7C401 through 404. CY7C408/409. and 
CY3341 FIFOs. 

One important factor to keep in mind involves the 
very high gain transistors used in the FIFOs to achieve 
the desired performance. These transistors' high speed 
can cause the FIFOs to respond to short pulses on the 
SI and SO inputs that bipolar. NMOS. and some CMOS 
FIFO s do not see. As a result, the small FIFOs might 
lock up or drop bits. 

A voiding Lock Up 

The lock-up phenomenon occurs in the presence of 
excessive noise on the Vee or ground lines; short pulses 
on SI or SO; or noise on the /MR line. Two distinct 
lock-up states have been observed: full and locked up. 

When IR is Low and OR is High. the FIFO thinks 
it is full. However. in the full-lock-up state. no matter 
how many SO pulses are applied, the FIFO never goes 
empty (i.e.. IR never stays High). You can get out the 
FIFO's contents. but those contents might not be the 
same as the data that went in. 

The locked-up lock-up state should never occur. It 
is the quiescent state where both the IR and OR signals 
are Low. In other words. the FIFO thinks it is simul­
taneously full and empty. 

The only method of recovery from the two lock-up 
states is to reset the FIFO by activating the /MR pin. 
All data is lost. If the FIFO is dropping bits, misaligning 
words, or occasionally just stopping, make sure that the 
/MR signal does not have noise on it. A small capacitor 
(47 to 100 pF) connected between the IMR pin and 
ground eliminates the noise. 

Dropping Bits 

The dropping of bits is annoying and unacceptable, 
but the data corruption does not cause the control logic 
to fail. Data corruption occurs because of either noise 
on the Vee and ground pins or improper data sampling 
at the FIFO inputs or outputs. A significant amount of 
noise causes lock up; less noise can cause data corrup­
tion. 

Vee and Ground Noise 

Reliable operation of the small FIFOs requires 
clean Vee and grounds. Keep peak-to-peak Vee noise to 
less than 200 m V. Additionally, keep the "quiet ground" 
(pin 7, DIP. CY7C408/409) separate from the "noisy 
ground" (pin 22, DIP, CY7C408/409), and connect both 
to system ground or a groundplane. Make the lead 
length from the pin to ground as short as possible. 

Another noise-control procedure is to connect a 
O.OliJF ceramic decoupling capacitor between each 
FIFO's Vee and "noisy ground" pins. In addition, if 

7-12 

either the SI or the SO frequency is over 5 MHz. con­
nect a 100- to 400-pF mica capacitor or high-frequency­
fIltering ceramic capacitor between Vee and "noisy 
ground," and connect a second l00-pF cpacitor between 
Vee and "quiet ground." Keep lead lengths as short as 
possible. 

For applications in which the SI and SO frequen­
cies exceed 10 MHz, Cypress recommends a Pi fIlter on 
the Vee line to the FIFOs. Because the fIlter is bidirec­
tional, it keeps other ICs' noise from the FIFOs and the 
FIFO s' high-frequency noise from the other ICs. The 
inductor should be a subminature RF choke with a 
series DC resistance of Hl or less and an inductance of 
l00~. Make the capacitors 500-pF mica or ceramic 
types. . 

Sf and SO Signal Considerations 
To achieve the best results, make sure the SI and 

SO signals have rise times and fall times of 5 ns or less 
between 0.4 and 4V. At 5V Vee and room temperature, 
the small FIFOs operate reliably with SI/SO pulses 5 ns 
wide. measured between the 1.5V levels. 

Therefore, it is imperative that the signals be clean 
and slew rapidly between logic levels. If noise is super­
imposed on a slowly rising or falling signal, the FIFO 
might interpret the signal as multiple clocks. 

A FIFO B FIFO 

OR 1--0...;;...;R.;.;;.;A'"""',c.....;;S=IB~~ SI OR 
ORB 

SO IR 

DOA . DaB 

IMR 

Figure 16a. Cascaded FIFOs: Burst Mode Operation 

IRA 

SIA 
I 

IRB ;---\ r 
'-----'~, '~---' 

SOA 

ORA, S_I_B_---:=,"'"" ~tBT 
ORB 

SOB = LOW 

Figure 16b. Cascade Timing: Burst Mode with FIFO 



The source that drives the SI/SO pin should have 
active devices pulling in each direction. That is, use 
totem-pole-output drivers instead of open-collec­
tor/drain outputs with a resistor to Vee. 

Beware of decoding glitches on the SI/SO signals. 
You can eliminate these glitches by using an AC ter­
mination network consisting of a series RC from the 
SI/SO pin to ground (Figure 11). This network also acts 
as a fllter and absorbs pulses that are shorter than four 
RC time constants. If the line is short and does not re­
quire termination, you can use a small capacitor (47 to 
100 pF) to kill the glitches. When you c~nn~t FIFOs in 
parallel to make a wider word, one termmation netw~rk 
is required for all SI pins and a second for all SO pms. 
Connect the network to the pin farthest from the 
source. 

All the small FIFOs sample the input data for 10 ns 
after the SI pulse's Low-to-High transition. Therefore, 
the input data should be held stable at least 10 ns a!ter 
S1's rising edge. Violation of the set-up and hold-time 
specifications can cause data corruption. 

7-13 

General Troubleshooting Guidelines 

The switching speeds of CMOS devices are inverse­
ly proportional to temperature and directly proportional 
to supply voltage. Thus, the combination of low 
temperature and high V cc is called the "fast-fast" corner, 
and high temperature and low V cc is the "slow-slow" 
corner. 

If increasing V cc to the FIFO or PCB increases the 
number of failures, the problem is probably noise re­
lated. If increasing V cc reduces the number of failures, 
the problem is probably due to marginal timing. If yo~ 
reduce the temperature using a product such as Freezlt 
while at low V cc, and the failure rate increases, you have 
confirmed that the problem is marginal timing. 

CY7C408/409 Only 

If all else fails, you can increase the internal device 
thresholds by adding a diode (IN914, IN4004) between 
"quiet ground" and power ground, cathode to power 
ground. This increases the threshold to Vt = 1.5V + 
0.8V = 2.3V. A single diode suffices for many FIFOs. 
The number of FIFOs one diode can handle depends 
on the diode's forward current rating. 



CYPRESS 
SEMICONDUCTOR 

Understanding Large FIFOs 

This application note explains the internal opera­
tion of the large FIFOs manufactured by Cypress and 
shows how to use the devices to accomplish depth and 
width expansion. Other topics covered here include 
FIFO interfacing, the writing and reading process, 
failure modes, and typical problem symptoms and solu­
tions. This information applies to the following Cypress 
FIFOs: CY7C420, CY7C421, CY7C424, CY7C425, 
CY7C428, CY7C429,· CY7C432, CY7C433, CY7C439, 
CYM421O, and CYM4220. 

Timing parameters given in this application note 
are taken from the Cypress Semiconductor 
BiCMOSICMOS Data Book. 

Large FIFO Overview 
The Cypress line of large FIFOs provide densities 

from 512 x 9 to 4K x 9 in monolithic devices; 8K and 
16K x 9 in high-density modules; and a 2K x 9 bidirec­
tional FIFO. Access times are as fast as 20 ns, and all 
the FIFOs feature identical, industry-standard pinouts. 
The monolithic devices are available in space-saving 
300-mil-wide DIPs (odd-numbered devices) as well as 
industry-standard 600-mil-wide DIPs (even-numbered 
devices), and various surface-mount packages. 

The CY7C420, CY7C421, CY7C424, CY7C425, 
CY7C428, CY7C429, CY7C432, and CY7C433 are 
fabricated using an advanced 0.8J..l (drawn), n-well, 
CMOS technology. Input ESD protection is greater 
than 2000V, and careful layout, guard rings, and a sub­
strate bias generator prevent latchup. 

Although the first FIFOs utilized a shift-register 
type of architecture, today's large FIFOs employ an 
SRAM type of interface. Data is written into and read 
out of the devices, as with SRAM write and read opera­
tions. These operations can occur totally independently 
of one another and are made possible by a specially 
designed six-transistor, dual-ported SRAM cell. This 
cell makes use of separate read and write transistors to 
allow independent R/W operation. 

Operating these FIFOs at their maximum through­
put rates demands the generation of extremely narrow 
write and read pulses. To facilitate significantly higher 
throughput rates, Cypress has developed the CY7C440 
and CY7C450 families of clocked, or self-timed FIFOs. 

7-14 

These FIFOs feature 70-MHz operation and are 
characterized by self-timed interfaces. You generate the 
read· and write enables, which are. combined internally 
with the appropriate clocks. Thus, you do not need to 
generate narrow read and write pulses. These FIFOs 
also feature totally independent, asynchronous, read 
and write operations. 

The CY7C420/421, CY7C424/425, CY7C428/429, 
and CY7C432/433 are, respectively, 512, 1024, 2048, and 
4098 words deep by 9 bits wide. Each FIFO is or­
ganized such that data is read out in the same sequen­
tial order in which it was written. Full, half-full and 
empty flags facilitate writing and reading. Additional 
pins are provided to facilitate unlimited expansion in 
width and depth, with no performance penalty. 

Writing to and Reading From the FIFO 
Figure 1 shows the large FIFOs' read and write 

timing. Reads and writes are asynchronous to each 
other. The read process begins with iPs falling edge. 
The output data bus, QO - Q8, leaves the high-im­
pedance state tLZR ns after iPs falling edge. The output 
data becomes valid tA ns after that same falling edge. 
This tA period is referred to as the FIFO's read access 
time. iPs rising edge ends the read process. 

The data on the QO - Q8 bus remains valid for 
tOVR ns following the if rising edge. This is the output 
data hold time at the end of the read cycle. The internal 
circuitry then readies itself for the next read operation. 
This period is referred to as the tRR, or read recovery 
time, and must be observed between consecutive read 
operations. The read signal's minimum pulse width is 
denoted by tPR and is identical to the read access time, 
tAo The maximum read frequency is the reciprocal of 
tPR + tRR. 

The write process is similar to the read process. A 
write begins with the falling edge of the write line, W, 
and terminates with W's rising edge. For a valid write to 
occur, the input data bus, DO - D8, must be stable for 
tso ns prior to W's rising edge and for tHO ns after this 
edge. These specifications are referred to as the data 
set-up and hold times, respectively. The write strobe 
also has a minimum negative pulse width, denoted as 



fR 

'---_____ I 

---~ _______ )1------« DATA IN VALID >--
Figure 1. Asynchronous Read and Write Timing 

tpw. A minimum recovery time, twR, is required be­
tween write cycles. 

The maximum write frequency is the reciprocal of 
tpw + twR. As an example, a device with a 20-ns write 
strobe width and a lOons write recovery time yields a 
30-ns write cycle time, or a 33.3-MHz maximum write 
cycle frequency. 

You can determine the read cycle time (tRC) by ad­
ding the access time (tA) and the read recovery time 
(tRR), which you can find in the FIFO data sheet The 
maximum read frequency is the reciprocal of tA + tRR. 
For example, a Cypress FIFO with a 20-ns access time 
and a 10-ns read recovery time results in a 30-ns read 
cycle time, or 33.3-MHz maximum read cycle frequency. 

The FIFOs include separate write and read 
counter s (pointers). Each write or read operation incre­
ments the appropriate counter one position. When the 
FIFO is empty, both counters point to the same loca­
tion. The relative position of these counters determines 
the device's status, which is indicated externally via 
empty, half-full, and full flags. 

Applications 
FIFOs are asynchronous devices that are ideal for 

interfacing between two asynchronous processes. A 
FIFO allows two systems running at different data rates 
to communicate by providing a temporary data or con­
trol buffer. 

Typical FIFO applications include: 
Inter-processor communications, in which bidirec­
tional devices are especially useful 

WRITE ENABLE ____ ~IW 

INPUT DATA 
____ ~DO-D8 

MASTER RESET 
____ ~/MR 

IFL 

Communications systems, including local area net­
works 

Digital-signal-processing-based systems, for buffer­
ing real-time data 

Electronic data processing, CPU, and peripheral 
equipment, including high-performance disk con­
trollers 

Common FIFO Configurations 
Every Cypress FIFO, from the 512 x 9 CY7C420/21 

to the 4K x 9 CY7C432/3, are fully cascadeable. Width 
expansion allows you to create word widths of any mul­
tiple of nine bits. Cascading in depth creates FIFOs of 
various depths. Width and depth expansion modes are 
described here, along with design considerations. 

Figure 2 illustrates stand-alone mode, and Figure 3 
shows width expansion mode. In both these modes, the 
XI (expansion in) pin is grounded and the FL (first 
load) pin is tied High. 

The OR gates in the width-expansion design 
generate composite full, half-full, and empty flags (F, 
H-F, E). Composite flags are necessary because varia­
tions in propagation delays might prevent the individual 
FIFOs in the design from entering the F, H-F, or E 
states simultaneously. A composite flag properly reflects 
the instantaneous status of the entire word. 

Figure 4 illustrates depth expansion. The FL (first 
load) pin on one device must be grounded to define 
that FIFO as the ftrst FIFO to be written to. The FIFOs 
are then daisy-chained together by connecting one 

READ ENABLE 
1R104~ __ _ 

OUTPUT DATA 
00-08 .... __ ~ ... 

IFF 

IEF 
STATUS FLAGS 

FULL. EMPTY. HALF-FULL 
IXI IHF 

Figure 2. Stand·Alone Operation 

7-15 



device's XO (expansion out) output pin to the next 
device's X! (expansion in) input. The XO of the last 
device in the chain is connected to the X! of the frrst 
device, thus forming a token-passing ring. 

Token passing allows the writing and reading 
processes to stay consistent. That is, the passing and 
holding of a read or write token tells an individual 
FIFO whether it is actively being read from or written 
to. In the token-passing procedure for write operations, 
the frrst FIFO is written to until it is filled. An internal 
write pointer. determines the location written to, and 
after every write, the pointer is incremented. When the 
pointer reaches the last physical location, no more 
writes can occur to that device. At that point, the frrst 
FIFO passes the write token to the next FIFO in the 
chain via the XO-X! interface. The second device, now 
in possession of the write token, receives all future writ­
ten data until this device also fills up and passes the 
write token onto the next device in the chain. 

If enough writes occur to fill up the FIFO chain, 
the last device fails in its attempt to pass the write token 
back to the frrst device. This is because the full FIFO 
cannot accept a write token. No further writes to the 
FIFO chain are allowed until a read operation occurs, 
which frees up an internal location. The relative posi­
tions of the internal write and read counters determine 
a device's status and whether it can accept data though 
a write operation. Figure 5 shows the timing for write 
operations. 

As with the procedure for writes, the frrst FIFO in 
the chain holds the read token. When the FIFO chain is 

IFF 

RITE .. CY7C420 - CY7C421 
CY7C424 

ATAIN 9, CY7C425 .. CY7C428 , CY7C429 
CY7C432 
CY7C433 .. - IXI 

t-- IFF 
IFULL 

-.J-- .. CY7C420 - CY7C421 
CY7C424 

ATAIN 9, CY7C425 
CY7C428 

I CY7C429 
CY7C432 
CY7C433 ... - IXI 

IFF 

... CY7C420 - CY7C421 
CY7C424 

ATAIN 9, CY7C425 
CY7C428 

I CY7C429 
CY7C432 

/R ESET CY7C433 - IXI 

read from, the device holding the read token supplies 
the data from the address specified by the device's read 
pointer. The read pointer is then incremented. The in­
crementingcontinues until the FIFO is empty, and the 
read token is passed to the next device in the chain. The 
passing of the read token is done via the XO-XI inter­
face. Figure6 shows the timing for read operations. 

A depth-expansion design must generate composite 
status flags to adequately reflect the instantaneous state 
of the FIFO chain, as is done for width expansion. 

Retransmit 
The retransmit feature is useful in communications 

for retransmitting packets of data and in disk drives for 
rewriting sectors. It is especially useful in applications 
where a single block of data in the FIFO must be sent 
out multiple times, as in a word or pattern generator. 

Data can be retransmitted any number of times, 
and with Cypress FIFOs, the retransmit feature can be 
used at any time, no matter how much data the FIFO 
contains. This is in contrast to some competing FIFOs, 
such those from IDT, which do not allow. use of the 
retransmit function when the FIFO is full. 

In the retransmit operation, the read pointer is 
res~t to its initial location and the if pin is pulsed until 
the read pointer. advances to the same memory location 
addressed by the write pointer. The retransmit (RT) pin 
is available in the single-device and width-expansion 
modes, but not in depth expansion because this pin 
designates the FIFO to be loaded frrst. 

I 

/READ 

" -
9, DATA OUT 

, 
IFL 

~ 
IE MPTY 

---L-
" -

9, DATA OUT 

, 
IFL 

--
9, DATA OUT 

, 
IFL 

~7 

Figure 3. Width Expansion 

7-16 



ixo 
FF I F 

!WRITE IREAD ... CY7C420 - CY7C421 
CY7C424 

DATA IN 9, 9, CY7C425 9, 9, DATA OUT 
CY7C428 , , - CY7C429 , , 
CY7C432 
CY7C433 IFl 

Vee - -
IlO to 

IFF 

- I ... CY7C420 I ,. CY7C421 
CY7C424 I 9, CY7C425 9, 
CY7C428 

IFULL EMPTY 

I CY7C429 I ---CY7C432 
CY7C433 Fl ... -
IlOt 

lilco 
IFF 

CY7C420 - CY7C421 -CY7C424 

~ CY7C425 9, 
CY7C428 

I CY7C429 I 
CY7C432 

IRESET CY7C433 Fl ... 
~ IX', 

Figure 4. Depth Expansion 

The retransmit function is initiated by asserting an 
active-Low pulse to the retransmit input, which resets 
the internal read counter to zero. Keep the R input in­
active during this time; otherwise, the conflicting re­
quirements on the read counter might cause it to be­
come corrupted. The retransmit process does not affect 
the state of the write counter or the write process, 
though the retransmit timing constrains shown in Figure 
7 must not be violated. 

Note that the architectural description in the 1990 
and previous Cypress data books incorrectly stated that 

NI 

WRITE TO LAST PHYSICAL 
LOCATION OF DEVICE 1 

*'XO 1(XI) 2 

00-08 

the W input must be inactive during a retransmit cycle. 
No design or usage rules are violated if retransmit and 
write cycles overlap or occur simultaneously; the device 
does not lockup, and data is neither lost nor corrupted. 

The reasons for the data book's retransmit/write 
restriction are more historical and application-oriented 
than functional. Specifically, the first large FIFOs did 
not permit writes during a retransmit cycle. This set a 
documentation precedent that all future devices had to 
match. 

WRITE TO FIRST PHYSICAL 
LOCATION OF DEVICE 2 

Expansion Out of Device 1 (X01) is connected 
to Expansion In of Device 2 (XI2) 

Figure 5. Write Expansion Timing 

7-17 



fR 

*/XO 1(XI) 2 

0D-08 

READ FROM LAST PHYSICAL 
LOCATION OF DEVICE 1 

READ FROM FIRST PHYSICAL 
LOCATION OF DEVICE 2 

Expansion Out of Device 1 (X01) is connected 
to Expansion In of Device 2 (XI2) 

Figure 6. Read Expansion Timing 

Additionally, keeping track of what data is current­
ly in the FIFO and what data is being read out can be­
come complicated. For example, if a FIFO is half full 
and the retransmit function is activated and writes con­
tinue, filling the FIFO to three quarters full before the 
read pointer catches up with the write pointer, the 
FIFO outputs all of the data. 

Common Problems and Solutions 
To help prevent problems and correct them when 

they occur, this section describes the causes and solu­
tions to some common FIFO problems. The ftrst prob­
lem to consider is corrupted or repetitive data in a 
FIFO. 

Corrupted or Repetitive Data 
The most common cause of corrupted and repeti­

tive data being present in a FIFO is a spurious active 
signal (glitch) on the FIFO's W input. Because Cypress 
devices are extremely fast, a write pulse as short as 3 ns 
initiates a write. Write glitches cause whatever logic 
levels are present at the data inputs to be written into 
the FIFO, which can put false data into the device. If 
valid data is present at the data inputs, a write glitch 

t 

fFL,/RT PRT 

fR 

t 

causes this data to be written a second time, resulting in 
duplicated data. 

Write glitches are often the result of voltage reflec­
tions due to impedance mismatches, which you can 
eliminate using impedance-matching termination net­
works. Termination networks are recommended on the 
Wand if traces on printed circuit boards (PCBs) when 
the lines exceed approximately 4 inches from source to 
a single load. This line length assumes a 2-ns rise/fall 
time for the read and write strobes. For if and W sig­
nals with sub-2-ns rise/fall times, line lengths as short as 
1 inch might require termination. 

A termination network matches the ·load im­
pedance to the PCB trace's characteristic impedance, 
which is typically 50n or less for microstrip or stripline 
construction on 0-10 glass epoxy material. To minimize 
voltage reflections, a slightly overdamped termination is 
preferred. Cypress recommends a 47-pF (max) series 
capacitor and a 47-ohm resistor be connected from the 
read or write pin to ground (Figure 8). This termination 
network acts as a high-pass filter to short, high-frequen­
cy pulses and dissipates no DC power. Read or write 
lines that drive more than one FIFO require only one 

RTR 

t is the Retransmit Recovery time. 
RTR 

It is a timing window which must not be violated. 

t is the minimum retransmit pulse width. 
PRT 

Figure 7. Retransmit Timing 

7-18 



CYPRESS 

iL FIFO 

fR,IW SOURCE 

-L 
47pF 

I 47 OHMS 

Figure 8. Recommended Termination Network 

termination network. Put the network at the input that 
is electrically farthest from the source. For multiple 
loads, see the "Systems Design Considerations When 
Using Cypress CMOS Circuits" application note for 
help in determining the maximum line length. 

FIFO data corruption can also be caused by viola­
tion of master-reset timing constraints. As shown in the 
timing diagram in Figure 9, the read and write signals 
must be inactive around the rising edge of MR (master 
reset) to satisfy the. tRMR, or master-reset recovery-time 
specification. This constraint is necessary because the 
FIFO goes through an internal initialization process 
during reset and requires a settling period after the 
reset terminates. 

FIFO Locks-Up 
Short noise pulses on the FIFO's master reset pin 

can cause the FIFO to not respond because it is "par­
tially reset." If this problem occurs, you might need to 
terminate the master reset line. 

Missing or Disappearing Data 
Glitches on the if input can cause data to disap­

pear because of an unintended read operation. The 
read increments the internal read counter, resulting in 
the loss of the current data word. Here again, a ter­
mination network eliminates the unwanted glitches. 
Repetitive or Out-oj-Sequence Data, False Full or Empty 

A . misaligned .. internal read or write pointer can 
cause a variety of symptoms, including repetitive or out­
of-sequence data and false full andlor empty conditions. 
The two most common causes of misaligned pointers 
are master-reset violations and boundary-condition 
violations. 

tMR \ 
~ 

tR,IW ////// "//// 

1 MRSC 

1 RPW 

1 WPW 

Boundary conditions are defined as the FIFO being 
either full or empty. When high-density FIFOs are con­
nected in parallel to make a wider word, certain condi­
tions can cause the FIFOs to choose individually to 
either ignore or act upon a read or write request. The 
system-level symptom of individual FIFOs making dif­
ferent decisions is word mis-alignment. The problem 
occurs in the empty condition when a read immediately 
follows a write and in the full condition when a write 
immediately follows a read. 

Operation at the Empty Boundary 

Consider a FIFO that has been reset and is empty. 
The empty flag is active (Low), and internal logic in­
hibits read operations. In the general case, the read and 
write signals are asynchronous. Upon completion of the 
write operation the internal state of the FIFO goes from 
empty to empty + 1. During this interval, a read opera­
tion might or might not be recognized. A read preced­
ing the write is ignored; a read following the write is 
not. In between these conditions, the FIFO decides 
whether to recognize the read. During this aperture of 
uncertainty, you cannot determine whether the read will 
be ignored or not. With one FIFO, this uncertainty is 
acceptable. However, if two or more FIFOs are con­
nected in parallel to make a wider word, some might 
ignore the read, and others might not. 

Operation at the Full Boundary 

A similar condition occurs when a single FIFO be­
comes full. The full flag is active (Low), and internal 
logic inhibits write operations. A read operation imme­
diately followed by a write operation causes the FIFO 
to go from full to full - 1 and back to full. During the 
time the FIFO is going from full to ftill- 1, a write 
operation might or might not be recognized. The aper­
ture of uncertainty applies here because the FIFO takes 
a finite amount of time to change· states, and a write 
command arriving at this instant might be ignored. 

Waiting at the Empty Boundary 

Figure 10 shows the timing that prevents problems 
with reads at the empty boundary. Any device reading 
from the FIFO must wait an amount of time, tRAE, after 
the termination of the write operation before causing a 
High-to-Low transition of the if signal. The W signal's 
rising edge indicates the termination of the write opera­
tion. 

I 
I 

\ 
~ 

.-1 RMR_ 

Figure 9. Master Reset Timing 

7-19 



IW 

IR 

IEF 

DATA OUT ------f---i-----<VALID DATA 

t RAE is an invalid read window. 
A read operation should never be initiated inside this window. 

Figure 10. Read Fall-Through Timing Violation 

One way to satisfy this timing is t.Q..gate read opera­
tions with the composite empty flag (EF) such that the 
read operation is prevented when the empty flag is ac­
tive. Note, however, that the if signal can be Low either 
before or during the first write to the empty FIFO and 
the data still propagates to the outputs correctly. 

Waiting at the Full Boundary 
Figures 11 shows the timing that prevents problems 

with writes at the full boundary. Any device writing to 
the FIFO must wait an amount of time, tw AF, after the 
termination of the read operation before causing a 
High-to-Low transition of the W signal. The if signal's 
rising edge indicates the end of the read operation. 

You can enforce this timing by ~ng write opera­
tions with the composite full flag (FF) such that the 
write operation is prevented when the full flag is active. 
However, the W signal can be Low either before or 
during the first read from a full FIFO and the data is 
still properly written. 

Empty Reads and Full Writes 

When Cypress FIFOs are empty, their data outputs 
go to the high-impedance state. Therefore, attempting 
to read from an empty FIFO yields unpredictable data. 
Internal logic inhibits the read, and the read pointer is 
not incremented. 

IR 

IW 

IFF 

I WAF is an invalid write window. 

Internal logic also inhibits attempts to write to a 
full FIFO, and the write pointer is not incremented. 

Intermittent Malfunctions 

If all the timing requirements appear to be met and 
data in the FIFO is still corrupted, the cause is likely to 
be noise on the power supply. Random spikes on either 
the V cc or ground pins of the FIFO are likely culprits 
when non-repeatable failures occur. 

The cure for this problem is to add a high-pass fIl­
ter capacitor between the device's power and ground 
pins. This practice is recommended whenever the read 
or write frequency exceeds 5 MHz. Use a very small 
(100 - 500 pF) ceramic or mica capacitor. Precision fIl­
tering capacitors of this type are available through sup­
pliers such as Rogers Corporation, 2400 S. Roosevelt 
St., Tempe, AZ 85282. 

The filter capacitor is in addition to the 0.1- or 
0.01i1F decoupling capacitor that should always be 
present with any high-speed digital chip. Although 
decoupling capacitors are often referred to as bypass 
capacitor s - inferring fIltering properties - their true 
function is to supply the instantaneous current required 
when many or all device outputs simultaneously switch 
from Low to High. This larger capacitor thus decouples 
or isolates the Ie from the power distribution system. 

A wrile operation should never be initialed inside this window. 

Figure 11. Write Bubble-Through Timing Violation 

7-20 



CYPRESS 
SEMICONDUCTOR 

Designing with the CY7C439 
Bidirectional FIFO (BIFO) 

This application note describes the features of the 
CY7C439 bidirectional FIFO (BIFO) and shows how to 
use the BIFO in a multiprocessor communication 
design. The CY7C439 is a 2K x 9 FIFO memory that 
transfers data asynchronously at rates as high as 28.5 
MHz. 

BIFO Overview 
Figure 1 shows a block diagram of the CY7C439 

BIFO. The device has three internal data paths. The 
fIrst path consists of a 2048-word-by-9-bit dual-ported 
RAM array, which allows half-duplex, bidirectional 
FIFO buffering. The second path, the registered bypass, 
allows registered message passing in the opposite direc­
tion from the FIFO-path operations. The last path, the 
transparent bypass, allows data to pass in either direc­
tion around the FIFO path. 

.IIT A 
1A[t •• 1] 

liS IT 

The BIFO eliminates the need for other costly, 
space-intensive solutions that bidirectionally transfer 
data between two buses with disparate data rates. One 
alternative is a two-FIFO design (Figure 2), which re­
quires a signifIcant amount of board space and control 
circuitry. Although this solution achieves its objective, 
the two separate FIFOs are rarely needed because large 
amounts of data usually transfer in only one direction at 
a time. Another BIFO alternative utilizes one FIFO that 
can be switched from one direction to the other with 
bus-steering logic (Figure 3). Although this solution 
costs less than the previous one, it requires many MSI 
parts and thus requires more board area. 

The CY7C439 solves all the problems associated 
with these alternative solutions. The CY7C439 utilizes 
signifIcantly less board area, requires less power, and 
eliminates the need for complex FIFO control circuitry. 
Additionally, the CY7C439 is fully pin programmable, 

114 ••• .on. 
DI[O •• 'l 

flFt 

I"" 
FL'" I" 
LOIIC 

IIAt 

la"u,,,aUl 
n",n 

Figure 1. BIFO Block Diagram 

7-21 



~C\'PR!$ Designing with the CY7C439 Bidirectional FIFO (BIFO) 
~~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 2. Two FIFO Design

COITIOL a STATUS COITROL

snlAL

DECODEI

COITROL a STATUS

DATA DATA

Figure 3. Switch FIFO Design

contains a hardware reset, allows message passing
against the BIFO flow, and permits the initialization of
dumb peripherals via the transparent bypass feature.

Half-DuplexBIFO Operation

When you reset the BIFO externally, you pulse the
Nm" pin Low. During master reset, the BIFO's direction
is set according to the state of the BYPA pin (Table 1).
The EYPA state is latched internally on ~'s rising
edge. If the l3Yfi'A state is High on '&fR's rising edge,
the BIFO direction is A to B, and the registered bypass
direction is B to A. If, on the other hand, BYPA is Low
on Kn'f's rising edge, the FIFO direction is B to A, and
the registered bypass direction is A to B. The master
reset cycle is thus useful for setting the FIFO and

Table 1. Master Reset BIFO Direction Selection

MR BYPA BYPB STBA STBB Action

X X X X Normal Operation

..r FIFO (A-> B),
Bypass (B->A)

..r 0 FIFO (B-> A),
Bypass (A->B)

0 X X X X Internal Reset

7-22

bypass directions as well as resetting the :BIFORAM
array.

The bidirectional BIFO interface is similar' to
Cypress's CY7C42x family of FIFOs. In the CY7C42x
FlFOs, data is written into the BIFO on the W line's
rising edge and read out of the FIFO on the Kline's
falling edge. The CY7C439 works nearly the same. If
the direction of the FIFO is from A to B, data is written
into the FIFO on the rising edge of the STl3A signal
and read out of the FIFO on the falling edge of the
STlm" signal. The function of these two pins is reversed
if the FIFO direction is set from B to A. Table 2 shows
these relationships.

The BIFO three-states its data lines on STIm's
rising edge. BIFO circuitry does not allow additional
Reads beyond empty or' additional Writes beyond full.
The "AC Timing" section describes the device's critical
timing parameters.

Registered bypass
The CY7C439's registered bypass feature provides

a way to send a word in the opposite direction to the
FIFO data flow. The bypass feature is useful for mes­
sage passing to indicate control and status information.
In communication environments, for example, you can
use the bypass register to indicate that a packet was not
received correctly. This feature eliminates the addition­
al circuitry required to allow a data consumer to com­
municate with a data producer.

The bypass operation does not affect the normal
FIFO operation. The consumer writes bypass data into
the ,register on the rising edge of BYJ5X. The x in this
pin name indicates that either the BYPA or lITPlr pin
is applicable, depending on the BIFO's direction. The
assertion of the IrnA flag signals the producer that it

Table 2. BIFO Operation Truth Table

Dir STBA BYPA STBB BYPB Action

A->B "lr "'U' FIFO Write at A,
FIFO Read at B

A->B iI iI FIFO Read at B, Reg
Byp Read at A

A->B 1I 1.r FIFO Write at A,
Reg Byp Write at B

B->A "'U" V FIFO Write at B,
FIFO Read at A

B->A 1 1.r V FIFO Read at A,
Reg Byp Read at B

B->A ""U" ""U" FIFO Write at B,
Reg Byp Write at A

ANY 0 0 No FIFO, Trans
Data B to A

.-.
~

===,~~CNDUCTOR =;;;D;;;;e;;;;s;;;:ig;;;;;;D;;;;iD;;;;;:g:;;;;W;;;;;;;;;;;;;;;it;;;;;;;h;;;;th;;;;e;;;;;;;;;;;;;;;C;;;;Y;;;;;;;7;;;;;;;C;;;;4;;;;;;;3;;;;;;;9;;;;B;;;;;;;id;;;;i;;;;;;;re;;;;c;;;;tI;;;;·o;;;;D;;;;al;;;;F;;;;I;;;;F;;;;O;;;;;;;;;;(B;;;;;;;I;;;;;;;F;;;;O;;;;;;;;)

has a message waiting for it in the bypass register. The
producer can then read the bypass register by pulsing
the nYPX pin Low. The nYPx pins perform bypass
register read and write functions with timing identical to
that of the "STBi signals.

Transparent Bypass

The CY7C439's transparent bypass capability al­
lows the producer to transmit information through the
BIFO without the consumer manipulating the BIFO to
receive the information. This feature is useful for in­
itializing dumb peripherals. Either side can initiate a
transparent bypass by bringing both "STBi and nYPi
Low at the same time. The FIFO's contents are not af­
fected by the transparent bypass operation. The port
wishing to send data transparently to the other port
must ensure that the other port will not attempt a FIFO
read or write during the transparent bypass cycle.

Flag Operation

The BIFO provides two flag pins that can be
decoded to represent one of four states (Table 3):
empty; between empty and half full; between half full
and full; and full. These flags indicate the FIFO's status
and are useful for controlling the FIFO read and write
operations.

AC Timing

Figure 4 shows the FIFO read and write tlmmg
diagram. As mentioned earlier, the timing looks very
similar to that of the Cypress CY7C42x family of FIFOs.
Assuming that the FIFO direction is from A to B, a
read operation is performed by pulsing ~ Low
while maintaining 'IfYPIf High. "STBB must be held Low
for a minimum time of tPR (25 ns, for the CY7C439-25
part). The data lines remain three-stated for a minimum
of tLZR (3 ns) after STB13's falling edge, and data be­
comes available after tA (25 ns). The "STBB signal must
recover for tRR (IOns) before another read operation is

I.-
tiC

I.-
HI -+I+- til

STBB 1 %

Table 3. BIFO Flag Operation
-

ElF HF Words in FIFO

0 1 0

1 1 1-1024

1 0 1025-2047

0 0 Full

performed. The data lines remain valid for tDVR (3 ns)
and three-state after tHZR (18 ns) from the rising edge
ofSTIrn".

The 'ST'BA signal is used to perform writes to the
FIFO array. 'ST'BA must be Low for tpw (25 ns) and
recover for twR (10 ns). The data to be written into the
FIFO must be set up for tsD (15 ns) and held for tIm (0
ns) from the rising edge of STl3A.

Figure5 shows the timing waveforms for the bypass
register mode of operation. Reads from the bypass
register look much the same as reads from the FIFO.
During the bypass register reads or writes, the STBx
signal must be High within tBSR (10 ns) of the falling
edge of BYPx. The only differences between the timing
for FIFO read and bypass register read are that the
data lines remain three-stated for at least tBLZ (10 ns)
after 'l3Y'PA's falling edge and that data will be available
after tBA (30 ns) on the -25 part. The bypass register
write timing parameters are identical to those of the
FIFO write parameters.

Figure 6 shows the timing waveforms for the
transparent bypass mode of operation. This transceiver­
like data path allows data to be driven from one port to
another without the need for the consumer to control
the BIFO to receive data. Either port can initiate a data
transfer. snrx on the producing side must be High for
tTSB (10 ns) and must go Low no longer than tTBS (10

-+I

-+I I

1 %
(READ) t:-LZI-+I I.-to VI -+I l.- tA -+I

I.-tHZI-.j

PORT B :CX DATA aUT YALID ~ a DATA OUT 'ALID A

I.- tP II -+I+- till -+I I

~,---__ ~JI S T B A I .
(WRITE) ~

~'--------I!
-+t I.-tSl~U~ tIIC

PO R T A -------« DATA II YALID)~---------~~ DATA .. YALID }

Figure 4. FIFO Read and Write Timing

7-23

~CYPR>SS Designing with the CY7C439 Bidirectional FIFO (BIFO)
~ ~~~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ns) after the falling edge of BYPX. Data is available
tTPD (20 ns) after the falling edge of"STBX, and the out­
put data changes tDL (20 ns) after the input data chan­
ges. The consumer bus three-states after trSD (18 ns)
from the rising edge of STBi.

image, RADAR, and SONAR data and equipment that
performs telecommunications bridging must all transfer
significant amounts of data among system processors.

A design example shows the interface issues in­
volved in communications between a 25-MHz Cypress
CY7C601 SPARC processor and a 25-MHz 80386 used
as an embedded processor. This high-speed processor
bridge provides bidirectional data packet transfer, isola­
tion of host processor from embedded processor, im-

Multiprocessor Communication Design
An excellent application for the CY7C439 BIFO is

in interprocessor communication. Systems that process

BYPB
(READ)

I+- tlPII -+I

'\~ __ ----JI
I tlLZ I
1+---.1 *-

'\\....-.. __ ----J1
tI DY--.I:'- t IA --.I :.-tI H z--.I

P 0 R T B --------Itx
I

\,,----1 _nJ ~
DATA OUT YALID;--- \--.A DATA OUT YALID ;J-. ----

I I I
I+- tI P II --.I

~ /1
B Y P A ',-, ______ -',

I I

I

\'--_______ 1,----
(WRITE) I+- tlsu4 tI~

P 0 R T A --------« DA TA I. VA LID)>-___________ --i('-D-AT-A-I .-Y-A-L I-D-'j

I I

Figure 5. Bypass Register Timing

kr- tTSP ;J

0%1~ '\ I I tTSa I~-------------~I

<E}- ~TBS_I I I
---Ilil'I t a PII -------.. r- I ~ ,------

\'------~--__._I ---Jl
I L.r- I

tTlD ~

STBA

BYPA

< Xl • II) ____ _
PO R T A -----{ ~ALID IIIPUT 1 , ,YALID IIIPUT Z , r---

~-----~I-------'I'-------------~I~

tTPD ~ rr <E}-tDL ~ I

P 0 R T B -------------;('AL" OUT'" I ~ 'AL" .,,",.)1-1 ----
I ~-------I I '--_____ __J I

Figure 6. Transparent Bypass Timing

7-24

~

~

~~~OR ;;;;;;;;;;===;;;;;;D;;;;;;e;;;;;;s;;;;ig:;;;;n;;;;;;i;;;;;;n:;g;;;;w;;;;it;;h;;;t;;h;;;e;;;C;;;Y~7C;;;;. ;;;43;;;9~B~id~i~re~c~b~·o~n~a~1 F~I~F~O~(~B~IF~O~) 

HOST .----- 1111 
r- '''AI '''11 I--- 1 EMBEDDED 
r;: STU. nil. t--

SYSTEM 
DAO DID R ~ 
DAI Dil 
DU DU R SYSTEM 

f;::: DU DU cnnOL 

DA4 DI4 8 
.... 

~ 
DAI DII ....- C"IUS a=: SPARC 
DAI DU 8 

MIll 

~ DA7 D 17 'ALIUlOC 11110' 386 
DA. DII r---.; ADS' 

CPU 

llIT 
Nf' -'~l IT El/F. CPU 
II AI 

IILx t f ~ 1 
IITI 

UlAn 

~ 
~ 1111 

D A IIHOLD COITROL .. .,,'" ."., fo- " • A D IIULL ~ STU' STII' t- Il t 
T I A MEl C"IUS ~ 

DAD DID 8 ~ A D 

II ~ DAI ,DU D A 

"'LUYlDC 
DAI DII R K T 

~ DAI DU 
A 

DA4 DI4 R '---

ADDIISS ~ DAI DII 
DAI DU 

~ DATA ~ DAl DI7 

- DAI DII l'"""- I J 

r ': HF. 
Iflf' ! r 1 , 

- II A.' 

DATA 
f- III. 
f- ITPA. '''11 I-

AqUlIlTIO. ROM ~ n:AI ST::: ~ ROM DISPLAY 

~ DAI DII ~ SUISYSTEII t-: DU DII 

t-: ::: ::: ~ 
SUIIYSTEII 

~ ::: ::: ~ 
~ ::~ :U ~ 

- HF' 
- ",/F' 
- IIAI 

I- II., 
I- .,,'" IT,., I-

RAM lc :~:AI ST::: ~ RAM ~ DAI 011 ~ ~ DU DU 

~ ::: :U ~ 
~ ::: ::: ~ 
~ ::~ ::~ ~ 

- HF. 
- If/" -.u. 

Figure 7. Design Example Block Diagram 

plementation of message passing, 
communication by both processors. 

and asynchronous The CY7C601 must reset the BIFO upon power up to 
ensure that the BIFO is in a known state. The BIFO is 

. Figure 7 ~hows a simplified block diagram of the 
deSign. The diagram shows the. 32-bit bidirectional data 
path used to transfer ,data between the two processor 
systems. A 22VlO PAL implements control logic for the 
386 embedded processor, which also employs an inter­
rupt. controller to prioritize the interrupt signals 
generated by the BIFO control logic. 

CY7C601 BIFO Control Circuitry 
The CY7C601 processor controls the direction of 

BIFO flow. A Cypres~ PAL22VIOC-7 implements the 
control circuitry. This part has a 3-ns data set-up time, 
O-ns data hold, and a 7-ns clock-to-output delay that 
makes it ideal in this high-speed application. The state 
machine implemented in the 22VIO uses a 3-ns delay of 
the CY7C601 system clock (required by the CY7C601 
timing specifications). 

The BIFO is implemented as memory-mapped I/O. 
The memory map for the CY7C601 appears in Table 4. 

7-25 

reset by selecting address $40000004. The CY7C601 ini­
tializes itself as a producer (BIFO direction from A to 
B) by writing to this address and initializes itself as a 
consumer (BIFO direction from B to A) by reading 
from this address. 

Figure 8 shows a timing diagram for the CY7C601 
configured as a producer. The diagram shows the 
relevant control signals and timing parameters for both 

Table 4. Design Example Memory Map 

Area I A31 I A30 I A29 

PROM 0 0 X 

BIFO 0 1 0 

Other I/O 0 1 1 

RAM 1 X X 



~ 

=- - ~RES'> Designing with theCY7C439 Bidirectional FIFO (BIFO) 
~COID~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

a read from the FIFO and a write to the bypass register. 
CLK is the host system clock. CLKD is the delayed sys­
tem clock used in the BIFO control logic. ADDR rep­
resents the state of the A31, A30, A29, and A2 address 
lines. These signals, as well as the RD and WE: -control 
signals, are valid 7 ns before and 7 ns after CLK's rising 
edge. 

The CY7C601 asserts RD at the beginning of a 
read cycle and WE: in the second cycle of a write opera­
tion. Both RD and WE: are used to determine if a valid 
read (load) or write (store) cycle has begun. 

The INULL signal nullifies an active write cycle. 
Asserting INULL in the frrst cycle of a store operation 
cancels the operation. INULL appears in the second 
cycle of a all valid store operations (Figure8). 

IRE A D I WRITE 
I+- 40 •• -+l I 

eLK --Y \ ( ~ 
I 

L 
ADDR 

I I 
I I 

flfi$!& RD ~ ~'B\\\ 

W 
I I 

W E '}W#//## \\~ 
I 

II # II!(!II// 
I 

I NUL L 

CLKD 
... ~ 

I I 

BYPAI 

STBAI 

DATAS 

I I 
I I Io, 110, 

--hi ,......'++1...... '++I I I I I 

:~ :~ I :: II 
"''7\~~o, I.- u.. -+I !.I h' 

rrutJJm~ 
I I - ~ -+I ~ au ":10'-+1 

DATAL 

DATAF 

__ ~I ------~I ____ ----u.~'~ ~ 

~ Una ~~~ I I I 

-:---Iroolllll~----------
, , 

Figure 8. 7C601 Control Circuitry Timing Waveforms 

7-26 



.-. 
%~RFSS Designing with the CY7C439 Bidirectional FIFO (BIFO) 
~ ~~~OR~~~~~~~~-~~-~~~==~~~~~~~~~~~~~~~~~ 

SIMULATE EDIT VIEWS 

1 CLK n r 1 J 1-' L.J L.JL...JL......J 
BDA 

IS HF 

1'1 EF 

Ii RD 

IS WE 

J3 A30 J L-J L-J 1 r 1 
P A29 

10 A2 l 
11 INULL 

14 MHOLD 

2 MR ~ 
:J: STBA ~ L 

19 BWA 

13 INTACK 

l~ 15 LEOE r L-J 
17 11 r 'L--
~O 10 

Figure 9. BIFO Initialization ··7C601 Producer 

The DATAS signal shows the data timing require­
ments of the CY7C601. During a load operation (read 
from the BIFO), the CY7C601 requires valid data 3 ns 
before and 5 ns after the system clock's rising edge. 
During a store operation, the CY7C601 produces the 
data to write 29 ns after the falling edge of the first 
store cycle CLK; this data remains valid for 4 ns after 
the falling edge of the second store cycle CLK. 

Figures9 and 10 show the simulated waveforms for 
initializing the BIFO. To initialize the BIFO for FIFO 
read operations, BYPA must stay Low for two clock 
cycles; this ensures that BYPA is stable for the entire 
time :fJIr is Low. At any time, the CY7C601 can reset 
the BIFO or switch the BIFO direction by writing to or 
reading from address $40000004. The control circuitry 
decodes this address by looking at address lines A31, 
A30, A29, and A2. A2 determines whether the BIFO is 
to be initialized or if a normal BIFOoperation is to be 
performed. The resetting operation takes priority over 
all other operations. 

The state diagram in Figure 11 shows the BIFO 
control circuitry's behavior after the BIFO is initialized 

Table S. 7C601 BIFO Control Logic Interrupts 

Name Cause U/IO 

Not_Empty ElF goes High when 01 
not Reading 

Empty ElF goes Low when 01 
Reading 

Not Half Full HF goes High when 10 
Writin!! 

Half Full HF goes Low when 10 
Writin!! 

Bypass Data BDA goes Low 11 
when Writing 

7-27 

SIMULATE EDIT VIEWS 

1 CLK "L..JL...JLJ LJ 1. J L.J 1 J 1 J 
BDA 

IS HF 

'" EF 
Ii RD r 1 
IS WE r 1 
~ A:J:O r 1 
P A29 

o A2 r 1 
11 INULL 

4 MHOLD 

2HR 1 J 
:J: STBA 

19 BWA 1 
13 INTACK 

15 LEOE 

117 11 

~O 10 

Figure 10. BIFO Initialization •• 7C601 Consumer 

to receive data from the CY7C601. The boxes in this 
diagram represent the state of the control logic. The 
diamonds represent the conditions that produce the 
transition from one state to the next. 

The BIFO is reset in state 11 and moves to 
WRITE_IDLE (State 10). The CY7C601 can begin 
writing to the BIFO at this time by writing data to 
memory location $40000000. 

Because of the pipelined operation of the 
CY7C601, a latch must hold the write data to meet the 
BIFO's write set-up time. The data from the latch is 
shown as the DATAL signal in Figure8. The latch not 
shown in Figure 7 latches data from the CY7C601 and 
allows this data to remain on the bus after the CY7C601 
removes the data. 

The CY7C601 produces valid write data at the fall­
ing edge of the clock in the write's second cycle. A 12-
ns-delayed LEOE signal from the 22VI0 is asserted at 
this time to provide the latch enable and output enable 
of the latch; the delayed LEOE signal is deasserted at 
the end of the cycle. The LEOE signal ensures that the 
BIFO data set-up and hold times are met with respect 
to STBA. The simulated waveforms for a write cycle ap­
pear in Figure12. 

Each time the CY7C601 writes to the BIFO, the 
state machine checks to see if the BIFO has become 
half full (HIT asserted). If HF is asserted, the state 
machine moves to state 13 and interrupts the CY7C601. 
Figure12 shows the timing of these activities. 

The interrupt at HF" is one of three possible inter­
rupts the control circuitry can generate. A complete list 
of the interrupt values appears in Table 5. 

The most efficient way to transfer data through the 
BIFO is based on fixed-length packets, ideally 1 Kbyte 
in size. This packet size makes efficient use of the 
CY7C439 because 1024-word packets can be trans­
ferred without interruption unless the HF flag is as­
serted. 

If the HF flag is asserted, the remainder of the cur­
rent packet can be transferred, then the CY7C601 dis-



5i:CYPRi$ Designing with the CY7C439 Bidirectional FIFO (BIFO) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

continues writing to the CY7C439 until the mr flag be­
comes deasserted (FIFO less than half full). The state
machine interrupts the host processor at each of these
two conditions -lIF flag asserted when writing and
Fur flag deasserted when not writing.

If a design does not need to transfer fixed-length
packets, the EiF" flag should be monitored to determine
when to stop writing, and the Fur flag should be
monitored to determine when to begin writing. This
prevents continual CY7C601 interrupts. The CY7C601
can write to the BIFO until the BIFO is full, then do

other work while the consumer reads the BIFO below
the half full threshold.

The state machine allows the processor to continue
writing to the BIFO and to acknowledge the interrupt
that was generated when the FIFO became half full.
This ability to continue writing without waiting for an
interrupt acknowledge permits the CY7C601 to mask
out the mr interrupt and continue transferring the cur­
rent packet If the CY7C601 acknowledges the inter­
rupt, the state machine moves to state 14. There, the
state machine enables the SPARC processor to con-

TO .n IUD
(lTA'l, I)

Figure 11. Writing State Diagram of the 7C601 Control Logic

7-28

~CYPR>$ Designing with the CY7C439 Bidirectional FIFO (BIFO)
~ ~~m~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SI:IMULATE EDI:T UI:EWS LI:MI:TS QUI:T
1 CLI< 1. J 1. I 1. .I 1. I 1. I L .I 1. .I 1. .I L .I L-I L-I LJ LJ

BOA
HF

eoF
RD r
WE r
A30 I '"l...--J r
A29

10 A2
11 I: NULL
1'" IMHOLD
~2 MR

3 STEOA r-L L
19 BYPA L
13 XNTACIC

~
18 LEOE ""L--J r
17 I: 1

12 0 1:0

I 999 999

Figure 12. Write Cycle Simulation Waveforms

tinue writing to the BIFO. In this state, the state
machine also continues monitoring the HP" flag and
causes an interrupt whenever the flag becomes unas­
serted (FIFO less than half full).

Another CY7C439 feature that this design utilizes
is registered bypass. When the 386 has passed a mes­
sage to the CY7C601, the JmA flag is asserted. If this
happens during the HF _ IDLE state, the control cir­
cuitry generates an interrupt (11/10 = 11). After the
CY7C601 acknowledges the interrupt, the CY7C601 has
the option of writing to the BIFO or reading the bypass
register. If the bypass register is read, the state machine
moves back to the HF _IDLE state. Figure 13 shows a
simulation of these activities.

It is especially important to note that during
registered bypass read, the control circuitry does not
monitor the MHOLD signal as in other states, but in­
stead drives this signal Low, indicating that the
CY7C601 should wait for the expected data. The
MHOLD signal must be maintained while the missed
data is strobed into the processor with the FJI)S" signal.
For this design, the MHOLD output from the control
circuitry can also be used as the FJI)S" signal.

During the HF IDLE state, when the BIFO
empties below half fUil (HF" High), the state machine
moves to the WRITE IDLE state again (state 10).
Writing can continue fram this state, as before. If the
JmA flag is asserted during the WRITE_IDLE state,

ED:lT

the state machine operates the same as for a m:>A
assertion during the HF IDLE state.

Figure14 shows the-state diagram of the BIFO con­
figured as the consumer of BIFO data. Figure 10 shows
a simulation of the CY7C601 processor switching the
direction of the FIFO from writing (A to B) to reading
(B to A). From the READ IDLE state, the control cir­
cuitry interrupts the CY7C601 processor (11/10 = 10)
whenever the BIFO becomes not empty (FJF" deas­
serted). After the CY7C601 has acknowledged the in­
terrupt, it can begin reading from the BIFO. Figure 15
shows a timing diagram of a read from the BIFO. The
DATAS wavefonn shows the CY7C601's data timing re­
quirements, and the DATAF wavefonn shows the
timing of the data supplied by the BIFO (Figure8). The
BIFO holds data valid tDVR after the rising edge of
'STBi. The CY7C601, on the other hand, requires that
valid data be maintained for at least 5 ns after the rising
edge of the processor clock. The 22VI0 control clock
must therefore be delayed with a device such as a gate
that has a delay of 5 ns or even a delay line (CLKD in
Figure 8) to meet the CY7C601's data-hold require­
ments.

The CY7C601 can continue reading from the BIFO
until the BIFO becomes empty (EiF" asserted) or the
CY7C601 has read all the information it needs. When
the BIFO becomes empty, the CY7C601 control cir­
cuitry interrupts the processor (11/10 = 10); the

U:lEwS LI:MI:TS QUXT
1 CLI< J 1. I ~ LJ 1........1"!: J 1. J 1. r-LJ ""L..JL J l-

BOA
HF
EF
RD r ,
wE r ,
A30 r ,
A29

10 A2
11 X NULL

1'" MHOLD
2 "A
3' STBA

19 EOYPA
13' XNTACI<
1& LEOE
17 X 1 r
zo :10

99 999

Figure 13. Bypass Register Read

7-29

&.""""'" Designing with the CY7C439 Bidirectional FIFO (BIFO)
~ ~~~OR~~~~~~~~==~~~~~~~~~~~~~~~~~~~

CY7C601 cannot read from the· BIFO any more until
the BIFO offers the not empty flag.

If the processor reads until the BIFO is empty, the
processor might continue reading after the BIFO
empties due to the latency of the processor responding
to the interrupt. This. might cause the processor to read
invalid data. This problem is . avoided by one of. two
methods: Employ a special value as the last word writ­
ten to the FIFO to indicate the transfer's end; or have
the producer send the number of data words in the
transmission at the transfer's beginning and have the
consumer continue reading data until the specified
number of words has been read.

From either the READ IDLE state or from the
NOT EMPTY IDLE state, the CY7C601 can write to
the bypass register. This operation passes a message
against the normal FIFO flow to the 386. Figure 15 iri­
cludes a bypass register write cycle. The control cir­
cuitry performs a bypass register write whenever the
CY7C601 is consuming data from the BIFO and the

processor performs a write to address location
$40000000.

CY7C601 BIFO Control Design File

Appendix A lists the design file used to generate the
equations for programming the 22VIO. This design file
was created using the LOG/iC software package from
ISDATA. For a detailed description of this software
package, refer to the application note~ "Using LOG/iC
to Program the CY7C330."

The *IDENTIFICATION section of the design file
gives general information about the file. The *p AL sec­
tion . indicates that this file will be used to program a
22VlO. The *X-NAMES section describes inputs to the
22VIO, and the *Z-NAMES section describes
registered outputs of the 22VIO. The *Z-VALUES sec­
tion assigns a unique value to all states in the state
machine ... These values indicate the signal level on each
output while a current state is active, as well as the
value of any additional state bits (Q[3 .. 1]);

TO .1 IIIIU
("AlE 11)

Figure 14. Reading State Diagram of the 7C601 Control Logic

7-30

SIMULATE EDIT UIEWS LIMITS QUIT
1 eLK J l J l J l .J l .J l J l J l J L J ~ 1. J 1. .J l J l
:/: BDA
:s HF .. EF
,. RD r 1
s WE -r "i
3 A30 ~ ~ L-.. A:29
10 A:2
11 INULL
1 MHOLD
:/::2 MR
:/:3 STBA
19 BV'PA L--
13 XNTACK ...
15 LEOE r
17 x 1
:/:0 XO r -, r -,

999 999

Figure 15. BIFO Read Simulation Waveforms

READ WRITE

r- 40 ••

~ I I I

ClK ~ I II ~ I II ~ I WI ~ I II ~
I

I"'~
I I I I

~

I
ClK2

t:; 11ft. I -.
ADSI ~ - - .; ~
W/RI ~ - - - -~

I I I

A16 'a/ 'a/ 'a/ -I

M / 101 r;JJIfffA
... I - - - -

CLK-ST

STBBI

I
BYPBI ~ I

trfffIJ

~
l+-

II ••

DATAM I 1 I I· ..
DATAF ... ~ :~

I I
I I

Figure 16. 80386 BIFO Control Logic Timing Diagram

7-31

wJ:CYFR>SS Designing with the CY7C439 Bidirectional FIFO (BIFO)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

The *FLOW-TABLE section describes the state 
transitions found in the state diagram. Each line of this 
section contains the current state, a possible state of the 
inputs, and the next state the state machine goes to if 
these inputs are true. For example, line one states that 
if the state machine is in State 1 (READ IDLE) and 
several conditions are met-RD and WE" are High (in­
dicating a microprocessor read), A31 is Low, A30 is 
High, A29 is Low (FIFO is selected), A2 is High (FIFO 
reset address), and MHOLD is Low (7C601 has not 
been held) -then go to State 2 (MR READ 1, a 
master reset cycle configuring the BIFO to transfer data 
to the CY7C601). Comparing the *Z-VALUES and 
*FLOW -TABLE sections to the state diagrams in 

Figures 11 and 14 reveals that'the state diagrams map 
easily into the LOG/iC design file. 

The *STAlE-ASSIGNMENT section indicates 
that the compiler should use the variables listed in the 
*Z-V ALU ES section for state-assignment values. The 
*PIN section assigns the variable names to 22VI0 pin 
numbers, and the *RUN-CONTROL section configures 
the compiler and requests various outputs. 

The LOG/iC design file produces fully reduced 
equations that accurately describe the state diagram. 
The simulation waveforms shown in this application 
note are taken from the Cypress PLD ToolKit and 
reflect the function of the equations produced with the 
ISDATA software. 

TO liT IV VIITI 
(lfur II) 

Figure 17. Reading State Diagram of the 80386 Control Logic 

7-32 



I.ITI.IILI 

Figure 18. Writing State Diagram of the 80386 Control Logic 

80386 BIFO Control Circuitry 

A Cypress PAL22VIOC-7 implements the 386 con­
trol circuitry. The state machine used to control the 
BIFO operation uses a 6-ns delay (CLK-ST in Figure 
16) of the 386 system clock to capture the address and 
control information from the 386. The clock is delayed 
in the same manner as the delayed clock for the 
CY7C601 

The 386 control logic closely resembles that of the 
CY7C601. Because the 386 uses a doubled system clock 
(CLK2 in Figure 16), the STBll' and 'BYPl3 signals must 
be strobed for three CLK2 cycles, in contrast to the one 
CLK cycle in the CY7C601 state machine. The other 
major difference between the two designs is that the 386 
has a two-clock-cyle read, in contrast to the one-clock­
cycle read for the CY7C601. This design easily meets 
the set-up and hold times of the BIFO. In fact, you can 
use the design for the 386 control logic at system speeds 
as high as 33 MHz. 

Unlike the design on the CY7C601 side, the 386 
side monitors the BIFO MIf line and IWPA signal to 

7-33 

determine the direction for which the BIFO is con­
figured. At start up, the 601 resets the BIFO and sets 
the direction (usually configuring itself as producer). 
The embedded control circuitry notices the NIR signal 
pulse Low and that the BYP'A signal is High. These two 
signal states force the 386 control logic into the read 
portion of the state machine (Figure 17). If, at some 
later time, the CY7C601 switches the BIFO's direction 
so that the CY7C601 becomes the consumer of BIFO 
data, the CY7C601 pulses both Mlf and BYP'A Low. 
This forces the 386 control circuitry into the write por­
tion of the state machine (Figure 18). Figures 19 and 20 
show simulated waveforms for 386 control logic's master 
reset read and master reset write. 

The 386 performs a read from the BIFO by driving 
Wt'R and MlIIT Low and driving A16 High. As these 
states imply, the BIFO lies in the upper 32 Kbytes of 
memory-mapped I/O. The simulated waveforms shown 
in Figure21 look similar to those of the CY7C601. 

Figure 22 shows the simulated waveforms for a 
write to the BIFO. The 386 performs a write in the 



~ 

% ~RESS Designing with the CY7C439 Bidirectional FIFO (BIFO) 
~ ~COND~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SIMULATE EDIT UIEWS LIMITS QUIT 
1 eLK L 1 1. J 1. J 1. J 1 J 1. J 1. J 1. r-t. 11. 11. J 1. J 1. 1 
2: RESET 
3 "R 
EO B_A 
.. BOA 
oS HF 

EF 
~ RW L J 

~ ~ "IO L--J L 
10 A1.s. 
11 ADS L ~ L .r-
1-4 STBB l 
15 BVPB L--
13 INTA 
1.s. I2 
17' I1 
18 IO J 
19 01 lit- 1--J L--S 1--

99'9' 99'9 

Figure 19. Master Reset Initialization -- 80386 Consumer 

SXMULATE EDIT UXEWS LXMITS QUIT 
1 eLK 1. J 1. J 1. JL ..rL .rL ..r1. ..r1. rl. JI. J L JI. S l S 

RESET 
3 "R 
eo B_A 
.. BOA 
oS HF 
" EF 
B RW 
s;> "XO L J ~ 
10 A1.s. lit-
11 ADS l J L .r--
1-4 STBB 
15 BVPB 
13 XNTA 
14 X2 

~ 
17' X1 
18 IO 
19 01 r L--S L--S ~ 

99'9 999 

L-

Figure 20. Master Reset Initialization -- 80386 Producer 

SIMULATE EDIT UXEWS LXMXTS QUIT 
1 eLK J 1. JL r-t. J 1. J 1. J 1. J 1. J 1. 1 1. J 1 J 1. J 1. JL 
iZ. RESET 

~ "R 
P B_A 

~ BOA 

~ HF 
EF 

~ RW L J L 1 
p "XO L J L J L J 
10 A1d. 
11 ADS ~ L J l 1 
1-4 STBB L 
15 BVPB 
13 XNTA • 1d. I2 
17' X 1 
1B IO 
19 01 ~ ~ L--S "L-

999 999 I 
L .... 

Figure 21. 80386 Control Logic Read Simulation Waveforms 

7-34 



~""""" Designing with the CY7C439 Bidirectional FIFO (BIFO) 
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

E ED:lT "':1 ENS L.:lM:lTS OU:lT 
eLK J 1. .f LJ 1. J 1. J 1. J 1. .f 1. .f 1. .f 1. ..[ 1. .( ]. ..[ 1. .f 1._ 
RESET 
MR 
B'VPA 
BDA I 
HF 
EF 

B RN 
;> ":10 l. J L J 
10 A1.,s 
11 ADS l. J L J 
14 S BB I 
16 BVl PB 
13 :IN" TA 
Ld. :12 r 

117 :I 1 J 
1181:0 r 
119 Q1 r ~ ~ "'L--J ~ 

~".". 999 

L: .. 
Figure 22. 80386 Control Logic Write Simulation Waveforms 

same way as a read, with the exception of driving wlf{ 
High for the write. 

The 386 control logic has seven separate interrupts 
that it sends to the interrupt controller (Table 6). In ad­
dition to generating the empty and half-full interrupts 
also generated by the CY7C601 control logic, the 386 
state machine interrupts the microprocessor whenever 
the BIFO direction is switched. Two separate interrupts 
ensure that the microprocessor knows the direction in 
which the BIFO is switched. 

The design ftle for the 386 control circuitry was 
created using LOO/iC and appears in Appendix B. The 
format of this file is the same as that of the CY7C601 
22VlO control logic. Notice that the *FLOW-TABLE 
section contains fewer state transitions because the con­
trol logic does not have to decode address lines to 
determine if the BIFO direction has switched. 

7-35 

Table 6. 80386 BIFO Control Logic Interrupts 

Name Cause I2/Il/IO 

Switch Read MRgoesLow 001 

Switch Write MR and BYPA go 010 
Low 

Not Empty ElF goes High when 011 
not Readim! 

Empty ElF goes Low when 011 
Reading 

Not Half Full HF goes High. when 100 
Writing 

Half Full HF goes Low when 100 
Writing 

Bypass Data BDA goes low when 111 
Writing 



~CYI'RfSS Designing with the CY7C439 Bidirectional FIFO (BIFO) 
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. 7C601 Control Logic Design File 

*IDENTIFICATION 
BIDIRECTIONAL FIFO CONTROL CIRCUITRY FOR THE CYPRESS 601 
SEAN DINGMAN 
CYPRESS SEMICONDUCTOR 

*PAL 
TYPE=PALC22V10; 

* X-NAME S 
CLK,BDA,HF,EF,RD,WE,A31,A30,A29,A2,INULL,MHOLD,INTACK; 

*Y-NAMES 
MHOLD; 

*Z-NAMES 
I1,IO,MR,STBA,BYPA,LEOE,Q3,Q2,Q1; 

*Z-VALUES 

S1 0 0 1 1 1 0 000 (A) READ_IDLE 
S2 0 0 0 1 0 0 MR READ 1 
S3 0 0 1 1 0 0 0-- (B) MR READ "2 
S4 0 1 1 1 1 0 -0- (E) INT_NOT_EMPTY 
S5 0 0 1 1 1 0 001 (A) NOT_EMPTY_IDLE . 
S6 0 0 1 0 1 0 READ_FROM_NOT_EMPTY_IDLE 
87 0 1 1 1 1 0 -1- (E) INT_EMPTY 
88 0 0 1 1 0 1 0-0 (C) WRITE_FROM_NOT_EMPTY_IDLE 
S9 0 0 1 1 0 1 0-1 (C) WRITE_FROM_READ_IDLE 

S10 0 0 1 1 1 0 010 (A) WRITE_IDLE 
Sl1 0 0 0 1 1 0 MR SW WRITE 
S12 0 0 1 0 1 1 -00 (D) WRITE FROM WRITE IDLE 
S13 1 0 1 1 1 0 -0- (F) INT HF 
S14 0 0 1 1 1 0 011 (A) HF IDLE 
S15 1 0 1 1 1 0 -1- (F) INT NOT HF 
S16 0 0 1 0 1 1 -01 (D) WRITE_FROM_HF_IDLE 
817 1 1 1 1 1 0 0-- (G) INT_BDA_FROM_HF_IDLE 
S18 0 0 1 1 1 0 1-0 (A) INT BDA IDLE FROM HF IDLE 
S19 0 0 1 1 0 0 100 (B) READ1 FROM HF IDLE -
820 0 0 1 1 0 0 101 (B) READ2-FROM-HF-IDLE - --S21 0 0 1 0 1 1 -10 (D) WRITE_FROM_INT BDA_IDLE_FROM HF IDLE 
S22 1 1 1 1 1 0 1-- (G) INT_BDA_FROM_WRITE_IDLE 
S23 0 0 1 1 1 0 1-1 (A) INT_BDA_IDLE_FROM_WRITE_IDLE 
S24 0 0 1 1 0 0 110 (B) READ1 FROM WRITE IDLE 
825 0 0 1 1 0 0 111 (B) READ2=FROM=WRITE=IDLE 
S26 0 0 1 0 1 1 -11 (D) WRITE_FROM_INT_BDA_IDLE_FROM_WRITE_IDLE 

* BOOLEAN-EQUAT IONS 

MHOLD.OE = MR & 8TBA & /BYPA & Q3; 

7-36 



Cr};cv-. -;;;;;;===;;;D;;;e;;;;;si;:g;;;DI;;;:;;oD;:g;;;W1;:;;;o;;;th;;;;t;;;:;;h;;;e;;;;;C;;;;;;Y;;;;7;;;;;;;C;;;;4;;;:;3;;;;;9;;;B;;;i;;;;d;;;ir;;;ec;;;t;;;;;io;;;;D;;,;a;;;1 F;;;;I;;;:;;F;;;;;;;O~(B;;;;;;I;;;:;;F;;;;;O~) 
~ SEMlCQIDUCI'OR_ 

Appendix A. 7C601 Control Logic Design File (Continued) 

*FLOW-TABLE 

; READING 
RELEVENT EF,RD,WE,A31,A30,A29,A2,INULL,MHOLD,INTACK; 

S 1 
S 1 
S 1 
S 1 
S 1 
S 1 , 
S 1 
S 1 
S 1 
S 1 
S 1 
S 1 
S 1 
S 1 

S 2 
S 2 
S 2 
S 2 
S 2 
S 2 
S 2 
S 2 

S 3 
S 3 
S 3 
S 3 
S 3 
S 3 
S 3 
S 3 

S 4 
S 4 
S 4 
S 4 
S 4 
S 4 
S 4 
S 4 
S 4 
S 4 
S 4 
S 4 
S 4 
S 4 

X -110101-1-, Y 1, F 2 
X -00010101-, Y 1, F 11 
X 1--1------, Y 1, F 4 
X 1--00-----, Y 1, F 4 
X 1--011----, Y 1, F 4 
X 1--0100---, Y 1, F 4 
X 0-0010001-, Y 1, F 9 
X 0--01001--, Y 1, F 1 
X 0--010000-, Y 1, F 1 
X 0--1------, Y 1, F 1 
X 0--00-----, Y 1, F 1 
X 0--011----, Y 1, F 1 
X ---0101-0-, Y 1, F 1 
X -00010111-, Y 1, F 1 

X -110101-1-, Y 1, F 2 
X -00010101-, Y 1, F 11 
X ---1------, Y 1, F 3 
X ---00-----, Y 1, F 3 
X ---011----, Y 1, F 3 
X ---0100---, Y 1, F 3 
X ---0101-0-, Y 1, F 3 
X -00010111-, Y 1, F 3 

X -110101-1-, Y 1, F 2 
X -00010101-, Y 1, F 11 
X ---1------, Y 1, F 1 
X ---00-----, Y 1, F 1 
X ---011----, Y 1, F 1 
X ---0100---, Y 1, F 1 
X ---0101-0-, Y 1, F 1 
X -00010111-, Y 1, F 1 

X -110101-1-, Y 1, F 2 
X -00010101-, Y 1, F 11 
X ---1-----0, Y 1, F 4 
X ---00----0, Y 1, F 4 
X ---011---0, Y 1, F 4 
X ---0100--0, Y 1, F 4 
X ---0101-00, Y 1, F 4 
X -000101110, Y 1, F 4 
X ---1-----1, Y 1, F 5 
X ---00----1, Y 1, F 5 
X ---011---1, Y 1, F 5 
X ---0100--1, Y 1, F 5 
X ---0101-01, Y 1, F 5 
X -000101111, Y 1, F 5 

MR READ 1 
MR WRITE 
READ IDLE - INT_NOT_EMPTY -- MISC ADDR SPACE 
READ_IDLE - INT_NOT_EMPTY 
READ IDLE - INT_NOT_EMPTY 
READ_IDLE - INT_NOT_EMPTY 
READ IDLE - WRITE_FROM_READ_IDLE 
READ_IDLE - READ IDLE INULLED 
READ IDLE - READ IDLE MHELD 
READ IDLE - READ IDLE 
READ IDLE - READ IDLE 
READ IDLE - READ-IDLE 
READ. IDLE - READ IDLE 
READ IDLE - READ IDLE 

MR READ 1 
MR WRITE 
MR READ 1 - MR READ 2 
MR READ 1 - MR:= READ ~) 
MR READ 1 - MR READ 2 
MR-READ-1 - MR:=READ:=2 
MR READ 1 - MR READ 2 
MR-READ -1 - MR -READ-2 

MR READ 1 
MR WRITE 
MR-READ 2 - READ IDLE 
MR:=READ:=2 - READ IDLE 
MR READ 2 - READ IDLE 
MR:= READ~) - READ IDLE 
MR READ 2 - READ IDLE 
MR -READ -2 - READ IDLE 

MR READ 1 
MR WRITE 

MISC ADDR SPACE 

HELD SWITCH 
INULLED SWITCH 

IGNORE MHOLD 
AND INULL 
FIFO ACTS 
INDEPENDENTLY 

INT_NOT_EMPTY - INT_NOT_EMPTY 
INT_NOT_EMPTY - INT_NOT_EMPTY 
INT_NOT_EMPTY - INT_NOT_EMPTY 
INT_NOT_EMPTY - INT NOT EMPTY 
INT_NOT_EMPTY - INT NOT EMPTY 
INT_NOT_EMPTY - INT_NOT_EMPTY 
INT_NOT_EMPTY - NOT_EMPTY_IDLE 
INT_NOT_EMPTY - NOT_EMPTY_IDLE 
INT_NOT_EMPTY - NOT_EMPTY_IDLE 
INT_NOT_EMPTY - NOT_EMPTY_IDLE 
INT_NOT_EMPTY - NOT_EMPTY_IDLE 
INT_NOT_EMPTY - NOT_EMPTY_IDLE 

7-37 



5i;CYmSs 
~ SEMiCONDUCTOR 

Designing with the CY7C439 Bidirectional FIFO (BIFO) 

Appendix A. 7C601 Control Logic Design File (Continued) 

S 5 X -110101-1-, Y 1, F 2 MR_READ_ 1 
S 5 X -00010101-, Y 1, F 11 ~WRITE 

S 5 X -110100-1-, Y 1, F 6 NOT_EMPTY_IDLE - READ_NOT_EMPTY 
S 5 X -00010001-, Y 1, F 8 NOT_EMPTY_IDLE - WRITE_NOT_EMPTY 
S 5 X ---1------, Y 1, F 5 NOT_EMPTY_IDLE - NOT_EMPTY_IDLE MIse ADDR 
s 5 X ---00-----, Y 1, F 5 NOT_EMPTY_IDLE - NOT_EMPTY_IDLE 
S 5 X ---011----, Y 1, F 5 NOT_EMPTY_IDLE - NOT_EMPTY_IDLE 
S 5 X ---010--0-, Y 1, F 5 NOT_EMPTY_IDLE - NOT_EMPTY_IDLE MHELD 
S 5 X -00010-11-, Y 1, F 5 NOT_EMPTY_IDLE - NOT_EMPTY_IDLE INULLED 

S 6 X -110101-1-, Y 1, F 2 MR_READ_ 1 
S 6 X -00010101-, Y 1, F 11 MR WRITE 
S 6 X 1110100-1-, Y 1, F 6 READ_NOT_EMPTY - READ_NOT_EMPTY 
S 6 X 1000100---, Y 1, F 5 READ_NOT_EMPTY - NOT_EMPTY_IDLE 
S 6 X 0--1------, Y 1, F 7 READ_NOT_EMPTY - INT EMPTY 
S 6 X 0--00-----, Y 1, F 7 READ_NOT_EMPTY - INT EMPTY 
S 6 X 0--011----, Y 1, F 7 READ NOT EMPTY - INT_EMPTY 
S 6 X 0--0100---, Y 1, F 7 READ=NOT=EMPTY - INT_EMPTY 
S 6 X 0--0101-0-, Y 1, F 7 READ NOT EMPTY - INT_EMPTY 
S 6 X 000010111-, Y 1, F 7 READ=NOT=EMPTY - INT_EMPTY 
S 6 X 1--1------, Y 1, F 5 READ_NOT_EMPTY - NOT_EMPTY_IDLE 
S 6 X 1--00-----, Y 1, F 5 READ_NOT_EMPTY - NOT_EMPTY_ IDLE 
S 6 X 1--011----, Y 1, F 5 READ_NOT_EMPTY - NOT_EMPTY_IDLE 
S 6 X 1--010--0-, Y 1, F 5 READ_NOT_EMPTY - NOT EMPTY IDLE 
S 6 X 100010-11-, Y 1, F 5 READ_NOT_EMPTY - NOT=EMPTY=IDLE 

S 7 X -110101-1-, Y 1, F 2 MR_READ 1 -
S 7 X -00010101-, Y 1, F 11 MR_WRITE 
s 7 X ---1-----0, Y 1, F 7 INT_EMPTY - INT EMPTY 
S 7 X ---00----0, Y 1, F 7 INT_EMPTY - INT_EMPTY 
S 7 X ---011---0, Y 1, F 7 INT_EMPTY - INT_EMPTY 
S 7 X ---0100--0, Y 1, F 7 INT EMPTY - INT EMPTY 
S 7 X ---0101-00, Y 1, F 7 INT_EMPTY - READ IDLE -
S 7 X -000101110, Y 1, F 7 INT EMPTY - READ IDLE -
S 7 X ---1-----1, Y 1, F 1 INT EMPTY - READ IDLE 
S 7 X ---00-----1, Y 1, F 1 INT EMPTY - READ IDLE 
S 7 X ---011---1, Y 1, F 1 INT EMPTY - READ IDLE 
S 7 X ---0100--1, Y 1, F 1 INT EMPTY - READ IDLE 
S 7 X ---0101-01, Y 1, F 1 INT EMPTY - READ IDLE -
S 7 X -000101111, Y 1, F 1 INT_EMPTY - READ IDLE -
S 8 X -110101-1-, Y 1, F 2 MR READ 1 -
S 8 X -00010101-, Y 1, F 11 MR_WRITE 
S 8 X ---1------, Y 1, F 5 WRITE_NOT_EMPTY - NOT_EMPTY_IDLE 
S 8 X ---00-----, Y 1, F 5 WRITE_NOT_EMPTY - NOT_EMPTY_IDLE 
S 8 X ---011----, Y 1, F 5 WRITE_NOT_EMPTY - NOT_EMPTY_IDLE 
S 8 X ---0100---, Y 1, F 5 WRITE_NOT_EMPTY - NOT_EMPTY_IDLE 
S 8 X ---0101-0-, Y 1, F 5 WRITE_NOT_EMPTY - NOT_EMPTY_IDLE 
S 8 X -00010111-, Y 1, F 5 WRITE_NOT_EMPTY - NOT_EMPTY_IDLE 



.....::=-.. =-- .........,.,.. 
9" :l~RFSS Designing with the CY7C439 Bidirectional FIFO (BIFO) -=, SEMICQIDUCTOR 

Appendix A. 7C601 Control Logic Design File (Continued) 

s 9 X -110101-1-, y 1, F 2 MR READ 1 -
S 9 X -00010101-, y 1, F 11 MR WRITE 
S 9 X ---1------, y 1, F 1 WRITE READ IDLE - READ IDLE - -
S 9 X ---00-----, Y 1, F 1 WRITE READ IDLE - READ IDLE 
S 9 X ---011----, y 1, F 1 WRITE_READ_ IDLE - READ IDLE 
S 9 X ---0100---, y 1, F 1 WRITE_READ_ IDLE - READ IDLE -
S 9 X ---0101-0-, y 1, F 1 WRITE READ IDLE - READ IDLE - -
S 9 X -00010111-, y 1, F 1 WRITE_READ_ IDLE - READ IDLE 

iWRITING 
RELEVENT=HF,BDA,RD,WE,A31,A30,A29,A2,INULL,MHOLD,INTACK; 

S 10, X --110101-1-, y 1, F 2 MR READ 1 
S 10, X --00010101-, y 1, F 11 MR WRITE 
S 10, X -0--1------, y 1, F 22 WRITE IDLE - INT_BDA_FROM_WRITE_ IDLE 
S 10, X -0--00-----, Y 1, F 22 WRITE_ IDLE - INT_BDA_FROM_WRITE_ IDLE 
S 10, X -0--011----, y 1, F 22 WRITE IDLE - INT_BDA_FROM_WRITE_ IDLE 
S 10, X -0--0100---, y 1, F 22 WRITE IDLE - INT_BDA_FROM_WRITE IDLE - -
S 10, X -0--0101-0-, y 1, F 22 WRITE IDLE - INT_BDA_FROM_WRITE_ IDLE -
S 10, X -000010111-, y 1, F 22 WRITE IDLE - INT_BDA_FROM_WRITE_ IDLE -
S 10, X -100010001-, y 1, F 12 WRITE IDLE - WRITE FROM WRITE IDLE - - -
S 10, X -1--1------, y 1, F 10 WRITE IDLE - WRITE IDLE -
S 10, X -1--00-----, Y 1, F 10 WRITE_ IDLE - WRITE IDLE 
S 10, X -1--011----, y 1, F 10 WRITE IDLE - WRITE IDLE - -
S 10, X -1--0100-0-, y 1, F 10 WRITE IDLE - WRITE IDLE 
S 10, X -100010011-, y 1, F 10 WRITE IDLE - WRITE IDLE 
S 10, X -1110100---, y 1, F 10 WRITE IDLE - WRITE IDLE 
S 10, X -1--0101-0-, y 1, F 10 WRITE IDLE - WRITE IDLE 
S 10, X -100010111-, y 1, F 10 WRITE IDLE - WRITE IDLE - -

S 11, X --110101-1-, y 1, F 2 MR READ 1 
S 11, X --00010101-, y 1, F 11 MR WRITE 
S 11, X ----1------, y 1, F 10 MR WRITE - WRITE IDLE -
S 11, X ----00-----, Y 1, F 10 MR WRITE - WRITE_ IDLE 
S 11, X ----011----, y 1, F 10 MR WRITE - WRITE IDLE -
S 11, X ----0100---, y 1, F 10 MR WRITE - WRITE IDLE 
S 11, X ----0101-0-, y 1, F 10 MR WRITE - WRITE IDLE -
S 11, X --00010111-, y 1, F 10 MR WRITE - WRITE IDLE 

S 12, X --110101-1-, y 1, F 2 MR READ 1 -
S 12, X --00010101-, y 1, F 11 MR WRITE 
S 12, X 0---1------, y 1, F 13 WRITE_FROM_WRITE_ IDLE - INT_HF 
S 12, X 0---00-----, Y 1, F 13 WRITE_FROM_WRITE_ IDLE - INT HF 
S 12, X 0---011----, y 1, F 13 WRITE_FROM_WRITE IDLE - INT HF -
S 12, X 0---0100---, y 1, F 13 WRITE_FROM_WRITE IDLE - INT HF -
S 12, X 0---0101-0-, y 1, F 13 WRITE_FROM_WRITE IDLE - INT HF -
S 12, X 0-00010111-, y 1, F 13 WRITE_FROM_WRITE_ IDLE - INT HF 
S 12, X 1---1------, y 1, F 10 WRITE FROM WRITE IDLE - WRITE IDLE -
S 12, X 1---00-----, y 1, F 10 WRITE_FROM_WRITE_ IDLE - WRITE IDLE 
S 12, X 1---011----, y 1, F 10 WRITE_FROM_WRITE_ IDLE - WRITE_ IDLE 
S 12, X 1---0100---, y 1, F 10 WRITE FROM WRITE IDLE - WRITE IDLE 
S 12, X 1---0101-0-, y 1, F 10 WRITE=FROM=WRITE= IDLE - WRITE IDLE -
S 12, X 1-00010111-, y 1, F 10 WRITE_FROM_WRITE IDLE - WRITE IDLE - -

7-39 



sr~ Designing with the CY7C439 Bidirectional FIFO (BIFO) 

Appendix A. 7C601 Control Logic Design File (Continued) 

S 13, X --110101-1-, y 1, F 2 MR_READ_ 1 
S 13, X --00010101-, y 1, F 11 MR_WRITE 
S 13, X ----1-----0, y 1, F 13 INT HF - INT_HF 
S 13, X ----00----0, Y 1, F 13 INT HF - INT HF 
S 13, X ----011---0, y 1, F 13 INT HF - INT_HF 
S 13, X ----0100--0, y 1, F 13 INT_HF - INT_HF 
S 13, X ----0101-00, y 1, F 13 INT.HF - INT HF 
S 13, X --000101110, y 1, F 13 INT HF - INT HF 
S 13, X ----1-----1, y 1, F 14 INT HF - HF IDLE 
S 13, X ----00----1, y 1, F 14 INT HF - HF IDLE 
S 13, X ----011---1, y 1, F 14 INT HF - HF IDLE 
S 13, X ----0100--1, y 1, F 14 INT HF - HF IDLE -
S 13, X ----0101-01, y 1, F 14 INT HF - HF IDLE 
S 13, X --000101111, y 1, F 14 INT HF - HF IDLE 

S 14, X --110101-1-, y 1, F 2 MR READ 1 
S 14, X --00010101-, y 1, F 11 MR WRITE 
S 14, X 1---1------, y 1, F 15 HF IDLE - INT_NOT_HF 
S 14, X 1---00-----, y 1, F 15 HF IDLE - INT_NOT_HF 
S 14, X 1---011----, y 1, F 15 HF IDLE - INT-,NOT_HF 
S 14, X 1---0100---, y 1, F 15 HF IDLE - I NT_NO T_HF 
S 14, X 1---0101:-0-, y 1, F 15 HF IDLE - INT_NOT_HF -
S 14, X 1-00010111-, y 1, F 15 HF IDLE - INT_NOT_HF 
S 14, X 00--1------, y 1, F 17 HF_ IDLE - INT_BDA_FROM_HF_IDLE 
S 14, X 00--00-----, Y 1, F 17 HF IDLE - INT_BDA_FROM_HF_ IDLE 
S 14, X 00--011----, y 1, F 17 HF IDLE - INT_BDA_FROM_HF_ IDLE 
S 14, X 00--0100---, y 1, F 17 HF IDLE - INT_BDA_FROM_HF_ IDLE 
S 14, X 00--0101-0-, y 1, F 17 HF IDLE - INT_BDA_FROM_HF_ IDLE 
S 14, X 0000010111-, y 1, F 17 HF IDLE - INT_BDA_FROM_HF_IDLE -
S 14, X 0100010001-, y 1, F 16 HF IDLE - WRITE_FROM_HF_IDLE -
S 14, X 01--1------, y 1, F 14 HF IDLE - HF_ IDLE -
S 14, X 01--00-----, y 1, F 14 HF IDLE - HF_ IDLE 
S 14, X 01--011----, y 1, F 14 HF IDLE - HF_ IDLE 
S 14, X 01110100---, y 1, F 14 HF IDLE - HF_ IDLE 
S 14, X 01--010--0-, y 1, F 14 HF IDLE - HF_ IDLE 
S 14, X 0100010-11-, y 1, F 14 HF IDLE - HF IDLE - -
S 15, X --110101-1-, y 1, F 2 MR READ_ 1 
S 15, X --00010101-, y 1, F 11 , MR..:...WRITE 
s 15, X ----1-----0, y 1, F 15 INT_NOT_HF - INT NOT HF 
S 15, X ----00----0, Y 1, F 15 INT_NOT_HF - INT_NOT_HF 
S 15, X ----011---0, y 1, F 15 INT_NOT_HF - INT NOT HF 
S 15, X ----0100--0, y 1, F 15 INT_NOT_HF - INT NOT HF 
S 15, X ----0101-00, y 1, F 15 ,- INT_NOT_HF - INT=NOT=HF 
S 15, X --000101110, y 1, F 15 INT_NOT_HF - INT_NOT_HF 
S 15, X ----1-----1, y 1, F 10 INT_NOT_HF - WRITE - IDLE 
S 15, X ----00----1, y 1, F 10 INT_NOT_HF - WRITE IDLE 
S 15, X ----011---1, y 1, F 10 INT_NOT_HF - WRITE_ IDLE 
S 15, X ----0100--1, y 1, F 10 INT_NOT_HF - WRITE_ IDLE 
S 15, X ----0101-01, y 1, F 10 INT_NOT_HF - WRITE IDLE 
S 15, X --000101111, y 1, F 10 INT_NOT_HF - WRITE_ IDLE 

7-40 



~ 

.An~ucrOR Designing with the CY7C439 Bidirectional FIFO (BIFO) 

Appendix A. 7C601 Control Logic Design File (Continued) 

S 16, X --110101-1-, y 1, F 2 MR READ 1 -
S 16, X --00010101-, y 1, F 11 MR WRITE 
S 16, X ----1------, y 1, F 14 WRITE FROM HF IDLE - HF IDLE - -- -
S 16, X ----00-----, Y 1, F 14 WRITE_FROM_HF IDLE - HF IDLE - -
S 16, X ----011----, y 1, F 14 WRITE_FROM_HF_ IDLE - HF IDLE -
S 16, X ----0100---, y 1, F 14 WRITE FROM HF IDLE - HF IDLE - -
S 16, X ----0101-0-, y 1, F 14 WRITE_FROM_HF_ IDLE - HF IDLE -
S 16, X --00010111-, y 1, F 14 WRITE_FROM_HF IDLE - HF IDLE - -

S 17, X --110101-1-, y 1, F 2 MR READ 1 -
S 17, X --00010101-, y 1, F 11 MR WRITE 
S 17, X ----1-----0, y 1, F 17 INT BDA FROM HF IDLE - I NT_BDA_FROM_HF IDLE - - - - -
S 17, X ----00----0, Y 1, F 17 INT_BDA_FROM_HF_ IDLE - INT BDA FROM HF IDLE - - - -
S 17, X ----011---0, y 1, F 17 INT_BDA_FROM_HF IDLE - INT_BDA_FROM_HF IDLE - -
S 17, X ----0100--0, y 1, F 17 INT_BDA_FROM_HF IDLE - INT BDA FROM HF IDLE - - - --
S 17, X ----0101-00, y 1, F 17 I NT_BDA_FROM_HF_ IDLE - INT BDA FROM HF IDLE - - --
S 17, X --000101110, y 1, F 17 INT_BDA_FROM_HF_ IDLE - INT BDA FROM HF IDLE - - - -
S 17, X ----1-----1, Y 1, F 18 INT BDA FROM HF IDLE - INT_BDA_IDLE_FROM_HF IDLE - - -- -
S 17, X ----00----1, y 1, F 18 INT_BDA_FROM_HF_ IDLE - INT BDA IDLE FROM HF IDLE - - - - -
S 17, X ----011---1, y 1, F 18 INT BDA FROM HF IDLE - INT BDA IDLE FROM HF IDLE - - - - - - - --
S 17, X ----0100--1, y 1, F 18 INT_BDA_FROM_HF IDLE - INT BDA IDLE FROM HF IDLE - - - - --
S 17, X ----0101-01, y 1, F 18 I NT_BDA_FROM_HF_ IDLE - INT BDA IDLE FROM HF IDLE 
S 17, X --000101111, y 1, F 18 INT BDA FROM HF IDLE -iNT BDA IDLE FROM HF IDLE - - -- - - - - -

S 18, X --110101-1-, y 1, F 2 MR READ 1 
S 18, X --00010101-, y 1~ F 11 MR WRITE 
S 18, X --110100-1-, y 0, F 19 INT BDA IDLE_FROM_HF_ IDLE - READ1_FROM_BDA_IDLE 
S 18, X --00010001-, y 1, F 21 INT_BDA_IDLE_FROM_HF_ IDLE - WRITE FROM BDA IDLE - - -
S 18, X ----1------, y 1, F 18 INT_BDA_IDLE_FROM_HF_ IDLE-INT_BDA_IDLE_FROM_HF_IDLE 
S 18, X ----00-----, Y 1, F 18 INT_BDA_IDLE_FROM_HF IDLE - INT_BDA_IDLE_FROM_HF IDLE - -
S 18, X ----011----, y 1, F 18 INT BDA IDLE FROM HF IDLE - INT BDA IDLE FROM HF IDLE - - - - - - - - - -
S 18, X ----010--0-, y 1, F 18 INT BDA IDLE FROM HF IDLE - INT BDA IDLE FROM HF IDLE - - - - - - - - - -
S 18, X --00010-11-, y 1, F 18 INT BDA IDLE FROM HF IDLE - INT BDA IDLE FROM HF IDLE - - - - - - - - - -

S 19, X ----------- Y 0, F 20 READ1_FROM BDA IDLE - HF IDLE 

S 20, X ----------- Y 0, F 14 READ2 FROM BDA IDLE - HF IDLE - - - -

S 21, X --110101-1-, y 1, F 2 MR READ 1 
S 21, X --00010101-, y 1, F 11 MR WRITE 
S 21, X ----1------, y 1, F 18 WRITE_FROM_BDA IDLE - INT_BDA_IDLE_FROM_HF - IDLE 
S 21, X ----00-----, Y 1, F 18 WRITE_FROM_BDA_IDLE - INT_BDA_IDLE_FROM_HF - IDLE 
S 21, X ----011----, y 1, F 18 WRITE_FROM_BDA_IDLE - INT_BDA_IDLE_FROM_HF - IDLE 
S 21, X ----0100---, y 1, F 18 WRITE_FROM_BDA_IDLE - INT_BDA_IDLE_FROM_HF - IDLE 
S 21, X ----0101-0-, y 1, F 18 WRITE_FROM_BDA_IDLE - INT_BDA_IDLE_FROM_HF - IDLE 
S 21, X --00010111-, y 1, F 18 WRITE_FROM_BDA_IDLE - INT_BDA_ID LE_F ROM_HF - IDLE 

7-41 



~ 
=t: ~~RESS Designing with the CY7C439 Bidirectional FIFO (BIFO) 
~~~~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. 7C601 Control Logic Design File (Continued)

S 22, X --110101-1-, Y 1, F 2
S 22, X --00010101-, Y 1, F 11
S 22, X ----1-----0, Y 1, F 22
S 22, X ----00----0, Y 1, F 22
S 22, X ----011---0, Y 1, F 22
S 22, X ----0100--0, Y 1, F 22
S 22, X ----0101-00, Y 1, F 22
S 22, X --000101110, Y 1, F 22
S 22, X ----1-----1, Y 1, F 23
S 22, X ----00----1, Y 1, F 23
S 22, X ----011---1, Y 1, F 23
S 22, X ----0100--1, Y 1, F 23
S 22, X ----0101-01, Y 1, F 23
S 22, X --000101111, Y 1, F 23

S 23, X --110101-1-, Y 1, F 2
S 23, X --00010101-, Y 1, F 11
S 23, X --110100-1-, Y 0, F 24
S 23, X --00010001-, Y 1, F 26
S 23, X ----1------, Y 1, F 23
S 23, X ----00-----, Y 1, F 23
S 23, X ----011----, Y 1, F 23
S 23, X ----010--0-, Y 1, F 23
S 23, X --00010-11-, Y 1, F 23

S 24, X ----------- Y 0, F 25

S 25, X ----------- Y 0, F 10

S 26, X --110101-1-, Y 1, F 2
S 26, X --00010101-, Y 1, F 11
S 26, X ----1------, Y 1, F 23
S 26, X ----00-----, Y 1, F 23
S 26, X ----011----, Y 1, F 23
S 26, X ----0100---, Y 1, F 23
S 26, X ----0101-0-, Y 1, F 23
S 26, X --00010111-, Y 1, F 23

*STATE-ASSIGNMENT
Z-VALUES

*PIN

MR READ 1
MR WRITE
INT_BDA_FROM_WRITE_IDLE INT_BDA_FROM_WRITE_IDLE
INT_BDA_FROM_WRITE_IDLE - INT_BDA_FROM_WRITE_IDLE
INT_BDA_FROM_WRITE_IDLE - INT_BDA_FROM_WRITE_IDLE
INT_BDA_FROM_WRITE_IDLE - INT_BDA_FROM_WRITE_IDLE
INT_BDA_FROM_WRITE_IDLE - INT_BDA_FROM_WRITE_IDLE
INT_BDA_FROM_WRITE_IDLE - INT_BDA_FROM_WRITE_IDLE
INT_BDA_FROM_WRITE_IDLE -INT_BDA_IDLE_FROM_WRITE_IDLE
INT_BDA_FROM_WRITE_IDLE -INT_BDA_IDLE_FROM_WRITE_IDLE
INT_BDA_FROM_WRITE_IDLE -INT_BDA_IDLE_FROM_WRITE_IDLE
INT_BDA_FROM_WRITE_IDLE -INT_BDA_IDLE_FROM_WRITE_IDLE
INT_BDA_FROM_WRITE_IDLE -INT_BDA_IDLE_FROM_WRITE_IDLE
INT_BDA_FROM_WRITE_IDLE -INT_BDA_IDLE_FROM_WRITE_IDLE

MR READ 1
MR WRITE
INT BDA IDLE_FROM_WRITE_IDLE - READ1_FROM_BDA_IDLE
INT_BDA_IDLE_FROM_WRITE IDLE - WRITE_FROM_BDA_IDLE

;INT_BDA_IDLE_FROM_WRITE_IDLE INT_BDA_IDLE_FROM_WRITE_IDLE
INT_BDA_IDLE_FROM_WRITE_IDLE
INT_BDA_IDLE_FROM_WRITE_IDLE
INT_BDA_IDLE_FROM_WRITE_IDLE
INT_BDA_IDLE_FROM_WRITE_IDLE

MR READ 1
MR WRITE
WRITE_FROM_BDA IDLE - INT_BD~IDLE_FROM_HF_IDLE

WRITE FROM BDA IDLE - INT BDA IDLE FROM HF IDLE - - - - --
WRITE_FROM_BDA_IDLE - INT_BDA_IDLE_FROM_HF_IDLE
WRITE_FROM_BDA_IDLE - INT_BDA_IDLE_FROM_HF_IDLE
WRITE_FROM_BDA_IDLE - INT_BDA_IDLE_FROM_HF_IDLE
WRITE_FROM_BDA_IDLE - INT_BDA_IDLE_FROM_HF_IDLE

CLK = 1, BDA = 2, HF = 3, EF = 4, RD = 5, WE = 6, A31 = 7, A30 8,
A29 = 9, A2 10, INULL = 11, MHOLD = 14, INTACK = 13,
Q3 21, Q1 18, LEOE 15, Il = 17, BYPA = 19, 10 = 20,
Q2 = 16, MR 22, STBA = 23;

*RUN-CONTROL
LISTING = LONG,SYMBOL-TABLE,EQUATIONS,PINOUT,PLOT,FUSEPLOT;
PROGFORMAT = L-EQUATIONS,JEDEC;
OPTIMIZATION = p-terms;
*END

7-42

~
~

=:.~~ Designing with the CY7C439 Bidirectional FIFO (BIFO)
SEMlccmUCTOR

Appendix B.· 80386 Control Logic Design File

*IDENTIFICATION
BIDIRECTIONAL FIFO CONTROL CIRCUITRY FOR THE INTEL 386
SEAN DINGMAN
CYPRESS SEMICONDUCTOR

*PAL
TYPE=PALC22V10;

* X-NAME S
CLK,RESET,MR,BDA,BYPA,HF,EF,RW,MIO,A16,ADS,INTA;

*Z-NAMES
I2,I1,IO,STBB,BYPB,Q5,Q4,Q3,Q2,Q1;

*Z-VALUES

Sl 0 0 0 1 1 --000 (A) READ IDLE (6)
S2 0 0 1 1 1 INT SW READ
S3 0 1 1 1 1 0---- (D) INT_NOT_EMPTY
S4 0 0 0 1 1 --001 (A) NOT EMPTY IDLE
S5 0 0 0 0 1 -0000 (B) READ FROM NOT EMPTY IDLE 1 (9)
S6 0 0 0 0 1 -0001 (B) READ=FROM=NOT=EMPTY=IDLE=2
S7 0 0 0 0 1 -0010 (B) READ_FROM_NOT_EMPTY_IDLE_3
S8 0 1 1 1 1 1---- (D) INT_EMPTY
S9 0 0 0 1 0 -0000 (C) WRI TE_FROM_NOT_EMP TY_IDLE_1 (12)
S10 0 0 0 1 0 -0001 (C) WRITE FROM NOT EMPTY IDLE 2
Sl1 0 0 0 1 0 -0010 (C) WRITE-FROM-NOT-EMPTY-IDLE-3
S12 0 0 0 1 0 -0011 (C) WRITE-FROM-READ IDLE-1 -
S13 0 0 0 1 0 -0100 (C) WRITE=FROM=READ=IDLE=2
S14 0 0 0 1 0 -0101 (C) WRITE_FROM_READ_IDLE_3

S15 0 0 0 1 1 --010 (A) WRITE IDLE
S16 0 1 0 1 1 INT SW WRITE
S17 0 0 0 0 1 -0011 (B) WRITE_FlROM_WRITE_IDLE 1
S18 0 0 0 0 1 -0100 (B) WRITE FROM WRITE IDLE 2
S19 0 0 0 0 1 -0101 (B) WRITE=FROM=WRITE=IDLE=3
S20 1 0 0 1 1 0---- (E) INT HF
S21 0 0 0 1 1 --011 (A) HF_IDLE
S22 1 0 0 1 1 1---- (E) INT_NOT_HF
S23 0 0 0 0 1 -0110 (B) WRITE FROM HF IDLE 1
524 0 0 0 0 1 -0111 (B) WRITE-FROM-HF-IDLE-2
S25 0 0 0 0 1 -1000 (B) WRITE=FROM=HF=IDLE=3
S26 1 1 1 1 1 0---- (F) INT_BDA_FROM_HF_IDLE
S27 0 0 0 1 1 --100 (A) INT BDA IDLE FROM HF IDLE
S28 0 0 0 1 0 -0110 (C) READ_FROM_HF=IDLE=l -
S29 0 0 0 1 0 -0111 (C) READ FROM HF IDLE 2
S30 0 0 0 1 0 -1000 (C) READ=FROM=HF=IDLE=3
531 1 1 1 1 1 1---- (F) INT_BDA_FROM_WRITE_IDLE
S32 0 0 0 1 1 --101 (A) INT BDA IDLE FROM WRITE IDLE
S33 0 0 0 1 0 -1001 (C) READ FROM WRITE IDLE 1 -
S34 0 0 0 1 0 -1010 (C) READ-FROM-WRITE-IDLE-2
S35 0 0 0 1 0 -1011 (C) READ=FROM=WRITE=IDLE=3

7-43

&.~ --;;;;;;===D;;;;;;;e;;;;;;;s;;;::ig::;;D;;;;;;;iD;;;;::g;;;;;;Wl;;;;;;;O;;;;;;;th;;;;;;;t;;;;;;;h;;;;;;;e;;;;;;;C;;;;;;;Y;;;;;;;';;;;;;;C;;;;;;;4;;;;;;;39=B;;;;;;;id;;;;;;;ir;;;;;;;e;;;;;;;ct;;;;;;;io;;;;;;;D;;;;;;;8;;;;;;;1 ;;;;;;;FI;;;;;;;F;;;;;;;O;;;;;;;;;;(B;;;;;;;I;;;;;;;F;;;;;;;:;O)
~ SEMIcc:wucrOR_

*FLOW-TABLE

; RE5ETING
RELEVENT =
5[1..26],
5[1..26],
5[1..26],

Appendix B. 80386 Control Logic Design File (Continued)

5TATE5
RE5ET,MR,BYPA

X 0--, F 1
X 100, F 16
X 101, F 2

READ IDLE ON RE5ET
5WITCH DIRECTION5 B-A
SWITCH DIRECTION5 A-B

RELEVENT MR = 1;
RELEVENT RE5ET = 1;

; READING
RELEVENT EF,RW,MIO,A16,AD5,INTA;

S 1 READ_IDLE - INT_NOT_EMPTY
5 1 READ_IDLE - INT_NOT_EMPTY
5 1 READ IDLE - WRITE BYPA55 FROM READ IDLE 1
5 1 READ_IDLE - READ~IDLE - - -

S 2 INT_5W_READ - READ_IDLE
5 2 INT_5W_READ _. INT_5W_READ

5 3 INT_NOT_EMPTY - NOT_EMPTY_IDLE
5 3 INT_NOT_EMPTY - NOT_EMPTY_IDLE

5 4 NOT EMPTY IDLE - READ FROM NOT EMPTY IDLE 1
5 4 NOT_EMPTY:=IDLE - WRITE_FROM_NOT_EMPTY_IDLE_l
5 4 NOT_EMPTY_IDLE - NOT_EMPTY_IDLE

5 7 READ_FROM_NOT_EMPTY_IDLE_3 - INT_EMPTY
S 7 READ_FROM_NOT_EMPTY_IDLE_3 - NOT_EMPTY_IDLE

5 8 INT_EMPTY - READ_IDLE
S 8 INT_EMPTY - INT_EMPTY

S 9 X F 10

5 10, X ------

5 11, X F 4 WRITE_FROM_NOT_EMPTY_IDLE_3 -NOT_EMPTY_IDLE

5 12, X F 13 WRITE_FROM_READ_IDLE_l - WRITE FROM READ IDLE_2

5 13, X F 14 WRITE_FROM_READ_IDLE_2 - WRITE_FROM_READ_IDLE_3

5 14, X F 1 WRITE_FROM_READ_IDLE_3 - READ_IDLE

7-44

Q""""" Designing with the CY7C439 Bidirectional FIFO (BIFO)
SEMICC.NDUCrOR=~~====~

Appendix B. 80386 Control Logic Design File (Continued)

;WRITING
RELEVENT = HF,BDA,RW,MIO,A16,ADS,INTA ;

S 15, X --1010-, F 17
S 15, X -0-1---, F 31
S 15, X -0-00--, F 31
S 15, XREST F 15

S 16, X ------1, F 15
S 16, X ------0, F 16

S 17, X ------- F 18

S 18, X ------- F 19

S 19, X 1------, F 15
S 19, X 0------, F 20

S 20, X ------1, F 21
S 20, X ------0, F 20

S 21,
S 21,
S 21,
S 21,
S 21,
S 21,
S 21,

X 1--1---,
X 1--00--,
X --1010-,
X 00-1---,
X 00-00--,
X --0010-,
XREST

F 22
F 22
F 23
F 26
F 26
F 27
F 21

S 22, X ------0, F 22
S 22, X ------1, F 15

S 23, X ------- F 24

S 24, X ------- F 25

S 25, X ------- F 21

S 26, X ------0, F 26
S 26, X ------1, F 27

S 27, X --0010-, F 28
S 27, XREST F 27

S 28, X ------- F 29

S 29, X ------- F 30

S 30, X ------- F 21

S 31, X ------0, F 31
S 31, X ------1, F 32

WRITE_IDLE - WRITE_FROM_WRITE_IDLE 1
WRITE_IDLE - INT_BDA_FROM_WRITE_IDLE
WRITE IDLE - INT BDA FROM WRITE IDLE - - - -
WRITE_IDLE - WRITE IDLE

INT_SW_WRITE - WRITE_IDLE
INT_SW_WRITE - INT_SW_WRITE

WRITE_FROM_WRITE_IDLE_3 - WRITE_IDLE
WRITE_FROM_WRITE_IDLE_3 - INT HF

INT HF - HF IDLE
INT_HF - INT_HF

HF IDLE - INT_NOT_HF
HF IDLE - INT_NOT_HF
HF IDLE - WRITE FROM_HF_IDLE 1
HF IDLE - INT BDA FROM HF IDLE - - --
HF IDLE - INT BDA FROM HF IDLE
HF_IDLE - READ_FROM_HF=IDLE 1
HF IDLE - HF IDLE

INT_NOT_HF - INT_NOT_HF
INT_NOT_HF - WRITE_IDLE

WRITE FROM HF IDLE 1 - WRITE FROM HF IDLE 2

INT_BDA_FROM_HF_IDLE - INT_BDA_FROM_HF_IDLE
INT_BDA_FROM_HF_IDLE - INT_BDA_IDLE_FROM_HF_IDLE

INT BDA IDLE FROM_HF_IDLE - READ_FROM_HF_IDLE_1
INT BDA IDLE FROM HF IDLE - INT BDA IDLE FROM_HF_IDLE

INT_BDA_FROM_WRITE_IDLE - INT_BDA_FROM_WRITE_IDLE
INT_BDA_FROM_WRITE_IDLE - INT_BDA_IDLE_FROM_WR_IDLE

7-45

.e:~RESS Designing with theCY7C439 Bidirectional FIFO (BIFO)
~, ~~~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S 32, X --0010-,
S 32, XREST ,

S 33, X -------

S 34, X -------

S 35, X -------

*STATE-ASSIGNMENT
Z-VALUES

*PIN

F
F

F

F

F

Appendix B. 80386 Control,Logic Design File (Continued)

33
32

34

35

15

INT BDA IDLE FROM WR IDLE - READ FROM_WR_IDLE_1
INT_BDA_IDLE_FROM_WR_IDLE - INT_BDA_IDLE_FROM_WR_IDLE

CLK = 1, RESET = 2, MR = 3, BDA = 4, BYPA = 5, HF = 6, EF = 7,
RW = 8, MIO = '9, A16 10, ADS = 11, INTA = 13, STBB = 14, BYPB 15,
12 = 16, 11 = 17, 10 = 18, Q1 = 19, Q2 = 20, Q3 = 21, Q4 = 22, Q5 = 23;

*RUN-CONTROL
LISTING = LONG,SYMBOL-TABLE,EQUATIONS,PINOUT,PLOT,FUSEPLOT;
PROGFORMAT = L-EQUATIONS,JEDEC;
OPTIMIZATION = p-terms;
*END

7~46

Microcoded System Performance

This application note describes the performance of
Cypress's microcoded processor devices in 16- and 32-bit
processors configurations. Included is a critical-path
timing analysis of the data loop and control loop for
generic 16- and 32-bit systems. A discussion of the speed
and power advantages offered by CY7C9101 systems is
also presented.

CY7C245
CY7C90l
Carry Logic
CY7C901
Register

Data Loop
Clock to Output
A, BtoG, P
Go. Po to Cn + z
Cn to Worst Case
Setup

12
28
9

18
4

71 ns

The Cypress microcoded processor family is the
fastest available. Increasing functional integration is evi­
dent in the CY7C9101 16-bit slice, which is the
equivalent of four CY7C901s (4-bit slices) and a 2902
carry lookahead generator. By placing these functions on
a single chip, Cypress has reduced the interconnect delays
between chips. Significant improvement in overall system

CY7C245
MUX
CY7C91O
CY7C245

Control Loop
Clock to Output
Select to Output
CC to Output
Access Time

12
12
22
20

66 ns

Minimum Clock Period = 71 ns

Figure 1. CY7C901-Based 16-Bit System (Pipelined System, Add without Simultaneous Shift)

7-47

]
TO
CY7C901(6.7.8)

Data Loop Control Loop
CY7C245 Clock to Output 12 CY7C245 Clock to Output 12
CY7C901 A,BtoG,P 28 MUX Select to Output 12

[Go. 1'0 toG. P 12 CY7C91O CC to Output 22
Carry

GO, Po to Cn + x 9 CY7C245 Access Time 20
Logic

Cn to en + x. y, z 14 66ns

CY7C901 en to Worst Case 18
Register Setup 4

97ns

Minimum Clock Period = 97 ns

Figure 2. CY7C901-Based 32-Bit System (pipelined System, Add without Simultaneous Shift)

Data Loop Control LOop
CY7C245 Clock to Output 12 CY7C245 Clock to Output 12
CY7C9101 A, B to Y, Cn<+ 16, OVR 37 MUX Select to Output 12
Register Setup 4 CY7C910 CC to Output 22

53 ns CY7C245 Access Time 20

66ns

Minimum Clock Period = 66 ns

Figure 3. CY7C9101-Based 16-nit System (Pipelined System, Add without Simultaneous Shift)

7-48

CY7C245
CY7C9101
CY7C9101
Register

Data Loop
Clock to Output
A, B to Cn + 16
Cn to Worst Case
Setup

12
35
24
4

75ns

CY7C245
MUX
CY7C910
CY7C245

Minimum Clock Period = 75 ns

Control Loop
Clock to Output
Select to Output
CCto Output
Access Time

Figure 4. CY7C9101-Based 32-Bit System (Pipelined System, Add without Simultaneous Shift)

Table 1. Icc Calculations

12
12
22
20

66 ns

throughput, reduced board space, and reduced power re­
quirements are among the advantages of CY7C9101-based
systems over CY7C901-based systems. Icc Calculations for 16-Bit Systems (mA)

Minimum Cycle Time Calculations
Power is an important consideration in microcoded

systems. For an equivalent system, the CY7C901 offers
substantial savings in power over bipolar devices. Coupled
with other low-power Cypress CMOS devices, the power
savings over bipolar is clearly evident.

Sequencer

Registered PROM

Carry Logic

ALUElments

4x 4-Bit Slice

16-Bit Slice

Total

Cypress CMOS

CY7C901 CY7C910 Bipolar
Based Based

100 100 340

90 90 185

110 -- 110

320 1060

75

620 265 1695

The functional integration of four CY7C90ls with
carry lookahead gives the CY7C9101 even greater ad­
vantages. The number of ALU elements is reduced by a
factor of four, and there is a reduction in the carry logic
needed. A comparison between bipolar, CY7C901-based,
and CY7C9101-based systems appears in Table 1. Note
that in this comparison the devices common to all 16- and
32-bit system configurations are included in the Icc com­
putations.

Icc Calculations for 32-Bit Systems (mA)

Cypress CMOS devices offer the fastest microcoded
solutions, while keeping power consumption to reasonable
levels. The CY7C901-based systems beat bipolar's fastest
devices in a speed comparison, while consuming roughly
one-third the power. Upgrading to the CY7C9101 results
in even faster systems, at close to one-third the power of
the CY7C901-based systems. This comparison is il­
lustrated in Table 2.

Sequencer

Registered PROM

Carry Logic

ALU Elements

8x 4-Bit Slice

2x 16-Bit Slice

Total

100 100 340

90 90 185

330 110 330

640 2120

150

1160 450 2975

Table 2. Speed/Power Comparison of Bipolar, CY7C901, CY7C9101

Minimum Clock Cycle (ns) Maximum Icc (mA)

Bipolar CY7C901 CY7C9101 Bipolar CY7C901 CY7C9101

16-Bit Systems 85 71 66 1695 620 265

32-Bit Systems 111 97 75 2975 1160 450

7-49

CYPRESS
SEMICONDUCTOR

Systems with CMOS 16-bit Microprogrammed
ALUs

This application note shows how to improve
reliability. flexibility. and speed by diagramming timing
for the CY7C9116 and CY7C9117 arithmetic and logic
units (ALUs). Also highlighted are applications that
benefit significantly from these deviCes' architecture and
CMOS technology.

In the past. the dominant use of microprogrammed
ALU s has been as general-purpose data processors in
computers. Using microprogrammed machines in these
applications improved performance because general­
purpose microprocessors were too slow. In addition to
allowing custom instruction sets. microprogrammed
processors provided the only way to achieve the desired
number of MIPS (millions of instructions per second).

IZ IIORD

With the advent of high-performance. 30-MIPS
reduced instruction set computers (RISC). however.
microprogrammed ALUs have relinquished their hold
on general-purpose data-processor applications and
found homes as custom processors or special-purpose
controller s.

The CY7C911617
The CY7C9116 and CY7C9117 are extremely fast

arithmetic and logic units implemented in a 1.2-micron.
double-metal. CMOS process technology. As shown in
Figures 1 and 2. the CY7C9117 differs from the
CY7C9116 by incorporating separate buses for data
input (0) and output (Y) and thus allows for the design

10 Ell

111 YO - Y15

DLE

10 - Il.~>-~r-~--------~---+----r-r-r----+~~----~~~---.

I SRE c::>----t----j

OEt

KUI A_D ZEIO DETECT

Tl _ T'i:=::>-----I

CT

Figure 1. CY7C9116 Block Diagram

7-50

Systems with CMOS 16·bit Microprogrammed ALU's

of faster microprogrammed systems. Otherwise the
CY7C9116 and CY7C9117 are identical and will be
described here as a single device. Both units are
capable of 35-ns worst-case propagation delays from in­
struction in to data out.

The CY7C911617 contains a single-port, 32 x 16-bit­
word register file; two operand arithmetic units; and
three input logic units. Carry-look-ahead logic is also in­
tegrated with the logic and arithmetic units.

The CY7C911617's instructions can be divided into
eleven types, as listed in Table 1. The on-chip barrel
shifter attains single-clock operation on the extensive
bit-manipulation and rotate instructions. In fact, all in­
structions in the ALU execute within one clock except
for immediate instructions, where a second clock is
needed to obtain the immediate operand.

The CY7C911617 is TIL compatible and fully inter­
changeable with its counterparts from Advanced Micro
Devices and Texas Instruments. However, exercise cau­
tion when illegal instructions or undefined opcodes are
used. Because the results are not predictable or guaran­
teed during these operations, they should not be used in
any production system. Table 2 shows an example of
such a condition, when SOA is mistakenly encoded as
an undefined operation.

Another feature of the Cypress CY7C911617 is that
it allows the priority instruction to use both the source
and destination as the accumulator. Be aware that older
implementations of this architecture in bipolar technol-

3Z VOID

11 lIT RA
ADDIESS

Table 1. 7C911617 Instruction Types

Instruction Type

Single Operand inc:

Two Operand add:

Single Bit Shift shupl:

Bit Oriented

Rotate by n bits

Rotate & Merge

Rotate & Compare

Prioritize

CRC

Status

No-Op

cref:

~
sre plus 1-> dest

sre plus sre -> dest

sre up 1

setnr:

rotrl:

mdai:

rotc:

prtnr:

set RAM bit n

rotate RAM n bits

rotate sre and src' w/mask

rotate src cmp w/sre' set cc

indicate highest priority bit

create ere fwd from qlink

rstst:

noop:

reset status register

no effect

ogy do not allow such an operation. When you use older
bipolar implementations or test devices, some machines
might behave improperly, and undefined or illegal
operations might produce different results for various
device types, depending on vendor and technology.

Faster Operation and Lower Power
Combining the CY7C911617's advanced

microprogrammed architecture with Cypress's CMOS
process technology provides many benefits. Specifically,
custom computing units and controllers can operate at
higher frequencies and consume less power - about

IOE7

16
YO - TIS

16
DO - 011

OLE

10 _ 11~>--~~-~---~---r-~-+-+-~-r-+--+-+-4--~

1 S R E c:::>-----j----j

OEtC=>--V

F MUI AID ZEIO DETECT

T 1 - TC::::::>--'-'---\

C T c:::::J-------'

Figure 2. CY7C9117 Block Diagram

7-51

SJ:= Systems with CMOS 16-bit Microprogrammed ALU's
~ ~~R~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table 2. Example Instruction Encoding Error Table 3. CMOS vs. Bipolar Performance and Power

All

AMD

Cypress

11

SOA instruction:

Instruction Code

Conect encoding:

111\;000 10000000

A Coding Error

l11QJUlO 10000000

1110011010000000

1110011010000000

ACC -> Y bus

Rm!J.t

()()()()1l10()()()()1101

1111111111111110

11110100 1000 1100

()()()()OOOO()()()()IOOI

80% less - while offering higher reliability. Table' 3
compares the performance and power characteristics of
a typical 16-bit microprogrammed ALU and the
CY7C911617. The results show a significant power
savings, which promote lower die temperatures and thus
enhance the CY7C911617's reliability.

Other aspects of the CY7C911617's CMOS process­
ing technology also contribute to increased system
reliability. In the past, CMOS technologies experienced
problems with destructive latch-up conditions. Cypress
CMOS processes minimize this problem by employing
guard rings and a substrate bias generator to achieve
latch-up trigger currents in excess of 200 rnA. Also con­
tributing to reliability and performance are voltage
supply tolerances of 10% and electrostatic discharge
(ESD)' protection circuitry, which allows the device to
withstand voltages greater than 2001 v.

System Timing
In microcoded systems, two loops determine system

performance: the data and control loops. The control
loop (Figure 3) is essentially the instruction stream for
the CY7C911617. The current instruction combined with
other status information generates a new address and
instruction for the processor.

The data loop (Figure 4) moves information from
an external source to a register; the CY7C911617 then
uses the information to produce a result and status in­
formation for use by the external element. Because in­
structions and data are in separate domains, it should
be apparent that this is a Harvard-style architecture.
Thus, to achieve optimal performance, both the control
and data loops should be as short as possible and equal
in length.

Figure 5 shows an example of control loop timing
for a typical CY7C911617 system. Four CY7C245A
registered 2K x 8 PROMs implement the control store
and current state register. The CY7C91O 12-bit microse­
quencer allows for 4K words of addressing, i.e., instruc-

7-52

Cypress Generic

E2lOO ~

Speed '(ns) 35 53

Power (Icc, rnA)

Stactic 30 400
Max@10Mhz 150 600

Technology CMOS Bipolar

tion memory. In this example a 74F151 multiplexes
status and condition-code information into the sequen­
cer to complete the control loop. The components that
make up this system are appropriate for embedded ap­
plication s that have a fixed microcode control store.

You can improve system performance and
flexibility by using Cypress static RAMs instead of
PROMs, thus forming a write able control store (WCS).
(In this case, flexibility represents the ability to
download or reprogram microcode at run time, which
permits the system designer or user to load different ap­
plications or algorithms into the machine.) As
diagrammed in Figure 6, four CY7C168 4K x 4 static
RAMS can replace the ROMed microcode control
store. However, you must add an external 74FCT374A
register to replace the CY7C245A PROM's on-chip
register. Thus, you pay a board space penalty for slight­
ly improved performance and flexibility.

The data-loop timing for both the embedded and
reprogrammable microcoded applications appears in
Figure 7. Here, the CY7C911617 and its fast operation

CC from ALU

L-______ ~ L-__________ toALU

Figure 3. Microcoded System Control Loop

Systems with CMOS 16-bit Microprogrammed ALU's

Figure 4. Microcoded System Data Loop

benefit the systems designer in two ways. First, because
the data path is significantly faster than the control
path, results are available early for the external data
units, thereby allowing more time for external opera­
tions. Second, as faster memory technologies become
available, you can design systems to operate at rates up
to 25 MIPS.

Applications, Old and New
The applications for fast 16-bit microprogrammed

CMOS ALUs fall into two categories. The first category
resembles these devices' traditional use as a central
processing unit for general-purpose computing. You
might use a microprogrammed machine simply because
instruction-set compatibility with previous machines is a
design requirement. Here, the CY7C911617's speed and
low power serve as powerful upgrades to existing
hardware, with the possibility of lower cost from
reduced power supply needs.

The more exciting applications for 16-bit
microprogrammed ALUs are in loosely coupled

Microcode Control Store

7C245 Registered Proms

Current State Register

Registered Output

Mux. Delay 9ns
7C910 CC -> Output 22ns

7C245A Setup Time 12ns

7C245A CP -> Q .l.§n§.

Total 61ns

Figure 5. Embedded Application Control Loop Timing

Mux. Delay 9ns

7C910 CC -> Output 22ns

7C168 Access time 20ns

74FCf374 CP -> Q ~

Total 57.5n:

Figure 6. 7C911617 Reprogrammable Control Loop
Timing

coprocessor or embedded controllers. Here, the
CY7C911617's special bit, rotate, and CRC capabilities
deliver significant performance advantages over "off­
the-shelf' microprocessors. Graphics and imaging
coprocessor s benefit from single-clock bit manipulation
and rotation. The forward and reverse CRC instructions
prove very helpful in communications and disk-control­
ler applications, in terms of speed and code density.
Graphics, communications, and disk controllers are just
three examples that benefit from an application-specific
instruction set, as provided by microprogrammed
machines such as the CY7C911617.

There remain a myriad of custom control and em­
bedded applications in military, industrial, and commer­
cial systems that can exploit the performance and
flexibility of the CY7C9116 and CY7C9117 CMOS 16-
bit microprogrammed arithmetic and logic units.

6.5ns

3m
41.5ns

Figure 7. Microcoded System Data Loop Timing

Section Contents

Page
RIse
SPARC Software Advantages Over CISC 8-1
Register Windows. .. 8-3
CY7C600 System Design Footnotes .. 8-7
The Impact of Memory on High-Performance RISC Microprocessors. .. 8-17
High-Speed CMOS SPARC Design ... 8-23
SPARC System Surface-Mount Design .. 8-33
Memory System Design for the CY7C601 SPARC Processor 8-38
Cache Memory Design .. 8-48
Synchronous Trap Identification for CY7C600 Systems. .. 8-65
An Introduction to Mbus 8-69
Multiprocessing System Boot-Up ... 8-81
Porting UNIX to the CY7C604 or CY7C605 ... 8-84
Getting Started with Real-Time Embedded System Development. .. 8-89
SPARC as a Real-Time Controller .. 8-95
Memory Protection and Address Exception Logic for the CY7C611 SPARC Controller 8-108

~
iii CYPRESS

, SEMICONDUCTOR

SPARe Software Advantages over else

This application note explains the ways in which
SPARe promotes more efficient software implementations
of applications. Several attributes of the SPARe architec­
ture make efficient high-level language (HLL) optimizing
compilers possible. These attributes ~nable a compiler to
map code from HLLs such as e, Fortran, and Pascal into
SPARe native code without a significant loss in execution
speed.

CISC Software Drawbacks
The efficiency of an optimizing compiler is critical.

Before the development of RISe architecture, a compiler
designer was faced with the near-impossible task of creat­
ing a compiler that mapped HLL code correctly into elSe
native code and simultaneously generated an optimal
elSe native code stream. There is no way of algo­
rithmically resolving the twin objectives that compiled
elSe native code be both correct and optimal- i.e., that
the code does what the programmer defined in the HLL
code and out of all the instruction streams possible, the
one generated executes in the shortest time.

The following primary attributes of a elSe architec-
ture cause this fundamental difficulty:

A complex, non-orthogonal, overlapping instruction
set
Non-visible execution pipeline
Destructive two-address architecture
Mixed memory/register model of execution
A complex, non-orthogonal, overlapping instruction

set allows you to substitute more than one native code
instruction sequence for the same HLL instruction. For
example, a typical elSe instruction set has more than one
instruction for addressing memory, performing arithmetic
instructions, testing and branching, etc. No one instruction
in an instruction category is optimal for all situations, and
there lies the problem.

A compiler only knows how to accomplish tasks, not
why. The compiler does not understand what the program­
mer is trying to do with the HLL code. The compiler only
knows how to parse the HLL code to produce native code

8-1

for the target machine. Without knowing what the HLL
program is trying to accomplish, the compiler cannot
select the one optimal instruction out of several similar
instructions that accomplish almost the same result. The
compiler merely uses one that works in all situations. The
generated code is optimal in terms of· execution speed
only by chance.

When the epu's pipeline is not visible to the com­
piler, there is no way to schedule native code instructions
to take advantage of unfilled pipeline slots. These pipeline
"bubbles" exist in every computer architecture because of
delays caused by the underlying system hardware. Be­
cause . the compiler cannot schedule operations during
these bubbles, the processor spends a significant portion
of its time in an idle or No-op mode.

A destructive two-address architecture means that an
instruction is of the form

A & B --> A
where A and B are registers, "&" is a logical or arith­

metic operation, and "--" signifies that the results are
moved to a destination (in this case, A). This instruction
destroys the contents of A; hence the name, destructive
two-address architecture. When A's contents are
destroyed, the data that was stored in A cannot be used
for further calculations.

This architecture imposes a stiff overhead penalty for
an algorithm such as a recursive digital fllter, in which the
intermediate results of an input-value stream multiplied by
some constant are reused to produce the final value. To
overcome this limitation, the intermediate values must be
saved somewhere, then constantly reloaded into the
registers. A programmer might be able to save some of
this overhead by loading multiple copies of the data into
several registers and switching from one set of registers to
the other. Although a programmer might have the craft
and intelligence to do this, a compiler does not.

The mixed' memory/register model of execution
means that the instruction set allows the programmer to
specify that values can be directly fetched from or stored

to memory. Because of the physical properties of
electronic circuits, the data value does not appear in the
CPU instantaneously. Some time is needed to assert the
address lines, to let the read strobe reach a steady voltage
level, etc. During this time, the processor is idle. Because
of CISC's non-visible pipeline, another instruction cannot
be scheduled to utilize the idle time. The pipeline bubble
must be left unfilled, causing a decrease in processor ef­
ficiency.

RIse Software Advantages
In contrast, the· following significant factors of a

RiSe machine make efficient optimizing compilers pos­
sible:

A simplified, orthogonal instruction set
Visible execution pipeline
Load/store model of execution
Non-destructive triadic address architecture
With a simplified, orthogonal instruction set, only a

small set of native code instruction streams achieve the
effect of an HLL instruction. This simplifies the
compiler's task of selecting the correct native code stream
to emulate an HLL instruction. Instead of spending effort
to ensure that the native code does what the HLL program
states, the compiler writer can concentrate on scheduling
the generated native code so that it executes in the mini­
mum amount of time.

SPARC's visible execution pipeline allows an op­
timizing compiler to see when idle periods occur. Using
this knowledge, the compiler can re-schedule native code
instructions toJill these empty slots in the pipeline.

In the load/store· model of execution, data is first
loaded from memory into registers or stored into registers
before being sent to memory. Data load/stores are

8-2

decoupled from ALU operations. This means that the
ALU can be operating in parallel with the SPARC chip's
load/store components, overlapping operations and in­
creasing the processor's efficiency.

SPARC's non-destructive, triadic address architecture
has instructions of the following form:

A & B --> C
Where A, B, and C are registers; II &" is a logical or

arithmetic operation; and " __ " signifies that the results are
moved to a destination (in this case, C). The contents of
the A and B registers are presereved during this operation
- hence the name non-destructive:· The; compiler can
reuse the data in both A and B in subsequent operations,
saving the overhead of reloading intermediate data again
and again.

In addition to allowing hardware speed to be in­
creased by scaling the device geometry and/or retargeting
to another semiconductor technology, the SP ARC ar­
chitecture allows the creation of efficient optimizing HLL
compilers. This software advantage improves the produc­
tivity of application developers because they can write
code in an HLL such as C and still achieve the perfor­
mance they need.

The majority of applications for mainframes, minis,
and PCs were first written in assembly code because that
was the only way to attain the execution speed needed to
run the application algorithm at a reasonable rate.
Programmer productivity is measured in lines of debugged
code per day. The number of lines produced is the same,
whether they are lines of assembly or HLL code. Because
one line of HLL code can be equivalent to ten or more
lines of assembly code, the ability to write an application
in C or another HLL can increase software productivity
by a full order of magnitude.

Register Windows

This application note explains how the Cypress
CY7C601 SPARC microprocessor uses register windows
and shows how they decrease system execution time.

The CY7C601 is one of the few processors to use
register windowing for context. switching. When entering
and returning from trap handlers and procedures, the
CY7C601 thus enjoys a significant speed advantage over
other processors with "flat" register files. Register win­
dows are also the CY7C601's least understood architec­
tural feature.

Register Windows
Most of today's microprocessors implement a register

file as a contiguous piece of fast memory. If a processor

Flat register file

Register offset

CWP

has a flat register file, each register is addressed as an
offset from the beginning of the register file. A register's
effective address equals the register number times the
register's size (usually 32 bits) plus the address base (0 for
a flat register file).

The CY7C601's register windowing feature adds an
entry to the processor state register (PSR) that provides
the base address used to generate the effective register ad­
dress. This entry in the PSR is called the Current Window
Pointer (CWP). Changing the CWP by one offsets the
register addressing by 16. Thus the effective register ad­
dress is: (the CWP times 16 plus the register number)
times the register size (32 bits). High-speed hardware en­
sures that the correct register can be selected and the data

Windowed register file

----t

Register offset

Figure 1. Addressing Mechanisms

8-3

~

~~~D~OR ~~~~~~~~~~~~~~~~~~~~~~R~e~g~i~s~te~r~VV~in~d~o~w~s 

Prevloua WIndow (CWP + 1) 

f31 awe II' 

f24 
INS 

r23 
.. Restore 

LOCAlS 
ris Cwrent Window (CWP) 

r1~ 
OUTS 

f8 

Next WIndow (CWP - 1) 

r31 

r23 

riS 
r1~ 

r8 

INS 

LOCALS 

OUTS 

Figure 2. Overlapping Register Windows 

loaded or extracted from the register in one clock. The 
diagram in Figure 1 illustrates this register addressing 
mode. 

The CWP allows you to partition the register me into 
separate sets, or windows. When. a context switch is 
necessary after a trap is taken or a procedure called, the 
processor can save its old state information and get a new 
set of registers to use simply by incrementing the CWP. 
The CY7C601 performs this operation with one single­
cycle instruction. 

In most processors that use a flat register file, a 
process can get a new set of registers to use only after 
saving the current registers to memory to preserve state 
information. Depending on the number of registers to save 
and the clock time for a save instruction, the context 
switch can take quite a while. 

Parts of the Register File 
The CY7C601 employs four types of registers: outs, 

ins, locals, and globals (Figure 2). The ins registers con­
tain values from the procedure that called the current pro­
cedure. The globals can be accessed by any procedure, no 
matter what the procedure's nesting level. The outs hold 
local information or pass information to a procedure that 
the current procedure calls. The locals are for the current 
procedure's exclusive use. The diagram on the next page 
gives a conceptual picture of what these overlapping 
register windows look like. 

Registers are shared between procedures: the pre­
vious procedure's outs are the current procedure's ins. 
Parameters are passsed between procedures using the ins 
and outs. The ins contain the data and return address of 
the calling procedure. 

Partitioning the register me into windows reduces the 
number of registers each process can use. This is why the 
CY7C601 has such a large register me. The CY7C601 has 
136 registers for a maximum of eight windows - eight 

8-4 

windows of 16 registers each plus eight global registers. 
Each procedure has 16 registers for its exclusive use­
eight locals and eight outs. 32 registers can be addressed 
- eight locals, eight outs, eight globals, and eight ins 
(from the calling procedure). 

97 percent of all procedures pass fewer than six 
parameters during a procedure call; the average is 2.1. 
Eight registers are more than sufficient for passing 
parameters between procedures. If more parameters need 
to be passed, one of the registers is used as a frame 
pointer, and the additional parameters are stored to 
memory. The eight outs can carry data and address from 
the current procedure to a procedure called by the current 
procedure or to data local to the procedure. As Figure 2 
shows, the CWP is decremented when a procedure is 
called and incremented when a procedure returns. 

The Window Invalid Mask 

The CWP is not the only unique CY7C601 hardware 
feature that supports register windows. The CY7C601 also 
includes a dedicated 32-bit register called the Window In­
valid Mask (WIM). The WIM tells the CY7C601 how 
many windows it has and which ones are active. By com­
paring the WIM and the CWP, the CY7C601 can deter­
mine when· it is attempting to utilize more windows than it 
has available. This would not cause a physical problem 
because the register me is implemented as a circular 
stack, but the data in the first window would be corrupted. 

The processor's attempt to use more windows than it 
has causes a window overflow trap. During this trap, the 
processor saves the oldest window to memory. This is the 
only time when the CY7C601 microprocessor must save 
registers to memory during a context switch (unless more 
than eight parameters must be passed between proce­
dures). On a window overflow, only 16 registers must be 
saved to memory (eight locals & eight outs). 



SAVE 

Figure 3. Register Window Concept with Eight Windows 

An alternative way to conceptually view the 
CY7C601 register windows is to think of them as a ring 
of registers (Figure 3). As mentioned earlier, the 
CY7C601's register file is circular. If the CWP is pointing 
to window 7 and is incremented, the CWP now points to 
window O. If the CWP points to window 0 and is decre­
mented, the CWP points to window 7. 

As an example, say that the CY7C601 makes a pro­
cedure call with the CWP pointing to window 1, as shown 
in Figure 3. Assume that the WIM has been set to reflect 
the fact that eight windows are physically implemented. 
Upon making the procedure call, the CY7C601 attempts a 
SAVE to provide the called procedure with a new set of 
registers. During a SAVE, the CWP is decremented by 
one (CWP = 0). The CY7C601 checks this value against 
the WIM. Because window 0 must be reserved for use by 
the trap handler, the CY7C601 has run out of windows for 
user procedures. Bit 0 of the WIM was set to reflect the 
fact that window 0 is reserved for system use. Upon 
checking the value of the CWP against the WIM, the 
CY7C601 detects a window overflow condition and 
causes a trap. During this window overflow trap, the 

8-5 

CY7C601 increments the CWP to point back to window 1 
and saves the calling procedure's registers (eight ins and 
eight locals) to a location in memory. Upon returning 
from the procedure, the registers are restored from 
memory and the values of the registers in window 1 are 
overwritten. 

A Versatile Architecture 
One of the advantages of register windowing is its 

versatility. The SPARC architecture has provisions for im­
plementing up to 32 register windows, and the CY7C601 
has eight. You can partition the available registers into 
different numbers of windows to increase the CY7C601 's 
efficiency for specific applications. When you use a real­
time operating system, for example, you can set the WIM 
to partition the register set into a small number of win­
dows, say four. You can assign each real-time task to its 
own window. The total interrupt response time is now the 
interrupt latency (4 - 7 clocks) plus one clock to switch 
windows. Compare this response time to the response 
time for a CISC or RISC architecture with a flat register 



Table 1. Register Windows vs a Flat Register File 

Benchmark Dr02ram 

Percenta~e of CALL or RETURN instructions 

Average registers stored j)er call 

Loads (flat register fil~ 

Loads SP ARC 1re~ister windows) 

Ratio loads windowslflat 

Stores (flat register file) 

Stores SPARCJregister windows) 

Ratio stores windows/flat 

file, where saving register contents consumes most of the 
interrupt response time. 

A register window architecture means that the 
CY7C601 must perform fewer load/stores. This is amply 
demonstrated by Table 1, which lists the loads and stores 
done by two microprocessor architectures: SP ARC with 
eight register windows and another architecture with a flat 
register file. 

The two benchmark programs used to obtain the data 
in the table are the Gnu C Compiler (GCC) and the text 
processing program TeX. Because of register windowing, 
the CY7C601 has to do up to 16 percent fewer loads and 
39 percent fewer stores, compared to a microprocessor 
with a flat register file. Register windowing thus increases 
processing speed significantly. 

Some of the load/store traffic generated by the use of 
a flat register file can be reduced by using interprocedural 
register allocation. This technique consolidates the use of 
registers to hold variables passed between procedures. By 
consolidating the number of registers used, less data needs 

8-6 

GCC TeX 

1.8% 3.6% 

2.3 3.2 

3.928710 2.811.545 

3.313 317 2,736,979 

0.84 0.97 

2037,226 1974078 

124~38 1,401,186 

0.61 0.70 

to be saved to and restored from memory, reducing 
load/store traffic. This traffic reduction shrinks the edge 
that register windowing gives the CY7C601 over 
microprocessors with flat register files. 

Interprocedural register allocation has a glaring weak­
ness, however: It depends upon a complete knowledge of 
how many registers the called procedure uses and for 
what purpose. With an object-oriented language such as 
C++ or Smalltalk, this knowledge is not available at com­
pile time. Interprocedural register allocation is therefore 
not possible when using an object-oriented language, and 
register windowing's performance edge comes to bear in 
full force. 

The software world is shifting toward object-oriented 
languages such as C++ because of the need for increased 
productivity. Register windowing thus makes the 
CY7C601 the performance leader for today and promises 
to further soldify the CY7C60 l' s lead in the future as the 
use of object-oriented languages increases. 



CYPRESS ~~~~~~~~~~~~~ 
SEMICONDUCTOR 

CY7C600 System Design Footnotes 

This application note covers several topics that have 
generated questions from SPARC systems designers. The 
intent here is to provide additional insight into the opera­
tion of the CY7C600 chip set through discussion of these 
short topics. Of course, a single paper cannot answer all 
questions regarding SPARC design. Please contact your 
local Cypress field applications engineer regarding any 
other questions you might have about SP ARC. 

Reset and Error Modes 
The CY7C6011611 is reset by the assertion of the 

RESET signal for a minimum of eight clocks. The clock 
signal must be active for the CY7C6011611 to correctly 
synchronize upon receiving IrnSET. 

For systems using the CY7C604A1605A, the system 
reset signal is supplied to the CY7C604A1605A PaR 
input for a minimum of eight clocks. Upon receiving the 
P<:m signal, the CY7C604A1605A asserts the IRST out­
put, which drives the CY7C601 lffiSlIT input. IRST is 
released one clock after the mR input to the 
CY7C604A1605A is released. 

The CY7C6011611 enters reset mode upon receiving 
the ImSET signal at a rising clock edge. Figure 1 il­
lustrates CY7C6011611 reset timing. All processor opera­
tion halts. The CY7C6011611 asserts address OxOOOOOOOO, 
and the appropriate control signals for the fITst instruction 
access are asserted while IrnSET is asserted. The 
CY7C6011611 remains in reset mode until 'RESET is 
released, then the CY7C6011611 immediately enters ex­
ecution mode. One clock after receiving the release of 
ltESET, the CY7C6011611 asserts the address for the next 
instruction access on the bus. On the clock after RESET is 
released, the CY7C6011611 latches the first instruction on 
the data bus. Note that the MAO and MHOLD signals 
must be de-asserted while RESET is asserted. 

The CY7C6011611 initializes the enable traps (ET) 
and supervisor (S) bits of the processor state register 
(PSR), the program counter, and next program counter 
upon reset. All other registers in the CY7C6011611 are 

8-7 

left unchanged. This feature provides easy error recovery 
in the case of an error-mode-generated reset (more on this 
later), because the registers are not changed after an error­
causing condition. 

Upon reset, the CY7C6011611 initializes the PSR's 
supervisor-mode bit to 1 (enabling supervisor mode) and 
sets the ET bit to 0 (traps disabled). The program counter 
(PC) and the next program counter (nPC) are initialized to 
o and 4, respectively. If the reset is a power-on (initial) 
reset, the state of all other registers are undefined. In addi­
tion, the state of all fields other than the PSR's ET and S 
bits are also undefined. A reset that occurs after the initial 
power-on reset (such as a reset to exit error mode) does 
not affect any registers other than the PSR, PC, and nPC. 

Upon entering execution mode from a power-on 
reset, the software designer must ensure that the 
CY7C6011611 (and CY7C604A, if present) is properly in­
itialized. Three registers in the CY7C6011611 must be ini­
tialized upon power-on reset: the processor state register 
(PSR), the trap base register (TBR), and the window in­
valid mask register (WIM). 

One common mistake is to neglect to initialize the 
WIM register, which is undefined upon a power-on reset. 
If not initialized, this register can unexpectedly disable 
one or more windows. The processor state register does 
automatically initialize the register's S (supervisor) and 
ET (enable traps) bits upon reset, but all other fields must 
be initialized by software. 

The TBR register must be initialized to point to the 
beginning of the trap vector table to handle traps. The 
register should be initialized before the PSR's ET bit is 
set. Note that three NOP instructions are generally in­
serted after writes to the PSR, WIM, and TBR registers to 
ensure that the CY7C6011611 correctly handles instruc­
tions immediately following these special register writes. 

Error mode is a self-initiated halt mode that the 
CY7C6011611 enters upon encouIitering a synchronous 
trap when the PSR's ET bit is set to Zero (traps disabled). 
The processor also enters error mode if a return from trap 



elK 

~.... ......~.r--H __ ......-(: ~ ~H ~ 
C)@X09H ;~ 09H ~ 

A<31:0> 

ASI<7:0> 

60000< : (f- ~ 
CJ@X::!,.:.10Il 

0<31:0> 

~----..-4; (f 10 xmcp 
l?( \ I 

SIZE<1:0> 

INULL 

I )) . 
I : 1(0 1 / I I 
: : ! : : : : : : : : : :.: : : : : : : : : II : : : : : : t : : : : : : : : : ! : : : : : : : : : 1 : : 

MAO 

Figure 1. Power-On Reset Timing 

(RETT) instruction is encountered with either the traps 
enabled (ET = 1) or the supervisor bit cleared. Upon en­
countering one of these conditions, the CY7C6011611 sets 
the TBR's tt (trap type) field to reflect the type of 
synchronous trap that caused the error state, after which 
the processor asserts the ERIDJR signal and halts (Figure 
2). Error mode is exited when RESET is asserted. 

A CY7C604A1605A responds to EImOlr by execut­
ing a watchdog reset. During this reset, the 
CY7C604A1605A asserts the msT output (used as the 
mET . input),.. sets the watchdog reset bit in the 
CY7C604A1605A reset register, and sets the boot-mode 
bit of the CY7C604A160SA system control register. All 
other registers in the CY7C604A160SA are left un­
changed. Because the CY7C604A160SA enters boot mode, 
all instruction fetches made by the CY7C601 are fetched 
from physical memory on the Mbus; regardless of whether 
the cache is enabled. This action is !-lppropriate because 
when the CY7C601 enters execution mode from reset, the 
processor executes the reset routine, which is generally 
stored in nonvolatile physical memory. 

CY7C600 Pull-Up/Pull-Down Resistors 
For proper operation, several signals for the 

CY7C600 chip set must be pulled either High or Low. 
This has often been overlooked in some SPARC designs, 

8-8 

causing headaches for those debugging their hardware. 
Table 1 lists the state to which you must tie CY7C600 
signals for proper operation. The table assumes a 
CY7C604A/60SA-based CPU. 

Pay attention to the resistance value of passive pull 
ups and pull downs to ensure that they match the 
CY7C600 buffers' drive capabilities. CY7C600 buffers 
sink a minimum of 8 rnA and source a minimum of -2 
rnA. 1 KW is a reasonable value for pull-up resistors on 
signals that must be driven by CY7C600 buffers. 10 KW 
is a reasonable pull-up or pull-down value on input sig­
nals such as mmm, CP,or CCCV. 

Signal Termination 
Design of high-speed CMOS systems requires close 

attention to board layout, PCB trace propagation delays, 
crosstalk, noise,clock skew, and signal terminations. This 
is extremely important to systems operating at 33 to 40 
MHz and beyond. (Consult the application note, "High­
speed CMOS SPARC System Design.") Cypress recom­
mends close attention to clock distribution and termination 
for any high-speed CMOS design. 

Termination is highly recommended on the clock sig­
nals for a CY7C600 .system. Due to the minimum slew­
rate requirement of 0.8 V/ns for CY7C600 parts, you must 
pay close attention to the clock drivers' drive and slew-



2 3 

ClK 

'flll:f.. A<31:0> ~_E_~_R ____ ...--o OOOOH 

ASI<7:0> ~_E_~_R_A_SI ___ ~ 

0<31:0> ~""-~ _____ """ 

'flll:f.. 09H 

'flll:f.. 
'flll:f.. SIZE<1:0> ~~xx _____ ..... 10 

INUll 

~ 
RESET· \~ __ ~~ ______ ~ ____ ~~ _______ __ 

"RESET must be asserted for a minimum of 8 clocks 

(continued) 9 10 11 12 

ClK 

A<31:0> 0000 H 

ASI <7:0> 09 H 

D<31:0> 

SIZE<1:0> 10 

INUll \~~----~------~ 

Figure 2. ErrorlReset Timing 

8-9 



....::=-... 

€i!t. ;~RESS CY7C600 System Design Footnotes 
~~ ~eOID~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Table 1. CY7C600 Signal Pull Ups and Pull Downs 

Signal Part Affected Pulled 

~ CY7C604/605 input/output High 

mnY CY7C604/605 input High 

mTY CY7C604/605 input High 

~ CY7C604/605 output . High 

~ CY7C604/605 input High 

CMER CY7C604/605 output High 

mE CY7C601, CY7C604/605 input Low 

SNUII CY7C604/605 input High 

~ CY7C601 input . High 

K1EXC CY7C601 input High 

mmrn CY7C601, CY7C602 inputs High 

MiIOLDB CY7C601, CY7C602 inputs High 

rnm:r> CY7C601, CY7C602 inputs High 

CP CY7C601 input High 

CCC[l:O] CY7C601 input High 

CCCV CY7C601 input High 

MAO CY7C601 input Low 

FPSYN CY7C601 input Low 

1FT CY7C601 input Low 

FNULL CY7C604/605 input Low 

FP CY7C601 input High 

FCC[l:O] CY7C601 input High 

FCCV CY7C601 input High 

FIIDrn CY7C601 input High 

FEXC CY7C601 input High 

rate capabilities. For many designs, you cannot use a 
simple parallel resistor termination because the buffer 
drive required to attain the minimum clock slew rate often 
exceeds the drive capabilities of available CMOS· or TIL 
buffers. 

One recommended method of clock signal termina­
tion is to use one or more diodes to clamp the clock signal 
voltages to within a single diode voltage drop of ground 
or Vee (Figure 3). Unlike parallel resistor termination, 
diode termination does not require a high-drive clock 
buffer. And unlike AC termination, diode termination 
does not degrade the clock signal's slew rate. 

!NULL 
The CY7C6011611 generates the !NULL signal to in­

dicate that the processor will ignore the current memory 
access. !NULL is asserted before the rising clock edge on 
which the nullified memory access would have been 
latched (Figure 4). This event occurs when an instruction 

8-10 

Comments 

CY7C604/605 cannot acquire Mbus if not pulled up 

Must be pulled Low for system to operate 

Assuming a single-CY7C604/605 system 

CY7C604/605 allows this signal to three-state 

CY7C604/605 allows this signal to three-state 

Required if coprocessor is removable or not present 

Required if coprocessor is removable or not present 

Required if coprocessor is removable or not present 

Required if coprocessor is removable or not present 

Required if CY7C602 is removable or not present 

Required if CY7C602 is removable or not present 

Required if CY7C602 is removable or not present 

Required if CY7C602 is removable or not present 

Required if CY7C602 is removable or not present 

Required if CY7C602 is removable or not present 

fetch is nullified in the pipeline, but no other valid address 
is yet available to assert on the address bus. 

For cached systems, !NULL prevents a cache miss on 
a nullified access. !NULL is also used by the exception 
logic to prevent an exception that might be generated by a 
nullified access. 

!NULL is asserted when an address is generated in an 
interlock case, such as a load that produces a hardware 
interlock. !NULL is also generated when a trap or inter­
rupt is encountered. !NULL is asserted in this case to nul­
lify the address generated before the trapped instruction 
enters the pipeline's execute stage. 

!NULL is asserted: 
During the second address cycle of any store instruc­
tion (including atomic load/stores) 
For the third instruction fetch after a trapped instruc­
tion 
To nullify the error-causing address after a reset 
On a load that causes a hardware interlock 
On the execution of JMPL and RETT instructions 



a) parallel termination b) AC termination c) diode termination 

Figure 3. Signal Termination Examples 

MHOLD, MDS, and ME XC 
The CY7C6011611 signals 'mIDITI, 'M'DS', and 

MEXC are used by outside control logic to control 
CY7C601!611 memory accesses. Typically, this control 
logic takes the form of a cache controller or exception­
generation controller. 

M'H(jI]) freezes the CY7C601l611's pipeline. Exter­
nal logic uses this signal to freeze the CY7C601!611 's 
operation so that the supporting memory and exception 
logic can· provide a response in synchronization with the 
CY7C601!611's pipeline. The CY7C601!611 samples 
MHOLD on the falling clock edge. Asserting 'MHOU5 
causes the CY7C601I611 to hold its outputs at the state 
that would be valid at the next rising clock edge. Note 
that this state is driven from the rising clock edge before 
:K1HOIJ) is asserted. From the perspective of the 
CY7C601l611, the pipeline is frozen before the rising 
clock edge following Kii'IImJ) assertion. 

K1DS' is used during the assertion of K1HOrn to 
cause the CY7C6011611 to latch the data present on the 
data bus. MDS" also causes the CY7C601!611 to latch the 

elK 

A[31:0] 

0[31:0] 

state of the mxc signal (described later) but does not 
cause the pipeline to advance. As Figure 5 shows, 'M'DS' is 
sampled on the falling edge of the clock, and the informa­
tion valid on the data bus at the next rising clock edge is 
latched into the CY7C601l611. 

Because the pipeline does not advance until 'mIDITI 
is released, MDS" can be asserted for more than one clock, 
although this is not necessary. The only qualification is 
that data must be valid for the rising clock edge after the 
last assertion of 'M'DS'. The information on the data bus at 
this time is used by the CY7C601!611 when :K1HOIJ) is 
released. 
~ indicates a memory exception to the 

CY7C601!611. Upon detecting an exception case, the ex­
ception control logic asserts :MmJiJ) to halt the 
CY7C601!611 pipeline. MEXC and M'DS' are then as­
serted to signal the exception. KIJ:)S" must be asserted with 
mxc to cause the CY7C6011611 to latch the value of 
MEXC while ~ is asserted. Otherwise, the 
CY7C601!611 ignores the ~ signal while :K1HOIJ) 
is asserted. 

INUll ~----~------~--_/ ,\.-_:...--_-
Figure 4. INULL Assertion 

8-11 



eLK 

A(0-31) 

0(0-31) 

\~-~----!-'/ 
' ___ I 

Figure 5. Wait-State Generation using MHotD with lmJS' 

Wait-State Generation 
Memory wait states can be generated using ~ 

or by stretching the CY7C601I611 clock. Because the 
CY7C601I611 is a fully static processor design, clock 
stretching is a simple method for generating memory wait 
states (Figure 6). 

Another method is to use ~ to freeze the 
CY7C601I611 pipeline. You can do this in two ways. One 
way is to use ~ in the same manner as intended for 
a cache miss (Figure 7). ~ is asserted by the wait­
state logic after the rising clock edge on which the 
CY7C6011611 would have latched the memory access. 
When the memory has responded to the access, the wait­
state logic strobes ~ to make the CY7C601I611 latch 
the information, then releases ~. 

You can also use ~ to halt the pipeline before 
the CY7C6011611 has missed the memory access. 

mrrn:::u must be asserted immediately after the rising 
clock edge of a memory access. This method requires fast 
logic even at 25 MHz and is probably not feasible for 
higher frequencies. The assertion of ~ must make 
the set-up time before the falling clock edge (Figure 7). 
With ~ asserted, the memory system can catch up 
with the CY7C601I611 and assert the data on the bus. The 
wait-state logic then releases ~, allowing the 
CY7C6011611 to latch the data. 

Interrupts 
Interrupts are signaled to the CY7C601I611 by assert­

ing the interrupt request level inputs, IRL[3:0]. For the 
interrupt to be taken by the CY7C601l611, the value as­
serted on the IRL[3:0] signals must exceed the value 
stored in the processor interrupt level (PIL) field of the 
processor status register (PSR). An IRL level of 0 indi­
cates no interrupt; a level of 15 indicates a non-maskable 

74AS1805 
Clock From 
Generator ------------~"" 1:>---,.. Stretched 

r----II-"'.iIt'--' Clock 

Stretch 
Indicator 

INULL 

XJ--9-_~Free Running 
Oock 

Figure 6 •. Simple Clock-Stretching Circuit 

8-12 



elK 

A(0-31) 

0(0-31) 

Figure 7. Wait-State Generation using MHOLD without MDS' 

interrupt In addition, the PSR's enable traps (ET) bit must 
also be set for the CY7C6011611 to respond to an inter­
rupt input 

The IRL[3:0] inputs are sampled, then latched before 
the interrupt is allowed to be prioritized and taken by the 
CY7C601l611. This requires an IRL[3:0] value to be as­
serted two clocks before the CY7C6011611 accepts the in­
terrupt input, thus helping to prevent extraneous inter­
rupts. The CY7C6011611 uses interrupt acknowledge (IN­
TACK) to acknowledge that an interrupt has been taken. 
The CY7C6011611 asserts INTACK after the rising clock 
edge upon which the address of the ftrst trap instruction is 
asserted. Interrupts that are not taken, such as those 
masked by the PIL, are not acknowledged. 

The prioritization stage of interrupt processing com­
pares the interrupt's trap priority level against that of any 
other synchronous trap that might be occurring simul­
taneously. All other trap types take priority over interrupt 
traps, and in the case of contention, the other trap is ser­
viced instead of the interrupt In this case, INTACK is not 
asserted until the CY7C6011611 has returned from the trap 
handler and the interrupt level can again be sampled, 
latched, and prioritized. 

The CY7C6011611 features extremely fast response 
time for interrupt inputs. Interrupt latency (interrupt recep­
tion to ftrst trap address assertion) is from four to seven 
clocks. The three-clock variation in interrupt latency is 
due to the effect of multiple cycle instructions upon 
CY7C6011611 execution. Interrupt latencies greater than 
four cycles occur when a multiple-cycle instruction is 
fetched immediately before an instruction is interrupted. 
The worst-case, seven-clock interrupt latency occurs when 
a three-cycle instruction is fetched immediately before the 
interrupt 

Figure 8 shows the assertion of INTACK with 
respect to IRL[3:0] and the ftrst interrupt address (TO). 

8-13 

The CY7C601I611 generates TO when the interrupted in­
struction reaches the pipeline's execute stage. The 
CY7C601I611 asserts INTACK during the clock cycle 
when the interrupted instruction reaches the pipeline's 
write stage. The memory system sees INT ACK asserted 
on the rising clock edge on which the fITSt trap instruction 
returns from memory. 

Delays in interrupt acknowledgment are due to multi­
cycle instructions in the pipeline that were fetched before 
the interrupted instruction. Therefore, if a multi-cycle in­
struction is in the pipeline's decode stage when the inter­
rupt is sampled, that instruction's pipeline delays (desig­
nated by internal ops, or lOPs) affect the timing of the 
interrupt acknowledge. Figure 9 shows these events; in­
struction 2 is the interrupted instruction. Interrupts are ex­
ecuted before the interrupted instruction, and thus instruc­
tion 2 is annulled (not executed). 

If the CY7C604A asserts ~, the control signal 
outputs from the CY7C601 are frozen, and INTACK is 
asserted as long as ~ is asserted. ~ causes 
the pipeline for the CY7C601 to freeze, and all bus sig­
nals asserted by the CY7C601 during this freeze remain 
asserted on the bus. 

An example of such a case appears in Figure 10, in 
which ~ is asserted due to the fetch of an interrupt 
instruction that has been declared non-cacheable in the 
MMU. This is a common case, as interrupt handlers are 
generally part of the kernel or monitor code. Declaring the 
interrupt routine to be in a non-cacheable segment of 
memory forces the CY7C604A to fetch the interrupt in­
struction from main memory. Thus, the CY7C604A must 
assert ~ until this instruction is fetched. The asser­
tion of ~ causes the INTACK signal to remain as­
serted until JillIrn]) is released. Note that this case is 
likely to repeat, as the subsequent interrupt instructions 
probably reside in the same memory segment. 



Fetch 

Write 

eLK 

A<31:0> 

0<31:0> 

IRL<3:0> 

INTACK 

Sampled Latched Prioritized Taken 

Figure 8. Best-Case Interrupt Latency 

INTACK 

Figure 9. Worst-Case Interrupt Latency 

8-14 



eLK 

A <31:0> 

D <31:0> 

IRL<3:0> A 
INTACK I 
MHOLD \ ~ __ ~ __ ~r-__ ~ll 

~ 

.~ 

MDS II 

Figure 10. INT ACK Frozen Due to MHOLD 

Nested Interrupts 
Upon taking a non-reset trap, the CY7C6011611 ex-

ecutes the following operations: 
Sets the PSR's ET bit to Zero (traps disabled) 
Copies the PSR's S bit into the PS (previous super­
visor) bit, then sets the S bit to One 
Decrements the CWP (current window pointer) by 
one (next window) 
Saves the PC and nPC into r[17] and r[18], respec­
tively, of the trap window 
Sets the tt field of the TBR (trap base register) to the 
appropriate value (according to IRL[3:0]) 
Writes the PC with the contents of the TBR, and 
writes the nPC with the value of the TBR + 4 
Note that upon entering a trap, the CY7C6011611 im­

mediately disables all other traps. Some systems require 
that the processor be able to respond to higher-priority in­
terrupts or other traps while executing an interrupt hand­
ler. This capability is referred to as nested interrupts. 

If the CY7C6011611 must support nested interrupts or 
traps, the software designer must re-enable traps after 
taking precautions to protect the previous state of the 
machine. Most software designers using SP ARC systems 
use a stack to save windows and the state of the 
processor. 

Note that for SPARC (and most RISC processors in 
general), the hardware does not implement the stack 
pointer and the process of saving the processor state upon 
entering a trap, which leaves the task to the software 
designer. This task includes saving the PSR, because the 
CY7C6011611 does not save the PSR upon entering a 
trap; instead, the CY7C6011611 saves the previous super-

8-15 

visor state in the PS bit. The CY7C601I611 does automat­
ically save the return address for the trap in the trap-win­
dow registers r[17] and r[18]. 

Note that for nested interrupts, the PSR's PIL field 
must be updated to equal the current interrupt level before 
re-enabling traps. This protects the CY7C601I611 from 
further interruptions by the same level of interrupt. 

In addition to saving the processor state, the software 
designer must determine how to handle potential window 
overflows, which can be caused by nested-trap handlers. 
This problem can occur because the CY7C6011611 does 
not check the WIM register for window overflow when 
the processor enters the next window to process a trap. 

This aspect of the SP ARC architecture is necessary to 
save at least one window for trap handlers. For instance, 
the CY7C601I611 checks the WIM register to detect 
potential window overflow when a SA VE instruction is 
executed. Upon detecting that a window save would push 
the processor state into a "WIMmed" window, the 
CY7C601I611 enters a window overflow trap. To process 
this trap without overwriting the current window registers, 
the CY7C601I611 jumps into the WIMmed window, ig­
noring the WIM register. Because the WIM register does 
not affect trap entry, the register must save a window for 
trap handlers. The register also prevents procedure calls 
from overwriting valid windows. 

The use of nested interrupts adds another level of 
complexity to window management If th.e entire ~et of 
non-WIMmed windows has been used, an mterrupt Jumps 
into the last (WIMmed) register window. If traps are 
enabled again without any other corrective actions, the 
next trap (or interrupt) overwrites the next window upon 
entering the trap. To prevent this problem, the software 



Table 2. CY7C604A160SA Mbus Signals 

Mbus Signal Description 
CY7C604/60S 

Name Name 
AERR* Asynchronous Error output ~ 
RSTOUT* Mod,ulereset output signal NmST 
RSTIN* Module reset input signal mK·· 

designer must ensure that at least one additional window 
beyond the current trap window is available before re-ena­
bling traps within a trap handler. 

CY7C604A160SA Notes 

Three CY7C604N605A signals differ from the cor­
responding signal name used in the Mbus specification. 
Table 2 lists these CY7C604N605A Mbus signals and 
their corresponding Mbus names. 

If you implement an Mbus arbiter, note that under 
certain conditions the CY7C604N605A holds ~ ac­
tive for multiple Mbus transactions. Those conditions are: 

When the CY7C604A is holding the bus during a 
table. walk and has not received a relinquish-and­
retry response 
When the CY7C604A is holding the bus for a retried 
write 
When the CY7C604A is holding the bus for a retried 
read 
When the CY7C604A is holding the bus for an 
atomic load/store that was notrelinquished and 
retried 
When the CY7C604A is holding the bus to complete 
a burst access (normal operation) 
When the CY7C604A had the bus for the last transac­
tion that was not relinquished and retried, and cur­
rently has a grant, and has an ~ccess pending 
Accesses are considered to be pending for the 

CY7C604A only when one or more write accesses are 
queued in the write buffer. This can take the form of 
either multiple write accesses queued in the write buffer, 
or of one or more write accesses in the write buffer forc­
ing a pending read access. In the latter case, the read ac­
cess must remain pending until the write buffer is cleared. 
Read transactions must be delayed until the write buffer is 
cleared. This ensures data consistency in case one of the 
writes is to the same address as the read transaction. 



The Impact of Memory Design on 
High-Performance RISe Microprocessors 

Memory design has always been a crucial factor in 
the race for high-performance processing. Now the stakes 
are higher than ever before with the advent of RIse 
microprocessors, which require a memory access during 
every clock cycle and speeds exceeding 40 MHz. 

To feed these high-performance engines, you are 
faced with building a eMOS or TTL-based memory sys­
tem that must sustain a bandwidth on the order of 160 
Mbytes per second (assuming 32-bit accesses, one access 
per clock, and 40 MHz). Because the processor can only 
run as fast as the memory system, a high-performance 
memory system is a crucial part of any RISe design. 

Ideally, a memory system should be big, fast, and 
cheap. Unfortunately, these goals are often at odds with 
one another. A simple high-speed SRAM memory system 
large enough and fast enough to fulfill the RISe 
processor's needs would be ideal- if SRAMs were not 
expensive and power hungry and did not need much more 
board area than DRAMs. The latter cost much less and 
provide better memory density but also run several times 
slower and require a more complex addressing and control 
interface. Using only DRAM for a memory system im­
plies multiple wait states for each memory access. This is 
disastrous to the performance of a high-speed RISe 
processing engine. The typical solution to these conflict­
ing requirements of speed and density versus cost is to use 
a high-speed SRAM cache memory system backed by a 
DRAM main memory system. 

Cache systems are a well-recognized and commonly 
used solution for high-speed processing systems. Cache 
memory systems were proposed early in the 1960s and 
have been used extensively in mainframes and minicom­
puters since the mid to late 1960s. Cache memory has be­
come increasingly interesting to the designers of small 
computer systems as microprocessor speed and memory­
bandwidth requirements have increased. Consequently, 
RISC processors make extensive use of cache systems to 
meet their memory-bandwidth needs. 

8-17 

Cache systems are not the only variable in the 
memory system performance equation, however. The 
memory system picture includes two factors: cache perfor­
mance, which is often measured, in terms of cache hit 
ratio, and cache miss penalty, which is a function of both 
the cache controller and the main memory system. The 
average memory access time gives a good perspective on 
the total memory solution: 

tavg = teh(chr) + tern(l - Chr) 

where tavg = average memory system access time 
teh = cache-hit memory access time 
tern = cache-miss memory access time 
Chr = cache hit ratio 
l-chr = cache miss ratio 

Eq.l 

For most cache systems, the cache-hit memory access 
time is one clock, which represents a zero-wait-state 
memory for RISC processors. A useful approximation for 
estimating performance for systems using RISC proces­
sors (assuming one clock per memory access), is that per­
formance equals the product of the average memory sys­
tem access time and the processor's average number of 
clocks per instruction (CPI). This product yields an ad­
justed system clocks per instruction value that is useful in 
estimating system performance: 

CPIsystern = CPIprocessor x tavg Eq.2 

where CPIsystern is the adjusted CPI for system perfor­
mance 

This rule-of-thumb equation illustrates the importance 
of memory system performance. As with any processor, 
only a memory system providing zero wait-state accesses 
permits a RISe processor to achieve maximum perf or­
mance. Because a RISC system requires a memory access 
for every clock cycle, an average memory access time of 



~RESS Impact of Memory Design on RISe Microprocessor 
~~ ~~~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

two clocks cuts the maximum attainable system perfor­
mance in half! 

As can be seen in Eq. I, the cache hit ratio and the 
cache-miss memory access time are the two parameters 
that can be manipulated to achieve the maximum system 
performance within your constraints. Cache hit ratio is the 
ratio of cache hits to the number of total cache requests 
and is largely a function of the cache design. The cache­
miss memory access time is the combination of the laten­
cy imposed by the cache controller as it fetches the 
missed cache line and the latency caused by the main 
memory system. Cache-miss memory access time is not 
directly a sum of these two latencies, though, because the 
cache line fetch timing and main memory timing overlap. 

Cache hit ratio is important to memory system perfor­
mance. Whether you are using a custom-designed cache 
controller or an off-the-shelf product, it is necessary to un­
derstand the factors that contribute to cache hit ratio. This 
understanding allows you to make a rough estimation of 
cache performance, which in tum helps you defme the re­
quired main-memory-system performance required to 
meet the desired system performance. Along with proces­
sor performance, the cache and supporting memory sys­
tem determine the achievable level of system perfor­
mance. 

Cache system performance 
Cache performance and its contributing factors has 

been a topic of intense study in computer architecture 
circles. This application note is not intended to provide a 
detailed analysis of cache performance and design. How­
ever, a short discussion of cache performance serves as 
background for a discussion of memory system perfor­
mance. 

Cache hit ratio is the primary metric of cache perfor­
mance and is strongly influenced by cache size. The larger 
a cache is, the more likely it is to hold the required datum. 
However, the tradeoff to cache size is cost. The reasons 
for avoiding a large SRAM memory system are system 
cost and memory density. If several megabytes of SRAM 
are an affordable option, why build a cache in the fIrst 
place? The purpose of a cache is to provide enough high­
speed memory to effectively increase processor perfor­
mance, yet still stay within the system budget. Therefore 
the next question is: How big is big enough? 

Unfortunately, the question of cache size is not easily 
answered. Caches often cannot be made arbitrarily big, 
but they need to be large enough so that their benefit of­
fsets their cost. Assuming a system budget of some type 
(cost, power consumption, size, or a combination of 
these), a good approach to designing a cache is to choose 
a target cache hit ratio based on the system performance 
requirements. This target cache hit ratio is driven by sys­
tem performance (as described by equations 1 and 2) and 
the system design constraints. If the system budget for the 
cache does not allow the cache hit ratio required to' meet 
the system performance requirements, the supporting 

8-18 

memory system features can· be optimized to offset the 
cache's performance. 

Size and Set Associativity 
Set associativity also contributes to cache perfor­

mance. Set associativity describes the number of memory 
locations to which a single address can be mapped. In 
other words, a cache with N-way set associativity can map 
any address to N number of cache locations. 

A fully N-way-associative cache large enough to 
yield a high cache hit ratio is, in practice, extremely dif­
ficult to implement for a useful clock speed. Therefore, 
cache designs generally use four-way, two-way, and one­
way (direct mapped) set-associative caching. 

For smaller cache sizes, the greater the set as­
sociativity, the greater the cache hit ratio. However, 
studies have demonstrated that the benefits of set as­
sociativity decrease as cache size increases. Figure 1 il­
lustrates the cache hit ratios for 1-, 2-, and 4-way set-as­
sociative caches as a function of cache size. Note that as 
cache size increases, the cache hit ratio curves for the 
cache systems converge. 

Multiple set associativity carries a penalty for cache 
system design. The greater the level of set associativity, 
the greater the number of cache tags that must be com­
pared to determine a cache hit. This requirement directly 
affects the maximum clock speed at which a cache con­
troller can operate. As Figure 1 shows, a 2- or 4-way set­
associative cache offers little performance advantage over 
the direct-mapped cache at cache sizes of 64 Kbytes and 
larger. Assuming that the cache can provide a suffIciently 
large memory size, reducing the level of set associativity 
carries the advantage of decreased cache controller com­
plexity and increased maximum speed. The direct-mapped 
cache provides virtually the same cache hit ratio as the 
more complex 2- and 4-way set-associative caches, yet 
promotes greater overall system performance by allowing 
a faster system clock for the processorand cache system. 

Block Size 
Another contributing factor to cache hit ratio is cache 

block (or line) size, which is the number of bytes fetched 
by the cache upon a cache miss. Cache performance 
generally increases as the cache line size increases, be­
cause the cache fetches more data upon a miss and is 
more likely to contain the next segment of code. As the 
cache line size increases, however, processor delays 
caused by the cache line fetch and the likelihood of fetch­
ing unnecessary memory coritents detract from perfor­
mance. The net effect is that cache performance generally 
increases as a function of cache line size; but the small 
improvements in cache performance must be balanced 
against the disadvantage of processor stalls caused by the 
longer cache line fetches. 

Many other factors contribute to a cache's overall 
performance. One such factor is the method by which the 
main memory is updated upon a write access to the cache. 
Because the cache contains a copy of data stored in main 



~ 
9' '~RESS Impact of Memory Design on RISe Microprocessor 
~, ~I~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Effects of associativity on miss rate for user component in mUltiprogramming environment 

20 + 1 set 
• 2 sets 

x 4 sets 

15 

Miss 
Rate 

% 10 

5 

O+-----------~----------r---------~----------_.----~ 
1 2 4 8 16 32 64 128 256 512 

Cache Size(Kb) 
• ACM Traasactions On Computet Systems, 11188 Yo. 6 No.4, Cache Performance Of Operating System And Mu\tiprogrammiDa Workloads, (Agarwal, Hellnes)', Horowitz) 

Figure 1. Effects of Associativity 
memory, writing to the cache changes that data, which 
outdates main memory's contents. This problem intro­
duces the issue of maintaining data consistency between 
the cache and main memory. 

Two caching modes are used to ensure data consis­
tency: write through and copy back. Write-through cach­
ing avoids the data-consistency problem by writing to 
main memory with every cache-write access. The problem 
with the write-through approach is that write accesses 
incur main memory delays upon every write to the cache. 
You can avoid these delays by using write buffers to store 
the data from write accesses, but buffers solve the prob­
lem only to the extent that they can store the write-access 
data and unload it to main memory. Block store opera­
tions, such as those used in context switches, often cause 
processor stalls under write-through mode, when the write 
buffers become overwhelmed with data. The write­
through method also has the disadvantage of increasing 
bus traffic, because each write access forces a bus trans­
fer. For these reasons, designers of shared-bus multi­
processing systems have largely abandoned write-through 
caching. 

The alternative, copy-back caching, allows the 
processor to write to cache memory without immediately 
updating main memory. The copy-back cache keeps a 
state bit in each cache tag entry to report the modified 
status of a cache line. If the processor writes to a cache 
line, the copy-back cache controller sets the modified bit 
for that cache line. When a cache line is no longer 
needed, the state of its modified bit is checked If the 
cache line has not been modified, the cache line is over-

8-19 

written with a new cache line. If the cache line has been 
modified, however, the modified cache line is written out 
to main memory before being replaced. 

Copy-back caching has the advantage of allowing any 
number of write accesses to the cache without processor 
delays. It also conserves system bus bandwidth, because 
cache lines are only written to memory when the cache 
line is no longer needed. 

Cache Speed 
A design issue of growing importance is the difficulty 

of building a cache fast enough to meet the processor's 
needs. Designing a discrete CMOS or TTL cache control­
ler that can achieve zero-wait-state performance is becom­
ing prohibitively difficult at processor speeds of 25 MHz 
and beyond. Driven by the timing problems of high-speed 
cache design, many designers are using ASICs to imple­
ment custom cache controllers at speeds of 16 to 25 MHz. 
At speeds of 33 MHz and above, designers are relying on 
VLSI cache controllers. 

The use of VLSI cache controllers as part of a 
processor chip set is becoming the preferred method of 
microprocessor CPU design. This approach minimizes 
design time, while offering superior performance with 
minimal cost. VLSI cache controllers also provide speed 
enhancements due to the integration of features such as 
cache tag memories and MMU controllers. By providing 
greater functional density than that achievable with 
ASICs, the VLSI custom controller offers greatly en­
hanced levels of integration and maximum system speed 



~CYPRISS Impact of Memory Design on RISe Microprocessor 
&M~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

As semiconductor technology matures, increasing 
levels of CPU integration become possible. This has 
resulted in the recent emergence of integrated processors 
with on-chip cache systems. Integrated caches offer 
greater system integration and the opportunity for proces­
sor architectural improvements that are prohibitive to im­
plement outside the chip. 

However, one die currently cannot accommodate an 
entire CPU plus a cache that achieves a 96-percent cache 
hit ratio. The number of transistors that can be placed on a 
single chip is limited, which forces chip designers to 
reduce cache size to allow room for the processor. The 
cache size problem increases significantly as the processor 
becomes larger and more complex. The transistor budget 
for an integrated cache processor currently forces system 
tradeoffs that require the supporting memory system to 
compensate for the resulting low cache hit ratio. 

Integrated cache processors can present a problem for 
the system designer attempting to assess system perfor­
mance. Benchmarks for these processors are often careful­
ly chosen or modified to maximize the cache hit ratio, 
providing performance numbers that you cannot achieve 
in the real world. This leads to a buyer-beware situation. 
In evaluating any cache system, whether it is on or off 
chip, weigh performance numbers against unbiased, 
authoritative research findings on similar cache designs. 

Always keep in mind that processor performance 
depends on the entire memory system, not just the cache. 
Even a cache system with a very high hit ratio can result 
in mediocre system performance if a slow supporting 
memory system hinders the cache. You must therefore 
pay attention to the supporting memory system to achieve 
the desired system performance. 

Getting the Speed You Need From Main 
Memory 

As previously stated, minimum average memory ac­
cess time represents maximum system performance. Equa­
tion 1 gives the average memory access time as the prob­
ability weighted sum of the average cache-hit memory ac­
cess time and the average cache~miss memory access 
time. Although you always want to minimize the support­
ing memory latency, the importance of minimizing main­
memory latency grows as the probability of a cache miss 
increases. 

The obvious approach to minimizing the supporting 
memory's latency is to design a fast DRAM main 
memory. To provide maximum access speeds, DRAMs 
commonly provide fast sequential memory accesses via an 
addressing mechanism such as page mode, static column, 
or nibble mode. These features prove useful for cache line 
fetch, because a cache line is a fixed-length, sequential 
series of memory accesses. However, sequential accesses 
are often not enough. 

Another method of increasing DRAM memory sys­
tem speed is to employ interleaved banks of DRAM. This 
essentially involves supplying addresses to several banks 
of DRAM simultaneously and sequentially enabling the 

8-20 

memory bank outputs to place each word of the cache line 
on the memory bus. This method does not necessarily 
reduce the latency associated with the initial cache-line 
access, but the latency for all subsequent accesses in the 
cache line is minimized. 

Cache line prefetch is another method you can use to 
maximize main-memory performance. Because caches are 
designed around the concept of sequential memory acces­
ses due to an effect known as spatial locality, a cache 
miss on any specific cache line increases the probability 
of a cache miss on the next cache line. Main memory can 
use this concept to anticipate the cache by prefetching the 
next cache line after servicing a cache-line fetch. 

You can accomplish cache-line prefetch by designing 
a memory controller that can access the next cache line 
and store it into a prefetch buffer in the memory control­
ler. You can also implement cache-line prefetch by assert­
ing the next cache-line address to the memory in anticipa­
tion of the next cache line, thereby minimizing the initial 
memory access latency. Either method requires a more 
complex memory controller and an address competitor to 
prevent memory access errors. Note that by implementing 
cache-line prefetch in the main memory system as op­
posed to the CPU cache, you avoid unnecessary bus traf­
fic for unused prefetched cache lines. 

An extension of the cache-line prefetch approach is to 
employ secondary, or second-level, caching. The secon­
dary cache is essentially a much larger cache used to sup­
port the· smaller CPU cache. In general, the secondary 
cache is 2k times larger than the primary CPU cache, and 
the secondary cache blocks contain 2D primary cache 
blocks (where nand k are typically ~ 2). The use of a 
secondary· cache allows fast cache-line fetching by the 
primary-level cache, assuming a cache hit in the secon­
dary cache. Upon a secondary-cache miss, data is supplied 
from main memory. 

To minimize the secondary-cache-miss penalty, 
cache-line forwarding is generally used. This allows the 
cache line requested by the first-level cache to be fetched 
from main memory with essentially the same latency as 
main memory alone. The secondary cache updates itself 
with the missed cache line as the line is supplied to the 
primary cache. The secondary cache then fetches the 
remainder of the secondary cache line. 

Note that the initial main memory access delay for a 
DRAM memory system is generally sufficient time for a 
secondary cache to determine if a cache hit has occurred. 
This delay can be used in designing a secondary cache 
that introduces no latency penalty over a main memory 
system alone. The cache-line address can be supplied 
simultaneously to both main memory and the secondary 
cache. The secondary cache uses the initial main memory 
access latency time to determine whether a cache hit oc­
curred and to inhibit main memory, thus preventing bus 
contention. 

Including a secondary cache in the system greatly 
reduces the latency associated with a primary cache miss. 
Assuming a primary-cache hit ratio of 90 percent, only 10 



~CYPRISS Impact of Memory Design on RISe Microprocessor 
~ ~~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~====~ 

RISCCPU 
with cache 

t 
< memorvbus 

t 
DRAM memory inhibit 

memory 

.. 
) 

t " 

Secondary 
cache 

RISC CPU 
with cache 

,-------------
memo,,:r..-_~ 

Inhibit 
Secondary 

cache 

DRAM memory 

Figure 2. Secondary Cache Systems 

percent of the memory accesses are made from the sup­
porting memory system. With the inclusion of a secondary 
cache, 90 percent of those primary cache misses are 
fetched from the zero-wait-state secondary cache, again 
assuming a 90-percent cache hit rate. This leaves only 10 
percent of the primary cache misses to be fetched from 
main memory .. Therefore, the percentage of memory ac­
cesses that incur the full delay from main memory drops 
to 10 percent of 10 percent, or only 1 percent! 

Secondary Cache System Applications 
Secondary caching proves especially useful for sup­

porting small, on-chip integrated processor caches and for 
supporting shared-bus, multiprocessing systems (Figure 
2). For the latter, processing nodes with small- to 
medium-sized primary caches can share a large secondary 
cache. This approach allows equal or greater performance 
than nodes with large primary caches and also reduces the 
cost of each processor node. 

The CY7C600 Chip Set 
The Cypress CY7C600 SP ARC RISC chip set is an 

example of an high-integration CPU with a VLSI cache 
subsystem (Figure 3). This chip set comprises the 
CY7C601 Integer Unit, the CY7C602 Floating-Point Unit, 
the CY7C604 Cache Controller and MMU, and two 
CY7C157 Cache RAMs. These five chips constitute a 
high-performance CPU that requires no glue logic and 
operates at speeds from 25 to 40 MHz, providing 29 
MIPS of sustained integer performance. 

As a part of this CPU, the CY7C604 provides a tight­
ly coupled SP ARC reference MMU and cache controller 
with cache tag RAM. The chip implements a 64-Kbyte, 
direct-mapped cache. The 64-Kbyte cache is estimated to 
provide an average cache hit ratio of 96 to 98 percent. 
You can expand the cache to a maximum of 256 Kbyte by 

8-21 

using additional CY7C604 cache controller/MMUs and 
CY7C157 cache RAMs. 

The CY7C604 provides a high degree of functional 
integration and includes features such as on-chip write and 
read buffers, cache-tag memory, and a SPARC reference 
MMU with 64 lockable TLB (table look-aside buffer) 
entries. The CY7C604 supports both copy-back and write­
through cache modes, giving you the superior system per­
formance of copy back or the simple cache coherency af­
forded by write through. 

Under copy-back mode, the CY7C604's on-chip 
write and read buffers allow modified cache lines to be 
simultaneously flushed out of the cache while the missed 
cache line is fetched from main memory. Write buffers 
also boost performance in write-through mode and for 
non-cached memory accesses, allowing the CY7C604 to 
store up to four double-word memory writes without stall­
ing the CY7C601 processor. 

Incorporating cache-tag memory into the CY7C604 
provides extremely fast recognition of cache hits or mis­
ses, thus allowing the cache to run faster than is possible 
with off-chip tag memory. Including the SPARC reference 
MMU with the cache controller on the CY7C604 allows 
tightly coupled operation between the cache controller and 
MMU functions. The MMU checks access-priVilege status 
for all memory accesses, including those to cache, thereby 
protecting memory from unauthorized accesses. In addi­
tion, the SP ARC reference MMU supports execute-only 
access protection for memory, providing an additional 
level of security for sensitive code and computing en­
vironments. 

Cache miss latency for the CY7C604 cache is mini­
mized by the use of high-speed, O.8J.l, dual-layer-metal, 
CMOS logic and support of the SP ARC reference Mbus. 
Mbus is a 64-bit multiplexed address and data bus that 
supports burst-mode accesses and provides a peak bus 



CY7C601 
Integer 

Unit FP Interface Signals 

CY7C602 
Floating­

Point 
Unit 

Virtual Address Bus VA<31:0> 

CY7C604 
Cache 

Controller 
andMMU 

Mbus (54-bit multiplexed data/address bus) 

Figure 3. CY7C600 SPARC Chip Set 

bandwidth of 320 Mbyte/s at 40 MHz. Mbus allows cache 
lines to be transferred in bursts, providing a fast interface 
to main memory. All CY7C604 burst accesses are in 
cache line lengths and on cache line boundaries, simplify­
ing both the main memory design and the Mbus interface. 

In addition to supporting the high-speed Mbus, the 
CY7C604 provides support signals for secondary-cache 
systems. The CY7C604 furnishes visibility into the cache 
operation from the memory bus by supplying a cache 
status signal. This function gives a secondary-cache con-

8-22 

troller greater flexibility in managing the status of its 
cache and can be used to increase secondary-cache ef­
ficiency. 

The CY7C600 chip set is a high-performance RISC 
CPU, providing maximum system performance with mini­
mal design effort. The chip set is available in speeds of 25 
to 40 MHz, and its five-chip, no-glue-logic design offers a 
highly compact solution to state-of-the-art computing 
needs. 



CYPRESS 
SEMICONDUCTOR 

High-Speed CMOS SP ARC 
System Design 

This application note describes many of the effects 
caused by high clock speeds and rules of thumb for les­
sening the severity of the effects. Following these rules of 
thumb will help ensure a successful SP ARC hardware 
design. 

The SPARC (Scalable Processor ARChitecture) RISC 
processor is the only RISC processor architecture 
designed to be scalable, so that the processor's clock 
speed can increase as semiconductor process technology 
improves. The benefits of scalability appear most dramati­
cally in the Cypress CY7C600 SPARC product family. In 
a little more than a year, Cypress has increased the clock 
speed on the CY7C601 integer unit from 25 to 40 Mhz. 

As the CY7C600 SPARC family leaps upward from 
25 to 40 Mhz, system designers must become more aware 
of the effects of fast clock speeds upon hardware design. 
High-speed hardware design is not a difficult art, but it 
does require careful and close attention to detail. 

The effects that can lead to untraceable bugs in a 
high-speed system exist in a low-speed system; however, 
the magnitude of these effects in a slow system are small 
enough so that they can be safely ignored. This is not the 
case when clock speeds rise over 25 Mhz. 

System Clock 
At speeds above 25 Mhz, generating and distributing 

the system clock becomes a critical issue. The goal is to 
minimize the effects caused by duty-cycle imbalance, 
clock skew, and noise on clock lines. 

Duty-Cycle Imbalance 

Duty-cycle imbalance occurs when the clock signal's 
High and Low portions the are not symmetrical. Clock 
symmetry can vary from 40 to 60 percent, depending 
upon the hybrid crystal oscillator used. A simple way to 
ensure that the clock is symmetrical is to generate a signal 
at twice the frequency desired, then divide this frequency 
down to the system clock frequency using a D flip-flop 
(74ACII0074). Figure 1 depicts a simple clock genera­
tion circuit. 

All physical devices exhibit an edge-dependent, 
propagation-delay asymmetry; i.e., the Low-to-High-going 
edge rises faster than the High-to-Low-going edge falls, or 
vice-versa. If a single driver buffers a clock line, the 
driver introduces asymmetry into the system clock signal. 
You can avoid this asymmetry by cascading two inverting 

PR 40 Mhz 
'-------f D Q 

System Clock 

Q 
1----------1;> CLR 

L.-.....Jro...Lo.JJo..o.--I 

Figure 1. Symmetric-Duty-Cycle Clock Generation 

8-23 



-r;;-
S 
~ 

13 
0 

20 
19.8 

19.6 

19.4 

19.2 

19 

18.8 

18.6 

18.4 

18.2 

18 

17.8 

17.6 

17.4 

17.2 

17 

16.8 

16.6 

16.4 

16.2 

16 
15.8 

15.6 

15.4 

15.2 

. 

/ 
/ 

I 
/ 

/ 
V 

. 

/ 
./ 

r""""" 

V 
~ 

/ 
/' 

Li( 

./ v 
V 

/ 
/ 

V 

. . 15 
20 40 60 80 100 120 140 160 180 200 

wad (Pt) 

Figure 2. Delay (os) vs Load (pF) for CY7C601 

drivers in the same package. Because the drivers are in 
the same package, their delay characteristics are 
equivalent, and the differential between the Low-to-High 
transition and the High-to-Low transition is zero. A clock 
signal introduced into such a cascaded driver has the same 
symmetry going out as it had going in. 

Clock Skew 

Clock skew is caused by the need to distribute the 
system clock signal from a central point (the oscillator) to 
components that are dispersed on the printed circuit board 

8-24 

(PCB). The only way to minimize clock skew is to design 
the PCB so that the fanout on all clock lines is equivalent. 
Use a chip with multiple on-board buffers to maximize 
line-driving capability. 

The load on a clock line has three components: trace 
capacitance, socket capacitance, and input capacitance. 
Because the high integration of the CY7C600 SPARC 
family lends itself well to single-board designs, trace 
capacitance is not usually an issue. Socket and input 
capacit~ce dominate on PCBs. 



Figure 3. Parallel Clock Drivers 

The pin grid array (PGAl package used for the 
CY7C600 family has extremely low capacitance. The 
maximum pin capacitances are 10 pF for input pins, 12 pF 
for output pins, and 15 pF for bus pins. You can limit 
other components' socket and input capacitances by using 
surface-mount design techniques. 

As a rule of thumb, limit a clock buffer's fanout to 
eight to 14 devices. It is important to include both AC and 
DC loading in your fanout calculations. Data for the 
CY7C601 SPARC Integer Unit that relates delay to load 
appears in Figure 2. 

AC characteristics for logic devices are usually calcu­
lated using a value of 50 pF. If more than 50 pF of 
capacitance is being driven, the driver's AC charac­
teristics should be reduced for your calculations. 

The input capacitance of a typical CMOS part is 5 
pF. Bipolar logic is higher, with a typical input 
capacitance of 10 pF. Typical ECL parts are lower, with 
an input capacitance of about 3 pF. When you need a 
clock fanout greater a single buffer can supply, use the 
parallel driver scheme shown in Figure 3. 

DC input current ratings are important when calculat­
ing total loading. The driving device must be able to sink 
the sum of the Low-level input currents to which it is con~ 
nected. Low-level input current for bipolar logic ranges 
from -100 to -400 ~. The corresponding figure for 
CMOS is -1 to -5 ~, while ECL weighs in at 140 to 
200 !lA. 

High-level input current for bipolar logic is from 20 
to 50 ~, with CMOS at 1 to 5 ~ and ECL at 265 to 
350 ~. Because most bus drivers can sink up to -24 rnA 
and source up to 48 niA, input current loading is seldom 
an issue. Input current loading might become significant 
when driving a parallel-resistor-terminated load. In such a 
case, use an AC termination scheme. 

Clock-Line Noise 

Noise on the clock distribution lines can have a ripple 
effect upon other logic. It is important to take steps to 
minimize self-generated noise on clock lines. Self­
generated noise comes from two sources: reflectance from 
the end of the clock line and ove:rshoot caused by line 
load capacitance. You can minimize reflectance by 
properly terminating the end of the clock line. (The 
"Noise Reduction" section covers line termination.) You 
can substantially reduce overshoot by using two parallel 

8-25 

clock drive lines in place of one. This cuts the capacitance 
of the clock line in half. 

Noise Generation 
The CY7C600 family is fabricated using the Cypress 

CMOS process. Because of the fast edge rates (1 - 2 V/ns) 
and rail-to-rail voltage swings of high-speed Cypress 
CMOS logic, careful attention must be paid to signal 
noise. The primary sources of noise are ground bounce, 
power supply, crosstalk, and transmission-line reflections. 
You can combat noise effects by noise budgeting, good 
grounding, use of synchronous circuits, and proper line 
termination. 

Ground Bounce 

Ground-bounce noise arises when several outputs of a 
CMOS logic device switch from High to Low. This simul­
taneous switching causes a large sink current from the 
load capacitance to flow to ground through the device 
package inductance. This current develops a momentary 
potential whose magnitude equals the product of the pack­
age inductance and the sink current's rate of change: 

V=Lx
dI 

E 1 ~ ~ 
where V is voltage, L is ,the package inductance, and dIldt 
is the current's rate of change per unit time. This graph 
was computed using typical values of L and V. 

Figure 4 illustrates typical ground bounce as seen at a 
device's output pin and the corresponding voltage induced 
across a ground pin. The voltage is normalized to IV. If 
you apply 5V, for example, you see a ground bounce of 
approximately 0.75V 1.2 ns after. the power is applied. 
Note. the voltage undershoot at 0.5 ns caused by the in­
ductance. Without damping or termination, you can expect 
the ground bounce to settle to zero in approximately 
1.8 ns. 

The fast edge rates of the CY7C600 devices can lead 
to a fairly large ground-bounce potential. This voltage 
spikes the Low state held on the quiescent outputs and can 
exceed the input Low-level maximum (0.8V), causing 
downstream logic to switch erroneously. Ground-bounce 
noise can also cause registers in the bounced device to 
lose their stored state. This is caused by the momentary 
disturbance in the device's ground and Vee reference. 

The switching of multiple outputs on a CMOS device 
also changes its propagation delay. The delay increases by 
approximately 200 ps per switched output. For a device 
with a large number of outputs, this additional delay 
should be included in worst-case timing analyses. 

The magnitude of a given ground bounce is propor­
tional to the package inductance and the number of out­
puts switched. By reducing parasitic inductance between 
the package, ground and Vee, you can minimize the ef­
fect of ground bounce. The most effective way to reduce 
parasitic inductance is. to use surface-mount technology 
(SMT). You can also reduce parasitic inductance by using 
packages with center Vee and ground pins and by using 
low-inductance bypass and decoupling capacitors. For 



parts . in critical logic paths, use a standard decoupling 
capacitor (0.01 - 0.1 J.1F) along with a high-frequency 
decoupling capacitor (470 pF). 

If you employ pin grid array (PGA) or through-hole 
technology, you can also reduce the effect of the ground 
bounce by using series damping resistors on the package 
outputs. The resistors lower the magnitude of the ground 
bounce before it reaches the downstream logic. As an 
added benefit, the magnitude of signal overshoot and un­
dershoot is decreased. The tradeoff is slower switching 
rates, due to the increased RC time constant. 

You can also reduce ground-bounce magnitude by 
using fewer outputs per package. Figure 5 shows the 
relationship between ground-bounce magnitude and the 
number of outputs switched. Note that the relationship is 
roughly linear. 

Further, ground-bounce magnitude is directly propor­
tional to the power supply voltage. By reducing the mag­
nitude of Vee, you can reduce noise problems caused by 
ground bounce. 

The use of only synchronous circuits provides a built­
in resistance to false triggering caused by ground bounce. 
Synchronous circuits only trigger when inputs and the 
clock signal change. The ground-bounce noise produced 
by the upstream logic has one clock cycle minus the set­
up time to settle before the next clock reaches and triggers 
the downstream logic. 

If asynchronous logic is required, the use of an output 
pin close to the package ground pin reduces ground-

.­-

1 

0.9 
0.8 
0.7 
0.6 

0.5 

0.4 

bounce noise. The difference in noise magnitude between 
pins next to the ground pin and pins next to the Vee pin 
can be as much as 50 percent. 

To minimize the effect of ground-bounce noise upon 
the rest of the circuit, avoid running control signals 
through a device that drives data and/or address lines. The 
probability of multiple data or address lines simultaneous­
ly transitioning is high. If the device also contains control 
signals, they can be erroneously switched by the ensuing 
ground bounce. 

Power Supply 
Like the system clock, the power supply generates a 

global signal; its fluctuations have an effect upon every 
component in the system. Power~supply variations have a 
greater effect as clock speeds increase. High-frequency 
noise and ripple from the power supply can cause dif­
ferences in voltage levels among different sections of the 
system. As a rule of thumb, high-frequency noise occurs 
whenever the mean wave length of the noise on the power 
lines is not several times greater than the length of the 
longest power line. 

By causing the voltage levels to vary across the PCB, 
high-frequency noise and ripple from the power supply 
leads to a loss of noise immunity due to a reduction in the 
difference between the voltage value of input Low and 
input High. Bypass capacitors at the power supply input 
smooth out momentary current fluctuations. High-frequen-

0.3 .......... 
~~~~~~~~~~~~~~~k¥ 

0.2

0.1

O------~--=-----~~~~~----------~--~===----

-0.1

-0.2
Time (in nanoseconds)

-0.3
.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Figure 4. Ground Bounce and Voltage Induced on Ground Pin

· v
· / V
· [7

~

100

90

80

~
I.--"

· /

70

60

·
50

40

·
30

·
20

·
10

·
o
o

V
/

V

1 2 3 4 5 6 7 8

Number of outputs switching

Figure 5. Ground Bounce Magnitude vs Number of Switched Outputs (from Reference 5)

cy power-supply noise should be specified to be under 50
mV peak to peak.

Crosstalk

Crosstalk occurs when a signal passing through a
board trace or transmission line generates a corresponding
signal in an adjacent quiescent trace or line. Crosstalk
magnitude is proportional to three factors; edge rates,
physical proximity of the lines, and the distance over
which the two lines are adjacent. Because of the fast edge
rates of CY7C600 devices (up to 2 V/ns) and other high­
speed CMOS logic, crosstalk: deserves careful considera­
tion.

There are three ways to minimize crosstalk:: ground­
ing, shielding, and separation. During the initial design,
maximize the distance between traces and minimize the

8-27

length over which they are adjacent or parallel. Run
ground strips alongside either the cross talker or the cross
listener or between them.

To prevent crosstalk:, critical signals such as the clock
should always have a dedicated ground line. When pos­
sible, the signals on adjacent PCB layers should be per­
pendicular to each other. Use the power and ground layers
as shields between signal layers. For backplane and wire­
wrap applications, use twisted-pair for sensitive signals
such as clocks; asynchronous set and clear signals, and
asynchronous parallel loads. When using ribbon or flat ca­
bling, make every other conductor a ground line.

If crosstalk: occurs in an already-designed board or
system, try these quick fixes to solve the problem: On
PCBs, glue a grounded wire or copper strip alongside or
between the affected traces. In a backplane or wire-wrap-

€r~ ========~H;;;I;!·g;;;;h~-S~p;;;e~ed~C~M~O~S~S~P~A~R~C~S~ys~t~em~D~e~s~ig~n

Vee

R l/R2 = equivalent Thevenin
resistance of termination

Figure 6. Split-Resistor Termination

ping situation, spiral a ground wire around the talker
and/or listener to increase their shielding. Use a split-resis­
tor termination on the offending line, where RlIR2 = the
Thevenin resistance, which is the impedance of the line
(Figure 6). (The "Parallel Termination" section explains
how to determine the Thevenin resistance). You can use
diode or active termination to reduce ringing (see the
"Diode Termination" section). As a last resort, cut the of­
fending crosstalk trace from the PCB and replace it with a
wire. By ~-routing the wire, you might reduce crosstalk,
at the possIble cost of greater propagation delay.

Transmission-Line Reflections

F?r long trace lengths or backplane connections, it is
sometimes necessary to consider transmission-line effects.
Thes~ . effe~ts ~ significant when the unloaded signal
tranSItion time IS less than or equal to the round-trip sub­
strate propagation delay. For ordinary PCB materials (G-
10 ~oxy), the rou.nd-trip propagation delay is ap­
proXimately 0.295 ns/mch. Unloaded signal transition time
for the CY7C600 devices varies from 3 to 2 ns, depending
upon clock speed. Traces longer than 6 -10 inches should
be treated as transmission lines for noise calculation pur­
poses.

Transmission lines suffer from three types of noise
effects: undershoot, overshoot, and ringing. Undershoot
occurs when a signal's voltage level momentarily drops
below the Low level (OV). Overshoot is the inverse­
w?en a signal's voltage level momentarily rises above the
H~gh.lev~l (+5V). (Use. of a 5V power supply is assumed.)
Rmgmg IS when a nOlse pulse keeps on reflecting back
from the two ends of a trace or wire.

All of these effects result from reflectance at the end
of the trace or wire. Depending on where the reflection
appears in relation to the signal, a reflected noise pulse
can manifest as undershoot or overshoot.

Because of the CMOS· technology used to fabricate
the CY7C600 devices, the parts resist damage caused by
undershoot and overshoot on input lines. The devices are
insensitive to -3V DC input levels (sustained) and -5V un­
dershoot levels less than 10 ns 10I)g (measured at the 50
percent point). Input levels as high as +5.5V DC can be
withstood without damage, as can· momentary overshoot
pulses of up to +6V DC.

8-28

Reflectance is caused by a mismatch between the line
characteristic impedance and the load impedance. The fol­
lowing equation shows the relationships involved:

RL-Zo PL=-­
RL+Zo

Eq.2

where R.L is the load impedance, Zo is the line impedance,
and PL IS the coefficient of reflectance, which equals the
reflected voltage over the incident voltage. The equation
shows that the reflectance from the end of the line goes to
zero as the term RL - Zo goes to zero. Additionally, the
magnitude of the reflectance decreases to zero as RL + Zo
goes to infmity. These relationships show two ways to
decrease the reflection from the end of a transmission
line: match the line's impedance to that of the load to
minimize the voltage reflected or maximize the sum of
both impedances to minimize the effect of the reflected
voltage. The tradeoff is that maximizing impedance
decreases the signal rise time. Both methods are discussed
in the next section.

Reducing Noise

~ ou can e?vision the effect of noise upon a system
by usmg a deSIgn method called noise budgeting. In the
SImplest sense, noise budgeting is the allocation of noise
to system noise sources (ground, power, crosstalk, etc.) in
such a way that the noise immunity of individual com­
ponents is not exceeded. Allocation is based on the calcu­
lated or expected values of the noise generated.

. A nois~ budget table shows you the relative mag­
nItude of nOlse generated by each source. This allows you
to focus your noise-reduction efforts where they will have
the most effect. A noise-budget table for a representative
system appears in Table 1. The entries for DC and AC
noise represent the peak: noise values allocated to the
s~cific noise so~rce. For example, the expected peak
nOlse due to EMI IS 2 mY. Note that some noise sources,
such as temperature, have only DC components; others,
such as crosstalk, have only AC components.

The concept of a noise budget rests upon three points:
effectivity measures, probability theory, and noise im­
munity. An effectivity measure relates a circuit parameter,
such as temperature, to its effect upon a device's output
level. For example, temperature has a DC effectivity
measure of 1.0 in Table 1. This means that if the noise
generated by temperature variations is 10 mY, then the
noise output from the circuit equals 10 mV of noise times
a 1.0 DC effectivity, or 10 mY: You can determine effec­
tivitY measures from vendor-supplied circuit charac­
teristics and graphs.

Probability theory comes into play when you consider
the chance that a noise event will falsely trigger a circuit.
You can consider noise in a computer system as random
for most practical pUIpOses. This assumption might seem
counter-intuitive, as noise is caused by transients, whether
its source lies in temperature, ground levels, signal edges,
etc. Each noise point source is deterministic; a reflected
noise pulse is generated only when the incident signal
reaches the end of a transmission line. However, the noise

S7~ High-Speed CMOS SPARC System Design
~~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Table 1. Noise Budget 

Source 
DC Noise DC Equivalent 

(mV) Effectivity DC (mV) 

Gnd to Gnd 11 1.0 11 

PC card Crosstalk. -- -- --
Backpanel Crosstalk -- -- --
Vee Bus 230 0.10 23 

Temperature 10 1.0 10 

SIP Crosstalk -- -- --
Termination -- -- --
Wire Untwist -- -- --
EMI -- -- --

observed at any place in the system is the sum of all the 
point sources of noise. This overall noise is random, be­
cause it is the sum of time-diverse noise sources such as 
slow variations due to temperature, fast variations at clock 
edges, etc. 

Note also that noise generated by an event might ar­
rive at a component from different sources separated in 
time because of the different-length paths the noise took 
to arrive at the component. Therefore, noise magnitude as­
sumes a Gaussian distribution - the familiar bell-shaped 
curve. 

In a typical electronic system, no single point source 
can generate enough noise to falsely trigger a circuit. A 
circuit is· only triggered when a group of random noise 
pulses sum to greater than the circuit's noise immunity. 
Because the resultant noise is the sum of random noise 
with a normal distribution, the probability that noise of a 
certain magnitude will be encountered equals the area 
under the normal curve. Peak noise voltage occurs within 
3 sigma limits of the mean noise voltage on the normal 
curve. 99.7 percent of the area under the normal curve is 
within 3 sigma of the mean. Noise magnitude will be less 
than or equal to the peak noise 99.7 percent of the time. 
Thus, the peak noise voltage will be exceeded ap­
proximately 0.3 percent of the time. The peak equivalent 
noise for a system equals the root of the sum of the 
squares (RSS) of the individual sources: 

Noise(equivalent) = "";S12 + S22 + ... 
where Sl, S2 ... are the noise sources. The RSS of the sys­
tem described in Table 1 is 136.3 mY. This is the peak 
value of the total effective noise, and this value will not 
be exceeded 99.7 percent of the time. For a design to be 
immune to noise effects, the noise immunity of the com­
ponent with the least amount of noise immunity must ex­
ceed this peak value by a wide margin. Conservatively, 
minimum noise immunity of 2 x peak is acceptable. 

8-29 

AC Noise AC Equivalent 
Total 

Effective (mV) Effectivity AC (mV) 
Noise (mV) 

105 0.45 47.25 5S.25 

75 1.0 75 75 

71 1.0 71 71 

80 0.29 23.2 46.2 

-- -- -- 10 

22 1.0 22 22 

24 1.0 24 24 

35 1.0 35 35 

2 1.0 2 2 

The last point upon which noise budgeting rests is 
noise immunity. Noise immunity is the amount of noise in 
volts that a component can absorb without changing state. 
The noise immunity for a component is the difference be­
tween input High voltage (1m) and input Low voltage 
(IlL). For the CY7C600 family, 1m = 2.1V and ilL = O.SV. 
This gives a noise immunity of 1.3V. For a CY7C600 
component to be switched by a noise pulse, the noise must 
therefore have a magnitude of at least 1.3V. 

Grounding Techniques 
Like the clock and power, ground is a common signal 

for all components. For high-speed SP ARC CMOS logic 
design, the use of proper grounding techniques is impor­
tant to reduce crosstalk and increase switching rates. 

The basic grounding technique for PCBs is to provide 
a ground comb on one side of the board. A ground comb 
is a series of parallel strips connected at one end by a 
perpendicular trace. The ground strips should only be con­
nected at one/--.end, to minimize noise coupling. The 
ground load caused by switching components on each 
strip should be dispersed in both time and space to 
decrease the amount of noise coupling between com­
ponents. 

Remember that the ground, while providing a com­
mon voltage reference, also provides an alternate path for 
noise signals. Ground bounce travels down signal lines as 
well as the ground plane to which the circuit is connected. 

Take care to ensure that chips with many outputs that 
switch at the same time do not connect to the same 
ground plane. The ground plane should be connected to 
10 percent of the edge connector pins spaced equally 
apart. This reduces the ground impedance, which mini­
mizes crosstalk because multiple signals do not rely upon 
a single ground return path. Connect high-current circuits 
to a separate ground to minimize noise coupling to other 
circuits. For high-speed SP ARC CMOS designs, use a 



Q""""" ffigh-Speed CMOS SPARC System Design 
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 7. Series Termination 

multi-layer PCB with separate ground and Vee planes to 
decrease system-wide noise. 

Using Synchronous Circuits 
Because noise is random, large noise spikes can 

occur at any time. The only ones of interest are the ones 
that falsely trigger a circuit. In an asynchronous design, 
any noise pulse that exceeds a circuit's noise immunity 
triggers the circuit. 

In a synchronous design, on the other hand, the cir­
cuit is triggered only when a clock edge occurs at the 
same time as a noise pulse that exceeds the circuit's noise 
immunity. A valid clock edge only occurs during 25 - 35 
percent of the clock cycle, depending on whether one or 
both of the clock's edges can trigger an event. Thus, 65 -
75 percent of the noise pulses that randomly occur are 
unable to falsely trigger circuits. The inherent noise resis­
tance of synchronous logic make it a must for robust high­
speed system design. 

Termination Methods 
You can reduce reflectance from the end of a signal 

line by using proper termination. To do this, you use a 
resistance to either damp the reflected signal or match the 
impedance of a transmission line to the source or load, 
thus reducing the reflection's magnitude. Consider using 
termination techniques for signal lines longer than 6 112 
inches. Termination. is mandatory only for clock inputs, 
write and read strobes, and chip select and enable lines. 
Address and data lines usually have time to settle before 
they are sampled. 

Series Termination 
There are four methods of termination: series, paral­

lel, AC, and diode. You can accomplish series termination 
by placing a resistor in series with the output of the device 
driving the signal trace (Figure 7). The intent is to match 
the trace's impedance, Zo, to the circuit output impedance 
plus the resistor value. When these two quantities are 
equal, according to Equation 1, the reflectance from the 
driving device is zero. Thus, if a noise pulse is reflected 
back from the driven device's input pin, the pulse is ab­
sorbed when it· meets· the series resistor. Place the series 
resistor as close to the output pin as possible. 

One of the advantages of series termination is that it 
causes no DC power dissipation and therefore does not 
add to the system's overall power requirements. Series 
termination does have several disadvantages, however. 
One is slower signal propagation, which is due to the 
larger RC time constant. Another disadvantage is that you 

cannot use distributed loading along the line. The series 
resistor's voltage-divider effect during the two-way 
propagation delay time causes any inputs attached along 
the line to see an input voltage halfway between the logic 
levels; the devices therefore fail to respond correctly. 

Reflections at the receiving gate place no restriction 
on the number of lumped loads you can place at the end 
of the line because all reflections are absorbed at the 
source. However, the voltage drop across the series-ter­
minating resistor limits the effective loading of the line. 

A variation of series termination is series damping. In 
this technique, instead of matching the line's impedance 
to the driving circuit's output impedance plus the resistor 
value, you use a resistor of 10 to 750.. This resistor damps 
the noise pulses caused by reflection at impedance mis­
matches; the pulses are not completely absorbed as with 
series termination. Except for this difference, the ad­
vantages and disadvantages of both techniques are the 
same. 

Parallel Termination 
In parallel termination, you place a pull-up and a 

pull-down resistor at the end of the signal trace (Figure 
8). The Thevenin equivalent value of the resistors equals 
the impedance of the signal trace. Two simple formulas 
for calculating the proper values of Rl and R2 are 
R2=2.6Zo 

R2 
Rl = 1.6 

where Zo is the impedance of the signal trace. 
The advantage of parallel termination is that the 

waveform along the full length of the line remains undis­
torted. Also, the rise time of the signal traveling down the 
terminated trace is unaffected. Additionally, you can use 
parallel termination when the signal line's characteristic 
impedance not completely defined. By approximating the 
impedance, the reflectivity coefficient is still relatively 
small; thus, overshoot and undershoot will probably 
remain within safe limits. On the negative side, the pull­
down and pull-up resistors constantly dissipate power. For 
this reason, parallel termination should probably not be 
used in systems utilizing the high-speed CMOS CY7C600 
family. 

AC Termination 
Figure 9 shows the AC termination method, which is 

the most common termination approach. It does not have 
the half-voltage disadvantage of series damping and 
causes no DC power dissipation. The latter feature is im­
portant when using low-power CY7C600 devices. 



zo 

Figure 8. Parallel Termination 

AC termination consumes no DC power because the 
capacitor blocks the path to ground. You can attach loads 
at any point along the trace, and they see a full voltage 
swing. AC termination also acts as a low-pass fIlter for 
short noise pulses. Any noise pulse less than 4(R x C) 
seconds wide is fIltered out. 

The value of the capacitor, C, must satisfy two con­
flicting requirements. It must be large enough to either ab­
sorb or supply the energy contained or removed when 
positive or negative noise pulses occur. Additionally, the 
capacitor must be small enough to avoid delaying the sig­
nal or slowing the signal's rise and fall times beyond the 
design limit. For CY7C600 applications, the minimum 
set-up times determine the maximum degradation of the 
signal rise time. The minimum set-up time can be as small 
as 4 ns for a 33-Mhz part. You can use the following for­
mula to closely approximate the values for Rand C: 

C=~ E 3 2.2R q. 

where T is the maximum degradation of the signal rise 
time. Start with a value of R slightly less than that of Zo, 
the characteristic line impedance. Then calculate the value 
of C. The combined impedance of the resistor and the 
capacitor approximate that of the line, reducing the reflec­
tivity at the end of the trace to near zero. You can verify 
this by calculating the capacitive reactance, Xc, of the 
capacitor: 

1 
Xc= 21tfC Eq.4 

where f is the frequency of the signal passing through the 
signal trace. As an example, Table 2 was calculated for a 

4-ns maximum signal degradation. The calculated values 
are based upon a son PCB trace and a 120n wire-wrap­
ping line. If you use a resistor value of 47n and a 
capacitor value of 38 pF, the termination closely matches 
the impedance of the PCB signal trace. Additionally, the 
termination acts as a low-pass fIlter, absorbing all noise 
pulses under 7.12 ns in length and over 140 Mhz in fre­
quency. 

The disadvantage of the AC termination method is 
that it requires two components, a capacitor and a resistor. 
Remember to keep the leads as short as possible to 
prevent ringing caused by lead inductance. 

Diode Termination 
Terminating a signal trace with a pair of Schottky 

diodes is called diode or active termination (Figure 10). 
The lower diode's low forward voltage, V f, clamps the 
input signal to below ground, and upper diode does the 
same to Vee + Vf. These effects significantly reduce sig­
nal overshoot and undershoot. If both undershoot and 
overshoot are not a problem, you might require only one 
diode. 

The advantage of diode termination is that you do not 
have to match the line impedance exactly, as you do in 
series, parallel, and AC termination. Diodes are more ex­
pensive than resistors or capacitors but might reduce over­
all system cost because they eliminate the work of 
precisely determining line impedances. Additionally, if 
you discover that ringing is a problem during system 
checkout, you can easily add diodes. As with all termina­
tion methods, keep the leads as short as possible to avoid 
ringing caused by lead inductance. 

Figure 9. AC Termination 

8-31 



~~qR ;;;;;==;;;;;;;;;;=====;;;;H;;;;;;ig:;;;h;;;;-;;;;;;S;;;p;;;;ee;;;;d;;;;C=M;;;;O;;;;S=S;;;;;P;;;;A;;;;R;;;;C=S;;;;y;;;;;st;;;;em=D;;;;e;;;;s;;;;;;ig;;;;:;D 

Vee 

Zo 

Figure 10. Diode Termination 

The following Schottky diodes are suitable for ter-
mination purposes: 

IN4148 (Switching) 
IN5711 
MBDI0l (Motorola) 
HP5042 (Hewlett-Packard) 

References 
1. FAST Applications Handbook, Fairchild, Inc., 

1987. 
2. Blood, Jr; William R. MECL System Design Hand­

book, Motorola Inc., 1988. 
3. Hefner, Moore & Weinstein. Advanced CMOS 

Logic Designer's Handbook, Texas Instruments Inc., 
1988. 

4. CY7C600 RISC Family Users Guide, Cypress 
Semiconductor Corp., 1988 

5. Tripp & Hall. "Good design methods quiet high­
speed CMOS noise problems," EDN, October 29, 1987. 

8-32 

Table 2. AC Termination for a 4-ns Signal 
Degradation 

Values PCB Wirewrapping 
Zo (0) 50 120 

R (0) 47 110 

C (pF) 38 16 

RC (ns) 1.78 1.76 

4RC (ns) 
7.12 - (140 MHz) 7.04 - (142 MHz) 

- passwidth 



CYPRESS 
SEMICONDUCTOR 

SPARe System Surface-Mount Design 

This application note covers most of the pitfalls in 
SMT design and should help make your fIrst SMT design 
successful. This is not a complete reference, however. For 
thorough coverage of SMT techniques, please refer to Ref­
erences 1 and 2. 

Cypress's objective is to design and build the fastest, 
most capable SP ARC chip sets. in the world. As the 
operating frequency of Cypress's CY7C601, CY7C602, 
CY7C604, and CY7C157 SPARC chip set increases, con­
cerns about factors such as package capacitance and in­
ductance and PCB trace length become more important. 
You can reduce the impact of these factors by using sur­
face-mount technology (SMT). 

SMT differs from through-hole technology in that the 
component leads are placed directly onto the PCB rather 
than through the PCB. SMT permits greater component 
density, more reliable systems, and savings in labor and 
material costs. To gain these benefIts, SMT demands care 
and precision in the placement and soldering of devices to 
the PCB. 

Fine-pitch leads for SMT devices are not uncommon. 
Cypress and other advanced semiconductor vendors use 
208-lead, 25-mil-pitch ceramic quad flat packs for many 
products. Fine-pitch packages. such as these require 
precision in initial placement and alignment. 

Ins and Outs of Surface-Mount Technology 
Through-hole or leaded technology is arobust pack­

aging technique that has served the electronics industry 
well in moving up the integration. curve. In fact, if in­
tegrating more functions on chip was the only technology 
driver, through-hole technology would serve well for the 
foreseeable future. However, as the industry moves into 
the realm of system engineering, which involves multiple 
chips, other integration requirements reveal the flaws in 
through-hole technology. 

The SPARC community's primary system-integration 
need is to reduce the physical and electrical distance be­
tween components to achieve higher clock frequencies. 

8-33 

This is diffIcult to do because of the mechanical con­
straints imposed by through-hole technology. 

Consider, for example, a typical through-hole pack­
age, the DIP. While small, a DIP is a physically imposing 
thing· with its large package and stiff leads. These 
mechanical constraints are imposed by the need for the 
DIP leads to go through either a socket or the PCB. To 
achieve this penetration,· the leads and package need stiff­
ness and strength. This requirement causes the leads and 
package to have more mass and material, which, in turn, 
means greater capacitance, inductance, and package 
volume. 

SMT packages do not have these mechanical con­
straints. Because surface-mount devices. (SMOs) are 
placed onto, instead of inserted into the PCB, their 
strength and stiffness requirements are considerably lower. 
Thus, leads and package can be made as small as the 
number of signal leads and die bonds allow. Because the 
leads can be reduced to where they are just big enough to 
physically reach the PCB pads from the package, their 
capacitance and inductance are correspondingly reduced. 
This reduction decreases the capacitive and inductive mis­
match between the leads, the PCB pads, and the PCB 
traces, which decreases the noise effects the component 
sees. The decreased noise effects allow the signal lines to 
run at higher frequencies without random problems caused 
by noise spikes. 

An additional SMT benefit is the capacity to place 
more components in the same board area. Because SMT 
packages are smaller than through-hole packages, more 
components can reside in the same area. Because the com­
ponents are closer together, the traces needed to connect 
them are shorter. This means less trace capacitance and 
impedance, which also makes higher operating frequen­
cies possible. 

As with everything in life, the advantages of SMT are 
not free. The primary diffIculties encountered in using 
SMT involve placement and soldering. Placement of sur­
face-mount devices is more diffIcult than for through-hole 



All dimensions are In inches: =:-
---------I..--L lUl.45 

--r 0.056 

-52-Lead Plastic Leadless Chip Carrier J69 

lUIQQ i 0.730 

T 

II.lI23 J~' 0.033 **=~?=? 

1

.1 ~=nm. 0.130 _ Jl..Wi 

0.200 

Figure 1. CY7C157 PLCC 

devices because SMD placement is relative, not absolute. 
Because through-hole components are inserted into either 
the PCB or a socket, feedback on correct alignment is in­
stantaneous: Either the component leads go into the holes, 
or they do not. 

On the other hand, SMDs must be placed relative to 
the appropriate solder pads on the PCB. A misalignment 
of one or more 'leads does not become apparent until the 
placement is visually inspected. Additionally, the lead 
placement is not self-corrective. For a through-hole com­
ponent, if one or more leads or PCB through-holes are 
slightly off, inserting the other leads tends to force the 
out-of-alignment leads into the correct orientation. This 
self correction does not exist for SMDs. 

Soldering is the other area where differences between 
through-hole and surface-mount techniques become ap­
parent. SMDs' have a lower profile than through':hole 
devices, which puts SMDs closer to the PCB. If wave 
soldering is used, then a problem known as shadowing be­
comes a concern. Shadowing occurs when the solder wave 
must rise over the component instead of going under it, as 
in through-hole designs. The component body can shadow 
the component leads, preventing the solder from wetting 
them. As a reSUlt, some of the leads are not soldered to 
their PCB pads. 

Another possible SMT problem caused by" wave 
soldering is heat damage to components. While through­
hole packages stand' off from the PCB, SMDs sit on the 
board. The solder wave therefore washes over the SMD. 
If the solder temperature is not carefully controlled, the 
components can be damaged. 

Fortunately, you can control all these difficulties 
peculiar to SMT by careful attention to the fine details of 
board stuffing and assembly. 

Cypre~s Surface-Mount Packages 
The Cypress product line includes three SMD pack­

age types: a 52-lead plastic leaded chip carrier (PLCC), a 

8-34 

160-pin plastic quad flat pack (PQFP), and a 208-lead 
ceramic quad flat pack (CQFP). The CY7C157 cache 
RAM comes in a 52-lead PLCC; the CY7C611 embedded 
controller is offered in a 160-lead PQFP; and the 
CY7C601 integer unit and CY7C604 and CY7C605 
cache/memory management units can be packaged in a 
208-lead CQFP. The drawings and form factors of these 
three packages appear in Figures 1,2, and 3, respectively. 

Lead Handling for SMDs 
The relative fragility of SMDs requires a change in 

handling procedures from that used for DIPs and other 
through-hole devices. These parts can be shipped and 
transported in carriers that allow flex and slight device 
movement. This type of packaging suits the JEDEC J69 
52-lead PLCC used for the CY7C157 due to the robust 
nature of its leads. 

However, this packaging is not suitable for theEIAJ 
standard 160-lead PQFP or 208-lead CQFPs that Cypress 
uses for non-memory devices. The leads in these packages 
are very fine and fragile and are susceptible to twisting or 
bending. These packages must be firmly fixed in pla.ce 
during transport. The best method is to use a waffle pat, 
in which the component leads are fixed by a small ridge 
of material that, forms a box around the package. 
Sandwiching the package between two carriers holds it 
frrmly in place. The ASAT 125C is a good example of 
this type of carrier. 

Creating SMD Footprints on a PCB 
Footprint or solder-pad design for PCBs is a critical 

part of good SMT design. This is because SMDs are not 
rigidly connected to the PCB during soldering, as are 
through-hole components. SMDs essentially float during 
the soldering process. This floating results from differen­
ces ,in surface tension due to uneven cooling after 
soldering. 



The effects of floating can be reduced by carefully 
crafting the pad sizes; Reducing the pad width is the frrst 
step. A pad that is too long causes the SMD to float off 
the high point on the pad and over to one side. A pad that 
is too wide might allow the component to rotate. The 
ideal pad is almost exactly the same size as the SMD 
lead's contact surface. The pad width should equal 1.02 
times the lead width, and the pad length should equal 1.02 
times the lead contact length. 

For PLCC devices (CY7C157), it is important that 
the lead footprints on the PCB not run too far under the 
package. Footprints should be extended out approximately 
0.050 inch to the outside of the package. This helps 
reduce solder bridges under the PLCC, where they cannot 
be seen during visual inspection. 

Fixing SMDs in Place 
Through-hole devices are fixed in place in a socket or 

PCB either by lead bending or the mechanical tightness of 
the lead fit. SMDs are not. You must use adhesives to 
frrmly fix SMDs in place before soldering. The only ex­
ception is when you use reflow soldering. In this techni­
que, solder paste is applied to the PCB before the SMDs 
are place. Then, IR lamps or hot air cause the solder paste 
to reflow. The paste usually has sufficient adhesion to 
hold the devices in place until soldering is complete. 

However, not all SMT PCBs can use solder reflow. If 
a board includes a mixture of through-hole and SMT 

.l...OSa 
1.106 sq. 

0.998 sq. 

~-n- ~ ~ 0.0256 

devices, wave soldering or combination wave/reflow 
soldering is usually necessary. When you use these solder­
ing techniques, you must apply an adhesive to the PCB to 
hold the SMDs in place until soldering. 

The use of adhesives brings a new set of potential 
problems, especially relating to product reliability. The 
adhesive might absorb moisture and create a short on the 
PCB. The adhesive might also degrade in an unattractive 
way, causing marring or shorting of other system com­
ponents. For these reasons, select adhesives for their 
lifetime properties. As a general guide to adhesive selec­
tion, follow this framework: 

System: Account for the intended application of the 
system in which the surface-mount PCB is used. An 
adhesive that has lifetime properties suitable for a 
workstation environment might not be optimum for 
industrial or military applications. Selecting the right 
type of adhesive at this stage prevents system failures 
during the product's lifetime. 
Device: Keep in mind the type of SMD used on the 
PCB. Most adhesives work with the plastic and 
ceramic SMT packages used by Cypress. However, 
other SMDs on your PCB might require a different 
type of adhesive. 
Process: How will the adhesive be applied to the 
PCB? The three available methods are pin transfer, 
Screen printing, and pressure syringe. Each method 
has its own advantages and disadvantages. The 

.1.2!6 
1.266 sq. 

U 

1 1
-Q...136 

~1~ 
f 0.037 

160 pin EIAJ standard QFP 
All dimensions In Inches 166-Pin Quad Flat Package (Top View) 

Figure 2.CY7C611 PQFP 

8-35 



dominant criteria for selection are the estimated 
production volume and the type of PCB substrate 
used. For example, screen printing demands a flat and 
distortion-free substrate. You cannot use this method 
for PCBs that already have components on them, such 
as pre-loaded mixed-print boards. Als.o limiting your 
choice is the fact that all adhesives are not compatible 
with all three methods. 
Machine: The application process you choose drives 
the selection of a machine for applying the adhesive. 

You can use either a stand-alone adhesive application 
machine or one integrated into a pick-and-place 
system. 
Adhesive: The fmal adhesive choice must be com­
patible with all the requirements you establish. This 
choice is often driven by the type of machine you 
choose, because the. machine might have been 
designed with a specific adhesive type in mind. This 
makes the adhesive choice the responsibility of the 
machine manufacturer. 

ts I'· 1.102 ± 0.008 sq. 

PIn 208 rJlHllIllllJllB .... lIlIIBmn:LT 
Pin 1 

208-pin EIAJ standard QFP 
All dimensions in inches 

0.008 

Figure 3. CY7C601/CY7C604/C~7C605 CQFP 

8-36 



SMD Alignment 
The very fine pitch between leads on the 208-lead 

EIAJ CQFPs (0.0196 inch) places exacting requirements 
on pick-and-place machines. Cypress uses this package for 
some products, which usually require absolute placement 
to within ±0.OO2 inch or less in both X and Y coordinates, 
relative to the lead pads on the PCB. Additionally, angular 
error should be held to less than 10. This requires that the 
pick-and-place machine have rotational correction 
capability. Vision capability is also needed. 

It is important to realize that an interacting set of in­
accuracies determine the required placement accuracy. 
The first inaccuracy is the location of the CQFP with 
respect to the vacuum pick-up nozzle. Usually, the pick­
up nozzle only has a general idea of its position with 
respect to the true center of the device. This general idea 
is not sufficient for fine-pitch CQFP. devices. Pick-up 
position needs to be controlled by accurately positioning 
the waffle pack (if used) in relation to the pick-and-place 
machine. The pick-up nozzle usually picks up the device, 
then repositions it by use of a centering system. Centering 
is done with reference to the leads' edge surfaces. 
Depending on the centering system's capability, it can 
achieve an accuracy of ±0.001 inch of the placement cen­
ter to the device center. This is half the allowable error, 
and the device has not been placed on the PCB yet. 

A vision system guides SMD placement on the PCB. 
The vision system first orients itself either by detecting 
fixed locating patterns on the PCB called fiducials or by 
looking for unique combinations of pads and vias that 
occur at fixed places on the PCB. Fiducials are the 
preferred method, because they take less processing 
capability for the vision system to recognize, and their 
location on the PCB can be more tightly controlled. One 
fiducial allows the vision system to locate itself with rela­
tion to the PCB. Two fiducials allows the vision system to 
establish a second-order level of correction, which encom­
passes X-Y offset, angular offset, and a linear expan­
sion/contraction compensation for the medium. Adding a 
third fiducial improves the accuracy of these corrections 
through use of an interpolation algorithm in the vision 
machine software. It is a good idea to use several levels of 
fiducials to give several levels of position and angular 
correction: PCB to PCB, circuit to circuit, or component 
to component. 

As mentioned earlier, inaccuracies have a compound­
ing effect. The machine's location is determined by the 
inaccuracies of its placement on the shop floor. The 
PCB's location is determined by the inaccuracies of its 
placement in the PCB fixing jig. The location of the PCB 

8-37 

features (vias, pads) is determined by the inaccuracies of 
the PCB fabrication and layer masking process. 

Because of these inaccuracies, determining pad loca­
tion by absolute methods - in terms of X-Y coordinates 
from the pick -and-place machine - does not work. The 
only way to achieve the required accuracy is to actively 
determine the location of the component on the end of the 
pick-up nozzle relative to the PCB. This is done by deter­
mining the location of the PCB by vision system inspec­
tion of the fiducials and extrapolating this location to 
determine the location of the SMD pads. 

An accurate vision system can determine the location 
of a fiducial to within 0.0007 inch. In the worst case then, 
the starting inaccuracy of the pick-and-place machine is 
0.0017 inch (O.OOl-inch pick-up nozzle inaccuracy plus 
0.OO7-inch location inaccuracy). Because the leads must 
be placed within 0.002 inch of the actual pad location, this 
only leaves 0.003 inch for machine inaccuracies in arm 
location and in the PCB holding fixture. 

The only way to reduce this inaccuracy is to use mul­
tiple fiducials, which permit an angular orientation ac­
curacy of ±O.2°. The use of multiple fiducials means that 
you must use a computationally powerful vision system 
with interpolation algorithms, which implies high cost and 
slow fabrication. 

Component Spacing 

Because of the fine pitch of the EIAJ CQFPs used by 
Cypress, it is important to recognize the effects that the 
close tolerance of the PCB pads and vias can have upon 
the PCB's solderability. The prime objective here is to 
reduce solder bridging, which occurs when a pad, lead, or 
via connects to the wrong place, causing either shorting or 
a path for random circuit effects. 

You can control solder bridging by ensuring that the 
clearance between PCB vias and pads is large enough to 
prevent solder migration. O.OI-inch air-gap distance be­
tween vias and pads is recommended. 0.012 inch is 
recommended where a 900 via point is adjacent to a pad. 
At least 0.025 inch should be available between pads. 

Careful alignment of the solder mask is also helpful 
in reducing solder migration. Use a photo-imaged mask 
coating. Keep the maximum clearance of the solder mask 
in relation to the pads and PCB vias to 0.005 inch. 

References 
Traiser, John E. Design Guidelines for Surface Mount 

Technology. Academic Press, Inc., New York, 1990. 
Prasad, Surface Mount Technology Principles and 

Practice. 



CYPRESS 
SEMICONDUCTOR 

Memory System Design 
for the CY7C601 SP ARC Processor 

This application note describes a simple 25-MHz 
CY7C601 memory design for non-cache-memory ap­
plications. The memory subsystem consists of 128 
Kbytes of data RAM and 128 Kbytes of instruction 
RAM. (You can easily expand the instruction RAM to 
256 Kbytes using this design.) The difference between 
data memory and· instruction memory is that the 
CY7C601 integer unit (IU) is not allowed to write to 
instruction memory. This restriction implies that an ex­
ternal device loads instruction RAM at power~up. 

The design utilizes the CY7C157 cache RAM, 
which is specifically intended for use with the CY7C601 
and the CY7C604/605 cache/memory management unit 
(CMMU). When used in this . environment, the CMMU 
provides all necessary control signals (byte writes and 
output enables). This article shows that the CY7C157 
also adapts easily to non-cache applications. 

First, this application note describes the CY7C157, 
followed by a brief description of the CY7C601 bus in­
terface. Second, a design is presented that uses the 
CY7C330 EPLD to generate· the byte-write signals and 
the CY7C332 EPLD to provide the output-enable sig­
nals. Figure1 shows the design's block diagram. 

CY7C157 Cache RAM 
The CY7C157 cache RAM is a very high perfor­

mance 16K x 16-bit static RAM. This device employs 
common I/O architecture and a self-timed byte-write 
mechanism. The self-timed write eliminates the difficult 
task of generating accurate write strobes in high-speed 
systems. Address and write-enable. inputs load into 
input registers on the system clock's rising edge. The 
SRAM provides data-input and -output latches, along 
with· an asynchronous output enable. The CY7C157 is 
available in 20-, 24-, and 33-ns speed grades. Because a 
25-MHz IU requires the slowest device offered, 33 ns, 
this device is used for the memory system presented 
here. 

CY7C601 Bus Interface 
The IU has a 32-bit address bus and can directly 

address 4 Gbytes of memory. In the cycle prior to use, 

8-38 

the IU sends the address bus, data bus, and all memory 
interface signals (except INULL) unlatched; they 
should be latched externally before being used (more 
on this later). 

Memory Wait States and Exceptions 
The memory design described here needs no wait 

states, but you can find information on this topic and on 
memory exceptions in the IU data sheet. 

Bus Cycles 
Assuming that the system does not contain a float­

ing~point processor or a coprocessor, memory must 
deal with these bus cycles: instruction fetch, load single, 
load double, store single, store double, and atomic 
load/store. 

Instruction Fetch 
The IU sends out address and control bits at the 

beginning of the fetch cycle. Remember that you must 
latch these bits externally. At the end of the fetch cycle, 
the IU latches instruction data from the data bus into 
an on-chip instruction register. 

The first cycle in Figure 2 illustrates an instruction 
fetch. Because all instruction fetches are single-cycle 

7C601 
SPARC 

Processor 

Figure 1. Block Diagram 



operations, they incur no pipeline delays. Under some 
conditions, the processor is unable to fetch an instruc­
tion, usually because a prior multi-cycle instruction 
needs to use the bus. When this occurs, the processor 
asserts !NULL to indicate that the current fetch cycle 
should be nullified. 

Load Cycles 

The first and second clock cycles in Figure 2 show 
the timing for a load single integer instruction. Load 
single integer is a two-cycle operation: The first cycle 
fetches the load instruction, and the second cycle ac­
tually loads the required information from memory. A 
load double instruction is similar to the load single in­
struction except that a third cycle is added to fetch the 
second data word from memory. Figure2 also illustrates 
this event. 

Store Cycles 

Figure 3 illustrates store single and store double in­
structions. A store single requires three clocks: The 
store instruction is fetched during the first clock. 
During the second clock, the destination address of the 
store is driven onto the bus. Store data is driven onto 
the data bus at the middle of cycle two and removed at 
the middle of cycle three. Memory update occurs in 
cycle three. The store address's early arrival allows it to 
be checked for possible write-protect violations or 
memory exceptions in systems that implement these 
features. 

The store double instruction closely resembles a 
store single instruction, except for an extra cycle needed 
to store the second data word. Note that the second 
store's address is set to the first address plus 4, and that 
the size bits are set to 11, indicating a double-bus ac­
cess. 

Atomic Load/Store Cycles 

Atomic transactions consist of two or more transac­
tions that are indivisible; once started, the sequence 
cannot be interrupted. To ensure bus access for the 
second transaction, the IU asserts the LOCK signal for 
the necessary length of time. Figure 4 shows the timing 
of an atomic load/store instruction. 

Design Considerations 
Using the CY7C157s in a non-cache application re­

quires generation of appropriate byte-write signals and 
output enables. Because the CY7C157 does not require 
a chip select when used with the CMMU, this design 
decodes separate sets of write enables for each 64 
Kbytes (16 Kword deep) block of RAM. An output 
enable must also be generated on 16-Kword boundaries 
during reads. Because address and data set-up/hold re­
quirements between the IU and the CY7C157 are 
guaranteed by design, you can concentrate on the write­
enable and output-enable timing requirements of the 
CY7CI57-33. 

8-39 

Addr/Size 

RD 

DXFER 

to : VZL1 : V2d·.L~ 
~ : f7zrt··~+VZl 

. . 

DataIn -<I>-<I>--<I.>-

Figure 2. Load/Load Double Timing 

The CY7C157 requires a 6-ns write-enable-set-up­
to-clock -Low time and 3 ns write-enable hold from 
clock Low. From the store transaction timing diagrams, 
you can see that the store data valid times are refer­
enced to the system clock's falling edge, while transac­
tion information (address, size, etc.) is referenced to the 
same clock's rising edge. The desired PLD architecture 
for the write-enable generator must provide one clock 
for clocking in the transaction information and a 
separate clock for clocking out the write enables. The 
Cypress CY7C330 state machine can handle this task. 

The next critical factor is: Can the CY7C330 meet 
the write enable set-up and hold times? Inspection of 
the CY7C330-50WC data sheet for teo and toH specs 
indicates that the device meets these conditions. Figure 
5 shows that any write enable is valid 15 ns after 
Sys Ck's falling edge (thus providing a. 25-ns set-up 
time) and is held for 3 ns after Sys _ Ck' s falling edge 
(matching the required hold time at the CY7CI57). 

Sys_clk 

State_clk 
Addr/Size 

RD 

WE 
WRT 

DXFER 

Data 

·WAXlWBX· -~---':"--'\~-;"'_--;_-JI 

!NULL if\-

* Signal from 7C330 PLD 

Figure 3. Store/Store Double Timing 



Addr/Size 
: : 

RD tU' '<Z2ZI ~ V~_L~ 
WRT V'A. f77), · 127/ : 'V22\ ' ~ 

Data In --ct>-----<I>-
Data Out ----L----------ct=>-
DXFER . VA i I/L//f : '<Z2ZI : '<Z2ZI . 'eza 

LOCK VA: f7Z/I : '<Z2ZI : '(///\ i f7Zl 
j ~: 

Figure 4. Atomic Load/Store Timing 

For reads, Figure5 shows that the CY7C332 output 
delay plus the CY7C157 output-enable time· provides a 
5-ns data set-up time, which easily meets the IU's 3-ns 
requirement Data hold time requirements are deter­
mined by examining the CY7C332 output-enable hold 
time from Sys Ck's falling edge. This hold time is 3 os, 
which, when added to a 2-ns minimum turn-off time for 
the CY7C157, guarantees the required' 5-ns data hold 
time at the IU. 

CY7C330 Write-Enable Design 
The signals required to generate the byte-write sig­

nals appear in Table 1_ The signals are defined as fol-
lows: . 

State Clock: the inverted version of System_Clock. 
State Clock drives the state registers in the CY7C330 
PLD-:-

System Clock: the clock that drives the IU and 
CY7C330 iilput registers. All transaction information is 
valid on Syste~ Clock's rising edge. 

Advanced Write: The processor asserts (sets to 1) 
Advanced Write (WRT) during the fIrst data cycle of 
single or double integer store instructions and during 
the second cycle of atomic load/store instructions. WRT 
is send out unlatched and must be latched externally 
before it is used. 

Size(1:0): These two bits specify the data size as­
sociated with all transactions on the data bus. The IU 
sends out size bits unlatched. The value of these bits 
indicates the data size corresponding to the current 
cycle's memory address. The size bits are valid at the 
same time as the address bus. Because all instructions 
are 32 bits long, Size(I:0) is set to 10 during all instruc­
tion fetch cycles_ Encoding of the size. bits is shown in 
Table 2. 

Address (1:0), Address 14: Address (1:0) decodes 
individual byte-write lines for writes within a 32-bit 
word boundary. The CY7C330 design described here 

8-40 

Addr/Size 

RD 

WRT tZl ! '<Z2ZI ! 'e5 
Data In~~ i. , 

Data Out l----<!>-S s-t---<=>-- : 
DXFER 

Figure 5. Actual Timing 

also uses these lines to inhibit writes on unaligned boun­
daries; you can easily' modify this feature to generate a 
memory exception. Address 14 selects between Bank A 
write enables (lower 16 Kwords) and Bank B write 
enables (upper 16 Kwords) for the data RAMs. The ad­
dress is sent out unlatched and must be latched exter­
nally before use. If the address output enable (/ AGE) 
or test output enable (/TOE) signals are deasserted, the 
address bus three-states. 

INULL: occurs on two occasions. First, it always 
occurs during the second cycle of a store transaction to 
tell the memory subsystem that the current memory 
transaction has proceeded too far to be nullified; i.e_, it 
is. too late to initiate a wait state or memory exception. 
Second, INULL can occur during a transaction's first 
cycle to tell the memory subsystem to ignore the trans­
action entirely. This signal is of consequence only for 
store transactions that must be inhibited before the 
write occurs. 

/Reset: an active-Low input to the CY7C330 PLD 
that forces all outputs to the inactive state. It is a clock­
ed reset. 

Table 1. Byte Write Signals 

Name Mnemonic 

State Clock St Ck 

System Clock Sys Ck 

Advanced Write WRT 

Size(I:0) Sizel, SizeO 

Adr(I:0) AI, AO 

Adr14 A14 

INULL INULL 

/Reset !Rst 

/Output Enable tOE 

/Write Enables - Bank A !WA3 - !WAO 

/Write Enables - Bank B !WB3 - !WBO 



~ 
=- ~~RESS Memory System Design for the CY7C601SPARC 
~J'~CaIDUcrOR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Table 2. Size bit encoding 

Size(I:0) Transaction Type 

00 Byte 

01 Halfword 

10 Word 

11 Double Word 

/OE: an active-Low input to the CY7C330 PLD 
that enables all the device's outputs. When High, all 
CY7C330 outputs are three-stated. The source file con­
taining the PLD equations for the CY7C330 write­
enable generator appears in Appendix A. 

CY7C332 Output-Enable Design 
Table 3 lists the signals used to generate the re­

quired output-enable signals. Appendix B shows the out­
put-enable circuit's design file, implemented for the 
CY7C332 PLD using the Cypress PLD ToolKit. The 
PLD ToolKit is an assembler/simulator package for 
PLDs. 

The design utilizes a CY7C332 to generate five in­
struction output enables and five data output enables 
for a Cypress SP ARC-based, non-cached memory sys­
tem. Each output enable is decoded on a 16-Kword 
boundary (word = 32 bits). The CY7C332 suits this ap­
plication especially well, because this one PLD incor­
porates input latch/registers with output decoding. 
When combined with a CY7C330 programmed as a 

Table 3. Output Enable Signals 

Name Mnemonic 

System Clock Sys Ck 

Size(I:0) Sizel, SizeO 

Adr(16:14) AI6,AI5,AI4 

INULL· INULL 

/Reset !Rst 

/Output Enable-> 332 !OE 

/Output Enables - Inst 
!lOE4 - !lOEO 

Bank 

/Output Enables - Data 
!DOE4 - !DOEO 

Bank 

Inst Fetch Mem Exception !IFMEMx 

R-41 

Table 4. Memory Subsystem Characteristics 

Component Quantity Power 

CY7C157-33 8 1.375W 

CY7C330-50 1 0.99W 

CY7C332-20 1 0.99W 

TOTAL 10 13.0W 

write-enable generator, complete memory control is 
achieved in just two PLDs. 

Pin 1 of the CY7C332 is the system clock, active on 
the rising edge. Pins 2 - 4 are address bits 16 - 14, which 
are used in the output-enable decoding. Pins 5 and 6 
are the IU size bits. 

For instruction fetches, if SJZE does not equal lOB 
(see Table 2), then IFMEMx is made active. The SJZE 
bits are ignored for data fetches, because all alignment 
occurs in the IU. 

RD = 1 signifies that the following cycle is a read 
cycle. DXFER = 1 signals that the following cycle is a 
data transfer. Conversely, if DXFER = 0, the next 
cycle is a non-data (instruction) cycle. The INULL sig­
nal is not needed here, because the CPU ignores in­
struction/data fetched in the next cycle anyway. DOEx 
and IOEx are the data output enables and instruction 
output enables, respectively. IFMEMx occurs when an 
instruction fetch is attempted with SIZE not equal to 10 
(one word). 

Conclusions 
The design presented here provides 128 Kbytes of 

instruction memory and 128 Kbytes of data memory 
with just ten components (eight CY7C157's, one 
CY7C330, and one CY7C332). Table 4 tabulates some 
of the memory subsystem's key characteristics. 

You can easily expand the memory subsystem's 
capacity by using the CY7C330's four additional outputs 
as write enables. This change furnishes another 64 
Kbytes of data memory. The CY7C332 design already 
provides output enables for 320 Kbytes of data memory 
and 320 Kbytes of instruction memory. 

For systems requiring even larger memory spaces, 
you can make a tradeoff with the CY7C330. If the smal­
lest write boundary is changed to half word (16 bits) 
instead of byte, the CY7C330 can provide byte writes 
for 384 Kbytes of data memory. Similarly, for systems 
requiring only 32-bit writes to data memory, a single 
CY7C330 can provide the required write enables for 
768 Kbytes of memory. However, this configuration re­
quires an additional CY7C332 to decode output enables 
for data memory reads. 



~C'/PRI$ Memory System Design for the CY7C601 SP ARC 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. ABEL CY7C330 Write Enable PLD Equations

Module SPARC_ WRTENB flag '-r3'
title 'SPARC Write Enable Generator'

"Enable various useful macros LIBRARY 'P330';
IC device 'P330';

St_ Ck,Sys _ Ck,INULL, Rst
WRT,Size1,SizeO,A1,AO,A14
Reset, Set

Pin 1, 2, 10, 13;"Inputs
Pin 3, 4,5,6,7,9;
node 29, 30; "Outputs and Internal Node declarations.
Pin 28, 27, 26, 25; !WA3,!W A2,!WA1,!WAO

,!WB3,!WB2,!WB1,!WBO
fOE

Pin 24, 23, 20, 19;
Pin 14;

!WA3.0E is type 'Pin'; "Enable pin 14 as common OE for all outputs

SIZE = [Size1,SizeO];
ADR = [AI, AO]; "Definitions for readability and test vector generation
WA = [WA3,WA2,WA1,WAO];
WB = [WB3,WB2,WB1,WBO];

H,L,C,X,Z = 1,O,.C.,X.,.Z.; "Declarations

equations

W A3.0E = fOE; "Tum on outputs

WA3 :=

WA2 :=

WA1.-

WAD :=

!Rst & !!NULL & !A14 & WRT & (SIZE == 0) & (ADR == 3)
!Rst &!!NULL .&!AI4 & WRT & (SIZE == 1) & (ADR == 2)
!Rst & !!NULL & !A14 & WRT & (SIZE == 2) & (ADR == 0)
!Rst & !!NULL & !A14 & WRT & (SIZE == 3) & (ADR == 0)
!Rst & !A14 & (SIZE == 3) & (ADR == 0) & WA3;

!Rst & !!NULL & !A14 & WRT & (SIZE == 0) & (ADR == 2)
!Rst & !!NULL & !A14 & WRT & (SIZE == 1) & (ADR == 2)
!Rst & !!NULL & !A14 & WRT & (SIZE == 2) & (ADR == 0)
!Rst & !!NULL & !A14 & WRT & (SIZE == 3) & (ADR == 0)
!Rst & !A14 & (SIZE == 3) & (ADR == 0)& W A2;

!Rst & !!NULL & !A14 & WRT & (SIZE == 0) & (ADR == 1)
!Rst & !!NULL & !A14 & WRT & (SIZE == 1) & (ADR == 0)
!Rst & !!NULL & !A14 & WRT & (SIZE == 2) & (ADR == 0)
!Rst & !!NULL & !A14 &. WRT & (SIZE == 3) & (ADR == 0)
!Rst & !A14 & (SIZE == 3) & (ADR == 0) & WA1;

!Rst & !!NULL & !A14 & WRT & (SIZE == 0) & (ADR == 0)
!Rst & !!NULL & !A14 & WRT & (SIZE == 1) & (ADR == 0)
!Rst & !!NULL & !A14 & WRT & (SIZE == 2) & (ADR == 0)
!Rst & !!NULL & !A14 & WRT & (SIZE == 3) & (ADR == 0)
!Rst &. !A14 & (SIZE == 3) & (ADR == 0)& W AO;

8-42

WB3 :=

WB2 :=

WB1 :=

WBO :=

Appendix A. ABEL CY7C330 Write Enable PLD Equations (Continued)

!Rst & !!NULL & A14 & WRT & (SIZE == 0) & (ADR == 3)
!Rst & !!NULL & A14 & WRT & (SIZE == 1) & (ADR == 2)
!Rst & !!NULL & A14 & WRT & (SIZE == 2) & (ADR == 0)
!Rst & !!NULL & A14 & WRT & (SIZE == 3) & (ADR == 0)
!Rst & A14 & (SIZE == 3) & (ADR == 0)& WB3;

!Rst & !!NULL & A14 & WRT & (SIZE == 0) & (ADR == 2)
!Rst & !!NULL & A14 & WRT & (SIZE == 1) & (ADR == 2)
!Rst & !!NULL & A14 & WRT & (SIZE == 2) & (ADR == 0)
!Rst & !!NULL & A14 & WRT & (SIZE == 3) & (ADR == 0)
!Rst & A14 & (SIZE == 3) & (ADR == 0)& WB2;

!Rst & !!NULL & A14 & WRT & (SIZE == 0) & (ADR == 1)
!Rst & !!NULL & A14 & WRT & (SIZE == 1) & (ADR == 0)
!Rst & !!NULL & A14 & WRT & (SIZE == 2) & (ADR == 0)
!Rst &!!NULL & A14 & WRT & (SIZE == 3) & (ADR == 0)
!Rst & A14 & (SIZE == 3) & (ADR == 0)& WB1;

!Rst & !!NULL & A14 & WRT & (SIZE == 0) & (ADR == 0)
!Rst & !!NULL & A14 & WRT & (SIZE == 1) & (ADR == 0)
!Rst & !!NULL & A14 & WRT & (SIZE == 2) & (ADR == 0)
!Rst &!!NULL & A14 & WRT & (SIZE == 3) & (ADR == 0)
!Rst & A14 & (SIZE == 3) & (ADR == 0)& WBO;

Appendix A. ABEL CY7C330 Write Enable PLD Equations (Continued)

"Test vectors for WA outputs, WB outputs are similar except for A14
"Note that the W A outputs are treated as active-high in the test vectors
"since they were declared as active-low in the pin declaration sections.

Test vectors

([!OE,!Rst,St Ck,Sys Ck,WRT,INULL,SIZE,ADR,A14] -> [WA,WB]);
[0,0, 0, 0, X~X, X, X, X] -> [X,X];
[0,0, 0, I, X, X, X, X, X] -> [X,X];
[0,0, I, 0, X, X, X, X, X] -> [0,0]; "vi Reset

"WRT = 0 = WAx inactive
[0,1,0, 1,0,0, X, X, 0] -> [0,0];
[0,1, I, 0, 0,0, X, X, 0] -> [0,0];

"Halfword transactions to lower word (bytes 1:0)
[0,1, 0, I, I, 0, I, 0, 0] -> [0,0];
[0,1, I, 0, 1,0, I, 0, 0] -> [03,0];

"Halfword write on byte boundary results in IU generated alignment error.
[0,1, 0, I, 1,0, I, 1,0] -> [03,0];
[0,1, I, 0, I, 0, I, I, 0] -> [00,0]; "vlO

"Halfword write to upper word
[0,1, 0, I, 1,0, I, 1,0] -> [03,0];
[0,1, 1,0, 1,0, I, 1,0] -> [00,0];

"Halfword write to upper word
[0,1, 0, I, I, 0, I, 2, 0] -> [00,0];
[0,1, I, 0, I, 0, 1,2, 0] -> [Oc,O];
[0,1, 0, I, 0, 0, I, X, 0] -> [Oc,O];
[0,1, 1,0, 0, 0, I, X, 0] -> [00,0];

"v10

"Word write on byte bndary results in IU generated alignment "error
[0,1, 0, I, 1,0, I, 3,0] -> [0,0];
[0,1, 1,0, 1,0, I, 3, 0] -> [0,0];

"Verify WA follows byte writes correctly [!OE,!Rst,StCk,SyCk,W,I,S,ADR,A14]
[0,1, 0, I, I, 0, 0, 3, 0] -> [0,0]; "v20
[0,1, I, 0, 1,0,0, 3, 0] -> [08,0];
[0,1, 0, I, 1, 0, 0, 2, 0] -> [08,0]; "wrt byte 3
[0,1, I, 0, 0, 0, 0, 2, 0] -> [04,0];
[0,1, 0, I, 1, 0, 0, I, 0] -> [04,0]; "wrt byte 2
[0,1, I, 0, 0, 0, 0, I, 0] -> [02,0];
[0,1, 0, I, 1, 0, 0, 0, 0] -> [02,0]; "wrt byte 1
[0,1, I, 0, 0, 0, 0, 0, 0] -> [01,0];
[0,1,0, 1, 0,0,0, 0, 0] -> [01,0]; "wrt byte 0
[0,1, I, 0, 0, 0, 0, 0, 0] -> [00,0]; "writes are inactive

"Verify single store works correctly [!OE,!Rst,StCk,SyCk,W,I,S,ADR,A14] for ease of programming only
[0,1,0, 1, 1,0,2,0,0] -> [0,0];
[0,1, 1, 0, 1, 0, 2, 0, 0] -> [Of,O];
[0,1, 0, 1, 0, 0, 0, X, 0] -> [Of,O];
[0,1, 1,0, 0, 0, 0, X, 0] -> [0,0]; "v30

R-44

......-..
£;~RESS Memory System Design for the CY7C601 SPARC , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix A. ABEL CY7C330 Write Enable PLD Equations (Continued)

"Verify WA responds correctly to double stores
[0,1, 0, 1, 1,0, 3, X, °] -> [° ,0];
[0,1, 1,0, 1, 0, 3, X, °] -> [Of,O];
[0,1, 0, 1, 0, 0, 3, X, °] -> [Of,O];
[0,1, 1,0, 0, 0, 3, X, °] -> [Of,O];
[0,1, 0, 1, 0, 0, 2, X, °] -> [Of,O];
[0,1, 1,0, 0, 0, 2, X, °] -> [° ,0];

"Do the same thing for the WB outputs (no comments)
[0,0, 0, 0, X, 0, X, X, X] -> [X,X];
[0,0, 0, 1, X, 0, X, X, X] -> [X,X];
[0,0, 1, 0, X, 0, X, X, X] -> [0,0];

"WRT = ° = WAIB inactive
[0,1,0, 1,0,0, X, X, 1] -> [0,0];
[0,1, 1,0,0,0, X, X, 1] -> [0,0];

"Halfword transactions to lower word (bytes 1 :0)
[0,1,0, 1, 1,0, 1,0, 1] -> [0,0];
[0,1, 1,0, 1, 0, 1, 0, 1] -> [0,03];

"vI Reset

"Halfword write on byte boundary - occurence results in IU generated alignment error.
[0,1, 0, 1, 1,0, 1, 1, 1] -> [0,03]; "vlO
[0,1, 1,0, 1,0, 1, 1, 1] -> [0,0];

"Halfword write to upper word
[0,1, 0, 1, 1,0, 1, 2, 1] -> [0,0];
[0,1, 1, 0, 1, 0, 1,2, 1] -> [O,Oc];
[0,1, 0, 1, 0, 0, 1, X, 1] -> [O,Oc];
[0,1, 1,0, 0,0, 1, X, 1] -> [0,0];

"Word write on byte boundary results in IU generated alignment "error
[0,1, 0, 1, 1,0, 1, 3, 1] -> [0,0];
[0,1, 1, 0, 1, 0, 1, 3, 1] -> [0,0];

"Verify WB follows byte writes correctly
[!OE,!Rst,StCk,SyCk,W,I,S,ADR,A14]
[0,1, 0, 1, 1,0, 0, 3, 1] -> [0,0];
[0,1, 1,0, 1,0,0, 3, 1] -> [0,08];
[0,1, 0, 1, 1,0,0, 2, 1] -> [0,08];
[0,1, 1, 0, 0, 0, 0, 2, 1] -> [0,04];
[0,1, 0, 1, 1, 0, 0, 1, 1] -> [0,04];
[0,1, 1, 0, 0, 0, 0, 1, 1] -> [0,02];
[0,1, 0, 1, 1,0,0, 0, 1] -> [0,02];
[0,1, 1, 0, 0, 0, 0, 0, 1] -> [0,01];
[0,1, 0, 1, 0, 0, 0, 0, 1] -> [0,01];
[0,1, 1, 0, 0, 0, 0, 0, 1] -> [0,0];

"v20

"wrt byte 3

"wrt byte 2

"wrt byte 1

"wrtbyte °
"writes are inactive

"Verify single store works correctly [!OE,!Rst,StCk,SyCk, W, I, S,ADR,A14] for ease of programming only
[0,1, 0, 1, 1,0, 2, 0, 1] -> [0,0];
[0,1, 1, 0, 1,0,2,0, 1] -> [O,Of];
[0,1,0,1,0,0,0, X, 1] -> [O,Of];
[0,1, 1, 0, 0, 0, 0, X, 1] -> [0,0];

· ~RESS Memory System Design for the CY7C601 SPARC
~,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix A. ABEL CY7C330 Write Enable PLD Equations (Continued)

"Verify WB responds correctly to double stores
[0,1, 0, 1, 1, 0, 3, X, 1] -> [° ,0];
[0,1, 1, 0, 1, 0, 3, X, 1] -> [0, Of];
[0,1, 0, 1, 0, 0, 3, X, 1] -> [0, Of];
[0,1, 1,0, 0, 0, 3, X, 1] -> [0, Of];
[0,1, 0, 1, 0, 0, 2, X, 1] -> [0, Of];
[0,1, 1,0, 0, 0, 2, X, 1] -> [° ,0];

"Check that all WA's and WB's are inhibited when !NULL occurs with WRT
[0,0,0,0, X, X, X, X, X] -> [X,X];
[0,0, 0, 1, X, X, X, X, X] -> [X,X]j "vi Reset
[0,0, 1, 0, X, X, X, X, X] -> [0,0];
[0,1,0, 1, 1, 1,0,3, X] -> [0,0];
[0,1, 1, 0, 1, 1, 0, 3, X] -> [0,0];
[0,1, 0, 1, 1, 1, 0, 2, X] -> [0,0]; "write byte 3
[0,1, 1,0, 0, 1, 0,2, X] -> [0,0];
[0,1, 0, 1, 1, 1, 0, 1, X] -> [0,0]; "write byte 2
[0,1, 1,0,0, 1,0, 1, X] -> [0,0];
[0,1, 0, 1, 1, 1, 0,0, X] -> [0,0]; "write byte 1
[0,1, 1,0, 0, 1, 0,0, X] -> [0,0];
[0,1, 0, 1, 0, 1, 0, 0, X] -> [0,0]; "write byte °
[0,1, 1, 0, 0, 1, 0, 0, X] -> [0,0]; "writes are inactive

"Double stores
[0,1, 0, 1, 1, 1, 3, X, X] -> [° ,0];
[0,1, 1,0, 1, 1, 3, X, X] -> [0, °];
[0,1, 0, 1, 0, 1, 3, X, X] -> [0, 0];
[0,1, 1,0, 0, 1, 3, X, X] -> [0, 0];
[0,1, 0, 1,0, 1, 2, X, X] -> [0, °];
[0,1, 1,0,0, 1,2, X, X] -> [° ,0];

"Inactive

" MORE REALISTIC OCCURANCE OF DOUBLE STORE !NULL
[0,1, 0, 1, 1, 0, 3, X, °] -> [° ,0];
[0,1, 1,0, 1, 0,3, X, °] -> [Of, °];
[0,1, 0, 1, 0, 1, 3, X, °] -> [Of, °];
[0,1, 1, 0, 0, 1, 3, X, °] -> [Of, a];
[0,1, 0, 1, 0, 0, 2, X, °] -> [Of, °];
[0,1, 1, 0, 0, 0, 2, X, °] -> [° ,0];

"Double stores
[0,1, 0, 1, 1, 0, 3, X, 1] -> [° ,0];
[0,1, 1,0, 1, 0, 3, X, 1] -> [° ,Of];
[0,1, 0, 1, 0, 1, 3, X, 1] -> [° ,Of];
[0,1, 1, 0, 0, 1, 3, X, 1] -> [° ,Of];
[0,1, 0, 1, 0, 0, 2, X, 1] -> [° ,Of];
[0,1, 1, 0, 0, 0, 2, X, 1] -> [° ,0];

8-46

~
=- ~~RESS Memory System Design for the CY7C601 SP ARC
4&1' ~COID~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix B. PLD ToolKit Source Code for CY7C332 Write Enable

CY7C332;

CONFIGURE;

Sys Ck,
Al6(ireg), A15(ireg), A14(ireg),
SIZE 1 (ireg), SIZEO(ireg),
RD(ireg), DXFER(node = 9,ireg),

!OE(node = 14),
!DOEO(nenbpt), !DOE 1 (nenbpt), !DOE2(nenbpt),
!DOE3(nenbpt), !DOE4(nenbpt),
!IFMEMx(node = 23,nenbpt),
!IOEO(nenbpt), !IOE 1 (nenbpt), !IOE2(nenbpt),
!IOE3(nenbpt), !IOE4(nenbpt),

EQUATIONS;

{Pin 1 }
{Pins 2 thru 4}
{Pins 5 and 6}
{Pins 7 and 9}
{Pin 8 is GND}
{Pin 14 is out enb}
{Pin 15 thru .. }
{ .. 19 }
{Inst Fetch Mem Excp}
{Pins 24 thru .. }
{ .. 28}

IOE4 = RD & !DXFER & SIZE 1 & !SIZEO & !A16 & !A15 & !A14;
{A= OOO}

IOE3 = RD & !DXFER & SIZE1 & !SIZEO & !A16 & !A15 & A14;
{A = 001}

IOE2 = RD & !DXFER & SIZE 1 & !SIZEO & !A16 & A15 & !A14;
{A = 010}

IOE1 = RD & !DXFER & SIZE 1 & !SIZEO & !A16 & A15 & A14;
{A = Oll}

IOEO = RD & !DXFER & SIZE1 & !SIZEO & A16 & !A15 & !A14;
{A = 100}

IFMEMx = RD & !DXFER & !SIZE1 & !SIZEO
& RD & !DXFER & !SIZE1 & SIZEO
& RD & !DXFER & SIZE1 & SIZEO;

{ Recall that for lost Fetches only SIZE(1:0) = '10' is allowed}
{SZ = OO}
{SZ = 01}
{SZ = ll}

{DOE's do not depend on SIZE bits, since IU does alignment internally}
DOE4 = RD & DXFER & !A16 & !A15 & !A14; {A = OOO}

DOE3 = RD & DXFER & !A16 & !A15 & A14;

DOE2 = RD & DXFER & !A16 & A15 & !A14;

DOE1 = RD & DXFER & !A16 & A15 & A14;

DOEO = RD & DXFER & A16 & !A15 & !A14;

8-47

{A = 001}

{A = 010}

{A = Oll}

{A = 100}

CYPRESS
SEMICONDUCTOR

Cache Memory Design

The purpose of this application note is to provide a
general understanding of the attributes and engineering
tradeoffs of various cache designs. The fIrst section dis­
cusses the cache design goal and methods of achieving
that goal. Next, several major cache design facto~ are
described, with an explanation of each factor's aclvantages
and disadvantages. The application note then explores the
conditions for and techniques used in design of multilevel
cache for uniprocessor and multiprocessor environments.

The first commercial use of a cache memory was in
1969, the year IBM introduced the IBM 360/85. Since
that time, cache memory has spread from mainframes to
minicomputers to microcomputers, thus becoming an ac­
cepted design technique for a broad range of computing
machines.

Cache memory is an engineering solution to unaccep­
tably high main-memory access times relative to CPU
cycle time - a difference so great that main-memory ac­
cess time was severely limiting overall machine perfor­
mance. The cache acts as a small, high-speed buffer be­
tween the CPU and main memory. This buffer is hidden
from the outside world; thus the name cache.

If designed properly, the cache makes the machine
appear to have a large amount of very fast main memory.
As an example of the effectiveness of this approach,·con­
sider high-end machines such as the Amdahl 580 or IBM
3090. This caliber of machine has a main-memory access
time of 200 - 500 ns and a cache access time of 20- 50
ns, yielding an effective memory access time of 30 - 100
ns - a 5 to 7x increase in memory performance.

The use of cache memory has become very
widespread, as evidenced by cache being directly sup­
ported or included on-chip in a variety of microproces­
sors: the National Semiconductor 32000 family, the
Motorola 68000 family, the Intel 80386 and 80486, and
all of the currently available RISC families, such as the
Cypress CY7C600 SPARC family.

Cache Design
The objective of cache design is to reduce the effec­

tive (or average) memory access time to an acceptable
level that is generally determined from cost/performance

8-48

tradeoff analysis. You can achieve this goal by realizing
that most processor reference streams are both highly se­
quential and highly loop oriented.

Therefore, a cache operates on the principle of spatial
and temporal locality of reference. Spatial locality means
that information the CPU will reference in the near future
is likely to be logically close in main memory to informa­
tion that is currently being referenced. Temporal locality
means that information the CPU is currently referencing is
likely to be referenced again in the near future. Through
these mechanisms, you can design a cache to ensure a
high probability that CPU references are located in the
cache.

Spatial locality of reference is serviced in the follow­
ing manner: If a cache miss occurs (the cache does not
contain information requested by the CPU), the cache ac­
cesses main memory and retrieves the information cur­
rently being requested, as well as several additionalloca­
tions that logically follow the current reference. This set
of information is called a line or block. The next CPU
reference. now has a high statistical probability of being
serviced by the cache, thus avoiding main memory's rela­
tively long access time.

Temporal locality of reference is serviced by allow­
ing information to remain in the cache for an extended
period of time, only replacing the line in order to make
room for a new one. You can use several algorithms to
manage cache line replacement (more on this later). By
allowing the information to remain in the cache and with
a sufficient cache size, an entire loop of code can fit into
the cache, allowing very high speed execution of instruc­
tions in the loop.

The Cache Design Goal
The goal of a cache design is to reduce the effective

memory access time as seen by the CPU. Effective access
time can be expressed as:
tef!= tcache + m x tmain

where:

tcache = Effective hit time of cache (i.e., cache ac-
cess time)

m = Miss rate of cache

tmain = Main-memory access time (penalty
beyond tcache for main-memory accesses)

Thus, design of a cache revolves around:
Minimizing the time for the cache to service a hit
Maximizing the hit rate (hit rate = 1 - miss rate)
Minimizing the delay due to a cache miss· (included
in tmain)
Minimizing the overhead delay associated with keep­
ing main memory coherent - in agreement with the
data in the cache - especially in multicache con­
figurations (included in tmain)
Generally, all these factors are affected in some way

by the design parameters discussed below. To simplify the
overall design process, you might find it useful to view
cache design from the following macroarchitecture view­
points, each of which can be broken into one or more
microarchitectural parameters:

Cache placement
physical vs. virtual cache

Cache organization
cache mapping method
cache size .
cache line size
split cache vs. combined cache

Cache management
main-memory coherence schemes
line-replacement algorithms
fetching algorithms

The next several sections examine the microarchitec­
tural aspects of these factors in detail, giving the perfor­
mance tradeoffs relative to the four cache performance
factors identified above. After describing these design
parameters, this application note pulls together the critical
parameters of cache design and presents a method of cal­
culating estimates for effective cycle time.

Cache Placement
Along with the cache, an address translation unit­

usually called a Memory Management Unit (MMU)­
resides between the CPU and main memory. The MMU
maps the virtual addresses generated by a program and
used by the CPU to the physical addresses used to access
main memory.

Figure 1 shows two ways of arranging the cache and
MMU. You choose between these two approaches by
answering the question: Where in the system should the
MMU delay occur? Traditionally, caches have been refer­
enced with physical addresses, as in Figure 1 a. A physical
cache is easier to manage but slower than a virtual cache,
which is referenced by virtual addresses as in Figure 1 b.

A physical cache is slower because tcache includes the
address translation time; thus, the translation delay occurs
on every memory reference. A virtual cache allows ad­
dress translation to occur in parallel with cache access,
thereby shifting the translation tim.e penalty from tcache to

8-49

tmain. This significantly reduces the translation time's
overall negative impact on teff if the hit rate is high.

The disadvantage of a virtual cache is that it is more
difficult to manage,· because support must be included to
detect and correct aliases (or synonyms). Aliasing occurs
when two virtual addresses translate to the same physical
address. This situation can occur, for example, when two
different programs in the CPU share pages placed in dif­
ferent locations in the two programs' respective address
maps.

Aliasing can be detected and corrected in a number
of ways. The most complete solution is to employ a set of
virtual cache tags (cache tags are explained later) and a
set of physical cache tags, which are used as cross-refer­
ences to detect and prevent aliasing. The CY7C605
SPARC CMU-MP uses this methodology.

Another, less elegant, aliasing solution is to use an
operating system detector that either forces shared data to
the same cache line or marks shared data as non-cache­
able. The CY7C604 SPARC CMU uses this technique.

Either of the two aliasing solutions described here
allow you to take advantage of a virtual cache's faster
response. As higher processor speeds place greater
demands on cache systems, virtual caching schemes will
become more popular.

On the other hand, system designers might not have
to choose between physical and virtual cache much longer
because, as integration levels increase, more and more
microprocessors become available with on-board cache. In
fact, several CISC (Complex Instruction Set Computer)
chips already contain on-board cache (32000, 68030,
80486), and several RISC architectures have been
proposed or introduced as a single chip with on-board
cache. As a result, virtual cache vs. physical cache is like­
ly to become a silicon design issue, with system-level
designers focusing on methods of designing an efficient
second-level cache to back up relatively small on-board
cache.

In the event of a multilevel cache hierarchy, you
might not have the option of choosing where to place the
cache. If the cache is on the processor chip, it will probab­
ly force a physical level 2 cache. It is also probable that a

1 a. Physical Cache System 1 b. Virtual Cache System

Figure 1. Cache Placement

CACHE UNE 1 H II
11' CACHE UNE m

~E

I
MAlI MEMORY

Figure 2. Direct Mapping

multiple-chip processor family will be partitioned such
that it forces a physical level 2 cache.

Cache Organization
Cache organization has four basic parameters: cache

mapping method. cache size. cache line size. and split vs.
combined cache. Note that for a multilevel cache hierar­
chy. the organizational tradeoffs associated with· cache
size. cache mapping method, and cache line size are mul­
tidimensional. This is because choices made for the level
1 cache are likely to affect the performance of the level 2
cache and vice versa.

Because a cache can be viewed as a small moving
window into portions of a larger main memory. main
memory locations must be mapped to and from locations
in the cache. The type of mapping you use affects both
cache hit time and miss rate. Generally, an increase in hit
rate exacts a penalty on cache hit time. However. recent
research supports the idea that if a cache is sufficiently
large. the relative difference in miss rate for various map­
ping methods becomes very small. This indicates that a
sufficiently large cache should be mapped according to
the scheme that exacts the least penalty on cache hit time.

ADDRESS LATCH

DATA

DATA OUT
~------------------~

Figure 3. A Direct-Mapped Cache

8-50

The most widely used mapping schemes are based on
the principle of associativity. A fully associative cache al­
lows any location in main memory to be mapped to any
location in the cache. An noway set-associative cache
(typically n = 2. 4. 8. etc.) allows any specific location to
be mapped to n locations in the cache. A direct-mapped
cache allows any specific location in main memory to be
mapped to only one location in the cache; this scheme
thus implements a I-way set-associative cache. The fol­
lowing discussion details each technique. beginning with
the least complex (direct-mapped) and finishing with the
most complex (fully associative).

Direct Mapping

Figure 2 illustrates direct mapping. Each location in
main memory maps to a unique location in the cache. For
instance. location 1 in main memory maps to location 1 in
the cache. Location 2 in main memory maps to location 2
in the cache. Location m in main memory maps to loca­
tion m in the cache. Location m+l in main memory maps
to location 1 in the cache. etc.

A simplistic direct-mapped cache implementation ap­
pears in Figure 3. A direct-mapped cache consists of a
data memory. a tag memory. and a comparator. The data
memory contains the cached data and instructions; its size
is defmed as the cache size. The tag memory uses the
comparator to determine whether the cache contains the
line being addressed by the processor.

The memory address is. split into three fields: a tag
field, an index field. and a word-offset field. The tag field
consists of the address's higher order bit. The index field
addresses the tag memory to see if the line being accessed
is the line the processor wants. This mechanism ensures
that, for example, data from the desired cache location
2m+4 is retrieved instead of data from cache location
4m+4. which would reside in the same location in the
cache. The line size is defmed as the basic unit of transfer
between the cache and main memory and is typically an
even binary amount such as 16.32.64. or 128 bytes.

The number of bits in each field of the address can be
deciphered as follows:
i = log2 (# cache tag entries)

w = log2 (line size)

i +w= log2 (cache size)
When an address is presented to the cache. the bits of

the index field address the tag memory. The tag in the
location addressed by the index field is presented at the
tag memory's outputs. This tag is compared with the ref­
erence tag, while the cache subsystem also checks to see
that its status bits (Le .• VALID. DIRTY. etc., explained
later) are in appropriate states.

In· parallel with the tag access and status check, i + w
bits are used to address the data memory; the accessed
word is placed in the DATA OUT buffer. If the tags
match and the status bits are all correct, the cache subsys­
tem asserts the MATCH OUT signal. indicating that the
information retrieved from the data memory is correct (a
cache hit). If the tags do not match or the status bits are

-..
~

~~~~~~~~~~~~~~~~~~~~~~~~~C~a~c~h~e~~~eDl~o~r~y~D~e~sl~·g~n 

CACHE UNE 1 
CACHE UNE 2 

CACHE UNE m 

----=::::;:;--:: 
::;.....---

~ ~ i I 
SET 0 SEr 1 

Figure 4. Set Associative Mapping 

not correct, MATCH OUT is de-asserted (indicating that 
the data in DATA OUT is invalid and thus represents a 
cache miss), and the correct data is retrieved from main 
memory. 

Consequently, a direct-mapped cache has two critical 
timing paths: 
1. Read-data: accessing the data memory and passing 

the word to the DATA OUT register. 
2. Asserting the MATCH OUT signal if the status bits 

are OK and the retrieved tag matches the reference 
tag. 
Accordingly, the slower of paths 1 and 2 limit a 

direct-mapped cache's access time. 

Set-Associative Cache Mapping 

Figure 4 illustrates how set-associative mapping 
works for the two-way set-associative case. The cache 
consists of two sets, or banks, of memory cells, each con­
taining m lines. Location 1 in main memory maps to 
cache line 1 of either set. Location 2 in main memory 
maps to cache line 2 of either set. Location m in main 
memory maps to cache line m of either set. Location m+ 1 
in main memory maps to cache line 1 of either set Loca­
tion m+2 in main memory maps to cache line 2 of either 
set, and so on. 

In this manner, each location in main memory has 
two chances of being in the cache. This scheme allows, 
for example, main-memory locations m+z and 5m+z 
(where z is any integer) to coexist in the cache. This is an 
advantage because it supports the principle of temporal 
locality of reference very efficiently for small cache sizes. 

As an example of how this type of cache works, con­
sider a software loop that m cache lines cannot contain. 
As the loop executes, the cache begins to fill with instruc­
tions and data from the loop, eventually filling m lines of, 
say, set 1. At this point, rather than replacing cache lines 
of set 1 with new information from the loop, the cache 
can begin to fill the lines in set 2, thereby allowing the 
entire loop to reside in the cache. This results in a perfor­
mance advantage. This advantage goes away, however, 
when the cache becomes sufficiently large. 

Figure 5 shows an implementation of an n-way set 
associative cache, where n = 2. Each of the sets contains 
the same logic as the dashed block in the direct-mapped 

8-51 

Figure 5. A 2-Way Set Associative Cache 

cache diagram (Figure 3). Additionally, an OR function in 
the set-associative cache asserts MATCH OUT if either 
set contains a match. The decode function selects data 
from the bank containing the match and asserts a control 
line to the mux; this allows the matched data to propagate 
to DATA OUT. 

This topology can be extended to n-way set as­
sociativity by having n sets of memory, an n-input OR 
function, an n-to-Iog21l decoder, and an n-to-l mux. 

Additionally, note that this is only one of several 
topologies. Another way of implementing the mux func­
tion is to assert RAM output enables based on the out­
come of the matching function. Yet another way is to 
combine the OR and decode functions into one PLD. 

Note as well that a multi-way set-associative cache 
has more logic levels than a direct-mapped cache. A 
multi-way set-associative cache contains three critical 
timing paths: 
1. Read data: accessing the cache data memory in each 

of the sets. 
2. Asserting the MATCH OUT signal in one of the sets, 

if the tag is matched and valid. 
3. Select data: selecting the cached data from the set that 

matches, if there is a match. 
Multi-way set-associative caches are slower than a 

direct-mapped cache because of the added logic delay as­
sociated with the select-data path. Therefore, a direct­
mapped cache exhibits a faster cache hit time at a lower 
system cost. 

Fully Associative Mapping 

Figure 6 illustrates fully associative mapping. With a 
fully associative scheme, any location in main memory 
can be mapped to any location in the cache. This scheme 
theoretically produces the highest hit rate because there is 
no possibility of thrashing. Thrashing occurs when two or 
more data blocks that map to the same location in the 
cache start replacing each other frequently. The end result 
of thrashing is a drastic increase in teff due to increased 



• • • 
CACHE 

• • • 

• • • 
MAIN MEMORY 

Figure 6. Fully Associative Mapping 

miss rate. Thrashing becomes statistically unlikely, how­
ever, as cache size increases. 

Figure "7 illustrates a simplistic. fully associative 
cache. As shown, the address accesses a CAM (Content 
Addressable Memory) bank which simultaneously sear­
ches all locations for a match. If the CAM finds a valid 
match, the cache data RAM places the requested informa­
tion in DATA OUT. If the CAM does not find a match, 
main memory must be accessed for the correct data .. " 

Fully associative caches are very expensive to build 
due to the fact that CAM cells are not readily available. 
Consequently, most caches are designed with direct or set~ 
associative mapping, which can be realized with SRAM 
technology. 

Direct vs. Set-Associative Mapping 

The trend in cache design is toward larger caches. In 
the past, cache sizes of 8 to 16 Kbytes were fairly com­
mon. Today, 64 Kbytes· is probably the average, with 
many systems having much larger cache sizes. 

As an example, consider the 80386 - a low-end 
processor - used in combination with the 82385 cache 
controller. The 82385 directly supports a 32-Kbyte cache 
and indirectly supports 64- and 128-Kbyte caches. The 
device supports both direct-mapped and two-wayset-as­
sociative cache. By coupling the 82385 with the two 
Cypress CY7C184 Cache Data RAMs (designed specifi­
cally for this application), you can implement a 32-Kbyte 
cache with three chips. 

As another example, the Cypress CY7C600 SP ARC 
family - a high-end processor family - supports direct­
mapped cache in 64-Kbyte clusters. Each cluster consists 
of one CY7C604 Cache Tag/Cache Controller/Memory 
Management Unit (CMU) and two CY7C157 16K x 16 
Cache Data RAMs. Up to four clusters can be included 
per processor, implementing a direct-mapped cache as 
large as 256 Kbytes. 

There are two basic reasons for this trend toward 
larger cache sizes: First, semiconductor technology can 
now easily support a 64-Kbyte cache size with reasonable 
chip. count and speed. Second, the emergence of RISC 

8-52 

(Reduced Instruction Set Computer) architectures has 
created a demand for higher cache hit rates and faster 
cache hit times - in other words, a large cache that is 
designed simply (i.e., fewer logic delays). 

The trends toward larger cache sizes and faster hit 
times tend to favor the easier-to-design direct-mapped 
cache. The basic tradeoff involves associativity, defmed as 
the number of cache lines in which a given block of data 
can reside. As associativity decreases, fewer lines are 
searched on a memory reference. This provides a potential 
implementation advantage because, as fewer lines are 
searched, logic delay paths disappear and the cache gets 
faster. A disadvantage to decreasing associativity is that 
the number of lines with identical tags that can simul­
taneously reside in the cache also decreases. 

Valid arguments support the use of set associative­
mapping over direct mapping - and vice versa. However, 
most researchers agree that the trend is toward direct 
mapping. 

Two basic arguments are presented against direct 
mapping: First, a direct-mapped cache has a lower hit rate 
than· a set-associative cache of the same size. This state­
ment is true but is rapidly becoming a Don't Care. Con­
sider Figure 8. For small cache size, direct mapping ex­
hibits considerably higher miss rate than either two-way 
or four-way set-associative mapping. But for large cache 
size (64 Kbytes) the miss-ratio difference between direct 
mapping and set-associative mapping becomes a fraction 
of 1 percent 

Research presented in Reference 4 shows that, for an 
8-Kbyte unified instruction/data cache, the difference in 
miss rate for a two-way set-associative vs. a direct­
mapped cache is around 1.3 percent. That figure drops to 
about 0.5 percent for a 32-Kbyte cache. 

The end result is that for large cache size, the reduced 
logic delay inherent in direct mapping (specifically, 
elimination of the select-data path) produces a cache that 
is faster and displays essentially the same hit rate as a 
similarly sized set-associative cache. Thus, recent research 
supports the use of direct mapping. 

~ ADDRESS I 

1 

CONTENT AOIJH£SS4BLE AlEAIORY PANOO.II ~E AlEJIOHY 

• • • • • • 

MATCH OUT ~1 132 

~ I DATA OUT 

Figure 7. A Fully Associative Cache 



The second argument against direct-mapped cache is 
that a direct-mapped cache is more prone to thrashing. On 
the swface, this makes a good deal of sense. But for 
larger cache size, the statistical likelihood of thrashing is 
so low that it becomes negligible. Additionally, .for real­
time applications in which deterministic response time to 
a memory reference is critical, the possibility of thrashing 
can be completely eliminated if cache entries can be lock­
ed - marked as non-replaceable so they are always in the 
cache. 

Four sound arguments can be presented in support of 
direct mapping: First, direct-mapped cache is less expen­
sive than set-associative cache due to elimination of the 
select-data logic. Second, the access time for a direct­
mapped cache is faster than for a set-associative cache 
due to elimination of the select-data logic delays. Third, 
teff is generally lower for a direct-mapped cache than for a 
set-associative cache for a sufficiently large cache 
(generally 32 Kbytes), because tcache is reduced and the 
(unfavorable) difference in m between the two cache 
types is negligible. Finally, you do not need to implement 
a cache line replacement policy for a direct-mapped cache 
because direct mapping has a one-to-one relationship be­
tween cache and main memory (more on cache replace­
ment policies later). 

Cache Size 
Cache size has perhaps the single largest influence on 

miss ratio. In terms of miss-ratio impact, cache size is also 
the most difficult to quantify because it relates so closely 
to the principle of locality of reference - and therefore 
the software workload. In general, however, a larger cache 
has a lower miss ratio. On the other hand, large cache is 
also significantly more expensive to build given the rela­
tively higher cost of fast SRAMs. 

Additionally, . mindlessly increasing the size of the 
cache can actually result in a performance decrease. This 
effect might result from an increase in output loading due 
to fan-inlfan-out limitations or the increase in cache-hit 

211 Ki .. Rate (lI:) 
-+- 4-11'.., Bet _ 

-&- 1-11'.., Bet __ 

..... _Kappecl 

10 

o~--~--~--~--~--~--~--~----~~ 
1 8 18 32 8' 128 258 1112 

Cache Size (kB) 

Figure 8. Cache Miss Rate as a Function of 

Associativity (Transcribed from Reference 1) 

8-53 

processing time due to the added logic delays necessary to 
manage a larger cache. Given the current state of semi­
conductor technology, cache sizes of 64 Kbytes are easy 
to achieve and generally large enough to allow a cache to 
obtain a 95-percent hit rate. 

For multilevel cache hierarchies, a level 2 cache must 
generally be very much larger than the level 1 cache to be 
effective. Research results presented in Reference 7 indi­
cate that adding a level 2 cache can provide a worthwhile 
performance increase, given the proper combination of 
small level 1 cache and slow main memory. 

Cache Line Size 

Cache line size is defined as the basic unit of infor­
mation transfer between the cache and main memory. 
Line size ranks second right behind cache size as the 
parameter that most affects cache performance. Proper 
choice of line size is important because it affects both 
miss rate and tmain. 

Figure 9 presents data transposed from Reference 10. 
Note that for a given cache size, increasing the line size 
reduces the miss rate. Eventually, however, the miss rate 
begins to increase with larger line size, as shown by the 
2-Kbyte curve in Figure 9. 

Cache line size also affects tmain. Too-large line sizes 
have long transfer times (which increases tmain) and create 
difficulties in multiprocessing systems by generating ex­
cessive bus traffic. These problems especially affect 
primitive buses that do not support single-address, multi­
ple-data-cyc1e burst transfers. The burst transfer 
capabilities of newer bus protocols, such as Futurebus and 
theSPARC reference standard Mbus (Module-bus), allow 
larger line sizes with less impact on tmain. 

Additionally, larger line sizes tend to effect a degree 
of memory pollution. This problem occurs when informa­
tion is loaded into the cache but never referenced by the 
processor. 

For multicache organizations, having a level 2 cache 
line size greater than that of the level 1 cache has ad­
vantages that are not discussed in Reference 7:lower cache 

Ki .. RaUo 
~lI:r---------------------~========~l 

20" 

111" 

- ZIrB caohe 

.. ~ .... kB cach • 

--",,-- II IrB C&che 

-e- 111 IrB Caahe 

""*" sa kb C.ahe 

o,,~----~------~------~------~----~ , 18 32 8' 128 

Cache Line Size (Bytes) 

Figure 9. Cache Miss Rate as a Function of Line Size 
(Transposed from Reference 10) 



tag cost and increased performance due to the pre-fetch 
nature of the line size difference. 

If the level 2 cache line size is greater than that of the 
level 1 cache, you must consider some additional design 
elements. Generally, for example, the line-size ratio of 
level 2 to level 1 cache is set at a power of 2. Recall that 
line size is defmed as the basic size of information trans­
fer between the cache and main memory, or between the 
level 1 cache and the level 2 cache. If the line size of the 
level 2 cache is not equal to the line size of the level 1 
cache, the level 2 cache controller must be able to com­
municate in two different sizes of data chunks. 

A cache such as this level 2 cache is referred to as 
sector oriented. This type of cache maintains coherency in 
sizes equal to the level 1 cache line size, which is a sub­
block of the level 2 cache line. 

As a result, the level 2 cache tag entries must include 
bits to track the following status parameters for each sub­
block: 

V ALIO means that the sub-block contains good data. 
DIRTY indicates that the cache line/sub-block has 
been written to and is no longer the same as main 
memory, i.e., main memory must be updated on re­
placement of a dirty line 
INCLUSION indicates that the sub-block is present in 
the level 1 cache. 
To illustrate the operation of a sector-oriented cache, 

consider a 16-Kbyte, direct-mapped, level 1 cache with a 
16-byte line size that is backed up by a 256-Kbyte, direct­
mapped, level 2 cache. If the level 2 cache line size 
equals the level 1 cache line size (16 bytes), the level 2 
cache has 256K116, or 16K, cache tag entries. Assuming a 
32-bit address, the tag size in bits is then 32 - log2(16K) -
log2(16). This expression yields a tag size of 14 bits; ad­
ding 3 bits for VALID, DIRTY, and INCLUSION gives a 
total length of 17 bits. This length equates to a cache tag 
size of 16Kx17, or a 272-Kbit tag size. 

If, on the other hand, the level 2 cache line size is set 
at 64 bytes, the level 2 cache has 4K tag entries. The tag 
size is then 14 bits plus the 3 status bits needed for each 

Mi •• Rate 30".--------------------, 
~ 
~ 

o,,~-~-~-~-~-~-~-~-~~ 
1 4 8 16 32 64 128 256 612 

Cache Size (kB) 

Figure 10. Miss Rate for Split cache vs. Combined 
Cache(Transcribed from Reference 12) 

8-54 

of the 4 sub-blocks in the level 2 cache line; this yields a 
total of 26 bits of tag. The total tag size is then 4Kx26, or 
104 Kbits. This means that the tag for the sector-based 
level 2 cache costs 40 percent as much as the tag for the 
non-sector-based cache tag on a cost/bit basis. Therefore, 
in addition to the possible performance benefit associated 
with having a level 2 line size greater than the level 1 line 
size, the cache is less expensive as well. 

In summary, three factors influence cache line size 
choice: 
1. The . type of bus protocol used. A protocol that is 

capable of burst transfers, such as Futurebus or Mbus, 
permits a longer line size with a potential perfor­
mance increase, due to reduced miss penalty for a 
given line size. 

2. The structure of main memory. In other words, make 
sure that the line size does not create a bottleneck at 
the main memory interface. 

3. Bus-bandwidthldata-contention considerations, espe­
cially in a multiprocessing environment. 
The design task boils down to choosing a line size 

that is long enough to effect a good miss ratio, but short 
enough to minimize tmain. Typically, cache line size is 16, 
32, 64, or 128 bytes. 

Split vs. Combined Cache 
In the past, computers have generally utilized a single 

cache for both instructions and data. It is possible, how­
ever, to design a system that has separate caches for in­
structions and data. Generally, as shown in Figure 10, a 
unified instruction/data cache results in slightly higher 
performance through a lower miss ratio. The advantages 
of splitting the cache are: 
1. It makes design of the instruction cache easier be­

cause the cache's contents do not generally need to be 
modified. 

2. It might eliminate conflict between data and instruc­
tion accesses in a pipelined architecture; this depends 
on the overall processor architecture. 

There are also advantages to using a unified cache: 
1. Cache design is simpler for a unified cache because 

both cache-to-main-memory and cache-to-processor 
communications are one to one. 

2. A unified instruction/data cache tends to make more 
efficient use of the cache - which is a limited 
resource. 

Cache Management 
In this context, cache management refers to the 

policies governing the movement of information into and 
out of the cache. These policies do not relate directly to 
cache organization, but they do affect the cache control­
ler's complexity. Specifically, cache management refers to 
the policies that 
1. Keep main memory coherent relative to cached infor­

mation. 



Table 1. Enl!ineerinl!Tradeoffs: Write-throul!h vs. Copy-back 

+1- Write-through 

+ Main memory always has the most up-to-date version 
of data - minimizing cache coherency problems for 
multicache confh~urations. 

+ Easy to implement in the cache controller. 

- Without buffering (e.g., poseted writes), CPU must 
wait for write to complete. 

- If write buffers are present, extra logic must be 
included to ensure that data will not be referenced 
from main memory until it has been stored there. 

- Generates increased bus traffic, which is especially 
bad for multiprocessing systems. 

2. Determine when new information should be loaded 
into the cache from main memory. 

3. Choose the cache line that should be replaced with 
the new information being loaded into the cache, if a 
choice is available 

Main-Memory Coherence Schemes 
When the CPU modifies cached data, main memory 

needs to be notified of the change. Whether this notifica­
tion happens sooner or later depends on the coherency 
scheme used. The two mainstream coherency schemes are 
called write through and copy back. Each policy has ad­
vantages and disadvantages, . and each affects both the 
complexity of the cache controller and teff. 

Using the write-through policy, all writes to cached 
locations are immediately written-through to main 
memory. This policy is the simpler of the two to imple­
ment, resulting in a less complex cache controller design. 
The write-through approach can result in a performance 
decrease, however, because the CPU usually must be held 
pending completion of the write. Write through can also 
cause problems due to increased bus traffic. 

The copy-back policy only updates the cache on CPU 
store cycles, updating main memory only when it be­
comes necessary to replace a modified (or dirty) line in 
the cache. This policy requires an extra bit in the cache 
tag array to keep track of whether a line is clean or dirty. 
The main advantage of copy back is that it generates less 
memory bus traffic, resulting in higher performance. The 
main disadvantage of copy back is increased complexity 
of the cache controller. Table 1 outlines the major ad­
vantages/disadvantages of both policies. 

Additionally, a system can implement write alloca­
tion. This means that on a write miss, the data addressed 
by the write miss is loaded into the cache and then 
modified. With no write allocation, the data is written to 
main memory only, and the cache is not updated. 

8-55 

Copy-back 

Produces a lower miss rate than write-through for 
some applications 

Frees up bandwidth on the main memory bus due to 
less freQuent memory updates. 

Difficult to realize in multiprocessing systems due to 
cache coherency issues. 

Extra logic needed for DIRTY bit. 

Results in a more complex controller design, because 
it caches writes in addition to reads. 

For multilevel cache systems, reducing the overhead 
required to maintain consistency between the level 1 
cache, the level 2 cache, and main memory is a critical 
design factor. The tradeoff is one of cache controller com­
plexity and the amount of bus bandwidth vs. cost. Accord­
ing to Reference 7, the level 1Ilevei 2 cache coherency 
strategy can result in a 15-percent cache system perfor­
mance differential. In a two-level cache, you can general­
ly choose a write strategy independently of the level. 
From highest to lowest performance, the strategies are: 

!&Yill Level 2 
Copy Back Copy Back 
Copy Back Write Through 

Write Through Copy Back 
Write Through Write Through 

Line Replacement Algorithms 
The line replacement algorithm decides which entry 

in the cache to replace when a new line must be loaded 
into the cache. For a direct-mapped cache, this task is 
straightforward, because each main-memory location 
maps to a unique line in the cache. A set~associative 
cache permits some latitude in choosing the set in which a 
line is replaced. 

The most common methods of replacing cache lines 
are Least Recently Used (LRU) and First InlFirst Out 
(FIFO). The LRU algorithm keeps track of which line has 
gone the longest without being used, and replaces that 
line. The FIFO algorithm keeps track of the. oldest line, 
and replaces that line. You can also use a random line-re­
placement algorithm, where the set containing the line to 
be replaced is chosen at random. 

Curiously, research presented in Reference 11 shows 
that random replacement generally proQuces higher hit 
ratios than either the LRU or FIFO algorithms. Figure 11 
uses data from Reference 11 and shows relative hit ratios 
for four-way, set-associative cache using both the LRU 



and random methods; two-way, set-associative cache 
using the same two methods; and direct replacement (for 
direct-mapped cache). 

Two notes of caution: First,· this data is fairly old 
(1983) and therefore reSults from use of an unreasonably 
small cache by today's standards. Second, the information 
was obtained by averaging trace data from three different 
C programs running under UNIX on a VAX-It. Thus, 
depending absolutely on this data would be inappropriate, 
especially for RISC machines. 

On the other han(i, relative comparisons of each 
policy and cache organization are most appropriate. Some 
interesting conclusions can be drawn from the data 
presented in Figure 11, First, the random replacement al­
gorithm appears to provide nearly the same or better hit 
rates compared to LRU. This result is significant because 
a random replacement algorithm is very much easier to 
design into a cache controller and requires less hardware. 
The second conclusion is that for, an 8-Kbyte (and 
presumably larger) cache size, direct-mapped cache offers 
nearly the same hit-ratio performance as two-way and 
four-way set-associative cache. This result· supports the 
conclusions drawn in the section on cache mapping tech­
niques. 

Fetching Algorithms 
Most caches use demand fetching, where a new line 

is requested from main memory only when a CPU refer­
ence results in a cache miss. This method minimizes the 
complexity of the cache controller. 

An alternate method, called pre-fetching, can produce 
higher hit rates· in some applications. Pre-fetching makes 
use of idle memory cycles to move data into the cache. 
Static pre-fetch is implemented at compile time, while 
dynamic pre-fetch occurs at run time. 

Sequential dynamic pre-fetching can cut the miss rate 
in half, according to Reference 11. Reference 5 estimates 
a reduction in miss rate of as much as 75 to 80 percent. 
This estimate points to a significant performance ad­
vantage, but sequential dynamic pie .. .fetching requires a 
large cache size to be effective. This is because dynamic 
pre-fetch can result in increased memory pollution; the 
statisticl!llikelihood of this happening increases dramati­
cally for decreasing cache size. 1l1us, if cache size is large 
and cache controller complexity is not a major issue, in­
cludinga dynamic pre-fetch mechanism can result in a 
significant perforinance increase. 

A pre-fetch mechanism also provides a way to im­
prove the hit rate ofa level 2 cache. Because the level 2 
cac~e hit rate is .. usually fairly low anyway· (generally 50 
to 90 percent), memory pollution introduced by pre-fetch 
tends to be inconsequential: You can implement pre-fetch 
with minimal hardware overhead by malPng .the line size 
of level 2 great~ than the line size oflevel 1: 

Pulling it all together 
This section provides a simplistic method of calculat .. 

ing teff and the performance improvement of using a 

8-56 

cache giv~ various assumptions and design choices. Note 
that this 'methodology only provides "ballpark" figures. 
You can obtain more accurate figures by simulating an 
actual design - either dfrectly or via a software model. 

As presented earlier, the goal· of cache design is to 
reduce the effective memory access time (teff) as seen by 
the CPU. Effective access time is defmed as 
tef!= tcache + m X tmain 

The following . methodology does not take into ac­
count the effects of 4esign choices on tcache or tmain­
i.e., these numbers are either already known or estimated. 
This methodology does, however, include the miss rate, 
which accounts for the following factors: 

Cache size 
Cache line size 
Cache mapping scheme 
Main memory coherency algorithm 

These factors are included by modeling the miss rate as 
m=MxMRM+CF 

where: 

m 
M 

MRM 

= Cache miss rate 

= Raw miss rate 
= Miss-rate multiplier 

CF = Coherency factor 
The raw miss rate represents the miss rate strictly as a 

function of cache size and cache line si~e. Table 2 
provides the raw miss rate and assumes direct-mapped 
cache. The miss-rate multiplier is essentially a correction 
factor that accounts for variations in miss rate between 
direct~mapped and set~assoCiative cache. organiiations; 
Table 3 provides this value. . 

The coherency factor accounts for variations in miss 
rate due to the choice of main-memory coherency algo­
rithm. Recall that the write-through policy does not cache 
CPU writes; instead writethrough forces all C:PU writes to 
immediately pass through to main memory. Thus, CPU 
writes to a write~through cache can be regarded as cache 

Normalized Hit RaUo 1.01.--------------------, 

0.99 

- ,-WIlT IU/lWf 
.oj... ,-WIlT IU./LRU 
.... I-WIlT IU/lWf 
• I-WIlT IU/I1W 

"*" DIrect 

2048 4098 

Cache size (Bytes) 

16 Byte line size, 
all numbers normalized to 4..,..Way SA/RAN 

Figure 11. Cache Hit Rate as a Function of 
Replacement Algorithm 

8192 



Table 2. Miss Rate as a Function of Cache Size and Cache Line Size 

Cache Size Cache Line Size (Bytes) 
(Kbytes) 

8 16 

2 0.154 0.116 

4 0.116 0.086 

8 0.096 0.073 

16 0.086 0.064 

32 0.081 0.060 

64 0.079 0.057 

128 0.077 0.056 

256 0.076 0.055 

misses, meaning that CF > O. If the cache uses write 
through with posted-write capability or uses the copy-back 
algorithm, CPU writes can be considered cache hits, 
meaning CF = O. You obtain CF by determining or assum­
ing the percentage of cache references that are writes and 
then derating the miss rate by that factor. 

As an example, consider a 64-Kbyte, direct-mapped 
cache that can be accessed by the CPU in one cycle and 
that has a 32-byte line size; the cache uses write through, 
and 30 percent of cache references are writes. Assume a 
15-cycle main-memory access time. From Table 2, M = 
0.017. From Table 3, MRM = 1.000. CF = 0.300 (given). 
Then 
m=MxMRM+CF 

= (0.050) (1.000) + 0.300 
= 0.350 

and 
tef!= tcache + m x tmain 

= 1 + (0.350) (15) 
= 6.25 cycles 

meaning that this system achieves a 2.4x performance in­
crease using the cache described. Note that the same sys­
tem with a copy-back cache achieves a teff of 1.75 cycles, 
resulting in an 8.57x performance improvement. Finally, 
consider a two-way set-associative cache using copy back. 
Now teff = 1.746 cycles, for a performance improvement 
of 8.59 -less than 0.2% better than a direct-mapped 
cache). 

32 

0.092 

0.074 

0.060 

0.054 

0.051 

0.050 

0.049 

0.048 

64 128 256 

0.080 0.084 0.088 

0.064 0.061 0.065 

0.053 0.050 0.045 

0.047 0.044 0.039 

0.044 0.041 0.036 

0.043 0.040 0.035 

0;042 0.039 0.034 

0.041 0.038 0.033 

Multilevel Cache 
Recent advances in silicon technology have allowed a 

new focus in cache design methodology. Increased gate 
densities in integrated circuits have helped make it pos­
sible to include a small- to-medium-sized cache on the 
CPU chip itself. Examples include the Motorola 
68030/040, the Intel 80486, and Intel's i860 RISC chip. 
Additionally, because ICs available today support multi­
processing in a straightforward manner, multiprocessing 
systems will become more common. Examples of these 
ICs include the Intel 80486 and the Cypress CY7C600 
RISC family. 

Both of these developments tend to support a multi­
level cache hierarchy. Four major factors support a move 
to a multilevel cache hierarchy: 
1. The way the on-chip cache is implemented can force 

a cache partition. Specifically, a small on-chip cache 
with unacceptable or marginally acceptable hit rates 
might force you to add a second level of cache off 
chip to achieve a design's performance objectives. 
However, if the on-chip cache is designed improper­
ly, a multilevel cache might be impossible or imprac­
tical. The on-chip cache must have the necessary 
hooks to permit communication between the first 
level and second level caches. If these hooks are not 
present, you will be forced to accept lower perfor­
mance in return for higher integration. This problem 
occurs with the Intel i860, for example. 

Table 3. Cache Miss Rate as a Function of Cache Size and Mapping Method 

Mapping Method Cache Size (Kbytes) 

2 4 8 16 32 64 128 256 512 

Direct Mapped 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2-Way Set Assoc. 0.975 0.980 0.986 0.990 0.994 0.995 0.996 0.996 0.996 

4-Way Set Assoc. 0.925 0.940 0.958 0.970 0.982 0.985 0.988 0.989 0.989 

8-57 



Figure 12. Multilevel Cache Hierarchy for Single­
Processor Systems 

2. Detailed study of teff reveals that a multilevel cache 
hierarchy can offer higher performance than a single­
level cache hierarchy, especially if the difference be­
tween processor speed and memory speed is large. 
This speed difference might not result solely from in.: 
creases in CPU speed, but can also result from the 
use of larger (and therefore slower) main memory. 

3. Creating multiple cache levels opens the possibility of 
functionally tuning each cache level for highest per­
formance. For example, you can optimize the first­
level cache to minimize teff and the second-level 
cache for high hit ratio, reduced cost, or reduced in­
terconnect traffic. 

4. Increased usage of multiprocessing might force a 
multilevel cache hierarchy. Generally, each processor 
needs its own cache - especially if it is a RISC en­
gine - to increase performance and decrease bus 
traffic. Bus bandwidth is an especially valuable 
resource in multiprocessing systems. Adding a 
second-level cache can reduce teff, especially if the 
level 1 cache does not meet performance objectives. 
In considering these factors, you must resolve the 

cost vs. performance tradeoff of multilevel vs. single-level 
cache. This tradeoff depends on the processor architecture, 
the on-board cache (if any), the main-memory structure, 
and the type of connection between the cache and main 
memory. 

Consequently, there are no set rules to justify in­
clusion of a multilevel cache hierarchy. However, recall 
that cache memory was created to solve performance 
problems stemming from extremely fast CPU speeds rela­
tive to main-memory access times. Reference 5 states that 
these speeds must differ by a factor of 10 to justify use of 
a cache and a factor of 40 to justify use of a multilevel 
cache. The actual ratio that justifies inclusion of a multi­
level cache hierarchy is a personal decision - generally 
as much a marketing decision as an engineering decision 
- and concrete statements regarding justification are not 
valid. 

8-58 

The balance of this application note focuses on multi­
level cache hierarchies for uniprocessor and multiproces­
sor systems. In both cases, the hierarchy is limited to two 
levels. 

Multilevel Cache in Single-Processor Systems 
Figure 12 illustrates the cache hierarchy discussed in 

this section. In this hierarchy, the level 1 cache services 
processor references and obtains data on a miss from the 
level 2 cache. The level 2 cache services references from 
the level 1 cache and obtains data on a cache miss from 
main memory. The level 1 cache can be inside or outside 
the processor chip. 

This hierarchy does not change the design goal and 
methods of achieving that goal, but it adds more variables 
to the equations. The effective memory access time can be 
expressed as: 
tefl= tLI + mLl (tLl + mL2 x tmain) 

where: 
tLl 
IL2 

mLl 
mL2 
tmain 

= Level 1 cache access time 
= Level 2 cache access time (penalty 

beyond ILl) 
= Level 1 cache miss rate 
= Level 2 cache miss rate 
= Main memory access time (penalty 

beyond tL2) 
Minimizing the overhead delay associated with main­

taining cache consistency is much more complex for mul­
tilevel cache hierarchies than for a single-level cache 
hierarchy. When beginning a multilevel cache design, you 
must carefully consider all the previously discussed design 
factors, but these design factors are now multidimensional 
problems. 

The miss rate approximation presented earlier can be 
extended for two levels of cache. As an example, consider 
a system with a single-cycle, two-way set-associative, 8-
Kbyte, level 1 cache that has a 32-byte line size and uses 
copy back; the system also has a single-cycle, direct­
mapped, 128-Kbyte, level 2 cache that has a 128-byte line 
size and uses write through with 30-percent writes. Main­
memory access requires 20 cycles. To evaluate this 
scheme's performance, compare the effective memory ac­
cess time for both levelland level 2 cache with the ac­
cess time for level 1 cache alone. 

First, you can calculate mLl from data in Tables 2 
and 3: 
mLl = MLI x MRMLl + CFLl 

= (0.060 )(0.986) + 0 
=0.059 

Then 
tefilLI only = tLI + mLl X tmain 

= 1 + (0.059) (20) 
= 2.18 cycles 

Next, you can calculate mL2: 
mL2 = ML2 x MRML2 + CFL2 

= (0.039 )(1.000) + 0.300 
=0.339 



Then 
tefflLl &L2 = tLl + mLl (tLl + mL2 X lmain) 

= 1 + 0.059 [1 + 0.339 (20)] 
= 1.46 cycles 

Thus, the performance improvement over using only 
the level 1 cache is 33 percent. Note. also that the evalua­
tion model produces a teff of 1.459 cycles for a two-way 
set-associative, level 2 cache, which results in trading a 
more complex, more expensive cache controller design for 
essentially J!Q performance improvement over a direct­
mapped implementation. Additionally, if the level 2 cache 
is direct mapped and uses copy back, leff is 1.11 cycles, 
resulting in nearly a 50-percent improvement over using 
only the level 1 cache. 

Multilevel Cache in Multiprocessing Systems 
Multiprocessing systems are becoming increasingly 

prevalent in the industry because· they allow the growth 
rate of computer system technology to be higher than the 
growth rate of processor technology. Programmers want 
these systems to have a global main memory. At the same 
time, the single most performance-limiting factor in multi­
processing systems is maintaining consistency between 
the global main memory and multiple processors; each 
having its own cache. Adding a second level of cache can 
aggravate this consistency problem, and in fact might 
cause a degradation in performance. However, a multi­
level cache hierarchy can increase performance if. imple­
mented properly. 

Multicache Consistency in Multiprocessing Systems 

In multiprocessing systems, it is generally preferable 
for each processor to have a private cache, which mini­
mizes bus traffic, and a common global main memory, 
which supports ease of programming. Because a multi­
processing environment generally includes multiple 
caches, which provide local windows on a large main 
memory, two or more caches can contain the same data. If 
this situation occurs, a change in the data in one cache 
renders the data in the other caches incoherent. Therefore, 
you need a set of rules - a multicache consistency 
protocol- to maintain consistency. 

As described earlier, maintaining coherence in a 
uniprocessor system with a single level of cache is fairly 
simple because coherence only needs to be maintained be­
tween one cache and main memory. You can achieve this 
goal by implementing the copy-back or write-through 
protocols. The consistency problem is more complex in 
multiprocessing systems, where each processor has a 
private cache. This is because consistency must· be main­
tained among a cache, it's "sibling" caches, and main 
memory. 

The consistency problem in this case - while more 
complex - is well dermed and has well-known solutions. 
Typically, for a multiprocessing system with a large num­
ber of processing elements, you employ a software consis­
tency protocol. For systems with a small to medium num-

8-59 

ber of processing elements, you usually implement a bus­
based protocol. 

Adding a second level of cache tends to aggravate the 
consistency problem by introducing another level at which 
consistency must be maintained. Because multicache, 
multiprocessor topologies have some combination of mul­
tiple level 1 caches interfacing to a single level 2 cache 
and/or multiple level 2 caches interfacing to a common 
global main memory, the effective memory access time 
equation must contain a component to account for time 
wasted while attempting to gain access to a "parent 
memory." 

Therefore, the equation for multiprocessing systems 
with multilevel cache hierarchies has a contention delay 
term for consistency management traffic. The position at 
which this delay enters the equation depends on the topol­
ogy used. Minimizing this and other delays caused by 
consistency management is critical to cache design in 
multiprocessing systems that have a multilevel cache 
hierarchy. 

Now consider how this extra level of coherence 
management affects system performance. Figure 13 
presents three different· mUltiprocessing topologies. Most 
authors agree that the level 2 caches should be supersets 
of their children caches. In this manner, the coherence 
management protocol can be moved as far from the 
processing element as possible. This allows the level 2 
caches to shield the level 1 caches from unnecessary blind 
checks (snoops for data that is not in the cache) and in­
validations that might propagate up from main memory. 

Adhering to the Multilevel Inclusion (MLI) Principle 
- that all the data in the level 1 cache is in the level 2 
cache - can minimize snoops, which halt the CPU. The 
MLI Principle is defined for set-associative caches in Ref­
erence 2: MLI can be achieved if the degree of set as­
sociativity of a parent (level 2) cache is greater than or 
equal to the product of the number of its children (level 1) 
caches, their degree of set associativity, and the ratio of 
their block sizes. Expressed mathematically: 

AllLl's 

Set AssociativityL2 = I [ Set AssociativityLl 

Line SizeL2 ] 
x Line SizeLl 

Note that MLI is not a requirement in multicache 
designs, and the scheme proposed in Reference 2 is only 
one of several ways to achieve MLI. As shown later, MLI 
as stated in Reference 2 is very restrictive and results in 
an extremely complex and expensive level 2 cache design. 
To enforce MLIaccording to the Reference 2 scheme, for 
instance, the system described in the section Multilevel 
Cache in Single-Processor Systems becomes an eight-way 
set-associative, level 2 cache. This might be an unrealistic 
goal, because a 128-Kbyte cache of this complexity is ex­
pensive to implement. 

For Topology A in Figure 13, however, you can im­
plement MLI under the Reference 2 scheme if, for ex­
ample, you do it this way: The level 1 cache is a direct-



mapped, 16-Kbyte cache with 16-byte line size, and the 
level 2 cache is a four-way set-associative, 256-Kbyte, 
sector-based cache with 64-byte line size. Additionally, 
using Topology A, you can implement a simple cache­
coherence protocol such as copy back or write through at 
the level 1 cache, which is generally small. 

Cost effectiveness can dictate a fairly large sector­
based level 2 cache. Consistency among the level 2 caches 
is maintained on the basis of the level 1 line size. A 
private level 2 cache services all level 1 cache misses. 
The level 1 cache is disturbed only when the need arises 
to replace a sub-block in a level 2 cache whose IN· 
CLUSION bit is set. 

You can improve performance dramatically if the 
system meets two conditions: the bus can support direct 
data intervention (more on this later), and the level 2 
cache controller has a bus-snooping mechanism that al­
lows it to monitor bus activity and perform invalidations 
based on observed bus traffic. The effective memory ac­
cess time for this topology is: 
lelf= ILl + mLl [ILl + mL2 (Imain + Ib""L2-main)] 

where lbus,L2-main is the time required for a given level 2 
cache to acquire the bus. The advantage of this topology 
is that it is simple and fairly straightforward to implement. 
The main disadvantage is that the level 2 cache is not 
shared by several level 1 caches. 

Topology B, which depicts a multiport level 2 cache 
connected to multiple other level 2 caches via a bus, is 
probably the least desirable of the 3 topologies shown for 
several reasons. For example, this topology contains two 

TOPOLOGY A 

TOPOLOGY C 

points at which contention might occur, resulting in an ef­
fective memory access time equation of: 
telf= tLl + mLl [(tLI + tcontention. LI-L2) 

+ mL2 (tmain + tb""L2-main)] 

where tcontention,LI-L2 denotes the arbitratiOn/contention 
penalty for a level 2 cache to service a level 1 cache. 
Thus, this design is slower than topology A. 

Additionally, the logic required for arbitration at level 
2 among the several level 1 caches is expensive. Finally, 
MLI is very difficult to obtain for this type of system. 
Consider a system with four 16-Kbyte,. direct-mapped, 
level 1 caches that have a 16-byte line size connected to a 
256-Kbyte, level 2 cache that has a 64-byte line size. The 
scheme proposed by Reference 2 dictates that the level 2 
cache be 16-way set associative. 

Topology C, a bus-based hierarchy, is probably the 
most attractive topology for systems with a small to 
medium number of processing elements. Using this topol­
ogy, MLI is guaranteed through the use of broadcast in­
validations - notifications to all caches to invalidate 
shared lines that were written by another CPU into a 
private cache. The effective memory access time for this 
topology is given by: 
telf= tLI + mLl [(tLI + tb""Ll-L2) 

+ mL2 (tmain + tb""L2-main)] 

where lbus,LI-L2 is the time required for a given level 1 
cache to acquire the bus that connects the level 1 caches 
and the level 2 cache. Using well-designed buses, such as 
Futurebus or Mbus, reduces bus traffic in this topology to 
a minimum. 

TOPOLOGY 8 

Figure 13. Multiprocessing Topologies with Multilevel Cache Hierarchies 

8-60 



Topology C's disadvantages are that it introduces 
greater hardware complexity, and that a manageable im­
plementation requires the use of VLSI. (Such VLSI solu­
tions are available in the Cypress CY7C600 family, how­
ever.) Additionally, even with a good bus protocol, the 
amount of bus traffic limits the number of resources that 
can share the bus. Despite these disadvantages, a bus­
based multilevel cache hierarchy appears to be the most 
promising in terms of cost and performance. 

Multilevel Cache in SPARC Multiprocessing 
The Cypress CY7C600 RISC microprocessor family 

contains full support for multiprocessing, including an ex­
cellent bus-based, multicache consistency mechanism. 
This section covers the CY7C600 family members that 
comprise a multiprocessing (MP) cluster: the CY7C601 
Integer Unit (IU), the CY7C602 Floating Point Unit 
(FPU), the CY7C60S Cache Tag-Cache Controller­
Memory Management Unit for Multiprocessing (CMU­
MP), and the CY7C1S7 16K x 16 Cache RAM. This part 
of the application note highlights the features of the 
CY7C60S CMU-MP that support multicache consistency. 
A section also covers Mbus. Finally, a SPARC multi­
processing system is extended to a multilevel cache 
hierarchy, which is demonstrated in two topologies. These 
topologies are then examined, with a focus on implemen­
tation and performance advantages/disadvantages. 

The SP ARC Multiprocessing Cluster 
As presented in Figure 14, the basic SPARC multi­

processing cluster consists of a CY7C601 IU, a CY7C602 
FPU, a CY7C60S CMU-MP, and two CY7ClS7 Cache 
RAMs. You can increase the cache size by adding up to 
three more CY7C60Ss and six more CY7ClS7s, as shown 

CY7C601 CY7C602 
INTEGER UNIT FLOATING POINT 

(lU) UNIT (FPU) 

I 
I 

CTRL CY7C157 
-

CY7C605 / 

CACI£ CONTROLlER. TAG " '" 16kx16 
NENORY tAANAGElAENT UNIT CACHE DATA RAM 

(CIotU-MP) (CRAM) 

AI-BtJS-AlP 

MAIN MEMORY 

Figure 14. The SPARC Multiprocessing Cluster 

8-61 

in Figure 15. This change supports cache sizes from 64 to 
2S6 Kbytes in 64-Kbyte increments. You can also connect 
several MP clusters via the Mbus to form a multiprocess­
ing system, as shown in Figure 16. 

The CY7C601 IU is fully compliant with the SPARC 
reference Instruction Set Architecture. The CY7C601 fur­
nishes full support for eight register windows, a full IEEE 
floating point coprocessor interface, and a second generic 
(user-defined) coprocessor interface. The device is avail­
able at 2S, 33, and 40 MHz (scalable to SO MHz) and is 
implemented in a 0.8-micron, dual-layer-metal CMOS 
process. 

The CY7C602 FPU is a single-chip, SPARC, float­
ing-point processor. It provides full IEEE double-precision 
support, a dedicated register file, and 64-bit data paths. 
The CY7C602 is available at up to 40 MHZ (scalable to 
SO MHz). 

The CY7C1S7 Cache RAM is custom design for 
CY7C604 and CY7C60S cache systems. It is still a fairly 
generic cache RAM, however. The CY7ClS7 is a fully 
synchronous (self timed) device - much better suited to 
cache design than "industry standard" asynchronous 
RAMs. The CY7C1S7 scales in speed, matching the clock 
rate of the IU and CMU, and is implemented in 0.8-
micron, dual-layer-metal CMOS technology. 

The CY7C605 CMU-MP 
The CY7C60S CMU-MP includes all the features of 

the CY7C604 uniprocessing CMU along with provisions 
for multiprocessing. Fully compliant with the SP ARC 
Reference MMU Architecture Standard, the CY7C60S has 
a 32-bit (4 Gbyte) virtual address space and a 36-bit (64 
Gbyte) physical address space. In addition to an on-board, 
64-entry, fully associative translation lookaside buffer 
(TLB), the CY7C60S includes support for 4K multiple 
contexts, a 4-Kbyte page size, memory-address protection 
checking, hardware table walking, and sparse· address 
spaces with a three-level page-table map. 

For cache control, the CMU contains 2K, direct­
mapped, virtual cache tag entries and support for a 32-
byte line size; these features allow the device to manage a 
64-Kbyte direct-mapped cache. The CY7C60S also sup­
ports either write through with no write allocate or copy 
back with write allocate. Copy back with write allocate 
does not degrade performance because the CMU has a full 
32-byte cache read buffer. 

The CMU can also perform posted writes via two on­
chip, 32-bit write buffers, which support fully buffered 
Store Doubles. This capability improves the cache's per­
formance when a write miss is encountered by allowing 
the main-memory update to occur in background. The 
CY7C60S's . cache lock mechanism allows entries to be 
locked in the cache, enabling deterministic responses for 
real-time applications. The device also provides for five 
levels of cache flushing. Its 64-bit multiplexed ad­
dress/data bus provides the interface to Mbus. 

The CY7C60S provides full alias detection and cor­
rection through use of both a virtual and physical cache 
tag array. The physical tags, which are not included in the 



M-BUS-MP 

Figure 15. Fully.Extended SPARC Cache 

CY7C604 CMU-UP, serve two purposes. First, this 
second bank of cache tags acts as a reverse .translation 
unit, allowing on-chip detection and correction. of aliasing. 
Second, the physical tag array permits bus snooping to 
occur completely independently of the processor, which 
interfaces to the virtual cache through the virtual cache 
tag array. 

Bus snooping is an activity in which the CMU 
monitors all activity on the Mbus and responds to in­
validation broadcasts or requests for data from other 
caches in the system. The key advantage of physical tag 
entries is that they· enable the bus snooping logic to be 
decoupled from processor traffic, resulting in a substantial 
performance increase. 

The CMU-MP contains full support for the MOESI 
(Modified, Owned, Exclusive, Shared, Invalid) cache con­
sistency model. The MOESI model enables multiple 
caches to coexist on a single bus and share a global main 
memory, while guaranteeing multicache consistency. 
Using this- methodology, each entry in a cache can be in 

)/-BVS-AIP 

one of five states: PRIVATE CLEAN, PRIVATE DIRTY, 
SHARED CLEAN, SHARED DIRTY, or INVALID. If an 
entry. is located in only one· cache in the system, it is 
either PRIV ATE CLEAN or PRIV ATE DIRTY. 

If more than one cache shares unmodified data, they 
are all in the SHARED CLEAN state. Once a cache 
modifies shared data, it marks the data SHARED DIRTY, 
broadcasts an invalidation message informing other caches 
with that data to mark their entries INV ALID. and imme­
diately becomes responsible for responding to any further 
requests for that data. Note that any time a processor is in 
one of the DIRTY states, it becomes the "owner"of the 
data and is responsible for servicing any requests for that 
data. 

Finally, the CMU-MP supports reflective main 
memory and direct data intervention. The latter provides a 
significant performance increase over indirect data inter­
vention. To illustrate the difference, consider an MP sys­
tem with a common main memory and, for simplicity, two 
caches. Cache A retrieves a line of information from main 

• • • 

Figure 16. A SPARC Multiprocessing System 

8-62 



~ 

~~~oR~~~~~~~~~~~~~~~~~~~~C~a~c:h~e~~~e~rn~O~rY~D~eS~i~g~n 

• • •

AI-BIIS-AIP

TOPOLOGY 1
Figure 17. SPARC Single-Level Cache Extension to Multilevel Cache Topology

memory and modifies it, thus becoming the owner of the
data. At some point, Cache B requests the same piece of
information.

In a system using indirect data intervention, Cache A
informs Cache B that the miss occurred and that Cache B
should attempt to gain access to the bus later. Cache A
then seizes the bus and updates main memory.
Meanwhile, Cache B tries to gain access to the bus, while
its processor is on hold, awaiting the new data. When
fmished updating main memory, Cache A releases the
bus. Cache B gains access, and begins to retrieve the data
from main memory. Eventually, after a considerable num­
ber of cycles, processor B is released from hold and per­
mitted to continue.

In a system using direct data intervention, Cache A
supplies the data requested by Cache B directly, resulting
in considerably fewer hold cycles for processor B. Addi­
tionally, with a reflective main memory system, main
memory observes the information transfer and updates it­
self at the same time. With a non-reflective approach,
main memory would contain stale data relative to the
caches.

Mbus
Mbus is a fully synchronous, 64-bit, multiplexed ad­

dress/data bus that supports multiple bus masters and has
a peak transfer rate of 320 Mbyte/s at 40 MHz. All signals
are sampled on rising clock edges and driven active and
inactive. Mbus supports single-address/multiple-data-cycle
bursts of 16, 32,64, and 128 bytes, with full retry support.
Finally, central arbitration is separate from the master and
slave; the type of arbitration scheme used is completely
up to you. The cache consistency model for the Mbus is
based on the MOESI model.

8-63

A Cache Hierarchy for SP ARC MP Systems
This section presents two possible multilevel cache

implementations for SPARC multiprocessing systems. For
highest performance, both topologies require a level 2
cache controller that is as complex as the cache controller
in the CY7C605. Specifically, the level 2 cache must sup­
port fully concurrent bus snooping and direct data inter­
vention. In addition, it is generally preferable that the
level 2 cache have a larger line size than the level 1
cache. The level 2 cache controller thus needs to be sector
based, which increases the level 2 cache controller's com­
plexity.

Figure 17 shows a single-level cache extension topol­
ogy, which forces the level 2 cache to manage cache con­
sistency. Consistency management is thus moved as far
away from the processor as possible. This approach im­
proves performance because it tends to cause fewer hold
cycles for the processor. This topology also permits
smaller level 2 caches - a defmite advantage if the speed
of the level 2 cache is critical, because small caches are
easier to optimize for speed.

The main disadvantage of this topology is that the
level 2 cache is not shared by several level 1 caches. This
results in higher total system cost because each level 2
cache requires its own controller.

Topology 2 (Figure 18) is a multilayer bus-based
hierarchy. This topology permits a common level 2 cache,
whose single controller keeps costs lower. However, this
topology probably requires a level 2 cache size of 2
Mbyte or more to achieve high system-level performance.
This large cache size generally results in a slower (per­
haps multicycle) level 2 cache. If cost of the level 2 cache
is critical, however, this topology is probably the best
choice.

• • •

AI-BUS -AlP

L2 CACHE

BACKPLANE Bl/S OR AI-BOS-AIP

TOPOLOGY 2
Figure 18. SPARC Bus-Based Multilevel Cache Topology

References
1. Agrawal, Hennesy, Horowitz, "Cache Performance

of Operating Systems and Multiprogramming Workloads,"
ACM Transactions on Computer Systems, 11/88, Vol. 6,
No.4

2. Baer, J.L. and Wang, W.H., "On the Inclusion
Properties for Multilevel Cache Hierarchies," Proceedings
of the 15th Annual Symposium on Computer Architec­
tures, February 1988, pp. 81. - 88

3. Gregory, Richard, "Caching Designs Eliminate
Wait States to Relieve Bottlenecks," Computer Design,
October 15, 1988, pp. 65 - 73

4. Hill, Mark D., "A Case for Direct-Mapped
Caches," IEEE Computer, December 1988, pp. 25 - 40

5. Kabakibo, Aiman, et al, "A Survey of Cache
Memory in Modem Microcomputer & Minicomputer ~ys­
terns," IEEE Micro, March 1987, pp.210 - 227

8-64

6. Pohm, A.V. and Agrawal, O.P., High Speed
Memory Systems, Reston Publishing, 1983

7. Short, RT. and Levy, H.M., "A Simulation Study
of Two-Level Caches," Proceedings of the 15th Annual
Symposium on Computer Architectures, February 1988,
pp. 81- 88

8. Smith, AJ., "Cache Memories," Computing Sur­
veys, Vol 14, No 3, September 1982, pp. 473 - 530

9. Smith, AJ., "Cache Memory Design: An Evolving
Art," IEEE Spectrum, December, 1987, pp. 40 - 44

10. Smith, A.J., "Line (Block) Size Choice for CPU
Memories," IEEE Transactions on Computers, Vol C-36,
No 9, September 1987, pp. 1063 - 1075

11. Smith, J.E. and Goodman, J.R., "A Study of
Cache Organizations and Replacement Policies," ACM
Computing Surveys, 1983, pp. 132 - 137

12. Smith, CPU Cache Memories, University of
California, Berkeley, 1984

Synchronous Trap Identification
for CY7C600 Systems

This applications note discusses the decoding of the
status bits in the CY7C601 SPARC processor's
synchronous fault status register (SFSR). When a memory
access fault occurs, these bits indicate the type of fault

Due to the pipelined nature of the SPARC processor,
multiple traps can occur before it leaves normal execution
mode and vectors to a trap handler. If a multiple-trap
situation occurs, the information in the SFSR and the
synchronous fault address register (SFAR) might not
reflect the status for the trap to which the CY7C601 frrst
responds. Although the corrective course of action for the
fault case depends on your system's characteristics, this
application note explains how to interpret the fault so that
it can be corrected.

Section 4.9 in the SPARe RIse User's Guide
describes the operation of the SFSR and SF AR upon en­
countering a synchronous fault. Reviewing section 4.9
will help you understand the information given in this ap­
plication note. A brief summary of the SFSR. charac­
teristics appears in the last section of this applications
note.

Trap Handler Objectives
The objective for the trap handler is to resolve a

memory access error, if possible. In the case of a double
fault occurrence, the first of the two faults is generally,
but not always, the desired fault to be corrected. In one
group of cases, correcting the second fault is preferable,
because the CY7C601 re-executes the instruction that
caused the first fault upon leaving the trap handler.

Errors in address translation are generally non­
recoverable, as they imply a mapping problem in the
MMU virtual page-mapping tables. For these cases, the
identification and recording of the error condition is the
only purpose that the trap handler can serve.

Memory access errors are signaled when the
CY7C604 or the CY7C605 cache and memory manage­
ment units assert the MEXC signal. This event forces the
CY7C601 to vector to either an instruction access excep-

8-65

tion or a data access exception. Instruction access excep­
tions are delayed until the fetched instruction reaches the
execute stage in the CY7C601. Because data accesses are
generated as a result of an instruction that has reached the
execute stage, the exceptions associated with a data access
are recognized immediately. This difference in the timing
of exception recognition .causes many of the double fault
cases described in section 4.9.1 of the SPARe RIse
User's Guide.

Upon detecting an instruction or data exception, the
CY7C601 enters the corresponding trap. The two trap
handlers share the task of identifying the synchronous
fault case. The following sections describe the fault cases
that each handler can identify using the contents of the
SFSR and SFAR. Figures 1 and 2 illustrate the decision
tree seen by the data exception handler and the instruction
exception handler, respectively.

Data Exception Fault Groups
GroupDl

This group consists of case 14, as described in the
SPARe RIse User's Guide. The CY7C601 traps for the
data memory access fault. The information in the SF AR
and SFSR reflects the instruction translation fault and is
not useful for servicing the initial data access fault. The
address of the data access instruction is not lost, however.
The address is given by the PC stored in r[17], or local
register 11, of the trap handler window.

GroupD2
The members of this group are cases 12 and 13. Han­

dling this group is straightforward in that the information
in the SFSR and SF AR reflects the frrst occurring fault.
However, translation faults in general are a non­
recoverable type of error, as they imply a mapping prob­
lem within the page tables. Handling this type of fault
consists of dropping the task altogether and recording the
fault information for system debug.

Group 01

Fault case
14

Group 11

Fault case
9

Fault case
12, or 13

Fault case
8, 15, 16,

or 17

Figure 1. Data Access Fault Identification

Fault case 2 Fault case
7,10, or 11

Figure 2. Instruction Access Fault Identification

8-66

Fault case 3, 4,
or 5

Fault case 1

I RSV 1:.8~TaUCITOI BEl L I AT I FT IFAV IOWI
31 14 13 12 11 10 9 8 7 5 4 2 1 0

RSV .. Reserved BE = Bus Error Fr = Fault 'JYpe
·CBT = Copy-back 'franslation Error L = Level FAV - Fault Address Valid

OW = Over Write UC = Uncorrectable Error AT = Access'ljpe

TO = Time Out Error

(·CY7C604 only; reserved in CY7C605)

Figure 3. CY7C604/60S Synchronous Fault Status Register

GroupD3
This group consists of cases 8, 15, 16, and 17. In

cases 8, 16, and 17, the data access translation fault that
the CY7C601 traps on is the either the only or the frrst of
the two occurring faults. The information stored in the
SFSR and SF AR is valid and can be stored in an error
dump for debug purposes.

Case 15 is an instruction fault followed by a data ac­
cess translation fault. The information for the instruction
access fault is non-recoverable, as the CY7C601 traps on
the data translation fault, which overwrites the instruction
access fault information.

GroupD4
This group consists of cases 3, 4, and 5. The

CY7C601 traps on the data fault in all of·these cases, and
the information in the SFSR and SFAR reflects the infor­
mation for the data fault. Case 3 is a single data fault, and
is straightforward in its recovery. Case 4 is an instruction
fault that is overwritten by a following data fault. The in­
formation for the initial instruction fault is lost, but can be
recovered by correcting the data fault first. The CY7C601
reissues the address for the instruction that caused the ini­
tial instruction fault, allowing the fault to be handled.
Case 5' is the occurrence of a data fault followed by an
instruction fault. It should also be handled by correcting
the data fault and allowing the CY7C601 to reissue the
address for the fault-causing instruction.

Instruction Exception Fault Groups
GroupIl

The single member of this group is case 9, an instruc­
tion access translation fault preceded by an instruction ac­
cess fault. The CY7C601 traps for the first instruction ac­
cess fault. The information in the SF AR and SFSR
reflects the instruction translation· fault and is not useful
for servicing the initial instruction access fault. The ad­
dress of the instruction is not lost, however. The instruc­
tion address is given by the PC stored in r[l7], or local
register 11, of the trap handler window. Recovery from
this fault case involves using the old PC to re-execute the
fault-causing instruction and attempting correction of the
error condition.

8-67

Group 12
This group consists of case 2, which is a triple in­

struction fault. Note that the SPARe RIse User's Guide
describes this case as a double instruction fault, but the
User's Guide errata makes the correction to a triple fault.

The CY7C601 traps on the frrst occurring instruction
trap, but the information in the SFSR and SF AR has been
overwritten by the following instruction fault'>. The ad­
dress of the frrst instruction fault can be recovered in the
same manner as group 11.

GroupI3
This group of faults includes cases 7, 10, and 11. All

of these cases are translation faults on an instruction ac­
cess. Case 7 is a singular occurrence of an instruction ac­
cess translation fault. Cases 10 through 13 are occurrences
of an instruction access translation fault followed by some
other type of fault. The information in the SFSR and
SF AR reflects the status stored from the first occurring
fault These faults involve translation errors, which are
generally handled by dropping the task altogether and
recording the fault information for system debug.

Group 14
This group consists of case 1, which is a single in­

struction fault. Information in the SFSR and SF AR is
valid.

SFSR Description
The SFSR is described in sections 4.4.11 and 4.9 of

the SPARe RIse User's Guide, but is briefly repeated
here for reference.

Figure 3 gives the bit assignments for the SFSR. The
SFSR's UC, TO, and BE bits are set according to the type
of error signaled to the CY7C604 by an Mbus agent (such
as memory or the Mbus arbiter) in response to an Mbus
transaction. Table 1 gives the encoding for the Mbus
transaction response signals.

Mbus transactions that signal a bus error, time out, or
uncorrectable error set the corresponding bit in the SFSR
of the CY7C604/605, which then responds by asserting
CMER to the interrupt logic. These bits describe Mbus
error cases and do not apply to the synchronous fault

Table 1. Mbus Transaction Response Signal

MEIm' mmv MRTY Action

H H H Nothing

H H L Relinquish and Retry*

H L H Data Strobe

H L L Reserved

L H H Bus Error

L H L Time Out

L L H Uncorrectable Error

L L L Retry

Table 2. SFSR Fault Level

L Level
0 Entry in Context Field

1 Entry in Level 1 Table

2 Entry in Level 2 Table

3 Entry in Level 3 Table

cases described in section 4.9 of the SPARC RISC User's
Guide.

The SFSR's level (L) bits describe the level in which
an incorrect page entry was found for translation faults.
These bits are described in Table 2. Note that they are
irrelevant for non-translation fault errors.

The access type (AT) bits are described in Table 3.
They give the type of access that caused the currently
reported memory access fault.

The fault type (FT) bits describe the type of error
found by the CY7C604/605. Table 4 gives the fault type
for the case of a table walk that correctly fmds a page
table entry (PTE) but still causes a fault condition. The
access type (AT) is compared against the access protec­
tion field of the PTE (ACC bits), and the fault type is set
according to Table 5.

8-68

Table 3. SFSR Access Type

AT Access Type

0 Load from User Data Space (ASI = OxA)

1 Load from Supervisor Data Space (ASI = OxB)

2 LoadlExecute from User Instruction Space
(ASI = Ox8)

3
LoadlExecute from Supervisor Instruction Space
(ASI = Ox9)

4 Store to User Data Space (ASI = OxA)

5 Store to Supervisor Data Space (ASI = OxB)

6 Store to User Instruction Space (ASI = Ox8)

7 Store to Supervisor Instruction Space (ASI = Ox9)

Table 4. SFSR Fault Type

FT Fault Type

0 None

1 Invalid Address Error

2 Protection Error

3 Privilege Violation Error (user mode only)

4 Translation Error

5 Bus Access Error

6 Not Generated

7 Reserved

Table 5. Fault Type (FT) ror PTE[ET] = 2 (valid PTE)

ACC
AT

0 1 2 3 4 5 6 7

0 0 0 0 0 2 0 3 3

1 0 0 0 0 2 0 0 0

2 2 2 0 0 0 2 3 3

3 2 2 0 0 0 2 0 0

4 2 0 2 0 2 2 3 3

5 2 0 2 0 2 0 2 0

6 2 2 2 0 2 2 3 3

7 2 2 2 0 2 2 2 0

An Introduction to Mbus

This application note provides an introduction to
Mbus, a part of the SP ARC architectural standard, which
addresses the requirements for interfacing to a processor
system's physical memory space.

In a system supporting virtual memory with cache,
the physical memory and I/O interface are key com­
ponents of the system architecture. Maintaining bandwidth
and response time is critical to achieving adequate perfor­
mance levels for the system.

Architectural Overview of Mbus
Mbus provides a high-performance interface to the

physical address space in a SP ARC system, with facilities
to support the cache coherency requirements of symmetric
multiprocessing. Mbus is intended to operate with SP ARC
processors that have local virtual caches, so that access to
the physical address space only occurs in the event of a
cache miss. With reasonable-sized local caches, the Mbus
loading from an individual processor is in the range of 5
to 10 percent. This allows the Mbus to support other
processors and I/O activities without degrading individual
performance.

Bus overhead, which mostly consists of arbitration
and transaction time, is a critical element in determining
overall system performance. Many different bus-arbitra­
tion mechanisms are available, with a variety of cost/per­
formance tradeoffs. For this reason, the SP ARC architec­
tural standard does not define a specific arbitration
mechanism for Mbus. You thus have complete flexibility
in system design.

Mbus does support bus arbitration that can operate
concurrently with data transactions. When a system can
use overlapped arbitration, bus arbitration incurs no bus
overhead.

The second aspect of bus overhead, transaction time,
is the bus time required to perform the actual data trans­
fer. High bus bandwidth minimizes transaction time on
Mbus, which is capable of peak data rates up to 320
Mbytes/s and 256 Mbytes/s sustained at 40 MHz.

Two Mbus compliance levels are defined to suit dif­
fering system requirements. Level 1 compliance is for
uniprocessor applications, and level 2 for multiprocessing

8-69

systems that incorporate shared memory with caching.
This application note primarily focuses on level 1 com­
pliant system design.

A complete set of Mbus communication protocols
provide for access to physical memory and I/O channels.

Basic Structure of the Bus
Mbus is a 64-bit bus that can transfer up to 128 bytes

in a single data burst, with support to transfer 8 bytes on
each clock cycle. Elements on the bus operate in a
master/slave relationship, where a master element initiates
a transaction and a slave element responds by either ac­
cepting or providing data. A "ready" status line from the
slave element controls data transfers. Data is not trans­
ferred until the ready line is asserted. This allows a slave
element to operate even if it is not fast enough to handle
data on each clock cycle.

Bus arbitration is supported on Mbus using a conven­
tional request/grant mechanism, which assumes a central­
ized arbiter. The protocol enables arbitration to overlap
data transfers. This feature allows the arbitration process
to execute without using any bus cycles dedicated to ar­
bitration. The algorithm for implementing the grant
response to a bus request is user defmed for maximum
flexibility.

Several Mbus protocols support error conditions that
can occur in a typical system implementation. These er­
rors include: External Bus Error, Response Timeout, Un­
correctable Memory Error, and Transaction Retry. These
protocols handle most of the error conditions encountered
in a system interface to physical memory and I/O.

Multiprocessing Facilities
A significant trend in computer systems is toward

multiprocessing. In a shared-memory multiprocessing sys­
tem, maintaining local cache coherency without degrading
system performance is a major architectural challenge.

Figure 1 shows the topology of a multiprocessing
system. All processor nodes contain local caches and
operate out of them most of the time. However, when one
processor changes data that is shared, the other processors
need to be made aware that the data has changed, so that

PHYSICAL

MEMORY

An Introduction to Mbus

Figure 1. Multi-Processing Topology

subsequent references can be made without using stale
data. Further, the multiprocessing system needs an effi­
cient mechanism to allow a processor to access the
modified data when it is required. .

Mbus implements a bus snooping protocol that allows
a processor node to communicate. to the other. nodes that a
piece of shared data has been modified. Each processor
node responds by marking that datum as invalid in the
node's own cache tag .. When. a processor node references
that datum, a cache miss occUrs because the entry has
been invalidated· in the cache. The processor node then
generates a normal Mbus read transaction to access the
datum. Instead of the physical memory element supplying
the datum,the Mbus protocol allows the datum to be sup­
plied by the processor node whose local cache contains
the current datum.

This approach has the advantage that no data transfer
occurs on the bus untilthe shared data is needed, saving a
considerable amount of bus bandwidth. Further, the per­
formance penalty to access modified data is no worse than
the a penalty of a normal cache miss.

When the processor node provides its modified data
on the bus to the requesting node; the Mbus protocol al­
lows the physical memory and other processor nodes to
update their data. This reflective memory feature can save
additional bus bandwidth by requiring that modified
shared data be transferred only once, rather than each time
a different node references the data.

Mbus Description
Mbus is a fully synchronous bus whose 64-bit data

path (MAD) multiplexes address and data for each data
transaction. All data is sampled oil. the rising edge of the

MRDY \~ ____ ~ ________________________ ~r---

DATA PHASE

Figure 2. BasicM-Bus Transaction Timing

8-70

system clock, MCLK, and a bus transaction can only be
initiated by the bus master that currently owns the bus.

A . transaction consists of an address phase followed
by one or more data transfer cycles. The address phase
provides a 36-bit physical address and a set of control
fields that defines the transaction's nature and size. The
data phase consists of multiple 64-bit transfers that are
synchronous with the bus clock. A simple illustration of a
32-byte transCiction appears in Figure 2.

Address Phase

Mbus's 64 data bits are defined as a 36-bit physical
address space and a set of control fields that determine the
type of bus cycle that is being initiated. The master sig­
nals the beginning of a cycle by placing the required ad­
dress and control information on the data bus and assert­
ing an address strobe (MAS) on the bus. The command
fields are
MAD(36- 39) Transaction Type (Type)

o read
1 write
2 coherent invalidate*
3 read coherent*
4 coherent write and invalidate*
5 coherent read and invalidate*

*Level 2 only
MAD(40 - 42) Transaction Size (Size)

o Byte
1 Halfword
2 Word
3 Doubleword
4 16 Bytes
5 32 Bytes
6 64 Bytes
7 128 Bytes

MAD(43) Memory Cacheable (MC)
This advisory bit indicates whether the address space

for the transaction is cacheable.
MAD(44) Locked Transaction (MLOCK)

This bit signals that the transaction is part of a multi­
transaction operation that must be indivisible; thus, the
master will not relinquish the bus between transactions.

Table 1. Transaction Status Encoding

MERR" MRDY~ MRTY~ Meaning

H H H Idle cycle
H H L Relinquish and Retry

H L H Valid Data Transfer
H L L undefmed L1, reserved L2
L H H ERROR1 => Bus Error
L H L ERROR2 => Timeout
L L H ERROR3 => Uncorrectable
L L L Retrv

MAD(45) Boot mode/Local (MBL)
This bit signals that the processor is in the boot mode

or that the transaction is in the local space (Address Space
Identifier (AS I) = 01). This is an advisory bit that the sys­
tem can use, but is not required for compliance.
MAD(46 - 49) Virtual Address

This field contains bits 12 - 19 of the virtual address
being accessed. These bits are used by virtually indexed
secondary caches for synonym elimination, and they are
only required in multiprocessing level 2 compliant sys­
tems.
MAD(50 - 59) Reserved
MAD(60 - 63) Module Identifier

These bits contain the ID(O - 3) for the master initiat­
ing the transaction. Used by slave elements to keep track
of which master to reconnect to when implementing
Relinquish and Retry operations, these bits are used only
for multiprocessing level 2 compliance.

Data Phase

The element that occupies the physical address
defined during the address phase responds to the request
by either accepting 64 bits of data for a write or providing
data for a read. The slave signals the master its readiness
to complete a data transfer by asserting a ready status on
the bus. This provision allows a slave to operate at a data
rate slower than that available on Mbus.

The Mbus command protocol supports up to 16 suc­
cessive data transfers. This allows up to 128 bytes to be
transferred in 17 system clock cycles.

Figure 3 illustrates a simple read and write transac­
tion. For transactions that require multiple data phases
(more than 8 bytes), Mbus supports an address wrap fea­
ture within the block being transferred. An address wrap
is accomplished by specifying a burst starting address that
is not on a block boundary. This feature can be useful for
cache line transfers, where the CPU is waiting for a
specific word. This word is transferred first, allowing the
CPU to proceed while the balance of the cache line is
transferred.

Block wrapping is implemented by not allowing the
addresses accessed to cross a block boundary. When the

8-71

I READ CYCLE \/RITE CYCLE

Figure 3. Mbus Read and Write Transaction Timing

starting address is not on a block boundary, the address
sequence increments to the block boundary and then
wraps to the block's start boundary. A simple example of
a 32-byte transfer is illustrated below:
Block boundary is at 100000000000
100000010000 starts on the third 8-byte subblock
100000011000
100000000000 wraps to the start of the block
100000001000

Data Control Lines

Mbus provides two multiplexed data control lines:

MAS Address Strobe
The current bus master asserts this line for one clock

cycle when a bus transaction's address phase is executed.
The slave occupying the specified address in the physical
memory space is expected to capture the address and
command fields on the bus when MAS is asserted.
MRDYReady

Slave elements use this line to signal to a master that
requested data is ready for a read or data has been ac­
cepted for a write. A master monitors MRDY to know
when a slave is ready for the next cycle in a data transac­
tion.

Mbus Transaction Status and Encoding
MRDY combines with the MRTY and MERR control

lines to encode the current status of a transaction's data
phases. The slave element controls the status lines and
thus determines how the current data phase cycle is ter­
minated. The status encoding appears in Table 1.

The rest of this section describes the Mbus transac­
tion activities.

The Idle cycle occurs when a slave element is not yet
ready to transfer data to or from the master. The cycle
occurs when the slave does not assert any of the status
lines. The idle cycle thus effectively· operates as a wait
cycle on the bus. Note that this encoding also appears on
the bus when there are no transactions currently being ex­
ecuted.

The Data Transfer cycle, executed by the slave ele­
ment asserting MRDY for one bus cycle, indicates to the
master that the slave is ready for the requested data trans­
fer for the current data phase cycle.

The Retry cycle causes the master to restart the full
bus transaction with the address and all data phases
repeated. This cycle is often useful for memory modules

executing an ECC data correction that needs additional
time.

The Relinquish and Retry cycle operates the same as
a Retry cycle, except that the master must release the bus
and re-arbitrate before starting the transaction cycle again.
A Relinquish and Retry cycle typically is used for devices
that have a long data latency or when the module is busy
and cannot respond.

The Bus Error status is typically used to signal that
an external bus error has occurred. This could be a bus
parity error or invalid status. Note that this encoding is
only a suggested definition. You can use the error encod­
ing as a system-specific error if desired.

The Bus Timeout Error is generated by an external
watchdog timer to signal that the time allotted for a full
bus transaction has expired. It is important to note that
this error applies to transactions requiring from one to 16
data phases, and the time limit chosen must accommodate
the transaction requiring the greatest time. The suggested
timeout interval for Mbus is 200 J.lS. This encoding to
identify a timeout error is only a suggested definition.
You can use the error encoding as a system-specific error
if desired.

An Uncorrectable Error is typically generated by
memory elements that encounter an uncorrectable error,
such as parity or a multi-bit ECC error, in the data being
accessed. This encoding to identify an uncorrectable error
is only a suggested definition. You can use the encoding
as a system-specific error if desired.

Interrupt Support
Mbus provides four dedicated lines, IRL[0:3], for

feeding the current interrupt level to the processor. These
lines typically connect directly to the CPU's interrupt in­
puts. An external interrupt controller is expected to drive
the interrupt lines.

The four lines operate as an encoded, 16-level,
priority interrupt request, ranging from no interrupt pend­
ing (0000) to non-maskable interrupt request (1111). The
system is expected to include a separate interrupt request
encoder to drive the IRL lines for Mbus.

Arbitration MeChanisms
Transfer of bus ownership 'on Mbus is accomplished

using dedicated request and grant control lines from a
central arbiter to the system's bus masters. The current
master controls a busy status line (MBB) to signal that the
bus is in use.

Arbitration between masters can occur concurrently
with data transactions. This is accomplished in the follow­
ing manner: When a master requires the bus, the master
asserts its bus request (MBR) to the arbiter. The arbiter
responds by asserting the bus grant (MBG) for the re­
questing master and deasserting the MBG for the current
master. The new master deasserts its MBR on the next
system clock cycle. When the requesting master detects
the grant, that master does not take ownership of the bus
until the bus busy (MBB) is inactive. This allows the cur-

8-72

rent data transaction to complete before ownership is
transferred..

This protocol places several requirements on the ar­
biter and the bus masters:

The current master must deassert MBB after the com­
pletion of a data transaction.

The current master must have its MBG active to in­
itiate a new data transaction. The arbiter signals a master
that it no longer has bus ownership by deasserting the
MBG.

The arbiter is not allowed to re-arbitrate new requests
after a new grant until MBB is deasserted.

Details of the control algorithm for bus arbitration ap­
pear in Figure 4, which is a state flowchart for a bus
master arbitration state machine.

Module Identification and Configuration
An optional facility allows the CPU to identify and

configure modules attached to the Mbus. This facility
provides up to 16 logical positions on the bus, with the
requirement that each logical position contain a small
memory space dedicated to that logical position. An Mbus
module supporting the configuration facility can incor­
porate any control or status registers required within its
assigned memory space. Four dedicated lines are provided
for each Mbus module (ID[O:3]) to identify the logical
position the module occupies on the Mbus.

In a typical configuration, each slot on the Mbus has
a unique value hard-wired on its ID control lines. A
module decodes its configuration map space in a specific
slot by using the ID value.

An Mbus Port Register (MPR) - a single 32-bit
word at location FFFFFCh in the configuration space - is
defined with a standard format to allow a uniform iden­
tification mechanism for a module. The format of the Port
Register is defined in Figure 5, and the configuration ad­
dress map for the 16 ID values is defined in Table 2.

The MPR fields are defined as follows:
MDEV - Mbus Device Identification Number

This field contains a' unique vendor-defined iden­
tification number for the Mbus device being addressed.
MREV - Mbus Device Revision Number

This field contains the revision or configuration num­
ber for the Mbus device being addressed.
MVEND - Mbus Vendor Number

This field contains a unique vendor identification
number for the Mbus device being addressed. The current
vendor number assignments are:

o Fujitsu
1 Cypress
2 (reserved)
3 LSI Logic
4 Texas Instruments

Note that on reset, a processor begins execution at
location OFFOOOOOOh. This is the same memory space as
the first logical position in the configuration space. Thus,
the ID = Oh logical position must be treated as predefined

Figure 4. Bus Arbitration Flowchart

and considered the logical position for the Mbus boot
PROM module.

AC Timing Parameters
Because the Mbus is fully synchronous, with all data

sampled on MCLK's rising edge, all AC parametrics are
specified as set-up and hold times with respect to this
edge. The signals are grouped into two categories: data
path (MAD) and control (CNTRL). The AC specifications
are provided in Table 3. Table 4 summarizes the DC char­
acteristics and reflects the assumption that the maximum
loading per module is a single CMOS load per line.

Processor Modules
Another part of the Mbus standard defmed by

SP ARC International is a physical connector that allows
you to take advantage of a wide variety of standard

8-73

An Introduction to Mbus

31 1615 8743

OxFFnFfFFFC 1L....-_lfIl_L_EIofNT_A_T_I~_SPE_C_IF_IC ___ IL....-_t.IlEV __ ..&..I_m_ I_MVOO_...JI

Figure 5. M-Bus Port Register Configuration

modules from multiple vendors. These modules are typi­
cally for memory, I/O devices, and bus adapters. Modules
can be configured to be mounted either parallel or perpen­
dicular to the mother board.

Cypress has developed a family of processor modules
that incorporate the standard Mbus connector. These
modules include a uniprocessor cluster module, a multi­
processor cluster module, and a dual multiprocessor
cluster. A cluster is considered to be an integer unit, float­
ing point unit, memory management unit, and a 64K
cache.

The Mbus connector is available as a standard com­
ponent from Amp Incorporated and has 100 signal pins in
a dual row on O.OS-inch centers. The signal interconnects
through the connector are a constant son impedance.
Separate power and ground blades minimize the supply­
rail impedance. Table 5 defines the connector's pin as­
signments.

System Design Considerations
Virtually any Mbus-based system requires several

support elements, including clock generator, watchdog
timer, interrupt controller, and bus arbiter. The following
sections examine the functional requirements and design
considerations for each of these support elements. The
support functions are relatively straightforward, and can
be implemented with four PLDs, a TTL buffer and possib­
ly a flip-flop.

Clock Generator
The system clock is derived from the clock generator,

which should be crystal referenced. For many applica­
tions, a simple crystal-controlled oscillator module per­
forms very well. On the other hand, operating with a 2x
clock followed by a toggle flip-flop might be useful if the
application requires true and complement clocks. Note
that Mbus does support a true and complement clock dis­
tribution, although it is not required.

Clock distribution on the bus should be implemented
using a single printed circuit trace with no stubs and char­
acteristic impedance of 50 to 750.. The line must be

Table 2. Mbus Address Configuration Map

ConfiQ'uration Snaces Mbus Identifier

OxFFOOOOOOOto OxFFOFFFFFF Range for ID=OxO

OxFF1000000 to OxFFIFFFFFF Range for ID=Ox 1

OxFF2000000 to OxFF2FFFFFF Range for ID=Ox2

OxFFFOOOOOO to OxFFFFFFFFF Ran!!e for ID=OxF

Table 3. Level 1 DC Characteristics

Levell DC Characteristics and Pin Capacitance (Ta = 0-70(:)

Svmbol Si~nal DescriPtion Conditions

Vih Input High Voltage level

ViI Input low Voltage level

lil Input Leakage

lib Input High Current

lilo Input Low Current

Voh Output High Voltage loh = -2mA

Vol Output Low Voltage loi = 8mA

Cin Input Capacitance

Cout Output Capacitance

eiJo Input/Output Capacitance

properly tenninated. The requirements for clock distribu­
tion dictate the use of a low-propagation-delay buffer with
the ability to drive the transmission line. If complemen­
tary clock distribution is required, the buffers must also
have low delay skew.

Watchdog Timer

The watchdog timer provides the timing reference re­
quired for bus timeout error detection. The Mbus recom­
mendation for the timeout interval in a 40-Mhz system is
200 ~s. The actual value chosen for an application
depends on the system clock rate and the worst-case trans­
action time of any element on the bus. Normally a value
between 100 and 500 ~s is adequate.

While a transaction is in process, the current master
asserts the Bus Busy status line (MBB), which serves as
the controlling status for the watchdog timer. Each time
MBB is asserted, the timer is triggered. If the timer
reaches terminal count before MBB is deasserted, a Bus
Timeout Error is generated.

The watchdog timer can also be used to generate
timing for the bus reset strobe (MRST). This is possible
because the watchdog function does not have to operate
during reset. The additional logic required to support both
functions is minimal.

You can implement the watchdog timer in a pair of
22VIO PALs. Figure 6 shows a block diagram of the
function, with the flowchart for the reset state machine
shown in Figure 7. The design incorporates a single
counter, the watchdog timer, and the reset function.

Two counters make it possible to implement the func­
tion in two 22VlOs. The modulo 40 counter uses a
synchronous count enable connected to the terminal count
of the modulo 250 counter. Thus, 250 x 40 = 10000 clock
cycles for the timer to reach terminal count At 40 Mhz,
this value corresponds to a 200 JlS timeout interval.

8-74

min max unit

2.1 Vcc V

0.0 .8 V

+- 1.0 uA

10 uA

- 10 uA

2.4 Vcc V

0.0 0.5 V

10 pF

12 pF

15 pF

When RUN is asserted, the reset state machine is
quiescent, MBB* is not asserted, and the counter chain is
held reset When MBB* asserts, the counter chain begins
counting toward terminal count. In normal operation,
MBB* is deasserted long before terminal count is reached,
and the timer returns to the reset state. If MBB* remains
asserted until terminal count is reached, however, MERR *
and MRDY* are asserted for one clock cycle. The current
master is expected to respond to this condition by ter­
minating the transaction and deasserting MBB*.

In the case of a reset condition, it cannot be predicted
if MBB* will be asserted at the start of the reset interval.
It is therefore necessary to gate-out MBB* from the
timing block during a reset interval. This is accomplished
with GATE from the reset state machine.

Table 4. Levell AC Characteristics

Parameter min max Unit

Tcp 25 25 ns

Tch 11 14 ns

Tci 11 14 ns

Tsi(MAD) 3 - ns

Thi(MAD) 2 - ns

Tdo(MAD) - 18 ns

Tho(MAD) 4 - ns

Tsi(CNTRL 3 - ns

Thi(CNTRL) 2 - ns

Tdo(CNTRL) - 18 ns

Tho(CNTRL) 4 - ns

* All times are for a Capacitive load of 100 pF

~~R5S An Introduction to Mbus
.....-., SEMICGlDUCfOR ;;;;;;;;;;;;;;;;;;;;;;;;;===========================::;;;;;;;===;;;:;;;;;;;;

Table 5. Mbus Connector Pin Assignments

8-75

When a reset occurs, RUN is deasserted. The state
machine deasserts GATE to disable MBB* and hold the
counter in the reset state. When RUN goes active,
COUNT is asserted. This enables the counter, disables
MERR* and MRTY*, and causes MRST* to assert. The
state machine remains in this state until terminal count
(TC) from the counter is detected. The state machine then
asserts GATE and deasserts COUNT. The latter deasserts
MRST* and enables MBB* to control the triggering of
the timing chain. The state machine remains in this state
until another reset occurs.

Interrupt Control

Interrupt processing for Mbus-based systems requires
a simple priority encoder that uses individual interrupt re­
quests to determine the priority level. The interrupt con­
troller then drives the bus's four Interrupt Status Lines
(ISL 0 - 3). System elements that generate interrupts are
expected to assert their individual interrupt request line
and hold it asserted until the processor takes action to
clear the interrupt condition. You can easily implement
this function in a single 22VI0 with 16 inputs and four
outputs.

Bus Arbitration

Most Mbus-based systems require some type of bus
arbitration. In addition to the processor requiring access to
the bus, 110 devices such as disk drives require access to
the memory space for data transfer. Thus, the system
needs at least a simple arbitration mechanism to allow the
processor and the I/O device to share the bus.

You can implement many different arbitration
strategies in an Mbus system. These strategies include
fixed priority, round robin, dynamic assignment, or ran­
dom priority. System performance requirements largely
dictate the arbitration strategy for a specific application.
The arbiter must, in any case, conform to the interface
protocol defined by Mbus.

For a good example of Mbus arbitration, see the
Cypress application note "Using the CY7C330 as a Multi­
channel Mbus Arbiter." This application note shows how
to implement two different arbitration algorithms in a
single CY7C330 PLD. Note that the design requires the
availability of a 2X clock.

DRAM Memory Module Design
Several issues must be resolved in defining an Mbus

memory module. The module's capacity, the required per­
formance level, and COst are the basic constraints that dic­
tate the module's design.

For reasonable performance, the memory must sup­
port Mbus's full 64-bit access per memory cycle. This im­
plies a minimum capacity of 8 Mbytes for a 1M x 1
DRAM design. This is a reasonable minimum size and
capacity increment. Alternatives include a 1M x 4, which
reduces parts count but increases cost; a 256K x 4, which
also reduces parts count and the minimum capacity to 2
Mbytes; and finally a 4M x 4, which increases the mini-

RU'I, _____ -,

vee

STATE
MACHINE

~~e~~~~-------------------~--C~--~ST

OATE
---<l1>t----...,. MERR

--C>---iiffi'

MB~--+---------~

Figure 6. Watchdog Timer Block Diagram

mum capacity to 32 Mbytes with no increase in parts
count.

Figure 8 shows a curve relating a system's relative
performance to Mbus wait cycles. The curve is derived for
32·byte cache line replacements and a 95 percent cache
hit ratio. Note that the relative performance does not
strongly depend on the number of wait cycles. For ex­
ample, doubling the transaction time for a cache line re­
placement to five wait cycles reduces performance by
only 13.5 percent.

Thus, the curve indicates that the incremental im­
provement in performance for a reduction in the number
of wait cycles is somewhat marginal, with only a 2- to
3-percent increase in performance for each wait cycle
eliminated. You must therefore evaluate the relative cost

Figure 7. Reset State Machine Flowchart

8-76

for a given performance level to determine if an approach
is cost effective.

Table 6 illustrates several performance-cost design
points for 40-, 33-, and 25-Mhz systems. The small per­
formance difference between the lowest-cost design for a
specific clock frequency and the highest-performance
design makes the low-cost implementation quite attractive
from a cost-performance standpoint.

An Example Memory Design
To better understand Mbus . memory module design,

consider an example of a design for a 25-Mhz system
with 8-Mbyte capacity and 128K of boot PROM. The
design supports the module identification facility. This ex­
ample illustrates the design requirements without the addi­
tional issues involved in a full-speed, 40-Mhz module. A
block diagram of the module appears in Figure 9 and con­
sists of three major functional blocks: interface decode,
DRAM, and PROM/identification generation.

Interface Decode

The interface decode block decodes Mbus commands,
and generates control signals, and supports the DRAM
and PROM blocks for data transfer across the data bus.
The decode block thus detects Mbus commands directed
RelatIve
Perfornance
1.00

.88

.88

.94

.82

.80

.88

.88

.84

.82

.80~_~---+-~r--~--+-~r--+---~

Figure 8. Relative Performance vs M-Bus Wait States

at the module; infonns the DRAM, PROM or ID genera­
tion block of the request; and supports the transaction by
providing control of the data transceiver, generating the
MRDY as needed, and tenninating the transaction when
complete.

The decode block can locate the DRAM anywhere in
the system's physical address space on a 1 Mbyte bound­
ary. This is accomplished using the Mbus configuration
facility to load the DRAM position in the module's port
register.

A block diagram of the decode function appears in
Figure 10. The block consists of a high-speed bus decode
PLD, a pair of 22VIOs for the address decode, the Mbus
port register that contains the DRAM map position, and
an auxiliary decode PLD for control decode within the
module. The interface decode also provides transaction
control for the data-bus buffer. The buffer is an FCT648
transceiver/register, which can be configured with a com­
binational or registered data path in either direction. The
DRAM design requires a registered ciatapath on a read
operation.

The bus decode block provides the buffered clock for
the module and generates MRDY out to the Mbus when
the module is active. The ready signal is derived from the
DRAM and PROM blocks' RDYSTB signals.

The block generates LDSTB to the decode registers
when MAS is asserted on Mbus. The block detects that
the module is active by monitoring the match signals from
the address decode.

The decode block controls the bus buffer via BUS­
DIR and BUSSEL. BUSDIR nonnally causes data to go
from Mbus into the module but reverses direction when
the module is accessed and the transaction is a read opera­
tion. BUSSEL controls the type of output data path from
the module for the transaction. When a DRAM read ac­
cess occurs, the data path is registered; when a PROM or
configuration port read access is executed, the datapath is
combinational. These transactions are decoded using the
match decodes and RD\ WT. The bus decode function ter­
minates the transaction by using CLR to clear the block's

decode registers. This is initiated from either the DRAM
or PROM block through the CLRSTB signals.

The address decode block decodes DRAM addresses
by comparing the Mbus address to the map position for a
match (more on the map position later). The PROM
decode is a simple decode for address 000000000 to
00003FFFF. Two match signals for DRAM and PROM
are implemented to avoid the additional delay that would
occur from ANDing the decode outputs from the two
PLDs. The two signals are ANDed in the DRAM and
PROM control elements with no additional delay over­
head.

The MPR block implements the write portion of the
Mbus configuration facility. The decode PLD detects the
configuration address space and matches the ID field to
ID(O - 3) for a module match. This condition is signaled
with CMAT. The map position register is loaded from the
data bus when CMAT is asserted and the transaction type
is a write. The PROM block is responsible for the transac­
tion termination via the CLRSTB.

The auxiliary decode block is a simple decode PLD
that captures the transaction size and read/write status.
Note that BOOT and LOCK are decoded in the auxiliary
block, but are not used in this design example.

DRAM Block

The DRAM block is implemented using 70-ns RAMs
operating in page mode with two wait states to initial ac­
cess and zero wait states for up to 32 bytes. For transac­
tions requiring more than 32 bytes, an additional wait
state is required after every fourth transfer cycle. The ad­
ditional wait state is necessary because the DRAM
operates in page mode at a 50-ns cycle time. This causes
the data access to skew out 10 ns per cycle, and an addi­
tional cycle allows the data access to resynchronize with
MCK. Figure 11 shows the basic timing for a 32-byte
read transaction.

Among the numerous approaches to DRAM control
design, the implementation required for an Mbus page­
mode controller has no special peculiarities except for the

Table 6. Memory System Perfomance/Cost Anaylsis

Clock Description Wait Absolute Relative Relative Relative
MHZ Cycles Perfomance Perfonnance Complexity Cost

40 35ns IMxl BiCMOS 4 0.88 0.88 0.8 2.0
Non-multiplexed

40 70ns 256Kx4 Static Col 5 0.86 0.86 1.5 1.5
2 way interleave

40 60ns IMxl DRAM 7 0.83 0.83 1.0 1.2
Fast Page Mode

33 35ns IMxl BiCMOS 2 0.77 0.94 0.8 2.0
Non-multplexed

33 70ns IMxl DRAM 4 0.72 0.88 1.0 1.0
Fast Page Mode

25 45ns lrnxl BiCMOS 0.60 0.97 0.8 1.7
Non-multiplexed

8-77

MRDY ---------------,

MCK ----..,.------i
MAS ----;------1

10 O-J ----+-~----t

MAD _~e4~H

DRM!

ARRAY

10

1------"---1 GEN

Figure 9. MbusMemory Module Block Diagram

~8US CLK
MAS

RDYST8

CLRST8

RMAT

PMAT

CMAT

RD/WT

8US DECODE

," ,
,"

IsLs-5 . ,
I ,

CLR

~~~ITION 
AD820-35 

100-3 

A0823-35 

AD840-42 <SIZE) 
A0836-39 (TYPE) 

A0845 (800T) 
AOS44 (LOCK) 

MRDY 

MCK PROM MATCH: ADR = OOOOOH 
RAM MATCH: ADR = MAP POSITION 

BUSDIR 
CONFIG MATCH: ADR '= FFn, n = ID 

BUSSEL 

LDST8 

J 
ADDRESS 
DECODE 

,,, 
22Vl0 ,I 

RAM MATCH (RMAT) , 
(2 ) ," ,I 

PROM MATCH (PMAT) 
I 

-------CONFIG MATCH (CMATI 

I 

" ~9~~~?S " I , 
,'I 22Vl0 ,'. , 22Vl0 (2 ) 

~~~ITION 
A080-15 J'. ,

M8US PORT
REGISTER

I . , ,
" SIZE I

RD/WT
22Vl0 800T

LOCK

AUX DECODE

Figure 10. Interface Decode Block Diagram

8-78

address map requirement. This requirement affects only
the page-address generation. The control block appears in
Figure 12 and consists of a 10-ns timing chain generator,
a high-speed control state machine, an interval counter,
and a refresh counter.

The timing chain generator derives a 10-ns interval
from MCK using a lO-ns tapped delay line and a high­
speed decode PLD. The output clock drives the control
state machine and the interval counter.

The control state machine is a conventional fmite
state machine that generates the direct DRAM control, the
data buffer strobe, and ready/clear timing to the interface
decode block. The state machine uses the interval counter
for the fixed idle intervals to reduce state-transition com­
plexity. A DRAM cycle is initiated when RMAT is as­
serted, and the cycle type is determined by RD/WT.
Refresh requests are also monitored from the refresh
counter (RFREQ) and acknowledged (RACK).

The interval counter measures timing intervals with a
resolution of 10 ns for the control state machine. The
fixed intervals are the initial access delay (50 ns) and the
RAS precharge (70 ns). In addition, the transaction size is
decoded and used to count data transfers. Terminal count
signals that the count interval is complete. A second ter­
minal count is used during transfer counting to signal
when the count equals 4 for the additional wait state.

Figure 13 shows the address generation block, which
is implemented with three high-speed PLDs. The block
generates the row address for the DRAM array on the ini­
tial access and provides the column addresses for page­
mode operation. The column address sequence imple­
ments the address-wrap feature described earlier and
decodes SIZE to determine the wrap point.

Figure 14 shows a functional block diagram of the
PLD. It acts as a column-address latch - a presetable

~

LDSTB -'\L ___________ _

RlMT _J
RAs \L ________ ---'/

IIJI.~ ,'--__

CAS
DATA
VALID --------{

DATA SlB _____ ---1

I.RlY

BUS DATA

L-__________ ~r__

VALID --------"

Figure 11. DRAM Control Timing

8-79

counter with a select mux for the preload input. This ap­
proach allows the counter to be loaded with the row or
column address. The control decode uses the CMD input
from the control state machine to control the counter and
steer the data inputs. The SIZE input carry modifies the in
and out operations for address wrapping.

PROMIID Generation

The PROM and ID generation block combines the
boot ROM function and the module identification block.
Because the two elements are both read only, it is sensible
to combine the functions under a single control element.
The block diagram appears in Figure 15. A state machine
controls the PROM and ID generation, and both elements
share a set of output buffer registers.

A single 256K x 8 PROM implements the PROM
block, which requires eight sequential accesses to as­
semble a full 64-bit word for transfer across the Mbus.
The controller includes eight load strobes to sequentially
load the bytes into the assembly registers. The PROM ad­
dress generator drives the address input to the PROM and
increments the address on command from the control state
machine. The address generator also accommodates ad­
dress wrapping by decoding SIZE from the interface
decode block. This implementation reduces the component
count to a minimum compared to a parallel-access ap­
proach, but is considerably lower in performance. W:hen
the PROM is used only for bootstrappmg, the cost savmgs
and higher density can be attractive.

/la<:

ISLa
-5

CONTROL

000
001
010
011
IXX

RD/VT
RFREQ

22VIO-7

(2)

t.«:K-[}-RFREQ

RACK-cJ

FUNCTION

LD ACCESS DELAY (5)
LD XFER COUNT (16 MAX)
CD RAS PRECHARGE (7)

COUNT
IDLE

Figure 12. DRAM Control Block Diagram

RAS
/lUX
CAS
VE
CTASTS
ROYSTSI1I
Q.RSTBI1I
RAa<:

AORO-IS ---+-:-------.
SIZE -----,~---...,

CWD ---+----,

DIW4 ADR e-s

DFW.I ADR 3-5

DFW.I ADR 0-2

Figure 13. DRAM Address Generation Block Diagram

ADBO-17--+--oi

SIZE--f---ot

ADRCI'IOI--+--oi

CMD

00
01

10

11

ADDRESS

GENERATOR

PROMOE

FUNCTION

HOLD

LOAD
INC

NOT USED

2~8KX8

PROM

LATSTB

OATAOE

~~--+----l

00
01

10
11

FUNCTION

LDROWADR

LD COL ADR

INC COL ADR

IDLE

Figure 14. Individual Address Generator

The ID generator contains a 16-bit identification
word to uniquely identify the module. The word is located
in the lower 16 bits of the Mbus Port Register
(FFFFFFFCh) and is implemented as a simple hard-wired
block that outputs byte 0, byte 1, or a null byte, as
directed by the controller. When a read access to the con­
figuration space occurs, the controller loads the identifica­
tion word into the lower 2 bytes and null bytes in the
remaining byte locations.

References
1. SPARC Mbus Specification Rev 1.1, Published by

Sun Microsystems.

10
GENERATOR

2. Cypress SPARC Users Guide.

PMAT --+--4
CMAT ------I

RO/VT ____ ---I CONTROL

STATE
SIZE ------I MACH I lIE

SEL OUfPUT

00 BYTE 0

01 BYTE 1

10 NULL BYTE

11 NOT USED

LATSTB

ADRCMO

10SEL

I DOE

PROMOE

ROYSTBI

CLRSTBI

OATAOE

Figure 15. PROM and ID Generation Block Diagram

8-80


~~~----I;-I-~·f:!oooo~·~ ~ •• .. ~a~ 

'. CYPRESS 
, SEMICONDUCTOR 

Multiprocessing System Boot-Up 

This application note describes a simple scheme to 
arbitrate granting of the Mbus among competing process­
ing modules during system boot. This approach is not the 
only workable solution, but it is offered as a suggestion to 
SPARC multiprocessing system designers. 

In a shared-bus multiprocessing system, all process­
ing nodes simultaneously request the bus upon reset to ex­
ecute their processor boot code. You must provide the 
mechanism to make the multiple processing nodes boot-up 
in their proper sequence. Figure 1 illustrates the 
mechanism described here. 

Boot-up Procedure 
Upon release of the power-on reset signal, all proces­

sor modules (CY7C601s with CY7C605-based cache sys­
tems) wake up in boot mode and request the Mbus by 
asserting~. Because there is one mR signal for each 
CY7C605, the Mbus arbiter can identify the processors 
according to which :fVmR: signal is asserted. By estab~ 
lishing a priority for the processor modules based upon 
their ~ signals, the arbiter can control which processor 
is allowed to boot first. 

To allow a processor module to complete its boot 
procedure, the Mbus arbiter locks the grant for the proces­
sor module until the boot routine is completed. For ex­
ample, processor module 0 asserts NffiRO after reset, 
along with all other processor modules and their respec­
tive MBU signals. If processor module 0 is the highest­
priority processor, the Mbus arbiter asserts KfBG'o to grant 
this module access to Mbus. During this boot procedure, 
the Mbus arbiter locks grant of the Mbus to processor 
module 0, ignoring all other Mbus requests. This allows 
the processor node to keep the Mbus until the node has 
finished booting. 

After a processor module has booted-up, the Mbus 
grant must be unlocked. One way to do this is to use an 
Mbus-arbiter reset control register. This register is cleared 

8-81 

upon power-on reset. After each processor fmishes boot­
ing, that processor completes its boot routine by setting a 
bit in the reset control register. The Mbus arbiter uses the 
setting of a new bit to release the Mbus grant to that 
processor module. The Mbus arbiter then asserts grant to 
the next processor module, assuming that all the boot 
routines are not yet completed. Upon a processor module 
setting the last bit in the reset register, the Mbus arbiter 
leaves boot mode and assumes normal operation. 

Note that a processor module can also determine its 
module identification number by reading the value stored 
in the reset control register. (Refer to the MID notes at the 
end of this application note.) Assuming that processing 
nodes might have unique portions of boot code, the value 
stored in the reset register can also be used to branch to 
different areas of boot code for each processor. The 
module identifier (MID) number can be read from the 
boot program for that processor, or determined from the 
reset register, and written into the CY7C605's SCR (sys­
tem control register). Initializing the CY7C605 SCR's 
MID field is necessary if the CY7C605 is to supply the 
module identifier field of an Mbus address cycle. The 
module identifier field identifies which Mbus master has 
asserted an address on the Mbus and is highly useful to 
some multiprocessing systems. 

Module Identifier (MID) Notes 
Level-2 Mbus uses the MID field in the CY7C605's 

SCR to identify the module asserting an address onto the 
Mbus. Figure 2 shows where the SCR's MID field is as­
serted in the Mbus address cycle. This information can be 
used by the Mbus arbiter or by a secondary cache to note 
which module asserted the current address on the Mbus. 
The MID(3:0) field of the CY7C605 system control 
register is write able by asserting AS! = 4 H and the 
register address 0 H with the correct word to be written 
into the register. 



Execute boot 
program 

Mbus arbiter 
asserts MBGO 

for highest prlorlt 
processor modul 
(asserting MBRO) 

Processor module 
reads Mbus reset 
control register 

Value of Mbus reset 
control register is 
used to determine 
start of boot code 

for processor 
module 

Figure 1. Boot-Up Mechanism 

8-82 

Assert next MBG 
signal 



CY7C60S System Control Register 

I 
31 

IMPL I YER I MCA I MCM J Mvl MID(3:0) IBMI C I RsviM1cMlcLIcEI RSV .INFIMEJ 
28 27 24 23 22 21 20 

IMPL = Specific Implementation of the MMU 
VER "" Venion of Specific Implementation 

MCA (0:1) = Multichip Address 

MCM (0:1) .. Multichip Mask 

MIO(3:0) - Module Identifier (3:0) 

MV = MuItichip Valid 

BM "" Boot Mode 

Mbus Address Cycle 

19 18 

" 
63:60 

1514 13 12 11 10 9 8 7 2 1 

C = Cacheable (when MMU disabled) 

MR = Memory Reflection 

CM = Cache Mode 

CL = Cache Lock 

CE = Cache Enable 
NF = No Fault 

ME = MMU Enable 

RSV = ReselVed 

Mbus Address Cycle: MAD(63:0) 

I I I Physical Address I 
5G:50 4;:46 45 44 43 42:40 3G:36 35 0 

it 'r. .... == 
MC Memory 2 . Coherent Invalidate 
Cacheable 3 .••.• Coherent Read 

MlOCK 4 .... Coherent Write 
Locked and Invalidate 
Transaction ..•.. Coherent Read 

and Invalidate 
MBl Boot mode/Local 

VIrtual Address .s.IZII 
o ........ Byte 

Reserved 
1 .... Halfword 
2 Word (32 bitS) 
3 .. Doubleword 
4 .... 16-bytes 

Module IdenUfier 5 .... 32-bytes 
6 .... 54-bytes 
7 ... 128-bytes 

Figure 2. Module Identifier Field 

8-83 

0 



Porting UNIX to the CY7C604 or CY7C605 

This application note describes the issues involved in 
porting UNIX to a system that includes the CY7C601 
SP ARC microprocessor and either the CY7C604 or 
CY7C605 cache and memory management units. The as­
sumption here is that the UNIX operating system has al­
ready been ported, leaving only the task of integrating the 
CY7C604/605 hardware into the virtual memory/cache 
sections of the operating system (O/S). This application 
note specifically addresses SunOS, which serves as an ex­
ample for porting any UNIX variant. 

The Cypress CY7C604 and CY7C605 are cache and 
memory management units that interface to the CY7C601 
microprocessor without glue logic. Porting an operating 
system to either of these chips is not a difficult task, but it 
requires a complete understanding of what functions the 
CY7C604/605 provide for the operating system and its 
hardware translation layer. This application note should 
help provide that understanding. 

The CY7C604 and CY7C60S 
The CY7C604 and CY7C605 share the following 

features: 
4096 contexts for translation look-aside buffer (TLB) 
entries 
64 fully associative TLB entries 
Page-level memory access protection 
Multi-level address mapping 
4096 contexts for cache tags 
Virtual cache support 
Read-line and write-line buffer 
Both devices conform to the SP ARC reference MMU 

standard. The CY7C605 differs from the CY7C604 in its 
support for reflective memory and of multiprocessing by 
concurrent, transparent bus snooping (without a clock 
penalty). 

Porting to the UNIX O/S 
The UNIX operating system is divided into inde­

pendent objects or layers that communicate with each 

other via fixed data structures. (For a detailed description 
of this O/S implementation philosophy and details of the 
various layers, see Reference 2.) This object orientation of 
UNIX simplifies the task of porting UNIX to different 
hardware architectures. 

The UNIX layer that affects a port to the 
CY7C604/605 is the hat, or hardware address translation 
layer. The hat implementation is machine dependent its 
functions rely upon the underlying machine architecture. 
The hat layer is used by the machine-independent address 
space (as) layer, which provides the operating system con­
structs necessary for virtual memory support. The hat 
layer provides the functions and structures needed to con­
trol and operate the underlying cache/memory manage­
ment hardware in the system. The hat layer implements 
machine-dependent functions with machine-independent 
interfaces, as listed in Table 1. 

Because the hat functions are machine dependent, 
their implementation depends upon the underlying cache­
control/memory-management hardware. Their interfaces 
are machine independent to allow the as layer to utilize 
any implementation of the hat layer. 

The hat layer also contains the machine-dependent 
control parameters and description and operation 
parameters. The control parameters and description tell 
the as layer what the cache controller/memory manage­
ment unit (CC/MMU) hardware can do and how to con­
trol the hardware (i.e., whether the cache can be locked, 
and if so, what control bit accomplishes the locking). The 
operation parameters set limits on the CC/MMU hardware 
capabilities, including the number of contexts supported, 
the number of segments per context, etc. You can find a 
list of the SunOS parameters for the SP ARCstation 
CC/MMU in /usrlshare!sys/sun4c/mmu.h and in Tables 2 
through 5. 

8-84. 

Porting to the CY7C604 
The information in Tables 2 through 5 reflects the 

CC/MMU hardware implementation for the SPARCsta-



~ Porting UNIX to the CY7C604 or CY7C605 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Table 1. Machine-Dependent Functions

Operation

hat initO

hat alloc(as)

hat free(as)

hatyageunload(pp)

hatyagesync(pp)

hat unlock(seg, addr)

hat chgprot(seg, addr, len, prot)

hat unload(seg, addr, len)

hat memload(seg, addr, pp, prot, flags)

hat_devload(seg, addr, pf, prot, flags)

Table 2. SPARCstation Hardware Context and
Segment Info

NPMENTPERPMGRP 64 Number of page map
entries/page map group

NCTXS 8 Number of contexts

NPMBRPPERCTX 4096 Number of
segments/context

NPMGRPS 128 Number of segments

MNCTXS 8 Maximum number of
contexts

MNPMGRPS 128 Maximum number of
segments

tion, which is implemented in gate arrays. The CY7C604
and CY7C605 are custom circuits that have a higher level
of integration and capability. They differ from the
SP ARCstation CC/MMU in several vital respects.

Most importantly, the SPARCstation uses a two-level
virtual memory space consisting of a segment and a page
table; the CY7C604/605 CC/MMUs use a three-level vir­
tual memory space composed of three page tables. The
CY7C6Q4/605 CC/MMUs determine the value of non-

Function

Initialize the structures and hardware

Allocate hat structure for as

Release all hat resources for as

Unload all translations to page pp

Sync ref and mod bits to page pp

Unlock translation at addr

Change protection values

Unload translations

Load translations to page pp

Load translation to cookie pF
(a cookie is a contiguous section of memory)

Table 3. SPARCstation Address Space Identifiers

ASI UP Ox8 User program

ASI SP Ox9 Supervisor program

ASI UD OxA User data

ASI SD OxB Supervisor data

ASI FCS OxC Flush cache segment

ASI FCP OxD Flush cache page

ASI FCC OxE Flush cache context

ASI CTL Ox2 Control space

ASI SM Ox3 Segment map

ASI PM Ox4 Page map

cached virtual addresses by performing a table walk
through page tables in memory. The hardware performs
this table walk without software intervention.

Modifying SunOS to utilize the CY7C604/605 is
more complex than just changing the parameters. An addi­
tional parameter must be defined to represent the different
nature of the virtual address space. Using as a model the
mmu.h for the SUN 4_460 (which employs a three-level

Table 4. SPARCstation ASI Control Constants

CONTEXT REG Ox30000000 Context register

SYTEM ENABLE Ox40000000 System enable

SYNC ERROR REG Ox60000000 Synchronous error register

SYNC VA REG Ox60000004 Synchronous virtual address register

ASYNC ERROR REG Ox60000008 Asynchronous error register

ASYNC VA REG Ox6000000c Asynchronous virtual address register

CACHE TAGS Ox80000000 Cache tags

CACHE DATA Ox90000000 Cache data

UART BYPASS OxFOOOOOOO UARTbypass

8-85

Table 5. SPARCstation Cache Constants

VAC_SIZE OxlOOOO

VAC LINESIZE 16

VAC LINESHIFT 4

VAC CTXFLUSH COUNT 4096
VAC SEGFLUSH COUNT 4096

VAC PAGEFLUSH COUNT 256

virtual address space), the mmu.h file for a system based
on the CY7C604 has the parameters listed in Tables 6
through 9 (new parameters are listed in boldface type).

The addition of NSMENTPERSMGRP,
NSMGRPPERCTX, and NSMGRPS works directly with
the SunOS because these constants are already defined
and used by the SUN 4 460 O/S variant. However, the
CY7C604 provides address space identifier (ASI) func­
tions that are unavailable from the SP ARCstation MMU.
The additional functions are:

Directly addressing the Mbus extended address space
Flushing entries from the TLB
Probing entries in the TLB
Directly accessing the cache tags
Flushing the cache lines for a memory region
Flushing the cache lines for a specific user
Operating in pass-thru mode
To use these additional functions, the O/S must be

modified in two ways. First, the ASI values must be
defined and made available by modifying the header fIles.
Second, the hat functions in mmu.c must be modified to
utilize these new capabilities when performing the hat
functions. The calls to the hat layer from the as layer can
remain the same; only the underlying implementation of
those calls by the hat procedures must change.

Table 6. CY7C604 Hardware Context and Segment
Information

NPMENTPERPMGRP 64 Number of page map
entries/page map
group

NSMENTPERSMGRP 64 Number of segment
entries/segment group

NCTXS 4096 Number of contexts

NSMGRPPERCTX 256 Number of segment
groups/context

NSMGRPS 64 Number of segment
groups

NPMGRPS 64 Number of page map
groups

MNCTXS 4096 Maximum number of
contexts

MNPMGRPS 64 Maximum number of
segments

8-86

Virtual address cache size

Virtual address cache line size

Line size in base 2

Virtual address cache context flush count

Virtual address cache segment flush count

Virtual address cache page flush count

Some of the CY7C604's ASI control constants are
also new to the SunOS. Although the SP ARCstation has a
subset, the CY7C604 offers the O/S more control over the
working of the cache and memory management. These
capabilities are set by manipulating the bit fields in the
SCR (System Control Register). The following additional
capabilities are available when using the CY7C604:

Enable/disable virtual cache
Lock the entire cache
Set the cache to write-through or copy-back operation
Set instruction or data access to cache able or non­
cacheable when the MMU is disabled
Set the CY7C601 for multichip mode
Set the CY7C604 to signal/not-sIgnal data access ex­
ceptions to the CY7C601
Enable/disable the MMU
Read/write the Context Table Pointer register
Read/write the Instruction Access Page Table Pointer
(JPTP) register
Read/write the Data Access Page Table Pointer
(DPTP) register
Read/write the Root Pointer register

Table 7. CY7C604 Address Space Identifiers

ASI EA Ox1 Mbus extended address space

ASI_MFP Ox3 MMU flush/probe

ASI CTL Ox4 Control space (register access)

ASI_MDT Ox6 MMU diagnostics
instruction/data TLB

ASI UP Ox8 User program

ASI SP Ox9 Supervisor program

ASI UD OxA User data

ASI SD OxB Supervisor data

ASI_CT OxE Cache tag access

ASI FCP OxlO Flush cache line (page)

ASI FCS Ox 11 Flush cache line (segment)

ASI FCR Ox12 Flush cache line (region)

ASI FCC Ox 13 Flush cache line (context)

ASI_FCU Ox14 Flush cache line(user)

ASI_PTA Ox20-2F MMU passthrough mode
physical address

£:~RESS --;;P;;;;or;;;;ti;;;D;!;g;;;;;;;U;;;N;;;;I;;;X;;;;t;;:;o;;;;th;;;;;;e;;;C;;;Y;;;;;;;;;;;;;7C;;;;;;;;;;;;60;;;;;;4;;;;;;o;;;;;;r;;;;;;C;;;;;;Y;;;;;;7;;;;;;C;;;;;;6=05
~, SEMlCaIDUCTOR .,;;;

Table 8. CY7C604 ASI Control Constants

CONTROL REG OxO System control register (SCR)

CONTEXT PTR OxlOO Context table pointer register (CTPR)

CONTEXT REG Ox200 Context register (CXR)

SYNC ERROR REG Ox300 Synchronous fault status register (SFSR)

SYNC VA REG Ox400 Synchronous fault address register (SF AR)

ASYNC ERROR REG Ox500 Asynchronous fault status register (AFSR)

ASYNC VA REG Ox600 Asynchronous fault address register (AFAR)

RESET REG Ox700 Reset register (RR)

ROOT PTR OxlOOO Root pointer register (RPR)

INS PTP Ox 1100 Instruction access P1P (IP1P)

DATA PTP Ox 1200 Data access P1P (DPTP)

INDT_REG Ox1300 Index tag Register (lTR)

TLBRC REG Ox 1400 1LB replacement control register (TRCR)

Table 9. CY7C604 Cache Constants

VAC SIZE Ox 10000

V AC LINESIZE 32

V AC LINESHIFf 5

V AC CTXFLUSH COUNT 4096

V AC SEGFLUSH COUNT 256

V AC PAGEFLUSH COUNT 64

Read/write the Index Tag register
Locle/unlock TLB entries by writing/reading the Re­
placement Counter (RC) and Initial Replacement
Counter (IRC) fields in the 1LB Replacement Con­
trQI Register
Read the Reset Register (RR) to ascertain whether a
watch dog reset, software internal reset, or software
external reset has occurred; writing to the RR is also
possible
These additional functions do not have to be imple­

mented for the O/S to use the CY7C604. Utilizing these
optional functions allows the O/S to "customize" the
CY7C604's capabilities to the task at hand, which in­
creases system throughput and capability. Note that all of
these functions are dynamic; they can be changed after
system boot-up. Although parameters such as the multi­
chip mode bit should not be altered after initialization,
parameters such as the cache locking feature enable the
O/S to fine-tune system operation.

The fmal modification that must be done to the O/S
is in the area of trap handling. Like the SP ARCstation
MMU, the CY7C604 has both asynchronous and
synchronous fault status and address registers. The inter­
pretation of the bits set in these registers differs between
the systems. Additionally, the methods differ in the way
they handle the trap once it is correctly decoded. For ex­
ample, the CY7C604 has level bits that determine the

Virtual address cache size

Virtual address cache line size

Line size in base 2

Virtual address cache context flush count

Virtual address cache segment flush count

Virtual address cache page flush count

8-87

level where the fault occurred during a table walk (if ap­
plicable). The trap handler must use these bits to correctly
recover from a fault.

Porting to a Multichip CY7C604 System
So far, this application note has focused on porting

SunOS for the SP ARCstation to a single-chip CY7C604
SPARC system. This section covers the issues involved in
porting an O/S from a single-CY7C604 system to a multi­
ple-CY7C604 system. The information given here as­
sumes that all the modifications required to port the
SunOS to a CY7C604 system have already been done.

Because the CY7C604 is cascadable, you can expand
the cache from 64K with one CY7C604 up to 256K with
four CY7C604s. In a multichip system, one CY7C604
responds to all addresses from the CY7C601 until all
CY7C604s have been initialized. This one CY7C604 is
designated as the boot-mode CY7C604, and it is the only
CC/MMU to interface to the memory subsystem (via the
Mbus). The boot-mode CY7C604 handles all the MMU
functions; the other CY7C604s control their respective
caches.

You designate the boot-mode CY7C604 by hard­
wiring the CSEL, MHOLD, and IOE signals. (See the
CY7C604 data sheet or the User's Guide for details.) You
configure all the CY7C604s in the system by setting the

multichip address field (MCA), multichip mask field
(MCM), and the multichip valid (MV) bit in the devices'
System Control Registers (SCRs). These values determine
what address space each CY7C604 responds to. The in­
itialization routine for SunOS (hat init) must be re-written
to set these fields to the correct value.

The only other modification· that must be made to the
O/S is to change the constant V AC _SIZE to its correct
value. All other parameters and constants are unaltered.

Porting to a CY7C60S
Although the CY7C60S is based upon the CY7C604,

the devices differ in several respects. The most notable
difference is the CY7C605's ability to support multi­
processing by transparent bus snooping. The CY7C60S
also differs in its ability to support reflective memory and
its inability to lock the cache. The only differences that
affect the O/S are the latter two. These two capabilities
are activated by accessing the System Control Register
(SCR).

The CY7C605 SCR differs from the CY7C605 SCR
in that the former has two additional fields:

MID(3:0) -Module Identifier at SCR (18 - 15)
MR - Reflective memory enable bit at SCR (11)
These fields use reserved (i.e., unimplemented) SCR

bits in the CY7C604. This allows the fields in the
CY7C605 SCR to be in the same bit position as the cor­
responding fields in the CY7C604 SCR. The· only control
field in the CY7C604 SCR that is not implemented in the
CY7C605 SCR is the cache lock (CL) bit at SCR (9).
This bit is reserved in the CY7C60S.

8-88

The only changes needed to port a CY7C604-ready
OIS to the CY7C605 are in the initialization routines in
the hat layer. Trap handling and the implementation of the
hat routines can remain the same because the CY7C605
has the same fault conditions and implements the same
cache control and memory-management functions. Upon
initialization; the module number for the CPU cluster in­
corporating the CY7C605 must be wri,tten into the SCR. If
the system uses reflective memory, the MR bit must
be set.

Porting to a Multichip CY7C60S System
The. porting of the SunOS to a multiple-CY7C605

system is almost identical to porting to a multiple­
CY7C604 system. The only change is a modification of
the initialization code so that the SCR's multichip address
and mask fields are set to the correct values.

References
1. SPARC SunOS porting guide, Sun Microsystems,

June, 1988
2. SunOS Virtual Memory Implementation, J.P.

Moran, Sun Microsystems
3. SunOS on SPARC, Kleiman & Williams, Sun

Microsystems
4. Virtual Address Cache in UNIX, Ray Cheng, Sun

Microsystems
S. The SPARC reference MMU Rev 1.4, Sun

Microsystems, January, 1989

CYPRESS
SEMICONDUCTOR

Getting Started With Real-Time
Embedded System Development

This application note illustrates the use of a real-time
operating environment from Mizc:rr and Wind River Sys­
tems to develop, download,and test application code on
Sun-based Ethernet systems. The application note has four
sections:

Mizar MZ7170 system description
Wind River Systems VxWorks description
Sample applications
VxWorks

Mizar MZ7170 System Description
Integrating Wind River Systems' VxWorks real-time

operating system with M~ar's MZ7170 real-time server
produces an ideal environment for real-time applications.
Mizar's application serVers provide the foundation for
SP ARC-based applications prototyping or for specific ap­
plication use. The VxWorks real-time operating system
furnishes the platform for powerful application debugging
or real-time system operation. .

The Mizar system incorporates a VME-based system
enclosure, which contains both a SP ARC-based processor
board and an Ethernet board. The VMEbus32-bit
master/slave interface provides seven interrupts; 16-, 24-,
or 32-bit address generation; and 8-, 16-, or 32-bit data
types. The. 20-MHz CPU comes. with 1 Mbyte of zero­
wait-state memory and 256 Kbytes of socketed PROM,
which contains the VxWorks operating system and deb~g­
ger. You can expand the PROM space by utilizing the full
4-Mbyte capability of the board's 32-pin JEDEC PROM
sockets. These PROMS could alsQ contain your embedded
applications linked with the VxWorks operating system.

A Dallas Semiconductor DSI287 real-time clock
provides battery-backed-up, time-keeping information. An
SCN68681 DUART provides two full-duplex asynchronous
RS-232C. serial ports. which can transmit data at rates as
high as 38.4K baud. The initial configuration of serial port
o provides 9600 baud with 8 data bitS, 1 stop bit, and no
parity. This channel can connect the Mizar system directly
to a monitor. The SCN68681 also provides a program­
mable timer, along with the ability to g~nerate a level 3,
autovectored, SP ARC CPU interrupt request under . three

8-89

conditions: (I) upon receiving a character, (2) when the
transmitter buffer becomes empty, or (3) when the 16-bit
timer reaches its desired limit.

In addition, a bank of 10 processor-readable dip
switches provides selectable features such as fixed addres­
ses within a system.LEDs indicate SYSF AIL, processor­
to-RAM access, processor-to-VMEbus access, and
VMEbus-to-RAM access. You can also define the opera­
tion of four additionalLEDs. Table 1 shows the memory
map of the Mizar system.

The on-board 32-bit read/write control register con­
trols several functions on the MZ7170 CPU board. The
register is located at address FE000400. The CPU can
only read to or write from this register in 32-bit-word

Table 1. Mizar System Memory Map

Address Description

oooooooo -003FFFFF
00400000 - 007FFFFF
00800000 - 008FFFFF
00900000 - ooBFFFFF
OOCOOOOO - OOFFFFFF
01000000 - FDFFFFFF
FEOOOOOO - FEOOOIFF
FEOO0200 - FE0003FF

FEOO0400 - FE0005FF
FEOO0600 - FE0007FF
FEOO0800 - FE0009FF
FEOOOAOO -FEOOOBFF
FEOOOCoo- FEOOODFF

FEOOOEOO - FEOQOEFF

FEQOlOOO - FEOOFFFF
FEOlOOOO - FE7FFFFF
FE800000 - FEFFFFFF

FFOOOOOO - FFFEFFFF
FFFFOOOO - FFFFFFFF

PROM
reserved
RAM
Reserved for RAM expansion
reserved
VMEbus A32 master
68681 DUART (DO - D7 only)
DS1287 Real-Time clock
(D0-D7 only)

Control register (DO-D31 only)
St.atus regist~r (D0-D1S only)
Mailbox interrupt 1 clear
Mailbox interrupt 2. clear
VMEbus interrupter
(DO-D7 only)

VMEbus slave base addr
(DO-D31)

reserved for extra peripherals
reserved
Memory mapped VMEbus
lACK

VMEbus A24 master .
VMEbus A16 master

~ Real-Time Embedded System Development
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table 2. Power-up Condition of Control Register

Bit Y~ue Pescription
--
0 0 bus request inhibit
1 1 bus request level 0
2 1 bus request level 1
3 1 system bus error enable
4 0 system bus controller;

priority (1)/round robin (0)
5 1 local arbiter bus clear ignore
6 1 local arbiter PREL inhibit
7 0 local arbiter ROR inhibit
8 0 interrupter level 0
9 0 interrupter level 1
10 0 interrupter level 2
11 0 slave A16 decoding inhibit
12 0 slave A24 decoding inhibit
13 0 slave A32 decoding inhibit
14 0 interrupter inhibit
IS 0 FPCHAIN
16 0 fail and abort inhibit
17 1 YME IRQl inhibit
18 1 VME IRQ2 inhibit
19 1 VME IRQ3 inhibit
20 0 VME IRQ4 inhibit
21 1 VME IRQ5 inhibit
22 1 VME IRQ6 inhibit
23 1 VME IRQ7 inhibit
24 0 PROM wait state 0
25 1 PROM wait state 1
26 1 local bus error enbable
27 0 SYSFAIL
28 0 LED 1
29 1 LED2
30 1 LED3
31 0 LED4

operations. Table 2 shows. the descnpttons and values of
the fields within this register at initialization.

When the SP ARC CPU receives an interrupt, it halts
execution of the current task and jumps to the interrupt
handler. The SPARC processor supplies its own vector
during the interrupt This vector whichp6ints to a,location
containing fpur instructions. Table 3 shows the defined in­
terrupts.

'Any of three signals from the backplane - ABORT
active, SYSFAIL true, or ACFAIL true - sends a non­
maslcable level' 15 interruptto the CPU. The mailbox in­
terrupt allows any YMEbus master to interrupt the CPU
by performing a write operation to the mailbox's VME
address locatipn.

The SCN68681· has two separate interrupt locations.
The first sends a level 3 interrupt to the CPU when, (1) an
Rx·holdirtg register receives a character, (2) a Tx holding
register becomes empty, or (3) the timer reaches its ter­
minal count The second SCN68681 interrupt location
sends a level 11 interrupt based on the DUART's inde­
pendent timer. In addition to the itlterrupts mentioned' so

8-90

T~ble 3. System Level Interrupts

Level Description
----------.--~---------------

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

spare
VMEIRQl
DUART serial
VMEIRQ2
Mailbox 2
VMEIRQ3
Mailbox 1
VMEIRQ4
Real-"Time clock
VMEIRQ5
DUART timer
VMEIRQ6
spare
VMEIRQ7
Miscellaneous (abort, sysfail, or acfail

far, the MZ7170 can handle all of the seven VME request
levels.

Table 4 shows the MZ7170 memory map as seen
from the YMEbus.

Wind River Systems' VxWorks
Software development begins on the Sun system

using the SunOS enhanced UNIX operating system. Sys­
tem developers use UNIX for. software development and
non-real-time facets of an application. YxWorks, on the
other hand, is used for testing, debugging, and running
real-time applications. After the development phase, the
application programmer can integrate the real-time ap­
plication into other machines running YxWorks or UNIX.
Applications can also operate on a stand-alone basis.

A development system usually contains one or more
multi-user UNIX machines connected over an Ethernet
network to one or more YxWorks target systems. The
UNIX systems can contain large main memory, extensive
disk space, and printers, while the YxWorks systems
usually has only the respurces required for the real-time
applications.

Developers create and compile source code in the
UNIX environment in the usual way. The code does not
have to be linked with the YxWorks system library. In­
stead, the YxWorks loader loads the object modules,
while dynamically resolving external symbol references.

Table 4. VMEbus MZ7170 Memory Map

Address Description

01000000 - OOlOFFFF DPRAM - 1 MByte
FFFF8000 -FFFF80FE Mailbox 2 in YMEbus A16

space (Even bytes)
FFFF8001 - FFFF.80FF Mailbox. 1 in VMEbus A16

space (Odd, bytes)

Application developers can load modules over the
Ethernet network and begin debugging. The VxWorks
debugging system examines data variables, calls sub­
routines, spawns tasks, disassembles code in memory, sets
breakpoints, and obtains subroutine call tracebacks using
the original symbol names. The operating kernel safely
traps and reports hardware interrupts. VxWorks can link
fully developed applications with the real-time operating
kernel and produce an executable fIle that you can load
into a PROM.

The VxWorks system utilizes task-blocking
semaphores for intertask communication and multi-tasking
to achieve task synchronization and coordination. The
multi-tasking kernel uses interrupt-driven, priority-based
task scheduling to realize very fast context-switch times

Real-Time Embedded System Development

and low interrupt latency. Inter-task communication
mechanisms include these semaphores, shared memory,
ring buffers, linked lists, pipes, sockets, remote procedure
calls, and signals. The higher-level structures, such as
sockets and pipes, use semaphores as their basic building
blocks.

The scheduling is pre-emptive. If a higher-priority
task becomes ready to run, the kernel interrupts the cur­
rent task and switches to the higher-priority task. A task's
context consists of the task's program counter; the CPU
registers; the dynamic variable stack; the function call
stack; I/O assignments for standard input, output, and
error; the delay timer; signal handlers; code debuggers;
and performance-monitoring values.

Table 5. SPARC-Specific MZ7170 Routines

Routine

char *sysModelO
VOID sysHwInitO
char *sysMemTopO
STATUS sysToMonitor(startType)
STATUS sysClkConnect(routine,arg)
VOID sysClkDisableO
VOID sysClkEnableO
int sysClkRateGetO
VOID sysClkRateSet(ticksPerSecond)
STATUS sysAuxClkConnect(routine,arg)
VOID sysAuxClkDisconnetO
VOID sysAuxClkDisableO
VOID sysAuxClkEnableO
int sysAuxClkRateGetO
VOID sysAuxClkRateSet(ticksPerSecond)

Description

Return model name of the system CPU
Initialize hardware
Get top of memory address

Transfer to ROM monitor
Connect a routine to the system clock interrupt
Turn off system clock interrupts
Turn system clock interrupts on
Get rate of the system clock
Set rate of the system clock
Connect a routine to the auxiliary clock interrupt
Clear the auxiliary clock routine
Turn off auxiliary clock interrupts

Turn auxiliary clock interrupts on
Get rate of auxiliary clock
Set rate of auxiliary clock

STATUS sysLocalToBusAdrs(adrsSpace,LocalAdrs,pBusAdrs)
STATUS sysBusToLocalAdrs(adrsSpace,busAdrs,pLocalAdrs)
STATUS sysIntDisable(intLevel)

Convert local address to bus address
Convert bus address to local address
Disable VMEbus interrupt level

STATUS sysIntEnable(intLevel)
STATUS sysBusIntAck(intLevel)
STATUS sysBusIntGen(intLevel,intVector)
STATUS sysMailboxConnect(routine,arg)
STATUS sysMailboxEnable(mailboxAdrs)
int sysProcNumGetO
VOID sysProcNumSet(procNum)
BOOL sysBusTas(addr)
VOID sysIrnrSet(setBits,clearBits)
STATUS sysDuartConnect(recvRoutine,xmitRoutine)
int sysMailboxAddressGetO
int sysMailboxAddressSetO
ULONG sysBCRGetO
VOID sysBCRSet(mask,value)
ULONG sysSARGetO
VOID sysSARSet(mask, value)
ULONG sysStatusGetO
int sysFrontPanelSwitchesO
STATUS sysMailbox2Connect(routine,arg)
STATUS sysMailbox2Enable(mailboxAdrs)

Enable VMEbus interrupt level
Acknowledge VMEbus interrupt

Generate VMEbus interrupt
Connect a routine to mailbox interrupt #1
Enable mailbox interrupt #1
Get processor number
Set processor number
Test and set across VMEbus

Set and clear bits in the M68681 DUART int register
Connect interrupt routines for the MZ7170 DUART
Get currently defined mailbox addresses
Set mailbox addresses as determined by sysProcNum
Return the value of the board control register
Set bits in the board control register
Return the value of the slave address register
Set bits in the slave address regsiter
Return the value of the board status register
Read DIP switches

Connect a routine to mailbox interrupt #2
Enable mailbox interrupt #2

8-91

~ Real-Time Embedded System Development

~~~~~~~~~~~~~--------------~--------~--~ 

help 
dbgHelp' 
nfsHelp 
netHelp 
spyHelp 
timexHelp 

Table 6. Help Commands 

Print this list 
Print debugger help info 
Print nfs help info 
Print network help info 
Print task histogrammer help info 
Print execution timer help info 

loader has the ability to load object modules anywhere in 
memory. The loader uses the object module symbol table 
to create a system-wide symbol table. The run-time linker 
ensures that every task can use a single copy of a set of 
subroutines instead of requiring that each task have its 
own copy of each routine. 

The VxWorks debugging facility has routines to dis­
play system and task status. This facility also has routines 
that give a symbolic disassembly of any loaded module, a 

VxWorks' extensive networking facility uses the trace-back facility for nested C routines, safe trapping of 
TCP/IF protocol to implement all network communica- hardware exceptions, and breakpoint and single step 
tions. VxWorks' network facilities supports process-to- facilities. In addition, the dbxWorks facility from Sun 
process sockets, remote command execution, remote Microsystems allows remote source-level debugging. 
login, remote procedure calls, remote me access, and The VxWorks operating system also provides many 
remote source level debugging. other facilities that real-time application developers need. 

VxWorks contains an interactive cOmmand line shell. For example, VxWorks provides a timer library to obtain 
This shell provides the ability to interpret and execute the the execution times of various functions and subroutines. 
C language, including calls to functions and references to Uniform device access, buffered I/O, and serial com-
variables. The VxWorks real-time operating system ex- munication drivers provide C-like real-time access to all 
tends the non-real-time aspects of UNIX C. The VxWorks the standard devices. 

Table 7. Useful Commands 

Command Parameters Description 
h--------------------[~j-----------------------------Pri~;-(~~-~~;)-~h~ii-hi~~;;--------------------------------------------------------------

i [task] Summary of tasks' TCBs 
ti task Complete info on TCB for task 
sp adr,args Spawn a task, pri=I00, opt=0,stk=20000 
taskSpawn name,pri,opt,stk,adr,args Spawn task 
td task Delete a task 
ts task Suspend a task 
tr task Resume a task 
d [adr[,nwords]] Display memory 
m adr Modify memory 
mRegs [task] Modify a task's registers interactively 
0-i7 ,10-17, [task] Display a register of a task 
00-o7,gl-g7, 
pc,npc,psr, wim,y 
version 
iam 
whoami 
devs 
cd 
pwd 
Is 
rename 
copy 
Id 

lkup 
lkAddr 
checkS tack 
printErrno 
period 
repeat 
diskinit 
squeeze 

user" [,"passwd"] 

"path" 

["path"] 
"old","new" 
["in"] [,"out"] 
[syms[,noAbort]] 

["substr"] 
adr 
[task] 
value 
secs,adr,args ... 
n,adr,args ... 
"device" 
"device" 

Print VxWorks version info, and boot line 
Set user name and passwd 
Print user name 
List devices 
Set current working path 
Print working path 
List contents of directory 
Change name of file 
Copy in me to out file (0 = std inlout) 
Load std in into memory (syms = add symbols to table: 
-1 = none, 0 = globals, 1 = all) 
List symbols in system symbol table 
List symbol table entries near address 
List task stack sizes and usage 
Print the name of a status value 
Spawn task to call function periodically 
Spawn task to call function n times (O=forever) 
Format and initialize RT -11 device 
Squeeze free space on RT-ll device 

8-92 



~ Real-Time Embedded System Development 
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ , SEMIcc::M)UCfOR ;;; 

A library contains a number of SP ARC-specific
routines that allow you to build system-independent code.
These routines manipulate the CPU board's primary func­
tions and are included with #defme DEBUG. Table 5
shows the routines' usage and description.

Sample Applications
The development system can debug, test, run, and

benchmark real-time applications. You begin the develop­
ment process by creating an application in C using the
normal UNIX environment Compile the application code
by typing:

cc -c -0 -Ilusr/vw/h <rIIename>
The -c flag suppresses linking with the UNIX C

libraries and leaves the undefined externals unresolved.
The VxWorks linking loader resolves these unresolved ex­
ternals. The optional -0 flag optimizes the code. The -I
flag tells the compiler where to fmd the VxWorks header
flies.

The MIZARlVxWorks system is linked to the
Cypress Ethernet Network. To access the system, type

rlogin mizar
The VxWorks user shell displays a ->. The shell con­

tains the last 20 commands issued, and you can access the
shell by issuing vi-like commands. This interactive shell
evaluates and executes virtually any C command. For ex­
ample, the command

-> printf("hello world")

produces the response

hello world
You can get help by typing any of the help com­

mands shown in Table 6. Refer to Table 7 for a list of
other useful commands and their explanations.

System developers can easily benchmark code and
time context switches within the VxWorks operating sys­
tem. You create an application first in the host UNIX en­
vironment. The sample program used for illustration pur­
poses is a C program containing little more. than a loop
that iterates 100 times. This program measures its own ex­
ecution time - a necessary feature for benchmarking user

#include "vxWorks.h"

timeLoopO
{

int loops,i;

loops = 100;

for(i=O;kloops;++i);
}

timeMainO
{

timexN(timeLoop);
}

Figure 1. Sample C Test Code

8-93

-> I timeLoop, 31
timeLoop:

008f9c30 033fffff sethi %hi (Oxffffffb8), %gl
oo8f9c34 820063b8 add %gl, %10 (Oxffffffb8), %gl
oo8f9c38 9de38oo1 save%sp, %gl, %sp
oo8f9c3c 90102064 mov Ox64, %00
008f9c40 d027bffc st %00, [%fp - OxOOOOOOO4]
oo8f9c44 c027bff8 elr [%fp - OxOOOOOOO8]
oo8f9c48 d207bff8 ld [%fp - OxOOOOOOO8], %01
oo8f9c4c d407bffc ld [%fp - OxOOOOOOO4], %02
008f9cSO 80a2400a cmp %01, %02
008f9cS4 16800007 bge Ox008f9c70
008f9cS8 01000000 nop
008f9cSc d607bff8 ld [%fp - OxOOOOOO08], %03
008f9c60 9602eOOl add %03, 1. %03

'008f9c64 d627bff8 st %03, [%fp - OxOOoooo08]
008f9c68 10bffff8 b Ox008f9c48
oo8f9c6c 01000000 nop
oo8f9c70 90102000 clr %00
008f9c74 bOI00008 mov %00, %iO
008f9c78 81c7e008 ret
008f9c7c 81e80000 restore

timeMain:
008f9c80 033fffff sethi %hi (OxffffffaO), %gl
008f9c84 820063aO add %gl, %10 (OxffffffaO), %gl
008f9c88 9de38001 save%sp, %gl, %sp
008f9c8c ll0023e7 sethi %hi ltimeLoop), %00
008f9c90 90122030 or %00, %10 (timeLoop), %00
008f9c94 7ffc8cab call timexN -
008f9c98 01000000 nop
008f9c9c 90102000 elr %00
008f9caO b0100008 mov %00, %iO
008f9ca4 81c7eOO8 ret
008f9ca8 81e80000 restore

Figure 2. Disassembled Un-Optimized Object Code.

applications. Figure 1 shows the source code for this ap­
plication.

The timexNO subroutine in this program continues
executing the subroutine or function passed to it until the
subroutine's execution time is known to within ±2 per­
cent VxWorks supplies this routine along with an exten­
sive library of other routines, which perform tasks ranging
from network communication, to device drivers and
linked-list manipulation. These UNIX C-compatible
routines are optimized for speed and real-time oper~tion.

The following user login session assumes that Joe has
logged into the UNIX environment with a h?me ~ectory
called thome/joe and a benchmark working directory
called bench, All UNIX operating system prompts, there­
fore, begin with Cypressthome/joe/bench, wh,ne ,all
MIZARtVxWorks operating system prompts begm WIth
->. To compile the source code (timetest), type the follow-
ing at the UNIX prompt: .

Cypresslhome/joe/bench: cc -c -I1usr/vwlh tImetest.c

Real-Time Embedded System Development

Table 8. Useful Debu22er Commands

->dbgHelp
dbgHelp
dbgInit
b
b addr[,task[,count]]

addr[,task]

Print this list .
Install debug facilities
Display breakpoints
Set breakpoint

Delete breakpoint bd
bda11
e
eret

[task]
[task[,addr]]
[task]
[task[,addr]]

Delete all breakpoints
Continue from breakpoint
Continue to subroutine return
Single step

so
I
tt

[task]
[adr[,nInst]]

Single step/step over subroutine
List disassembled memory

[task]

-> I timeLoop, 13
_timeLoop:

Do stack trace on task

008f9bd8 9a102000 clr %05
008f9bdc 9a036001 add %05, 1, %05
008f9beO 80a36064 cmp %05, Ox64
008f9be4 26bfffff bl,aOxOO8f9beO
008f9be8 9a036001 add %05, 1, %05
008f9bec 81c3eOO8 ret!
008f9bID 90002000 add 0, %00
timeMain:

008f9bf4 9de3bfaO save%sp, OxffffffaO, %sp
008f9bfS 110023e6 sethi %hi (OxOO8f9800), %00
008f9bfc 7ffc8cd1 call timexN
008f9cOO 901223d8 or-%oO,Ox3d8, %00
008f9c04 81c7eOO8 ret

Figure 3. Disassembled Optimized Object Code

This command produces unoptimized, unlinked code
that has headers located in the directory lusr/vw/h. To log
into the Mizar system type

Cypress/home/joe/bench: rlogin mizar

To switch the Mizar operating system root directory to
that of the user Goe), type

-> iam "joe"
Next, switch to the working directory:

-> cd "~lbenchtt

To link and load the test program, type
-> Id < timetest.o

8-94

To initialize the debugging facility, which allows you to
disassemble code, set breakpoints, step through code, and
perform other tasks (Table 8), type

-> dbgInit
For example, Figure 2 shows the disassembled code

for this test program. This code was produced using the
debugger command "I" (list disassembled memory). The
listing shows the hex memory address, the hex instruction
code, and the instruction itself. To execute the program,
type

-> timeMain

The operating system responds with
timex: 7500 reps, time per rep = 90 +/- 2 (2%) microsecs

This response indicates that after 7500 iterations of
the routine timeMain, the routine found that it took 90 ± 2
J.lS to execute. TimeMain is the name of the subroutine
that represents the main part of the program. You can also
get the timing of this code by typing

-> timexN(timeLoop)

The system responds with

timex: 7725 reps, time per rep = 91 +/- 2 (2%) microsecs
To exit the Mizar system type

-> "".
Real-time programs can also take advantage of the C

compiler's optimization features. To create a fully op­
timized version of the code, type

Cypress/home/joe/bench: cc -c -04 -I/usr/vw/h
timetest.c

The significantly optimized code appears in Figure 3.
This code also has a significantly better execution time, as
shown by typing

-> timeMain
timex: 46250 reps, time per rep = 14 +1- 0 (0%) microsecs

CYPRESS
SEMICONDUCTOR

SP ARC as a Real-Time Controller

In addition to giving an overview of real-time sys­
tem characteristics, this application note shows how the
Cypress SP ARC chip set supports real-time operations.
Special attention is given to operating models that
either reduce procedure call overhead or minimize the
time needed for a context switch.

A real-time system must react to external events as
they happen. These systems are, by nature, event driven
as they respond to external, asynchronous stimuli and
must do so in a timely manner. If both logical correct­
ness and timing correctness are not satisfied, severe
consequences can result. Although the need for logical
correctness is obvious, the need for timing correctness
arises due to the possible physical impact· of the con­
trolling system's activities. If a computer controlling a
satellite does not respond to ap external event in time,
for example, the satellite might collide with a foreign
object and be knocked out of orbit.

At the highest level, you can view a real-time sys­
tem as one that acquires data and detects the occur­
rence of events by means of hardware inputs. These in­
puts are then processed and the results transmitted to
hardware outputs. An embedded computer can be used
to· process the data,. with a real-time operating system
controlling the computer.

When defining a real-time system, it is essential to
partition the functions to be performed into individual
units called tasks. Each task is implemented as a
software module that can be invoked to perform a
specific function. Although. many tasks are usually as­
sociated with a real-time system, only a limited number
of processors is generally available to execute these
tasks. This application note concentrates on the
simplest case, where a single processor is involved.

Because multiple tasks compete for use of a limited
resource, the processor, it is crucial that tasks be
prioritized. The highest-priority task that is ready to run
at any given time must actually be running. This re­
quirement often leads to a case where IJ higher-priority
task becomes ready while a lower-priority task is ex­
ecuting. In this case, the lower-priority task must imme­
diately be pre-empted, and the higher-priority task must

8-95

take control of the processor. This concept of pre-emp­
tive scheduling is esseptial in all relll-time systems.

The real-time systems design considerations
described so far deal with the general behavior of a
real-time system. To put these generalities into perspec­
tive, consider the following example.

Dealing with Overhead
In this example, several tasks are defin¢ in

prioritized order (task 1 through task 6). Included in
this system is a real-time clock that generates an· inter­
rupt to the processor every 500 JlS. Table 1 lists the
CPU requirements for this example.

Tasks 1 through 5 all have specific jobs that require
a fixed amount of· time. Task 6 checks for ,,~er com­
mands, and thus the amount· of time it needs varies
depending on whether a user command is present.

Based on the data in Table 1, the CPU time re­
quirements for a second of processing time for each
task appear in Table 2.

Tasks 1 through 5 use 743 ms, which leaves 257 ms
for the background task to execute. This means that the
background task executes at a worst-~ase rate pf 1.3
times per second. In the best case,. the background
task's frequency is· 25 times per secolld~ This rate allows
display updating 25 times per second, while user com­
mands can only be processed at the rate of 1.3 per
second.

So far, this example has not accounted for the over­
head associated with switching processor contexts be-

Table 1. CPU Reqqirements

Task Duration Operating Speed

1 35 us 2000 Jlz

2 100 JIS 1000Hz

3 1ms 333Hz

4 200 us 200 liz

Task

1

2

3

4

Table 2. CfU Time Per Second

Time!
Invocation

3508

100 us

1ms

200 US

Invocations Total Time

2000

1000

333'

,200

70ms

lOOms

333ms

40ms

tween tasks. This overhead includes several operations.
Specifically, the state of the processor at the time of
pre-emption is saved with ea~ context switch., Then the
scheduler detennines the next task to run. Finally, the
state of the new task is loaded into the proces~or. In
commercially available real-time operating systems, the
time required for a task switch generally ranges from 25
J.lS to over 100 ms for some processors. '

Including ,a 25-~ task switch overhead, the CPU
usage during 1 ~econd breaks down as shown irJTable 3.
More than 14 percent of the total CPU ~e is spent on
overhead; no useful work was' done.

In this 'case, the background task only runs at a
best-case frequency of 11 times per second, while the
worst-case frequency is only once every()ther second.

lncreasing the context' switch overhea4 to 3S ~
produces an interesting effect" ~soCiated with real-time
systems, as sbownin Table 4. Although it s~ms as if the
system works, critical timing parameters have been vio­
lat~. For example, task 5 is, sche4uled to run a second
time when it has npt received enough' CPU qme ~
complete its first run. To help compute context switch
overhead, you can use the example, Cprograrn ,th~t ap-
pears in Appendix A. , ' , ,

Interrupt Latency
The need to' meet externally imposed deadlines lies

at the heart of a re~.:tip1e sys!em. In real-time comput­
ing, the c()rrectness of t1'l~ system depends not only on
the logicai resJllt of the computation, but also on the
time at which the results are produced. A system must
be fast as well as predictable.

The parameter used to ~~ify a system's predict­
ability is its worst-case interrupt latency. TItis parameter
is defmed as the maximum amount of time 'a' sy&~em
takes "j)efore responding to an' external event; Interrupt
latency usually indicates Ii specific processor's worthi­
ness as a real-time controller.

Interrupt latency directly affects two key system
performance factors: the guaranteed response time to
an event and the guaranteed respon~e time, of any in­
dividual ,task. The latter is the maximum amount of time
it takes to pass control from a 10wet-prioIity task to a
pre-empting higher-priority task. .

8-96

Table 3. 25-us Context Switch Overhead

Tasks 1-5

Switch Overhead

Number of Switches

Overhead

743ms

2508

5733

143ms

You can think of the response time to an event as
the maximum amount of time that elapses before the
system can identify that an event has occurred and
respond with the necessary action. In the case of detect­
ing meltdown in a nuclear power plant, the processor
could use the instructions directly from the interrupt
handler to perfonn, the critical actions necessary to shut
the reactor down. This avoids the time penalty of a con­
text switch.

Table 5 shows the effect of interrupt latency in a
real-time system. Many factors, contribute to this effect.
The processor itself has a worst.,.case interrupt response
time, and ,the memory subsystem might also contribute
to interrupt latency. The operating system might be re­
quired to disable ,interrupts ,during critical, sections of
code, thus, adding to interrupt latency.

Interrupt response time varies among, processors.
Some processors are designed such that they save the
entire state of the machine when' an interrupt, occurs. In
this case, the interrupt handler starts executing without
regareJ' to the context of the interrupted task. Although
this practice might be ,convenient for the person writing
the interrupt handler, it adds to the system's overhead
and slows interrupt response time.

Other processors vector to the ,interrupt handler
and make the' interrupt routine ,responsible for saving
any part of the' interrupt 'task, state that the handler
might use. The st~te of the interrupt task must then be
restored upon exit' from the' interrupt handler. This, is a
good approach because it does· not introduce any un­
necessary· overhead. '

The best approach in minimizing interrupt latency
at th~ processor level is to employ a dedicated. set of
registers reserved for interrupt handlers, With this ap­
proach, ~e·· ~nterrupt handler' need not be concerned

Table 4. 35-llSContext Switch Overhead

Tasks 1-5

Switch Overhead

Number of Switches

Overhead

743ms

35 us
5733

200ms

with saving and restoring the interrupted task's working
registers.

Another factor you must account for is memory
system latency. In a design. using dynamic memory, the
interrupt latency includes the worst-case memory-cycle
timing for fetching interlllpt handler instructions. In a
cache system, the worst-case timing includes the time
penalties of a cache· miss. With processors running in
the 25- to 40-Mhz range, failure to consider these laten­
cies can have drastic effects.

Just as important as the time taken to switch tasks
or respond to interrupts is the time window during
which· the operating system is unable to do these things.
An operating system's ability to do a context switch in
10 ~ is not useful if the operating system disables con­
text switching for 50 ms or more while doing something
else;

An operating system' might disable interrupts to
place a task in a ready queue or to access a critical
region while doing inter-task communication, resource
allocation, or· task synchronization. When accessing a
critical region, a real-time system must provide a way to
get uninterrupted access to a· shared variable. Some
processors support this requirement in hardware; how­
ever, the following example shows the overhead in­
volved when hardware does not support uninterruptable
access to shared variables.

Access to Shared Variables
This example defines two tasks Table 6. Task 1

counts the number of input pulses from ,an input
stream. . Task 2· reads the total number of pulses every
second, clears the count variable, and performs a series
of operations based on the total' number of pulses. If
special care is not taken in accessing the· shared count
variable, the following might occur:
1. Task 1 has control 1* count is at 200 */

count->register

register+ l->register
interrupt occurs

2. Task 2 gets control (One second has elapsed)
count->register

O->count

execute based on count

3. Task 1 resumes
register->count

Table 5. Effect ofInterrupt Latency

Event

Task Switch

Interrupt latency

Response to event

Worst-Case Time

3$ us

25 us

25 us

A serious problem has occurred: The variable
count contains a value of 201 when the count should be
1. This is a common problem that must be overcome in
a multitasking. environment. The key to eliminating the
problem is . uninterruptable updating of shared variables.
In processors without harqware support for this
capability, the only way to update a shared variable
without the possibility of pre-emption is to disable inter­
rupts. Table 7 shows modifications. (Note that this
solution is valid only for single-processor systems. In a
multiprocessor system; some form of hardware lockout
is essential.)

Although this solution works, and the maximum
amount of time in which interrupts are disabled is mini­
mal, everything is not as it seems. The main problem is
that interrupts can only be disabled in supervisor mode.
This means that·· a software trap must be executed, the
processor must branch to a trap vector, change into su­
pervisor mode, execute the few uninterruptable instruc­
tions, then go back to the original point You must cOIi:­
sider the time during which the processor i~ uninterrup~
table when calculating worst-case interrupt latency.

SPARC as a Real-Time Controller
As real-time systems vary widely in requirements, it

is important that a specific processor chip set provide
the flexibility to meet the needs of specific applications.
It does not make sense to pay fora processor that has a
built-in floating point unit to ~o strictly integer opera­
tions. The same holds true for 'a processor with a built­
in MMU when you use only a physical memory system.
The Cypress SP ARC chip set is specifically deSigned to
meet the needs of individual applications without fOIC­
ing you to buy something you do n9t need. Table
8shows the SPARC family of chips: You can. use these
parts in any combination to create a system' that fits
your application. family· of chips. You can use these
parts in any combination to create a system that fits
your application. family of chips. You can use these
parts in any combination to create Ii system that fits
your applic~tion~

Processor Interrupt Response Time
The CY7C601 SP ARC integer unit minimizes inter­

rupt latency at 'the processor level. The processor dedi~
cates eight of its 136 registers strictly for use by inter­
rupt handlers. When an inteiTupt occurS, the interrupt
routine automatically gets anew set of· eight registers
with which to work. On an interrupt, the processor
switches to superVisor mode, gets the new set of

Table 6. Format of Tasks

Task 1

count->register

registeN 1->register

Task 2

count->rf;!gister

O->count

Table 7. Modified Format of Tasks

Taskl

,disablQ interrupts

couQt->register

register+ l->register

register->count

Task 2

disable interrupts

count->register

O->count

enable interrupts

registers, and completes execution of the first instruc­
tion in ,the interrupt routine in a worst-case time of 14
clock cycles. At 40 MHz that time equals 350 ns.

Two of the CY7C601's interrupt-handling registers
autornap.~ally save the program counter and next pro­
gram coun~ of the interrupted task, with the remain­
ing sjx registers, at the disposal of the interrupt routine.
Upon return from the interrupt, the processor automat­
ically restores the state of the interrupted, task; this is
done in two clock cycles, or 50 ns at 40 MHz.

Achieving Deterministic Response Time
The CY7C604 CMU has two special features that

help guarl!lltee deterministic response for systems using
either virtual or physical addressing, with or without
cache memory. The MMU allows selected pages to be
locked into the Translation Lookahead Buffer (TLB).
This capability ensures that critical memory pages are
always in main memory, avoiding the delay associated
with a table walk;

In systems using cache memory, the CY7C604 al­
lows the cache to be locked. You can load the cache
with time-critical code, such as interrupt handlers and
time-critical tasks, and be sure that these routines will
a1wa~ be present in the cache. With these features,
memory latency is no longer a problem, and predict­
ability is guaranteed.

Se"1flphore Support in Hardware
Included in the CY7C601's instruction set are two

instructions tltat provide uninterruptable access to an
external memory location. The SWAP instniction ex­
changes the contents of, a selected register with the con­
tents of the addressed memory location. The atomic

Table 8. RISC 600 Family ofSPARC Chips

Device

CY7C60l

CY7C602

CY7C604

Description

Integer Unit

Floating Point Processor

Cache Tag-Controllerl
MMU

8-98

load-store instruction' moves a byte from memory into
the selected register and then rewrites the same byte in
memory to all Ones. The CY7C601 executes both in­
structions without allowing intervening asynchronous
traps.

You can use either of these instructions to create a
semaphore for accessing a critical region without the
need to enter supervisor mode and disable interrupts.
The SWAP instruction can be used for counting
semaphores, and the atomic load-store is appropriate
for a simple semaphore for critical regions.

Alternate Register Models For SP ARC
The Cypress CY7C601 has a total of 136 32-bit

registers, which are divided into a set of 128 local
registers and eight globals. The use of these registers is
configurable by accessing a processor register called the
Current Window Pointer (CWP). Two common operat­
ing models are supported by commercially available
compilers and operating systems: The standard register
windowing model is optimized to minimize procedure
call overhead, and an alternate model significantly
reduces the time required for a context switch.

Register Windowing Model
For the register windowing model, the register file

is divided into a set of eight overlapping register win­
dows. Each window contains a set of 24 local registers.
The registers in each window are divided into three sets
of 'eight registers referred to as INS, LOCALS, and
OUTS. At any given time, the processor can access only
one, window ,and the eight globals. The windows are
join~ together ina circular stack, with each window
sharing its INS and OUTS with adjacent windows. Two
instructions provide for rotating the windows among
procedures.

A save instruction is used with a procedure call to
allocate the next window for the called procedure.
Before executing the save instruction, the calling proce­
dure stores the parameters to be passed in its OUT
registers. Upon execu~on of the save instruction, the
register set is rotated such that the called procedure has
access to the passed parameters in its IN registers.

A restore instruction is used with a return from
procedure to restore the register set' of the calling pro­
cedure. Before executing the restore instruction, the
called procedure stores in its IN registers the
parameters to be returned to the calling procedure.
Upon execution, of ,the restore instruction, the register
set is rotated back to its previous position with the
returned parameters, in the caller's OUT registers.

Because the processor logically provides new LO­
CALS and OUTS with each procedure call, local
register values need not be saved and restored across
calls. The overlapping registers also minimize the over­
head of passing and returning procedure parameters
because the' parameters are passed in registers instead
of the main memory stack.

Fast Task Switch Register Model
For the fast task switch register model, the register

set is divided into four non-overlapping sets of 24
registers. Three of the four register sets are dedicated
to the three highest-priority or time-dependent tasks.
All the remaining tasks share the other set of registers.
Associated with each register set are a set of eight inde­
pendent registers for use by interrupt handlers. These
registers also store the state of the processor on a task
switch.

Using this register model, the processor can do a
task switch to any of the three highest priority tasks in
under a microsecond. A task switch to one of the other
tasks can be done in less than 3 Ils.

When an interrupt occurs, the processor automat­
ically switches register sets to access the interrupt
registers corresponding to the new task. If the interrupt
initiates a task switch, the state of the processor is saved
in the interrupt registers. If the new task is one of the
three high-priority tasks, the task's state is loaded from
its dedicated interrupt registers, and execution begins
immediately. In this case, the state of the machine is
merely the PSR, PC, NPC and possibly a few other con­
trol registers. The general-purpose registers are not af­
fected, as they are dedicated to general-purpose tasks.

If the new task shares a set of registers, the state of
the task previously using that register set is saved to
memory and the new task's state is loaded into the
processor. This state includes the minimal processor
state as well as the 24 general-purpose registers.

To understand this model's task switching behavior,
consider two examples:

Example l-Switching to a higher-priority task
1) Interrupt occurs

Automatically switches to interrupt registers
PC and NPC saved in interrupt registers

2) Save PSR and any other control register to interrupt registers
3) Load the pointer to the new task's interrupt registers into the
CWP
4) Restore new task's PSR and any other control registers

8-99

5) Execute RE'IT (return from trap)

Example 2-Switching to a lower-priority task
1) Interrupt occurs

Automatically switches to interrupt registers
PC and NPC saved in interrupt registers

2) Save PSR and any other control registers to interrupt registers
3) Load pointer to the shared set of working registers into the CWP
4) Save the registers to memory

(these are the registers of the previous task using the window)
5) Restore the working registers of the new task from memory
6) Update the CWP to point to the shared task's interrupt registers
7) Save to memory the eight interrupt registers containing the

state of the previous task running out of these registers
8) Restore the state of the new task
9) RE'IT (return from trap)

Each register model has certain advantages. Using
register windowing significantly reduces both proce­
dure-call overhead and data-bus traffic as parameters
are passed in registers. This approach also has the af­
fect of caching local variables because each procedure
gets a new set of local registers. The price paid for this
advantage lies in the context switch overhead. On a con­
text switch, the processor must save and restore all the
used registers-up to 120, as detennined by the Win­
dow Invalid Mask (WIM), a processor status register.

When using the fast context switch register model,
on the other hand, you do not get the ultra-fast proce­
dure calls that result from register windowing. You do
get the benefit of four separate register files and very
fast context switching, however. In this model,
parameters are passed on the stack as is done on most
other architectures. Each task's allocation of 24 general­
purpose local registers and eight global registers is the
same as the total number of registers in most other ar­
chitectures.

Because register usage in the CY7C601 is con­
figurable by software, you can mix these models to
achieve the benefits of both. The SP ARC register set
and the entire Cypress chip set has been designed to
cover a wide range of applications efficiently.

Appendix A. Sample C Program to Compute Context Switch Overhead

1*** ************1
1* *1
1* This program is used for detennining the overhead of context switching in a real-time system. This simulation does not take into *1
1* account interrupt latency, memory I;ltency, or any of the other many possible forms of overhead associated with a realtime *1
1* system, but these can easily be added. The current version should be sufficient to give a good idea of how much time the kernel *1
1* is spending on context switching. *1

1*** ************1
#include \c\ms\include\math.h
#include \c\msunclude\stdio.h
#define BCKGRND 100
FILE *fp; int openfile; char fname[35]; int numtasks;
main (argc, argv)
int argc;
char *argv[];
{

int i,j;
int iterations;
int curr_task;
int time[I00];
int duration [1 00];
int frequency[1 00];
int total;
float background;
int swtime;
int switchh;
int temp;
int tempI;
int sampfreq;
float tempflt;
float cs_time;

create _fileO;
temp = 0;

1* get number of simulation points per second *1
while (temp==O)

{

place (7,4,"Enter the sampling rate in Hz (100 - 10(00) : ");
locate (7,58);
ceolO;
iterations = 0;
temp .. getcharO;
while (temp<>Oxa)

{

if «temp> .. 000) && (temp < .. 009»
{

temp = temp - Ox30;
iterations = iterations * 10;
iterations = iterations + temp;

temp = getcharO;
},

temp .. 1;
locate (22,S);

8-100

Appendix A. Sample C Program to Compute Context Switch Overhead (continued)

ceolO;
if «(iterations % 1(0) != 0) II (iterations = 1(0) II (iterations = 100(0»

{

temp = 0;
place (22,5,"Error must be = 100 or 10,000 and a mult of 100");
}

},
1* time in microseconds of one clock tick *1

sampfreq = 10000 1 (iterations 1 100);

place (8,4,"Enter the context switch overhead in microseconds : ");
locate (8,58);
swtime = 0;
temp = getcharO;
while (temp<>Oxa)

{

if «temp> - 000) && (temp< = 009»
{

temp = temp - Ox30;

swtime = swtime * 10;
swtime = swtime + temp;

temp = getcharO;

1

temp = 0;
while (temp==O)

{

place (9,4," Enter the number of tasks (100 max) : ");
locate (9,58);

ceolO;
numtasks = 0;

temp = getcharO;
while (temp < > Oxa)

{

if «temp > = 0x30) && (temp < = 009»;
{

temp = temp - Ox30;
numtasks = numtasks * 10;
numtasks = numtasks + temp;
}

temp = getcharO;
}

temp = 1;
locate (20,S);
ceolO; if (numtasks > 1(0)

{

temp = 0;
place (20,S ,"Maximum number of tasks is 100");
}

},
1* tasks numbered 0 to n *1

numtasks = numtasks - 1;
for (i=O; i=numtasks; i++)

8-101

Appendix A. Sample C Program to Compute Context Switch Overhead (continued)

temp = 0;
while (temp==O)

{,
locate (i+ll,4);

printfC'Enter the frequency of task %d in Hz" ,i);
locate (i+1I,60);

ceolO;
frequency[iJ .. 0;

temp .. getcharO;
while (tem<>Oxa)

{

if «temp> = 000) && (temp < = 009»
{

temp .. temp - Ox30;

frequency[i] = frequency[iJ '" 10;
frequency[i] = frequency[i] + temp;
}

temp .. getcharO;
}

locate (20,S);

ceolO;
locate (21,S);
ceolO;
if (frequency[i] 0)

{
if «iterations % frequency[i]) ! ... 0)

{

else

locate (20,S);
printf (" Warning: %d and the simulator frequency: %d are not multiples",frequency[i],iterations);
place (21,5," Would you like to re-enter the value (not mandatory) (y'n) : ");.
locate (21,70);

temp = getcharO;

tempi = getcharO;

'''' CR "'I
if «temp=='Y') II (temp=='y'»

temp .. 0;

else
temp = 1;

place (20,5," Frequency must be greater than zero ");
temp .. 0;

}

1* frequency[i] will be used with modulo operator to see when task ready""
frequency[i] = iterations' frequency[i];

1* integer divide ""
}

locate (20,5);

ceolO;
locate (21,5);

8-102

Appendix A. Sample C Program to Compute Context Switcu Overhead (continued)

ceolO;

for (i=O; i=numtasks; i++)

{

locate (i+numtasks+14,4);
printf(,Enter the duration of task %d in microseconds" ~);

locate (i+numtasks+14, 60);
duration[i] .. Q;

temp = getcharO;

while (temp<>Oxa)

{

if «temp> = 000) && (temp < = 009»
{

temp = temp - Ox3Q;

duration[i] = duration[i] * 10;

duration [i) = duration[i] + temp;

}

temp = getcharO;

}

/* init ialize current task *1
curr _task = BCKGRND;

/* init current task, task switch needed for 1st task background task time of execution *1
background = 0;
1* number of contexi switches *1

switchh = 0;

1* init total time left in this time s lice *1

total = 0;

1* check to see whether a disk fil!l is to be opened *1
if (openfile== 1)
init_fileO;

clsO;
1* init time spent in individual tasks *1

for (i=O; i=numtasks; i++)

time[i] = O~
1* iterations start at 0 *1

iterations = iterations - 1;

1* main simulation loop *1

for (j=0; j=iteratio!ls; j++)
/* number of samples 'lll

{

1* screen oup ut to show system didn't die *1

if «j % 100)==0)
{

locate (10,6);

printf (' Doing silllulation loop %d of %d n, j,iterations+l);

},
total = total + sampfreq;
1* increment clock time for each time slice scheduling of tasks *1

for (i=O; i=numtasks; i++)

1* check if task is scheduled to execute *1

if <G % frequency[i])==O)

I*. modu 10 operator *1

if (time[i]= = 0)

8-103

Appendix A. Sample C Program to Compute Context S\litch Overhead (continued)

else

'* has it completed from last time *'
{
time[i) • duration[i);

'* init time slice required *'
if (openfile 1)

fprintf(fp,"task%d is ready \n",i);

'* hasn't completed previous scheduled time *'
{

clsO;
locate (10,6);
printf (" Need a faster processor, check simulation file");

if (openfile •• l)

fprintf (fp," task %d has been scheduled again but has not completed",i);

goto pi; '* abort simulation *'
}

'* print which clock tick in file *',
if (openfile ... l)

fprintf(fp,"%d:",j); ,

'* executing of tasks *'
for (i- 0; i. numtasks; i+ +)

'* check for tasks 0 to n being ready *'
{,
if (total> 0)

'* check if there is time to run the task *'
if (time[i»O)

'* is this particular task ready to run *'
{ ,* does a context switch actually take place or was *'
if (i !. clDT_task)

{
total .. total - swtimej

'* context switch time *'
switchh .. switchh + 1;

'* # of context switches *'
'* can task time slice be completed *'
if (total ..; time[i))

{

if (openfile 1)
fprintf(fp,"%d" ,time[i));

total- total-.time[i);

'* time left in slice *'
time[i) .. 0;

'* update ready list *'
curr _task = ij

j. mark as last task to run *'
'* can run portion of tas~ *'
else

8-104

else

Appendix A. Sample C Program to Compute Context Switch Overhead (continued)

else

1* use remaining time available in simulation slice "'I
if (total 0)

total- 0;

I'" time still required by the task "'I
time[i] • time[i] - total;

I'" time slice has expired "'I
}

I'" mark in sim file that a context switch has started for "'I
I'" one task but a higher priority task has become ready "'I

I'" and will has pre-empted the scheduled task "'I
else

if (openfile==l)

fprintf(fp,"X");

I'" mark state of processor "'I

curr _t ask '" i;

if (openfile == 1)
fprintf(fp," -");

if (openfile= ... 1)

fprintf(fp,"-");

I'" background "'I
I'" if time left after all· scheduled tasks have run, let bac kground task run "'I
if (total 0)

{

I'" check to see if background was last to use the processor "'I

if (curr_task != BCKGRND)

{

switchh", switchh + 1;

total", total - swtime;

curr _task ... BCKGRND;
I'" set curr_task to background "'I
if (total 0)

else

{

if (0Penfile l)

fprintf(fp,"%d" ,total);

I'" add to background task exec ution time "'I
background '" background + total;

total .. 0;

I'" background takes all remaining time "'I
}

8-105

Appendix A. Sample C Program to Compute Context Switch Overhead (continued)

else

if . (openfile ... l)

fprintf(fp,"X");

if (openfile--l)
fprintf(fp," _");

if (openfile"'=I)
fprintf(fp,"\n") ;

1* screen output *1

clsO;
for (i - 0; i=numtasks; i++)

tempflt .. «(float)iterations + 1) I (float)frequency[iD * (float)duration[i];
tempflt = tempflt I 1000:

locate (i+4,6);

printf (' Total execution time for task %d : %6.2f ms",i,tempflt);
}

locate (numtasks + 6,6);

printf (" There were %d Cotltext switc hes" ,switchh)~
cUime .. «float) swtime * (float) switchh) I 1000;

locate (numtasks + 8,6);

printf (" Context switch ove rhead : %6.2f ",cs_time);
locate (numtasks + 10,6);

printf (,Time available for background tasks: %6.2f ",background I 1 000);
pI: locate (numtasks + 15,6);
printf C'For more info look at simulation file ");
locale (22,1);

if (openfile==I)
fclose(fp);

1* screen utilities supported with ansi.sys clear screen utility *1
cis 0
{
printf ("%cl 2J").7);

}

ceolO
{
printf ("%elK").7);
}
locate (row,col)

int row,col;

printf("%c[%d;%dH",27, row,col);

}

place (row,col,text)
int row,col; char text[];

locate (row,col);
puts (text);

8:..106

Appendix A. Sample C Program to Compute Context Switch Overhead (continued)

create _fileO

{

int temp);

openfile '"' 0;
for (i.Q;i#;i++)

fname[i] = 0;

clsO;
place (5,4,"Enter file to be created (Retu m for no file): ");

locate (5,51);

i '"' 0;
temp = getcharO;
if (temp=Oxa)

{

temp '"' getcharO;
while (temp<>Oxa)

{

fname[i] = temp;

i++;

temp = getcharO;
}

fp = fopen(fname,"w");

openfile = 1;
}

initJileO
{

inti;

fp rintf(fp,"\n\n\n\n Simulation Results \n\n\n\n\n");
fprintf(fp," Tick ");

for (i=O; i=numtasks; i++)

fprintf(fp,"task%d ",i);

fprintf(fp,"background \n\n");

},

8-107

--.:- ~ ---- _ :} ~: .
. iii CYPRESS

, SEMICONDUCTOR

Memory Protection and Address Exception
Logic for the CY7C611 SP ARC Controller

This application note describes an address validity
check circuit for the Cypress CY7C611 SPARC-com­
patible RISC controller. The design provides validity
checks on 32-bit word boundaries for the entire 24-bit
CY7C611 address space. If an address falls outside a
valid boundary, the check circuit generates a memory
exception.

The absence of a memory management unit
(MMU) often distinguishes an embedded microproces­
sor from a central processing unit. This does not mean
that some MMU functions are not desired for em­
bedded applications, but these applications usually do
not need the full range of such functions (mapping, ac­
cess protection, validity check, etc.). However, a circuit
that performs an address validity check definitely has
applications in embedded systems, provided that the
circuit can be implemented with a reasonable number
of components. The circuit described here is imple­
mented in two Cypress EPLDs: a CY7C332 and a
CY7C361.

The circuit contains two functional blocks: the ad­
dress-checldng circuit and the memory-exception gener­
ator (Figure 1). The address-checldng circuit checks the
SP ARC processor's most significant 22 address bits
against an arbitrary memory map. The memory map
used for this design appears in Table 1. If an address

Table 1. System Memory Map

ADDRESS DESCRIPTION EXCEPTION

000000 - 07FFFF Boot PROM N

080000 - OFFFFF Unused '(

100000 I/O Status Reg. N

100004 I/O Control Reg. N

10000a - 1FFFFF Unused Y

200000 - 5FFFFF 4Mb RAM N

600000 - BFFFFF Unused Y

COOOOO - DfFFFF I/O Interface N

EOOOOO - FFFFFT Reserved for exparos::ion y

ADDRESS
CY7C332

/WE ADDRESS
CY7CCll CHECK CKT
INTEGER ~ (ACC)

UNT

.......

~ ~
, 'I' I' , II INlA..L

WRY
/MHOLDA ... CY7CJ61

/MHOLOB MEMORY

/MEXC
EXC£PTION
GENERATOR

/MDS (MEG)

~

Figure 1. Block Diagram

exception occurs, the memory-exception generator
sends a memory exception to the processor.

8-108

These circuits offer an example of how the logic
functions built into the CY7C332 and CY7C361 can im­
plement designs that would otherwise be very difficult
to implement. The CY7C332's transparent latch mode
permits the design to make the most of the 10-ns ad­
dress setup time provided by the CY7C611 SP ARC
controller. The CY7C361 combinatorial input con­
figuration acts upon the exception information without
incurring any extra clock delay, while the single­
registered configuration holds CY7C611 bus transaction
information. The CY7C361 Mealy input inhibits
memory exceptions that might occur because of a nul­
lified address from the CY7C611, and the termination
macrocell configuration inhibits further exceptions
before the current exception completes.

CY7C611 Memory Interface
The CY7C611 sends most of its memory interface

signals out unlatched. Thus, these signals are only valid
a short time before and after the system clock's rising

C?~RESS CY7C611 Memory Protection and Address Exception Logic
~jr ~C~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~~~~~

eLK
A (2."l'O)

Opt '0)

INULL

!

WRT

AE:XC

MHOLOx

MOS

MEXC

Figure 2. Load Bus Cycle

edge, To be used, they must be latched outside the
processor.

The processor sends out a few latched signals.
!NULL is the only one of these signals used in this
design. The processor holds !NULL until the next rising
clock edge, and the signal is not designed to be latched
externally.

The Load, Load Double, Store, and Store Double
bus cycles for the CY7C611 appear in Figures 2,3,4,
and 5, respectively. Figure 6 illustrates a Load with
Memory Exception, and Figure 7 illustrates a Store with
Memory Exception. Note that in both cases, MHOLD
becomes active more than one clock after the address
causing the memory exception leaves the bus. This is ac­
ceptable because the data corresponding to that ad­
dress is just being clocked into the CY7C611's fetch
pipeline stage, and thus can be easily invalidated.

Signal Description
The signals used in the design are:
1. IMHOLD(A/B) -Memory Hold (CY7C611 in­

puts)
These two signals are ORed together inside the

processor. Either is asserted to freeze the processor's
pipeline, which is the ftrst thing that must be done to
generate a memory exception. The CY7C611 's outputs
revert to and maintain the value they had at the clock's
rising edge in the cycle in which either signal was as­
serted. These inputs are sampled at the processor
clock's falling edge.

This design's state machines use both /MHOLDA
and /MHOLDB. The store exception state machine
uses IMHOLDA, and the load exception state machine
uses /MHOLDB (Figures8 and 9).

2. IMDS-MemoryData Strobe (CY7C611 input)

The memory-exception generator asserts Memory
Data Strobe to strobe the lMEXC memory exception
signal into the CY7C611. IMDS can only be asserted
when the pipeline is frozen via assertion of /MHOLDA
or /MHOLDB. IMDS must be de-asserted before or
simultaneously with the release of memory hold (Figure
6 and 7).

3. IMEXC - Memory Exception (CY7C611 input)
Assertion of this signal initiates an instruction ac­

cess or data access exception trap and indicates to the
processor that an attempt was made to access an invalid
address. lMEXC serves as a qualifter for the IMDS sig­
nal and must be asserted when both IMHOLD(A/B)
and IMDS are already asserted. When IMEXC is
generated with IMDS, the contents of the data bus are
ignored. lMEXC is latched on the clock's rising edge
and is used in the subsequent cycle. IMEXC must be
released in the same cycle that memory hold is released
(Figure6 and 7).

8-109

4. INULL - Instruction Nullify (CY7C611 output)
The processor asserts INULL to indicate that the

current memory access is being nullified The signal is
asserted in the same cycle in which the address being
nullifted is active, although the address is no longer on
the address bus. The address is held in external latches.
!NULL is used to disable memory exception generation
for the current memory access. Tills means INULL
should not be asserted during a memory exception.
!NULL is asserted under the following conditions:

During the second data cycle of any store instruc­
tion, to nullify the second occurrence of the store
address, i.e., if the address was valid the ftrst time,
it is still valid the second time

On all traps, to nullify the third instruction fetch
after the trapped instruction

5~ CY7C611 Memory Protection and Address Exception Logic
~~R==~~~~~~~~~==~==

On a load in which the hardware interlock is ac­
tivated
On JMPL and RETT instructions
INULL is used as a Mealy input to the memory-ex­

ception generator to inhibit memory exception genera­
tion during nullified load memory accesses. The signal
has no effect on the· store exception state machine
(Figures2 through 7).

5. /WE - Write Enable (CY7C611 output)
/WE is asserted during the cycle(s) in which store

data is on the data bus. The address-checking circuit
uses this signal to inhibit generation of address excep­
tions after the store has begun (Figures4,5 and 7).

6. WR T - Advanced Write (CY7C611 output)
WRT is asserted in two cases: during the frrst store

address cycle of integer single or double store instruc­
tions and during the second load/store address cycle of
atomic load/store instructions. The memory-exception
generator uses this signal to enable either the store
(WRT = 1) or load (WRT = 0) state machines
(Figures2 through 7).

Address-Checking Circuit
The address-checking circuit fits completely into a

single· CY7C332. This PLD was chosen because it has
the required number of I/O pins, a very narrow capture
window, and inputs that are configurable as latches.
Configuring the inputs as latches allows you to make
maximum use of the CY7C611 's 10-ns address setup
before the system clock's rising edge (more on this
later).

eLK

A(23:0)

O(Jl:0)

The inputs to the address-checking circuit are the
22 most significant bits of the processor address bus,
the system clock (SCLK), and IWE. The output of the
address.,.checking circuit is a single line: Address
EXCeption (I AEXC). 1 AEXC is inhibited when IWE is
active. Figures 4 and 5 show that IWE is active only
when store data is on the data bus, i.e, after the frrst
address cycle of a store. At this point, because it is too
late to stop a store and generate a memory exception,
1 AEXC is inhibited. Note that 1 AEXC is inhibited only
on the data portions of store bus cycles.

Memory-Exception Generator
The memory-exception generator occupies roughly

1/3 of a CY7C361 PLD and must accomplish two
things. First, the circuit must respond to address excep­
tions generated by the address-checking circuit. Second,
the memory-exception generator must know when not
to respond to memory exceptions generated by the ad­
dress-checking circuit.

The second case requires the use of a Mealy
input/output pair in the CY7C361. The CY7C361 was
chosen for its Mealy I/O capability and its input con­
figurability. Each input can be configured as single
registered, double registered, or combinatorial. This
design uses both single-registered and combinatorial
inputs.

At frrst glance, INULL looks like the perfect signal
to inhibit memory-exception generation and reset the
memory-exception generator to its initial state. But as
Figure 7 shows, if the store's first address cycle causes
the address exception, IMHOLDx is asserted. just after

INULL

WE

__ +-______ ~------~~------4_------_+--~1

WRT

MEXC

Figure 3. Load Double Bus Cycle

8-110

~""""'" CY7C611 Memory Protection and Address Exception Logic
~aNOOcr~~~~~~~~~~~~~~~~~~~~~~~=-~~~

elK

A{23:0}

D{31 :O}

INUll

WE \ /
WRT rh

I
ftE)(C

MHOLDx'

MDS

MEXC

Figure 4. Store Bus Cycle

the next SCLK rising edge. At this point, INULL in- /MHOLDB input, and the store-exception state
hibits IMHOLDx and resets the exception circuit before machine has a regular CY7C361 output connected to
it can generate an exception - an undesired chain of the IMHOIDA input. Thus, !NULL can inhibit nul-
events. lified load transactions but has no effect on stores.

To avoid this problem, the memory-exception gen- The equivalent function for stores is accomplished
erator is actually two state machines - one for stores in the address-checking circuit with the /WE input.
and one for loads. The load-exception state machine When /WE is active, the address-checking circuit can-
has a Mealy output connected to the CY7C611 's not generate address exceptions. Memory exceptions

eLK
A(2J;(»

0(31 0)

INUll

~ \ !/

rh I
WRT

I

AEXC
t'

NHOLDx

NOs

iffi<C

Figure 5. Store Double Bus Cycle

8-111

~RE$ CY7C611 'Memory protectionan.d Address Exception Logic. ~J'-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a.K

A(2J:O)

0(31:0)

INUll

WRT

AEXC

£.ooptlol'l 1tdtI.

AI· •. At L.':"·~

I

Y I
r \~------------------------~~

\ I
\ I

Figure 6. Load with Memory Exception Bus Cycle

can therefore be generated. Recall' that /WE is only ac:"
tive during data portions of store transactions, when itis
too late to generate' memory exceptions fot that specific
transaction.

A 20~ns CY7C332 and a IOO-MHz CY7C361 are
sufficient' to support 25-MHz operation of the
CY7C611. Changing the CY7C332 to the newly avail­
able 15-ns version allows higher processor clock rates.
All timing described here is for a 25-MHz system.

elK
A(23:0}

D(31:0}

INULL

WE

WRT

AEXC

NOS:

, General Timing

__ +-________ +-________ ~-JI I \'-__ _

\,-~------------------~I
__ ~-----J~~------~--------~----------~--------~--~--------,'---I

\~----------------~/

\'--------"1
\ /

Figure 7. Store with Memory Exception Bus Cycle

8-112

~CYPRE'S CY7C611 Memory Protection and Address Exception Logic
&M~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/MHOLDA /MOS /MEXC
1 1 1

o

S = START
T .. TERMlNAlE o

o

o

o

Figure 8. Store Exception State Machine

The address is captured in the transparent latch in­
puts of the CY7C332-20. The latches are transparent
when SCLK is Low. This gives you use of the 10~ns
setup of the address to the clock's rising edge. IOns
after the latches close (SCLK rising), IAEXC is valid.

This signal is clocked into the CY7C361.;100 on SCLK's
middle edge. If I AEXC and WRT are both active, the
store-exception state machine is started. If I AEXC is
active and WRT is inactive, the load-exception state

" /L2
/MHOLDB /NDS /NEXC

1 1 1

o

S = START
T = TERNINATE o

o

o

o ,
Figure 9. Load Exception State Machine

8-113

~~.===;;;;;;C;;;;;;Y;;;;;; .. ;;;;;;7;;;;;;C;;;;;;6;;;;;;11=M;;w;e;;;;;;m.o;;;;;;r;;!';;y;;;;;;p;;;;;;r;;;;;;o;;;;;;te;;;;;;c;;;;;;ti;;;;;;O=D;;.a;;;;D;;;;;;d;;;;;;A;;;;;;d;;;;;;d;;;;;;r;;;;;;e;;;;;ss;;;;;;jE;;;;;;;;;;;x;;;;;;ce;:p;;;;;;b;;;;;;·O;;;;;;D;;;;;;L;;;;;;o;;;;-:g:;;;:;ic

SntULATE EDIT UIEWS LIMITS QUIT

~ ~DCLK . .r-L.r-L.r-1..r-:L I "L-...C"""
;-rl~fl~ [I SOLK

.. aMOLl<

~, IOKEN

3 OFF

a .l'RST

.. OLBRST

, .;'MHOI,.DB U
6 ~OLDA
7 ;'MDS

8 ;'MEXO I
WRT

;'AEHO L.. W I..,........J
o ;'INULL

a so

3 U .

.. 'sa
5 103

6 S4
7 S5

o RO r-1 r 1
U R1 r--1
12 Ra

13 R3

14 R4 r--1
IS R5 r--J

.L 120 130 I
I

Figure 10. PLD ToolKit Simulator O~tput (Load)

machine is enabled. WR T is captured in a single
CY7C361 registered input.

If INULL becomes active and the bus cycle is not a
store, the IMItOlDB output is inhibited, and the load­
exception state machine is returned to the initial state.
Note that the signal DCLK (Duplicate CLocK) qualifies
various inputs to the CY7C361. This is required because

SIMULATE EDIT UIEWS

if the clock doubler is enabled, as it is here, all the in­
puts and the macrocellsare clocked off the doubled
clock; however, some inputs are only valid on a single
edge of the clock. (For additional information on the
CY7C361, refer to the application note, "Understanding
the Cypress CY7C361."

LIMITS QUIT

~ ;'DOLI< 1 JLJLJLJLR
~ SOLK n If n rn rn rn~n H .. aXCLK

~9 JOKEN

3 oFF

2 ;'RST J
.. GLBRST 1
9 ;'I1HOLDB

6 ;'MHOLDA I
7 'I1DS
8 ;'MEMO

WRT r -,
;'AEXC b-W -~ j........J

o ;'IHULL

2 so

n S1

34 S2

35 S3 r 1
!l6 S4 I 1
n S5 J 1
~o RO r 1= U R1

12 R2

13 R3 It
14 R4

'l5 AS

r-:m-- ~
I

Figure 1l.PLD ToolKit Simulator Output (Store)

8~114

"7~ CY7C611 Memory Protection and Address Exce~tion Logic
~ ~~OR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Waveform diagrams for both load and store excep­
tions appear in Figures 10 and 11. The diagrams il­
lustrate the state sequencing inside the CY7C361 and
the output decode from the internal states. Notice how
the terminate function inhibits generation of further
memory exceptions until the current exception has been
completed. These diagrams were captured from the
Cypress PLD ToolKit simulator.

Appendix A contains the ABEL source code for
the CY7C332 portion of the design, and Appendix B
contains the PLD ToolKit source code for the
CY7C361 portion of the design. These files are also
available via the Cypress bulletin board. Contact your
local Cypress office for details on how to access the bul­
letin board.

Appendix A. ABEL Source Code· Address Check Circuit

Declarations

'1nputs **

SCLK Pin 1;
A23,A22,A21,A20,A 19,A 18 Pin 2,3,4,5,6,7;
A17,A16,A15,A14,A13,Al2 Pin 9,10,11,12,13,14;
All,A10,A9,A8,A7,A6 Pin 15,16,17,18,19,20;
A5,A4,A3,A2 Pin 23,24,25,26;
!WE Pin 28;
Allireg,Al0ireg,A9ireg Node 91,92,93;
A8ireg,A 7ireg,A6ireg Node 94,95,96;
A5ireg,A4ireg,A3ireg Node 97,98,99;
A2ireg,!WEireg Node 100,102;

A23 istype 'latch'; A22 istype 'latch'; A21 istype 'latch'; A20 istype 'latch';
A19 istype 'latch'; A18 istype 'latch'; A17 istype 'latch'; A16 istype 'latch';
A15 istype 'latch'; A14 istype 'latch'; A13 istype 'latch'; A12 istype 'latch';
Allireg istype 'latch'; AlOireg is type 'latch'; A9ireg istype 'latch';
A8ireg istype 'latch'; A7ireg is type 'latch'; A6ireg istype 'latch';
A5ireg istype 'latch'; A4ireg istype 'latch'; A3ireg istype 'latch';
A2ireg istype 'latch'; WEireg istype 'latch';

"Output **

!ADREXC Pin 27;

"Macros for readability
ADR = [A23,A22,A21,A20,AI9,A18,A17,AI6,A15,A14,A13,A12,Al1ireg,

A 10ireg,A9ireg,A8ireg,A 7ireg,A6ireg,A4ireg,A3ireg,A2ireg];

TOPPROM = 1\ h07ffff/4; 'Top of boot PROM (read only)
RSVOL = 1\ h080000/4; RSVOH = 1\ hOfffff/4; 'First reserved space
IOSTAT = 1\ hl00000/4; "I/O stat register (read only)
10CONT = 1\ hlOOOO4/4; '1/0 control register (write only)
NUSDOL = 1\ hlOOOO8/4; NUSDOH = 1\ hlfffff/4; 'First unused memory space
RAML = 1\ h200000/4; RAMH = 1\ h5fffff/4; ''RAM
NUSD2L = 1\ h600000/4; NUSD2H = 1\ hbfffff/4; "2nd unused space
IOL = 1\ hCOOOOO/4; 10H = 1\ hdfffff/4; " I/O space
RSVIL = 1\ heOOOOO/4; RSVIH = 1\ hffffff/4; ''2nd reserved space

C,H,L,Z,X = .C.,I,O,.Z.,.x.;

8-115

S,/;CYPRISS CY7C611 Memory Protection and Address Exception Logic
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix A. ABEL Source Code.; Address Check Circuit

EQUATIONS

A23.C = !SCLK; A22.C = !SCLK; A21.C = !SCLK;
A20.C = !SCLK; A19.C = !SCLK; A18.C = !SCLK;
A17.C = !SCLK; A16.C = !SCLK; A1S.C = !SCLK;
A14.C = !SCLK; A13.C = !SCLK; A12.C = !SCLK;
Allireg.C = !SCLK; A10ireg.C = !SCLK;
A9ireg.C = !SCLK; A8ireg.C = !SCLK;
A 7ireg.C = !SCLK; A6ireg.C = !SCLK;
ASireg.C = !SCLK; A4ireg.C = !SCLK;
A3ireg.C = !SCLK; A2ireg.C = !SCLK;
WEireg.C = !SCLK;

!ADREXC = WEireg & (
(0 ADR) & (ADR TOPPROM)

(RSVOL ADR) & (ADR RSVOH)
(IOSTAT = = ADR)
(IOCONT = = ADR)
(NUSDOL ADR) & (ADR NUSDOH)
(NUSD2L ADR) & (ADR NUSD2H)
(RSV1L ADR) & (ADR RSV1H»;

Test_Vectors ([ADR, !WE, SCLK] - !ADREXC)
[TOPPROM, 0, 0] - 1;

end

[TOPPROM,O, 1] - 1;
[TOPPROM+ 1,0,0] - X;
[TOPPROM+ 1,0, 1] - 1;
[TOPPROM+ 1, 1, 0] - X;
[TOPPROM+ 1, 1, 1] - 0;

8-116

~~= CY7C611 MemoQ' Protection and Address Exce~tion Logic
, ~~OR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix B. PLD ToolKit Source - Memory Exception Generator

CY7C361;
CONFIGURE;
!DCLK(node=3),
SCLK(node=4),
2XCLK(node= 74,dbl_ clk),
ICKEN(node= 29), {Enable for WR T input clk}
OFF(node = 73),
!RST(node= 12),
GLBRST(node=64),

lMHOLDB(node=19,and), {This output will default to active low}
lMHOLDA(node=16),IMDS,IMEXC, {Active low pure outputs}

WRT(node= 5 ,ireg) ,
1 AEXC(node= 6),
!INULL(node= 10), {A 0 on this input will force lMHOLDB HIGH}

SO(node= 32,start), {STORE STATE MACHINE}
S1(cin,term),
S2(cin,start),
S3(cin,start),
S4(cin,start),
S5(cin,start),

RO(node= 40,start), {READ STATE MACHINE}
R1(start),
R2(cin,term),
R3(cin,start),
R4(cin,start),
R5(cin,start),

EQUATIONS;
GLBRST = <prod> RST;
ICKEN = <inv_sum>; {always on}
{***
S states are states for Store operations, R states are states for Read
operations. DCLK is used to ensure sampling only when inputs are valid.
**}
SO = <prod> WRT * AEXC * !DCLK * !S1; {These conditions start

state machine}
S1 = < prod> S5; {S1 is term, so S5 terminates this output}

RO = <prod> !WRT * AEXC * DCLK * lR1 * !R2; {These conditions
start state machine}

R1 = <prod> RO * I!NULL * lDCLK;{R2 is term, so R5 terminates
this output}

R2 = < prod> R5; {R5 turns off the state machine}

MHOLDA = < inv sum> IS1 * ISO; {Active for 0, 1}
MDS = < inv sum; !S4 * IS5 * lR4 * !R5; {Active for 4 and 5}
MEXC = < iflv sum> 1S4 * !S5 * !R4 * lR5; {" "}
MHOLDB = < -inv_sum> !R2 * !R1 * !RO; {Active for 0, 1, 2}

8-117

Section Contents

Bus Products
Features of the VIC068 VMEbus Interface Controller. .. 9-1
Interfacing the VIC068 to the MC68020 .. 9-5

CYPRESS
SEMICONDUcrOR

Features of the VIC068
VMEbus Interface Controller

This application note describes some features of the
Cypress VIC068 and provides information· on how to use
the device.

The VIC068 was designed by a consortium of
VMEbus manufacturers in partnership with Cypress. The
major goals of this consortium were to achieve a stand­
ardized, reasonably priced vMEb~s interface that was not
dominated by any board manufacturer. Manufacturing
this specialized chip requires a high-speed process (125
MHz) and high-power I/O pins (64 and 48 rnA).

The VIC068 adheres to the ANSI/IEEE Standard
1014, which minimizes 'the problems of interfacing among
the VMEbus boards of various manufacturers. A block
diagram detailing the device's functional blocks appears
in Figure 1.

VIC068 Highlights
With very precise timing, based on a 64-MHz clock

that is used internally to make decisions on 8-ns intervals,
you can reach the theoretical limits of the VMEbus trans­
fer rates - a block transfer rate of 40 MBytesls.

,Because all logic resides in a single chip, the VIC068
greatly reduces the board space necessary to interface to
the VMEbus. Even a highly· sophisticated interface with
an A32/D32 system controller and block transfer support
requires no more than 60 square cm or 20 percent of a
double eurocard (6U card).

Special care has been taken to speed up the VIC068's
VMEbus access. Although, many of today's c.PU boards
use megabytes of high~speed local RAM to limit the num­
ber of VMEbus accesses, the accesses that do occur for
I/O or data reads and writes must be done efficiently to
avoid slowing the rest of the system.

For both types of data transfers, the VIC068 offers
special support. For single-write cycles, you can program
the VIC068 to operate in the so-called master or slave
write-posting mode. In the master write-posting mode
(Figure 2), the local VMEbus write cycle is terminated
locally as soon as data is latched in the VMEbus latches.
This allows the local CPU to continue with instruction
fetches or other operations while the VIC068 transfers
data over the VMEbus.

9-1

In slave write-posting mode (Figure 3), the same
function happens with write cycles from the VMEbus to
the local bus. As soon as the data is latched, the VMEbus
cycle is terminated and the local cycle can finish inde­
pendently of further VMEbus traffic. Both modes reduce
CPU overhead and VMEbus utilization, providing higher
bandwidth in single-cyc1e writes.

The VMEbus prohibits a similar function in single­
cycle reads because every read cycle on the VMEbus
could turn out to be a read-modify-write (RMW) cycle.
This cannot be foreseen because the only difference is that
the address strobe is held Low between the two cycles.
Therefore, if the VMEbus address strobe were released
during the two portions of the same RMW cycle, another
VMEbus master could break into that cycle and modify
the same data.

To move blocks of data over the VMEbus, the
VIC068 uses the block transfer mode. In its standard
form, this mode allows a processor to transfer up to 256
bytes with, just one starting address supplied to the
VMEbus. Additionally, the VIC068 uses a type of pipelin­
ing to accelerate VMEbus throughput. On a block transfer
read cycle, the slave VIC068 automatically prefetches the
n+ 1 data byte during the same read. The nth data byte is
transferred across the VMEbus, and the n-1 byte is latched
in local RAM. As shown in Figure 4, this operation uses

,all three buses in overlapped and parallel operation to
. speed up the transfer. Write transfers use the same
mechanism.

The limiting factor on the VMEbus transfer rate is
either the VMEbus's many timing restrictions or the
source or destination memories. If the memory consists of
dynamic RAM, the restriction is probably the cycle time
of the chips used, often as slow as 200 ns. To overcome
this limitation, the VIC068 offers a programmable access
mode so that attached DRAM can be used in page mode.

After a, starting row address cycle (RAS), all sub­
sequent cycles need only a column address (CAS) to
reduce the . access time, often by as much as half. For a
slave interface, the VIC068 contains all the necessary
counters and timing elements for local AS, DS, and ad­
dress generation.

LAO - LA7

ABEN*
LADO
LADI
LEDI

LEDO
DDIR*

DENO*
U'WDENN*
L~

SW'DEN*
ISOBE*

LAEN

VME
Buffer
Control
Logic

VIC068 Features

AOt - A07

Interprocessor
~~~~ COMMunications 

Registers 8l 
SWitches 

Control Signal 
TransforMation 

r----,..----ACFM..* 
----LRQ1* - LRQ7* 
1--..,...---.. FLO- - P\..2IJ 
...----..SYSFM..* 1-----.. L1AQ(0* 

~---0J<:84M 

I--............ -_SYSCLOCK 

~--~~--------s~ 

Figure 1. VIC068 Functional Block Diagram 

9-2 



Local AS -, r-L-.J 
VMEbus ACCESS --, ...------

VMEbus AS I >~ 
Local DTACK ~ 

VMEbus DTACK >''L-I 
Figure 2. Master Write Posting 

A master block transfer needs two or three additional 
latches for the higher address lines during the local DMA 
part of the block transfer. Thus, even with low cost 
DRAMs, the VIC068's block transfer rate can reach 40 
MBytes/s, limited only by the VMEbus specification and 
the physical characteristics of the VMEbus. 

This transfer rate decreases the time needed to load 
programs or move data to graphics boards, as well as in­
creasing the VMEbus's bandwidth, thereby allowing more 
CPU s to work together in a multiprocessor system. 

Mailbox Signaling 
To add greater capability to multiprocessor systems; 

the VIC068 has four interprocessor communication global 
switches (ICGSs) and four interprocessor communication 
module switches (lCMSs). These are all byte-wide mail­
box registers that generate a local interrupt when accessed 
from the VMEbus. The ICGSs of one group reside at the 
same address and are accessed with a write cycle, which 
behaves as a broadcast to all members of the group. Be­
cause the ICMSs are at different addresses, one dedicated 
processor can be activated with a local interrupt request 
(IRQ). 

A processor can inform a logical group of processors 
about a new task via a broadcast using the ICGSs and can 
then communicate with single processors about the task 
using the ICMSs. 

Eight-byte-wide interprocessor communication 
registers (ICRs) are also available. Five of these registers 
serve as general-purpose read/write registers, and three are 
dedicated to control local activities (Halt, Reset, Mask ID, 
etc.). The ICRs can be read and written from the local 
side or the VMEbus without interfering with each other. 

VIC068 Features 

VMEbus AS/DS ~ 
Slave Select ~ ,~ 

Local AS/DS ~ ,~ 
JMEbus DTACK ~ 

Local DTACK >~ 

Figure 3. Slave Write Posting 

Interrupt Generator 
The VIC068 handles up to seven simultaneous pend­

ing IRQs with separate vectors. The VIC068 also provides 
independent local IRQ vectors, if external IRQs are 
served. 

Miscellaneous Features 
The VIC068 furnishes several features for VMEbus 

support: 
SYSF AIL generation 
Software reset 
ACFAIL 
BERR register for detailed information 

For local support, the VIC068 provides these fea-
tures: 

Seven local IRQ sources, all level, polarity, edge 
and vector programmable. 
Local bus time out (2 - 512 ms) 
With/without VMEbus request time included 
31 different local IRQ vectors 
VIC ID register 

In addition to the VIC068, the following parts or 
equivalents are required for a minimum hardware inter­
face: 

Three address latches and drivers (74xx543) 
Three data latches and drivers (74xx543) 
Four isolation buffers (74xx245) 

You might also need the following: 
One to two PLDs for slave address decoding 
Two to three latches for master block transfer 
112 PLD for block transfer glue logic 

Longword n on VMEbus 

VMEbus 

Moster CPU 

Longword n-l 
wrItten to RAM 

CPU 1 

Slave CPU 
Figure 4. Block Transfer Read Cycle 

9-3 

Longword n+1 
wrItten to RAM 

CPU 2 



Interfacing 
To connect a processor other than the 680xOto the 

VIC068, it is often easiest to map the processor control 
signals into the control signals available on a 680xO type 
of processor. This type of transition interface offers the 
advantage of compatibility with.a large family of 680xO­
compatible peripheral parts, which you can then use else­
where in the design. 

Figure 5 shows a sample interface, whose four ad­
dress latches store the multiplexed M-bus of the MC88000 
processor. Four data latches store the data bytes after the 
acknowledge of the 680xO bus and then start calculating 
parity for the processor's M-bus. The reason for this ap­
proach lies in some older peripheral I/O chips, which 
change their data lines when they should remain stable 
(i.e., transmit data buffer empty, etc.). 

Two other data latches emulate the MC68020's 
dynamic bus sizing. The last buffer, between DO - D7 of 
the 680xO bus and AD16 - AD23 of the M-bus, emulates 
the 680xO bus's IRQ cycles with normal read cycles of 
the MC88000. 

Acknowledgment 
Cypress Semiconductor wishes to thank Jiirgen Bul­

lacher of Eltec GMbH and Eltec International S.A.R.L. for 
submitting this article. 

ADO,.,! 

9-4 

VIC068 Features 

I i L _______________ .1 

r---------------, 

~
i BlFFER i 

ADfl.23 '244 00.7 
I I 

I F. RQ VECTOR : I. _______________ J 

Figure 5. Sample Interface 

eaoxo 
ADDRESS 
BUS 

eaoxo 
DATA 
BUS 

CONTROL 



CYPRESS 
SEMICONDUCTOR 

Interfacing the VIC068 to the MC68020 

This application note explains some of the features of 
the Cypress VIC068 and provides the ftrst-time VIC068 
user with simple implementations of these features. The 
VIC068 offers the most highly integrated VMEbus inter­
face available today. It reduces the number of parts 
needed and saves board space. The emphasis in this ap­
plication note is on interfacing the VIC068 as VMEbus 
A24/AI6 DI61D08(EO) master/slave to the Motorola 
68020. 

Reset Operation 
The VIC068 performs three distinct reset operations: 

Internal reset -·activated by the IRESET pin, which ini­
tializes.most of the internal registers 
System reset - essentially the same as !RESET, but is ac­
tivated by writing ($FO) to the system reset register, or by 
asserting !RESET when the VIC068 is the VMEbus con­
troller (SCaN pin asserted) 
Global reset - initializes aU the VIC068 registers 

After a reset, the 680XO processor reads its initial 
stack pointer (SSP) and program counter (PC) from ad­
dresses $0 through $7. One way.to handle this is to remap 
the boot-up ROMs to the low addresses for the ftrst' few 
cycles of the processor. 

Figure 1 shows a circuit you can use·to do this. The 
circuit uses a serial-inlparallel-out shift· register (the 
74HCI64) to generate the MAP signal. This active-Low 
signal can be used with address-decode logic to force boot 
ROM access to the lower addresses during initial power 

3 QA 
MAP FOR 32-BIT MEMORY 4 QB 

6 QC 
MAP FOR 16-BIT MEMORY 10 ,QD 

A 
B 

up. Asserting the 74HCl64 CLEAR pin drives all the 
parallel outputs Low, which asserts the selected MAP sig­
nal. With the two serial inputs tied High, each Low-to­
High transition of the 68020 AS clocks the High through 
the shift register and out each of the parallel outputs. By 
picking the proper output for the MAP signal, you can 
decode from 1 t08 of the initial processor cycles. You 
can use the MAP signals on memory conftgurations that 
are 8, 16, or 32 bits wide by using the QH, QD, or QB 
outputs, respectively. 

Using The Processor RESET Instruction 
The OR gate in Figure 1 ensures that the 74HCI64 is 

cleared only when HALT and RESET are both asserted. 
This allows the use . of the 68020 RESET instruction 
without inadvertently re-asserting MAP. An alternative to 
this approach is to use two small-signal diodes (lN4148) 
and a pull-down resistor in place of the OR gate. This 
change reduces the design's parts count by eliminating the 
74HC32. 

A ROM remapping circuit must be used whether the 
RESET instruction is issued or not because of the way the 
VIC068 arbitrates local bus contention between the 68020 
and the VMEbus. Contention occurs when both master 
and slave operations are requested concurrently (MWB as­
serted and SLSELO, SLSELl, or IFCSEL asserted). The 
VIC068 indicates this contention by asserting DEDLK. 
You can' deal with the condition by setting· bit 4 of the 
VIC068's interface conftguration register ($AF) to assert 

YCC 

2 

TO V I Cl 68020 AS 
11 QE 
12 QF C L K <1--::8:...--, 

MAP FOR 8-BIT MEMORY 13 QG 
QH C L R 9 

74HC164 
74HC32 

Figure l~ ROM Remapping Circuit 

9-5 

TO YIC/68020 RESET 

TO VIC/68020 HALT 



Interfacing the VIC068 to the MC68020 

VCC 

I N4 148 
47K 

(TO VI C068 PI N 03) 

74HC14 

0.1 UF 

T 
GND 

I I RESET (TO VIC068 PIN B14) 

Figure 2. Global Reset Circuit 

HALT along with LBERR when DEDLK occurs (68020 
bus retry sequence). The VIC068 then waits for the 68020 
to de-assert the MWB input Once this happens, the 
VIC068 releases LBERR but continues to assert HALT to 
keep the 68020 off the local bus. The VIC068 then allows 
the slave operation.to complete and deasserts HALT. The 
68020 can now retry the contested bus cycle .. 

Internal Reset 

At fIrst· glance, the IRESET might seem the logical 
choice· for implementing the power-on reset. Because the 
IRESET input has some built-in hysteresis, a simple RC 
circuit would be appropriate for applying the power-on 
signal. 

IRESET does not initialize the local bus timing 
register nor any of the slave select registers, however. Ad­
ditionally, the VIC068 powers-up with the DRAM refresh 
option enabled (bit 4 of the arbiter/requester confIguration 
register $B3 High). This condition is acceptable if you are 
using DRAM but advers.ely affects the external reset cir­
cuit in Figure 1. SpecifIcally, for the fIrst DRAM refresh 
cycle, the VIC068 deasserts·RESET but maintains HALT 
in the active (Low) state and toggles AS. This action 
causes shift operations in the 74HC164. You can activate 
DRAM refresh after reset by writing a 1 to bit 4 of the 
arbiter/requester confIguration register ($B3). 

System Reset 

The assertion of SYSRESET on the VMEbus typical­
ly activates system reset, but only when a global reset is 
not taking place. When the VIC068 is confIgured as the 
system controller (SCON pin asserted), it drives the SYS­
RESET pin for the required 200 ms during an internal or 
global reset. 

Global Reset 

The global reset is the most useful for power-up pur­
poses because it places all the VIC068 registers in a 

9-6 

known state. You initiate a global reset by asserting 
IPL(O) concurrent with or just after asserting IRESET. Be­
cause IPL(O) is also one of the encoded interrupt lines for 
the 68020, you must assert this signal with an open-col­
lector device. 

Figure 2 shows a typical power-up circuit for assert­
ing IRESET and IPL(O). By using a device such as the 
74HC14, you get the hysteresis necessary for the shallow 
charging slope of the RC circuit connected to IRESET. 
And because of the 74HC14's inherent propagation delay, 
you can easily meet the requirement for asserting IPL(O) 
after IRESET. 

In using global reset, bear in mind that when the 
VIC068 powers-up it ignores the VMEbus SYSRESET. 
The VIC068 releases HALT and RESET after the 200-ms 
time out even if the current VMEbus master asserts SYS­
RESET past this required minimum time. This automatic 
release is a useful feature because it eliminates reliance on 
the· system controller to release SYSRESET to start the 
power:-up sequence. 

The VIC068 generates· a LBERR if you try to access 
the VMEbus or any of the VIC068 registers· before SYS­
RESET is de-asserted. One solution to this problem is to 
structure the software so that the VIC068 registers are set 
up as late as possible in the power-up sequence. You can 
also temporarily point the 68020 BERR exception vector 
to an address containing an RTE instruction and let the 
68020 cycle in a BERRIR TE loop until SYSRESET is de­
asserted. The latter approach provides an opportunity to 
be the fIrst board in a system to request YMEbus master­
ship. 

. Connecting The Bus Lines 
Figure 3 shows the standard buffer confIguration for 

an A241D16 VMEbus connection. This design also sup­
ports A16 and D08(E0) operation. 



IC~RESS 
~, SEMICQIDUCTOR 

The D16ID08(EO) Data Bus 
Connect the VIC068 to the 68020 as you would any 

16-bit peripheral device. The 74FCT543 data buffer con­
nects between the,68020 data bus's upper byte (D31 - 24) 
and the VMEbus D15 - 8 data lines. The lower byte (LD7 
- LDO) is buffered through the VIC068 to the VMEbus 

11 Il A .. 

[H U .·PAm 

Interfacing the VIC068 to the MC68020 

low byte (D7 - DO). Several control signals connect 
directly from the VIC068 to the 74FCT543: DENO (data 
enable out) to OEAB (Output enable A-to-B), LWDENIN 
(lower word data enable) to OEBA (Output enable B-to­
A), LEDO (latch enable data out) to IEAB (Latch enable 
A-to-B), and LEDI (latch enable data in) to LEBA (latch 
enable B-to-A). 

'1 .. 110 
'1 .. 111 .1-1. 

~ := .1 .... 
Pl· .. 

C::::: 

~ 
.1-111 
'1-" 

C::::: .1-17 
'1-" 

$::: 
'1-111 
'1-114 
.1-11' . .1 .. 111 
,1 .. 11 
,1 .. 1 • 
• I-CII 
Pl·IU 
fl·ll. 
fl·ll. . . Pl·1l7 , .. 
Pl·1l1 COlTtOL 
Pl·IU . fl·n. 'OJ 
fl·UI .. fl·AU 
Pl·AtI 
Pl'AII · fl'C14 
fl·AU · fl·11I · '1·111 · Pl'117 · Pl·II. 
Pl-All 
'I-Al' 
,1 ... 111 

: .1 ... 11. 
'l-Cll 
'l-CIO 

: .1-1) 
'l-Cll 

fl-CII -. fl-CII 
fl-CI7 
,I-CII 
,1·CII 
fl-Cl' 
H'CII 
'I-CII 
fl-CIl 
fl·CU ,"E 
,I·CI. Ila Pl-Cl. IUS fl-Cl7 
't-C.I 
Pl-Cl. 
Pl-esl 
Pl-AH 

,.- Pl-au 
Pl-AII 
.1-AI' 
.1-AII 
'I-AI' .1-A,' 

~ 

~ fl-U 
+- Pl-C7 

'I·e' 
Pl-CI 

'4-0 
,t .. c .. 

I 

It~r"l1 
.r,oo. .. ... Pl-es 

...J..lll.. ..L 'A"i'""Io i • ... . 'l-CI 'ME 

7'ACt. AI .. Al II Al II 'loU IIDIEII 
AI II AI I. Pl·" IUS 

AI II AI I' I. ., ..... '1-A7 
AI IS U II U II .1-AI 

~ 
U .. :: :: AI U ,I-li 
AI n .. AI .. .1 .... 
AI .. A7 17 A7 17 

,..... .1-a, 
A7 17 I •. lUI 

'I-AI .. "'IUI 
tUI '--

.1-Al 

~ 
LUI LUI 

~ 
LUI CUI ~ CUI 
CUI "IA lUI. 
Iua ,~LEIA ,t

LEIA F LEI

• 

CUA CUI. 
CEI. . U 141 

41 

I .. 
"I UI 

Figure 3. Address and Data Bus Connections 

9-7 



The Address Bus 

The A24/A16 configuration requires the uSe of two 
more 74FCT543 devices to buffer and control the 
VMEbus A23 through A8 signals. The 74FCT543 LEAB, 
LEBA, and OEBA inputs connect directly to the VIC068 
LADO (latch address out control), LADI (latch address in 
control~, and ABEN (enable address out control) outputs; 
respectIvely. The output of the VIC068 LAEN (local-ad­
dress enable control) must be connected to the 74FCT543 
OEBA input through an inverter because LAEN is an ac­
tive-High output and OEBA is an active-Low input. 

Connecting The DSACK Lines 

During the normal local bus operation, the 68020's 
slave devices (i.e., memory, UART,. parallel port) must 
tell the processor the size of their data bus. This is done 
by asserting the DSACK1 inputs, which tells the 68020 
that the port is a 16-bit device. Asserting DSACKO in­
stead indicates .thilt the port is an 8-bit device. Asserting 
both DSACK1 and DSACKO indicates that the port is 32 
bits wide. To configure the VIC068 as a 16-bit port, simp­
ly connect the 68020 DSACKI to the VIC068 DSACKl. 

So long as there you have no requirement for 
VMEbus access to 8-bit devices on the local bus, you do 
not need to do anything with the VIC068 DSACKO pin 
except terminate it (pull it High). 

When you do need to access 8-bit devices, a small 
problem arises with the way the VIC068 acknowledges 
register accesses and interrupt-acknowledge cycles. 
During these cycles, the VIC068 always asserts both 
DSACKI and DSACKO, whether the WORD input is as­
serted or not. And in· VMEbus master cycles, wheri talk­
ing to· an 8-bit device on the VMEbus, the VIC068 
responds with DASCKO to acknowledge the 8-bit transfer 
completion. 

The solution to the DSACKO problem is simple but 
can be complicated to implement: You must break the 
DASCKO connection between the VIC068 arid the 68020 
during interrupt acknowledge or VIC068 register access 
(CS) cycles. The circuit needed to do this is a bidirection­
al, open-collector buffer between the VIC068 and 68020. 
The buffer should be inactive in both directions only 
when the VIC068 FCIACK or CS inputs are asserted. In 
Figure 4's PAL equations, the DSACKO 020 and VIC068 
DSACKO equation illustrates how to handle the DSACKO 
connection. 

Master Operation 
VMEbus master operation with the VIC068 is easily 

accomplished with the use of the MWB (module-wants­
bus) input. The VMEbus can be requested at any level (0 
- 3). The VMEbus can also be dynamically changed via 
the arbiter/requester configuration register ($B3), which 
eliminates the need for hardware jumpers. All VMEbus 
release modes are supported through the release control 
register ($D3). Support for write posting means that the 
local processor can write to the VMEbus without having 
to wait for the current bus master to release the bus or for 

9-8 

the arbitration logic to. assert the correct BOIN 9 (bus 
grant in) line. The VlC068 takeS cares of this overhead for 
the local processor, improving system throughput. 

. To request VMEbus m.astership, the 68020 asserts· the 
MWB input. You can think of MWB as a VMEbus chip 
select. . . 

When interfacing to the VMEbus as an A24 or A16 
device, you Can have access to the whole VMEbus ad­
dress space by decodiitg a 32-Mbytearea of the 68020 
address sP!lce. for. VMEbus operations. The ASIZ1-O pins 
tell the VIC068 whethetthe current cycles represent an 
A32, A24; or A16 operation. Y01.l can use the upper 16-
Mbyte. address space (A24 High)'for VMEbusA23 opera­
tion and the lower half (A24 Low) for VMEbus A16 
operation by follo:wing three steps: decode A31 through 
A25 to generate MWB, tie the ASIZ1 input High, and 
connect the 68020 A24 address line to the VIC068's 
ASIZO input. Figure 4 demonstrates this way of deCodirlg 
MWB. 

Wheri the VIC06~ recognizes a. vatid shive access, 
the device asserts LBR (68020 BR input)· and waits for 
LBO assertion (68020 BO output). Orice the VIC068 
receives LBO, the device becomes the local bus master at 
the conclusion. of the current cycle and completes the re­
quested VMEbus slave. operation.· If the VIC068 is the 
only DMA device on the local bus, there is no need to 
generate BOACK.(bus grant acknowledge) for the 68020. 
But if any other devices are capable of local bus master­
Ship, . you have to provide th~ arbitration logic and the 
BOACK signal for the 68020. Keep in mind, toc,>, that 
other DMA devices must be able to recognize and deal 
appropriately with the 68020 bus-cycle entry operation 
(BERR and HALT asserted) .. 

Slave Operation 
The VIC068 carl provide full vMEbus slave opera­

tion by· dual:porting local memory with little or no 68020 
overhead. The normal slave access operation statts by 
providing SLSELO. or SLSELI through VMEbus address 
decoding. The circuits in Figures 3 and 5 use a 22V10 
PAL for this pwpose. Always qualify VMEbus address 
decoding with the AS andlor DS1-0. 

Decoding SLSELO,SLSELl, andIFCSEL 

Figure 5 illustrates a. typical . PAL specification that 
you can use to provide address decoding for SLSELO, 
StSEL1,"and IFCSEL. The VIC068 uses all the address 
modifier lines (AM5 - 0) to quality the access mod~. Ad­
c4"ess decoding can ignore these inputs. The VIC068 then 
decides if the access m?de is legal and completes the 
cycle or generates the VMEbus BERR signal, depending 
on the value programmed in the slave select registers. You 
can also qualify the select outputs with. the address 
modifiers ai14 let the initiating device time-out if the ac­
cess is not legal: 

The IFCSEL input gives the VMEbus access to some 
of the VIC068 control, registers and the interprocessor 
communication registers. These registers are available 
only through an A16 privileged-mode access. 



module _ CYCLE_DECODE; 

Cycle_decode device 'PV22VlO'; 

VCC,OND 

"inputs (15) 

A31,A30,A29,A28,A27,A26,A25,A19 

SLSEL1, SLSELO 
FC2,FCl,FCO,AS,LBO 

"outputs (6) 

VIC _DSACKO,DSACKO _020 

VIC_CYCLE 

FCIACK 

PRE_MWB,MWB 

"output type declarations 

pin 24,12; 

pin 18,19; 

pin 20; 

pin 21; 

pin 22;1.3; 

pin 1;1.,3,4,5,6,7,8; 

pin 9,10; 

pin 13,14,15,16,17 "f<r FCIACK and VIC_Cycle output 

"To VIC DSACKO and local system DASCKO 

"current bus cycle is VMEbus 

"Interrupt Acknowledge Cycle 

"VIC module-wants-bus (with and without AS) 

VIC_CYCLE,PRE_MWB,MWB istype 'com'; 

FCIACK,VIC_DSACKO,DSACKO_020 istype 'com'; 

VIC_CYCLE.OE,FCIACK.OE istype 'com'; 

PRE_MWB.OE,MWB.OE istype 'com'; 

VIC _ DSACKO.OE,DSACKO _ 020.0E istype 'com'; 

equations in CYCLE_DECODE 

"Enable ALL outputs except DSACK's 

VIC_CYCLE.OE =1; 

PRE_MWB.OE =1; 

MWB.OE -1; 

FCIACK.OE =1; 

"This signal tells everybody that the VIC068 is controlling the current bus cycle 

IVIC_CYCLE -ILBO & AS "signal is asserted while AS is still high 

#IVIC _CYCLE & ILBO &IAS "maintain signal through entire cycle 

"Interrupt acknowledge cycle (68020 to VIq. Use VIC_CYCLE to insure this is not a VMEbus master cycle 

IFCIACK = A31 & A30 & A29 & A28 & A27 & A26 & A25 & A19 & FC2 & FC1 & FCO & lAS & VIC_CYCLE; 

"VME A24 access is at addresses $04000000 - $04FFFFFF. A16 access is at addresses $05()()()()() - $05FFFFFF (ASIZO is tied to LA24) 

IMWB -= IA31 & IA30 & IA29 & IA28 & IA27 & A26 & IA25 & VIC_CYCLE &1(FC2 & FC1 & FCO); 

"This is the same signal as MWB but the AS input is removed to provide an early VMEbus master cycle indication input to other PLDS 

IPRE_MWB .. IA31 & IA30& IA29 & IA28& IA27 & A26& IA25 & VIC_CYCLE &1(FC2 &FCI & FCO); 

"This signal is connected directly to the VIC DSACKO. It generates the VIC DSACKO for VMEbus slave accesses to 8 bit device 

IVIC_DSACKO = IVIC_CYCLE & IDSACKO_020; 

"This enables VIC _ DSACKO only when VIC is the local bus master (slave accesses) 

VIC _ DSACKO.OE = IVIC _CYCLE & (ISLSELO # ISLSEL1); 

"This signal is connected to the 68020 DSACK). It generates the 68020 DSACKO for VMEbus master accesses to 8 bit devices 

IDSACKO _020 = IMWB & VIC_CYCLE & IVIC_DSACKO; 

"This enables the 68020 DSACKO only when the VIC is the VMEbus master 

DSACKO_020.02() .. IMWB & VIC_CYCLE; 

end_CYCLE_DECODE 

Figure 4. Abel Equations for PALC22VIO Cycle Decoding 

9-9 



module _ VME _ SLAVE; 
title 'VMEbus slave access address decoding' 

VMEbus_Slave device 'PV22VI0'; 

VCC,GND 

"inputs (18) 
A23,A22,A21,A20 
A19,AI8,A17,A16 
All,AI0,A9,A8 
AS 
AM2 

"outputs (3) 
SLSELO 
SLSELl 
ICFSEL 

"output type declarations 
SLSELO 
SLSELI 
ICFSEL 

SLSELO.OE 
SLSEL1.0E 
ICFSEL.OE 

"group assignment 

pin 24,12; 

pin 1,2,3,4; 
pin 5,6,7,8; 
pin 14,15,16,17; 
pin 18; 
pin 22; 

pin 23; 
pin 20; 
pin 21; 

istype 'com'; 
istype 'com'; 

istype 'com'; 

istype 'com'; 
istype 'com'; 
istype 'com'; 

"VMEbus address strobe 
"High for supervisor, Low for user 

"slave select for A16 access 
"slave select for A24 
"slave select for register access 

addr = [A23,A22,A2I,A20,AI9,AI8,AI7,AI6,AI5,A14,AI3,A12,AII,AIO,A9,A8,x.x,X,x,x,x,x,X]; 

equations in VME_ SLAVE 

"enable ALL outputs 

SLSELO.OE 
SLSEL1.0E 
ICFSEL.OE 

.. I; 

= I; 
.. I; 

"VIC068 slave select input I, used for supervisor mode 
!SLSELl = !AS & (addr .. "h400(00) & (addr .. "h4FFFFF) & AM2"ram access 

# !AS & (addr = "hSOO400) & (addr .. "h53FFFF) & AM2"EEPROM access except for bootstrap 
# !AS & (addr .. "hS40400) & (addr ... "h57FFFF) & AM2"bootstrap. duplicate area 
# !AS & (addr .. "h580400) & (addr .. "hSBFFFF) & AM2"bootstrap duplicate area 
# !AS & (addr .. "h5C0400) & (addr = "h5FFFFF) & AM2"bootstrap duplicate area 
# !AS & (addr = "h404400) & (addr .. "h404FFF) & AM2"ram access in user mode 

"The VIC068 slave select 0 input is used for user mode access 
!SLSELO = !AS & !A15 & AI4.& !A13 & !A12 & !All; 

"VIC068 VME register access at addresses $4FOO thru $4FFF in supervisor mode only 
!ICFSEL .. !AS & !A15 & A14 & !A13 & !A12 & All & AlO & A9 & A8; 

Figure 5. Abel E.quations forVIC()()8Slave Decode· 

9-10 



The PAL specification in Figure 5 configures 
SLSELO to dual-port a 4-Kbyte (minus 256 bytes) space 
of local RAM as an A16 non-privileged access input and 
decodes IFCSEL in the SLSELO area's upper 256 bytes. 
You can use this 256-byte space for mailbox communica­
tion between boards in a multi-master system. 

SLSEL1 is decoded as an A24 supervisory-only ac­
c~s and provides full dual-porting of the 68020 board's 
E PROM program memory. This allows the VMEbus sys­
tem controller to put the system in a reset and hold state 
by asserting bit 6 of the VIC068's interprocessor com­
munications register 7. The VMEbus master can then 
reprogram the entire program memory space. Once that 
operation is complete, the controller can use the inter­
processor communications register 7 to release the reset 
and hold state. The board comes up running the newly 
installed program. 

Take care when decoding SLSELO, SLSEL1, and 
IFCSEL. The VIC068's operation is undefined when more 
that one of these inputs is active simultaneously. 

Decoding for Supervisor/User Mode 
You can use the VMEbus AM2 signal to select user 

(AM2 Low) or supervisor (AM2 High) modes. The AM2 
input is used as part of the slave-select decoding shown in 
Figure 5. 

Dealing with A24 and A16 Slave Accesses 
Regardless of the access address size, the 74FCT543 

address buffer outputs are enabled. Typically, the back­
plane pulls unused VMEbus address lines High passively, 
but most masters drive these lines regardless of the bus­
cycle-address size. If this is not desirable, control the out­
put-enable signals with the upper address line buffers 
using the VMEbus address modifiers. Table 1 illustrates 
how to use AM5 and AM4 to determine the bus-cycle-ad­
dress size. 

You can derive individual enables for each of the 
VMEbus address latches by ANDing one or both of these 
address modifiers with the VIC068 LAEN (local-address 
enable) signal; modify both if operating in an A32 system. 

Remember to provide a stable level for the local-ad­
dress lines because nothing drives them during VMEbus 
accesses. You can ensure a stable level using 4.7-KQ pull­
up or pull-down resistors on the local-bus A31 - A16 
lines. The local-bus address buffers can be set to the 
desired address state and enabled with the same latch­
enable signals. 

Dual-porting Local Memory 
The PAL specification in Figure 4 generates a signal 

called VIC_CYCLE than can serve as part of the local-ad­
dress decoding to re-map local memory for dual-porting 
on the VMEbus. This approach allows memory placement 
at a VMEbus address independent of the local address. 

9-11 

Interrupts 
The VIC068 interrupt structure is very versatile. One 

of the most useful features is the ability to redefine inter­
rupt levels, and thus priorities, under normal program con­
trol. The VIC068 supports all seven levels of VMEbus in­
terrupt as well as the seven local-interrupt levels. Inter­
rupts are also available to notify the 68020 of VMEbus 
status and error conditions. 

Figure 4 shows how to decode the 68020 interrupt 
acknowledge bus cycle to generate the VIC068 FCIACK 
input You can omit A19 - A16 from the equation if you 
do not use breakpoints, a memory management unit 
(MMU), or a coprocessor (68881/68882). 

Using LIACKO 
The LIACKO output is typically connected to the 

68020 AVEC input to initiate autovectoring of interrupts 
to which the VIC068 has not been programmed to 
respond. You can also use LIACKO with the IPL(2-0) out­
puts to generate interrupt-acknowledge signals to other 
680XO-compatible interrupting devices. 

LIRQ7 - 1 Inputs 
The LIRQ7 - 1 inputs are the interrupt request inputs 

to the VIC068. The control register for each input allows 
you to determine the input's polarity (High/Low) and sen­
sitivity (level or edge). The control register also allows 
you to defme whether the VIC068 supplies the vector 
during interrupt acknowledge cycles or asserts LIACKO 
(local-interrupt acknowledge out), sets the level of inter­
rupt the 68020 sees on IPL2 - 0, and enables or disables 
the interrupt You do not need to tenninate these inputs if 
you leave them unconnected, but you must pull them up 
externally if they are used. 

The local interrupts (IPL2 - 0) are grouped and have 
a common vector base register ($57). This vector base is 
added to the encoded interrupt level programmed in each 
of the interrupt control registers to supply a unique vector 
to the 68020 for each interrupt input. 

LIRQ2 is a special case because it can be used as an 
i~terrupt clock tick timer. You enable the timer through 
bItS 2 and 3 of slave-select control register 0($C3). When 
enabled, LIRQ2 becomes the timer output, and the local­
interrupt control register 2 ($2B) becomes the timer's in­
terrupt-control register. The timer's periodic interrupt can 
~e se.t to 50, 100, or 1000 Hz. If you plan on using the 
tick timer, do not connect the external interrupts to LIRQ2 
because this pin becomes an output. 

Table 1. Determining Bus-Cycle-Address Size 

AMS AM4 Cycle 

H H A24 Access 

H L A16 Access 

L L A32 Access 





Glossary 

AHDL: Advanced Hardware Description Language, a 
high-level, modular language used to create logic designs 
for MAX EPLDs. 

arbitration: The process of deciding which one of two or 
more competing entities will be allocated a resource. 

arbitration time: The time taken to determine which of 
simultaneous contenders for a service takes priority. 

associativity: The number of lines per set in a cache. 

cache: A small, fast memory located between the CPU 
and main memory. A cache's purpose is to store copies of 
the instructions and/or data the CPU is most likely to need 
in the near future so that the CPU can access them more 
quicldy than if they were stored only in. main memory. 

cache coherency: The state of a multiprocessor, multi­
cache system in which the value of a shared variable is 
the same in all caches in which copies ·of the variable 
exist. In a multiprocessor, multicache system, a shared 
variable can be copied into more than one cache. If the 
copy is modified in one cache, steps must be taken to 
modify or invalidate the copies in the other caches to 
preserve cache coherency and prevent the other processes 
from using a non-current data value. 

cache lock: In some caches, some lines can be locked 
into the cache. This means that the locked lines are never 
replaced by new lines. Users can lock critical programs in 
the cache to ensure that performance on these programs is 
high and deterministic. 

cache tag: A table of the current.contents of a cache .. The 
tag itself is made up of a varying number of address bits 
that uniquely· identifies each line in the cache as· coming 
from a specific main memory line. 

10-1 

CAS: Column address strobe. In dynamic RAMs, this sig­
nal is asserted to strobe the column address of the current 
access into the device after the row has been input. 

CMOS . levels: There are two sets of CMOS specifica­
tions: HC and HCT. The older HC devices are generally 
not TTL compatible, and the newer HCT (also FACT, 
FeT, etc.) are TTL compatible. (See TTL levels.) Be­
cause the minimum VOH level for TIL is 2.4V, TTL is 
not guaranteed to drive an He input High. A 4 to 
10,0000 pull-up resistor to Vee at the TTL device's out.:. 
put enables the device to achieve the HC VIH level of 
3.5V. 

coherency (consistency): Agreement between shared con­
tents of members of the memory system. 

Compiler Netlist File (.CNF): A binary file that contains 
the data for a design, created by the ADF2CNF Converter 
(for state machine and Boolean equation designs) or the 
Compiler Netlist Extractor module of the MAX+PLUS 
Compiler (for schematic designs). 

crosstalk: The temporal change in either the magnetic 
field or the electric field of a signal on one conductor that 
resultS in an .unwanted signal being coupled to other con­
ductors. 

DMA: Direct memory access, a design technique that of­
floads some of the I/O processing from the CPU. A DMA 
controller allows the CPU to continue operation while the 
controller controls block transfers between I/O and 
memory or between separate memories ina mUltiproces­
sor system. 

ECL levels: . ECL voltage levels are specified at various 
temperatures. Only the values at 25°C are listed here. 
There are two families of ECL circuits: 10K and lOOK. 
The older 10K devices are not temperature compensated. 
The newer lOOK are. 



effective access time: A cache performance metric giving 
the average time required to service a memory reference. 

rmite state machine: A synchronous sequential circuit 
whose current state is defined by the contents of its flip­
flops and whose next state is determined by its current 
state and the inputs to the circuit. 

FPLS: Field-programmable logic sequencer, a program­
mable device with an AND array, an OR array, and 
registers with feedback. 

Graphic Design File (.GDF): A flle created by the 
MAX+PLUS Graphic Editor or the ADF2CNF Converter. 
GDFs created by the Graphic Editor contain a schematic 
design in addition to the symbol that represents the file's 
inputs and outputs. GDFs created by the ADF2CNF Con­
verter contain a symbol that represents the inputs and out­
puts of the original converted ADF or SMF. When the 
Compiler processes the file, this type of GDF acts as a 
pointer to the real design data that resides in a Compiler 
Netlist File. 

ground bounce: When many outputs of a device change 
from High to Low there is a rush of current into the out­
put drivers. If the inductance to ground is sufficient the 
virtual ground level is raised due to this inductance. The 
voltage spike. caused by this phenomenon is called ground 
bounce. 

Hierarchy Interconnect File (.HIF): A binary file 
created by the MAX+PLUS. Compiler's Netlist Extractor 
module. The file specifies the hierarchical interconnec­
tions between flles of one design. This file is required for 
design simulation even if the design consists of one flle 
only. 

LAB: Logic array block. In Cypress MAX PLD devices, 
the LAB represents a separate functional block in the 
device. Each type of MAX PLD has a different number of 
LABs. 

latch-up: The fabrication of CMOS integrated circuitS 
results in parasitic PNP and NPN transistors that form an 
SCR (pNPN). When the voltage at an input pin or an out­
put pin of the device exceeds certain voltage levels, the 
SCR can be triggered and turn on (i.e., latch-up occurs), 
which creates a low-impedance path between . Vee and 
ground. When this occurs, if the Vee current is not 
limited, the device is either destroyed or severely stressed 
because of the heat generated by the short circuit between 
Vee and ground. 

line (block): The basic unit of information exchange be­
tween a cache and main memory or between a parent 
cache and its child(ren) cache(s). 

10-2 

line size: The number of bytes or words in one 
cache/main memory line. In a cache system, a line is the 
quantum of data identified by the cache tag and is the 
smallest quantum of data that can be transferred between 
the cache and main memory. Whenever a new entry is 
placed into the cache, one line is transferred. Common 
line sizes are 16 and 32 bytes. 

lockword (also called lockvariable): A memory location 
associated with a resource. The usual convention is that 
when the lockword is zero, the resource is available, and 
when the lockword is not zero the resource is being used 
by another process and is therefore not available. 

macrocell: A low-level block of logic in programmable 
logic devices. This block can include one or more 
registers, along with configurable feedback and/or output 
paths. 

master device: A device that controls the timing for data 
exchanges between two devices. Or when devices are cas­
caded in width, the master device is the one that controls 
the timing for data exchanges between the cascaded 
devices and an external interface. The controlled device is 
called the slave device. 

Mbus: Memory Bus. Mbus is the Sun Microsystems 
standard bus interface between main memory and the 
CPU. It supports both uniprocessor and multiprocessor 
configurations. 

Mealy machine: A state machine in which outputs 
depend on the current state and current inputs. 

metastability: The property characterizing a device that is 
not in a known, fixed state, but in the metastable state­
the state between the logical One and Zero levels. The 
metastable state is entered when the input voltage level at 
the input of a storage device is between these states when 
the clock changes. The time required to go from this in­
determinate state to the logical One or Zero state is 
defined as the metastable settling time. 

miss rate: A cache performance metric giving the prob­
ability that a reference will produce a miss. 

Moore machine: A state machine in which the outputs 
depend only on the current state. 

overshoot: The amount by which the amplitude of a sig­
nal transitions above its final value on a Low-to-High 
transition. 

page table: A set of tables stored in main memory that 
translate virtual addresses to physical addresses. 

Petrie net: A design methodology that employs token 
passing rather than encoded states. 



physical address: The actual hardware address of a piece 
of information in main memory. 

PIA: Programmable interconnect array. In Cypress MAX 
devices, the PIA is the routing path between separate logic 
array blocks (LABs). The PIA is automatically routed and 
provides uniform timing throughout the devices. 

placement algorithm: The method used to detennine 
where a block may reside in a cache; often selects the set 
of a reference. 

Programmer Object File (.POF): A binary file created 
by the MAX+PLUS Compiler for use with the 
MAX+PLUS Programmer. The POF contains the data 
used to program the MAX EPlD. 

RAS: Row address strobe. In dynamic RAMs, this signal 
is asserted to strobe the row address into the device; the 
address inputs are time-multiplexed. 

reference: A request by the processor to read or write a 
memory location. 

Report File (.RPT): A file generated by the MAX+PLUS 
Compiler's Fitter module indicating how EPlD resources 
are used by the design. This report is particularly impor­
tant if you have not specified all pin assignments. The 
RPT fIle contains header information, utilization informa­
tion, and a graphical representation of pin assignments. 

retransmit: Applies to the CY7C42X and CY7C43X 
families of large FIFOs when they are operating in either 
the stand-alone or width-expansion modes. When the 
retransmit pin is pulsed Low, the internal read pointer is 
set to the fIrst physical location of the FIFO. Subsequent 
Low pulses on the read pin cause the FIFO's contents to 
be output until the read pointer equals the write pointer. 

semaphore: A software technique for providing explicit 
mutual synchronization of parallel sequential (software) 
processes. Semaphores are initialized with the value Zero 
or One before the processes are started. After initializa­
tion, the processes access the semaphores only via two 
specific operations - the so-called synchronizing primi­
tives. The operations carried out on semaphores are 
referred to as P and V, which are the first letters of the 
Dutch words corresponding to WAIT and SIGNAL, 
respectively. 

set: A collection of cache locations in which a line may 
reside. 

set associativity: A property that allows a cache to be 
divided into sets, each of which contains one or more 
lines. This property enables a line of main memory to map 
to more than one line in the cache; the line of main 

10-3 

memory can map to one line in each of the sets. When 
searching the cache, the tags of one line from each of the 
sets are compared to the reference tag concurrently to 
determine to which set, if any, the main memory line was 
mapped. 

Simulator Channel File (.SCF): A MAX+PLUS 
Simulator input and output file that contains a waveform 
representation of the input nodes that drive simulation, as 
well as the output nodes that are simulated. These 
waveforms represent High, Low, high-impedance, and un­
defined logic levels. 

Simulator Netlist File (.SNF): The MAX+PLUS file that 
contains all data required to simulate a design. This file is 
created by the optional Simulator Netlist Extractor module 
of the MAX+PLUS Compiler. 

slave device: A device that allows another device to con­
trol the timing for data exchanges between the two 
devices. Or when devices are cascaded in width, the slave 
device is the one that allows another device to control the 
timing for data exchanges between the cascaded devices 
and an external interface. The controlling device is called 
the master device. 

Text Design File (.TDF): A MAX+PLUS text file created 
with the Advanced Hardware Description Language 
(AHDL). A TDF can be incorporated into the hierarchy of 
a design at any level. 

transparent write: Possible only on separate I/O RAMs. 
During a trahsparent write, the data appears at the outputs 
as the data is written into the array. 

TTL levels: The maximum value of the input Low (Zero) 
voltage level is VIL = 0.8V. The minimum value of the 
input High (One) voltage level is VIH = 2V. The maxi­
mum value of the output Low voltage level is VOL = 

OAV. The minimum value of the output High voltage 
level is VOH = 2AV. The threshold level is approximately 
1.5V. These values apply over the operating temperature 
range of interest. 

undershoot: The amount by which the amplitude of a sig­
nal transitions below its final value on a High-to-Low 
transition. 

Vector File (.VEC): A MAX+PLUS file that contains 
vectors that specify the logic levels of input nodes in a 
MAX EPLD design, which the Simulator uses to test the 
design's logical operation. This file describes the input 
conditions as well as output nodes to be simulated. 

virtual address: An address generated by a program and 
later translated into a real address for main memory. 





CYPRESS 
SEMICONDUCTOR 

Index 

15-Bit counter with carry out 6-160 
16R8 6-3, 6-5 
18G8 6-53 
20G10 6-5,6-53,6-93,6-182,6-213,6-223 
20RA10 6-5 - 6-6 
22V10 1-30, 6-4 - 6-6, 6-26, 6-29 - 6-33, 6-48, 6-53, 6-

80,6-93,6-95 - 6-96, 6-98 - 6-99,6-119,6-122 - 6-
124, 6~127, 6-131, 6-136, 6-152, 6-182,6-213,6-223, 
6-237, 7-25, 7-27, 7-29 - 7-30, 7-32 - 7-33, 7-35, 8-74 
- 8-75, 8-77, 9-8 

25-pin D-sub connector 6-40 
2T cell design 6-216 
68020, interfacing to VIC068 9-5 
74XXX TTL macrofunctions in MAX 6-330 
80386 3-12, 7-24, 7-33 
80386 cache 4-23 
82385 4-23, 4-25, 8-52 
82C306 4-27 
82C307 4-23, 4-27 

A 

ABEL 3-39,6-8,6-68 - 6-69, 6-99, 6-119 - 6-123, 6-
131,6-136,6-139 - 6-144, 6-147 - 6-153, 6-218, 6-
250 - 6-251, 8-115 

ABEL 3.2 bug 6-151 
ABEL macros for selecting odd pin's macrocell 6-150 
ABEL simulation caveat 6-143 
ABEL simulation preload 6-153 
ABEL simul~tor 6-152 
ABEL state machine syntax 6-143 
access time (Taa) degradation 3-23 
access to shared variables 8-97 
address contention 4-19,4-22 

1-1 

address space identifier 8-86 
address space layer 8-84 
address translation errors 8-65 
address translation unit 8-49 
address validity check circuit 8-108 
address-checking circuit 8-108, 8-110 - 8-111 
address-generator circuit 6-346 
Advanced Hardware Description Language 6-328 
Advanced Harqware Design Language 6-355 
AHDL 6-328 - 6-329, 6-332, 6-355 
aliasing 8-49 
ALU 4-7,6-120,6-174 - 6-176, 7-30,7-32, 7-49 - 7-53, 

8-2 
analog-to-digital applications 3-11 
AND-OR array 6-1 
ANO-OR-XOR array 6-213 - 6-214 
applications prototyping 8-89 
arithmetic and logic units 7-50, 7-53 
arithmetic operators 6-96, 6-120 
ASAT 125C 8-34 
ASICs 6-1 
assignment operators 6-120 
asynchronous communication 7-25 
asynchronous design 6-213,6-286,8-30 
asynchronous state machine 6-174 
atomic load store 6-270,6-306,8-98 

barrel shifter 7-51 
BiCMOS 3-1 

B 

BiCMOS ECL and TTL SRAM applications 3-11 
BiCMOS process 3-7, 3-23, 3-33 



BiCMOS RAMs 3-20 
BiCMOS SRAM 3-27 
BiCMOS SRAMs 3-8 - 3-9, 3-12 
BiCMOS Technology 3-20 
bidirectional FIFO 6-46, 7-14, 7-21 
BIFO 7-21 - 7-30, 7-32 - 7-33, 7-35 
BIFO as memory-mapped I/O 7-25 
BIFO operation, half-duplex 7-22 
BIFO timing 7-23 
BIFO use with packets 7-27 
binomial distribution 6-26 
bipolar ICs, replacing with CMOS 1-1 
bistable system 6-22,6-24 
bit-slice processors 4-19,4-22 
Boolean algebra entry 6-8 
Boolean equation 6-8,6-10,6-68,6-94,6-119 - 6-120, 

6-122 - 6-123, 6-127, 6-136, 6-142, 6-154 - 6-155, 6-
173,6-182,6-250 - 6-251, 6-261, 6-328 - 6-329, 6-
355 

Boolean equations, converting from state machine for-
mat 6-251 

BU08 video DAC 3-11 
Bt501 3-4 - 3-5 
Bt502 3-4 
buried registers 6-6 
burst mode 7-9 
bus arbiter 6-270, 6-288, 6-305, 8-73 
bus arbitration 8-69, 8-72, 8-75 
bus contention 1-31,8-20,9-5 
bus overhead 8-69 
bus parking 6-308 
bus snooping 8-62, 8-84, 8-88 
bypass capacitor 1-30, 3-21, 3-32, 4-27, 7-20, 8-26 

C language 8-92 
C+ + 8-6 
cache associativity 8-50 
cache block 8-48 

c 

cache block ( or line) size 8-18 
cache coherency 8-69 
cache controller 4-23,4-25,6-270,6-305,8-11,8-17 - 8-

19, 8-21 - 8-22, 8-52, 8-54 - 8-56, 8-59 - 8-61, 8-63, 8-
84 

cache copy-back policy 8-55 
cache design objective 8-48 
cache design tradeoffs 8-48 
cache DIRTY parameter 8-54 
cache for 80386 8-52 

1-2 

cache for CY7C600 system 8-52 
cache hit ratio 8-18 
cache implementations for SP ARC 8-63 
cache INCLUSION parameter 8-54 
cache line 8-48 
cache line prefetch 8-20 
cache line replacement algorithm 8-55 
cache line size 8-49 - 8-50, 8-53 - 8-54, 8-56 
cache lock mechanism 8-61 
cache management 8-49,8-54 
cache mapping method 8-49 - 8-50 
cache mapping scheme 8-56 
cache miss latency 8-17,8-21 
cache organization 8-49 - 8-50, 8-64 
cache performance 8-17 - 8-18 
cache placement 8-49 
cache RAM 3-12 - 3-13, 4-24 - 4-25, 6-270, 6-305, 8-

21,8-34,8-38,8-61 
cache random line-replacement algorithm 8-55 
cache set associativity 8-18 
cache size 8-18,8-20,8-48 - 8-53, 8-56, 8-61, 8-63 
cache Speed 8-19 
cache tag memory 8-50 
cache tag-cache eontroller-me1l1ory management unit 

for mUltiprocessing 8-61 
cache thrashing 8-51 
cache VALID parameter 8-54 
cache write allocation 8-55 
cache write-through policy 8~55 

cache, calculating teff 8-56 
cache, direct-mapped 8-50 
cache, fetching algorithms 8-56 
cache, fully associative mapping 8-51 
cache, multilevel hierarchy in multiprocessing systems 

8-59 
cache, multilevel hierarchy in single-processor systems 

8-58 
cache, multilevel hierarchy in SP ARC multiprocessing 

systems 8-61 
cache, multilevel inclusion principle 8-59 
cache, split vs. combined 8-50 
cache-line forwarding 8-20 
capacitance,1l1easuring 3-25 
CASE .. ENDCASE 6-123 
CBLD 6-93 - 6-94, 6-96 
CC/MMU 8-84 - 8-85, 8-87 
center power pins 6-216 
ceramic leaded chip carrier 3-15 
ceramic modules 2-4 
ceramic quad flat pack 8-33 - 8-34 



ceramic substrates 2-1, 2-4 
channel resistance 1-15,1-18 
characteristic impedance 1-2 - 1-5, 1-7, 1-9, 1-11- 1-

16,1-18 
characteristic impedance, calculating 1-3 
charge gain 6-17 
charge loss 6-17 - 6-18 
CISC software drawbacks 8-1 
CLCC 3-15 - 3-17 
clock buffer fanout 8-25 
clock delay programming 6-287 
clock distribution 1-13,1-29 - 1-30,8-8,8-25,8-73 - 8-

74 
clock doubler 6-49, 6-300 - 6-302, 6-307, 6-316, 6-320, 

8-114 
clock stretching 8-12 
closed-loop control system 6-233 
CMMU 8-38 
CMOS EPLD 6-1 
CMOS latch-up 4-5 
CMOS/NMOS/bipolar input characteristics 4-3 
CMU 6-270,6-305 - 6-306, 8-49, 8-52, 8-61- 8-62, 8-98 
coaxial cable 1-12 - 1-13 
common-mode noise rejection 3-2 
communication applications 7-53 
communication between processors 4-19 
compiler netlist file 6-332 
concurrent arbitration 6-306 
condition decoder 6-297 - 6-300, 6-303, 6-307, 6-310 -

6-311 
conditional compilation 6-96 
context switch 8-3 - 8-4, 8-19, 8-93, 8-95 - 8-99 
Context Table Pointer register 8-86 
control system design 6-233 
copy-back caching 8-19 
CPU register files 4-8 
CQFP 8-34, 8-37 
critical traces 1-1 
critically damped condition 1-5 
cross-coupled loop 6-24 
cross-coupled NAND registers 6-327 
cross-interleaved order 4-22 
crossbar switch 6-213,6-220 - 6-221, 6-223 
crosstalk 1-2, 1-12, 1-29, 1-33,3-1 - 3-2, 4-28, 6-47, 8-8, 

8-25, 8-27 - 8-29 
crosstalk reduction 1-33 
crosstalk, minimizing 8-27 
CSIM 6-93, 6-98 
CTS digital oscilloscope 6-29 

1-3 

CUPL 3-39,6-8,6-93 - 6-94, 6-96 - 6-99, 6-101 
current measurement for Cypress products 2-25 
current window pointer 8-3 
CY100E302 3-12,3-33 
CY100E302L 3-15 
CY100E422 3-11 
CY100E474 3-8,3-12,3-33 
CYI0IE383 3-6 
CYI0E301L 3-16 - 3-17 
CYlOE302 3-33 
CYI0E383 3-6 
CYlOE474 3-8,3-16 - 3-17, 3-33 
CY3341 7-3, 7-12 
CY7Bl60 3-24, 3-27 
CY7B161 3-24 
CY7B162 3-24 
CY7Bl64 3-24 
CY7Bl66 3-8,3-11,3-20 - 3-21, 3-24, 3-30 - 3-32 
CY7B185 3-24,4-23, 4-25 
CY7Bl86 3-24 
CY7C122 4-1 
CY7Cl28A 6-345,6-347 - 6-348 
CY7C132 6-355,6-357 
CY7Cl48 4-1 
CY7C149 4-1 
CY7C150 4-23, 4-25 
CY7C157 6-270,6-305,8-21,8-33 - 8-35, 8-38 - 8-41, 8-

52,8-61 
CY7C157 description 8-38 
CY7C157 in non-cache applications 8-38 
CY7Cl68 7-52 
CY7C16R6 6-65, 6-69 
CY7Cl84 4-25, 4-27, 8-52 
CY7C189 4-1 
CY7Cl90 4-1 
CY7C245A 7-52 
CY7C291A 6-345, 6-348 
CY7C3101 6-218 
CY7C330 6-5 - 6-6, 6-31, 6-95 - 6-96, 6-98 - 6-99, 6-

101,6-139 - 6-140, 6-142 - 6-143, 6-154, 6-156 - 6-
161, 6-213 - 6-216, 6-218 - 6-220, 6-223" - 6-224, 6-
233 - 6-238, 6-247 - 6-248, 6-250 - 6-251, 6-270 - 6-
271, 6-273, 6-295, 6-297, 7-30, 8-38 - 8-41, 8-75 

CY7C330 shared input feedback mux 6-159 
CY7C330 write-enable design 8-40 
CY7C330-based acccumulator 6-237 
CY7C331 6-6,6-147 - 6-148, 6-150,6-152 - 6-153, 6-

213, 6-259 - 6-261, 6-279 - 6-283, 6-286 - 6-291 
CY7C331-based synchronous counter 6-152 



CY7C332 6-6,6-96,6-99, 6-101, 6~213, 8-38, 8-40" 8-
41,8-108,8-110,8-112 - 8-113, 8-115 

CY7C332 output-enable design 8-41 
CY7C33x 6-93,6-101,6-181,6-216 
CY7C340 EPLD family 6-327 
CY7C342 6-7 - 6-8, 6-327, 6-332, 6-335, 6-353, 6-355, 6-

357 
CY7C343 6-345 - 6-346, 6-348 - 6-349 
CY7C344 6-29, 6-355, 6-357 
CY7C361 6-49 - 6-53, 6-182 - 6-183, 6-295 - 6-298, 6-

300 - 6-302, 6-305, 6-307, 6-310 - 6-311, 6-315 - 6-
316, 6-318, 6-320, 8-108, 8-110 - 8-115 

CY7C361 design reference 6-316 
CY7C361, using with DSP and VMEbus 6-315 
CY7C401 7-3, 7-7, 7-9, 7-12 
CY7C402 7-3 
CY7C403 7-3, 7-9 
CY7C404 7-3, 7-9 
CY7C408 4-23,4-25,7-3 - 7-7, 7 .. 11-7-13 
CY7C409 7-3, 7-6 
CY7C420 7-14 - 7-15 
CY7C421 7-14 
CY7C424 7-14 
CY7C425 7-14 
CY7C428 7-14 
CY7C429 1-18, 1-21,4-22, 7-14 
CY7C432 7-14 - 7-15 
CY7C433 6-80, 7-14 
CY7C439 6-46,6-49, 7-14, 7-21 - 7-24, 7-27 - 7-29 
CY7C600 6-270, 6-305, 8-7 - 8-8, 8-21 - 8-25, 8-27 - 8-

32,8-48,8-52,8-57,8-61 
CY7C600 pull-up/pull-down resistors 8-8 
CY7C600 synchronous trap identification 8-65 
CY7C600 system signal termination 8-8 
CY7C601 6-270 - 6-272, 6-305 - 6-307, 7-24 - 7-30, 7-

32 - 7-33, 7-35, 8-3 - 8-8, 8-10 - 8-13, 8-15, 8-21, 8-
23,8-25,8-33 - 8-34, 8-38, 8-61, 8-65, 8-67, 8-81, 8-
84, 8-86 - 8-87, 8-97 - 8-99 

CY7C601 bus cycles 8-38 
CY7C601 bus interface 8-38 
CY7C601.error mode 8-7 
CY7C601 interrupts 8-12 
CY7C601 memQry design for non-cache-memory ap-

plications 8-38 
CY7C601 nested interrupts 8: 15 
CY7C601 used withBIF07~25 
CY7C601 wait-state generation .8-12 
CY7C601windowoverflows 8-15 
CY7C602 6-270, 6-305, 8-21, 8-33, 8-61 

1-4 

CY7C604 6-270 - 6-271, 6-305 - 6-307,8-7 - 8-8, 8-13, 
8-16, 8-21 - 8-22, 8-33 - 8-34, 8-38, 8-49, 8-52, 8-61 -
8-62, 8-65, 8-67 - 8-68, 8-84 - 8-88, 8-98 

CY7C604 atomic load/store 8-16 
CY7C604 retried· read 8-16 
CY7C604 retried write 8-16 
CY7C604 signal name differences from Mbus 8-16 
CY7C604 table walk 8-16 
CY7C604, completing burst access 8-16 
CY7C605 8-61, 8-63, 8-81, 8-84 - 8-85, 8-88 
CY7C611 8-34, 8-108 - 8-112 
CY7C901 4-7 - 4-8, 7-47 -7-49 
CY7C901 and CY7C9101 minimum cycle time calcula-

tions7-49 
CY7C910 7-52 
CY7C9101 7-47 - 7-49 
CY7C9116 7-50 - 7-53 
CY7C9117 7-50 -7-51, 7-53 
cyclic redundancy code 6-76 
CYM1821 2-7 
CYM1831 2-7 
CYMl841 2-7 
CYM4210 7-14 
CYM4220 7-14 
Cypress Bulletin Board iii, 6-147 

D 

Dallas Semiconductor 8-89 
Data Access Page Table Pointer 8-86 
Data Exception Fault Groups 8-65 
data flow machines 6-23 
Data I/O 3-38 - 3-39, 6-8, 6-68 - 6-69, 6-139, 6-147, 6-

151,6-218 
data ownership 4-8, 4-12 
data-acquisition module 6-131 
dbxWorks 8-92 
deadly embrace 4-10 
decoder 3-9,3-27,3-34,4-16 - 4-18, 6-16, 6-101, 6-122, 

6-156, 6-183, 6-213, 6-315, 6-328 - 6-329, 6-332, 6-
335, 6-345, 8-51 

decoder, SRAM internal 3-27 
decoding applications 6-6 
decoupling capacitor 1-30,7-12, 7-20,8-25 - 8-26 
DeMorgan 6-4,6-95,6-99,6-261 
DeMorgan operations 6-4 
DeMorgan theorem 6-311 
derivative control 6-234 
design compilation 6-332 



design partitioning 6-328 
design verification 6-335 
device input sensitivity 1-1 
dielectric constant 1-4 - 1-5, 1-13, 1-18 
digital oscilloscope 3-34 
digital signal processor 6-315 
digital signal processors 4-19 
Dijkstra, E.W. 4-18 
diode termination 8-28, 8-31 
DIP 2-3 - 2-4, 8-33 - 8-34 
direct data intervention 8-60, 8-62 - 8-63 
direct digital synthesis 3-34 
direct memory access controller 6-328 
direct-mapped cache 8-50 - 8-53, 8-55 - 8-57, 8-61, 8-

64 
disk-controller application 7-53 
distributed load 1-4 
DMA controller 6-327,6-335 
Don't Care input 6-155 
double fault occurrence 8-65 
double-latching asynchronous inputs 1-32 
drive capacity 1-29, 1-32 
DSP16A 6-345 - 6-347 
dual-banked RAM 4-21 
dual-muxing structure 6-280 
dual-port design example 4-16 
dual-port memory 6-351 
dual-port RAM 4-7 - 4-18 
dual-port RAM address transition detection 4-14 
dual-port RAM applications 4-8 
dual-port RAM arbitration logic 4-12 
dual-port RAM busy signal 4-9, 4-11 - 4-13 
dual-port RAM cell 4-9 
dual-port RAM interrupt logic 4-11 
dual-port RAM master stand-alone operation 4-14 
dual-port RAM operation 4-11 
dual-port RAM slave stand-alone operation 4-15 
dual-port RAM slave word-width expansion 4-15 
dual-port RAMs 4-19 - 4-20, 4-22 
dual-port RAMs without arbitration 4-20 
dual-processor system 4-19 
DUART 8-89 - 8-90 
dumb peripherals 7-22 - 7-23 
duty-cycle symmetry 1-30 

E 

ECL 3-1- 3-3 
ECL and BiCMOS 3-33 - 3-34 
ECL and BiCMOS ECL applications 3-34 

1-5 

ECL BiCMOS SRAMs 3-9,3-12 
ECL full-duplex translator 3-6 
ECL in single 5V systems 3-4 
ECL interfacing and prototyping 3-38 
ECL measurements 3-38 
ECL PLD, programming 3-38 
ECL systems, memory 3-33 
ECL terminations 3-36 
ECL, designing with 3-34 
ECL-I/O technology 3-33 
ECL-TTL-ECL translation 3-4 
ECL/CMOS chips 3-4 
edge-dependent propagation delay asymmetry 1-30 
electron trapping 6-17 
embedded application 7-52 - 7-53, 8-89, 8-108 
embedded control 3-11,3-34, 7-33, 7-53, 8-34 
EMI 1-14, 3-3, 4-27, 8-28 
emulate T-type flip-flops 6-142 
emulation 6-142 - 6-143 
ENIAC 6-22 
epoxy-fiberglass substrates 2-1 
EPROM cells, programming 6-2 
equilibration of differential paths 4-14 
equivalent circuit of a Cypress IC's input 1-7 
ESD protection 3-9 
ESD protection circuit 4-4 
expander product term 6-327 
extended Super Frame format 6-76 
external input vector 6-173 
external memory interface 6-345 

F 

FAMOS (Floating Gate Avalanche Metal On Oxide) 
transistor 6-11 

fanout 1-31,3-7,3-9,4-3,8-24 - 8-25 
fast task switch register model 8-99 
FDDI layers 6-247 
FEED_REG 6-140,6-142,6-149,6-151 
feedback mux 6-6 
Fiber Distributed Data Interface 6-247 
fiducials 8-37 
FIFO 6-77 - 6-80, 7-1 - 7-13 
FIFO depth expansion 7-2 
FIFO dual-port RAM architecture 7-3 
FIFO fallthrough and bubblethrough 7-2 
FIFO fullness sensitivity 7-2 
FIFO handshaking frequency calculations 7-5 
FIFO interfacing 7-7 
FIFO maximum throughput calculations 7-2 



FIFO operation 7-5 
FIFO overflow control 6-354 
FIFO pulse synchronizer 7-8 
FIFO RAM controller for deep FIFO 6-351 
FIFO register array architecture 7-1 
FIFOs in cascade mode 7-9 
FIFOs, avoiding problems 7-12 
file inclusion 6-96 
filename.ABS 6-93 
filename.SI 6-93 
filename.SI 6-98 
filename.SO 6-93 
filename.SO 6-98 
filtering capacitor 1-30, 7-20 
rme-pitch leads 8-33 
finite state machine design syntax 6-154 
finite state machine entry 6-156 
FITs rate 3-17 
fixed priority 6-271,6-307 
flash NO converters 3-11 
flat register file 8-3 - 8-4, 8-6 
flip-flop energy transfer curve 6-24 
floating point unit 6-270, 6-305, 8-61, 8-73, 8-97 
FORCE UNSTICK command 6-357 
Fourier series expansion 1-2 
FPLS 6-296 
FPU 6-270, 8-61 
frame alignment 6-76, 6-78 
frame justification 6-76 
Franaszek Run Length Limited (RLL) code 6-64 
full-custom devices 6-1 
function generator 6-280 
functional verifier for LOG/iC 6-154 
fuse map 6-2 - 6-4 

G 

G-10 fiberglass epoxy 1-13 - 1-14, 1-32 
gate arrays 6-1 
GCREX.PAL 6-68 
GCREXT.ABL 6-68 
glitch-free output signal 6-49 
globally asynchronous systems 6-23 
GOTO 6-123 
graphics 3-34 
graphics and image processing 3·11 
graphics and imaging coprocessor· 7-53 
ground bounce 1-15,1-29 - 1-31,3-1- 3-3,3-9, 3-15, 3-

20 - 3-21, 3-32, 4-27, 6-216, 8-25 - 8-26, 8-29 

1-6 

ground comb 8-29 
Group Code Recording (GCR) code 6-63 
guaranteed response time 8-96 

H 

handshake state machine 6-272 
hardware address translation layer 8-84 
Harvard-style architecture 7-52 
HDIPs 2-4 
hermetic DIP 2-4 
hermetic vertical DIPs 2-4 
Hewlett-Packard 8082A 6-29 
hierarchy interconnect file 6-332 
high-level language (HLL) state machine entry 6-173 
high-temperature operating life tests 6-16 
high-temperature storage tests 6-16 
high-clock-speed effects, dealing with 8-23 
high-level languages 6-173 
high-speed logic design 1-29 
high-speed up/down counter 6-213 
HTOL testing 6-17 
HTS testing 6-17 
HVDIPs 2-4 

I 

I/O interface 6-6,6-21,6-286 - 6-287, 6-332, 8-69 
i860 cache 8~57 

identity comparitor 6-119,6-131 
IF .. THEN .. ELSE 6-123 
illegal state recovery 6-251 
image processing 3-34, 7-24 
incident-wave switching 1-30 
Index Tag register 8-87 
indirect data intervention 8-62 - 8-63 
Initial Replacement Counter 8-87 
input clamping diodes in bipolar IC families 1-1 
input hysteresis 1-30 
Instruction Access Page Table Pointer 8~86 

Instruction Exception Fault Groups 8-67 
instruction-set compatibility 7-53 
INTACK 8-13 
integral control 6-234 
interleaved SRAM 3-11 
interlocked REQ/ACK handshake 6-259 
intermediate voltage sensor 6-27 
interprocedural register allocation 8-6 
interrupt controller 6-259 - 6-263, 7-25, 7-35, 8-72 - 8-

73,8-75 



interrupt handler 6-174,6-176,8-13,8-15,8-90,8-96-
8-99 

interrupt latency 8-96 - 8-97 
interrupt removal cycle 4-20 
lNULL 8-10 
ISDATA 6-8,6-173,6-218, 7-30, 7-32 
istype 6-119,6-124,6-127,6-140 - 6-142, 6-147 - 6-149, 

6-151 - 6-152 

J 

J 8-58 
JEDEC 2-7,6-3,6-93 - 6-94, 6-119, 6-151, 6-154, 6-

182,6-218,6-224,8-34,8-89 
JEDEC (JC-42.1-81-62) format 6-69 
JEDEC map 6-3,6-173 
JEDEC map, reading 6-224 
JEDEC Solid State Products Engineering Council 2-7 

- 2-8 
JEDEC Standard No.3-A 6-3 
jitter 6-234 
JK flip-flops, emulating in PLD 6-5 
junction temperature at the chip level 3-17 

K 

Karnaugh mapping 6-213 

L 

LaPlace transform 1-7, 1-21- 1-22 
large FIFO depth expansion 7-15 
large FIFO overview 7-14 
large FIFO read and write timing 7-14 
large FIFO retransmit feature 7-16 
large FIFO width expansion 7-15 
large FIFOs, avoiding problems 7-18 
laser mirror-positioning servo 6-233 
latch-up prevention 6-19 
latch-up, eliminating 4-6 
latch-up, testing 4-5 
late-transition detector 6-28 
late-transition sensor 6-27 
layer masking process 8-37 
LCC 4-10,4-15,6-213,6-248 
LCR meter 3-25 
leadless chip carrier 2-1 
least recently used 6-271 
least recently used arbitration 6-307 
least recently used cache algorithm 8-55 

1-7 

level 1 cache 8-50,8-53 - 8-55, 8-58 - 8-60, 8-63 
level 2 cache 8-49 - 8-50, 8-53 - 8-56, 8-58 - 8-60, 8-63 
line capacitance 1-4,1-7 
line self inductance 1-4 
line termination strategies 1-14 
linked lists 8-91 
load capacitance 1-4 
load capacitance, analyzing 3-23 
load/store model of execution 8-2 
loadable delay counter 6-50 
local virtual cache 8-69 
locally-synchronous systems 6-23 
lockvariable 4-8 - 4-9 
lockword 4-8 
LOG/iC 6-173,6-181 - 6-182, 6-218, 7-30, 7-32, 7-35 
LOG/iC design synthesis tool 6-154 
LOG/iC language overview 6-154 
LOGiC 6-8 
logic array block 6-7,6-327 
logic polarity 6-155 
logic reduction 6-8, 6-93, 6-121 - 6-122 
logic-array architecture 6-286 
logic/miser bit 6-303 
look-up-table translation function 4-20 
loosely coupled coprocessor 7-53 
low-pass filter analysis 1-16 

M 

macro file 6-139,6-141 
main memory coherency algorithm 8-56 
MAX 2-26,3-17,6-1,6-7 - 6-8, 6-29,6-327 - 6-330, 6-

332, 6-335, 6-345 - 6-349, 6-355 - 6-357 
MAX + PLUS 6-8, 6-29, 6-327 - 6-330, 6-332, 6-335, 6-

346 - 6-347, 6-355 - 6-357 
MAX + PLUS programming support 6-357 
MAX + PLUS simulation 6-356 
MAX + PLUS simulator 6-356 
MAX + PLUS timing analysis 6-357 
MAX + PLUS verification 6-355 
Mbus 6-270 - 6-273, 6-305 - 6-307, 6-310 - 6-311, 8-8, 8-

16, 8-21 - 8-22, 8-53 - 8-54, 8-60 - 8-63, 8-67, 8-69 -
8-77, 8-79 - 8-81, 8-86 - 8-87 

Mbus AC timing parameters 8-73 
Mbus address phase 8-70 
Mbus address wrap feature 8-71 
Mbus arbiter 8-16, 8-81 
Mbus arbitration 6-306, 8-75 
Mbus arbitration mechanisms 8-72 
Mbus architectural overview 8-69 



Mbus basic structure. 8-69 
Mbus bus error 8-72 
Mbus bus snooping protocol 8-70 
Mbus bus timeout error 8-72 
Mbus clock generator 8~73 

Mbus connector 8-73 
Mbus data control Lines 8-71 
Mbus data phase 8-71 
Mbus data transfer cycle 8-71 
Mbus description 6-270,6-306,8-70 
Mbus DRAM memory module design 8-75 
Mbus grant 8-81 
Mbus Idle cycle 8-71 
Mbus interrupt control 8-75 
Mbus interrupt support 8-72 
Mbus memory module 8-75 - 8-76 
Mbus module identification and configuration 8-72 
Mbus processor modules 8-73 
Mbus reflective memory feature 8-70 
Mbus relinquish and retry cycle 8-72 
Mbus request/grant mechanism 8-69 
Mbus retry cycle 8-71 
Mbus system boot 8-81 
Mbus transaction.status and encoding 8-71 
Mbus uncorrectable error 8-72 
Mbus watchdog timer 8-74 
Mbus-arbiter reset control register 8-81 
MCl00E107 3-12 
MCl00E155 3-11 
MClOH350 3-5 
MClOH351 3-5 
McBOOLE 6-273 
MDS 8-11- 8-12 
Mealymachine 6-154,6-156,6-175,6-301 
Mealy macrocell 6-295,6-300 - 6-303, 6-311 
Mealyoutput 6-215,6-298,6-301,6-315,6-318,8-111 
memory access errors 8-65 
memory access fault 8-65, 8-68 
memory design 8-17 
memory latency 8-20 
memory management unit 3-34, 6-270, 6-305 - 6-306, 8-

34,8-38,8-49,8-52, 8-61, 8-65, 8-73; 8-84, 8-108, 9-
11 

memory system latency 8-97 
memory, interleaved 8-20 
memory-exception generator 8-108 - 8-111 
message passing 4-8, 7-21 - 7-22, 7-25 
metastability 1-29, 1-32,6-21 - 6-31, 6-33, 6-175, 6-300, 

7-7 
metastability data 6-26 

1-8 

metastability test circuit 6-28 
metastability, analysis 6-24 
metastability, avoiding 6-23 
metastability, causes 6-23 
metastability, characterization 6-27 
metastability, eliminating 6-22· 
metastability, explanat~oil 6-22 
metastability, statistical analysis 6-25 
metastable event 1-32, 6-24 - 6-26, 6-28 - 6-31, 6-310 
metastable region 6-22,6-25 
Pletastabl~ resolution 6-25,6-29 - 6-31, 6-286 - 6-287 
MEXC 8-11 
MEXC signal 8-65 
MHOLD 8-7,8-11- 8-13 
microcoded processor 7-47 
microprogrammed system 7-51 
microstrip 1-12 - 1-14, 1-32, 3-26, 3-35, 7-8, 7-18 
MIL STD-883C Method 3015 3-9, 3-21, 3-32 
MINC 6-8 
minterm form 6-10 
mixing logic families 1-30 
Mizar MZ7170 system 8-89 
MMU 3-34,6-270,8-13,8-19,8-21,8-38 - 8-39, 8~49, 8~ 

61, 8-65, 8-84 - 8-88, 8-97 - 8-98, 8-108, 9-11 
mmu.C file 8-86 
mmu.h file 8-86 
module identifier (MID) number 8-81 
modulo-11 counter 6-160 
MOESI (Modified, Owned, Exclusive, Shared, Invalid) 

cache consistency model 8-Q2 
Moore machine 6-154,6-156,6-175, 6-180, 6~301 
MOS transistor 1-1 
MTBF 1-32,3-17,4-21,6-26 - 6-27, 6-29 - 6-33, 6-48 
multi-frame alignment 6-76 
multi-port memories 4-7 
multi-way set-associative caches 8·51 
multicache consistency 8-59 
multichip address field 8-88 
multichip mask field 8-88 
multiqtip valid (MV) bit 8-88 
multilevel cache hierarchy 8-49 - 8-50, 8-57 - 8-59, 8-

61 
MUltiple Array MatriX 6-327 
multiple-chip memory configurations 3-27 
multiplexer macrofunctions iri MAX 6-332 
MUPAC Corporation 3-38 

N 

negative hold ~ime 1-32 



negative logic 6-261 
NMOS ICs, replacing with CMOS 1-1 
node declaration 6-143 
noise budgeting 8-25, ~-28 - 8-29 
noise effects 8-33 
noise generation 3-1,3-3 
noise immunity 3-1,8-29 
non-destructive triadic address architecture 8-2 
number base 6-94, 6-120 
numerically controlled oscillator 3-11 
Nyquist frequency 6-234 

o 
one shot 6-49,6-290,6-298, 7-10 - 7-11 
open-loop control system 6-233 
optimizing compilers 8-1- 8-2 
OrCAD 6-93 
orthogonal instruction set 8-2 
oscillatory behavior 1-11- 1-12, 1-21 
output proximity sensor 6-27 
overdamped condition 1-5 
overlapped bq.s requests 6-289 

P330 6-139,6-141 - 6-142 
P330A 6-139 
P331 6-150 - 6-151 

p 

PAL 1-2,1-18,2-24 - 2-28, 4-20, 6-2 - 6-3, 6-10 - 6-14, 
6-16 - 6-19, 6-26, 6-30 - 6-33, 6-48, 6-53, 6-65, 6-67 -
6-69,6-77 - 6-79, 6-93, 6-95 - 6-96, 6-99, 6-119, 6-
123,6-154,6-174,6-182,6-213,6-223,6-295 - 6-297, 
7-25, 7-30, 7-33, 8-74, 9-8, 9-11 ' 

PAL array 6-11 
PAL C 16R6 6-63 
PAL C advantages over bipolar PALs 6-18 
PAL C EPROM cell 6-12 
PAL C production screen 6-18 
PAL C qualification 6-18 
PAL C technology 6-19 
PAL functions 6-11 
PAL latch-up 6-19 
PAL modes 6-13 
PAL phantom array 6-11,6-13 - 6-14 
P A~ phantom operation 6-16 
PAL programming 6-10 - 6-11, 6-13 
PAL register preload 6-11 
PAL reliability 6-16 
PAL securi!J function 6-11 

1-9 

PAL structure 6-10 
PAL verify 6-16 
PALASM 6-68 
parallel AC termination 1-14, 1-16 
parallel termination 3-38 
parasitic bipolar transistors 6-19 
parity and arbitration options of SCSI-1 6-40 
pattern recognition circuit 6-78 - 6-79 
PCB trace characteristic impedance 1-32 
peak detection and data separation of taped data 6-64 
Petri Net 6-23, 6-49, 6-296, 6-303 
PGAs 2-4 
phase lock loop circuit 6-80 
phase trajectory 6-25 
phase velocity 1-2,1-4 
physical cache tags 8-49 
physical memory space 8-69, 8-71 
pick-and-place machine 8-37 
PID method 6-233 
piecewise transmission line analysis 1-6 
"ping-pong" RAM 4-20 
pin grid array 2-4,8-25 - 8-26 
pipelined buffer 6-213,6-218 
pipelined SRAM 3-11 
pipes 8-91 
plastic quad flat pack 8-34 
PLCC 3-6,3-15,3-17,4-10,4-15,4-25,6-213,6-248,8-

34 - 8-35 
PLCC qualities 3-15 
PLD 1-14,1-18,1-29 - 1-30, 1-32,3-4,3-7,3-12,3-15 -

3-17,3-33 - 3-34, 3-38, 6-1 - 6-8,6-21, 6-24, 6-26 - 6-
:W, 6-32 - 6-33, 6-40, 6-44, 6-48 - 6-49, 6-53 - 6-54, 6-
69,6-78,6-93,6-96,6-98 - 6-99, 6-101, 6-119,6-123, 
6-131,6-139,6-147,6-154,6-157 - 6-158,6-160 - 6-
161,6-173 - 6-174, 6-177, 6-180, 6-182 - 6-183,6-
213,6-216,6-218,6-221,6-223,6-233,6-235,6-237, 
6-247 - 6-248, 6-251, 6-259, 6-261, 6-263, 6-270, 6-
273, 6-279 - 6-283, 6-286, 6-291, 6-295 - 6-296, 6-
302, 6-305, 6-310 - 6-311, 6-315 - 6-316, 6-318 - 6-
320, 6-327, 6-332, 6-335, 6-345, 6-349, 6-353 - 6-355, 
6-357, 7-32, 8-38 - 8-41, 8-51, 8-73, 8-75,8-77,8-79, 
8-108,8-110,8-115,9-3 

PLD database for LOC/iC 6-154 
PLD illegal state resolution 6-4 
PLD notation and fuse maps 6-2 
PLD phantom array 6-4 
PLD register preload 6-4 
PLD registered inputs 6-6 
PLD software packages 6-8 
PLD technology 6-1 



PLO ToolKit 6-2,6-8,6-29,6-119,6-183,6-213,6-218, 
6-237, 6-251, 6-261, 6-273, 6-280 - 6-283, 6-291, 6-
302, 6-310 - 6-311, 6-316, 6-318 - 6-320, 7-32, 8-41, 
8-115 

PLOs, high density 6-7 
Poisson process 6-25 
polarity convention 6-143,6-283 
polarity of buried registers 6-143 
polarity switch 6-5 
polyethylene 1-13 
polystyrene beads dielectric 1-13 
porting UNIX 8-84 
power characteristic tables for Cypress products 2-26 
power dissipation characteristics of Cypress products 

2-23 
power dissipation models for Cypress products 2-24 
power dissipation sources 2-23 
power, core and output buffer 2-24 
power, DC or static 2-24 
power, frequency-dependent component 2-23 
power, input buffer 2-24 
power, quiescent (or DC) component 2-23 
power, Transient 2-24 
power-down options 2-24 
PQFP 8-34 
practical transmission line 1-2 
pre-arbitration 6-306 - 6-307 
pre-charging critical nodes 4-14 
pre-emptive scheduling 8-95 
prioritized interrupt vector 6-259 
procedure call overhead 8-95, 8-98 
processor state register 8-3 
product term 6-1- 6-2, 6-4 - 6-8, 6-11, 6-14, 6-16, 6-69, 

6-99 - 6-101, 6-119, 6-122, 6-124, 6-127, 6-131, 6-139 
- 6-143, 6-147 - 6-153, 6-155, 6-157 - 6-161, 6-173, 6-
177,6-180 - 6-183, 6-213 - 6-218, 6-220 - 6-221, 6-
224,6-237 - 6-238,6-248 - 6-251, 6-259, 6~279, 6-
286 - 6-288, 6-297 - 6-298, 6-300, 6-303, 6-327, 6-
332 

product term squeezing 6-250 
programable-polarity, level-sensitive inputs 6-259 
programmable clock inputs 6-6 
programmable interconnect array 6-7, 6-327 
programmable logic device 6-1,6-3 
programmable macrocell 6-4 
programmable waveform generator 6-279 - 6-280 
programmer object file 6-335 
PROM 6-77 - 6-78 
propagation velocity and delay 1-4 
proportional control 6-234 - 6-235 

1-10 

PTQC 6-93 
pull-up/pull-down termination 1-14 - 1-15 
pulse code modulation 6-76 
pulse-generator module 1-32 
pulse-triggered counter 6-301 

Q 

QFPs 2-4 
QIC (Quarter Inch Cartridge) Committee 6-63 
quad flat packs 2-4 
quad in-line package 2-4 
QuickPro 3-39,6-218,6-357 
QUIP 2-4 

R 

R3000 3-30 - 3-31 
R3000A 3-30 - 3-31 
R3000A cache system 3-30 
radar 7-24 
radar equipment 4-19 
radar system 6-136 
radio frequency interference 1-14 
random priority 6-271 - 6-272, 6-307, 8-75 
raster-graphics video system 3-11 
RC networks 1-16 

Index 

real-time operating system 8-5, 8-89, 8-92, 8-95 - 8-96 
real-time operation 8-93, 8-95 
real-time server 8-89 
real-time system 8-89, 8-95 - 8-97 
recursive digitat filter 8-1 
reducing reflections 1-32 
reflected voltages 1-1 
reflection coefficient 1-5 - 1-7, 1-9, 1-11- 1-12, 1-14, 1-

19, 1-21 - 1-22 
reflectio,n coefficients 1-5 
reflective main memory 8-62 - 8-63 
reflective me:Qlory 8-84, 8-88 
reflow soldering 8-35 
register windowing model 8-98 
register windows 8-3 
registered bypass 7-21 - 7-22, 7-29 
relational operators 6-120 
remote procedure calls 8~91 - 8-92 
replacement counter 8-87 
report file 6-335 
reset register 8-87 
restricting address spaces via software 4-20 
ribbon cable 1-15 



ring buffers 8-91 
ringing 1-1 - 1-2, 1-18 
RISC memory design 8-17 
RISC software advantages 8-2 
RISC system, estimating performance 8-17 
Rogers Corporation 7-20 
Root Pointer register 8-86 
rotated-die device 1-30 
rotating priority 6-271,6-307 

s 
satellite communications 3-11 
SCHEMA 6-93 
Schottky diode termination 1-17 
Schottky diodes 1-17 - 1-18, 8-31 - 8-32 
SCSI asynchronous transfer mode 6-42 
SCSI data buffer 6-46 
SCSI external ACK control 6-53 
SCSI fast synchronous transfer·mode 6-41,6-44 
SCSI interface transceivers 6-45 
SCSI REQ/ACK offset counter 6-46 
SCSI transfer timing 6-41 
SCSI transmit control 6-49 
SCSI-2 6-40 - 6-42, 6-44 - 6-47, 6-49, 6-54 
SCSI-2 host bus adapter 6-40 
secondary cache system applications 8-21 
security bit 6-4 
security fuse 6-3 - 6-4 
self-synchronization 6-291 
self-timed byte-write mechanism 8-38 
self-timed design 6-6, 6-286 - 6-288 
self-timed FIFO 7-14 
self-timed interfaces 6-23 
self-timed SRAM 3-11 
self-timed system 6-23 
semaphore 4-9,4-20,8-91,8-98 
series damping 8-26,8-30 
series-damping resistor 1-15,1-30,4-28 
series-damping termination 1-14 
series termination 3-38 
servo control 6-161 
set-associative cache mapping 8-51 
SFAR 8-65, 8-67 
SFSR 8-65, 8-67 - 8-68 
Shannon's sampling theorem 6-234 
shared input multiplexer 6-99, 6-260 
shared input mux 6-6,6-141- 6-142, 6-222, 6-280, 6-

286 
shared memory 8-91 

1-11 

signal transition times 1-4 
SIMM 2-3,2-7 - 2-8 
single in-line memory modules 2-3 
single in-line package 2-1 
SIP 2-1- 2-4 
Smalltalk 8-6 
SMT design 8-33 - 8-34 
sockets 8-89, 8-91 - 8-92 
SOIC packages 2-1 
SOJ packages 2-1 
solder bridging 8-37 
Solid State Products Engineering Council 6-3 
sonar 7-24 
SPARC 3-34,6-154,6-270,6-305 - 6-306, 6-311, 7-24, 

7-28,8-1 - 8-3, 8-5 - 8-8, 8-15, 8-21, 8-23 - 8-25, 8-
29, 8-33, 8-41, 8-48 - 8-49, 8-52 - 8-53, 8-61, 8-63, 8-
65, 8-67 - 8-69, 8-80 - 8-81, 8-84 - 8-90, 8-93, 8-95, 8-
97 - 8-99, 8-108 

SPARC architectural standard 8-69 
SP ARC cache implementations 8-63 
SPARC clock fanout 8-25 
SPARC International 8-73 
SP ARC Reference MMU Architecture Standard 8-61 
SPARC reset and error modes 8-7 
SP ARC software implementations 8-1 
SPARC system clock at high speeds 8-23 
SPARC system clock duty-cycle imbalance 8-23 
SPARC system clock skew 8-24 
SPARC system clock-line noise 8-25 
SPARC system crosstalk 8-27 
SP ARC system design 8-7 
SP ARC system grounding techniques 8-29 
SPARC system power supply 8-26 
SPARC system, noise generation in 8-25 
SPARC system, reducing noise in 8-28 
SP ARCstation 8-84 
spatial locality 8-48 
special-purpose controller 7-50 
SR flip-flop in PLD 6-8 
SRAM module 1-31 
SRAM modules, variable depth 2-7 
SRAM noise margin 4-1 
SRAM output short-circuit current 4-1 
SRAM switching-threshold variations 4-4 
SRAM technology dependencies 4-2 
SRAM, effects of electrostatic discharge on 
SRAMs in RISC systems 3-30 
stacked TTL output driver 6-216 
STAG 6-218 
stale data 4-19 

4-4 



standard cell devices 6-1 
standard data transfer format between data prepara­

tion system and programmable·logic device 
programmer 6-3 

standing waves 1-5 
STAR M2 BiCMOS technology 3-7 
STAR M2 process 3-33 - 3-34 
STAR's polysilicon bipolar emitter 3-7 
state diagram 6-28,6-49 - 6-51, 6-68, 6-80, 6-119 - 6-

120,6-123,6-136,6-173,6-177,6-182 - 6-183,6-273, . 
6-288, 6-332, 7-27, 7-29, 7-32 

state machine 4-14,6-3 - 6-6, 6-8, 6-10, 6-28, 6-46, 6-
49 - 6-53,6-63,6-78,6-93 - 6-94, 6-97 - 6-99, 6-119, 
6-123,6-136,6-142 - 6-144, 6-154, 6-156 ~ 6-158, 6-
161,6':173 - 6-177, 6-179 - 6-183, 6-213, 6-215, 6-
218, 6-238, 6-247 - 6-248, 6-250 - 6-251, 6-270 - 6-
273, 6-287, 6-295 - 6-298, 6-301 - 6-302, 6-305, 6-
307 - 6-308, 6-315, 6-328, 6-332, 6-355, 7-8, 7-25, 7-
27 - 7-30, 7-32 - 7-33, 7-35, 8-39, 8-72, 8-74 - 8-75, 8-
79,8-109 - 8-111, 8-113 - 8-114 

state machine design methodologies 6-173 
state machine entry methods 6-173 
state machine example 6-174 
state machine partitioning 6-176 
state machine PROM implementation 6-182 
state machine state decode 6-180 

state machine T flip-flop implementation example 6-
181 

state machine D flip-flop implementation example 6-
180 

state machine, naming the states 6-176 
state machine, state description verification 6-177 
state machine, system and state register output genera-

tion 6-179 
state macrocell 6-183,6-250,6-297 - 6-298, 6-:300, 6-

302, 6-305, 6-307, 6-309 - 6-311 
state outputs 6-173 
state path 6-173 
state registers 6-173 
state space 6-97 
state table reduction methods 6-173 
state tables 6-173 
state transition table 6.,273 
state vector or machine state 6-173 
state-space curves 6-25 
static RAMs, function and 110. standards 4-1 
step function excitation 1-5 
store doubles 8-61 
string substitution 6-96, 6-160 
strip lines 1-12 

1-12 

stripline 3-35 
stripline construction 1-5, 1-14, 1-18 
strobe shortening considerations 1-21 
stuffing indicator bits 6-76 
Styrofoam bead dielectric 1-13 
substrate bias generator 1-2,4-3,4-5 - 4-6, 6-20, 6-216, 

7-14 
sum of products 6-4 - 6-6, 6-10, 6-65, 6-180, 6-250, 6-

297 
sum-of-products architecture 6-1 
sum-of-products structures 6-327 
SunOS 8-84 - 8-88, 8-90 
superposition principle 1-6 
surface-mount devices, adhesives for 8-35 
surface-mount devices, alignment 8-37 
surface-mount devices, centering 8-:37 
surface-mount devices, lead handling . 8-34 
surface-mount devices, placement 8-33 
surface-mount devices, soldering .8-34 
surface-mount devices, spacing 8-37 
surface-mount footprint design 8-34 
surface-mount package 1-30, 7-14, 8-34 
surface-mount technology 8-33 
symmetric multiprocessing 8-69 
synchronization failure 6-23,6-26,6-30 
synchronization primitive 4-9 
synchronizer 6-21 - 6-23, 6-26 - 6-33 
synchronizing processes 
synchronous design 6-21,6-213,6-286,6-288,8-30 
synchronous fault status register 8-65 
synchronous full adder 6~237 

synchronous state machine 6-174 - 6-175 
system control register 8-81, 8-86, 8-88 

T 

T flip-flop 6-142 - 6-143 
T flip-flops, emulating in PLD 6-5 
T-Bird 6-98 - 6-99 
T-Bird taillights 6-160 - 6-161 
T1 channel 6-76 
T2-based transmission system 6-76 
table walk 8-85, 8-87 
TAS instruction 4-9 
TCP/IP 8-92 
Teflon 1-13 
Tektronix DAS9200 6-29 
telecommunications bridging 7-24 
telephone channels 6-76 
temperature and voltage compensation 3-1,3-3 



temporal locality 8-48 
termination methods 8-30 
termination, AC 8-30 
termination, diode 8-31 
termination, parallel 8-30 
termination, series 8-30 
test equipment 3-11 
Thevenin 1-15, 1-32 - 1-33,4-4,8-28,8-30 
Thevenin resistance 8-28 
Thevenin termination 1-33 
three-level virtual memory space 8-85 
Thunderbird 6-98 
time-domain reflectometry 3-24,3-28 
timing diagram 3-8,4-16,6-44,6-50 - 6-51, 6-131, 6-

261,6-288,6-346 - 6-347, 6-356, 7-11, 7-19, 7-23, 7-
25, 7-29, 8-39 

timing simulation 6-8 
TLB Replacement Control Register 8-87 
TMS32OC30 6-315,6-320 
TMS32OC30, interrupt signal conditioning for 6-315 
TOABEL 6-68 
toggle counter 6-213,6-218 - 6-219 
token passing 7-16 
token ring network 6-247 
token-passing 6-49,6-296, 6-315, 7-16 
total input vector 6-173 
transition statement 6-123 
translation look-aside buffer 8-84 
translation lookahead buffer 8-98 
transmission line 1-1- 1-7, 1-11-1-12, 1-14 - 1-15, 1-

17, 1-22, 1-30, 1-32,3-2,3-9,3-23 - 3-26, 3-35, 3-37 -
3-38,4-23,4-27,8-27 - 8-28, 8-30, 8-74 

transmission line discontinuities 1-7 
transmission line effects for CMOS ICs 1-1 
transmission line terminations, types 1-14 
transmission line theory 1-2 
transmission line's maximum allowable length 1-4 
transmission line's pulse response 1-7 
transmission line, classical 1-5 
transmission line, ideal 1-3, 1-5, 1-7, 1-9 
transmission line, practical 1-17 
transmission line, types 1-12 
transmission line, when to terminate 1-14 
transparency feature 6-259 
transparent bypass 7-21 - 7-23 
trap handler objectives 8-65 
trap handling 8-87 - 8-88 
trap status 8-65 
traveling waves 1-5 

1-13 

truth table 6-16, 6-68, 6-93 - 6-95, 6-97 - 6-98, 6-119 -
6-120,6-122,6-154 - 6-155, 6-160 - 6-161, 6-328 - 6-
329,6-355 

TTL BiCMOS I/O architecture 3-9 
TTL BiCMOS SRAM 3-8, 3-13 
TTLPLD 6-1 
TTL-I/O 64K SRAMs 3-20 
twisted pair 1-12 - 1-13 
two-level virtual memory space 8-85 
two-stage synchronization 6-32 

u 
underdamped condition 1-5 
University of Karlsruhe 6-154 
unterminated line example 1-18 

v 

vacuum pick-up nozzle 8-37 
variable sum of products 6-6 
VDIPs 2-4 
vector file 6-335 
VIC068 9-5 - 9-8, 9-11 
VIC068 bus line connection 9-6 
VIC068 features 9-1 
VIC068 interfacing 9-4 
VIC068 interprocessor communication global switches 

9-3 
VIC068 interprocessor communication module 

switches 9-3 
VIC068 interprocessor communication registers 9-3 
VIC068 interrupt generator 9-3 
VIC068 interrupts 9-11 
VIC068 mailbox signaling 9-3 
VIC068 master operation 9-8 
VIC068 reset circuit 9-5 
VIC068 reset operation 9-5 
VIC068 slave operation 9-8 
VIC068, accessing 8-bit devices 9-8 
VIC068, decoding for supervisor/user mode 9-11 
VIC068, interfacing to 68020 9-5 
VIC068, parts required with 9-3 
VIC068, using with ROM remapping circuit 9-5 
video equipment 3-11,4-19 
video processor 4-20 
virtual cache tag array 8-62 
virtual cache tags 8-49 
virtual dual-port RAM 4-8 



virtual memory with cache 8-69 
visible execution pipeline 8-2 
vision system 8-37 
VME DTACK generation in CY7C361 6-318 
VME-based system enclosure 8-89 
VMEbus requester 6-286,6-288 - 6-289 . 
voltage reflection, condition for 1-4 
VSOP packages 2-1 
VxWorks 8-89 - 8-93 

w 
W. L. Gore & Associates 3-38 
waveform ftle 6-335 
waveform generation 3-34 
waveform generation via direct digital synthesis 3-11 
waveform generator 6-280 
waveform synthesis system 3-11 
Wind River Systems VxWorks 8-89 

1-14 

window invalid mask 8-4 
window invalid mask register (WIM), initializing 8-7 
wire over ground 1-12 - 1-13 
WITH .. ENDWITH 6-123 
workstation design 3-34 
write-through caching 8-19 
writeable control store 7-52 

x 

X3T9.2 Accredited Standards Technical Subcommittee 
6-40 

XOR gate 6-5 - 6-6 

z 

ZSO 6-131 
ZIP 2-2 - 2-4, 2-7 - 2-8 




