———
—— 8
——————

S

 APPLICATIONS &
H A N D B 00 K %ﬁé EMICONDUCTOR

APPLICATIONS
HANDBOOK

CYPRESS
SEMICONDUCTCR ™

Cypress Semiconductor is a trademark of Cypress Semiconductor Corporation.
Cypress Semiconductor, 3901 North First St., San Jose, CA 95134 (408) 943-2600
Telex: 821032 CYPRESS SNJ UD, TWX: 910 997 0753, FAX: (408) 943-2741

IBM®. is a registered trademark of the International Business Machine Corporation.
IBM PC®. is a registered trademark of the International Business Machine Corporation.
SPARC™ s a trademark of Sun MicroSystems, Inc.

Data I/O®. is a registered trademark of the Data I/O Corporation.

PLD Test™ and ABEL™ are trademarks of the Data /O Corporation.

PC/XT™ is a trademark of the International Business Machine Corporation.

STAG®. is a registered trademark of Stag Microsystems Ltd.

Cypress PLD Toolkit™ is a trademark of Cypress Semiconductor Corporation.

Sinat
CAPRESS
W TS nucror

How to Use This Book

This book has been organized by product type, begin-
ning with general articles that apply to all Cypress
products. The individual applications notes follow, or-
ganized by product type. The order is: SRAMs,
PROMs, EPLDs, Logic (including FIFOs and dual

Published August 1, 1989

port RAMs), and RISC. Within each chapter, applica-
tion notes are arranged in the order of part number. In
cases where more than one Cypress product is used in
the application, the article will be filed using the
product which is the primary focus of the article.

© Cypress Semiconductor Corporation, 1989. The information contained herein is subject to change without notice. Cypress
Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuity embodied in a Cypress

Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights.

press Semiconductor does

not authorize its products for use as critical components in life support systems where a malfunction or failure of the product may
reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life support system
applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all

damages.

&

}CYP

SEMICONDUCTOR

Table of Contents

General Information

Page Number

System Design Considerations

1-1

Power Characteristics of Cypress Products

Static RAMs

Page Number

Tips for High-Speed Logic Design

2-1

2-7

RAM Input/Output Characteristics
74F189 Application Brief

2-15

PROMs

Page Number

3-1

Introduction to Diagnostic PROMs
Pin-Out Compatibility Considerations of SRAMs and PROMs

EPLDs

Introduction to Programmable Logic
Programmable Logic Device Application Note

PAL C16R6 Design Example: GRC Encoder/Decoder
Using ABEL to Program the Cypress 22V10

Using ABEL to Program the CY7C330
CY7C330 66-MHz 28-Pin Synchronous EPLD

CY7C330 State Machine Example: SCSI Host Adapter
Using the Cypress CY7C330 in Closed-Loop Servo Control

FDDI Physical Connection Management Using the CY7C330
CY7C331 Application Example: Asynchronous,
Self-Timed VME Bus Requester

Bus-Oriented Maskable Interrupt Controller

Using the CY7C331 as a Waveform Generator

Logic

Microcoded System Performance

Systems with CMOS 16-bit Microprogrammed ALUs

Understanding FIFOs

5-11

Interfacing to the FIFO Application Brief

5-23

Understanding Dual-Port RAMs

5-25

Using Dual Port RAMs Without Arbitration

5-41

TOC-1

=
= S e

RISC _ : : Page Number
Memory System Design for the CY7C601 SPARC Processor ’ 6-1
Cache Memory Design ~ 6-11
SPARC as a Real-Time Controller » 6-33
Using the CY7C330 as a Multi-channel Mbus Arbiter........ ‘ 6-47
IIEX ocuiereerrrtennnnireneensastessssssssss s ss st s sssse s sesssassass s s s s st et st as s sasnstsensssnssnasassanasanas Index-1

TOC-2

i

Section Contents
General Information

Page Number

System Design Considerations....

1-1

1-21

Power Characteristics of Cypress Products

— & CYPRESS
=% SEMICONDUCTOR

Systems Design Considerations When
Using Cypress CMOS Circuits

Introduction

This document is intended to be a guide for the systems
designer. Its purpose is to make him aware of the things to
consider either when designing new systems using Cypress
high performance CMOS integrated circuits or when Cy-
press products replace either bipolar or NMOS circuits in
existing systems. The two major areas of concern are trans-
mission line effects due to impedance mismatching between
the source and load, and device input sensitivity.

Design for Performance

In order to achieve maximum performance when using Cy-
press CMOS integrated circuits, the systems designer must
pay attention to the placement of the components on the
Printed Circuit Board (PCB), the routing of the metal
traces that interconnect the components, the layout and
decoupling of the power distribution system on the PCB
and, perhaps most important of all, the impedance match-
ing of (some of) the traces (which, under certain condi-
tions, must be analyzed as transmission lines) between the
source and the loads. The most critical traces are those of
clocks, write strobes (on SRAMS), and chip enables.

Issues of Concern When Cypress ICs Replace
Either Bipolar or NMOS ICs

Cypress CMOS ICs have been designed to replace both
bipolar ICs and NMOS products, and to achieve equal or
better performance at one-third (or less) the power of the
components they replace.

When high performance Cypress CMOS circuits replace
either bipolar or NMOS circuits in existing sockets, the
user must be aware of certain conditions, which may be
present in the existing system, that could cause the Cypress
ICs to behave in a manner different than expected. These
conditions fall into two general categories; (1) device input
sensitivity and, (2) sensitivity to reflected voltages.

Input Sensitivity

High performance products, by definition, require less en-
ergy at their inputs to change state, than low or medium
performance products.

Unlike a bipolar transistor, which is a current sensing de-
vice, a MOS transistor is a voltage sensing device. In fact, a
MOS circuit design parameter called ‘K’ is analogous to

1-1

the gm of a vacuum tube, and is inversely proportional to
the gate oxide thickness.

The thin gate oxides, which are required to achieve the
desired performance, result in highly sensitive inputs that
require very little energy. High frequency signals that bipo-
lar devices would not respond to may be detected by
CMOS products.

MOS transistors also have extremely high (5 to 10 million
ohm) input impedances, which make their gate inputs anal-
ogous to the input of a high gain amplifier (or an RF anten-
na). In contrast, bipolar ICs have input impedances of
100092 or less, so they require much more energy to change
state than MOS ICs. In fact, a Cypress IC requires less
than 10 picojoules of energy to change state.

Therefore, when Cypress CMOS ICs replace either bipolar
or NMOS ICs in existing systems, they may respond to
pulses of energy that are present in the system that are not
detected by the bipolar or NMOS products.

Reflected Voltages

Cypress CMOS ICs have very high input impedances and,
to achieve TTL compatibility and to drive capacitive loads,
low output impedances. The impedance mismatch, due to
low impedance outputs driving high impedance inputs
may, under certain conditions, cause unwanted voltage re-
flections and ringing, which could result in less than opti-
mum system operation.

When the impedance mismatch is very large, a nearly equal
and opposite negative pulse is reflected back from the load
to the source when the (electrical) length of the line (PCB
trace) is greater than

= IR (9
2 Tpd (ns/ft.)

where TR is the rise time of the signal at the source and
Tpq is the one-way propagation delay of the line per unit
length.

The input clamping diodes that bipolar logic “IC families”
(e.g., TTL, LS, ALS, FAST) all have are inherent in the
fabrication process. The p-substrate is usually grounded
and n wells are used for the NPN transistors and p type
resistors. The wells are reverse biased by connecting them
to the Vcc supply. As a result, a PN junction diode is
formed between every input pin (cathode or n material)

December 1986

Systems Design Considerations When Using Cypress CMOS Circuits

&

Introduction (Continued)

and the substrate (anode or p-material). When a negative
voltage occurs at an input pin, either due to lead induc-
tance or to a voltage reflection, the diode is forward biased,
turns on, and clamps the input pin to a Vf below ground
(approximately —0.8V).

As circuit performance improved, the output rise and fall
times of the bipolar circuits decreased to the point where
voltage reflections began to occur (even for short traces)
when there was an impedance mismatch between the line
and the load. Most users, however, were unaware of these
reflections because they were suppressed by the clamping
action of the diodes.

Conventional CMOS processing results in PN junction di-
odes. However, they adversely affect the ESD (Electrostat-
ic Discharge) protection circuitry at each input pin and
cause an increased susceptibility to latchup. To eliminate
this, a substrate bias generator is used.

Voltage reflections should be eliminated by using imped-
ance matching techniques and crosstalk should be reduced
by careful PCB layout.

Crosstalk

The rise and fall times of the waveforms generated by the
output circuits are 2 to 4 ns between levels of 0.4V and 4V.
The fast transition times and the large voltage swings could
cause capacitive and inductive coupling (crosstalk) between
signals if insufficient attention is paid to PCB layout.
Crosstalk is reduced by avoiding running PCB traces paral-
lel to each other. If this is not possible, ground traces
should be run between signal traces. In synchronous sys-
tems, the worst time for the crosstalk to occur is during the
clock edge with which the data is sampled. In most systems
it is sufficient to isolate the clock and other data strobe
lines so that they do not cause coupling to the data lines.

The Theory of Transmission Lines

A connection (trace) on a PCB should be considered as a
transmission line if the wavelength of the applied frequency
is short compared to the line length. If the wavelength of
the applied frequency is long compared to the length of the
line, conventional circuit analysis can be used.

In practice, transmission lines on PCBs are designed to be
as nearly lossless as possible. As a result, the mathematics
required for their analysis, compared to a lossy (resistive)
line can be simplified.

Ideally, all signals between ICs travel over constant-imped-
ance transmission lines that are terminated in their charac-

teristic impedances at the load. In practice this ideal situa-
tion is seldom achieved for a variety of reasons.

Perhaps the most basic reason is that the characteristic
impedances of all real transmission lines are not constants,
but present different impedances depending upon the fre-
quency of the applied signal. For “classical” transmission
lines driven by a single frequency signal source the charac-
teristic impedance is ““more constant” than when the trans-
mission line is driven by a square wave or a pulse.

A square wave is composed of an infinite set (Fourier series
expansion) of discrete frequency components, i.e., funda-
mental plus odd harmonics of decreasing amplitudes.
When the square wave is propagated down a transmission
line the higher frequencies are attenuated more than the
lower frequencies-and, due to dispersion, all of the frequen-
cies do not travel at the same speed.

Dispersion indicates the dependance of phase velocity upon
the applied frequency. (Ref. 1, pg. 192). The result is that
the square wave is distorted when all of the frequency com-
ponents are added together at the load.

A secondary reason why practical transmission lines are
not ideal is that they frequently (of necessity) have multiple
loads. The loads may be distributed along the line at regu-
lar (or irregular) intervals or they may be lumped together
(as close as practical) at the end of the line. The signal-line
reflections and ringing caused by impedance mismatches,
nonuniform transmission line impedances, inductive leads,
and non-ideal resistors could compromise the dynamic sys-
tem noise margins and cause inadvertent switching.

One of the system design objectives is to analyze the crit-
ical signal paths and design the interconnections such that
adequate system noise margins are maintained. There will
always be signal overshoot and undershoot. The objective
is to accurately predict them and to keep them within ac-
ceptable limits. :

The Ideal (Lossless) Transmission Line

An equivalent circuit for a transmission line is presented in
Figure 2.1. Tt consists of subsections of series resistance (R)
and inductance (L) and parallel capacitance (C) and shunt
admittance (G) (or parallel resistance, Rp). For clarity and
consistency these parameters will be defined per unit
length. The value of the parameter (R, L, C, Rp) must be
multiplied by the length of the subsection, 7, to find the
total value. The line is assumed to be infinitely long.

If the line of Figure 2.1 is assumed to lossless (R = 0, Rp
= infinity) Figure 2.1 is reduced to Figure 2.2.

T0
INFINITY

N
—

0099-1

Figure 2.1, Transmission Line Model

%
SEMICONDUCTOR

Systems Design Considerations When Using Cypress CMOS Circuits

The Theory of Transmission Lines (Continued)

Zy
ow

-
¢ oL e oL

Z3

-

a
£C| wl tCl T0

Ll
bo &S0

A&
Td

INFINITY

L

U S

O

L]

0099-2

Figure 2.2. Ideal Transmission Line Model

Input or Characteristic Impedance

We shall now calculate the characteristic impedance (AC
impedance or surge impedance) looking into terminals a-b
of Figure 2.2.

Let the input impedance looking into terminals a-b be Z1,
that looking into terminals c-d be Z2, that looking into
terminals e-f be Z3, etc. The input impedance, Z1, looking
into terminals a-b is the series impedance of the first induc-
tor (£ L) in series with the parallel combination of Z2 and
the impedance of the capacitor (Z C).

From AC theory:

XL =jo/L
Where XL is the inductive reactance.
1
C= m
Where XC is the capacitive reactance.
Then Z1 = XL + _z2Xc 2-1)
Z2 + XC

If the line is “reasonably” long Z1 = Z2 = Z3. Substitut-
ing Z1 = Z2 into equation 2-1 yields;

Z1XC
21 = XL + ———.
Z1 + XC
Or, Z12 —Z1XL — XCXL =0 2-2)
Substituting the expressions for XC and XL yields;
L
212 —jo /L = 6 2-3)

Equation 2-3 contains a complex component that is fre-
quency dependent. It can be eliminated by allowing ¢ to
become very small and by recognizing that the ratio L/C is
constant and independent of / or w.

L

C

The AC input impedance of a purely reactive, uniform,
lossless line is a resistance. This is true for AC or DC
excitation.

Z1 = (2-4)

Propagation Velocity and Propagation Delay

The propagation velocity (or phase velocity) of a sinusoid
traveling on an ideal line (Ref. 1, pg. 33) is:

a =

[
ol

The propagation delay for a lossless line is the reciprocal of
the propagation velocity.

Tpd=v/17:
=Z1C

where L and C are the intrinsic line inductance and capaci-
tance per unit length.

If additional stubs or loads are added to the line the propa-
gation delay will increase by the factor (Ref. 2, pg. 129).

C
‘/1+——D.
C

Where Cp = load capacitance.

2-5)

Therefore, the propagation delay, Tpp’, of a loaded line is:

Cp
Tep' = TPD+/1 + F

The characteristic impedance of a capacitively loaded line
is decreased by the same factor that the propagation delay
is increased.

(2-6)

Z1

1+<2
C

z1' =
@n

Reflection Coefficients

The third attribute of the ideal transmission line; reflection
coefficients, are not actually a line characteristic. The line
is treated as a circuit component (which it is) and reflection
coefficients are defined that measure the impedance mis-
matches between the line and its source and the line and its
load. The reason for defining the reflection coefficients will
become apparent later when it will be shown that if the
impedance mismatch is sufficiently large, either a negative
voltage or a positive voltage may be reflected back from the
load to the source, where it may either add to or subtract
from the original signal. If the impedance of the source is
mismatched to the line impedance it may also cause a volt-
age reflection, which in turn will be reflected back to the
load. Therefore, two reflection coefficients will be defined.

For classical transmission lines driven by a single frequen-
cy source the impedance mismatches cause standing waves.
When pulses are transmitted and the output impedance of
the source changes depending upon whether a LOW to
HIGH or a HIGH to LOW transition occurs, the analysis
is further complicated. Classical transmission analysis,

% Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR -

The Theory of Transmission Lines (Continued) -

where pulses are represented by complex variables with
exponentials, could be used to calculate the voltages at the
source and the load after several back and forth reflections.
However, these complex equations tend to obscure what is
physically happening.

Energy Considerations

Consider next, driving the ideal transmission line from a
source capable of generating digital pulses and analyze the
behavior of the line under various driving and loading con-
ditions.

The circuit to be analyzed is illustrated in Figure 2.3. The
ideal transmission line of length ¢ is being driven by a
digital source of internal resistance Rg and loaded with a
resistive load of RL. The characteristic impedance of the
line appears as a pure resistance, Zg = VL/C to any excita-
tion.

The ideal case is when Rg = Zo = RL. The maximum
energy transfer from source to load occurs under this con-
dition, and there are no reflections. One half the energy is
dissipated in the source resistance, Rg, and the other half is
dissipated in the load resistance, RL, (the line is lossless).

If the load resistor is greater (larger) than the characteristic
impedance of the line there will be extra energy available at
the load, which will be reflected back to the source. This is
called the underdamped condition, because the load under-
uses the energy available. If the load resistor is smaller than
the line impedance the load will attempt to dissipate more
energy than is available. Since this is not possible, a reflec-
tion will occur that is a signal to the source to send more
energy. This is called the overdamped condition. Both of
these cases will cause negative traveling waves, which
would cause standing waves if the excitation were sinusoi-
dal. The condition Zg = RL is called critically damped.

It should be intuitively obvious to the reader that the “saf-
est” termination condition, from a systems design view-
point, is the slightly overdamped condition. No energy is
reflected back to the source.

Derivation of the Line Voltage for Step
Function Excitation

The procedure is to apply a step function to the ideal line
and to analyze the behavior of the line under various load-
ing conditions. The following section will analyze pulses,
reflections from various terminations, and the effects of rise
times on the waveforms.

The step function response is important because any pulse
can be represented by the superposition of a positive step
function and a negative step function, delayed in time with
respect to each other. By proper superposition the response
of any line and load to any width pulse can be predicted.
The principle of superposition applies to all linear systems.

According to theory, the risetime of the signal driven by
the source.is not affected by the characteristics of the line.
This has been substantiated in practice by using a special
coaxially constructed reed delay that delivered a pulse of
18 amperes into 500 with a risetime of 0.070 ns (70 ps).
(Ref. 1, pg. 162).

The equation representing the voltage waveform going
down the line (Figure 2.3) as a function of distance and
time is:

VL, t) = VA{) Ut — Xtpd) fort <To (2-8)

Zo
Where: VA(t) = Vs(t) (ZO n RS) (2-9)
VA = the voltage at point A
X = the voltage at a point X on the line
¢ = the total line length
tpd = the propagation delay of the line in ns/ft.

To = £ tpg, or the one-way line propagation delay
u® =
Vs(t) = the source voltage

a unit step function occurring at X = 0, and

When the incident voltage reaches the end of the line a
reflected voltage, VL', will occur if RL is not equal to Zo.
The reflection coefficient at the load, pL, can be obtained
by applying Ohm’s Law.

The voltage at the load is VL + VL', which must be equal
to(IL + IL)RL. But Iy, = VL/ZpandI1' = —VL'/Zo
(the minus sign is due to I, being negative. i.e., 1t is oppo-
site to the current due to VL.)

Therefore,
(VL VL'
VB=VL + VL'=|{———]RL (2-10)
Zo Zo
By definition:
_ reflected voltage E

incident voltage VL'

Solving for VL'/VL in equation 2-10 and substltutmg in
the equation for pL yields:

_RL—-Zo

2-11
RL + Zo @1y
The reflection coefficient at the source is:
Rs — Zo
S = ———. 2-12
P RL + Zo ()

Re-arranging equation 2-10 yields:

VL
VB=VL + VL' = (1 + -{’_I_,) VL = (1 + pL) VL (2-13)

Equation 2-13 describes the voltage at the load (VB) as the
sum of an incident voltage (VL) and a reflected voltage (pL
VL) at time t = To. When RL = Zg no voltage is reflect-
ed. When RL < Zg the reflection coefficient at the load is
negative, so the reflected voltage subtracts from the inci-
dent voltage, giving the load voltage. When RL > Zg the
reflection coefficient is positive, so the reflected voltage
adds to the incident voltage, again giving the load voltage.
Note that the reflected voltage at the load has been defined
as positive when traveling toward the source. This means
that the corresponding current must be negative, subtract-
ing from the current driven by the source, which it does.

This “piecewise” analysis is cumbersome and can be tedi-
ous. However, it does provide an insight into what is physi-

Systems Design Considerations When Using Cypress CMOS Circuits

i Crrress
%comm

The Theory of Transmission Lines (Continued)

cally happening and demonstrates that a complex problem
can be solved by dividing it into a series of simpler prob-
lems. Also, the mathematics are simple if the exponentials,
which provide phase information in the classical transmis-
sion line equations, are eliminated. One must provide the
“bookkeeping” to combine the reflections at the proper
time. This is quite straightforward, since a pulse travels
with a constant velocity along an ideal or low loss line and
the time delay between reflected pulses can be predicted.

The rules to keep in mind are that at any point and instant
of time the voltage or the current is the algebraic sum of
the waves traveling in the positive X and the negative X
directions. For example, two voltage waves of the same
polarity and equal amplitudes, traveling in opposite direc-
tions, at a given point and time will add together to yield a
voltage of twice the amplitude of the individual wave. The
same reasoning applies to points of termination and discon-
tinuities on the line. The total voltage or current is the
algebraic sum of all of the incident and reflected waves.
Polarities must be observed. A positive voltage reflection
results in a negative current reflection and vice versa.

Before considering reflections at the source, due to imped-
ance mismatches between the source impedance and the
line impedance, the behavior of the ideal line with various
loads will be analyzed when it is driven by a step function.

Step Function Response of the Ideal Line for
Various Loads

The voltage and current waveforms at point A (line input,
Figure 2.3) and point B (the load) for various loads are
presented in Table 1. They have been reproduced from Ta-
ble 5.1, pages 158, 159 of Reference 1. Note that Rg = Zg
and that VA at t = O is equal to Vg/2, which means that
there is no impedance mismatch between the source and
the line, so there will be no reflection from the source at
t = 2 To.

To is the one way propation of the line.

The time domain response of the reactive loads are ob-
tained by applying a step function to the LaPlace transform
of the load and then taking the inverse transform.

Note that the reflection coefficient at the load is not the
total reflection coefficient (a complex number) but repre-
sents only the real part of the load. The reason for doing
this is to eliminate the complex (jwt) terms because we are
performing the bookkeeping involving the phase relation-
ships, which are performed by them in classical transmis-
sion line analysis.

Also note that for the open circuit condition, Table 1 (b),
ZL = infinity, so that pL = + 1. The voltage is reflected
back from the load to the source (at amplitude Vo =
Vs/2), so that at time = 2 Tg it adds to the original volt-
age, Vo = Vg/2 to give a value of 2 Vo = Vs. During the
time the voltage wave is traveling down to and back from
the load a current of Io = Vo/Zo = Vs/2 Zg exists. This
current charges up the distributed line capacitance to the
value Vg, at which time it stops.

Direction of Travel

VA IA — +X
VB,IB « —-X

SOURCE

LINE

LOAD

Figure 2.3, Ideal Transmission Line Loaded and Driven

% ‘ Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR - -

The Theory of Transmission Lines (Continued)

Table 1. Step Function Response of Figure 2.3 for Various Terminations
Va = Vs/2, Io =Vo/Zo, To = #\LC, pL = (RL — Zo)/(RL + Zo)

Input waveforms Output waveforms
Termination : Vin, fin \ v
v v
(o) SHORT CIRCUIT v, ALWAYS =0
Oy l
t t
Z,=0 i 2T B
2'0 -—-r— 2|° L r—————
. t t
v 2T v To
v, b _ -
(b) OPEN CIRCUIT l
! L t t
Z=oo i 2To 1 To
o ALWAYS =0
lo [~
t t
v 2Ty
(c) SMALL RESISTOR , 2R _ R
e e e e e A R37 = VSRR e
O A ARFZy SRAZo I
e t t
SR<Zp 4
< VS
o—r | p—— =2 ceea
lo [~ R*Zg

-
—

t

Ry
cameeVs 7 =(1*ANVpeaaa
(d) LARGE RESISTOR y 1= s fpzg (VA
[S—
3 L t
SR>Zy i 2To

IS BV N SR S S

To
Q._J) Vs
[— - . cmee
0 R*Zo [
t t
To
0099-10
(e) SERIES RESISTANCE AND)
INDUCTANCE: Z,=R+/ul -t+2T, A
vV VA(1#p #(1=p)e ——) 2} --
v, 2ap----- R I\
L B va VSETZ; 7 t
L t]
2T, VR Ve=D— V(14
N Tvk . Skezg VAR
- "= Rezg ~
(f) PARALLEL RESISTANCE AND To t
INDUCTANCE Vactep o 2T v
o—p—3)1 A(14Pe—=) vicremo 10,
v ~ R>Z, Al1+P e
S | IR A 0 r
3i® 8L _,L&";—/./.'K 2 I\
1 2, ¢ T !
P 0 (Rezol °
"= TRezy VR
(9) SERIES RESISTANCE AND v - VA(1+R)
CAPACITANCE it 2o R<Zg l\
Ny 3 == -142Ty t
Tv A Va2=(1-Pe—2) To
R R L t v
2Tg ¢
T Ive r=(ReZq)C " /’_
— t
(h) PARALLEL RESISTANCE AND Vv, (14p,)(1 -“ZT") v K
-e
CAPACITANCE AT r
° I I/‘"‘[w(“.p‘_) S~ |VA(1+p,_)
<
RS ¢ 2T, t To t
9 I RZoC
O— r= ReZg
0099-11

1-6

i%m Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR

The Theory of Transmission Lines (Continued)

The waveforms at the source and load for (g) and (h) are of
particular interest because (g) represents a series RC termi-
nation that dissipates no DC power and can be used to
terminate a transmission line in its characteristic imped-
ance at the input to a Cypress IC. The equivalent circuit of
the input to a Cypress IC is represented by (h). The addi-
tion of (g) and (h) then models a Cypress IC driven by a
transmission line terminated in its characteristic impedance
when the values of R and C are properly chosen.

Reflections Due to Discontinuities

Table 2 illustrates three types of common discontinuities
found on transmission lines. When a discontinuity occurs
at a point on the line it causes a reflection and some energy
is directed back to the source. The amount of energy re-
flected back is determined by the reflection coefficient at
that point. Discontinuities are usually small (by design), so
most of the energy is transmitted to the load.

Pulse Response of the Ideal
Transmission Line

Consider next the behavior of the ideal transmission line
when driven by a pulse whose width is short compared to
the electrical length of the line. In other words, when the
width of the pulse is less than the one-way propagation
delay time, To, of the line.

The voltage waveforms at point A (line input, Figure 2.3)
and point B (the load) for various loads are presented in
Table 3. They have been reproduced from Table 5.2, pages
160, 161 of Reference 1. Note that Rg = Zo and that VA
at t = 0 is equal to Vg/2, which means that there is no
impedance mismatch between the source and the line, so
there will be no reflection from the source at t = 2 To.

Table 2. Reflections from Discontinuities with an Applied Step Function

Discontinuity
(a) Series Inductance

L
o- YO0 ™
| ‘
Vin ’ i :: Zo
(e,
l I .
[t
0099-12
(b) Shunt Capacitance
i J_
Vin ‘ T Cc %: Zy
[e, o
e
0099-13
(c) Series Resistance
R
O- A A
Vin ‘ | 3%
[e,
—e—o
0099-14

Voltage Seen at Input End: V5o = Vg/2also, Rs = Zo

vln
N K
Va
Il - t
2T, L
07
009915
Vln
Va
- t
2T, &
0%
0099-16
Vin
Va v (R+Zp)
AR+2Z,
L - t
2T L
07

0099-17

% Systems Design Considerations When Using Cypress CMOS Circuits

SEMICONDUCTOR

Pulse Response of the Ideal Transmission Line (Continued)

Table 3. Pulse Response of Figure 2-3 for Various Terminations
Va = Vs/2, To = ¢+LC, pL = RL — Zo)/(RL + Zo)

Termination Input waveform Vip Output waveform vg
Vin Vg
(a) SHORT CIRCUIT Va
O——) ALWAYS =0
2Ty
7=0 t t
[Sem——
Vatb------ Ve
vs b
(b) OPEN CIRCUIT Vin
T ﬂﬂ °l
Z=oo | .] 1 .
[S— 2Ty To
Vin Vg

(c) SMALL RESISTOR

L (+P Vo
2T, | l
SRi<20 : t t

T_“.j
>

=

T

H

I

|

H

|

st

A
Vin (+PVA -
(d) LARGE RESISTOR
o S— Va
L — PVa
S
SR>Z t 1 1 t
1. R>Zg o
[o Smmmm——
0099-18
Vin Vg
(e) SERIES RESISTANCE AND Vat
INDUCTANCE ~.
" i (1+p)
140V
R Vo PUVa
Vi et t
L 2Ty ' To
Vln Vg
(f) PARALLEL RESISTANCE AND Va(i+p) | NG
INDUCTANCE Va A
1 S
RS L Ve t t
j’ 2, V¥ T V1
- Vin Vg
(g) SERIES RESISTANCE AND eeemme=
CAPACITANCE Vo (1ep) - - (\
o__L Vi A v,
[
18
§ (v T . — .
c3 2T,y To
o—jr___ Vin Vg
(h) PARALLEL RESISTANCE AND
CAPACITANCE
o Va —| JOPTLs -)
> . Va(149,
RS ¢ | Vs 2Tp N) _/\ A(14p
3 A
O —
“Vpt---m--
0099-19

% Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR

Finite Rise Time Effects

Now consider the effects of step functions with finite rise
times driving the ideal transmission line.

If TR is sufficiently fast, the voltage at the load will change
in discrete steps. The amplitude of the steps is determined
by the impedance mismatch and the width of the steps is
determined by the two-way propagation delay of the line.

As the risetime becomes slower and the line shorter (small-
er To), or both, the result converges to the familiar RC
time constant, where C is the static capacitance. All devic-
es should be treated as transmission lines for transient anal-
ysis when an ideal step function is applied. However, as the
rise time becomes larger (slower) and the traces shorter (or
both) the transmission line analysis reduces to conventional
AC circuit analysis.

Reflections from Small Discontinuities

Table 4 shows a pulse with a linear rise time and rounded
edges driving the transmission line of Table 2 (a), (b). The
expressions for V; are derived on pages 171 and 172 of
Reference 1. The reflection caused by the small series in-
ductance is useful for calculating the value of the inductor,
L', but little else.

Table 4. Reflections from Small Discontinuities with
Finite Rise Time Pulse
(a) Applied Pulse from Generator

Vs

1 t
TR

(b) Reflection from Small Series Inductor L’
Vin

Val-

L L t

TR L
Mo+
0099-21
(c) Reflection from Small Shunt Capacitor C’
Vin
Val-
/Tty
2 TR
1 1 t
TR L
Mo
0099-22

The reflection caused by the small shunt capacitor is more
interesting because if it is sufficiently large it could cause a
device connected to the transmission line to see a logic
ZERO instead of a logic ONE.

The Effect of Rise Time on Waveforms

Next, consider the ideal line terminated in a resistance less
than its characteristic impedance and driven by a step func-
tion with a linear rise time. The stimulus, the circuit, and
the response are illustrated in Figures 4.1 (a), (b) and (c),
respectively. Once again, note that the source resistance is
equal to the line characteristic impedance, so there are no
reflections from the source.

Vin

Vs

APPLIED STEP FUNCTION

0099-23
(@
Zo
3
@ Vs [Vin Zp R<ZQ
0099-24
(b)
vln
F—Te—]
R
(V7% O B Lo
2 lnmccrr.n WAVE
Ry
Ys Ry+Zg
TR 2T,
0099-25

©
Figure 4.1. Effect of Rise Time on Step Response of
Mismatched Line with Ry < Zg

The resulting waveforms are similar to those of Table 1 (c)
as modified as shown in Figure 4.1 (c). The final value of
the waveform must be the same as before (Table 1 (c)).

The resultant wave at the line input (Viy) is easily obtained
by superposition of the applied wave and the reflected wave
at the proper time. In Figure 4.1 the rise time of the step
function is less than the (two-way) propagation delay of the
line so the input wave reaches its final value, Vs/2. Att =
2 To the reflected wave arrives back at the source and
subtracts from the applied step function.

The cases where the step function rise time is equal to twice
the propagation delay and greater than the propagation
delay are illustrated in Figure 4.2 (a) and (b), respectively.

Systems Design Considerations When Using Cypress CMOS Circuits

%
¥ SEMICONDUCTOR

Finite Rise Time Effects (Continued)

Vi

REFLECTED WAVE

R
DA

) S

5

0099-26

2Ty T

009927
®)Tr > 2To
Figure 4.2, Effects of Rise Time on Step Response for
Ry <Zo:@TR = 2To; M Tr > 2To

Multiple Reflections and Effective Time
Constant

We will now consider the case of an ideal transmission line
with multiple reflections causes by improper terminations
at both ends of the line. The circuit and waveforms are
illustrated in Figure 4.3. The reflection coefficients at the
source and the load are both negative. i.e., the source resist-
ance and the load resistance are both less than the line
characteristic impedance. Refer to equations 2-11 and 2-12.

When the switch is initially closed, a step function of am-
Vs Z

Rs + Zo
travels toward the load. A one-way propagation delay time
later, To, the wave is reflected back with an amplitude of
pL Vo.

This first reflected wave then travels back to the source and
at time t = 2 To it reaches the input end of the line. At
this time the first reflection at the source occurs and a wave
of amplitude pS (pL Vo) is reflected back to the load. At
time t = 3 To this wave is again reflected from the load
back to the source with amplitude pL pS (pL Vo) = pS
pL2 Vo. This back and forth reflection process continues
until the amplitudes of the reflections become so small that
they cannot be observed, at which time the circuit is said to
be in a quiescent state.

Effective Time Constant

From an examination of Figure 4.3 it is reasonable that if
the voltage reflections occur in small increments that are of
short durations the resultant waveform will approximate
an exponential function, as indicated by the dashed line in
Figure 4.3 (b). The smaller and narrower the steps become,
the more closely the waveform will approach an exponen-
tial.

plitude Vo = Vi, = appears on the line and

1-10

0099-28
@)
Vin
~o EXPONENTIAL
- - v
1 1 1 . 1 f R‘ M Rs
2T, a1 §Tp
0099-29
®)
in
Vs
R4 Rg
lo
1 1 1 1 1 t
2T, 4T, 6Ty
0099-30
©
3
o _‘——|—__
A
1 —— L 1 t
To 3T, 5T, G
0099-31

@
Figure 4.3. Step Function Applied to Line
Mismatched on both ends; waveforms shown for
negative values of psand p /.

The mathematical derivation is presented on pages 178 and
179 of Reference 1. The time constant is shown to be:

2To
1 - pSpL “n

So that the resultant waveform can be approximated by;

t

V(@) = Voe (K)
In order for equation 4-2 to be accurate pL and ps must be
reasonably large (approaching * 1) so that the incremental
steps are small. The product pS pL is a positive number,
less than one, so the time constant is a negative number,
which indicates that the exponential decreases with time.
This is usually the case in transient circuits.

42

Both reflection coefficients must also have the same sign in
order to yield a continually decreasing (or increasing)
waveform. Opposite signs will give oscillatory behavior
that cannot be represented by an exponential function.

%&m Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR

Finite Rise Time Effects (Continued)

The Transition from Transmission Line to
Circuit Analysis

‘When a transmission line is terminated in its characteristic
impedance it behaves like a resistor and it usually does not
matter if transmission line or circuit analysis is used; pro-
vided that the propagation delays are taken into account.
Consider the case of a short-circuited transmission line
driven by a step function with a source impedance unequal
to the characteristic line impedance. The general case is
shown in Figure 4.3 (a). For RL = 0 the reflection coeffi-
cients are;

_Zs—Zo
PS—Zs+zo

The approximate time constant is;

pL = —-1L

. 2To 2To _ To (Zs + Zo) or
1—-pSpL 1+ pS Zs ’
T
—k = To + 220 @3
Zg

Recall that To = /¢ VLC (one-way delay)

L
and Zg = \/g, where / is the physical length of the line

and L and C are the per-unit-length parameters.
Substitution of these into equation 4-3 yields

L

Z_s .

It is necessary to have Zg smaller than Zo.

—k=To+ ¢

Thus the reflection coefficients have the same sign in order
to give exponential behavior. Opposite signs give oscillato-
ry behavior.

If Zg < Zo, the exponential approximation becomes more
accurate. If Zg is very small compared to Zo, then Tq is
negligible compared to ¢ L/Zg, so that equation 4-5 re-
duces to;

L
-4 —.

Zg
But /L is the total loop inductance and Zg is the total
series impedance of the circuit. The time constant is then;
LI

Rs’
This is the same time constant that would have been ob-
tained by a circuit analysis approach if the line were con-
sidered a series combination of L’ and Rsg.

k=

By open-circuiting the line and performing a similar analy-
sis it can be shown that a RC time constant results.

Types of Transmission Lines

The types of transmission lines are:
Coaxial cable
Twisted pair
Wire over ground
Microstrip lines
Strip lines

Coaxial Cable

Coaxial cable offers many advantages for distributing high
frequency signals. The well defined and uniform character-
istic impedance permits easy matching. The ground shield
on the cable reduces crosstalk and the low attenuation at
high frequencies make it ideal for transmitting the fast rise
and fall time signals generated by Cypress CMOS integrat-
ed circuits. However, because of its high cost, coaxial cable
is usually restricted to applications where there are no oth-
er alternatives. These are usually clock distribution lines on
PCBs or backplanes.

Characteristic Impedance

Coaxial cables have characteristic impedances of 50, 75, 93,
or 150 ohms. Special cables can be made with other imped-
ances, but these are the most common.

Propagation Delay

The propagation delay is very low. It may be computed
using the formula;

Tpd = 1.017 Ve ns/ft. 5-1)

where e; is the relative dielectric constant and depends
upon the dielectric material used. For solid teflon and poly-
ethylene it is 2.3. The propagation delay is 1.54 ns per foot.
For maximum propagation velocity, coaxial cables with di-
electric styrofoam or polystyrene beads in air may be used.
Many of these cables have high characteristic impedances
and are slowed considerably when capacitively loaded.

Twisted Pair

Twisted pairs can be made from standard wire (AWG 24-
28) twisted about 30 turns per foot. Typical characteristic
impedance is 110Q. Because the propagation delay is di-
rectly proportional to the characteristic impedance (equa-
tion 2-5) the propagation delay will be approximately twice
that of coaxial cable. Twisted pairs are used for backplane
wiring and for breadboarding.

Wire Over Ground

Figure 5.1 shows a wire over ground. The wire over ground
is used for breadboarding and for backplane wiring. The
characteristic impedance is approximately 120€) and may
vary as much as +40%, depending upon the distance from
the groundplane, the proximity of other wires, and the con-
figuration of the ground.

T
L /] GRouND

60 4h
S~ (?) ’
Figure 5.1. Wire Over Ground

0099-32

%
SEMICONDUCTOR

Systems Design Considerations When Using Cypress CMOS Circuits

Types of Transmission Lines (Continued)

Microstrip Lines

A microstrip line (Figure 5.2) is a strip conductor (signal
line) on a PCB separated from a ground plane by a dielec-
tric. If the thickness and width of the line, and the distance
from the ground plane are controlled, the characteristic
impedance of the line can be predicted with a tolerance of

+5%.
t = 0.0015" for 1 oz. Cu,
- ¥ = 0.003" for 2 oz. Cu.
e
DIELECTRIC H
srouno[7777777777777777777. i 009535
87 5.98H
o= m (O.8w ¥ :) '
where:

er = relative dielectric constant of the board material (about 5
for G-10 fiber-glass epoxy boards),
w, h,t, = dimensions indicated.
Figure 5.2. Microstrip Line
The formula of Figure 5.2 has proven to be very accurate

for ratios of width to height between 0.1 and 3.0 and for
dielectric constants between 1 and 15.

The inductance per foot for microstrip lines is;
L =Zo2Co (5-2)
where Zo = characteristic impedance,
Co = capacitance per foot.
The propagation delay of a microstrip line is;
Tpd = 1.017 J0.45 e + 0.67 ns per foot. (5-3)

Note that the propagation delay is dependent only upon
the dielectric constant and is not a function of the line
width or spacing. For G-10 fiber-glass epoxy PCBs (dielec-
tric constant of 5), the propagation delay is 1.74 ns per
foot. :

Strip Line

A strip line consists of a copper strip centered in a dielec-
tric between two conducting planes (Figure 5.3). If the
thickness and width of the line¢, the dielectric constant, and
the distance between ground planes are all controlled, the
tolerance of the characteristic impedance will be within
+5%. The equation of Figure 5.3 is accurate for W/(b-t)
< 0.35 and t/b < 0.25.

— w |e—

LML L L /]~ GROUND PLANE

/700

T

[— STRIP LINE

le—— B —

H
¥ (L L L/~ GROUND PLANE
0099-34
60 4b
Zo=4=I|—F——
Ver (0.67 w (0.8 + —t—))
w
Figure 5.3. Stripline

The inductance per foot is given by the formula;

s Lo = Zo2 Co. ‘
The propagation delay of the line is given by the formula;
Tpq = 1.017 Ver ns per foot. (5-4)

For G-10 fiber-glass epoxy boards the propagation delay is
2.27 ns per foot. The propagation delay is not a function of
line width or spacing.

Power Distribution

Instantaneous Current

In order to realize the fast rise and fall times that Cypress
CMOS integrated circuits are capable of achieving, the
power distribution system must be capable of supplying the
instantaneous current required when the device outputs
switch from LOW to HIGH.

The energy is stored as charge on the local decoupling ca-
pacitors. It is standard practice to use one decoupling ca-
pacitor for each IC that drives a transmission line and to
use one for every three devices that do not.

The value of the decoupling capacitor is determined by
estimating the instantaneous current required when all the
outputs of the IC switch from LOW to HIGH, assuming a
reasonable “droop” of the voltage on the capacitor.

Calculations

The charge stored on the local decoupling capacitor of Fig-
ure 6.1 is Q = C V. Differentiating yields;

d av
itt) = d—?

=C—. 6-1
dt N
The characteristic impedance of a typical transmission line
is 50Q). Heavily (capacitively) loaded lines will have lower
characteristic impedances (equation 2-7).

Ve BUS
—JL; |
0099-35

Figure 6.1. Local Decoupling Capacitor

Next, assume that the IC is an eight output PROM, such
as the CY7C245 or the CY7C261. The outputs will reach
Ve -Vt = 5V-1V = 4V. Each output will then require
4V/50 = 8 mA. Since there are eight outputs a total of 64
mA will be required.
Solving equation 6-1 for C yields;

dt

C=1—_ 6-2,

v (6-2)
The signal rise and fall times are 2 to 4 ns so we will use di
= 3 mns. .

The last step is to assume a reasonable, tolerable droop in
the capacitor voltage. Assume dV = 100 mV.

Therefore, substituting these values in equation 6-2 yields;
64X 1073 X3 X109
100 X 10—3

It is standard practice to use 0.01 to 0.1 uF decoupling
capacitors. A 0.01 uF capacitor is capable of supplying 330
mA under the preceding conditions.

=0.192 X 10~9 = 192pF.

% Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR

Power Distribution (Continued)

Decoupling capacitors for high speed Cypress CMOS cir-
cuits should be of the high K ceramic type with a low ESR
(Equivalent Series Resistance). Capacitors using 5 ZU di-
electric are a good choice.

Low Frequency Filter Capacitors

A solid tantalum capacitor of 10 uF is recommended for
each 50 to 100 ICs to reduce power supply ripple. This
capacitor should be as close as possible to where the V¢
and ground enter the PCB or module.

‘When Should Transmission Lines Be
Terminated?

Transmission lines should be terminated when they are
long. From the preceding analysis it should be apparent
that

Long Line > T
ong Line > ——.
2 Tpa

Where Tpq is the propagation delay per unit length.

For Cypress products, the rise time, Ty, is typically two
nanoseconds.

The propagation delay per unit length has been shown to
be as small as 1.7 ns per foot.

2 ns
2 X 1.7 ns/ft.

Not all lines exceeding 7 inches will need to be terminated.
Terminations are usually only required on clock inputs,
write and read strobe lines on SRAMs, and chip select or
output enable lines on RAMs, PROMs, and PLDs. Ad-
dress lines and data lines on RAMs and PROM:s usually
have time to settle.

Long Line > = 0.59 ft. or 7 inches.

In the case where multiple loads are connected to a trans-
mission line, only one termination circuit is required. The
termination network should be located at the load that is
electrically the longest distance from the source. This is
usually the load that is the longest physical distance from
the source.

Types of Terminations

There are three basic types of terminations. They are called
series damping, parallel, and pullup/pulldown. Each has
their advantages and disadvantages.

Except for series damping, the termination network should
be attached to the input (load) that is electrically furthest
away from the source. Component leads should be as short
as possible in order to prevent reflections due to lead induc-
tance.

Series Damping

Series damping is accomplished by inserting a small resis-
tor (typically 10Q to 759) in series with the transmission
line, as close to the source as possible, as illustrated in
Figure 8.1. Series damping is a special case of damping in
which the series resistor value plus the circuit output im-
pedance is equal to the transmission line impedance. The
strategy is to prevent the wave that is reflected back from
the load from reflecting back from the source by making
the source reflection coefficient equal to zero.

The channel resistance (ON resistance) of the pulldown
device for Cypress ICs is ten to twenty ohms (depending
upon the current sinking requirements), so this value
should be subtracted from the series damping resistor, Rs.

Du Rs Zo Dc

Figure 8.1. Series Damping

0099-36

The disadvantage of the series damping technique is that
during the two-way propagation delay time the voltage at
the input to the line is half-way between the logic levels,
due to the voltage divider action of Rg. This means that no
inputs can be attached along the line, because they would
respond incorrectly. However, any number of devices may
be attached to the load end of the line because all of the
reflections will be absorbed at the source.

Due to the low input current required by Cypress CMOS
ICs, there will be essentially no DC power dissipation and
the only AC power required will be to charge and dis-
charge the parasitic capacitances.

Pullup/Pulldown

The pullup/pulldown resistor termination shown in Figure
8.2 is included only for the sake of completeness. If both
resistors are used there will be DC power dissipated all the
time and if only a pulldown resistor is used DC power will
be dissipated when the input is in the logic HIGH state.
Due to these power dissipations, this termination is not
recommended.

0099-37
Figure 8.2. Pullup/Pulldown

However, in special cases where inputs should be either
pulled up (HIGH) for logic reasons or because of very slow
rise and fall times, a pullup resistor to Vcc may be used in
conjunction with the terminating network described below.
DC power will be dissipated when the source is LOW.

Parallel AC Termination; Figure 8.3

This is the recommended general purpose termination. It
does not have the disavantage of the half-voltage levels of
series damping and it causes no DC power dissipation.
Loads may be attached anywhere along the line and they
will see a full voltage swing.

Do)

0089-38
Figure 8.3. Parallel AC

% Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR -

Types of Terminations (Continued)

The disadvantage is that it requires two components, ver-
sus the series damping termination of one. The value of the
terminating resistor, R, should be slightly less than the line
characteristic impedance.

Low Pass Filter Analysis

The parallel AC termination has a second advantage: it
acts as a low-pass filter for short pulses.

This can be verified by analysis of the response of the cir-
cuit, illustrated in Figure 8.4, to a positive and to a negative
step function. The positive step function is generated by
moving the switch from position 2 to position 1. The nega-
tive step function is generated by moving the switch from
position 1 to position 2. The response of the circuit to a
pulse is then the superposition of the two responses. The
input impedance of the Cypress circuits that are connected
to the termination network are so large that they may be
ignored for this analysis.

SOURCE

Figure 8.4. Lumped Load

Classic circuit analysis usually assumes an ideal (R1 = R2
= 0) source. In real-world digital circuits the source out-
put impedance is not only non-zero, but also different de-
pending upon whether the output is changing from LOW
to HIGH or vice versa.

For Cypress integrated circuits, 1000 > R1 > 309 and
209 > R2 > 109, depending upon speed and output cur-
rent sinking specifications.

LOAD
0099-43

Positive Step Function Response

The initial voltage on the capacitor is zero. At t = 0 the
switch is moved from position 2 to position 1. Att = 0+
the capacitor appears as a short circuit and the voltage V is
applied through R1 to charge the load (R3 C). The voltage
between the capacitor and ground, V(t), is;

-t
V() = V(1 — e RITRIHC) (8-1)
In theory, the voltage across the capacitor reaches V when
t equals infinity.

In practice, the voltage reaches 98% of V after 3.9 RC time
constants. This can be verified by setting V(t)/V = 0.98 in
equation 8-1 and solving for t.

Negative Step Function Response

The capacitor is charged to (approximately) V. Att = 0
the switch is moved from position 1 to position 2 and the
capacitor is discharged. The voltage between the capacitor
and ground, V(t), is;

—t
V(t) =V €(R2 +R3)C (8_2)

The voltage decays to 2% of its original value in 3.9 RC
time constants. This can be verified by setting V(t)/V =
0.02 in equation 8-2 and solving for t.

First, the Ideal Case

Consider first the ideal case where R1 = R2 = 0. Let R3
= R in equations 8-1 and 8-2. If a positive pulse of width T
is applied to the circuit of Figure 8.4, it will disappear if
4RC > T.

Because the discharge time constant is the same as the
charging time constant for the ideal case, a negative going
pulse of width T will also disappear if 4RC > T. i.e., if the
applied signal were normally HIGH and went LOW, such
as a write strobe on a SRAM, all negative glitches will be
filtered out if they are less than 4RC time constants in
width.

The maximum frequency that the circuit will pass is;

F (max.) =

2T
This is true because the charging and discharging time con-
stants are equal for the ideal case.

(8-3)

Determination of the Capacitance, C, for the
Ideal Case

The value of the capacitor, C, must be chosen to satisfy two
conflicting requirements. First, it should be large enough to
either absorb or supply the energy contained or removed
when positive-going or negative-going glitches occur. Sec-
ond, it should be small enough not to either delay the sig-
nal beyond some design limit or to slow the signal rise and
fall times to greater (i.e., longer timewise) than 5 ns.

A third consideration is the impedance caused by the ca-
pacitive reactance, XC, of the capacitor. The digital wave-
forms applied to the AC termination can be expressed in
terms of Fourier Series so that they can be manipulated
mathematically. However, because these digital signals are
not “periodic” in the classical meaning of the word, it is
not clear that the “AC steady state analysis model” of XC
is applicable.

In most applications, the degradation of the signal rise and
fall times beyond 5 ns determines the maximum value of
the capacitor. The procedure will be to calculate the rise-
time between the 10% and 90% amplitude levels, equate
this to 5 ns, and solve for C in terms of R.

%@m Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR

Types of Terminations (Continued) Vee

2 £
Solving the equation V(t) = V (1 — €RC) for t yields; $ DO—-

1
t=RCln|———
i V() ®@-4)
1= vV 0099-39
Vit Figure 9.1. Schottky Diode Termination
For —Q =0.1,t=0.10RC. The advantages of diode terminations are:
Vit ¢ Impedance matched lines are not required.
For % =09t=23RC. e The diodes replace terminating resistors or RC termina-
tions.
The time for the signal to transition from 10% to 90% of ® The clamping actions of the diodes reduce overshoot
its final value is then T = 2.2 R C. Solving for C yields; and undershoot.
C= T 8.5 ® Although diodes are more expensive than resistors, the
22R (8-5) total cost of layout may be less because a precise, con-

. trolled transmission line environment is not required.
For T = 5 ns the following table may be constructed. L . d
® If ringing is discovered to be a problem during system

PCB Wirewrap checkout the diodes can be easily added.
Zo () 50 120 As with resistor or RC terminations, the leads should be as
short as possible in order to avoid ringing due to lead in-
RO 47 110 ductance.
C (max., pF) 48 20 A few of the types of Schottky diodes commercially avail-
RC (ns) 2.25 2.2 able are :
4RC (ns) 9 8.8 ® 1N4148 (Switching)
. . o . e IN5711
What this table says is that 50 transmission lines on
printed circuit boards that are terminated with RC net- ¢ MBDI101 (Motorola)
works should use a 47} resistor and a maximum capacitor e HP5042 (Hewlett Packard)
of 48 pF. Under this condition, glitches of 9 ns or less will
::;- Sgg;:ated. The second column applies to wirewrap con- Exampl e: Unterminated Line
The following example is presented to illustrate the proce-
Then for the Real World dure for calculating the waveforms when a Cypress PLD is
3 used to generate the write strobe for a Cypress SRAM. The
g:ltt; :;le of R1 and R2 should be determined from the PLD is a PAL®C 20 device and the SRAM is the

CY7C189-25.

The equivalent circuit is illustrated in Figure 10.1 and the
(unmodified) driving waveform in Figure 10.2. The rise and
fall times are two nanoseconds. The length of the micro-
strip trace on the PCB is eight inches and the characteristic

The value of R1 should be added to 47Q and C then calcu-
lated using equation 8-5. Next, check to see that the charg-
ing RC time constant does not violate some minimum posi-
tive pulse width specification for the particular line. If so,

reduce C. A N K .

. line impedance is 5092. It is required to calculate the volt-
Add the value of R2 to 47Q and calculate C. Then check if age waveforms at the source (point A) and the load (point
the discharging RC time constant violates some minimum B) as functions of time.

negative pulse width specification for the particular line. If
so, reduce C.

Schottky Diode Termination

In certain instances it may be expedient to use Schottky
diodes to terminate lines. Where line impedances are not
well defined, as in breadboards and backplanes, the use of
diode terminations is convenient and may save time.

A typical diode termination is shown in Figure 9.1. The
low forward voltage, Vg, of the diode (typically 0.3 to

0.45V) clamps the input signal to a V¢ below ground (lower 008940
diode) and Vgc+ Vi (upper diode), thereby significantly Figure 10.1. Equivalent Circuit
reducing signal undershoot and overshoot. In some appli- for Cypr e;s PAL Driving RAM

cations both diodes may not be required.

1-15

% Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR

Example: Unterminated Line (Continued)

/i___

20 |

24
4

VA®

1
|
T
22 24

|
I
[

o —— —r

|
' 0089-41
Figure 10.2, V4 (t), Unmodified

Equivalent Circuits for The PLD and SRAM

The equivalent ON channel resistance of the PLD pullup
device, 28Q), was calculated using the output source cur-
rent versus voltage graph over the region of interest (0 to
2V) from the data sheet. The equivalent resistance of the
pulldown device, 10Q), was calculated in a similar manner,
using the output sink current versus output voltage graph,
also on the data sheet.

The equivalent input circuit for the SRAM was construct-
ed by approximating the input and stray capacitance with a
10 pF capacitor and the resistance with a 5 million ohm
resistor. The input leakage current for all Cypress products
is specified as a maximum of +10 pA, which guarantees a
minimum of 500,000Q at Vi, = SV. Typical leakage cur-
rent is one microampere.

Transmission Line Calculations

The next step is to calculate the propagation delay and
loaded characteristic impedance of the line.
Propagation Delay

The unloaded propagation delay of the line is calculated
using equation 5-3 with a dielectric constant of 5.

Tpa = 1.74 ns/ft.

In order to calculate the loaded line propagation delay, the
intrinsic capacitance must first be calculated using equa-
tion 2-5.

Tpd = Zo Co,

where Zg is the intrinsic characteristic impedance and Co
is the intrinsic capacitance.

Tpd _ 174 ns/ft.
Zo 50

The line is loaded with 10 pF, so equation 2-6 is used to
compute the loaded propagation delay of the line.

Tpd' =Tpd"l +%

Tpd' = 1.74 ns/ft.

Co = = 34.8 pF/ft.

10 pF
1+ 9e

8 in.

. . X =

| 34.8 PR/t X e
Tpd' = 2.08 ns/ft.

Note that the capacitance per unit length must be multi-
plied by the line length to arrive at an equivalent lumped
capacitance.

Characteristic Impedance

The intrinsic line impedance is reduced by the same factor
by which the propagation delay is increased (1.96). See
equation 2-7.

Initial Conditions

At time t = O the circuit of Figure 10.1 is in a quiescient
state. The voltage at points A and B must be the same.

By inspection;

RL
VA = VB = (Voe — Vi) | ———
A (Vee f)(Rs+RL)
5 X 106)
=6 (=22) -4y
()(2s+5><106

The Falling Edge of the Write Strobe

At t = 0 the driving waveform changes from 4V to OV
(approximately) with a fall time of two nanoseconds. This
is represented in Figure 10.1 by the switch arm moving
from position 1 to position 2. The wave propagates to the
load at the rate of 2 ns per foot (approximately) and arrives
there

To = 2ns/ft. X —%_ = 133
o= ans A s, ™

later, as illustrated in Figure 10.3 (b).

The reflection coefficient at the load is pL = 1, so a nearly
equal and opposite polarity waveform is propagated back
to the source from the load, arriving at t = 2 To = 2.66
ns, as shown in Figure 10.3 (a). (See Table 3 {h}). Note
that the falltime is preserved. The reflection coefficient at
the source is;

_RS—Zo' _ 10418 _
RS + Zo' 10 + 41.8

The magnitude of the reflected voltage at the source is
then;

ps -0.61

VS1 = —4V X (—0.61) = 2.44V.

This wave propagates from the source to the load and ar-
rives at t = 3 To, and adds to the (zero volts) signal. The
risetime is preserved, so the time required for the signal to
go from OV to 2.44V is;

tr = 2.44V X 2 ns/4V = 1.22 ns.

The signal at the load thus reaches the 2.44V level at time
t = 3To + 1.22 ns = 5.22 ns and remains at that level
until the next reflection occurs at t = 5 To. The wave that
arrived at the load at 3 Tq is reflected back to the source
and arrives at t = 4 T (5.32 ns). The 2.44V level adds to
the —4YV level, so that the resultant level is —1.56V. The
risetime is preserved, so that this level is reached at t = 4
To + 1.22 ns = 6.54 ns, and maintained until the next
reflection occurs at t = 6 To. The 2.44V wave that arrived
at the source at t = 4 Tg is reflected back to the load and
arrives at t = 5 To. The portion that is reflected back is;

VS2 = 2.44 X (—0.61) = —1.49V.

?&m Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR

Example: Unterminated Line (Continued)

4
{_ 2{0 4To 6To 8To
4 266 5.32 2.2V —
_j 4.66| 6.54
v r 0 2| 4| |6 8 10| 12
A o y | | | | } I | \ 4 | | | |
T T T T | T T T T T T T T T T
-0.81 \ 14 16 18 20 22 24 |26 |28 30 32
-1.56 - -0.24V o 2 |4 |6 8 10
1 _/ 2To 4o
4t
Figure 10.3 (a)
/-65mv
4 3.86— O
2.44 L
\ /—0.37v 2.94—
0.95F '
Vg 0 N — L
il o |2 |4 |e|74 || 12 14 16 18 20 22 |24 26 28| 30 32
3.33' 5.22 8 10 0 2 4 6 8 10
T To 3To 5To 7To To |
+ 2333 3To 5To
+.
0099-42
Figure 10.3 (b)
This subtracts from the 2.44V level to give 2.44 —1.49 = Observations

0.95V. The falltime is preserved, so the time required for
the signal to go from 2.44V to 0.95V is;

tr = 1.49V X 2 ns/4V = 0.75 ns.
The 0.95V level is thus reached at time t = 5 To + 0.75
ns = 7.4 ns.

Att = 6 To the 0.95V wave arrives back at the source,
where it subtracts from the —1.56V level to give —0.61V.
The risetime is t; = 0.95 X 0.5 ns/V = 0.45 ns.

The 0.95V wave that arrived at the source at t = 6 To is
reflected back to the load and arrives at t = 7 Tg. The
portion that is reflected back is;

V83 = 0.95 X (—0.61) = —0.58V.

This subtracts from the 0.95V level to give 0.37V. The
falltime is approximately 0.5 ns.

This process continues until the voltages at points A and B
decay to approximately zero volts.

117

The positive reflection coefficient at the load and the nega-
tive reflection coefficient at the source result in an oscilla-
tory behavior that eventually decays to acceptable levels.
The voltage at point A reaches —0.61V after 6 To delays
and the voltage at point B reaches 0.37V after 7 To delays.

The reflection at the load that causes the voltage to exceed
the TTL minimum ONE level 2V) at T = 3 To could
cause a problem if either the data to be written in the RAM
changes up to 5 To delays after the falling edge of the write
strobe or if the observed shortening of the write strobe by 5
To delays violates the minimum write strobe specification.

However, if this reflection occurred on a clock line to a
logic device, registered PROM, or a PLD the reflection
could be interpreted by the device as a second clock. The
width of the pulse caused by the reflection in this case is 2
To = 2.66 ns, which is probably too short to be detected.
If the line were either slightly longer or more heavily

%&m Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR

Example: Unterminated Line (Continued)

capacitively loaded the pulse would be wider and could be
detected as a second clock.

The Rising Edge of the Write Strobe

At t = 22 ns the rising edge of the write strobe begins,
which is the equivalent of closing the switch in Figure 10.1
in the 1 position. For this analysis it its convenient to start
the time scale over at zero, as is shown in Figures 10.3 a
and b.

If the forcing function were a step function, the equations
of Table 1 (h) would apply. The time constant in the equa-
tion is:
T = RZp' Ce

R+ Zo "
Because R > Zo', T = Zo' Ce, where Zo' = 41.8Q and
Ce = 33.2 pF.
This is the equivalent of saying that the five megohm de-
vice input resistance can be ignored for transient circuit
analysis. Substitution of Zg' and Ce into the preceding
equation yields a time constant of T = 1.39 ns.

Writing the equation for the voltages for the circuit of Fig-
ure 10.1

(10-1)

VA®t) = iZo' + é "t (10-2)
Also, VA(t) = Kt U(t) — K(t — T1) U(t —TI. (10-3)

Where Kt is the rising edge of the write strobe (K =
2V/ns) applied at t = O using a unit step function, U(t),
and —K (t — T1) represents an equal but opposite wave-
form applied at t = T1 (after the risetime) using a unit step
function, U(t — T1).

Equating the equations and taking the LaPlace transforms
of both sides yields:

K Ke-TiS 1s)
2 T e et (Zo')I(s)
s s2
(10-4)
I
However, VB(t) = ——f i dt, or VB(s) = &
Ces’
Therefore:
K_Ke™_ (g + - VBG). (10-5
)) Zo oS Ces VB(s). (10-5)
Solving for VB(s) yields:
1(2.(1 - e—TlS)
s
VRO = corlo) O
c T —
es|Zo Ces
Which is equivalent to:
1 — e-TIS
vaeg = 20 =)
© = TR
s2 (S +)
Zo' Ce

1-18

Taking the inverse LaPlace transform yields:

-t
VB(t) = [KZO' Ce (eZo'Ce - 1) + Kt] U@) -
(10-8)
—(t—T1
[K Zo' Ce (e Zo' Ce
Equation 10-8 consists of two terms. The first term applies

from time zero up to and including T1 and the second term
applies after T1.

- 1) + K(t — Tl)]U(t)

KZo' Ce, e K
VB(t) = Le(Zo'C — 1)+ — () t< Tl (10-9)
T1 T1
KZo' Ce o ot
VB() = =2 (1 ~ €295 ¢20°C + K1t > T1(10-10)

where K1 = final value = 4V

Substitution of the proper values into equation 10-9 yields
att = T1 = 2 ns.

VB(t = Tl) =
2 X 41.8 X 332 x 10— 12
2% 1079
—1.057 + 4 = 2.94V

If the forcing function would have been a step function the
equation would be:

v
(1439 — 1) + = X 2ns
ns

—t

VB(t) = 4V (1 — ¢Z0’'Ce) (10-11)
at t = 2 ns, VB = 3V, which is greater than the 2.94V
calculated using equation 10-9.

Att = (22 ns) + To the voltage waveform begins to build
up at the load and continues to build until the first reflec-
tion from the source occurs att = 3 To.

Equation 10-10 is used to calculate the voltage at the load

att = 2 To (because 1 Tg is used for propagation delay
time).
VB(t =2Tp) =

—2V X 41.8 X 332 X 10— 12
2% 109
= —1.39(0.762) (0.135) + 4
= —0.143 + 4 = 3.86V

The voltage at the load will remain at this value until the
first reflection from the source reaches the load at t = 3
To.

Meanwhile, at t = T, the wave at the load is reflected
back to the source and arrives there at t = 2 To. It sub-
tracts from the 4V level at the source as illustrated in Table
4 (c). The amplitude of the “droop” is given by:
C'Zo' Vo

2 TR

(1 — 5"‘1,439) (5'—2) + 4

=

Vr

10-11)

for the case Vs = Zg'.

% Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR

Example: Unterminated Line (Continued)
If Vs # Zo' equation 10-11 must be modified. Instead of

Yo . Rs .
— the voltage is Vo | ————— |, so that equation 10-11
2 Rs + Zo'
becomes:
C'Zo' V. R
Ve = —2 0(S) (10-12)
TR Rs + Zo'
where: C' = 10 pF
Zo' = 41.8Q
Rs = 28Q
Tr = 2 ns
Vo = 4V
Substitution of these values into equation 10-12 yields:
Vr = 0.33V.

4V — 0.33V = 3.67V, so there is no danger of the voltage
dropping below the minimum HIGH level.

The reflection coefficient at the source is:

_ Rs—=Z¢o' Rs = 28Q
ps = mwhere: Zo' = 41.80
ps = —0.198

The amount of voltage reflected from the source back to
the load is then:

VS; = (—0.33) X (—0.198) = +0.065V.

This same result could have been obtained by applying the
ramp function of Figure 10.2 to a large resistor and then to
a capacitive load and adding the results using superposi-
tion.

Observations

The risetime of the waveform at the load is reduced by the
10 pF load capacitor. The reflection at the source caused
by the load capacitor is insufficient to reduce the 4V level
to less than the TTL one level (2V).

The reflection coefficient at the source is sufficiently small
so that the energy reflected back to the load is insufficient
to cause a problem.

Summary

The example has demonstrated that, under certain condi-
tions, the voltage reflections caused by the impedance mis-
match between a PCB trace and the input of a Cypress
CMOS integrated circuit may cause a pulse whose energy
is sufficient to be detected by another circuit.

It is the responsibility of the system designer to identify
and to analyze these conditions and to then modify the
design such that the reflections will not occur.

References
1. Matick, Richard E,: Transmission Lines For Digital and
Communications Networks, McGraw Hill, 1969.

2. Blood, Jr, William R.,; MECL System Design Hand-
book, Motorola Inc., 1983.

% Systems Design Considerations When Using Cypress CMOS Circuits
SEMICONDUCTOR -

NOTES:

1-20

e
—SE s

=== & CYPRESS

SEMICONDUCTOR

-

Power Characteristics of
Cypress Products

Introduction
SCOPE AND PURPOSE

This document presents and analyzes the power dissipation
characteristics of Cypress products. The purpose of this
document is to provide the user with the knowledge and
the tools to manage power when using Cypress CMOS
products.

DESIGN PHILOSOPHY

The design philosophy for all Cypress products is to
achieve superior performance at reasonable power dissipa-
tion levels. The CMOS technology, the circuit design tech-
niques, architecture and the topology have been carefully
combined in order to optimize the speed/power ratio.

SOURCES OF POWER DISSIPATION

Power is dissipated within the integrated circuit as well as
external to it. Both internal and external power have a
quiescent (or DC) component and a frequency dependent
component. The relative magnitudes of each depend upon
the circuit design objectives. In circuits designed to mini-
mize power dissipation at low to moderate performance,
the internal frequency dependent component is significant-
ly greater than the DC component. In the high perform-
ance circuits designed and manufactured by Cypress, the
internal frequency dependent power component is much
less than the DC component. The reason for this is that a
large percentage of the internal power is dissipated in linear
circuits such as sense amplifiers, bias generators and volt-
age/current references that are required for high perform-
ance.

External Power Dissipation
The input impedance of CMOS circuits is extremely high.
As a result, the DC input current is essentially zero (10 pA

or less). When CMOS circuits drive other CMOS circuits
there is practically no DC output current. However,

Note:

when CMOS circuits drive either bipolar circuits or DC
loads, external DC power is dissipated. It is standard prac-
tice in the semiconductor industry to NOT include the cur-
rent from a DC load in the device Icc specification.
Cypress supports this practice. It is also standard practice
to NOT include the current required to charge and dis-
charge capacitive loads in the data sheet Icc specification.
Cypress also supports this standard practice.

Frequency Dependent Power

CMOS integrated circuits inherently dissipate significantly
less power than either bipolar or NMOS circuits. In the
ideal digital CMOS circuit there is no direct current path
between Vcc and Vsg; in circuits using other technologies
such paths exist and DC power is dissipated while the de-
vice is in a static state.

The principal component of power dissipation in a power-
optimized CMOS circuit is the transient power required to
charge and discharge the capacitances associated with the
inputs, outputs, and internal nodes. This component is
commonly called CV2f power and is directly proportional
to the operating frequency, f. The corresponding current is
given by the formula

Icc(f) = CVL.

The primary sources of frequency dependent power are due
to the capacitances associated with the internal nodes and
the output pins. For “regular” logic structures, such as
RAMs, PROMs and FIFOs the internal capacitances are
“balanced” so that the same delay and, therefore, the same
frequency dependent power is dissipated independent of
the location that is addressed. This is not true for program-
mable devices such as PALs because the capacitive loading
of the internal nodes is a function of the logic implemented
by the device. In addition, PALs and other types of logic
devices may contain sequential circuits so the input fre-
quency and the output frequency may be different.

The capacitance of each input pin is typically 5 pF, so its
contribution to the total power is usually insignificant.

The Cypress Power/Speed Program, which implements the equations in this application note, is available from Cypress for your use on personal

computers.

PAL® is a registered trademark of Monolithic Memories.

November 1985

Power Chai'acteristics

%
SEMICONDUCTOR

Introduction (Continued)
Derivation of Applicable Equations
The charge, Q, stored on a capacitor, C, that is charged to
a voltage, V, is given by the equation;
Q = CV. EQ.1

Dividing both sides of equation 1 by the time required to
charge and discharge the capacitor (one period or T)
yields;

Q <Cv
T T EQ.2
By definition, current (I) is the charge per unit time and
f=1
T
Therefore,
1= CVf. EQ.3

The power (P = VI) required to charge and discharge the
capacitor is obtained by multiplying both sides of equation
3by V.

P = VI = CV2f EQ.4

It is standard practice to make the assumption that the
capacitor is charged to the supply voltage (Vcc) so that

P = Vel = C [Vl EQ.5
The total power consumption for a CMOS integrated cir-
cuit is dependent upon:
® the static (quiescent or DC) power consumption.
® the internal frequency of operation
® the internal equivalent (device) capacitance

¢ the number of inputs, their associated capacitance, and
the frequency at which they are changing

e the number of outputs, their associated capacitance,
and the frequency at which they are changing

In equation form:

Pp = [(Cn) (F1N) + (CINT) (FINT) +(CLOAD) (FLOAD)]
[Vcel2+ Iec (quiescent) Vec. EQ.6

The first three terms are frequency dependent and the last
is not. This equation can be used to describe the power
dissipation of every IC in the system. The total system
power dissipation is then the algebraic sum of the individu-
al components.

The relative magnitudes of the various terms in the equa-
tion are device dependent. Note that equation 6 must be
modified if all of the inputs, internal nodes or all of the
outputs are not switching at the same frequency. In the
general case, each of the terms is of the form Cl1 F1 +
C2 F2 + C3 F3 + ... Cn Fn. In practical reality the
terms are estimated using an equivalent capacitance and
frequency.

Transient Power: Input Buffers and Internal

In the N-well CMOS inverter, the P-channel pullup tran-
sistor and the N-channel pulldown transistor (which are in
series with each other between V¢ and Vgg) are never on

1-22

at the same time. This means that there is no direct current
path between V¢ and ground, so that the quiescent power
is very nearly zero. In the real world, when the input signal
makes the transition through the linear region (i.e., be-
tween logic levels) both the N-channel and the P-channel
transistors are partially turned ON. This creates a low im-
pedance path between Ve and Vss, whose resistance is
the sum of the N-channel and P-channel resistances. These
gates are used internally in Cypress products.

DC or Static Power

In addition to the conventional gates there are sense ampli-
fiers, input buffers and output buffers, bias generators and
reference generators that all dissipate power. The RAMs
and FIFOs also have memory cells that dissipate standby
power whether the IC is selected or not. The PROM and
PAL® products have EPROM memory cells that do not
dissipate as much standby power as a RAM cell.

Power Down Options

Many of the Cypress static RAMs have power down op-
tions that enable the user to reduce the power dissipation of
these devices by approximately an order of magnitude
when they are not accessed. The technique used is to dis-
able or turn-off the input buffers and the sense amplifiers.

Worst Case Device Power Specifications

All Cypress products are specified with Icc under worst,
worst, worst case conditions. This means that the Vcc
voltage is at its maximum (5.5V), the operating tempera-
ture is at its minimum, which is 0°C for commercial prod-
uct and —55°C for military product and all inputs are at
VIN = L.5V.

Icc TEMPERATURE DEPENDENCE

For all Cypress products operating under all conditions,
the Icc current increases as the temperature decreases. The
Icc temperature coefficient is —0.12% per °C. To calcu-
late the percentage change in Icc from one temperature to
another, this temperature coefficient is multiplied by the
temperature difference.

If, for example, it is required to calculate the expected re-
duction in Igc if either a commercial or a military grade
Cypress IC is operated at room temperature (25°C), the
calculations are:

For commercial products

[0 — 25] X [—0.12%] = 3% less Icc at room tempera-
ture than at 0°C.

For military products

[-55 — (25)] X [~0.12%] = 9.6% less Icc at room
temperature than at —55°C.

Procedure

The procedure will be to develop a general purpose power
dissipation model that applies to all of the Cypress CMOS
products and to then present tables so that users can esti-
mate typical and worst case power dissipations for each
product. The data will be presented in chart form as func-
tions of product type and capacitance, that is: SRAM,
PROM, PAL or Logic; including FIFOs.

% Power Characteristics
SEMICONDUCTOR
" CORE m
INPUT — »] outpur
INPUTS T» BUFFERS > —>| SUrFers —;4T—> OUTPUTS

$ Cn

L
v "

Power Dissipation Model

A general purpose power dissipation model for all Cypress
integrated circuits is shown in Figure 1.

The procedure will be to isolate the four components of
power dissipation described by equation 6 by controlling
the inputs to the IC. The quiescent (Icc) current is mea-
sured with the inputs to the IC at 0.4V or less. Under this
condition the input buffers and output buffers (unloaded
DC wise) draw only leakage currents. All other direct cur-
rents are due to the substrate bias generator, sense amplifi-
ers, other internal voltage or current references and NMOS
memory circuits.

At VIN = 1.5V the input buffers draw maximum Icc cur-
rent. The total current is measured and the quiescent cur-
rent subtracted to find the total input buffer Icc current.
The current per input buffer is then calculated by dividing
the total input buffer current by the number of input buff-
ers.

INPUT BUFFERS

Three different types of input buffers are used in Cypress

products. For purposes of illustration they are referred to

as types A, B and C. Table 1 lists the maximum ICCs.
Table 1. Types of Input Buffers

Buffer
Type

Icc
(max. in mA)

Figure 1. Power Dissipation Model

(except for type A) when ViN is 4V or more. In other
words, if the inputs are driven “rail to rail” the B and C
input buffers will dissipate power only during the input

signal transitions.

To reach these levels the input pins should be either driven
by a CMOS driver or by a TTL driver whose output does

not drive any other TTL inputs.

When the inputs are driven by the minimum TTL levels
(Vi = 2V, Vi = 0.8V) each input buffer draws 20%

more Icc current than if it were driven rail to rail.

Yce
Icc

'

Vour

viyo—

0059-3
Figure 2A

A

1.3

B

0.8

C

0.6

Icc (MA)

The schematics and input characteristics for the three
types of buffers are illustrated in Figure 2. A circle on the
gate of a transistor means that it is a P-channel device.

As can be seen from the figure, the input buffers draw
essentially zero Icc current when VN is 0.4V or less or

0 il -
0.6 20
Vin V)
0059-4
Figure 2B
Type A

1-23

% :
SEMICONDUCTCR

Power Characteristics

Power Dissipation Model (Continued)

DUTY CYCLE CONSIDERATIONS

The input characteristics of the type B (Figure 2D) and the
type C (Figure 2F) buffers may be approximated by trian-
gles symmetric about the Vi = 1.5V points, whose ampli-
tudes are 0.8 mA and 0.6 mA, respectively. Therefore, be-
tween the VN = 0.5V and VIN = 3.5V points the average
current is one-half the peak current, or 0.4 mA and
0.3 mA, respectively. In most systems the input signal slew
rates are two volts per nanosecond or greater so the input
transitions occur quickly. Under these conditions the duty
cycle of the input buffers must be considered.

Vee

cs
(Vee FOR
PALS, PROMS)

Vour

0059-5
Figure 2C

08

Igc (mA)

0o 05 15

ViN V)

35 40

0059-6
Figure 2D
Type B

Vee

fo— S

Vour

ViN

0059-7
Figure 2E

1-24

0.6
Y
L
0 .
0 05 15 35
V|N)
0059-8
Figure 2F
Type C

For example, if the CY7C167-35 RAM were used with
input signals having a slew rate of two volts per nanosec-
ond it would take

2V/ns B

for the input signals to go through the 3V transition. Dur-
ing the transition each input buffer would be drawing
0.3 mA of current from the Icc supply. However, this time
is only 1.5 ns/35 ns = 0.0429 or 4.29% of the access cycle.
Therefore, the actual input buffer transient current is only
0.0429 X 0.3 mA = 0.01287 mA. It will be shown that
this is insignificant in most power calculations.

INPUT BUFFER FREQUENCY
DEPENDENT CURRENT
This is the current required to charge and discharge the

capacitance associated with each input buffer. The capaci-
tance is typically 5 pF and the voltage swing is typically
4v.

[3.5V — 0.5V] X

1.5ns

1= CVf
Icc) =5X10-12 X 4 X f
Icc() = 20 X 10— 12f.

CORE AND OUTPUT BUFFERS

The memory array will have a standby power dissipation
due to the substrate bias generator, reference generators,
sense amplifiers, and polyload RAM cells or EPROM
cells. This current is measured with Vi = OV, so that the
input buffers draw no current. Under these conditions the
output buffers will draw only leakage current and dissipate
essentially no power.

The output buffers have N-channel pullup devices that
cause the output voltage level to reach Vog = Vcc — 1V.

The capacitance of the output buffers, including stray ca-
pacitance, is typically 10 pF.
If CL = 10 pF, VoH = 4V.

Again, using equation 3, Icc(f) = 40 X 10— 12f for the
output buffers.

Using equation 3;

?
SEMICONDUCTOR

Power Characteristics

Current Measurement
INSTANTANEOUS CURRENT

Figure 3 illustrates the instantaneous current drawn by a
Cypress RAM. The instantaneous power is calculated by
multiplying this current times the constant supply voltage,
Vcc. Most of the power is dissipated in the time corre-
sponding to the access time. This is also true for PROMs
and PALs.

X ADDRESS / DATA X
3 _w\ l,_-—————
IMax 1

[2 -/

1]
l<
L
L)

11 = Quiescent Icc

I = Average Icc

i(t) = Instantaneous Icc
Figure 3. RAM Igc

AVERAGE CURRENT

The current measurement unit in an automatic tester inte-
grates the instantaneous current over the measurement cy-
cle and arrives at an equivalent average current. In other
words, the average current, I, during time TCY is equal to
the area between the instantaneous current, i (t), and the X
axis during TCY. Therefore, when the frequency is de-
creased, the “current pulse” is (figuratively) spread over a
longer time, so the average current is proportionately less.

DC Load Current

Note that the preceding calculations have not accounted
for any DC loads. The user must calculate these separately.

Product Characteristic Tables

The following tables are listed to enable the user to calcu-
late the current requirements for Cypress products. CINT is
the equivalent device internal capacitance, Icc (Q) is the
quiescent or DC current and Iccmax) is the maximum
Icc current (as specified on the data sheet) for the com-
mercial operating temperature range. Conditions are Vcc
= 5V and Tp = 25°C

0059-2

STATIC RAMs
Table 2
Part No, |Buffer| No. | No. |Cint|Icc (Q)[Icc (Max)

* | Type |Inputs|Outputs| (pF) | (mA) | (mA)
ICY7C122/123] A 16 4 24 50 90
ICY7C128 B 14 8 27 59 120
CY7C147 B 15 1 34 28 90
ICY7C148/149| B 12 1 32 45 90
CY7C150 B 18 4 20 44 90

1-25

Table 2 (Continued)
Part No, |Buffer| No. | No. |Cin{Ice (Q)|Icc Max.)

* | Type |Inputs|Outputs| (pF) | (mA) | (mA)
CY7C161/162| B 22 4 300 13 70
CY7C164 B.| 20 4 300 13 70
ICY7C166 B 21 4 300 13 70
CYT7C167 C 17 1 75 25 70
CY7C168/169| C 18 4 75 50 70
ICY7C170 B 18 4 50 33 90
CY7C171/172] B 18 4 100 27 70
ICY7C185/186| B 25 8 330 13 100
ICY7C187 B 19 1 150 7 100
CY7C189/190| B 10 4 21 32 90
PROMs

Table 3
Part No. Buffer| No. | No.* |CinT|Icc (Q)|IccoMax.)

* | Type |Inputs|Outputs| (pF) | (mA) | (mA)
CY7C225 B 12 8 32 35 90
ICY7C235 B 13 8 35 35 90
CY7C245 B 13 8 35 50 90
CY7C251 C 18 8 43 9.5 100
CY7C254 C 18 8 43 35 100
CY7C261/3/4] C 14 8 60 45 100
ICY7C268 C 19 1/8 60 60 100
CY7C269 C 17 1/8 | 60 60 100
CY7C281/282| B 14 8 35 35 100
CY7C291/292| B 14 8 35 50 100
*/Bidirectional pins
PALs

For the 16L8, 16R8, 16R6 and 16R4 the number of inputs
and outputs is, within limits, user configurable. All use
type B buffers.

Table 4
Cint | Icc(Q) | Iccovax)
Part No. @) | mA | mA)

PALCI16L8/R8/R6/R4 40 25 45

PLDC20G10 50 30 55

PALC22V10 50 40 80

PLDCY7C330 300 42 120
LOGIC PRODUCTS

Table 5
Part No. Buffer| No. | No.* |Cintl|Icc (Q)|Iccomax.)
* | Type |Inputs|{Outputs| (pF) [(mA) (mA)

CY7C401 B 6 6 53 30 75
CY7C402 B 7 7 53 30 75
CY7C403 B 7 6 53 30 75
CY7C404 B 8 7 53 30 75
CY7C408 B 11 12 100 42 135
CY7C409 B 11 13 100 42 135
CY7C428/9f C 14 12 190 18 80
CY7C510 C 24 19/16 { 60 30 100
CY7C516 C 28 16/16 | 60 30 100
CY7C517 C 28 16/16 | 60 30 100
CY3341 B 6 6 53 30 45
CY7C601 C 25 19/64 | 950 89 600

% o Power Characteristics
SEMICONDUCTOR :
Product Characteristic Tables (Continued) Output CVf Current
: ' Table 5 (Continued) i = lc‘l’; R COUV\TI‘V“ 1°va
Part No Buffer| No. | No.* |Cint|Icc(Q)|IccMax) o m o
* | Type |Inputs|Outputs| (pF) | (mA) (mA) f=1/35ns
cyicoor | ¢ | 24 | 1074 [160] 25 80 Total = 4 X 1.15 = 4.6 mA
cyicod | ¢ | 2 s |8 | 25 55 »
CY7C910 C 22 16 150 | 2.6 70 The Quiescent Current is 50 mA
cyicot | ¢ | 13 s | s | 25 55 _ .
cyrcoton| € | 36 | 2274 | 70 | 30 60 'I“‘e tTl‘f‘“‘ .C“'t'e“‘ At g‘;lY . 35 ns is;
cy7rco16) € | 22 | 1,20 |1000| 35 150 Iggzt C:‘;‘;‘S‘e“ 1028 ﬁ "
cyicour] ¢ | 38 | 14 |1000] 35 150 mput 28 ma
*/Bidirectional pins Output CVf 4.6 mA
Static RAM Example Quiescent D oA
P Total Icc 75.9 maA (all inputs/outputs changing)

To illustrate how to use the preceding tables and perform
the required calculations the following example is provid-
ed.

Estimate the typical Icc current for the CY7C169-35
RAM at room temperature (Tpo = 25°C) and Ve = SV.
Assume the duty cycle is 100% at the specified access time.
Calculate typical and worst case Icc (all inputs and out-
puts changing) with output loading of 10 pF.

From the RAM product characteristic table;
inputs = 18
outputs = 4
CINT = 75 pF
Icc (Q) = 50mA

TRANSIENT INPUT BUFFER CURRENT

The input buffers on the CY7C169 are type C, so the aver-
age current is 0.3 mA. If the input signal level transitions
are 4V and the transition times are 2 V/ns, the transition
time is: :
4V
2V/ns

Tt =

The duty cycle is then;
2 ns/35 ns = 0.057.
Therefore, each input buffer draws
0.3 mA X 0.057 = 0.0171 mA.

If all inputs change, the total transient input buffer current
is

18 X 0.0171 = 0.31 mA.
CVf Input Buffer Current

1= CVf CIN = 5pF
I1=057TmA V=4V
f=1/35ns
Total = 18 X 0.57 = 10.28 mA
Internal CVf Current’
1= CVvf CINT = 75 pF
I1=1071mA V=5V
' f=1/35ns

1-26

Note that the worst case transient current is 25.9 mA.

If one-half of the inputs and outputs change this is reduced
to 12.95 mA, which gives a total current of 63 mA (typical
Ico)

If the duty cycle is 10% the transient current is reduced to
1.3 mA, which results in a total current of 51.3 mA.

Note also that the Input CVf current and the output CVf
current would have the same values for a bipolar device.

WORST, WORST, WORST CASE Icc

Next, let’s estimate the Icc for worst case Voc and low
temperature, in addition to all inputs and outputs changing
and compare it with the Icc specified on the data sheet.

The Icc current will be greater at high Vcc, which is 5.5V
or 1.1 X the nominal 5V Vcc. The increase in Icc due to
the lower temperature is 3%, so the total increase is 13%.
These factors apply to the internal CVf current (10.71
mA), the output CVf current (4.6 mA), and the quiescent
current (50 mA), (total 65.31 mA).

Total Icc = Input Transient Icc+ Input CVfIcc+
[Internal CVf+ Output CVf+Icc(Q)] X 1.13
Icc = 031 + 10.28 +[65.31] X 1.13 = 84.4 mA.

This is approximately 94% of the 90 mA specified on the
data sheet. :

Note, however, that the data sheet Icc maximum does
NOT include the output CVf current.

Typic‘al Icc Versus Frequency
Characteristic

The Icc versus frequency curves for all Cypress products
have the same basic shape, which is illustrated by the
PAL 16R8 curve of Figure 4. The current remains essen-
tially constant at the quiescent Icc value until the frequen-
cy increases to the point where the capacitances begin to
cause appreciable currents. This point depends upon the
capacitances (input, internal, and output), the number of
inputs and outputs, the rate at which they change, and the
voltage levels that they are switched between. For Cypress
products this point is in the 1-10 MHz range.

%
SEMICONDUCTOR

Power Characteristics

Typical Icc Versus Frequency Characteristic (Continued)

The PAL 16R8 devices that were tested to obtain the data
for the curve were exercised such that all inputs and all
outputs changed every cycle. Curve A shows the total Icc
current for a 50 pF load on each of the eight outputs.
Curve B shows the total Icc current when the outputs are
disabled. The B curve results from the input and the inter-
nal capacitances. In most applications the actual operation
of the device will be somewhere between the A and B
curves.

The A and B curves may be extrapolated backwards until
they intersect the quiescent current (point C in Figure 4).

Point C is approximately 5.6 MHz. This gives the user an
easy to use approximate formula to calculate the Icc cur-
rent.

For frequencies less than 5.6 MHz
Icc = Icc(Q = 25 mA
For frequencies greater than 5.6 MHz
Icc=1Icc (Q)+ 3.5 mA per MHz (all outputs changing)
or,
Icc=Icc (Q)+ 0.5 mA per MHz (no outputs changing)

Frequency in Hertz
1] ||lllll T ™rrrrrrr
TYPICAL lcc VS FREQUENCY FOR PAL16R8
lec VS f ALL INPUTS / OUTPUTS CHANGE
120 Vee=5V, T=25°C, V, =0.8V, V|y=2V
N
L
*/
100 Q
”’E
2
80
£ cL=50pF
z (OUTPUTS
ENABLED!
8 A
S 60 N
’ \A“"]
v/ o5t
0 (Q) //' T IL<T]
D ﬁt CL=0pF
25 Y E (OUTPUTS
20 DISABLED)
0
10KHz 100 KHz 1 MHz 10 MHz 100 MHz

FREQUENCY IN HERTZ

0059-9

Figure 4. Typical Icc vs f

1-27

J Creress
%comucm »

NOTES:

Power Characteristics

1-28

=
= TS o

Section Contents

Static RAMs Page Number
Tips for High-Speed Logic Design... 2-1
RAM Input/Output Characteristics 2-7

74F189 Application Brief.........cccccovevevrverenrenans 2-15

|||
&4
=
3
=
=
Q)
—]
O
b

Tips for High-Speed Logic Design

Introduction

As electronic system clock rates reach ever higher, logic
designers who were engineering 10 MHz, 100 nsec cycle
time systems are recently finding themselves working
with 20 MHz, 50 nsec cycle time (and faster) systems.
These same designers are discovering that the techni-
ques that worked fine at 10 MHz are no longer ap-
propriate at 20 MHz and beyond. At 10 MHz, one can
utilize sluggish and relatively well-behaved LS TTL
logic with its leisurely setup and hold parameters, long
propagation delays, forgiving output enable and disable
times, and high-output current drive capacity. As clock
rates cranked up, designers turned to faster bipolar
logic families, but found that power dissipation rose
proportionally. To save power and enhance reliability,
modern electronic engineers are switching to CMOS
components, and have been happy to find that CMOS
can deliver the speed they require at the low power
levels they desire. In the quiescent state, CMOS logic
(AC/ACT/FCT) draws three to five orders of mag-
nitude less power than bipolar logic (LS/ALS/AS). At
1 MHz, CMOS logic dissipates about 0.1 mW per gate,
while LSTTL logic dissipates about 2.0 mW per gate.
CMOS technology has truly rewritten the speed/power
rules set forth in the bipolar era.

However, there are still plenty of challenges that face
the high-speed logic designer. High-performance logic
families are sensitive to system noise and are also noise
generators themselves. As a result of the effort to make
these devices as speedy as possible, they often have
anemic output drive capacity. Clock distribution be-
comes much more of an issue at high frequencies be-
cause skew and slow rise times degrade operating mar-
gins. As bus cycles tighten up, it becomes more and
more difficult to avoid bus clashes (multiple devices
driving a bus). Very fast SRAMs and FIFOs require
read and write pulse widths that are very difficult to

synthesize using synchronous logic (hence the ap-
pearance of self-timed memory devices). PLDs have
become ubiquitous in modern board-level designs, but
their relatively long propagation delays and slow switch-
ing speeds need to be carefully considered by high-
speed designers. Printed circuit boards can no longer
be thought of as an ideal electrical interconnect. In the
high-speed realm, the effects of distributed capacitance,
inductance, and propagation delay on the PCB must be
taken into account. The resistive termination of critical
signals to mitigate the effects of ringing becomes a prac-
tical necessity above 20 MHz. In the days of old, it
wasn’t appropriate to factor loading into propagation
delays. Today, the conservative designer accounts for
loading when calculating worst-case prop delays and
worst case signal skew. Heavy capacitive bypassing and
low inductance decoupling is essential to minimize
switching noise above 20 MHz. Metastability, a
phenomenon not widely appreciated until recently, is a
critical issue in high-frequency systems. It is essential to
be able to resolve asynchronous events quickly and
reliably in high-performance designs. Finally, crosstalk
is a substantial concern with high slew rate and noise
sensitive CMOS logic.

This application note provides tips and makes substan-
tive suggestions for designing high speed logic circuits
that operate reliably. The tips and suggestions are
loosely organized under the following headings:

Noise Considerations
Clock Distribution

Buses and Memories

Care and Feeding of PLDs
PCB Effects

Metastability and Crosstalk

2-1

==
Y TS ocron

Noise Considerations

High-speed CMOS logic tends to be noisier than
LSTTL because CMOS voltage swings are rail-to-rail
and because of the faster edge rates (2 volts per nsec
and faster) made possible by small geometry, dual-layer
metal CMOS technology. The classic ground bounce
noise situation arises when several outputs of a CMOS
logic device are switching from the high state to the low
state. The simultaneous switching causes a relatively
large sink current from the load capacitance to flow to
ground through the device package inductance. A
potential is momentarily developed across this induc-
tance that is equal in magnitude to the product of the
package inductance and the time rate of change of the
sink current. This ground bounce voltage spikes the
low voltage state held on the quiescent outputs, and this
spike can often exceed the input low-level maximum
voltage (0.8 V), causing the downstream logic device to
switch erroneously. It turns out that both the chip
ground reference and the chip Vcc reference are
spiked, but because more energy is switched through
the ground lead inductance, it is much more common to
see a problem in a quiescent low-state output. What can
be done to minimize ground and Ve bounce noise?

1. Any steps which will reduce the parasitic inductance
between the package and ground and Vec should be
pursued. This includes using a PCB with ground and
Vcce planes or at the very least power distribution ele-
ments, avoiding the use of sockets, and using low induc-
tance decoupling and bypass capacitors. On critical
parts, use a standard ceramic decoupling cap (0.01 to
0.1 uF) along with a high-frequency decoupling cap (ap-
proximately 470 pF). The Rogers Corp. Micro/Q 1000
Series High Frequency low inductance caps are optimal
for this purpose. Surface mount packages have lower
package inductance than DIP packages. So called
"rotated die" devices with center Vcc and ground pins
also have lower inductance.

2. Whenever possible, design synchronous circuits. The
ground bounce produced by a octal register, for in-
stance, is triggered by the clock. If the register is feed-
ing another registered device, then the noisey output
have until a setup time before the next clock to settle.
When compelled to drive an asynchronous signal with
an octal driver, use an output pin close to the package
ground pin. The output pin next to the Vcc pin can
have as much as 50% more ground bounce noise than
the output pin next to the ground pin.

Tips for High-Speed Logic Design

3. Various techniques can be used to slow the switching
or transition edge rates and, therefore, the time rate of
change of the sink and source currents. It can be ac-
complished with series damping resistors, or by increas-
ing the inductance or capacitance between the output
pin of the driving device and the input pin of the receiv-
ing device. Printed circuit board traces possess
parasitic ground path capacitance and inductance which
are trace length and trace topology dependent and thus
difficult to predict. The most common technique is the
use of series damping resistors, in the 25 to 35 ohm
range (33 ohms is a standard value). Series resistors
also limit signal overshoot and undershoot.

4. Try to avoid running control signals through a device
that drives data and address lines. When using a 10
output PLD (such as a 22V10) in an 8-bit bus oriented
application, it is tempting to use the extra two outputs
for control signals. It is very likely that these control
lines will be disturbed if the other eight lines are simul-
taneously switched. Using devices that feature input
hysterisis will add to the noise margin. Input hysterisis
can typically provide 200 mV of additional noise im-
munity.

Mixing logic families can compromise noise immunity
margins. For comparison purposes, the margin for a
particular logic family is the magnitude difference be-
tween guaranteed input threshold of the family and the
guaranteed output voltage for the high and low states,
ie, | Vil - Vol| / | Vih - Voh].

When possible, use a logic family that can drive 50 ohm
(commercial) transmission lines directly. This specifica-
tion is characteristic of devices that can switch sufficient
current to guarantee so called "incident wave" switching.
Switching that occurs on the incident wave is obviously
faster than having to wait for the reflected wave.

In addition to causing false triggering of downstream se-
quential logic and glitches in downstream combinatorial
logic, ground bounce noise can also.cause registers in
the bounced device to "forget" their stored state. This is
due to the momentary disturbance in the chip’s ground
and Vcc reference. The switching of multiple outputs
also has the effect of skewing the device’s propagation
delay, approximately 200 psec per switched output.
‘With an octal or ten bit device, this 1 to 2 nsec addition-
al delay should be included in worst case timing
analyses.

Tips for High-Speed Logic Design

Clock Distribution

Adequate clock distribution is essential when designing
20 MHz and faster systems because skew can eat up
precious nanoseconds and because high-speed logic
devices are very sensitive to clock waveform distortion
and slow rise times. All physical devices exhibit an
edge-dependent propagation delay asymmetry, ie., a
low-to-high going edge will propagate more quickly
than a high-to-low going edge, or vice versa. For ex-
ample, the clock to Q prop delay for a 74F74 from Sig-
netics ranges from 3.8 nsec to 6.8 nsec low-to-high, and
4.4 nsec to 8.0 nsec high-to-low. The 74AS1000 NAND
driver from Texas Instruments specs a 1 to 4 nsec range
for both low-to-high and high-to-low edges, but any par-
ticular physical device will show some asymmetry. It is
possible to maintain duty cycle symmetry in a buffered
clock distribution network by cascading two inverting
drivers. The two drivers must both be in the same
package, as shown in Figure 1.

—DoPo

Figure 1. Maintaining Duty Cycle Symmetry

Because the two drivers are in the same package, their
prop delay characteristics will track, and the high-to-low
and low-to-high differential delays will tend to cancel.

The fanout from a clock buffer should be limited to 8 to
15 devices. Fanout calculations must account for both
AC and DC loading. The AC characteristics for logic
components are specified at 50 pF of load capacitance,
and occasionally at 300 pF of load capacitance.
Propagation delays and output enable times increase by
approximately 1 nsec per each 50 pF of additional load
capacitance. The input capacitance of bipolar logic
families is higher (approximately 10 pF) than that of
CMOS (approximately 5 pF). If the sum of the

capacitance being driven exceeds 50 pF, the AC charac-
teristics of the driver should be derated appropriately.

The important DC electrical characteristic for the pur-
poses of loading is input current. The driving device
must be able to sink the sum of the low-level input cur-
rents to which it is connected (Iol at Vol). The driving
device must also be able to source the sum of the high-
level input currents to which it is connected (Ioh at
Voh). The low-level input current for bipolar logic
families ranges from -400 uA to -100 uA, while the low-
level input current for modern CMOS logic families
ranges from -5 wA to -1 uA. The high-level input cur-
rent for bipolar logic families ranges from 50 uA to 20
uA, while the high-level input current for modern
CMOS logic families ranges from 5 uA to 1 uA. Since
the Iol at Vol for bus drivers is often as high as 48 mA,
and the Ioh at Voh is often as high as -24 mA, input
current loading is seldom an issue except when driving a
parallel (resistor) terminated load. For example, a 220
ohm pullup requires about 22 mA worst case (Vol =
0V, Vcc = 5V), and a 330 ohm pulldown requires
about 15 mA worst case (Voh = 5V, Gnd = 0V).
Consider using an AC termination scheme if this addi-
tional current cannot be tolerated.

When a clock fanout greater than that which can be
safely supplied by a single buffer is required, parallel
drivers should be used Figure 2.

sl

Figure 2. Parallel Clock Drivers

When distributing a clock signal, attempt to load each
of the parallel lines equally. Unequal loading will in-
crease the skew between lines.

2-3

SEMICONDUCTOR

Tips for High-Speed Logic Design

Buses and Memories

When designing buses in high-performance systems, it is
important to consider the effects of AC and DC loading
as discussed above. The input and output capacitance
of CMOS SRAMs, PROMs, and DRAMs ranges be-
tween 5-and 7 pF. This can become a concern with
large memory arrays. Be especially careful when using
SRAM modules, which can have high input and output
capacitances due to the multiple devices connected to
each signal line. ' Because the signals that drive large
memory arrays (such as the address, RAS, CAS and
data lines) tend to have long PCB traces, it is common
practice to series terminate these lines to minimize ring-
ing, undershoot, and overshoot. The input load or
leakage currents for CMOS SRAMs, PROMs, and
DRAMs is approximately 10 uA, sink and source.
Whien high-output-current bus drivers are used (24 mA
Iol or greater), DC loading is rarely an issue.

As system cycle times shorten, it becomes more difficult
to avoid bus clash situations. Bus clash or bus conten-
tion occurs when, on a shared bus, one tri-state device
finishes its output enable time before a second device
finishes its output disable time. For a short period of
time both devices are driving the bus. Because the out-
put stages of memories and logic components can typi-
cally withstand at least 20 mA of current, the excess
current won’t damage the useful life of the device. The
problem with bus clash is that it causes large positive
and negative current changes in the device Vcc and
ground paths. This demand for current induces Vcc
and ground bounce noise just like the simultaneous
switching situation previously discussed. An overlap in
the worst case output enable and output disable times
of greater than 5 nsec should be avoided.

The fact that CMOS components draw very little input
current can be used to advantage on busses when hold
time is deficient. For example, consider the situation
when a CMOS memory is connected to a CMOS octal
register. The memory is read, the /OE (or the /CE) is
deasserted, and the data is clocked into the register.
Ordinarily, the data should be clocked into the register
before /OE is deasserted since the output disable time
for the memory could be very short (worst case). How-
ever, when the memory was read, the distributed
capacitance presented by the register inputs, the PCB
trace, and its own outputs was charged. Because the
output leakage current of the memory and the input
current of the register are very low (5 to 10 uA), this
distributed capacitance remains charged for some time,
and the data is in effect held long enough to make up

for the deficient timing.

High-speed SRAMs and FIFOs have timing require-
ments that are often difficult to meet using synchronous
circuits. In such situations, there are asynchronous al-
ternatives to consider. Various manufacturers supply
delay lines, the output taps of which can be com-
binatorially gated to synthesize the required signal.
- Delay lines are typically calibrated by comparing the
rising edge of the input to the rising edges of the
various delayed outputs; the delay times for the falling
edges are less accurate. If a decoded signal uses falling
edges, make sure that the design can tolerate a few
nanoseconds of slop. The Engineered Components
Company makes a family of pulse generator modules
(PGMs), which issue a precise pulse when presented
with a positive going edge. They offer standard PGMs,
fast-recovery PGMs that have a higher maximum repeti-
tion rate, and delayed PGMs which wait a specified
period before issuing the pulse. Both delay lines and
PGMs have propagation delays that range from 5 to 10
nsec.

Care and Feeding of PLDs

Programmable Logic Devices (PLDs) are exceedingly
useful for designing high-performance systems, but their
characteristics and shortcomings must be well under-
stood. The set-up time for most registered PLDs is
usually just less than the propagation delay. This is be-
cause the signal to be latched must propagate through
the AND array as well as the OR/XOR gate before
reaching the flip-flop, while the clock is connected
directly from the pin to the flip-flop. Accordingly, the
hold time for this type of PLD is 0 nsec minimum worst
case and several nanoseconds negative typically. This
"negative hold time" implies that the PLD samples the
state of the inputs as they existed several nanoseconds
before the rising edge of the clock. This phenomenon
can be used to advantage when the device feeding the
PLD is hold-time deficient with respect to the PLD
clock.

Beware of slow rise and fall times on signals generated
by PLDs. PLD outputs aren’t as quick and don’t have
the drive capacity of standard logic. When generating a
critical signal, such as a FIFO read or shift out pulse in
a PLD, buffer it with a fast, hard-driving gate. Identical
equations in the same PLD can exhibit different
propagation delays due to nonidentical on-chip path
lengths. PLD propagation delays are especially de-
pendent on capacitive loading.

2-4

Tips for High-Speed Logic Design

= .

PCB Effects

The most conservative approach to handling the signal
distortion effects of Printed Circuit Boards (PCBs) is to
consider every substrate interconnect as a transmission
line. In practice, this conservative approach only works
when the unloaded signal transition time approaches
the round-trip substrate propagation delay. For ordi-
nary PCB materials (G-10 fiberglass epoxy), the round
trip propagation delay is approximately 0.3 nsec per
inch. Therefore, for 3 nsec transition times, any PCB
trace longer than 10 inches should be considered a
transmission line. A transmission line presents a char-
acteristic impedance and possesses distributed induc-
tance and capacitance. Ringing on a transmission line
is minimized when the output impedance of the driving
device is closely matched to the characteristic im-
pedance of the line. The theoretical unloaded charac-
teristic impedance of a 10 mil wide, 1 oz. copper line
(1.5 mils thick) over a ground plane separated by a
dielectric of G-10 fiberglass epoxy 62.5 mils thick is ap-
proximately 130 ohms (microstrip model). In reality,
PCB trace characteristic impedances can range from 50
to 200 ohms. Capacitive loading reduces the charac-
teristic impedance, increases the delay, and slows the
rise time on a transmission line.

The conventional method for reducing reflections on
transmission lines is with some form of termination, the
most common being the so-called Thevenin type con-
sisting of a pullup resistor to Vcc and a pulldown resis-
tor to ground. The goal is to match the Thevenin
equivalent of the two resistors to the characteristic im-
pedance of the trace. Common values are 220 ohms
pullup and 330 pulldown, which yields a Thevenin
equivalent of 132 ohms, and 330 ohms pullup and 470
ohms pulldown, which yields a Thevenin equivalent of
194 ohms. Both of these termination pairs pull the line
to logic high (approximately 3V) when the driver is dis-
abled. The termination resistors should be placed as
close as possible to the receiver. Keep in mind that
many CMOS logic components have input and output
clamp diodes to help damp overshoot and undershoot.

Metastability and Crosstalk

The output of a latch or flip-flop can go into an un-
defined or metastable state (neither logic high or logic
low) when the setup time or hold time for the device is
violated. The metastable condition typically occurs
when an asynchronous signal is being synchronized. It

occurs in all process technologies and is impossible to
completely eliminate. The important parameters for the
board designer to have are the Mean Time Between
Failures (MTBF) at maximum operating frequency, and
the average or typical time it takes the device to resolve
from a metastable state to a stable state (resolution or
settling time, Tsw). These parameters and/or the equa-
tions for deriving them should be available from the
particular device’s manufacturer. Metastability perfor-
mance is proportional to the Vih to Vil slew time of a
technology. High-speed CMOS registers such as those
found in the PLDs made by Cypress have very fast slew
times and typical settling times that range from 182 psec
to 592 psec depending on the device type.

The double latching of asynchronous inputs is recom-
mended to dramatically increase the MTBF of a system
and reduce the probability of a metastable event caus-
ing system malfunctions. When determining the length
of time to delay before clocking the second register,
multiply the published typical settling time by two or
three to create an extra margin of protection.

Crosstalk is the undesirable coupling of a transition on
an active line (talker) on an inactive line (listener). The
crosstalk amplitude is proportional to the talker edge
rates, the physical proximity between signal lines, and
the distance over which the two lines are parallel or ad-
jacent. There are two important physical causes of
crosstalk: mutual impedance and velocity differences.
Mutual impedance is due to the mutual inductance and
mutual capacitance between adjacent signal lines, and is
basically a transformer-like effect. Velocity differences
arise when a signal propagates along a conductor that is
in contact with two materials of differing dielectric con-
stants, such as fiberglass epoxy and air in PCBs. The
wave propagating at the copper to fiberglass epoxy in-
terface travels slower than the wave propagating at the
copper to air interface. A pulse is developed that is
equal in duration to twice the difference in arrival times
of the two waves, and hence the magnitude of the dis-
turbance increases when the length of the parallel or
adjacent traces increases.

The two types of crosstalk are forward and reverse.
Forward crosstalk occurs when the talker driver and the
listener driver are at the same end of the signal line.
Reverse crosstalk occurs when the talker driver and the
listener receiver are at the same end of the signal line.
Forward crosstalk is the result of both velocity differen-
ces and mutual impedance phenomena, while reverse
crosstalk is the result of the mutual impedance

2-5

Tips for High-Speed Logic Design

%%@m

phenomenon exclusively. Due to the fast edge rates of
CMOS logic, crosstalk is a legitimate concern. The fol-
lowing steps can be taken to reduce forward and
reverse crosstalk:

1. Maximize the distance between traces and minimize
the length that traces are parallel or adjacent. When
possible, the signals on adjacent PCB layers should be
perpendicular. Use the power and ground layers as
shields between the signal layers. On two-layer PCBs
run ground lines between adjacent, parallel signal lines.

2. Make adequate provision when using flat ribbon
cable to have every other conductor a ground line.
Protect critical signals such as clock lines with a dedi-
cated ground strip on PCBs or with a ground twisted
pair on backplanes.

3. Thevenin termination of a line to its characteristic im-
pedance will reduce the crosstalk amplitude by 50%.

Conclusion

This applications note has attempted to provide the
designer of high-speed digital systems with tips and ad-
vice to. avoid some of the pitfalls that can arise. It is
hoped that the reader will be in a better position to
design and debug high-speed systems armed with the
information provided in this note.

2-6

P
= CYPRESS

SEMICONDUCTOR

Application Briefs
RAM Input Output Characteristics

Introduction to Cypress RAMs

Cypress Semiconductor Corporation uses a speed opti-
mized CMOS technology to manufacture high speed static
RAMs which meet and exceed the performance of compet-
itive bipolar devices while consuming significantly less
power and providing superior reliability characteristics.
While providing identical functionality, these devices ex-
hibit slightly differing input and output characteristics
which provide the designer opportunities to improve over-
all system performance. The balance of this application
note describes the devices, their functionality and specifi-
cally their I/0 characteristics.

PRODUCT DESCRIPTION

The five parts in Figure I constitute three basic devices of
64, 1024 and 4096 bits respectively. The 7C189 and 7C190
feature inverting and non-inverting outputs respectively in
a 16 x 4 bit organization. Four address lines address the 16
words, which are written to and read from over separate
input and output lines. Both of these 64 bit devices have
separate active LOW select and write enable signals. The
256 x 4 7C122 is packaged in a 22 pin DIP, and features
separate input and output lines, both active LOW and ac-
tive HIGH select lines, eight address lines, an active LOW
output enable, and an active LOW write enable. Both the

—_—?—Do
L—l ; o
.

INPUT
BUFFE j—Dg
Ag - ‘

ROW
ECODERf— *‘R‘*%
Ay —f

16x4 <=M°Er4 O

ARRAY] amp

Y

coLumn |
p JPEC v 1 03
cs
0027-1
7C189

%
ne.
T

BUFFER
ROW 0
A, _|PEco0ER - i °
1
164 |NJSENSE i o
ARRAY AMP
A T 0z
COLUMN
DECODER| :ﬁ 03
Az
) E

7C190

|

0027-2

Figure 1. RAM Block Diagrams

January 1985

%
SEMICONDUCTOR

CS2
Do D1 D2 D3 (]
DATA INPUT
CONTROL WE'
I\/I =
Oo
Ao . '—4&
w
248 o
Az § 32 x 32 SENSE
~1 8 ARRAY AMPS 02
W] B
L‘W & D O3
As i i
As COLUMN
a DECODER
0027-3
7C122

RAM Input/Output Characteristics

-

=2 el

INPUT BUFFER
Ay N 1/0g
Ag H g
8 1/0
Ay 2 . 64 x 64 : '
s a ARRAY] iy
02
As g é
As &
1/03
\} POWER
COLUMN DECODER 32&‘:) ——{ &
N
Az Az A1 Ag WE
0027-4
7C148/9

Figure 1. RAM Block Diagrams (Continued)

7C148 and 7C149 are organized 1024 x 4 bits and feature
common pins for the input and output of data. Both parts
have 10 address lines, a single active LOW chip select and
an active LOW write enable. The 7C148 features automatic
power down whenever the device is not selected, while the
7C149 has a high speed, 15 ns, chip select for applications
which do not require power control. This family of high
speed static RAMs is available with access times of 15 to
45 ns with power in the 300 to 500 mW range. They are
designed from a common core approach, and share the
same memory cell, input structures and many other char-
acteristics. The outputs are similar, with the exception of
output drive, and the common I/0 optimization for the
7C148 and 7C149. For more detailed information on these
products, refer to the available data sheets.

GENERIC 1/0 CHARACTERISTICS

Input and output characteristics fall generally into two cat-
egories, when the area of operation falls within the normal
limits of Voo and Vss plus or minus approximately
600 mV, and abnormal circumstances, when these limits
are exceeded. Inputs under normal operating conditions
are voltages that switch between logic “0” and logic “1”.
We will consider operation in a positive true environment
and therefore a logic “1” is more positive than a logic “0”.
The 1/0 characteristics of the devices we are concerned
with are what is considered to be TTL compatible. There-
fore a logic “1” is 2.0V, while a logic “0” is 0.8V. The
input of a device must be driven greater than 2.0V, not to
exceed Voc + 0.6V to be considered a logic “1” and, to
less than 0.8V, but not less than Vgg — 0.6V, to be consid-
ered a logic “0”.

Output characteristics represent a signal that will drive the
input of the next device in the system. Since the levels we
are dealing with are TTL, we may assume that the Vy and

ViH values of 0.8 and 2,0V referenced above are valid. In
consideration of noise margin however, driving the input of
the next stage to the required Vi, or Viy is not sufficient.
Noise margins of 200 to 400 mV are considered more than
adequate, and therefore the Voq we deal with is 2.4V while
the VoL is 0.4V, providing a noise margin of 400 mV.
Since the driven node consists of both a resistive and a
capacitive component, output characteristics are specified
such that the output driver is capable of sinking IoL at the
specified Vor, and capable of sourcing Ioy at Vog. Since
the values of IoL, and Ioy differ depending on the device,
these values are shown in Table 1. Outputs have one other
characteristic that we need to be concerned with, Output
Short Circuit Current or Ipg. This is the maximum current
that the output will source when driving a logic “1” into
Vss. We need to be concerned for two reasons. First, the
output should be capable of supplying this current for some
reasonable period of time without damage, and second, this
is the current that charges the capacitive load when switch-
ing the output from a “0” to a “1” and will control the
output rise time.

Since memories such as these are often tied together, we
are also concerned about the output characteristics of the
devices when they are deselected. All of the devices in this
family feature three state outputs such that in addition to
their active conditions when selected, when deselected, the
outputs are in a high impedance condition which does not
source or sink any current. In this condition, as long as the
input is driven in its normal operating mode, it appears as
an open, with less than 10 wA of leakage. Thus to any
other device driving this node, it is non-existent.

=y
SEMICONDUCTOR

RAM Input/Output Characteristics

TECHNOLOGY DEPENDENCIES AND
BENEFITS

Some of the products in this application note were original-
ly produced in a BIPOLAR technology, some have since
been re-engineered in NMOS technology and Cypress has
now produced them in a speed optimized CMOS technolo-
gy. There are both technology dependencies and benefits
relative to the design of input and output structures that
are associated with each technology. The designer who
uses these products should be knowledgeable of these char-
acteristics and how they can benefit or impede a design
effort. One of the most obvious is that both NMOS and
CMOS device inputs are high impedance, with less than 10
A of input leakage. Bipolar devices, however, require that
the driver of an input sink current when driving to Vir, but
appear as high impedance at Vg levels. This is due to the
fact that the input of a bipolar device is the emitter of a
bipolar NPN type device with its base biased positive. The
bias is what establishes the point at which the input chang-
es from requiring current to be sourced to high impedance
and is 1.5V. This switching level is the reason that AC
measurements are done at the 1.5V level. Although NMOS
and CMOS device inputs do not change from low to high
impedance, great care is taken to balance their switching
threshold at 1.5V. To a system designer this allows fanout
to consider only capacitive loading with MOS devices
while bipolar has both a capacitive and DC component.
The other input characteristic which differs from bipolar to
MOS is the clamp diode structure. This structure exists in
both MOS and bipolar, however in MOS that uses BIAS
GENERATOR techniques, all high speed MOS devices,
the diode does not become forward biased until the input
goes more negative than the substrate bias generator plus
one diode drop. Since the bias generator is usually about
— 3V this has the effect of removing the clamping effect.

I/0 Parameters

CMOS/NMOS/BIPOLAR INPUT
CHARACTERISTICS

Although NMOS, CMOS and BIPOLAR technologies dif-
fer widely, the 1/O characteristics tend to fall into two
areas. The traditional characteristics are the TTL deriva-
tives that have been covered above, and are documented in
Table 1. With the exception of the differences in input im-
pedance between MOS and BIPOLAR devices all three
technologies are used to produce TTL compatible prod-
ucts. The second camp is the true CMOS interface where
signals swing from Vgs to Vcc. These interface specifica-
tions define a ““1”” as greater than Vcc — 1.5V and a “0” as
less than Vgg + 1.5V. In addition, loads are primarily
capacitive. Only devices produced in a CMOS technology
are capable of behaving in this manner. CMOS devices can,
however, handle both TTL and CMOS inputs. Devices
such as the ones described in this application note have
input characteristics depicted in Figure 2.

35

3.0

25

20

TN
\
w4 AN

0.0 1.0 20 3.0 4.0 5.0 6.0

Icc —mA

INPUT VOLTAGE — V

0027-5
Figure 2. Input Voltage vs. Current
Table 1. DC Parameters
Parameters Description Test Conditions 7C122 1C148/9 7C169/%0 Units
Min. | Max. | Min. | Max. | Min. | Max.
VoH Output High Voltage Vee = Min, Iog = —5.2mA 2.4 2.4 2.4 A\
VoL Output Low Voltage Vce = Min, Ior, = 8.0 mA 0.4 0.4 0.4 \'A
Vi Input High Voltage 2.1 | Vcc | 2.0 [Ve | 20 | Ve \4
ViL Input Low Voltage —3.0/(08 | —3.0/| 0.8 | —3.0] 0.8 v
I Input Low Current Vce = Max., VIN = Vss 10 10 10 MA
Iin Input High Current Vcc = Max., VIN = Vce 10 10 10 RA
IoFr Output Current (High Z) | VoL < Vout < VoH, TA = Max. —10| +10| —10| +10| —10| +10 | pA
os Output Short Vee = Max, 0°C < Ta < 70°C -0 —90 —275| mA
Circuit Current Vout = Vss, —55°C < Ta < 125°C —80 —-90 —350(mA

i Crpress
%@Nm

RAM Input/Output Characteristics

When operated in the TTL range, they perform normally.
Operated in full CMOS mode, an additional benefit of
power savings is realized as the current consumed in the
input converter decreases as the input voltage rises above
3.0V, or falls below 1.5V. Since the input signal is in the 1.5
to 3.0V range only when transitioning between logic states,
the power savings in a large array with true CMOS inputs
can be significant. With input signals on over half of the
pins of a device, significant savings in a large system can be
realized by using CMOS input voltage swings even in TTL
systems.

Switching Characteristics

Although this application note does not directly deal with
the AC characteristics of high speed RAMs, the input and
output characteristics of these devices have a great deal to
do with the actual AC specifications. Conventionally, all
AC measurements associated with high speed devices are
done at 1.5V and assume a maximum rise and fall time.
This eliminates the variations associated with the various
configurations that the device will be used in (as a figure of
merit when testing the device) but, does not mean that the
designer can ignore these influences when designing a sys-
tem. Maximum rise and fall time is usually found in the
notes included on every data sheet. For the products re-
ferred to in this application note, a 10 ns maximum rise
and fall time is specified for all devices with access times
equal to or greater than 25 ns and a 5 ns maximum rise and
fall time for all devices with access times less than 25 ns.
The AC load and its Thévenin equivalent in Figure 3 repre-
sent the resistive and capacitive components of load which
the devices are specified to drive. With either of these
loads, the device will be required to source or sink its rated
output current at its specified output voltage. The capaci-
tance stresses the ability of the device output to source or
sink sufficient current to slew the outputs at a high enough
rate to meet the AC specifications. The high impedance
load is a convenience to testing when trying to determine
how rapidly the output enters a high impedance condition.
Once the output enters a high impedance mode, the resis-
tive divider will charge the capacitance until equilibrium is
reached. Allowing for noise margin, testing for a 500 mV
change is normal. By using a smaller capacitance

than normal, the change will occur more quickly, allowing
a more accurate determination of entry into the high im-
pedance state.

SWITCHING THRESHOLD VARIATIONS

Switching threshold variations along with input rise and
fall times can have an effect on the performance of any
device. Input rise and fall times are under the control of the
designer, and are primarily affected by capacitive loading,
the driver and bus termination techniques. Switching
threshold is affected by process variations, changes in Vcc
and temperature. Compensation of these variables is the
territory of the manufacturer, both at the design stage and
the manufacturing of the device. Combined threshold shifts
over full military temperature ranges and process varia-
tions average less than 100 mV. This translates directly to
ViL and Vyy variations which track well within the noise
margins of normal system design particularly since the
VoL and VoH changes track to the same 100 mV.

Input Protection Mechanisms

THE ELECTROSTATIC DISCHARGE
PHENOMENON

Because of their extremely high input impedance and rela-
tively low (approximately 30V) breakdown voltage, MOS
devices have always suffered from destruction caused by
ESD (Electro Static Discharge). This has caused two ac-
tions. First, major efforts to design input protection circuits
without impeding performance has resulted in MOS de-
vices that are now superior to bipolar devices. Second, care
in handling semiconductors is now common practice. In-
terestingly enough, bipolar products that once did not suf-
fer from ESD have now suddenly become sensitive to the
phenomenon, primarily because new processing technology
involving shallow junctions is in itself sensitive. MOS de-
vices are in many cases now superior to bipolar products.
A sampling of competitive BIPOLAR and NMOS 64 bit,
1K bit and 4K bit products reveals breakdown voltages as
low as + 150V to greater than +2001V magnitudes. The
circuit in Figure 4 is used to protect Cypress products
against ESD. It consists of two thick oxide field transistors
wrapped around an input resistor and a thin oxide device

AC Load High Impedance Load
R1470Q R1470Q
5V P . 5V
Thévenin Equivalent
OUTPUT OUTPUT
R2 OUTPUT O—— AMWA—0 1.62V A2

30 pF
I i 2249

0027-6

5 pF
0027-7 I 2249

0027-8

Figure 3. Test Loads

&=
SEMICONDUCT

RAM Input/Output Characteristics

PIN

>
<

>

< Rsus

*Thick Oxide Field Transistor
**Substrate Diode

leus

||}

Rp TTLTO
' AV ’ cMoS
I CONVERTER
¥ ,y
\—* | * THIN OXIDE
Tl] TRANSISTOR

0027-9

Figure 4. Input Protection Circuit

with a relatively low breakdown voltage of approximately
12V. Large input voltages cause the field transistors to turn
on discharging the ESD current harmlessly to ground. The
thin oxide transistor breaks down when the voltage across
it exceeds the 12V level and it is protected from destruction
by the current limiting of Rp. The combination of these
two structures provides ESD protection greater than
2250V, the limit of the testing equipment available. In ad-
dition, repeated applications of this stress do not cause a
degradation that could lead to eventual device failure as
observed in functionally equivalent devices.

CMOS Latchup

The parasitic bipolar transistors shown in Figure 5 result in
a built-in silicon controlled rectifier illustrated in Figure 6.
Under normal circumstances the substrate resistor Rgyp is
connected to ground. Therefore, whenever the signal on
the pin goes below ground by one diode drop, current flows

from ground through Rgyp forward biasing the lower tran-
sistor in the effective SCR. If this current is sufficient to
turn on the transistor, the upper PNP transistor is forward
biased, the SCR turns on and normally destroys the device.
Several solutions are obvious, decreasing the substrate re-
sistance, or adding a substrate bias generator are two. The
bias generator technique has several additional benefits,
however, such as threshold voltage control which increases
device performance and is employed in all Cypress prod-
ucts, along with guard rings which effectively isolate input
and output structures from the core of the device and thus
effectively decrease the substrate resistance by short cir-
cuiting the current paths. Latchup can potentially be in-
duced at either the inputs or outputs. In true CMOS output
structures as discussed above, the output driver has a
PMOS pullup which creates additional vertical bipolar
PNP transistors compounding the latchup problem. Addi-
tonal isolation using the guard ring technique can be used
to solve this problem, at the expense of additional silicon

Output Driver CMOS Inverter
n-MOS
PULL-DOWN
DEVICE ;Uﬁfup
OUTPUT -LJ-/ DEVICE Vee OUTPUT INPUT SUBSTRATE
l | BIAS =~ -30V
L]l rL| LT sl 1[L |
ot bﬂ' nt nt+ l' ,,+, l ot l nt nt o ot nt n+ n+ ot
o
WELL RWELL
AVAV‘V
] Rsus
/ \ p~ SUBSTRATE /
| \ \ !
n* DIFFUSION AND p* DIFFUSION LATERAL npn BIPOLAR PARASITIC VERTICAL pnp BIPOLAR PARASITIC
n-WELL GUARD RING GUARD RING TRANSISTOR RESISTANCE TRANSISTOR RESISTANCE

0027-10

Figure 5. CMOS Cross Section and Parasitic Circuits

%
J SEMICONDUCTOR

RAM Input/Output Characteristics

Substrate Bias Generator
Vce
RwEeLL
.
H
Rsus _{C
= OUTPUT I
PIN =

0027-11

Figure 6. Parasitic SCR and Bias Generator

area. Since all of the devices of concern here require TTL
outputs, the problem is totally ehmlnated through the use
of an NMOS pullup.

LATCHUP CHARACTERISTICS
Inducing Latchup for Testing Purposes

Care needs to be exercised in testing for latchup since it is
normally a destructive phenomena. The normal method is
to power the device under test with a supply that can be
current limited, such that when latchup is induced, insuffi-
cient current exists to destroy the device. Once this setup
exists, driving the inputs or outputs with a current, and
measuring the point at which the power supply collapses
will allow non-destructive measurement of the latchup
characteristics of the devices under question. In actual test-
ing, with the device under power, individual inputs and
outputs are driven positive and negative with a voltage and
the current measured at which the device latches up. This
provides the DC latchup data for each pin on the device as
a function of trigger current.

Measurement of Latchup Susceptibility

Actually measuring the latchup characteristics of devices
should encompass ranges of reasonable positive and nega-
tive currents for trigger sources. Depending on the device,
latchup can occur as low as a few mA to as high as several
hundred mA of sink or source current. Devices which latch
at trigger currents of less than 20 to 30 mA are in danger of
encountering system conditions that will cause latchup fail-
ure.

Competitive Devices

Although there are few devices directly competitive with
the Cypress devices covered in this application note, the
latchup characteristics of the closest functionally similar
devices were measured. The results show devices that
latchup at as low as 10 mA all the way to devices that can
sustain greater than 100 mA of trigger current without

latchup. The Cypress devices covered in this document can
sustain greater than 200 mA without incurring latchup, far
more than is possible to encounter in any reasonable sys-
tem environment.

Elimination of Latchup in Cypress

RAMs

Since the latchup characteristic is one that inherently exists
in any CMOS device, rather than change the laws of phys-
ics, we design to minimize its effects over the operating
environment that the device must endure. These include

. temperature, power supply and signal levels as well as pro-

2-12

cess variations. There are several techniques employed to
eliminate the latchup phenomenon. Two of them involve
moving the trigger threshold outside the operating range as
to make it impossible to ever encounter it. These are either
using low impedance, epitaxial, substrates and/or a sub-
strate bias generator. The use of a low impedance substrate
has the effect of increasing the undershoot voltage required
to generate the required trigger current that causes latch-
up. A substrate bias generator has two effects which help to
eliminate latchup. First, by biasing the substrate at a nega-
tive, —3.0V, voltage, the parasitic diodes can not be for-
ward biased unless the undershoot exceeds the —3V by at
least one diode drop. Second, if undershoot is this severe,
the impedance of the bias generator itself is sufficient to
deter sufficent trigger from being generated. The bias gen-
erator has one additional noticeable characteristic, it effec-
tively removes the input clamp diode. This is due to the
anode of the diode connecting to the substrate which is at
—3.0V. Therefore, even though the diode exists as shown
in Figure 4, DC signals of —3.0V do not forward bias the
diode and exhibit the clamp condition. The benefits of this
are apparent in higher noise tolerance as substrate currents
due to input undershoot do not occur.

10
1.0
"
pa "
0.1
1 /
1 0.01
o
2 oy
0.001 T
0.0001
0.00001
-5.0 -4.0 -3.0 -20 -1.0 0
Veg -V
0027-12

Figure 7. Bias Generator Characteristics

RAM Input/Output Characteristics

0.0
-1.0
T
z
-3.0
// Vge = 5.0V
-4.0 I
-6.0 0.0 6.0 12.0
Vinpyt (VOLTS) 0027-13

0.0

iy (mA) (SEE NOTE)

Vce =5.0v

0.0 6.0 12.0

VinpuT (VOLTS)
Note: Output is in a High Impedance Condition.

0027-14

Figure 8. Input V/I Characteristics

Figures 8 and 9 represent the voltage and current charac-
teristics of the devices discussed in this application brief.
Figure 8 is characteristic of an input pin, and Figure 9 an
output pin in a high impedance state. In Figure 8, the input
covers + 12V to — 6V, well outside the + 7V to — 3V spec-
ification. Referring to Figure 4 to understand these charac-
teristics, when the input voltage goes negative, the thin
oxide transistor acts as a forward biased diode and the

2-13

Figure 9. Output V/I Characteristics

slope of the curve is set by the value of Rp. As the input
voltage goes positive, only leakage current flows. The out-
put characteristics in Figure 9 show the same phenomenon,
with the exception that, since this is not an input, no pro-
tection circuit exists, and therefore no Rp exists. An equiv-
alent thin film device acts as a clamp diode which limits
the output voltage to approximately —1V at —5 mA.

% , RAM Input/Output Characteristics

NOTES:

2-14

74F189 Application Brief

Introduction

There are available in the market a number of high speed
64 bit static RAMs organized 16 by 4 bits. Because of the
various different manufacturers specifications, there is no
apparent true second source for these products as each op-
erates with some unique characteristics. The composite
specifications contained in this applications brief will allow
the interchangeable use of the Cypress CY7C189 with the
74F189 and the Cypress CY7C190 with the 74F219 with
optimization for either power or performance.

Specifications

Depending on system requirements, the SPEED OPTI-
MIZED specification will allow the designer to select per-
formance at the expense of power, and use either Cypress’s
CY7C189-15 or the 74F189 interchangeably. If, however,
the major criteria is power the designer can achieve a 55
mA max power specification using the Cypress CY7C189-
25 interchangeably with the 74F189 by designing with the
POWER OPTIMIZED specification.

Electrical Characteristics Over the Operating Range

Speed Power
Parameters Description Test Conditions Optimized Optimized Units
Min. Max. Min. Max.
Von Output HIGH Voltage Vce = Min, Iog = —3.0mA 2.4 2.4 \2
VoL Output LOW Voltage Vcc = Min, Ior, = 16.0 mA 0.5 0.5 \%
Vi Input HIGH Voltage 2.0 Vce 2.0 Vce A\
ViL Input LOW Voltage -3.0 0.8 -3.0 0.8 A\
Irx Input Leakage Current GND< Vi < Ve —600 +20 —600 +20 BA
Ioz Output Leakage Current | GND < Vg < Ve —50 +50 —50 + 50 RA
Output Short _ _ _ _

Ios Circuit Current Vce = Max., Vout = GND 150 150 mA
Icc Power Supply Current YCC =_I\(')lax1; Commercial % EEl mA

ouT = Om Military 70 mA

December 1985

2-15

52 74F189 Application Brief

Switching Characteristics Over the Operating Range

Parameters Description Speed Optimized __Power Optimized Units
Min. | Max. Min. Max.
READ CYCLE
tRC Read Cycle Time 27 27 ns
tACS Chip Select to Output Valid 14 15 ns
tHZCS Chip Select Inactive to High Z 12 15 ns
tLzcs Chip Select Active to Low Z 12 15 ns
tOHA Output Hold from Address Change | . 5 5 ns
tAA Address Access Time 27 27 ns
WRITE CYCLE
twe Write Cycle Time 15 20 ns
tHZWE Write Enable Active to High Z 14 20 ns
tLZWE Write Enable Inactive to Low Z 12 20
tAWE Write Enable to Output Valid 29 29 ns
tPWE ‘Write Enable Pulse Width 15 20 ns
tsp Data Setup to Write End 15 20 ns
tHD Data Hold from Write End 0 0 ns
tSA Address Setup to Write Start 0 0 ns
tHA Address Hold from Write End 0 0 ns
tHCS Chip Select Hold from Write End 6 6 ns
Read Cycle
L tRe]
st * A
L, taa toHa
CHIP sen.sg ‘—‘ 7(
DATA o ’LTII m =
Rt LAY =
. L— tacs ——»| [tHzcs 00431
Write Cycle
| we |
ADDRESS
tsA je— le— tHa
65—\ -'Hcsj
CHIP SELECT
! SD tHp
WRITE emsﬁ) . i‘
HZWE —————] [tawe ——]
00-03
DATA OUYLPOUATS —.i(((
e tzwe 0043-2

2-16

S 1
!5 %%WCTOR

—

Section Contents
PROMs

Page Number

Introduction to Diagnostic PROMs

3-1

Pin-Out Compatibility Considerations of SRAMs and PROMs

3-7

PRESS

EMICONDUCTOR

Introduction to Diagnostic PROMs

Scope and Purpose

This Application Brief will provide the reader with a basic
understanding of the concept of a diagnostic PROM, as
well as a brief introduction to possible applications.

Beginning with a short tutorial on system diagnostics, the
reason for incorporating diagnostics into a design and the
special testability problems associated with sequential de-
signs are presented. The concept of shadow-register-based
diagnostics is presented, and the benefits of this approach
are outlined.

Next, a description of Diagnostic PROMs is given. This
covers the similarity/dissimilarity of diagnostic PROMs
relative to standard registered PROMs, as well as funda-
mental operation of a diagnostic PROM followed by a de-
scription of the Cypress CY7C268 and CY7C269 8K x 8
Diagnostic PROMs.

In conclusion, an application example is presented.

Introduction to System Diagnostics

As electronic systems continue to grow in size, functionali-
ty, and complexity, it is becoming increasingly difficult to
test them and determine their reliability, as well as to serv-
ice the end product in the field. One way to simplify the
task of testing electronic systems is to design some form of
testability into the system.

Controllability and observability are the key points of test-
ability. These two qualities are easily obtained for a combi-
natorial system where the outputs are strictly a function of
the current inputs. Test vector methods are easily devised

INPUTS —/>]

COMBINATORIAL
LOGIC

and implemented for combinatorial systems. But, for a se-
quential system, where the outputs are a function of both
the current inputs and the previous state(s), controllability
and observability may be lost due to lack of access to the
internal states of the machine. Consequently, building test-
ability into a system means being able to control and ob-
serve all possible states of a system.

Consider the simple sequential machine in Figure 1. As is
evident, access to internal states—which is necessary for
complete controllability and observability—is either denied
or difficult to obtain. The obvious way to add testability to
this system is to permit access to these internal states. One
way to gain this access is through addition of a diagnostic
shadow register, as shown in Figure 2. Observability is ef-
fected by adding a serial data output path (SDO) to allow
shifting internal state information out of the system. Con-
trollability is gained by permitting a serial data input path
(SDI) to set the state of the internal registers. As a result,
relatively simple test vector methods can again be used to
test the system. Consider, for example, the complex se-
quential machine shown in Figure 3. This system would be
virtually impossible to test in the current configuration,
due to the fact that we can not control or observe the
internal states of the machine. In order to increase the test-
ability of this machine, observability must be added at
points 01, 02, and 03. If this were accomplished, one would
be able to observe the internal states of the machine. Addi-
tionally, controllability must be added at points Cl1, C2,
and C3. This would enable the internal states of the
machine to set. This controllability and observability can
be attained by adding shadow registers, as depicted in Fig-
ure 4. The result is a complex sequential machine with a

+ » OUTPUTS
L> STATE
REGISTER outPuTS
AN
CLK

INTERNAL STATE FEEDBACK ,

/" SEQUENTIAL SYSTEM
0125-1

Figure 1, Simple Sequential Machine

3-1

February 1988

?
SEMICONDUCTOR

Introduction to Diagnbs’tic PROMs

INPUTS —~p

COMBINATORIAL
[Kele[

INTERNAL STATE FEEDBACK

» QUTPUTS

£y STATE
OUTPUTS

MODE —J

SERIAL DATA IN (SDI) =——

SHADOW
REGISTER

D

DCLK

L SERIAL DATA OUT (SDO)

SEQUENTIAL SYSTEM

- o1%8-2
Figure 2, Simple Sequential Machine with Diagnostic Capability
.- -
COMBINATORIAL
LOGIC .
—p 74— ouTPUTS
& c2 | REGISTER
FAN
SYSTEM INPUTS _ e : o2, Dok
H 7
5 . H - -
7 v .
&—>1 COMBINATORIAL
+ LoGIC
H 7z
[7" .
2} 'y c1 | REGISTER 3 ccmccmccccccscssen,
I
1 FAN R
') >
H COMBINATORIAL
: o1 4, DCLK LoGIC .
H 7 —> Vg b oUTPUTS
L A T L L L T R Ty cs REG‘STER
” A
03 o, DCLK
7
eeana

0126-3

Figure 3. Complex Sequential Machine

high degree of testability. As a result of these actions, sim-
ple test vector methods can now be used to fully test the
machine. For instance, the state of the register at point C1
can be set, the machine may be clocked through some
known number of cycles, and the state of the machine may
be observed at points 01, 02, and 03.

Knowing what state the machine should be in at that par-
ticular point in time at each observation point, the known
“correct” state of the machine can be compared with the
observed machine state (at each observation point), thereby
determining if: a) the machine is functioning correctly; and
b) if not, which “machine primitive” is not functioning
correctly (fault detection). Note that this approach to se-
quential design will also permit testing to see what the ma-
chine would do if a glitch caused a jump into an unused
state, which in turn makes the design task of forcing the
machine back into a known state much less complex.

The real advantage of this approach is that it requires no
changes in architecture, minimal hardware changes, and
results in a minimal (5-10%) area hit when integrated into
existing integrated circuits.

Diagnostic PROMs

Diagnostic PROMs are a relatively minor migration from
standard registered PROMs. A block diagram of a diag-
nostic PROM s presented in Figure 5. The addition of
diagnostic capability to a registered PROM includes the
addition oft

—a shadow register
—multiplexer

—MODE pin

—SDI (Serial Data In) pin
—SDO (Serial Data Out) pin
—diagnostic clock

Introduction to Diagnostic PROMs

%@m
SEMICONDUCTOR

COMBINATORIAL
LOGIC
—> 3 5 5S¢ >
REGISTER L_
A
& P4
PCLK L ¢
| sHADOW
—>| REGISTER
3, /I\
1 COMBINATORIAL 4 l
> LOGIC
8 8 7,
rd
MUX REGISTER
= 3
2)(A\ N\
2) 8/ 4 1’ y
PCLK V¢
el
e
COMBINATORIAL
LOGIC
| sHADOW [»
> REGISTER REGISTER
At -
AN
E
PCLK &Y
| sHADOW
REGISTER
FAN
]
' 3 +
0125-4
Mode, SDI, SDO, and DCLK for each “Machine Primitive”
Figure 4. Complex Sequential Machine with Diagnostic Capability
.. .
state § 0 | coMematoriL . >
outPUTS § o LOGIC MUX REGISTER | + OUTPUTS
> LA A >
............. ---s polk !
.
(]
1]
.
. '
sHapow [$
Mope — REGISTER | E
] A :
sl
SERIAL DATA IN (SDI) =i DCLK SERIAL DATA OUT (SDO) o255
1 e

Figure 5. Diagnostic PROM Block Diagram

The shadow register is dynamically configured based on
the value of the mode signal. If mode is set such that the
user desires to input data to the PROM, the shadow regis-
ter is configured as serial-in, parallel-out; if the user desires
to extract information from the PROM, the shadow regis-
ter is configured as a parallel-in, serial-out. So the shadow

register serves two purposes: First, the shadow register can
be configured to serially receive the data that can be trans-
ferred to the register containing state information and ap-
pear at the outputs during the next cycle. The obvious ad-
vantage of this feature is that it allows the user to effective-
ly preset the condition that will be sent through the part of

SEMICONDUCTOR.

Introduction to Diagnostic PROMs

the system that “follows” the PROM; ie, the user can in-
sert state information into the system. This feature adds
controllability to the system.

The second purpose that the shadow register serves is to
allow the user transfer data from the register containing
state information and to serially shift that data out of the
PROM. This feature adds observability by allowing the
user to observe the state of the PROMs pipeline register at
any given point in time. Inclusion of the above named fea-
tures in a registered PROM can therefore add testability to
any system by providing the user with the mechanism to
build both controllability and observability into his system.
Note that this increase in functionality is effected without
loss of other desirable registered PROM features such as
programmable initialization, programmable output enable,
etc.

Cypress Diagnostic PROMs

Cypress Semiconductor manufactures two Diagnostic
PROMs, the CY7C268 and CY7C269. These 64K byte-
wide Diagnostic PROMs are manufactured in CMOS for
the optimum speed/power tradeoff resulting in 550 mW
power dissipation while maintaining 40 ns maximum set-
up and 20 ns clock-to-output. Both contain an edge-trig-
gered pipeline register and on-chip diagnostic shift register.
Both are capable of withstanding >2001V ESD. Both are
produced in our EPROM-based process, which allows test-
ing for 100% programmability. Both are available in
PLCC/LCC and Dual Inline Packages, and both are avail-
able in a windowed package for reprogrammability. The
CY7C268 features full diagnostic capability and is avail-
able in 32-lead PLCC/LCC or 32-pin 0.5 in DIPs. The
CY7C269 features limited diagnostic capability and is
available in 28-lead PLCC/LCC or 28-pin 0.3 in DIPs.

For an in-depth description of functionality, refer to the
data sheet. The following discussion briefly describes the
diagnostic functions available in each device.

CY7C268

A condensed block diagram of the CY7C268 is presented .
in Figure 6. The pin names and functions of the CY7C268
are as follows:

Name 170 Function
Ap-Aq2 I Address Input
0p-07 (o] Data Lines
ENA 1 Synchronous or Asynchronous
Output Enable
INIT I Asynchronous Initialize
MODE I Sets PROM to Operate in
Pipelined or Diagnostic Mode
DCLK 1 Diagnostic Clock (Used to Clock
the Shadow Register)
PCLK I Pipeline Clock (Used to Clock
the Output Registers)
SDI 1 Serial Data In (Used to Serially
Shift Data into the Diagnostic
Register)
SDO o Serial Data Out (Used to Serially
Shift Data Out of the Diagnostic
Register)

Note that full diagnostic capability is realized through the
use of four control signals: SDI (Serial Data In), SDO
(Serial Data Out), MODE, and DCLK (diagnostic clock).
Inclusion of both DCLK and PCLK assures that serial
data can be shifted into or out of the diagnostic register
while the PROM is operating in normal pipeline fashion.
As a result, the CY7C268 has three possible modes of oper-
ation:

i. normal (pipelined)
ii. diagnostic
iii. both simultaneously

Ap= A2 |:‘J>

ADDRESS DECODER
PROGRAMMABLE ARRAY

8}

1
A 4

r

8k

[SDI

—bl DIAGNOSTIC MUX |
MODE —pf
) 8l
PCLK —P)
CONTROL
LoGIC .
ENA —p] »{ PROG. INITIALIZE WORD
] 8 - BIT PIPELINE REGISTER
iNIT —

8 = BIT DIAGNOSTIC
SHIFT REGISTER

—» SDO

8”

0g=07

0125-6

' Figure 6. Condensed Block Diagram of the CY7C268

3-4

&
SEMICONDUCTOR

Introduction to Diagnostic PROMSs

The following table summarizes the operational modes of the CY7C268:

Data Flow Description Mode ENALlI SDI SDO DCLK PCLK
Normal Operationl1] L HL DATA IN SDO — 0
Shadow to Pipelinell] H HL X SDI — T
Pipeline to Shadow H L L SDI 1T —
Data In to Shadow H H L SDI T —
Shift Shadow Reg.[1] L HL DATA IN SDI T —
No Operationlt] H HL H SDI 1T —
Note:

1. For the asynchronous enable operation, data out is enabled on the first LOW to HIGH clock transition after E is brought LOW. When E goes from
LOW to HIGH (enable to disable) the outputs will go to the high impedance state (after a propagation delay) immediately if the asynchronous
enable was programmed. If the synchronous enable was selected, a LOW to HIGH transition is required.

CY7C269

A condensed block diagram of the CY7C269 is presented
in Figure 7. As is evident, the CY7C269 has reduced diag-
nostic functionality relative to the CY7C268. The
CY7C269 is ideal for applications requiring limited diag-
nostics with a premium on board space conservation, and is

Note that limited diagnostic capability is realized through
inclusion of three diagnostic signals: MODE, SDI, and
SDO. Since there is only one CLOCK, the regular and
diagnostic modes are mutually exclusive. The following ta-
ble summarizes the operating modes of the CY7C269:

available in 28-pin, 300 mil DIPs (windowed or opaque) — —=
and in 28-lead PLCC/LCC packages. The pin names and | Data Flow Description| Mode| E,I |Clock| SDI | SDO
functions of the CY7C269 are as follows: Normal Operation L (e 1 X |HighZ
Name 1/0 Function Shadow to Pipeline H | L T L SDI
Ao-Aqp I Address Inputs Pipe or Bus to Shadow | H L T H SDI
00-07 0 Data Lines Shift Shadow H | H| T |Dataln| SDO
E I 1 Enable or Initialize Notes:
. . . 1. E or I function selected during progr
Clock ! Pipeline and Diagnostic Clock 2. IfI d, outputs always enabled. If E selected, outputs are en-
Mode 1 Sets PROM to operate in either abled synchronously or asynchronously as programmed.
diagnostic or regular pipelined 3. If I selected, outputs always enabled. If E selected, during diagnostic
operation the data outputs will remain in the state they were in when
mode (note that the.two modes the mode was entered. When enabled, the data outputs will reflect the
are mutually exclusive). outputs of the pipeline register. Any changes in the data in the pipe-
SDI 1 Serial Data In line register will appear on the output pins.
SDO (0] - Serial Data Out

Ag=As2 l:>

ADDRESS DECODER
PROGRAMMABLE ARRAY

8}

—

—Dl DIAGNOSTIC MUX |
MODE —
8} 8}
£/T —p| CONTROL v
Losic » PROG. INITIALIZE WORD
8= BIT DIAGNOSTIC sol
CLOCK — »] 8 - BIT PIPELINE REGISTER I_, SHIFT REGISTER soo
8} 8}
8
8
0p=07

0125-7

Figure 7. Condensed Block Diagram of the CY7C269

3-5

%
SEMICONDUCTOR

Introduction to Diagnostic PROMs

Design Example

As an example, consider the complex sequential machine
presented earlier. This machine could be easily implement-
ed using CY7C268’s or CY7C269’s, as shown in Figure 8.
Note that the block labeled “diagnostic control” could con-
sist of PLDs, PROMs a sequencer, or a small microcon-
troller. The choice between using the CY7C268 or the
CY7C269 would be based complexity of the diagnostic

function required. For full diagnostics that can function
simultaneously with regular pipelined operation, the
CY7C268 should be used. For an application where limited
diagnostic capability is required—perhaps only a power-up

or at some other well-defined point in tim
may be used.

SYSTEM INPUTS

4

e—the CY7C269

DIAGNOSTIC CONTROL

v

ADDRESS DECODER
PROGRAMMABLE ARRAY

CONTROL
LogGiCc

4

8
A 4 I
—Pl DIAGNOSTIC MUX I

8}

4

PROG. INITIALIZE WORD

8= BIT PIPELINE REGISTER

.

8= BIT DIAGNOSTIC
SHIFT REGISTER

[

sﬂL

ADDRESS DECODER

A

PROGRAMMABLE ARRAY

8)

CONTROL
LoGIC

] l__

A 4

—>| DIAGNOSTIC MUX I
8‘

4
—>{ PROG. INITIALIZE WORD L
8=~ BIT DIAGNOSTIC
—>] 8 = BIT PIPELINE REGISTER r SHIFT REGISTER
8

4

v

ADDRESS DECODER
PROGRAMMABLE ARRAY

CONTROL
LoGIC

BA
A 4 £
—D| DIAGNOSTIC MUX I

:) 3

4

Figure 8. Complex Sequential Machine Implemented with Cypress Diagnostic PROMs

PROG. INITIALIZE WORD L
8= BIT DIAGNOSTIC [
L] & - BIT PIPELINE REGISTER r SHIFT REGISTER | |

8] 8}
8

)

8

1 2,

GJL ’

0125-8

———e. B 3% TE,
—————"i .2

& CYPRESS

£ SEMICONDUCTOR

Pin-Out Compatibili
SRAMs and PROMs

When looking for pin compatible replacements for
PROMs, there are a number of key parameters that
must be met. This application brief discusses the non-
electrical parameters of pin-out and programming in-
volved in finding socket compatible second sources for
PROMs. Comparison with the selection of a socket
compatible SRAM second source is provided. Addi-
tionally, an example of a verified conversion from the
Motorola 68764 to the Cypress CY7C264, a PROM
conversion that is not address line compatible, is
presented.

Ignoring the AC/DC characteristics, finding a second
source for an SRAM is relatively simple. As long as the
power, ground, control (chip select, read, write), ad-
dress, and data lines are on the same pins the devices
should be compatible. Specifically, on SRAMs, the ad-
dress and data lines need not be numbered identically
between the two devices being compared for them to
function identically in the same socket. As an example,
on several Cypress SRAMEs, the address pin numbering
is not the same as some of our competitors. Let’s look
at a simplified example that illustrates why this is not a
problem. Let’s assume that we have a new device, the 2
bit x 4 location SRAM:

Cypress Brand "X"
2x4 2x4
1 |Al D13 1 |1A2 D2}|3
2 |A2 D2 |4 2 |A1 D14

Figure 1. Example 2x4 Simplified SRAMs

Note that the inferior pinl out chosen by the Brand "X" 2
x 4 assigns Address line 2 (A2) to pin 1 whereas the
superior pin-out used by the Cypress device has Al at

Considerations of

pin 1, etc. It is our assertion that these simplified
devices are pin compatible. Let’s assume that our en-
gineering staff designed an infra-red scanning pattern
recognizing toaster oven with the Brand "X" data sheet.
Just as your company is about to ramp into volume
production, Brand "X" sends out an End Of Life notice
on their 2 x 4, because they are converting all of their
capacity to making DRAM memories. At this point, you
have no desire to layout a new P.C. board, so let’s take
a look at how these devices would look in your design.

Brand "X" Board
1) I W—)V 37 < — oy uP
1Y) S —1 I o) N FI— D1emeeee-uP

Brand "x" Board with Cypress 2 x 4

Al) D) [[EERERRRRE D2---------uP

A2 7] [IS—) F—

Figure 2. Example System with 2x4 SRAMs

In this case, uP is a microprocessor interfacing to the
SRAM. What is of key importance is that the data read
from a given address generated by the microprocessor
is the same as data written to the same location earlier.
With a SRAM, any inconsistency between the Address
and Data line numbering does not really matter because
the data read will be the same as the data previously
written. This occasionally causes some concern with
customers who have not seen this before. To illustrate
our point suppose that we write a value of 1 (uP:D2,D1
= 0,1) at location 2 (uP:A2,A1 = 1,0). If we read loca-
tion 3, we will obtain the value 1 that was written, be-
cause the address presented to the SRAM during the

% & Cipress
SEMICONDUCTOR

read is the same as the address for the previous write.
Similarly the data read will be in the same bit order as
presented during the previous write to the location.
Thus so far as our system is concerned, the two SRAM
devices are compatible. The only difference, that is not
significant to our system, is where inside the SRAM the
data was actually stored. In the Cypress device, the uP

address of 2 (uP:A2,A1 = 1,0) actually stored the data.

at SRAM location 1 (Cypress:A2,A1 = 0,1). In the
Brand "X" RAM, the data is physically stored in loca-
tion 2. However the address translation is transparent to
the uP. Since the same location is accessed for the sub-
sequent reads, the difference in address numbering be-
tween the two devices doesn’t really matter to our sys-
tem. Similarly, any numbering difference on the data
lines doesn’t matter either. The point that is of primary
importance here is that for SRAMs, all writes and reads
are generated in your system, and thus so long as the
address and data lines are on the same pins, differences
in the numbering doesn’t matter.

For PROMS, the scenario becomes slightly more com-
plex. Since PROMS are programmed using a program-
mer that is separate from the system in which they are
used, it becomes more difficult to substitute a PROM
with a device that does not have the same address
and/or data pin numbering. Let’s assume that our Hi-
Tek toaster oven’s 2 x 4’s are now PROMS. If we
programmed each location with data, we would find
that the Cypress device would not work properly when
used in the Brand "X" designed socket. In this case our
programmer put the data at location 2, and the board
would read this data when the microprocessor re-
quested the data at location 3. Additionally the data
bits will have been swapped on this read. What a mess!
It becomes apparent that it is easiest to replace this
PROM with a device that has the same address and
data line numbering. There are still methods that we
can use that will allow us to use the Cypress 2 x 4
PROM in this socket that we will consider.

The objective in trying to make the Cypress PROM
work in the foreign pin-out socket is to have the data
read by the system be the same as the data read when
the Brand "X" device is used. In our 2 x 4 example,
there are two problems - address line numbering mis-
match and Data line numbering mismatch. Let’s first
address the data line mismatch. As it stands data that
was written in as bitl,bit2 is read as bit2,bitl or
swapped. If we were able to change our PC Board
layout, we could fix this problem by swapping the
printed traces for D1 and D2. Unfortunately this would
also disallow the use of the Brand "X" device on our

N

board. If we could internally swap the data bits-in the
Cypress device, then when they were read they would
be in the correct order. This swapping of the data bits
in the Cypress device can be achieved through several
means. First, we might modify our programming adapt-
er such that D2 and D1 are swapped from the normal
order when programming the part. Then when the
device is read, we would get the bits in the same order
as presented by the Brand "X" device. This is not a
‘recommended method of solving the problem, because
modifying programmers tends to make the manufac-
turer of the programmer unhappy. A second method of
solving this problem is to alter the binary image of the
PROM contents such that bits D1 and D2 are swapped
in a file on your computers disk, then using this altered
binary image file to program the Cypress PROM. This
is less likely to cause damage than modifying a
programmer, but requires some skill in altering the bi-
nary file. Finally, the easiest solution to this problem is
to trick the PROM programmer into swapping the bits
for you. If you set your programmer for the Cypress
device type, read a programmed Brand "X" device into
memoty, then program the Cypress part with the image
in programmer memory, the bits will have been -

1) Brand "X" 2x4 :Bit 2, Bit 1

2) Programmer (Cypress) : Bit 1, Bit 2

3) Cypress 2x 4 : Bit 1, Bit 2

4) System Board uP : Bit 2, Bit 1

Figure 3. PROM Bit Swapping with Programmer .

swapped for you. Let’s look at how this works.

From the diagram above, we can see that the bits in the
Brand "X" device are stored in the order Bit2,Bitl. This
is the same order that the uP will read them on our
board. When we set the programmer to read the
Cypress part, the data lines are logically swapped from
the Brand "X" ordering. Thus when we read the Brand
"X" part, the data bits will be swapped as shown. When
the Brand "X" part is removed from the socket, and the
Cypress device is plugged in and programmed, the bits
will be programmed into the Cypress part in this same
reversed’ order. When we place the Cypress part into
our board, the bits will be swapped again due to the
difference in numbering between the Cypress part and
the board layout, and the uP will get the data in the
correct order. :

3-8

=
%’ C;SYSHOR

The second problem that exists is the difference in ad-
dress line numbering. This problem can be resolved in
exactly the same manner as the data swap problem. By
simply setting the programmer to the Cypress device
type, reading the Brand "X" part, then programming the
Cypress part, any addressing differences will be solved
allowing the use of the Cypress device. The difference
here is that the location of data words will be swapped
to allow for the difference in pin-outs, just as the bits
were swapped in the data line mismatch case.

Many programmers will allow you to read a device dif-
ferent than the part selected, complaining only during a
program if the device types do not match. With such a
programmer, carrying out the above procedures to con-
vert a prom should not present a problem. However
there are some programmers that will not allow the user
to read a device if it is different from the part selected.
These programmers will prevent our method from
working. Fortunately, the Cypress’ CY3000 QuickPro
programmer will allow this approach to solving our
problem. Cypress Field Applications Engineers, Sales
Offices and Distributors can use their QuickPro to
generate a Cypress master prom that can be used as a
source for copying with un-cooperative programmers.

As an example of such a conversion, the Motorola
68764 8K x 8 prom has a similar pin-out to the Cypress
CY7C264 with the exception of address lines 10, 11, and
12.

PIN Cypress 7C264 Motorola 68764
21 A10 Al2
19 All Al10
18 A12 All

Figure 4. Cypress 7C264 vs. Motorola 68764 Pin-out

The following procedure will program a Cypress
CY7C264 such that it will work properly in a socket
designed to accept the Motorola device.

1) Invoke the Cypress QuickPro (or other usable
programmer) and select the Cypress 7C264 as the
device to be programmed.

2) Place the Motorola part in the programmer adapter
socket and read the device. Optionally write the device
contents to a disk file.

3) Place a Cypress CY7C264 into the programmer
adapter socket and program the part. Optionally the
contents of the disk file may be read as the source for
programming.

The programmed device will now work in the Motorola
designed socket.

Summary

If the pins used for power, ground, control, address,
and data line numbering is the same for two devices,
they may be used in the same socket if the other electri-
cal parameters are compatible. Differences in Address
and Data line numbering are of no consequence in
SRAM use. Differences in Address and Data line num-
bering in PROM device can be compensated for by
using a simple programming procedure.

3-9

=T

NOTES:

3-10

==
%i IENDUCTOR

Section Contents

EPLDs Page Number
Introduction to Programmable Logic 4-1
Programmable Logic Device Application Note 4-11
PALC16R6 Design Example: GRC Encoder/Decoder 4-23
Using ABEL to Program the Cypress 22V10. 4-41
Using ABEL to Program the CY7C330 4-61
CY7C330 66-MHz 28-Pin Synchronous EPLD 4-71
CY7C330 State Machine Example: SCSI Host Adapter 4-93
Using the Cypress CY7C330 in Closed-Loop Servo Control 4-101
FDDI Physical Connection Management Using the CY7C330 4-117
CY7C331 Application Example: Asynchronous, Self-Timed VME Bus Requester 4-131
Bus-Oriented Maskable Interrupt Controller.......... 4-139

Using the CY7C331 as a Waveform Generator 4-151

Introduction to Programmable Logic

Why Use a PLD?

One of the fastest growing segments of the semiconduc-
tor market today is ASIC (Application Specific In-
tegrated Circuit) devices. ASICs are generally used to
integrate SSI/MSI logic chips or functions, thus increas-
ing packaging density and reducing board real estate.
Other benefits to the user are reduced power, higher
reliability, and product secrecy.

ASICs include several different kinds of devices. There
are full-custom devices, standard cells, gate arrays, and
PLDs. Full-custom devices offer the greatest degree of
integration, but they are expensive and the development
cycles can be on the order of nine months to a year.
Full-custom designs are justified only for very large
volume applications. Standard cell devices can be
turned around much more quickly (about four months)
and they cost less. However, the level of integration
and, thus the speed are less than with the full-custom
product. Gate arrays offer even less dense integration,
but since only two metal masks must be fabricated, the
design turnaround can be as low as six weeks. One
drawback of all these ASICs is that the design logic
must be set at the start of this cycle; and if it changes,
the whole product cycle must start over from scratch.
In addition, each device is application specific, so inven-
tory must be watched very carefully to make sure that
just enough of each device is ordered to meet demand.

An alternative to custom or semicustom devices is the
PLD (Programmable Logic Device). Although PLDs
do not offer the same level of integration as the other
ASICs, the reduction in board space is still significant.
The reduction factor is application dependent. It can
be between 4:1 and 10:1 for the smaller PLDs (20 to 24
pins) and 75:1 for high-density/pin-count devices such
as the LCA or MAX families. Additional benefits to
the user are reduced parts inventory, faster design, and
turnaround time, and simplified timing considerations.

Since a PLD is a sold as a "generic" array of logic, cus-
tomized by the user, the same PLD can be used in many
different applications, spanning any number of projects.
Cypress’s PLDs are based on CMOS EPROM technol-
ogy, thus making them EPLDs that are erasable using
an ultraviolet light source. Design changes can be made
at any time of the product cycle more easily than with
other ASICs. The design cycle of a PLD of moderate
complexity can be a week or less, and after the one-time
purchase of a good development software package and
programmer, the parts are relatively inexpensive.
Timing is simplified, since all logical functions will take
approximately the same path through the device. Thus
the same propagation delays apply to all outputs of the
device. The reasons for this will become clear later.

PLD Technology

All of the Cypress EPLD families (with the exception of
the CY7C360 family) are based on the familiar "sum-of-
products” architecture. Boolean transfer functions of
this form can be implemented by programming the
AND array whose output terms feed a fixed OR array.
This scheme can implement most combinatorial logic
functions and is limited only by the number of product
terms available in the AND-OR array. A variety of dif-
ferent sizes and additional architectural features (ie.,
flip-flops) are available.

The original TTL PLDs used a fuse as their program-
mable element. In an unprogrammed device, all of the
connections between input pins and product terms were
"fused" during the manufacturing process. All un-
wanted connections are then "blown" during the
programming process. Bipolar products are
programmed using 20 volt pulses between 50
microseconds and 100 milliseconds in duration. During
these pulses 100 to 300 milliAmps (mA) of current
exist, blowing unwanted fuses one by one. Fuses are
blown one at a time so that the heat generated doesn’t
damage or weaken the IC. Because of the high currents

4-1

%; S ocrc

Introduction to Programmable Logic

reqﬁircd, bipolar products have to be programmed one
at a time. Since physical fuses are blown, a device can-
not be programmed more than once.

No fuses are used in the Cypress CMOS EPLD family.
Instead, all devices are based on a EPROM cell to
facilitate programming. By using an EPROM cell in-
stead of fuses, programming yields of 100% can be ex-
pected since all devices can be functionally tested and
erased prior to packaging. Therefore, no programming
yield loss can be expected by the user. The EPROM
cell used by Cypress serves the same purpose as the
fuse used in most bipolar PLD devices. Before
programming, the AND gates or product terms.are con-
nected via the EPROM cells to both the true and com-
plement inputs.

The EPROM cells are programmed using pulses of high
voltage that produce 50 mA of programming current.
Eight cells are programmed at a time. Because of the
lower current levels used, "gang" programming of 10 to
20 devices in parallel is possible. When the EPROM
cell is programmed, that input to an AND gate (or
"product term") is disconnected. Programming alters
the transistor threshold of the cell so that no conduction
can occur, which has the effect of disconnecting the
input from product terms. This is equivalent to "blow-
ing" the fuses of a bipolar device, except that exposure
to ultraviolet light returns the cell’s threshold to normal,
effectively erasing the device. Selective programming of
EPROM cells enables the specific logic function to be
implemented by the user.

ABC
A ‘
%:_EIDA&B&C _ ‘,H([)-AlBAC

' Figure 1. PLD Logic Notation
H ——

2 ——

b —-l>o—

12 — 0

Cypress also offers the highest performance silicon
PLDs available in ECL technology. Aspen Semicon-
ductor Corporation, a subsidiary of Cypress Semicon-
ductor, has developed a series of bipolar ECL PLDs
using an advanced process that incorporates proven Ti-
W fuses. Maximum input to output propagation delays
of 3 to 6 nanoseconds are achieved with these devices.

| PLD Notation and Fusemaps

Logic diagrams have been provided for the various
parts in the Cypress Data Book, and the PLD ToolKit
Manual. Cypress’ logic diagrams employ a common
logic convention that is easy to use. Figure 1 shows the
adopted convention. In Figure 1, an "X" represents an
unprogrammed EPROM cell that is used to connect an
input term (corresponding to a vertical line on the logic
diagram) to the input of the AND operation (or
product term) that is represented by a horizontal line.
No "X" means that the EPROM cell on that connection
has been programmed or disconnected. The convention
adopted does not imply that the input terms are con-
nected on the common line that is indicated, rather that
they are being "wire-ANDed." A further extension of
this convention is shown in Figure 2, which shows the
implementation of a simple transfer function. The
traditional representation of the same function is shown
in Figure 3.

Figure 4 is the logic diagram for the PALCI6LS. As
mentioned earlier, all vertical lines in the array are con-
nected to an array input. These inputs come from the
input pins and the I/O pins. Each horizontal line is a
"wired-AND" function, also known as a "product term."

B '—;D]H&IZQ + (11842)

Figure 2. Transfer Function in PLD Logic Notation

11&12) + (11&12) -

Figure 3. Conventional Schematic of Transfer Function in Figure 2.

4-2

Introduction to Programmable Logic

A g_
O

é%]

i
%

g%

(L
Y
5
N

A

Y
d

'

[=]

5 s 3

8 I 2
it

A

1o
‘%
L

;

i

7

L1792

’

7

!
5

Figure 4. The 16L8 Block Diagram.

The product terms are either connected to the output
enable of an output driver, or they are one of seven in-
puts to an OR gate that connects to the output driver.
At each intersection of an input and product term is an
EPROM cell. These cells are numbered, starting with 0
as the top left fuse, increasing to the right, and then
down. Thus in Figure 4 cell 0 is the intersection be-
tween pin 2, noninverted, and the output enable
product term for pin 19. Cell 32 is the intersection be-
tween pin 2, noninverting, and the first product term for
pin 19. The numbering proceeds until cell 2047, which
is the intersection of pin 11, inverted, and the seventh
product term for pin 12.

A "fuse map" is a software representation of the array of
fuses in a programmable logic device. It is an array of
binary digits, arranged so that each digit corresponds to
a cell in the device. For the PALC16LS pictured in Fig-
ure 4, this array is 32 x 64. If a fuse is to be
"programmed" or disconnected, the corresponding digit
is a 1. If the fuse is to be left intact, the corresponding
digit is a 0. A virgin device has all cells conducting, or
unprogrammed, so its fuse map is all 0s. A product
term, or horizontal line of all zeros, is logically false be-
cause it is the AND of the true and complement of each
input. If a product term is all 1s, there is no conducting
path because all fuses are programmed, and thus non-

ﬁ}fg%%};@}‘zﬁﬁiﬁ: kim‘ ; 3/2/1989

TESS, t C]
‘6019} 0 urity bit Unpro; d* R
100000 11111111111111111111111111111110°N OE PT, pin= 19*
[.00032 10011111111 1111111111 1*N Sum PT, pin= 19*
[.00064 0110111 1111111111 1*N Sum PT, pin= 19*
[.00096 0000()OO(X X)*N Sum PT, pin= 19*
00128 00000000000000000000000000000000*N Sum PT, pin= 19*
1 00*N Sum PT, pin= 19*
00192 000000000000 00*N Sum PT, pin= 19*
00224 060000000000000000000000000000000*N Sum P'ﬁ pin= 19*
00256 00000000000000000000000000000000*N OE PT, pin= 18*
00288 00000000000000000000000000000000*N Sum P, pin=18*
00320 00000000000000000000000000000000*N Sum PT; pin= 18*
00352 00000000000000000000000000000000*N Sum PT, pin= 18*
(0000000000000000000000000000000*N Sum PT, pin= 18*
00416 00000000000000000000000000000000*N Sum PT; pin= 18*
8 00000000000000000000000000000000*N Sum PT, pin= 18*
00480 00000000000000000000000000000000*N Sum PT; pin=_18*
00512 00000000000000000000000000000000*N OE PT, pin= 17*
544 00000000000000000000000000000000*N Sum PT pin= 17*
00576 00000000000000000000000000000000*N Sum PT; pin= 17*
00608 00000000000000000000000000000000*N Sum PT; pin= 17*
.00640 00000000000000000000 00*N Sum PT, pin= 17*
00672 00000000000000000000000000000000*N Sum PT; pin= 17*
.00704 00000000000000000000000000000000* N Sum PT, pin= 17*
.00736 0000 000000000*N Sum PT, pin= 17*
.00768 00000000000000000000000000000000*N OE PT, pin= 16*
00800 00000000000000000000000000000000*N Sum P, pin= 16
00832 000000000000000000000f *N Sum PT, pin= 16*
00864 00000000000000000000000000000000*N Sum PT, pin= 16*
.00896 00000000000000000000000000000000*N Sum PT, pin= 16*
[.009. *N Sum PT, pin= 16*
.00960 00000000000000000000000000000000* N Sum PT, pin= 16*
.00992 00000000000000000000000000000000*N Sum PT, pin=_16*
.01024 0000000000000000000000! *N OE PT, pin= 15*
01056 00000000000000000000000000000000* N Sum PT; pin= 15*
.01088 00000000000000000000000000000000*N Sum PT, pin= 15*
01120 00000000000000000000000000000000*N Sum PT, pin= 15*
.01152 00000000000000000000000000000000*N Sum PT, pin= 15*
[.01184 00000000000000000000000000000000*N Sum PT, pin = 13*
01216 00000000000000000000000000000000* N Sum PT, pin= 13*
[.01248 00000000000000000000000000000000* N Sum PT, pin=_15*
[.01280 00000000000000000000000000000000*N OE PT, pin= 14*
01312 00000000000000000000000000000000*N Sum PT; pin= 14*
[.01344 00000000000000000000000000000000*N Sum PT, pin= 14*
1.01376 00000000000000000000000000000000*N Sum PT, pin= 14*
[.01408 00000000000000000000000000000000*N Sum PT, pin= 14*
.01440 00000000000000000000000000000000* N Sum PT, pin= 14*
[.01472 00000000000000000000000000000000* N Sum PT, pin= 14*
01504 00000000000000000000000000000000*N Sum PT; pin= 14*
[.01536 00000000000000000000000000000000*N OE PT, pin= 13*
01568 00000000000000000000000000000000* N Sum P pin= 13*
01600 00000000000000000000000000000000*N Sum PT; pin= 13*
01632 00000000000000000000000000000000*N Sum PT, pin= 13*
01664 00000000000000000000000000000000*N Sum PT; pin= 13*
01696 00000000000000000000000000000000*N Sum PT; pin= 13*
01728 00000000000000000000000000000000*N Sum PT; pin= 13*
01760 00000000000000000000000000000000*N Sum PT, pin= 13*
[.01792 00000000000000000000000000000000*N OE PT, pin= 12*
01824 00000000 0000000000000000000*N Sum PT, pin= 12*
[.01856 00000000 0000000000000000000*N Sum PT, pin= 12*
.01888 00000000000000000000000000000000*N Sum PT, pin= 12*
.01920 00000000000000000000000000000000*N Sum PT, pin= 12*
101952 00000000000000000000000000000000*N Sum PT; pin= 12*
[.01984 00000000000000000000000000000000*N Sum PT, pin= 12*
02016 00000000000000000000000000000000*N Sum PT, pin= 12*

600> Figure 5. A 16L8 JEDEC Map.

conductive. This allows the product term to be con-
tinuously at an asserted state.

The official, standardized version of a fuse map is called
a JEDEC map. This may contain various informational
fields and/or comments in addition to the 1s and Os.
The JEDEC map that implements the function in
Figures 2 and 3 is shown in Figure 5. The numbers in
the leftmost column starting with "L" are the first fuse
number in that row. An "N" denotes a note or comment.
"QF" precedes the total number of fuses in this device,
so it is QF2048 in this example. "FO" means the fuse
default is 0 or unprogrammed. "GO" specifies an un-

4-3

Introduction to Programmable Logic

?; TS curon

programmed security fuse, whereas "G1" would denote
a programmed security fuse (More on this later). "C"
precedes a checksum value for the file. An "*" specifies
the end of a field. This file can also contain test vec-
tors, which are not shown here. For more information
on the JEDEC Standard, refer to "JEDEC Standard
No.3-A, Standard Data Transfer Format Between Data
Preparation System and Programmable Logic Device
Programmer." This document is available from:

Solid State Products Engineering Council
2001 Eye Street N.W.
Washington D.C. 20006

Most PLD design packages compile the design and
translate it into a JEDEC map. This map is then
downloaded to the programming hardware, which
programs the device(s) accordingly.

First-Generation PLDs

The first PLDs were strictly combinatorial logic with
tristate outputs, like the PALC16L8. Then D flip-flops,
a clock input, and internal feedback were added, allow-
ing sequential logic, or state machines to be imple-
mented in a single PLD. The 16L8, 16R4 (4 registered
outputs), 16R6 (6 registered outputs) and 16R8 (8
registered outputs) became industry standard parts.

Testability was a problem in some of the earlier devices.
Since a blank device had all fuses intact, output enables
were all turned off, making all pins of the device inputs.
This made blank checks difficult. It was also difficult to
tell if the fuses could be blown without actually blowing
any of them.

To get around these problems, a "Phantom Array" was
added to the device. For the 16L8, there are 256 addi-
tional bits in the phantom array. These are used to test
the PLD functionally and to verify dynamic (AC) opera-
tion after the chip is packaged, without using the nor-
mal array. The phantom array is usually programmed
and verified as part of the final electrical test procedure
during the manufacturing process. This verifies both
the PLD programmability and functionality. .The phan-
tom array may be used by the customer as part of an
incoming inspection. The phantom array is so named
because the device must be in a special mode to access
it. It is not "seen" in regular operating mode. Cypress’s
EPLDs are also programmed, tested, and then erased
before they are packaged.

Another feature that has been added is register preload.

The preload function is used to load data into the
registers (of registered devices) for testing purposes.
This significantly simplifies and shortens the testing pro-
cedure. Illegal state resolution can be checked using
this feature. Preloading is accomplished by applying a
supervoltage (13.5 Volts) pulse of at least 100
microseconds duration to a specific pin, while a second
pin is held at VIH. The supervoltage acts as a write
strobe and data applied to the I/O pins is clocked into
the corresponding registers.

A security fuse was also added as a standard feature.
In addition to "writing" a fusemap into a device, any
good device programmer is capable of reading a
device’s fusemap. One of the advantages of a PLD is
that the logic in the device is hidden from the observer.
This helps keep proprietary portions of a design secret.
If the user does not want their PLDs to be read by a
programmer, they can program the security bit, which
disconnects the lines that are used to verify the array.
In a Cypress EPLD, the security EPROM cell has been
designed to retain its charge longer than any of the
other cells in the array.

The Programmable Macrocell

The basic 20 pin devices still had some limitations.
There was no way to control output pin polarity without
doing DeMorgan operations on the equations. Quite
often the DeMorgan version would have too many
product terms to fit in the device, even after several
hours of crunching using a logic optimization program.

A variety of the basic 20 pin devices and/or their 24 pin
equivalents had to be stocked in order to get the best fit
for a given design. Often there were extra registers left
unused when the design was finished. Even though the
early PLDs tended to be pin limited, the pins associated
with those extra registers ended up being wasted be-
cause they couldn’t be used for anything else.

Enter the 22V10. The 22V10 is a 24 pin device that
revolutionized PLDs by introducing the programmable
macrocell (See Figure 6). The programmable macro-
cell allows the user to select one of four output con-
figurations: combinatorial, inverting, combinatorial non-
inverting, registered inverting, and registered noninvert-
ing. The pin may be used as an input or bidirectional if
the macrocell is specified as combinatorial. Each of the
10 J/O pins has all four options. The option is selected
using two fuses, or cells, identical to those in the array.
These 20 bits (two for each of 10 macrocells) are added
to the bottom of the fusemap that represents the array.

4-4

Introduction to Programmable Logic

P TS o

o TO /O PIN

ASYNC RESET
GLOBAL CLOCK
SYNC PRESET
OUTPUT ENABLE
PTERM |
[1
SUM OF %4 -
PRODUCTS QB)
R H 3
T T
_—l>°_l7 co
FEEDBACK o °
TO ARRAY s 1
*___.___
- Ct

Figure 6. The 22V10 Macrocell.

Another innovation of the 22V10 is that some pins have
a larger sum-of-products than others. This is called
"Variable Product Term Distribution". In the 22V10,
I/O pins have sums from 8 to 16 product terms wide.
This accommodates applications such as D flip-flop
counters, where several outputs require a large number
of product terms.

The 22V10 made yet another improvement. In the
16R8, for example, the device powers up with all
registers in reset state. The only way this can be
changed is by clocking in new data. The 22V10 added 2
extra product terms: one performs a preset of all
registers, the other performs a reset on all registers.
Since they are product terms, the preset and reset can
be programmed to be the AND of any array input(s).
For additional flexibility, the set is designated as a
synchronous operation, and the reset is asynchronous.

Because of its flexibility, the 22V10 has become some-
thing of an industry standard. It is available in TTL,

CMOS, and GaAs. Many companies have introduced
similar architectures with slightly different features. For
example, the Cypress PLDC20G10 uses a similar mac-
rocell that adds the capability to choose between a
product term output enable and a pin controlled output
enable. In an effort to make the PLDC20G10 faster
and less expensive than the 22V10, the array has been
reduced to nine product terms per I/O macrocell, and
the preset and reset product terms have been removed.

Another device that was introduced around the same
time is the 20RA10, which was targeted for
asynchronous registered applications. Like the 22V10,
the 20RA10 has I/O pins with programmable polarity
bits. The I/O pins of the 20RA10 can be configured as
registered or combinatorial, but this is not done with
dedicated fuses. Each I/O pin has a sum of four
product terms connected, through a polarity switch, to
the D input of a flip-flop. Each flip-flop has dedicated
product terms connected to its clock, preset, and reset
functions. When both the preset and reset of a flip-flop

OUTPUT ENABLE
(FROM PIN 13)
PRELOAD
(FROM PIN 1)
OE PTERM
CLQCK PTERM
RESET PTERM
SET PTERM
SUM OF 1
PRODUCTS [= l X . olI b ol TO O PIN
PL
co L1 P <
TO ARRAY | S —

Figure 7. The 20RA10 Macrocell.

45

oy
= oo

Introduction to Programmable Logic

“are asserted (high), the flip-flop becomes transparent,
thus making the output combinatorial.

In addition, the 20RA10 has an unusual output enable
scheme. Pin 13 is inverted and ANDed with an output
enable product term. If pin 13 is high, all I/O pins are
at high impedance. @~ The 20RA10 also offers a
synchronous register preload in operating mode. When
pin 1 goes low, any data driven onto an I/O pin is
latched into the corresponding flip-flop. An I/O pin of
the 20RA10 is pictured in Figure 7. The flexibility and
asynchronous nature of this device make it ideal for bus
arbiter, and interrupt controller applications.

Second-Generation PLDs

The architectural features introduced by the 22V10
greatly enhanced PLD flexibility, but there were still
some limitations. PLDs still offered only D-type flip-
flops, which are cumbersome for some applications,
such as counters. Each flip-flop and its feedback still
used a pin, even if the flip-flop’s output was not needed
external to the PLD. Bidirectional, registered pins
could not be implemented. High-speed applications
often required flip-flops to latch data before the input
of the PLD because of the relatively long set-up time,
due to propagation delay, for output flip-flops.

Cypress solved all of these problems in the architecture
of the CY7C330. In addition to the output registers on
the I/O pins, each pin (save power and ground) con-

tains an input register that has a choice of two clocks.
This input macrocell makes the 28 pin CY7C330 ideal
for pipelined control, and high-speed state machine ap-
plications.

Another added feature is the ability to emulate T and
JK type flip-flops in the CY7C330. This is very useful in
counter designs. In each I/O macrocell, the sum-of-
products from the array drives one input of an exclusive
OR (XOR) gate. The second input to the XOR gate is
another product term. The output of this gate is con-
nected to the D input of the output flip-flop in the mac-
rocell (see Figure 8). If the Q output of the flip-flop is
fed back and connected to the single product term driv-
ing the XOR gate, the sum-of-products acts as the T
input of a T type flip-flop. A JK flip-flop can also be
emulated in this way, using the relation T =J!Q+KQ.
Of course, if a D-type flip-flop is all that is required, the
XOR gate can be used to control polarity.

Close examination of Figure 8 reveals two paths into the
array. The first is a multiplexer that selects feedback
from either the register or from the Q output of the
input register. This is called the "feedback mux." The
second path is called the "shared input mux." The in-
puts to this mux are the Q outputs of input registers
belonging to adjacent I/O macrocells. This allows the
user to feed back the Q output of a macrocell’s output
register, and still utilize the pin associated with that
macrocell as an input. This, of course can only be done
with 6 of the 12 I/O macrocells. If more registers are

SET
RESET
ICLK1
ICLKO
QCLK
QE
OE PTERM 5
[e]
18
1 T
XOR PTERM R | co
s
SUM OF oSa . TO YO PIN
PRODUCTS P SBP— J'o__;]
L 11 s |
T
I °|——-— c2 D
Io s ‘I - Q °
TO INPUT BUFFER c1 input
/ register
[+]
—_—]o
s 1
CI3 share&r:ln i&)ut
FROM ADJACENT
MACROCELL

Figure 8. The CY7C330 Macrocell

46

Introduction to Programmable Logic

=
o TS oo

OE PTERM

OE (PIN 14)

OUT SET PTERM

XOR PTERM
SUM@_ output
register

- o

Qo

PRODUCTS

TO /O PIN

OUT CLK PTERM

OUT RESET PTERM

IN CLK PTERM

IN SET PTERM

TO INPUT BUFFER

OSD

IN RESET PTERM

2w

QB
R

TO INPUT BUFFER

input
register

- o

(2]

. shared
input mux

Q
N

FROM ADJACENT
MACROCELL

Figure 10. The CY7C331 Macrocell.

needed for an application, there are 4 additional
"buried macrocells" in the CY7C330. These are identi-
cal to the output register portion of the I/O macrocell,
except they are not connected to any pin.

The 20RA10 has many of the same limitations as the
22V10. An additional limitation is that the sum of
products is only four wide. Just as the CY7C330 can be
considered as an extended, enhanced version of the
22V10, so is the CY7C331 an extension of the 20RA10.
The CY7C331 has 12 I/O macrocells. In addition to the
20RA10-like output flip-flops, there are identical flip-
flops in the input path. As in the 20RA10, each flip-
flop has a product term controlled clock, preset and
reset. If the preset and reset product terms are both
asserted, the flip-flop becomes transparent. The
20RA10 polarity fuse has been replaced by an XOR
gate, which has as inputs the sum of products and a
dedicated product term. Thus the polarity of the out-
put can be controlled, or the flip-flops can emulate T or
JK flip-flops as in the CY7C330. The CY7C331 macro-
cell is pictured in Figure 9.

Like the 22V10 and CY7C330, the CY7C331 has vari-
able product term distribution with sums from 4 to 12
product terms wide. The CY7C331 has borrowed the
shared input mux and output enable schemes from the

CY7C330. The operating mode preload in the 20RA10
is not supported in the CY7C331, however the registers
can be preloaded using a supervoltage. The CY7C331
has been designed especially for self-timed applications,
such as high-speed I/O interfaces. No other PLD has
this capability. The CY7C331 is able to support self-
timed designs because clock inputs are programmable,
internal timing relationships are well controlled, and
metastable resolution is ultra-fast.

Another architectural trend is combinatorial PLDs with
registered inputs. These are generally used in sophisti-
cated decoding applications, where the address or data
is only stable for a short time. In the past an MSI chip
with latches or flip-flops was used to capture transient
data, and the latched data was fed into a PLD. Now
there are PLDs that feature registers or latches on in-
puts. The CY7C332 features an input macrocell that
can be programmed as combinatorial, registered, or
latched. There is a choice of two clocks, and the clock
polarity is programmable as well. The CY7C332 I/O
macrocell (pictured in Figure 11) includes the input
macrocell, and a combinatorial output path that in-
cludes a variable sum of products driving one input of
an XOR gate, and a dedicated product term driving the
other input. There is also an output enable mux that
allows the output enable to be controlled by a product

47

;. CYPRESS

Introduction to Programmable Logic

== SEMICONDUCTOR

CLK2
OE (PIN 14) CLK1
OE PTERM 3
1 8 ©
I
XOR PTERM c4 . ;
SUM OF > L TO /O PIN
PRODUCTS
TO INPUT BUFFER [-
<——v—|— ° 0 s H—
&l : oo j
co C3 Co

Figure 11. The CY7C332 Macrocell.

term, or pin 14. Of course this combinatorial output
path can be used as an input to the programmable input
register/latch, thus allowing state machines to be
created as well.

High Density PLDs

Because of its low power consumption, higher integra-
tion can be achieved with CMOS than with bipolar
technologies. Several manufacturers are taking ad-
vantage of this, and producing very high-density PLDs.

INV PTERM
PTERMO

PTERM1
PTERM2

)

|/

The CY7C342, which is the 68 pin member of the new
MAX family, contains 128 flip-flops and over 1000
product terms. Up to 256 additional latches can be
configured using Expander Product Terms. The
CY7C342 macrocell contains a sum of three product
terms driving one input of an XOR. The other XOR
input is a dedicated product term. The output of the
XOR drives a programmable flip-flop that can be con-
figured as a D, T, JK or SR flip-flop, as well as a latch.
There is also a combinatorial path. The flip-flop has
asynchronous preset and reset product terms, and a

SETb

e

1 8

CLOCK PTERM I)

SETb PTERM

eprom
cell

o8
Q [¢]

J B 15 °
T
eprom

cell

TO /O PAD
_I/‘\ ANDFEEDBACK

RSTb PTERM

RSTb

EXPANDER1
EXPANDER2
QE

VoY

TOPIA

TO ARRAY

A At

SYSTEM CLOCK

Figure 12. The CY7C342 Macrocell.

48

==

Introduction to Programmable Logic

=~ SEMICONDUCTOR

GLOBAL INPUTS

gl
 J

PIA

Hl< 62

LAB

|

R

8
1

> LAB Gle—s>

52

@,

BF |

7

5 L

@,

LABE

Y
A
\

t |

ot

21

Bz}

B

[2h

R 8|

T lLABA]«

i L

N

o

>/ LABB|<

EEH

L

BN

fsH |

el LaBC

o |
I

&

e -{LABD

o T

EH

AEEERERE BEEEE DEBEA BEBEDERBEREE

Figure 13. The CY7C342 Block Diagram.

choice of asynchronous clock product term, or a
synchronous clock (See Figure 12). Macrocells are
divided into groups of 16, along with 32 expander
product terms. Each of these is called a Logic Array
Block or LAB. The CY7C342 contains 8 LABs. These
LAB:s are connected via a Programmable Interconnect
Array (or PIA). The block diagram of the CY7C342 is
pictured in Figure 13. The density, flexibility and speed
(typical clock frequency is 50 MHz) allows the
CY7C342 to replace over 50 standard TTL devices.

PLD Software Packages

Parts as sophisticated as the MAX chips require equally
sophisticated software. The MAX+PLUS™ software
offers schematic capture, state machine syntax, Boolean
algebra entry, logic reduction, synthesis and fitting, and

a timing simulator. Similar packages that support a
variety of devices are available from Data I/O and
MINC. In addition, OrCad has recently added PLD
support to its product line.

More conventional (and less expensive) support is avail-
able from ISDATA’s LOGIC, Data 1/0’s ABEL, and
Logical Devices’ CUPL. These packages offer Boolean
equation entry and logic reduction, as well as various
higher-level language constructs, state machine syntax,
and simulators. All of these packages cover a variety of
devices from a variety of vendors.

In addition, most PLD manufacturers offer packages
that support only their devices. These packages can be
free (PALASM 2) or quite expensive (A +PLUS).
Cypress has developed the PLD ToolKit. A basic ver-

4-9

%%pms ' - Introduction to Programmable Logic
SEMICONDUCTCR

sion that does logic compilation and JEDEC map con-
struction is free. An enhanced package that includes
JEDEC read and disassembly capabilities as well as a
simulator can be purchased for under $400.00.

4-10

Programmable Logic Device
Application Brief

Scope and Purpose

The purpose of this application brief is to provide the
reader with a basic understanding of Cypress CMOS
Programmable Logic Devices. This includes a description
. of their architecture and design, the technology used in
their fabrication, how they are programmed and a
discussion of their reliability.

This document will tell the reader how state-of-the-art
CMOS technology and a unique architecture have been
incorporated in a family of PLD integrated circuits that are
functionally equivalent, pin compatible, and superior in
performance to their bipolar counterparts.

The appendix discusses and illustrates the design
techniques that Cypress uses on all products to eliminate
latchup and improve ESD (Electro-Static-Discharge)
protection.

Introduction

The PLD is a Programmable Logic Device. The basic
(functional) logic structure of a PLD is programmable
AND array whose outputs feed into a fixed OR array. The
pertinent parameters are the number of inputs, the number
of outputs, the width (number of factors) in the AND
array and the width (number of terms) in the OR array.
The Boolean equation implemented is the sum-of-products
or minterm form.

The first PLDs were strictly combinatorial logic. They
were followed by devices that added latches (D flip-flops) a
clock input, and internal feedback. For the first time a
programmable, sequential, state machine could be
implemented in a single package. Three-state outputs, the
“security fuse”, flip-flop initialization, and in general terms
“testability” are features that have been added for
increased flexibility.

Applications

PLDs are used to replace SSI/MSI logic and “glue chips”
primarily to increase packaging density. A single PLD is
the functional equivalent of many SSI ICs (in the 200-500
equivalent gate range). When PLDs are used to replace
standard logic gates, the resulting reduction in PC card
area, although application dependent, has been found to
vary between 4 to 1 and 10 to 1. i.e., One PLD will replace

between four and ten 14 pin ICs. Secondary benefits to the
user are reduced parts inventory, reduced power, higher
reliability, faster design and turnaround time, product
secrecy and equal (matched) propagation delays through
the AND OR array.

Reliability

Reliability studies have shown that system reliability is
inversely proportional to the number of interconnections
between system elements. However, the failure rate for
mature ICs is about 0.1% per thousand hours and has
remained constant during the last twenty years in spite of
the fact that circuit complexity (density) has increased by
more than two orders of magnitude.

The conclusion is that higher levels of IC integration
provide increased system reliability. Thus the user is
increasing system reliability when Cypress CMOS PLDs
replace glue chips.

Programming

PLDs must be programmed. This can be accomplished by
either designing and building a programmer or purchasing
one for $1,000 to $10,000.

Programming Bipolar PLDs

Bipolar PLDs use a fuse as the programmable element. In
an unprogrammed device all of the connections are
“made” during the manufacturing process and the
unwanted connections are later “unmade” by blowing fuses
during the programming process.

Bipolar products are programmed using 20 Volt pulses of
durations from 50 microseconds to 10 milliseconds during
which 100 to 300 milliamperes (mA) of current exist. In
order to limit the heat generated during programming, the
duty cycle for the programming pulses is limited to 20 to
30 percent. One fuse is blown at a time so that the heat
generated will neither permanently damage the IC nor
stress it to the point that it could fail later. Some
programming algorithms take into account the physical
locations of the fuses and avoid sequentially blowing fuses
that are physically close to each other in order to prevent
excessive localized heating of the chip. Because of the high
currents required, bipolar products are not “gang”
programmed, as are EPROMs.

411 May 1985

ﬁ
SEMICONDUCTOR

Programmable Logic Device Application Brief

Programming Cypress CMOS PLDs

Cypress PLDs are programmed by storing charge on the
floating gate of an EPROM transistor. Charge storage is
accomplished by hot carrier injection; a process that does
not physically destroy material or heat the device. During
programming, EPROM cells are stressed significantly less
than fuses. In addition, every cell is programmed, tested
and erased as part of the manufacturing process. This
100% testing guarantees a very high programming yield to
the customer, which is impossible to guarantee with any
fuse programmable device.

The storage mechanism is well understood. Products using
it have been in volume production for more than ten years.
Reliability studies have been performed by many
independent organizations and all have concluded that the
technology is reliable.

Cypress PLDs are programmed using high voltage pulses
of durations from 100 microseconds to 10 ms, during
which 50 milliamperes of programming current exist. Eight
bits are programmed at the same time and, because of the
lower currents required, gang programmers that can
handle 10 to 20 devices in parallel are possible.

Before programming, AND gates or PRODUCT TERMS
are connected via EPROM cells to both true and
complement inputs. Programming an EPROM cell
disconnects an input from a PRODUCT TERM. Selective
programming of these cells enables a specific logic function
to be implemented. PLDs are supplied in a number of
functional configurations. These functional variations offer
the user the choice of combinatorial as well as registered
paths to implement logic functions.

CMOS Technology

Cypress PLDs are fabricated using an advanced “N-well”
CMOS technology. The use of proven EPROM technology
to achieve memory non-volatility, combined with novel
circuit design and a unique architecture, provides the user
with a superior product in terms of performance,
reliability, testability and programmability.

PAL® is a registered trademark of Monolithic Memories, Inc.

Functional Description
General

The variations of PLD functions available are listed in
Table 1. The 16L8, which is used as an example (see Figure
2), is purely combinatorial and consists of eight groups of
7-input AND gates, each of which can have up to 32
inputs. One of the AND gates of each group (of 8) is used
to enable the (inverting) output driver, so that 7 AND
gates (each of which may have 32 inputs) each feed one OR
gate, whose output is inverted. \

‘The 16R8 is similar to the 16L8, except that the outputs

* are latched using D flip-flops (with a common clock), the

4-12

inputs to the 8 OR gates are the outputs of 8 AND gates;
the three-state output drivers are enabled by a common
enable input.)

The reader should refer to the PLD data sheets for a more
detailed description of the other members of the family.
The 16R4, 16R6 and 16R8 have 4, 6, or 8 registered
outputs with feedback.

The 22V10 offers a unique macro-cell flexibility to allow
any combination of up to 10 combinatorial or registered
outputs. In a similar manner the 20G10 uses macro-cells to
allow the user to program the functionality of the 10 most
popular PAL® 24 devices.

Register Preload

The preload function is used to load data into the internal
register (of registered devices) for testing purposes. This
significantly simplifies and shortens the testing procedure.
Loading is accomplished by applying a supervoltage pulse
of at least 100 microseconds duration to pin 5 as a write
pulse while pin 11 is held at VIH and data is applied to
pins 12 through 19.

Security Function

The security function prevents the contents of the regular
array from being electrically verified. This enables the user
to safeguard proprietary logic. The EPROM technology
prevents the state of the cell from being visually
ascertained. The security function is implemented by
programming an EPROM cell that disconnects the lines
that are used to verify the array. This cell has been
designed to retain its charge longer than any of the other
cells in the array.

%&m Programmable Logic Device Application Brief
SEMICONDUCTOR

Commercial Selection Guide

Generic
Icc mA tpp ns tsns ns
Part Logic Output Outputs cc 8 S tco
Enable
Number L |STD|-25|-35|-25|-35|-25 | -35
(8) 7-wide (6) Bidirectional
16L8 AND-OR-Invert Programmable (2) Dedicated 45 70 25 35
16R8 (8) 8-wide AND-OR Dedicated Registered Inverting 45 70 — | —] 20| 3] 15] 25
(6) 8-wide AND-OR Dedicated Registered Inverting A
16R6 (2) 7-wide e 45 70 25 | 3520) 30| 15| 25
AND-OR-Invert Programmable | Bidirectional
(4) 8-wide AND-OR Dedicated Registered Inverting
16R4 (4) T-wide A 45 70 25 | 35 (20| 30| 15| 25
AND-OR-Invert Programmable | Bidirectional
(10) 8-wide AND-OR- Programmable | Programmable Bidirectional
20a10 Invert with MACRO or Dedicated or Registered - 55 25135 15130) 15 1 25
(10) variable AND-OR- Programmable Bidirectional
22V10 Invert with MACRO Programmable or Registered 55 90 25 | 35 | 15 | 30 [15 | 25
Military Selection Guide
Generic Output Vee tpp ns tsns tco ns
Part Logic Outputs
Enable mA
Number 20 | 25 | -30 | -40| -20 | -25 | -30 | -40 | -20 | -25 | -30 | -40
(8) 7-wide (6) Bidirectional I
16L8 AND-OR-Invert Programmable (2) Dedicated 70 | 20 {[NA| 30|40 — INA} — | —| — INA| — | —
(8) 8-wide . . .
16R8 AND-OR Dedicated Registered Inverting [70 | — | NA| — [— | 20 |[NA| 25| 35| 15 | NA| 20| 25
(6) 8-wide . . .
AND-OR Dedicated Registered Inverting
16R6 70 | 20 {[NA| 30|40 20 [NA|25[35| 15 {NA|20]| 25
@) 7-wide Programmable | Bidirectional
AND-OR-Invert gram € | Pidrection:
(4) 8-wide . . .
AND-OR Dedicated Registered Inverting
16R4 @ T 70 | 20 [NA| 30|40 20 |[NA[25(35| 15 |[NA| 20|25
-wide .
AND-OR-Invert Programmable | Bidirectional
(10) 8-wide Programmable
20G10 | AND-OR-Invert | Programmable | Bidirectional 80 [NA| — 30|40 | NA| — | 25|35 (NA|{ — (20|25
with MACRO or Registered
(10) variable Programmable
22V10 | AND-OR-Invert | Programmable | Bidirectional 100 [NA| 25 [30| 40 | NA| 20 | 25| 35 | NA| 20 [20| 25
with MACRO or Registered

Table 1. PLD Selection Guide

413

PRODUCT TERMS (0 — 63)

Programmable Logic Device Application Brief

INPUTS (0 — 31)
PoP1P2P3 101112131415 181 12223
('] ™)
1
2
3
H 19
5
M
?
N 4 .
22 L
8 ™)
9
"
12 P 18
i
1
3 ~N
i‘
1 »
17
19 17
21
22
N o1
>3 <}—
» -
2
2
ﬂ 16
3t
N -l
s1& < }—
| < >y
32 ™).
] P 15
N -1
612 < —
| < —>
:: 14
“
“
| - A
71X (l—___J
| —
50 <
b1 B
5 < 13
= »
“ B
56
IN —rl
LR >3 K —
| 2l |
56 ™.
57
58
50
o 12
61
62
&3
-

7 891011 12131415 16171819 20212223

7

Figure 2. Functional Logic Diagram PAL C 16L8A

414

—_4]————— 1"

0049-2

?
SEMICONDUCTOR

Programmable Logic Device Application Brief

There are 2048 EPROM cells in the PAL C 20 array that
are used to specify up to 32 inputs for 8 groups of 7-input
AND OR gates and 8 32-input AND output enable gates.
In normal usage, a maximum of 16 inputs would be
connected to any AND gate, because connecting both a
true and a complement input of the same signal to the
input of an AND gate will result in a constant LOW
output.

Phantom Array

There are an additional 256 bits in a phantom array that
are used to test the PAL C 20 device functionally and to
verify dynamic (AC) operation without using the regular
array after the device is packaged. The phantom array is
programmed and verified as part of the final electrical test
procedure during the manufacturing process. It may be
used by the customer as part of an incoming inspection and
could be used to verify programmability as well as
functionality. Three input pins are used to verify operation
of the phantom array. One (pin 2) has a worst case (longest
physical length) propagation delay path through the
regular array.

Programming the Arrays

The phantom array is programmed in the same manner as
the regular array. Both are addressed as byte arrays for
programming. The normal array has 256 bytes to program
and the phantom array has 32 bytes. The customer may
test the programmed phantom array functionally and
dynamically as part of an incoming inspection.

Programming the EPROM Cell

A schematic of the two-transistor EPROM cell used in all
PLDs is illustrated in Figure 1. Conventional EPROMS
use one transistor per cell and its design is a compromise
between being able to program (write) rapidly and read.
Cypress uses a two-transistor cell that enables the PLDs to
achieve superior performance by optimizing the read
transistor, R, and program transistor, P, for their
respective functions. The cell size is 20.4 microns by 6.7
microns. Note that the selection ‘gates, the floating gates
and the sources of both transistors are (respectively)
connected together.

Operation

In the unprogrammed state, the threshold voltage of the R
transistor is less than that of the P transistor.

4-15

A (INPUT TERM)

PROGRAM

READ
(PRODUCT TERM)

A
V5/15 0049-1
Figure 1. PLD EPROM Cell Schematic

To program the cell, the input line (A) is raised to 15 volts,
which causes charge to be stored on the floating gate of the
P transistor, which causes its threshold to increase by
approximately 7 volts. Because the floating gates of both
transistors are connected together, the threshold of the R
transistor increases by the same amount.

To read from the cell, the input line (A) is raised to 5 volts.
If the cell had been programmed, this voltage would not be
sufficient to turn-on the read transistor. However, if the
cell had not been programmed, the read transistor would
turn-on. Under this condition the current through the read
transistor is 150 microamperes; approximately an order of
magnitude greater than that used in a conventional
EPROM cell. The larger current is required in order to
achieve the specified performance.

Operational Overview

The device operates in two basic modes; normal and
PROGRAM. In the normal mode either the Regular array
or the Phamtom array may be used, together with the data
inputs, to determine the state of the outputs. In the
PROGRAM mode either the Regular array or the
Phantom array may be programmed using the 8 outputs
(pins 12-19) as data inputs and pins 2 through 9 as address
inputs.

Table 2 illustrates the various modes of operation for the
PAL C 20 device. They are decoded by high-voltage-
sensitive on-chip circuits. It is permitted to go from any
mode to any other mode. Note that the normal data output
pins (12-19) are used as data input pins for programming.

Programming

Tables 3 and 4 indicate how the regular and the phantom
arrays in the PAL C 20 device are addressed. The 20G10
and 22V 10 are similar. The regular array is addressed as a

Programmable Logic Device Application Brief

%S;MICX)NDUCI‘OR

256 word (8 X 32) by 8-bits per word memory. The
phantom array is selected using the same addresses as
columns 0, 1, 2 and 3, but with pin 7 at Vpp (per Tables 2
and 4).

In either case (normal or phantom array), the product
terms are addressed in groups of 8 as shown in Table 3.
There is a one-to-one correspondence between the data to
be programmed and the DO-D7 inputs and the product

terms, as modified modulo 8, by the address on pins 2, 3, 4
(Refer to Figure 2). In other words, a one on DO

corresponds to de-selecting the “product term input” at
input line 0 and product term 0. A one on D1 corresponds
to de-selecting the product term input at input line 0 and

product term 8, etc. One method of programming the array
would be to program and verify the bits corresponding to
the first product term address and then increment a
counter that generates the “OR” gate addresses (pins 2, 3,
4) and then program and verify the second row of Table 3,
and continue this process 8 times until all 64 product terms
associated with input line O have been programmed and
verified. To select the second (1) input term, address pins 6,
7, 8 and 9 are held LOW (as before) and pin 5 = HIGH.
The preceding sequence is then repeated 31 more times,
incrementing pins 5 through 9 in a binary sequence, to
program and verify the entire array. The other members of
the family are programmed in an identical manner.

Table 2, PAL C 20 Series Operating Modes

Pin Name Vpp PGM/OE Al A2 A3 Ad D7-D0
Pin Number (1) (11) 3)) (5) (6) (@) (12-19) Notes
Operating Modes
PAL X X X X X X X Programmed Function 3,4
Program PAL Vpp Vep X X X X X Data In 3,5
Program Inhibit Vpp Viap X X X X X HighZ 3,5
Program Verify Vpp ViLp X X X X X Data Out 3,5
Phantom PAL X X X X X Vpp X Programmed Function 3,6
Program Phantom PAL Vpp Vpp X X X X Vpp Data In 3,7
Phantom Program Inhibit Vpp ViHp X X X X Vpp HighZ 3,7
Phantom Program Verify Vpp ViLp X X X X Vpp Data Out 3,7
Program Security Bit Vpp Vpp Vpp X X X X HighZ 3
Verify Security Bit X X (Note 8) Vpp X X X HighZ 3
Register Preload X X X X Vpp X X Data In 3,9
Notes:

—

. Vpp = 13.5 £0.5V, Ipp = 50 mA; Vocp = 5 +£0.25V; Vigp = 3V;
ViLp = 0.4V.

. Measured at 10% and 90% points.

. Vss <X < Vccep.

All “X” inputs operational per normal PAL function.

Address inputs occupy Pins 2 thru 9 inclusive, for both programming

and verification see programming address Tables 3 and 4.

All “X” inputs operational per normal PAL function except that they

operate on the function that occupies the phantom array.

“aw N

I

7. Address inputs occupy Pins 2 thru 9 inclusive, for both programming
and verification see programming address Tables 3 and 4. Pin 7 is
used to select the phantom mode of operation and must be taken to
Vpp before selecting phantom program operation with Vpp on Pin 1.
The state of Pin 3 indicates if the security function has been invoked
or not. If Pin 3 = Vg, security is in effect, if Pin 3 = Voy, the data
is unsecured and may be directly accessed.

For testing purposes, the output latch on the 16R8, 16R6 and 16R4
may be preloaded with data from the appropriate associated output
line.

e

hd

Table 3. PAL C 20 Series Product Term Addresses

Product Term Addresses
Binary Address
" Pin Numbers Line Number
@ 3) 2)
ViLp ViLp ViLp 0 8 16 24 32 40 48 56
ViLp ViLp Viup 1 9 17 25 33 41 49 57
ViLp VIiHp ViLp 2 10 18 26 34 42 50 58
ViLp ViHp Viap 3 11 19 27 35 43 51 59
Vinp ViLp ViLp 4 12 20 28 36 44 52 60
Viap ViLp Vinp 5 13 21 29 37 45 53 61
Viap ViHp ViLp 6 14 22 30 38 46 54 62
ViHp ViHp Viap 7 15 23 31 39 47 55 63
DO D1 D2 D3 D4 D5 D6 D7
Programmed Data Input

4-16

?
SEMICONDUCTOR

Programmable Logic Device Application Brief

Table 4. PAL C 20 Series Input Term Addresses

Input Term Addresses
Input Binary Addresses
Terms Pin Numbers

Numbers | () ®) © ®)
0 ViLp ViLp ViLp ViLp ViLp
1 ViLp ViLp ViLp ViLp Viap
2 ViLp ViLp ViLp Vinp ViLp
3 ViLp ViLe ViLp Vinp Vinp
4 Vip Vip ViHp ViLp ViLp
5 ViLp Vip Vinp ViLp Viap
6 ViLp ViLp Viep | Vigp ViLp
7 ViLp ViLp ViHp ViHp Vinp
8 ViLp Vinp ViLp ViLp ViLp
9 ViLp Vinp ViLp ViLp Vinp
10 ViLp Vinp ViLp Vinp ViLp
11 ViLp Viap ViLp Viap Vigp
12 ViLp Viep | Viwp ViLp ViLp
13 ViLp ViHp Vinp ViLp Vigp
14 Vip Viap Viap Vinp ViLp
15 ViLp Viep | Vigp Vinp ViHp
16 Viap ViLp ViLp ViLp ViLp
17 Vinp ViLp ViLp ViLp Vinp
18 Vinp ViLp ViLp Vinp ViLp
19 Vinp ViLp ViLp Vinp Vinap
20 Vigp Virp Viup ViLp ViLp
21 Vinp ViLp Vinp ViLp Viap
22 Vinp ViLp Vinp Vinp ViLp
23 Vinp ViLp Vinp Vigp | Vigp
24 Vigp Vinp ViLp ViLp ViLp
25 Viep | Vigp ViLp ViLp Vinp
26 Viep | Viwp ViLp Vinp ViLp
27 ViHp Vinp ViLp Vinp Vinp
28 Viap Vinp Vinp ViLp ViLp
29 Vinp Vinp ViHp ViLp Vinp
30 Vimp | Vigp | Viwp Vinp ViLp
31 ViHp | Vip | Ve Vinp Vinp

PO ViLp ViLp Vpp X X

Pl Vie | Ve Vpp X X

P2 Ve | Vi Vep X X

P3 Ve | Vir Vep X X

4-17

Implementation

A simplified block diagram of a 16L8 is presented in Figure
3. The method of programming and sensing is illustrated in
Figure 4.

Programming Operation

Pins 5-9 are decoded (according to Table 4) in a one of 32
decoder, whose outputs correspond to the inputs labeled
0-31 of Figure 2. For programming, 15 volts is applied to
the bottom of the input term line through a weak depletion
mode device (Figure 4). The EN (enable) signal to all of the
three-state drivers is LOW, which prevents the normal
input signals from driving the input term lines during
programming. The DO-D7 inputs (pins 19 through 12)
drive the program transistors (0, 8, 16, 24 etc.) as selected
by pins 2, 3, 4 and as listed in Table 3. To disconnect an
input term line from a product term line, the P transistor is
forward biased, which increases the threshold of the R
transistor.

Verify Operation

To verify the programmed cells, the device must go from
the PROGRAM mode to the PROGRAM INHIBIT
mode to the PROGRAM VERIFY mode. This is
accomplished by reducing the voltage on pin 11 to VIHP
(3V) and then to VILP (0.4V). Internal to the device (see
Figure 4) the 1 of 32 decoder is disabled, the EN signal is
LOW, and 31 of the 32 input term lines are at zero volts.
The line being verified is at 5 volts. The input address lines
(pins 2 through 9) do not need to change when going from
program to verify.

The “ones” that were programmed cause the thresholds of
the R transistors to increase, so they do not turn on during
verify. Conversely, the unprogrammed transistors do turn
on, so the complement (inverse) of the data programmed is
read during verify.

Normal Operation

The PAL device will implement the programmed function
when there are no supervoltages applied to any of the pins.
During regular PAL operation the 1 of 32 decoder and the
DO0-D7 decoder are disabled, the EN signal is HIGH and
all 32 input term lines are at 5 volts. Under these
conditions, the data at the input pins is applied to all 64 of
the product term lines. If any of the P transistors (16 per
product term line) had not been programmed, they will
turn on and pull the lower input to the corresponding sense
amplifier (SA) to 2 volts or less. This voltage will be less
than the reference (Vref) so that the output of the sense
amplifier will be LOW.

The reference is an unprogrammed EPROM cell that
tracks the same process, voltage and temperature
variations that affect all of the cells in the array. It is
approximately three volts at room temperature and
nominal (5 volts) Vcc.

Programmable Logic Devi‘ce Application Brief

PIN
1 PROGRAM »| 1 OF 32 DECODE
——>] LOGIC |—¢ (PROGRAM ONLY)
Vep & H.V. -
32 FEEDBACK | o
PROGRAM 14 BUFFERS |©
PINS v VL
5-9 INPUT
——>| BUFFER —> AND 8
& H.V. EPROM SENSE 7-INPUT s
CELL AMPLIFIERS OUTPUT
PINS ARRAY > > -» DRIVERS 18 >
12-19 [eut 7x8=56 NOR
—F—| BUFFER »| 2048 REG. GATES PINS
8 & HV. »| 256 PHANTOM 12-19
A A A .
pns. | 1oFs 32 ¢ OF
. 2-4 DECODE
—+——| INPUT . PROGRAM
3 BUFFER PAL/PROGRAM REFERENCE
& H.V. > VOLTAGE FOR SENSE
SELECT AMPLIFIER
Figure 3. 16L8 Device Simplified Block Diagram
PINS 5-9 |1 OF 32 DECODER
1 (NPUT TERMS)
>
, 23
0 1 CORRESPONDS TO
EN " INPUTS 0,1 OF FIG. 2
TTL @ [
PAD T0 L
CMOS |
INPUTS lvRF-F I
PINS 2=9 FOR NORMAL OPERATION ONLY
Vee DO - D7
: 4 DECODE
FOR PROGRAM
P E'_" 1»——“ 3 ONLY
s | | M 8 DY
! ! =
R |iH-9 +—i| ®r 7
<— 1 OF 16 PAIRS
PRODUCT TERMS OF INPUT TERM
LINES
5V FOR NORMAL AND VERIFY OPERATIONS
15V FOR PROGRAMMING o4t

Figure 4. Programming Method

418

0049-3

Programmable Logic Device Application Brief

%
SEMICONDUCTOR

Phantom Operation

The PAL C 20 device is in the PHANTOM mode of
operation when a supervoltage (Vpp = 13.5V) is applied to
pin 6. The phantom array is programmed as shown in
Figure 2. The user may measure the worst case propagation
delay from the pin 2 input to the outputs (pins 12 through
17). The truth table for the phantom array is shown in
Table 5.

Table 5. Phantom Array Truth Table

Inputs Outputs
Pin |2 (3 (4 |19(18 |17 | 16| 15| 14 | 13 | 12
ojo| 1| X|X]|1 1 1 1 1 1
i1jol1|X|]X|O0O]|]O|J]O|[O]O]O
o1 (X1 0 [X | XX |X|X|X
o|j1|X]| O 1 [XX | X|[X[X]|X
Reliability

Reliability is designed into all Cypress products from the
beginning by using design techniques to eliminate latchup,
improve ESD and by paying careful attention to layout. In
addition, all products are tested for all known types of
CMOS failure mechanisms.

Failure mechanisms can be either classified as those
generic to CMOS technology or those specific to EPROM
devices.

Table 6 lists both categories of failures, their relevant
activation energies, Ea in eV (electron volts), and the
detection method used by Cypress. In both cases, the
mechanisms are aggravated by HTOL (High Temperature
Operating Life) tests and HTS (High Temperature Storage)
tests.

Specific EPROM failure mechanisms include charge loss,
charge gain and electron trapping. Charge loss is
accelerated by thermal energy and field emission effects.

Thermal charge loss failures usually occur on random bits
and are often related to latent manufacturing defects.

Field emission effects are generally detected as weakly
programmed cells. The high voltages used to program =
“selected bit” may disturb (as a result of a defect) an
“unselected bit”

Charge gain is due to electrons accumulating on a floating
gate as a result of bias or voltage on the gate. This results in
a reduced read margin. This mechanism is generally
negligible.

Charge gain and charge loss are monitored on every
Cypress die in wafer form by programming, performing a
HTS test and verifying that the programmed data is
retained in the device.

Table 6. Generic CMOS Failure Mechanisms

Mechanism 1:3: ?:;;t(i::,) Detection Method
Surface Charge 0.5t0 1.0 HTOL, Fabrication Monitors
Contamination 1.0to 1.4 HTOL, Fabrication Monitors
Electromigration 1.0 HTOL
Micro-cracks — Temperature Cycling
Silicon Defects 0.3 HTOL
Oxide Breakdown 0.3 High Voltage Stress, HTOL
Hot Electron Injection — LTOL (Low Temp. Operating Life)
Fabrication Defects — Burn In
Latchup — High Voltage Stress, Burn In,

Characterization
ESD — Characterization
Charge Loss 0.8t0 1.4 HTS (High Temperature Storage)
g‘;f:g;‘;ing) 03t00.6 HTOL
iEnleé:':;no"I;:zpmg —_ Program/Erase Cycle

Notes:

Table 6 has been adapted from, “An Evaluation of 2708, 2716, 2532, and
2732 Types of U-V EPROMS, Including Reliability and Long Term

4-19

Stability.” Danish Research Center for Applied Electronics, Nov. 1980.

% ;
SEMICONDUCTOR

Programmable Logic Device Application Brief

HTOL Testing

High Temperature Operating Life test (or burn-in) is used
to detect most generic CMOS failure mechanisms. Units
are placed in sockets under bias conditions with power

applied and at elevated temperatures for a specific number

of hours. This test is used to weed out the “weak sisters”
that would fail during the first 100 to 500 hours of
operation under normal operating temperatures. HTOL
tests are also used to measure parameter shifts in order to
predict (and screen for) failures that would occur much
later.

HTS Testing

High Temperature Storage tests are used to thermally
accelerate charge loss. These tests are performed at the
wafer level and under unbiased conditions. Both pass/fail
data as well as shifts in thresholds may be measured. For a
more detailed discussion of charge loss screening the reader
is referred to the article on EPROM reliability beginning
on page 132 of the August 14, 1980, issue of Electronics
magazine. :

The generally accepted screening method for identifying
charge loss is a 168 hour bake at 250°C. This correlates
with more than 220,000 years of normal operation at 70°C
using a failure activation energy of 1.4 eV.

Initial Qualification

The process in general and the EPROM cell design in
particular was qualified using HTS (bake) at 250°C for 256
hours, in conjunction with an HTOL test at 125°C for 1000
hours.

Procedure

Four wafers were erased using ultraviolet light and the
linear thresholds of the cell read transistors measured at
twenty-five “‘sites” on each wafer.

The wafers were then programmed and the linear
thresholds then measured and recorded.

The wafers were alternately baked at 250°C and the linear
thresholds measured and recorded at 0.25, 0.5, 1, 2, 4, 8,
16, 32, 64, 128, and 256 hours. The number of device hours
is then 100 X 256 = 25,600.

Results

The average threshold reduction due to charge loss was
0.66 volts. The range was eight to ten percent of the
average initial threshold of 7.7 volts. This reduced
threshold is greater than four volts above the sense
amplifier voltage reference. There were no failures.

If the charge loss failure activation energy is assumed to be
1.4 eV, the HTS time of 256 hours at 250°C translates to
438,356 years of operation at 70°C.

4-20

The time translations were computed using the industry
standard Arrhenius equation, which converts the time to .
failure (operating lifetime) at one temperature and time to
another temperature and time. -

Summary o

100

25,600 hours

256 hours at 250°C

7.7 volts

0.66 volts

0.12

438,356 years at 70°C

Sample size:

Device hours:

HTS conditions:

Average initial threshold:

Average threshold decrease:

Standard deviation:

Lifetime (1.4 ev):
Conclusion

An HTS experiment, performed according to industry
standard conditions, and using representative Cypress
product confirms that the data retention characteristics of
the EPROM cell used in all Cypress PLDs and PROMs
guarantees a minimum operating lifetime of 438,356 years
for activation energies of 1.4 eV.

Production Screen

Units from the same population were assembled without
being subjected to HTS and were subjected to an HTOL of
150 degrees C for 1000 hours. The units were tested at 12,
24, 48, 96, 168, 336, and 1008 hours and the measurements
recorded. Variations in the thresholds of the EPROM cells
were measured and correlated to the units tested in the
HTS test in order to determine a maximum acceptable rate
of charge loss in order to guarantee data retention over
their normal operating lifetime.

Advantages Over Bipolar

Lower power results in several benefits to the user. They
are: :

® Lower capacity and, therefore, lower cost power
supplies.

® Reduced cooling requirements.

® Increased long term reliability due to lower die junction
temperatures.

Power dissipation may be further reduced by driving the
inputs between 0.5 volts (or less) and 4 volts (or more).
This reduces the power dissipation in the input TTL to
CMOS buffers, which dissipate power when their inputs
are between 0.8 volt and 3 volts. Each buffer draws
approximately 0.8 mA of Icc current at ViN = 2 volts.

¥ Cirress
%{mm

Programmable Logic Device Application Brief

~ TTLTO
™ MWV ! cmos
| CONVERTER
hdd ¥
! - | * THIN OXIDE
T 1 TRANSISTOR
*Thick Oxide Field {
Transistor Rsus < Rsus
**Substrate Diode
= = L
= Vsus = =
0049-5
Figure 5. Input Protection Circuit
Appendix As long as the voltages that are applied to the package pins

The Cypress double-layer polysilicon, single-layer metal,
N-well, CMOS technology has been optimized for
performance. Careful attention to design details and layout
techniques has resulted in superior performance products
with improved ESD input protection and improved
latchup protection.

Input ESD Protection

The circuit shown in Figure 5 is used at every input pin in
all Cypress products to provide protection against ESD.
This circuitry has been designed to withstand repeated
applications of high voltages without failure or
performance degradation. This is accomplished by
preventing the high (ESD) voltage from reaching the thin
gate oxides of the internal transistors.

The circuit consists of two thick oxide (field) transistors
wrapped around an input resistor (Rp) and a thin oxide
(gate) transistor with a relatively low breakdown of 12
volts. Large input voltages cause the thick oxide transistors
to turn on, discharging the ESD current to ground. The
thin oxide transistor breaks down when the voltage across
it (drain to source) exceeds 12 volts. It is protected from
destruction by the current limiting action of Rp.

Experiments have confirmed that this input protection
circuitry results in ESD protection in excess of 2001 volts.

Definition of Latchup

Latchup is a regenerative phenomenon that occurs when
the voltage at an input pin or an output pin is either raised
above the power supply voltage potential or lowered below
the substrate voltage potential (which is usually ground).

Current rapidly increases until, in effect, a short circuit
from Ve to ground exists. If the (Vcc) current is not
limited it will destroy the device; usually by melting a
metal trace.

Causes of Latchup .

The CMOS processing, which provides both N-channel
and P-channel MOS transistors, also inherently provides
parasitic bipolar transistors; both NPNs and PNPs.
Latchup is caused when these parasitic transistors are
inadvertently turned on.

4-21

of the CMOS IC remain within the limits of the power
supply voltages (usually O volts to 5 volts), these parasitic
bipolar transistors will remain dormant (i.e., off). However,
when either negative voltages or positive voltages greater
than the Vcc supply voltage are applied to input or output
pins, these parasitic bipolar transistors may turn on and
cause latchup.

Conditions For Latchup

A cross section of a typical CMOS inverter using a
P-channel pullup transistor and an N-channel pulldown
transistor is shown in Figure 6. Also shown is an
N-channel output driver that is isolated from the CMOS
inverter by a guard ring (channel stopper) that is necessary
to prevent parasitic MOS transistors between devices. P+
guard rings surround N-channel devices and N+ guard
rings surround P-channel devices. The parasitic SCR
(PNPN) and bias generator are illustrated in Figure 7. The
output driver schematic is not shown.

In order for latchup to occur two conditions must be
satisfied; (1) the product of the betas of the NPN and PNP
transistors must be greater than one, and (2) a trigger
current must exist that turns on the SCR.

Since the SCR structure in bulk CMOS cannot be
eliminated, preventing latchup is reduced to keeping the
SCR from turning on. If either Rwgrr, = 0 or Rsyp = 0
the SCR cannot turn on because the base emitter junction
of the PNP cannot be forward biased because they are tied
together and the base emitter junction of the NPN cannot
be forward biased because the base is connected to ground.
Note, however, that the NPN could be turned on by a
negative voltage on the output pin (if the right end of Rsyp
is grounded).

Prevention of Latchup; Traditional
Approaches

The traditional cures include increased horizontal spacing,
diffused guard rings and metal straps to critical areas.
These solutions are obviously opposite to the goal of
greater density.

A brute-force approach that has been successful in
reducing latchup has been to increase the conductivity of
the N-well and the substrate. Changing the well

?
SEMICONDUCTOR

Programmable Logic Device Application Brief

Output Driver CMOS Inverter
n-MOS
PULL-DOWN.
DEVICE n-Mos
" PULL-UP
OUTPUT - ~** DEVICE Vee OUTPUT mru'r SUBSTRATE
I ' i BIAS~ -3.0 V
+)
ot "Ff L n w I L ’ L_"."_J ot pt pt U L"_l’ U l p*]
WELL RWELL
<
4 $ Rsus

\ p- SUBSTRATE /

|
n* DIFFUSION AND
n- WELL GUARD RING

\
p* DIFFUSION

GUARD RING TRANSISTOR

\
LATERAL npn BIPOLAR

PARASITIC
RESISTANCE

PARASITIC
RESISTANCE

VERTICAL pnp BIPOLAR
TRANSISTOR

0049-6

Figure 6. CMOS Cross Section and Parasitic Circuits

conductivity is unacceptable because it affects the
characteristics of the P-channel MOS transistors. Using an
epitaxial layer to reduce the substrate resistivity (RsuB) is
another possible solution.

RWELL
Rsus

= ourput

0049-7
Substrate Bias Generator —>
Figure 7. Parasitic SCR and Bias Generator

The Cypress Solution to Latchup

Cypress uses several design techniques in addition to
careful circuit layout and conservative design rules to
eliminate latchup.

NMOS Output Pullup Transistors

Conventional CMOS technology uses a P-channel MOS as
a pullup transistor on the output drivers. This has the
advantage of being able to pull the output voltage HIGH
level to within 100 millivolts of the positive voltage supply.

However, this is of marginal value when TTL compatibility
is required. In addition, the P-channel pullup is sensitive to
overshoot and introduces another vertical PNP transistor
that further compounds the latchup problem. Cypress uses
N-channel pullup transistors that eliminate all of these
problems and still maintain TTL compatibility.

Substrate Bias Generator

Cypress is the first company to use a substrate bias
generator with CMOS technology. The bias generator
keeps the substrate at approximately —3 volts DC, which
serves several purposes.

Input Pins

The parasitic diodes shown in Figure 5 cannot be forward
biased unless the voltage at an input pin is at least one
diode drop more negative than —3 volts. This translates
into increased device tolerance to (negative voltage)
undershoot at the input pins, caused by inductance in the
leads. If the undershoot is this large, the output impedance
of the bias generator itself is sufficient to prevent trigger
current from being generated.

Output Pins

The same reasoning applies to negative voltages at the
output pins as shown in Figure 7. In order to turn on the
NPN transistor the voltage at the output pin must be at
least one VBE more negative than —3 volts.

Guard Ring

To protect the “core” of the die from free floating holes
and stray currents, a diffused collection guard ring that is
strapped with metal and connected to the bias generator is
used. This provides an effective wall against transient
currents that could cause mis-reading of the EPROM cells.

4-22

2

PRESS

EMICONDUCTOR

n

— 4
-

PAL® C 16R6 Design Example:
GCR Encoder/Decoder

Introduction

Digital encoding and decoding of data is often used to in-
crease the reliability of data transmission and storage. One
area where digital techniques are employed is the transfor-
mation between data stored on one-quarter inch magnetic
tape and serial digital data.

This document describes the procedure used to en-
code/decode serial digital data for recording/reading from
one-quarter inch magnetic tape using a Cypress CMOS
PAL C 16R6 to implement the logic.

History

The recording format and the Group Code Recording
(GCR) code have been adopted and incorporated in a se-
ries of standards by a committee called the QIC (Quarter
Inch Cartridge) Committee, composed of manufacturers

and users of quarter inch tapes and cartridges. The purpose
of the committee is to insure compatibility between manu-
facturers and reliability to end users.

Quarter inch tape cartridges are used extensively to backup
or archive data from hard disks. Most drives are operated
in a continuous or streaming mode (for reasons that will be
discussed later) and data is recorded at 10,000 FRPS (Flux
Reversals Per Inch) in a serpentine manner on seven to
fourteen channels. The tape moves at 30 to 90 ips (inches
per second) and the error rates achieved are one in 109 or
1010, A cartridge holds 2000 to 3000 feet of tape 0.001 inch
thick and stores 20 to 80 million bytes (mega-bytes) of
data.

Typical System

A block diagram of a typical system is shown in Figure 1.
The interface between the Host (or Host Adapter) is bi-

: H
L})
L} 1
)]
R | euse || DATA ! !
DET. SEP. ' '
))
! TAPE '
l ' v | wost
' romg;nza > soaPTER | HosT
WRITE P CONTROLLER !
AMP. -~ '
) 1
w ' '
) ‘
1 L
I TAPE o '
POS. MK '
))
DRIVE . FORMATTER . HOST
QIC-24/36 QIC-02 0060-1
QIC-50 SCSI
QIC-59 1PI
Interface Interface
Standard Standards

Figure 1. A Typical Tape Drive System

PAL® is a registered trademark of Monolithic Memories Inc.
ABELTM is a trademark of Data I/O Corporation
PALASMTM is a trademark of Monolithic Memories Inc.
VAXTM js a trademark of Digital Equipment Corp.
WORDSTARTM is a trademark of MicroPro International

November 1985

%
SEMICONDUCTOR

PAL® C 16R6 GCR Encoder/Decoder

Typical System (Continued) - -
directional, with a byte-wide data path and 10 to 20 control
signals, depending upon the interface standard. Data rates
are 300 KBs (thousand Bytes per second) to 1 MBs (Mil-
lion Bytes per second).

The Formatter or Tape Controller performs serial/parallel
conversion and encoding/decoding of the data as well as
error checking and, in some cases, error correcting. Con-
trol is usually provided by a state machine that handles the
handshaking between the host as well as control of the
tape. Data is written in blocks of various lengths (depend-
ing upon the standard) and a ‘“read after write” check is
usually performed. Buffer storage of at least two blocks of
data is usually provided using static RAMs (SRAM:s),
FIFOs, or some combination of the two.

The Drive electronics consist of digital signals that control
and sense the tape motion and analog signals in the read
and write paths. The interface between the Drive and the
Formatter is digital and, once again, there are various stan-
dards.

Reading and Writing on Tape
To write on the tape a current of 100 mA or less is used to
change the direction of magnetization. To read from the
tape a coil of wire (the read head) is held against the tape
and a voltage (10 mV or less) is induced by the change in
direction of the magnetic flux on the tape.

Recording Codes

All codes used for recording on magnetic mediums are
classified as Franaszek Run Length Limited (RLL) codes
of the form:
(D, K)
where D = the minimum number of zeros between con-
secutive ones, and

K = the maximum number of zeros between con-
secutive ones.

D controls the highest frequency that can be recorded and
K controls the lowest frequency.

Using the Franaszek notation, the GCR code is (1, 2). As
illustrated in Figure 2, a flux reversal signifies a one and the
absence of a flux reversal signifies a zero. This is true for all
codes.

Peak Detection and Data Separation

Peaks are detected (versus zero crossings) because the cir-
cuits used are less sensitive to noise. The output of the peak
detector goes to the most critical analog circuit in the
drive; the data separator.

The function of the data separator is to provide ones and
zeros that occur at a precise frequency. It does this by first
synchronizing itself to a crystal controlled reference clock
and then attempting to “lock” itself to the maximum data
frequency on the tape by finding the phase difference be-
tween itself and the data output of the peak detector and
driving a voltage controlled oscillator (VCO) such that
they are equal. This is called a Phase Locked Loop (PLL).
The frequency of the reference clock must be at least twice
(2f) that of the highest frequency that is to be read (f).

The PLL is synchronized to the 2f reference frequency
when it is not in use. A string of ones is recorded, which is
called the preamble, before the block of data is recorded.
When the command to read is given, the 2f reference fre-
quency is removed from the data separator and the signal
from the peak detector is applied to the data separator. The
PLL then attempts to “lock™ to the preamble. Just after the
preamble, a code violation is recorded so that the Format-
ter can recognize where valid data begins. The procedure
of locking onto the preamble is called “getting bit sync.”
The detection of the code violation is called “obtaining
byte sync”.

PLLs typically exhibit frequency and phase offsets during
acquisition of the preamble. Phase errors also occur after
lock, during the reading of the data field. Differences in
tape speed during record and playback (as well as from
unit to unit) result in frequency differences between the
data read from the tape and the 2f reference.

Random phase errors caused by noise, intersymbol inter-
ference (bit crowding), timing errors and other transients
may also get the PLL out of lock.

The data separator’s PLL is susceptible to these errors be-
cause it must satisfy two conflicting conditions: (1) it must

-
o
-

0 0 1
READING FROM TAPE

0060-2

Figure 2

%
SEMICONDUCTOR

PAL® C 16R6 GCR Encoder/Decoder

Reading and Writing on Tape (Continued)

lock quickly enough to detect the preamble, but (2) it must
not overcorrect phase for a single misaligned bit.

Strings of zeros cause the phase of the PLL to shift and if
the shift is larger than the “bit window”, an error will
occur. The QIC-24 standard calls for up to 37% bit shift
tolerance, which means that the data separator must be
able to recognize a “one” (flux transversal) that deviates
+ 18.5% from its expected time position without causing a
data error. In order to achieve this performance a four-bit
binary nibble is encoded into a five-bit “GCR code word”
that is written onto the tape.

Reasons for the GCR Code

The 5-bit GCR code format is required to encode the data
such that no more than two consecutive zeros occur in the
serial data. This encoding relaxes the performance require-
ments of the PLL and the loop filter so that the desired
system performance can be achieved.

Static Tolerances

Another reason for GCR encoding is to compensate for the
speed variation of the tape due to:

Mechanical Tolerances
Cartridge
Tape thickness (£3%)

Tape Elasticity and Wear

Motor Speed Variation

Temperature and Humidity
The preceding static tolerances can result in a +10%
speed variation of the tape.
Dynamic Tolerances

In addition to the static tolerances, there are Instantaneous
Speed Variations (ISV) due to discontinuous tape release at
the unwind spool (10-20%), guide/back stick slip (5%)
and shuffle ISV (vibration) due to start/stop (5-30%). The
shuffle ISV can be avoided by operating the tape in a con-
tinuous (streaming) mode. If these dynamic tolerances are
added together they can result in a +15% speed variation.
Electronics Compensate

The electronics in the tape controller and the drive are
designed to compensate for the tape speed variations due to
the mechanical tolerances.

The compensation is performed by:
Data Encoding and Error Detection and Correction
Phase Locked Loop Design
Bit Window Tolerance

Sequence of Operations
During a write operation the following sequence occurs:
1. Idle (Hold)

2. Convert 4-bit parallel input to 5-bit GCR code and
load into 5-bit register.

3. Shift out 5-bits to write amplifier.

4-25

During a read operation the following sequence occurs:
1. Idle (same as during write)
2. Shift in S-bits.
3. Detect sync mark
Set/Clear invalid flag

Convert 5-bit serial input to 4-bit binary value and
load into register.

Note: that the read clock and the write clock are not the
same.

Also, the logic must keep up with the tape data rate.

And finally, the read and write operations are mutually
exclusive so that the storage elements (D flip-flops) can be
time-shared and that read and write operations require 5
clocks.

A total of 5 states are required because the idle state is
common to both read and write operations. Therefore, 3
control lines will be required. It is convenient to designate
one control line as an enable line (active LOW) and the
other two lines as Mode Control signals.

The control of these lines is not described here, nor is the
required clock synchronization. The reason for not doing
this is that at the next level of control, system considera-
tions such as what action to take when errors occur must
be implemented in hardware and these tend to be not only
application dependent but also very subjective.

The diagrams of Figure 3 show the flow of data under the
control of the ENABLE signal and the MO and M1 mode
control signals.

The GCR Code

The GCR code is part of the QIC-24 Standard and is also
the ANSI X3.54 standard (1976). The MSB (leftmost bit)
is recorded first. Note that there are a maximum of two
consecutive zeros in the five-bit code that is recorded on
the tape.

4-Bit Code 5-Bit Code
LineNumber D D D D Y Y Y Y S
(For Ref.) 3 2 1 0 3 21 0 o
0 0O 0 0 O 1 1 0 0 1
1 0 0 0 1 1 1 0 1 1
2 0O 0 1 O 1 0 0 1 O
3 0 0 1 1 1 0 0 1 1
4 0O 1 0 O 1 1 1 0 1
5 0o 1 0 1 1 0 1 0 1
6 0o 1 1 0 1 0 1 1 O
7 o 1 1 1 1 0 1 1 1
8 1 0 0 O 1 1. 0 1 O
9 1 0 0 1 0O 1 0 0 1
10 1 0 1 O 0O 1 0 1 O
11 1 0 1 1 0 1 0 1 1
12 1 1 0 O 1 1 1 1 O
13 1 1 0 1 o 1 1 0 1
14 1 1 1 0 0O 1 1 1 0
15 1 1 1 1 o 1 1 1 1
A A A A B B B B B
3 2 1 0 o 1 2 3 4

Figure 4. GCR Code

%
SEMICONDUCTOR

PAL® C 16R6 GCR Encoder/Decoder

ENABLE M1 MO OPERATION DATA FLOW DIAGRAM
1 X X How | | | | l
D
> o > D> D> >
v v v v v
Y3 Y2 Y1 Yo ' so
SIN
0 0 0 SERIAL l ‘ l l {
SHIFT IN D
> o > > > >
l v v v v
Y3 Y2 Y1 Yo S0
CONVERT 5-BIT TO 4-BIT SN
A3 A2 Al A0
h
0 1 O CONVERT 1 1 I 1 1 1 I l
5=BIT TO 4=BIT b
: > . > D> > >
v v) v v v
Y3 Y2 Y1 YO S0
Df Dlz Dl‘ ‘T
CONVERT 4-BIT TO 5-BIT
BO B1 B2 : B3 B4
0 1 1 CONVERT v v L 2 L 2 v
4=BIT TO 5-BIT o
> o > P> > >
Y3 Y2 Y1 Y0 S0
0 0 1 SERAL y 1 |]]
SHIFT OUT 0
> o > > > >
v v v v v
Y3 Y2 Y1 Yo S0
0060-3
Figure 3. Data Flow Diagrams

4-26

&

PAL® C 16R6 GCR Encoder/Decoder

Design Procedure

The design procedure will be to map the code conversions
using Venn diagrams and write the logic equations as the
“sum of products” or in minterm form. Six flip-flops are
required, so the logic will be implemented using a PAL C
16R6. Because the PAL device has inverting output buff-
ers, the zeros will be mapped. The D flip-flops require an
“extra term” for them to hold their states when the EN-
ABLE is HIGH.

For example, for a conventional D flip-flop the form of the
logic equations would be:

D= ENABLE1(Q) ;RECIRCULATE
PRESENT
STATE
+ ENABLE2(F2) ;FUNCTION 2
+ ENABLE3(F3) ;FUNCTION 3

Where the ENABLE controls are mutually exclusive.

4-Bit to 5-Bit Conversion for Y3 Output

In Figure 4 (at the bottom) the 5-bit code columns are
labeled BO through B4 to help the reader understand how
the 4-bit code is mapped. In addition, the line numbers are
labeled O through 15, which correspond to the values of the
4-bit binary code.

Figure 5a shows how the 4-bit binary code is mapped on
the Venn diagram. For example, reference line number
zero, which corresponds to binary value zero, is located in
the lower right hand corner of Figure 5a.

The Venn diagram of Figure 5b shows the conversion for
the Y3 output. It is labeled the BO input to the D flip-flop.
Note that the parallel nibble (see Figure 3) is reversed (end
for end) so that the MSB is written first when it is shifted
out.

DO
3 11 10 2
Dt
7 15 14 6
D2
5 3 12 4
1 9 8 0
D3
0060-4
Figure 5a, Binary Values

4-27

Do

D1

D2

D3
0080-5
Figure 5b. Y3 Map

In Figure 5b, the ones and zeros in column B0 are mapped.
For example, reference line zero has the value 1 in column
BO of Figure 4. Therefore, a one is placed in the square
corresponding to binary value zero in Figure 5b. In a simi-
lar manner, ref. line 15 has a value of zero in column BO, so
a zero is placed in the square corresponding to binary value
fifteen.

Writing the Equation
If the output of the PAL C 16R6 were positive true logic,
we would write the equation to include all of the ones on
the Venn diagram. However, because the PAL device out-
put is negative logic (active LOW) we will write the equa-
tion to include all of the zeros. Then, when the PAL device
inverts the signals, the zeros will be changed to ones, so
that the final outputs will be positive true logic.
By inspection:

BO = D3D0 + D3 Dl or,

Y3 = D3DO0 + D3 D1

% | PAL® C 16R6 GCR Encoder/Decoder

Design Procedure (Continued)
4-Bit to 5-Bit Conversions for Y2, Y1, Y0, So

These are presented for the sake of completeness.

DO Do

r[; 1 1 M 1 1 1 1
D2 D2

D3 ‘ : D3
0060-6) 0060-7
Y2 = Bl = D3D1 + D3ID2 D0 YI=B2=D2
Figure 5c. Y2 Map Figure 5d. YI Map
Do DO
1 1 1 1 1 1 0 0
D1 D1
1 1 1 1 ‘ 1 1 (] 0
N\ _J
D2 D2

(o o? 1 m : 1 1 0 1
1 QJ 1 w 1 1 \0/ 1

D3 ‘ D3
0060-8 0060-9
Y0 = B3 = D3 D1 D0 + D3 D1 DO + D2 D1 D0 So = B4 = D1 D0 + D3 D0
Figure 5e. YO Map Figure 5f. So Map
5.Bit to 4-Bit Conversion for Y Outputs Venn diagrams, which can be either ones or zeros, which

further reduces or simplifies the logic equations.

The procedure is: plot the 1s and Os
put Xs in the blank squares
write the equations for the zeros.

This conversion requires two 16 square Venn diagrams be-
cause there are 25 = 32 possible binary values. However,
note that in Figure 4 not all 32 possible combinations are
used in the 5-bit code columns. These unused combinations
are “don’t cares”, which are represented by Xs in the

4-28

CYPRESS
SEMICONDUCTOR

PAL® C 16R6 GCR Encoder/Decoder

Yo Yo
L
GODDERGDDD
1 1
1 1 X X 1 X o 1
Y2 Y2
1 1 X X 1 [[1
(x [X x)q_/ ,(x [} X x)
s0=0 3 3 so=1
0060-10
Y3=A3=Y2+ Y3So
Figure 6a
Yo Yo
x 1 X X X 1 1 X
Y1 1
1 1 X X 1 X 1 1
Y2 Y2
F) [X X [[0 X)
L1 0 x X X [[X J
so=0 i 3 so=1
006011
Y2=A2=Y1
Figure 6b
Yo Yo
p—— S —
X 1 X X) X 1 0 X
1 1 — =
L7
1 (0 XT X T‘\/ 1 Tx 0 0
v2 Y2
1 0 X X 1 Lo 0 0
L J J
X 1 X X X 1 X X
~— AN B
s0=0 3 Y3 so=1
0060-12
YIi=AT=Y0+ Y3Y2
Figure 6¢
Yo Yo
—
X [} X X X 1 1 X
" Y1
[° m X 1 X m 1
Y2 Y2
° 0 X X 1 1 Lo-J 1
X 0 X X X 1 1 X
\ J
s0=0 Y3 \& so=1
0060-13

Y0 =A0 = Y3Y2YO0 + So
Figure 6d

4-29

PAL® C 16R6 GCR Encoder/Decoder

SEMICONDUCTOR

Design Procedure (Continued)

Serial Shift In

During serial shift in (both mode control signals LOW) the
data output of the data separator is applied to the input of
the formatter. The signal is called SIN and is applied to the
D input of the SOUT flip-flop. The output of the SOUT
flip-flop is applied to the D input of the YO flip-flop and its
output is applied to the input of the Y1 flip-flop, etc. After
five read clocks the MSB of the 5-bit GCR coded data is in
Y3 and the LSB is in SOUT.

Serial Shift Out

During a write operation, after the 4-bit data is converted
to 5-bit data and reversed, it is shifted out using the write
clock and written on tape. The shift direction is opposite to
that in Serial Shift In. Note that it is right shifted “end
around” (see Figure 3) so that after 5 write clocks the same
data appears in the register.

Invalid Flag (INV Flip-Flop)

The Invalid flip-flop is set to a one when an invalid 5-bit
code is read from the tape. This is used to tell the tape
Formatter that the next data read is the beginning of the
data block. This procedure is called getting “byte sync.”
INV is a negative true signal, so the logic equations are
written for ones on the Venn diagram.

The 16 binary values that are NOT listed in Figure 4 are
plotted as ones in Figure 7. The procedure was to plot zeros
in the squares where there were valid 5-bit codes, then fill
the rest with ones and then write the equation for the ones.

The Invalid flip-flop is enabled by a signal called CIF
(Control Invalid Flag) and reset when CIF is LOW.

Synchronization Mark Detection

Bit synchronization is achieved when the illegal 5-bit code
of all ones is read from the tape. It is the logical AND of all
five bits, or BS = Y3 e Y2 ¢ Y1 @ YO ® SOUT.

YO
S o [[
Y1
(/] 0 1 1
Y2
o | o 1m
LiEIgc
N /
S0=0 v

Y1

Implementation Procedure

Once the conceptual design has been completed, it must be
reduced to practice. There are two main steps in the pro-
cess;

1. describe the logic using a high-level language, and
2. program the PAL device.

Several programs that run on the IBM PC (or equivalent)
or the VAXTM computer are available from either semi-
conductor manufacturers or from third party software ven-
dors. The first such program, called PALASMT™ (PAL
device Assembler) was developed by Monolithic Memories.
It enables the designer to describe the logic in terms of
Boolean equations, truth tables, or state diagrams using a
language whose syntax is comparable to a microcomputer
assembly language.

PALASM Equations

The equations were written in the PALASM syntax. The
(ASCII) file created using WORDSTAR in the non-docu-
ment (N) mode is shown in Figure 8.

Conversion to ABELT™

The PALASM file (GCREX.PAL) was then translated to
ABEL syntax using the TOABEL program. The format of
the command is:

TOABEL —IB:GCREX —OB:GCREXT

The TOABEL program converted the GCREX.PAL file to
a file named GCREXT.ABL, whose listing is shown in
Figure 9.

YO
T] [
o @] o | o
Y2
000|1
|]o
Y3
S0=1

0060-14

INV = Y0SOUT + Y3Y2 + Y3 Y1 Y0 + Y3 Y2 Y1 YOSOUT
Figure 7

4-30

%
SEMICONDUCTOR

PAL® C 16R6 GCR Encoder/Decoder

ABEL Program Procedure

The ABEL program consists of an executive and several
overlay programs that are executed by simply typing in;

ABEL B:GCREXT

followed by an enter (CR) from the keyboard of an IBM
(or look-alike) PC. The ABEL program was developed by
a programmer manufacturer, Data I/0 Corporation. The
source file may be simplified (logic reduction), a logic sim-
ulation may be performed, and test vectors may be generat-
ed.

ABEL Programs
The ABEL programs are:

Program Name Function

PARSE Read source file, check syntax, expand

macros, act upon assembler directives.

TRANSFOR | Convert the description to an intermediate
form.

REDUCE Perform logic reduction.

FUSEMAP Create the programmer load (JEDEC) file.

SIMULATE | Simulate the operation of a programmed

device.

DOCUMENT | Create a design documentation file.

ABEL Outputs
The output files are:

GCREXT.LST
GCREXT.OUT
GCREXT.DOC
GCREXT.SIM
P16R6.JED

see Figure 10
(This design was not simulated.)
see Figure 11

PALASM Equations

PAL16R6
PATOOL
4B-5B ENCODER/DECODER
CYPRESS SEMICONDUCTOR
CK ML MO D3 D2 D1 DO /EN /CIF GND

JE SIN /INV YO Y1 Y2 Y3 SOUT /BS VCC
/SOUT := EN*/SOUT

JEN* /M1* /MO* /SIN

/EN* /M1*MO* /YO

JEN* /M1* /MO* /SIN

JEN*/M1* MO* D1*/DO

/EN*/M1* MO* D3*/DO

DESIGN EXAMPLE

The last file is in JEDEC (JC-42.1-81-62) format; suitable
for loading into a PLD programmer. The listing is shown
in Figure 11. The DOCUMENT program output is shown
in Figure 10.

Programming the 16R6

The 16R6 was programmed using the Data 1/0 model 29B
programmer operated in the remote mode to the PC. The
design was then verified by checking out the device on the
bench.

Summary

Space Saving Advantage

This design example illustrates the space saving advantage
of Cypress CMOS PAL devices. The FUSEMAP program
printed out that 40 of the 64 available product terms were
used.

If the PALASM input equations of Figure 8 are imple-
mented in two-input gates, approximately thirty gates are
required for each one of the six D flip-flop inputs, or a total
of 6 X 30 = 180 two-input gates. The logic equations
alone would then require 180 divided by 4 = 45 14 pin
DIPs. The six flip-flops would require three 14 pin DIPs
for a total of 48 DIPs. This example demonstrates the pow-
er of the Cypress PAL devices.

Power Saving Advantage

The maximum Icc current, under worst case conditions,
for the PAL C 16R6L-25PC is 45 mA.

If the typical Icc per package is assumed to be 10 mA, the
total Icc for 50 TTL packages would be 500 mA.

The worst case Icc for the TTL system could be as high as
20 mA per DIP, which would mean a total of one Ampere
for the system.

The Cypress CMOS PAL device results in a system power
reduction of between a factor of 10 or 15, depending upon
whether typical or worst case numbers are compared.

FILENAME ; GCREX.PAL
BRUCE WENNIGER 9/17/85

HOLD/RECIRCULATE
SERIAL SHIFT IN
SERIAL SHIFT OUT
3 CONV. SIN & LOAD
CONV. PAR. & LOAD
DITTO

+ 4+ + + +

.o

Figure 8

% - PAL® C 16R6 GCR Encoder/Decoder
SEMICONDUCTOR
PALASM Equations (Continued)

/Y0 = EN*/YO + ; HOLD
/JEN* /M1* /MO* /SOUT + ; SERIAL SHIFT IN
JEN*/M1* MO*/Y1 + ; SERIAL SHIFT OUT
/EN* M1*/MO*/SOUT + ; CONV. SIN & LOAD
JEN* ML*/MO* Y3* Y2* /YO + ; DITTO
/EN* M1* MO* D2*/D1*DO + ; CONV. PAR. & LOAD
/EN* M1* NMO* D3*/D1* DO + ; DITTO
/EN* M1* MO*/D3*/D1*/DO ; DITTO
/YL = EN*/YL + ; HOLD
/JEN* /M1* /MO* /YO + ; SERIAL SHIFT IN
/JEN*/M1* MO*/Y2 + ; SERIAL SHIFT OUT
/JEN* M1*/MO* /YO + ; CONV. SIN & LOAD
/JEN* M1*/MO* Y3* Y2 + s DITTO
JEN* M1* MO*/D2 ; CONV. PAR. & LOAD
/Y2 = EN*/Y2 + ; HOLD
JEN* /M1* /MO* /Y1 + ; SERIAL SHIFT IN
JEN*/M1* MO*/Y3 + ; SERIAL SHIFT OUT
JEN* M1*/MO* /Y1 + ; CONV. SIN & LOAD
/EN* M1* MO*/D3* D1 + ; CONV. PAR. & LOAD
, JEN* M1* MO*/D3* D2* DO ; DITTO
/Y3 = EN*/Y3 + ; HOLD
/EN* /ML* /MO* /Y2 + ; SERIAL SHIFT IN
/EN*/M1* MO*/SOUT + ; SERIAL SHIFT OUT
JEN* M1*/NMO* Y3* SOUT + ; CONV. SIN & LOAD
JEN* M1*/MO*/Y2 + ; DITTO
JEN* M1* MO® D3* DO + ; CONV. PAR. & LOAD
/EN* M1* MO* D3* D1 ; DITTO
INV :=/CIF* INV + HOLD INV FLAG

(ACTIVE LOW)
CIF* M1*/MO*/Y3*/Y2 + SET IF INVALID
CIF* M1*/MO*/¥3/Y1*/Y0 + ; DITTO
+
+

e we we

CIF* M1*/MO*/Y0*/SOUT s DITTO

CIF* M1*/MO* Y3* ¥Y2* Y1* YO* SOUT DITTO
BS = Y3* ¥2* Y1* Y0* SOUT BIT SYNC.
(ACTIVE LOW)

we

e we

Figure 8 (Continued)

4-32

%
SEMICONDUCTOR

PAL® C 16R6 GCR Encoder/Decoder

ABEL Listing

module --gcrext ; flag '-r0;
title

'PAL16R6 DESIGN EXAMPLE
PATOO1

4B-5B ENCODER/DECODER
CYPRESS SEMICONDUCTOR
-Translated by TOABEL-';
P16R6 device 'P1l6R6';

"declarations
TRUE,FALSE = 1,0;
H,L = 1,0;
X,2,C = Xe,.2.,.C.
GND,VCC

pin 10,20;
CK,M1,M0,D3,D2,D1,D0,EN,CIF,E
1,2,3,4,5,6,7,8,9,11;

INV,YO0,Y1,Y2,Y3,S0UT

pin

FILENAME: GCREX.PAL

BRUCE WENNIGER 9/17/85

pin 13,14,15,16,17,18;
SIN,BS
pin 12,19;
equations
IsouT := !EN & !SOUT
EN & !M1 & IMO & !SIN
EN & !M1 & MO & !YO
EN & M1 & !MO & !SIN
EN & M1 & MO & D1 & !DO
EN & ML & MO & D3 & !DO ;
" HOLD/RECIRCULATE
" SERIAL SHIFT IN
" SERIAL SHIFT OUT
" CONV. SIN & LOAD
" CONV. PAR. & LOAD
" DITTO
Y0 := IEN & YO
EN & M1 & !MO & !SOUT
EN & !M1 & MO & !Y1
EN & M1 & !MO & !SOUT
EN & ML & IMO & Y3 & Y2 & !YO
EN & M1 & MO & D2 & !D1 & DO
EN & M1 & MO & D3 & !D1 & DO
EN & M1 & MO & !D3 & !D1 & !DO;
Figure 9

4-33

SEMICONDUCTOR

ABEL Listing (Continued)
* HOLD
" SERIAL SHIFT IN
. » SERIAL SHIFT OUT
" CONV. SIN & LOAD

% ' PAL® C 16R6 GCR Encoder/Decoder

"DITTO

"CONV. PAR. & LOAD

"DITTO

*DITTO

Y1 = IEN & Y1
EN & ML & IMO & !YO
EN & IML & MO & !¥2
EN & ML & IMO & !YO
EN & ML & MO & Y3 & Y2
EN & ML & MO & D2 ;

"HOLD

"SERIAL SHIFT IN
"SERIAL SHIFT OUT
"CONV. SIN & LOAD

"DITTO
"CONV. PAR. & LOAD
Y2 := IEN & !¥2
EN & IML & !MO & !Y1
EN & ML & MO & !Y3
EN & ML & IMO & !Y1
EN & ML & MO & !D3 & D1
EN & ML & MO & !D3 & D2 & DO
"HOLD

"SERIAL SHIFT IN
"SERIAL SHIFT OUT
"CONV. SIN & LOAD
"CONV. PAR. & LOAD
"DITTO

Y3 !EN & Y3

EN & ML & !MO & !¥Y2

EN & !M1 & MO & !SOUT

EN & M1 & !MO & Y3 & SOUT
EN & M1 & !MO & !Y2

EN & M1 & MO & D3 & DO

EN & M1 & MO & D3 & D1 ;
Figure 9 (Continued)

#OH % % % %

4-34

%Ym B PAL® C 16R6 GCR Encoder,/Decoder
SEMICONDUCTOR

ABEL Listing (Continued)
"HOLD
"SERIAL SHIFT IN
"SERIAL SHIFT OUT
"CONV. SIN & LOAD

"DITTO

"CONV. PAR. & LOAD
"DITTO

LINV = CIF & !INV

ICIF & M1 & !MO & !¥3 & !¥Y2
ICIF & M1 & !MO & !¥3 & !Y1 & !YO
ICIF & M1 & !MO & !YO & !SOUT
ICIF & ML % IMO & Y3 & Y2 & Y1 & YO & SOUT ;
" HOLD INV FLAG
" SET IF INVALID
" DITTO
" DITTO
" DITTO
!BS = Y3 & ¥2 & Y1 & YO & SOUT;
" BIT SYNC.
end --gcrext ;

% W

Figure 9 (Continued)

4-35

&=
SEMICONDUCTOR

Document File

PAL® C 16R6 GCR Encoder/Decoder

ABEL™ Version 1.10 - Document Generator

PAL16R6
PATOO1

DESIGN EXAMPLE

4B-5B ENCODER/DECODER
CYPRESS SEMICONDUCTOR

-Translated by TOABEL-

Equations for Module ~--gcrext

Device P1l6R8

Reduced Equations: ’
SOUT := !(!EN & !SOUT

Y1 :

Y2 :

Y3

INV =

#
#
#
#

= %

I B N N N L B N R T A T

#F ® % % % W

(CIF &

EN & IMO & !ML & !SIN
EN & MO & IM1 & !YO

EN & IMO & M1 & !SIN

DO & DL & EN & MO & M1
DO & D3 & EN & MO & M1);
IEN & YO
EN & IMO &
EN & MO &
EN & MO & M1 & !SOUT

EN & IMO & ML & !YO & Y2 & Y3
DO & !D1 & D2 & EN & MO & M1
DO & D1 & D3 & EN & MO & M1
DO & !DL & !D3 & EN & MO & M1) ;
IEN & V1

EN & IMO & IML & !YO

EN & MO & IMl & !Y2

EN & IMO & M1 & !YO

EN & IMO & M1 & Y2 & Y3

D2 & EN & MO & M1);

IEN & V2

EN & IMO & M1 & !V1

EN & MO & !M1 & !Y3

EN & MO & ML & !¥1

DL & ID3 & EN & MO & M1

DO & D2 & !D3 & EN & MO & M1);
IEN & V3

EN & IMO & IM1 & !v2

EN & MO & !ML & !SOUT

EN & IMO & M1 & SOUT & Y3

EN & IMO & M1 & !V2

DO & D3 & EN & MO & ML

Dl & D3 & EN & MO & M1);

1INV

IM1 & !SOUT
IM1 & !Y¥1

Figure 10

4-36

Page 1
- 17=-Sept=-85 8:30 AM

FILENAME ; GCREX.PAL
BRUCE WENNIGER 9/17/85

% PAL® C 16R6 GCR Encoder/Decoder
SEMICONDUCTOR

Document File (Continued)

Page 1
ABELI™ VERSION 1.10 - Document Generator 17 Sept-85 8:30 AM
PAL16R6 DESIGN EXAMPLE FILENAME: GCREX.PAL
PATOO1 BRUCE WENNIGER 9/17/85

4B-5B ENCODER/DECODER
CYPRESS SEMICONDUCTOR
-Translated by TOABEL~
Equations for Module =--gcrext
Device P16R8
ICIF & !MO & Ml & !¥Y2 & !Y3
ICIF & !MO & M1 & !YO & !Y1 & !¥3
ICIF & MO & M1l & !SOUT & !YO
ICIF & !MO & M1 & SOUT & YO & Y1 & Y2 & Y3);
BS = !(SOUT & YO & Y1 & Y2 & Y3);
Chip diagram for Module --gcrext
Device P16R6

% %

Figure 10 (Continued)

PAL C 16R6
\/

CK —
M1 -
MO —
D3 —
D2 —
D1 —

20f- Ve
19f-8s
18}~ sout
173
— v2
151
14}-vo
13}~ inv
12— SIN

EN —
CIF —
GND —

© 0 NG AE NN =
N

-
o
-
-
T
™

0060-15
end of module =--gcrext

4-37

% ! ' PAL® C 16R6 GCR Encoder/Decoder

JEDEC File

ABEL™ Version 1.10 JEDEC file for: P16Reé
Created on: 17-Sept-85 8:30 AM
PAL16R6 . i DESIGN EXAMPLE FILENAME: GCREX.PAL
PATOO1 ‘ BRUCE WENNIGER 9/17/85
4B-5B ENCODER/DECODER

CYPRESS SEMICONDUCTOR
-Translated by TOABEL-*

QP20* QF2048*

L0000
11111111111111111111111111111111
11111101110111011101110111111111
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
111111101111111111121111110111111
10111011111111111111111101111110
10110111111111111111111001111111
01111011111111111111111101111110
01110111111111110111101101111111
01110111011111111111101101111111
00000000000000000000000000000000
00000000000000000000000000000000
11111111111011111111111110111111
10111011111111101111111101111111
10110110111111111111111101111111
01111001110111111111111101111111
01111011111111101111111101111111
01110111011111111111011101111111
01110111011111110111111101111111
00000000000000000000000000000000
00000000000000000000000000000000
111111111110111111112111110111111
10111011111111101111111101111111
10110110111111111111111101111111
01111001110111111111111101111111
01111011111111101111111101111111
011111111111311111111011101111111
01110111011111110111111101111111
00000000000000000000000000000000
11111111111111101111111110111111

Figure 11

4-38

%
SEMICONDUCTOR

PAL® C 16R6 GCR Encoder/Decoder

JEDEC File (Continued)
10111011111112111110111101111111
10110111111011111111111101111111
01111011111111111110111101111111
01110111101111110111111101111111
01110111101101111111011101111111
00000000000000000000000000000000
00000000000000000000000000000000
11111111111111111110111110111111
10111011111111121111111001111111
10110111111111101111111101111111
01111011111111111111111001111111
01111011110111011111111101111111
01110111111110111111111101111111
00000000000000000000000000000000
00000000000000000000000000000000
11111111111111112111111010111111
10111010111111111111111101111111
101101112211111111110122101211111
01111011111111111111111101111111
01111011110111011111111001111111
01110111111101111011011101111111
01110111011111111011011101111111
01110111101111111011101101111111
11111111111112111111111111100111
01111011111011101111111111111011
01111011111011111110111011111011
01111010111111111111111011111011
01111001110111011101110111111011
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000*
C8E51*

D15A

4-39

Figure 11 (Continued)

...

NOTES:

PAL® C 16R6 GCR Encoder/Decoder

4-40

.
A
ARV .
Am——
—
o ..

———ae. . 0% ¥
NS S v

‘& CYPRESS

—= 2~ SEMICONDUCTOR

~—————

Using ABEL to Program the Cypress 22V10

Introduction

This document is a compilation of application examples
using the popular PALC22V10 Programmable Logic
Device. The examples have been chosen to demonstrate
the advanced features of the PALC22V10 and some of
the high-level logic description techniques of the ABEL
programming langauge. Each of the first seven ex-
amples illustrates a specific PALC22V10 feature. The
feature is described and the ABEL programming lan-
guage statements necessary to implement the feature
are listed. The ABEL files contain test vectors that ex-
ercise the feature. The remaining examples are com-
plete PALC22V10 designs that combine many of the in-
dividual features. All of the examples have been tested
and are available, by request, on floppy disk from
Cypress Semiconductor. The design examples provided
are:

1. Asynchronous Reset/Synchronous Preset from-
Single Inputs

2. Asynchronous Reset/Synchronous Preset from
Product Terms

3. Asynchronous Reset/Synchronous Preset Used
to Load Predetermined Non-Zero Values using
"Istype’ Statements

4. Output Enable Control from a Single Input

5. Output Enable Control from Product Terms

6. Using 16 Product Terms - An 8-bit Identity
Comparitor

7. Using Feedback to Realize More than 16
Product Terms in a 9-bit Single Output Identity
Comparitor

8. Bi-Directional 1/O - Bus Interface with
Answer-back

9. 10-bit Address Generator / Multiplexer

10. Triple State Machine Example

The PALC22V10 application examples are meant to be
used as a reference for design engineers. These are ex-
cellent tools both for the designer new to programmable
logic and for the veteran PLD user. All are encouraged
to add the files to their ABEL source file libraries and
to include any part of the files in their own designs. The
files may be used as a template by editing them using
any text editor in the non-document mode. Conversion
to the CUPL® or PLD ToolKit® programming lan-
guage is easily accomplished; the syntactical similarity
of these languages makes this possible. For conversion
to other languages, consult your user’s guide.

Notes on the ABEL Programming Language

This section is provided as a brief introduction to the
structure and syntax of the ABEL programming lan-
guage. A rudimentary understanding of the ABEL lan-
guage is necessary to fully appreciate the example files
included in this brief. Experienced ABEL users may
skip this section and proceed directly to the examples.
An ABEL source file provides the information neces-
sary to describe the logical operation of a PLD design.
The keywords and structure of these files can be seen in
any of the examples. Source files are processed by the
ABEL language processor which yields a JEDEC
programming file and documentation of the design. The
language processor also uses test vectors generated by
the designer as part of the source file to test the
functionality of the design.

ABEL Design Entry Methods

The ABEL programming language offers three methods

4-41

=
= T oo

<

Using ABEL to Program the 22V10

for defining the logical operation of given design. These
methods are:

1. Boolean Equation
2. Truth Table
3. State Diagram

A source file may include any or all of these design
entry methods. The following sections describe the
Boolean equation, truth table, and state diagram entry
methods as well as the operators and notation conven-
tions used in the source files.

ABEL Operators and Notation Conventions

In addition to the standard AND and OR logical
operators, ABEL supports. several high-level logic
definitions. "+" and "*¥' signs, which in standard
Boolean notation stand for OR and AND ‘operations
respectively, are interpreted by ABEL to be arithmetic
addition and multiplication. This greatly simplifies the
design of counter and ALU logic. Table 1 below shows
the logical operators supported by ABEL. The labels A,
B, and C in the examples may be either individual pins
or a set of pins as defined in the source file.

Table 1. ABEL Logical Operators

Operator Definition Example
! NOT: ones compliment C = !A;
& AND C=A&B;
OR C=A#B;
$ XOR: exclusive OR C=A$B;
1$ XNOR: exclusive NOR C = A!$B;

Note that these operators may be used with operands of
more than one bit on a bit by bit basis. For example, the
result of logically ORing hexidecimal values of 8 and 2
yields hexidecimal value A:

~h08 # ~h02 = ~hOA

Specifying Alternate Number Bases

Note the "~ h" symbols in the example above. This sym-
bol instructs the language processor to interpret the
value following the symbol as base-16 (hex). The default
number base in ABEL is decimal but can be changed

for individual expressions with ~b (for binary), ~ o (for
octal), ~d (for decimal), or ~h (for hexidecimal). The
"@ radix" command can be used to change the default
number base to binary, octal, decimal or hexidecimal
for all subsequent statements in a source document.
The command "@ radix 16" is used in all of the source
files in this brief to set the number base to hexidecimal.

Arithmetic Operators

Arithmetic operators are provided to allow for easy im-
plementation of math and shifting functions. Table 2
lists the arithmetic operators supported by ABEL.

Table 2. ABEL Arithmetic Operators

erator Definition Example
- 2s complement C = -A;
- subtraction C=A-B;
addition C=A + B;
* multiplication C = A * B;
/ integer division C = A/B;
% remainder C=A%B;
< shift left C=A<2
(shift left 2 bits)
> shift right C=A>3
(shift right 3 bits)

Shifting operations are unsigned and zeros are shifted
into the side of the expression opposite the direction of
the shift. Also note that the symbol /" is interpreted as
an unsigned division operation. Other programmable
logic languages use this symbol to indicate inversion.
The symbol "%" gives the remainder of the division
operation performed by "/".

Relational Operators

Relational operators perform various comparisons of
elements in an expression and yield a Boolean true or
false based on the result of the comparison. These
operators greatly simplify the description of magnitude
comparisons and reduce an identity comparison to a
single statement. All relational operations are unsigned;
care must be taken when negative numbers are repre-
sented in twos compliment. Table 3 lists the relational
operators.

442

= IS o

Using ABEL to Program the 22V10

Table 3. ABEL Relational Operators

Operator Definition Example
== equal C=(A==B),
f= not equal C=(A!=B);
< less than C=(A<B);
> greater than C=(A>B);
<= less than or equal C=(A< =B);
> =

greater than or equal C=(A> =B);

Relational operators are frequently used where ranges
of values cause a given output. For example, if a certain
active low chip select line (CS1) is to be decoded for
any address from ~h2000 and " h2FFF, the logic for
this output could be written in a single line as:

ICS1 = (ADD > = ~h2000) & (ADD < = "~ h2FFF);

Assignment Operators: Combinatorial and
Registered

Note that all example operations shown so far are for
purely combinatorial outputs. The structure for com-
binatorial equations is:

OUTPUT(s) = Expression(s) and/or Condition(s);

The assignment operator is the "=", meaning that
OUTPUT(s) will combinatorially follow the evaluation
of the expressions and conditions. If an output or set of
outputs is registered (changing synchronously with the
rising edge of the clock), the assignment operator ":="
is used. The structure of a registered equation, shown
below, is essentially the same as a combinatorial equa-
tion with the exception of this assignment operator:

OUTPUT(s) : = Expression(s) and/or Condition(s);

Operator Priority

Operators in an expression are evaluated using a hierar-
chy of priority. If two or more operators with equal
priority are used in a single expression, they are
evaluated in the order listed from left to right within the
expression. Table 4 lists the priority of all operators.

Table 4. ABEL Operator Priority.

Highest Priority
- Twos compliment, not subtraction
! Inversion, ones compliment

Second Highest Priority
< Shift left
> Shift right

* Multiply
/ Unsigned division
% Remainder from division

Third Highest Priority
+ Add

- Subtract
OR
$ XOR
1$ XNOR

Lowest Priority
All Relational Operators

==, !=)<’>’< =,> =):

Parentheses may be used as in normal mathematics to
alter the order of evaluation. The operation in the in-
nermost parentheses is performed first.

Special Constants

Several special constants are supported that ease the
writing of equations and test vectors. Table 5 lists these
special constants and their functions.

Table 5. ABEL Special Constants

Special Constant Definition

C. Clock: causes a low-high-low
transition at a selected input for
testing.
Floating input or output
Same as .C., but high-low-high
Register preload
Don’t care condition
Tests input or output for high
impedance

NxTRE

4-43

S
SEMICONDUCTOR

In order to use several of these constants in an ab-
breviated form and to enable the symbols "H" and "L" to
represent binary ones and zeros, the following state-
ment is placed in the labels section of all source docu-
ments included in this brief:

HLXCZ = 1,0,X..C,Z;

Logic Reduction Levels

At the beginning of every source file in this brief, the
statement

flag ’-r4

is used. This signals the language processor to use logic
reduction level 4. In cases where propagation delays of
a specific length are required, the statement

flag ’-rQ’

is used, which indicates no reduction may be used. Four
levels of logic reduction are available to the designer as
listed in Table 6.

Table 6. ABEL Logic Reduction Levels
Level Statement Description
0 flag ’-r0’
must be in sum-of-products

form.

Equations are expanded to
sum-of-products form and
reduced with standard Boolean
algebra. This is the default.
Includes level 1 reduction plus
the PRESTO algorithm. This
process is iterative, so process-
ing time is increased sig-
nificantly.

The PRESTO algorithm is per-
formed on a pin-by-pin basis.
This is faster than standard
PRESTO reduction.

.This reduction level uses the
ESPRESSO reduction algo-
rithm.

1 flag >-r1’

2 flag ’-r2’

3 flag *-r3’

4 flag ’-r4’

No reduction. All equations -

Using ABEL to Program the 22V10

ABEL Design Entry: Boolean Equations

This is the most common method of design entry. Each
pin required for a given application is given a name. If a
design requires the use of the special functions (i.e.,
reset and preset) that are available in many devices, the
nodes that control these functions are also identified
and named. The PALC22V10 has two such nodes;
Asynchronous Reset (node 25) and Synchronous Preset
(node 26). Groups of pins and/or frequently used con-
stants may then be given labels to facilitate writing
equations.

Following the keyword "EQUATIONS" in the source
file, Boolean equations using the pin, node, and/or label
names are generated to describe the required logic.

If an output has an output enable term associated with
it, the user may write an equation for that term by using
the pin name with the extension ".OE" followed by the
equation for the term. An example of this is:

OUT1.0E = IRD & (INPUTS = = 0);

This statement causes OUT1 to be enabled if pin RD is
low and the group of pins (can be any number of pins)
labeled INPUTS are all low. If these conditions are not
met, the output remains tri-stated.

The PALC22V10 has a separate combinatorial output
enable product term for each I/O pin. The output
enable is therefore easily controlled by either a single,
selectable pin or from a product term. To make an out-
put enable synchronous or to expand the number of
product terms available, an I/O macrocell can be dedi-
cated to realizing the appropriate logic with the output
of the macrocell being fed back to control the OE
product term. However, this method causes additional
propagation delay due to the extra pass through the
AND/OR array.

The use of the enable equations is purely optional; in
the absence of any such equations, the ABEL language
processor automatically enables any 1/O pin that is
defined in the Boolean equations as an output (appears
on the left side of an equation) and disables any I/O
that is specified as an input.

The operators and syntax of all Boolean equations are
outlined in this brief. Additional information can be

4-44

=W & CYPRESS
g‘i SEMICONDUCTOR

Using ABEL to Program the 22V10

found in the ABEL Language Reference and User’s
Guide that are supplied with the ABEL software from
DATAL/O®

ABEL Design Entry: Truth Tables

A truth table is a list of input combinations and the
resulting outputs. Normally, the inputs will be listed in
ascending binary order from the minimum value to the
maximum value. This takes all possible input situations
into account and prevents any undefined input com-
binations from producing undesirable outputs.

The keyword "TRUTH_TABLE" marks the beginning
of the table within the source file. Immediately follow-
ing the keyword, the input(s) and output(s) labels are
listed in parentheses with an arrow (composed of a
minus sign and a greater than sign "->") between the
inputs and outputs. If more than one input or output is
specified, square brackets "[]" must enclose the set. Fig-
ure 1 illustrates the statements required to implement a
3 to 8 line decoder. Note the use of the set identifier
Q7.Q0. This could have been written out as
Q7,Q6,Q5,Q4,Q3,Q2,Q1,Q0.

truth_table

((12,11,10] - > [Q7..Q0])

[0,0,0] -> [070,0’0)0a0»0,1];

[0,0,1] -> [0,0,0,0,0,0,1,0);

[0,1,0] -> [0,0,0,0,0,1,0,0};

[071’1] -> [0,0,0,0,1,0,0,0];

[1,0,0] -> [0,0,0,1,0,0,0,0];

[1,0,1] -> [0,0,1,0,0,0,0,0];

[1,1,0] -> [0,1,0,0,0,0,0,0];

[1,1,1] -> [1,0,0,0,0,0,0,0];

Figure 1. Truth Table for 3:8 Line Decoder

The main advantage of the truth table entry method is
found in writing test vectors; the entire truth table can

be block copied to the test vector section of the source
file.

Any design specified by a truth table can be alternately
entered as boolean equations. For example, the output
Q6 in the above example could be represented by the
Boolean equation:

Q6 = 12 & I1 & !10;

ABEL Design Entry: State Machine Syntax

One of the most powerful features of the ABEL
programming language is its ability to directly compile
state diagrams. By allowing direct state diagram entry,
ABEL frees the designer from the tedious task of
generating Boolean equations that include the expres-
sions and conditions that cause each possible transition
for each individual state register.

The state machine syntax for each set of outputs
(several state machines can be implemented in a single
device) begins with the keyword "state_diagram" fol-
lowed by the pin names or labels that make up the state
outputs. Each state is then listed followed by any opera-
tions to be performed while in that state and at least
one transition statement. A transition statement can be
in any of three forms:

1. GOTO - for unconditional transitions to the
next state.

2. IF.THEN..ELSE - for two-way branching.
3. CASE..ENDCASE - for N-way branching.

IF. THEN. ELSE statements may be chained to achieve
n-way branching, but the CASE.ENDCASE construct
accomplishes the same thing with less typing. Use of
labels for state outputs and condition inputs enables
even the most complex designs to be implemented with
ease. As an example, consider a bi-directional 3-bit
counter with inputs UP and DOWN and outputs
Q2,Q1, and Q0. If UP or DOWN is high the counter is
to count in the direction specified. If both UP and
DOWN are high, the counter should hold the current
count. If both UP and DOWN are low, the counter
should reset to zero. In addition, let output MAX be
high if the counter is in the UP mode and the count
equals 7 or if the counter is in the DOWN mode and
the count equals zero. Convenient labels for implement-
ing such a design are shown in Figure 2.

"labels

OUTS = [Q2..Q0];

MODE = [UP,DOWN];

CNTUP = ~b10; CNTDWN = ~b01;
RST = ~b00; HOLD = “bll;

S0 = ~b000; S1 = ~b001; S2 = ~b010;
S§3 = ~b011; S4 = ~b100; S5 = ~b101;
S6 = ~bl110; S7 = ~bill;

Figure 2. State Machine Labels for Counter Example

445

S
=7 SEMICONDUCTOR

Using ABEL to Program the 22V10

For the required operation, the state diagram for this
design is listed in Figure 3.

state_diagram OUT
state S0: MAX = (MODE = = CNTDWN);
case (MODE == CNTUP):S1;
(MODE = = CNTDWN) : 7,
(MODE = =HOLD) : S0;
(MODE = = RST) :S0;
endcase;
state S1: MAX = (;
case (MODE = = CNTUP) : S2;
(MODE = = CNTDWN) :S0;
(MODE = = HOLD) : S1;
(MODE = = RST) :S0;
endcase;
state S2 : MAX = 0;
case (MODE == CNTUP) : S3;
(MODE = =CNTDWN):S1;
(MODE = = HOLD) : S2;
(MODE = = RST) : S0;
endcase;
state S3 : MAX = 0;
case (MODE = = CNTUP) : S4;
(MODE = =CNTDWN) :S2;
(MODE = = HOLD) : S3;
(MODE = = RST) : S0;

endcase;
state S4 : MAX = 0
case (MODE = = CNTUP) : S5;
(MODE = = CNTDWN): S3;
(MODE = = HOLD) : S4;
(MODE = = RST) :S0;
endcase;
state S5 : MAX = 0;
case (MODE = = CNTUP) : S6;
(MODE = = CNTDWN) : S4;
(MODE = = HOLD) : S5;
(MODE = = RST) :S0;
endcase;
state S6 : MAX = 0;
case (MODE = = CNTUP) : S7,
(MODE = = CNTDWN) : S5;
(MODE = = HOLD) : S6;
(MODE = = RST) :S0;
endcase;

state S7:MAX = (MODE = = CNTDWN);
case (MODE = = CNTUP) : S0;
(MODE = = CNTDWN): S6;
(MODE = = HOLD) : S7;
(MODE = = RST) :S0;
endcase;
Figure 3. ABEL Source Code for Counter Example

An additional statement, WITH..ENDWITH, can.be

added to any transition statement. This allows addition- -
al outputs to be set to any given state when the transi-

tion preceding the WITH..ENDWITH statement is ex-

ecuted. For example, in the previous state diagram, as-

sume a pin called FLAG is to be set by the transition

from state S5 to S6. The S5 diagram would be modified

as shown in Figure 4.

state S5 : MAX = 0
case (MODE = = CNTUP) : S6
with FLAG := 1;
endwith
(MODE = = CNTDWN): S0;
(MODE = = HOLD) :S5;
(MODE = = RST) :S0;
endcase;

Figure 4. WITH..ENDWITH Example

PALC22V10 Design Examples

The following design examples exploit the various fea-
tures of the PALC22V10 Programmable Logic Device.
The first seven designs focus on particular features and
illustrate the techniques for using and testing these fea-
tures. The last three designs combine several of the fea-
tures to demonstrate the device’s versatility. It is the
tremendous versatility of this device that has made it
the most popular of all Cypress PLDs. Each of the last
three designs, if implemented in SSI and MSI TTL
logic, would require from seven to thirteen packages.

Asynchronous Reset/Synchronous
from a Single Pin

Preset,

This example, as shown in Figure 5, defines pins 2 and 3
to be the Asynchronous Reset and Synchronous Preset
inputs, respectively. . Eight inputs defined as
INPUT7.INPUTO are given the label INPUTS. Eight
corresponding outputs, OUTPUT7.OUTPUTOQ, are
labeled OUTPUTS. Note how the use of labels enables
the logic for all eight outputs to be written in a single
equation. The equation:

OUTPUTS := INPUTS;

causes the data at INPUTS to be registered in OUT-
PUTS on the rising edge of CLK. The operation is indi-
cated to be clocked (registered) by the assignment
operator ":=". The clock input on the PALC22V10 is,
by definition, pin 1.

446

=F S wwcror

Using ABEL to Program the 22V10

module Rst_Prel

flag *-r3’

"Cypress Semiconductor Corp. 11/10/1987
"Module name test

"Logic Reduction level r3, fast PRESTO

title ’Asynchronous Reset / Synchronous Preset Control From A Single Input

"Device designator and type

U1 device ’P22V10’;

"Pin assignments
CLK pin1; "Clock input
RST pin 2; "Defines async reset pin
PRE pin 3; "Defines sync preset pin
INPUT7,INPUT6,INPUTS,INPUT4 pin 4,5,6,7;
INPUT3,INPUT2,INPUTLINPUTO pin 8,9,10,11;
OUTPUT7,0UTPUT6,0UTPUTS,OUTPUT4 pin 23,22,21,20;
OUTPUT3,0UTPUT2,0UTPUTL,OUTPUT0 pin 19,18,17,16;
reset,preset node 25,26; "Pre-assigned node #s

"Labels
H,LX,C,Z = 1,0,X.,.C.,.Z.;
INPUTS = [INPUT7..INPUTO};
OUTPUTS [OUTPUT7..0UTPUTO];
@radix 16; "This command forces the default

"number base to HEX.
equations
reset = IRST; "Async reset when pin RST low
preset = PRE; "Sync preset if pin PRE is high during the rising edge of CLK
OUTPUTS 1= INPUTS; "The := indicates that this a clocked (synchronous) operation
test_vectors

"Test reset and preset

([CLK,RST,PRE,INPUTS] -> OUTPUTS)

[CH,L,55] -> 55;
[LHLO0AA] -> 55;

"Test outputs by clocking in 55
"Test registers hold old data (55)

[CHL0AA] -> 0AA; "Clock AA (leading zero necessary for hex digits A-F)
[C,H,L,0FF] -> OFF; "Set all outputs high (FF)
[L,L,L,0FF] -> 0; "RST low asynchronously
[C,H,H,0] -> OFF; "PRE high synchronously

end Rst_Prel
Figure 5. Reset/Preset from Single Pins
The predefined node numbers for the reset and preset

functions are identified in the pin assignments section.
The equations for the nodes in terms of the selected

pins are then written in the equations section of the file.

447

@;Z

SEM'ICO\IDUCF OR

Using ABEL to Program the 22V10

module Rst_Pre2

flag >-r3’

"Cypress Semiconductor Corporation, 11/10/1987
"Module name test
"Logic Reduction level r3, PRESTO algorithm by pin

title *Asynchronous Reset / Synchronous Preset Example 2, Reset and Preset generated from Product terms’

W3k sk sk 3k ok sk sk ok ok ok ok sk ok ke ok ok ok ok ok sk sk sk o sk ok ok ok ok ok sk ok ok ok sk sk sk ok ok sk sk ok sk ke sk ok skl ok ok ok ok sk ok sk ok ko ok ok ok

"* This Example will Asynchronously Reset all registers when the inputs
"* Synchronously Set all registers when the inputs equal AA

Mok sk ok ok sk sk ke ke ke sk sk s sk ok ok ok sk sk sk sk ke sk sk ok ok ke sk stk sk sk ok skl ok sk sk skl s sk sk ok ke ok sk sk skl ok sk sdok ok sk sk ko ok

"Device designator and type

U1 device 'P22V10’;

"Pin assignments
CLK pin 1; "Clock input
INPUT7,INPUT6,INPUTS,INPUT4 pin 4,5,6,7;
INPUT3,INPUT2,INPUTLINPUTO pin 8,9,10,11;
OUTPUT7,0UTPUT6,0UTPUTS,0UTPUT4 pin 23,22,21,20;
OUTPUT3,0UTPUT2,0UTPUTL,OUTPUTO pin 19,18,17,16;
reset,preset node 25,26; "Pre-assigned node #s

"Labels
HLXCZ = 1,0,.X.,.C.,.Z.;
INPUTS = [INPUT7..INPUTO];
OUTPUTS = [OUTPUT7..O0UTPUTO];
@radix 16 ;command forces the default number base to be HEX
equations
reset = (INPUTS = =55); "Async reset when input = 55
preset = (INPUTS = =0AA); "Sync preset if inputs = AA during the rising edge of CLK
OUTPUTS: INPUTS; "The : = indicates that this a clocked (synchronous) operation

test_vectors

([CLK,INPUTS] - > OUTPUTS)

"Test reset and preset

"Test outputs by clocking in 0

"Test registers hold old data (0)

"Clock in FF (note leading zero for hex digits A thru F)
"RST low asynchronously on inputs = 55

"No change, PRE is synchronous

"PRE acts synchronously on inputs = AA

Figure 6 . Reset / Preset From Product Terms

[Co -> 0;
[LOFF] -> 0
[COFF] -> OFF;
[L55] -> 0
[LOAA]-> 0;
[C,0AA]-> OFF;
end Rst_Pre2
Asynchronous Reset/Synchronous Preset

from Product Terms

This example, as shown in Figure 6, is similar to the ex-
ample in Figure 5 except that the reset and preset nodes
are now activated from product terms. In particular, the

reset node is high (active) only when INPUTS equal 55
hex. The preset term is similarly controlled by INPUTS
equaling AA hex. Note how the test vectors distinguish
and test the synchronous versus the asynchronous
operations.

4-48

Using ABEL to Program the 22V10

Using Reset and Preset to Load Predeter-
mined Values

In the examples in Figures 5 and 6, the positive,
registered output of the macrocells for the pins repre-
sented by OUTPUTS were used. This causes
asynchronous reset to cause all outputs to go low and
synchronous preset to cause them to go high.

This example demonstrates how "istype" statements, in-
cluded in the pin assignments section, can be used to
set any pattern of ones and zeros either asynchronously
with reset or synchronously with preset. Four paths exist
from the macrocells to the I/O pins. The Q and NOT Q
outputs of each macrocell’s register and the true and
inverted combinatorial terms that bypass the register
pass through a 4:1 multiplexer. The multiplexer is con-
trolled by architecture bits CO and C1, pictured in the
macrocell diagram in Figure 7 .

The istype statements allow the designer to select which
channel of the multiplexer is routed to the I/O pin. The
choices available are shown in Table 8.

Table 8. Macrocell Configuration Selections

An additional parameter in the istype statement allows
for selection of feedback paths. The choices are
feed_term, feed_reg, and feed_pin. An example show-
ing this parameter is:

OUTPUTS6 istype *pos,com,feed_pin’;

The PALC22V10 does not offer a feedback path from
product terms and the selection of a feedback path is
controlled by the same architecture bit (C1) that con-
trols the selection of registered or combinatorial out-
puts. To specify a feedback path for this device would
therefore be redundant.

Note from the test vectors in Figure 8 that the use of
istype statements does not affect the polarity of the out-
puts as described by the Boolean equations. Conversely,
if an output is defined as active low through a boolean
equation as in:

IOUTPUTG : = INPUTG;

the state of the register is inverted for both normal
operation and for reset and preset conditions.

A final note on using istype statements in conjunction

¢ co Cﬂﬂﬁm istype Values with the reset node: the PALC22V10 resets when Vcc is
0 0 RegActive Low ’neg, reg’ first applied to the chip. Istype statements and active
0 1 Reg,Active High ’pos, reg’ low Boolean equations give the designer the oppor-
1 0 Comb,Active Low ’neg, com’ tunity to force the device’s outputs to any desired state
1 1 Comb,Active High ’pos, com’ upon power up.
ASYNC RESET
GLOBAL CLOCK
SYNC PRESET
OUTPUT ENABLE
PTERM)
1
SUM OF S
PRODUCTS "ol i o —TOLOPIN
R 3
I I
{>c Co
FEEDBACK o 0
TO ARRAY S 1
7—
C1

Figure 7. The PALC22V10 Macrocell

4-49

= - Using ABEL to Program the 22V10
%; SEMICONDUCTOR
"Cypress Semiconductor Corporation, 11/10/1987
module Rst_Pre3 "Module name test
flag *-r3’ "Logic Reduction level r3, PRESTO algorithm by pin

title ’Asynchronous Reset/Synchronous Preset Example 3, Using Reset and Preset to Load to Predetermined States
5k sk sk sk sk sk sk s o sk o sk sk ok ok sk ok ke ks o s ok ok sk sk sk sk sk st st st s o sk ok ok ok e e e e ke sl sl st st st st sk ok sk sl ke ke st sk ok ok ok ok ok ok sk ok R Sk ok ok ok ok '
"* This Example will Asynchronously Load a Value of 55 and Synchronously Load ~ *
"* Value of AA by using ’istype’ statements to invert alternating output registers *
M3k 3k sk sk ok s ok ok sk sk sk ok ok sk ok 3k s st ok sk sk sk sk ok sk sk sk sk ok ok sk sk sk o sk sk sk sk sk ok o sk ok sk sk ok sk ok sk ok sk ok sk sk ke sk ok sk koo ok ok ok ok sk ok sk ko kok ok

"Device designator and type
U1 device "P22V10’;

"Pin assignments

CLK pin 1; "Clock input

RST pin 2; "Defines async reset pin
PRE pin 3; "Defines sync preset pin
INPUT7,INPUT6,INPUTS,INPUT4 pin 4,5,6,7;
INPUT3,INPUT2,INPUTLINPUTOQ pin 8,9,10,11;

OUTPUT7,0UTPUT6,0UTPUTS,OUTPUT4 pin 23,22,21,20;
OUTPUT3,0UTPUT2,0UTPUT1,0UTPUTO pin 19,18,17,16;
OUTPUT7,0UTPUTS,0OUTPUT3,0UTPUT1 istype ’pos;reg’; "Odd regs positive logic
OUTPUT6,0UTPUT4,0UTPUT2,0UTPUTO istype ‘negreg’; "Even regs negative

reset,preset node 25,26; "Pre-assigned node #s
"Labels
HLX,CZ = 1,0,X.,.C.,.Z.;
INPUTS - = [INPUT7.INPUTO];
OUTPUTS = [OUTPUT7..0UTPUTO];
@radix 16; "command forces the default number base to be HEX
equations
reset = IRST; "Async reset when pin RST low
preset = PRE; "Sync preset if pin PRE is high during the rising edge of CLK
OUTPUTS 1= INPUTS; "The : = indicatese that this a clocked (synchronous) operation

test_vectors
([CLK,RST,PRE,INPUTS] - > OUTPUTS) "Test Reset and Preset

[C,H,L,55] -> 55; "Test outputs by clocking in 55

[LLHL0AA] -> 55; "Test registers hold old data (55)

[CHL0AA] -> 0AA; "Clock in AA (note the leading zero necessary for hex digits A thru F)
[C,H,L,0FF] -> OFF; "Set all outputs high (FF)

[L,L,L,0FF] -> 55; "RST low asynchronously (bits 6,4,2,0 inverted)

[CH,H,0] -> 0AA; "PRE high synchronously (bits 6,4,2,0 inverted)

end Rst_Pre3
i Figure 8. Resetting and Presetting to Predetermined Values

4-50

&

SEMICONDUCTCR

Using ABEL to Program the 22V10

Output Enable Controlled by a Single Pin

The example in Figure 9 defines pin 2 to be the output section of the file. The constant is used in the test vec-
enable pin for all outputs. Note the use of special con- tors to verify the outputs are tristated (high-Z) under
stant ".Z." which is redefined as simply "Z" in the labels the appropriate conditions.

module Out_Enablel

flag *-r3’

"Cypress Semiconductor Corporation November 10, 1987
"Module name
"Logic Reduction level r3

title ’Output Enable from Single Input Example ’

U1 device 'P22V10’;

CLK
OE

INPUT7,INPUT6,INPUTS5,INPUT4
INPUTS3,INPUT2,INPUTL,INPUTO
OUTPUT7,0UTPUT6,0UTPUT5,0UTPUT4 pin 23,22,21,20;
OUTPUT3,0UTPUT2,0UTPUT1,0UTPUT0 pin 19,18,17,16;

reset,preset

HLX,CZ
INPUTS
OUTPUTS
OUTEN

@radix 16;
equations
OUTEN
OUTPUTS

test_vectors

([CLK,OE,INPUTS]
[CL,55] >
[LH0AA] ->
[LL0AA] ->
[CLOAA] >
[C,H,0FF] >
[LLX] >

end Out_Enablel

]

[}

1,0,X.,.C.,.Z.;

ke sk ke sk ke sk ok ok ok ok ok ok ok sk sk ok ok sk sk ok sk ok ok sk ok ok sk ok sk ok ok sk sk sk sk sk ok sk ok sk ok sk ok sk ok ok ok

"* This example demonstrates the Output Enable, *

"* Function being controlled by a single input
3k sk sk sk sk sbe sfe Sk sk 3k 3k 3k 3k Sk 3k Sk Sk Sk 3k 3Kk 3 3k 3K 3k 3k Sk sk sk 3k s sk ok sk ok sk sk sk ok sk ok ok sk ok sk skeske sk

*

"Device designator and type
"Pin assignments

pin1l; "Clock input

pin 2; "Output enable input
pin 4,5,6,7;

pin 8,9,10,11;

node 25,26; "Pre-assigned node #s
"Labels

[INPUT7..INPUTO];
[OUTPUT7..OUTPUTO};
[OUTPUT7.0E..OUTPUTO.OE];

10E;
INPUTS;

"This command forces the default number base to be HEX

"Outputs enabled only if pin OE is low

"Test output enables

-> OUTPUTS)

"Test outputs by clocking in 55 (outputs enabled)

"Test outputs go to high-Z state on OE high

"Test registers hold old data (55)

"Clock in AA (note the leading zero necessary for hex digits A thru F)
"Set all outputs high (FF) but tri-stated

"Turn outputs on and read FF

Figure 9. Output Enable Controlled by a Single Input

4-51

% Py o Using ABEL to Program the 22V10
SEMICG‘IDUCI'OR -

"Cypress Semiconductor Corp. 11/10/1987
module Out_Enable2 "Module name
flag *-r3’ "Logic Reduction lcvel 3
title *Output Enable From a Product Term Example’

W3k sk ok sk sk sk sk ok ok ok sk ok sk ok ok e sk ke ok ok ok sk sk sk ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok skook okok Kok ok ok

"* This example demonstrates the Output Enable *
“"* Function being controlled by a product term *

3k sk sk ok ok sk ok ke sfe sk ok ok sk sk ok sk ok ol s sk sl dke sk ok ok sk sk ok ok sk ok sk sl sk sk ok ok sk sk sk sk sk ke ko ke ok

U1 device 'P22V10%; i "Device designator and type
"Pin assignments

CLK, OE ' pin1,2; "Clock and Output Enable inputs
INPUT7,INPUT6,INPUTS,INPUT4 pin 4,5,6,7;
INPUT3,INPUT2,INPUTLINPUTO pin 8,9,10,11;

OUTPUT7,0UTPUT6,0UTPUTS,OUTPUT4 pin 23,22,21,20;
OUTPUT3,0UTPUT2,0UTPUT1,0UTPUTO pin 19,18,17,16;

reset,preset node 25,26; "Pre-assigned node #s

HLX,C,Z = 1,0,.X.,.C.,.Z.; "Labels

INPUTS = [INPUT7.INPUTO];

OUTPUTS = [OUTPUT7..OUTPUTO];

@radix 16; "This command forces the default number base to be HEX

equations "Each Output individually enabled if the corresponding dlgltal code is applied at

"inputs and OE is low
OUTPUTO0.0E = (INPUTS = = 0) & !OE; OUTPUT1.0E = (INPUTS == 1) & !OE;
OUTPUT2.0E = (INPUTS = = 2) & |OE; OUTPUT3.0E = (INPUTS = = 3) & |OE;
OUTPUT4.0E = (INPUTS = = 4) & |0E; OUTPUTS5.0E = (INPUTS = = 5) & !OE;
OUTPUT6.0E = (INPUTS = = 6) & !OE;
OUTPUTS : = INPUTS; o
test_vectors
([CLK,OE,INPUTS] -> [OUTPUT7..0UTPUTO(})

[C,H,55] -> [2,2,2,2,2,2,7,7);

[L,H,0] -> [2,2,2,2,2,2,2.7);

[L,L,0] -> 12,2,2,2,2,72,7.1);

[L,L1] -> [2,2,2,2,2,7.0,Z]; "Loads 55, checks OE high overrides
[L,L)2] -> [2,2,2,2,2,1,2,Z]; "all enable terms, then enables and
[L,L,3] -> [2,2,2,2,0,2,2,7], "checks all outputs one at a time
[L,L,4] -> [2,2,2,1,2,2,2,Z];

[L,L,5] -> [2,20,2,2,2,2,Z]};

[L,L,6] -> [2,1,2,2,2,72,7.7];

[L’L’7] -> [O’Z’Z’Z’ZaZ)Z)Z];
end Out_Enable2

Figure 10. Separate Output Enables Controlled by Product Terms

4-52

s

Using ABEL to Program the 22V10

]
=4 TiBowror

Output Enables
Terms

Controlled by Product

While Figure 9 illustrated gang control of all output
enables via an input pin, Figure 10 shows several outputs
all with individual output enables generated from
separate product terms.

As with reset and preset, output enables can be made
synchronous or have the number of product terms ex-
tended by using a macrocell to generate the necessary
logic and "looping back" the term via a feedback path.
This method incurs additional propagation delay due to
passing through the AND/OR array twice.

The special constant ".Z." is used in the test vectors for
this design to verify the operation of outputs in the tri-
stated (high-Z) mode.

An 8-Bit Identity Comparitor

This example (refer to the source code in Figure 11)
points out how the variable product term architecture
(16 product terms maximum) of the PALC22V10
enables direct implementation of logic that would re-
quire multiple feedback terms to implement in standard
PLDs. (Standard 20 pin PLDs have only 8 product
terms per output.)

An n bit comparitor requires 2 to the nth power
product terms to implement. The 8 bit comparison is
achieved here by decomposing the 8 bits into two 4 bit
comparisons and using I/O pins 18 and 19 (these pins
have 16 product terms each) for each 4 bit comparison.
The results of each 4 bit comparison are available at
these outputs one tpg after a match is detected

Note how the inputs and outputs are used in more than
one label (Figure 11). This facilitates writing equations
and test vectors for the individual 4 bit fields and the
complete 8 bit fields

Using Feedback to Realize More Than 16
Product Terms: A Single Output 9-Bit Iden-
tity Comparitor

This example is very similar to the example in Figure 11,
except the DATA inputs are rearranged to enable the
two 4 bit comparitor outputs to be fed back and
ANDed with the result of the single, 9th bit compare.
The result is a single DATA = INPUTS output called

INEQDATA.

The disadvantage of this implementation is that an addi-
tional tpa is incurred by feeding the individual 4 bit
comparitor outputs back through the AND/OR array.
Note that although the terms fed back to INEQDATA
represent 34 (16 + 16 + 2) product terms, only three
of the 8 product terms available at I/O pin 23 are used;
each of the three individual compares have already
been reduced to single signals by the time they reach
the AND/OR array for this pin. The extra product
terms could be used along with a separately defined
input for cascading the design to n-bit length. This
source code for this example is shown in Figure 12.

Bidirectional I/O: Bus Interface Data Trap
with Answer-back

This example (refer to the source code in Figure 13)
demonstrates the bidirectional 1/0 capabilities of the
PALC22V10. An 8 bit pattern is supplied to INPUTS
and is continuously compared to the data on
DATA7.DATAOQ. This design was created for an ap-
plication where DATA7.DATAOQ was the data bus of a
Z80 microprocessor. If the interrupt is enabled (pin IN-
TRENBL is high), the 8 bit comparitor output drives
pin INTR active (low). In response, the Z80 drives pin
IDREQ high. This requests that the device that initiated
the interrupt places its 8 bit ID code on the data bus. In
this example, the ID code used is “h55. Any code
may be used by modifying the equation for DATA in
the source file.

10-Bit Counter, Address Generator/Multi-
plexer

The application that inspired the example in Figure 14
was the address generation circuitry for the front end of
a high-speed data acquisition module. The design re-
quires two modes of operation. In the ACQUIRE
mode, the 10 address lines are generated by counters.
In the READ mode, the same addresses are generated
by a microprocessor’s address lines. In the original
design, quad 2:1 multiplexers were used to select which
source, the counters or microprocessor, would actually
provide the address information. The entire circuit, ex-
cluding the SRAM being addressed, consisted of 11 SSI
and MSI TTL components. The example given here im-
plements the equivalent circuitry in a single
PALC22V10.

4-53

%ﬁz f Using ABEL to Program the 22V10

CYPRESS
Z SEMICONDUCTOR

"Cypress Semiconductor Corporation = November 10, 1987
module AllTerms "Module name

flag ’-r3’ "Logic Reduction level 13, PRESTO algorithm by pin

title *Using 16 Product Terms; An 8-bit Identity Comparitor ’
Mok sk she ke ok ok sk sk ok sk sk sk sk sk s ke sk sk e sk sk s sk sk st ok oo sk ke s sk ke sk sk sl sk sk sk ok sk sk sk ok sk ok ok sk sk ok ok sk ok sk ok sk ok o ok ok ol ok sk ok sk ki ok ok sk ok sk ok ki ok
"* In this design, an 8-bit word is presented at I/O pins 23,22,21,20,17,16,15 and 14.
"* These pins are used for inputs only in this example. The 8-bit word is compared, 4 bits
"* at a time, to inputs INPUT?7..0. Combinatorial outputs COMPHI and COMPLO show
"* the result of each 4-bit comparison. Pins 19 and 18 are used as the comparitor outputs

"* since these pins have enough Product Terms (16) for the required 4-bit comparisons.
"***

U1 device "P22V10; "Device designator and type

"Pin assignments
CLK pin 1; "Clock input (NOT used)
INPUT7,INPUT6,INPUTS5,INPUT4 pin 4,5,6,7;
INPUT3,INPUT2,INPUT1,INPUTO pin 8,9,10,11;
DATA7,DATA6,DATAS DATA4 pin 23,22,21,20;
DATA3,DATA2,DATA1,DATAQ pin 17,16,15,14;
COMPHI,COMPLO pin 19,18; "Comparator outputs
reset,preset node 25,26; "Pre-assigned node #s
HLX,C,Z = 1,0,X.,.C.,.Z.;
INPUTSH = [INPUT7..INPUT4]; "High-order nibble
DATAH = [DATA7.DATAA];
INPUTSL = [INPUT3..INPUTO]; "Low-order nibble
DATAL = [DATA3.DATAO];
DATA = [DATA7.DATAO}; "All 8 bits
INPUTS = [INPUT7..INPUTO);
@radix 16;
equations
COMPHI = (INPUTSH = = DATAH); "High-order nibble compare
COMPLO = (INPUTSL = = DATAL); "Low-order nibble compare

test_vectors }
. ([DATA,INPUTS] -> [COMPHI,COMPLOY])

[0’0] -> [H’H]; [1’1] -> [HyH]; [2’2] -> [H:H];
[4’4] -> [H:H]; [838] -> [H’H]; [OF,OF] -> [H’H];
[0EOE]-> [HH]; [0D,OD]-> [HH]; [0B,0B] ->[H,H];
[7a7] -> [H’I{]; [OaOF] -> [H’L]; [OFO’OF] -> [L’L];
(0F00] -> [LHJ; [OFOOFF]-> [HL);

end AllTerms

Figure 11. Using 16 Product Terms : An 8-Bit Identity Comparitor

4-54

Using ABEL to Program the 22V10

=P
?i SMCONDUCTOR

"Cypress Semiconductor Corporation November 10, 1987

module CompFB "Module name

flag *-r3’ "Logic Reduction level r3, PRESTO algorithm by pin

title "Using Feedback to Realize more than 16 Product Terms; A Single Output, 9-bit Identity Comparitor

>

3k sk sk 3k sk ok ok sk sk ok ok ok ok ok sk 3k ke ok ok sk sk ok sk sk sk ok sk e sk sk sk sk 3k ok 3k sk sk sk ok sk sk sk ok ok ok sk sk ok ok sk sk sk ok ok ok sk ok sk ok sk ok ok ok sk ok ok ok ok ok skok sk ok ok ok

"* In this design, an 9-bit word is presented at pins 23,22,21,20,17,16,11,10 and 9. *
"* These pins are used for inputs only in this example. The 8 LSBs of the 9-bit word are *
"* compared, 4 bits at a time, to inputs INPUT?7..0. Combinatorial outputs COMPHI and *
"* COMPLO show the results of each 4-bit comparison. Pins 19 and 18 are used as the *

"* comparitor outputs since these

pins have enough Product Terms (16) for the required *

"* 4-bit comparison. The MSBs (bit 8) of DATA and are compared at output COMPMSB. *
"* Outputs COMPMSB, COMPHI, and COMPLO are ANDED together to form output *

"* INEQDATA.

*

M3k sk sk sk ok ok ok sk ok ok sk 3k sk ok sk sk sk ok sk ok sk ok ok ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk ok ok sk sk sk sk sk 3k sk sk ok sk ok sk ok sk ok sk ok ok sk ok 3k ok sk 3k sk ok ok sk ok ok ok ok ok ok

U1 device 'P22V10’;

INPUTS,INPUT7,INPUT6,INPUT5 INPUT4
INPUT3,INPUT2,INPUT1,INPUTO
DATA8,DATA7,DATA6,DATAS5DATA4
DATA3,DATA2,DATA1,DATAQ
COMPH,COMPL,COMPMSB,INEQDATA
reset,preset

HLX,C,Z = 1,0,X..C.,.Z,;

"Device designator and type
"Pin assignments

pin 1,23.4.5;

pin 6,7,8,9;

pin 10,11,13,14,15;

pin 16,17,20,21;

pin 19,18,22.23; "Comparator outputs

node 25,26; "Pre-assigned node #s

INPUTSH = [INPUT7.INPUT4]; "High-order nibble
DATAH = [DATA7.DATAA4];

INPUTSL = [INPUT3..INPUTO]; "Low-order nibble

DATAL = [DATA3..DATAOQ];

DATA = [DATAS8..DATAOQ]; "All nine bits

INPUTS = [INPUTS..INPUTO};

@radix 16;

equations

COMPH = (INPUTSH = = DATAH); "High-order nibble compare
COMPL = (INPUTSL = = DATAL); "Low-order nibble compare
COMPMSB = (INPUT8 = = DATAS); "MSB compare
INEQDATA = COMPH & COMPL & COMPMSB; "Logical AND of all comparisons

test_vectors

([IDATA,INPUTS] -> [COMPH,COMPL,COMPMSB,INEQDATA])

0o -> [HHHH; [11,111] ->

[2222] -> [HHHH]; [44] ->

[88,88] -> [HHHH];, [IFF1FF]->

[0,100] -> [HHLL;; [IFF0FF]->

[IFE,IFF]-> [HLHL]; [IFEIEE]->
end CompFB

[H,H,HH];
[H,H,H,H];
[H,H,HH];
[HHLL];
[L,H,H,L];

Figure 12. Realizing More Than 16 Product Terms Through Feedback: A 9-Bit, Single-Output Identity Comparitor

4-55

Shhinai

& Creress
=7 oo

module BiDirect
flag *-r3’

Using ABEL to Program the 22V10

"Cypress Semiconductor Corp., 11/10/1987
"Module name test
"Logic Reduction level 13, PRESTO algorithm by pin

title "Bi-Directional I/O A Bus Interface Data Trap with Answer-Back’

M3k sk ok ke sk sk ok ok sk ok sk sk sk sk seoak ok sk sk ke sk sk sk sk sk sk sk s sk ok sk sk sk sk ok ok ok sk sk sk ok ok sk sk ok ok sk sk ok sk ik sk e sk sk sk sk sk st ok sk ok skl sk ok sk ok ok sk ok ok ok ok ok

"* This example compares the pattern at pins INPUTS to the data on data bus pins *
"* DATA7..DATAO. Pin INTR is driven low if they match and INTRENBL (interrupt *
"* enable) is high. Input IDREQ is then driven high, requesting ID code (~h55 in *
"* this example) to be put on the data bus *

03k 3k sk 3k sk sk ok Sk sk 3k ok ok sk sk ok ok 3k ok sk ok sk ok st sk sk ok ok sk ke sk ke 3k sk sk ok sk ok sk sk sk sk sk sk ok sk ok ke ok ke sk sk 3k ok Sk st sk sk sk 3k st sk st sk sk sk sk ke sk ok ok ok sk ok k ok

U1 device 'P22V10’;

IDREQ, INTRENBL pin 2,3; ", Output Enable, Interrupt Enable

COMPL,INTR

pin 19,18; "Used in comparision of 4 LSBs

INPUT7,INPUT6,INPUTS,INPUT4 pin 4,5,6,7;
INPUT3,INPUT2,INPUT1,INPUTO pin 8,9,10,11;

DATA7,DATA6,DATAS5DATA4 pin 23,22,21,20;

DATA3,DATA2,DATA1,DATAOQ pin 17,16,15,14;

reset,preset node 25,26; "Pre-assigned node #s
HLX,CZ = 10,X.,.C.,Z;

INPUTS = [INPUT7..INPUTO); "All inputs

INPUTH = [INPUT7.INPUT4]; "High order nibble of INPUTS
INPUTL = [INPUT3.INPUTO]; "Low order nibble of INPUTS
DATA = [DATA7.DATAO]; "All data I/Os

DATAH = [DATA7.DATAA4]; "High order nibble of DATA
DATAL = [DATA3..DATAO]; "Low order nibble of DATA
DATAOE = [DATA7.0E.DATA0.OE];

IDCODE = " h55; "Identification code

equations

DATAOE= IDREQ; "Enables ID output onto data bus
DATA = IDCODE; "Identification code for device (™~ h55)
COMPL = (DATAL = = INPUTL); "4 L.SBs compare

IINTR = (DATAH = = INPUTH) & COMPL & INTRENBL; "INTR active low, All bits equal and

test_vectors

"interrupt enabled (INTRENBL high)

(IDREQ,INTRENBL,DATA,INPUTS] -> [COMPL,INTR,DATA])

[L,H, ™ hOF, ~ h1F] -> [H,H,X]; "Low nibble equal,high not equal
[LH, ~ hOF0, ~hOF1] -> [LH,X]; "High nibble equal, low not equal
[L,L,~hOAA,~hOAA] -> [H,H,X]; "Test Interrupt Enable
[LH,"h0AA, ~“h0AA] -> [HLX]; "DATA = INPUTS, INTR goes active (low)
[L,H, ~h55,~h55] -> [H,L,X];
[H,H,Z X] -> [X,X,IDCODE]; "DATA pins output IDCODE (" h55)

end BiDirect

Figure 13. BiDirectional I/O : Bus Interface Data

4-56

Using ABEL to Program the 22V10

>
= S oo

module AddGenMux flag >-r3’ "Cypress Semiconductor Corporation November 10, 1987
title *10-bit Address Generation / Multiplexer IC’

3k sk sk 3k ok 3k ok ok ok sk sk ok sk ke ok ok sk sk sk sk sk 3k sk e sk ok sk sk ok sk sk sk sk ok sk sk 3k sk ok ok sk koK skokok ok skok ok ko ok ok

"* This PLD design generates Address signals A0-A9. *
"* If Control signal MODE is high, the address signals *
"* are the output of a 10-bit counter. If MODE is low *
"* the device passes uP Address lines UPADDO-UPADD9 *
s sk ok sk ok ok sk sk 3k sk sk sk s sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk Sk sk sk 3k 3k sk 3k ok sk sk sk sk sk ok sk ok ok ok ok ok ok ok kok sk sk Rk
AdrsGen device "p22v10’;
CLK pin 1; "System Master Clock
A0,A1,A2,A3,A4,A5,A6,A7,A8,A9 pin 14,15,16,17,18,19,23,22,21,20;
UPADDO,UPADD1,UPADD2,UPADD3 pin 2,34,5;
UPADD4,UPADDS5,UPADD6,UPADD7 pin 6,7,8,9;
UPADDS,UPADD9 pin 10,11;
MODE pin 13;
reset,preset node 25,26;
HLX,C,Z = 1,0,X.,.C.,.Z;
AOUT = [A9..A0]; "Address Outputs
UPADD = [UPADDSY..UPADDO]; "uP Address Lines
@radix 16;
equations "Boolean equations
reset = (UPADD = = 0) & MODE; "Reset if uP Address = 00 and MODE is low
AOUT 1= ((AOUT + 1) & MODE) "Count up if MODE high or
(UPADD & !MODE); "Pass UPADD if MODE low
test_vectors "Check Operation
([CLK,UPADD,MODE] -> AOUT)
[X,0,L] -> 0; "Checks Reset Function
[CXH]-> 1; [CXH] -> 2; [CXH]-> 3; [CXH]->4;
[CX,H]-> 5 [CXH] -> 6; [CXH]-> 7; [C,X,H]->8;
[CX,H]-> 9; [CXH] -> 0A; [C,XH]-> 0B; [C,X,H]->0C;

[CXH]-> 0D; [CXH]-> OE [CXH]-> OF [CXH]->10;
[CULL}-> 111; [C222L)-> 222; [CA4L]-> 44, [CS8.L]->88;
[CREEL}-> 2EE; [CIDD,L]-> 1DD; [C3BBL]-> 3BB; [C377L}->377;
[C155L]-> 155 [CR2AAL]-> 2AA; [C3FFL]-> 3FF; [C222,H]->00;
[COFFL]-> OFF; [CXH]-> 100

[C1FF,L]-> 1FF; [CXH]-> 200; "Load to states where all 8 LSBs
[C2FF,L]-> 2FF; [CXH]-> 300; "are high (uP mode), then toggle in
[C,3FF,L]- > 3FF, [CXH]-> 0; "counter mode

end AddGenMux

Figure 14. 10-Bit Address Generator/Multiplexer

Note the how the MODE pin in the equations for the
AOUT outputs controls the source of the addresses.
Also note the use of the asynchronous reset node; the
reset term is generated by the condition of the MODE
being set for microprocessor access (low) and the

processor address itself being zero. Although the effect
at the outputs (all outputs = zero) is the same as if the
reset term was not included, it gives the processor a
method of resetting all the registers to a known state
before allowing the counters to free run again.

4-57

Using ABEL to Program the 22V10

B S o

Timing Diagram for 10-bit Address Gener-
ator / Multiplexer

One of the more interesting features of the ABEL
SIMULATE program is its ability to generate timing
diagrams for specified pins based on the test vectors in
a source file. Although the timing diagrams do not show
propagation delays, they can be useful for verifying a
device’s in-circuit operation with a logic analyzer. The
SIMULATE output file shown in Figure 15 was
generated with the command line:

simulate -iaddmux.out -oaddmux.sim -t4 -
w1,2,3,4,5,13,14,15,16,17,18

The -i indicates the input file, which in this case is the
intermediate output file created by ABEL’s FUSEMAP
program. The -o tells SIMULATE where (into which

ABEL Version 2.00b Data I/O Corp.

Address Generation / Multiplexer IC

Simulate device AdrsGen, type "P22V10’

P Rals)
cgu»c
RECECE S N
CRCECI SR
moox

'V 0001
V 0002
V 0003
V 0004
V 0005
V 0006
V 0007
V 0008
V 0009
V 0010
V 0011
V 0012
V 0013
V 0014
V 001S
V 0016
V 0017
V 0018
V 0019
V 0020
V 0021
V 0022

I
| I
I |
| |
| |
| I
| |
| |
! |
I [
| |
| |
| |
I |
I |
| |
! _
|
!

cNoNoNoNeNesEesNosNoNoNoNoNoNoNoNoNoNo oo N e hund

Figure 15. ABEL Simulated Waveform

file) to write the results. The -t4 specifies the trace level
where waveforms are displayed and the -wl..18 indi-
cates which pins to show in the waveform output.

More information on the use of SIMULATE can be
found in the ABEL User’s Guide and Language Refer-
ence that are supplied with the ABEL software from
Datal/O.

Triple-State Machine

This final example demonstrates the power of the
PALC22V10 when used as a synchronous state
machine. The application was the redesign of the timing
circuitry for a radar system. The system performs 12
DFTs on each set of quadrature data returned in three
antenna beams that are gated for 9 ranges. The nonbi-
nary nature of these numbers (3 beams, 9 ranges, and
12 speed bins) made generating the timing signals with
counter circuits cumbersome.

This example creates three state machines in a single
PALC22V10. As can be seen from the state diagrams,
(shown in Figure 16) the filter state machine is free run-
ning. The beam state machine only changes states when
the filter outputs are in their maximum condition.
Similarly the gate information changes only if both the
filter and beam outputs are at the maximum values.

Note the combined use of boolean equations and state
diagrams. A separate state diagram is written for each
state machine, but the transitions are dependant upon
the condition of the other state outputs. Also of note is
the extreme use of labels for pins, groups of pins, and
the state outputs. This greatly simplifies the writing of
the state machine syntax and test vectors.

When first compiled, the ABEL FUSEMAP routine in-
dicated several outputs that had too many terms for the
physical array of the corresponding I/O pin. By carefully
arranging the I/Os, the design was made to fit. The flag
>-13’ reduction statement made the fit possible without
the tedium of generating and manually reducing
Boolean equations from the state diagrams.

The test vectors for this design are of particular inter-
est. Note how the @REPEAT command is used to
cycle through 35 states in order to make the gate state
outputs toggle. This powerful command lets 325 test
vectors be described in a concise and manageable man-
ner.

4-58

%; . Using ABEL to Program the 22V10
=

SEMICONDUCTOR

"Cypress Semiconductor Corporation November 10, 1987
module Statexam flag *-r3’
title *Timing Generation TRIPLE State Machine for DFT Processor using a Cypress Semiconductor PAL C22V10’
sk ke sk ok ok ok sk ok ok ok ok ok sk s sk s sk sk sk ok sk sk ok ok sk sk sk sk ok sk ok sk ok sk sk sk ke sk ok sk sk sk sk sk sk sk ok sk ok ok sk sk sk sk sk sk sk e sk ok ok ok sk skok sk kok ok
"* BEAM STATES - 0, 1, 2 (3 not used), GATE STATES - 0, 1,2, 4, 5,6, 8,9, A
" (3,7,B,C,D,E,F not used), FILTER STATES - 0, 1,2, 4,5,6,8,9, A, C,D, E
"* (3,7,B,F not used)

sk ok ke e sk sk sbe ok ke e sk sk sk ke e sk sk sbe sk e sk ok ok ke e sk sk sk ok sk s sk sk sk sk sk sk e s sk Sk sk st sk e s sk sk sk sk sk sk ok ok sk ok ok sk ke ok sk kR ok R ok R

U1 device 'P22V10’;

SYSCLK pin 1;

START pin 2; "Used for reset/power-up

ABO0,AB1,AB2,AB3,AB4 pin 23,14,22,15,21; "Pins are non-sequential to take advantage of
AB5,AB6,AB7,AB8,AB9 pin 16,18,19,20,17; "The variable number of product terms in the 22V10
reset,preset node 25,26; "Pre-assigned node #s

AB0,AB1,AB2,AB3,AB4 istype ’pos,reg’; "Unnecessary because ABEL will set architecture bits
ABS5,AB6,AB7,AB8,AB9 istype ’pos,reg’; "automatically - shown for example purposes only
HLXCZ = 1,0,X.,.C..Z;

ABall = [AB9..ABOJ;

FILT = [AB3..ABOJ;

BEAM = [AB5,AB4];

GATE = [AB9..AB6];

@radix 16;

"Filter States - note missing states
FO0 = 00; F1 = 01; F2 = 02; F3 = 04; F4 = 05; F5 = 06; F6 = 08;
F7 = 09; F8 = 0A; F9 = 0C; F10 = 0D; F11 = (E;

"Beam States
B0 = 00; B1 = 01; B2 = (2;

"Gate States
GO0 = 00; G1 = 01; G2 = 02; G3 = 04; G4 = 05; G5 = 06; G6 = 08; G7 = 09; G8 = 0A;
equations

reset = START; "Initialize to all lows on START
state_diagram FILT '

State FO: GOTO F1; State F1: GOTO F2; State F2: GOTO F3; State F3: GOTO F4;
State F4: GOTO F5; State F5: GOTO F6; State F6: GOTO F7; State F7: GOTO F8;
State F8: GOTO F9; State F9: GOTO F10; State F10: GOTO F11; State F11: GOTO F0;
state_diagram BEAM

State B0: case (FILT == ~b1110) :BI;

(FILT != ~b1110) :BO;
endcase;
State Bl: case (FILT == ~b1110) :B2; ‘"Increment ONLY if
(FILT != ~bl1110) :Bl; "FILT is at max (OE)
endcase;
State B2: case (FILT == ~b1110) :BQ;
(FILT != ~b1110) : B2;
endcase;

Figure 16. Triple State Machine (partl)

4-59

%‘? S Using ABEL to Program the 22V10
state_diagram GATE "Increments ONLY if BEAM and FILT are at max
State GO: case ((BEAM = = ~bl0) & (FILT == ~b1110)) :GI;

((BEAM = ~b10) # (FILT != ~b1110)) : GO;
endcase;

State G1: case ((BEAM == ~bl0) & (FILT = = ~b1110)) :G2;
((BEAM ! = ~b10) # (FILT != ~b1110)) : Gl

endcase;

State G2: case ((BEAM == ~bl10) & (FILT == ~b1110)) :G3;
((BEAM != ~b10) # (FILT !|= ~b1110)) 1 G2
endcase;

State G3: case ((BEAM == ~b10) & (FILT == ~b1110)) :G4%
((BEAM != ~b10) # (FILT != ~b1110)) : G3;

endcase;

State G4: case ((BEAM == ~b10) & (FILT = = ~b1110)) : GS5;
((BEAM != ~b10) # (FILT != ~b1110)) : G4

endcase;

State G5: case ((BEAM == "bl10) & (FILT == ~bl110)) :G6;
((BEAM = ~b10) # (FILT != ~b1110)) : G5;

endcase;

State G6: case ((BEAM == ~bl0) & (FILT == ~bl110)) :G7,
((BEAM = ~bl0) # (FILT != ~b1110)) : G6;

endcase;

State G7: case ((BEAM == ~bl0) & (FILT == ~b1110)) :GS;
((BEAM != ~bl0) # (FILT != ~b1110)) : GT;

endcase;

State G8: case ((BEAM == "bl10) & (FILT == ~b1110)) :G0;
((BEAM != ~b10) # (FILT != ~b1110)) : GS;

endcase;

test_vectors "Verifies devices operation
([SYSCLK,START] -> [GATE,BEAM,FILT])

[x’H] -> [GO,BO,FO];
[C.L] -> [GO,BO,F4];
[C,L] -> [GO,B0,F8];
[C,L] -> [GO,B1,F0];
[CL] -> [GO,B1,F4];
[C,L] -> [GO0,B1,F8];
[CL] -> [GO,B2,Fo};
[C,L] -> [GO,B2,F4];
[CL] -> [GO,B2,F8];
[CL]-> [G1,B0,F0};

[CL] -> [GO,BO,FO];

[CL] -> [GO,BOF1];
[CL] -> [GO,BOFS];
[CL] -> [GO,BO,F9;
[CL] -> [GOBLF1];
[CL]-> [GOBLFS];
[C,L] -> [GO,BLF9};
[CL]-> [GO,B2F1];
[CL] -> [GOBZF5];
[CL] -> [GO,B2F9];

[CL] -> [GO,BO,F2;[C,L] -> [GO,BO,F3];
[CL] -> [GO,BO,F6[C.L] -> [GO,BO,F7);
[CL] -> [GO,BO,F10[C,L] -> [GO,BO,F11];
[CL] -> [GO,BLF2J;[CL] -> [GO,BLF3];
[CL]-> [GO,BLF6J[CL] -> [GO,BLFT);
[CL] -> [GO,B1,F10};[C,L] -> [GO,B1,F11];
[CL] -> [GO,B2,F2;[C,.L] -> [GO,B2,F3};
[CL] -> [GO,B2,F6[CL] -> [GO,B2,F7];
[CL]-> [GO,B2FI0}[C,L] -> [GO,B2,F11];

"Gate output changes state here

@REPEAT ~D35 {[CL]-> [XXX]; } [CL]-> [G2,BO,FO; @REPEAT ~D35 {[C,L]-> [X,X,X]; } [CL] -> [G3,B0,F0};

@REPEAT ~D35 {[C,L] -> [X,X,X]; } [CL]-> [G4,B0,F0}; @REPEAT ~D35 {{CL]-> [X,X,X]; } [CL]-> [G5,B0,F0};

@REPEAT ~D35 {[CL]-> [X,X,X]; } [CL] -> [G6,B0,FO;@REPEAT ~D35 {[C,L] -> [X,X,X]; } [C,L]-> [G7,B0,F0];

@REPEAT ~D35 {[CL] -> [X,XX]; } [CL] -> [G8,B0,FO;@REPEAT ~D35 {[C,L]-> [X,X,X]; } [C,L] -> [G8,B2F11];
"Check the final state rolls over to the first

"This completes a run-through of ALL states, the following 2 vectors retest reset (START)
[CL] -> [GO;BOF1; [CH] -> [GO,BOFO};

end Statexam
Figure 16. Triple State Machine (continued)

4-60

A———
E

R o

—ithe...a 0% ¢

e \VEET |

y

= CYPRESS =

—= 2~ SEMICONDUCTOR

Using ABEL to Program the CY7C330

Introduction

ABEL is a very versatile logic design tool that has the
capability of programing over three hundred different
devices. Although the general documentation supplied
with ABEL is reasonably good, device-specific infor-
mation on the more complex PLDs is not always as
thorough as a user would like.

The Cypress CY7C330 is a very powerful PLD. Fea-
tures such as the input and buried registers allow the
CY7C330 to fit into a wide variety of applications. The
same features can make programming the device a chal-
lenge. This document describes how to access all the
features of the Cypress CY7C330 using ABEL 3.0 or 3.1
with examples. The text contains references to the
diagrams starting on page 4-82 of the 1989 Cypress
Data Book.

For anyone still using ABEL 3.0 and trying to program
the CY7C330 for the first time, there is a fatal flaw in
the supplied device driver. Both Cypress and Data I/O
have updated device drivers available. The device file
supplied with ABEL 3.1 is correct.

When ABEL went from 3.0 to 3.1, they changed the
name of the device file for the CY7C330. 'P330° was
used for revision 3.0 and 'P330A’ is used for 3.1, al-
though 3.1 will still compile with the non-’A’ device
name. The only difference between these two device
files is the syntax for specifying the shared input mux.

Input Registers

The CY7C330 contains 11 dedicated input macrocells.
There is also an input register associated with each one
of the 12 I/O macrocells which will be discussed later in

the document.

Pins 3 and 14 have dual functionality. Pin 3, can be
used as an input register or as clock input. Ten of the
eleven input registers have the ability to be clocked
from two different sources: pins 2 or 3. The choice of
the clock source is individually programmable on a
register-by-register basis. If an application requires only
one input clock source, pin 3 can be used as a normal
input. If an application requires both input clocks, pin 3
must be used as a clock input. There is a configuration
bit that must be changed in order to enable pin 3 as a
clock input.

The second of the dual functionality pins, pin 14, can be
used as an registered input or as a global asynchronous
output enable line. Control of the output enable on the
7C330 can originate from the product term array or
from pin 14. The choice is programmable on a register-
by-register basis. Control of the output enable will be
explained in more detail in the I/O macrocell section.

There are two ways of controlling the input register
clock mux. The most descriptive way is using the ".C"
suffix as shown in the DEMO330.ABL example file sup-
plied with ABEL 3.0/3.1. This method will work for the
dedicated input registers (pins 4-7, 9-14) but will not
work in ABEL 2.1 for the input registers in the I/O
macrocells. The r:ason is that for the twelve I/O macro-
cells, ABEL thinks the clock mux is for the output or
state register and not the input register.

The recommended method is using the macro com-
mands. The macro file supplied with ABEL 3.0 does
not include the complete list of macro needed to pro-

4-61

% & CYpRESS
SEMICONDUCTOR

Using ABEL to Program the CY7C330

gram all the clock muxes. The complete file is available
from Cypress. This file, P330.INC, contains the macros
needed to program all the clock muxes including the
input registers. A listing of the macro file is located in
Appendix A, at the end of this document. ABEL 3.1
comes with the complete macro file.

After the macro file is referenced in the ABEL source
file, the pin 3 clock must be enabled by the command
"CLK2'". Then, setting particular clock muxes is done
by entering "CLK2_n", where "n" is the pin number of
the input register. This is shown in the example code
below.

LIBRARY 'p330%;
"allows use of p330.inc macro file
CLK2;
" enables pin3 as a clock input
CLK2 5;
" pin 5 input reg uses the pin 3 clock
CLK2_15;
"pin 15 input reg uses the pin 3 clock

No macro statement is needed to specify the use of
clock 1 (pin 2) for input registers. Clock 1 is the clock
mux default setting for both the dedicated input
registers and the I/O macrocell input registers.

Accessing the data from one of the dedicated input
registers (pins 3-14) is handled the same as a straight
buffered input in ABEL . The only difference is that
input data is not available in the product term array
until after the appropriate input clock pulse is received.

Controlling the Output Enable

An output enable is specified by appending the suffix
.OE to the appropriate pin name. The user must define
whether control of the output enable mux comes from
pin 14 or the product term array. This is controlled by
configuration bit C0. The selection is made by using the
ISTYPE statement as follows:

OUT1,0UT2,0UT3,0UT4 pin 15,16,17,18 ;
"1/O pins

OUT1.0E,OUT2.0E ISTYPE "EQN’;
" OE is product term controlled

OUT3.0E,OUT4.0E ISTYPE °PIN’;
"OE is controlled by pin 14

When controlling the output enable with a product
term, the user has the option of setting it always on,
always off, or making it a combination of some number
of inputs or outputs. All three choices are illustrated in
the code below.

[OUTL.OE,OUT2.0E] = [1,1};

"permanently enable outputs
OUT3.0E = 0;

"permanently disable output
OUT4.0E = IN1 & IN2 & OUT1;

"OE controlled by IN1, IN2, OUT1

Using Preset and Reset

The CY7C330 has global synchronous preset and reset
capability. When used, it will set or reset all 12 state
registers and the 4 buried macrocell registers. There are
two things to watch out for when using set or reset. The
first is, when you reset the registers, all the outputs go
high if they are enabled. This is due to the inverter be-
tween the state register and the output as shown in the
macrocell schematic in Figure 1. The second thing to
watch out for is that the reset doesn’t occur for two
clock pulses if an input is designated as the set/reset
pin. This is because the reset data must be clocked into
the product term array using one of the two input
clocks first. The output registers must then be clocked
to cause the reset or set to occur.

There are two ways to access the set and reset
capability of the CY7C330. The first is to append the
suffix PR for preset, or .RE for reset to any output pin
or buried register node name. This syntax is shown
below.

OUTY, INPL, INP2 PIN 16,5, 6;

OUT1PR = INP1;
"preset all output nodes on INP1=1

OUT.RE = INP2;
"reset all output nodes on INP2=1

The second way of utilizing set and reset is using the
node notation shown below. The set and reset product
terms have been given the designations node 30 and 29,
respectively.

SET, RESET NODE 30, 29 ;

SET = INP1;
"preset all output nodes on INP1=1

RESET = INP2;
"reset all output nodes on INP2=1

4-62

Using ABEL to Program the CY7C330

SEMICONDUCTOR

Even though the reset and preset functions are
synchronous, an error will occur while parsing the equa-
tions if you use the ":=" notation, which is used to sig-
nify a registered operation.

Using the Macrocell as an Output Only

When using the I/O macrocell as an output, there are
two parameters to be concerned with. The first is the
setting of the macrocell feedback mux as controlled by
configuration bit C1. The second parameter is the con-
trol of the output enable as described in the previous
section. As with the output enable control, the con-
figuration bit for the feedback mux is set using the IS-
TYPE statement. When the input register is not used
data from the output register is typically fed back to the
product term array through the macrocell feedback
mux. In this case the ISTYPE will be followed by the
"FEED_REG’ attribute as shown in the example below.
ouUT1 PIN15;
"located in initial pin definitions

OUT1 ISTYPE 'FEED_REG’;
"sets C1=0, allowing feedback mux
"to pass data from state register

The ABEL default for the feedback mux configuration
bit (C1) is to take data from the state register. Thus the
ISTYPE 'FEED_REG?’; statement is not required, but it
is recommended that the defaults be documented.

Using the Macrocell as an Input Only

When the I/O macrocell is used as an input register, the
syntax is different. First, the output buffer must be tri-
stated. Next, the macrocell feedback mux must be set
to accept data from the input register (C1 must be set
to 1). The following example assumes that the output
register is not used at all. Keep in mind that the input
register clock defaults to clock 1 (pin 2) unless specifi-
cally changed.

INP1, INP2, OUT2 PINS,15,16;

INP2 ISTYPE 'FEED_PIN’;

" set C1=0, allowing feedback mux to
" take data from the input register

INP2.OE ISTYPE ’EQU’;
" set CO=0 for product term OE

EQUATIONS

INP2.OE = 0;
"tristate output buffer permanently

OUT1:= INP1§$ (SINPl & INP2)# INP3); OUT2:= INP1 & INP2;
"sample eq from ’equations’ section ET
RESET
ICLK1
ICLKO
OCLK
| CE
OE PTERM 5
—1 1! S °
! T

XOR PTERM ot | co

s

SUM QF D Q - TO I/Q PIN

PRODUCTS P 9B p— 5

T o

18
T
o ° C2)
S 1 Q
T
TO INPUT BUFFER C1 input
register
[}
-0
s 1
Cl3 shavedmls)l(aul
FROM ADJACENT
MACROCELL

Figure 1. The CY7C330 I/O Macrocell

4-63

Using ABEL to Program the CY7C330

& CyrRess.
=/ TS

Shared Input Multiplexer

Each pair of I/O macrocells has a shared input mux.
The shared input mux is used to feed data into the
product term array if both registers are used in an I/O
macrocell. A configuration bit (C3) controls whether
the input of the mux will be from an even pin number
macrocell or an odd. The ABEL default is that the data
is supplied from the even pin number macrocell. Chang-
ing to an odd pin requires invoking macros located in
the P330.INC file. The example in the next section
shows how this is done.

The purpose of the shared input mux is to allow
another path of feedback to the product term array.
This means there are three feedback paths per pair of
I/O macrocells. Thus, for every pair of macrocells only
three out the four registers are available for use. If the
resources of the CY7C330 are chosen wisely, this
should not be much of a limitation.

Using the Input and Output Registers

When using both the input and output registers in the
I/O macrocell, the most difficult task is getting the data
into the product term array.

There are two muxes that can be used to feed data from
the registers into the product term array. The state
register information must be fed back through the feed-
back mux controlled by configuration bit C1. Input
register data can be routed though the feedback mux or
through the shared input mux. Refer to Figure 1.

The state register output is referred to by the pin name
associated with the macrocell. The data being clocked
into the input register is referred to by using the node
name assigned to the shared input mux. The node num-
bers of the shared input muxes listed in Table 1.

Table 1. Shared Input Multiplexer Node Numbers

Node Number Mux Between Pins
35 15, 16
36 17, 18
37 19, 20
38 23,24
39 25,26
40 27,28

In ABEL, the configuration bit controlling the shared
input mux (C3) defaults to an even I/O pin. When the
input data is on an odd pin, a macro in the P330.INC
macro file can be used to change the C3 configuration
bit. The following example will also use clock 2 (pin 3)
to clock the input register.

BREG PIN15;

"BREG is outpu’t register for pin 15

INP1 NODE 35; i .
"INP1 is the input register for pin 15

BREG ISTYPE 'FEED _REG’;

"C1 is set to 0, mux routes Q of BREG
BREG ISTYPE ’EQN’;

"QE is product term controlled

LIBRARY ’P330’;
"enables use of the P330.INC file

CLK2;

"enables pin 3 clock
CLK2_15;

" enables CLK2 on pin 15 input reg
FEEDPIN_15;

"shared input mux control bit (C3) set
" This gives pin 15 an input path

EQUATIONS

BREG.OE = 0;
"disable output

BREG := BREG $ (INP1 & INP2); .
"BREG is fed back and INP1 is an input

The Exclusive OR Gate

On the D input of the 12 I/O macrocell output registers
and the 4 buried macrocell registers is an exclusive OR
(XOR) gate. This gate can be used for two purposes.
The first is to invert the polarity of a signal going into
the output register. This is accomplished by setting one
of the XOR inputs to a logic 1. ("$" is the ABEL signal
for XOR.) In the latest version of ABEL this can be
done as shown in the following example:

OUT1:= 1% (INP1 & INP2 & INP3);

In earlier versions, however, the reduction algorithms
will not recognize a "1" mixed with variables in an equa-
tion. The equivalent expression for earlier versions is:

OUT1 : = (INP1 # !INP) § (INP1&INP2&INP3);

The second use for the XOR gate is to do software
emulation of JK or T flip-flops. T flip-flops are more

4-64

= G Using ABEL to Program the CY7C330
%; SEMICONDUCTOR
SET
RESET
ICLK1
ICLKO
OCLK
E
OE PTERM 5
(o]
18
st 1 Co
SUMOF | ﬁ > o%a e TO YO PIN
PRODUCTS b o 1
(T INPUT) r |} s]
L] e
C1=0 I input
register
TO SHARED
INPUT MUX

Figure 2. The CY7C330 Macrocell as a T-Type Flip-Flop

efficient than D flip-flops when building counters and
state machines. Emulation of T-type flip-flops is ac-
complished by feeding back the output register’s Q out-
put and tying it to the XOR product term. The sum-of-
products input to the XOR becomes the T input. Refer
to Figure 2. This emulation can be done with boolean
equations such as the one below:

TFLOP := TFLOP $ (T input expression);

where "T input expression" is a legal sum-of-products
expression. A JK flip-flop is emulated using the same

Buried Macrocells

As mentioned before, the CY7C330 contains 4 buried
macrocells. Buried macrocells are accessed by assign-
ing a name to the buried register node number. The
node numbers are listed in Table 2.

Table 2. Node Numbers of Buried Registers

Buried Register | Node Number | Product Terms

. is en 1 31 13
configuration, and the relationship: 2 2 17

T = JIQ # KQ 3 33 1
The second way to configure an output flip-flop as a 4 24 19

T-type flop is to use an ISTYPE statement such as the
one in the next example. Although this syntax works for
simple state machines, ABEL is somewhat unpre-
dictable in more complicated applications. The resulting
reduced equations will not match the Jedec map, and
the simulator may not work. The following syntax
describes a simple 2 bit counter.

CLK, INSTB, IOE PIN 1, 2, 3, 14;

A buried macrocell is pictured in Figure 3. To use a
buried macrocell, assign a name to the node and use it
as if it were a normal output. The only difference is that
for the I/O macrocell there is an inverter between the
state register and the output pin. The inverter causes
ABEL to handle the polarity differently. This will be
discussed in the next section.

Q0, Q1 PIN 28, 27

Q0, Q1 ISTYPE 'REG_T; Polarity Conventions

QO0.0E, Q1.OE ISTYPE ’PIN’;

CNT = [Q1,Q0];) .
EQUATIONS As shown in later examples, the designer typically does
Q0.0E = OE; not have to worry about polarity of signals except when
Q1.0E = OE; sending data to an output pin. The reason for this is

CNT = (CNT + 1);

that all data enters the product term array in both its

~ Using ABEL to Program the CY7C330

= P
§; P wucror

XOR PTERM I

SUM QE PTERNS)) - ool —

QB
R
2

TO INPUT BUFFER

CLK1
CLK2
SR
SS

Figure 2. The CY7C330 Buried Macrocell

non-inverting and inverting state. ABEL will, in most
cases, choose the right polarity to obtain the output as
specified by the equations.

When data is being exported from the device via an
output pin, polarity is more critical especially when
using the set or reset. As shown by the I/O macrocell
schematics, there is an inverter between the output
register and output pin. Therefore, if you use the reset
capability, the Q output of the registers goes low and
the output pins go high. If your application requires all
the outputs to start out low, use preset instead of reset.

In the following example, the output is defined as posi-
tive and a "1" and a "0" are passed through the device.
ABEL compensates for the lack of inversion in the out-
put by inverting the data coming out of the input
register.

" inputs

CKS, CK1, CK2, INP PIN 1,2,3,4;

" output

OUT PIN 15;

EQUATIONS

OUT := INP;
TEST_VECTORS
([CKS,CK1,CK2,INP] -> [OUT])

[0) C» 09 0] -> [X];
[C’ 07 0, X] -> [0];
[Cs Oy 0: X]'> [O];
[0, C, 0, 1]-> [0];
[Cy 0, 0, X]'> [1];
[C’ 0, o, X] -> [1]»
END

OE (FROM PIN 14)
CLKo

When using state machine syntax, ABEL will not handle
the polarity of the buried macrocells correctly. Not only
will the equations not work, but the simulation will fail
also. The problem can be easily fixed by negating the
names in the node declaration as shown.

CLK1, CLK2, CLK3 PIN 123;
INP, OUT PIN 4,15;

"hidden register declaration (negated)
IC1, !C2, IC3 NODE 31,3233 ;

As with the state machine syntax, when using the
’COUNT = COUNT +1 syntax, you also must invert
the polarity of any buried registers. The easiest place to
accomplish the inversion is at the node definitions state-
ment as shown in the previous example. Also, refer to
the counter example at the end of this document.

State Machine Syntax

ABEL supports state machine syntax on the 7C330. The
only drawback at this time is that the toggle flip-flop
emulation mode can only be used with very simple state
machines. As mentioned earlier, the results of using
state machine syntax with T flip-flop emulation are un-
predictable. The T flip-flop is much more efficient for
state machines due to the fact that a toggle flip-flop
only needs to use a product term for a state change. A
toggle flip-flop will hold it’s state unless told otherwise.
A state machine using D flip-flops needs a product
term both to change states and to hold states. Even with
this limitation, the CY7C330 contains from nine to
nineteen product terms per output and will usually
handle a medium size state machine with ease. ABEL
has promised that future releases will contain support
for T flip-flops.

Simulation Caveats

There are limitations to what ABEL can and cannot
simulate. The first limitation is that when writing
simulation test vectors, only one of the three clock lines
can be used on a single test vector line. The following
example would not simulate correctly.

TEST_VECTORS

([CKS,CK1,CK2,INP] - > [OUT])
[C,C,0,0] -> [0];

4-66

&

Using ABEL to Program the CY7C330

CYPRESS
SEMICONDUCTOR

This example will simulate correctly if modified as fol-
lows:

TEST_VECTORS

(ICKS,CK1,CK2,INP] -> [OUT])
[0,C,0,0] > [X];
[C,0,0,X] ->[07;

The preload function is supported. Refer to the 15 bit
counter example for more information on how to use it.

Example: 16-Bit Up/Down Counter

This first application, COUNTERS, is an example of a
15-bit up-counter with a terminal count output. The ex-
ample shows how to use the ’COUNT = COUNT + I’
syntax of ABEL along with correcting the polarity prob-
lem that crops up when combining normal I/O macro-
cell output registers and buried macrocell registers. It
also gives an example of using the preload function.
The ABEL source code for this example can be found
in Appendix B.

Example: Modulo 11 Counter Using State
Machine Syntax

The second example is a basic state machine applica-
tion implementing a - bit modulo-11 counter using state
machine syntax. This again shows how to handle
polarity using both normal registers and buried
registers. The ABEL source code for this example can
be found in Appendix C.

Appendix A. P330.INC - Macro Listing

" P330.INC

"The following select Clock 2 (pin 3) for the

"Output Macrocell Input register.
CLK2_28 macro () {FUSES[17030] =
CLK2_27 macro () {FUSES[17034] =
CLK2_26 macro () {FUSES[17037] =
CLK2_25 macro () {FUSES[17041] =
CLK2_24 macro () {FUSES[17044]
CLK2_23 macro () {FUSES[17048]
CLK2_20 macro () {FUSES[17051]
CLK2_19 macro () {FUSES[17055]
CLK2_18 macro () {FUSES[17058]
CLK2_17 macro () {FUSES[17062]
CLK2_16 macro () {FUSES[17065]
CLK2_15 macro () {FUSES[17069]

"The following enables clock 2 (pin 3)

CLK2 macro () {FUSES[17070] = 1;}
CLK2_4 macro () {FUSES[17072] = 1;}

- CLK2_5 macro () {FUSES[17073] = 1;}
CLK2_6 macro () {FUSES[17074] = 1;}
CLK2_7 macro () {FUSES[17075] = 1;
CLK2_ 9 macro () {FUSES[17076] = 1;}
CLK2_10 macro () {FUSES[17077] = 1;}
CLK2_11 macro () {FUSES[17078] = 1;}
CLK2_12 macro () {FUSES[17079] = 1;}
CLK2_13 macro () {FUSES[17080] = 1;}
CLK2_14 macro () {FUSES[17081] = 1;}

"The following program the C3 bit in the Output Mac-
rocell

"and selects feedback from the lower pin.
FEEDPIN 27 macro () {FUSES[17031] = 1;}
FEEDPIN 25 macro () {FUSES[17038] = 1;}
FEEDPIN 23 macro () {FUSES[17045] = 1;}
FEEDPIN_19 macro () {FUSES[17052] = 1;}
FEEDPIN_17 macro () {FUSES[17059] = 1;}
FEEDPIN_15 macro () {FUSES[17066] = 1;}

4-67

%M Using ABEL to Program the CY7C330
— -

Appendix B. ABEL Source Code for 16-Bit Counter Example

module _counter6
title *Counter application for 330 application note, Cypress Semiconductor June 19,1989’

counter6 device ’p330a’;
" This is example of a 15 bit counter showing:
"1. How to handle the polarity when combining normal output registers and buried regs.
"2. How to use the count = count + 1’ syntax.
"3. How to use preload for simulation vectors and handle the polarity inversion for the
" buried registers.
" inputs pins
clk,clkl,clk2,preset pin 1,2,3,4;
" output pins
c0,c1,c2,c3,c4,c5,c6 pin 15,28,26,17,24,19,20 ;
cl1,c12,c13,c14 pin 25,18,16,27 ;

tci pin 23;

spreset node 30 ;

1c7,1¢8,!¢9,!c10 node 31,32,33,34 ;
" macros

c_cntr = [c14, c13, c12, cl1, c10, ¢9, c8, c7, ¢6, c5, c4, ¢3, 2, c1, c0] ;
" this is used to handle the preload inversion of the buried registers. See test vectors below.
c_catrs = [c14, 13, c12, c11, !c10, !9, !c8, Ic7, ¢b, c5, ¢4, 3, c2, ¢l, 0] ;

. cxp = oy Xy P}
equations

spreset = preset ;

c_cntr: = (c_entr + 1)

tei = (c_cntr = = 2346) ;

" Example of using preset with simulation

test_vectors
([clk,clk1,preset,c_catrs] -> [c_cntr,tci])

[0,0,x ,x]->[x ,xJ
[0,c,1 ,x]->[x ,xJ
[¢c,0,x ,x]->[0 ,0]
[O,C,O sx]'>[O ’0];
[¢,0,x ,x]->[1 ,0}];
[C,O,X > X]'>[2 ;0];
[c,0,x ,x]->[3 ,0};
[c,0,x ,x]->[4 ,0];
[c,O,x y X]'>[5 ,0];
[P,ny ,62]'>[X ’0];
[0,0,X y X]->[62 ?0];
[¢,0,x ,x []->[63 ,0];
[c,0,x ,x]->[64 ,0];
[C,O,X y X]'>[65 a0];
[C,O,X y X]'>[66 ’O];
[¢,0,x ,x]->[67 ,0];
Je,0,x ,x 1->[68 ,0);
[p,O,x ’2345]'>[X »0];
[O,ny y X]'>[2345’0];
[C,O,X y X]'>[2346’0];
[C,O,X » X]'>[2347’1]a
[C,O,X y X]’>[2348,O]’
[c,0,x ,x]->[2349,0];
end

4-68

SEMICONDUCTOR

Using ABEL to Program the CY7C330

module _statem
title ’Application Note State Machine Example, Cypress Semiconductor 5-12-89’

statem device

clkl,clk2,clk3
cl,c2

res

reset

1c3,!c4

count
c4,c3,c2,cl
cxzh,l

Appendix C. ABEL State Machine Source Code for Mod11 Counter

’P330,;

pin 123,

pin 15,16 ;

pin4;

node 30 ;

node 31,32 ;

= [c4,c3,c2,c1] ;
istype ’feed_reg’;

= .C.,X.,.2.,1,0 ;

" This is an example of implementing a modulo counter using state machine syntax.
" This example also shows how to use the hidden registers.

" counter states

s0 = ~b0000; s3 = ~b0011; s6 = ~b0110; s9 = ~b1001;
s1 = ~b0001; s4 = ~b0100; s7 = ~b0111; s10 = ~b1010;
$2 = ~b0010; s5 = ~b0101; s8 = ~b1000;

equations

cd.pr

= res ;

state_diagram [c4,c3,c2,c1]
state s0: goto s1;
state s1: goto s2 ;
state s2: goto s3 ;
state s3: goto s4 ;
state s4: goto s5 ;
state s5: goto s6 ;
state s6: goto s7 ;
state s7: goto s8 ;
state s8: goto s9 ;
state s9: goto s10 ;
state s10: goto s0 ;

test_vectors
([clk1,clk2,res] -> [count])

[0,c
,0

f——
oo
o

COoOO0OOoCOOoOOoOOOO

P T T TV

)1]'>[15];
70]'>[0];
’0]'>[1
yO]'>[
’0]'>[
yO]'>[
’0]'>[
7O]'>[

[

[

[

>
b

i
’
’
3
’
i

’

90]'>
’0]'>
)0]'>
’0]'>[
’O]’>[

HOOIAAWNEWN

0];

’

]
]
]
]
]
]
]
]
]
]

(=]

4-69

%?m ' Using ABEL to Program the CY7C330
SEMICONDUCTOR

NOTES:

4-70

CY7C330 66-MHz 28-Pin
Synchronous EPLD

CY7C33X PLD Family

The Cypress CY7C330 is the first in a family of high-
speed, application-optimized CMOS EPLDs. This fully
synchronous part is designed for state machine and
other clocked systems. The CY7C330 offers new solu-
tions for systems designers, with a truly usable high-
speed clock rate, 39 total registers, 17,000 program-
mable bits providing up to 1200 gate complexity. Other
devices in the family are the CY7C331 and the
CY7C332. All family members are packaged in 28-pin
300 mil dual inline and LCC/PLCC packages. The tech-
nology is low-power CMOS and UV-erasable.

The Cypress CY7C330 is the first application-specific
EPLD from Cypress. The concept behind this family of
high-speed devices, is to provide the optimal solution
for each system design using Cypress’s 0.8 micron, dual-
level metal CMOS technology. Systems using other
types of programmable logic devices for synchronous
state machine applications, will use the CY7C330 as a
higher density, lower power solution at speeds up to 66
MHz. The application-specific family from Cypress
provides the CY7C330 for sequential state machine ap-
plications, the CY7C331 for general purpose
asynchronous designs, and the CY7C332 for decoders
and combinational logic applications.

The Cypress PALC22V10, PLDC20G10 and PAL20
devices proved the popularity of high-speed, low-power,
erasable CMOS logic, and the CY7C330 builds on that
base. One CY7C330 can easily replace four
PALC22V10s by offering features such as extending the
number of state registers to 16, extending the number of
product terms per output to 19 maximum, and by ad-
ding the XOR logic function plus the ability to use pins
as bidirectional 1/0.

The CY7C330 design goal was to increase the speed of
synchronous systems to 66 MHz. This is the actual
usable speed, and is determined by the total 15 ns feed-
back time from the Q of a flip-flop to the D of any flip-
flop in the device. The CY7C330 offers 258 variable
product terms for 16 state registers. This allows very
complex sequential machines to be designed with vir-
tually no limitation of product terms. These designs can
casily exceed the size anyone wants to manage with
Karnaugh mapping. However, the new generation of ad-
vanced EPLD compilers can manage very complex state
machine designs on workstations such as the IBM®
PC/XT™,

In order to ensure the 66 MHz operation, all 23 inputs
to the device have registers, thus pipelining the device
operation. This allows external data to the
synchronized, or CPU bus-oriented data to be latched.
Input registers may be clocked from either of two input
clock sources on either pin 2 or 3. Like all other
programmable devices from Cypress, the CY7C330 is
UV-light erasable, and comes in either a windowed
ceramic package or in a plastic DIP or PLCC.

This application note contains four design examples; a
high-speed Up/Down Counter with Limits, a 16x16
Crossbar Switch, a Pipelined Buffer, a simple Toggle
Counter, and an Internal Product term numbering
chart. All example source code is in Cypress PLD
Toolkit™ syntax.

Overview

An easy way to picture the CY7C330 is with the block
diagrams in Figure 1. On the input side of the CY7C330
(pins 1-7 and 9-14) are 11 input registers and 3 clocks.
Pin 1 is the State Clock. Each of the 11 input registers is
edge-triggered, and each can use either device pin 2

4-71

CY7C330 Synchronous EPLD

TO LOWER SECTION

TO UPPER SECTION

i

i
T

i

i

i

T
Nigiiini)
LT

Figure 1. The CY7C330 Block Diagram

(clock 1) or pin 3 (clock 2) (shown in Figure 2) as a
clock. An architecture bit for each input register con-
trols the selection of the input clock. This approach al-
lows input data to be synchronized to a clock edge, or
to be loaded into the device from a CPU data bus, with
the clocks being decoded 1/0O write signals. The setup
and hold times are very short allowing high-system
throughput. The outputs of these registers feed the
"AND-OR-XOR" array. Pin 14 has an additional func-
tion to the input register, it can be used as a fast,
asynchronous output enable to the device, allowing a
CPU to read out data in the state machine registers
onto a bus, for example.

On the I/O side of the device, (pins 15-20 and 23-28)
are 12 macrocells. Each I/O macrocell, Figure 3, con-
tains a type D register, an input register with clock con-
trols, and output enable resources. Architecture bits for
feedback selection, output enable configuration and
input register clock selection allow each of the macro-
cells to be independently configured. Each adjacent I/O

macrocell shares an input multiplexer (see Figure 5) al-
lowing either macrocell register to be buried while the
T/O pin is used as an input. In addition, there are four
buried register macrocells (see Figure 4) providing addi-
tional state registers but without direct output connec-
tions.

Logic Array

The "AND-OR-XOR" array in Figure I has 66 inputs
and 244 product terms driving 16 "OR-XOR" gates. The
16 OR gates have from 9 to 19 inputs (variable product
terms) allowing very complex designs to fit into each
stage. An XOR product term for each OR output al-
lows equations to be solved either with D or T type flip-
flops in the output stage, or for active high or active low
equations. Twelve product terms provide the output
enable function. A global reset and preset is also
generated out of the array. Each product term forms an
AND function with up to 66 inputs. The 66 inputs are
the true and complement signals of 33 internal nodes in
the CY7C330. '

4-72

= Coeess CY7C330 Synchronous EPLD
%égggi SEMICONDUCTOR
FROM PINS |..7.9..14 Additional Input Registers
INPUT L]
INPUT TC .
FIN b0 ARRAY Each I/O macrocell (pins 15-20 and 22-28) also has an
0 ol input, edge triggered register with either pin 2 or pin 3
g as clock. The total register count is 39: 16 state
l registers and 23 input registers.
c4
CLK2 FROM PIN 3
CLKI FROM PIN 2 NODES3! . . 34
XOR PTERN é
D O
OR TERAS
Figure 3. The CY7C330 Input Macrocell r O
|
. INPUT TO
Macrocell State Registers ARRAY
OESYS FROA PIN 14
The OR-XOR gates feed into 16 state registers Figures CLKCILKD
3 & 5. These are edge-triggered D flip-flops with pin 1
as clock. Output from these state registers are fed back CLee
into the array allowing high-speed state machines to be SR
ss

constructed. Total feedback time period from Q to D
and array delay from input register to state register is 15
ns, allowing a full usable clock rate of 66 MHz. Four of
these registers are always buried inside the device. A
buried register allows intermediate states or other func-
tions to be built without loading an I/O pin. Of the
twelve remaining registers, up to 6 can be buried, giving
a total of 10 maximum usable buried registers while al-
lowing the 28-pin device to have 17 dedicated input
pins, plus 6 I/O pins, plus many other combinations.
Valid I/O macrocell configurations are shown in Figure
6.

PINS 15..28. 22. 26
OE_PTERA
0
OUTPUT REGISTER ' s
XOR P F“gz
——F =
oR PT L 10 1/0
| PIN
R G 2
[, o
0
ARRAY| 2 €2
——%o p—|
1 (o] a)
o OESYS ’
TO SHARED INPUT cLxe
AULTIPLEXER k1 INPUT REGISTER
cLk2
SR

ss

Figure 2. The CY7C330 I/O Macrocell

Figure 4. CY7C330 Buried Macrocell

In order to keep the device speed as high as possible,
the number of inputs to the array was limited to 33 (x2)
- six of the array inputs from the 1/O Macrocells are
multiplexed (shared). Thus three feedbacks are
provided for the two output and two input registers for
each set of two I/O pins. The easiest way to understand
the net result is that the maximum number of buried
registers in the twelve I/O Macrocells is six. Output
registers that have no feedback to the array are useful
for data outputs or single clock delayed Mealy outputs
from the state machine.

FROM UPPER MACROCELL

-
— |

FROMN LOWER MACROCELL
Figure 5. The CY7C330 Shared Input Multiplexer

INPUT TO
ARRAY

The twelve macrocells have 24 registers total and 18
feedbacks. The assignment of functions in the user’s ap-
plication to physical pins in the device needs to be done
with consideration of the number of feedbacks available
(and the number of product terms required).

4-73

CY7C330 Synchronous EPLD

4
_p PR g
Pin | —POK
CLR a
T
A
Tnpat
4
o "4
Pin | —POK
ar @
7
A
Thpof
A
Tnpat
Ki—pPin 2/3
4
o g
Pin | —pClK
C$R°
Arro
Inpug
A -
Tnput a D

K= pin 2/3

e
g PR

Pin 1 —CLK

ar 0
Arro T
1npugr

L
—o ®a
Pin | —bCK
ar 9~
T
A S
Thpot o ©
CLKG— Pin 2/3
4
o ®Ra
Pin 1 ——‘ CLK
ar®
Arra v
Trpo
A B
Tnpot o D

QK= pin 2/3

A
—o Rg
Pin 1| —pCLK
ar 0
N i
Thpot
frosg —p0 0

CLK— pin 2/3

CLKd—= Pin 2/3

Figure 6. Four CY7C330 I/O Macrocell Configurations

Center Pinning

All Cypress CY7C330 family products use center pins
for Vcc and Vss connections. In addition, the Vss for
the internal logic and the Vss for the output drivers are
on different pins. Center power pins eliminate noise
generated by both TTL and CMOS devices. This noise
is inductive noise proportional to the package lead in-
ductance. Moving the power pins to the center lowers
pin inductance and noise by a factor of 3 compared
with corner-pin power connections.

Splitting ground lines between input and logic on pin 8
and output drivers on pin 21 has additional benefits.
Ground bounce noise is caused when outputs switch
from HIGH to LOW. The more pins switching at the
same time, the more noise generated. Several hundred
mV can be induced on the chip’s internal ground from

this effect. While the level is low enough to meet output
Vol specs, this voltage must be considered when design-
ing the input buffers on a chip, since it will influence the
Vil spec of 0.8 V. 400 millivolts of ground bump noise
will shift the AC effective Vjj to 1.2 V.

By separating the input reference ground from the out-
put ground where the noise is generated, Cypress can
design a faster input buffer, because ground noise com-
pensation is lowered or eliminated. Externally, the two
grounds are connected together. Also, by placing the
Vce pin close to the GND pin, external 0.1 uF
capacitors (as usual, one per chip) can be very close to
the actual device power pins.

All Cypress EPLDs permit the registers to be
preloaded into any configuration. This can vastly reduce
the test time, and allows all patterns programmed into

4-74

= Ts
SEMICONDUCTOR

CY7C330 Synchronous EPLD

—

an EPLD to be completely tested. Without preload, for
example, testing a multibit counter that has no reset
product term could be very slow or impossible.

CY7C33X Family Technology Characteristics

The CY7C330 and most other new Cypress products
are being built in the Cypress 0.8 micron, N-well
CMOS, high-speed technology. New Cypress EPLDs
use a dual metal layer connection method to further in-
crease speed. This technology allows static RAMs to
be built with 7 ns access times, 35 MHz FIFOs, a 33
MHz RISC processor and many other high-perfor-
mance products.

Cypress uses an EPROM (vs. fuse link or EEPROM)
technology for all its EPLDs (and (E)PROMS) because
of the tremendous increase in manufacturing yields it
offers, as well as 100% testability. This UV-erasable
EPROM technology offers proven data retention, tes-
tability, and manufacturability. In addition, the Cypress
2T (2 transistor) cell design allows very high speed cir-
cuits to be built. Cypress uses this 2T cell design for
performance. One transistor is used only for program-
ming and the other for reading with each optimized for
only one function. The program transistor can be larger
and slower. It is designed to withstand 15 V source to
drain, and is the maximum program charge on the float-
ing gate. The read transistor can be very small and fast.
Because the read bit line is only switching between 0-5
V, the sense amp is smaller and faster, and no high-cur-
rent 15 V driver MOSFETS are present. The result is
very fast (sub 10 ns) array times.

All Cypress devices offer protection against static dis-
charge (ESD). This means the devices are no more sen-
sitive than bipolar devices. By using a unique -3V sub-
strate bias generator (Vbb), Cypress devices are
protected from latchup caused by transient voltages
below ground, which are commonly seen in TTL sys-
tems. This internally generated Vbb also allows the
device to maintain high speed over a wide temperature
range by controlling switching thresholds. No current
flows in an input even under extreme undershoot situa-
tions, and there is no recovery time required for the
input transistor after an undershoot.

In addition to Substrate bias for latchup elimination,
Cypress uses a Stacked TTL output driver, removing
the Pin to P channel transistor connection, a major
source of latchup. Overshoot and noise generation is
also improved by reducing the energy in HIGH to

LOW transitions. Virtually all high-performance sys-
tems using TTL or CMOS adhere to the TTL standard
voltage specification -- 2.0 V for a TTL HIGH and 0.8
V for a TTL LOW. This means that a P-channel output
transistor for pulling the output to Vcc causes more
problems than it solves because it overdrives the output.
The lower voltage output from a stacked N channel out-
put drive of 3.5 V vs. 50 V causes less noise on the
HIGH to LOW transition because less energy needs to
be switched.

Cypress uses stacked N-channel transistors on the out-
puts of all devices, eliminating latchup and fast transi-
tion to an overly high output "1" level. The devices are
more compatible with the TTL devices Cypress
replaces.

Resource Planning

Planning the assignment of functions to pins in the
CY7C330 is an important step in a CY7C330 design.
The resource planning sheet on the following page will
be helpful for this procedure. Examples of its use are
included with each application.

The decision on which pin to use is based on:
1. Asynchronous output enable, set to pin 14 or
synchronous enable with a product term

2. State clock is pin 1
3. Input clock is pin 2

4. Second input clock is pin 3 or use pin 3 as a normal
input if pin 2 will be the only input clock

5. Input only on pins 4-7 and 9-13

6. Device outputs: Assign pins in the sequence of
counter MSB to LSB bits Pins 20, 23, 19, 24, 17, 26,
15, 28, 16, 27, 18, 25.7.

7. Use of Hidden Registers
a. Four registers H1 to H4 are always hidden.
b. Up to six additional hidden registers can be
defined. We suggest this sequence : 25, 18, 27,
16, 23, 20;
c. Assign input names to these six registers that are

4-75

?; TS e CY7C330 Synchronous EPLD

defined. We suggest this sequence : 25, 18, 27, 8. The remaining visible registers can still be used in
16, 23, 20; applications where both inputs of a macrocell pair
c. Assign input names to these six registers that are are used. However, one of the output registers of
different from the physical device pin names; each adjacent pair cannot have a feedback;
d) The optionally hidden registers can be viewed if it is used only as an output synchronized by the
their output enable is made active (and the exter- State Clock on pin 1.
nal logic driving the pin is in a high-impedance
state), otherwise the OE (Output Enable) If, after this assignment, the compiler or assembler

complains that not enough product terms are available,

t t f the hi i . .
product term of the hidden register must be set then some pins may have to be re-assigned.

to "ZERO". (NAME.ENA = (;)
Table 1. A CY7C330 Resources Planning Sheet

Project : Your project name

Input Input
Register Register Register Output # of

Pin Function Clock Function Enable PTerms
1 State Clk '
2 Clk1
3 Input/Clk 2 1 if Input
4 Input 12
5 Input 12
6 Input 1/2
7 Input 12
8 VsS
9 " Input 12
10 Input 12
1 Input 12
12 Input 12
13 Input 1/2 '
14 Input/OE 1/2 if Input
15 Input 172 if Input Output Pin 14/Pterm 9
16 Input 172 if input Output Pin 14/Pterm 19
17 Input 1/2 if input Output Pin 14/Pterm 1
18 Input 1/2 if input Output Pin 14/Pterm 17
19 Input 1/2 if input Output Pin 14/Pterm 13
20 Input 1/2 if Input Output Pin 14/Pterm 15
21 VSss
22 vCcC
23 Input 172 if input Output Pin 14/Pterm 15
24 Input 1/2 if input Output Pin 14/Pterm 13
25 Input 1/2 if input Output Pin 14/Pterm 17
26 Input 1/2 if input Output Pin 14/Pterm 1
27 Input 172 if input Output Pin 14/Pterm 19
28 Input 1/2 if input Output Pin 14/Pterm 9
H1 None - - None 19
H2 None - - None 1
H3 None - - None 17
H4 None - - None 13
Notes : Input Register Clock #1is pin 2

#2is pin 3

See the Application Note for the meaning of the pin names.
Output Enable = 14 means the asynchronous pin 14 direct enable.
Z means the pin is never active

4-76

CY7C330 Synchronous EPLD

sh';' CYPRESS
— SEMICONDUCTOR

Software Design Tools

Logic for the CY7C330 can be compiled with a number
of packages available from third party independent
software vendors. These include ABEL™ V3.0 from
DATA T/O® and LOG/IC™ V30 from ISDATA®.
Cypress has developed a PLD Toolkit (CY7C3101) that
can be used to design any PLD that Cypress makes. All
of these are logic compilers capable of converting state
machine or binary logic descriptions into a JEDEC file
to program the device.

The JEDEC file is the standard interface from a
software development tool to a logic programmer. See
the examples section for more detail on the software
tools.

Logic Programmers

The CY7C330 can be programmed today on the IBM
(or compatible) QuickPro™ plug-in board, and shortly,
it will be able to be programmed on DATA I/O®,
STAG® and other programmers. Some software tools
require the user to set "fuses" or bits in the device to
enable certain functions, whereas others will set the ar-
chitecture bits automatically. These bits are shown in
Table 6. Special attention needs to be applied to bit
17070: it must be set to 1 if any input register uses a
clock from pin 3. These requirements will disappear in
future releases of these software packages and the bits
will be set automatically.

Applications Example: Pipelined Buffer

The Pipe330 example is a two-stage pipeline that simply
shifts parallel data from the inputs to the outputs (see
Figure 7). This example shows the overall Cypress PLD
Toolkit source syntax, and shows how macrocells are
configured.

In the Pipe330 example, the output enable for particular
macrocells is either under control of pin 14 or under
control of the associated product term. The latter case
is the default. To control the output enable of a macro-
cell with pin 14, add "NENBPT" to the list of attributes
following the node assignment in the configuration sec-
tion.

If NENBPT does not appear in the attribute list for a
node, then the output enable is controlled by the ex-

pression that follows the construct <OE > in the equa-
tions. If <OE> is not part of the equation, the output
is permanently disabled. If <OE> is present, but there
is not expression following it, the output is permanently
enabled.

The output registers in the CY7C330 are always clocked
by pin 1. The input registers can be clocked by either
pin 2 or 3. Pin 2 is the default clock, so no special at-
tributes are required for this configuration. If you wish
to clock an input register with pin 3, the attribute list
for that node must contain "ICLK =3".

The resource planning sheet for the pipelined buffer is
in Table 2, and the source code is in Appendix A.

Test patterns for the Pipe330 example are relatively
simple but a few guidelines should not be ignored. At
first, the state of the registers in the device is unknown,
and all of the registers are put in a known state before
any outputs are checked (non-X). Another aspect of
simulation of the CY7C330 is the need to look after
multiple clocks. The input and output clocks should be
treated separately, since the simultaneity of clock asser-
tion is not guaranteed in programmers (or in any real
system for that matter.)

CLKD

15 —— 019
16 —] 028
17 — Qz3
19— —a24
CLK1

11g —— 025
1y — Q26 -
112 —— a7
113 — 028
oL

K2
Figure 7. Pipelined Buffer Block Diagram

4-77

== ~ CY7C330 Synchronous EPLD
=7 SMCONDUCTOR

Table 2. Resource Planning Sheet for Pipelined Buffer

7C330 Resource Pianning Sheet

Project : Pipelined Buffer

Input Input

Register Register Register Output # of
Pin Function Clock Function Enable PTerms
1 State Clk
2 Clk 1 (LHS)
3 Clk 2 (RHS)
4 1 &) 1
5 15 1
6 16 1
7 17 1
8 VSS
9 19 1
10 110 2
11 111 2
12 112 2
13 113 2
14 OE -
15 - - - Z 9
16 - - - Z 19
17 - - - VA 11
18 - - - Z 17
19 - - Q19 Pterm (Eqn) 13
20 - - Q20 Pterm (Eqn) 15
21 Vss
22 vCcC
23 - - Q23 Pterm (Eqn) 15
24 - - Q24 Pterm (Eqn) 13
25 - - Q25 Pin 14 17
26 - - Q26 Pin 14 11
27 - - Q27 Pin 14 19
28 - - Q28 Pin 14 9
H1 None - - None 19
H2 None - - None 1
H3 None - - None 17
H4 None - - None 13
Notes : Input Register Clock #1is pin 2

#2is pin 3

See the Application Note for the meaning of the pin names.
Output Enable = 14 means the asynchronous pin 14 direct enable.
Z means the pin is never active

4-78

—

=
= TS v

CY7C330 Synchronous EPLD

Applications Example: 4-Bit Up/Down Toggle
Counter with Preloads
The Tog330 example shows how the XOR product

terms can be used to emulate a T-type flip-flop. The
statement:

Q= <XSUM> Q

<SUM> T;

causes the XOR product term to be programmed with

the feedback of the register output, making the register
into a T-type. By architecture, all of the outputs are ac-
tive LOW, so the T-type register configuration is active
LOW. You can also use the configuration above, with
the following relation:

T = J!Q + KQ

to emulate a JK-type flip-flop.

Table 3. Resource Planning Sheet for Toggle Counter

7C330 Resource Planning Sheet
Project : 4 Bit Toggle Counter

Input Input
Register Register
Pin Function Clock
1 State Clk
2 Clk 1
3 Clear 1
4 -
5 .
6 .
7 N
8 VSs
9 .
10 -
11 -
12 -
13 -
14 -
15 - -
16 - -
17 - -
18 - -
19 - -
20 - -
21 VSS
22 vcce
23 - -
24 - -
25 - -
26 - -
27 - -
28 - -
H1 None -
H2 None -
H3 None -
H4 None -
Notes : Input Register Clock #1is pin 2
#2is pin 3

Register Output # of
Function Enable PTerms
'Q0 Pterm 9
Q1 Pterm 19
Q2 Pterm 11
Q3 Pterm 17

VA 13

VA 15

Z 15

Z 13

VA 17

Z 11

z 19

VA 9
- None 19
- None 11
- None 17
- None 13

See the Application Note for the meaning of the pin names.
Output Enable = 14 means the asynchronous pin 14 direct enable.
Z means the pin is never active

4-79

==

- CY7C330 Synchronous EPLD

-
& CYPRESS
?i SEMICONDUCTOR

The resource planning sheet for the toggle counter ex-
ample is in Table 3, and the source code can be found
in Appendix B. Figure 8 shows the block diagram for
the design.

L T QD -

Tl al -
1 —12 e -
—i’ Y113 03 -

CLK

CLR
Figure 8. Toggle Counter Block Diagram

Applications Example CY7C330 Up/Down
Counter with Limits

This example shows how the pins can be assigned for
maximum use in the CY7C330. This counter operates at
66 MHz, counting up until the value stored in the 8-bit
upper limit register is reached, then down until the
lower limit is reached. Also included is a method to
preload the counter to either the upper or lower limit,
as well as a device reset.

Let us assume that the two 8-bit limit registers are
loaded from a CPU. The lower limit is on pins 4 to 12,
with a 9th bit for preload on pin 13. Clock for this lower
limit is pin 2. The upper limit is loaded via pins 15-27,
with pin 27 being the 9th preload bit. These pins are
also used for reading out the counter value, and pin 14
is the output enable for the 8 bit up/down counter. Four
buried registers are used to detect equality of the
counter with the limits, to maintain up/down direction
and to detect the preload request as an edge-triggered
signal. By using the XOR product terms, the counter
needs only 9 total products even on the most significant
bit. Without XOR, the 8th bit mould needs 18 product
terms because of the 2 preload sources. Because of the
large number of product terms per output in the
CY7C330, this counter can operate at 66 MHz.

The contents of the counter can be read out when pin
14 (direct output enable) is LOW. In a bus-oriented
system, a microprocessor could read out the register if a

decoded I/O read signal were applied to pin 14. Note
that the other method of output enable, via the array,
requires a clock edge to load the required enable input
condition into the input registers. When pin 14 is high,
the upper limit register can be loaded, for example from
a microprocessor bus. The lower limit register can be
loaded at any time. The block diagram for this design is
Figure 9. The resource planning sheet for this design is
in Table 4 and the code is in Appendix C.

Description:

The device is a up-down 8-bit counter that counts be-
tween the limits stored in two registers. The operation is
as follows:

Lower limit (LL) data is loaded on the positive edge of
pin 2. There are 8 data bits plus 2 control bits, LPL and
Reset. If LPL is low, then only the limit compare
register is changed. If LPL is high, then the LL data is
loaded into the counter on the next clock edge, and the
counter will count up. The LL data is one count higher
than the actual lower limit. If RESET is active, then all
internal registers will be reset to 0 as long as the reset
bit is set in the LL register.

Upper limit (UL) data is loaded on the positive edge of
pin 3. There are 8 data bits plus a preload control bit. If
UPL is low, then only the limit compare register is
changed. If UPL is high, then the UL data is loaded
into the counter on the next clock edge, and the counter
will count down. UL data is multiplexed with Counter
output data. The UL data is one count lower than the

¢»8 ¢~8

LOWER UPPER
LIMIT [Pin 2 LInIT [Y Pin 3
Preloed | — . L
Preloed H — l $
Reset
UP/DOWN
> COUNTER Pin |
—=—Pn 14
OE
17 1
EQUAL EQUAL
]
ol
—| UP/DOWN \

Figure 9. Up/Down Counter Block Diagram

4-80

—

=g
s CIPRES

CY7C330 Synchronous EPLD

==~ SEMICONDUCTOR

actual upper limit. Pin 16 is the RESET input. Pin 14 is
the active low output enable for the counter. The
counter can be read at any time. Pin 1 is the clock for
the counter. Pins 18 and 20 are connected together for
data bit 6. Pins 23 and 25 are connected together for
data bit 7.

Table 4. Resource Planning Sheet for UP/Down Counter

7C330 Resource Planning Sheet
Project : Up/Down Counter with Limits

Input Input
Register Register
Pin Function Clock
1 State Clk
2 Clk 1
3 Clk 2
4 LLO 1
5 LL1 1
6 LL2 1
7 LL3 1
8 VSS
9 LLA 1
10 LLS 1
11 LL6 1
12 LL7 1
13 PRELOAD LOW 1
14 COUNTER OE -
15 UL1 2
16 Reset 1
17 UL3 2
18 UL6 2
19 uL4 2
20 - -
21 VSS
22 VCC
23 . -
24 ULS 2
25 uL? 2
26 UL2 2
27 PRELOAD HIGH 2
28 ULO 2
H1 None -
H2 None
H3 None -
H4 None -
Notes :Input Register Clock #1is pin 2
#2is pin 3

See the Application Note for the meaning of the pin names.

The buried (hidden) registers are used as follows:

H1 is loaded with the result of the comparison between
the counter and UL. H2 is UPL or LPL delayed by
one clock edge. It is used as an edge detect. H3 is
loaded with the result of the comparison between the
counter and LL. H4, when high, forces the counter to
count up.

Register Output # of
Function Enable PTerms
CNT1 Pin 14 9

- z 19
CNT3 Pin 14 11

- V4 17
CNT4 Pin 14 13
CNT6 Pin 14 15
CNT7 Pin 14 15
CNTS Pin 14 13

- V4 17
CNT2 Pin 14 11

- z 19
CNTO Pin 14 9
Up Equals None 19
L/H PreI’Done None 11
Down Equals None 17
Up Count None 13

Output Enable = 14 means the asynchronous pin 14 direct enable.
Z means the pin is never active

4-81

S

CY7C330 Synchronous EPLD

=14 SEMICG\IDUCTOR

Application Example: 16 x 16 Crossbar

Switch

A data switch capable of multiplexing 16 inputs into 4
outputs can be built with one CY7C330. The 66 MHz
clock rate allows even asynchronous input signals of up
to 33 MHz to be switched through the device. The com-
pact 300 mil package saves PCB space. Normally such a
multiplexer would need at least 40 pins partitioned as
follows:

16 input pins,

4 output pins,

4 x4 = 16 selection inputs

4 pins for power and clock connections

No other PLD today can perform this function using a
single device, because of the logic requirement (i.e., the
number of product terms required per output) as well
as the timing requirement. However, this is no problem
for the CY7C330; the entire design fits in one 300 mil,
28-pin package and runs with a maximum clock rate of
66 MHz.

Description:

This example uses 12 state registers plus 4 input
registers to act as the 4 x 4 bit selection registers. Each
output channel needs a 4 bit register to select one of 16
input channels. In this example we construct a 4 stage, 4
bit-wide shift register inside the part to hold the select
status. This way the data to these 4 x 4 bits can be
loaded via only 4 pins without needing any address pins.
When the PL (PRELOAD) pin 3 is LOW, input data
bits 0 to 3 become the selector data lines; 5 clock pulses
will shift the select data through the device into the
selectors 1, 2 and 3 as well as the output pins. Setting
pin 3 HIGH after the fifth pulse will load the output
data pins into the select register 0. This last load opera-
tion utilizes the function of pin 3 as a data pin as well as
a clock. Setting pin 3 LOW switches the internal logic
from a selector into a shift register; setting pin 3 HIGH
is a clock edge which loads the data output into the
input registers associated with the output pins (16, 18,
25,27).

This design requires that we "bury" the output register
of several of the I/O macrocells, and use the pin as an
input by utilizing a shared input mux. This is ac-
complished in the configuration section of the source
file. First, we must assign the name of the output

register to the macrocell node number. Since the
default configuration is for the Q output of the output
register to be fed back into the array, no other con-
figuration attributes are needed here. The name of the
input is assigned to the node number of the shared
input mux adjacent to the pin. The default for the
shared input muxes is to pass the data on the even pin
into the array. If the input is to come from an odd
numbered pin, you must add the attribute "SRC=N"
(where N is the pin number) to the list of attributes in
parentheses following the node name. For an example
of this syntax, refer to d10 and sa2 in the source file.

The space advantage of the CY7C330 in this crossbar
switch application becomes especially important as the
size of the matrix increases. A 32 x 32 matrix would
need only 16 devices vs. 64 PALC22V10s or 96 TTL
circuits. Loading of the internal data selection registers
is easily done with a Cypress 24-pin EPLD, the
PLDC20G10, and a FIFO. A CPU would load the 16 x
4 bit selector information into the FIFO and the
PLDC20G10 would move the data from the FIFO into
the device. One PLDC20G10 and one 16 x 4 (or larger)
FIFO is required. The Cypress CY7C403 would be an
ideal FIFO for this application.

The resource planning sheet for the 16 X 16 crossbar
switch design is in Table 5, and a block diagram of the
design is pictured in Figure 10. The source code can be
found in Appendix D.

Pinl-|

Clock

Pin2-

Preload

Figure 10. 16X16 Crossbar Switch Block Diagram

482

5 Cres

CY7C330 Synchronous EPLD

=~ SEMICONDUCTOR

Reading the JEDEC Map CY7C330 Internal
Array Reference

Table 6 is intended to help read the JEDEC MAP of a
CY7C330. The pin or node reference number is on the
left. These numbers correspond to the pin and node
numbers on the block diagram Figure 1. The column
labeled "Input True" gives the sequential number (left to

Table 5. Resource Planning Sheet for Crossbar Switch

7C330 Resources Planning Sheet
Project :16 X 16 Crossbar Switch

Input Input
Register Register
Pin Function Clock
1 State Clk
2 Clk 1
3 Sel PRELOAD 1
4 Data 0 1
5 Data 1 1
6 Data 2 1
7 Data 3 1
8 VSssS
9 Data 4 1
10 Data § 1
11 Data 6 1
12 Data 7 1
13 Data 8 1
14 Data 9 1
15 Data 10 1
16 Select DO 2
17 Data 11 1
18 Select CO 2
19 Data 12 1
20 - 1
21 VSS
22 VCC
23 - 1
24 Data 13 1
25 Select BO 2
26 Data 14 1
27 Select A0 2
28 Data 15 1
H1 None -
H2 None
H3 None -
H4 None -
Notes : Input Register Clock #1is pin 2
#2is pin 3

See the Application Note for the meaning of the pin names.

right) of the column corresponding to the non-inverted
input to the array. If the number is even, then the false
input is the next-higher integer; if the number is odd,
then the false input is the next lower integer. The num-
ber of product terms in each output stage is listed,
along with the JEDEC offset (sequential fuse position)
for each.

Register Output # of
Function Enable PTerms
Select A2 z 9
Output 3 Pterm 19
Select Al VA 1
Output 2 Pterm 17
Select C1 Z 13
Select D1 z 15
Select B2 z 15
Select A2 VA 13
Output 1 Pterm 17
Select C2 VA 1
Output 0 Pterm 19
Select D2 Pterm 9
Select A3 None 19
Select B3 None 11
Select C3 None 17
Select D3 None 13

Output Enable = 14 means the asynchronous pin 14 direct enable.

Z means the pin is never active

4-83

Qﬂ!’jﬁ

i « CY7C330 Synchronous EPLD

RESS
SEMICONDUCTOR

Table 6. The CY7C330 Internal Array Reference List

Pin or Function - Input # of 1st
Node : True Pterms OE XOR OR

1 State Clock

2 Input Clock1

3 Input Clock2 0

4 Input Register 2

5 Input Register 4

6 Input Register 6

7 Input Register 8

8 \E]

9 Input Register 10

10 Input Register 12

11 Input Register 14

12 Input Register 16

13 Input Register 18

14 Input Register 20

15 1/0 Regs, mux 65 9 L16236 L16302 L16368
N-35 mux input(node) 62

16 1/0 Regs, mux 61 19 114850 L14916 114982
17 I/0 Regs, mux 59 1 L13992 114058 L14124
N-36 mux input(node) 56

18 I/0 Regs, mux 55 17 L12738 112804 L12870
19 1/O Regs, mux 49 13 L9636 L9702 L9768
N-37 mux input(node) 46

20 1/0 Regs, mux 45 15 18514 18580 L8646
21 Vss

22 vcc

23 I/0 Regs, mux 39 15 L5280 L5346 15412
N-38 mux input(node) 36

24 1/0 Regs, mux 35 13 L4290 14356 14422
25 1/0 Regs, mux 33 17 L3036 L3102 L3168
N-39 mux input(node) 30

26 I/0 Regs, mux 29 1 12178 L2244 12310
27 I/O Regs, mux 27 19 L792 1858 L914
N-40 mux input(node) 24

28 I/O Regs, mux 23 9 L66 L132 L198
N-29 Sync. Reset Lo

N-30 Sync. Preset L16962

N-31 Buried Register 40 13 L11814 L11870
N-32 Buried Register 42 17 110626 L10692
N-33 Buried Register 50 11 L7722 L7788
N-34 Buried Register 52 19 L6402 L6468

4-84

SEMICONDUCTOR

CY7C330;
CONFIGURE;

CkS (node =1),
Cki,

ck2,

10 (iclk =3),

11 (iclk =3),

12 (iclk =3),

13 (iclk =3),

14 (node =9),
16,

17,

OE1,
{OE2(node = 14),
Q7,

Q6,

Q5,

Q4)
Q3(nenbpt),
Q2(nenbpt),

Q1(node =23,nenbpt),

QO(nenbpt),
IRST(iop),
reset(node =29),

EQUATIONS;

reset = RST;

1Q0 = <sum> !0;
Q1 = <sum> !1;
102 = <sum> !I2;

103 = <sum> !I3;

1Q4 = <oe> OE1 & OE2

<sum> ![4;

Q5 = <oe> OE1l & OE2

<sum> !I5;

Q6 = <oe> OE1 & OE2

<sum> !I6;

Q7 = <oe> OE1 & OE2

<sum> !I7,

CY7C330 Synchronous EPLD

Appendix A. PLD ToolKit Source Code for Pipelined Buffer

{Pipe330}

{Output register clock}

{Input register clock 1}

{Input register clock 2}

{Input 0, clocked by Ck2 (pin 3)}

{Input 1, clocked by Ck2 (pin 3)}

{Input 2, clocked by Ck2 (pin 3)}

{Input 3, clocked by Ck2 (pin 3)}

{Input 4, clocked by Ck1 (pin 2)}

{Input 4, clocked by Ck1 (pin 2)}

{Input 4, clocked by Ck1 (pin 2)}

{Input 4, clocked by Ck1 (pin 2)}

{output enable for Q<7:4>}

{direct output enable for Q<7:0>}

{Output 7, clocked by CkS, enabled by OE1&!0OE2}
{Output 6, clocked by CkS, enabled by OE1&!OE2}
{Output 5, clocked by CkS, enabled by OE1&!0OE2}
{Output 4, clocked by CkS, enabled by OE1&!OE2}
{Output3, clocked by CkS, enabled: pin14}
{Output2, clocked by CkS, enabled: pin14}
{Outputl, clk: CkS, OE:: pin14}

{Output0, clocked by CkS, enabled: pinl4}

{low asserted reset, I/O macrocell as input}
{internal reset node}

{end of file}

4-85

%}z CipRess - CY7C330 Synchronous EPLD
=4 SEMICONDUCTCR - -

Appendix B. PLD ToolKit Source Code for a Toggle Counter

CY7C330; {Tog330}

CONFIGURE;

CkS, {Count clock, This is pinl since it is first in the list.}

Ck1, {Input clock, This is pin2 since it is next.}

IClr, {Low true clear, Pin3 is next in sequential order.}

{OE(node = 14), {Low asserted output enable pin, pin 14}

!QO0(nenbpt), {Q0-Q3 are the counter outputs - pins 15-18.}

1Q1(nenbpt),

1Q2(nenbpt),

1Q3(nenbpt), .

reset(node =29), {The reset product term is node 29.}

EQUATIONS;

reset = Clr;

Q0 = <xsum> Q0 {Feeding the register output back into the XOR emulates a T flop.}
<sum>; {T input - No expression after the connective <sum> means always asserted}

Ql = <xsum> Q1 {Feeding the register output back into the XOR emulates a T flop.}
<sum> QO; {T input}

Q2 = <xsum> Q2 {Feeding the register output back into the XOR emulates a T flop.}
<sum> Q1 & QO; {T input}

Q3 = <xsum> Q3 {Feeding the register output back into the XOR emulates a T flop.}
<sum> Q2 & Q1 & QO; {T input}

{end of file}

4-86

E—F o

CY7C330 Synchronous EPLD

==~ SEMICONDUCTOR

Appendix C. PLD ToolKit Source Code for Up/Down Counter

CY7C330;
CONFIGURE;

CLK (node=1), LLC (node =2), ULC (node =3),

LLO (node =4, iclkk=2), LL1, LL2, LL3,
LL4 (node=9), LL5, LL6, LL7,
LPL(node=13),

/CNTOE (node =14),

CNTO (node =28, nenbpt,oclk =1, iclk =3),
CNT1 (node =15, nenbpt, iclk = 3),
CNT?2 (node =26, nenbpt, iclk =3),
CNT3 (node =17, nenbpt, iclk =3),
CNT4 (node =19, nenbpt, iclk =3),
CNT5 (node =24, nenbpt, iclk =3),
CNT6 (node =20, nenbpt),

CNT7 (node =23, nenbpt),

ULO (node =40, src=28),
UL1 (node =35, src=15),
UL2 (node =39, src=26),
UL3 (node =36, src=17),
ULA4 (node =37, src=19),
ULS (node =38, src=24),
UL6 (node =18, iop, iclk=3),
UL7 (node =25, iop, iclk=3),
UPL (node =27, iop, iclk=3),
/reset (node =16, iop),
node29 (node =29),

UP (node =31),

LEQUAL (node =32),
PLDONE (node =33),
UEQUAL (node=34),

EQUATIONS;

JCNT0= < XSUM > /CNTO
<SUM> /LPL & /UPL
<SUM> /PLDONE
<SUM> /LLO & LPL & CNTO
<SUM> /CNTO & ULO & UPL
<SUM> L10 & LPL & /CNTO
<SUM> CNTO0 & /ULO & UPL;

/CNT1= <XSUM> /CNT1

{File: COUNTER.CYP Date: 11/9/1988 }

{Count cLocK, Lower Limit Clock, Upper Limit Clock}
{The Lower Limit register is clocked by pin 2-LLC- by default.}
{The register is located at pins 4-7, 9-12 - pin 8 is Vss.}
{Lower limit PreLoad}
{Counter output enable on pin 14}
{The counter itself is in the output register of various I/O macrocells}
{as noted in the node numbers after the names.Pin 1 always clocks the}
{output registers-oclk =1 was included once for documentation.}
{’nenbpt’ specifies that the output enable is controlled by pin 14}
{rather than the output enable product terms in each macrocell}
{Most of these macrocells will be bidirectional, with the Upper Limit}
{register residing in the input registers. ’iclk =3’ specifies that pin 3 }
{clocks the input registers. This overrides the default, pin 2. }
{The output register is fed back into array by default.}
{ULO is the input reg of pin28, routed thru shared input mux-node40}
{UL1 is the input reg of pinl15, routed thru shared input mux-node35}
{UL2 is the input reg of pin26, routed thru shared input mux-node39}
{UL3 is the input reg of pinl7, routed thru shared input mux-node36}
{U1A4 is the input reg of pin19, routed thru shared input mux-node37}
{ULS is the input reg of pin24, routed thru shared input mux-node38}
{ULS is the input reg of pin18, ’iop’ selects array input from input reg}
{ULY7 is the input reg of pin25, iop’ selects array input from input reg}
{Upper limit PreLoad, array input from input reg, clocked by pin 3}
{low asserted clear, array input from input reg, clocked by pin 2}
{The reset product term is node29}
{buried node 31 selects the counter direction, clocked by pin 1}
{buried node 32 compares counter with lower limit, clocked by pin 1}
{buried node 33 is the preload done flag, clocked by pin 1}
{buried node 34 compares counter with upper limit, clocked by pin 1}

<SUM> /LPL & CNTO0 & /UPL & /UP
<SUM> /LPL & /CNT0 & /UPL & UP
<SUM> /LL1 & LPL & PLDONE & CNT1
<SUM> LL1 & LPL & PLDONE & /CNT1
<SUM> UPL & PLDONE & /UL1 & CNT1
<SUM> UPL & PLDONE & UL1 & /CNT1
<SUM> CNTO & /PLDONE & /UP
<SUM> /CNT0 & /PLDONE & UP;

4-87

%’; Eonis CY7C330 Synchronous EPLD
— SEMICONDUCTOR

k Appendix C. Source Code for Up/Down Counter (continued)

/CNT2= <XSUM> /CNT2

<SUM> /LPL & CNT0 & /UPL & /UP & CNT1
<SUM> /LPL & /CNTO & /UPL & UP & /CNT1
<SUM> /LL2 & LPL & CNT2 & PLDONE
<SUM> LL2 & LPL & /CNT2 & PLDONE
<SUM> UPL & CNT2 & /UL2 & PLDONE
<SUM> UPL & /CNT2 & UL2 & PLDONE
<SUM> CNTO0 & /PLDONE & /UP & CNT1"
<SUM> /CNTO0 & /PLDONE & UP & /CNT1;

/CNT3= <XSUM> /CNT3
<SUM >/LPL&CNT0&/UPL&CNT2&/UP&CNT1
<SUM >/LPL&/CNT0&/UPL&/CNT2& UP&/CNT1
<SUM> /LL3 & LPL & PLDONE & CNT3
<SUM> LL3 & LPL & PLDONE & /CNT3
<SUM> UPL & PLDONE & /UL3 & CNT3
<SUM> UPL & PLDONE & UL3 & /CNT3
<SUM >CNT0& CNT2&/PLDONE&/UP&CNT1
<SUM >/CNT0&/CNT2&/PLDONE&UP&/CNT1,

/CNT4= < XSUM> /CNT4
<SUM> /L14 & LPL & PLDONE & CNT4
<SUM> LIA & LPL & PLDONE & /CNT4
<SUM> UPL & PLDONE & /UL4 & CNT4
<SUM> UPL & PLDONE & UlA4 & /CNT4
<SUM> /LPL & CNT0 & /UPL & CNT2 & /UP & CNT3 & CNT1
<SUM> /LPL & /CNTO & /UPL & /CNT2 & UP & /CNT3 & /CNT
<SUM> CNTO0 & CNT2 & /PLDONE & /UP & CNT3 & CNT1
<SUM > /CNTO & /CNT2 & /PLDONE & UP & /CNT3 & /CNT1;

JCNT5 = <XSUM > /CNT5
<SUM> /LLS & LPL & CNTS5 & PLDONE
<SUM> LLS & LPL & /CNT5 & PLDONE
<SUM> UPL & CNTS & /ULS & PLDONE
<SUM> UPL & /CNT5 & ULS & PLDONE
<SUM> /LPL & CNTO & /UPL & CNT2 & CNT4 & /UP & CNT3 & CNT1
<SUM> /LPL & /CNTO & /UPL & /CNT2 & /CNT4 & UP & /CNT3 & /CNT1
<SUM> CNT0 & CNT2 & /PLDONE & CNT4 & /UP & CNT3 & CNT1
<SUM> /CNTO0 & /CNT2 & /PLDONE & /CNT4 & UP & /CNT3 & /CNT1;

/CNT6= <XSUM> /CNT6
<SUM> /LL6 & LPL & PLDONE & CNT6
<SUM> LL6 & LPL & PLDONE & /CNT6
<SUM> UPL & PLDONE & CNT6 & /UL6
<SUM> UPL & PLDONE & /CNT6 & UL6
<SUM >/LPL&CNTO0&/UPL&CNT2& CNT5&CNT4 & /UP & CNT3 & CNT1
<SUM> /LPL & /CNTO & /UPL & /CNT2 & /CNT5 & /CNT4 & UP & /CNT3 & /CNT1
<SUM > CNTO0&CNT2& CNT5&/PLDONE&CNT4 & /UP & CNT3 & CNT1 -
<SUM> /CNTO & /CNT2 & /CNT5 & /PLDONE & /CNT4 & UP & /CNT3 & /CNT1; .

4-88

% ;:chmss CY7C330 Synchronous EPLD
SEMICONDUCTOR

Appendix C. Source Code for Up/Down Counter (continued)

/CNT7= <XSUM > /CNT7
<SUM> /LL7 & LPL & CNT7 & PLDONE
<SUM> LL7 & LPL & /CNT7 & PLDONE
<SUM> UPL & /UL7 & CNT7 & PLDONE
<SUM> UPL & UL7 & /CNT7 & PLDONE
<SUM> /LPL & CNTO & /UPL & CNT2 & CNT5 & CNT6 & CNT4 & /UP & CNT3 & CNT1
<SUM> /LPL & /CNTO0 & /UPL & /CNT2 & /CNT5 & /CNT6 & /CNT4 & UP & /CNT3 & /CNT1
<SUM?> CNTO0 & CNT2 & CNT5 & /PLDONE & CNT6 & CNT4 & /UP & CNT3 &CNT1
<SUM> /CNTO & /CNT2 & /CNT5 & /PLDONE & /CNT6 & /CNT4 & UP & /CNT3 & /CNT1;

node29 = <SUM > reset;

UP=<XSUM> UP
<SUM> /UEQUAL & /UP
<SUM> /LEQUAL & UP
<SUM> UPL & PLDONE & /UP
<SUM> LPL & PLDONE & UP;

PLDONE = <SUM> /LPL & /UPL;

LEQUAL=<SUM> LL6 & /CNT6
<SUM> /LL7 & CNT7
<SUM> LL7 & /CNT7
<SUM> LL3 & /CNT3
<SUM> /LL5 & CNT5
<SUM> LLS5 & /CNTS5
<SUM> /LL1 & CNT1
<SUM> LLO & /CNTO
<SUM> /LL2 & CNT2
<SUM> /L1L4 & CNT4
<SUM> LL4 & /CNT4
<SUM> /LLO & CNTO
<SUM> LL1 & /CNT1
<SUM> /LL6 & CNT6
<SUM> /LL3 & CNT3
<SUM> L12 & /CNT2;

UEQUAL = <SUM> /CNT6 & UL6
<SUM> /UL7 & CNT7
<SUM> UL7 & /CNT7
<SUM> UL3 & /CNT3
<SUM> CNTS5 & /UL5
<SUM> /CNT5 & ULS
<SUM> /UL1 & CNT1
<SUM> /CNTO0 & ULO
<SUM> CNT2 & /UL2
<SUM > /UL4 & CNT4
<SUM> Ul4 & /CNT4
<SUM> CNTO0 & /ULO
<SUM> UL1 & /CNT1
<SUM> CNT6 & /UL6
<SUM> /UL3 & CNT3
<SUM> /CNT2 & UL2;

4-89

E ol

CY7C330 Synchronous EPLD :

Ny .
=& CYPRESS
=7 I ocor

Appendix D. PLD ToolKit Source Code for Crossbar Switch .

CY7C330;

configure;
clk (node =1), iclk, pl,
do, d1, d2, d3,

d4 (node=9), d5, d6, d7, d8, d9,

d10 (node =35, src=15), d11 (node =36, src=17),
d12 (node =37, src=19), d13 (node =38, src=24),
d14 (node =39, src=26), d15 (node =40, src =28),
sal (node =17), sa2 (node =15), sa3 (node =34),
sbl (node =24), sb2 (node =23), sb3 (node =33),
scl (node =19), sc2 (node =26), sc3 (node=32),
sd1 (node =20), sd2 (node =28), sd3 (node =31),

y0 (node =27, iop, iclk =3),
y1 (node =25, iop, iclk=3),
y2 (node =18, iop, iclkk =3),
y3 (node =16, iop, iclk =3),

EQUATIONS;

/sal = <SUM> /pl & /sa2
<SUM> pl & /sal;

/sa2 = <SUM> /pl & sa3
<SUM> pl & /sa2;

sa3 = <SUM> /pl & dO
<SUM> pl & sa3;

/sbl= <SUM> /pl & /sb2
<SUM> pl & /sbl;

/sb2= <SUM> /pl & sb3
<SUM> pl & /sb2;

sb3 = <SUM> /pl & d1
<SUM> pl & sb3;

/scl= <SUM> /pl & [sc2
<SUM> pl & /scl;

/sc2 = <SUM> /pl & sc3
<SUM> pl & /sc2;

sc3 = <SUM> /pl & d2
<SUM> pl & sc3;

/sdl = <SUM> /pl & /sd2
<SUM> pl & /sd1;
/sd2 = <SUM> /pl & sd3

<SUM> pl & /sd2;

sd3 = <SUM> /pl & d3
<SUM> pl & sd3;

4-90

{16X16 Crossbar Swithch}

{Input reg is sa0}
{Input reg is sb0}
{Input reg is sc0}
{Input reg is sd0}

%ﬂ%ﬂ CY7C330 Synchronous EPLD
=

ESS
& SEMICONDUCTOR

Appendix D. Source Code for Crossbar Switch (continued)

/y3 = <OE> /pl
<SUM> pl & /d0 & /sa3 & /sb3 & /sc3 & /sd3
<SUM> pl & /d1 & sa3 & /sb3 & /sc3 & /sd3
<SUM> pl & /d2 & /sa3 & sb3 & /sc3 & /sd3
<SUM> pl & /d3 & sa3 & sb3 & /sc3 & /sd3
<SUM> pl & /d4 & /sa3 & /sb3 & sc3 & /sd3
<SUM> pl & /d5 & sa3 & /sb3 & sc3 & /sd3
<SUM> pl & /d6 & /sa3 & sb3 & sc3 & /sd3
<SUM> pl & /d7 & sa3 & sb3 & sc3 & /sd3
<SUM> pl & /d8 & /sa3 & /sb3 & /sc3 & sd3
<SUM> pl & /d9 & sa3 & /sb3 & /sc3 & sd3
<SUM> pl & /sa3 & sb3 & /sc3 & sd3 & /d10
<SUM> pl & sa3 & sb3 & /sc3 & sd3 & /d11
<SUM> pl & /sa3 & /sb3 & /d12 & sc3 & sd3
<SUM> pl & /d13 & sa3 & /sb3 & sc3 & sd3
<SUM> pl & /d14 & /sa3 & sb3 & sc3 & sd3
<SUM> pl & /d15 & sa3.& sb3 & sc3 & sd3
<SUM> /pl & sd1;

ly2 = <OE> /pl
<SUM> pl & /d0 & sd2 & sc2 & sb2 & sa2
<SUM> pl & /d1 & sd2 & sc2 & sb2 & /sa2
<SUM> pl & /d2 & sd2 & sc2 & /sb2 & sa2
<SUM> pl & /d3 & sd2 & sc2 & /sb2 & /sa2
<SUM> pl & /d4 & sd2 & /sc2 & sb2 & sa2
<SUM> pl & /d5 & sd2 & /sc2 & sb2 & /sa2
<SUM> pl & /d6 & sd2 & /sc2 & /sb2 & sa2
<SUM> pl & /d7 & sd2 & /sc2 & /sb2 & [sa2
<SUM> pl & /d8 & /sd2 & sc2 & sb2 & sa2
<SUM> pl & /d9 & /sd2 & sc2 & sb2 & /sa2
<SUM> pl & /sd2 & sc2 & /sb2 & /d10 & sa2
<SUM> pl & /sd2 & sc2 & /sb2 & /d11 & /sa2
<SUM> pl & /sd2 & /sc2 & sb2 & /d12 & sa2
<SUM> pl & /sd2 & /sc2 & /d13 & sb2 & [sa2
<SUM> pl & /sd2 & /sc2 & /d14 & /sb2 & sa2
<SUM> pl & /sd2 & /d15 & /sc2 & /sb2 & [sa2
<SUM> /pl & scl;

/y1 = <OE> /pl
<SUM> pl & /d0 & sbl & sd1 & scl & sal
<SUM> pl & /d1 & sbl & sd1 & scl & /sal
<SUM> pl & /d2 & /sbl & sdl & scl & sal
<SUM> pl & /d3 & /sbl & sd1 & scl & /sal
<SUM> pl & /d4 & sbl & sd1 & /sc1 & sal
<SUM> pl & /d5 & sbl & sd1 & /scl & /sal
<SUM> pl & /d6 & /sbl & sd1 & /sc1 & sal
<SUM> pl & /d7 & /sbl & sd1 & /scl & /sal
<SUM> pl & /d8 & sbl & /sd1 & scl & sal
<SUM> pl & /d9 & sbl & /sd1 & scl & /sal
<SUM> pl & /sbl & /sd1 & scl & sal & /d10
<SUM> pl & /sbl & /sd1 & scl & /d11 & /sal
<SUM> pl & sbl & /sd1 & /d12 & /scl & sal
<SUM> pl & sbl & /d13 & /sd1 & /scl & /sal
<SUM> pl & /d14 & /sbl & /sd1 & /scl & sal
<SUM> pl & /d15 & /sbl & /sd1 & /scl & /sal
<SUM> /pl & sbl; '

4-91

—

—

1y0

¢l

1

& CYPRESS

SEMICONDUCTOR

CY7C330 Synchronous EPLD

Appendix D. ‘Source Code for Crossbar Switch (continued)

<OE> /pl

<SUM> pl & /d0 & /y0 & /y1 & /y2 & /y3

<SUM> pl & /d1 & y0 & /y1 & /y2 & /y3
<SUM> pl & /d2 & /y0 & y1 & /y2 & /y3
<SUM>pl & /d3 & y0 & y1 & /y2 & /y3
<SUM> pl & /d4 & /y0 & /y1 & y2 & /y3
<SUM> pl & /d5 & y0 & /y1 & y2 & /y3
<SUM> pl & /d6 & /0 & y1 & y2 & /y3
<SUM> pl & /d7 & y0 & y1 & y2 & /y3
<SUM> pl & /d8 & /y0 & /y1 & [y2 & y3
<SUM> pl & /d9 & y0 & /yl & /y2 & ¥3
<SUM> pl & /y0 & y1 & /y2 & y3 & /d10
<SUM> pl & y0 & y1 & /y2 & /d11 & y3
<SUM> pl & /y0 & /y1 & /d12 & y2 & y3
<SUM> pl & y0 & /y1 & /d13 & y2 & y3
<SUM> pl & /y0 & /d14 & y1 & y2 & y3
<SUM>pl& /d15& y0 &yl & y2 & ¥3
<SUM> /pl & sal;

4-92

CY7C330 State Machine Example:
SCSI Host Adapter

Introduction

This application note describes a minimal, though ex-
tremely fast, SCSI (Small Computer Systems Interface)
controller that is built up from a few parts surrounding
a CY7C330 synchronous state machine PLD. The con-
troller is compliant with the SCSI standard for a host-
based minimally featured interface.

A optimal speeds are achieved by efficiently using
various features of the CY7C330. The 66 MHz speed,
the input registers, and the device size -- including the
array size -- are all features that help to achieve this
level of performance.

At 66 Mhz the register to register transfers can occur at
15 ns intervals, which is fast enough to keep datapath
transfers out of the way of SCSI transfers. In order to
achieve optimal throughput, the SCSI handshake trans-
fer must be made the limiting factor, so this clock speed
is necessary.

The input registers are used to synchronize external sig-
nals. Synchronization is necessary so that the state
machine can respond to these signals, and the input sec-
tion of the state machine is the correct place to perform
the task. Since the signals are synchronized at the input
to the array, adherence to Gray code transitions can be
ignored in the design, and thus time critical transitions
can be made in less cycles.

The device and array size of the CY7C330 are sufficient
to accommodate the entire control section of the inter-
face. In fact, because the device is large enough, several
signals are shared, and therefore more features can be
accommodated in this design than would be the case if
the interface was constructed from smaller PLDs.

The minimally featured SCSI Host implementation is a
complete interface to one or more SCSI controllers
from a single host.

DB0-DB7

BSY

Computer

M
ACK ass

RST

Bus Interface]

SEL Store

C/D

REQ

7o Subsystem

MSG

Figure 1. Small Computer System Interface (SCSI)

4-93

=
= T
Conventions \/

In this document, conventions are followed so that sig-
nal names in timing and state diagrams can be related
to schematics without signal sense ambiguity.

If a signal name appears suffixed by a minus sign (-),
then that signal is active low. The minus sign is part of
the signal name, and not an operator. As an example,
the signal ACK- appears on several timing diagrams
and the minus is there to remind the reader that a low
on the timing diagram is the asserted state.

In state diagrams the asserted states appear as 1s. This
makes the diagram easier to read than one with Ts and
Fs. In any case there is no ambiguity because the
boolean variables which are used in state diagrams are
not circuit level signals. For example, the variable CDIT
is used in a state diagram with a 1 being true, while the
corresponding signal name in the schematic and the
timing diagram is CDIT- with a low assertion level.

The backslash / is the inversion operator. This is similar
to the BAR operator in boolean algebra, so /A has the
same meaning as A. An operator does not signify ac-
tivity level, so the inclusion of a signal suffix (- or blank)
is additional information.

In PLD definitions and equations, the signal assertion
level should only appear in the pin name declaration.
PLD equations should then be written referring only to
variable names as they appear in state diagrams and
truth tables. '

The design file for this CY7C330 application has not
been included in this note, but is available from Cypress
Semiconductor.

History

The SCSI standard evolved from the SASI controller
specification by DTC and Shugart, which was a widely
adopted parallel interface for disk controllers. The cur-
rent SCSI standard is upwards compatible from this
original specification.

Apart from the more rigorous timing and electrical
specifications, most SCSI additions (i.e., reselection, ar-
bitration, and synchronous mode) apply when the inter-
face is being used as a network. If the sole use of the
interface is to access a mass storage subsystem, then

CY7C330 : SCSI Host Adapter

these features may be omitted and the resultant SCSI
implementation will be smaller and faster.

The current SCSI interface is 8 bits wide, and it is pos-
sible to operate in asynchronous mode for a minimally
featured interface at a rate of up to 16 megacycles. The
interface may be widened to 16 bits at some time in the
near future; if so, then the SCSI throughput rate will
double to a theoretical maximum of about 32 megabytes
per second. :

The SCSI standard is likely to prevail in storage system
interfaces. The only competing standard is ESDI which,
being a serial data interface, has a much lower data
throughput.

System Considerations

A block diagram of a minimal SCSI implementation is
shown in Figure 1. Normally the mass store subsystem is
inside the same enclosure as the computer; if it is not,
then for emission considerations differential drivers and
receivers should be used. In this application note, it is
assumed that the flat cable SCSI bus is about a foot
long so that transmission delays are minimal (5 ns).

The mass store subsystem consists of one or more disk
drives or other high density storage devices, and one or
more controllers with SCSI ports. Unused lines in the
SCSI bus are not shown in Figure 1.

The computer system itself will access the SCSI control-
ler from its own bus. For this example, a simple
asynchronous interface has been implemented. This in-
terface only one data strobe and there are two signals:

BSY-
SEL -
DBX - ‘

c/D- |

1/0- H 400 ns.
REQ-

ACK -

L

Figure 2. SCSI Command Phase Timing

494

CY7C330 : SCSI Host Adapter

¥

RTS (Request To Send) and CTS (Clear To Send) to
request or acknowledge data access cycles. These sig-
nals allow for the connection of a DMA device or
another data interface.

The SCSI Transfer Protocol

A SCSI data access consists of a command transfer fol-
lowed by a data transfer. The command transfer
proceeds as follows:

1. The host waits for BSY to go inactive, then asserts
SEL and one of the 8 data bits (to select one of 8 con-
trollers).

2. The controller drives BSY active when this selection
combination is detected.

3. The host releases SEL and the data bit used for
selection.

4. The controller asserts C/D and REQ to read a com-
mand byte from the host.

5. The host outputs the first byte of the command and
asserts ACK.

6. The controller accepts the data and deasserts REQ.
7. The host then deasserts ACK.

8. Steps 4 through 7 are repeated for 6 bytes (more in
special cases).

Figure 2 illustrates this process.

After the command has been read in by the controller,
the operation is either performed or aborted. After ex-
ecuting a command, a status byte (C/D asserted) is sent
to the host to indicate success or an error condition.

If the command is a write command, then data is first
transferred from the host to a buffer on the controller.
After the data is written to the disk, a command com-
plete status message is sent to the host.

If the command is a read command, then data is read
from the disk, checked for validity, and passed to the
host. Some controllers offer a "Fly-by' mode, which
means data is passed to the host as soon as it is read
and an error condition is signalled afterwards.

The normal data transfer protocol follows the above
description (steps 4 to 7). At the end of the access, the
status byte is transferred, then activity ceases. BSY goes
inactive to signal the end of the access.

Interface Timing Considerations

There is one major delay and one minor delay to be
observed during selection, and there is a data setup
delay to be observed during data transfer.

For the host interface, under the single initiator option
in the SCSI specification there is a 400 ns "bus settle
delay" to be observed after BSY goes false, and before
SEL is asserted. Additionally, SEL is to be deasserted
at least two deskew delays after BSY is asserted. A des-
kew delay is 45 ns. Data is to be set up for a minimum
of one deskew delay plus one cable skew delay (45ns +
10ns) before the ACK signal is given.

Like the host interface, the controller interface has
timing constraints associated with selection and data ac-
cess.

The controller implements the same data setup delay as
the host, but the strobe which is accomodated from the
controller side is REQ. The response to SEL must be
shorter than 200 microseconds.

The setup time allowed for I/O and C/D [control sig-
nals] is specified as one "bus settle delay" or 400 ns. It
is worth noting here that the response to SEL, and the
various bus settle delay constraints are really system
level response times, and need not be of concern in the
hardware design at this level.

Performance Considerations

The CY7C330 is a Moore machine; there are no com-
binatorial paths from the inputs to the outputs. One
consideration in state machine design with Moore
machines is that the turnaround time or handshake
delay to external signals can become the limiting factor
in throughput. This problem is most obvious in
asynchronous interfaces.

Figure 3 shows a hypothetical synchronized transfer
cycle. This is the cycle as it could be implemented with
a CY7C330 synchronous state machine, if the ACK sig-
nal was directly controlled by the CY7C330.

4-95

CY7C330 : SCSI Host Adapter

=
7 o

—

DATA <
T Feksdel Fedsd
REQ- .
k2% 3 kblesJ
ACK -

Figure 3. Synchronized Transfer Cycle
Definitions for Figure 3:

1. Tsu: 55 ns setup time for data

2. TrLa: Latency time delay; this consists of device
propagation delays plus 0 or 1 clock cycles. For prelimi-
nary estimates, assume a 20 ns clock and 15 ns of delay.

3. Tc: Clock period.

4. Tp: Data delay (max) after REQ deasserted.

The time for one cycle using synchronized transfer
cycles is about 180 ns. This cycle time corresponds to a
throughput rate of just under 6 MHz, which is not as
high a rate as the CY7C330 is capable of supporting.

The problem is that for every edge there is a
synchronization or latency delay plus a clock delay
before the corresponding handshake signal is given.
These delays are undesireable and for the most part un-
necessary, since the data path is capable of accepting
data at a higher rate.

This result underscores the need for supervisory control
over the handshake sequence. If the output data is
ready and waiting, there is no need to delay the hand-
shake sequence until the state machine synchronizes to
the event and reacts. Likewise, if the input buffer is
empty then it can be asynchronously loaded.

In the schematic (Figure 10) a NOR buffer is used to
drive .the output strobes, and to perform the
asynchronous handshake, and to latch ACK- until the
state machine has had sufficient time to react. The sig-
nal CDIT- is used by the CY7C330 to supervise the
handshake sequence.

Transfer to the Controller

For transfers to the controller, the asynchronous signal
that needs to be controlled is ACK- (active low acknow-

ledge). This signal should go low soon after REQ- is
asserted by the controller, but only after data has been
setup for a minimum of 55ns. This signal should go high
when REQ- is deasserted.

To guarantee that the state machine sees the cycle take
place, ACK- is latched low until released by a control-
ling signal (CDIT-) that comes from the state machine.
The same signal is used to hold off ACK- until the data
setup has been met. (Refer to Figure 10 for latch circuit
details.)

REQ- | 23—
k1% 59

ACK - L

=
cDIT- L2ds [

[
54243

cAB k3%¥34
CAB.D ks34

Figure 4. Host to Controller Transfer Timing

Another signal is required to clock data into the output
register (CAB). This signal has a duration of two clock
cycles for data setup timing. In Figure 4 the signal
CAB_D is a delayed feedback version of CAB which is
used to add a delay cycle.

Definitions for Figure 4:

1. TAT: Asynchronous turnaround time (8 ns) X is the
turnaround time in the other direction (8 ns)

2. TLA: Latency time delay; this consists of device
propagation delays plus 0 or 1 clock cycles. For prelimi-
nary estimates, assume a 20 ns clock and 15 ns of delay.
(25 ns average)

3. TC: Clock period. (20 ns)

4. TDO: Delay to output (15 ns)

S. Asynchronous turnaround time from controller end
(8 ns)

Figure 4 shows the resultant transfer cycle to the con-
troller from the host. The cycle time can be estimated
from one REQ- rising edge to another. This time works
out to an expected value of 108 ns.

4-96

CY7C330 : SCSI Host Adapter

5; SEMICQ\IDUCI‘OR

The state diagram for the part of the controller that
handles the interface timing is shown in Figure 5. At the
start of the cycle, CDIT- is active because it is assumed
that data has been at the interface for at least the setup
requirement. CAB is the register clock for the output
register, and it goes high after REQ- goes inactive
(high) if there is data available (DAV, which is a logic
function yet to be defined). The cycle then proceeds to
completion and as CDIT- goes active, another cycle can
start.

Outputs: [CDIT] CAB [CAB_D
Imputs:

ACK*/REQ™DAV

/REQ*DAV

Figure 5. Controller to Host Transfer

The state diagram for the associated system transfer to
the SCSI controller is shown in Figure 6. E0- and E1-
are output enables for the two input registers; CK0 and
CK1 are clocks for the same two registers; CTS- is a
signal to the Host system that these registers are empty.
At the beginning [state 0000], EO- and E1- are inactive,
the clocks are low, and CTS- is active [0]. When DS- is
asserted, the clocks go high to capture the data, E0-
goes active and CTS- goes inactive to signal that the
registers have been loaded [state 1011, CTS-=1].

Outputs: [EQ [EL [CKO [CKI

Inputs:

/DS*/CKB"/CK1 l vs

DS *CTS
/DS

/CAB>/CDIT+CDIT>/CAB*ACK*/REQ

/CAB*/CDIT+COIT>/CAB*ACK>/REQ

Figure 6. Host to Controller Transfer

When either CKO or CK1 are high, data is considered
available by the state machine in Figure 5, and conse-
quently, DAV =CKO0 + CK1. After CAB goes high, E1-
goes active, E0- inactive, and CKO goes low. [state 0101}
The next time CAB goes high, CK1 goes low to signify
that the input registers are empty again. [state 0100]
The state counter then automatically progresses [0000].
The machine waits for DS- to go inactive before allow-
ing another cycle so that double clocking does not oc-
curr on one write cycle.

Transfer to the Host

When data is transferred to the Host from the control-
ler, the handshake happens so quickly that there is a
possibility that the interface will not see it, and for this
reason ACK- must be latched until the CY7C330 signals
[moves CDIT- high] to release it.

In this case, CDIT- is a signal that signifies that there is
room in the receiving buffer for a data transfer. CBA is
the clock for the input buffer and it goes high when
CDIT- goes low or afterwards.

REQ- | ‘
k1
ACK - I

coIT- !eZeFSﬂ:k_ﬁB:hh!

CBA ___I———_——l—_,——

Figure 7. Controller to Host Transfer Timing
Definitions for Figure 7:

1. TAT: Asynchronous turnaround time (8 ns.) X is the
turnaround time the other direction (8 ns.)

2. TLA: Latency time delay; this consists of device
propagation delays plus 0 or 1 clock cycles. For prelimi-
nary estimates, assume a 20 ns. clock and 15 ns. of
delay. (25 ns average)

3. TC: Clock period. (20 ns)

4. TDO: Delay to output (15 ns)

Figure 7 shows the relevant timing for this transfer cycle.
The cycle time can be estimated from the rising edge of

4-97

CY7C330 : SCSI Host Adapter

%E S coen

Output :

Inputs: | ACK

| CK@ [CK1[DS|

/DS~ (/CKO+/CK1) ACK

Figure 8. Controller to Host Transfer

CDIT- to the next similar edge. In this case, it is
reasonable to expect a cycle time of about 80 ns. Figure
8 shows the state diagram for this cycle. Figure 9 shows
the state diagram for the system to interface transfer
cycle.

Staging Considerations

Staging considerations include the initialization, startup,
and change of direction of the interface. The signal I/O
from the SCSI port mandates the direction of transfer,
which changes during the process of command comple-
tion, so there is a need to make sure that the relevant
state machines are all qualified by 1/0.

A readback path is provided for the CPU on the Host
system to be able to read the SCSI signals directly. The
signal DS- is reserved for normal data, but the signals
CS0- thru CS1- allow DO on the system data bus to be
used to read SCSI signals.

The following addresses apply:
CS0=0: enable readback to DO
CS0=1: disable readback
CS2,CS1: 00 - BSY

CS2,CS1: 01 - C/D

CS2,CS1: 10 - /O

CS2,CS1: 11 - REQ

The reset function for SCSI Controllers is independent
of the Host interface controller. In the schematic of Fig-
ure 10, the signal RST is set by the Host system and this
simply forces the RST- signal low on the interface.

Outputs

Inputs CDIT

/DS [BIS]

Figure 9. System to Host Adaptor Transfer

The controller can be reset at any time by asserting
INIT- from the host system. If the code 001 is on
CS2,CS1,CS0 then a select is performed: SEL- is pulled
low until BSY- appears.

The transfer of data to the interface, in particular the
device select code, should be done before the selection
sequence is performed. After INIT- is released, data
can be transferred normally and the REQ, ACK hand-
shake will operate properly.

The transfer of diagnostic data (i.e., sense byte, errors)
to the Host will be indicated by the DIAG- flag, which
is set until INIT- is asserted.

4-98

66-¥

J0d ISDS 1SOH "0 31y

SYSTEM DATA BUS

D(0-7)

SCSI Port Data

Vee
DIR USA
DIR_ . ,
2 O [SEL->
74AS805
DBO REQ—_ REQ ~
7445646 74A5648
DIR
02
DB8 4 20 8 usc
Al Bl o | 5
A2 B2 5 9
s e 5] oty
A4 B4| /]
DB 9] A5 B5 /] 74AS805
& 13 A6 86 /
2 oI 87 /
\DB A8 B8 m
21 Fo- SCK3
—9° o1 oKid 74AS805
il G 02 c/i
] e 03 12 |
7 o rd_si 04 13 = BSY=
»—Tﬂwm DB ——=H05 14f§—<L2 c/0=]
SBA D= 06 15
o7 1] —
SEL_ 19
SYSTEM CONTROL 74A5645 — R [i7
SIGNALS o 8
[Somek > ot 1opa
CTS = 012 iR} -<MSG-]
RIS = |
—DiAG= 7¢330
15 USE SCSI Port Signals

74AS805
0130-10

JOLONANODINGS

SSRIALD

0€EDLAD

13)depy ISOH ISOS

% | CY7C330 : SCSI Host Adapter
SEMICONDUCTOR L

NOTES:

'4-100

Using the Cypress CY7C330 in Closed-Loop
Servo Control

Introduction

This application note examines a common facet of en-
gineering design--control systems--and offers an alterna-
tive to common implementations. An overview of con-
trol systems is discussed, along with several implemen-
tation strategies. The benefits and disadvantages of
these implementations is briefly reviewed. Finally, the
PLD-specific elements of a method are disclosed that
use the Cypress CY7C330 as a key processing element
that offloads the processing bandwidth requirements of
a controlling CPU. This method has been successfully
employed in a high-speed customer application--a laser
mirror positioning servo.

Control Systems Overview - General Concepts

Control systems constitute a considerable portion of en-
gineering design. Control system theory is applied to
areas as diverse as pneumatic controls to economic
models. There are numerous references available for an
in-depth discussion of control theory. The mathematical
analysis of their behavior relies heavily on a solid under-
standing of Laplace and z-transforms. Fortunately, we
will limit ourselves to a practical discussion of control
systems and briefly discuss the PID, (Proportional, In-
tegral, Differential), method. Variations of the PID are
used for approximately 80-90% of industrial control im-
plementations.

Control systems are broadly divided into two major
categories: open loop and closed loop. An open-loop
system is one that generates outputs based on input
conditions, but has no feedback from the output to
verify or correct the output condition. Examples of
open-loop systems include light switches (although one
could reasonably argue that the human is the feedback
loop), and self-timed, free-running traffic control sig-

nals. Closed-loop systems are those that provide infor-
mation pertaining to the system status to the controller.
Examples of closed-loop systems include the eye-brain
system being used to read this line of text, the engine
thermostat in most automobiles, and the print head of a
dot-matrix printer. The closed-loop application we will
discuss later consists of a mirror attached to a motor
that can rotate 360 degrees in either direction. Closed-
loop systems use information from the enviroment
under control to influence the output. Control systems
are typically represented with block diagrams as shown
in Figure 1.

DISTURBANCES

INPUT
CONTROLLER CONTROLLED

REFERENCE PROCESS

POINT
MEASUR ING
FEEDBACK DEVICE

b OUTPUT

Figure 1. Closed-Loop Servo System

In a closed-loop design, numerous factors influence the
system behavior. Among them are:

Input [I(t)]. The input to the system is the signal from
an external source that is used to reference the steady-
state behavior desired. In our mirror servo system, the
steady-state output that we are attempting to attain is
the absolute position of the mirror at a given location
within a given percentage of accuracy. The input is also
known as the reference or set point.

4-101

CY7C330 : Closed-Loop Servo Control

Summing Function. This is the section of the control
system that determines the amount of error [E(t)]
presently in the system. It is the difference between the
input or reference point and the current state of the
controlled environment. In a motor servo system, it is
the difference between the target reference position
desired and the current position of the motor. In an
analog implementation, the summing function is usually
implemented with an operational amplifier.

Controller. In most control systems there is a controller
that has the error signal as an input and generates an
output that attempts to reduce this error to within
tolerable levels (ideally 0). The controller has an as-
sociated control mode that determines how the error
signal is manipulated to produce a control signal. Com-
mon control modes include proportional, integral, dif-
ferential, and the combination of these three --PID.

Controlled Device. The object of our effort is to have a
controlled device perform satisfactorily. In our servo
case, this is the motor.

4

Output [O(t)]. This is the physical entity to be control-
led. In our automobile thermostat system, it is the
temperature of the engine. In the servo postioned mir-
ror example, it is the position of the mirror.

Disturbance [D(t)]. Any influence on the system that
negatively affects the desired output is called a distur-
bance. In the automobile, operation in bumper-to-
bumper traffic that reduces airflow through the radiator
is a disturbance to the thermostat.

This is a partial list of the influences in a closed-loop
control system, but those mentioned are the most sig-
nificant for our example. A more complete discussion
can be found in a good reference source.

Some of the parameters used to quanitize the behavior
of control systems are listed below.

Accuracy. This is the difference between ideal and ac-
tual steady-state system behavior.

nlin

pEnEnEnEaEoEnEnEoln

L
HEH,

T 1
HoH

.
1T
it

(258 X 66)

-

[TITT

it bl

TITT

TITIT

Wi

T s
P

_<},4a

T s
___[:Zz

G
Bk

_EE
B

Figure 2. Cypress 7C330 PLD

4-102

="
=4 S

CY7C330 : Closed-Loop Servo Control

Settling Time. This is the time required to reach steady
state after the reference point is changed or set.

Percentage Overshoot. This is the difference between
the reference point and the maximum excursion after
passing through the reference point.

Jitter. This is a condition that occurs when the control-
ling element improperly overcompensates for an over-
shoot of the reference point. This results in an under-
shoot that is again overcompensated for and produces
overshoot. This can result in an unstable oscillatory con-
dition where the reference point is never obtained, or it
can increase the settling time.

Rise Time. This is the time required for the system’s
output to increase from 10% to 90% of the final value.

Control Systems Overview - Implementations

Control system implementations vary from purely
analog to completely digital. Many popular implementa-
tions use a hybrid of digital and analog techniques. The
approach we will examine uses a digital element to per-
form the summing, control, and part of the feedback
section. This approach and the pure analog method are
possibly the most often used. Naturally there are trade-
offs in each approach. Analog systems continuously per-
form the summing function (usually with an op-amp)
and therefore are usually more stable because they are
immmune to the problems associated with the quan-
titization of data. Digital hybrids offer improved sen-
sitivity, greater immunity to noise, better resolution,
minimized drift, more flexibility, and are usually easier
to design at a lower cost.

With the hybrid approach, several methods are used for
the controller. With the advent of the microprocessor, it
is relatively easy to implement the controller and the
summing function on chip. When this approach is taken,
a number of algorithms can be used to generate the
control signal. The simplest is proportional control. In
proportional control, the correction made is proportion-
‘al to the error signal. The value that the error is scaled
by is the proportionality constant or gain. Proportional
control offers an intuitively reasonable solution: the
larger the error, the larger the corrective signal. Using
integral control, the corrective signal is based on the
time integral of the error multiplied by a weighting fac-
tor. This value is typically calculated using a numeric
approximation. Integral control is usually combined

with proportional control to increase the accuracy or
reduce the steady-state error. Finally, the corrective sig-
nal with derivative control is the derivative of the error
signal over time multipled by a weighting factor. Again,
a numeric approximation is used to calcluate the deriva-
tive. This addition to proportional control contributes a
stabilizing influence to the system. However, it is often
omitted in "noisy" systems due to its effect of amplifying
high-frequency disturbances. When combined, these
three methods constitute proportional + integral +
derivative, or PID control. The influences of the integral
and derivative methods on PID can be verified with
analysis based on Laplace transforms. The cost of using
PID is in the reduction in the available bandwidth of
the processor to perform other tasks. Also, a finite
amount of time is required to calculate the output
value.

Another factor to consider in a hybrid control system is
the sampling/processing rate of the system. Several ref-
erences indicate that the sampling rate for a closed-loop
control system should be significantly above the mini-
mum dictated by Shannon’s sampling theorem. Rather
than being able to operate at the Nyquist frequency of
twice the highest frequency sampled, it is often recom-
mended that a sampling rate of eight to ten times the
highest sampled frequency be used. The reasons cited
include an uncertainty associated with determing the
highest frequency component of the sampled signal, and
the possibility of aliasing or a decrease in system
stability occurring due to the selection of too low a sam-
pling rate. Again, in a microprocessor-based implemen-
tation, the available processor bandwidth is quickly con-
sumed as the sampling rate is increased to maximize
stability.

Using the Cypress CY7C330 in Servo Control

In response to an ever-increasing system workload, the
Cypress CY7C330 has been utilized in a high-speed
servo control system to offload the microprocessor. This
particular application positioned a mirror to form im-
ages with a laser beam. The previous implementation
used a 68000 microprocessor in the servo loop, as
detailed above. As the number of tasks on the 63000
increased, the processors ability to maintain a stable
servo system became marginal. The design engineer’s
goal was to meet the servo loop stability requirements
and the additional processor system throughput needs
with a minimum of additional cost and complexity. The
solution offered here is both simple and efficient.

4-103

CY7C330 : Closed-Loop Servo Control

i

INPUT 0 a INPUTS
PIN TO
CLK LOGIC
a
, ARRAY
CLKI— CLOCK
cLk2— MUX

Figure 3. 7C330 Dedicated Input Register

Several features of the 7C330 (Figure 2) are fundamen-
tal to understanding this design. The first is the dedi-
cated input registers (Figure 3). These registers allow
data to be loaded onto the chip with either of two data
input clocks, CLK1 (pin 2) or CLK2 (pin 3). The choice
of input clock is done at program time via an EPROM
configuration fuse. The I/O macrocells (Figure 4) also
features input registers, again with two clocks for data
entry. In some applications, such as up/down counters,
the ability to three-state the macrocell output drivers
and load data into the macrocell input register allows
the designer to use these macrocell input registers to
hold reference values (such as counter upper/lower
limit). In our design, the macrocell input registers are
used to store the calculated target position of the mir-
ror, and are clocked in with clk2. The dedicated input
registers in this design are used while actively control-
ling the servo for loading the present mirror position
from the servo loop. When in command mode, the dedi-
cated input registers are loaded with data from the
microprocessor that is used to calculate a new target
position. In either case, the dedicated input registers
are loaded with clkl. Subsequent diagrams will show
the the 7C330’s dedicated input registers and macro-
cells in a simplified format that highlights our servo im-
plementation.

Let’s take a look at the fundamentals of the design.
Referring to Figure 1, we see that the basic mechanism
of control loops is proportional feedback of the error
signal. If we were to design this loop as a self-contained
co-processor to the main CPU, the CPU would only be
required to input the reference point to which we want
to move the mirror. Now the CPU would no longer be
required to perform the control algorithm at a pace
equal to the sampling rate. Essentially, the processor

TO_SHARED INPUT
FEEDBACK MUX

Figure 4. 7C330 1/O Macrocell

could "set and forget" the servo co-processor. One way
to implement this servo co-processor would be through
the addition of an additional microprocessor. This
would add additional hardware (CPU, RAM, ROM,
Clock, I/O, Interrupt Control, etc.), additional software,
and possibly require an In-Circuit Emulator for
development if a low-cost microcontroller were used.
We might use an analog servo controller, but the ac-
curacy requirements preclude this when drift is con-
sidered. Instead we used several simple PLDs in a
hybrid control-loop implementation.

The system block diagram in Figure 5 shows the general
approach used. Three CY7C330s are used that each
generate an 8-bit accumulate for 24 bits of precision.
The microprocessor provides to the CY7C330s a 24-bit
position reference target for the mirror. This 24-bit
value is latched into the 7C330s on-board registers. The
330 performs the summing and proportional feedback
function of the control loop. The 24-bit desired position
is compared to the present position that is maintained

PLD 7C330 CURRENT]|

M1 CROPROCESSOR .
CCUMULATOR D/A SOURCE

INPUT

Figure 5. 7C330 Servo Control Loop

4-104

; CYPRESS
%i;?? SEMICONDUCTOR

CY7C330 : Closed-Loop Servo Control

in an external 24-bit current position counter. The result
is the error multiplied by a fixed unity gain. This
proportional control signal is then converted to an
analog signal that controls the positioning mirror’s
motor after being converted to a current level. The shaft
of the motor has an optical encoder that creates a sin-
cos analog signal. When converted to a digital signal,
this gives a direction of rotation indication and a pulse
that increments or decrements an external 24-bit
present-position counter. This allows the loop to
operate as fast as the slowest of the following elements:
the 7C330s configured as a multistage accumulator/sub-
tractor, the D/A conversion time, or the A/D conversion
time. The host microprocessor is completely decoupled
from the servo loop. Should the microprocessor halt,
the servo circuitry will continue to maintain the desired
reference position without intervention.

Of course the actual implementation is slightly more
complex than the block diagram indicates. Essentially,
the CY7C330 macrocell output registers are
programmed to act as an accumulator. This ac-
cumulator generates a value that is one of two things
depending on the mode of operation--either a new tar-

]

MICROPROCESSOR DED|CATED LOG ' C
POSITION INPUT
DATA REGISTER —PﬁR—AL
INPUT 0 o
PIN PROGRAMMED
CLK VITH
CPU STEP 5 I
DATA ACCUMULATOR
EQUAT | ONS
CLK1 Cin =0

get position of the servo motor or the proportional
error feedback value to the servo. When the system is
started, the macrocell input registers wake up with an
initial value of 0. These macrocell input registers are
dedicated to holding the current target position of the
motor. At the same time the external position counter is
also set to zero. Then the microprocessor steps the tar-
get position until an alignment sensor is targeted by the
laser.

This is accomplished using the following steps. First the
outputs of the external 24-bit position counter are
placed into a three-state condition. These outputs are
shared with the outputs of the microprocessor as inputs
to the dedicated input registers. The processor drives a
step value onto the inputs, which is clocked into the
7C330’s dedicated input registers with the CLK1 pin.
Then, this value is added (via the PLD equations
described later) to the current value in the macrocell
input registers on the rising edge of the CLK pin. The
result of this addition is now in the macrocell output
registers and is clocked with CLK2 into the same mac-
rocell input registers that were a source value for the
add. Thus the 7C330s in this mode use the current value

MACROCELL
OUTPUT

REGISTER
170
P o
PIN
CLK
ADDER
RESWLT
TARGET
POSITION | MACROCELL
CLK INPUT
REGISTER
CLK CLK2

Target Update Mode Operation Seqence

(1) With external position counter’s output three-state, host microprocessor drives position step data.

(2) Step data (provided in 2’s complement form if a subtract is desired) is loaded into the 330 with CLK1.

(3) Step data is added or subtracted from present target position with logic equations to create new target position.
(4) New target position is clocked into macrocell output registers with CLK.

(5) On CLK2, the new target position is clocked into the macrocell input register.

Figure 6. Target Update Mode

4-105

CY7C330 : Closed-Loop Servo Contidl

%ﬁm
SEMICONDUCTOR

on the dedicated input pins to adjust the target postion
in the macrocell input registers with an accumulate
cycle. This target position update cycle is pictured in
Figure 6. Data from the microprocessor is always
provided as a delta or step from the current position.
The accumulate can be either an add or subtract. Sub-
tracts are accomplished by providing the step data from
the microprocessor .in 2’s-complement form. After
alignment, the position and accumulator values are
reset to zero and the system is ready for operation.

In operation, the outputs from the microprocessor are
three-state and the value from the 24-bit position
counter is loaded into the the dedicated input registers.
This value is always provided in a 2’s-complement form
by inverting the outputs of the position counter (s
complement) and setting carry in to one. This value is
thus subtracted from the present target position value
stored in the macrocell input registers to form the
proportional error feedback value that is used to con-
trol the servo motor. This servo control mode is shown
in Figure 7.

Again, the actual implementation details are different

from the conceptual block diagram. The digital-to-
analog converter does not need a 24-bit digital value for
control. In practice, an 8-bit D/A value is used that is
biased such that the 8th bit provides direction: control
(clockwise vs. counterclockwise). In the actual design,
the upper 16 bits from the two most significant 330s are
tested for rail high and low conditions and generate two
offscale bits each for these conditions. The seven low-
order bits, along with. the four offscale bits, are passed
to a second PLD (22V10) that drives the output to the
D/A in the proper direction (eighth bit), with the
proper magnitude. If the four offscale bits indicate that
the upper bits are all close to 0, the seven bits to the
D/A are masked to 0. Likewise if the upper bits are
mostly 1, the D/A bits are set to 1. The determination of
how to use the offscale bits for compensation in the
second PLD is specific to a given application.

The backbone of the logic required to create this design
is the implementation of an accumulator with the
CY7C330. The logic required for implementing a
synchronous full adder is described by an equation for
the sum and an equation for the carry of a given bit.

PIN
14

OE
LOGIC — MUX
COUNTER DED I CATED MACROCELL PRoEgFRz(T) ; ONAL
POSITION I NPUT ARRAY OUTPUT So
DATA REGISTER REGISTER FEEDBACK
INPUT |70
D 0 procrAMMED [—D 0
PIN PIN
—p CLK WITH —p CLK
[al e ADDER
ACCUMULATOR RESULT
EQUAT IONS § Q MACROCELL
TARGET | npUT
POSITION | REGISTER
CLK1 Cin = 1 cLK

Control Mode Opération Sequence

(1) External 24-bit position data (in s complement form) is loaded into the 7C330’s dedicated input register with

CLK1.

(2) With carry in set to 1, logic equations subtract current position from target position to form error amount.
(3) Error result is clocked into macrocell output register with CLK and is available to servo motor interface.

Figure 7. Control Mode

4-106

CY7C330 : Closed-Loop Servo Control

The equation for the sum, S at bit position n with inputs
A, B, and carry in, Cin, is:
Sn = (An XOR Bn XOR CIN).
The equation for the carry out is:
COUTn = (An *Bn) + (An * Cn-1) + (Bn * CN-1)
The equations for a 4-bit synchronous adder requiring

/* Four Bit Adder - General Case */

Inputs: An, Bn ; Inputs to be added at Bit n
CIN ; Carry in to Adder
Outputs: Sn ; Sum out for Bit n

Cn ; Carry out from adder stage n
/* Equations to be reduced */

S0 = A0 XOR B0 XOR CIN
C0= (A0 * B0) + (A0 * CIN) + (B0 * CIN)

S1 = Al XOR B1 XOR C0
Cl = (A1* Bl) + (Al * C0) + (Bl * C0)

S2 = A2 XOR B2 XOR C1
C2 = (A2*B2) + (A2* Cl) + (B2 * C1)

$3 = A3 XOR B3 XOR C2
C3 = (A3*B3) + (A3* C2) + (B3 * C2)

r* = = Carry Out of Four Bit Adder */

Figure 8. Equations for Four Bit Adder

four clocks to complete are shown in Figure 8. Since the
objective is to calculate a complete 24-bit sum as quick-
ly as possible, the equation for carry out (CO) from the
first bit of the adder can be substituted into the equa-
tion for the second bit of the adder. This allows the first
two bits to be added in a single clock cycle. Likewise,
the equation for the carry out from the second bit can
be substituted into the equation for the third sum, and
so on. This resulting equations for three bits of substitu-
tion are shown in Figure 9. The 7C330’s XOR product
term is useful in reducing the number of product terms
required for a given sum bit. However, even after
boolean reduction with utilization of the 7C330’s XOR
product term, the fourth bit of the adder requires 30
product terms for the sum bit and 31 product terms for
the carry out bit to generate a 4-bit result in a single

/* Synchronous 3 bit adder - derivative of General Case */

/* Uses substitution of Carry Out in first 3 bits to generate 3 bit
result in one clock cycle */

S0 = A0 XOR B0 XOR CIN
/* CO= (A0 * BO) + (A0 * CIN) + (BO * CIN) */

S1 = Al XOR Bl XOR [(A0 * B0) + (A0 * CIN) + (BO *
CIN))

/* C1 = (Al * B1)
+ (A1 * [(AO * BO) + (A0 * CIN) + (B0 * CIN)])
+ (B1 * [(AD * B0) + (A0 * CIN) + (BO * CIN)]) */

S2 = A2 XOR B2 XOR

{(a1 * B1)

+ (AL * [(AO * B0) + (A0 * CIN) + (B0 * CIN)])
+ (B * [(AD * BO) + (A0 * CIN) + (BO * CIN))}

C2 = (A2* B2)

+(A2*

{(A1 * B1)

+ (A1 * [(AO * BO) + (A0 * CIN) + (B0 * CIN)])
+ (B * [(A0 * BO) + (A0 * CIN) + (BO * CIN)])})
+(B2*

{(A1 * B1)

+ (A1 * [(AO * BO) + (A0 * CIN) + (B0 * CIN)])

Figure 9. Equations for a Synchronous 3-Bit Adder

clock cycle. Since the maximum number of product
terms for a given macrocell in the 7C330 is 19, the ac-
cumulate process must be accomplished over multiple
3-bit stages. The addition of the first three bits will be
complete after one clock cycle, the second three bits
after two cycles, and so on. Therefore the complete 24-
bit accumulate requires nine clock cycles implemented
on three 7C330s. With 66 MHz devices this translates to
a complete calculation cycle in 120 nanoseconds.

The minimized equations for one of the three 8-bit
adder stages is shown in Appendix A. The syntax used
in this example is the Cypress PLD ToolKit. Variables
B0 - B7 are the eight dedicated inputs that are sourced
from either the microprocessor or the 24-bit position
counter. INCLK is the clkl pin on the 7C330 that is
used to clock in the BO-B7 variables. CIN is the Carry
in from external logic (set to one for subtraction when
in control mode on the first 8-bit adder stage) or from

4-107

CY7C330 : Closed-Loop Servo Control

T

the previous stage of the adder. AQ - A7 are the sum
outputs for either target update or control mode. If the
processor is updating the target position by a step incre-
ment, A0 - A7 are loaded into the macrocell input
registers with clk2 (named ACLK). When this new posi-
tion update is being loaded, the output drivers of the
macrocells are not three-stated with the OE pin or a
product term equation. This allows the macrocell out-
put registers (which have the newly calculated target
position) to be loaded into the macrocell input registers
(which are used to hold the target position) with
ACLK. C2 and C5 are internal carry-out bits generated
from the first and second 3-bit adder stages respective-
ly. Finally, COUT is the carry out generated as either
the final carry out or as the input to carry in of the next
8-bit adder stage.

Appendix B shows the implementation of the two upper
7C330 stages. The equations for the accumulator func-
tion are the same as in the previous equation. The addi-
tions here are the equations for detecting rail conditions
and generating the offscale bits. These bits are
generated to minimize the number of inputs required
for the subsequent PLD that feeds the D/A converter.
The use of these bits is dependent on the application.

Conclusion

This application note discusses some of the basic con-
cepts involved in control theory and several implemen-
tation strategies. Control theory is a very wide subject
area, and the underlying mathematical analysis of these
systems is beyond the scope of this paper. Several good
sources for further reading are listed below. An ex-
ample of a PLD servo loop co-processor that utilizes
proportional control with unity gain has been detailed.
This example is intended to cover the specifics involved
in utilizing the Cypress PLD 7C330 in this type of ap-
plication. There are numerous other hardware im-
plementation details that are left to the designer (such
as D/A design, feedback design, lead/lag compensation,
etc.). Our intent is to focus on a different approach to
implementing a closed-loop servo controller with the
Cypress 7C330 as the central element, and to ‘disclose
the details unique to the 7C330. Implementation of the
24-bit Up/Down position counter with the 7C330 is dis-

cussed in the "66 MHz 7C330 Synchronous State
Machine" application note.

References

Digital Control Systems - Theory, Hardware, Software.
- Houpis & Lamont; 1985; McGraw-Hill; N.Y.

Engineering Applications of Microcomputers
- Ball & Pratt; 1986; Prentice Hall Int’l (UK) Ltd; N.J.

Digital Control Systems
- Kuo; 1980; Holt, Rinchart, & Winston, Inc.; N.Y.

Analog and Digital Control Systems
- Gayakwad & Sokoloff; 1988; Prentice Hall; N.J.

Computer Control of Machines & Processes
- Bollinger & Duffie; 1988; Addison - Wesley; N.Y.

Acknowledgement

The author would like to extend his thanks to Delmar
Curtis. His experience in the design of the circuit on
which this application note is based, and willingness to
share the basic principals involved proved invaluable.

4-108

CY7C330 : Closed-Loop Servo Control

5 Cipress
== 7 SEMICONDUCTCR

Appendix A. PLD ToolKit Code for an 8-Bit Accumulator

{Cypress Semiconductor - 8-bit accumulator - June 14, 1989}

CY7C330;

CONFIGURE; { Dedicated input registers. Default configuration is use of pin 2 for clock }

Outclk(node =1),
Inclk(node =2),
Aclk(node =3),
CIN(node =4),
BO(node =5),
B1(node=6),
B2(node =7),
B3(node =9),
B4(node = 10),
B5(node=11),
B6(node =12),
B7(node =13),
oe(node =14),

{Output nodes assigned to maximize available product term utilization. In the following declarations, the 7C330’s
macrocell outputs are configured as follows:

ireg--This sets the macrocell feedback MUX for feedback from the macrocell input register instead of the
(default) macrocell output register (rgd)

iclk =3--This selects the clock on pin 3 instead of the default (used for the inputs above) of clock on pin 2 for the
macrocell input register

IOP--Same as ireg.

nenbpt--Selects OE control from pin 14 instead of a product term }

AO(node =28,iop;iclk = 3,ireg,nenbpt), { Sum 0/ Accum. Feedback Register 0 }
Al(node = 15,iop;iclk = 3,ireg,nenbpt), { Sum 1/ Accum. Feedback Register 1 }
A2(node =20,iop;iclk = 3,ireg,nenbpt), { Sum 2 / Accum. Feedback Register 2 }
A3(node =17,iop,iclk = 3,ireg,nenbpt), { Sum 3 / Accum. Feedback Register 3 }
Ad(node =26,I0P,iclk =3,ireg,nenbpt), { Sum 4 / Accum. Feedback Register 4 }
AS5(node =23,I0P,iclk =3,ireg,nenbpt), { Sum 5/ Accum. Feedback Register 5 }
A6(node =19,I0P,iclk = 3,irég,nenbpt), { Sum 6 / Accum. Feedback Register 6 }
A7(node =24,I0P,iclk = 3,ireg,nenbpt), { Sum 7/ Accum. Feedback Register 7 }
COUT(node = 18,nenbpt), { Carry out }

C2(node =32), { Carry 2 - Hidden }

C5(node =34), { Carry 5 - Hidden }

{ Available nodes -# P.T.s
{ /O macrocell -16-19
{ /O macrocell ~ -25-17
{ /O macrocell -27-19
{ hidden macrocell - 31 - 13
{ hidden macrocell - 33 - 11

e Mg oy o S g

{End of configuration section}

4-109

f

L

CY7C330 : Closed-Loop Servo Control

& CYPRESS
SEMICONDUCTOR

Appendix A. PLD ToolKit Code for an 8-Bit Accumulator (continued)
{Logic equation section}
EQUATIONS;

{AO0: 2 product terms, pin 28: 9 P.T. Available}

/A0 = <XSUM> CIN
<SUM> /A0 * /BO
+ AO0* BO;
{Al: 6 product terms, pin 15: 9 P.T. Available}
/Al = <XSUM> /Al

<SUM> B1*/B0 * /CIN
+ /B1* B0 * CIN
+ /B1* A0 * CIN
+ /B1* A0* BO
+ B1 * /A0 * /CIN
+ B1 * /A0 * BO;

{A2: 14 product terms, pin 20: 15 P.T. Available}

/A2 = <XSUM> /A2

<SUM> B2*/Al* /Bl :
/B2* B1* BO* CIN
/B2* Al* BO* CIN
/B2* B1* A0* CIN
/B2* Al1* A0* CIN
/B2* B1* A0* B0
/B2* Al1* A0* B0
B2 * /B1 * /B0 * /CIN
B2 * /A1 * /B0 * /CIN
/B2* Al* B1
B2 * /B1 * /AQ * /CIN
B2 * /A1 * /AQ * /CIN
B2 * /B1* /A0 * /BO
B2 * /A1 * /A0 * /BO;

R e o U S S S S

{C2: 15 product terms, virtual pin 32: 17 P.T. Available}

C2= <SUM> B2*B1*B0*CIN
+ A2*B1*B0*CIN
B2 * A1 * B0 * CIN
A2 * Al * BO * CIN
B2 * B1* AQ * CIN
A2 *BL1* A0 * CIN
B2 * Al * A0 * CIN
A2* Al * A0 * CIN
B2 * B1* A0 * B0
A2*B1* A0 * B0
B2 * Al * A0 * B0
A2* Al * A0 * BO
B2 * Al * Bl
A2 * A1*B1
A2 * B2;

+H+++++ A A+

4-110

%&m CY7C330 : Closed-Loop Servo Control
SEMICONDUCTOR

Appendix A. PLD ToolKit Code for an 8-Bit Accumulator (continued)

{A3: 2 product terms, pin 17: 11 P.T. Available}

/A3 = <XSUM> C2
<SUM> /A3 * /B3
+ A3 * B3;

{A4: 6 product terms, pin 26: 11 P.T. Available}

/A4 = <XSUM> /A4
<SUM> B4*/B3*/C2
+ /B4* B3* C2
+ /B4* A3* C2
+ /B4* A3* B3
+ B4 * /A3 * /C2
+ B4 * /A3 * B3;

{AS5: 14 product terms, pin 23: 15 P.T. Available}

/AS = <XSUM> /A5
<SUM> BS5* /A4 * /B4
+ /B5* B4* B3* C2
/B5* A4* B3* C2
/B5* B4* A3* C2
/B5* A4* A3* C2
/BS* B4* A3* B3
/B5* A4* A3* B3
B5 * /B4 * /B3 * /C2
BS */A4* /B3 */C2
/B5* A4* B4
B5 * /B4 * /A3 * /C2
B5 * /A4 * /A3 * /C2
B5 * /B4 * /A3 * /B3
B5 * /A4 * /A3 * /B3;

T T

{C5: 15 product terms, virtual pin 34: 19 P.T. Available}

C5= <SUM> B5*B4*B3*C2
AS5*B4*B3*C2
B5* A4*B3*C2
AS*A4*B3*C2
B5*B4* A3 *C2
A5*B4* A3 *C2
B5* A4* A3 *C2
AS5* A4* A3*C2
B5*B4* A3 *B3
A5*B4 * A3 * B3
B5* A4* A3 * B3
AS5*A4* A3*B3
B5 * A4 * B4
A5™* A4* B4
A5 * BS;

B ok T T S N S S S

4-111

=y CITRES

CY7C330 : Closed-Loop Servo Control

— SEMICONDUCTOR

Appendix A. PLD ToolKit Code for an 8-Bit Accumulator (continued)

{A6: 2 product terms, pin 19: 13 P.T. Available}

/A6 = <XSUM> C5
<SUM> /A6 * /B6
+ A6 * B6;

{A7: 6 product terms, pin 24: 13 P.T. Available}

/A7 = <XSUM> /A7
<SUM> B7*/B6* /C5
/B7* B6* C5
/BT* A6* C5
/B7* A6* B6
B7 * /A6 * /ICS
B7 * /A6 * B6;

+ A+t

{COUT: 7 product terms, pin 18: 17 P.T. Available}

/COUT = <SUM> /B7 * /B6 * /C5
/AT * [B6 * /CS

/B7 * [A6 * /C5

/AT * /A6 * /C5

/BT * /A6 * /B6

/AT * /A6 * /B6

/AT * /BT,

A+t

{End of file.}

4-112

%’; CYPRESS CY7C330 : Closed-Loop Servo Control

SEMICONDUCTOR

Appendix B. PLD ToolKit Code for an Accumulator with Rail Condition

{Mark Aaldering - Cypress Semiconductor - 8-bit accumulator with rail condition outputs - June 14, 1989}

CY7C330;

CONFIGURE; { Dedicated input registers. Default configuration is use of pin 2 for clock }

Outclk(node =1),
Inclk(node =2),
Aclk(node =3),
CIN(node =4),
BO(node =5),
Bl(node =6),
B2(node =7),
B3(node =9),
B4(node =10),
BS(node =11),
B6(node =12),
B7(node =13),
oc(node =14),

{Output nodes assigned to maximize available product term utilization. In the following declarations, the 330’s
macrocell outputs are configured as follows:

ireg--This sets the macrocell feedback MUX for feedback from the macrocell input register instead of the
(default) macrocell output register (rgd)

iclk = 3--This selects the clock on pin 3 instead of the default (used for the inputs above) of clock on pin 2 for the
macrocell input register

IOP--Same as ireg.

nenbpt--Selects OE control from pin 14 instead of a product term }

AO(node =28;iop;iclk =3,ireg,nenbpt), { Sum 0/ Accum. Feedback Register 0 }
Al(node =15;iop,iclk = 3,ireg,nenbpt), { Sum 1/ Accum. Feedback Register 1 }
A2(node =20,iop,iclk =3,ireg,nenbpt), { Sum 2 / Accum. Feedback Register 2 }
A3(node = 17,iop,iclk = 3,ireg,nenbpt), { Sum 3/ Accum. Feedback Register 3 }
Ad(node =26,iop,iclk =3,ireg,nenbpt), { Sum 4 / Accum. Feedback Register 4 }
AS5(node =23,jop,iclk =3,ireg,nenbpt), { Sum 5 / Accum. Feedback Register 5 }
A6(node = 19,iop,iclk =3,ireg,nenbpt), { Sum 6 / Accum. Feedback Register 6 }
A7(node =24,jop,iclk =3,ireg,nenbpt), { Sum 7/ Accum. Feedback Register 7 }
COUT(node = 18,nenbpt), { Carry Out }

C2(node =32), { Carry 2 - Hidden }

C5(node =34), { Carry 5 - Hidden }

RO(node =16,nenbpt), { Rail Bit 0 }

R1(node =25,nenbpt), { Rail bit 1}

{ Available nodes # P.T.’s }
{ /O macrocell -27-19 }
{ Hidden macrocell - 31-13 }
{ Hidden macrocell - 33-11 }

{End of configuration section}

4-113

==
=

CY7C330 : Closed-Loop Servo Control |

Appendix B. PLD ToolKit Code for an Accumulator with Rail Condition (continued)

{Logic equation section}
EQUATIONS;

{A0: 2 product terms, pin 28: 9 P.T. Available}

/A0 = <XSUM> CIN
<SUM> /A0 * /B0

{A1: 6 product terms, pin 15: 9 P.T. Available}

+

A0 * BO;

/Al = <XSUM>/A1
<SUM> B1 * /B0 * /CIN

{A2: 14 product terms, pin 20: 15 P.T. Available}

+
+
+
+
+

/B1* B0 * CIN
 /B1* A0* CIN
/B1* A0* BO
B1 * /A0 * /CIN
B1* /A0 * BO;

/A2 = <XSUM> /A2
<SUM> B2*/Al* /Bl

+ +

A+ttt

/B2* B1* BO* CIN
/B2* A1* B0* CIN
/B2* B1* A0* CIN
/B2* A1* A0* CIN
/B2* B1* AO* B0

/B2* Al* A0* B0

B2 * /B1 * /B0 * /CIN
B2 * /A1 * /B0 * /CIN
/B2* Al* Bl

B2 * /B1* /A0 * /CIN
B2 * /A1 * /AO * /CIN
B2 * /B1* /A0 * /BO

B2 * /A1 * /A0 * /BO;

{C2: 15 product terms, virtual pin 32: 17 P.T. Available}

C2 = <SUM> B2*B1*B0*CIN

+ +

+HF A+

A2 *B1* B0 * CIN
B2 * Al1* B0 * CIN
A2* A1* B0 * CIN
B2 * B1* A0 * CIN
A2* B1* A0 * CIN
B2 * A1 * A0 * CIN
A2* A1 * A0 * CIN
B2 * B1* A0 * B0
A2*B1* A0 * B0
B2 * Al* A0 * B0
A2* A1 * A0 * B0
B2 * Al*B1

A2* Al1*B1
A2* B2

4-114

%‘ § Creress
SEMICONDUCTOR

Appendix B. PLD ToolKit Code for an Accumulator with Rail Condition (continued)

{A3: 2 product terms, pin 17: 11 P.T. Available}

CY7C330 : Closed-Loop Servo Control

/A3 = <XSUM> C2
<SUM> /A3 */B3

“+

{A4: 6 product terms, pin 26: 11 P.T. Available}

A3 * B3;

/A4 = <XSUM> /A4
<SUM> B4*/B3*/C2

+
+
+
+
+

{AS: 14 product terms, pin 23: 15 P.T. Available}

/B4* B3* C2
/B4* A3* C2
/B4* A3 * B3
B4 * /A3 * /C2
B4 * /A3 * B3;

/AS = <XSUM> /AS
<SUM> BS5*/A4* /B4

o F A+

/B5* B4* B3* C2
/B5* A4* B3* C2
/B5* B4* A3* C2

/B5* A4* A3* C2

/B5* B4* A3* B3
/B5* A4* A3* B3
B5*/B4* /B3 */C2
BS * /A4 * /B3 * /C2
/B5* A4* B4

B5* /B4 * /A3 * /C2

B5 * /A4 * JA3 * /C2

B5 * /B4 * /A3 * /B3

B5 * /A4 * JA3 * /B3;

{C5: 15 product terms, virtual pin 34: 19 P.T. Available}

C5 = <SUM> B5*B4*B3*C2

+

tH+ A+t

A5*B4*B3*C2
B5*A4*B3*C2
AS5*A4*B3*C2
B5*B4* A3 *C2
A5*B4*A3*C2
B5* A4* A3*C2
AS5* A4* A3*C2
B5*B4* A3*B3
A5 * B4 * A3 * B3
B5 * A4* A3 * B3
A5* A4* A3*B3
B5* A4 * B4
AS5* A4 * B4
AS * BS;

4-115

%;z —_— v ‘ CY7C330 : Closed-Loop Servo Control

& CYP
= & SEMICONDUCTOR

Appendix B. PLD ToolKit Code for an Accumulator with Rail Condition (continued)

{A6: 2 product terms, pin 19: 13 P.T. Available}

/A6 = <XSUM> C5
<SUM> /A6 * /B6
+ A6 * B6;

{A7: 6 product terms, pin 24: 13 P.T. Available}

/A7 = <XSUM> /A7
<SUM> B7*/B6 * /C5
+ /B7* B6* C5
+ /B7* A6* C5
+ /B7* A6* B6
+ B7 * /A6 * /C5
+ B7 * /A6 * B6;
{COUT: 7 product terms, pin 18: 17 P.T. Available}
/COUT = <SUM> /B7 * /B6 * /C5
+ /AT * [B6 * /CS
+ /BT * [A6 * /C5
+ /AT * A6 * [C5
+ /B7 * /A6 * [B6
+ /AT* /A6 * /B6
+ /AT * [BT,;

{RO: rail bit 0; Arbitrarily equation chosen to detect when upper 5 bits are all 1 - this decision is a matter of
preference output active low}

/RO = <SUM> A7* A6* A5* A4 * A3,

{R1: rfil bit 1; Again, arbitrarily chosen to reflect value of carry out, therefore this is a redundant output - active low
output

/R1 = <SUM> COUT;
{End of file}

4-116

— Y
C—eeeeo Y
e————— 20l

Am——
——
i ‘z
——e .Y s ¢
. "

!
v

£ CYPRESS
== £ SEMICONDUCTOR

-

FDDI Physical Connection Management Using
the CY7C330 Synchronous State Machine

Purpose

The purpose of this application note is to show how the
Cypress CY7C330 programmable logic device (PLD)
can be used to implement the Physical Connection
Management (PCM) state machine specified in the Sta-
tion Management (SMT) of the Fiber Distributed Data
Interface (FDDI) standard. Although there will be a
brief overview of the FDDI standard, the purpose of
this application note is to show the features of the
CY7C330, the design methodology used in this design,
as well as an example of how a complex function can be
synthesized into this device. This application note is not
meant to be an in-depth tutorial of the FDDI standard
and its various layers.

FDDI Overview

FDDI is a 100 Mbits/second dual token ring network
that can connect as many as 500 nodes with a maximum
link-to-link distance of 2 km and a total network cir-
cumference of about 100 km. The network employs two
rings, a primary and a secondary. The primary ring is
for data transmission and the secondary ring is mainly
for fault tolerance, but can be used for data transmis-
sion as well. It is a token ring network, whereby access
is gained to the network by rotating a token. The node
with the token can transmit data. This insures a deter-
ministic, collision-free network, independent of the
number of stations contained in the network.

Because of the dual ring topology, FDDI defines a
fault-recovery mechanism. If a fault is detected, such as

a broken fiber-optic cable, the network can be restored
by routing around the break with the second ring. This
function is largely controlled by the state machine that
will be shown later, performed with the CY7C330.

The FDDI standard was developed using the Open Sys-
tems Interconnection (OSI) model, implementing the
physical and data-link layers of the OSI model. The
four FDDI layers are Physical Media Dependent
(PMD), Physical (PHY), Media Access Control
(MAC), and Station Management (SMT). The PMD
layer is the lowest and it specifies the actual connectors,
transceivers, and bypass switches. The PHY layer
specifies the type of encoding used on the data, 4B/5B,
and specifies a set of line states. These line states per-
form a handshake mechanism between PHYs of ad-
jacent nodes. The MAC layer performs higher-level
peer-to-peer communications. It also provides for sys-
tem timer support, packet framing, and responses to
various types of errors in the network. The SMT layer
controls the activities of the MAC, PHY, and PMD. It
includes functions such as connection management
(CMT), fault detection, and ring reconfiguration.

It should be noted that the FDDI standard is controlled
by the ANSI X3T9.5 standards committee. At the time
of this writing, the committee has accepted the
specification of the MAC and PHY layers, and the
PMD and SMT specifications are expected to be com-
plete in the summer of 1989. The state machine ex-
ample specified later was developed with the December
2, 1988 update of the SMT specification. There is a
possibility that the final specification might be slightly
different, but the design methodology would be the
same.

4-117

E—Fpa.

FDDI Physical (fonnection Management Using the CY7C330

===~ SEMICONDUCTOR

The CMT is the portion of Station Management that
controls the insertion, removal and logical connection of
the PHY entities. Within the CMT, is an area known
as the Physical Connection Management (PCM). A
chart showing a hierachical view of the location of the
PCM is shown in Figure 1. The PCM provides the
necessary signals to perform the following functions:

1. initializing a connection
2. reject a marginal connection
3. support maintenance.

I SMT I CMT I PCM
MAC State Machine Function
Implemented by 7C330
PHY
PMD

Figure 1. FDDI Hierarchy

The synthesized state machine to perform these ac-
tivities is show in Figure 2 . This state machine is based
on version 9.1 of the PCM state machine specified in
the SMT specification.

In order to meet the I/O constraints of the CY7C330, of
which there are 25 total, there was a small amount of
logic that was performed outside the CY7C330. For in-
stance, there are two timers used by the PCM. These
timers are not included in the CY7C330, but two signals
(timerl and timer2) are decoded signals that signal that
the timer has reached particular values. The signals
timerl and timer2 are inputs to the CY7C330. The
chart in Figure 3 shows all the macrofunctions, how
they are decoded, and their function.

Introduction to the CY7C330

The CY7C330 is a synchronous 28-pin programmable
logic device that is packaged in a 300 mil DIP package,
as well as several surface mount packages, including
leadless ceramic chip carrier (LCC) and plastic leaded
chip carrier (PLCC). The device is fabricated on the
Cypress 0.8 micron CMOS process, and is available in
speeds of 33, 50 and 66 MHz. The device is also avail-
able as a military device, in speeds of 33, 40, and 50
MHz. The device is optimized to perform high-speed
state machine designs.

The features of the CY7C330 can be generalized into
four groups:

1. the dedicated input cell

2. the product term array

3. the I/O macrocell, and

4. the hidden state register macrocell.

The dedicated input cell (see Figure 4) contains a D-
flip-flop, with a programmable multiplexer (mux) that
allows a choice of two input clocks. The two input
clocks allowed are CK1 and CK2, which correspond
directly to pin 2 and pin 3 of the device, respectively.
Note that the input registers (or any other register in
the device) are not bypassable. The device is purely
synchronous in nature. There are eleven dedicated
input macrocells in the device.

The product term array (see Figure 5 and Figure 6), as
with any programmable logic device, is where the logi-
cal connections of the design are synthesized. It con-
tains product terms that control a global reset, a global
preset, an exclusive OR gate, the output enables, and
the product terms that go to the D input of the flip-
flops in the output macrocells. Most of these features
will be covered later in the explaination of the macro-
cell. The device features product term distribution that
varies between 9 and 19, depending on which output
macrocell is being addressed. The 19 product terms be-
come the limiting factor in the complexity of the design.

The I/O macrocell (see Figure 7) contains two D flip-
flops. One of the D flip-flops clocks data from the
array to either the output pin, or back to the array, and
is intended to be a state register. It has a clock, dif-
ferent than the input registers, called CLK, which is
derived directly from pin 1. The other D flip-flop is an
input register, which can clock data from the I/O pin

4-118

= S FDDI Physical Connection Management Using the CY7C330
@ PC_STOP @ PC_MAINT
PC_START
QLS+HLS+NOISE
HLS

— (QLS+HLS+VLS)*TIME1

QLS +(MLS*TIME2)

VALS

@ HLS +MLS+TIME1

(UNCOND)

(UNCOND)

QLS +TIME2
V.

&

9

TIME1

HLS

! PC48

QLS +TIME2 MLS

QLS +TIME2 TIME1 TIME1L
\ ILS

TIME1 +SC_JOIN

PC40 >
QLS +HLS +TIME2 + NOISE
PC_REJECT+MLS

PC_REJECT

Figure 2. PCM State Machine

4-119

&)

SEMICONDUCTOR

FDDI Physical Connection Management Using the CY7C330

MACRO NAME SYNTHESIZED SIGNAL FUNCTION
MLS IMLS Master Line State
ILS LS Idle Line State
HLS 'HLS Halt Line State
QLS QLS Quiet Line State
pc_start pc0 & !pcl State PCM State Machine
pc_reject !pc0 & pel Enter Reject State
sc_join pc0 & !pcl Encorporate connection into token path
pestop !pc_stop PCM state machine to enter OFF state
pemaint tpc_maint Enter maintenance state
timel ttimerl See timer explanations below.
time2 !timer2 See timer explanations below.
n_neq 10 n0 & !nl Counter indicating 10 bits of data have not been received or transmitted
n_eq_ 7 n0 & n1 Counter indicating 7 bits have been transmitted or received
n_eq 9 n0 & !nl Counter indicating 9 bits have been transmitted or received
n_eq 10 n0 & n1 Counter indicating 10 bits have been transmitted or received
noise !noise_count Noise counter threshold
valn Val_n Transmitted value n
val8: Val 8 Transmitted or Received value = 8
val9 Val 9 Transmitted or Received value = 9
TIMER VALUES
Timer 1
0 ms TB_Min Minimum break time for link.
0.2 ms A_Max Maximum time required to achieve signal aquisition.
480 ns LS_Min Length of time reception of ILS
15 us LS_Max Max time required for line state recognition
25 ms I_Max Max optical bypass insertion/deinsertion time
200 ms T_next(9) Default time for MAC loopback
Timer 2:
100 ms T_Out Signalling Timeout

Figure 3. Macro Definitions

into the array. It may be clocked from CK1 or CK2 as
in the dedicated input cell. As mentioned previously,
there is an XOR gate, fed from the product term array,
that feeds the D input of the state register. This gives
the designer quite a bit of flexibility. The XOR gate
can be used as a simple inverter by setting the XOR
product term to a one. The XOR can be used to
change the type of the flip-flop from a D to a T, or JK.
For example, wrapping the Q output back to the XOR
input changes the flip-flop from D-type to T-type. This
feature will be used later in the example design. The
output macrocell also allows for a choice of the output
enable control for the pin. The output enable can be
from a product term, or directly from pin 14. There are
twelve I/0 macrocells in the CY7C330.

The hidden-state macrocell (see Figure 8) contains a
state register with no output pin associated with it.

There are four hidden-state macrocells in the CY7C330.
The hidden-state macrocells can be used to synthesize a
small 4-bit internal state machine, or perform any func-
tion required only internally to the device itself.

FROM
INPUT PIN L rs T0
) Q
1, . ° INPUT BUFFER
|
C4
CLK2 FROM PIN 3

CLK1 FROM PIN 2

Figure 4. Input Macrocell

4-120

FDDI Physical Connection Management Using the CY7C330

o/ SMICONDUCTOR

Methodology of Design

The PCM design was first attempted using ABEL ver-
sion 3.0 as a development platform, with the ABEL
state machine syntax. The original ABEL source code
is shown in Appendix A. Note that the state machine
requires 31 states. This meant that the state machine
could be performed with 5 bits, for 32 total states, leav-
ing one illegal state. When the design was run at reduc-
tion level 4, which is the maximum reduction in ABEL,
the software responded with the output that the design
required in excess of 30 product terms per output. This
is far more than the 19 that are possible on any one
output. At first glance, one might assume that the
design was far too complex for the 7C330. At this
point, a process of product term squeezing was in-
itiated. The process is described below.

First of all, a comment on how ABEL performs reduc-
tion. ABEL will reduce everything to sum of products,
and not make use of the XOR gate in the macrocell.
To make use of the XOR gate, you must specify it in
boolean equation form, and run the reduction at level 0.

TO LOWER SECTION
Figure 5. The CY7C330 Block Diagram (Lower Half)

Secondly, in ABEL 3.0, specifying T flip-flops will again
cause ABEL to reduce to sum of products, and not cre-
ate the T flip-flop using the XOR gate. ABEL 3.1 ac-
cepts T flip-flops and corrects this situation.

The timing required for this design is 12.5 MHz, allow-
ing the slowest version CY7C330, at 33 MHz, to be
used. The design requires one clock, although two pins
are dedicated for clocks in the CY7C330. In this
design, pins 1 and 2 will be tied together externally,
making the input registers and state register clock
together. The labels for the two clocks in the source
code are CKS and CK1.

Product Term Squeezing

The first method of getting the design to use less
product terms was to increase the number of bits in the
state machine from 5 bits to 6 bits. Although the state
machine only requires 31 states, much more choice is
allowed for when you have 64 possibilities for placing
the states.

TO UPPER SECTION

Figure 6. The CY7C330 Block Diagram (Upper Half)

4-121

%l SMCNDUCTOR

FDDI Physical Connection Management Using the CY7C330

SET
RESET
ICLK1
ICLKO
QCLK
QE
OE PTERM —
: . 1 8 o
XORP, :’;gr;,";,l__j:l_-_" co .
SUM.OF oSa > TO YO PIN
PRODUCTS I—L:?il’— {3“‘3
l1 S I
| °|—— C2 D
lo S 1. Q o
TO INPUT BUEFER c1 input
register
C3 sheredinput
FROM ADJACENT
MACROCELL

Figure 7. CY7C330 Macrocell

The next procedure involved changing from D flip-
flops, to T flip-flops. T flip-flops are more efficient
than D flip-flops because when the T input is high, the
flip-flop toggles. Otherwise, the flip-flop retains its pre-
vious state.

Because a T flip-flop only needs one product term for a
transition to occur, the state machine can be optimized
by choosing state transitions that use a minimum num-
ber of bits. For example, a transition between states 6
and 9 requires more bits to change than a transition
between states 6 and 7 as shown in Figure 8.

XOR PTERM : g
SUM OF PTERMS D > o af—
- QB
‘ R
| I

OE (FROM PIN 14)
CLKO

TO INPUT BUFFER

CLK1
CLK2
SR
S8

Figure 8. The CY7C330 Buried Register

In case 1, four product terms are required. In case 2,
only one product term is required. Since we increased
the number of total states available from 32 to 64 by
adding one more bit to the state machine, we provide
much more flexibility in choosing states. Carefully
choosing the states in a state machine is the easiest way
to reduce the number of product terms required.

Another way to make the design implementation more
efficient is to use the synchronous global reset and
preset in the CY7C330. 'Initially the state machine will
be in state 0 because the CY7C330 has a power-on
reset. It is good design practice to make provisions for
illegal states. Although an illegal state should never
occur, the state machine should be able to recover.
Many times the recovery mechanism is built into the
state machine itself, causing more product terms to be
required. In this example, if anillegal state.is detected,
the state machine will re-initialize itself, and go to state
0. Instead of building this requirement into the design,
a hidden register was used to detect the occurrence of
illegal states. That signal is then used to control the
synchronous reset of the 7C330, which will return the
state machine to state 0. Because of the synchronous
nature of the device, the state machine will go to state 0

. two clocks after the illegal state is encountered. One

clock is required to detect the illegal state, and one
clock is required to reset the device. This requirement
is acceptable for this application.

4-122

FDDI Physical Connection Management Using the CY7C330

Case 1.
Decimal Binary
6 000110
9 001001
(4 bits toggle)
Case 2.
6 000110
7 000111
(1 bit toggles)

Figure 9. State Change Comparison

In this particular design, it was noticed that in every
case the condition pcmaint was encountered, the state
machine was unconditionally required to go to a par-
ticular state. In order to reduce the state machine even
further, the state that was chosen on this condition was
63 (111111 binary). The synchronous preset was then
used to detect of this signal. When pcmaint is asserted,
this forces the state machine to state 63, thus avoiding
the use of any product terms in the main body of the
design.

In this design, there were several synchronous resets
required. There is an external pin (RST), the illegal
state detect, and the signal pc_stop. Because there is
only one product term allowed for the synchonous reset
of the device, the other two resets must be developed by
ANDing the reset signal with every product term as-
sociated with the outputs that are to be reset. This per-
forms the same function, but does not utilize any addi-
tional resources in the CY7C330.

Keep in mind that the CY7C330 has varied product
term distribution. The state registers associated with
pins 16 and 27 have 19 product terms. Put the state
outputs that require the most product terms to these
pins. In this example, QO required 18 product terms,
and QS required 17. These outputs were assigned pins
27 and 16. The remaining outputs were placed in the
same manner.

Converting the state machine to boolean equations is a
straight-forward procedure. By examining the state
transistions, the boolean equations can be extracted.
The reduced design is shown in Figure 10.

The development platform used for which this is the
source code is the Cypress PLD ToolKit. The Cypress
PLD ToolKit is a low-cost software development sys-

tem for all Cypress PLD’s. Although the reduced equa-
tions could have been obtained using ABEL, in many
ways the ToolKit is easier to use, and more tailored to
the Cypress devices. The ToolKit source file is listed in
Appendix B. The ToolKit also features a mouse-driven
interactive simulator/waveform editor. This makes
design verification very easy.

Conclusion

State 1S48: if (HLS) then 1S52
else if (QLS # time2) then !S32
else 1S48;

48 = 110000 (binary)
52 = 110100

Q2 is the only bit that transitions
Therefore, a product term of:
Q5& Q4 & !Q3 & 102 & 01 & !Q0 & HLS

\ /
state 48

would be added to the equation for Q2.
To continue the example:

48 = 110000
32 = 100000
Q4 is the only bit that transitions

Therefore, the product terms of:

Q5& Q4&1!1Q3&!102&!Q1&!Q0 & QLS
#Q5& Q4 &!Q3 & !1Q2 & Q1 & Q0 & time2
\ /
state 48
would be added to the equation for Q4.

Figure 10. Boolean Equation Extraction Example

The purpose of this applications note was to introduce
the CY7C330, and show a useful application example
for the device. Although this example, the PCM state
machine for FDDI, is a very complex function, the
design was made to fit in the CY7C330. The CY7C330
offers the designer a high degree of flexibility. Using
the available software development tools, ABEL and
Cypress PLD ToolKit, the designer can implement even
more complex functions by following the methodology
outlined in this example. There is no other device
presently available that can implement complex state
machines at the speeds the 7C330 can offer.

4-123

% % %YPRESS : FDDI Physical Connection Management Using the CY7C330
SEMICONDUCTOR ~

Appendix A. Orignal Abel Source Code

module pcm flag *-r3
title "Physical Connection Management (PCM) state Machine version 9.1
Steve Traum Cypress Semiconductor. March 27, 1989’

U1l device "P330’;

"Inputs

CKS,Ck1,rst_ pin 1,2,3;

pcl,pcl pin 4,5;

timerl pin 6;

timer2 pin 7;

mls,ils,hls gls pin 9,10,11,12;

Val n pin 13;

n0,n1 pin 14,15;

Val 8 pin 16;

Val_9 pin 17;

noise_count pin 18;

pc_stop pin 19;

pc_maint pin 20;

nl istype ’feed_pin’;

Val_8 istype ’feed_pin’;

Val_9 istype ’feed_pin’;

noise_count istype ’feed_pin’;
"Outputs

Reset node 29;

Q5,04,03,Q02,Q1,Q0 pin 28,27,26,25,24,2 3;

Q5,04,0Q3,Q2,Q01,Q0 istype ’pos,reg’;

Qstate = [Q5,Q4,Q3,Q2,Q1,Q0];
"declarations

High,Low = 1,0

H,L,CX,Z =10, .C., X..Z;
"Qstate
S0 = ~b000000; S1 = ~b000001; S2 = ~b000010; S3 = ~b000011; S4 = ~b000100;
S5 = 7b000101; S6 = ~b000110; S7 = ~b000111; S8 = ~b001000;S9 = ~b001001;
S10 = 7b001010; S11 = ~b001011; S12 = ~b001100; S13 = ~b001101;S14 = ~b001110;
S15 = ~b001111; S16 = ~b010000; $17 = ~b010001; S18 = ~b010010;S19 = ~b010011;
S20 = ~b010100; $21 = ~b010101; $22 = ~b010 110; $23 = ~b010111;S24 = ~b011000;
$25 = ~b011001; S$26 = ~b011010; S27 = 7~ b011011; S28 = ~b011100;S29 = ~b011101;
S30 = ~b011110; S31 = ~b011111; §32 = ~b100000; S33 = ~b100001;S34 = ~b100010;
S35 = ~b100011; S36 = ~b100100; S37 = ~b100101; S38 = ~b100110;S39 = ~b100111;
S40 = ~b101000; S41 = ~b101001; S42 = ~b101010; S43 = ~b101011;S44 = ~b101100;
S$45 = ~b101101; S46 = ~b101110; S$47 = ~b101111; S48 = ~b110000;S49 = ~b110001;
S50 = ~b110010; S51 = ~b110011; §52 = " b110100; S$53 = ~b110101;S54 = ~b110110;
S55 = ~bl110111; §56 = ~b111000; S57 = ~b111001; S58 = ~b111010;S59 = ~b111011;

860 = ~b111100; S61 = ~bl111101; S62 = ~b111110; S63 = " bl1l11ll;

MLS MACRO {(!mls)};

ILS MACRO {(iils)};

HLS MACRO {(thls)};

QLS MACRO {(Iqls)};

pc_start MA CRO {(!pc0 & !pcl)};

4124

!
2

RESS

FDDI Physical Connection Management Using the CY7C330

ICONDUCTCR

4!
g

Appendix A. Original Abel Source Code (continued)

pe_reject MACRO {(!pc0 & pcl)};
sc_join MACRO {(pc0 & !pcl)};
pestop MACRO {(!pc_stop)};
pcmaint MACRO {(!pc_maint)};
timel MACRO {(!timer1)};

time2 MACRO {(!timer2)};
n_neq_10 MACRO {(!n0 & !n1)};
n_eq 7 MACRO {(!n0 & n1)};
n_eq 9 MACRO {(n0 & !n1)};

n eq_10 MACRO {(n0 & n1)};
noise MACRO {(!noise_count)};
valn MACRO {(Val_n)};

val8 MACRO {(!Val _8)};

val9 MACRO {(1Val 9)});

state_diagram Qstate

state !1S0:
if (pc_start) then 1S32
else if (pcmaint) then 1S31
else 1S0;

state !S1:
if (HLS) then 1S32
else if (pcstop) then !SO
else if (pcmaint) then !S63
else 1S1;

state !S2:
if (time1) then !S3
else 1S2;

state !S3:
if (time1) then !S19
else if (pc_reject) then !S1
else !S3;
state !S63:
if (pc_stop) then 1SO
else 1S63;

state !S6:
goto !1S38;

state !S8:

if (QLS # HLS # noise) then 1S32

else if (pc_stop) then SO
else if (pc_maint) then 1S63
else if (pc_start) then 1S32
else 1S8;

state !S9:
if (sc_join&timel) then IS8

else if (pc_reject # MLS) then !S1

else 1S9;
state 1S16:
if (val_9) then 1S48
else 1S32;
state 1S17:
goto 1S18;

4-125

= ; S FDDI Physical Connection Management Using the CY7C330

Appendix A. Original Abel Source Code (continued)

state 1S18:
if (QLS # time2) then 1S32
else if (MLS) then !S6
else if (HL S) then 1S22
else 1S18;

state !S19:
if (n_neq_10) then !S51
else if (n_eq_7) then 1S27
else if (n_eq_9) then !S59
else if (n_eq_10) then !S16
else 1S19;

state 1S22:
goto !S38;

state !S27:
if (val5 = = High) then !S54
else 1S39;

state 1S39: if (HLS # MLS # timel) then !S55
else 1S39;

state 1S32: if ((QLS # HLS # MLS) & time1) then 1S33
else if (pc_stop) then !S0O
else if (pc_maint) then !S63
else 1S32;

state 1S33:
if (HLS) then !S35
else if (ILS) then 1S32
else 1S33;

state !S34:
if (ILS) then !S2
else if (QLS # (MLS & time2)) then 1S32
else 1S34;

state 1S35:
if (timel) then 1S34
else 1S35

state 1S36:
if (MLS) then 1S44
else if (QLS # time2) then !S32
else if (pc_stop) then !SO
else if (pc_maint) then !S63
else 1S36;

state 1S38:
if (time1) then !S34
else 1S38;

state 1S40:
if (ILS) then !S41
else if (QLS # HLS # time2 # noise) then 1S32
else 1S40;

state 1S41:
if (timel) the n 1S9
else 1S41;

state 1S44:
if (timel) then 1S40
else 1S44;

4-126

FDDI Physical Connection Management Using the CY7C330

=T

state 1S48:

if (HLS) then 1S52

Appendix A. Original Abel Source Code (continued)

else if (QLS # ti me2) then !S32
else 1S48;

state 1S50:

goto !S18;

state !S51:

if (valn = = High) then !S17

if (HLS # MLS # timel) then !S55;

else 1S50;
state 1S52:

if (timel) then !S36

else 1S52;
state !S55:

goto 1851;
state 1S59:

if (val8) then 1S54

else 1S51;
state !S54:

else 1S54;
state !4 goto !S0;
state !5: goto !S0;
state !7: goto !S0;
state 110: goto !S0;
state !111: goto !S0;
state 112: goto !S0;
state 113: goto !S0;
state !14: goto !S0;
state !15: goto !S0;
state 120: goto !S0;
state 121: goto !S0;
state !123: goto !S0;
state 124: goto !S0;
state 125: goto !S0;
state 126: goto !S0;
state 128: goto !S0;
state 129: goto !S0;
state 130: goto !1S0;
state !131: goto !S0;
state 137: goto !S0;
state 142: goto !S0;
state 143: goto !S0;
state 145: goto !S0;
state !146: goto !S0;
state !47: goto !S0;
state 149: goto !S0;
state 153: goto !S0;
state !56: goto !1S0;
state !57: goto !S0;
state 158: goto !S0;
state 160: goto !S0;
state !61: goto !S0;
state 162: goto !S0;

equations
Reset = Irst_;
end pcm

"end of file

4-127

?M FDDI Physical Connection Management Using the CY7C330
= F CoDUCToR : ,

Appendix B. Cypress PLD ToolKit Source File

CY7C330;
{This file is the Cypress ToolKit Source Code for FDDI Design }

CONFIGURE;

CKS,CkLRST ,

pc0, pcl, timerl, timer2, MLS (node =9), ILS, HLS, QLS,

Val_n, n0, nl(iop,ireg), !QO, Val_8(iop,ireg), !Q1, Val_9(iop,ireg), !Q2,
!Q3 (node =23), noise_count(iop,ireg), !Q4, pc_stop(iop,ireg), !Q5,
pc_maint(iop,ireg), RST, SET, ILSTATE (node =34),

{**}

EQUATIONS;
RST = RST ;
SET = !pc_maint;

ILSTATE = # Q2 & !Q1 & !Q4 & !Q5 & pc_stop
Q2 & Q0 & !Q4 & !QS & pc_stop
#Q1 & Q3 & !Q4 & !Q5 & pc_stop
#101 & Q2 & Q4 & QS & pc_stop
Q0 & Q2 & Q4 & !Q5 & pc_stop
Q3 & 1Q1 & Q4 & !Q5 & pc_stop
Q3 & !'Q0 & Q4 & !Q5 & pc_stop
Q3 & Q1 & Q4 & Q5 & pc_stop
Q0 & !Q1 & Q2 & !Q4 & Q5 & pc_stop
#1Q1 & Q3 & Q4 & Q5 & pc_stop
#!1Q1 & Q0 & Q4 & Q5 & pc_stop
Q3 & !Q0 & Q4 & Q5 & pc_stop;

Q0 := <oe>
<xsum> QO & !ILSTATE & pc_stop
#1Q5 & 1Q4 & 103 & 1Q2 & Q1 & Q0 & !HLS & ILSTATE & pc_stop
#1Q5 & 1Q4 & Q3 & !Q2 & Q1 & !QO & !timerl & !ILSTATE & pc_stop
#1Q5 & 1Q4 & Q3 & !'Q2 & !Q1 & Q0 & pcd & !pcl & timerl & !ILSTATE & pc_stop
#105 & Q4 & Q3 & !Q2 & !Q1 & QO & 'ILSTATE & pc_stop
#1Q5& Q4 & 103 & !'Q2 & Q1 & Q0 & n0 & nl & 'ILSTATE & pc_stop
#Q5& Q4& Q3 &!Q2 & Q1 & Q0 & !Val_8 & ILSTATE & pc_stop
#Q5& Q44103 & Q2 & Q1 & !Q0 & !HLS & 'ILSTATE & pc_stop
#Q5& Q4 &!03& Q2 & Q1 & !Q0 & !MLS & !ILSTATE & pc_stop
#Q5& Q4&!03 & Q2 & Q1 & !Q0 & !timerl & ILSTATE & pc_stop
#105& Q4 & Q3 &!Q2 & Q1 & Q0 & Val_n & 'ILSTATE & pc_stop
#Q5& 104 & 1Q3 & !Q2 & !Q1 & Q0 & QLS & !timerl & !ILSTATE & pc_stop
#Q5& 104 &1Q3 & !Q2 & !Q1 & !'Q0 & 'HLS & !timerl & !ILSTATE & pc_stop
#Q5&!1Q4 & !Q3 & Q2 & !Q1 & !Q0 & 'MLS & !timerl & !ILSTATE & pc_stop
Q5 & 1Q4 & 103 & 1Q2 & !0Q1 & QO & 'ILS & !ILSTATE & pc_stop
#Q5&!1Q4 & 'Q3 & !Q2 & Q1 & QO & !timerl & ILSTATE & pc_stop
#Q5&!Q4 & Q3 & !Q2 & !Q1 & !Q0 & 'ILS & !ILSTATE & pc_stop
#Q5& Q4 & !Q3 & !Q2 & Q1 & Q0 & !Val n & 'ILSTATE & pc_stop
#Q5& Q4 & Q3 & Q2& Q1 & Q0 & !pch & !pcl & ILSTATE & pc_stop;

4-128

FDDI Physical Connection Management Using the CY7C330

?; SEMICO\IDUCTOR

Appendix B. Cypress PLD ToolKit Source File (continued)

Q1 := <oe>
<xsum> Q1 & !ILSTATE & pc_stop
#105 & !'Q04 & !Q3 & !Q2 & Q1 & Q0 & !pcO & pel & 'ILSTATE & pc_stop
#Q5&Q4& Q3 & Q2& Q1 & Q0 & !pcld & Ipcl & TLSTATE & pc_stop
#10Q5& Q4 & !03 & !Q2 & !Q1 & Q0 & 'ILSTATE & pc_stop
#1Q5& Q4 & !Q3 & !Q2 & Q1 & !Q0 & !'QLS & 'ILSTATE & pc_stop
#1Q5 & Q4 &!Q3 & !'02 & Q1 & !Q0 & !timer2 & 'ILSTATE & pc_stop
#1Q5& Q4 & !Q3 &!Q2 & Q1 & Q0 & n0 & n1 & 'ILSTATE & pc_stop
Q5 &1Q4&!Q3 & !Q2 & !Q1 & Q0 & 'HLS & !'ILSTATE & pc_stop
#Q5&!Q4& 103 &!02 & Q1 & !Q0 & !QLS & 'ILSTATE & pc_stop
#Q5 & 104 & 103 & !1Q2 & Q1 & !Q0 & !timer2 & 'MLS & !ILSTATE & pc_stop
#Q5& Q4 & !03 & 102 & Q1 & Q0 & Val_n & ILSTATE & pc_stop;

Q2 := <oe>
<xsum> Q2 & !'ILSTATE & pc_stop
#Q5& Q4 & Q3 & Q2 & Q1 & Q0 & !pcd & !pel & LSTATE & pe_stop
#1Q5 & Q4 & 1Q3 & !Q2 & Q1 & !Q0 & 'HLS & !ILSTATE & pc_stop
#!1Q5& Q4 & 103 & 102 & Q1 & !Q0 & 'MLS & 'ILSTATE & pc_stop
#Q5&0Q4& Q3&!Q2 & Q1 & Q0 & !'Val_8 & 'ILSTATE & pc_stop
#105 & Q4 & Q3 & 102 & Q1 & QO & ILSTATE & pc_stop
Q5 & 104 & 103 & Q2 & !Q1 & !Q0 & !'QLS & 'ILSTATE & pc_stop
Q5 & 104 & !Q3 & Q2 & !Q1 & !Q0 & !timer2 & TLSTATE & pc_stop
#Q5&!Q4 & 103 & Q2 & Q1 & !QO & !timerl & !ILSTATE & pc_stop
Q5 & 104 & Q3 & Q2 & !Q1 & !Q0 & !timerl & ILSTATE & pc_stop
Q5 & Q4 & 103 & 'Q2 & 'Q1 & Q0 & !HLS & ILSTATE & pc_stop
#Q58& Q4 & 103 & Q2 & Q1 & QO & !ILSTATE & pc_stop;

Q3 := <oe>
<xsum> Q3 & !ILSTATE & pc_stop
#Q5&Q4& Q3& 0Q2& Q1 & Q0 & !pcld & !pcl & ILSTATE & pe_stop
105 & 104 & Q3 & !Q2 & !Q1 & !Q0 & !QLS & LSTATE & pc_stop
#1Q5& 104 & Q3 & 102 & !Q1 & !Q0 & 'HLS & 'ILSTATE & pc_stop
#1Q5 & 104 & Q3 & !Q2 & !'Q1 & Q0 & !noise_count & ILSTATE & pc_stop
#1Q5 & 104 & Q3 & !Q2 & 'Q1 & Q0 & !pcd & pel & HLSTATE & pe_stop
#1Q5& 04 & Q3 & !Q2 & Q1 & QO & !MLS & 'ILSTATE & pc_stop
#1Q5 & Q4 & Q3 & !Q2 & Q1 & QO & 'n0 & n1 & LSTATE & pc_stop
#1Q5& Q4 & !'03 & !Q2 & Q1 & Q0 & n0 & !nl & 'ILSTATE & pc_stop
#Q5& Q4 & Q3 &!Q2 & Q1 & Q0 & ILSTATE & pc_stop
#Q5&!'04&!'03& Q2&!Q1&!Q0& IMLS & 'ILSTATE & pc_stop
Q5 &1!1Q4 & Q3 & !Q2 & !Q1 & !'Q0 & !QLS & !ILSTATE & pc_stop
#Q5&!Q4 & Q3 & !Q2 & !Q1 & !'Q0 & 'HLS & !'ILSTATE & pc_stop
#Q5&!Q04& Q3 &!Q2 & !Q1 & !Q0 & !timer2 & 'ILSTATE & pc_stop
#Q5& 104 & Q3 & !Q2 & !Q1 & !Q0 & !noise_count & ILSTATE & pc_stop;

4-129

% FDDI Physical Connection Management Using the CY7C330
I Swucror - v

Q4 :=

{end of file}

Appendix B. Cypress PLD ToolKit Source File (continued)

<oe>
<xsum> Q4 & !ILSTATE & pc_stop

#1Q5 & !Q4 & 103 & !Q2 & Q1 & QO & !timerl & !ILSTATE & pc_stop
#Q5& Q4 & Q3 & Q2 & Q1 & Q0 & !pcO & !pcl & ILSTATE & pc_stop
#10Q5& Q4 & Q3 & Q2 & !Q1 & !Q0 & Val_9 & !ILSTATE & pc_stop
#1Q5& Q4 & !Q3 & !Q2 & Q1 & !Q0 & !QLS & !'ILSTATE & pc_stop
#105& Q4 & !Q3 & !Q2 & Q1 & !QO & !timer2 & 'ILSTATE & pc_stop
#!1Q5& Q4 &!Q3 & !'Q2 & Q1 & !Q0 & IMLS & !ILSTATE & pc_. stop
#!1Q5 & Q4 & !Q3 & Q2 & Q1 & Q0 & ILSTATE & pc_stop

#!1Q5& Q4& Q3&!0Q2& Q1 & Q0 & !Val n & !ILSTATE & pc_stop
Q5 & Q4 & 'Q3 & Q2 & Q1 & Q0 & 'HLS & ILSTATE & pc_stop -
#Q5 & 104 & !Q3 & Q2 & Q1 & QO & !MLS & 'ILSTATE & pc_stop

Q5 & 104 & !Q3 & Q2 & Q1 & QO & !timerl & 'ILSTATE & pc_stop
#Q5& Q4&!Q3 &!0Q2 & !Q1 & !Q0 & QLS & !ILSTATE & pc_stop
#Q5& Q4&!03 &!Q2 & Q1 & Q0 & !timer2 & 'ILSTATE & pc_stop
#Q5& Q4 &!1Q3 & Q2 & !'Q1 & !'Q0 & !timerl & !ILSTATE & pc_stop;

<oe>
<xsum> Q5 & !ILSTATE & pc_stop

#1Q5&!1Q4 & 103 & Q2 & !Q1 & Q0 & !pcd & !pel & ILSTATE & pc_stop
#1Q5 & !Q4 & !Q3 & Q2 & !Q1 & QO & 'HLS & !ILSTATE & pc_stop

#1Q5 & 1Q4 & 1Q3 & Q2 & Q1 & Q0 & TLSTATE & pc_stop

#1Q5 & 104 & Q3 & !Q2 & !Q1 & Q0 & !QLS & ILSTATE & pc_stop

#1Q5 & !1Q4 & Q3 & !Q2 & Q1 & Q0 & 'HLS & !ILSTATE & pc_stop

#1Q5 & !'Q4 & Q3 & !Q2 & Q1 & Q0 & !noise_count & !ILSTATE & pc_stop
#1Q5 & Q4 & 1Q3 & 1Q2 & !Q1 & !Q0 & TLSTATE & pc_stop

#1Q5& Q4 & !1Q3 &1Q2 & Q1 & 'Q0 & !'QLS & 'ILSTATE & pc_stop
#1Q5& Q4 & 103 & !Q2 & Q1 & !'Q0 & !timer2 & !ILSTATE & pc_stop
#!1Q5& Q4 & !Q3 & 102 & Q1 & Q0 & !'n0 & !nl & !ILSTATE & pc_stop
#1Q5 & Q4 & Q3 & Q2 & Q1 & Q0 & n0 & !nl & !ILSTATE & pc_stop
#1Q5& Q4 & 103 & Q2 & Q1 & !Q0 & !'ILSTATE & pc_stop

#1Q5& Q4 & Q3 & Q2 & Q1 & QO & 'ILSTATE & pc_stop

Q5 & 104 & 1Q3 & 1Q2 & Q1 & !Q0 & !ILS & !TLSTATE & pc_stop
#Q5&!1Q4 & Q3 &!Q2 & !Q1 & QO & !timerl & ILSTATE & pc_stop
#Q5& Q4 & !0Q3 & Q2 & Q1 & Q0 & !ILSTATE & pc_stop

#Q5& Q4 &!Q3 & !Q2 & Q1 & Q0 & Val_n & !ILSTATE & pc_stop;

4-130

= CYPRESS

—= 2~ SEMICONDUCTOR

—~————

CY7C331 Application Example: Asynchronous,
Self-Timed VME Bus Requester

Introduction

This application note shows the capability of the
Cypress CY7C331 CMOS Erasable Programmable
Logic Device (EPLD) to support asynchronous, self-
timed designs. The CY7C331 is ideal for implementa-
tion of asynchronous, self-timed, and general-purpose
logic integration applications. The ability to implement
self-timed applications is unique to the CY7C331. The
application example shown consists of the design and
implementation of a self-timed VME Bus Requester.

The CY7C331 is a member of the Cypress slimline 28-
pin family of high-performance CMOS EPLDs. Family
members are characterized by high speed, increased
1/0, and high integration. The CY7C331 has a highly
flexible architecture intended to support asynchronous
and general-purpose logic integration applications. The
device has a 192 product term logic array and twelve
1/O logic macrocells. Each macrocell has two D-type
flip-flops with asynchronous set, reset, and bypass
capability. The clock, set and reset inputs of a flip-flop
are individually programmable. Logic polarity and out-
put enable control are also individually programmable
in each macrocell. Combinatorial and registered inputs
and outputs and buried states are easily supported by
the CY7C331.

The CY7C331 has the unique capability to be able to
self-time asynchronous, sequential applications. A self-
timed design performs a sequential task without the
presence of a clock to synchronize each step in the se-
quence. The benefit of this design approach is usually
higher performance. The main application for self-
timing is in high-performance /O interfaces. No other
PLD has this capability. The CY7C331 is able to sup-
port self-timed designs because clock inputs are

programmable, internal timing relationships are well-
controlled, and metastable resolution is ultra-fast.

The VME Bus Requester application example - shows
the CY7C331 in an asynchronous, self-timed design.
The VME Bus is a common, high-performance
asynchronous bus. The VME bus request function is
asynchronously initiated and sequential. The application
example also shows usage of many of the features of the
CY7C331.

CY7C331 Brief Description

The CY7C331 is a member of the Cypress slimline 28-
pin family of CMOS, UV-erasable programmable logic
devices. The device is available in a 28-pin slimline (.3-
inch wide) plastic or windowed DIP, and 28-pin PLCC
and LCC packages. The windowed DIP version of the
device is erasable and reprogrammable, and the plastic
Dip, PLCC, and LCC versions are one-time program-
mable. The CY7C331 is available with TPD and TCO
specified as a maximum of 25 ns, with register set-up
times of 12 or 2 ns, depending on whether the register is
connected to an input pin or to the array. Other com-
mercial and military speed grades are available.

The CY7C331 is based on a programmable sum-of-
products (AND-OR) logic array architecture. The logic
array consists of 192 programmable product terms, each
having as input the true and complement versions of
thirty-one logic inputs. The product terms connect to
one of twelve I/0 logic macrocells, each connecting to a
device pin. The product terms are allocated with a vari-
able distribution to the macrocells. There are thirteen
combinatorial inputs to the array from dedicated input

4-131

%} CYPRESS
—_— SEMICONDUCTOR

CY7C331 Asynchronous VME Bus Requester

Figure 1. The CY7C331 Block Diagram

pins, one of which (pin 14) may also be used as an out-
put enable control. The macrocells and six shared input
muxes each provide an input to the array. A shared
input mux selects the input from one of two adjacent
macrocells. (Refer to Figure 1.)

An I/O macrocell sums array product terms, selectively
inverts the sum and provides the result to the D-input
of a D-type flip-flop. The output (Q) of the flip-flop is
connected through an inverting tri-state buffer to a
device pin and can be fed back to the array. An I/O

macrocell also provides a second D-type flip-flop that
latches data from the same device pin. The Q output of
this flip-flop connects to the array input select mux and
to the shared input mux (see Figure 2). Both flip-flops
have asynchronous set (S) and reset (R) inputs, and
bypass capability. A flip-flop will bypass the D input to
Q when S and R are both high. The clock, S, and R
inputs of both flip-flops are each driven from separate
product terms.

A multi-input OR gate sums the product terms. The
number of product terms input to the OR gate depends
on the macrocell (see Figure I). A dual-input XOR gate
selectively inverts the sum. The second input of the
XOR gate is a product term that can be used to control
polarity, or to emulate T or JK type flip-flops. The out-
put enable of a macrocell can be controlled by pin 14,
or a product term. One of these two options is selected
by the OE mux. The macrocell array input is selected by
another mux called the feedback mux. Each OE, feed-
back and shared input mux has an associated program-
mable configuration bit that controls mux selection.

CY7C331 Self-Timed Capability

The CY7C331 is designed with the capability to imple-
ment self-timed designs. The main application for self-
timed functions are in high-performance 1/O interfaces
where clocking restrictions prevent performance re-
quirements from being satisfied. These applications may
not have an available clock, the clock may be too slow
or synchronization time may have to be minimized.

A self-timed design implements a state machine without
the presence of a clock to synchronize each state transi-
tion. The implementation of a self-timed design must
meet two basic requirements:

1. Time and perform state transitions.
2. Synchronize asynchronous inputs.

As in any state machine, a self-timed design must meet
minimum state flip-flop set up times before performing
a state transition. Without the benefit of a clock, self-
timing clocks must be generated based on the state data
change due to a state transition itself. This means that
clock initiation and data changes are coincident. A
clock must be delayed to allow data to settle and meet
minimum set up time requirements. The simplest ex-
ample of self-timing is shown in Figure 3. A logic one is
clocked into a D-type flip-flop on the rising edge of the
input. The design works if the clock delay time is long

4-132

e

CY7C331 Asynchronous VME Bus Requester

OE PTERM

OE (PIN 14)

OUT SET PTERM

XOR PTERM
Dy
register

PRODUCTS

o
o
1

S
T
co

TO YO PIN

OUT CLK PTERM

s
D Q

OUT RESET PTERM

IN CLK PTERM

\

IN SET PTERM

TO INPUT BUFFER °

- o

s

IN RESET PTERM

Q-

QD
QB
R

input

TO INPUT BUFFER °

- o

w

register

shared
input mux

Q
N

FROM ADJACENT
MACROCELL

Figure 2. The CY7C331 /O Macrocell

enough to allow the data input to be set up. The
CY7C331 is able to support self-timed designs because
the timing relationship between the D input logic and
clock input logic of a flip-flop can be programmed to
guarantee that minimum set up time requirements are
satisfied. The synchronization of asynchronous inputs is
performed in the same manner, except that set up time
is longer to allow for metastable resolution. The
CY7C331 can also perform self-timed synchronization
because metastable resolution is ultra-fast.

The approach used in the CY7C331 to self-time state
transitions is to delay a clock signal by passing it
through the logic array one additional time to allow
data to meet set up time requirements. Further, to
guarantee that this approach works, the extra level of
delay in the clock path must be programmed to delay
the clock as long as possible (see Figure 4). In general, a
self-timed design should set up data as fast as possible
and delay the clock long enough to guarantee that data
is set up. Delay time in the CY7C331 is sensitive to the
logic function programmed. To guarantee that data is
set up as fast as possible would restrict logic functions
that could be performed. This is avoided by placing
restrictions on the clock path. Any logic function can be
programmed when the clock delay path element is as
slow as possible.

To perform self-timed synchronization, the clock is
delayed by two extra passes to allow for the extra delay
required for metastable resolution (see Figure 5). Both
clock delay elements must be programmed to be as slow
as possible to allow any logic function to be
programmed. These restrictions allow for a Mean Time
to Failure (MTF) of greater than 10 years due to a
metastable condition in a CY7C331.

a ouT

La—s |

Figure 3. A Simple Self-Timed Element

Clock Delay Programming

In the CY7C331, a product term output transition from
low to high is generated faster than from high to low. A
transition caused by a single input and a single product
term will be faster than those caused by multiple inputs
or product terms. The shortest delay time through a

4-133

CY7C331 Asynchronous VME Bus Requester

SET PTERM

DSQ

ouT

—
f

RESET PTERM

™ ™ A
IN - L/ 1) >
co=0
T setPT = 1
>
1"es
co=0 R
reset PT = 1 |
MAIN DELAY

Figure 4. CY7C331 Self-Timed Element

CY7C331 is when a single input triggers a single
product term to transition from low to high. The slowest
clock path is obtained by placing restrictions on how the
extra level of clock delay is programmed. These restric-
tions are:

1. The clock delay should use a multiple product term,
OR gate, XOR gate logic path to a bypassed flip-flop.

2. Clock delay logic should make product term outputs
transition from high to low.

3. All product terms to the OR gate should be
programmed identically to implement clock logic. The
OR gate should have the same or more inputs than as-
sociated data path OR gates.

4. The programmable XOR input should be set always
low.

The clock delay element of Figure 4 illustrates each of
the four programming restrictions.

Self-Timed VME Bus Requester

The application used to illustrate the use of the
CY7C331 in a self-timed design is a VME bus re-
quester. Bus requesters are used in common bus sys-
tems that support multiple processors controlling bus
transfers. A processor that controls bus transfers is typi-
cally referred to as a bus master. The function of a bus
requester is to request permission for a master to con-
trol data bus transfers. The requester also indicates to
the master when control has been granted. The VME
Bus is a common, high-performance asynchronous bus
that supports multiple bus masters.

A self-timed design approach for a VME bus requester
is appropriate because the VME bus is asynchronous
and high performance. The bus request function is
asynchronously initiated and sequential. A self-timed
design will self-synchronize to initiate the request and
self-time the rest of the request sequence at CY7C331
device speed. A synchronous approach requires an ex-
ternal clock to synchronize and time the sequence. The

VME bus provides a 16 MHz system clock. A
PTER PTER
ASYNG IN oSa ’ o%a our
—p SB p— o r ga b—
RESET PTERM Rl TERI
SET PTERM
s
INr ! O . ¥
R |+
T PTERM

Figure 5. CY7C331 Self-Synchronizing Element

4-134

E—F

CYPRESS

CY7C331 Asynchronous VME Bus Requester

SEMICONDUCTOR

=
——

CY7C331 self-timed design provides much higher per-
formance than a synchronous design using the system
clock.

The application example also shows usage of many of
the features of the CY7C331, and the process used for
design and implementation with a CY7C331. The VME
bus requester design supports request generation for
three on-board masters and overlaps requests with bus
transfers. The requester is assumed to be on a board
that contains three separate DMA channels. Each chan-
nel is a bus master. The requester prioritizes on-board
grants to the three masters. A bus master must obtain
the bus before data transfers can be performed. This is
extra overhead that can lower bus performance. The re-
quester is designed so that bus requests are overlapped
with data bus transfers to maintain high performance.
The features of the CY7C331 allow these additional
functions to be implemented into the requester.

VME Background

The VME bus is defined to support multiple bus
masters. Only one bus master can control the bus at a
time. The VME bus provides an arbitration subsystem
to allocate the data bus. A central bus arbiter deter-
mines which master is granted the data bus. Each
master contains a bus requester to request control of
the bus from the arbiter.

The arbitration subsystem is supported on the bus with
six bused lines and four daisy-chained lines. All of these

SYSRESET-

BRX- 7L " 30ns min »
BGXIN-—™mm_ = T
BBSY- ——— 90ns min
BGxOUT-

Figure 6. VME Arbitration Timing

lines are active low; indicated by a *-’ suffix on a line
name. The bused lines are Bus Busy (BBSY-), Bus
Clear (BCLR-), and Bus Request 3-0 (BR3- - BRO-).
The daisy-chained lines when entering a board are
designated Bus Grant 3-0 In (BG3IN- - BGOIN-) and
when leaving are designated Bus Grant 3-0 Out
(BG30UT- - BGOOUT-). (The terms BRx-, BGxIN-,
and BGxOUT- are used when references aren’t to a
specific line or lines. x is assumed to be any value from
0 to 3.) Highest priority is allocated to number 3 lines
and lowest 0 lines. The BGxOUT- lines that leave a
board in slot n enter the board in slot n+ 1 as BGxIN-
lines. The bus arbiter must always reside in the first slot
of a VME bus-based system to initiate BGxOUT-
generation.

A simple VME Bus requester initiates a request when
an on-board request (OBR) has been detected. (A
simplified bus request state diagram and timing diagram
appear in Figures 6 and 7.) The requester then drives
the appropriate BRx- line active and waits for the as-
sociated BGxIN- line to become active. Once the re-

/BRx-, /BGxOUT-,

/BBSY-, JOBG- | JOBR- & /BGxIN-
BGxIN- & /OBR-
BGIN- & OBR |
\
BDxOUT- I gayin- BRx- [BGxIN-
/BGxIN- BGxIN-
BBSY, | |
/BRx-, OBG- | BGxIN- + OBR-
JOBR- & /BGxIN- & JAS-
/

Figure 7. VME Bus Requester State Diagram

4-135

RESS
SEMICONDUCTOR

% CY7C331 Asynchronous VME Bus Requester

quester detects BGXIN- active, BBSY- and an on-board
grant (OBG) are driven active and BRx- is released to
inactive. OBG indicates to a master that it has the bus
and may perform a data transfer once the previous
transfer has completed. Transfer completion is indi-
cated when the Address Strobe (AS-) is inactivated.
The requester releases the bus by releasing BBSY- and
OBG when BGxIN- and OBR have become inactive. If
BGxIN- becomes active, but OBR isn’t, the requester
passes the grant down the daisy chain by making
BGxOUT- active.

A VME bus requester must meet two timing require-
ments. BBSY- must be driven for a minimum of 90
nanoseconds and release of BRx- must occur at least 30
nanoseconds before BBSY- is released. BGXOUT- must
never glitch during operation. BBSY- and BRx- lines
must use open-collector drivers. All masters drive
BBSY- and all masters on a bus grant daisy chain drive
the same BRx- line. More than one master on a bus
grant daisy chain may request the data bus at the same
time by simultaneously driving their associated BRx-
line.

Requester Design

The first concern of the design is to understand the
functions of the example requester. The requester is
defined to support overlapped bus requests and release
the data bus every transfer cycle. The data bus is
released each transfer cycle because the extra over-
lapped bus arbitration performance overhead is small
and requester design is simplified. The requester sup-
ports three on-board DMA request lines (DMARQ2- -
DMARQO-). All of the DMARQx- lines must be able
to generate a bus request on the BRx- line. The re-
quester supports three on-board grant lines
(DMAGR?2- - DMAGRO-), one for each request line.
When a bus grant is received on BGxIN-, the requester
must determine which DMAGRx- line to activate. The
requester prioritizes the DMARQx- lines and grants to
the highest priority request. DMARQO- has the highest
priority and DMARQ?2- has the lowest. The selected
DMAGRX- line must not be activated until the previous
data transfer is complete.

The requester must drive BBSY- to take control of the
data bus. If any of the DMARQx- lines is requesting the
bus when a grant is received, the requester will drive
BBSY-. To support overlapped operation, BBUSY- is
released as soon as possible to facilitate the next bus
arbitration. BBSY- must be driven for at least 90

nanoseconds, and until BGXIN- is released and the pre-
vious data transfer is complete. If none of the
DMARQXx- lines is requesting the bus when a grant is
received, the requester must pass the grant onto
BGxOUT- for the next requester on the daisy chain.
The requester must also recognize a system reset (SYS-
RESET-).

A logic diagram of a self-timed implementation of the
example VME bus requester using the CY7C331 ap-
pears in Figure 8. BRx- is the OR of the DMARQx-
lines. If any DMARQx line becomes active, BRx will
become active. BRx is driven by an external inverting
open-collector driver.

Self-timed operation is initiated by the incoming
BGxIN- line becoming active. The three on-board
DMA request lines (DMARQ2- - DMARQO-) are self-
synchronized to the BGxIN- line. The falling edge of
BGxIN- is used as a clock to register the DMARQx-
lines and toggle a flip-flop from high-to-low to initiate
an internal, self-timed clock signal (STCP). The
DMARAQXx- lines must be synchronized because BGXIN-
can be activated by any BRx- becoming active or BBSY-
being released. For example, if DMARQO caused the
associated BRx- to initiate bus arbitration, and
DMARQ?2 attempted to become active at the same time
BGxIN- became active, the resulting state of DMARQ2
could be an indeterminate metastable that would need
time for resolution.

The internal, self-timed clock signal is delayed by two of
the CY7C331 delay elements to allow for the time re-
quired to self-synchronize the requests. The requests
are prioritized during the clock delay time. The result-
ing delayed clock (STCP2) then clocks a NOR of the
requests into a register to generate BBSY-, and an OR
of the requests to generate BGxOUT-. This guarantees
that both lines are synchronized and won’t glitch.

BBSY- is driven onto the bus with an external inverting
open- collector driver. The prioritized requests are
clocked into registers to create the DMAGRx- signals
on the rising edge of the delayed STCP if the previous
data transfer had already completed, or on the rising
edge of AS- when the data transfer completes. An inter-
nal flip-flop toggles at the same time. The flip-flop out-
put is used to indicate transfer completion (TC).

The registered BBSY- line is fed into an external 90 ns
line that is used to guarantee that BBSY- will be active
for the minimum required time. BBSY- is inactivated
when the 90 ns delay has elapsed, TC is indicated and

4-136

="

5 CYPRESS
=7 TS oucior

CY7C331 Asynchronous VME Bus Requester

BGxIN- is inactive. The requester is initialized for
another self-timed operation at the same time. The re-
quester is initialized by clearing the STCP and TC flip-
flops.

A SYSRESET resets the requester by clearing the
DMAGRx- lines and generating a requester initialize.
The design assumes that the 30 ns minimum release
time requirment for BRx- before BBSY- is done exter-
nally. This gives the DMA masters flexibility to deter-
mine operation of their own request lines.

The delay line is used in the design because an absolute
delay is required to meet the VME specification. A self-
timed delay can yield only relative results. There is no
way to determine how many levels of delay would be
required to obtain a 90 ns delay. Any one delay is usual-
ly much faster than worst-case, but may be that slow.
The delay can be emulated on-chip by creating a digital
delay, but accuracy would be poor because BBSY-
would have to be synchronized to an absolute time base

such as the 16 MHz system clock. The external inverting
open-collector drivers can be emulated by the
CY7C331, but they wouldn’t meet the drive require-
ments of the VME bus specification. Emulation of an
open-collector driver requires that the signal output to
the external driver instead be used to drive the OE of
an on-board inverting tristate driver (with the input tied

high).
CY7C331 Implementation

The implementation of the example design was
specified for assembly and simulation by the ABEL™
PLD design support software package. The ABEL
package, like any other PLD software, allows a design
to be specified in terms of boolean equations and auto-
matically generates the appropriate programming pat-
tern for a selected PLD to implement the design. PLD
software also typically provides simulation capability to
verify correct design operation.

@ OBR D" BRx-
DMARQO- CIN o PO ek DMAGRO-
R noP r—L?_]'
DMARQ1 2
hd D D -
| F?BL PO = 10 SBL DMAGR1
P1=11&/0
DMARQ2- P2 = 12&/11 &/I0
{ Dgsl {o SE’[DMAGRO-
SYSRESET ‘—|—|
e -
BaaN sopsioelll Logrome,, ylsror
INIT "—|—r L intemaldely " |
AS- oB
1 I5 o} 1C
Y ol
—d
d J lDHQB | BGxOUT-
) [BGXIN-
—N ol BBSY-
=D lDRQ [
BBSY — B . BBSY
80 ns delay — ./ r__)_/
SYSRESET {extemal)

Figure 8. Self-Timed VME Bus Requester Schematic

4-137

%?f"}%wm : CY7C331 Asynchronous VME Bus Requester
SEMICONDUCTCR —

The DMARQX- lines are defined to use two CY7C331
pins for each line; one combinatorial and one
registered. The registered input pins are used to con-
serve output logic for other functions. The three macro-
cells associated with the registered inputs also are used
to perform the internal self-timed clock generation and
delay functions: Most other PLDs require six outputs to
implement these functions. In addition, the individually
programmable clocks of the CY7C331 allow the input
register flip-flops to be clocked on the falling edge of
BGxIN-.

The BR and BBSY lines are defined to be active high to
allow for external inverting open-collector drivers.
BBSY is assumed to be the input to the external delay
line and the CY7C331 input BBSY90 is assumed to con-
nect to the delay line output.

The self-timed clock generation and delay logic is
defined to meet the requirements of CY7C331 self-
synchronization. The ABEL source file for this im-
plementation are available upon request.

4-138

Bus-Oriented Maskable Interrupt Controller

Introduction

In virtually all microprocessor designs there is a re-
quirement for some level of interrupt support. In com-
plex applications, a dedicated interrupt controller chip
from the specific microprocessor family can provide the
required support, but for simple applications, or where
special requirements exist, a standard interrupt control-
ler is either inadaquate or represents overkill for the
design. In such cases, a custom-designed controller is
implemented using some combination of MSI logic and
PLDs. This application note is intended to illustrate the
design flexibility of the CY7C331 PLD from Cypress
Semiconductor in a single-chip interrupt controller
design. The design is implemented in two stages. The
first is a simple 4-channel controller where the major
functional blocks are developed. In the second stage,
the simple design is extended to allow cascading of a
second controller to provide support for up to 8 inter-
rupt channels.

Design features of the interrupt controller include:

1. Programable Polarity Level Sensitive Inputs

2. Interlocked REQ/ACK Handshake

3. Simple MPU Bus Attachment For Read and Write
4. Masking of Individual Channels

5. Prioritized Interrupt Vector

6. Fully Asynchronous Operation

Description

The interrupt controller is attached to the MPU data
bus and is controlled by the system processor through a
Read and a Write port on the data bus. The Read port
provides interrupt status and a prioritized vector for the

processor and the Write port allows the processor to
selectively mask indiviual interrupt channels. A separate
interrupt request line to the processor is provided to
signal a pending interrupt. The bit assignments for the
Read and Write ports are defined in Figure 1.

Mask Word (Write)
7lelslalalalilo
x| x|x|x| [| |

0 -> ENABLED ‘_CHO MASK
1-> MASKED CH1 MASK
2 MASK

'H3 MASK

7lels]als|a]1]o

x| x|x[x[s] [vilw]

STATUS BIT

0-> No Interrupts Vector LSB

1-> Vector Valid Vector MSB

Interrupt Vector (Read)

Status Bit

Figure 1. Data Bus Bit Assignments

A functional block diagram of the interrupt controller

is provided in Figure 2. Major functional blocks include
the Mask Register and Gating block, the Priority En-
coder and Latch, and the Acknowledge Generator
block.

The operation of the interrupt controller is quite
simple. On reset, all interrupt channels are masked off,
and no interrupts are permitted. The processor then
loads the mask register with the desired interrupt chan-
nel mask bits cleared. When an interrupt request oc-

4-139

Bus-Oriented Maskable Interrupt Controller

=T .

BEQ(3:0) GATING PRIORITY 2 DATA BUS
, > ENCODER > REGISTER 7

4 4

4 2 s
—/—ACKN
REGISTER ACKNOWLEDG OWLEDGE
DECODER > REGISTER ; P
4

DATA BUS (

Figure 2. Interrupt Controller Block Diagram

curs, if the channel is not masked, the request is
prioritized and the Interrupt Request (IRQ) to the
processor is asserted. The processor responds to the
IRQ by reading the Interrupt Vector port. When the
read is detected by the interrupt controller, the current
interrupt priority is latched and the priority vector is
placed on the data bus. Latching the current priority
while the vector is being read prevents the vector from
being altered in the midst of the read cycle. In addi-
tion, the vector is decoded within the interrupt control-
ler and the Acknowledge line of the corresponding
channel is asserted. The Acknowledge remains as-
serted until detected by the interrupting element, which

OE PTERM

INTnAﬁ ls_.__
IRQ

4

cs [N
DTB

ACK , L

Figure 3. Timing Sequence for Single Interrupt
Channel

responds by deasserting its interrupt request. This inter-
locking handshake insures that a pending interrupt is
not lost or responded to more than once. The Acknow-
ledege is also used internally to disable the interrupt re-
quest into the priority encoder during the interval be-
tween the interrupt acknowledge and the interrupt re-
quest being deasserted. A simple example of the timing
sequence for a single interrupting channel is provided in
Figure 3.

CY7C331 Description

The CY7C331 is an asynchronous PLD packaged in a
28 pin 300 mil DIP. The device features 12 I/O macro-
cells and 13 dedicated inputs. The I/O macrocell is con-

OE (PIN 14)

OUT SET PTERM
XOR PTERM

register

PRODUCTS

s
b a

o
[e]
1

s
|
co

TO /O PIN

OUT CLK PTERM

OUT RESET PTERM
IN CLK PTERM

QBB——‘
R
|

\

IN SET PTERM

TO INPUT BUFFER

- o

s
Q D

9—:/:

IN RESET PTERM

—q QB
R

TO INPUT BUFFER

[e]

o
1

input
reg@ter

s
. shared T
input mux C2

FROM ADJACEINT

MACROCELL

Figure 4. CY7C331 Macrocell

4-140

Bus-Oriented Maskable Interrupt Controller

= — Py
==~ SEMICONDUCTOR

figured with a separate input and output flip-flop, which
is highly useful in bus oriented applications. Each flip-
flop has a separate product term for the clock, preset
and reset. The D input of the output flip-flop incor-
porates an XOR with the sum-of-products array to
allow selectable polarity, or implementation of a toggle
or JK flip-flop. A unique feature of the macrocell flip-

Figure 5. CY7C331 Block Diagram

flops is the characteristic that when the set and reset
inputs are both asserted, the flip-flop becomes
transparent and the Q output follows the D input. Thus,
the flip-flop can be used as a clocked register with an
independent clock, set and reset, or as a combinational
path. In addition, 6 shared input multiplexers are in-
cluded in the CY7C331 which allow the user to bury up
to 6 output flip-flops without giving up the input pins.
The logic diagram of the I/O macrocell is illustrated in
Figure 4 and a block diagram of the CY7C331 is
provided in Figure 5.

4 Channel Interrupt Controller Design

A functional block diagram of the interrupt controller is
provided in Figure 2. Major functional blocks include
the Mask Register and Gating block, the Priority En-
coder and Latch, and the Acknowledge Generator
block. Pin assignments for the first-stage interrupt con-
troller are defined in Figure 6.

Data Bus Interface

The data bus interface requires bidirectional operation.
When CS and WE are asserted low, data is written into
the mask register. When CS is asserted low and WE
remains high, the current priority vector and interrupt
status is held and is placed on the data bus. The I/O
macrocell of the CY7C331 is readily adapted to the re-
quirement. A logic diagram of the mask/priority vector
function is illustrated in Figure 7. The interrupt status
generation requires a different implementation. When a
read cycle is detected (CS low, WE high), if any inter-
rupt requests are currently pending, the interrupt status

1 28 b DTB3

o2 27 O IRQ

3 26 [DTB2
ICS 1 4 25
WT] 5 24 1 DTB1
IRST 1 6 23 1

o7 22 N

8 21 O
REQ3 1 9 20 b DTBO
REQ2] 10 19 b
REQ1 11 18 j ACK3
REQO] 12 17 b ACK2

] 13 16 [ACKi1

o 14 15 1 ACKO

Figure 6. Interrupt Controller Pin Assignments

4-141

Bus-Oriented Maskable Interrupt Controller

= .
) o -

ICS*WE
DECODERN \
CE Dso ___DATABUSn
e D¢k
1
RST.
MASKn, QSD
—qQB 4 CE
A e

Figure 7. Mask/Priority Vector Function

bit must be asserted high. Furthermore, new interrupt
requests are held off until the end of the read cycle.
This requires a clocked implementation of the interrupt
status bit on the data bus. This is illustrated in Figure 8.
Note that the flip-flop is configured to be reset when CS
is deasserted high.

Acknowledge Generation

Acknowledge generation requires that the priority vec-
tor being placed on the data bus be decoded and the
corresponding Acknowledge line asserted until the In-
terrupt Request line is deasserted. There is a timing
issue that must be resolved for proper operation. A

ICS *WE
REQ3

REQ2
oS ISTAT
REQ1 a8
REQO R
ICS *WE

RST
MASK3 %

Figure 8. Interrupt Status Generation

valid priority vector is not available until after CS is as-
serted low. Thus, the proper channel cannot be
decoded until the priority vector register has settled. A
delay is required before the Acknowledge generation
can be initiated. This can be accomplished in the fol-
lowing manner. The interrupt status bit is always as-
serted if there is a pending interrupt request and it oc-
curs one propagation delay after CS is asserted on a
read cycle. The Interrupt Status signal is then passed
through an internal strobe stage which causes and an
additional propagation delay. The Internal Strobe is
then used to initiate the Acknowledge Generation se-
quence. The delayed strobe assures that the priority
vector value has settled and the setup requirements for
decoding have been met. The actual Acknowledge
Generation function for a channel is implemented as a
SR flip-flop which is set when a read cycle occurs, the
priority vector corresponds to the channel and the
delayed Internal Strobe occurs. The flip-flop is reset
when the interrupt request for the channel is deas-
serted. A logic diagram for the Internal Strobe genera-
tion and a single Acknowledge Generation block is
provided in Figure 9 with a timing diagram illustrating
typical operation in Figure 10.

INTERNAL STROBE

INT STATUS _| jj'_l
>

ICS
WE

ACKn

PRIORITY
VECTOR —/2—

|._I.|
T

DECODE

Figure 9. Internal Strobe/Acknowledge Generation

4-142

= F Bus-Oriented Maskable Interrupt Controller
= S ouctor

ACKn ﬂ[
REQR
Figure 10. Timing Diagram

Logic Equations

The boolean equations for the interrupt controller are
implemented using the syntax of the Cypress PLD
Toolkit, which is a simple PLD assembler as shown
below in Appendix A. The equations are heavily com-
mented for clarity. The PLD Toolkit does not currently
support "de-morganization" and because the CY7C331
contains inverting output buffers, boolean equations for
output flip-flops are written for negative logic (i.e., solv-
ing for zero). In addition, the inversion requires swap-
ping of the the preset and reset functions on the output
flip-flops. Thus, the logical boolean equation required
to "set" the flip-flop must be implemented on the "reset"
of the flip-flop and in a similar manner the equation
required to "reset" the flip-flop must be implemented on
the "set" of the flip-flop.

Adding Cascade Capability

The interrupt controller design can be readily extended
to accomodate four additional channels. The channels
can be added by incorporating a cascade mechanism to
allow a second interrupt controller to be attached to the
first. The cascade method is illustrated in Figure 11. The
additional channels require the format of the mask
register and the interrupt vector to be extended. This
extension is defined in Figure 11. The lower interrupt
controller provides support for the lower priority inter-
rupt channels, generates the IRQ to the processor and
places the interrupt status and priority vector on the
data bus during a read cycle. The upper interrupt con-
troller supports the higher-priority channels and passes
its current status and priority vector down to the lower
interrupt controller. The interrupt status line is asserted
high when the upper interrupt controller has a non-
masked interrupt request pending. The upper interrupt
controller is attached to the upper four bits of the data
bus to allow the host processor to write into its mask
register. However, because the upper interrupt control-
ler passes its priority vector directly to the lower inter-

rupt controller, there is no requirement for the upper
interrupt controller to output any data on the bus
during a read cycle. Operation of the cascaded version
requires the lower interrupt controller to monitor the
status interrupt line from the upper controller and in-
corporate it into the IRQ to the host processor and the
interrupt vector placed on the data bus during a read
cycle. Modification of the interrupt vector is straight
forward. The upper interrupt channels have higher
priority, so when the interrupt status from the upper
controller is asserted, the lower 2 bits of the interrupt
vector are the 2 vector bits from the upper controller.
When the status is not asserted, the lower 2 bits of the
interrupt vector are the lower priority interrupt vector
encoded from the lower interrupt controller. The third
bit of the interrupt vector is simply the state of the in-
terrupt status signal from the upper controller. The
modified interrupt controller equations for the lower
element are shown in Appendix B. The upper element
equations are shown in Appendix C.

Summary

This application note has offered a brief introduction to
the CY7C331 asynchronous PLD and illustrated its
flexibility in bus-oriented applications. The interrupt
controller described is intended to serve as the basis for
the design of flexible low-to-moderate complexity inter-
rupt controllers. The design can be extended as re-
quired for different request polarity levels, edge sensi-
tive inputs, or additional channels. A disk containing
the PLD source files are available on request from the
local Cypress Sales Office.

4 DTB4-DTB7

REQ4 - REQ7 4 UPPER R
cs —F .4 ACK4-ACK7

INTERRUPT
WE CONTROLLER

STATUS]
VECTOR 2

IRQ

LOWER
INTERRUPT
CONTROLLER

REQO-REQ3__, 4 DTBo - DTB3
cs —

WE
4, ACKO-ACK3

Figure 11. Block Diagram for Cascading Controllers

4143

=7 TiSocrox

Bus-Oriented Maskable Interrupt Controller -

Appendix A. PLD ToolKit Source Code
Stand Alone Interrupt Controller

CY7C331;
CONFIGURE;

CS (node = 4),
WE (node = 5),
RST (node = 6),
REQ3 (node = 9),
REQ2 (node = 10),
REQ1 (node = 11),
REQO (node = 12),

IRQ (node = 27),

ISTAT (node = 28),
PVEC2 (node = 26),
PVEC1 (node = 24),
PVECO (node = 20),

ACK3 (node = 18),
ACK?2 (node = 17),
ACK1 (node = 16),
ACKO (node = 15)

MSK3 (node = 34, SRC = 28),
MSK2 (node = 33, SRC = 26),
MSK1 (node = 32, SRC = 24),
MSKO (node = 31, SRC = 20),

ISTB (node = 25),

EQUATIONS;

IRQ = <oe>
<set_out>
<clr_out>
<xsum>

<sum> REQ3 & !ACK3 & !MSK3

REQ2 & !ACK2 & 'MSK2

REQ1 & !ACK1 & !MSK1

REQO & !ACKO & 'MSKO;
ISTAT = <o0e>!CS & WE
<xsum >
<set_out> CS & ISTAT
<ck_out>!CS & WE
<set_in>!RST
<ck_in>!WE & !CS

{Stand Alone Interrupt Controller}
{declare device type}

{pin 4, chip select}

{pin 5, write enable}

{pin 6, reset}

{pin 9, interrupt request channel 3}
{pin 10, interrupt request channel 2}
{pin 11, interrupt request channel 1}
{pin 12, interrupt request channel 0}

{pin 27, interrupt to processor}

{pin 28, data bus 3 - interrupt status}
{pin 26, data bus 2 - priority vector bit 2}
{pin 24, data bus 1 - priority vector bit 1}
{pin 20, data bus 0 - priority vector bit 0}
{pin 18, acknowledge channel 3}

{pin 17, acknowledge channel 2}

{pin 16, acknowledge channel 1}

{pin 15, acknowledge channel 0}

{shared input mux for pin 28}

{shared input mux for pin 26}

{shared input mux for pin 24}

{shared input mux for pin 20}

{pin 25, internal strobe}

{no expression means always asserted, thus IRQ is always enabled.}
{make FF transparent}

{make FF transparent}

{force invert}

{force invert}
{FF output is reset }

{interrupt is masked on reset}

<sum> REQ3 & !'ACK3 & IMSK3

REQ2 & 'ACK2 & MSK2
REQ1 & !ACK1 & !IMSK1
REQO & !ACKO & 'MSKO0;

IPVEC2 = <o0e>!CS & WE
<set_out>
<set_in>IRST

<ck in>!WE & ICS;

{set is always asserted, thus pin is always zero}
{interrupt is masked on reset}

4-144

=Y Bus-Oriented Maskable Interrupt Controller
= 5 CYPRES
== &~ SEMICONDUCTOR
Appendix A. PLD ToolKit Source Code
Stand Alone Interrupt Controller (continued)
'PVEC1 = <oe> ICS & WE

<xsum > {force invert}

<ck_out> !CS & WE

<sum> !ACK3 & REQ3 & !MSK3

IACK2 & REQ2 & IMSK2

<set_in>IRST {interrupt is masked on reset}
<ck_in>!WE & ICS;

'PVECO = <oe>!CS & WE
<xsum> {force invert}
<ck_out>!CS & WE
<sum> !ACK3 & REQ3 & !MSK3
!ACK1 & REQ1 & !MSK1 & MSK2
IMSK1 & !ACK1 & REQ1 & !REQ2
<set_in>IRST {interrupt is masked on reset}
<ck_in>!WE & ICS;
!ACK3 = <oe>
<clr_out>!CS & WE & PVEC1 & {FF output is set }
PVECO & ISTB & !ACK3
<set_out>CS & ACK3 & !'REQ3; {FF output is reset }
1ACK2 = <oe>
<clr_out>!CS & WE & PVEC1 & {FF output is set}
IPVECO & ISTB & !ACK2
<set_out>CS & ACK2 & 'REQ2; {FF output is reset }
!ACK1 = <oe>
<clr_out>!CS & WE & !PVEC1 & {FF output is set}
PVECO & ISTB & !ACK1
<set_out>CS & ACK1 & !REQ1; {FF output is reset }
!ACKO = <oe>
<clr_out> !CS & WE & !PVEC1 & {FF output is set}
'PVECO & ISTB & !ACKO
<set_out>CS & ACKO & 'REQO; {FF output is reset }
ISTB = <oe>
<clr_out>ISTAT & !ISTB {FF output is set }
<set_out>CS & ISTB; {FF output is reset }
{end of file}

4145

s; CTPRESS

Bus-Oriented Maskable Interrupt Controller

SEMICONDUCTOR

Appendix B. PLD ToolKit Source Code
Cascadable Interrupt Controller-Lower Element

CY7C331;

CONFIGURE;
USTAT (node = 1),
RVECI (node = 2),
RVECO (node = 3),
CS (node = 4),
WE (node = 5),
RST (node = 6),
REQ3 (node = 9),
REQ2 (node = 10),
REQI1 (node = 11),
REQO (node = 12),

o

IRQ (node = 27),

ISTAT (node = 28),

PVEC2 (node = 26),

PVECI (node = 24),

PVECO (node = 20),

ACK3 (node = 18),

ACK2 (node = 17),

ACK1 (node = 16),

ACKO (node = 15),

MSK3 (node = 34, SRC = 28),
MSK2 (node = 33, SRC = 26),
MSK1 (node = 32, SRC = 24),
MSKO (node = 31, SRC = 20),

ISTB (node = 25),

EQUATIONS;

IRQ = <oe>
<set_out>
<clr_out>
<xsum>

<sum> REQ3 & !ACK3 & !MSK3

REQ2 & !'ACK2 & 'MSK2
REQ1 & !ACK1 & !MSK1
REQO & !ACKO & !MSKO0
USTAT;

ISTAT = <oe> !ICS & WE
<xsum >

<set_out> CS & ISTAT

<ck_out> ICS & WE
<set_in> IRST
<ck_ in> IWE & ICS

{Cascaded Interrupt Controller - Lower Element}

{declare device type}

{pin 1, upper element interrupt status}

{pin 2, ripple vector bit 1 from upper element}
{pin 3, ripple vector bit 0 from upper element}

{pin 4, chip select}

{pin 5, write enable}

{pin 6, reset}

{pin 9, interrupt request channel 3}
{pin 10, interrupt request channel 2}
{pin 11, interrupt request channel 1}
{pin 12, interrupt request channel 0}

{pin 27, interrupt to processor}

{pin 28, data bus 3 - interrupt status}
{pin 26, data bus 2 - priority vector bit 2}
{pin 24, data bus 1 - priority vector bit 1}
{pin 20, data bus 0 - priority vector bit 0}
{pin 18, acknowledge channel 3}

{pin 17, acknowledge channel 2}

{pin 16, acknowledge channel 1}

{pin 15, acknowledge channel 0}

{shared input mux for pin 28}

{shared input mux for pin 26}

{shared input mux for pin 24}

{shared input mux for pin 20}

{pin 25, internal strobe}

{make FF transparent}
{make FF transparent}
{force invert}

{force invert}
{FF output is reset }

{interrupt is masked on reset}

<sum> REQ3 & !'ACK3 & IMSK3

REQ2 & !ACK2 & IMSK2
REQI & !ACK1 & IMSK1
REQO & 'ACKO & IMSKO
USTAT;

4-146

= o
=5 S oucror

IPVEC2 =

!PVEC1 =

!PVECO =

!ACK3

!ACK2

1ACK1

1ACKO

!ISTB

Bus-Oriented Maskable Interrupt Controller

Appendix B. PLD ToolKit Source Code
Cascadable Interrupt Controller-Lower Element (continued)

<oe> ICS & WE

<xsum > {force invert}

<ck_out>!CS & WE

<sum>USTAT

<set_in>IRST {interrupt is masked on reset}

<ck_in>!WE & ICS;

<oe> ICS & WE

<xsum> {force invert}
<ck_out> !CS & WE

<sum> !ACK3 & REQ3 & !MSK3 & !USTAT

1ACK2 & REQ2 & 'MSK2 & 'USTAT

RVEC1 & USTAT

<set_in>IRST {interrupt is masked on reset}

<ckin>!WE & ICS;

<oe> !CS & WE

< Xsum > {force invert}

<ck_out>!CS & WE

<sum> !ACK3 & REQ3 & !MSK3 & !USTAT

!ACK1 & REQ1 & 'MSK1 & MSK2 & !USTAT

IMSK1 & !ACK1 & REQ1 & 'REQ2 & USTAT

RVECO & USTAT

<set_in>!RST {interrupt is masked on reset}
<ck_in>!WE & !CS;

<oe> .
<clr_out>!CS & WE & !PVEC2 & PVEC1 & {FF output is set }
PVECO & ISTB & !ACK3

<set_out>CS & ACK3 & !REQ3; {FF output is reset }

<oe>

<clr_out>!CS & WE & 'PVEC2 & {FF output is set }
PVEC1 & !PVEC0 & ISTB & !ACK2

<set_out>CS & ACK2 & 'REQ2; {FF output is reset }

<oe>

<clr_out>!CS & WE & !PVEC2 & {FF output is set }
!PVEC1 & PVECO & ISTB & !ACK1

<set_out>CS & ACKI1 & 'REQ1; {FF output is reset }

<oe>

<clr_out>!CS & WE & IPVEC2 & {FF output is set }
'PVECI1 & !'PVECO & ISTB & !ACKO

<set_out>CS & ACKO & !REQU; {FF output is reset }

<oe>

<clr_out>ISTAT & !ISTB {FF output is set }

<set_out>CS & ISTB; {FF output is reset }

{end of file}

4147

P Bus-Oriented Maskable Interrupt Controller
=7 SEMICONDUCTCR : '
Appendix C. PLD ToolKit Source Code
Cascadable Interrupt Controller-Upper Element
CY7C331; {declare device type}
{Cascaded Interrupt Controller - Upper Element}

CONFIGURE;

CS (node = 4), {pin 4, chip select}

WE (node = 5), {pin 5, write enable}

RST(node = 6),
REQ3 (node = 9),
REQ2 (node = 10),
REQ1 (node = 11),
REQO (node = 12),
PVECS3 (node = 28),
PVEC2 (node = 26),
PVEC1 (node = 24),
PVECO (node = 20),

ACK3 (node = 25),
ACK2 (node = 23),
ACK1 (node = 19),

ACKO (node = 17),

MSK3 (node = 34, SRC = 28),
MSK2 (node = 33, SRC = 26),
MSK1 (node = 32, SRC = 24),
MSKO (node = 31, SRC = 20),
ISTB (node = 27),
USTAT(node = 18),

ISENSE (node = 30, SRC = 18),

RVECI1 (node = 16),
RVECO (node = 15),
EQUATIONS;
IPVEC3 = <set_out>
<set_in>!RST
<ck_in>!WE & ICS;
IPVEC2 = <set_out>
<set_in>!RST
<ck_in>!WE & ICS;
'PVEC1 = <xsum >
<ck_out>!CS & WE
<sum> !ACK3 & REQ3 & IMSK3
!ACK2 & REQ2 & IMSK2
<set_in>!RST
<ck_in>!WE & ICS;
IPVECO = <Xsum>

<ck_out> !CS & WE

<sum> !ACK3 & REQ3 & 'MSK3

!ACK1 & REQ1 & !IMSK1 & MSK2
IMSK1 & !ACK1 & REQ1 & !REQ2
<set_in>IRST

<ck_in>!WE & ICS;

{pin 6, reset}

{pin 9, interrupt request channel 3}
{pin 10, interrupt request channel 2}
{pin 11, interrupt request channel 1}
{pin 12, interrupt request channel 0}
{pin 28, data bus 3 - always zero}
{pin 26, data bus 2 - always zero}
{pin 24, data bus 1 - always zero}
{pin 20, data bus 0 - always zero}
{pin 25, acknowledge channel 3}
{pin 23, acknowledge channel 2}
{pin 19, acknowledge channel 1}
{pin 17, acknowledge channel 0}
{shared input mux for pin 28}
{shared input mux for pin 26}
{shared input mux for pin 24}
{shared input mux for pin 20}

{pin 27, internal strobe}

{pin 18, interrupt status output}
{shared input mux for pin 18}
{internal interrupt sense to generate input for ISTB}
{pin 16, ripple vector bit 1 output}
{pin 15, ripple vector bit 0 output}

{output always zero}
{interrupt is masked on reset}

{output always zero}
{interrupt is masked on reset}

{force invert}

{interrupt is masked on reset}

{force invert}

{interrupt is masked on reset}

4-148

= Bus-Oriented Maskable Interrupt Controller
E /A
—== &~ SEMICONDUCTOR
Appendix C. PLD ToolKit Source Code
Cascadable Interrupt Controller-Upper Element (continued)
IACK3 = <oe>

IACK2 =

!ACK1 =

!ACKO =

IUSTAT =

'RVEC1 =

'RVEC0 =

ISTB =

<clr_out>!CS & WE & PVEC1 &
PVECO0 & ISTB & !ACK3
<set_out>CS & ACK3 & 'REQ3;

<oe>
<clr_out>!CS & WE & PVEC1 &

!PVECO & ISTB & !ACK2
<set_out>CS & ACK2 & 'REQ2;

<oe>

<clr_out>!CS & WE & !PVEC1 &
PVECO & ISTB & !ACK1

<set_out>CS & ACK1 & 'REQ1;

<oe>

<clr_out>!CS & WE & !PVEC1 &
!PVECO & ISTB & !ACKO

<set_out>CS & ACKO & !REQU;

<oe>

<xsum>

<set_out>

<clr_out>

<sum> REQ3 & !ACK3 & IMSK3

{FF output is set }

{FF output is reset }

{FF output is set }

{FF output is reset }

{FF output is set }

{FF output is reset }

{FF output is set }
{FF output is reset }
{force invert}

{make FF transparent}
{make FF transparent}

REQ2 & !ACK2 & !MSK2
REQ1 & !ACK1 & IMSK1
REQO & !'ACKO & !MSKO0

<ck_in>!CS & WE
<clr_in>CS & ISENSE;

<oe>
<xsum >

<set_out>
<clr_out>

<sum> !ACK3 & REQ3 & 'MSK3
!ACK2 & REQ2 & !MSK2;

<oe>
<xsum>

<set_out>

<clr_out>

<ck_out>!CS & WE

<sum> !ACK3 & REQ3 & 'MSK3

{force invert}
{make FF transparent}
{make FF transparent}

{force invert}
{make FF transparent}
{make FF transparent}

!|ACK1 & REQ1 & !MSK1 & MSK2
|ACK1 & REQ1 & !MSK1 & !REQ2;

<oe>
<clr_out>ISENSE & !ISTB
<set_out>CS & ISTB;

{FF output is set }
{FF output is reset }

{end of file}

4-149

Shinasy

= s Bus-Oriented Maskable Interrupt Controller
SEMICONDUCTOR

NOTES:

4-150

===~ SEMICONDUCTOR

Using the CY7C331 as a Waveform Generator

Introduction

This application note demonstrates the capability of the
Cypress CY7C331 CMOS Erasable Programmable
Logic Device (EPLD) to support a design requiring
multiple clocks, input registers, buried registers, and in-
dependent control of individual register’s set and reset
inputs. Combining this flexibility of design with high-
speed performance has previously not been possible.
The application example shown demonstrates the use of
the CY7C331 as a programmable waveform generator.

The CY7C331 is a member of the Cypress slimline 28-
pin family of high performance CMOS EPLDs. Family
members are characterized by high speed, increased

1/O, and high integration. The CY7C331 has a highly
flexible architecture intended to support asynchronous
and general purpose "glue" logic integration applica-
tions. The device has a 192 product term array and
twelve I/O logic macrocells. Each macrocell has two D-
type flip-flops with asynchronous set, reset, and bypass
capability. The clock, preset, and reset inputs of a flip-
flop are individually programmable. Output enable
control and feedback are also individually program-
mable in each macrocell. Combinatorial and registered
inputs, as well as buried states, are all easily supported
by the CY7C331.

OE (PIN 14)
OE PTERM 5
[o]
: —1 S
OUT SET PTERM I
XOR PTERM co
SUNED_ regrst‘;:?t
PRODUCTS 0% TO YO PIN
L—°

OUT CLK PTERM a8 p—

R
OUT RESET PTERM] :
IN CLK PTERM
IN SET PTERM
TO INPUT BUFFER s °F L

s 1 QD
1 —q QB

c1 R
IN RESET PTERM
TO INPUT BUFFER o ° rogiEiat

s 1
shared T
input mux C2
FROM ADJACENT
MACROCELL

Figure 1. The CY7C331 Macrocell

4-151

;' CYPRESS
SEMICONDUCTOR

The ability to bury registers and associated gates is
highly desireable as it aids in increasing the number of
"usable gates" in an EPLD. Typically, if an I/O pin is
used as an input, the corresponding output register and
its supporting product term structure is wasted. This
loss occurs because only one macrocell feedback path is
present. When this path is used by the I/O pin (as an
input) no register feedback path is available, and the

contents of the register cannot be fed back into the

array.

The dual muxing structure of the CY7C331 prevents
this limitation by allowing the designer to make use of
the shared input mux (see Figure I) as an I/O path into
the array, while simultaneously feeding back the
registered contents using the separate macrocell feed-
back mux. Because the output register can be made to
be transparent by asserting both the register’s set and
preset nodes, simultaneous combinatorial feedback can
also be achieved. Use of this feature allows the im-
plementation of bidirectional I/O in both registered and
combinatorial configurations.

Using the CY7C331 as a Waveform Generator

Figure 2 contains PLD ToolKit source code that con-
figures an I/O macrocell as bidirectional, with feedback
from the output. The I/O pin corresponding the macro-
cell will be labeled IO_PIN and each line of code is
commented to explain what it accomplishes.

Note that IO _PIN is assigned to node 28, and
IN_PATH is assigned to node 34, with pin 28 as a
source. In the simulator, the input waveform must be
added on the trace corresponding to node 28, even
though that trace is named IO_PIN. IN_PATH will be
assigned to node 34, which is a read only node. This is
true even if IO_PIN is configured as a buried register,
and IN_PATH is always an input. The reason for this is
that node 34 is just a mux, and the register associated
with the input belongs to node (pin) 28. If you wish to
see the value of the output register when the pin is an
input, you can create a view node for the node. This
allows the user to probe several different places inside a
macrocell. For more information on view nodes, con-
sult the PLD ToolKit Manual, Chapter 4.3.

{************t**a***}

CY7C331; {The first line of code selects the device }
CONFIGURE {In this section pin and node names are specified, along with configuration mformatxon}

INCLK, OUTCLK, /INCLR, /INSET, OE1, /OE2, INPUT, /JOUTCLR(NODE =9), /OUTSET,

{The input names are listed above. Pin 1 will be the input clock, pin 2 will be the output clock. Pins 3 and 4
will be the input register’s clear and set signals respectively. Pins 5 and 6 will be output enables, OEL1 is high
asserted, /OE2 is low asserted. Pin 7 is a straight input. We skip pin 8 because it is Vss. Pins 9 and 10 will
be the input register’s clear and set signals.}

10 PIN(NODE 28, IREG), IN PATH(NODE 34, SRC=28), OUT(NODE =27),

{Pin 28 is the actual bidirectional pm The IREG attribute specifies that the input to the array comes from
the output register, rather than the pin. Node 34 is the shared input mux for nodes 27 and 28. IN_PATH is
the input path to the array from pin 28. Pin 27 is a simple output.}

EQUATIONS; {This is where the array is specified.}

IO0_PIN = <SUM> INPUT {When IO_PIN is an output, it follows Pin 7.}
<SET_OUT> OUTSET
<CLR_OUT> OUTCLR
<CLK_OUT> OUTCLK
<OE> OE1* OE2 {Outputs are enabled when OE_1 is high, and /OE_2 is low.}
<CLK_IN> INCLK
<CLR_IN> INCLR
<SET_IN> INSET;
OouT = <OE> {Listing the connective alone sets the product term to "1", always asserted.}

<SET_OUT> {When both the set and reset product terms are asserted, the register }

<CLR_OUT> {becomes transparent. Thus, this is a combinatorial output.}

<SUM> IN_PATH; {This output always shows the value of the input register at pin 28.}
{If the register is in combinatorial mode, the value on pin 28 will be shown.}

Figure 2. PLD ToolKit Source Code for Bidirectional Pin

4-152

%
SEMICONDUCTOR

Using the CY7C331 as a Waveform Generator

The CY7C331 as a Function Generator

Waveform generators are useful in a variety of a ap-
plications, primarily in the test and diagnostic areas.
Any time high-speed digital waveforms must be created,
a programmable waveform generator is the ideal solu-
tion. This CY7C331 solution allows waveforms of fre-
quencies greater than 30 MHz to be generated.

This waveform generator builds waveforms with respect
to a system clock called SYS_CLK. The number of
cycles of SYS_CLK that the output waveform
(OUT_WAVE) should be low is loaded into
LOW_REG(2:0). The number of cycles of SYS_CLK
that OUT_WAVE should be high is loaded into
HI_REG(2:0). For this implementation, these values
must be between 2 and 7.

When the START signal is asserted, OUT_WAVE goes
low, and LOW_REG(2:0) is loaded into a counter.
When the count is almost 0, the signal TERM_CNT s

deasserted, then reasserted when the count reaches 0.
This toggles OUT_WAVE, and loads a second counter
with the value in HI_REG(2:0). The cycle repeats, al-
ternating between HI_REG(2:0) and LOW_REG(2:0)
until SYS_CLK is witheld, or new values are loaded
into HI_REG(2:0) and LOW_REG(2:0), and START is
reissued. Figure 3 depicts the waveforms for this design.

HI_REG(2:0) and LOW_REG(2:0) are loaded using
/DSTRB and ADDR(7:0). The user can specify any
address for these registers. In this example,
HI_REG(2:0) is at ADDR(7:0)=00 Hex, and
LOW_REG(2:0) is at ADDR(7:0) =01 Hex.

The implementation of this design requires two
separate three bit input registers, decoding logic for the
input register clocks, two separate three bit counters,
logic and two miscellaneous registers. In this design, all
the counter flip-flops must be individually settable or
resettable. In addition, there are four separate clocking
functions.

ADDR(700 X\ o / o1 X DON'T CARE
s /S
HI_REG(2:0))00000(5
Low_REG(2:0) XXXOO000XXX 2

sysck /NSNS S\
START /~\
TERM_CNT \ __/ __/ —

out wave ./
XXX, s X 4 X 3 X 2 X 1\
X000 2 X1\

HI_CNT(2:0)

LOW_CNT(2:0)

__ /

e X s X & XaX2X" 1 \

Figure 3. Waveform Generator Internal/External Waveforms

4-153

S
SEMICONDUCTOR

" Using the CY7C331 as a Waveform Generator -

This type of design is historically very difficult to imple-

ment in a PLD. Typically the use of the preset and

reset inputs on individual flip-flops is not available nor
is separate clocking of those flip-flops. Because the
CY7C331 has these features, xmplcmentatlon of this
design was effortless.

Figure 4 shows the SSI implementation of this design.
LOW_IN_CLK is the clock input for LOW_REG(2:0).
It is the result of decoding the active low /DS (datak

similarly decoded with /DS and ADDR(7:0) =00 Hex. - .

LOW_CNT_(2:0) and HI_CNT_(2:0) form 2 three bit
counters. These ‘counters are loaded with the contents
of the LOW_REG(2:0) and HI REG(2:0). registers
respectively, by using the individual set and reset on
each flip-flop. LOW_CNT_(2:0) is loaded when
/TERM_CNT is low and -OUT_WAVE .is high.
Similarly, HI_CNT_(2:0) is loaded when /TERM_CNT
is low and OUT_WAVE is low. The counters are both

strobe) and ADDR(7:0)=01 Hex. HIIN_CLK, is clocked Wwith SYS_CLK.
SYS_CLK
IQS___._[>°__
ADDRO
e mm— =
/ADDR3
[ADDR4
/ADDR5
L
/ADDRY.
LOW N o
-
1
LoW N 1 7
LOW_REG1| = -] TERM_CNT |
:D‘:)D— L | I_TLHM cN —
LOW_IN loal : - D;g) g _QUT WAVE
a8
L LOW_REG2 JOUT WAVE
D__l-%_CLK_IN 5 ‘Ci:l__TEBM CNT
g - OUT_WAVE
: 1 TRRML ONT
HUNO lbal ~— I__M
—-k aB
HI_REGO e —]
‘—l:‘)D— o TERM_CNT
™) /H|_CNT 1 T WAVE
HLIN_1 [0ql _G:I-I TERMLET
8 JOUT_WAVE
HI_REG1 [TERM_CNT
HN2 , [oal TEBM_&“N‘[
START HI_REG2
SYS_CLEAR

Figure 4. Waveform Generator Schematic

4-154

Zﬁz Using the CY7C331 as a Waveform Generator

Ii SEM]CONDUCI‘ OR

/TERM_CNT is also clocked by SYS_CLK and it
detects when either of the counters are equal to 1.
When a counter reaches 1, /TERM_CNT goes low for
one clock, and then goes high again. The rising edge of
/TERM_CNT is used to clock OUT_WAVE, which is
configured to toggle on every clock.

PLD ToolKit Implementation

Appendix A contains the Cypress PLD ToolKit im-
plementation of the waveform generator discussed in
this application note. There are two areas which may
require some clarification, These are the pin assign-
ments and polarity.

The pin assignments for nodes (pins) 1 through 14 are
straightforward. Pin 8 has been skipped because it is a
Vss pin. These pins are the combinatorial inputs of the
CY7C331, so no configuration information is needed.

OUT_WAVE is assigned to pin 16. "IOP" following the
node assignment indicates that the feedback mux is
programmed to feed back the Q output of the
OUT_WAVE register. This is actually the default so it
does not need to be specified. It has been included
here for documentation purposes. The same is true for
TERM_CNT, /HI_CNT_0 and /LOW_CNT 1. Notice
that HI_IN_1 and LOW_IN 0 have the attribute
"IREG" listed after the node assignment. This specifies
that these pins are dedicated inputs, that is the feed-
back mux is configured to select the Q output of the
input register associated with the pin, as opposed to the
Q output of the output register. This is an override of
the default discussed above.

The rest of the assignments are of the same form as
/HI_CNT 2 and HI_IN_2. /HI_CNT_2 is assigned to
node 18, with an attribute of IOP. As mentioned ear-
lier, this configures the feedback mux to select feedback
from /HI_CNT _2 as the array input. HI_IN_2 has been
assigned to node 30, with "SRC=18". Node 30 is a
shared input mux that serves as an input path from
either the input register on pin 18 or the input register
on pin 17. SRC=18 specifies that HI_IN_2 is assigned
to the input register on pin 18. (The default is that the
even pin is always selected. Again the statement
"SRC=18" has been included primarily for documenta-
tion purposes. This method for utilizing both the input
and output registers of a pin is used 4 times in this
design. In all of these cases, the output register is
buried (not accessible to the pin). Figure 5 is a footprint
of the CY7C331 with all external pin signals labeled.

/DS 1 NO CONNECT
ADDRO 2 LOW_IN_O
ADDR1 3 LOW_IN_1
ADDR2 4 JLOW_CNT_1
ADDR3 5 LOW_IN_2
ADDR4 6 /HIL.CNT_O
ADDRS5 7 Vee

Vss 8 Vss
ADDR6 9 HI_IN_O
ADDR7 HI_IN_1
START HI_IN_2

SYS_CLK TERM_CNT
NO CONNECT(] OuT_ WAVE
SYS_CLEAR NO CONNECT

Figure 5. Footprint of CY7C331 Waveform Generator

A close look at the file in Appendix A may also raise
some questions concerning polarity conventions in the
PLD ToolKit. Polarity on inputs is fairly straightfor-
ward. Note that the "/" in /START means that this is a
low asserted signal. When START appears in the
EQUATIONS section (refer to /OUT_WAVE and
/TERM_CNT equations) this is interpreted as /START
being asserted. Thus, when /START=0, the
OUT_WAVE register is set.

This leads us to the more confusing case of output feed-
back polarity. Polarity on the CY7C331 is not program-
mable, unless it is done using the XOR in the array.
Thus when TERM_CNT is specified in the CON-
FIGURATION section, this means that the output
register is /TERM_CNT because there is an inversion
between the register output and the pin. This means
that when you set TERM_CNT, the pin will be low.
How, then, do you specify that TERM_CNT is asserted
when it appears on the right of an equation? The
answer is that you refer to the polarity present on the
pin. Thus, in the <CK_OUT > portion of the equation
for /OUT_WAVE, is is specificd TERM_CNT. This
means that /OUT_WAVE is clocked when pin 17
(TERM_CNT) exhibits a rising edge.

4-155

Using the CY7C331 as a Waveform Generator

5 CYPRESS
== & SEMICONDUCTOR
Appendix A. PLD Toolkit Source Code for the Waveform Generator
CY7C331;
CONFIGURE;
/DS {Low asserted data strobe}

ADiDRO, ADDRI1, ADDR2, ADDR3, ADDR4, ADDRS,

ADDR6(NODE =9), ADDR7
/START,

SYS_CLK,

SYS_CLEAR(NODE = 14),
OUT_WAVE(NODE =16,I0P),
TERM_CNT(NODE =17,I0P),
/HI_CNT_2(NODE = 18,10P),
HI_IN_2(NODE =30,SRC=18),
HI_IN_1(NODE =19,IREG),
/HI_CNT_1(NODE =20,I0P),
HI_IN_0(NODE =31,SRC=20),
/HI_CNT_0(NODE =23,I0P),
/LOW_CNT 2(NODE =24,I0P),
LOW IN_2(NODE =32,SRC =24),
/LOW_CNT_1(NODE =25,I0P),
LOW IN_1(NODE =33,SRC=26),
/LOW_CNT_O(NODE =26,IOP),
LOW IN_0(NODE =27,IREG),

EQUATIONS;

LOW_CNT 0:= <SUM> /LOW_CNT 0

<CK_OUT> SYS_CLK

<CK_IN> DS*ADDR0*/ADDR1*/ADDR2*/ADDR3*/ADDR4*/ADDR5*/ADDR6*/ADDR7

{address bits 0,1,2,3,4,5,}

{address bits 6 and 7}

{start sequence}

{counter clock}

{initialize OUT_WAVE,TERM_CNT to a quiescent state}
{output wave form}

{terminal count decode register}

{high counter bit 2, a buried register}
{high register input bit 2}

{high counter input bit 1}

{high counter bit 1, a buried register}
{pin 20 acts as high register input bit 0}
{high counter bit 0}

{low counter bit 2, a buried register}
{pin 24 is low register input bit 2}

{low counter bit 1}

{pin 26 acts as low register input bit 1}
{low counter bit 1, a buried register}
{low register input bit 0}

<SET_OUT> /LOW_IN_0 * /OUT_WAVE * /TERM_CNT
<CLR_OUT> LOW_IN 0 * /OUT_WAVE * /TERM_CNT;

JLOW_IN_0 =

LOW_CNT 1:= <SUM> LOW_CNT 1

<XSUM> LOW_CNT 0

<CK_IN> DS*ADDR0*/ADDR1*/ADDR2*/ADDR3*/ADDR4*/ADDR5*/ADDR6*/ADDRT,

<SET_OUT> /LOW_IN_1 * /OUT_WAVE * /TERM_CNT
<CLR_OUT> LOW_IN_1 * JOUT_WAVE * /TERM_CNT

<CK_OUT> SYS_CLK
<OE>;

LOW_CNT 2:= <SUM> LOW_CNT 2

<XSUM> LOW_CNT_0 * LOW_CNT_1
<SET_OUT> /LOW_IN_2 * /OUT_WAVE * /TERM_CNT
<CLR_OUT> LOW _IN 2 * /OUT_WAVE * /TERM_CNT

<CK_OUT> SYS_CLK

<CK_IN> DS*ADDR0*/ADDR1*/ADDR2*/ADDR3*/ADDR4*/ADDR5*/ADDR6*/ADDR?;

JOUT_WAVE : = <SUM> OUT_WAVE
<CK_OUT> TERM_CNT
<SET_OUT> START
<CLR_OUT> SYS_CLEAR

<OE>;

4-156

%; e Using the CY7C331 as a Waveform Generator
CCN

/TERM_CNT : =

HI_CNT 0:

HI_CNT 1:

MHLIN 1 =

HI_CNT 2:

Appendix A. PLD Toolkit Source Code for the Waveform Generator (continued)

<SUM> /LOW_CNT_0 * LOW_CNT _1 * LOW_CNT _2
<SUM> /HI_CNT O*HI CNT 1*HI _CNT 2
<CK_OUT> SYS_CLK

<CLR_OUT> START

< SET__OUT> SYS_CLEAR

<OE>;

<SUM> /HI_CNT_0

<CK_ OUT> SYS CLK

<OE>

<CLR_OUT> HI_IN_0 * OUT_WAVE * TERM_CNT
<SET | OUT> /HI IN_ (0 OUT WAVE * /TERM_CNT;

<SUM> HI CNT_1

<XSUM> HI_CNT 0

<SET_OUT> /HI_ IN 1*OUT_WAVE*/TERM_CNT

<CLR_OUT> HI_IN_1*OUT_WAVE*/TERM_CNT

<CK_OUT> SYS_CLK

<CK_IN> DS*/ADDR0*/ADDR1*/ADDR2*/ADDR3*/ADDR4*/ADDR5*/ADDR6*/ADDRY,

<CK_IN> DS*/ADDR0*/ADDR1*/ADDR2*/ADDR3*/ADDR4*/ADDR5*/ADDR6*/ADDRT,;

<SUM> HI_CNT 2

<XSUM> HI _ CNT_1*HI_CNT_0

<SET_OUT> /HI_IN_2*OUT_WAVE*TERM_CNT

<CLR_OUT> HI_IN 2*OUT _WAVE*/TERM_CNT

<CK_OUT> SYS_CLK

< CK_IN > DS*/ADDR0*/ADDR1*/ADDR2*/ADDR3*/ADDR4*/ADDR5*/ADDR6*/ADDR7;

4-157

%“z%m o - Using the CY7C331 as a Waveform Generator

NOTES:

4-158

——

==7 SEMICONDUCTOR

Section Contents

Logic Page Number
Microcoded System Performance.........cocovcvveveene. rerrenseneee e 5-1
Systems with CMOS 16-bit Microprogrammed ALUs .5-5
Understanding FIFOs........ccccervevereensininnscnrens rerereerenernteneraas 5-11
Interfacing to the FIFO Application Brief 5-23
Understanding Dual-Port RAMs 5-25

Using Dual Port RAMs Without Arbitration 5-41

o

%
Iln

PRESS

CY
SEM

EMICONDUCTOR

-

Microcoded Systems Performance

The microcoded processor family of devices offered by Cy-
press Semiconductor are the fastest available. High per-
formance systems designed for specific applications can be
configured using this high performance chip set. The per-
formance of these devices in 16- and 32-bit processors is
detailed below.

Increasing functional integration is evident in the
CY7C9101 16-bit slice, which is the equivalent to four
CY7C901s (4-bit slice) and a 2902 carry lookahead genera-

tor. By placing these functions on a single chip, the inter-
connect delays between chips are reduced. Significant im-
provement in overall system throughput, reduced board
space, and reduced power requirements are among the ad-
vantages of the CY7C9101 systems over CY7C901 based
systems. Following is a critical path timing analysis of the
data loop and control loop for generic 16- and 32-bit sys-
tems. A discussion of the speed and power advantages of-
fered by CY7C9101 systems will also be presented.

Minimum Cycle Time Calculations for 16- and 32-Bit Systems

Crax—> T0
MO Crsyf—> CY7€901(2,3,4)
nez WIRED "OR" F=0
FROM OTHER CY7CS901s
— wux || sequencer T T 7T
—> _; CY7€910 o . ’
—»| SEL A »{ A.B.I.C, G,P FROM Cy F=0
-+ l CY7€901(2,3) Cona STATUS
crrcadss CY7€901 .o CY7€301 OFVR > » REGISTER 74"-
MICROPROGRAM (1) (4) 3 A
MEMORY A Y3-0 A Yi5-12
REGISTER - l l
A _-II DATA DATA
REGISTER oo REGISTER
T 7
0096-1
Figure 1. CY7C901 Based 16-Bit System (Pipelined System, Add without Simultaneous Shift)
Data Loop Control Loop
CY7C245 Clock to Output 12 CY7C245 Clock to Output 12
CY7C901 A,BtoG,P 28 MUX Select to Output 12
Carry Logic Go, Poto Cp +2 9 CY7C910 CC to Output 22
CY7C901 Cy, to Worst Case 18 CYT7C245 Access Time 20
Register Setup 4 766 ns
71 ns

Minimum Clock Period = 71 ns

5-1

October 1986

i%m Microcoded Systems Performance
. SEMICONDUCTOR "

;

Minimum Cycle Time Calculations for 16- and 32-Bit Systems (Continued)

oo ° My Coex—

. 10
Cy gn o] CY7€901(6,7.8)
n+z

e 1t

FROM CY7C901(5,6,7)

G.P Chaxl—> T0
On gﬂ’y [[cr7co01(2,3.4)
n+z
T) WIRED "OR" F=0
— — FROW OY70301(2.3.4) FROM OTHER CY7C901s
€Y7c910 - cee
SEL A T—q ¢, GP Cn F=0)
3 Ch.
4 orrczuss cY7c901 e ovrcsor Ok 3] recater |4
microPRoraM| T~ A8 (1)) Fs A
MEMORY A A
REGISTER l l
A DATA DATA
REGISTER R REGISTER
FAN l PAN r
0096-2
Figure 2. CY7C901 Based 32-Bit System (Pipelined System, Add without Simultaneous Shift)
Data Loop Control Loop
CY7C245 Clock to Output 12 CY7C245 Clock to Output 12
CY7C901 A,BtoG,P 28 MUX Select to Output 12
Go, Ppto G, P 12 CY7C910 CC to Output 22
Carry [Go, PotoCp + x 9 CY7C245 Access Time 20
Logic Cat0Cn+ x,y.2 14 66 ns
CY7C901 C, to Worst Case 18
Register Setup 4
97 ns
Minimum Clock Period = 97 ns
SEQUENCER
cY7¢910
A ABILC, F=0
Cne16 STATUS
l CY7C245 CY7€9101 gVR 4y REGISTER 4
MICROPROGRAM v 15 A
MEMORY A 15-0
REGISTER l
A\ DATA
REGISTER
=
0096-3
Figure 3. CY7C9101 Based 16-Bit System (Pipelined System, Add without Simultaneous Shift)
Data Loop Control Loop
CY7C245 Clock to Output 12 CY7C245 Clock to Output 12
CY7C9101 A,BtoY,Cp +16OVR 37 MUX Select to Output 12
Register Setup 4 CY7C910 CC to Output 22
“53ns CY7C245 Access Time 20
66 ns

Minimum Clock Period = 66 ns

5-2

% Microcoded Systems Performance
SEMICONDUCTOR

Minimum Cycle Time Calculations for 16- and 32-Bit Systems (Continued)

SEQUENCER

cY7c910
A ABILC, F=0 F=0
c,
CY7C245 n*16 STATUS
3 2 €Y7¢9101 Cnats G cr7cotor O] RecisTER |
MICROPROGRAM 1s A
MEMORY A Yis-0 A Y32-16
REGISTER J
A DATA DATA
REGISTER REGISTER
JAN A

0096-4
Figure 4. CY7C9101 Based 32-Bit System (Pipelined System, Add without Simultaneous Shift)

Data Loop Control Loop
CY7C245 Clock to Output 12 CY7C245 Clock to Output 12
CY7C9101 A,BtoCy + 16 35 MUX Select to Output 12
CY7C9101 Cy, to Worst Case 24 CY7C910 CC to Output 22
Register Setup 4 CY7C245 Access Time 20
75 ns 66 ns

Minimum Clock Period = 75 ns

Power is an important consideration in microcoded sys- Table 1

tems. For an equivalent system, the CY7C901 offers sub- - -

stantial savings in power over the bipolar devices. Coupled Icc Calculations for 16-Bit Systems (All Figures in mA)
with other lo“_r power Cypress CMOS devices, the power Cypress CMOS

savings over bipolar is clearly evident. The functional inte- :
gration of four CY7C901s with carry lookahead gives the CY7C901 | CY7C9101 | Bipolar
CY7C9101 even greater advantages. The number of ALU Based Based

elements is reduced by a factor of four, also, there is a Sequencer 100 100 340
reduction in the carry logic needed. A comparison between Registered PROM 90 90 185
bipolar, CY7C901-based, and CY7C9101-based systems is Carry Logic 110 _ 110
given below in Table 1. Note that in this comparison, the ALU Elements

devices common to all 16- and 32-bit system configurations 4x Four-Bit Slice 320 1060
are included in the Icc computations. 16-Bit Slice 75

Cypress CMOS devices offer the highest speed microcoded

solutions while keeping power consumption to reasonable Total 620 265 1695

levels. The CY7C901-based systems win over bipolar’s fast-
est devices in a speed comparison, while consuming rough- Icc Calculations for 32-Bit Systems (All Figures in mA)

ly Y, the power. Upgrading to the CY7C9101 will result in

even faster systems, at close to 4 the power of the Cypress CMOS
CY7C901-based systems. This comparison is illustrated be- CY7C901 | CY7C9101 | Bipolar
low, in Table 2. Based Based
Sequencer 100 100 340
Registered PROM 90 90 185
Carry Logic 330 110 330
ALU Elements
8x Four-Bit Slice 640 2120
2x Sixteen-Bit Slice 150
Total 1160 450 2975

Table 2. Speed/Power Comparison between Bipolar, CY7C901, CY7C9101

Minimum Clock Cycle (ns) Maximum Icc (mA)
Bipolar | CY7C901 | CY7C9101 | Bipolar | CY7C901 | CY7C9101
16-Bit Systems 85 71 66 1695 620 265
32-Bit Systems 111 97 75 2975 1160 450

5-3

% Microcoded Systems Performance
SEMICONDUCTOR

NOTES:

5-4

P8
A
AV
Am———
—

S————a . 0% —'z
——NNEL"s 2

' & CYPRESS

—== £+~ SEMICONDUCTOR

Systems with CMOS 16-bit Microprogrammed
ALUs

Introduction

In the past, the dominant use of microprogrammed
Arithmetic and Logic Units (ALUs) has been as
general-purpose data processors in computers. The
reason for using microprogrammed machines in these
applications was to improve performance, ie., general
purpose microprocessors were too slow.
Microprogrammed processors, in addition to allowing
custom instruction sets, were the only way to achieve
the desired MIPS (Millions of Instructions Per Second)

rate. However, with the advent of high performance, 20
MIPS Reduced Instruction Set Computers (RISC),
microprogrammed ALUs have relinquished the
general-purpose data processor application and moved
to custom processors or special-purpose controllers.
This application brief shows how to improve reliability,
flexibility, and speed by diagramming timing and high-
lighting applications that benefit significantly from the

<3 10EY

b

Y0-Y15

)
I B

32 \n;(oao P X .
16 BIT RAM IACCUMULATOR D-LATCH —
ADDRESS |
]
. — ¢ | I
10-115 s T : .
5 RAD IRA RAD
INSTRUCTION RRMUX 8SMUX UUMUX
LATCH T !
4 v A
ISRE o>— STATUS LoGIc N
REGISTER 4 UNIT

F MUX AND ZERO DETECT

z

Figure 1. CY7C9116 Block Diagram

5-5

&7

Systems with CMOS 16-bit Microprogr’ammed ALU’s

gi SEMICONDUCTOR

features of the 7C9116/7 architecture and CMOS tech-
nology.

7C9116/7 Architecture and Implementation

The 7C9116 and 7C9117 are extremely fast arithmetic
and logic units implemented in a 1.2-micron double-
metal CMOS process technology. As shown in Figures 1
and 2, the 7C9117 differs from the 7C9116 by incor-
porating a separate bus for data input (D) and for data
output (Y) and thus allows for the design of faster
microprogrammed systems. Both units are capable of
worst-case propagation delays from instruction in to
data out of 35 ns.

The 7C9116/7 contain single port 32 x 16 bit word
register files, two operand arithmetic units, and three
input logic units. Carry look ahead logic is also in-
tegrated together with the logic and arithmetic units.
The instruction set of the 7C9116/7 can be divided into
eleven types as listed in Table 1. Single clock operation
is attained on the extensive bit manipulation and rotate
instructions via the on-chip barrel shifter. In fact, all in-
structions in the ALU execute within one clock except
for immediate instructions, where a second clock is

needed to obtain the immediate operand.

Table 1. 7C9116/7 Instruction Types

Instruction Type Example
Single Operandinc: src plus 1-> dest

Two Operand add: src plus src -> dest

Single Bit Shift shupl: srcup 1 :

Bit Oriented setnr: set RAM bit n

Rotate by n bits rotrl: rotate RAM n bits

Rotate & Merge mdai: rotate src and src’ w/mask
Rotate & Compare rotc: rotate src cmp w/src’ set cc
Prioritize prinr: indicate highest priority bit
CRC cref: create crc fwd from glink

Status rstst: reset status register
No-Op noop: no effect

The 7C9116/7 are TTL-compatible and fully interchan-
geable with their counterparts from Advanced Micro
Devices and Texas Instruments. However, caution
should be exercised when illegal instructions or un-
defined opcodes are used. As the results are not pre-
dictable or guaranteed during these operations, they
should not be used in any production system. Table 2

'\[<3 108y
1 1~ {; — Y0-Y15
I——-——1/'G———<:| DO-D15
%2 W)? RD 1B BIT 68T ‘ o
16 BT RAM JACCUMULATOR D-LATCH
ADDRESS
0-n5 - - 1 T
16 2 v v
5 RAD RAD RAD IRA RAD
INSTRUCTION SMUX ARMUX RRMUX SSMUX UUMUX

LATCH

A4 ;_I

4 N

1SRE [C>————— STATUS A”'J:?"rm | tﬁc
REGISTER | 4
I
—_V . I
OEt P
LoGic
F MUX AND ZERO DETECT
12 z
1
T-T4 <> MUX MUX I

Figure 2. CY7C9117 Block Diagram

5-6

Systems with CMOS 16-bit Microprogrammed ALU’s

shows an example of such a condition, when SOA is
mistakenly encoded as an undefined operation.

Table 2. Example Instruction Encoding Error

SOA instruction: ACC-> Ybus
Yendor Instruction Code Result

Correct encoding:
All 11111000 1000 0000 0000 1110 0000 1101

Coding Error

AMD 111 0 1000 0000 1111 1111 1111 1110
Cypress 1110 0110 1000 0000 1111 0100 1000 1100
TI 1110 0110 1000 0000 0000 0000 0000 1001

Another feature of the Cypress 7C9116/7 is that it al-
lows the priority instruction to operate with both the
source and destination as the accumulator. A secondary
caution that could produce incorrect results is that
older implementations of this architecture in bipolar
technology do not allow such an operation. When using
older bipolar implementations or testing devices, it
should be noted that some machines may behave im-
properly and that undefined or illegal operations may
produce different results for various device types
depending on vendor and technology.

CMOS 16-Bit ALU - Faster Operation and
Lower Power

Advanced microprogrammed architecture, combined
with Cypress CMOS process technology, has multiple
benefits to the design engineer. Custom computing units
and controllers can operate at higher frequencies and
consume less power, about 80% less, while being more
reliable. Table 3 compares the performance and power
characteristics between a typical 16-bit
microprogrammed ALU and the 7C9116/7. The results
show that in addition to power savings, the 7C9116/7’s
reliability is enhanced by operating at lower die
temperatures.

Other aspects of the 7C9116/7 CMOS processing tech-
nology also contribute to increased system reliability. In

Table 3. CMOS vs. Bipolar Performance and Power

Cypress Generic
Speed (ns) 35 53
Power (Icc, mA)
Stactic 30 400
Max @10Mhz 150 600
Technology CMOS Bipolar

the past, CMOS technologies experienced problems
with destructive latch-up conditions. Cypress CMOS
processes minimize this problem by employing guard
rings and a substrate bias generator to achieve latchup
trigger currents in excess of 200 mA. Electrostatic dis-
charge (ESD) protection circuitry to withstand voltages
greater than 2001 V and voltage supply tolerances of
10% are standard features of the 7C9116/7 devices that
also contribute to its reliability and performance.

System Timing

In microcoded systems there are two loops that deter-
mine system performance. These two loops are the data
and control loops. The control loop, as shown in Figure
3, is essentially the instruction stream for the 7C9116/7.

| | CC from ALU

Condition Code
Multiplexer

| MUX Delay Time

Microcode Sequencer

l Address Generation

Microcode Control Store

l Next Instruction

Current State Register

Current Instruction
‘ l to ALU

Figure 3. Microcoded System Control Loop

7 S v

Systems with CMOS 16-bit Microprogrammed ALU’s.

The current instruction combined with other status in-
formation is used to generate a new address and in-
struction for the processor. The data loop, shown in Fig-
ure 4, moves information from an external source to a

External Data Source

Data Input From External Source

External Data Register

l Data input to ALU: Register CP->Q
[Microcode Processor

Status/CC out l 1 Operation Performed: Data Out
Figure 4. Microcoded System Data Loop

register where it is stored and operated on by the
7C9116/7 to produce a result and status information for
use by the external element. It should be apparent that
this is a Harvard-style architecture as instructions and
data are in separate domains. Hence, to achieve optimal
performance, each of these loops should be as short as
possible and equal in length.

An example of control loop timing for a typical
7C9116/7 system is shown in Figure S. Four 7C245A,

Condition Code
Multiplexer: 74F151
lMux Delay
Microcode Si
B ot S
-> Output ns
l CC-> Output 7C245A Setup Time 12ns
Microcode Control Store 7C245A CP -> Q 18ns
Total 61ns

7C245 Registered Proms

Current State Register

Registered Output

Figure 5. Control Loop Timing for Embedded
Applications

registered 2K x 8 PROMs are used to implement the
control store and current state register in a single pack-
age. The 7C910 12-bit microsequencer is used to allow
for 4K words of addressing, i.e., instruction memory. In
this example a 74F151 is used to multiplex status and
condition code information into the sequencer to com-
plete the control loop. The components that make up
this particular system would be appropriate for em-
bedded applications where the microcode control store
is fixed.

Improved system performance and flexibility can be
achieved by using Cypress static RAMs instead of
PROMs, thus forming a writeable control store (WCS).
As diagrammed in Figure 6, four 7C168, 4K x 4 static

|

Condition Code
Multiplexer: 74F151
Mux Dela
Microcode Sequencer Mux Delay 9ns
7C910 7C910 CC -> Output - 22ns
7C168 Access time 20ns
l CC-> Output 74FCT374CP->Q ~ 65ns
Microcode Control Store Total 57.5ns
7C168
.J' MCS Access Time
Current State Register
74FCT374

Register CP->Q

Figure 6. 7C9116/7 Reprogrammable Control Loop
Timing

RAMS can replace the ROMmed microcode control
store. However, an external 74FCT374A register must
be added to make up for the on-chip register of the
7C245A PROM. Thus, there is a board space penalty
for slightly improved performance and increased
flexibility. Flexibility is defined as the microcode’s
abilility to be downloaded or reprogrammed at run time
to allow different applications or algorithms to be
loaded into the machine as needed by the user or sys-
tem designer.

The data loop timing for both the embedded and
reprogrammable microcoded applications is shown in
Figure 7. Here, the 7C9116/7 and its fast operation
benefit the systems designer in two ways. First, as the
data path is significantly faster than the control path,
results are available early for the external data units,

5-8

Systems with CMOS 16-bit Microprogrammed ALU’s

oy
%ﬁ %%QDUCF OR

|

External Data Source

l New Data Generation Time74pcT374 6.5ns

External Data Register 7C9116/7 35ns
7AFCT374 Total 41.5ns

J Register CP->Q
Microcode Processor
7C9116/7

l Operation -> Result/Status

Figure 7. Microcoded System Data Loop Timing

thereby allowing more time for external operations.
Secondly, as faster memory technologies become avail-
able, systems can be designed to operate at rates up to
25 MIPS.

Applications - Old and New

The applications for fast CMOS 16-bit
microprogrammed ALUs can be divided into two
categories. The first is similar to their traditional use as
a central processing unit for general purpose comput-

ing. A designer may choose to use a microprogrammed
machine simply because instruction set compatibility
with previous machines may be a design requirement.
Here, the 7C9116/7’s speed and low power serve as
powerful upgrades to existing hardware, with the pos-
sibility of lower cost from reduced power supply needs.

The more exciting applications for 16-bit
microprogrammed ALUs are in loosely coupled co-
processor or embedded controllers. Here, the
7C9116/T’s special bit, rotate, and CRC capabilities
deliver significant performance advantages over, "off-
the-shelf," microprocessors. Graphics and imaging co-
processors benefit from single clock b