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How to Use This Book 
This book has been organized by product type, begin­
ning with general articles that apply to all Cypress 
products. The individual applications notes follow, or­
ganized by product type. The order is: SRAMs, 
PROMs, EPLDs, Logic (including FIFOs and dual 
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port RAMs), and RISe. Within each chapter, applica­
tion notes are arranged in the order of part number. In 
cases where more than one Cypress product is used in 
the application, the article will be filed using the 
product. which is the primary focus of the article . 
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CYPRESS 
SEMICONDUCTOR 

Systems Design Considerations When 
Using Cypress CMOS Circuits 

Introduction 
This document is intended to be a guide for the systems 
designer. Its purpose is to make him aware of the things to 
consider either when designing new systems using Cypress 
high performance CMOS integrated circuits or when Cy­
press products replace either bipolar or NMOS circuits in 
existing systems. The two major areas of concern are trans­
mission line effects due to impedance mismatching between 
the source and load, and device input sensitivity. 

Design for Performance 
In order to achieve maximum performance when using Cy­
press CMOS integrated circuits, the systems designer must 
pay attention to the placement of the components on the 
Printed Circuit Board (PCB), the routing of the metal 
traces that interconnect the components, the layout and 
decoupJing of the power distribution system on the PCB 
and, perhaps most important of all, the impedance match­
ing of (some of) the traces (which, under certain condi­
tions, must be analyzed as transmission lines) between the 
source and the loads. The most critical traces are those of 
clocks, write strobes (on SRAMS), and chip enables. 

Issues of Concern When Cypress ICs Replace 
Either Bipolar or NMOS ICs 
Cypress CMOS ICshave been designed to replace both 
bipolar ICs and NMOS products, and to achieve equal or 
better performance at one-third (or less) the power of the 
components they replace. 

When high performance Cypress CMOS circuits replace 
either bipolar or NMOS circuits in existing sockets, the 
user must be aware of certain conditions, which may be 
present in the existing system, that could cause the Cypress 
ICs to behave in a manner different than expected. These 
conditions fall into two general categories; (I) device input 
sensitivity and, (2) sensitivity to reflected voltages. 

Input Sensitivity 
High performance products, by definition, require less en­
ergy at their inputs to change state, than low or medium 
performance products. 

Unlike a bipolar transistor, which is a current sensing de~ 
vice, a MOS transistor is a voltage sensing device. In fact, a 
MOS circuit design parameter called 'K' is analogous to 
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the gm of a vacuum tube, and is inversely proportional to 
the gate oxide thickness. 

The thin gate oxides, which are required to achieve the 
desired performance, result in highly sensitive inputs that 
require very little energy. High frequency signals that bipo­
lar devices would not respond to may be detected by 
CMOS products. 
MOS transistors also have extremely high (5 to 10 million 
ohm) input impedances, which make their gate inputs anal­
ogous to the input of a high gain amplifier (or an RF anten­
na). In contrast, bipolar ICs have input impedances of 
10000 or less, so they require much more energy to change 
state than MOS ICs. In fact, a Cypress IC requires less 
than 10 picojoules of energy to change state. 

Therefore, when Cypress CMOS ICs replace either bipolar 
or NMOS ICs in existing systems, they may respond to 
pulses of energy that are present in the system that are not 
detected by the bipolar or NMOS products. 

Reflected Voltages 
Cypress CMOS ICs have very high input impedances and, 
to achieve TTL compatibility and to drive capacitive loads, 
low output impedances. The impedance mismatch, due to 
low impedance outputs driving high impedance inputs 
may, under certain conditions, cause uriwanted voltage re­
flections and ringing, which could result in less than opti­
mum system operation. 

When the impedance mismatch is very large, a nearly equal 
and opposite negative pulse is reflected back from the load 
to the source when the (electrical) length of the line (PCB 
trace) is greater than 

f = TR (ns) . 
2 Tpd (ns/ft.) 

where TR is the rise time of the signal at the source and 
Tpd is the one-way propagation delay of the line per unit 
length. 

The input clamping diodes that bipolar logic "IC families" 
(e.g., TTL, LS, ALS, FAST) all have are inherent in the 
fabrication process. The p-substrate is usually grounded 
and n wells are used for the NPN transistors and p type 
resistors. The wells are reverse biased by connecting them 
to the Vee supply. As a result, a PN junction diode is 
formed between every input pin (cathode or n material) 
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Introduction (Continu~) 
and the substrate (anode or p-material). When a negative 
voltage occurs at an input pin, either due to lead induc­
tance or to a voltage reflection, the diode is forward biased, 
turns on, and clamps the input pin to a Vf below ground 
(approximately -O.8V). 

As circuit performance improved, the output rise and fall 
times of the bipolar circuits decreased to the point where 
voltage reflections began to occur (even for short trsces) 
when there was an impedance mismatch between the line 
and the load. Most users, however, were unaware of these 
reflections because they were suppressed by the clamping 
action of the diodes. 

Conventional CMOS processing results in PN junction di­
odes. However, they adversely affect the ESD (Electrostat­
ic Discharge) protection circuitry at each input pin and 
cause an increased susceptibility to latchup. To eliminate 
this, a substrate bias generator is used. 

Voltage reflections should be eliminated by using imped­
ance matching techniques and crosstalk should be reduced 
by careful PCB layout. 

Crosstalk 
The rise and fall times of the waveforms generated by the 
output circuits are 2 to 4 ns between levels ofO.4V and 4V. 
The fast transition times and the large voltage swings could 
cause capacitive and inductive coupling (crosstalk) between 
signals if insufficient attentioll. is paid to PCB layout. 
Crosstalk is reduced by avoiding running PCB traces paral­
lel to each other. If this is not possible, ground traces 
should be run between signal traces. In synchronous sys­
tems, the worst time for the crosstalk to occur is during the 
clock edge with which the data is sampled. In most systems 
it is sufficient to isolate the clock and other data strobe 
lines so that they do not cause coupling to the data lines. 

The Theory of Transmission Lines 
A connection (trace) on a PCB should be considered as a 
transmission line if the wavelength of the applied frequency 
is short compared to the line length. If the wavelength of 
the applied frequency is long compared to the length of the 
line, conventional circuit analysis can be used. 

In practice, transmission lines on PCBs are designed to be 
as nearly lossless as possible. As a result, the mathematics 
required for their analysis, compared to a lossy (resistive) 
line can be simplified. 

Ideally, all signals between ICs travel over constant-imped­
ance transmission lines that are terminated in their charac-

teristic impedances at the load. In practice this ideal situa­
tion is seldom achieved for a variety of reasons. 

Perhaps the most basic reason is that the charaCteristic 
impedances of all real transmission lines are not constants, 
but present different impedances depending upon the fre­
quency of the applied signal. For "classical" transmission 
lines driven by a single frequency signal source the charac­
teristic impedance is "more constant" than when the trans­
mission line is driven by a square wave or a pulse. 

A square wave is composed of an infmite set (Fourier series 
expansion) of discrete frequency components, i.e., funda­
mental plus ,odd harmonics of decreasing amplitUdes. 
When the square wave is propagated down a transmission 
line the higher frequencies are attenuated more than the 
lower frequencies and, due to diSPersion, all of the frequen­
cies do not trsvelat the same speed. 

Dispersion indicates the dependance of phase velocit~ upon 
the applied frequency. (Ref. I, pg. 192). The result IS that 
the square wave is distorted when all of the frequency com­
ponents are added together at the load. 

A secondary reason why practical transmission lines are 
not ideal is that they frequently (of necessity) have multiple 
loads. The loads may be distributed along the line at regu­
lar (or irregular) intervals or they may be lumped together 
(as close as practical) at the end of the line. The signal-line 
reflections and ringing caused by impedance mismatches, 
nonuniform transmission line impedances, inductive leads, 
and non-ideal resistors could compromise the dynamic sys­
tem noise margins and cause inadvertent switching. 

One of the system design objectives is to analyze the crit­
ical signal patl1S and design the interconnections such that 
adequate system noise margins are maintained. Th~e ,!ill 
always be signal overshoot and undershoot. The objective 
is to accurately predict them and to keep them within ac­
ceptable limits. 

The Ideal (Lossless) Transmission Line 
An equivalent circuit for a transmission line is presented in 
Figure 2.1. It consists of subsections of series resistance (R) 
and inductance(L) and parallel capacitance (C) and shunt 
admittance (G) (or parallel resistance, Rp). For clarity and 
consistency these parameters will be defmed per uuit 
length. The value of the parameter (R, L, C, Rp) must be 
multiplied by the length of the subsection, i, to find the 
total value. The line is assumed to be infinitely long. 

If the line of Figure 2.1 is assumed to lossless (R = 0, Rp 
= infmity) Figure 2.1 is reduced to Figure 2.2. 

i-----t----l----t-------l 
tL tR tl 

Figure 2.1. Transmission Line Model 
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Figure 2.2. Ideal Transmission Line Model 

Input or Characteristic Impedance 
We shall now calculate the characteristic impedance (AC 
impedance or surge impedance) looking into terminals a-b 
of Figure 2.2. 

Let the input impedance looking into terminals a-b be Zl, 
that looking into terminals c-d be Z2, that looking into 
terminals e-f be Z3, etc. The input impedance, Zl, looking 
into terminals a-b is the series impedance of the first induc­
tor (£ L) in series with the parallel combination of Z2 and 
the impedance of the capacitor (£ C). 

From AC theory: 

XL = jw£L 

Where XL is the inductive reactance. 

1 
XC=-­

jw£C 

Where XC is the capacitive reactance. 

Then Zl = XL + Z2XC 

Z2 + XC 
(2-1) 

If the line is "reasonably" long Zl = Z2 = Z3. Substitut­
ing ZI = Z2 into equation 2-1 yields; 

ZIXC 
ZI = XL + 

Zl + XC 

Or, zJ2 - Zl XL - XC XL = 0 (2-2) 

Substituting the expressions for XC and XL yields; 

L 
Z12 - jw£L = - (2-3) 

C 

Equation 2-3 contains a complex component that is fre­
quency dependent. It can be eliminated by allowing £ to 
become very small and by recognizing that the ratio L/C is 
constant and independent of £ or w. 

Zl = .J!i (2-4) 

The AC input impedance of a purely reactive, uniform, 
lossless line is a resistance. This is true for AC or DC 
excitation. 

Propagation Velocity and Propagation Delay 
The propagation velocity (or phase velocity) of a sinusoid 
traveling on an ideal line (Ref. I, pg. 33) is: 

1 
a = .JLC' 
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The propagation delay for a lossless line is the reciprocal of 
the propagation velocity. 

Tpd = .JLC (2-5) 

= ZIC 

where Land C are the intrinsic line inductance and capaci­
tance per unit length. 

If additional stubs or loads are added to the line the propa­
gation delay will increase by the factor (Ref. 2, pg. 129). 

~l +~. 
Where CD = load capacitance. 

Therefore, the propagation delay, TpD', of a loaded line is: 

,r.co 
TpD = TPD"\j 1 + C. (2-6) 

The characteristic impedance of a capacitively loaded line 
is decreased by the same factor that the propagation delay 
is increased. 

Zl 
Zl' = ----;===;=" 

~l+~ (2-7) 

Reflection Coefficients 
The third attribute of the ideal transmission line; reflection 
coefficients, are not actually a line characteristic. The line 
is treated as a circuit component (which it is) and reflection 
coefficients are defined that measure the impedance mis­
matches between the line and its source and the line and its 
load. The reason for defining the reflection coefficients will 
become apparent later when it will be shown that if the 
impedance mismatch is sufficiently large, either a negative 
voltage or a positive voltage may be reflected back from the 
load to the source, where it may either add to or subtract 
from the original signal. If the impedance of the source is 
mismatched to the line impedance it may also cause a volt­
age reflection, which in turn will be reflected back to the 
load. Therefore, two reflection coefficients will be defined. 

For classical transmission lines driven by a single frequen­
cy source the impedance mismatches cause standing waves. 
When pulses are transmitted and the output impedance of 
the source changes depending upon whether a LOW to 
HIGH or a HIGH to LOW transition occurs, the analysis 
is further complicated. Classical transmission analysis, 
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where pulses are represented by complex variables with 
exponentials, could be used to calculate the voltages at the 
source and the load after several back aad forth reflections. 
However, these complex equations tend to obscure what is 
physically happening. 

Energy Considerations 
Consider next, driving the ideal transmission line from a 
source capable of generating digital pulses and analyze the 
behavior of the line under various driving and loading con­
ditions. 

The circuit to be analyzed is illustrated in Figure 2:3. The 
ideal transmission line of length i is being driven by Ii 
digital source of internal resistance Rs and loaded with a 
resistive load of RL. The charitcteristic Jmi1edance of the 
line appears as a pure resistance, Zo = .JL/C to any excita­
tion. 

The ideal case is when Rg = Zo = RL. The maximum 
energy transfer from source to load occurs under this con­
dition, and there are no reflections. One half the energy is 
dissipated in the source resistance, Rg, and the other half is 
dissipated in the load resistance, RL, (the line is lossless). 

If the load resistor is greater (larger) than the characteristic 
impedance of the line there will be extra energy available at 
the load, which will be reflected back to the source. This is 
called the underdamped condition, because the load under­
uses the energy available. If the load resistor is smaller than 
the line impedance the load will attempt to dissipate more 
energy than is available. Since this is not possible, a reflec­
tion will occur that isa signal to the source to send more 
energy. This is called the overdamped condition. Both of 
these cases will cause negative traveling waves, which 
would cause standing waves if the exCitation were sinusoi­
dal. The condition Zo = RL is called critically damped. 

It should be intuitively obvious to the reader that the "saf­
est" termination condition, from a systems design view­
point, is the slightly overdamped condition. No energy is 
reflected back to the source. . 

Derivation of the Line Voltage for Step 
Function Excitation 
The procedure is to apply a step function to the i~ line 
and to analyze the behavior of the line under various load­
ing conditions. The following section will analyze pulses, 
reflections from various terminations, and the effects of rise 
times on the waveforms. . 

The step function response is important because any pulse 
can be represented by the superposition of a positive step 
function ·and a negative step function, delayed in time with 
respect to each other. By proper superposition the response 
of any line and load to any width pUlse can be predicted. 
The prinCiple of superposition applies to all linear systems. 

According to theory, the risetime of the signal driven by 
the sourceis not affected by the characteristics of the line. 
This has been substantiated in practice by using a special 
coaxially constructed reed delay that delivered a pulse of 
18 amperes into SOn-with a risetime of 0.070 ns (70 ps). 
(Ref. 1, pg. 162). 
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l'he equation representing the voltage waveform going 
down the line (Figure 2.3) as a function of distance and 
time is: 

VL(X, t) = VA(t) U(t - X tpd) for t < TO (2-8) 

Where: VA(t) = VS(t) (Zo ~ Rg) (2-9) 

VA = .the voltage at point A 

X = the voltage at a point X on the line 

i = the total line length 

tpd = the propagation delay of the line in ns/ft. 

TO = i 1pci, or the. one-way line propagation delay 

U(t) = a unit step function occurring at X = 0, and 

VS(t) = the source voltage 

When the inCident voltage reaches the end of the line it 
reflected voltage, VL', will occur if RL is not equal to Zo. 
The reflection coefficient at the load, pL, can be obtained 
by applying Ohm's Law. 

The voltage at the load is.YL + VL', which must be equal 
to (IL + IL')RL. But IL = VL/Zo and IL' = - VL' /Zo 
(the minus sign is due to IL being negative. i.e., it is oppo­
site to the current due to VL.) 

Therefore, 

( VL VL') VB=VL+VL'= --- RL 
Zo Zo 

(2-10) 

By definition: 

reflected voltage VL' 
pL = -----'=-

incident voltage VL 

Solving for VL' IVL in equation 2-10 and substituting in 
the equation for pL yields: 

RL...,Zo 
pL - RL + Zo (2-11) 

The reflection coeffiCient at the source is: 

Rg-Zo 
pS = RL + Zo· (2-1:i) 

Re-arranging equation 2-10 yields: 

VB = VL + VL' = (1 + ~) VL = (1 + pL)VL (2-13) 

Equation 2-13 describes the voltage at the load (VB) as the 
sum of an inCident voltage (VL) and a reflected voltage (pL 
VL) at time t = To. When RL = Zo no voltage is reflect­
ed. When RL < Zo the reflection coefficient at the load is 
negative, so the reflected voltage subtracts from the inci­
dent voltage, giving the load voltage. When RL > Zo the 
reflection coeffiCient is positive; so the reflected voltage 
adds to the inCident voltage, again giving the load voltage. 
Note that the reflected voltage at the load has been defined 
as positive when traveling toward the source. This means 
that the corresponding current must be negative, subtract­
ing from the curr~t driven by the source, which it does. 

This "piecewise" analysis is cumbersome and can be tedi­
ous. However, it does provide an insight into what is physi-
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cally happening and demonstrates that a complex problem 
can be solved by dividing it into a series of simpler prob­
lems. Also, the mathematics are simple if the exponentials, 
which provide phase information in the classical transmis­
sion line equations, are eliminated. One must provide the 
"bookkeeping" to combine the reflections at the proper 
time. This is quite straightforward, since a pulse travels 
with a constant velocity along an ideal or low loss line and 
the time delay between reflected pulses can be predicted. 

The rules to keep in mind are that at any point and instant 
of time the voltage or the current is the algebraic sum of 
the waves traveling in the positive X and the negative X 
directions. For example, two voltage waves of the same 
polarity and equal amplitudes, traveling in opposite direc­
tions, at a given point and time will add together to yield a 
voltage of twice the amplitude of the individual wave. The 
same reasoning applies to points of termination and discon­
tinuities on the line. The total voltage or current is the 
algebraic sum of all of the incident and reflected waves. 
Polarities must be observed. A positive voltage reflection 
results in a negative current reflection and vice versa. 

Before considering reflections at the source, due to imped­
ance mismatches between the source impedance and the 
line impedance, the behavior of the ideal line with various 
loads will be analyzed when it is driven by a step function. 

Step Function Response of the Ideal Line for 
V moos Loads 
The voltage and current waveforms at point A (line input, 
Figure 2.3) and point B (the load) for various loads are 
presented in Table 1. They have been reproduced from Ta­
ble 5.1, pages 158,159 of Reference 1. Note that Rs = Zo 
and that VA at t = 0 is equal to Vg/2, which means that 
there is no impedance mismatch between the source and 
the line, so there will be no reflection from the source at 
t = 2 To. 

To is the one way propation of the line. 

The time domain response of the reactive loads are ob­
tained by applying a step function to the LaPlace transform 
of the load and then taking the inverse transform. 

Note that the reflection coefficient at the load is not the 
total reflection coefficient (a complex number) but repre­
sents only the real part of the load. The reason for doing 
this is to eliminate the complex (jCllt) terms because we are 
performing the bookkeeping involving the phase relation­
ships, which are performed by them in classical transmis­
sion line analysis. 

Also note that for the open circuit condition, Table 1 (b), 
ZL = infinity, so that pL = + 1. The voltage is reflected 
back from the load to the source (at amplitude Vo = 
Vg/2), so that at time = 2 TO it adds to the original volt­
age, Vo = Vs/2 to give a value of2 Vo = VS. During the 
time the voltage wave is traveling down to and back from 
the load a current ofIO = VolZo = Vg/2 Zo exists. This 
current charges up the distributed line capacitance to the 
value Vs, at which time it stops. 

'Ie 
Direction of Travel 

VA,IA -. +X 
VB,IB +- -X 

V Zo ~ I:~-') RL 

~ -.!!. 
SOURCE LINE LOAD 

0099-3 

Figure 2.3. Ideal Transmission Line Loaded and Driven 
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Table 1. Step Function Response of Figure 2.3 for Various Terminations 

VA = Vsl2. 10 = YO/ZOo To = i..JLc. pL = (RL -Zo)/(RL + Zo) 

Termination 

v 

(a) SHORT CIRCUIT VA b 
Input waveforms 

Vilbiin 

ALWAYS=O 

Output waveforms 
Vl,'i, 

Iz,=o -".I-----:2:!T~0-------· 1 . I 

~ 2~ ~t '1 _2_
l
o .. t_T .... I ________ ., 

2VV~ ~r------ VI 10 

(b~RCUIT ~ t==:::: _ .. _ .... _______ _ 
Zc=oo I 2TO I TO 

lob 1 ALWAYS =0 

~O • 1 - .. ~----------

0---

(C~ESISTOR VA 1--=1....._-,.---. VA ~~O ~VSR,+\"_-_-.. f_.L-_______ _ 
o----f~<Zo _~".~_. __ · ________ ~:o .-_-_-.. t_.L-_______ _ 

. 1 

• 1 
~ V 

(d~ESISTOR _V_A .. ~ __ =:-----·------·-V-S-R,+-Z-~:(I+PJVA .. ----.. t-.L-_______ _ 
~~>~ I ~ I 

_~ .. ~ ______ ._-_-_-. __ R,+_V~ .-_-_-~f_L_ ______ ___ 

1 
To 

• 1 
To 

0099-10 

(0) SERIES RESISTANCE AND 
INDUCTANCE: Zc=R+ju>L 

JTva 
R TvR 

(I) PARALLEL RESISTANCE AND 
INDUCTANCE 

=rFIL 

(g) SERIES RESISTANCE AND 
CAPACITANCE 

(h) PARALLEL RESISTANCE AND 
CAPACITANCE 

Rzoe 
r=­

R+Zo 
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Va 

2Vt-",---
• 1 

TO 
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I 
0 

~ • 1 
To 

V 
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To 

VR 
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Vc 
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V 
To 
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The waveforms at the source and load for (g) and (h) are of 
particular interest because (g) represents a series RC termi­
nation that dissipates no DC power and can be used to 
terminate a transmission line in its characteristic imped­
ance at the input to a Cypress IC. The equivalent circuit of 
the input to a Cypress IC is represented by (h). The addi­
tion of (g) and (h) then models a Cypress IC driven by a 
transmission line terminated in its characteristic impedance 
when the values of R and C are properly chosen. 

Reflections Due to Discontinuities 
Table 2 illustrates three types of common discontinuities 
found on transmission lines. When a discontinuity occurs 
at a point on the line it causes a reflection and some energy 
is directed back to the source. The amount of energy re-
flected back is determined by the reflection coefficient at 
that point. Discontinuities are usually small (by design), so 
most of the energy is transmitted to the load. 

Pulse Response of the Ideal 
Transmission Line 
Consider next the behavior of the ideal transmission line 
when driven by a pulse whose width is short compared to 
the electrical length of the line. In other words, when the 
width of the pulse is less than the one-way propagation 
delay time, TO, of the line. 

The voltage waveforms at point A (line input, Figure 2.3) 
and point B (the load) for various loads are presented in 
Table 3. They have been reproduced from Table 5.2, pages 
160, 161 of Reference 1. Note that Rs = Zo and that VA 
at t = 0 is equal to Vs/2, which means that there is no 
impedance mismatch between the source and the line, so 
there will be no reflection from the source at t = 2 TO. 

Table 2. Reflections from Discontinuities with an Applied Step Function 
Discontinuity 
(a) Series Inductance Voltage Seen at Input End: VA = Vsl2 also, Rs = Zo 

2YA ----------

YAI-----..... 

0099-12 
0099-15 

(b) Shunt Capacitance 

'·1 t, f~ YAI-----.. 

f--t'~ 
0099-13 

0099-16 

(c) Series Resistance 

R 

'·1 T f" 
f--t'--I 

I YAf-----..... 

0099-14 

0099-17 
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Pulse Response of the Ideal Transmission Line (Continued) 

Table 3. Pulse Response of Figure 2·3 for Various Terminations 

VA = Vsl2. To = i.JLC. pL = (RL - Zo)/(RL + Zo) 

Termination 

(b) OPEN CIRCUIT 
0----

(e) SMALL RESISTOR 

:J~<zo 

(d) LARGE RESISTOR 

:J~>Zc 

Input waveform V in 

n . \ 

. \ 

_V_:llm~ __ ~~ _______ . t _ _ O-PLVA _ 

2TO 

Vln 

(e) SERIES RESISTANCE AND h 
INDUCTANCE _ ] T ---,--,--'~ ~2(ld-+-,-,--VA • \ 

(I) PARALLEL RESISTANCE AND h 
INDUCTANCE ... V 

~Tv'. _V .... A --'-..... J~~---t-:::; __ _ 

Vf ALWAYS=O 

o 
TO 

Output waveform VB 

• t 

• t 

• t 

0099-18 

~ . 2~"-- .\ 

1 icc '·('~I--r[l· (9) SERIES RESISTANCE AND 
CAPACITANCE 

-----'"""!2~To-.-----· \ To • t 

(h) PARALLEL RESISTANCE AND 
CAPAetTANCE 

1·8 

I 
0099-19 
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Finite Rise Time Effects 
Now consider the effects of step functions with finite rise 
times driving the ideal transmission line. 

If TR is sufficiently fast, the voltage at the load will change 
in discrete steps. The amplitude of the steps is determined 
by the impedance mismatch and the width of the steps is 
determined by the two-way propagation delay of the line. 

As the risetime becomes slower and the line shorter (small­
er TO), or both, the result converges to the familiar RC 
time constant, where C is the static capacitance. All devic­
es should be treated as transmission lines for transient anal­
ysis when an ideal step function is applied. However, as the 
rise time becomes larger (slower) and the traces shorter (or 
both) the transmission line analysis reduces to conventional 
AC circuit analysis. 

Reflections from Small Discontinuities 
Table 4 shows a pulse with a linear rise time and rounded 
edges driving the transmission line of Table 2 (a), (b). The 
expressions for Vr are derived on pages 171 and 172 of 
Reference 1. The reflection caused by the small series in­
ductance is useful for calculating the value of the inductor, 
L I, but little else. 

Table 4. Reflections from Small Discontinuities with 
Finite Rise Time Pulse 

(a) Applied Pulse from Generator 

0099-20 

(b) Reflection from SmaIl Series Inductor L' 

0099-21 

(c) Reflection from Small Shunt Capacitor C' 

VI. 

0099-22 
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The reflection caused by the small shunt capacitor is more 
interesting because if it is sufficiently large it could cause a 
device connected to the transmission line to see a logic 
ZERO instead of a logic ONE. 

The Effect of Rise Time on Waveforms 
Next, consider the ideal line terminated in a resistance less 
than its characteristic impedance and driven by a step func­
tion with a linear rise time. The stimulus, the circuit, and 
the response are illustrated in Figures 4.1 (a). (b) and (e), 
respectively. Once again, note that the source resistance is 
equal to the line characteristic impedance, so there are no 
reflections from the source. 

APPLIED STEP FUNCTION 

0099-23 

(a) 

Zo 

F i VI. 
Zo ~<zo~ 

0099-24 

(b) 

r-TR-j 
------r-----------------, ' j REFLECTED WAVE , , 
, ~----------~-----

r Vs ~:Zo 
L-____ ~ __________________ ~ ____ I 

0099-25 

(c) 
Figure 4.1. Effect of Rise Time on Step Response of 

Mismatched Line with R ff < Zo 
The resulting waveforms are similar to those of Table I (c) 
as modified as shown in Figure 4.1 (e). The [mal value of 
the waveform must be the same as before (Table I (c». 

The resultant wave at the line input (Yin) is easily obtained 
by superposition of the applied wave and the reflected wave 
at the proper time. In Figure 4.1 the rise time of the step 
function is less than the (two-way) propagation delay of the 
line so the input wave reaches its final value, V sl2. At t = 
2 TO the reflected wave arrives back at the source and 
subtracts from the applied step function. 

The cases where the step function rise time is equal to twice 
the propagation delay and greater than the propagation 
delay are illustrated in Figure 4.2 (a) and (b). respectively. 
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Finite Rise Time Effects (Continued) 

REFLECTED WAVE 

V -'L 
s "<+20 

0099-28 

(a) 

0099-26 '~In 

(a)TR = 2TO 

~ -------~ .. ~;{'------------­
: ~ : , 
, 
" , 
~TR---: 
" ' 

2TO TR 4T 

(b)TR> 2TO 

REFLECTED WAVE 

V -'L 
s ,,<+Z. 

0099-27 

Figure 4.2. Effects of Rise Time on Step Response for 
Ri <Zo:(a)TR=2To;(b)TR>2To 

Multiple Reflections and Effective Time 
Constant 
We will now consider the case of an ideal transmission line 
with multiple reflections causes by improper terminations 
at both ends of the line. The circuit and waveforms are 
illustrated in Figure 4.3. The reflection coefficients at the 
source and the load are both negative. i.e., the source resist­
ance and the load resistance are both less than the line 
characteristic impedance. Refer to equations 2-11 and 2-12. 

When the switch is initially closed, a step function of am-
. VsZo . 

phtude Vo = V in = appears on the hne and 
Rs+Zo 

travels toward the load. A one-way propagation delay time 
later, TO, the wave is reflected back with an amplitude of 
pLVo. 

This first reflected wave then travels back to the source and 
at time t = 2 TO it reaches the input end of the line. At 
this time the first reflection at the source occurs and a wave 
of amplitude pS (pL yo) is reflected back to the load. At 
time t = 3 TO this wave is again reflected from the load 
back to the source with amplitude pL pS (pL yo) = pS 
pL2 Yo. This back and forth reflection process continues 
until the amplitudes of the reflections become so small that 
they cannot be observed, at which time the circuit is said to 
be in a quiescent state. 

Effective Time Constant 
From an examination of Figure 4.3 it is reasonable that if 
the voltage reflections occur in small increments that are of 
short durations the resultant waveform will approximate 
an exponential function, as indicated by the dashed line in 
Figure 4.3 (b). The smaller and narrower the steps become, 
the more closely the waveform will approach an exponen­
tial. 
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(b) 

0099-30 

(c) 

(l+Pt.l~vot· -+--+------.~~_--'--
I ~ ----------T vs.:': .. 
_It 

To 3To 5To 7To 

0099-31 

(d) 
Figure 4.3. Step Function Applied to Line 

Mismatched on both ends; waveforms shown for 
negative values of ps and pi. 

The mathematical derivation is presented on pages 178 and 
179 of Reference 1. The time constant is shown to be: 

K = __ 2_T.....:o,--
1 - pS pL 

(4-1) 

So that the resultant waveform oan be approximated by; 

V(t) = Vo E (i:) (4-2) 

In order for equation 4-2 to be accurate pL and ps must be 
reasonably large (approaching ± 1) so that the incremental 
steps are small. The product pS pL is a positive number, 
less than one, so the time constant is a negative number, 
which indicates that the exponential decrea8<ls with time. 
This is usually the case in transient circuits. 

Both reflection coefficients must also have the same sign in 
order to yield a continually decreasing (or increasing) 
waveform. Opposite signs will give oscillatory behavior 
that cannot be represented by an exponential function. 
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Finite Rise Time Effects (Continued) 

The Transition from Transmission Line to 
Circuit Analysis 
When a transmission line is terminated in its characteristic 
impedance it behaves like a resistor and it usually does not 
matter if transmission line or circuit analysis is used; pro­
vided that the propagation delays are taken into account. 

Consider the case of a short-circuited transmission line 
driven by a step function with a source impedance unequal 
to the characteristic line impedance. The general case is 
shown in Figure 4.3 (a). For RL = 0 the reflection coeffi­
cients are; 

Zs - Zo 
pS = pL = -1. 

Zs + Zo 
The approximate time constant is; 

-k = 2 TO = 2 To = TO (ZS + ZO) 
1 - pS pL 1 + pS Zs 

, or 

TOZo 
-k = To + -- (4-3) 

Zs 

Recall that To = ! .J[C (one-way delay) 

and Zo = ~, where ! is the physical length of the line 

and L and C are the per-unit-length parameters. 

Substitution of these into equation 4-3 yields 

L 
-k = TO + !-

Zs 

It is necessary to have Zs smaller than Zo. 
Thus the reflection coefficients have the same sign in order 
to give exponential behavior. Opposite signs give oscillato­
ry behavior. 

If Zs -< Zo, the exponential approximation becomes more 
accurate. If Zs is very small compared to Zo, then TO is 
negligible compared to ! L/ZO, so that equation 4-5 re­
duces to; 

L 
k = -!-. 

Zs 

But ! L is the total loop inductance and Zs is the total 
series impedance of the circuit. The time constant is then; 

L' 
k=-. 

Rs 

This is the same time constant that would have been ob­
tained by a circuit analysis approach if the line were con­
sidereda series combination of L' and Rs. 
By open-circuiting the line and performing a similar analy­
sis it can be shown that a RC time constant results. 
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Types of Transmission Lines 
The types of transmission lines are: 

Coaxial cable 
Twisted pair 
Wire over ground 
Microstrip lines 
Strip lines 

Coaxial Cable 
Coaxial cable offers many advantages for distributing high 
frequency signals. The well defined and uniform character­
istic impedance permits easy matching. The ground shield 
on the cable reduces crosstalk and the low attenuation at 
high frequencies make it ideal for transmitting the fast rise 
and fall time signals generated by Cypress CMOS integrat­
ed circuits. However, because of its high cost, coaxial cable 
is usually restricted to applications where there are no oth­
er alternatives. These are usually clock distribution lines on 
PCBs or backplanes. 

Characteristic Impedance 
Coaxial cables have characteristic impedances of 50, 75, 93, 
or 150 ohms. Special cables can be made with other imped­
ances, but these are the most common. 

Propagation Delay 
The propagation delay is very low. It may be computed 
using the formula; 

Tpd = 1.017 re; ns/ft. (5-1) 

where e,. is the relative dielectric constant and depends 
upon the dielectric material used. For solid teflon and poly­
ethylene it is 2.3. The propagation delay is 1.54 ns per foot. 
For maximum propagation velocity, coaXial cables with di­
electric styrofoam or polystyrene beads in air may be used. 
Many of these cables have high characteristic impedances 
and are slowed considerably when capacitively loaded. 

Twisted Pair 
Twisted pairs can be made from standard wire (AWG 24-
28) twisted about 30 turns per foot. Typical characteristic 
impedance is 110!l. Because the propagation delay is di­
rectly proportional to the characteristic impedance (equa­
tion 2-5) the propagation delay will be approximately twice 
that of coaxial cable. Twisted pairs are used for backplane 
wiring and for breadboarding. 

Wire Over Ground 
Figure 5.1 shows a wire over ground. The wire over ground 
is used for breadboarding and for backplane wiring. The 
characteristic impedance is approximately 120.0 and may 
vary as much as ± 40%, depending upon the distance from 
the groundplane, the proximity of other wires, and the con­
figuration of the ground. 

0099-32 

Zo =~ In(~), r.;, d 
Figure 5.1. Wire Over Ground 
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Types of Transmission Lines (Continued) 

Microstrip Lines 
A microstrip line (Figure 5.2) is a strip conductor (signal 
line) on a PCB separated from a ground plane by a dielec­
tric. If the thickness and width of the line, and the distance 
from the ground plane are controlled, the characteristic 
impedance of the line can be predicted with a tolerance of 
±5%. 

l -J W .J\L-__ _ 

t ::::: 0.0015" for 1 oz. Co, r- 0.003" for 2 oz. Cu. 

where: 

T I" 
DIELECTRIC H 

......,.,.,'7'TTT,7TTT7'TT'T'T7>rl~ 
GROUND·K"'JJ.~""""""JJ.~,,,,"JJ." 

Zo 87 In(~), 
= ~er + 1.41 O.8w + t 

0099-33 

er = relative dielectric const;mt of the board material (about 5 
for 0,10 fiber-glass epoxy boards), 

w, h, t, = dimensions indicated. 

Figure 5.2. Microstrip Line 

The formula of Figure 5.2 has proven to be very accurate 
for ratios of width to height between 0.1 and 3.0 and for 
dielectric constants between 1 and 15. 

The inductance per foot for microstrip lines is; 

L = Zo2Co 
where Zo = characteristic impedance, 

Co = capacitance per foot. 

The propagation delay of a microstrip line is; 

Tpd = 1.017 J0.45 er + 0.67 ns per foot. 

(5-2) 

(5-3) 

Note that the propagation delay is dependent only upon 
the dielectric constant and is not a function of the line 
width or spacing. For G-10 fiber-glass epoxy PCBs (dielec­
tric constant of 5), the propagation delay is 1.74 ns per 
foot. 

Strip Line 
A strip line consists of a copper strip centered in a dielec­
tric between two conducting planes (Figure 5.3). If the 
thickness and width of the line, the dielectric constant, and 
the distance between ground planes are all controlled, the 
tolerance of the characteristic impedance will be within 
± 5%. The equation of Figure 5.3 is accurate for W l(b-t) 
< 0.35 and tlb < 0.25. 

r7"J"7'7TT1T:,.,..,..,.,jTT:rr.""", _ GROUND PLANE 

1L+--t--.1ZZZZZ2I i ;+ ----+-STRIP LINE 

t-1U.~"""r.uJJ.~"""",,,, ... -GROUND PLANE 

0099-34 

Zo=~ln( 4b ) 
.re; 0.67 1rW (0.8 + ;;) 

Figure 5.3. Stripline 
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The inductance per foot is given by the formula; 

Lo = Zo2Co. 
·t· . 

The propagation delay of the line is given by the formula; 

Tpd = 1.017 Fe; ns per foot. (5-4) 

For G-lO fiber-glass epoxy boards the propagation delay is 
2.27 ns per foot. The propagation delay is not a function of 
line width or spacing. 

Power Distribution 
Instantaneous Current 
In order to realize the fast rise and fall times that Cypress 
CMOS integrated circuits are capable of achieving, the 
power distribution system must be capable of supplying the 
instantaneous current required when the device outputs 
switch from LOW to HIGH. 

The energy is stored as charge on the local decoupling ca­
pacitors. It is standard practice to use one decoupling ca­
pacitor for each IC that drives a transmission line and to 
use one for every three devices that do not. 
The value of the decoupling capacitor is determined by 
estimating the instantaneous current required when all the 
outputs of the IC switch from LOW to HIGH, assuming a 
reasonable "droop" of the voltage on the capacitor. 

Calculations 
The charge stored on the local decoupling capacitor of Fig­
ure 6.1 is Q = C V. Differentiating yields; 

. dQ dV 
l(t) = dt = C dt' (6-1) 

The characteristic impedance of a typical transmission line 
is 50.0. Heavily (capacitively) loaded lines will have lower 
characteristic impedances (equation 2-7). 

vee BUS 

0099-35 

Figure 6.1. Local Decoupling Capacitor 

Next, assume that the IC is an eight output PROM, such 
as the CY7C245 or the CY7C261. The outputs will reach 
Vee -Vt = 5V-IV = 4V. Each output will then require 
4V 150 = 8 mAo Since there are eight outputs a total of 64 
mA will be required. 

Solving equation 6-1 for C yields; 

dt 
C=I-. 

dV 
(6-2) 

The signal rise and fall times are 2 to 4 ns so we will use dt 
= 3 ns. 

The last step is to assume a reasonable, tolerable droop in 
the capacitor voltage. Assume dV = 100 mY. 
Therefore, substituting these values in equation 6-2 yields; 

64 X 10-3 X 3 X 10-9 
C = = 0.192 X 10-9 = 192pF. 

100 X 10-3 

It is standard practice to use 0.01 to 0.1 p,F decoupling 
capacitors. A 0.01 p,F capacitor is capable of supplying 330 
mA under the preceding conditions. 



&r.oo~lCfOR Systems Design Considerations When Using Cypress CMOS Circuits 

Power Distribution (Continued) 

Decoupling capacitors for high speed Cypress CMOS cir­
cuits should be of the high K ceramic type with a low ESR 
(Equivalent Series Resistance). Capacitors using 5 ZU di­
electric are a good choice. 

Low Frequency Filter Capacitors 
A solid tantalum capacitor of 10 ""F is recommended for 
each 50 to 100 ICs to reduce power supply ripple. This 
capacitor should be as close as possible to where the Vee 
and ground enter the PCB or module. 

When Should Transmission Lines Be 
Terminated? 
Transmission lines should be terminated when they are 
long. From the preceding analysis it should be apparent 
that 

. Tr 
Long Lme > -- . 

2Tpd 

Where Tpd is the propagation delay per unit length. 

For Cypress products, the rise time, Tr , is typically two 
nanoseconds. 

The propagation delay per unit length has been shown to 
be as small as 1. 7 ns per foot. 

2 ns 
Long Line> = 0.59 ft. or 7 inches. 

2 X 1. 7 ns/ft. 

Not all lines exceeding 7 inches will need to be terminated. 
Terminations are usually only required on clock inputs, 
write and read strobe lines on SRAMs, and chip select or 
output enable lines on RAMs, PROMs, and PLDs. Ad­
dress lines and data lines on RAMs and PROMs usually 
have time to settle. 

In the case where multiple loads are connected to a trans­
mission line, only one termination circuit is required. The 
termination network should be located at the load that is 
electrically the longest distance from the source. This is 
usually the load that is the longest physical distance from 
the source. 

Types of Terminations 
There are three basic types of terminations. They are called 
series damping, parallel, and pullup/pulldown. Each has 
their advantages and disadvantages. 

Except for series damping, the termination network should 
be attached to the input (load) that is electrically furthest 
away from the source. Component leads should be as short 
as possible in order to prevent reflections due to lead induc­
tance. 

Series Damping 
Series damping is accomplished by inserting a small resis­
tor (typically 100 to 750) in series with the transmission 
line, as close to the source as possible, as illustrated in 
Figure 8.1. Series damping is a special case of damping in 
which the series resistor value plus the circuit output im­
pedance is equal to the transmission line impedance. The 
strategy is to prevent the wave that is reflected back from 
the load from reflecting back from the source by making 
the source reflection coefficient equal to zero. 
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The channel resistance (ON resistance) of the pulldown 
device for Cypress ICs is ten to twenty ohms (depending 
upon the current sinking requirements), so this value 
should be subtracted from the series damping resistor, Rs. 

0099-36 

Figure 8.1. Series Damping 

The disadvantage of the series damping technique is that 
during the two-way propagation delay time the voltage at 
the input to the line is half-way between the logic levels, 
due to the voltage divider action of Rs. This means that no 
inputs can be attached along the line, because they would 
respond incorrectly. However, any number of devices may 
be attached to the load "end of the line because all of the 
reflections will be absorbed at the source. 

Due to the low input current required by Cypress CMOS 
ICs, there will be essentially no DC power dissipation and 
the only AC power required will be to charge and dis­
charge the parasitic capacitances. 

Pullup/Pulldown 
The pu11up/pulldown resistor termination shown in Figure 
8.2 is included only for the sake of completeness. If both 
resistors are used there will be DC power dissipated all the 
time and if only a pulldown resistor is used DC power will 
be dissipated when the input is in the logic HIGH state. 
Due to these power dissipations, this termination is not 
recommended. 

0099-37 

Figure 8.2. Pullup/Pulldown 

However, in special cases where inputs should be either 
pulled up (HIGH) for logic reasons or because ofvery slow 
rise and fall times, a pu11up resistor to Vee may be used in 
conjunction with the terminating network described below. 
DC power will be dissipated when the source is LOW. 

Parallel AC Termination; Figure 8.3 
This is the recommended general purpose termination. It 
does not have the disavantage of the half-voltage levels of 
series damping and it causes no DC power dissipation. 
Loads may be attached anywhere along the line and they 
will see a full voltage swing. 

0099-38 

Figure 8.3. Parallel AC 
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Types of Terminations (Continued) 

The disadvantage is that it requires two components, ver­
sus the series damping termination of one. The value of the 
terminating resistor, R, should be slightly less than the line 
characteristic impedance. 

Low Pass Filter Analysis 
The parallel AC termination has a second advantage: it 
acts.as a low-pass filter for short pulses. 

This can be verified by analysis of the response of the cir­
cuit, illustrated in Figure 8.4, to a positive and to a negative 
step function. The positive step function is generated by 
moving the switch from position 2 to position I. The nega­
tive step function is generated by moving the switch from 
position I to position 2. The response of'the circuit to a 
pulse is then the superposition of the two responses. The 
input impedance of the Cypress circuits that are connected 
to the termination network are so large that they may be 
ignored for this analysis. . 

v 

.~Rl ': . 

~ 'in i l~ .. , 
SOURCE LOAD 
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Figure 8.4. Lumped Load 

Classic circuit analysis usually assumes an ideal (RI = R2 
= 0) source. In real-world digital circuits the source out­
put impedance is 1I,0t only non-zero, but also different de­
pending upon whether the output is changing from LOW 
to HIGH or vice versa. 

For Cypress integrated circuits, 1000. > RI > 300. and 
200. > R2 > 100., depending upon speed and output cur­
rent sinking specifications. 

Positive Step Function Response 
The initial voltage on the capacitor is zero. At t = 0 the 
switch is moved from position 2 to position I. At t = 0 + 
the capacitor appears as a short circuit and the voltage V is 
applied through RI to charge the load (R3 C). The voltage 
between the capacitor and ground, V(t), is; . 

-I 

V(t) = V(1 - E(RI +R3)C) (8-1) 

In theory, the voltage across the capacitor reaches V when 
t equals infinity. 

In practice, the voltage reaches 98% of V after 3.9 RC time 
constants. This can be verified by setting V(t)/V = 0.98 in 
equation 8-1 and solving for t. 

Negative Step Function Response 
The capacitor is charged to (approximately) V. At t = 0 
the switch is moved from position I to position 2 and the 
capacitor is discharged. The: voltage between the capacitor 
and ground, V(t), is; 
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-I 

V(t) = V E(R2 + R:i)C (8-2) 

The voltage decays to 2% of its original value in 3.9 RC 
time constants. This can be verified by setting V(t)/V = 
0.02 in equation 8-2 and solving for t. 

First, the Ideal Case 
Consider first the ideal case where RI = R2 = O. Let R3 
= R in equations 8-1 and 8-2. If a positive pulse of width T 
is applied to the circuit of Figure 8.4, it will disappear if 
4RC > T. 

Because the discharge time constant is the same as the 
charging time constant for the ideal case, a negative going 
pulse of width T will also disappear if 4RC > T. i.e., if the 
applied signal were normally HIGH and went LOW, such 
as a write strobe on a SliM, all negative glitches will be 
filtered out if they are less· than 4RC time constants in 
width. 

The maximum frequency that the circuit will pass is; 

I 
F (max.) = 2 T' (8-3) 

This is true because the charging and discharging time con­
stants are equal for the ideal case. 

Determination of the Capacitance,C, for the 
Ideal Case 
The value of the capacitor, C, must be chosen to satisfy two 
conflicting requirements. First, it should be large enough to 
either absorb or supply the energy contained or removed 
when positive-going or negative-going glitches occur. Sec­
ond, it should be small enough not to either delay the sig­
nal beyond some design limit or to slow the signal rise and 
fall times to greater (i.e., longer timewise) than 5 ns. 

A third consideration is the impedance caused by the ca­
pacitive reactance, XC, of the capacitor. The digital wave­
forms applied to the AC termination can be expressed in 
terms of Fourier Series so that they can be manipulated 
mathematically. However, because these digital signals are 
not "periodic" in the classical meaning of.the word, it is 
not clear that the "AC steady state analysis model" of XC 
is applicable. 

In most applications, the degradation of the signal rise and 
fall times beyond 5 ns determines the maximum value of 
the capacitor. The procedure will be to calculate the rise­
time between the 10% and 90% amplitude levels, equate 
this to 5 ns, and solve for C in terms of R. 
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-, 
Solving the equation V(t) = V (I - ERe) for t yields; 

t=RCln[ I 1 I _ V(t) 
V 

(8-4) 

V(t) 
For y = O.I,t = O.IORC. 

V(t) 
For y = 0.9, t = 2.3 RC. 

The time for the signal to transition from 10% to 90% of 
its final value is then T = 2.2 R C. Solving for C yields; 

T 
C = - (8-5) 

2.2R 

For T = 5 ns the following table may be constructed. 

PCB Wirewrap 

Zo(O) 50 120 

R(O) 47 110 

C(max.,pF) 48 20 

RC (ns) 2.25 2.2 

4RC(ns) 9 8.8 

What this table says is that 500 transmission lines on 
printed circuit boards that are terminated with RC net­
works should use a 470 resistor and a maximum capacitor 
of 48 pF. Under this condition, glitches of 9 ns or less will 
be eliminated. The second column applies to wirewrap con­
struction. 

Then for the Real World 
The value of RI and R2 should be determined from the 
data sheet. 

The value ofRI should be added to 470 and C then calcu­
lated using equation 8-5. Next, check to see that the charg­
ing RC time constant does not violate some minimum posi­
tive pulse width specification for the particular line. If so, 
reduce C. 

Add the value ofR2 to 470 and calculate C. Then check if 
the discharging RC time constant violates some minimum 
negative pulse width specification for the particular line. If 
so, reduce C. 

Schottky Diode Termination 
In certain instances it may be expedient to use Schottky 
diodes to terminate lines. Where line impedances are not 
well defined, as in breadboards and backplanes, the use of 
diode terminations is convenient and may save time. 

A typical diode termination is shown in Figure 9.1. The 
low forward voltage, Vr, of the diode (typically 0.3 to 
0.45V) clamps the input signal to a V r below ground (lower 
diode) and Vee + Vr (upper diode), thereby significantly 
reducing signal undershoot and overshoot. In some appli­
cations both diodes may not be required. 
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Figure 9.1. Schottky Diode Termination 

The advantages of diode terminations are: 

• Impedance matched lines are not required. 
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• The diodes replace terminating resistors or RC termina­
tions. 

• The clamping actions of the diodes reduce overshoot 
and undershoot. 

• Although diodes are more expensive than resistors, the 
total cost of layout may be less because a precise, con­
trolled transmission line environment is not required. 

• If ringing is discovered to be a problem during system 
checkout the diodes can be easily added. 

As with resistor or RC terminations, the leads should be as 
short as possible in order to avoid ringing due to lead in­
ductance. 

A few of the types of Schottky diodes commercially avail­
able are : 

• IN4148 (Switching) 

• IN5711 
• MBDIOI (Motorola) 

• HP5042 (Hewlett Packard) 

Example: Unterminated Line 
The following example is presented to illustrate the proce­
dure for calculating the waveforms when a Cypress PLD is 
used to generate the write strobe for a Cypress SRAM. The 
PLDis a PAL®C 20 device -and the SRAM is the 
CY7CI89-25. 

The equivalent circuit is illustrated in Figure 10.1 and the 
(unmodified) driving waveform in Figure 10.2. The rise and 
fall times are two nanoseconds. The length of the micro­
strip trace on the PCB is eight inches and the characteristic 
line impedance is 500. It is required to calculate the volt­
age waveforms at the source (point A) and the load (point 
B) as functions of time. 

Vcc=5V 
+ 

Vf =O.8V 
Zo=50MJl 

28Jl 

1 

l 
I~ 'Is 
t+ ( ,opr 

VA 1=8" "I L L 

! ~ 
Figure 10.1. Equivalent Circuit 
for Cypress PAL Driving RAM 

5101Jl 
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Figure 10.2. V A (t), Unmodified 

Equivalent Circuits for The PLD and SRAM 
The equivalent ON channel resistance of the PLD pullup 
device, 28n, was calculated using the output source cur­
rent versus voltage graph over the region of interest (0 to 
2V) from the data sheet. The equivalent resistance of the 
pulldown device, lOn, was calculated in a similar manner, 
using the output sink current versus output voltage graph, 
also on the data sheet. 

The equivalent input circuit for the SRAM was construct­
ed by approximating the input and stray capacitance with a 
10 pF capacitor and the resistance with a 5 million ohm 
resistor. The input leakage current for all Cypress products 
is specified as a maximum of ± 10 ,...A, which guarantees a 
minimum of 500,OOOn at Yin = 5V. Typical leakage cur­
rent is one microampere. 

Transmission Line Calculations 
The next step is to calculate the propagation delay and 
loaded characteristic impedance of the line. 

Propagation Delay 
The unloaded propagation delay of the line is calculated 
using equation 5-3 with a dielectric constant of 5. 

Tpc:! = 1.74ns/ft. 

In order to calculate the loaded line propagation delay, the 
intrinsic capacitance must first be calculated using equa­
tion 2-5. 

Tpc:! = ZoCo, 
where Zo is the intrinsic characteristic impedance and Co 
is the intrinsic capacitance. 

Tnd 1.74ns/ft. 
Co = -= = = 34.8 pF/ft. 

Zo 50 

The line is loaded with 10 pF, so equation 2-6 is used to 
compute the loaded propagation delay of the line. 

Tpd' = Tpd~l + ~ 
Tpd' = 1.74ns/ft. 

r"1-+--__ - _-_-_-_"-:10=p:F===== 

Tpd' = 2.08 ns/ft. 

8 in. 
34.8 pF/ft. X -. --

12 in./ft. 

Note that the capacitance per unit length must be multi­
plied by the line length to arrive at an equivalent lumped 
capacitance. 
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Characteristic Imped8Ace 
The intrinsic line impedance is reduced by the same factor 
by which the propagation delay is increased (1.96). See 
equation 2-7. 

50n 
Zo' - - 418" - 1.196 - .••. 

Initial Conditions 
At time t = 0 the circuit of FigUre 10.1 is in a quiescient 
state. The voltage at points A and B must be the same. 

By inspection; 

VA = VB = (Vee - Vi) ( RL ) 
RS +RL 

( 5 X 106 ) 
= (5-1) 28 + 5 X 106 = 4V 

The Falling Edge of the Write Strobe 
At t = 0 the driving waveform changes from 4V to OV 
(approximately) with a fall time of two nanoseconds. This 
is represented in Figure 10.1 by the switch arm moving 
from position 1 to position 2. The wave propagates to the 
load at the rate of 2 ns per foot (approximately) and arrives 
there 

8 in. 
To = 2 ns/ft. X -.-- = 1.33 ns 

12 m./ft. 

later, as illustrated in Figure 10.3 (b). 

The reflection coefficient at the load is pL = 1, so a nearly 
equal and opposite polarity waveform is propagated back 
to the source from the load, arriving at t = 2 To = 2.66 
ns, as shown in Figure 10.3 (a). (See Table 3 (hI). Note 
that the falltime is preserved. The reflection coefficient at 
the source is; 

RS - Zo' 10 - 41.8 
ps = RS + Zo' = 10 + 41.8 = -0.61 

The magnitude of the reflected voltage at the source is 
then; 

VSl = -4V X (-0.61) = 2.44V. 

This wave propagates from the source to the load and ar­
rives at t = 3 TO, and adds to the (zero volts) signal. The 
risetime is preserved, so the time required for the signal to 
go from OV to 2.44V is; 

tr = 2.44V X 2 ns/4V = 1.22 ns. 

The signal at the load thus reaches the 2.44V level at time 
t = 3 To + 1.22 ns = 5.22 ns and remains at that level 
until the next reflection occurs at t = 5 To. The wave that 
arrived at the load at 3 To is reflected back to the source 
and arrives at t ~ 4 To (5.32 ns). The 2.44V level adds to 
the -4V level, so that the resultant level is -1.56V. The 
risetime is preserved, so that this level is reached at t = 4 
To + 1.22 ns = 6.54 ns, and maintained until the next 
reflection occurs at t = 6 To. The 2.44V wave that arrived 
at the source at t = 4 To is reflected back to the load and 
arrives at t = 5 To. The portion that is reflected back is; 

VS2 = 2.44 X (-0.61) = -1.49V. 
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Figure 10.3 (b) 

This subtracts from the 2.44V level to give 2.44 -1.49 = 
0.95V. The falltime is preserved, so the time required for 
the signal to go from 2.44V to 0.95V is; 

tr = 1.49V X 2 ns/4V = 0.75 ns. 

The 0.95V level is thus reached at time t = 5 TO + 0.75 
ns = 7.4 ns. 

At t = 6 TO the 0.95V wave arrives back at the source, 
where it subtracts from the -1.56V level to give -0.61V. 
The risetime is tr = 0.95 X 0.5 ns/V = 0.45 ns. 

The 0.95V wave that arrived at the source at t = 6 To is 
reflected back to the load and arrives at t = 7 To. The 
portion that is reflected back is; 

VS3 = 0.95 X (-0.61) = -0.58V. 

This subtracts from the 0.95V level to give 0.37V. The 
falltime is approximately 0.5 ns. 

This process continues until the voltages at points A and B 
decay to approximately zero volts. 
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Observations 
The positive reflection coefficient at the load and the nega­
tive reflection coefficient at the source result in an oscilla­
tory behavior that eventually decays to acceptable levels: 
The voltage at point A reaches -0.61V after 6 TO delays 
and the voltage at point Breaches 0.37V after 7 To delays. 

The reflection at the load that causes the voltage to exceed 
the TTL minimum ONE level (2V) at T = 3 To could 
cause a problem if either the data to be written in the RAM 
changes up to 5 To delays after the falling edge of the write 
strobe or ifthe observed shortening of the write strobe by 5 
To delays violates the minimum write strobe specification. 

However, if this reflection occurred on a clock line to a 
logic device, registered PROM, or a PLD the reflection 
could be interpreted by the device as a second clock. The 
width of the pulse caused by the reflection in this case is 2 
TO = 2.66 ns, which is probably too short to be detected. 
If the line were either slightly longer or more heavily 
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capacitively loaded the pulse would be wider and could be 
detected as a second clock. 

The Rising Edge of the Write Strobe 
At t = 22 ns the rising edge of the write strobe begins, 
which is the equivalent of closing the switch in Figure 10.1 
in the 1 position. For this analysis it its convenient to start 
the time scale over at zero, as is shown in Figures 10.3 a 
and b. 

If the forcing function were a step function, the equations 
of Table 1 (h) would apply. The time constant in the equa­
tion is: 

RZo' Ce 
T = R + Zo" (10-1) 

Because R :> ZO', T = 'Lo' Ce, where 'Lo' = 41.S0 and 
Ce = 33.2 pF. 

This is the equivalent of saying that the five megohm de­
vice input resistance can be ignored for transient circuit 
analysis. Substitution of 'Lo' and Ce into the preceding 
equation yields a time constant of T = 1.39 ns. 

Writing the equation for the voltages for the circuit of Fig­
ure 10.1 

1 ft VA(t) = iZo' + - idt. 
Ce 0 

Also, VA(t) = Kt U(t) - K(t - Tl) U(t - T1). 

(10-2) 

(10-3) 

Where Kt is the rising edge of the write strobe (K = 
2V Ins) applied at t = 0 using a unit step function, U(t), 
and - K (t - Tl) represents an equal but opposite wave­
form applied at t = Tl (after the risetime) using a unit step 
function, U(t - Tl). 

Equating the equations and taking the LaPlace transforms 
of both sides yields: 

K K e-TlS I(s) (. 1) 
- - --- = Zo' I(s) + -. = Zo' + - I(s). 
s2 s2 Ces Ces 

(10-4) 

1 ft I(s) 
However, VB(t) = - i dt, or VB(s) = -. 

Ce 0 Ces 

Therefore: 

K KE-TlS ( 1 ) ;2 - -s-2- = 'Lo' + Ce S Ce s VB(s). 

Solving for VB(s) yields: 

~ (1 - e-T1S ) 

VB(s) = ( 1 ). 
Ces 'Lo' +­

Ces 

Which is equivalent to: 

K 
--(1 - E-TlS) 
'Lo'Ce 

VB(s) = ( 1) . 
s2 S+-­

'Lo'Ce 

(10-5) 

(10-6) 

(10-7) 
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Taking the inverse LaPlace transform yields: 

-I 

VB(t) = [K Zo' Ce ( E Zo' Ce - 1) + Kt] U(t) -

(lO-S) 

-O-TQ ] 
[ K 'Lo' Ce (E Zo' Ce - 1) + K(t - T1) U(t - T1) 

Equation 10-S consists of two terms. The first term applies 
from time zero up to and including T1 and the second term 
applies after T 1. 

-I . 
KZo'Ce -- K 

VB(t) = Tl (E Zo' Ce - 1) + T1 (t) t ~ Tl (10-9) 

K 'Lo' Ce ...!!-...:.!.. 
VB(t) = ---(1 - EZo'~ EZo'Ce + K1 t > T1(10-10) 

T1 

where K1 = final value = 4V 

Substitution of the proper values into equation 10-9 yields 
att = Tl = 2ns. 

VB(t = Tl) = 
2 X 41.S X 33.2 X 10- 12 1439 1) 2V 

2 X 10-9 (e-. - + ns X 2 ns 

= -1.057 + 4 = 2.94V 

If the forcing function would have been a step function the 
equation would be: 

-I 

VB(t) = 4V (1 - E Zo' Ce) (10-11) 

at t = 2 ns, VB = 3V, which is greater than the 2.94V 
calculated using equation 10-9. 

At t = (22 ns) + To the voltage waveform begins to build 
up at the load and continues to build until the first reflec­
tion from the source occurs at t = 3 To. 

Equation 10-10 is used to calculate the voltage at the load 
at t = 2 TO (because 1 To is used for propagation delay 
time). 

VB(t = 2 TO) = 

-2V X 41.S X 33.2 X 10- 12 (1 _ e-1.439) (e-2) + 4 
2 X 10-9 

= -1.39 (0.762)(0.135) + 4 

= -0.143 + 4 = 3.S6V 

The voltage at the load will remain at this value until the 
first reflection from the source reaches the load at t = 3 
TO· 
Meanwhile, at t = To, the wave at the load is reflected 
back to the source and arrives there at t = 2 To. It sub­
tracts from the 4V level at the source as illustrated in Table 
4 (c). The amplitude of the "droop" is given by: 

C''Lo'Vo 
V=--­

r - 2 TR 

for the case Vs = Zo'. 

(10-11) 
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If Vs =F 'Zo' equation 10-11 must be modified. Instead of 

Vo the voltage is Vo ( Rs , ), so that equation 10-11 
2 RS+ZO 

becomes: 

v ,.,. C' Zo' Vo ( Rs ) . 
r TR Rs + 'Zo' 

where: C' = 10 pF 

ZO' = 41.80 

Rs = 280 
TR = 2 ns 

VO= 4V 

(10-12) 

Substitution of these values into equation 10-12 yields: 

Vr = 0.33V. 
4V - 0.33V = 3.67V, so there is no danger of the voltage 
dropping below the minimum HIGH level. 

The reflection coefficient at the source is: 

_ Rs -'Zo' Rs = 280 
ps - RS + 'Zo' where: ZO' = 41.80 

ps = -0.198 

The amount of voltage reflected from the source back to 
the load is then: 

VS, = (-0.33) X (-0.198) = +0.065V. 
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This same result could have been obtained by applying the 
ramp function of Figure 10.2 to a large resistor and then to 
a capacitive load and adding the results using superposi­
tion. 

Observations 
The risetime of the waveform at the load is reduced by the 
10 pF load capacitor. The reflection at the source caused 
by the load capacitor is insufficient to reduce the 4 V level 
to less than the TTL one level (2V). 

The reflection coefficient at the source is sufficiently smalI 
so that the energy reflected back to the load is insufficient 
to cause a problem. 

Summary 
The example has demonstrated that, under certain condi­
tions, the voltage reflections caused by the impedance mis­
match between a PCB trace and the input of a Cypress 
CMOS integrated circuit may cause a pulse whose energy 
is sufficient to be detected by another circuit. 

It is the responsibility of the system designer to identify 
and to analyze these conditions and to then modify the 
design such that the reflections will not occur. 
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CYPRESS 
SEMICONDUCTOR 

Power Characteristics of 
Cypress Products 

Introduction 
SCOPE AND PURPOSE 
This document presents and analyzes the power dissipation 
characteristics of Cypress products. The purpose of this 
document is to provide the user with the knowledge and 
the tools to manage power when using Cypress CMOS 
products. 

DESIGN PHILOSOPHY 
The design philosophy for all Cypress products is to 
achieve superior performance at reasonable power dissipa­
tion levels. The CMOS technology, the circuit design tech­
niques, architecture and the topology have been carefully 
combined in order to optimize the speed/power ratio. 

SOURCES OF POWER DISSIPATION 
Power is dissipated within the integrated circuit as well as 
external to it. Both internal and external power have a 
quiescent (or DC) component and a frequency dependent 
component. The relative magnitudes of each depend upon 
the circuit design objectives. In circuits designed to mini­
mize power dissipation at low to moderate performance, 
the internal frequency dependent component is significant­
ly greater than the DC component. In the high perform­
ance circuits designed and manufactured by Cypress, the 
internal frequency dependent power component is much 
less than the DC component. The reason for this is that a 
large percentage of the internal power is dissipated in linear 
circuits such as sense amplifiers, bias generators and volt­
age/current references that are required for high perform­
ance. 
External Power Dissipation 
The input impedance of CMOS circuits is extremely high. 
ABo a result, the DC input current is essentially zero (lO,...A 
or less). When CMOS circuits drive other CMOS circuits 
there is practically no DC output current. However, 

Note: 

when CMOS circuits drive either bipolar circuits or DC 
loads, external DC power is dissipated. It is standard prac­
tice in the semiconductor industry to NOT include the cur­
rent from a DC load in the device Icc specification. 
Cypress supports this practice. It is also standard practice 
to NOT include the current required to charge and dis­
charge capacitive loads in the data sheet Icc specification. 
Cypress also supports this standard practice. 
Frequency Dependent Power 
CMOS integrated circuits inherently dissipate significantly 
less power than either bipolar or NMOS circuits. In the 
ideal digital CMOS circuit there is no direct current path 
between Vee and VSSj in circuits using other technologies 
such paths exist and DC power is dissipated while the de­
vice is in a static state. 

The principal component of power dissipation in a power­
optimized CMOS circuit is the transient power required to 
charge and discharge the capacitances associated with the 
inputs, outputs, and internal nodes. This component is 
commonly called CV2f power and is directly proportional 
to the operating frequency, f. The corresponding current is 
given by the formula 

Iec(f) = CVf. 

The primary sources of frequency dependent power are due 
to the capacitances associated with the internal nodes and 
the output pins. For "regular" logic structures, such as 
RAMs, PROMs and FIFOs the internal capacitances are 
"balanced" so that the same delay and, therefore, the same 
frequency dependent power is dissipated independent of 
the location that is addressed. This is not true for program­
mable devices such as PALs because the capacitive loading 
of the internal nodes is a function of the logic implemented 
by the device. In addition, PALs and other types of logic 
devices may contain sequential circuits so the input fre­
quency and the output frequency may be different. 

The capacitance of each input pin is typically 5 pF, so its 
contribution to the total power is usually insignificant. 

The Cypress Power/Speed Program, which implemeots the equations in this application note, is available from Cypress for your use on personal 
computers. 

P AL'~ is a registered trademark of Monolithic Memories. 
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Intl'oduction (Continued) 
Derivation of Applicable Equations 
The charge, Q, stored on a capacitor, C, that is charged to 
a voltage, V, is given by the equation; 

Q= CV. EQ.l 

Dividing both sides of equation I by the time required to 
charge and discharge the capacitor (one period or T) 
yields; 

EQ.2 

By definition, current (I) is the charge per unit time and 

I 
f= -. 

T 

Therefore, 

1= CVf. EQ.3 

The power (P = VI) required to charge and discharge the 
capacitor is obtained by multiplying both sides of equation 
3 byV. 

P=VI=CV2f EQ.4 

It is standard practice to make the assumption that the 
capacitor is charged to the supply voltage (V cd so that 

P = VCCI = C [Vcd 2f EQ.5 

The total power consumption for a CMOS integrated cir­
cuit is dependent upon: 

• the static (quiescent or DC) power consumption. 

• the internal frequency of operation 

• the internal equivalent (device) capacitance 

• the number of inputs, their associated capacitance, and 
the frequency at which they are changing 

• the number of outputs, their associated capacitance, 
and the frequency at which they are changing 

In equation form: 

Po = [(CIN) (FIN) + (CINT) (FINT) + (CLOAO) (FLOAD)] 

[V cd2 + IcC (quiescent) V cc. EQ.6 

The first three terms are frequency dependent and the last 
is not. This equation can be used to describe the power 
dissipation of every IC in the system. The total system 
power dissipation is then the algebraic sum of the individu­
al components. 

The relative magnitudes of the various terms in the equa­
tion are device dependent. Note that equation 6 must be 
modified if all of the inputs, internal nodes or all of the 
outputs are not switching at the same frequency. In the. 
general case, each of the terms is of the form CI Fl + 
C2 F2 + C3 F3 + ... en Fn. In practical reality the 
terms are estimated using an equivalent capacitance and 
frequency. 
Transient Power: Input Buffers and Internal 
In the N-well CMOS inverter, the P-channel pullup tran­
sistor and the N-channel pulldowu transistor (which are in 
series with each other between V cc and V SS) are never on 
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at the same time. This means that there is no direct current 
patlt between VCC and ground,' so that the quiescent power 
is very nearly zero. In the real world, when the input signal 
makes the transition through the linear region (i.e., be­
tween logic levels) both the N-channel and the P-channel 
transistors are partiaJIy turned ON. This creates a low im­
pedance path between VCC and Vss, whose resistance is 
the sum ofthe N-channel and P-channel resistances. These 
gates are used internally in Cypress products. 
DC or Static Power 
In addition to the conventional gates there are sense ampli­
fiers, input buffers and output buffers, bias generators and 
reference generators that aJI dissipate power. The RAMs 
and FIFOs also have memory cells that dissipate standby 
power whether the IC is selected or not. The PROM and 
PAL® products have EPROM memory cells that do not 
dissipate as much standby power as a RAM cell. 
Power Down Options 
Many of the Cypress static RAMs have power down op­
tions that enable the user to reduce the power dissipation of 
these devices by approximately an order of magnitUde 
when they are not accessed. The technique used is to dis­
able or turn-off the input buffers and the sense amplifiers. 
Worst Case Device Power Specifications 
All Cypress products are specified with Icc under worst, 
worst, worst case conditions. This means that the V cc 
voltage is at its maximum (5.5V), the operating tempera­
ture is at its minimum, which is O"C for commercial prod­
uct and - 55°C for military product and all inputs are at 
VIN = 1.5V. 

ICC TEMPERATURE DEPENDENCE 

For all Cypress products operating under all conditions, 
the Icc current increases as the temperature decreases. The 
IcC temperature coefficient is -0.12% per °C. To calcu­
late the percentage change in Icc from one temperature to 
another, this temperature coefficient is multiplied by the 
temperature difference. 

If, for example, it is required to calculate the expected re­
duction in Icc if either a commercial or a military grade 
Cypress IC is operated at room temperature (25°C), the 
calculations are: . 

For commercial products 

[0 - 25] x [-0.12%] 3% less Icc at room tempera-
ture than at O"C. 

For military products 

[ - 55 - (25)1 X [-0.12%] 
temperature than at - 55°C. 
Procedure 

9.6% less Icc at room 

The procedure will be to develop a general purpose power 
dissipation model that applies to all of the Cypress CMOS 
products and to then present tables so that users can esti­
mate typical and worst case power dissipations for each' 
product. The data will be presented in chart form as func­
tions of product type and capacitance, that is: SRAM, 
PROM, PAL or Logic; including FIFOs. 
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Figure 1. Power Dissipation Model 

Power Dissipation Model 
A general purpose power dissipation model for all Cypress 
integrated circuits is shown in Figure I. 

The procedure will be to isolate the four components of 
power dissipation described by equation 6 by controlling 
the inputs to the IC. The quiescent (Icc) current is mea­
sured with the inputs to the IC at 0.4V or less. Under this 
condition the input buffers and output buffers (unloaded 
DC wise) draw only leakage currents. All other direct cur­
rents are due to the substrate bias generator, sense amplifi­
ers, other internal voltage or current references and NMOS 
memory circuits. 

At VIN = 1.5V the input buffers draw maximum Icc cur­
rent. The total current is measured and the quiescent cur­
rent subtracted to find the total input buffer Icc current. 
The current per input buffer is then calculated by dividing 
the total input buffer current by the number of input buff­
ers. 

INPUT BUFFERS 
Three different types of input buffers are used in Cypress 
products. For purposes of illustration they are referred to 
as types A, B and C~ Table 1 lists the maximum ICCs. 

Table 1. Types of Input Buffers 

Buffer Icc 
Type (max. in mA) 

A 1.3 

B 0.8 

C 0.6 

The schematics and input characteristics for the three 
types of buffers are illustrated in Figure 2. A circle on the 
gate of a transistor means that it is a P-channel device. 

As can be seen from the figure, the input buffers draw 
essentially zero Icc current when VIN is 0.4V or less or 
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(except for type A) when VIN is 4V or more. In other 
words, if the inputs are driven "rail to rail" the Band C 
input buffers will dissipate power only during the input 
signal transitions. 

To reach these levels the input pins should be either driven 
by a CMOS driver or by a TTL driver whose output does 
not drive any other TTL inputs. 

When the inputs are driven by the minimum TTL levels 
(VIH = 2V, VIL = 0.8Y) each input buffer draws 20% 
more Icc current than if it were driven rail to rail. 

VOUT 
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Figure2A 
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Power Dissipation Model (Continued? 

DUTY CYCLE CONSIDERATIONS 
The input characteristics of the type B (Figure 2D) and the 
type C (Figure 2F) buffers may be approximated by trian­
gles symmetric about the VIN = 1.5V points, whose ampli­
tudes are 0.8 mA and 0.6 mA, respectively. Therefore, be­
tween the VIN = 0.5V and Vn~" = 3.5V points the average 
current is one-half the peak current, or 0.4 mA and 
0.3 mA, respectively. In most systems the input signal slew 
rates are two volts per nanosecond or greater so the input 
transitions occur quickly. Under these conditions the duty 
cycle of the input buffers must be considered. 

0.8 

vee 

Figure2C 
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VIN (V) 

Figure2D 
TypeB 

Vee 

,.1 
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0059-5 

0059-6 

0059-7 

0.6 

O-~'---,----'-----'-"'--
o 0.5 1.5 

VIN (V) 

Figure2F 
TypeC 

0059-8 

For example, if the CY7C167-35 RAM were used with 
input signals having a slew rate of two volts per nanoSec­
ond it would take 

I 
[3.5V - 0.5vl X -- = 1.5 ns " 

2V/ns 

for the input signals togo through the 3V transition. Dur­
ing the transition each input buffer would be drawing 
0.3 mA of current from the Icc supply; However, this time 
is only 1.5 ns/35 ns = 0.0429 or 4.29% of the access cycle. 
Therefore, the actual input buffer transient current is only 
0.0429 X 0.3 mA = 0.01287 mAo It will be shown that 
this is insignificant in most power" calculations. 

INPUT BUFFER FREQUENCY 
DEPENDENT CURRENT 
This is the current required to charge and discharge the 
capacitance associated with each input buffer. The capaci­
tance is typicai1y 5 pF and the voltage swing is typically 
4V. 

Using equation 3; 1= CVf 

lee(f) = 5 X 10- 12 X 4 X f. 

Iee(f) = 20 X 10- 12f. 

CORE AND OUTPUT BUFFERS 
The memory array will have "a standby power dissipation 
due to the substrate bias generator, reference generators, 
sense amplifiers, and polyloadRAM cells or EPROM 
cells. This current is measured with VIN = OV, so that the 
input buffers draw no current. Under these conditions the 
output buffers will draw only leakage current and dissipate 
essentially no power. 

The output buffers have N-channel pullup devices that 
cause the output voltage level to reach VOH = Vee - IV. 

The capacitance of the output buffers, including stray ca­
pacitance, is typically 10 pF. 
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IfCL = 10 pF, VOH "" 4V. 
Again, using equation 3, Icc(f) = 40 X 10- 12f for the 
output buffers. 



~ Power Characteristi~s 
~r~~=================== 
Current Measurement 
INSTANTANEOUS CURRENT 
Figure 3 illustrates the instantaneous current drawn by a 
Cypress RAM. The instantaneous power is calculated by 
multiplying this current times the constant supply voltage, 
V ce. Most of the power is dissipated in the time corre­
sponding to the access time. This is also true for PROMs 
and PALs. 

ICC 

~------~------~ 
~---------T~----------~ 

I I = Quiescent Icc 
12 = A.verage ICC 

i(t) = Instantaneous ICC 

Figure 3. RAM Icc 

AVERAGE CURRENT 
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The current measurement unit in an automatic tester inte­
grates the instantaneous current over the measurement cy­
cle and arrives at an equivalent average current. In other 
words, the average current, {Z, during time TCY is equal to 
the area between the instantaneous current, i (t), and the X 
axis during TCY. Therefore, when the frequency is de­
creased, the "current pulse" is (figuratively) spread over a 
longer time, so the average current is proportionately less. 

DC Load Current 
Note that the preceding calculations have not accounted 
for any DC loads. The user must calculate these separately. 

Product Characteristic Tables 
The following tables are listed to enable the user to calcu­
late the current requirements for Cypress products. CINT is 
the equivalent device internal capacitance, Icc (Q) is the 
quiescent or DC current and ICC(MAX) is the maximum 
Ice current (as specified on the data sheet) for the com­
mercial operating temperature range. Conditions are V CC 
= 5V and TA "" 25°C. 

STATIC RAMs 
Table 2 

Part No. Buffer No. No. CINT Icc(Q) Icc (Max.) 
Type Inputs Outputs (pF) (mA) (IDA) 

P1CI221123 A 16 4 24 50 90 
CY1C128 B 14 8 21 59 120 
CY1C141 B 15 1 34 28 90 
~Y1CI48/149 B 12 1 32 45 90 
CY1C150 B 18 4 20 44 90 
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Table 2 (Continued) 

Part No. Buffer No. No. CJNT Icc(Q) Icc (Max.) 

Type Inputs Outputs (pF) (IDA) (IDA) 

CY1C161/162 B 22 4 300 13 10 
CY1CI64 B 20 4 300 13 10 
CY1C166 B 21 4 300 13 10 
CY1C161 C 11 1 15 25 10 
CY1C168/169 C 18 4 15 50 10 
CY1CI10 B 18 4 50 33 90 
CY1Cl11/112 B 18 4 100 21 10 
CY1C185/186 B 25 8 330 13 100 
CY1C181 B 19 1 150 1 100 
CY1C189/190 B 10 4 21 32 90 

PROMs 
Table 3 

Part No. Buffer No. No.' CJNT Icc(Q) lcc<Max.) 
Type Inputs Outputs (pF) (mA) (IDA) 

CY1C225 B 12 8 32 35 90 
~Y1C235 B 13 8 35 35 90 
CY1C245 B 13 8 35 50 90 
CY1C251 C 18 8 43 9.5 100 
CY1C254 C 18 8 43 35 100 
CY1C26113/4 C 14 8 60 45 100 
CY1C268 C 19 1/8 60 60 100 
CY1C269 C 11 1/8 60 60 100 
CY1C281/282 B 14 8 35 35 100 
CY1C291/292 B 14 8 35 50 100 

• !Bidirectional pins 

PALs 
For the 16L8, 16R8, 16R6 and 16R4 the number of inputs 
and outputs is, within limits, user configurable. All use 
type B buffers. 

Table 4 

Part No. CINT 
(pF) 

PALCI6L8/R8/R6/R4 40 
PLDC2OG1O 50 
PALC22V1O 50 
PLDCY1C330 300 

LOGIC PRODUCTS 
TableS 

Part No. 
Buffer No. No.' 
Type Inputs Outputs 

CY1C401 B 6 6 
CY1C402 B 1 1 
CY1C403 B 1 6 
CY1C404 B 8 1 
CY1C408 B 11 12 
CY1C409 B 11 13 
CY1C428/9 C 14 12 
CY1C51O C 24 19/16 
CY1C516 C 28 16/16 
CY1C511 C 28 16/16 
CY3341 B 6 6 
CY1C601 C 25 19/64 

Icc(Q) ICC(Max.) 
(rnA) (IDA) 

25 45 
30 55 
40 80 
42 120 

CJNT Icc(Q) ICC(Max.) 
(pF) (IDA) (IDA) 

53 30 15 
53 30 15 
53 30 15 
53 30 15 
100 42 135 
100 42 135 
190 18 80 
60 30 100 
60 30 100 
60 30 100 
53 30 45 

950 89 600 



Product Characteristic Tables (Continued) 

Table 5 (Continued) 

Part No. Buffer No. No." CINT Icc(Q) ICC(Max.) 
Type Inputs Outputs (pI') (rnA) (mA) 

CY7C901 C 24 10/4 160 25 80 
CY7C909 C 21 5 80 25 55 
CY7C91O C 22 16 150 2.6 70 
CY7C911 C 13 5 80 25 55 
CY7C9101 C 36. 22/4 70 30 60 
CY7C9116 C 22 1/20 1000 35 150 
CY7C9117 C 38 1/4 1000 35 150 
• !Bidirectional pins 

Static RAM Example 
To illustrate how to use the preceding tables and perforll1 
the required calculations the following example is provid­
ed. 

Estimate the typical Icc current for the CY7C169-35 
RAM at room temperature (TA = 25°C) and Vcc = 5V. 
Assume the duty cycle is 100% at the specified access time. 
Calculate typical and worst case ICC (all inputs and out­
puts changing) with output loading of 10 pF. 

From the RAM product characteristic table; 

# .inputs = 18 

# outputs = 4 

ClNT = 75 pF 

Icc (Q) = 50 mA 

TRANSIENT INPUT BUFFER CURRENT 
The input buffers on the CY7CI69 are type C, so the aver­
age' current is 0.3 mAo If the input signal level transitions 
are.4V and the transition times are 2 V Ins, the transition 
time is: 

4V 
Tt=--=2ns. 

2 V/ns 

The duty cycle is then; 

2 ns/35 ns = 0.057. 

Therefore, each input buffer draws 

0.3 mA X 0.057 = O.oI 71 mAo 

If all inputs change, the total transient input buffer current 
is 

18 X 0.0171 = 0.31 mAo 

CVf Input Buffer Currel!t 

I = CVf ClN = 5 pF 

I -= 0.57 mA V = 4V 

f = 1/35ns 

Total = 18 X 0.57 = 10.28 mA 

Internal CVf Current 

1= CVf CiNT = 75pF 

I = 10.71 mA V = 5V 

f = 1/35 ns 
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Output CVf Current 

I = CVf CoUT,= 10 pF 

1= 1.15 mA V= 4V 

f == 1/35 ns 

Total = 4 X 1.15 = 4.6 mA 

The QUiescent Current is 50 mA 

The Total Current At TCY = 35 us is; 
Input Transient 0.31 rnA 
Input CVf 10.28 rnA 
Internal CVf 10.71 rnA 
Output CVf 4.6 rnA 
Quiescent 50 rnA 

Total Icc 75.9 rnA (all inputs/outputs changing) 

Note that the worst case transient current is 25.9 mAo 

If one-half of the inputs and outputs change this is reduced 
to 12.95 mA, which gives a total current of 63 mA (typical 
ICc)· 
Ifthe duty cycle is 10% the transient current is reduced to 
1.3 mA, which results in a total current of 51.3 mAo 

Note also that the Input CVf current and the output CVf 
current would have the same values for a bipolar device. 

WORST, WORST, WORST CASE ICC 

Next, let's estimate the Icc for worst case Vcc and low 
temperature, in addition to all inputs and outputs changing 
and compare it with the Icc specified on the data sheet. 

The Icc current will be greater atbigh Vcc, which is S.5V 
or 1.1 X the nominal 5V V cc. The increase in ICC due to 
the lower temperature is 3%, so the total increase is 13%. 
These factors apply to the internal CVf current (10.71 
mA), the output CVf current (4.6 mA), and the quiescent 
current (50 mA), (total 65.31 mA). 

Total Icc = Input Transient Icc + Input CVf Icc + 
[InternalCVf+OutputCVf+Icc(Q)] X 1.13 

Icc = 0.31 + 10.28 + [65.31] X 1.13 = 84.4 mAo 

This is approximately 94% of the 90 mA specified on the 
data sheet. 

Note, however, that the data sheet Icc maximum does 
NOT include the output CVf current. 

Typical Icc Versus Frequency 
Characteristic 
The Icc versus frequency curves for all Cypress products 
have the same basic shape, which is illustrated by the 
PAL 16R8 curve of Figure 4. The current remains essen­
tially constant at the quiescent Icc value until the frequen­
cy increases to the point where the capacitances begin to 
cause appreciable currents. This pOint depends upon the 
capacitances (input, internal, and output), the number of 
inputs and outputs, the rate at which they change, and the 
voltage levels that they are switched between. For Cypress 
products this point is in the 1-10 MHz range. 



Typical ICC Versus Frequency Characteristic (Continued) 

The PAL 16R8 devices that were tested to obtain the data 
for the curve were exercised such that all inputs and all 
outputs changed every cycle. Curve A shows the total Icc 
current for a 50 pF load on each of the eight outputs. 
Curve B shows the total Icc current when the outputs are 
disabled. The B curve results from the input and the inter­
nal capacitances. In most applications the actual operation 
of the device will be somewhere between the A and B 
curves. 

Point C is approximately 5.6 MHz. This gives the user an 
easy to use approximate formula to calculate the Icc cur­
rent. 

For frequencies less than 5.6 MHz 

IcC = Icc (Q) = 25 mA 

For frequencies greater than 5.6 MHz 

Icc = IcC (Q) + 3.5 mA per MHz (all outputs changing) 

or, The A and B curves may be extrapolated backwards until 
they intersect the quiescent current (point C in Figure 4). ICC = Icc (Q)+0.5 rnA per MHz (no outputs changing) 

1 
;!; 

Jl 

Frequency in Hertz 

II TYPICAL I ICC vs rREQUENCY rOR PAL 16R8 
II'ce vs f ALL INPUTS / OUTPUTS CHANGE 

I--~~~~+++l----l--I--V ~cc=5V, TA=25OC. V,L =O.BV. V,H=2V'----If---IJt-t-++++tf 
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SEMICONDUCTOR 

Tips for High-Speed Logic Design 

Introduction 

As ~lectronic system clock rates reach ever higher, logic 
~eS1gners who were engineering 10 MHz, 100 nsec cycle 
t~e systems are recently finding themselves working 
Wlth 20 MHz, 50 nsec cycle time (and faster) systems. 
These same designers are discovering that the techni­
ques ~hat worked frne at 10 MHz are no longer ap­
proprIate at 20 MHz and beyond. At 10 MHz, one can 
utilize sluggish and relatively well-behaved LS TTL 
logic with its leisurely setup and hold parameters, long 
propagation delays, forgiving output enable and disable 
times, and high-output current drive capacity. As clock 
rat~s cr~ed up, designers turned to faster bipolar 
lOgiC families, but found that power dissipation rose 
proportionally. To save power and enhance reli&bility, 
modern electronic engineers are switching to CMOS 
components, and have been happy to find that CMOS 
can deliver the speed they require at the low power 
levels they desire. In the quiescent state, CMOS logic 
(':'C/ACT/FCT) draws. three to five orders of mag­
nitude less power than bipolar logic (LS/ALS/AS). At 
1 ~z, CMOS logic dissipates about 0.1 roW per gate, 
while LSTTL logic dissipates about 2.0 mW per gate. 
CMOS technology has truly rewritten the speed/power 
rules set forth in the bipolar era. 

However, there are still plenty of challenges that face 
the high-speed logic designer. High-performance logic 
families are sensitive to system noise and are also noise 
generators themselves. As a result of the effort to make 
these devices as speedy as possible, they often have 
anemic output drive capacity. Clock distribution be­
comes much more of an issue at high frequencies· be­
c~use skew and slow rise times degrade operating mar­
gins. As bus cycles tighten up, it becomes more and 
more difficult to avoid bus clashes (multiple devices 
driving a bus). Very fast SRAMs and FIFOs require 
read and write pulse widths that are very difficult to 

synthesize using synchronous logic (hence the ap­
pearance of self-timed memory devices). PLDs have 
be~ome u~iquitous in modern board-level designs, but 
their relatIvely long propagation delays and slow switch­
ing speeds need to be carefully considered by high­
speed designers. Printed circuit boards can no longer 
be thought of as an ideal electrical interconnect. In the 
high-speed realm, the effects of distributed capacitance, 
inductance, and propagation delay on the PCB must be 
taken into account. The resistive termination of critical 
signals to mitigate the effects of ringing becomes a prac­
tical necessity above 20 MHz. In the days· of old, it 
wasn't appropriate to factor loading into propagation 
delays; Today, the conservative designer accounts for 
loading when calculating worst-case prop delays and 
worst case signal skew. Heavy capacitive bypassing and 
low inductance decoupling is essential to minimize 
switching noise above 20 MHz. Metastability, a 
phenomenon not widely appreciated until recently, is a 
critical issue in high-frequency systems. It is essential to 
be able to resolve asynchronous events quickly and 
reliably in high-performance designs. Finally, crosstalk 
isa substantial concern with high slew rate and noise 
sensitive CMOS logic. 

This application note provides tips and makes substan­
tive suggestions for designing high speed logic circuits 
that operate reliably. The tips and suggestions are 
loosely organized under the following headings: 
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Noise Considerations 
Clock Distribution 
Buses an.d Memories 
Care and Feeding of PLDs 
PCB Effects 
Metastability and Crosstalk 



Noise Considerations 

High-speed CMOS logic tends to be nOlSter than 
LSTIL because CMOS voltage swings are rail-ta-rail 
and because of the faster edge rates (2 volts per nsec 
and faster) made possible by small geometry, dual-layer 
metal CMOS technology. The classic ground bounce 
noise situation arises when several outputs of a CMOS 
logic device are switching from the high state to the low 
state. The simultaneous switching causes a relatively 
large sink current frani the load capacitance to flow to 
ground through the device package inductance. A 
potential is momentarily developed across this induc­
tance that is equal in magnitude to the product of the 
package inductance and the tinte rate of change of the 
sink current. This ground bounce voltage spikes the 
low voltage state held on the quiescent outputs, and this 
spike can often exceed the input low-level maximum 
voltage (0.8 V), causing the downstream logic device to 
switch erroneously: It turns out that both the chip 
ground reference and the chip V cc reference are 
spiked, but because more energy is switched through 
the ground lead inductance, it is much more common to 
see a problem in a quiescent low-state output. What can 
be done to minimize ground and Vee bounce noise? 

1. Any steps which will reduce the parasitic inductance 
between the package and ground and Vcc sltould be 
pursued. This includes using a PCB with ground and 
Vee planes or at the very least powe~ distribution ele­
ments, avoiding the use of sockets, and using low induc­
tance decoupling and bypass capacitors. On critical 
parts, use a standard ceramic decoupling cap (0.01 to 
0.1 uP) along with a high-frequency decoupling cap. (ap­
pro~ately 470 pF). The Rogers Corp. Micro/Q 1000 
Series High Frequency low inductance caps are optimal 
for this purpose. Surface mount packages have lower 
package inductance than DIP packages. So called 
"rotated die" devices with center Vcc and ground pins 
also have lower inductance. 

2. Whenever possible, design synchronous circuits. The 
ground bounce produced by a octal register, for in­
stance, is triggered by the clock. If the register is feed­
ing another registered device, then the noisey output 
have until a setup time before the next clock to settle. 
When compelled to drive an asynchronous signal with 
an octal driver, use an output pin close to the package 
ground pin. The output pin next to the Vee pin can 
have as much as 50% more ground bounce noise than 
the output pin next to the ground pin. 

3. Various tC(chniques canbe.used to slow the switching 
or transition edge rates and, therefore, the time rate of 
change of the sink and source currents. It can be ac­
complished with series damping resistors, or by increas­
ing the inductance or capacitance between the output 
pin of the driving device and the input pin of the receiv­
ing device. Printed circuit board traces possess 
parasitic ground path capacitance and inductance which 
are trace length and trace topology dependent and thus 
difficult to predict. The most common technique is the 
use of series damping resistors, in the 25 to 35 ohm 
range (33 ohms is a standard value). Series resistors 
also limit signal oversltoot and undershoot. 

4. Try to avoid running control signals through a device 
that drives data and address lines. When using a 10 
output PLD (such as a 22V10)in an8-bit bus oriented 
application, it is tempting to use the extra two outputs 
for control signals. It is very likely that these control 
lines will be disturbed if the other· eight lines are simul­
taneously switched. Using devices tllat. feature input 
hysterisis will add to the noise margin. Input hysterisis 
can typically provide 200 m V of additional noise im­
munity. 

Mixing logic· families can compromise noise immunity 
margins. For comparison purposes, the margin for a 
particular logic family is the magnitude difference be­
tween guaranteed input threshold of the family and the 
guaranteed output voltage· for the high and low states, 
i.e., IViI- VoII/IVih - Vohl. 

When possible, use a logic family that can drive 50 ohm 
(commercial) transmission lines directly. This specifica­
tion is characteristic of devices that can switch sufficient 
current to guarantee so called "incident wave" switching. 
Switching that occurs on the incident wave is obviously 
faster than having to wait for the reflected wave. 

In addition to causing false triggering of downstream se­
quentiallogic and glitches in downstream combinatorial 
logic, ground bounce noise can also. cause registers in 
the bounced device to "forget" their stored state. This is 
due to the momentary disturbance in the. chip's ground 
and Vee refprence. The switching of multiple outputs 
also has the effect of skewing the device's propagation 
delay, approximately 200 psec per switched output. 
With an octal or ten bit device, this 1 to 2 nsec addition­
al delay should be included in worst case timing 
analyses. 
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Clock Distribution 

Adequate clock distribution is essential when designing 
20 MHz and faster systems because skew can eat up 
precious nanoseconds and because high-speed logic 
devices are very sensitive to clock waveform distortion 
and slow rise times. All physical devices exhibit an 
edge-dependent propagation delay asymmetry, i.e., a 
low-to-high going edge will propagate more quickly 
than a high-to-low going edge, or vice versa. For ex­
ample, the clock to Q prop delay for a 74F74 from Sig­
netics ranges from 3.8 nsec to 6.8 nsec low-to-high, and 
4.4 nsec to 8.0 nsec high-to-Iow. The 74AS1000 NAND 
driver from Texas Instruments specs a 1 to 4 nsec range 
for both low-to-high and high-to-Iow edges, but any par­
ticular physical device will show some asymmetry. It is 
possible to maintain duty cycle symmetry in a buffered 
clock distribution network by cascading two inverting 
drivers. The two drivers must both be in the same 
package, as shown in Figure 1. 

Figure 1. Maintaining Duty Cycle Symmetry 

Because the two drivers are in the same package, their 
prop delay characteristics will track, and the high-to-low 
and low-to-high differential delays will tend to cancel. 

The fanout from a clock buffer should be limited to 8 to 
15 devices. Fanout calculations must account for both 
AC and DC loading. The AC characteristics for logic 
components are specified at 50 pF of load capacitance, 
and occasionally at 300 pF of load capacitance. 
Propagation delays and output enable times increase by 
approximately 1 nsec per each 50 pF of additional load 
capacitance. The input capacitance of bipolar logic 
families is higher (approximately 10 pF) than that of 
CMOS (approximately 5 pF). If the sum of the 

capacitance being driven exceeds 50 pF, the AC charac­
teristics of the driver should be derated appropriately. 

The important DC electrical characteristic for the pur­
poses of loading is input current. The driving device 
must be able to sink the sum of the low-level input cur­
rents to which it is connected (101 at Vol). The driving 
device must also be able to source the sum of the high­
level input currents to which it is connected (loh at 
Voh). The low-level input current for bipolar logic 
families ranges from -400 uA to -100 uA, while the low­
level input current for modern CMOS logic families 
ranges from -5 uA to -1 uA. The high-level input cur­
rent for bipolar logic families ranges from 50 uA to 20 
uA, while the high-level input current for modern 
CMOS logic families ranges from 5 uA to 1 uA. Since 
the 101 at Vol for bus drivers is often as high as 48 rnA, 
and the loh at Voh is often as high as -24 rnA, input 
current loading is seldom an issue except when driving a 
parallel (resistor) terminated load. For example, a 220 
ohm pullup requires about 22 rnA worst case (Vol == 
OV, Vee == 5V), and a 330 ohm pulldown requires 
about 15 rnA worst case (Voh == SV, Gnd == OV). 
Consider using an AC termination scheme if this addi­
tional current cannot be tolerated. 

When a clock fanout greater than that which can be 
safely supplied by a single buffer is required, parallel 
drivers should be used Figure 2 

Figure 2. Parallel Clock Drivers 

When distributing a clock signal, attempt to load each 
of the parallel lines equally. Unequal loading will in­
crease the skew between lines. 
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Buses and Memories 

When designing buses in high-performance systems, it is 
important to consider the effects of AC'and DC loading 
as discussed above. The input and output capacitance 
of CMOS SRAMs, PROMs, and DRAMs ranges be­
tween 5 and 7' pF. ThiS can become a concern with 
large memory arrays. Be especially careful when uSing 
SRAM modules, which can have high input and output 
capacitances due to the multiple devices connected to 
each signal line. . Becalise the signals that drive large 
memory arrays (such as the address, RAS, CAS and 
data lines) tend to have long PCB traces, it is common 
practice to series terminate these lines to minimize ring­
ing, undershoot, and overshoot. The input load or 
leakage currents for CMOS SRAMs, PROMs, and 
DRAMs is approximately 10 uA, sink and source. 
When high-output-current bus drivers are used (24 ri1A 
101 or greater), DC loading is rarely ~n issue. 

As system cycle times shorten, it becomes more difficult 
to avoid bus clash situations. Bus clash or bus conten­
tion oCctits when, on a shared bus, one tri-state device 
finishes its output enable time before a second device 
finishes its output disable time. For a short period of 
time both devices are driving the bus. Because the out­
put stages of memories and logic components can typi­
cally withstand at least 20 ri1A of current, the excess 
current won't damage the useful life of the device. The 
problem with bus clash is that it causes large positive 
and negative current changes in the device V cc and 
ground paths. ThiS demand for current induces V cc 
and ground bounce noise just like the simultaneous 
switching situation previously discussed. An overlap in 
the worst case output enable and output disable times 
of greater than 5 nsec should be avoided. 

The fact that CMOS components draw very little input 
current can be used to advantage on busses when hold 
time is deficient. For example, consider the situation 
when a CMOS memory is connected to a CMOS octal 
register. The memory is read, the IOE (or the ICE) is 
deasserted, and the data is clocked into the register. 
Ordinarily, the data should be clocked into the register 
before IOE is deasserted since the output disable time 
for the memory could be very short (worst case). How­
ever, when the memory was read, the distributed 
capacitance presented by the register inputs, the PCB 
trace, and its own' outputs was charged. Because the 
output leakage current of the 'memory and the input 
current of the register are very low (5 to 10 uA), this 
distributed capacitance remains charged for some time, 
and the data is in effect held long enough to make up 

for the deficient timing. 

High-speed SRAMs and FIFOs have timing require­
ments that are often difficult to meet using synchrqnous 
circuits. In such situations, there. are asynchronous al­
ternatives to consider. Various manufacturers supply 
delay lines, the output taps of which can b~ com­
binatorially gated to synthesize the required signal. 
Delay lines are typically calibrated by comparing the 
rising edge of the input to the rising edges of the 
various delayed outputs; the delay times for the falling 
edges, are less accurate. If a decoded signal uses falling 
edges, make sure that the design can tolerate a few 
nanoseconds of slop. The Engineered Components 
Company makes a family of pulse generator modules 
(PGMs), which issue a precise pulse when presented 
with a positive going edge. They offer standard PGMs, 
fast-recovery PGMs that have a higher maximum r~peti­
tion rate, and delayed PGMs which wait a specified 
period before issuing the pulse. Both delay lines and 
PGMs have propagation delays that range from 5 to 10 
nsec. 

Care and Feeding of PLDs 

Programmable Logic Devices (PLDs) are exceedingly 
useful for designing high-performance systems, but their 
characteristics and shortcomings must be well under­
stood. The set-up time for most registered PLDs is 
usually just less than the propagation delay. ThiS is be­
cause the signal to be latched must propagate through 
the AND array as well as the OR/XOR gate before 
reaching the flip-flop, while the clock is connected 
directly from the pin to the flip-flop. Accordingly, the 
hold time for this type of PLD is 0 nsec minimum worst 
case and several nanoseconds negative typically. This 
"negative hold time" implies that the PLD samples the 
state of the inputs as they existed several nanoseconds 
before the rising edge of the clock. ThiS phenomenon 
can be used to advantage when the device. feeding the 
PLD is hold-time deficient with respect to the PLO 
clock. 

Beware of slow rise and fall ~es on signals generated 
by PLDs. PLD outputs aren't asqnick and don't have 
the drive capacity of standard logic. When generating a 
critical signal, such as a FIFO read or shift out pulse in 
a PLD, buffer it with a fast, hard-driving gate. Identical 
equations in the same PLD can exhibit. different 
propagation delays due to nonidentical on-chip path 
lengths. PLD propagation delays are especially de­
pendent on capacitive loading. 
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PCB Effects 

The most conservative approach to handling the signal 
distortion effects of Printed Circuit Boards (PCBs) is to 
consider every substrate interconnect as a transmission 
line. In practice, this conservative approach only works 
when the unloaded signal transition time approaches 
the round-trip substrate propagation delay. For ordi­
nary PCB materials (G-l0 fiberglass epoxy), the ronnd 
trip propagation delay is approximately 0.3 nsec per 
inch. Therefore, for 3 nsec transition times, any PCB 
trace longer than 10 inches should be considered a 
transmission line. A transmission line presents a char­
acteristic impedance and possesses distributed induc­
tance and capacitance. Ringing on a transmission line 
is minimized when the output impedance of the driving 
device is closely matched to the characteristic im­
pedance of the line. The theoretical unloaded charac­
teristic impedance of a 10 mil wide, 1 oz. copper line 
(1.5 mils thick) over a ground plane separated by a 
dielectric of G-l0 fiberglass epoxy 62.5 mils thick is ap­
proximately 130 ohms (microstrip model). In reality, 
PCB trace characteristic impedances can range from 50 
to 200 ohms. Capacitive loading reduces the charac­
teristic impedance, increases the delay, and slows the 
rise time on a transmission line. 

The conventional method for reducing reflections on 
transmission lines is with some form of termination, the 
most common being the so-called Thevenin type con­
sisting of a pullup resistor to V cc and a pulldown resis­
tor to ground. The goal is to match the Thevenin 
equivalent of the two resistors to the characteristic im­
pedance of the trace. Common values are 220 ohms 
pullup and 330 pulldown, which yields a Thevenin 
equivalent of 132 ohms, and 330 ohms pullup and 470 
ohms pulldown, which yields a Thevenin equivalent of 
194 ohms. Both of these termination pairs pull the line 
to logic high (approximately 3V) when the driver is dis­
abled. The termination resistors should be placed as 
close as possible to the receiver. Keep in mind that 
many CMOS logic components have input and output 
clamp diodes to help damp overshoot and undershoot. 

Metastability and Crosstalk 

The output of a latch or flip-flop can go into an un­
defined or metastable state (neither logic high or logic 
low) when the setup time or hold time for the device is 
violated. The metastable condition typically occurs 
when an asynchronous signal is being synchronized. It 

occurs in all process technologies and is impossible to 
completely eliminate. The important parameters for the 
board designer to have are the Mean Time Between 
Failures (MTBF) at maximum operating frequency, and 
the average or typical time it takes the device to resolve 
from a metastable state to a stable state (resolution or 
settling time, Tsw). These parameters and/or the equa­
tions for deriving them should be available from the 
particular device's manufacturer. Metastability perfor­
mance is proportional to the Vih to Vil slew time of a 
technology. High-speed CMOS registers such as those 
found in the PLDs made by Cypress have very fast slew 
times and typical settling times that range from 182 psec 
to 592 psec depending on the device type. 

The double latching of asynchronous inputs is recom­
mended to dramatically increase the MTBF of a system 
and reduce the probability of a metastable event caus­
ing system malfunctions. When determining the length 
of time to delay before clocking the second register, 
multiply the published typical settling time by two or 
three to create an extra margin of protection. 

Crosstalk is the undesirable coupling of a transition on 
an active line (talker) on an inactive line (listener). The 
crosstalk amplitude is proportional to the talker edge 
rates, the physical proximity between signal lines, and 
the distance over which the two lines are parallel or ad­
jacent. There are two important physical causes of 
crosstalk: mutual impedance and velocity differences. 
Mutual impedance is due to the mutual inductance and 
mutual capacitance between adjacent signal lines, and is 
basically a transformer-like effect. Velocity differences 
arise when a signal propagates along a conductor that is 
in contact with two materials of differing dielectric con­
stants, such as fiberglass epoxy and air in PCBs. The 
wave propagating at the copper to fiberglass epoxy in­
terface travels slower than the wave propagating at the 
copper to air interface. A pulse is developed that is 
equal in duration to twice the difference in arrival times 
of the two waves, and hence the magnitude of the dis­
turbance increases when the length of the parallel or 
adjacent traces increases. 

The two types of crosstalk are forward and reverse. 
Forward crosstalk occurs when the talker driver and the 
listener driver are at the same end of the signal line. 
Reverse crosstalk occurs when the talker driver and the 
listener receiver are at the same end of the signal line. 
Forward crosstalk is the result of both velocity differen­
ces and mutual impedance phenomena, while reverse 
crosstalk is the result of the mutual impedance 
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phenomenon exclusively. Due to the fast edge rates of 
CMOS logic, crosstalk is a.legitimate concern. The fol­
lowing steps can be taken to reduce forward and 
reverse crosstalk: 

1. Maximize the distance between traces and minimize 
the length that· traces are parallel or adjacent. When 
possible, the signals on adjacent PCB layers should be 
perpendicular. . Use the power and ground layers as 
shields between the signal layers. On two-layer PCBs 
run ground lines between adjacent, parallel signal lines. 

2. Make adequate provision when using flat ribbon 
cable to have every other conductor a ground line. 
Protect critical signals such as clock lines with a dedi­
cated ground strip on PCBs or with a ground twisted 
pair on backplanes. 

3. Thevenin termination of a line to its characteristic im­
pedance, will reduce the crosstalk amplitude by 50%. 

Conclusion 

This applications note has attempted to provide the 
designer of high-speed digital systems with tips and ad­
vice to avoid some of the pitfalls that can arise. It is 
hoped that the. reader will be in a better position to 
design and debug high-speed systems armed with the 
information provided in this note. ' 
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CYPRESS 
SEMICONDUCTOR 

Application Briefs 
RAM Input Output Characteristics 

Introduction to Cypress RAMs 
Cypress Semiconductor Corporation uses a speed opti­
mized CMOS technology to manufacture high speed static 
RAMs which meet and exceed the performance of compet­
itive bipolar devices while consuming significantly less 
power and providing superior reliability characteristics. 
While providing identical functionality, these devices ex­
hibit slightly differing input and output characteristics 
which provide the designer opportunities to improve over­
all system performance. The balance of this application 
note describes the devices, their functionality and specifi­
cally their I/O characteristics. 
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PRODUCT DESCRIPTION 
The five parts in Figure 1 constitute three basic devices of 
64, 1024 and 4096 bits respectively. The 7C189 and 7C190 
feature inverting and non-inverting outputs respectively in 
a 16 x 4 bit organization. Four address lines address the 16 
words, which are written to and read from over separate 
input and output lines. Both of these 64 bit devices have 
separate active LOW select and write enable signals. The 
256 x 4 7C122 is packaged in a 22 pin DIP, and features 
separate input and output lines, both active LOW and ac­
tive HIGH select lines, eight address lines, an active LOW 
output enable, and an active LOW write enable. Both the 
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Figure 1. RAM Block Diagrams 
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Figure 1. RAM Block Diagrams (Continued) 

7CI48 and 7CI49 are organized 1024 x 4 bits and feature 
common pins for the input and output of data. Both parts 
have 10 address lines, a single active LOW chip select and 
an active LOW write enable. The 7CI48 features automatic 
power down whenever the device is not selected, while the 
7CI49 has a high speed, IS ns, chip select for applications 
which do not require power control. This family of high 
speed static RAMs is available with access times of IS to 
45 ns with power in the 300 to 500 m W range. They are 
designed from a common core approach, and share the 
same memory cell, input structures and many other char­
acteristics. The outputs are similar, with the exception of 
output drive, and the common I/O optimization for the 
7CI48 and 7C149. For more detailed information on these 
products, refer to the available data sheets. 

GENERIC I/O CHARACTERISTICS 
Input and output characteristics fall generally into two cat­
egories, when the area of operation falls within the normal 
limits of Vee and Vss plus or minus approximately 
600 mY, and abnormal circumstances, when these limits 
are exceeded. Inputs under normal operating conditions 
are voltages that switch between logic "0" and logic "I". 
We will consider operation in a positive true environment 
and therefore a logic "I" is more positive than a logic "0". 
The I/O characteristics of the devices we are concerued 
with are what is considered to be TTL compatible. There­
fore a logic "I" is 2.0V, while a logic "0" is 0.8V. The 
input of a device must be driven greater than 2.0V, not to 
exceed Vee + 0.6V to be considered a logic "I" and, to 
less than 0.8V, but not less than Vss - 0.6V, to be consid­
ered a logic "0". 

Output characteristics represent a signal that will drive the 
input of the next device in the system. Since the levels we 
are dealing with are TTL, we may assume that the VIL and 
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VIH values of 0.8 and 2.0V referenced above are valid. In 
consideration of noise tnargin however, driving the input of 
the next stage to the required V IL or V IH is not sufficient. 
Noise margins of 200 to 400 m V are considered more than 
adequate, and therefore the VOH we deal with is 2.4V while 
the VOL is 0.4V, providing a noise margin of 400 mY. 
Since the driven node consists of both a resistive and a 
capacitive component, output characteristics are specified 
such that the output driver is capable of sinking 10L at the 
specified VOL, and capable of sourcing 10H at VOH. Since 
the values of 10L and 10H differ depending on the device, 
these values are shown in Table 1. Outputs have one other 
characteristic that we need to be concerned with, Output 
Short Circuit Current or los. This is the maximum current 
that the output will source when driving a Jogic "I" into 
V ss. We need to be concerned for two reasons. First, the 
output should be capable of supplying this current for some 
reasonable period of time without damage, and second, this 
is the current that charges the capacitive load when switch­
ing the output from a"O" to a "I" and will control the 
output rise time. 

Since memories such as these are often tied together, we 
are also concerned about the output characteristics of the 
devices when they are deselected. All of the devices in this 
family feature three state outputs such that in addition to 
their active conditions when selected, when deselected, the 
outputs are in a high impedance condition which does not 
source or sink any current. In this condition, as long as the 
input is driven in its normal operating mode, it appears as 
an open, with less than 10 /LA of leakage. Thus to any 
other device driving this node, it is non-existent. 
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TECHNOLOGY DEPENDENCIES AND 
BENEFITS 
Some of the products in this application note were original­
ly produced in a BIPOLAR technology, some have since 
been re-engineered in NMOS technology and Cypress has 
now produced them in a speed optimized CMOS technolo­
gy. There are both technology dependencies and benefits 
relative to the design of input and output structures that 
are associated with each technology. The designer who 
uses these products should be knowledgeable of these char­
acteristics and how they can benefit or impede a design 
effort. One of the most obvious is that both NMOS and 
CMOS device inputs are high impedance. with less than 10 
/LA of input leakage. Bipolar devices. however, require that 
the driver of an input sink current when driving to VIL, but 
appear as high impedance at VIH levels. This is due to the 
fact that the input of a bipolar device is the emitter of a 
bipolar NPN type device with its base biased positive. The 
bias is what establishes the point at which the input chang­
es from requiring current to be sourced to high impedance 
and is 1.5V. This switching level is the reason that AC 
measurements are done at the 1.5V level. Although NMOS 
and CMOS device inputs do not change from low to high 
impedance, great care is taken to balance their switching 
threshold at 1.5V. To a system designer this allows fanout 
to consider only capacitive loading with MOS devices 
while bipolar has both a capacitive and DC component. 
The other input characteristic which differs from bipolar to 
MOS is the clamp diode structure. This structure exists in 
both MOS and bipolar, however in MOS that uses BIAS 
GENERATOR techniques, all high speed MOS devices, 
the diode does not become forward biased until the input 
goes more negative than the substrate bias generator plus 
one diode drop. Since the bias generator is usually about 
- 3V this has the effect of removing the clamping effect. 

I/O Parameters 
CMOS/NMOS/BIPOLAR INPUT 
CHARACTERISTICS 
Although NMOS, CMOS and BIPOLAR technologies dif­
fer widely, the I/O characteristics tend to fall into two 
areas. The traditional characteristics. are the TIL deriva­
tives that have been covered above. and are documented in 
Table 1. With the exception of the differences in input im­
pedance between MOS and BIPOLAR devices all three 
technologies are used to produce TIL compatible prod­
ucts. The second camp is the true CMOS interface where 
signals swing from Vss to Vee. These interface specifica­
tions define a "I" as greater than Vee - 1.5V and a "0" as 
less than VSS + 1.5V. In addition, loads are primarily 
capacitive. Only devices produced in a CMOS technology 
are capable of behaving in this manner. CMOS devices can, 
however, handle both TIL and CMOS inputs. Devices 
such as the ones described in this application note have 
input characteristics depicted in Figure 2. 
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Figure 2. Input Voltage vs. Current 

Table 1. DC Parameters 

Parameters Description Test Conditions 
7C122 7C148/9 7C189/90 Units 

Min. Max. Min. Max. Min. Max. 

VOH Output High Voltage Vee = Min.,IOH = -S.2rnA 2.4 2.4 2.4 V 

VOL Output Low Voltage Vee = Min., IOL = 8.0 rnA 0.4 0.4 0.4 V/ 

VIH Input High Voltage 2.1 Vee 2.0 Vee 2.0 Vee V 

VIL Input Low Voltage -3.0 0.8 -3.0 0.8 -3.0 0.8 V 

IlL Input Low Current Vee = Max., VIN = Vss 10 10 10 /LA 

IIH Input High Current Vee = Max., VIN = Vee 10 10 10 /LA 

IOFF Output Current (High Z) VOL < VOUT < VOH, TA = Max. -10 +10 -10 +10 -10 +10 /LA 

Output Short Vee = Max.,O"C < TA < 70"C -70 -90 -275 rnA 
los Circuit Current VOUT = Vss, -SsoC < TA < 12SoC -80 -90 -3S0 rnA 
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When operated in the TIL range, they perform normally. 
Operated in full CMOS mode, an additional benefit. of 
power savings is realized as the current consumed in the 
input converter decreases as the input voltage rises above 
3.0V, or falls below 1.5V. Since the input signal is in the 1.5 
to 3.0V range only when transitioning between logic states, 
the power savings in a large array with true CMOS inputs 
can be significant. With input signals on over half of the 
pins of a device, significant savings in a large system can be 
realized by using CMOS input voltage swings even in TIL 
systems. 

Switching Characteristics 
Although this application note does not directly deal with 
the AC characteristics of high speed RAMs, the input and 
output characteristics of these devices have a great deal to 
do with the actual AC specifications. Conventionally, all 
AC measurements associated with high speed devices are 
done at 1.5V and assume a maximum rise and fall time. 
This eliminates the variations associated with the various 
configurations that the device will be used in (as a figure of 
merit when testing the device) but, does not mean that the 
designer can ignore these influences when designing a sys­
tem. Maximum rise and fall time is usually found in the 
notes included on every data sheet. For the products re­
ferred to in this application note, a 10 ns maximum rise 
and fall time is specified for all devices with access times 
equal to or greater than 25 ns and a 5 ns maximum rise and 
fall time for all devices with access times less than 25 ns. 
The AC load and its Thevenin equivalent in Figure 3 repre­
sent the resistive and capacitive components of load which 
the devices are specified to drive. With either of these 
loads, the device will be required to source or sink its rated 
output current at its specified output voltage. The capaci­
tance stresses the ability of the device output to source or 
sink sufficient current to slew the outputs at a high enough 
rate to meet the AC specifications. The high impedance 
load is a convenience to testing when trying to determine 
how rapidly the output enters a high impedance conditi~n. 
Once the output enterS a high impedance mode, the resIs­
tive divider will charge the capacitance until equilibrium is 
reached. Allowing for noise margin, testing for a 500 m V 
change is . normal. By using a smaller capacitance 

ACLoad 

R1470U 

than normal, the change will occur more quickly, allowing 
a more accurate determination of entry into the high im­
pedance state. 

SWITCHING THRESHOLD VARIATIONS 
Switching threshold variations along with input rise and 
fall times can have an effect on the performance of any 
device. Input rise and fall times are under the control of the 
designer, and are primarily affected by capacitive loading; 
the driver and bus termination techniques. Switching 
threshold is affected by process variations, changes in V cc 
and temperature. Compensation of these variables is the 
territory of the manufacturer, both at the design stage and 
the manufacturing of the device. Combined threshold shifts 
over full military temperature ranges and process varia­
tions average less than 100 mY. This translates directly to 
VIL and VIH variations which track well within the noise 
margins of normal system design particularly since the 
VOL and VOH changes track to the same 100 mY. 

Input Protection MechanislDS 
THE ELECTROSTATIC DISCHARGE 
PHENOMENON 
Because of their extremely high input impedance and rela­
tively low (approximately 30Y) breakdown voltage, MOS 
devices have always suffered from destruction caused by 
ESD (Electro Static Discharge). This haS caused two ac­
tions. First, major efforts to design input protection circuits 
without impeding performance has resulted in MOS de­
vices that are now superior to bipolar devices. Second, care 
in handling semiconductors is now common practice. In­
terestingly enough, bipolar products that once did not suf­
fer from ESD have now suddenly become sensitive to the 
phenomenon, primarily because new processing technology 
involving shallow junctions is in itself sensitive. MOS de­
vices are in many cases now superior to bipolar products. 
A sampling of competitive BIPOLAR and NMOS 64 bit, 
lK bit and 4K bit products reveals breakdown voltages as 
low as ± 150V to greater than ±2001V magnitudes. The 
circuit in Figure 4 is used to protect Cypress products 
against ESD. It consists of two thick oxide field transistors 
wrapped around an input resistor and a thin oxide device 
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Figure 3. Test Loads 
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Figure 4. Input Protection Circuit 

with a relatively low breakdown voltage of approximately 
l2V. Large input voltages cause the field transistors to tum 
on discharging the ESO current harmlessly to ground. The 
thin oxide transistor breaks down when the voltage across 
it exceeds the l2V level and it is protected from destruction 
by the current limiting of Rp. The combination of these 
two structures provides ESO protection greater than 
2250V, the limit of the testing equipment available. In ad­
dition, repeated applications of this stress do not cause a 
degradation that could lead to eventual device failure as 
observed in functionally equivalent devices. 

CMOS Latchup 
The parasitic bipolar transistors shown in Figure 5 result in 
a built-in silicOn controlled rectifier illustrated in Figure 6. 
Under normal circumstances the substrate resistor RSUB is 
connected to ground. Therefore, whenever the signal on 
the pin goes below ground by one diode drop, current flows 

Output Driver 
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n+ DIFFUSION AND p+ DIFFUSION 
n- WELL GUARD RING GUARD RING 

LATERAL npn BIPOLAR 
TRANSISTOR 

from ground through RSUB forward biasing the lower tran­
sistor in the effective SCR. If this current is sufficient to 
tum on the transistor, the upper PNP transistor is forward 
biased, the SCR turns on and normally destroys the device. 
Several solutions are obvious, decreasing the substrate re­
sistance, or adding a substrate bias generator are two. The 
bias generator technique has several additional benefits, 
however, such as threshold voltage control which increases 
device performance and is employed in all Cypress prod­
ucts, along with guard rings which effectively isolate input 
and output structures from the core of the device and thus 
effectively decrease the substrate resistance by short cir­
cuiting the current paths. Latchup can potentially be in­
duced at either the inputs or outputs. In true CMOS output 
structures as discussed above, the output driver has a 
PMOS pullup which creates additional vertical bipolar 
PNP transistors compounding the latchup problem. Addi­
tonal isolation using the guard ring technique can be used 
to solve this problem, at the expense of additional silicon 
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Figure S. CMOS Cross Section and Parasitic Circuits 
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Figure 6, Parasitic SCR and Bias Generator 

area. Since all of the devices of concern here require TIL 
outputs, the problem is totally eliminate4 through the lise 
of an NMOS pullup. 

LATCHUP CHARACTERISTICS 
Inducing Latchup for Testing Purposes 
Care needs to be exercised in testing for latchup since it is 
normally a destructive phenomena. The normal method is 
to power the device under test with a supply that can be 
current limited, such that when latchup is induced, insuffi­
cient current exists to destroy the device. Once this setup 
exists, driving the inputs or outputs with a current, and 
measuring the point at which the power supply collapses 
will allow non-destructive measurement of the latchup 
characteristics of the devices under question. In actual test­
ing, with the device under power, individual inputs and 
outputs are driven positive and negative with a voltage and 
the current measured at which the device latches up. This 
provides the DC latchup data for each pin on the device as 
a function of trigger current. 
Measurement of Latchup Susceptibility 
Actually measuring the latchup characteristics of devices 
should encompass ranges of reasonable positive and nega­
tive currents for trigger &purces. Depending on the device, 
latchup can occur as low as a few rnA to as high as several 
hundred mA of sink or source current. Devices which latch 
at trigger currents of less than 20 to 30 mA are in danger of 
encountering system conditions that will cause latchup fail­
ure. 
Competitive Devices 
Although there are few devices directly competitive with 
the Cypress devices covered in this application note, the 
latchup characteristics of the closest functionally similar 
devices were measured. The results . show devices that 
latchup at as low as 10 mA all the way to devices that can 
sustain greater than 100 mA of trigger current without 

latchup. The Cypress devices covered in this document can 
sustain greater than 200 rnA without incurring latchup, far 
mote than is possible to encounter· in any reasonable sys­
tem environment. 

Elimination of Latchup in Cypress 
. RAMs 
Since the latchup characteristic is one that inherently exists 
in any CMOS device, rather than change the laws of phys­
ics, we design to minimize its effects over the operating 
environment that the device must endure. These include 

. temperature, power supply and signal levels as well as pro­
cess variations. There are several techniques employed to 
eliminate the latchup phenomenon. Two of them involve 
moving the trigger threshold outside the operating range as 
to make it impossible to ever encounter it. These are either 
using low impedimce, epitaxial, substrates and/or a sub­
strate bias generator. The use of a low impedance substrate 
has the effect of increasing the undershoot voltage required 
to generate the required trigger current that causes latch­
up. A substrate bias generator has two effects which help to 
eliminate latchup. First, by biasing the substrate at a: nega­
tive, -3.0V, voltage, the parasitic diodes can not be for­
ward biased unless the undershoot exceeds the - 3V by at 
least one diode drop. Second, if undershoot is this severe, 
the impedance of the bias· generaior itself is sufficient to 
deter sufficent trigger from being generated. The bias gen­
erator has one additional noticeable characteristic, it effec­
tively removes the inpuv clamp diode. This is due t6 the 
anode of the diode connecting to the substrate which is at 
- 3.0V. Therefore, even though the diode exists as shown 
in Figure 4, DC signals of - 3.0V do not forward bias the 
diode and exhibit. the clamp condition. The benefits of this 
are apparent in higher noise tolerance as substrate currents 
due to input undershoot do not occur. 
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Figure 8. Input VII Characteristics 

Figures 8 and 9 represent the voltage and current charac­
teristics of the devices discussed in this application brief. 
Figure 8 is characteristic of an input pin, and Figure 9 an 
output pin in a high impedance state. In Figure 8, the input 
covers + 12V to - 6V, well outside the + 7V to - 3V spec­
ification. Referring to Figure 4 to understand these charac­
teristics, when the input voltage goes negative, the thin 
oxide transistor acts as a forward biased diode and the 
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Note: Output is in a High Impedance Condition. 

Figure 9. Output VII Characteristics 

slope of the curve is set by the value of Rp. As the input 
voltage goes positive, only leakage current flows. The out­
put characteristics in Figure 9 show the same phenomenon, 
with the exception that, since this is not an input, no pro­
tection circuit exists, and therefore no Rp exists. An equiv­
alent thin film device acts as a clamp diode which limits 
the output voltage to approximately - 1 V at - 5 mAo 
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74F189 Application Brief 
Introduction 
There are available in the market a number of high speed 
64 bit static RAMs organized 16 by 4 bits. Because of the 
various different manufacturers specifications, there is no 
apparent true second source for these products as each op­
erates . with some unique characteristics. The composite 
specifications contained in this applications brief will allow 
the interchangeable use of the Cypress CY7C189 with the 
74F189 and the Cypress CY7C190 with the 74F219 with 
optimization for either power or performance. 

Electrical Characteristics Over the Operating Range 

Specifications 
Depending on system requirements, the SPEED OPTI­
MIZED specification will allow the designer to select per­
formance at the expense of power, and use either Cypress's 
CY7C189-15 or the 74F189 interchangeably. If, however, 
the major criteria is power the designer can achieve a 55 
rnA max power specification using the Cypress CY7C189-
25 interchangeably with the 74F189 by designing with the 
POWER OPTIMIZED specification. 

Speed Power 
Parameters Description Test Conditions Optimized Optimized Units 

Min. Max. Min. Max. 

VOH Output HIGH Voltage Vee = Min.,IOH = -3.0mA 2.4 2.4 V 

VOL Output LOW Voltage Vee = Min., IOL = 16.0 rnA 0.5 0.5 V 

VIH Input HIGH Voltage 2.0 Vee 2.0 Vee V 

VIL Input LOW Voltage -3.0 0.8 -3.0 0.8 V 

IIX Input Leakage Current GND:<>: VI:<>: Vee -600 +20 -600 +20 /-LA 

Ioz Output Leakage Current GND:<>: Vo:<>: Vee -50 +50 -50 +50 /-LA 

los 
Output Short 

Vee = Max., VOUT = GND -150 -150 rnA 
Circuit Current 

IcC Power Supply Current Vee = Max., I Commercial 90 55 rnA 
lOUT = OrnA I Military 70 rnA 

2-15 December 1985 
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Switching Characteristics Over the Operating Range 

Parameters Description 
Speed Optimized Power OptimIzed. I UDits 

Min. Max. Min. Max. 

READ CYCLE 

tRC Read Cycle Time 27 27 ns 

tACS Chip Select to Output Valid 14 15 ns 

tHZCS Chip Select Inactive to High Z 12 15 ns 

tLZCS Chip Select Active to Low Z 12 15 ns 

toHA Output Hold from Address Change 5 5 ns 

tAA Address Access Time 27 27 ns 

WRITE CYCLE 

twc Write Cycle Time IS 20 ns 

tHZWE Write Enable Active to High Z 14 20 ns 

tLZWE Write Enable Inactive to Low Z 12 20 

tAWE Write Enable to Output Valid 29 29 ns 

tpWE Write Enable Pulse Width 15 20 ns 

tSD Data Setup to Write End 15 20 ns 

tHO Data Hold from Write End 0 0 ns 

tSA Address Setup to Write Start 0 0 ns 

tHA Address Hold from Write End 0 0 ns 

tHcs Chip Select Hold from Write End 6 6 ns 

Read Cycle 
t-----IRC------i ______ c Ao-A, 

ADDRESS ___ --' 

CHIPSELE~~~E====1 f 
OU~~! ~'F Jxxx:::!::t·~=----~~J~ ~ 

Write Cycle 

AO-A3 
ADDRESS 

eI 
CHIP SELECT 

Do-D, 
DATA IN 

m 
WRITE ENABLE 

Do-O, 
DATA OUTPUTS 

LOAO 

JI------_",_c-_----I~-
.... ~ ....... 

_1otc:1' 
I I'D IH:j 

.1 

*" *" 
lOW' 

-' r-
"'ZWE ro--lA"'--j 

"-- 'LZWE 0043-2 
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Introduction to Diagnostic PROMs 
Scope and Purpose 
This Application Brief will provide the reader with a basic 
understanding of the concept of a diagnostic PROM, as 
well as a brief introduction to possible applications. 

Beginning with a short tutorial on system diagnostics, the 
reason for incorporating diagnostics into a design and the 
special testability problems associated with sequential de­
signs are presented. The concept of shadow-register-based 
diagnostics is presented, and the benefits of this approach 
are outlined. 

Next, a description of Diagnostic PROMs is given. This 
covers the similarity/dissimilarity of diagnostic PROMs 
relative to standard registered PROMs, as well as funda­
mental operation of a diagnostic PROM followed by a de­
scription of the Cypress CY7C268 and CY7C269 8K x 8 
Diagnostic PROMs. 

In conclusion, an application example is presented. 

Introduction to System Diagnostics 
As electronic systems continue to grow in size, functionali­
ty, and complexity, it is becoming increasingly difficult to 
test them and determine their reliability, as well as to serv­
ice the end product in the field. One way to simplify the 
task of testing electronic systems is to design some form of 
testability into the system. 

Controllability and observability are the key points of test­
ability. These two qualities are easily obtained for a combi­
natorial system where the outputs are strictly a function of 
the current inputs. Test vector methods are easily devised 

INPUTS 

COMBINATORIAL 
lOGIC 

and implemented for combinatorial systems. But, for a se­
quential system, where the outputs are a function of both 
the current inputs and the previous state(s), controllability 
and observability may be lost due to lack of access to the 
internal states of the machine. Consequently, building test­
ability into a system means being able to control and ob­
serve all possible states of a system. 

Consider the simple sequential machine in Figure 1. As is 
evident, access to internal states-which is necessary for 
complete controllability and observability-is either denied 
or difficult to obtain. The obvious way to add testability to 
this system is to permit access to these internal states. One 
way to gain this access is through addition of a diagnostic 
shadow register, as shown in Figure 2. Observability is ef­
fected by adding a serial data output path (SDO) to allow 
shifting internal state information out of the system. Con­
trollability is gained by permitting a serial data input path 
(SOl) to set the state of the internal registers. As a result, 
relatively simple test vector methods can again be used to 
test the system. Consider, for example, the complex se­
quential machine shown in Figure 3. This system would be 
virtually impossible to test in the current configuration, 
due to the fact that we can not control or observe the 
internal states of the machine. In order to increase the test­
ability of this machine, observability must be added at 
points 01, 02, and 03. If this were accomplished, one would 
be able to observe the internal states of the machine. Addi­
tionally, controllability must be added at points Cl, C2, 
and C3. This would enable the internal states of the 
machine to set. This controllability and observability can 
be attained by adding shadow registers, as depicted in Fig­
ure 4. The result is a complex sequential machine with a 

~----~~----~OUWUTS 

STATE 
OUWUTS 

INTERNAL STATE FEEDBACK 
ClK 

SEQUENTIAL SYSTEM 

Figure 1. Simple Sequential Machine 
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Figure 2. Simple Sequential Machine with Diagnostic Capability 
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Figure 3. Complex Sequential Machine 

high degree of testability. Ali a result of these actions, sim­
ple test vector methods can now be used to fully test the 
machine. For instance, the state of the register at point Cl 
can be set, the machine may be clocked through some 
known number of cycles, and the state of the machine may 
be observed at points 01, 02, and 03. 

Knowing what state the machine should be in at that par­
ticular point in time at each observation point, the known 
"correct" state of the machine can be compared with the 
observed machine state (at each observation point), thereby 
determining if: a) the machine is functioning correctly; and 
b) if not, which "machine primitive" is not functioning 
correctly (fault detection). Note that this approach to se­
quential design will also permit testing to see what the ma­
chine would do if a glitch caused a jump into an unused 
state, which in tum makes the design task of forcing the 
machine back into a known state much less complex. 

3-2 

The real advantage of this approach is that it requires no 
changes in architecture, minimal hardware changes, and 
results in a minimal (5-10%) area hit when integrated into 
existing integrated circuits. 

Diagnostic PROMs 
Diagnostic PROMs are a relatively minor migration from 
standard registered .PROMs. A block diagram of a diag­
nostic PROM is presented in Figure 5. The addition of 
diagnostic capability to a registered PROM includes the 
addition of: 

-a shadow register 
-multiplexer 
-MODE pin 
-8m (Serial Data In) pin 
-800 (Serial Data Out) pin 
-diagnostic clock 
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Mode, SDI, SOO, and DCLK for each "Machine Primitive" 

Figure 4. Complex Sequential Machine with Diaguostic Capability 
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Figure S. Diagnostic PROM Block Diagram 

The shadow register is dynamically configured based on 
the value of the mode signal. If mode is set such that the 
user desires to input data to the PROM, the shadow regis­
ter is configured as serial-in, parallel-out; if the user desires 
to extract information from the PROM, the shadow regis­
ter is configured as a parallel-in, serial-out. So the shadow 
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register serves two purposes: First, the shadow register can 
be configured to serially receive the data that can be trans­
ferred to the register containing state information and ap­
pear at the outputs during the next cycle. The obvious ad­
vantage of this feature is that it allows the user to effective­
ly preset the condition that will be sent through the part of 
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the system that "follows" the PROM; ie, the user can in­
sert state infonnation into the system. This feature adds 
controllability to the system. 

The second purpose that the shadow register serves is to 
allow the user transfer data from the register containing 
state infonnation and to serially shift that data out of the 
PROM. This feature adds observability by allowing the 
user to observe the state of the PROMs pipeline register at 
any given point in time. Inclusion of the above named fea­
tures in a registered PROM can therefore add testability to 
any system by providing the user with the mechanism to 
build both controllability and observability into his system. 
Note that this increase in functionality is effected without 
loss of other desirable registered PROM features such as 
programmable initialization, programmable output enable, 
etc. 

Cypress Diagnostic PROMs 
Cypress Semiconductor manufactures two Diagnostic 
PROMs, the CY7C268 and CY7C269. These 64K byte­
wide Diagnostic PROMs are manufactured in CMOS for 
the optimum speed/power tradeoff resulting in 550 m W 
power disSipation while maintaining 40 ns maximum set­
up and 20 ns clock-to-output. Both contain an edge-trig­
gered pipeline register and on-chip diagnostic shift register. 
Both are capable of withstanding >2OO1V ESD. Both are 
produced in.our EPROM-based process, which allows test­
ing for 100% programmability. Both are available in 
PLCC/LCC and Dual Inline Packages, and both are avail­
able in a windowed package for reprogrammability. The 
CY7C268 features full diagnostic capability and is avail­
able in 32-lead PLCC/LCC or 32-pin 0.5 in DIPs. The 
CY7C269 features limited diagnostic capability and is 
available in 28-lead PLCC/LCC or 28cpin 0.3 in DIPs. 

For an in-depth description of functionality, refer to the 
data sheet. The following discussion briefly describes the 
diagnostic functions available in each device. 

MODE 

PCLK 
CONTROL 

LOGIC 
ENA 

INIT 

8 

CY7C268 
A condensed block diagram of the CY7C268 is presented , 
in Figure 6. The pin names and functions of the CY7C268 
are as follows: 

Name 110 Function 

Ao-AI2 I Address Input 

00-0] 0 Data Lines 

ENA I Synchronous or Asynchronous 
Output Enable 

INIT I Asynchronous Initialize 

MODE I Sets PROM to Operate in 
Pipe1ined or Diagnostic Mode 

DCLK I Diagnostic Clock (Used to Clock 
the Shadow Register) 

PCLK I Pipeline Clock (Used to Clock 
the Output Registers) 

SDI I Serial Data In (Used to Serially 
Shift Data into the Diagnostic 
Register) 

SDO 0 Serial Data Out (Used to Serially 
Shift Data Out of the Diagnostic 
Register) 

Note that full diagnostic capability is realized through the 
use of four control signals: SDI (Serial Data In), SDO 
(Serial Data Out), MODE, and DCLK (diagnostic cloc~). 
Inclusion of both DCLK and PCLK assures that senal 
data can be shifted into or out of the diagnostic register 
while the PROM is operating in nonnal pipeline fashion. 
As a result, the CY7C268 has three possible modes of oper­
ation: 

i. nonnal (pipelined) 
ii. diagnostic 

iii. both simultaneously 

8 

8 - BIT DIAGNOSTIC 
SHIFT REGISTER 

8 

SOl 

SDO 

8·l----------------------~ 

0 0 -07 
0125-6 

Figure 6. Condensed Block Diagram of the CY7C268 
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The following table summarizes the operational modes of the CY7C268: 

Data Flow Description Mode ENA!l] SOl SDO DCLK PCLK 

Normal Operation[l] L H,L DATA IN SDO - t 
Shadow to Pipeline[l] H H,L X SOl - t 
Pipeline to Shadow H L L SOl t -
Data In to Shadow H H L SOl t -
Shift Shadow Reg. [I] L H,L DATA IN SOl t -

No Operation!l] H H,L H SOl t -
Note: 
1. For the asynchronous enable operation, data out is enabled on the first LOW to HIGH clock transition after £ is brought LOW. When £ goes from 

LOW to HIGH (enable to disable) the outputs will go to the high impedance state (after a propagation delay) immediately if the asynchronous 
enable was programmed. If the synchronous enable was selected, a LOW to HIGH transition is required. 

CY7C269 
A condensed block diagram of the CY7C269 is presented 
in Figure 7. As is evident, the CY7C269 has reduced diag­
nostic functionality relative to the CY7C268. The 
CY7C269 is ideal for applications requiring limited diag­
nostics with a premium on board space conservation, and is 
available in 28-pin, 300 mil DIPs (windowed or opaque) 
and in 28-lead PLCC/LCC packages. The pin names and 
functions of the CY7C269 are as follows: 

Name I/O 

Ao-A12 I 

00-07 0 

E, I I 

Oock I 

Mode I 

SOl I 

SOO 0 

Function 

Address Inputs 

MODE 

EIT 

CLOCK 

Data Lines 

Enable or Initialize 

Pipeline and Diagnostic Clock 

Sets PROM to operate in either 
diagnostic or regular pipelined 
mode (note that the two modes 
are mutually exclusive). 

Serial Data In 

Serial Data Out 

CONTROL 
LOGIC 

8 

Note that limited diagnostic capability is realized through 
inclusion of three diagnostic signals: MODE, SDI, and 
SDO. Since there is only one CLOCK, the regular and 
diagnostic modes are mutnally exclusive. The following ta­
ble summarizes the operating modes of the CY7C269: 

Data Flow Description Mode E,I Ooek SOl SDO 

Normal Operation L [1][2] t X HighZ 

Shadow to Pipeline H L t L SOl 

Pipe or Bus to Shadow H L t H SOl 

Shift Shadow H H t Data In SDO 

Notes: 
1. E or I function selected during programming. 
2. If I selected, outputs always enabled. If E selected, outputs are en­

abled synchronously or asynchronously as programmed. 
3. In selected, outputs always enabled. IfE selected, during diagnostic 

operation the data outputs will remain in the state they were in when 
the mode was entered. When enabled, the data outputs will reflect the 
outputs "fthe pipeline register. Any changes in the data in the pipe­
line register will appear on the output pins. 

8 

8 - BIT DIAGNOSTIC 
SHIFT REGISTER 

8 

SOl 

SDO 

8·l---------------~ 

0125-7 

Figure 7. Condensed Block Diagram of the CY7C269 
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Design Example 
As an example,. consider the complex sequential machine 
presented earlier. This machine could be easily implement­
ed using CY7C268's or CY7C269's, as shown in Figure 8. 
Note that the block labeled "diagnostic control" could con~ 
sist of PLDs, PROMs a sequencer, ora small microcoli­
troller. The choice between using the CY7C268 or the 
CY7C269 would be based complexity of the diagnostic 

\, 

DIAGNOSTIC CONTROL 

'2 

A 

--
I 

2 

I ADDRESS DECODER I 
PROGRAMMABLE ARRAY I 

8! 

"'---K 
-l 

DIAGNOSTIC MUX I 
8! 

8 
CONTROL 

4 LOGIC ~ PROG. INITIALIZE WORD I 
H 8 - BIT PIPELINE REGISTER I 8 - BIT DIAGNOSTIC ~ 

SHIFT REGISTER 

t1 ----1 ~ 8 

8 

2. 
8 

6 

function. re<iuired. For full diagnostics that can function 
simultaneously with regular pipelined operation, the 
CY7C268 should be used. For an application where limited 
diagnostic capability is required-perhaps only a power-up 
or at some other wel1~defined point in time-the CY7C269 
may be used. . 

SYSTEM INPUTS 

~I ADDRESS DECODER t 
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Figure 8. Complex Sequential Machine Implemented with Cypress Diagnostic PROMs 
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Pin-Out COJll.l!ajibility Considerations of 
SRAMs ana PROMs 

When looking for pin compatible replacements for 
PROMs, there are a number of key parameters that 
must be met. This application brief discusses the non­
electrical parameters of pin-out and programming in­
volved in finding socket compatible second sources for 
PROMs. Comparison with the selection of a socket 
compatible SRAM second source is provided. Addi­
tionally, an example of a verified conversion from the 
Motorola 68764 to the Cypress CY7C264, a PROM 
conversion that is not address line compatible, is 
presented. 

Ignoring the AC/DC characteristics, fmding a second 
source for an SRAM is relatively simple. As long as the 
power, ground, control (chip select, read, write), ad­
dress, and data lines are on the same pins the devices 
should be compatible. Specifically, on SRAMs, the ad­
dress and data lines need not be numbered identically 
between the two devices being compared for them to 
function identically in the same socket. As an example, 
on several Cypress SRAMs, the address pin numbering 
is not the same as some of our competitors. Let's look 
at a simplified example that illustrates why this is not a 
problem. Let's assume that we have a new device, the 2 
bit x 4 location SRAM: 

Cypress Brand "X" 
2x4 2x4 

2 D' A2 D2 4 2 D' Al DI 4 

Figure 1. Example 2x4 Simplified SRAMs 

Note that the inferior pin out chosen by the Brand "X" 2 
x 4 assigns Address line 2 (A2) to pin 1 whereas the 
superior pin-out used by the Cypress device has Al at 
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pin 1, etc. It is our assertion that these simplified 
devices are pin compatible. Let's assume that our en­
gineering staff designed an infra-red scanning pattern 
recognizing toaster oven with the Brand "X" data sheet. 
Just as your company is about to ramp into volume 
production, Brand "X" sends out an End Of Life notice 
on their 2 x 4, because they are converting all of their 
capacity to making DRAM memories. At this point, you 
have no desire to layout a new P.C. board, so let's take 
a look at how these devices would look in your design. 

Brand "X' Board 

UP ••••• A2 ..••••••••••• 1~3 •••• --••••••• D2 ••• -••••• U.p 

uP ••••• AI •• -•••••••••• 2~4 ••••• --•••• DI ••••••••• uP 

Brand "x" Board with Cypress 2 x 4 

uP ••••• A2 ••••••••••••• 1 ~3-••• - ••••.• D2 ••• - •••• uP 

uP ••••• AI ••••••••••••• 2~4 ••••••••••••• DI ••••••••• uP 

Figure 2. Example System with 2x4 SRAMs 

In this case, uP is a microprocessor interfacing to the 
SRAM. What is of key importance is that the data read 
from a given address generated by the microprocessor 
is the same as data written to the same location earlier. 
With a SRAM, any inconsistency between the Address 
and Data line numbering does not really matter because 
the data read will be the same as the data previously 
written. This occasionally causes some concern with 
customers who have not seen this before. To illustrate 
our point suppose that we write a value of 1 (uP:D2,D1 
= 0,1) at location 2 (uP:A2,A1 = 1,0). If we read loca· 
tion 3, we will obtain the value 1 that was written, be­
cause the address presented to the SRAM during the 



read is the same as the address for the previous write. 
Similarly the data read will be in the same bit order as 
presented during the previous write to the location. 
Thus so far as our system is concerned, the two SRAM 
devices are compatible. The only difference, that is not 
significant to our system, is where inside the SRAM the 
data was actually stored. In the Cypress device, the uP 
address of 2 (uP:A2,A1 = 1,0) actually stored the data 
at SRAM location 1 (Cypress:A2,A1 = 0,1). In the 
Brand "X"RAM, the data is physically stored in loca­
tion 2. However the address trauslation is transparent to 
the uP. Since the same location is accessed for the sub­
sequent reads, the difference in address numbering be­
tween the two devices doesn't really matter to our sys­
tem. Similarly, any numbering difference on the data 
lines doesn't matter either. The point that is of primary 
importance here is that for SRAMs, all writes and reads 
are generated in your system, and thus ,so long as the 
address and data lines are on the same pins, differences 
in the numbering doesn't matter. 

For PROMS, the scenario becomes slightly more com­
plex. Since PROMS are programmed using a program­
mer that is separate from the system in which they are 
used, it becomes more difficult to substitute a PROM 
with a device that does not have the same address 
and/or data pin numbering. Let's assume that our Hi­
Tek toaster oven's 2 x 4's are now PROMS. If we 
programmed each location with daia, we would find 
that the Cypress device would not work properly when 
used in the Brand "X· designed socket. In this case our 
programmer put the data at location 2, and the board 
would read this data. when the microprocessor re­
quested the data at location 3. Additionally the data 
bits will have been swapped on this read. What a mess! 
It becomes apparent that it is easiest to replace this 
PROM with a device that has the same address and 
data line numbering. There are still methods that we 
can use that will allow us to use the Cypress 2 x 4 
PROM in this socket that we will consider. 

The objective in trying to make the Cypress PROM 
work in the foreign pin-out socket is to have the data 
read by the system be the same as the data read when 
the Brand "X" device is used. In our 2 x 4 example, 
there are two problems - address line numbering mis­
match and Data line numbering mismatch. Let's first 
address the data line mismatch. As it stands data that 
was written in as bit1,bit2 is read as bit2,bitl or 
swapped. If we were able to change our PC Board 
layout, we could fix this problem by swapping the 
printed traces for D1 and D2. Unfortunately this would 
also disallow the use of the Brand "X" device on our 

board. If we could internally swap the data bitS in. the 
Cypress device, then when they were read they would 
be in the correct order. This swapping of the data bits 
in the Cypress device can be. achieved through several 
means. First, we might modify our programming adapt­
er such that D2 and D1 are swapped from the normal 
order when programming the part. Then when the 
device is read, we would get the bits in the same order 
as presented' by the Brand ·X" device. This is not a 

. recqmmended method of solving the problem, because 
modifying programmers tends to make the manufac­
turer of the programmer unhappy. A second method of 
solving this problem is to alter the binary image of the 
PROM contents such that bits D1 and D2 are swapped 
in a file on your computers disk, then using this altered 
binary image file to program the Cypress PROM. This 
is less likely to cause damage than modifying a 
programmer, but requires some skill in altering the bi­
nary file. Finally, the easiest solution to this problem is 
to trick the PROM programmer into swapping the bits 
for you. If you set your programmer for the Cypress 
device type, read a programmed Brand ·X" device into 
memoty, then program the Cypress part with the image 
in programmer memory, the bits will have been 

1) Brand 'X' 2 x 4 : Bit2,Bit 1 

2) Programm~i (Cypress) : Bit 1, Bit 2 

3) Cypress 2 x 4 : Bit 1, Bit 2 

4) System Board uP : Bit 2, Bit 1 

Figure 3. PROM Bit Swapping with Programmer 

swapped for you. Let's look at how this works. 
From the diagram above, we can see that the bits in ~he 
Brand "X" device are stored in the order Bit2,Bitl. This 
is the same order that the uP will read them on our 
board. When we set the programmer to read the 
Cypress part, the data lines are logically swapped from 
the Brand "X" ordering. Thus when we read the Brand 
"X" part, the data bits will be swapped as shown. When 
the Brand "X" part is removed from the socket, and the 
Cypress device is plugged in and programmed, the bits 
will be programmed into the Cypress part in this same 
'reversed' order. When we place the Cypress part into 
our board; the bits will be swapped again due to the 
difference in numbering between the Cypress part and 
the board layout, and the uP will. get the data in the 
correct order. 
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The second problem that exists is the difference in ad­
dress line numbering. This problem can be resolved in 
exactly the same manner as the data swap problem. By 
simply setting the programmer to the Cypress device 
type, reading the Brand "X" part, then programming the 
Cypress part, any addressing differences will be solved 
allowing the use of the Cypress device. The difference 
here is that the location of data words will be swapped 
to allow for the difference in pin-outs, just as the bits 
were swapped in the data line mismatch case. 

Many programmers will allow you to read a device dif­
ferent than the part selected, complaining only during a 
program if the device types do not match. With such a 
programmer, carrying out the above procedures to con­
vert a prom should not present a problem. However 
there are some programmers that will not allow the user 
to read a device if it is different from the part selected. 
These programmers will prevent our method from 
working. Fortunately, the Cypress' CY3000 QuickPro 
programmer will allow this approach to solving our 
problem. Cypress Field Applications Engineers, Sales 
Offices and Distributors can use their QuickPro to 
generate a Cypress master prom that can be used as a 
source for copying with un-cooperative programmers. 

As an example of such a conversion, the Motorola 
68764 8K x 8 prom has a similar pin-out to the Cypress 
CY7C264 with the exception of address lines 10, 11, and 
12. 

PIN Cypress 7C264 Motorola 68764 

21 AID A12 

19 All AlO 

18 A12 All 

Figure 4. Cypress 7C264 vs. Motorola 68764 Pin-out 

The following procedure will program a Cypress 
CY7C264 such that it will work properly in a socket 
designed to accept the Motorola device. 

1) Invoke the Cypress QuickPro (or other usable 
programmer) and select the Cypress 7C264 as the 
device to be programmed. 

2) Place the Motorola part in the programmer adapter 
socket and read the device. Optionally write the device 
contents to a disk me. 

3) Place a Cypress CY7C264 into the programmer 
adapter socket and program the part. Optionally the 
contents of the disk me may be read as the source for 
programming. 

The programmed device will now work in the Motorola 
designed socket. 

Summary 

If the pins used for power, ground, control, address, 
and data line numbering is the same for two devices, 
they may be used in the same socket if the other electri­
cal parameters are compatible. Differences in Address 
and Data line numbering are of no consequence in 
SRAM use. Differences in Address and Data line num­
bering in PROM device can be compensated for by 
using a simple programming procedure. 
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CYPRESS 
SEMICONDUCTOR 

Introduction to Programmable Logic 

Why Use a PLD? 

One of the fastest growing segments of the semiconduc­
tor market today is ASIC (Application Specific In­
tegrated Circuit) devices. ASICs are generally used to 
integrate SSI/MSI logic chips or functions, thus increas­
ing packaging density and reducing board real estate. 
Other benefits to the user are reduced power, higher 
reliability, and product secrecy. 

ASICs include several different kinds of devices. There 
are full-custom devices, standard cells, gate arrays, and 
PLDs. Full-custom devices offer the greatest degree of 
integration, but they are expensive and the development 
cycles can be on the order of nine months to a year. 
Full-custom designs are justified only for very large 
volume applications. Standard cell devices can be 
turned around much more quickly (about four months) 
and they cost less. However, the level of integration 
and, thus the speed are less than with the full-custom 
product. Gate arrays offer even less dense integration, 
but since only two metal masks must be fabricated, the 
design turnaround can be as low as six weeks. One 
drawback of all these ASICs is that the design logic 
must be set at the start of this cycle; and if it changes, 
the whole product cycle must start over from scratch. 
In addition, each device is application specific, so inven­
tory must be watched very carefully to make sure that 
just enough of each device is ordered to meet demand. 

An alternative to custom or semicustom devices is the 
PLD (Programmable Logic Device). Although PLDs 
do not offer the same level of integration as the other 
ASICs, the reduction in board space is still significant. 
The reduction factor is application dependent. It can 
be between 4:1 and 10:1 for the smaller PLDs (20 to 24 
pins) and 75:1 for high-density/pin-count devices such 
as the LCA or MAX families. Additional benefits to 
the user are reduced parts inventory, faster design, and 
turnaround time, and simplified timing considerations. 

Since a PLD is a sold as a "generic· array of logic, cus­
tomized by the user, the same PLO can be used in many 
different applications, spanning any number of projects. 
Cypress's PLOs are based on CMOS EPROM technol­
ogy, thus making them EPLDs that are erasable using 
an ultraviolet light SO\!l'ce. Design changes can be made 
at any time of the product cycle more easily than with 
other ASICs. The design cycle of a PLD of moderate 
complexity can be a week or less, and after the one-time 
purchase of a good development software package and 
programmer, the parts are relatively inexpensive. 
Timing is simplified, since all logical functions will take 
approximately the same path through the device. Thus 
the same propagation delays apply to all outputs of the 
device. The reasons for this will become clear later. 

PLD Technology 

All of the Cypress EPLDfamilies (with the exception of 
the CY7C360 family) are based on the familiar "sum-of­
products" architecture. Boolean transfer functions of 
this form can be implemented by programming the 
AND array whose output terms feed a fixed OR array. 
This scheme can implement most combinatorial logic 
functions and is limited only by the number of product 
terms available in the AND-OR array. A variety of dif­
ferent sizes and additional architectural features (i.e., 
flip-flops) are available. 

The original TIL PLDs used a fuse as their program­
mable element. In an unprogrammed device, all of the 
connections between input pins and product terms were 
"fused" during the manufacturing process. All un­
wanted connections are then "blown" during the 
programming process. Bipolar products are 
programmed using 20 volt pulses between 50 
microseconds and 100 milliseconds in duration. During 
these pulses 100 to 300 milliAmps (rnA) of current 
exist, blowing unwanted fuses one by one. Fuses are 
blown one at a time so that the heat generated doesn't 
damage or weaken the IC. Because of the high currents 
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required, bipolar products have to be programmed one 
at a time. Since physical fuses are blown, a device can­
not be programmed more than once. 

No fuses are used in the Cypress CMOS EPLD family. 
Instead, all devices are based on a EPROM cell to 
facilitate programming. By using an EPROM cell ill­
stead of fuses, programming yields of 100% cali be ex­
pected since all devices can be functionally tested and 
erased prior to packaging. Therefore, no programming 
yield loss can be expected by the user. The EPROM 
cell used by Cypress serves the same purpose as the 
fuse used in most bipolar PLD devices. Before 
programming, the AND gates or product terms are con­
nected via the EPROM cells to both the true and com­
plement inputs. 

The EPROM cells are programmed using pulses of high 
voltage that produce 50 rnA of programming current. 
Eight cells are programmed at a time. Because of the 
lower current levels used, "gang" programming of 10 to 
20 devices in parallel is possible. When the EPROM 
cell is programmed, that input to an AND gate (or 
"product term") is disconnected. Programming alters 
the transistor threshold of the cell so that no conduction 
can occur, which has the effect of disconnecting the 
input from product terms. This is equivalent to "blow­
ing" the fuses of a bipolar device, except that exposure 
to ultraviolet light returns the cell's threshold to normal, 
effectively erasing the device. Selective programming of 
EPROM cells enables the specific logic function to be 
i,mplemented b~ the user. . 

A 

~ ti! ----.Jf;;f;;f....,...--J. 0 A&B&G 

Figure 1. PLD Logic Notation 

11 . 

12 

Cypress also offers the highest performance silicon 
PLDs available in ECL technology. Aspen Semicon­
ductor Corporation, a subsidiary of Cypress Semicon­
ductor, has developed a series of bipolar ECL PLDs 
using an advanced process that incorporates proven Ti­
W fuses. Maximum input to output propagation delays 
of 3 to 6 nanoseconds are achieved with these devices. 

PLD Notation and Fusemaps 

Logic diagrams have been provided for the various 
parts in the Cypress Data Book, and the PLD ToolKit 
Manual. Cypress' logic diagrams employ a common 
logic convention that is easy to use. Figure 1 shows the 
adopted convention. In Figure 1, an "X" represents an 
unprogrammed EPROM cell that is used to connect an 
input term (corresponding to a vertical line on the logic 
diagram) to the input of the AND operation (or 
product term) that is represented by a horizontal line. 
No "X" means that the EPROM cell on that connection 
has been programmed or disconnected .. The convention 
adopted does not imply that the input terms are con­
nected on the common line that is indicated, rather that 
they are being "wire-ANDed." A further extension of 
this convention is shown in Figure 2, which shows the 
implementation of a simple transfer function. The 
traditional representation of the same function is shown 
in Figure 3. 

Figure 4 is the logic diagram for the P ALC16L8. As 
mentioned earlier, all vertical lines in the array are con­
nected to an array input. These inputs come from the 
input pins and the I/O pins. Each horizontal line is a 
"wired-AND" function, also known as a "product term." 

:: =1W EP>01&121+01&121 

Figure 2. Transfer Function in PLDLogic Notation 

Figure 3. Conventi~nal Schematic of TransCerFunction in Figure 2. 
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24 2 

lCOOO 

3 
L0512 

L0788 

Ll024 

6 
LI280 

L1536 

L1792 

Figure 4. The 16L8 Block Diagram. 

The product terms are either connected to the output 
enable of an output driver, or they are one of seven in­
puts to an OR gate that connects to the output driver. 
At each intersection of an input and product term is an 
EPROM cell. These cells are numbered, starting with 0 
as the top left fuse, increasing to the right, and then 
down. Thus in Figure 4 cell 0 is the intersection be­
tween pin 2, noninverted, and the output enable 
product term for pin 19. Cell 32 is the intersection be­
tween pin 2, noninverting, and the first product term for 
pin 19. The numbering proceeds until cell 2047, which 
is the intersection of pin 11, inverted, and the seventh 
product term for pin 12. 

A "fuse map" is a software representation of the array of 
fuses in a programmable logic device. It is an array of 
binary digits, arranged so that each digit corresponds to 
a cell in the device. For the P ALC16L8 pictured in Fig. 
ure 4, this array is 32 x 64. If a fuse is to be 
"programmed" or disconnected, the corresponding digit 
is a 1. If the fuse is to be left intact, the corresponding 
digit is a O. A virgin device has all cells conducting, or 
unprogrammed, so its fuse map is all Os. A product 
term, or horizontal line of all zeros, is logically false be­
cause it is the AND of the true and complement of each 
input. If a product term is all 1s, there is no conducting 
path because all fuses are programmed, and thus non-

APP: rQd.uc~ . ;12/198. 9 C16L8 mPJiifile 
re S o)kit r.; 100 ~ot untv bit ~"rogrammed* 

ll11111111111111111111TIlTII1110*N OE PL.pin= 19* 
l0011111111111111111111111111111*N Sum ri pin= 19* 

64 01101111111111111111111111111111*N Sum PT, pin = 19* 
OOOOOOOOOOOOOOOOO*N Sum PT, pin = 19* 

128 OOOOOOOOOOOOOOO*N Sum PT pin= 19* 
L00160 OOOOOOOOOOOOOOO*N Sum PT, pin = 19* 
LO0192 OOOOOOOOOOOOOOOooooOOOOOOOOOO*N Sum n:. pin = 19* 
LOO224 OOOOOOOOOOOOOOO*N Sum r I, pin = 19* 
LOO256 OOOOOOOOOOOOOOOoooOOOOOOOOOOOO*N OE PL.pm = 18* 
LOO288000000000000000*NSumrl Pin= 18* 
L00320 OOOOOOOOOOOOOOO*N Sum PT, pin = 18* 
L00352 OOOOOOOOOOOOOOO*N Sum n:. pin = 18* 
LOO384 OOOOOOOOOOOOOOO*N Sum r 1. pin = 18* 
LOO416 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum i=F. pin = 18* 

~J~~:~~~:::IT.pi~~ l~: 
LOOS12 oooOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N OE PL.'/.n= 17* 
LOOS44000000000000000*NSumrl pin= 17* 
LOOS76 OOOOOOOOOOOOOOOOOoooOOOOOOOOOOOO*N Sum tt: pin = 17* 
LO0608 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum r I, pin = 17* 
LOO640 OOOOOOOOOOOOOOO*N Sum PI' pin = 17* 
L00672oooo00 *N Sum tt: pin = 17* 
L00704 0000000000 *N Sum rl, pin = 17* 
L00736 *N Sum PT pin= 17* 
L00768 00000000000000000 *N OE PL.'pm = 16* 
LOOSOO 000000000000000 *N Sum r I, pin = 16* 
L00832 *N Sum PT pin= 16* 
L00864 0000000000000000 *N Sum PT, pin = 16* 
L00896 000000000000000000 OOOOO*N Sum PT, pin = 16* 
LO0928 *N Sum PT, pin = 16' 
LOO96O 000000000000000 *N Sum PT pin = 16* 
LOO992 000000000000000 OOOOOO*N Sum PT, pin = 16* 
LOI024 *NOEPT pm= 15* 
LOI056 0000000000000000 *N Sum n-, pin = 15* 
LOI088 00000000000000 OOOOO*N Sum n:. pin = 15* 
LOl120 00000 'N Sum r I, pin = 15* 
LOllS2 0000000000000000 OOOOOO'N Sum PT, pin = 15* 
LOl184 000000000000000 OOOOO*N Sum n:. pin = 15* 
L01216 0000000000000000 *N Sum r I, pin = 15* 
LOI248 000000000000000 OOOOOO*N Sum PT, pin = 15* 
L0128000 OOOOOO*N OE PT pm = 14* 
L01312 000000000000000 *N Sum n-, pin = 14* 
LOl344 00000000000 OOOOO*N Sum PT, pin - 14* 
L0137600000000000000 OOOOOOOO*N Sum PT, pin = 14* 
L01408 0000000000000000000 'N Sum PT pin = 14' 
LOI440 OOoooOOOOOOOOOoooooooOOOOOOOOOOO*N Sum I=f pin = 14* 
t8li~ ggggj0OO()(xx~lg&~gggg8:~~:~ ~~::: IT. pi~~ u: 
LOlS36 OOOOOOOOOOOOOOOOOOooooOOOOOOOOOO'N OE PL.'p~n= 13" 
LOlS68 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO*N Sum r 1 pin = 13* 
LOI600 OOOOOOOOOOOOOOOoooOOOOOOOOOOO'N Sum PT, pin= 13* 
L01632 OOOOOOOOOOOOOOoooOoooOOOOOOOOOOO*N Sum n:. pin = 13* 
LOI664 OOOOOOOOOOOOOOOOOOOOOoooooOOOO*N Sum r 1. pin = 13* 
L01696 OOOOOOOOOOOOOOOOOOoooOOOOOOOOOOO*N Sum IT. pin = 13' 
LOI728 OOOOOOOOOOOOOOoooOoooOOOOOOOOOOO*N Sum tt: pin = 13* 
L01760 0 ooooOOOOOOOOOOOOOOOOOOOO*N Sum ri. pin = 13* 
L01792 OOOOOOOOOOOOOOOOOOOOO'N OE PT 'pm= 12* 
L01824 0 OooooOOOOooooOOOOOOOOOOO*N Sum tf: pin = 12* 
t81~~ 0 oo~ggggggg=:~ ~~::: PT' pi~~ g: 
L019200 OOOOOOOOOOOoooOOOOOOOOOOO*N Sum !X ~in= 12* 
L019S2 0 OOOOOOOOOOOOOOOOOOOOOOO*N Sum r I, pin = 12* 
LOl984 OOooOOOOOOOOOooOOOOOOOO*N Sum I=f. pin = 12* 
Ml~0Js6* OOOOOOOOOOoooOOOOOOOOOOO*N Sum , pin = 12* 
0000 Figure 5. A 16L8 JEDEC Map. 

conductive. This allows the product term to be con­
tinuously at an asserted state. 

The official, standardized version of a fuse map is called 
a JEDEC map. This may contain various informational 
fields and/or comments in addition to the 1s and Os. 
The JEDEC map that implements the function in 
Figures 2 and 3 is shown in Figure 5. The numbers in 
the leftmost column starting with "L" are the first fuse 
number in that row. An "N" denotes a note or comment. 
"OF' precedes the total number of fuses in this device, 
so it is OF2048 in this example. "FO" means the fuse 
default is 0 or unprogrammed. "GO" specilles an un-
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programmed security fuse, whereas "GI" would denote 
a programmed security fuse (More on this later). "C" 
precedes a checksum value for the file. An "*" specifies 
the end of a field. This file can also contain test vec­
tors, which are not shown here. For more information 
on the JEDEC Standard, refer to "JEDEc Standard 
No.3"A, Standard Data Transfer Fomiat Between Data 
Preparation System and Programmable Logic Device 
Programmer." This document is available from: 

Solid State Products EngineeringCounci1 
2001 Eye Street N.W. 
Washington D.C. 20006 

Most PID design packages compile the design and 
translate it into a JEDEC map. This map is then 
downloaded to the programming hardware, which 
programs the device(s) accordingly. 

First-Generation PLDs 

The first PIDs were strictly combinatorial logic with 
tristate outputs, like thePALC161.8. Then D flip-flops, 
a clock input, and internal feedback were added, allow­
ing sequential logic, or state machines to be imple­
mented in a single PID. The 161.8, 16R4 (4 registered 
outputs), 16R6 (6 registered outputs) and 16R8 (8 
registered outputs) became industry standard parts. 

Testability was a problem in some of the earlier devices. 
Since a blank device had all fuses intact, output enables 
were all turned off, making all pins of the device inputs. 
This made blank checks difficult. It was· also difficult to 
tell if the fuses could be blown without actually blowing 
any of them. 

To get around these problems, a "Phantom Array" was 
added to the device. For the 161.8, there are 256 addi­
tional bits in the phantom array. These are used to test 
the PLD functionally and to verify dynamic (AC) opera­
tion after the chip is packaged, without using the nor­
mal array. The phantom array is usually programmed 
and verified as part of the final electrical test procedure 
during the manufacturing. process. This verifies both 
the PID programmability and functionality. The phan­
tom array may be used by the custoQler as part of an 
incoming inspection. The phantom array is so named 
because. the device must be in a special mode to access 
it. It is not "seen" in regular operating mode. Cypress's 
EPIDs are also. programmed, tested, and then erased 
before they are packaged. 

Another feature that has been added is register preload. 

The preload function is used to load data. into the 
registers (of registered devices). for testing purposes. 
This significantly simplifies and shortens the testing pro­
cedure. Illegal state resolution can be checked using 
this feature. Preloading is accomplished by appl~ a 
supervoltage (13.5 Volts) pulse of at least 100 
microseconds duration to a specific pin, while a second 
pin is held at VIH. The supervoltage acts as a write 
strobe and data applied to the 110 pins is clocked into 
the corresponding registers. . 

A security fuse was also added as a standard feature. 
In addition to "writing" a fusemap into a device, any 
good device programmer is capable of reading a 
device's fusemap. One of the advantages of a PLD is 
that the logic in the device is hidden from the observer. 
This helps keep proprietary portions of a design secret. 
If the user does not want their PLDs to be read by a 
programmer, they can program the security bit, which 
disconnects the lines that are used to verify the array. 
In a Cypress EPID, the security EPROM cell has been 
designed to retain its charge longer than any of the 
other cells in the array. 

The Programmable Macrocell 

The basic 20 pin devices still had some limitations. 
There was no way to control output pin polarity without 
doing DeMorgan operations on the equations. Quite 
often the DeMorgan version would have too many 
product terms to fit in the device, even after several 
hours of crunching using a logic optimization program. 

A variety of the basic 20 pin devices and/or their 24 pin 
equivalents had to be stocked in order to get the best fit 
for a given design. Often there were ext.ra registers left 
unused when the design was finished. Even though the 
early PLDs tended to be pin .limited, the pins associated 
with those extra registers ended up being wasted be­
cause they couldn't be used for anything else. 
Enter the 22V1O. The 22V10 is a 24 pin device. that 
revolutionized PLDs by introducing the programmable 
macrocell (See Figure 6). The programmable macro­
cell allows the user to select one of four output con­
figurations: combinatorial, inverting, combinatorial non­
inverting, registered inverting, and registered noninvert­
ing. The pin may be used as an input or bidirectional if 
the macrocell is specified as combinatorial. Each of the 
10 I/O pins has all four options. The option is selected 
using two fuses, or cells, identical to those in the array. 
These 20 bits (two for each of 10 macrocells) are added 
to the bottom of the fusemap that represents the array. 
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Figure 6. The 22VIO Macrocell. 

Another innovation of the 22VIO is that some pins have 
a larger sum-of-products than others. This. is called 
"Variable Product Term Distribution". In the 22VlO, 
I/O pins have sums from 8 to 16 product terms wide. 
This accommodates applications such as D flip-flop 
counters, where several outputs require a large number 
of product terms. 

The 22V10 made yet another improvement. In the 
16R8, for example, the device powers up with all 
r:egisters in reset state. The only way this can be 
changed is by clocking in new data. The 22V10 added 2 
exfra product terms: one performs a preset of all 
registers, the other performs a reset on all registers. 
Since they are product terms, the preset and reset can 
be programmed to be the AND of any array input(s). 
For additional flexibility, the set is designated as a 
synchronous operation, and the reset is asynchronous. 

Because of its flexibility, the 22V10 has become some­
thing of an industry standard. It is available in TTL, 

CMOS, and GaAs. Many companies have introduced 
similar architectures with slightly different features. For 
example, the Cypress PLDC20GlO uses a similar mac­
rocell that adds the capability to choose between a 
product term output enable and a pin controlled output 
enable. In an effort to make the PLDC20G 10 faster 
and less expensive than the 22V10, the array has been 
reduced to nine product terms per I/O macrocell, and 
the preset and reset product terms have been removed. 

Another device that was introduced around the same 
time is the 2ORA10, which was targeted for 
asynchronous registered applications. Like the 22V10, 
the 2ORA10 has I/O pins with programmable polarity 
bits. The I/O pins of the 20RA10 can be configured as 
registered or combinatorial, but this is not done with 
dedicated fuses. Each I/O pin has a sum of four 
product terms connected, through a polarity switch, to 
the D input of a flip-flop. Each flip-flop has dedicated 
product terms connected to its clock, preset, and reset 
functions. When both the preset and reset of a flip-flop 

OUTPUT ENABLE 
(FROM PIN 13) 

PRELOAD 

SE PTERM 

SUM OF 
PRODUCTS 

TO RRAY 

(FROM PIN 1) 

CO P 
R 

Figure 7. The 20RAIO Macrocell. 
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are asserted (high), the flip-flop becomes transparent, 
thus making the output combinatorial. 

In addition, the 2ORAIO has an unusual output enable 
scheme. Pin 13 is inverted and ANDed with an output 
enable product term. If pin 13 is high, all I/O pins are 
at high impedance. The 2ORAIO also offers a 
synchronous register preload in operating mode. When 
pin 1 goes low, any data driven onto an I/O pin is 
latched into the corresponding flip-flop. An I/O pin of 
the 2ORAI0 is pictured in Figure 7. The flexibility and 
asynchronous nature of this device make it ideal for bus 
arbiter, and interrupt controller applications. 

Second-Generation PLDs 

The architectural features introduced by the 22VlO 
greatly enhanced PLD flexibility, but there were still 
some limitations. PLDs still offered only D-type flip­
flops, which are cumbersome for some applications, 
such as counters. Each flip-flop and its feedback still 
used a pin, even if the flip-flop's output was not needed 
external to the. PLD. Bidirectional, registered pins 
could not be implemented. High-speed applications 
often required flip-flops to latch data before the input 
of the PLD because of the relatively long set-up time, 
due to propagation delay, for output flip-flops. 

Cypress solved all of these problems in the architecture 
of the CY7C330. In addition to the output registers on 
the I/O pins, each pin (save power and ground) con-

tains an input register that has a choice of two clocks. 
This input macrocell makes the 28 pin CY7C330 ideal 
for pipelined control, and high-speed state machine ap­
plications. 

Another added feature is the ability to emulate T and 
JK type flip-flops in the CY7C330. This is very useful in 
counter designs. In each I/O macrocell, the sum-of­
products from the array drives one input of an exclusive 
OR (XOR) gate. The second input to the XOR gate is 
another product term. The output of this gate is con­
nectedto the D input of the output flip-flop in the mac­
rocell (see Figure 8). If the 0 output of the flip-flop is 
fed back and connected to the single product term driv­
ing the XOR gate, the sum-of-products acts as the T 
input of a T type flip-flop. A JK flip-flop can also be 
emulated in this way, using the relation T=J!O+KO. 
Of course, if a D-type flip-flop is all that is required, the 
XOR gate can be used to control polarity. 

Close examination of Figure 8 reveals two paths into the 
array. The first is a multiplexer that selects feedback 
from. either the register or from the 0 output of the 
input register. This is called the "feedback mux." The 
second path is called the "shared input mux." The in~ 
puts to this mux are the 0 outputs of input registers 
belonging to adjacent I/O macrocells. This allows the 
user to feed back the 0 output of a macrocell's output 
register, and still utilize the pin associated with that 
macrocell as an input. This, of course can only be done 
with 6 of the 12 I/O macrocells. If more registers are 

SET 
RESET 

ICLKl 

FROM ADJACENT 
MACROCELL 

I LKO 
OCLK 

E 

Figure 8. The CY7C330 Macrocell 
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Figure 10. The CY7C331 Macrocell. 

needed for an application, there are 4 additional CY7C330. The operating mode preload in the 20RAI0 
"buried macrocells" in the CY7C330. These are identi- is not supported in the CY7C331, however the registers 
cal to the output register portion of the I/O macrocell, can bepreloaded using a supervoltage. The CY7C331 
except they are not connected to any pin. has been designed especially for self-timed applications, 

The 2ORAlO has many of the same limitations as the 
22VI0. An additional limitation is that the sum of 
products is only four wide. Just as the CY7C330 can be 
considered as an extended, enhanced version of the 
22VI0, so is the CY7C331 an extension of the 20RAlO. 
The CY7C331 has 12 I/O macrocells. In addition to the 
2ORAI0-like output flip-flops, there are identical flip­
flops in the input path. As in the 2ORAI0, each flip­
flop has a product term controlled clock, preset and 
reset. If the preset and reset product terms are both 
asserted, the flip-flop becomes transparent. The 
2ORAlO polarity fuse has been replaced by an XOR 
gate, which has as inputs the sum of products and a 
dedicated product term. Thus the polarity of the out­
put can be controlled, or the flip-flops can emulate T or 
JK flip-flops as in the CY7C330. The CY7C331 macro­
cell is pictured in Figure 9. 

Like the 22VI0 and CY7C330, the CY7C331 has vari­
able product term distribution with sums from 4 to 12 
product terms wide. The CY7C331 has borrowed the 
shared input mux and output enable schemes from the 

such as high-speed I/O interfaces. No other PLD has 
this capability. The CY7C331 is able to support self­
timed designs because clock inputs are programmable, 
internal timing relationships are well controlled, and 
metastable resolution is ultra-fast. 

Another architectural trend is combinatorial PLDs with 
registered inputs. These are generally used in sophisti­
cated decoding applications, where the address or data 
is only stable for a short time. In the past an MSI chip 
with latches or flip-flops was used to capture transient 
data, and the latched data was fed into a PLD. Now 
there are PLDs that feature registers or latches on in­
puts. The CY7C332 features an input macrocell that 
can be programmed as combinatorial, registered, or 
latched. There is a choice of two clocks, and the clock 
polarity is programmable as well. The CY7C332 I/O 
macrocell (pictured in Figure 11) includes the input 
macrocell, and a combinatorial output path that in­
cludes a variable sum of products driving one input of 
an XOR gate, and a dedicated product term driving the 
other input. There is also an output enable mux that 
allows the output enable to be controlled by a product 
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Figure 11. The CY7C332 Macrocell. 

term, or pin 14. Of course this combinatorial output 
path can be used as an input to the programmable input 
register/latch, thus allowing state machines to be 
created as well. 

High Density PLDs 

Because of its low power consumption, higher integra­
tion can be achieved with CMOS than with bipolar 
technologies. Several manufacturers are taking ad­
vantage .of this, and producing very high-density PLDs. 

SETbPTERM 

RSTb PTERM 

EXPANDER1 

EXPANDER2 

bE 

TO_V l-----c»<: 1-_---' 

eprom 
cell 

The CY7C342, which is the 68 pin member of the new 
MAX family, contains 128 flip-flops and over 1000 
product terms. Up to 256 additional latches can be 
configured using Expander Product Terms. The 
CY7C342 macrocell contains a sum of three product 
terms driving one input of an XOR. The other XOR 
input is a dedicated product term. The output of the 
XOR drives a programmable flip-flop that can be con­
figured as a D, T, JK or SR flip-flop, as well as a latch. 
There is also a combinatorial path. The flip-flop has 
asynchronous preset and reset product terms, and a 

RSTb 

TO PIA 

SYSTEM CLOCK 

Figure 12. The CY7C342 Macrocell. 
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PIA 

Figure 13. The CY7C342 Block Diagram. 

choice of asynchronous clock product term, or a 
synchronous clock (See Figure 12). Macrocells are 
divided into groups of 16, along with 32 expander 
product terms. Each of these is called a Logic Array 
Block or LAB. The CY7C342 contains 8 LABs. These 
LABs are connected via a Programmable Interconnect 
Array (or PIA). The block diagram of the CY7C342 is 
pictured in Figure 13. The density, flexibility and speed 
(typical clock frequency is 50 MHz) allows the 
CY7C342 to replace over 50 standard TTL devices. 

PLD Software Packages 

Parts as sophisticated as the MAX chips require equally 
sophisticated software. The MAX + PLUS™ software 
offers schematic capture, state machine syntax, Boolean 
algebra entry, logic reduction, synthesis and fitting, and 

a timing simulator. Similar packages that support a 
variety of devices are available from Data I/O and 
MINC. In addition, OrCad has recently added PLD 
support to its product line. 

More conventional (and less expensive) support is avail­
able from ISDATA's LOGiC, Data I/O's ABEL, and 
Logical Devices' CUPL. These packages offer Boolean 
equation entry and logic reduction, as well as various 
higher-level language constructs, state machine syntax, 
and simulators. All of these packages cover a variety of 
devices from a variety of vendors. 

In addition, most PLD manufacturers offer packages 
that support only their devices. These packages can be 
free (P ALASM 2) or quite expensive (A + PLUS). 
Cypress has developed the PLD ToolKit. A basic ver-
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sion that does logic compilation and JEDEC map con­
struction is free. An enhanced package that includes 
JEDEC read and disassembly capabilities as well as a 
simulator can be purchased for under $400.00. 
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SEMICONDUCTOR 

Programmable Logic Device 
Application Brief 

Scope and Purpose 
The purpose of this application brief is to provide the 
reader with a basic understanding of Cypress CMOS 
Programmable Logic Devices. This includes a description 
of their architecture and design, the technology used in 
their fabrication, how they are programmed and a 
discussion of their reliability. 

This document will tell the reader how state-of-the-art 
CMOS technology and a unique architecture have been 
incorporated in a family ofPLD integrated circuits that are 
functionally equivalent, pin compatible, and superior in 
performance to their bipolar counterparts. 

The appendix discusses and illustrates the design 
techniques that Cypress uses on all products to eliminate 
latchup and improve ESD (Electro-Static-Discharge) 
protection. 

Introduction 
The PLD is a Programmable Logic Device. The basic 
(functional) logic structure of a PLD is programmable 
AND array whose outputs feed into a fixed OR array. The 
pertinent parameters are the number of inputs, the number 
of outputs, the width (number of factors) in the AND 
array and the width (number of terms) in the OR array. 
The Boolean equation implemented is the sum-of-products 
or minterm form. 

The first PLDs were strictly combinatorial logic. They 
were followed by devices that added latches (D flip-flops) a 
clock input, and internal feedback. For the first time a 
programmable, sequential, state machine could be 
implemented in a single package. Three-state outputs, the 
"security fuse", flip-flop initialization, and in general terms 
"testability" are features that have been added for 
increased flexibility. 

Applications 
PLDs are used to replace SSI/MSI logic and "glue chips" 
primarily to increase packaging density. A single PLD is 
the functional equivalent of many SSI ICs (in the 200-500 
equivalent gate range). When PLDs are used to replace 
standard logic gates, the resulting reduction in PC card 
area, although application dependent, has been found to 
vary between 4 to 1 and 10 to 1. i.e., One PLD will replace 

between four and ten 14 pin ICs. Secondary benefits to the 
user are reduced parts inventory, reduced power, higher 
reliability, faster design and turnaround time, product 
secrecy and equal (matched) propagation delays through 
the AND OR array. 

Reliability 
Reliability studies have shown that system reliability is 
inversely proportional to the number of interconnections 
between system elements. However, the failure rate for 
mature ICs is about 0.1 % per thousand hours and has 
remained constant during the last twenty years in spite of 
the fact that circuit complexity (density) has increased by 
more than two orders of magnitude. 

The conclusion is that higher levels of IC integration 
provide increased system reliability. Thus the user is 
increasing system reliability when Cypress CMOS PLDs 
replace glue chips. 

Programming 
PLDs must be programmed. This can be accomplished by 
either designing and building a programmer or purchasing 
one for $1,000 to $10,000. 
Programming Bipolar PLDs 
Bipolar PLDs use a fuse as the programmable element. In 
an unprogrammed device all of the connections are 
"made" during the manufacturing process and the 
unwanted connections are later "unmade" by blowing fuses 
during the programming process. 

Bipolar products are programmed using 20 Volt pulses of 
durations from 50 microseconds to 10 milliseconds during 
which 100 to 300 milliamperes (rnA) of current exist. In 
order to limit the heat generated during programming, the 
duty cycle for the programming pulses is limited to 20 to 
30 percent. One fuse is blown at a time so that the heat 
generated will neither permanently damage the IC nor 
stress it to the point that it could fail later. Some 
programming algorithms take into account the physical 
locations of the fuses and avoid sequentially blowing fuses 
that are physically close to each other in order to prevent 
excessive localized heating of the chip. Because of the high 
currents required, bipolar products are not "gang" 
programmed, as are EPROMs. 

4-11 May 1985 



Programming Cypress CMOS PLDs 
Cypress PLDs are programmed by storing charge on the 
floating gate of an EPROM transistor. Charge storage is 
accomplished by hot carrier injection; a process that does 
not physically destroy material or heat the device. During 
programming, EPROM cells are stressed significantly less 
than fuses. In addition, every cell is programmed, tested 
and erased as part of the manufacturing process. This 
100% testing guarantees a very high programming yield to 
the customer, which is impossible to guarantee with any 
fuse programmable device. 

The storage mechanism is well understood. Products using 
it have been in volume production for more than ten years. 
Reliability studies have been. performed by many 
independent organizations and all have concluded that the 
technology is reliable. 

Cypress PLDs are programmed using high voltage pulses 
of durations from 100 microseconds to 10 ms, during 
which 50 milliamperes of programming current exist. Eight 
bits are programmed at the same time and, because of the 
lower currents required, gang programmers that can 
handle 10 to 20 devices in parallel are possible. 

Before programming, AND gates or PRODUCT TERMS 
are connected via EPROM cells to both true and 
complement inputs. Programming an . EPROM cell 
disconnects an input from a PRODUCT TERM. Selective 
programming of these cells enables a specific logic function 
to be implemented. PLDs are supplied in a number of 
functional configurations. These functional variations offer 
the user the choice of combinatorial as well as registered 
paths to implement logic functions. 

CMOS Technology 
Cypress PLDs are fabricated using an advanced "N-well" 
CMOS technology. The use of proven EPROM technology 
to achieve memory non-volatility, combined with novel 
circuit design and a unique architecture, provides the user 
with a superior product in terms of performance, 
reliability, testability and programmability. 

PALiII> is a registered trademark of Monolithic Memories, Inc. 

Functio:~al Description 
General 
The variations of PLD functions available are listed in 
Table 1. The 16L8, which is used as an example (see Figure 
2), is purely combinatorial and consists of eight groups of 
7-input AND gates, each of which can have up to 32 
inputs. One of the AND gates of each group (of 8) is used 
to enable the (inverting) output driver, so that 7 AND 
gates (each of which may have 32 inputs) each feed one OR 
gate, whose output is inverted. \ 

-The 16R8 is similar to the 16L8, except that the outputs 
. are latched using D flip-flops (with a common clock), the 

inputs to the 8 OR gates are the outputs of 8 AND gates; 
the three-state output drivers are enabled by a common 
enable input. 
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The reader should refer to the PLD data sheets for a more 
detailed description of the other members of the family. 
The 16R4, 16R6 and 16R8 have 4, 6, or 8 registered 
outputs with feedback. 

The 22VIO offerS a unique macro-cell flexibility to allow 
any combination of up to 10 combinatorial or registered 
outputs. In a similar manner the 20010 uses macro-cells to 
allow the user to program the functionality of the 10 most 
popular PAL@> 24 devices. 

Register Preload 
The preload function is used to load data into the internal 
register (of registered devices) for testing purposes. This 
significantly simplifies and shortens tile testing procedure. 
Loading is accomplished by applying· a supervoltage pulse 
of at least 100 microseconds duration to pin 5 as a write 
pulse while pin II is held at VIH and qata is applied to 
pins 12 through 19. 

Security Function 
The security function prevents the contents of the regular 
array from being electrically verified. This enables the user 
to safeguard proprietary logic. The EPROM technology 
prevents the state of the cell from being visually 
ascertained. The security function is implemented by 
programming an EPROM cell that disconnects the lineS 
that are used to verify the array. This cell has been 
designed to retain its charge longer than any of the other 
cells in the array. 
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Commercial Selection Guide 

Generic 
Output Ice mA tpDns tsns loons 

Part Logic 
Enable 

Ontputs 
Number L STD ·25 ·35 ·25 ·35 ·25 ·35 

16L8 
(8) 7-wide 

Programmable 
(6) Bidirectional 

45 70 25 35 - - - -
AND-OR-Invert (2) Dedicated 

16R8 (8) 8-wide AND-OR Dedicated Registered Inverting 45 70 - - 20 30 15 25 

(6) 8-wide AND-OR Dedicated Registered Inverting 

16R6 (2) 7-wide 
Programmable Bidirectional 

45 70 25 35 20 30 15 25 
AND-OR-Invert 

(4) 8-wide AND-OR Dedicated Registered Inverting 

16R4 (4) 7-wide 
Programmable Bidirectional 

45 70 25 35 20 30 15 25 
AND-OR-Invert 

20010 
(10) 8-wide AND-OR- Programmable Programmable Bidirectional - 55 25 35 15 30 15 25 
Invert with MACRO or Dedicated or Registered 

22VIO 
(10) variable AND-OR-

Programmable 
Programmable Bidirectional 

55 90 25 35 15 30 15 25 
Invert with MACRO or Registered 

Military Selection Guide 

Generic 
Output Vce tpDns tsns loons 

Part Logic 
Enable 

Outputs 
mA 

Number ·20 ·25 ·30 -40 ·20 -25 ·30 -40 -20 ·25 ·30 -40 

16L8 
(8) 7-wide 

Programmable 
(6) Bidirectional 

70 20 NA 30 40 - NA - - - NA - -AND-OR-Invert (2) Dedicated 

16R8 
(8) 8-wide 

Dedicated Registered Inverting 70 - NA - - 20 NA 25 35 15 NA 20 25 
AND-OR 

(6) 8-wide 
Dedicated Registered Inverting 

AND-OR 
16R6 70 20 NA 30 40 20 NA 25 35 15 NA 20 25 

(2) 7-wide 
Programmable Bidirectional 

AND-OR-Invert 

(4) 8-wide 
Dedicated Registered Inverting 

AND-OR 
16R4 70 20 NA 30 40 20 NA 25 35 15 NA 20 25 

(4) 7-wide 
Programmable Bidirectional 

AND-OR-Invert 

(10) 8-wide Programmable 
20010 AND-OR-Invert Programmable Bidirectional 80 NA - 30 40 NA - 25 35 NA - 20 25 

with MACRO or Registered 

(10) variable Programmable 
22VIO AND-OR-Invert Programmable Bidirectional 100 NA 25 30 40 NA 20 25 35 NA 20 20 25 

with MACRO or Registered 

Table 1. PLD Selection Guide 

4-13 



~ Programmable Logic Device Application Bri~f 
~~~~========================~======================~========~ 

~ 
I 
!! 

~ 
II: 
w 
l-

I 

INPUTS 10 - 31) .... ..... 
PoP, ... 012 3 .. I' 7 • "011 1213141' 11171,'1 20212223 U2I2I27 21213031 

0 

.l • 2 

• 4 ..... 19 

• • 7 

. 
• J. • .. 
n 
.2 to""" 

18 

.3 .. .. 
""\-t .. 

J. 17 .. .. ....... 
30 to""" 
2' 

17 

22 
23 

24 
21 rt. 21 
27 
21 
21 

16 

30 .. 
.. 

J. .. 
34 
31 

• to""" 
37 

15 

31 

• 
8 .. 

~ 
4. 
4Z .. 
44 .. 14 .. 
47 .. 

7 .. 
J. .. .. 

&1 
12 to""" .. 13 

54 
II 

8 .. 
J. .7 

58 .. .. to""" 
12 ., 

82 .. 
9 11 -I. 

'O"'2P3 0 1 2 3 .... 7 • 91011 12131416 1817181' 20212223 24212827 28293031 

0049-2 
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There are 2048 EPROM cells in the PAL C 20 array that 
are used to specify up to 32 inputs for 8 groups of 7-input 
AND OR gates and 8 32-input AND output enable gates. 
In normal usage, a maximum of 16 inputs would be 
connected to any AND gate, because connecting both a 
true and a complement input of the same' signal to the 
input of an AND gate will result in a constant LOW 
output. ' 

Phantom Array 
There are an additional 256 bits in a phantom array that 
are used to test the PAL C 20 device functionally and to 
verify dynamic (AC) operation without using the regular 
array after the device is packaged. The phantom array is 
programmed and verified as part of the final electrical test 
procedure during the manufacturing process. It may be 
used by the customer as part of an incoming inspection and 
could be used to verify programmability as well as 
functionality. Three input pins are used to verify operation 
of the phantom array. One (pin 2) has a worst case (longest 
physical length) propagation delay path through the 
regular array. 

Programming the Arrays 
The phantom array is programmed in the same manner as 
the . regular array. Both are addressed as byte arrays for 
programming. The normal array has 256 bytes to program 
and the phantom array has 32 bytes. The customer may 
test the programmed phantom array functionally and 
dynamically as part of an incoming inspection. 

Programming the EPROM Cell 
A schematic of the two-transistor EPROM cell used in aU 
PLDs is illustrated in Figure 1. Conventional EPROMS 
use one transistor per cell and its design is a compromise 
between being able to program (write) rapidly and read. 
Cypress uses a two-transistor cell that enables the PLDs to 
achieve superior performance by optimizing the read 
transistor, R, and program transistor, P, for their 
respective functions. The cell size is 20.4 microns by 6.7 
microns. Note that the selection 'gates, the floating gates 
and the sources of both transistors are (respectively) 
connected together. 

Operation 
In the unprogrammed state, the threshold voltage of the R 
transistor is less than that of the P transistor. 
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Figure 1. PLD EPROM Cell Schematic 

To program the cell, the input line (A) is raised to 15 volts, 
which causes charge to be stored on the floating gate of the 
P transistor, which causes its threshold to increase by 
approximately 7 volts. Because the floating gates of both 
transistors are connected together, the threshold of the R 
transistor increases by the same amount. 

To read from the cell, the input line (A) is raised to 5 volts. 
If the cell had been programmed, this voltage would not be 
sufficient to tum-on the read transistor. However, if the 
cell had not been programmed, the read transistor would 
tum-on. Under this condition the current through the read 
transistor is 150 microamperes; approximately an order of 
magnitude greater than that used in a conventional 
EPROM cell. The larger current is required in order to 
achieve the specified performance. 

Operational Overview 
The device operates in two basic modes; normal and 
PROGRAM. In the normal mode either the Regular array 
or the Phamtom array may be used, together with the data 
inputs, to determine the state of the outputs. In the 
PROGRAM mode either the Regular array or the 
Phantom array may be programmed using the 8 outputs 
(pins 12-19) as data inputs and pins 2 through 9 as address 
inputs. 

Table 2 illustrates the various modes of operation for the 
PAL C 20 device. They are decoded by high-voltage­
sensitive on-chip circuits. It is permitted to go from any 
mode to any other mode. Note that the normal data output 
pins (12-19) are used as data input pins for programming. 

Programming 
Tables 3 and, 4 indicate how the regular and the phantom 
arrays in the PAL C 20 device are addressed. The 20010 
and 22VI0 are similar. The regular array is addressed as a 
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256 word (8 X 32) by 8-bits per word memory. The 
phantom array is selected using the same addresses as 
columns 0, 1, 2 and 3, but with pin 7 at Vpp (per Tables 2 
and 4). 

In either case (normal or phantom array), the product 
terms are addressed in groups of 8 as shown in Table 3. 
There is a one-to-one correspondence between the data to 
be programmed and the DO-D7 inputs and the product 
terms, as modified modulo 8, by the address on pins 2, 3, 4 
(Refer to Figure 2). In other words, a one on DO' 
corresponds to de-selecting the "product term input" at 
input line 0 and product tenD. 0, A one on Dl corresponds 
to de-selecting the product term input at input line 0 and 

product term 8, etc. One method of programming the array 
would be to program and verify the bits corresponding to 
the first ,product term address, and then increment a 
counter thllt generates the "OR" gate addresses (pins 2, 3, 
4) and then program ~d verify the second row of Table 3, 
andcontinlie this process 8 times until all 64 product terms 
associated with input line 0 have been programmed and 
verified. To select the second (1) input term, address pins 6, 
7, 8 and 9 are held LOW (as before) and pin 5 = HIGH. 
The preceding sequence is then repeated 31 more times" 
incrementing pins 5 through 9 in a binary sequence, to 
program and verify the entire array. The other members of 
the family are programmed in an identical manner. 

Table 2~ PAL C 20 Series Operating Modes 

Pin Name Vpp PGM/OE At 

Pin Number (I) (11) (3) 

Operating Modes 

PAL X X X 

Program PAL Vpp Vpp X 

Program Inhibit Vpp VIHP X 

Program Verify Vpp VILP X 

Phantom PAL X X X 

Program Phantom PAL Vpp Vpp X 

Phantom Program Inhibit Vpp VIHP X 

Phantom Program Verify Vpp VILP X 

Program Security Bit Vpp Vpp Vpp 

Verify Si:curity Bit X X (Note 8) 

Register Preload X X X 

Notas: 
1. Vpp = 13.S ±O.5V, Ipp = SO !!lA; Veep = S ±O.2SV; VIHP = 3V; 

VILP = O.4V. 
2. Measured at 10% and 90% points. 
3. Vss < X < VCCP. 
4. All "X" inputs operational per normal PAL function. 
S. Address inputs occupy Pins 2 thru 9 incluSive, for both programming 

and verification see programming address Tables 3 and 4. 
6. All "X" inputs operational per normalJ' AL function except that they 

operate on the function· that oCcupies the phantom array. 

A2 

(4) 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Vpp 

X 

A3 A4 AS D7-DO 
(5) (6) (7) (12-19) Notes 

X X X Programmed Function 3,4 

X X X Data In 3,5 

X X X HighZ 3,5 

X X X Da:taOut 3,5 

X Vpp X Programmed Function 3,6 

X X Vpp Data In 3,7 

X X Vpp HighZ 3,7 

X X Vpp Data Out 3,7 

X X X HighZ 3 

X X X HighZ 3 

Vpp X X Data In 3,9 

7. Address inputs occupy Pins 2 thru 9 inclusive, for both programming 
and verification see programming address Tables 3 and 4. Pin 7 is 
used to select the phantom mode of operation and must be taken to 
Vpp before selecting phantom program operation with VPP on Pin 1. 

8. The state of Pin 3 indicates if the security function has been invoked 
or not. If Pin 3 = VOL security is in effect, if Pin 3 = VOH, the data 
is unsecured and !!lay be directly accessed. 

9. For testing purposes, the output latch on the 16R8, 16R6 and 16R4 
!!lay be preloaded with data' from the appropriate aasociated output 
line. 

Table 3. PALe 20 Series Product Term Addresses 

Product Term Addresses 

Binary Address 

Pin NU!!lbers UneNumber 

(4) (3) (2) 

VILP VILP VILP 0 8 16 24 32 40 48 56 

VILP VILP VIHP I 9 17 25 33 41 49 57 

VILP VIHP VILP 2 10 18 26 34 42 50 58 

VILP VIHP VIHP 3 11 19 27 35 43 51 59 

VIHP VILP VILP 4 12 20 28 36 44 52 60 

VIHP VILP VlHP 5 13 21 29 37 45 53 61 

VIHP VIHP VILP 6 14 22 30 38 46 54 62 

VIHP VIHP VIHP 7 15 23 31 39 47 55 63 

DO Dl D2 D3 D4 D5 D6 D7 

Programmed Data Input 
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Table 4. PAL C 20 Series Input Term Addresses 

Input Term Addresses 

Input Binary Addresses 

Terms Pin Numbers 
Numbers (9) (8) (7) (6) (5) 

0 VILP VILP VILP VILP VILP 

I VILP VILP VILP VILP VIHP 

2 VILP VILP VILP VIHP VILP 

3 VILP VILP VILP VIHP VIHP 

4 VILP VILP VIHP VILP VILP 

5 VILP VILP VIHP VILP VIHP 

6 VILP VILP VIHP VIHP VILP 

7 VILP VILP VIHP VIHP VIHP 

8 VILP VIHP VILP VILP VILP 

9 VILP VIHP VILP VILP VIHP 

10 VILP VIHP VILP VIHP VILP 

11 VILP VIHP VILP VIHP VIHP 

12 VILP VIHP VIHP VILP VILP 

13 VILP VIHP VIHP VILP VIHP 

14 VILP VIHP VIHP VIHP VILP 

15 VILP VIHP VIHP VIHP VIHP 

16 VIHP VILP VILP VILP VILP 

17 VIHP VILP VILP VILP VIHP 

18 VIHP VILP VILP VIHP VILP 

19 VIHP VILP VILP VIHP VIHP 

20 VIHP VILP VIHP VILP VILP 

21 VIHP VILP VIHP VILP VIHP 

22 VIHP VILP VIHP VIHP VILP 

23 VIHP VILP VIHP ViHP VIHP 

24 VIHP VIHP VILP VILP VILP 

25 VIHP VIHP VILP VILP VIHP 

26 VIHP VIHP VILP VIHP VILP 

27 VIHP VIHP VILP VIHP VIHP 

28 VIHP VIHP VIHP VILP VILP 

29 VIHP VIHP VIHP VILP VIHP 

30 VIHP VIHP VIHP VIHP VILP 

31 VIHP VIHP VIHP VIHP VIHP 

PO VILP VILP Vpp X X 

PI VILP VIHP Vpp X X 

P2 VIHP VILP Vpp X X 

P3 VIHP VIHP Vpp X X 
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Implementation 
A simplified block diagram of a 16L8 is presented in Figure 
3. The method of programming and sensing is illustrated in 
Figure 4. 

Programming Operation 
Pins 5-9 are decoded (according to Table 4) in a one of 32 
decoder, whose outputs correspond to the inputs labeled 
0-31 of Figure 2. For programming, 15 volts is applied to 
the bottom of the. input term line through a weak depletion 
mode device (Figure 4). The EN (enable) signal to all ofthe 
three-state drivers is LOW, which prevents the normal 
input signals from driving the input term lines during 
programming. The DO-D7 inputs (pins 19 through 12) 
drive the program transistors (0, 8, 16, 24 etc.) as selected 
by pins 2, 3, 4 and as listed in Table 3. To disconnect an 
input term line from a product term line, the P transistor is 
forward biased, which increases the threshold of the R 
transistor. 

Verify Operation 
To verify the programmed cells, the device must go from 
the PROGRAM mode to the PROGRAM INHIBIT 
mode to the PROGRAM VERIFY mode. This is 
accomplished by reducing the voltage on pin 11 to VIHP 
(3V) and then to VILP (0.4V). Internal to the device (see 
Figure 4) the 1 of 32 decoder is disabled, the EN signal is 
LOW, and 31 of the 32 input term lines are at zero volts. 
The line being verified is at 5 volts. The input address lines 
(pins 2 through 9) do not need to change when going from 
program to verify. 
The "ones" that were programmed cause the thresholds of 
the R transistors to increase, so they do not turn on during 
verify. Conversely, the unprogrammed transistors do turn 
on, so the complement (inverse) of the data programmed is 
read during verify. 

Normal Operation 
The PAL device will implement the programmed function 
when there are no supervoltages applied to any of the pins. 
During regular PAL operation the 1 of 32 decoder and the 
DO-D7 decoder are disabled, the EN signal is HIGH and 
all 32 input term lines are at 5 volts. Under these 
conditions, the data at the input pins is applied to all 64 of 
the product term lines. If any of the P transistors (16 per 
product term line) had not been programmed, they will 
turn on and pull the lower input to the corresponding sense 
amplifier (SA) to 2 volts or less. This voltage will be less 
than the reference (V ref) so that the output of the sense 
amplifier will be LOW. 

The reference is an unprogrammed EPROM cell that 
tracks the same process, voltage and temperature 
variations that affect all of the cells in the array. It is 
approximately three volts at room temperature and 
nominal (5 volts) Vee. 
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Phantom Operation 
The PAL C 20 device is in the PHANTOM mode of 
operation when a supervoltage (Vpp = 13.5V) is applied to 
pin 6. The phantom array is programmed as shown in 
Figure 2. The user may measure the worst case propagation 
delay from the pin 2 input to the outputs (pins 12 through 
17). The truth table for the phantom array is shown in 
Table 5. 

Table 5. Phantom Array Truth Table 
Inputs Outputs 

Pin 2 3 4 19 18 17 16 15 14 13 12 

0 0 I X X I I I I I I 
I 0 I X X 0 0 0 0 0 0 
0 I X I 0 X X X X X X 
0 I X 0 I X X X X X X 

Reliability 
Reliability is designed into all Cypress products from the 
beginning by using design techniques to eliminate latchup, 
improve ESD and by paying careful attention to layout. In 
addition, all products are tested for all known types of 
CMOS failure mechanisms. 

Failure mechanisms can be either classified as those 
generic to CMOS technology or those specific to EPROM 
devices. 

Table 6 lists both categories of failures, their relevant 
activation energies, Ea in eV (electron volts), and the 
detection method used by Cypress. In both cases, the 
mechanisms are aggravated by HTOL (High Temperature 
Operating Life) tests and HTS (High Temperature Storage) 
tests. 

Specific EPROM failure mechanisms include charge loss, 
charge gain and electron trapping. Charge loss is 
accelerated by thermal energy and field emission effects. 

Thermal charge loss failures usually occur on random bits 
and are often related to latent manufacturing defects. 

Field emission effects are generally detected as weakly 
programmed cells. The high voltages used to program ~ 
"selected bit" may disturb (as a result of a defect) an 
"unselected bit" 

Charge gain is due to electrons accumulating on a floating 
gate as a result of bias or voltage on the gate. This results in 
a reduced read margin. This mechanism is generally 
negligible. 

Charge gain and charge loss are monitored on every 
Cypress die in wafer form by programming, performing a 
HTS test and verifying that the programmed data is 
retained in the device. 

Table 6. Generic CMOS Failure Mechanisms 

Mechanism 
Activation 

Energy (eV) 

Surface Charge 0.5 to 1.0 

Contamination 1.0 to 1.4 

Electromigration 1.0 

Micro-cracks -

Silicon Defects 0.3 

Oxide Breakdown 0.3 

Hot Electron Injection -

Fabrication Defects -
Latchup -

ESD -

Charge Loss 0.8 to 1.4 

Charge Gain 
0.3 to 0.6 

(Oxide Hopping) 

Electron Trapping 
-

in Gate Oxide 

Notes: 
Table 6 has been adapted from, "An Evaluation of 2708, 2716, 2532, and 
2732 Types of U-V EPROMS, Including Reliability and Long Term 
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Detection Method 

HTOL, Fabrication Monitors 

HTOL, Fabrication Monitors 

HTOL 

Temperature Cycling 

HTOL 

High Voltage Stress, HTOL 

LTOL (Low Temp. Operating Life) 

Burn In 

High Voltage Stress, Burn In, 
Characterization 

Characterization 

HTS (High Temperature Storage) 

HTOL 

Program/Erase Cycle 

Stability." Danish Research Center for Applied Electronics, Nov. 1980. 
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HTOL Testing 
High Temperature Operating Life test (or burn-in) is used 
to detect most generic CMOS failure mechanisms. Units 
are placed in sockets under bias conditions with power 
applied and at elevated temperatures for a specific number , 
of hours. This test is used to weed out the "weak sisters" 
that would fail during the first 100 to 500 hours of 
operation under normal operating temperatures. HTOL 
tests are also used to measure parameter shifts in order to 
predict (and screen for) failures that would occur much 
later. 

HTSTesting 
High Temperature Storage tests are used to thermally 
accelerate charge loss. These tests are performed at the 
wafer level and under unbiased conditions. Both pass/fail 
data as well as shifts in thresholds may be measured. For a 
more detailed discussion of charge loss screening the reader 
is referred to the article on EPROM reliability beginning 
on page 132 of the August 14, 1980, issue of Electronics 
magazine. 

The generally ,accepted screening method for identifying 
charge loss is a 168 hour bake at 250"C.This correlates 
with more than 220,000 years of normal operation at 70"C 
using a failure activation energy of 1.4 eV. 

Initial Qualification 
The process in general and the EPROM cell design in 
particular was qualified using HTS (bake) at 250"C for 256 
hours, in conjunction with an HTOL test at 125°C for 1000 
hours. 
Procedure 
Four wafers were erased using ultraviolet light and the 
linear thresholds of the cell read transistors measured at 
twenty-five "sites" on each wafer. 

The wafers were then programmed and the linear 
thresholds then measured and recorded. 
The wafers were alternately baked at 250"C and the linear 
thresholds measured and recorded at 0.25, 0.5, 1, 2, 4, 8, 
16, 32, 64, 128, and 256 hours. The number of device hours 
is then 100 X 256 = 25,600. 
Results 
The average threshold reduction due to charge loss was 
0.66 volts. The range was eight to ten percent of the 
average initial threshold of 7.7 volts. This reduced 
threshold is greater than four volts above the sense 
amplifier voltage reference. There were no failures. 

If the charge loss failure activation energy is assumed to be 
1.4 eV, the HTS time of 256 hours at 250"C translates to 
438,356 years of operation at 70"C. 

The time translations were computed using the industry 
standard Arrhenius equation, which converts the time to 
failure (operating lifetime) at one temperature and time to 
another temperature and time. ' 
Summary 

Sample size: 100 
Device hours: 25,600 hours 

HTS conditions: 256 hours at 250'C 
Average initial threshold: 7.7 volts 

Average threshold decrease: 0.66 volts 
Standard deviation: 0.12 

Lifetime (1.4 ev): 438,356 years at 70'C 

Conclusion 
An HTS experiment, performed according to industry 
standard conditions, and using representative Cypress 
product confirms that the data retention characteristics of 
the EPROM cell used in all Cypress PLDs and PROMs 
guarantees a minimum operating lifetime of 438,356 years 
for activation energies of 1.4 eV. 

Production Screen 
Units from the same population were assembled without 
being subjected to HTS and were subjected to an HTOL of 
150 degrees C for 1000 hours. The units were tested at 12, 
24,48,96, 168,336, and 1008 hours and the measurements 
recorded. Variations in the thresholds of the EPROM cells 
were measured and correlated to the units tested in the 
HTS test in order to determine a maximum acceptable rate 
of charge loss in order to guarantee data retention over 
their normal operating lifetime. 

Advantages Over Bipolar 
Lower power results in several benefits to the user. They 
are: 
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• Lower capacity and, therefore, lower cost power 
supplies. 

• Reduced cooling requirements. 
• Increased long term reliability due to lower die junction 

temperatures. 

Power dissipation may be further reduced by driving the 
inputs between 0.5 volts (or less) and 4 volts (or more). 
This reduces the power dissipation in the input TTL to 
CMOS buffers, which dissipate power when their inputs 
are between 0.8 volt and 3 volts. Each buffer draws 
approximately 0.8 rnA of Icc current at VIN = 2 volts. 
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Figure 5. Input Protection Circuit 

Appendix 
The Cypress double-layer polysilicon, single-layer metal, 
N-well, CMOS technology has been optimized for 
performance. Careful attention to design details and layout 
techniques has resulted in superior performance products 
with improved ESD input protection and improved 
latchup protection. 

Input ESD Protection 
The circuit shown in Figure 5 is used at every input pin in 
all Cypress products to provide protection against ESD. 
This circuitry has been designed to withstand repeated 
applications of high voltages without failure or 
performance degradation. This is accomplished by 
preventing the high (ESD) voltage from reaching the thin 
gate oxides of the internal transistors. 

The circuit consists of two thick oxide (field) transistors 
wrapped around an input resistor (Rp) and a thin oxide 
(gate) transistor with a relatively low breakdown of 12 
volts. Large input voltages cause the thick oxide transistors 
to turn on, discharging the ESD current to ground. The 
thin oxide transistor breaks down when the voltage across 
it (drain to source) exceeds 12 volts. It is protected from 
destruction by the current limiting action of Rp. 

Experiments have confirmed that this input protection 
circuitry results in ESD protection in excess of 200 I volts. 

Definition of Latchup 
Latchup is a regenerative phenomenon that occurs when 
the voltage at an input pin or an output pin is either raised 
above the power supply voltage potential or lowered below 
the substrate voltage potential (which is usually ground). 

Current rapidly increases until, in effect, a short circuit 
from V cc to ground exists. If the (V cd current is not 
limited it will destroy the device; usually by melting a 
metal trace. 

Causes of Latchup 
The CMOS processing, which provides both N-channel 
and P-channel MOS transistors, also inherently provides 
parasitic bipolar transistors; both NPNs and PNPs. 
Latchup is caused when these parasitic transistors are 
inadvertently turned on. 
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As long as the voltages that are applied to the package pins 
of the CMOS IC remain within the limits of the power 
supply voltages (usually 0 volts to 5 volts), these parasitic 
bipolar transistors will remain dormant (i.e., oft). However, 
when either negative voltages or positive voltages greater 
than the V cc supply voltage are appiled to input or output 
pins, these parasitic bipolar transistors may turn on and 
cause latchup. 

Conditions For Latchup 
A cross section of a typical CMOS inverter using a 
P-channel pullup transistor and an N-channel pulldown 
transistor is shown in Figure 6. Also shown is an 
N-channel output driver that is isolated from the CMOS 
inverter by a guard ring (channel stopper) that is necessary 
to prevent parasitic MOS transistors between devices. P+ 
guard rings surround N-channel devices and N + guard 
rings surround P-channel devices. The parasitic SCR 
(pNPN) and bias generator are illustrated in Figure 7. The 
output driver schematic is not shown. 

In order for latchup to occur two conditions must be 
satisfied; (1) the product of the betas of the NPN and PNP 
transistors must be greater than one, and (2) a trigger 
current must exist that turns on the SCR. 
Since the SCR structure in bulk CMOS cannot be 
eliminated, preventing latchup is reduced to keeping the 
SCR from turning on. If either RWELL = 0 or RsUB = 0 
the SCR cannot turn on because the base emitter junction 
of the PNP cannot be forward biased.because they are tied 
together and the base emitter junction of the NPN cannot 
be forward biased because the base is connected to ground. 
Note, however, that the NPN could be turned on by a 
negative voltage on the output pin (if the right end of RsUB 
is grounded). 

Prevention of Latchup; Traditional 
Approaches 
The traditional cures include increased horizontal spacing, 
diffused guard rings and metal straps to critical areas. 
These solutions are obviously opposite to the goal of 
greater density. 

A brute-force approach that has been successful in 
reducing latchup has been to increase the conductivity of 
the N-well and the substrate. Changing the well 
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Figure 6. CMOS Cross Section and Parasitic Circuits 

conductivity is unacceptable because it affects the 
characteristics of the P-channel MOS transistors. Using an 
epitaxial layer to reduce the substrate resistivity (RSUB) is 
another possible solution. 

Vee 
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Substrate Bias Generator -
Figure 7. Parasitic SCR and Bias Generator 

The Cypress Solution to Latchup 
Cypress uses several design techniques in addition to 
careful circuit layout and conservative design rules to 
eliminate, latchup. 

NMOS Output Pullup Transistors 
Conventional CMOS technology uses a P-channel MOS as 
a pullup transistor, on the output drivers. This has the 
advantage of being able to pull the output voltage HIGH 
level to within 100 millivolts of the positive voltage supply. 

/ 

However, this is of marginal value when TTL compatibility 
is required. In addition, the P-channel pullup is sensitive to 
overshoot and introdllces another vertical PNP transistor 
that fqrther compounds tile latchup problem. Cypress ilses 
N-channel pullup transistors that eliminate all of these 
problems and still maintain TTL compatibility. 

Substrate Bias Generator 
Cypress is the first company to use a substrate bias 
generator with CMOS technology. The bias generator 
keeps the substrate at approximately - 3 volts DC, which 
serves several purposes. 

Input Pins 
The para1!itic diodes shown in Figure 5 cannot be forward 
biased unless the voltage at an input pin is at least one 
diode drop more negative than - 3 volts. This translates 
into increased device tolerance to (negative voltage) 
undershoot at the input pins, caused by inductance in the 
leads. If the undershoot is this large, the output impedance 
of the bias generator itself is sufficient to prevent trigger 
current from being generated. 
Output Pins 
The same reasoning applies to negative voltageS at the 
output pins as shown in Figure 7. In oider to tum on the 
NPN transistor the voltage at the output pin must be at 
least one VBE more negative than - 3 volts. 
Guard Ring 
To protect the "core" of the die from free floating holes 
and stray currents, a diffused collection guard ring that is 
strapped with metal and connected to the bias generator is 
used. This provides an effective wall against transient 
currents that could cause mis-reading of the EPROM cells. 
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Introduction 
Digital encoding and decoding of data is often used to in­
crease the reliability of data transmission and storage. One 
area where digital techniques are employed is the transfor­
mation between data stored on one-quarter inch magnetic 
tape and serial digital data. 

This document describes the procedure used to en­
code/decode serial digital data for recording/reading from 
one-quarter inch magnetic tape using a Cypress CMOS 
PAL C 16R6 to implement the logic. 

History 
The recording format and the Group Code Recording 
(GCR) code have been adopted and incorporated in a se­
ries of standards by a committee called the QIC (Quarter 
Inch Cartridge) Committee, composed of manufacturers 

t PULSE DATA 
DEl. i- SEP. 

WRITE I 
AMP. 

W 

V 
TAPE I 
POS. J 
DRIVE 

and users of quarter inch tapes and cartridges. The purpose 
of the committee is to insure compatibility between manu­
facturers and reliability to end users. 

Quarter inch tape cartridges are used extensively to backup 
or archive data from hard disks. Most drives are operated 
in a continuous or streaming mode (for reasons that will be 
discussed later) and data is recorded at 10,000 FRPS (Flux 
Reversals Per Inch) in a serpentine manner on seven to 
fourteen channels. The tape moves at 30 to 90 ips (inches 
per second) and the error rates achieved are one in 109 or 
1010. A cartridge holds 2000 to 3000 feet of tape 0.001 inch 
thick and stores 20 to 80 million bytes (mega-bytes) of 
data. 

Typical System 
A block diagram of a typical system is shown in Figure 1. 
The interface between the Host (or Host Adapter) is bi-

; 
I . 

r---

TAPE HOST 
fORMATTER ADAPTER HOST OR 

CONTROLLER 

!...--

fORMATTER HOST 
QIC-24/36 QIC-02 0060-1 

QIC50 SCSI 
QIC59 IPI 

Interface 
Standards 

Interface 
Standards 

Figure 1. A Typical Tape Drive System 

PAL'- is a registered trademark of Monolithic Memories Inc. 
ABELTM is a trademark of Data I/O Corporation 
P ALASMTM is a trademark of Monolithic Memories Inc. 
V AXTM is a trademark of Digital Equipment Corp. 
WORDSTARTM is a trademark of MicroPro International 
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directional, with a i>yte-wide data path and 10 to 20 control 
signals, depending upon the interface standard. Data rates 
are 300 KBs (thousand Bytes per second) to I MBs (Mil­
lion Bytes per second). 

The Formatter or Tape Controller performs seria1/parallel 
conversion and encoding/decoding of the data as well as 
error checking and, in some cases, error correcting. Con­
trol is usually provided by a state machine that handles the 
handshaking between the· host as well as control of the 
tape. Data is written in blocks of various lengths (depend­
ing upon the standard) and a "rea{i after write"check is 
usually performed. Buffer storage of at least two blocks of 
data is usually provided using static RAMs (SRAMs), 
FIFOs, or some combination of the two. 

The Drive electronics consist of digital signals that control 
and sense the tape motion and analog signals in the read 
and write paths. The interface between the Drive and the 
Formatter is digital and, once again, there are various stan­
dards. 

Reading and Writing on Tape 
To write on the tape a current of 100 mA or less is used to 
change the direction of magnetization. To read from the 
tape a coil of wire (the read head) is held against the tape 
and a voltage (10 mY or less) is induced by the change in 
direction of the magnetic flux on the tape. 

Recording Codes 
All codes used for recording on magnetic mediums are 
classified as Franaszek Run Length Limited (RLL) codes 
of the form: 

(D,K) 

where D = the minimum number of zeros between con­
secutive ones, and 

K = the maximum number of zeros between con­
secutive ones. 

D controls the highest frequency that can be recorded and 
K controls the lowest frequency. 

o o o 1 

Using the Franaszek notation, the OCR eo<!e is (1,2). As 
illustrated in Figure 2, a flux reversal signifies a one and the 
absence of a flux reversal signifies a zero. This is true for all 
codes. 

Peak Detection and Data Separation 
Peaks are detected (versus zero crossings) because the cir­
cuits used are less sensitive to noise. The output of the peak 
detector goes to the most critical analog circuit in the 
drive; the data separator. 

The function of the data separator is to provide ones and 
zeros that OCCur at a precise frequency. It does this by first 
synchronizing itself to a crystal controlled reference clock 
and then attempting to "lock" itself to the maximum data 
frequency on the tape by finding the phase difference be­
tween itself and the data output of the peak detector and 
driving a voltage controlled oscillator (YCO) such that 
they are equal. This is called a Phase Locked Loop (PLL). 
The frequency of the reference clock must be at least twice 
(2t) that of the highest frequency that is to be read (t). 

The PLL is synchronized to the 2f reference frequency 
when it is not in use. A string of ones is recorded, which is 
called the preamble, before the block of data is recorded. 
When the command to read is given, the 2f reference fre­
quency is removed from the data separator and the signal 
from the peak detector is applied to the data separator. The 
PLL then attempts to "lock" to the preamble. Just after the 
preamble, a code violation is recorded so that the Format­
ter can recognize where valid data begins. The procedure 
of locking onto the preamble is called "getting bit sync.'~ 
The detection of the code violation is called "obtaining 
byte sync". 

PLLs typically exhibit frequency .and phase offsets during 
acquisition of the preamble. Phase errors also occur after 
lock, during the reading of the data field. Differences in 
tape speed during record and playback (as well as from 
unit to unit) result in frequency differences between the 
data read from the tape and the 2f reference. 

Random phase errors caused by noise, intersymbol inter­
ference (bit crowding), timing errors and other transients 
may also get the PLL out of lock. 

The data separator's PLL is susceptible to these errors be­
cause it must satisfy two conflicting conditions: (1) it must 

o o o 
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READING F'ROt.l TAPE 
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Figure 2 
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lock quickly enough to detect the preamble, but (2) it must 
not overcorrect phase for a single misaligned bit. 

Strings of zeros cause the phase of the PLL to shift and if 
the shift is larger than the "bit window", an error will 
occur. The QIC-24 standard calls for up to 37% bit shift 
tolerance, which means that the data separator must be 
able to recognize a "one" (flux transversal) that deviates 
± 18.5% from its expected time position without causing a 
data error. In order to achieve this performance a four-bit 
binary nibble is encoded into a five-bit "GCR code word" 
that is written onto the tape. 

Reasons for the GCR Code 
The 5-bit GCR code format is required to encode the data 
such that no more than two consecutive zeros occur in the 
serial data. This encoding relaxes the performance require­
ments of the PLL and the loop filter so that the desired 
system performance can be achieved. 

Static Tolerances 
Another reason for OCR encoding is to compensate for the 
speed variation of the tape due to: 

Mechanical Tolerances 
Cartridge 
Tape thickness (±3%) 

Tape Elasticity and Wear 

Motor Speed Variation 

Temperature and Humidity 

The preceding static tolerances can result in a ± 10% 
speed variation of the tape. 

Dynamic Tolerances 
In addition to the static tolerances, there are Instantaneous 
Speed Variations (ISV) due to discontinuous tape release at 
the unwind spool (10-20%), guide/back stick slip (5%) 
and shuftle ISV (vibration) due to start/stop (5-30%). The 
shuffle ISV can be avoided by operating the tape in a con­
tinuous (streaming) mode. If these dynamic tolerances are 
added together they can result in a ± 15% speed variation. 

Electronics Compensate 
The electronics in the tape controller and the drive are 
designed to compensate for the tape speed variations due to 
the mechanical tolerances. 

The compensation is performed by: 

Data Encoding and Error Detection and Correction 

Phase Locked Loop Design 

Bit Window Tolerance 

Sequence of Operations 
During a write operation the following sequence occurs: 

1. Idle (Hold) 

2. Convert 4-bit parallel input to 5-bit OCR code and 
load into 5-bit register. 

3. Shift out 5-bits to write amplifier. 
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During a read operation the following sequence occurs: 

1. Idle (same as during write) 

2. Shift in 5-bits. 

3. Detect sync mark 

Set/Clear invalid flag 

Convert 5-bit serial input to 4-bit binary value and 
load into register. 

Note: that the read clock and the write clock are not the 
same. 

Also, the logic must keep up with the tape data rate. 

And finally, the read and write operations are mutually 
exclusive so that the storage elements (D flip-flops) can be 
time-shared and that read and write operations require 5 
clocks. 

A total of 5 states are required because the idle state is 
common to both read and write operations. Therefore, 3 
control lines will be required. It is convenient to designate 
one control line as an enable line (active LOW) and the 
other two lines as Mode Control signals. 

The control of these lines is not described here, nor is the 
required clock synchronization. The reason for not doing 
this is that at the next level of control, system considera­
tions such as what action to take when errors occur must 
be implemented in hardware and these tend to be not only 
application dependent but also very subjective. 

The diagrams of Figure 3 show the flow of data under the 
control of the ENABLE signal and the MO and Ml mode 
control signals. 

The GCR Code 
The GCR code is part of the QIC-24 Standard and is also 
the ANSI X3.54 standard (1976). The MSB (leftmost bit) 
is recorded first. Note that there are a maximum of two 
consecutive zeros in the five-bit code that is recorded on 
the tape. 

4-BitCode 5-BitCode 
Line Number D D D D Y Y Y y S 

(For Ref.) 3 2 1 0 3 2 1 0 0 

0 0 0 0 0 1 1 0 0 1 
1 0 0 0 1 1 1 0 1 1 
2 0 0 1 0 1 0 0 1 0 
3 0 0 1 1 1 0 0 1 1 
4 0 1 0 0 1 1 1 0 1 
5 0 1 0 1 1 0 1 0 1 
6 0 1 1 0 1 0 1 1 0 
7 0 1 1 1 1 0 1 1 1 
8 1 .0 0 0 1 1 0 1 0 
9 1 0 0 1 0 1 0 0 1 

10 1 0 1 0 0 1 0 1 0 
11 1 0 1 1 0 1 0 1 1 
12 1 1 0 0 1 1 1 1 0 
13 1 1 0 1 0 1 1 0 1 
14 1 1 1 0 0 1 1 1 0 
15 1 1 1 1 0 1 1 1 1 

A A A A B B B B B 
3 2 1 0 0 1 2 3 4 

Figure 4. GCR Code 



~ PAVID C 16R6 GCR EncoderlDecoder 
~~~~~========================================================== 

ENABLE M1 MO OPERATION DATA FLOW DIAGRAM 

x X HOLD 

Y3 Y2 Y1 YO so 
r--- SIN 

o 0 0 SERIAL 
SHIFT IN 

Y3 Y2 Y1 YO SO 

o 1 0 CONVERT 
5-BIT TO 4-BIT 

Y3 Y1 YO SO 

D3 D2 Dl DO 

o 1 1 CONVERT 
4-BIT TO 5-BIT 

Y3 Y2 Yl YO SO 

o 0 1 SERIAL 
SHIFT OUT 

Y3 Y2 Yl YO SO 
0060-3 

Figure 3. Data Flow Diagrams 
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Design Procedure 
The design procedure will be to map the code conversions 
using Venn diagrams and write the logic equations as the 
"sum of products" or in minterm form. Six flip-flops are 
required, so the logic will be implemented using a PAL C 
16R6. Because the PAL device has inverting output buff­
ers, the zeros will be mapped. The 0 flip-flops require an 
"extra term" for them to hold their states when the EN­
ABLE is HIGH. 

For example, for a conventional 0 flip-flop the form of the 
logic equations would be: 

o = ENABLE 1 ( Q ) 

+ 
+ 

ENABLE 2 ( F2 ) 
ENABLE 3 ( F3 ) 

; RECIRCULATE 
PRESENT 
STATE 

; FUNCTION 2 
; FUNCTION 3 

Where the ENABLE controls . are mutually exclusive. 

4·Bit to 5·Bit Conversion for Y3 Output 
In Figure 4 (at the bottom) the 5-bit code columns are 
labeled BO through B4 to help the reader understand how 
the 4-bit code is mapped. In addition, the line numbers are 
labeled 0 through 15, which correspond to the values of the 
4-bit binary code. 

Figure 5a shows how the 4-bit binary code is mapped on 
the Venn diagram. For example, reference line number 
zero, which corresponds to binary value zero, is located in 
the lower right hand corner of Figure 5a. 

The Venn diagram of Figure 5b shows the conversion for 
the Y3 output. It is labeled the BO input to the 0 flip-flop. 
Note that the parallel nibble (see Figure 3) is reversed (end 
for end) so that the MSBis written first when it is shifted 
out. 

DO 

3 II 10 2 

01 

7 15 14 6 

02 

5 3 12 4 

I 9 8 0 

03 
0060-4 

Figure Sa. Binary Values 
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00 

1 0 0 1 

01 

1 0 0 1 

02 

1 0 1 1 

1 0 I 1 
\........I 

03 
0060-5 

Figure 5b. Y3 Map 

In Figure 5b, the ones and zeros in column BO are mapped. 
For example, reference line zero has the value 1 in column 
BO of Figure 4. Therefore, a one is placed in the square 
corresponding to binary value zero in Figure 5b. In a simi­
lar manner, ref. line 15 has a value of zero in column BO, so 
a zero is placed in the square corresponding to binary value 
fifteen. 
Writing the Equation 
If the output of the PAL C 16R6 were positive true logic, 
we would write the equation to include all of the ones on 
the Venn diagram. However, because the PAL device out­
put is negative logic (active LOW) we will write the equa­
tion to include all of the zeros. Then, when the PAL device 
inverts the signals, the zeros will be changed to ones, so 
that the final outputs will be positive true logic. 

By inspection: 

lID = 03 DO + 03 01 or, 

Y3=D3DO+D3D1 
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,..,~~~~==========================~~==~~~~~~==~~~~~ 
Design Procedure (Continued) 

4·Bit to S·Bit Conversions for Y2, YI, YO, So 
These are presented for the sake of completeness. 

D1 

D1 

DO 
./" ...... 

~ 1/ r:::;;; 
0 1 1 0 

~ 

0 1 1 0 

0 1 1 1 
'----./ 

1 1 1 1 

D3 

Y2 = BT = D3D! + IDD2DO 

Figure Sc. Y2 Map 

DO 

1 1 1 1 

1 1 1 1 

~ '0 0 0 1 

1 0 1 0 
'---' 

D3 

D2 

D2 

YO = B3 = IDD! 00 + D3D!DO + D2D! DO 

Figure Se. YO Map 

S·Bit to 4-Bit Conversion for Y Outputs 

0060-6 

0060-8 

This conversion requires two 16 square Venn diagrams be­
cause there are 25 = 32 possible binary values. However, 
note that in Figure 4 not all 32 possible combinations are 
used in the S-bit code columns. These unused combinations 
are "don't cares", which are represented by Xs in the 
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D1 

Dl 

(0 

1 .. 

1·· 

1(0 

1 

1 

1 

1 

DO 

0 0 

1 1 

1 1 

0 0 

D3 

YI =112= m 
Figure Sd. Y1 Map 

DO 

·1 0 

1 0 

1 0 

1 0 
'--' 

D3 

oj-

1 

1 

or 

0 

0 

1 

1 

so = B4 = DI DO + D3 00 
Figure Sf. SO Map 

P\ 
D2 

bJ 
0060-7 

D2 

0060-9 

Venn diagrams, which· can be either ones or zeros, which 
further reduces or simplifies the logic equations. 

The procedure is: plot the Is and Os 
put XS in the blank squares 
write the equations for the· zeros. 
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YO 

ICX 0 X 

Yl 

1 1 X 

1 1 X 

ICx 0 X 

50=0 Y3 

YO 

X 1 X 

Yl 

1 1 X 

0 0 X 

1 0 X 

50=0 Y3 

YO 

X 1 X 

Yl 

1 0 X 

1 0 X 

X 1 X 

so=O Y3 

YO 

X 0 X 

Yl ,-
0 0 X 

0 0 X 

X 0 X 

so=O Y3 

YO 

xJ reX 

Yl 

X 1 

Y2 

X 1 

X) f-(x -

Y3=A3=Y2+Y3So 
Figure6a 

X 

X 

X 

X 

YI 

Y2 

Yi:=A2=YI 
Figure 6b 

~ 

X 

·YO 

X 

1 

0 

X 

YO 

X 

VI 

~ -------
v--:; 

1 

Y2 

X 1 

X X 

YI=AI=YO+Y3Y2 
Figure 6c 

YO 

X X 

Yl 

X 1 

Y2 

X 1 

X X 

YO = X!l = Y3 Y2 YO + SO 
Figure6d 
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0 0 X) 

X 0 1 

Y2 

0 0 1 

0 X X) 

Y3 50=1 
0060-10 

1 1 X 

X 1 1 

Y2 

0 0 X 

0 0 X 

Y3 SO=1 
0060-11 

--........... 
1 0 X 

X 0 0 

Y2 

0 0 0 

1 X X 

Y3 50=1 
0060-12 

1 1 X 

X 0 1 

Y2 

1 0 1 

1 1 X 

Y3 SO=1 
0060-13 
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Design Procedure (Continued) 

Serial Shift In 
During serial shift in (both mode control signals LOW) the 
data output of the data separator is applied to the input of 
the formatter. The signal is called SIN and is applied to the 
D input of the SOUT flip-flop. The output of the SOUT 
flip-flop is applied to the D input ofthe YO flip-flop and its 
output is applied to the input of the Yl flip-flop, etc. AftCilr 
five read clocks the MSB of the 5-bit OCR coded data is in 
Y3 and the LSB is in SOUTo 

Serial Shift Out 
During a write operation, after the 4-bit data is converted 
to 5-bit data and reversed, it is shifted out using the write 
clock and written on tape. The shift direction is opposite to 
that in Serial Shift In. Note that it is right shifted "end 
around" (see Figure 3) so that after 5 write clocks the same 
data appears in the register. 

Invalid Flag ONV Flip-Flop) 
The Invalid flip-flop is set to a one when an invalid 5-bit 
code is read from the tape. This is used to tell the tape 
Formatter that the next data read is the beginning of the 
data block. This procedure is called getting "byte sync." 
INV is a negative true signal, so the logic equations are 
written for ones on the Venn diagram. 

The 16 binary values that are NOT listed in Figure 4 are 
plotted as ones in Figure 7. The procedure was to plot zeros 
in the squares where there were valid 5-bit codes, then ftll 
the rest with ones and then write the equation for the ones. 

The Invalid flip-flop is enabled by a signal called CIF 
(Control Invalid Flag) and reset when CIF is LOW. 

Synchronization Mark Detection 
Bit synchronization is achieved when the illegal 5-bit code 
of all ones is read from the tape. It is the logical AND of all 
five bits, or BS = Y3 • Y2 • Yl • YO • SOUTo 

Implementation Procedure 
Once the conceptual design has been completed, it must be 
reduced to practice. There are two main steps in the pro-
cess; 

1. describe. the logic using a high-level language, and 

2. program the PAL device. 

Several programs that run On the IBM PC (or equivalent) 
or the VAXTM Computer are available from either semi­
conductor manufacturers or from third party software ven­
dors. The first such program, called P ALASMTM (PAL 
device Assembler) was developed by Monolithic Memories. 
It enables the designer to describe the logic in terms of 
Boolean equations, truth tables, or state diagrams using a 
language whose syntax is comparable to a microcomputer 
assembly language. 

PALASM Equations 
The equations were written in the P ALASM syntax. The 
(ASCII) ftle created using WORDSTAR in the non-docu­
ment (N) mode is shown in Figure 8. 

Conversion to ABELTM 
The PALASM file (OCREX.PAL) was then translated to 
ABEL syntax using the TOABEL program. The format of 
the command is: 

TOABEL - IB:GCREX -OB:GCREXT 

The TOABEL program converted the OCREX.P AL file to 
a file named OCREXT.ABL, whose listing is shown in 
Figure 9. 

0060-14 

INV = YO SOOT + Y3" ~ + Y3" VI YO .;. Y3 Y2 Yi YO 80UT 
Figure 7 
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~ PAL® C 16R6 GCR Encoder/Decoder 
.rr~COIDUCfOR========== 
ABEL Program Procedure 
The ABEL program consists of an executive and several 
overlay programs that are executed by simply typing in; 

ABEL B:GCREXT 

followed by an enter (CR) from the keyboard of an IBM 
(or look-alike) PC. The ABEL program was developed by 
a programmer manufacturer, Data I/O Corporation. The 
source me may be simplified (logic reduction), a logic sim­
ulation may be performed, and test vectors may be generat­
ed. 

ABEL Programs 
The ABEL programs are: 

Program Name Function 

PARSE Read source file, check syntax, expand 
macros, act upon assembler directives. 

TRANSFOR Convert the description to an intermediate 
form. 

REDUCE Perform logic reduction. 

FUSEMAP Create the programmer load (JEDEC) file. 

SIMULATE Simulate the operation of a programmed 
device. 

DOCUMENT Create a design documentation file. 

ABEL Outputs 
The output mes are: 

GCREXT.LST 
GCREXT.OUT 
GCREXT.DOC 
GCREXT.SIM 

P16R6.JED 

see Figure 10 
(This design was not simulated.) 
see Figure 11 

PALASM Equations 

PAL16R6 DESIGN EXAMPLE 
PATOOl 
4B-5B ENCODER/DECODER 
CYPRESS SEMICONDUCTOR 

CK Ml MO D3 D2 Dl DO /EN /CIF GND 
/E SIN /INV YO Yl Y2 Y3 SOUT /BS vec 
/SOUT:= EN*/SOUT 

/EN*/Mlo/MO*/SIN 
/EN*/Ml*MOo/yO 
/EN°/Mlo/MO*/SIN 
/EN'/Ml' MOO Dlo/DO 
/EN°/Ml' MO' D3*/DO 

The last me is in JEDEC (JC-42.1-S1-62) format; suitable 
for loading into a PLD programmer. The listing is shown 
in Figure 11. The DOCUMENT program output is shown 
in Figure 10. 

Programming the 16R6 
The 16R6 was programmed using the Data I/O model29B 
programmer operated in the remote mode to the PC. The 
design was then verified by checking out the device on the 
bench. 

Summary 
Space Saving Advantage 
This design example illustrates the space saving advantage 
of Cypress CMOS PAL devices. The FUSEMAP program 
printed out that 40 of the 64 available product terms were 
used. 

If the P ALASM input equations of Figure 8 are imple­
mented in two-input gates, approximately thirty gates are 
required for each one of the six D flip-flop inputs, or a total 
of 6 X 30 = ISO two-input gates. The logic equations 
alone would then require ISO divided by 4 = 45 14 pin 
DIPs. The six flip-flops would require three 14 pin DIPs 
for a total of 4S DIPs. This example demonstrates the pow­
er of the Cypress PAL devices. 

Power Saving Advantage 
The maximum Icc current, under worst case conditions, 
for the PAL C 16R6L-25PC is 45 rnA. 

If the typical Icc per package is assumed to be 10 rnA, the 
total Icc for 50 TTL packages would be 500 rnA. 

The worst case Icc for the TTL system could be as high as 
20 rnA per DIP, which would mean a total of one Ampere 
for the system. 

The Cypress CMOS PAL device results in a system power 
reduction of between a factor of 10 or IS, depending upon 
whether typical or worst case numbers are compared. 

FILENAME; GCREX.PAL 
BRUCE WENNIGER 9/17/85 

+ HOLD/RECIRCULATE 
+ SERIAL SHIFT IN 
+ SERIAL SHIFT OUT 
+ CONV. SIN & LOAD 
+ CONV. PAR. & LOAD 

DITTO 
FigureS 
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P ALASM Equations (Continued) 

/YO 

/Yl 

/Y2 

/Y:S 

INV 

BS 

:= EN"/YO 
/EN"/Ml"/MO'/SOUT 
/EN"/Ml" MO"/Yl 
/EN" Ml"/MO'/SOUT 
/EN" Ml'/MO' Y:S· Y2'/YO 
/EN· Ml* MO' D2"/Dl*DO 
/EN' Ml* MO" D:S·/Dl· DO 
/EN' Ml' MO"/D:S*/Dl*/DO 

:= EN'/Yl 
/EN*/Ml*/MO*/YO 
/EN*/Ml* MO·/Y2 
/EN· Ml·/MO·/YO 
/EN· Ml*/MO" Y3* Y2 
/EN· Ml* MO*/D2 

:= EN"/Y2 
/EN*/Ml*/MO'/Yl 
/EN'/Ml* MO*/Y:S 
/EN' Ml"/MO'/Yl 
/EN" Ml* MO*/D:S* Dl 
/EN' Ml* MO·/D:S· D2' DO 

:= EN"/Y:S 
/EN"/Ml'/MO'/Y2 
/EN°/Ml* MOo/SOUT 
/EN' Ml'/MO" Y:S* SOUT 
/EN" Ml"/MO'/Y2 
/EN' M1* MO· D:S' DO 
/EN' M1* MO' D:S' Dl 

:=/CIF* INV 

CIF' Ml*/MO'/Y:S*/Y2 
CIF' Ml*/MO"/Y3/Yl"/YO 
CIF" Ml"/MO"/YO*/SOUT 
CIF" Ml·/MO· Y:S' Y2' Y1* 

= Y:S' Y2° Yl' YO' SOUT 

YO' SOUT 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

+ 

+ 
+ 
+ 
+ 

Figure 8 (Continued) 
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HOLD 
SERIAL SHIFT IN 
SERIAL SHIFT OUT 
CONV. SIN & LOAD 
DITTO 
CONV. PAR. & LOAD 
DITTO 
DITTO 

HOLD 
SERIAL SHIFT IN 
SERIAL SHIFT OUT 
CONV. SIN & LOAD 
DITTO 
CONV. PAR. & LOAD 

HOLD 
SERIAL SHIFT IN 
SERIAL SHIFT OUT 

;,CONV. SIN & LOAD 
CONV. PAR. & LOAD 
DITTO 

HOLD 
SERIAL SHIFT IN 
SERIAL SHIFT OUT 
CONV. SIN & LOAD 
DITTO 
CONV. PAR. & LOAD 
DITTO 

HOLD INV FLAG 
(ACTIVE LOW) 
SET IF INVALID 
DITTO 
DITTO 
DITTO 

BIT SYNC. 
(ACTIVE LOW) 



~ PAL@ C 16R6 GCR EncoderlDecoder 
~~~UaoR=============================================================== 
ABEL Listing 
module --gcrext; 
title 

flag '-rO; 

'PAL16RS DESIGN EXAMPLE FILENAME: GCREX.PAL 
PArOOl 
4B-5B ENCODER/DECODER 
CYPRESS SEMICONDUCTOR 
-Translated by TOABEL-' ; 
P16RS device 'PlaRS'; 

"declarations 
TRUE,FALSE = 1,0; 
H,L = 1,0; 
X,Z,C = .X.,.Z.,.C.; 

GND,VCC 
pin 10,20; 

CK,Ml,MO,D3,D2,Dl,DO,EN,CIF,E 

BRUCE WENNIGER 9/17/85 

pin 1,2,3,4,5,S,7,8,9,11; 

equations 

INV,YO,Yl,Y2,Y3,SOUT 
pin 13,14,15,16,17,18; 

SIN,BS 
pin 12,19; 

ISOUT := lEN & ISOUT 
# EN & IMI & IMO. & ISIN 
# EN & IMl & MO & lYO 
# EN & Ml & IMO & ISIN 
# EN & Ml & MO & Dl & IDO 
# EN & Ml & MO & D3 & IDO 

n HOLD/RECIRCULATE 
• SERIAL SHIFT IN 
• SERIAL SHIFT OUT 
n CONV. SIN & LOAD 
n CONV. PAR. & LOAD 
• DITTO 

lYO := lEN & lYO 
# EN & IMI & IMO & ISOUT 
# EN & IMI & MO &. lYl 
# EN & Ml & IMO & . I SOUT 
# EN & Ml & IMO & Y3 & Y2 
# EN & Ml & MO & D2 & 101 
# EN & Ml & MO & D3 & 101 
# EN & Ml & MO & 103 & 101 

Figure 9 
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& lYO 
& DO 
& DO 
& 100 ; 
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ABEL Listing (Continued) 

• HOLD 
" SERIAL SHIFT IN 

. "SERIAL SHIFT OUT 
" CONV. SIN & LOAD 
"DITTO 
·CONV. PAR. & LOAD 
·DITTO 
"DITTO 

IYl := lEN & IYl 
# EN & IMl & IMO & IYO 
# EN & IMl & MO & IY2 
# EN & Ml & IMO & IYO 

"HOLD 

# EN & Ml & IMO & Y3 & Y2 
# EN & Ml & MO & ID2 ; 

"SERIAL SHIFT IN 
·SERIAL SHIFT OUT 
·CONV. SIN & LOAD 
"DITTO 
·CONV. PAR. & LOAD 

IY2 := lEN & IY2 

"HOLD 

# ~N & IMl & IMO & IYl 
# EN & IMl & MO & IY3 
# EN & Ml & IMO & IYl 
# EN & Ml & MO & ID3 & Dl 
# EN & Ml & MO & ID3 & D2& DO 

·SERIAL SHIFT IN 
·SERIAL SHIFT OUT 
·CONV. SIN & LOAD 
·CONV. PAR. & LOAD 
"DITTO 

IY3 := lEN & IY3 
# EN & IMl & IMO & IY2 
# EN & IMl & MO & ISOUT 
# EN & Ml & IMO & Y3 & SOUT 
# EN & Ml & IMO & IY2 
# EN & Ml & MO & D3 & DO 
# EN & Ml & MO & D3 & Dl 

Figure \) (Continued) 
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ABEL Listing (Continued) 

"HOLD 
"SERIAL SHIFT IN 
"SERIAL SHIFT OUT 
"CONV. SIN &: LOAD 
"DITTO 
·CONV. PAR. &: LOAD 
"DITTO 

!INV := CIF &: lINV 
IMO &: 

IMO &: 

IMO &: 

IY3 &: IY2 
lY3 &: IYl &: IYO 
lYO &: ISOUT 

# lCIF &: Ml &: 

# lCIF &: Ml &: 

# ICIF &: Ml &: 

# lCIF &: Ml &: IMO &: Y3 &: Y2 &: Yl &: YO 

end --gcrext; 

" HOLD INV FLAG 
" SET IF INVALID 
" DITTO 
" DITTO 
" DITTO 

IBS = Y3 &: Y2 &: Yl &: YO &: SOUT; 
" BIT SYNC. 

Figure 9 (Continued) 
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~r~========== 
Document File 

Page 1 
ABELfM Version 1.10 - Document Generator 
PAL16R6 DESIGN EXAMPLE 

17-Sept-85 8:30 AM 
FILENAME; GCREX.PAL 

PATOOl BRUCE WENNIGER 9/17/85 
4B-5B ENCODER/DECODER 
CYPRESS SEMICONDUCTOR 
-Translated by TOABEL-
Equations for Module --gcrext 
Device P16R6 

Reduced Equations: 
SOUT := I ( lEN a: ISOUT 

# EN a: IMO a: IMl a: ISIN 
# EN a: MO a: IMl a: IYO 
# EN a: IMO a: Ml a: ISIN 
# IDO a: Dl a: EN a: MO a: Ml 
# IDO a: D3 a: EN a: MO a: Ml) ; 

YO .- I ( lEN a: IYO 
# EN a: IMO a: IMl a: ISOUT 
#ENa:MOa: IMl a: IYl 
# EN a: IMO a: Ml a: ISOUT 

I 

# EN a: IMO a: Ml a: IYO a: Y2 a: Y3 
# DO a: IDl a: D2 a: EN a: MO a: Ml 
# DO a: IDl a: D3 a: EN a: MO a: Ml 
# IDO a: IDl a: ID3 a: EN a: MO a: Ml) ; 

Yl := I ( lEN a: IYl 
# EN a: IMO a: IMl a: IYO 
# EN a: MO a: IMl a: IY2 
# EN a: IMO a: Ml a: IYO 
# EN a: IMO a: Ml a: Y2 a: Y3 
# ID2 a: EN a: MO a: Ml) ; 

Y2 .- I( lEN a: IY2 
# EN a: IMO a: IMl a: IYl 
# EN a:MO a: IMl a: IY3 
# EN a: IMO a: Ml a: IYl 
# Dl a: ID3 a: EN a: MO a: Ml 
# DO a: D2 a: ID3 a: EN a: MO 8C Ml) ; 

Y3 .- I ( lEN a: IY3 
# EN a: IMO a: IMl a: IY2 
# EN a: MO a: IMl a: ISOUT 
# EN a: IMO a: Ml a: SOUT a: Y3 
# EN a: IMO a: Ml a: IY2 
# DO &: D3 &: EN &: MO &: Ml 
# Dl a: D3 a: EN &: MO &: Ml) ; 

INV = I (CIF a: IINV 
Figure 10 
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Document File (Continued) 

ABELTM VERSION 1.10 - Document Generator 
PAL16R6 DESIGN EXAMPLE 
PATOOl 
4B-5B ENCODER/DECODER 
CYPRESS SEMICONDUCTOR 
-Translated by TOABEL­
Equations tor Module --gcrext 
Device P16R6 

IF ICIF Be IMO Be Ml Be 

IF ICIF Be IMO Be Ml Be 

IF ICIF Be IMO Be Ml Be 

IY2 Be IY3 
IYO Be IYl Be IY3 
ISOUT Be IYO 

Page 1 
17 Sept-85 8:30 AM 

FILENAME: GCREX.PAL 
BRUCE WENNIGER 9/17/85 

IF ICIF Be IMO Be Ml Be SOUT Be YO Be Yl Be Y2 Be Y3) ; 

BS = I (SOUT Be YO Be Yl Be Y2 Be Y3) ; 
Chip diagram tor Module --gcrext 
Device P16R6 

Figure 10 (Continued) 

PALC16R6 

CK 20 Vee 
loll 2 19 BS 

MO 3 18 SOUl 

03 .. Y3 

02 5 Y2 

01 6 Yl 

DO 7 YO 

EN 8 INV 

clr 9 SIN 

GNO 10 11 E 

0060-15 

end ot module --gcrext 
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W'r~UC!OR =========================;;;:;:;;;:;: 
JEDECFile 
ABEL!'" Version 1.10 JEDEC tile tor: P16R6 
Created on: 17-Sept-85 8:30 AM 
PAL16R6 DESIGN EXAMPLE 
PATOOl 
4B-5B ENCODER/DECODER 
CYPRESS SEMICONDUCTOR 
-Translated by TOABEL-* 
QP20· QF2048* 
LOOOO 
11111111111111111111111111111111 
11111101110111011101110111111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111110111111111111111110111111 
10111011111111111111111101111110 
10110111111111111111111001111111 
01111011111111111111111101111110 
01110111111111110111101101111111 
01110111011111111111101101111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111011111111111110111111 
10111011111111101111111101111111 
10110110111111111111111101111111 
01111001110111111111111101111111 
01111011111111101111111101111111 
01110111011111111111011101111111 
01110111011111110111111101111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111011111111111110111111 
10111011111111101111111101111111 
10110110111111111111111101111111 
01111001110111111111111101111111 
01111011111111101111111101111111 
01111111111111111111011101111111 
01110111011111110111111101111111 
00000000000000000000000000000000 
11111111111111101111111110111111 

FILENAME: GCREX.PAL 
BRUCE WENNIGER 9/17/85 

Figure 11 
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~ PAL@ C 16R6 GCR Encoder/Decoder 
~~~U~========================================================== 
JEDEC File (Continued) 

10111011111111111110111101111111 
10110111111011111111111101111111 
01111011111111111110111101111111 
01110111101111110111111101111111 
01110111101101111111011101111111 

00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111111111110111110111111 

10111011111111111111111001111111 
10110111111111101111111101111111 
01111011111111111111111001111111 
01111011110111011111111101111111 
01110111111110111111111101111111 

00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111111111111111010111111 
10111010111111111111111101111111 
10110111111111111110111101111111 
01111011111111111111111101111111 
01111011110111011111111001111111 
01110111111101111011011101111111 
01110111011111111011011101111111 
01110111101111111011101101111111 
11111111111111111111111111100111 
01111011111011101111111111111011 
01111011111011111110111011111011 
01111010111111111111111011111011 
01111001110111011101110111111011 

00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 

00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000' 
C8E51' 

D15A 

Figure 11 (Continued) 
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CYPRESS 
SEMICONDUCTOR 

Using ABEL to Program the Cypress 22VIO 

Introduction 

This document is a compilation of application examples 
using the popular P ALC22VlO Programmable Logic 
Device. The examples have been chosen to demonstrate 
the advanced features of the P ALC22VlO and some of 
the high-level logic description techniques of the ABEL 
programming langauge. Each of the first seven ex­
amples illustrates a specific P ALC22V10 feature. The 
feature is described and the ABEL programming lan­
guage statements necessary to implement the feature 
are listed. The ABEL files contain test vectors that ex­
ercise the feature. The remaining examples are com­
plete P ALC22V10 designs that combine many of the in­
dividual features. All of the examples have been tested 
and are available, by request, on floppy disk from 
Cypress Semiconductor. The design examples provided 
are: 

1. Asynchronous Reset/Synchronous Preset from' 
Single Inputs 
2. Asynchronous Reset/Synchronous Preset from 
Product Terms 
3. Asynchronous Reset/Synchronous Preset Used 
to Load Predetermined Non-Zero Values using 
'Istype' Statements 
4. Output Enable Control from a Single Input 
5. Output Enable Control from Product Terms 
6. Using 16 Product Terms - An 8-bit Identity 
Comparitor 
7. Using Feedback to Realize More than 16 
Product Terms in a 9-bit Single Output Identity 
Comparitor 
8. Bi-Directional I/O - Bus Interface with 
Answer-back 
9. lO-bit Address Generator / Multiplexer 
10. Triple State Machine Example 

The P ALC22VlO application examples are meant to be 
used as a reference for design engineers. These are ex­
cellent tools both for the designer new to programmable 
logic and for the veteran PLD user. All are encouraged 
to add the files to their ABEL source file libraries and 
to include any part of the files in their own designs. The 
files may be used as a template by editing them using 
any text editor in the non-document mode. Conversion 
to the CUPL ® or PLO ToolKit® programming lan­
guage is easily accomplished; the syntactical similarity 
of these languages makes this possible. For conversion 
to other languages, consult your user's guide. 

Notes on the ABEL Programming Language 

This section is provided as a brief introduction to the 
structure and syntax of the ABEL programming lan­
guage. A rudimentary understanding of the ABEL lan­
guage is necessary to fully appreciate the example files 
included in this brief. Experienced ABEL users may 
skip this section and proceed directly to the examples. 
An ABEL source file provides the information neces­
sary to describe the logical operation of a PLD design. 
The keywords and structure of these files can be seen in 
any of the examples. Source files are processed by the 
ABEL language processor which yields a JEDEC 
programming file and documentation of the design. The 
language processor also uses test vectors generated by 
the designer as part of the source file to test the 
functionality of the design. 

ABEL Design Entry Methods 

The ABEL programming language offers three methods 
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1'iin Using ABEL to Program the 22VIO 
~OR=====~=~== 

for defining the logical operation of given design. Th~se 
methods are: 

1. Boolean Equation 
2. Truth Table 
3. State Diagram 

A source file may include any or all of these design 
entry methods. The following sections describe the 
Boolean equation, truth table, and state diagram entry 
methods as well as the operators and notation conven­
tions used in the source files. 

ABEL Operators and Notation Conventions 

In addition to the standard AND and OR logical 
operators, ABEL supports. several high-level logic 
definitions. " + " and "*" signs, which in standard 
Boolean notation stand for OR and AND operations 
respectively, are interpreted by ABEL to be arithmetic 
addition and multiplication. This greatly simplifies the 
design of counter and ALU logic. Table 1 below shows 
the logical operators supported by ABEL. The labels A, 
B, and C in the examples may be either individual pins 
or a set of pins as defined in the source file. 

Table 1. ABEL Logical Operators 

Operator Definition 
NOT: ones compliment 

& AND 

# OR 
$ XOR: exclusive OR 

!$ XNOR: exclusive NOR 

Example 
C= !A; 
C = A&B; 
C = A#B; 
C = A$B; 
C = A!$B; 

Note that these operators may be used with operands of 
more than one bit on a bit by bit basis. For example, the 
result of logically ORing hexidetimal values of 8 and 2 
yields hexidecimal value A: 

"h08 # "h02 = "hOA 

Specifying Alternate Number Bases 

Note the "Ah" symbols in the example above. This sym­
bol instructs the langnage processor to interpret the 
value following the symbol as base-16 (hex). The default 
number base in ABEL is decimal but can be changed 

for individual expressions with "b (for binary), A 0 (for 
octal), A d (for decimal), or A h (for hexidecimal). The 
"@ radix" .command can be used to change the default 
number base to binary, octal, decimal or hexidecimal 
for all subsequent statements in a source document. 
The command "@ radix 16" is used in all of the source 
files in this brief to set the number base to hexidecimal. 

Arithmetic Operators 

Arithmetic operators are provided to allow for easy im­
plementation of math and shifting functions. Table 2 
lists the arithmetic operators supported by ABEL. 

Table 2. ABEL Arithmetic Operators 

Qp!:ratQr U!:finition Example 
2s complement C = -A; 
subtraction C = A-B; 

+ addition C = A + B; 

* multiplication C = A * B; 
integer division C = AlB; 

% remainder C = A%B; 
< shift left C=A<2; 

(shift left 2 bits) 
> shift right C=A>3; 

(shift right 3 bits) 

Shifting operations are unsigned and zeros are shifted 
into the side of the expression opposite the direction of 
the shift. Also note that the symbol "f' is interpreted as 
an unsigned division operation. Other programmable 
logic lang!13.ges use this symbol to indicate inversion. 
The symbol "%" gives the remainder of the division 
operation performed by"/". 

Relational Operators 

Relational operators perform various comparisons of 
elements in an expression and yield a Boolean true or 
false based on the result of the comparison. These 
operators greatly simplify the description of magnitude 
comparisons and reduce an identity comparison to a 
single statement. All relational operations are unsigned; 
care must be taken when negative numbers are repre­
sented in twos compliment. Table 3 lists the relational 
operators. 
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Table 3. ABEL Relational Operators 

°llllmtO[ Dilfiniljon Examllill 
equal C=(A= =B); 

!= not equal C=(A!=B); 
< less than C=(A<B); 
> greater than C=(A>B); 
<= less than or equal C=(A< =B); 
>= greater than or equal C=(A> =B); 

Relational operators are frequently used where ranges 
of values cause a given output. For example, if a certain 
active low chip select line (CS1) is to be decoded for 
any address from "h2000 and "h2FFF, the logic for 
this output could be written in a single line as: 

!CS1 = (ADD> = "h2000) & (ADD < = "h2FFF), 

Assignment Operators: Combinatorial and 
Registered 

Note that all example operations shown so far are for 
purely combinatorial outputs. The structure for com­
binatorial equations is: 

OUTPUT(s) = Expression(s) and/or Condition(s); 

The assignment operator is the "= ", meaning that 
OUTPUT(s) will combinatorially follow the evaluation 
of the expressions and conditions. If an output or set of 
outputs is registered (changing synchronously with the 
rising edge of the clock), the assignment operator ": =" 
is used. The structure of a registered equation, shown 
below, is essentially the same as a combinatorial equa­
tion with the exception of this assignment operator: 

OUTPUT(s) : = Expression(s) and/or Condition(s); 

Operator Priority 

Operators in an expression are evaluated using a hierar­
chy of priority. If two or more operators with equal 
priority are used in a single expression, they are 
evaluated in the order listed from left to right within the 
expression. Table 4 lists the priority of all operators. 

Table 4. ABEL Operator Priority. 

Highest Priority 
- Twos compliment, no.t subtraction 
! Inversion, ones compliment 

Second Highest Priority 
< Shift left 
> Shift right 

* Multiply 
/ Unsigned division 
% Remainder from division 

Third Highest Priority 
+ Add 
- Subtract 
# OR 

$ XOR 
!$ XNOR 
Lowest Priority 
All Relational Operators 
(= =, !=,<,>,< =,> =1 

Parentheses may be used as in normal mathematics to 
alter the order of evaluation. The operation in the in­
nermost parentheses is performed first. 

Special Constants 

Several special constants are supported that ease the 
writing of equations and test vectors. Table 5 lists these 
special constants and their functions. 

Table 5. ABEL Special Constants 

SlIllcial Constant Dilfinilion 
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.C. Clock: causes a low-high-Iow 

.F. 

.K. 

.P. 

.x. 

.z. 

transition at a selected input for 
testing. 
Floating input or output 
Same as .C., but high-low-high 

Register preload 
Don't care condition 

Tests input or output for high 
impedance 



In order to use several of these constants in an ab­
breviated form and to enable the symbols "H" and "L" to 
represent binary ones and zeros, the following state­
ment is placed in the labels section of all source docu­
ments included in this brief: 

H,L,X,C,Z = 1,0,.x.,.C.,.Z.; 

Logic Reduction Levels 

At the beginning of every source file in this brief, the 
statement 

flag '-r4' 

is used. This signals the language processor to use logic 
reduction level 4. In cases where propagation delays of 
a specific length are required, the statement 

flag '-rO' 

is used, which indicates no reduction may be used. Four 
levels of logic reduction are available to the designer as 
listed in Table 6. 

I&!d. 
o 

I 

2 

3 

4 

Table 6. ABEL Logic Reduction Levels 

Statement 
flag 'orO' 

flag '-rt' 

flag '-r2' 

flag '-r3' 

flag '-r4' 

Description 
No reduction. All equations 
must be in sum-of-products 
form. 
Equations are expanded to 
sum-of-products form and 
reduced with standard Boolean 
algebra. This is the default. 
Includes level 1 reduction plus 
the PRESTO algorithm. This 
process is iterative, so process­
ing time is increased sig­
nificantly. 
The PRESTO algorithm is per­
formed on a pin-by-pin basis. 
This is faster than standard 
PRESTO reduction. 

. This reduction level uses the 
ESPRESSO reduction algo­
rithm. 

ABEL Design Entry: Boolean Equations 

This is the most common method of design entry. Each 
pin required for a given application is given a name. IT a 
design requires the use of the special functions (i.e., 
reset and preset) that are available in many devices, the 
nodes that control these functions are also identified 
and named. The P ALC22VIO has two such nodes; 
Asynchronous Reset (node 25) and Synchronous Preset 
(node 26). Groups of pins and/or frequently used con­
stants may then be given labels to facilitate writing 
equations. 

Following the keyword "EQUATIONS" in the source 
file, Boolean equations using the pin, node, and/or label 
names are generated to describe the required logic. 

IT an output has an output enable term associated with 
it, the user may write an equation for that term by using 
the pin name with the extension ".OE" followed by the 
equation for the term. An example of this is: 

OUTI.OE = !RD & (INPUTS = = 0); 

This statement causes OUTI to be enabled if pin RD is 
low and the group of pins (can be any number of pins) 
labeled INPUTS are all low. If these conditions are not 
met, the output remains tri-stated. 

The P ALC22VIO has a separate combinatorial output 
enable product term for each I/O pin. The output 
enable is therefore easily controlled by either a single, 
selectable pin or from a product term. To make an out­
put enable synchronous or to expand the number of 
product terms available, an I/O macrocell can be dedi­
cated to realizing the appropriate logic with the output 
of the macrocell being fed back to control the OE 
product term. However, this method causes additional 
propagation delay due to the extra pass through the 
AND/OR array. 

The use of the enable equations is purely optional; in 
the absence of any such equations, the ABEL language 
processor automatically enables. any I/O pin that is 
defined in the Boolean equations as an output (appears 
on the left side of an equation) and disables any I/O 
that is specified as an input. 

The operators and syntax of all Boolean equations are 
outlined in this brief. Additional information can be 
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found in the ABEL Language Reference and User's 
Guide that are supplied with the ABEL software from 
DATAl/O@ 

ABEL Design Entry: Truth Tables 

A truth table is a list of input combinations and the 
resulting outputs. Normally, the inputs will be listed in 
ascending binary order from the minimum value to the 
maximum value. This takes all possible input situations 
into account and prevents any undefined input com­
binations from producing undesirable outputs. 

The keyword "TRUTH_TABLE" marks the beginning 
of the table within the source me. Immediately follow­
ing the keyword, the input(s) and output(s) labels are 
listed in parentheses with an arrow (composed of a 
minus sign and a greater than sign "- > ") between the 
inputs and outputs. If more than one input or output is 
specified, square brackets "[ ]" must enclose the set. Fig­
ure 1 illustrates the statements required to implement a 
3 to 8 line decoder. Note the use of the set identifier 
07 .. 00. This could have been written out as 
07,06,Q5,04,03,02,01;00. 

truth_table 
([12,11,10] - > [07 .. 00)) 
[0,0,0] - > [0,0,0,0,0,0,0,1]; 
[0,0,1] - > [0,0,0,0,0,0,1,0]; 
[0,1,0] - > [0,0,0,0,0,1,0,0]; 
[0,1,1] -> [0,0,0,0,1,0,0,0]; 
[1,0,0] -> [0,0,0,1,0,0,0,0]; 
[1,0,1] -> [0,0,1,0,0,0,0,0]; 
[1,1,0] -> [0,1,0,0,0,0,0,0]; 
[1,1,1] - > [1,0,0,0,0,0,0,0]; 

Figure 1. Truth Table Cor 3:8 Line Decoder 

The main advantage' of the truth table entry method is 
found in writing test vectors; the entire truth table can 
be block copied to the test vector section of the source 
me. 

Any design specified by a truth table can be alternately 
entered as boolean equations. For example, the output 
06 in the above example could be represented by the 
Boolean equation: 

Q6 = 12&11 & !1O; 

ABEL Design Entry: State Machine Syntax 

One of the most powerful features of the ABEL 
programming language is its ability to directly compile 
state diagrams. By allowing direct state diagram entry, 
ABEL frees the designer from the tedious task of 
generating Boolean equations that include the expres­
sions and conditions that cause each possible transition 
for each individual state register. 

The state machine syntax for each set of outputs 
(several state machines can be implemented in a single 
device) begins with the keyword "state_diagram" fol­
lowed by the pin names or labels that make up the state 
outputs. Each state is then listed followed by any opera­
tions to be performed while in that state and at least 
one transition statement. A transition statement can be 
in any of three forms: 

1. GOTO - for unconditional transitions to the 
next state. 
2. IF .. THEN .. ELSE - for two-way branching. 
3. CASE .. ENDCASE - for N-way branching. 

IF .. THEN .. ELSE statements may be chained to achieve 
n-way branching, but the CASE .. ENDCASE construct 
accomplishes the same thing with less typing. Use of 
labels for state outputs and condition inputs enables 
even the most complex designs to be implemented with 
ease. As an example, consider a bi-directional 3-bit 
counter with inputs UP and DOWN and outputs 
02,01, and 00. If UP or DOWN is high the counter is 
to count in the direction specified. If both UP and 
DOWN are high, the counter should hold the current 
count. If both UP and DOWN are low, the counter 
should reset to zero. In addition, let output MAX be 
high if the counter is in the UP mode and the count 
equals 7 or if the counter is in the DOWN mode and 
the count equals zero. Convenient labels for implement­
ing such a design are shown in Figure 2. 

"labels 
OUTS = [02 .. 00]; 
MODE = [UP,DOWN]; 
CNTUP = "b10; CNTDWN = "b01; 
RST = "bOO; HOLD = "bll; 
SO = "bOOO; Sl = "bOO1; S2 = "bOlO; 
S3 = "bOll; S4 = "blOO; S5 = "bl01; 
S6 = "bllO; S7 = "b1ll; 

Figure 2. State Machine Labels Cor Counter Example 
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For the required operation, the state diagram for. this 
design is listed in Figure 3. . ." 

state_diagram OUT 
state SO: MAX = (MODE = = CNTDWN); 

case (MODE = = CNTUP) : Sl; , 
(MODE = = CNTDWN) : S7; 
(MODE = =HOLD) : SO; 
(MODE = = RST) : SO; 

endcase; 
state Sl : MAX = 0; 

case (MODE = = CNTUP) : S2; 
(MODE = = CNTDWN) :SO; 
(MODE = = HOLD) : Sl; 
(MODE = = RST) : SO; 

endcase; 
state S2 : MAX = 0; 

case (MODE = = CNTUP) : 53; 
(MODE = = CNTD\VN):Sl; 
(MODE = = HOLD) : S2; 
(MODE = = RST) : SO; 

endcase; 
state S3 : MAX = 0; 

case (MODE = = CNTUP) : S4; 
(MODE = = CNTDWN) :S2; 
(MODE = = HOLD) : S3; 
(MODE = = RST) : SO; 

endcase; 
state S4 : MAX = 0; 

case (MODE = = CNTUP) : S5; 
(MODE = = CNTDWN): S3; 
(MODE = = HOLD) : S4; 
(MODE = = RST) : SO; 

endcase; 
state S5 : MAX = 0; 

case (MODE = = CNTUP) : S6; 
(MODE = = CNTDWN) : S4; 
(MODE = = HOLD) : S5; 
(MODE = = RST) : SO; 

endcase; 
state S6 : MAX = 0; 

case (MODE = = CNTUP) : S7; 
(MODE = = CNTDWN) : S5; 
(MODE = = HOLD) : S6; 
(MODE = = RST) : SO; 

endcase; 

state S7 :MAX = (MODE = = CNTDWN); 
case (MODE = = CNTUP) : SO; 

(MODE = = CNTDWN): S6; 
(MODE = = HOLD) : S7; 
(MODE = = RST) : SO; 

endcase; 
Figure 3. ABEL Source Code for Counter Example 

An additional statement, WITH .. ENDWITH, can· be 
added to any transition statement. Thisallows addition­
al outputs to be set to any given state when the transi­
tion preceding the WITH .. ENDWITH statement is ex­
ecuted. For example, in the previous state diagram, as­
sume a pin called FLAG is to be set by the transition 
from state S5 to S6. The S5 diagram would be modified 
as shown in Figure 4. 

state S5 : MAX = 0; 
case (MODE = = CNTUP) : S6 

with FLAG := 1; 
endwith 

(MODE == CNTDWN): SO; 
(MODE = = HOLD) :S5; 
(MODE = = RST) : SO; 

endcase; 

Figure 4. WITH •. ENDWITH Example 

PALC22VIO Design Examples 

The following design examples exploit the variousfea­
tures of the P ALC22V10 Programmable Logic Device. 
The first seven designs focus on particular features and 
illustrate the techniques for using and testing these fea­
tures. The last three designs combine several of the fea­
tures to demonstrate the device's versatility. It is the 
tremendous versatility of this device that has made it 
the most popular of all Cypress PLDs. Each of the last 
three designs, if implemented in SSI and MSI TTL 
logic, would require from seven to thirteen packages. 

Asynchronous Reset/Synchronous Preset, 
from a Single Pin 

This example, as shown in Figure 5, defines pins 2 and 3 
to be the Asynchronous Reset and Synchronous Preset 
inputs, respectively. Eight inputs defined as 
INPUT7 . .INPUTO are given the label INPUTS. Eight 
corresponding outputs, OUTPUT7 .. 0UTPUTO, are 
labeled OUTPUTS. Note how the use of labels enables 
the logic for all eight outputs to be written in a single 
equation. The equation: 

OUTPUTS: = INPUTS; 

causes the data at INPUTS to be registered in OUT­
PUTS on the rising edge of CLK. The operation is indi­
cated to be clocked (registered) by the assignment 
operator ": = ". The clock input on the P ALC22VlO is, 
by definition, pin 1. 
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"Cypress Semiconductor Corp. 11/10/1987 

"Module name test 

flag '-r3' "Logic Reduction level r3, fast PRESTO 

title 'Asynchronous Reset / Synchronous Preset Control From A Single Input 

U1 device 'P22V10'; 

CLK 

RST 
PRE 
INPUT7,INPUT6,INPUT5,INPUT4 
INPUT3,INPUT2,INPUT1,INPUTO 

OUTPUT7,OUTPUT6,OUTPUT5,OUTPUT4 
OUTPUT3,OUTPUTI,OUTPUT1,OUTPUTO 
reset,preset 

1,0,.x.,.C.,.Z.; 

pin 1; 
pin 2; 

pin 3; 
pin 4,5,6,7; 
pin 8,9,10,11; 
pin 23,22,21,20; 

pin 19,18,17,16; 
node 25,26; 

"Device designator and type 

'Pin assignments 
'Clock input 

"Defmes async reset pin 
"Defmes sync preset pin 

"Pre-assigned node #s 

"Labels 
H,L,X,C,Z 
INPUTS 
OUTPUTS 

[INPUT7 . .INPUTO]; 
[OUTPUT7 .. 0UTPUTO]; 

@radix16; "This command forces the default 

"number base to HEX. 
equations 
reset 
preset 

OUTPUTS 

test_vectors 

!RST; 

PRE; 

INPUTS; 

"Async reset when pin RST low 

"Sync preset if pin PRE is high during the rising edge of CLK 

"The : = indicates that this a clocked (synchronous) operation 

([CLK,RST,PRE,INPUTS] - > OUTPUTS) 

[C,H,L,55] -> 55; 

[L,H,L,OAA] - > 55; 

[C,H,L,OAA] - > OAA; 
[C,H,L,OFF] - > OFF; 

[L,L,L,OFF] - > 0; 
[C,H,H,O] - > OFF; 

end Rst_Prel 

"Test reset and preset 

"Test outputs by clocking in 55 

"Test registers hold old data (55) 

"Clock AA (leading zero necessary for hex digits A-F) 
"Set all outputs high (FF) 

"RST low asynchronously 
"PRE high synchronously 

Figure 5. Reset/Preset from Single Pins 

The predefined node numbers for the reset and preset 
functions are identified in the pin assignments section. 
The equations for the nodes in terms of the selected 

pins are then written in the equations section of the file. 
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"Cypress Semiconductor Corporation, 11}10/1987 

module Rst_Pre2 "Module name test 

flag '-r3' "Logic Reduction level r3, PRESTO algorithm by pin 

title 'Asynchronous Reset / Synchronous Preset Example 2, Reset and Preset generated from Product terms' 

Ul device 'P22VI0'; 

CLK 

H************************************************************* 

,,* This Example will Asynchronously Reset all registers when the inputs 

"* Synchronously Set all registers when the inputs equal AA 
"************************************************************* 

"Device designator and type 

pin 1; 

"Pin assignments 

"Clock input 
INPUT7,INPUT6,INPUT5,INPUT4 

INPUT3,INPUT2,INPUTl,INPUTO 

OUTPUT7,OUTPUT6,OUTPUT5,OUTPUT4 

OUTPUT3,OUTPUT2,OUTPUTl,OUTPUTO 
reset,preset 

pin 4,5,6,7; 

pin 8,9,10,11; 

pin 23,22,21,20; 

pin 19,18,17,16; 

node 25,26; "Pre-assigned node #s 

H,L,X,C,Z 

INPUTS 

OUTPUTS 

1,0,X.,.C.,.Z.; 

[INPUT7 . .INPUTO]; 

[OUTPUT7 .. 0UTPUTO]; 

"Labels 

@radix 16 ;command forces the default number base to be HEX 

equations 

reset 

preset 

OUTPUTS: 

test_vectors 

(INPUTS = =55); 

(INPUTS = =OAA); 

INPUTS; 

"Async reset when input = 55 

"Sync preset if inputs = AA during the rising edge of CLK 

"The: = indicates that this a clocked (synchronous) operation 

"Test reset and preset 

([CLK,INPUTS] - > OUTPUTS) 

[C,O] -> 0; 

[L,OFF] - > 0; 

[C,OFF] - > OFF; 

[L,55] -> 0; 

[L,OAA]-> 0; 

[C,OAA]- > OFF; 
end Rst]re2 

''Test outputs by clocking in 0 

''Test registers hold old data (0) 

"Clock in FF (note leading zero for hex digits A thru F) 
"RST low asynchronously on inputs = 55 

"No change, PRE is synchronous 

"PRE acts synchronously on inputs = AA 

Figure 6. Reset / Preset From Product Terms 

Asynchronous Reset/Synchronous Preset 
from Product Terms 

reset node is high ( active) only when INPUTS equal 55 
hex. The preset term is similarly controlled by INPUTS 
equaling AA hex. Note how the test vectors distinguish 
and test the synchronous versus the asynchronous 
operations. 

This example, as shown in Figure 6, is similar to the ex­
ample in Figure 5 except that the reset and preset nodes 
are now activated from product terms. In particular, the 
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U sing Reset and Preset to Load Predeter­
mined Values 

In the examples in Figures 5 and 6, the positive, 
registered output of the macrocells for the pins repre­
sented by OUTPUTS were used. This causes 
asynchronous reset to cause all outputs to go low and 
synchronous preset to cause them to go high. 

This example demonstrates how "istype" statements, in­
cluded in the pin assignments section, can be used to 
set any pattern of ones and zeros either asynchronously 
with reset or synchronously with preset. Four paths exist 
from the macrocells to the I/O pins. The Q and NOT Q 
outputs of each macrocell's register and the true and 
inverted combinatorial terms that bypass the register 
pass through a 4:1 mUltiplexer. The multiplexer is con­
trolled by architecture bits CO and Cl, pictured in the 
macrocell diagram in Figure 7 . 

The istype statements allow the designer to select which 
channel of the multiplexer is routed to the I/O pin. The 
choices available are shown in Table 8. 

Table 8. Macrocell Configuration Selections 

U Ql CuofigurlItillD isb1Il: Yabll:s 
0 0 Reg,Active Low 'neg, reg' 

0 1 Reg,Active High 'pos, relt 
1 0 Comb,Active Low 'neg, com' 

1 1 Comb,Active High 'pos, com' 

ASYNC RESET 
GLOBAL CLOCK 

SYNC PRESET 
OUTPUT ENABLE 

PTERM 
....-l-

SUM OF oSa 
PRODUCTS aB 

R 
'--r-

~ 

An additional parameter in the istype statement allows 
for selection of feedback paths. The choices are 
feed_term, feed_reg, and feed.J>in. An example show­
ing this parameter is: 

OUTPUT6 istype 'pos,com,feed.J>in'; 

The P ALC22VI0 does not offer a feedback path from 
product terms and the selection of a feedback path is 
controlled by the same architecture bit (Cl) that con­
trols the selection of registered or combinatorial out­
puts. To specify a feedback path for this device would 
therefore be redundant. 

Note from the test vectors in Figure 8 that the use of 
istype statements does not affect the polarity of the out­
puts as described by the Boolean equations. Conversely, 
if an output is defined as active low through a boolean 
equation as in: 

IOUTPUT6 : = INPUT6; 

the state of the register is inverted for both normal 
operation and for reset and preset conditions. 

A final note on using istype statements in conjunction 
with the reset node: the PALC22VlO resets when Vcc is 
first applied to the chip. Istype statements and active 
low Boolean equations give the designer the oppor­
tunity to force the device's outputs to any desired state 
upon power up. 

0 
o~ TO I/O PI 1 

Ii 
2 
3 

I 
CO 

N 

FEEDBACK 0 1 0 
TO ARRAY S 1 

T 
C1 

Figure 7. The PALC22VI0 Macrocell 
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.n Using ABEL to Program the 22VIO 
'~crCR~====~=~== 

module Rst_Pre3 

flag '-r3' 

"Cypress Semiconductor Corporation, 11/10/1987 

"Module name test 
"Logic Reduction level r3, PRESTO algorithm by pin 

title 'Asynchronous Reset/Synchronous Preset Example 3, Using Reset and Preset to Load to Predetermined States 
n.*************************~********************************************* 

" .. This Example will Asynchronously Load a Value of 55 and Synchronously Load 

". Value of AA by using 'istype' statements to invert alternating output registers 

.. 
.. 

"************************************************************************ 

"Device designator and type 

Ul device 'P22VI0'; 

CLK 
RST 
PRE 
INPUT7,INPUT6,INPUT5,INPUT4 

INPUT3,INPUT2,INPUTl,INPUTO 

OUTPUT7,OUTPUT6,OUTPUT5,OUTPUT4 
OUTPUT3,OUTPUT2,OUTPUTl,OUTPUTO 

OUTPUT7,OUTPUT5,OUTPUT3,OUTPUTI 

OUTPUT6,OUTPUT4,OUTPUT2,OUTPUTO 
reset,preset 

1,0,.X.,.C.,.Z.; 

pin 1; 
pin 2; 

pin 3; 
pin 4,5,6,7; 

pin 8,9,10,11; 
pin 23,22,21,20; 
pin 19,18,17,16; 

istype 'pos;reg'; 

istype 'neg,reg'; 

node 25,26; 
"Labels 

H,L,X;C,Z 
INPUTS . 

OUTPUTS 
[INPUT7 .. INPUTO]; 
[OUTPUT7 .. 0UTPUTO]; 

"Pin assignments 
"Clock input 
"Defines async reset pin 
"Defines sync preset pin 

"Odd regs positive logic 

"Even regs negative 

"Pre-assigned node #s 

@radixI6; "command forces the default number base to be HEX 

equations 

reset 

preset 

OUTPUTS 
test_vectors 

:= 

!RST; 

PRE; 

INPUTS; 

"Async reset when pin RST low 

"Sync preset if pin PRE is high during the rising edge of CLK 
"The: = indicatese that this a clocked (synchronous) operation 

([CLK,RST,PRE,INPUTS] - > OUTPUTS) "Test Reset and Preset 

[C,H,L,55] - > 55; "Test outputs by clocking in 55 

[L,H,L,OAA] - > 55; "Test registers hold old data (55) 
[C,H,L,OAA] - > OAA; "Clock in AA (note the leading zero necessary for hex digits A thru F) 
[C,H,L,OFF] - > OFF; "Set all outputs high (FF) 

[L,L,L,OFF] - > 55; "RST low asynchronously (bits 6,4,2,0 inverted) 

[C,H,H,O] - > OAA; "PRE high synchronously (bits 6,4,2,0 inverted) 

end Rst]re3 

Figure 8. Resetting and Presetting to Predetermined Values 
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Output Enable Controlled by a Single Pin 

The example in Figure 9 defmes pin 2 to be the output 
enable pin for all outputs. Note the use of special con­
stant ".Z." which is redefmed as simply"Z" in the labels 

section of the file. The constant is used in the test vec­
tors to verify the outputs are tristated (high-Z) under 
the appropriate conditions. 

module Out_Enable1 
"Cypress Semiconductor Corporation November 10, 1987 
"Module name 

flag '-r3' "Logic Reduction level r3 
title 'Output Enable from Single Input Example' 

H*********************************************** 

"* This example demonstrates the Output Enable, 
"* Function being controlled by a single input 

* 
* 

"*********************************************** 

U1 device 'P22V10'; "Device designator and type 
"Pin assignments 

CLK pin 1; "Clock input 
OE pin 2; "Output enable input 
INPUT7,INPUT6,INPUT5,INPUT4 pin 4,5,6,7; 
INPUT3,INPUT2,INPUT1,INPUTO pin 8,9,10,11; 
OUTPUT7,OUTPUT6,OUTPUT5,OUTPUT4 pin 23,22,21,20; 
OUTPUT3,OUTPUT2,OUTPUT1,OUTPUTO pin 19,18,17,16; 
reset, preset 

H,L,X,C,Z 
INPUTS 
OUTPUTS 
OUTEN 

@radix16; 

equations 
OUTEN 
OUTPUTS .-

test_vectors 

([CLK,OE,INPUTS] 
[C,L,55] -> 
[L,H,OAA] -> 
[L,L,OAA] - > 
[C,L,OAA] - > 
[C,H,OFF] - > 
[L,L,X] -> 

end Out_Enable1 

node 25,26; "Pre-assigned node #s 
"Labels 

l,O,.x.,.C.,.Z.; 
[INPUT7 . .INPUTO]; 
[OUTPUT7 .. 0UTPUTO]; 
[OUTPUT7.0E .. OUTPUTO.OE]; 

IOE; 
INPUTS; 

"This command forces the default number base to be HEX 

"Outputs enabled only if pin OE is low 

"Test output enables 

-> 

55; 
Z; 
55; 
OAA; 
Z; 
OFF; 

OUTPUTS) 
"Test outputs by clocking in 55 (outputs enabled) 
"Test outputs go to high-Z state on OE high 
''Test registers hold old data (55) 
"Clock in AA (note the leading zero necessary for hex digits A thru F) 
"Set all outputs high (FF) but tri-stated 
"Tum outputs on and read FF 

Figure 9. Output Enable Controlled by a Single Input 
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5'~ Using ABEL to Program the 22VIO 
" ~~calWCl'OR ===========;;::;;;;;;;==~=========;;;;;;;;~ 

"Cypress Semiconducto,r Corp. 11/10/1987 
module Out_Enable2 "Module name 

flag '-r3' "Logic Reduction level r3 
title 'Output Enable From a Product Term Example' 

"*****************.***************************** 

"* This example demonstrates the Output Enable 
"* Function being controlled by a product term 

.. 

.. 
"*********************************************** 

U1 device 'P22VlO'; 

CLK,OE 
INPUT7,INPUT6,INPUT5,INPUT4 
INPUT3,INPUT2,INPUT1,INPUTO 
OUTPUT7,OUTPUT6,OUTPUT5,OUTPUT4 
OUTPUT3,OUTPUTI,OUTPUTl,OUTPUTO 
reset,preset 

1,0,.x.,.C.,.Z.; 

"Device designator and type 

pin 1, 2; 
pin 4,5,6,7; 
pin 8,9,10,11; 
pin 23,22,21,20; 
pin 19,18,17,16; 
node 25,26; 

"Pin assignments ' 

"Clock and Output Enable inputs 

"Pre-assigned node #s 

"Labels H,L,X,C,Z 
INPUTS 
OUTPUTS 

[INPUT7 .. INPUTO]; 
[OUTPUT7 .. 0UTI'UTO]; 

@radix16; "This command forces the default nuniber base to be HEX 

equations "Each Output individually enabled if the corresponding digital code is applied at 
"inputs and OE is low 

OUTPUTO.OE = (INPUTS = = 0) & IOE; OUTPUT1.0E = (INPUTS = = 1) & IOE; 
OUTPUT2.0E = (INPUTS = = 2) & IOE; OUTPUT3.0E = (INPUTS = =3) & IOE; 
OUTPUT4.0E = (INPUTS = = 4) & IOE; OUTPUT5.0E = (INPUTS = = 5) & IOE; 
OUTPUT6.0E = (INPUTS = = 6) & IOE; 
OUTPUTS:= INPUTS; 
test_vectors 

([CLK,OE,INPUTS] - > [OUTPUT7 .. 0UTPUTO)) 
[C,H,55] - > [Z,Z,Z,Z,Z,Z,Z,Z]; 
[L,H,O] - > [Z,Z,Z,Z,Z,Z,Z,Z]; 
[L,L,O] -> [Z,Z,Z,z,Z,Z,Z,l]; 
[L,L,1] - > [Z,Z,Z,Z,Z,Z,O,Z); 
[L,L,2) - > [Z,Z,Z,Z,Z,l,Z,Z); 
[L,L,3] - > [Z,Z,Z,Z,O,z,Z,Z]; 
[L,L,4) - > [Z,Z,Z,l,Z,Z,Z,Z]; 
[L,L,5] - > [Z,Z,O,Z,Z,Z,Z,Z]; 
[L,L,6] - > [Z,l,Z,Z,Z;Z,z,Z]; 
[L,L,7] - > [O,Z,Z,Z,Z,Z,Z,Z]; 

end Out_Enable2 

"Loads 55, checks OE high overrides 
"all enable terms, then enables and 
"checks all outputs one at a time 

Figure 10. Separate Output Enables Controlled by Product Terms 
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S;:z Using ABEL to Program the 22VIO 
~., ~DUcrOR ================~=====;;;;;;;;;:=======~ 
Output Enables Controlled by Product 
Terms 

While Figure 9 illustrated gang control of all output 
enables via an input pin, Figure 10 shows several outputs 
all with individual output enables generated from 
separate product terms. 

As with reset and preset, output enables can be made 
synchronous or have the number of product terms ex­
tended by using a macrocell to generate the necessary 
logic and "looping back" the term via a feedback path. 
This method incurs additional propagation delay due to 
passing through the AND/OR array twice. 

The special constant ".Z." is used in the test vectors for 
this design to verify the operation of outputs in the tri­
stated (high-Z) mode. 

An 8·Bit Identity Comparitor 

This example (refer to the source code in Figure 11) 
points out how the variable product term architecture 
(16 product terms maximum) of the PALC22VI0 
enables direct implementation of logic that would re­
quire multiple feedback terms to implement in standard 
PLDs. (Standard 20 pin PLDs have only 8 product 
terms per output.) 

An n bit comparitor requires 2 to the nth power 
product terms to implement. The 8 bit comparison is 
achieved here by decomposing the 8 bits into two 4 bit 
comparisons and using I/O pins 18 and 19 (these pins 
have 16 product terms each) for each 4 bit comparison. 
The results of each 4 bit comparison are available at 
these outputs one tpd after a match is detected 

Note how the inputs and outputs are used in more than 
one label (Figure 11). This facilitates writing equations 
and test vectors for the individual 4 bit fields and the 
complete 8 bit fields 

Using Feedback to Realize More Than 16 
Product Terms: A Single Output 9·Bit Iden· 
tity Comparitor 

This example is very similar to the example in Figure 11, 
except the DATA inputs are rearranged to enable the 
two 4 bit comparitor outputs to be fed back and 
ANDed with the result of the single, 9th bit compare. 
The result is a single DATA = INPUTS output called 

lNEQDATA. 

The disadvantage of this implementation is that an addi­
tional tpd is incurred by feeding the individual 4 bit 
comparitor outputs back through the AND/OR array. 
Note that although the terms fed back to INEQDATA 
represent 34 (16 + 16 + 2) product terms, only three 
of the 8 product terms available at I/O pin 23 are used; 
each of the three individual compares have already 
been reduced to single signals by the time they reach 
the AND/OR array for this pin. The extra product 
terms could be used along with a separately defined 
input for cascading the design to n-bit length. This 
source code for this example is shown in Figure 12. 

Bidirectional I/O: Bus Interface Data Trap 
with Answer·back 

This example (refer to the source code in Figure 13) 
demonstrates the bidirectional I/O capabilities of the 
P ALC22VI0. An 8 bit pattern is supplied to INPUTS 
and is continuously compared to the data on 
DATA7 .. DATAO. This design was created for an ap­
plication where DATA7 .. DATAO was the data bus of a 
Z80 microprocessor. If the interrupt is enabled (pin IN­
TRENBL is high), the 8 bit comparitor output drives 
pin INTR active (low). In response, the Z80 drives pin 
IDREQ high. This requests that the device that initiated 
the interrupt places its 8 bit ID code on the data bus. In 
this example, the ID code used is A h5S. Any code 
may be used by modifying the equation for DATA in 
the source file. 

10·Bit Counter, Address GeneratorlMulti­
plexer 

The application that inspired the example in Figure 14 
was the address generation circuitry for the front end of 
a high-speed data acquisition module. The design re­
quires two modes of operation. In the ACQUIRE 
mode, the 10 address lines are generated by counters. 
In the READ mode, the same addresses are gen.erated 
by a microprocessor's address lines. In the original 
design, quad 2:1 multiplexers were used to select which 
source, the counters or microprocessor, would actually 
provide the address information. The entire circuit, ex­
cluding the SRAM being addressed, consisted of 11 SSI 
and MSI TTL components. The example given here im­
plements the equivalent circuitry in a single 
PALC22VlO. 
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,~ . Using ABEL to Program the 22VIO 
~~==========~==~==~ 

"Cypress Semiconductor Corporation November 10, 1987 
module AllTerms "Module name 

flag '-r3' "Logic Reduction level r3, PRESTO algorithm by pin 
title 'Using 16 Product Terms; An 8-bit Identity Comparitor ' 

"**********~******************************************.********************* 

"* In this design, an 8-bit word is presented at I/O pins 23,22,21,20,17,16,15 and 14. 

"* These pins are used for inputs only in this example. The 8-bit word is compared, 4 bits 
,,* at a time, to inputs 1NPUT7 .. 0. Combinatorial outputs COMPHI and COMPLO show 
"* the reSult of each 4-bit comparison. Pins 19 and 18 are used as the comparitor outputs 

"* since these pins have enough Product Terms (16) for the required 4-bit comparisons. 
"**************************.************************************************ 

U1 device 'P22V10'; "Device designator and type 

CLK 

INPUT7,INPUT6,INPUT5,INPUT4 
INPUT3,INPUT2,INPUT1,INPUTO 

DATA7,DATA6,DATA5,DATA4 
DATA3,DATA2,DATA1,DATAO 
COMPHI,COMPLO 

reset,preset 
H,L,X,C,Z 

INPUTSH 
DATAH 

1,0,.x.,.C.,.Z.; 

[INPUT7 .. INPUT4]; 

[DATA7 .. DATA4]; 
[INPUTI .. INPUTO]; 

[DATA3 .. DATAO]; 
[DATA7 .. DATAO]; 

pin 1; 
pin 4,5,6,7; 

pin 8,9,10,11; 
pin 23,22,21,20; 

pin 17,16,15,14; 
pin 19,18; 

node 25,26; 

INPUTSL 

DATAL 
DATA 

INPUTS [INPUT7 .. INPUTO]; 

@radix16; 

equations 

COMPID = (INPUTSH = = DATAH); 

COMPLO = (INPUTSL = = DATAL); 

([DATA,INPUTS] - > [COMPID,COMPLO]) 

[0,0] -> [H,H]; [1,1] -> 
[4,4] -> [H,H]; [8,8] -> 
[OE,OE] -> [H,H]; [OD,OD]-> 
[7,7] -> [H,H]; [O,OF] -> 
[OFO,O] -> [L,H]; [OFO,OFF]- > 

end AllTerms 

[H,H]; 

[H'H]; 
[H,H]; 

[H,L]; 
[H,L]; 

"Pin assignments 
"Clock input (NOT used) 

"Comparator outputs 

"Pre-assigned node #s 

"High-order nibble 

"Low-order nibble 

"All 8 bits 

"High-order nibble compare 
"Low-order nibble compare 

[2,2] ->[H,H]; 
[OF,OF] - > [H,H]; 
[OB,OB] - > [H,H]; 

[OFO,OF] - > [L,Ll; 

Figure 11. Using 16 Product Terms: An 8-Bit Identity Comparitor 
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"Cypress Semiconductor Corporation November 10, 19S7 

module CompFB "Module name 
flag '-r3' "Logic Reduction level r3, PRESTO algorithm by pin 
title 'Using Feedback to Realize more than 16 Product Terms; A Single Output, 9-bit Identity Comparitor ' 

"**************************************************************************** 

,,* In this design, an 9-bit word is presented at pins 23,22,21,20,17,16,11,10 and 9. .. 

,,* These pins are used for inputs only in this example. The S LSBs of the 9-bit word are * 
" .. compared, 4 bits at a time, to inputs INPUT7 .. 0. Combinatorial outputs COMPHI and .. 

II. COMPLO show the results of each 4-bit comparison. Pins 19 and lS are used as the * 
,,* comparitor outputs since these pins have enough Product Terms (16) for the required • 
,,* 4-bit comparison. The MSBs (bit S) of DATA and are compared at output COMPMSB. * 
,,* Outputs COMPMSB, COMPHI, and COMPLO are ANDED together to form output * 
,,* INEQDATA. 
"**************************************************************************** 

U1 device 'P22VlO'; 

pin 1,2,3,4,5; 
pin 6,7,S,9; 

"Device designator and type 

"Pin assignments 
INPUTS,INPUT7,INPUT6,INPUT5,INPUT4 
INPUT3,INPUT2,INPUT1,INPUTO 
DATAS,DATA7,DATA6,DATAS,DATA4 
DATA3,DATA2,DATA1,DATAO 
COMPH,COMPL,COMPMSB,INEQDATA 

reset, preset 

pin 10,11,13,14,15; 

pin 16,17,20,21; 

H,L,X,C,Z 

INPUTSH 
DATAH 

INPUTSL 
DATAL 

DATA 
INPUTS 

@radix16; 

equations 
COMPH 

COMPL 
COMPMSB 
INEQDATA 

test_vectors 

pin 19,1S,22,23; "Comparator outputs 
node 25,26; "Pre-assigned node #s 

1,0,.x.,.C.,.Z.; 
[INPUT7 . .INPUT4]; 

[DATA7 .. DATA4]; 

[INPUT3 . .INPUTO]; 

[DATA3 .. DATAO]; 
[DATAS .. DATAO]; 

[INPUTS . .INPUTO]; 

(INPUTSH = = DATAH); 
(INPUTSL = = DATAL); 

(INPUTS = = DATAS); 
COMPH & COMPL & COMPMSB; 

"High-order nibble 

"Low-order nibble 

"All nine bits 

"High-order nibble compare 
"Low-order nibble compare 

"MSB compare 

"Logical AND of all comparisons 

([DATA,INPUTS] - > [COMPH,COMPL,COMPMSB,INEQDATA]) 
[0,0] -> [H,H,H,H]; [111,111] -> [H,H,H,H]; 

[22,22] - > [H,H,H,H]; [44,44] - > [H,H,H,H]; 

[88,88] - > [H,H,H,H]; [lFF,lFF] - > [H,H,H,H]; 

[0,100] - > [H,H,L,L]; [lFF,OFF] - > [H,H,L,L]; 
[lFE,lFF] - > [H,L,H,L]; [lFE,lEE] - > (L,H,H,L]; 

endCompFB 

* 

Figure 12. Realizing More Than 16 Product Terms Through Feedback: A 9-Bit, Single-Output Identity Comparitor 
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"Cypress Semiconductor Corp., 11/10/1987 
module BiDirect "Module name test 

flag '-r3' "Logic Reduction level r3, PRESTO algorithm by pin 
title 'Bi-DirectionalIlO A Bus Interface Data Trap with Answer-Back' 

"**************************************************************************** 

ft* This example compares the pattern at pins INPUTS to the data on data bus pins 
"* DATA7 .. DATAO. Pin INTR is driven low if they match and INTRENBL (interrupt 
• " enable) is high. Input IDREQ is then driven high, requesting ID code (" h55 in 
"* this example) to beput on the data bus 

.. 
.. 
.. 

"********.******************************************************************* 

Ul device 'P22Vl0'; 

IDREQ, INTRENBL 
COMPL,INTR 
INPUT7,INPUT6,INPUT5,INPUT4 
INPUT3,INPUTI,INPUT1,INPUTO 
DATA7,DATA6,DATA5,DATA4 
DATA3,DATA2,DATA1,DATAO 
reset,preset 
H,L,X,C,Z = 1,0,X.,.C.,.Z.; 
INPUTS = [INPUT7 . .INPUTO]; 
INPUTH = [INPUT7 . .INPUT4]; 
INPUTL = [INPUT3 .. INPUTO]; 
DATA = [DATA7 .. DATAO]; 
DATAH = [DATA7 .. DATA4]; 
DATAL = [DATA3 .. DATAO]; 
DATAOE = [DATA7.0E .. DATAO.OE]; 
IDCODE = "h55; 

pin 2,3; 
pin 19,18; 
pin 4,5,6,7; 
pin 8,9,10,11; 
pin 23,22,21,20; 
pin 17,16,15,14; 
node 25,26; 

", Output Enable, Interrupt Enable 
'Used in comparision of 4 LSBs 

"Pre-assigned node #s 

"All inputs 
"High order nibble of INPUTS 
"Low order nibble of INPUTS 
"All data I/Os 
"High order nibble of DATA 
"Low order nibble of DATA 

"Identification code 

equations 
DATAOE= 
DATA = 
COMPL= 
!INTR = 

IDREQ; "Enables ID output onto data bus 

test_vectors 

IDCODE; "Identification code for device (" h55) 
(DATAL = = INPUTL); "4 LSBs compare 
(DATAH = = INPUTH) & COMPL & INTRENBL; "INTR active low, All bits equal and 

"interrupt enabled (INTRENBL high) 

([IDREQ,INTRENBL,DATA,INPUTS] - > [COMPL,INTR,DATA]) 
[L,H, "hOF, "hlP] -> [H,H,X]; "Low nibble equal,high not equal 
[L,H, "hOFO, "hOF1] - > [L,H,X]; "High nibble equal, low not equal 
[L,L, "hOAA, "hOAA] - > [H,H,X]; "Test Interrupt Enable 
[L,H, "hOAA, "hOAA] -> [H,L,X]; "DATA = INPUTS, INTR goes active (low) 
[L,H, "h55, "h55] -> [H,L,X]; 
[H,H,Z,X] -> [X,X,IDCODE]; "DATA pins output IDCODE ("h55) 

end BiDirect 

Figure 13. BiDirectional 110 : Bus Interface Data 
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module AddGenMux flag '-r3' "Cypress Semiconductor Corporation November 10, 1987 
title '10-bit Address Generation / Multiplexer IC' 

ft •• ****************************************************** 

". This PLD design generates Address signals AO-A9. 
"* If Control signal MODE is high, the address signals 
"* are the output of a lO-bit counter. If MODE is low 

* 
* 
* 

"* the device passes uP Address lines UPADDO-UPADD9 * 
"******************************************************** 

AdrsGen device 'p22v10'; 
CLK 
AO,A1,A2,A3,A4,A5,A6,A7,A8,A9 
UPADDO,UPADD1,UPADD2,UPADD3 
UPADD4,UPADD5,UPADD6,UPADD7 
UPADD8,UPADD9 
MODE 

1,O,X.,.C.,.Z.; 

[A9 . .A0]; 

pin 1; "System Master Clock 
pin 14,15,16,17,18,19,23,22,21,20; 
pin 2,3,4,5; 
pin 6,7,8,9; 
pin 10,11; 
pin 13; 
node 25,26; reset,preset 

H,L,X,C,Z 
AOUT 
UPADD 
@radix16; 
equations 
reset 
AOUT 

[UPADD9 .. UPADDO]; 
"Address Outputs 
"uP Address Lines 

"Boolean equations 

:= 
(UPADD = = 0) & !MODE; 
«AOUT + 1) & MODE) 

"Reset if uP Address = 00 and MODE is low 
"Count up if MODE high or 

# (UPADD & !MODE); 

([CLK,UPADD,MODE] -> AOUT) 
[X,O,L] -> O· , 
[C,X,H]-> 1· , [C,X,H] -> 2· , 
[C,X,H]-> 5; [C,X,H] -> 6· , 
[C,X,H]-> 9; [C,X,HJ -> OA; 
[C,X,H]-> OD; [C,X,H] -> OE; 
[C,111,L]- > 111; [C,222,L]- > 222; 
[C,2EE,L]- > 2EE; [C,lDD,L] - > 1DD; 
[C,155,L]- > 155; [C,2AA,L] -> 2AA. , 
[C,OFF,L]- > OFF; [C,X,H]-> 100; 
[C,lFF,L]- > 1FF; [C,X,H] -> 200; 
[C,2FF,L]- > 2FF. , [C,X,H]-> 300; 
[C,3FF,L]- > 3FF; [C,X,H]-> O· , 

end AddGenMux 

[C,X,H]-> 
[C,X,H]-> 
[C,X,H]-> 
[C,X,H]-> 
[C,44,L]-> 
[C,3BB,L]- > 
[C,3FF,L]- > 

"Pass UPADD if MODE low 
"Check Operation 

"Checks Reset Function 
3; [C,X,H]- > 4; 

7; [C,X,H]- > 8; 
OB; [C,X,H]- > OC; 
OF; [C,X,H]- > 10; 
44; [C,88,L]- > 88; 
3BB; [C,377,L]->377; 
3FF; [C,222,H]->OO; 

"Load to states where all 8 LSBs 
"are high (uP mode), then toggle in 
"counter mode 

Figure 14. 10-Bit Address Generator/Multiplexer 

Note the how the MODE pin in the equations for the 
AOUT outputs controls the source of the addresses. 
Also note the use of the asynchronous reset node; the 
reset term is generated by the condition of the MODE 
being set for microprocessor access (low) and the 

processor address itself being zero. Although the effect 
at the outputs (all outputs = zero) is the same as if the 
reset term was not included, it gives the processor a 
method of resetting all the registers to a known state 
before allowing the counters to free run again. 
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Timing Diagram for lO·bit Address Gener· 
ator I Multiplexer 

One of the more interesting features of the ABEL 
SIMULATE program is its ability to generate timing 
diagrams for specified pins based on the test vectors in 
a source file. Although the timing diagrams do not show 
propagation delays, they can be useful for verifying a 
device's in-circuit operation with a logic analyzer. The 
SIMULATE output file shown in Figure 15 was 
generated with the command line: 

simulate -iaddmux.out -oaddmux.sim -t4 -
wl,2,3,4,5,13,14,15,16,17,18 

The -i indicates the input file, which in this case is the 
intermediate output file created by ABEL's FUSEMAP 
program. The -0 tells SIMULATE where (into which 
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Figure 15. ABEL Simulated Wavefonn 

file) to write the results. The -t4 specifies the. trace level 
where waveforms are displayed and the-wl..18 indi­
cates which pins to show in the waveform output. 

More information on the use of SIMULATE can be 
found in the ABEL User's Guide and Language Refer­
ence that are supplied with the ABEL software from 
DataI/O. 

Triple-State Machine 

This fmal example demonstrates the power of the 
P ALC22VlO when used as a synchronous state 
machine. The application was the redesign of the tinting 
circuitry for a radar system. The system performs 12 
DFfs on each set of quadrature data returned in three 
antenna beams that are gated for 9 ranges. The nonbi­
nary nature of these numbers (3 beams, 9 ranges, and 
12 speed bins) made generating the timing signals with 
counter circuits cumbersome. 

This example creates three state machines in a single 
P ALC22VlO. As can be seen from the state diagrams, 
(shown in Figure 16) the filter state machine is free run­
ning. The beam state machine only changes states when 
the filter outputs are in their maximum condition. 
Similarly the gate information changes only if both ~he 
filter and beam outputs are at the maximum values. 

Note the combined use of boolean equations and state 
diagrams. A separate state diagram is written for each 
state machine, but the transitions are dependant upon 
the condition of the other state outputs. Also of note is 
the extreme use of labels for pins, groups of pins, and 
the state outputs. This greatly simplifies the writing of 
the state machine syntax and test vectors. 

When first compiled, the ABEL FUSEMAP routine in­
dicated several outputs that had too many terms for the 
physical array of the corresponding I/O pin. By carefully 
arranging the I/Os, the design was made to fit. The flag 
'-r3' reduction statement made the fit possible without 
the tedium of generating. and manually reducing 
Boolean equations from the state diagrams: . 

The test vectors for this design are of particular inter­
est. Note how the @REPEAT command is used to 
cycle through 35 states in order to make the gate state 
outputs toggle. This powerful command lets 325 test 
vectors be described in a concise and manageable man­
ner. 

4-58 



"Cypress Semiconductor Corporation November 10, 1987 
module Statexam flag '-r3' 

title 'Timing Generation TRIPLE State Machine for DFI' Processor using a Cypress Semiconductor PAL C22V1O' 
n •• ******************************************************************* 

"* BEAM STATES ... 0, 1, 2 (3 not used), GATE STATES ... 0, 1,2, 4, 5, 6, 8, 9, A 

"* (3,7,B,C,D,E,F not used), FILTER STATES - 0, 1, 2, 4, 5, 6, 8, 9, A, C, D, E 

". (3,7,B,F not used) 
"********************************************************************* 

Ul device 'P22VI0'; 

SYSCLK 
START 
ABO,ABl,AB2,AB3,AB4 

AB5,AB6,AB7,AB8,AB9 
reset,preset 

ABO,ABl,AB2,AB3,AB4 

AB5,AB6,AB7,AB8,AB9 

H,L,X,C,Z 
ABall 
FILT 
BEAM 

GATE 
@radix16; 

pin 1; 
pin 2; 
pin 23,14,22,15,21; 
pin 16,18,19,20,17; 

node 25,26; 
istype 'pos,reg'; 

istype 'pos,reg'; 

1,0,.x.,.C.,.Z.; 

[AB9 . .AB0]; 
[AB3 . .AB0]; 
[AB5,AB4]; 
[AB9 . .AB6]; 

"Used for reset/power-up 
"Pins are non-sequential to take advantage of 
"The variable number of product terms in the 22VI0 

"Pre-assigned node #s 

"Unnecessary because ABEL will set architecture bits 

"automatically - shown for example purposes only 

"Filter States - note missing states 

ffi=~fl=~n=~~=~~=~~=~N=~ 

F7 = 09; F8 = OA; F9 = OC; FlO = OD; Fll = OE; 

"Beam States 
BO = 00; Bl = 01; B2 = 02; 

"Gate States 

~=~m=~m=~m=~~=~ili=~~=~m=~~=~ 
equations 

reset = START; "Initialize to all lows on START 
state_diagram FILT 

State ffi: GOTO Fl; State Fl: GOTO n; State n: GOTO ~; State ~: GOTO F4; 
State F4: GOTO F5; State F5: GOTO F6; State F6: GOTO F7; State F7: GOTO F8; 
State F8: GOTO F9; State F9: GOTO FlO; State FlO: GOTO Fll; State Fll: GOTO FO; 
state_diagram BEAM 

State BO: case (FILT = = "bIllO) : Bl; 
(FILT! = "bIllO) : BO; 

endcase; 

State Bl: case (FILT = = "blll0) 

(FILT ! = "bIllO) 

: B2; "Increment ONLY if 
: Bl; "FILT is at max (OE) 

endcase; 
State B2: case (FILT = = "bIllO) : BO; 

(FILT ! = "bIllO) : B2; 
endcase; 

Figure 16. Triple State Machine (part!) 
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state_diagram GATE "Increments ONLY if BEAM and FILT are at max 
State GO: case «BEAM = = "blO) & (FILT = = "b1UO» : 01; 

«BEAM!= "blO) # (FILT!= "b1UO» : GO; 
endcase; 

State 01: case «BEAM = = "blO) & (FILT = = "b1UO» : G2; 
«BEAM! = "blO) # (FILT! = "b1UO» : 01; 

endcase; 
State G2: case «BEAM = = "blO) & (FILT = = "b1UO» :03; 

«BEAM! = "blO) # (FILT ! = "b1UO» : G2; 
endcase; 

State G3: case «BEAM = = "blO) & (FILT = = "blUO» : G4; 
«BEAM!= "blO) # (FILT!= "b1UO» : G3; 

endcase; 
State G4: case «BEAM = == "blO) & (FILT = == "blUO» : G5; 

«BEAM! = "blO) # (FILT! = "b1UO» : G4; 
endcase; 

State G5: case «BEAM = = "blO) & (FILT = = "b1UO» : G6; 
«BEAM! = "blO) # (FILT ! = "blUO» : G5; 

endcase; 
State G6: case «BEAM = = "blO) & (FILT = == "blUO» : 07; 

«BEAM! == "blO) # (FILT ! = "b1UO» : G6; 
endcase; 

State 07: case «BEAM = = "blO) & (FILT = = "b1UO» : G8; 
«BEAM! = "blO) # (FlLT! = "b1UO» : 07; 

endcase; 
State G8: case «BEAM = = "blO) & (FILT = = "b1UO» : GO; 

«BEAM! = "blO) # (FILT ! == "b1UO» : G8; 
endcase; 

test_vectors "Verifies devices operation 
([SYSCLK,SfART] -> [GATE,BEAM,FILT]) 
[X,H)-> [GO,BO,FO); [C,L)-> [GO,BO,Fl); 
[CoL) -> [GO,BO,F4); [CoL) -> [GO,BO,PS); 
[CoL) -> [GO,BO,FS); [C,L) -> [GO,BO,1'9]; 
[CoL) -> [GO,Bl,FO]; [CoL) -> [GO,Bl,Fl]; 
[C,L)-> [GO,Bl,F4]; [C,L)-> [GO,B1,PS); 
[C,L]-> [GO,B1,FS]; [C,L) -> [GO,B1,1'9]; 
[C,L)-> [GO,B2,FO); [C,L)-> [GO,B2,F1); 
[C,L)-> [GO,B2,F4); [CoL) -> [GO,B2,PS); 
[CoL) -> [GO,B2,FS); [CoL) -> [GO,B2,1'9]; 

[C,L] -> [GO,BO,F2];[C,L)-> [GO,BO,F3); 
[C,L) -> [GO,BO,F6);[C,L) -> [GO,BO,F7]; 
[C,L) -> [GO,BO,F10);[C,L) -> [GO,BO,Fll); 
[C,L] -> [GO,B1,F2];[C,L) -> [GO,B1,F3]; 
[C,L) -> [GO,B1,F6);[C,L]-> [GO,B1,F7]; 
[C,L]-> [GO,B1,F10];[C,L) -> [GO,B1,Fll]; 
[CoL] -> [GO,B2,F2];[C,L) -> [GO,B2,F3]; 
[C,L)-> [GO,B2,F6);[C,L)-> [GO,B2,F7]; 
[CoL) -> [GO,B2,FlO);[C,L) -> [GO,B2,Fl1]; 

[C,L) -> [G1,BO,FO); "Gate output changes state here 
@REPEAT "D3S ([C,L)-> [X,X,X);} [C,L) -> [G2,BO,FO);@REPEAT "D3S ([C,L) -> [X,X,X];} [C,L) -> [G3,BO,FO); 
@REPEAT "D3S {[C,L]-> [X,X,X];} [C,L]-> [G4,BO,FO];@REPEAT "D3S ([C,L) -> [X,X,X); } [C,L) -> [GS,BO,FO]; 
@REPEAT "D3S ([C,L) -> [X,X,X);} [CoL] -> [G6,BO,FO];@REPEAT "D3S ([C,L] -> [X,X,x); } [C,L) -> [G7,BO,FO]; 
@REPEAT "D3S ([C,L]-> [X,X,X);} [C,L] -> [GS,BO,FO);@REPEAT "D3S ([C,L) -> [X,X,X); } [C,L) -> [GS,B2,Fl1]; 
[C,L)- > [GO,BO,FO); "Check the final state rolls over to the first 

"This completes a run-through of ALL states, the following 2 vectors retest reset (Sf ART) 
[C,L]-> [GO,BO,F1); [C,H)-> [GO,BO,FO]; 

end Statexam 
Figure 16. Triple State Machine (continued) 
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CYPRESS 
SEMICONDUCTOR 

Using ABEL to Program the CY7C330 

Introduction 

ABEL is a very versatile logic design tool that has the 
capability of programing over three hundred different 
devices. Although the general documentation supplied 
with ABEL is reasonably good, device-specific infor­
mation on the more complex PLDs is not always as 
thorough as a user would like. 

The Cypress CY7C330 is a very powerful PLD. Fea­
tures such as the input and buried registers allow the 
CY7C330 to fit into a wide variety of applications. The 
same features can make programming the device a chal­
lenge. This document describes how to access all the 
features of the Cypress CY7C330 using ABEL 3.0 or 3.1 
with examples. The text contains references to the 
diagrams starting on page 4-82 of the 1989 Cypress 
Data Book. 

For anyone still using ABEL 3.0 and trying to program 
the CY7C330 for the first time, there is a fatal flaw in 
the supplied device driver. Both Cypress and Data I/O 
have updated device drivers available. The device flle 
supplied with ABEL 3.1 is correct. 

When ABEL went from 3.0 to 3.1, they changed the 
name of the device flle for the CY7C330. 'P330' was 
used for revision 3.0 and 'P330A' is used for 3.1, al­
though 3.1 will still compile with the non-' A' device 
name. The only difference between these two device 
flles is the syntax for specifying the shared input mux. 

Input Registers 

The CY7C330 contains 11 dedicated input macrocells. 
There is also an input register associated with each one 
of the 12 I/O macrocells which will be discussed later in 

the document. 

Pins 3 and 14 have dual functionality. Pin 3, can be 
used as an input register or as clock input. Ten of the 
eleven input registers have the ability to be clocked 
from two different sources: pins 2 or 3. The choice of 
the clock source is individually programmable on a 
register-by-register basis. If an application requires only 
one input clock source, pin 3 can be used as a normal 
input. If an application requires both input clocks, pin 3 
must be used as a clock input. There is a configuration 
bit that must be changed in order to enable pin 3 as a 
clock input. 

The second of the dual functionality pins, pin 14, can be 
used as an registered input or as a global asynchronous 
output enable line. Control of the output enable on the 
7C330 can originate from the product term array or 
from pin 14. The choice is programmable on a register­
by-register basis. Control of the output enable will be 
explained in more detail in the I/O macrocell section. 

There are two ways of controlling the input register 
clock mux. The most descriptive way is using the ".C" 
suffIX as shown in the DEM0330.ABL example flle sup­
plied with ABEL 3.0/3.1. This method will work for the 
dedicated input registers (pins 4-7, 9-14) but will not 
work in ABEL ~.1 for the input registers in the I/O 
macrocells. The r<;;ason is that for the twelve I/O macro­
cells, ABEL thinks the clock mux is for the output or 
state register and not the input register. 

The recommended method is using the macro com­
mands. The macro flle supplied with ABEL 3.0 does 
not include the complete list of macro needed to pro-
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gram all the clock muxes. The complete file is available 
from Cypress. This file, P330.INC, contains the macros 
needed to program all the clock muxes including the 
input registers. A listing of the macro file is located in 
Appendix A, at the end of this document. ABEL 3.1 
comes with the complete macro file. 

After the macro file is referenced in the ABEL source 
file, the pin 3 clock must be enabled by the command 
"CLK2". Then, setting particular clock muxes is done 
by entering "CLK2_n", where "n" is the pin number of 
the input register. This is shown in the example code 
below. 

LIBRARY 'p330'; 
"allows use of p330.inc macro file 

CLK2; 
" enables pin3 as a clock input 

CLK2 5' 
- "' pin 5 input reg uses the pin 3 clock 

CLK2_15; 
"pin 15 input reg uses the pin 3 clock 

No macro statement is needed to specify the use of 
clock 1 (pin 2) for input registers. Clock 1 is the clock 
mux default se~ting for both the dedicated input 
registers and the I/O macrocell input registers. 

Accessing the data from one of the dedicated input 
registers (pins 3-14) is handled the same as a straight 
buffered input in ASEL . The only difference is that 
input data is not available in the product term array 
until after the appropriate input clock pulse is received. 

Controlling the Output Enable 

An output enable is specified by appending the suffIX 
.OE to the appropriate pin name. The user must define 
whether control of the output enable mux comes from 
pin 14 or the product term array. This is controlled by 
configuration bit CO. The selection is made by using the 
ISTYPE statement as follows: 

OUT1,0UT2,OUT3,OUT4 pin 15,16,17,18 ; 
"I/O pins . 

OUT1.0E,0UT2.0E ISTYPE 'EON'; 
" OE is product term controlled 

OUT3.0E,OUT4.0E ISTYPE 'PIN'; 
"OE is controlled by pin 14 

When controlling the output enable with . a product 
term, the user has the option of setting it always on, 
always off, or making it a combination of some number 
of inputs or outputs. All three choices are illustrated in 
the code below. 

[OUT1.0E,0UT2.0EJ = [l,lJ; 
"permanently enable outputs 

0UT3.0E = 0; 
"permanently disable output 

OUT4.0E = IN1 & IN2 & OUT1 ; 
"OE controlled by 1N1, 1N2, OUT1 

Using Preset and Reset 

The CY7C330 has global synchronous preset and reset 
capability. When· use~, it will set or reset all 12 state 
registers and the 4 buried macrocell registers. There are 
two things to watch out for when using set or reset. The 
first is, when you reset the registers, all the outputs go 
high if they are enabled. This is due to the inverter be­
tween the state register and the output as shown in the 
macrocell schematic in Figure 1. The second thing to 
watch out for is that the reset doesn't occur for two 
clock pulses if an input is designated as the set/reset 
pin. This is because the reset data must be clocked into 
the product term array using one of the two input 
clocks first. The output registers must then be clocked 
to cause the reset or set to occur. 

There are two ways to access the set and reset 
capability of the CY7C330. The first is to append the 
SuffIX .PR for preset, or .RE for reset to any output pin 
or buried register node name. This syntax is shown 
below. 

OUT1, INP1, INP2 PIN 16, 5, 6; 

OUT1.PR = INP1; 
·preset all output nodes on INP1 = 1 

OUT.RE = INP2; 
"reset all output nodes on INP2 = 1 

The second way of utilizing set and reset is using the 
node notation shown below. The set and reset product 
terms have been given the designations node 30 and 29, 
respectively. 

SET, RESET NODE 30, 29 ; 

SET = INP1; . 
"preset all output nodes on INP1 = 1 

RESET = INP2' 
"reset all output nodes on INP2 = 1 
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Even though the reset and preset functions are 
synchronous, an error will occur while parsing the equa­
tions if you use the ": =" notation, which is used to sig­
nify a registered operation. 

Using the Macrocell as an Output Only 

When using the I/O macrocell as an output, there are 
two parameters to be concerned with. The first is the 
setting of the macrocell feedback mux as controlled by 
configuration bit C1. The second parameter is the con­
trol of the output enable as described in the previous 
section. As with the output enable control, the con­
figuration bit for the feedback mux is set using the IS­
TYPE statement. When the input register is not used 
data from the output register is typically fed back to the 
product term array through the macrocell feedback 
mux. In this case the ISTYPE will be followed by the 
'FEED _REG' attribute as shown in the example below. 

OUT1 PIN 15; 
"located in initial pin definitions 

OUT1 ISTYPE 'FEED REG'; 
"sets C1 = 0, allowing feedback mux 
"to pass data from state register 

OUT1 : = INP1 $ «(INP1 & INP2 )# INP3); 
"sample eq from 'equations' section SET 

The ABEL default for the feedback mux configuration 
bit (C1) is to take data from the state register. Thus the 
ISTYPE 'FEED _REG'; statement is not required, but it 
is recommended that the defaults be documented. 

Using the Macrocell as an Input Only 

When the I/O macrocell is used as an input register, the 
syntax is different. First, the output buffer must be tri­
stated. Next, the macrocell feedback mux must be set 
to accept data from the input register (C1 must be set 
to 1). The following example assumes that the output 
register is not used at all. Keep in mind that the input 
register clock defaults to clock 1 (pin 2) unless specifi­
cally changed. 

INP1, INP2, 0UT2 PIN 5, 15, 16 ; 

INP2 ISTYPE 'FEED PIN'; 
" set C1 = 0, allowing feedback mux to 
" take data from the input register 

INP2.0E ISTYPE 'EQU'; 
" set CO = 0 for product term DE 

EQUATIONS 

INP2.0E = 0; 
"tristate output buffer permanently 

0UT2 : = INP1 & INP2; 

RESET 
IClK1 

IClKO 
ClK 
OE 

OEPTE~R~M~ ______________________ ~+-~~~~ 

XORPT~E~R~M~~ __ ~~ 
SUM F >-----1 

PRODUCTS 

, 

FROM ADJACENT 
MACROCEll 

Figure 1. The CY7C330 I/O Macrocell 
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Shared Input Multiplexer 

Each pair of I/O macrocells has a shared input mux. 
The shared input mux is used to feed data into the 
product term array if both registers are used in an I/O 
macrocell. A configuration bit (C3) controls whether 
the input of the mux will be from an even pin number 
macrocell or an odd. The ABEL default is that the data 
is supplied from the even pin number macrocell. Chang­
ing to an odd pin requires invoking macros located in 
the P330.INC file. The example in the next section 
shows how this is done. 

The purpose of the shared input mux is to allow 
another path of feedback to the product term array. 
This means there are three feedback paths per pair of 
I/O macrocells. Thus, for every pair of macrocells only 
three out the four registers are available for use. If the 
resources of the CY7C330 are chosen wisely, this 
should not be much of a limitation. 

Using the Input and Output Registers 

When using both the input and output registers in the 
I/O macrocell, the most difficult task is getting the data 
into the product term array. 

There are two muxes that can be used to feed data from 
the registers into the product term array. The state 
register information must be fed back through the feed­
back mux controlled by configuration bit C1. Input 
register data can be routed though the feedback mux or 
through the shared input mux. Refer to Figure 1. 

The state register output is referred to by the pin name 
associated with the macrocell. The data being clocked 
into the input register is referred to by using the node 
name assigned to the shared input mux. The node num­
bers of the shared input muxes listed in Table 1. 

Table 1. Shared Input Multiplexer Node Numbers 

Node Number Mux Between Pins 

35 15, 16 
36 17,18 

37 19,20 
38 23,24 
39 25,26 
40 27,28 

In ABEL, the configuration bit controlling the shared 
input mux (C3) defaults to an even I/O pin. When the 
input data is on an odd pin, a macro in the P330.INC 
macro file can be used to change the C3 configuration 
bit. The following example will also use clock 2 (pin 3) 
to clock the input register. 

BREG PIN 15; 
"BREG is output register for pin 15 

INP1 NODE 35' 
"INP1 is the input register for pin 15 

BREG ISTYPE 'FEED REG'; 
"C1 is set to 0, miix routes Q of BREG 

BREG ISTYPE 'EQN'; 
HOE is product term controlled 

LIBRARY'P330' ; 
"enables use of the P330.INC file 

CLK2; 
"enables pin 3 clock 

CLK2 15; 
- "enables CLK20n pin 15 input reg 

FEEDPIN_15; 
"shared input mux control bit (C3) set 
" This gives pin 15 an input path 

EQUATIONS 

BREG.OE = 0; 
"disable output 

BREG : = BREG $ (INP1 & INP2); 
"BREG is fedoack and INP1 is an input 

The Exclusive OR Gate 

On the D input of the 12 I/O macrocell output registers 
and the 4 buried macrocell registers is an exclusive OR 
(XOR) gate. This gate can be used for two purposes. 
The first is to invert the polarity of a signal going into 
the output register. This is accomplished by setting one 
of the XOR inputs to a logic 1. ("$" is the ABEL signal 
for XOR.) In the latest version of ABEL this can be 
done as shown in the following example: 

OUT1 : = 1 $ (INP1 & INP2 & INP3); 

In earlier versions, however, the reduction algorithms 
will not recognize a "I" mixed with variables in an equa­
tion. The equivalent expression for earlier versions is: 

OUT1 : = (INP1 # !INP) $ (INP1&INP2&INP3); 

The second use for the XOR gate is to do software 
emulation of JK or T flip-flops. T flip-flops are more 
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Figure 2. The CY7C330 Macrocell as a T-Type Flip-Flop 

efficient than D flip-flops when building counters and 
state machines. Emulation of T-type flip-flops is ac­
complished by feeding back the output register's 0 out­
put and tying it to the XOR product term. The sum-of­
products input to the XOR becomes the T input. Refer 
to Figure 2. This emulation can be done with boolean 
equations such as the one below: 

TFLOP : = 'i'FLOP $ (T input expression); 

where "T input expression" is a legal sum-of-products 
expression. A JK flip-flop is emulated using the same 
configuration, and the relationship: 

T = J!Q#KQ 
The second way to configure an output flip-flop as. a 
T-type flop is to use an ISTYPE statement such as the 
one in the next example. Although this syntax works for 
simple state machines, ABEL is somewhat unpre­
dictable in more complicated applications. The resulting 
reduced equations will not match the Jedec map, and 
the simulator may not work. The following syntax 
describes a simple 2 bit counter. 

CLK, INSTB, 10E PIN 1, 2, 3, 14; 
00, Q1 PIN 28, 27; 
00, 01 ISTYPE 'REG _ T' ; 
OO.OE, 01.0E ISTYPE 'PIN'; 
CNT = f01,OO]; 
EOUArtONS 
QO.OE = OE; 
Q1.0E = OE; 
CNT = (CNT + 1); 

Buried Macrocells 

As mentioned before, the CY7C330 contains 4 buried 
macrocells. Buried macrocells are accessed by assign­
ing a name to the buried register node number. The 
node numbers are listed in Table 2. 

Table 2. Node Numbers of Buried Registers 

Buried Register Node Number Product Terms 

1 31 13 
2 32 17 
3 33 11 
4 34 19 

A buried macrocell is pictured in Figure 3. To use a 
buried macrocell, assign a name to the node and use it 
as if it were a normal output. The only difference is that 
for the I/O macrocell there is an inverter between the 
state register and the output pin. The inverter causes 
ABEL to handle the polarity differently. This will be 
discussed in the next section. 

Polarity Conventions 

As shown in later examples, the designer typically does 
not have to worry about polarity of signals except when 
sending data to an output pin. The reason for this is 
that all data enters the product term array in both its 
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TO INP T UFFER 

OE (FROM PIN 14) 
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CLK1 
CLK2 

SR 
SS 

Figure 2. The CY7C330 Buried Macrocell 

non-inverting and inverting state. ABEL will, in most 
cases, choose the right polarity to obtain the output as 
specified by the equations. 

When data is being exported from the device via an 
output pin, polarity is more critical especially when 
using the set or reset. As' shown by the I/O macrocell 
schematics, there is an inverter between the output 
register and output pin. Therefore, if you' use the reset 
capability, the Q output of the registers goes low and 
the output pins go high. If your application requires all 
the outputs to start out low, use preset instead ofreset. 

In the following example, the output is defined as posi­
tive and a "1" and a "0· are passed through the device. 
ABEL compensates for the lack of inversion in the out­
put by inverting the data coming out of the input 
register. 

" inputs 
CKS, CK1, CK2, INP PIN 1, 2, 3, 4; 
" output 
OUT PIN 15; 

EQUATIONS 

OUT := INP; 

TEST _ VECfORS 

([CKS,CK1,CK2,INP] - > [OUT]) 
[0, C, 0, 0] -> [X]; 
[C, 0, 0, X] -> [0]; 
[C, 0,0, X]-> [0]; 
[0, C,O, 1]-> [0]; 
[C, 0,0, X]-> (1]; 
[C, 0,0, X] -> [1]; 

END 

When.using state machine syntax, ABEL will not handle 
the polarity of the buried macrocells correctly. Not only 
will the equations not work, but the simulation will fail 
also. The problem can be easily fixed by negating the 
names in the node declaration as shown. 

CLK1, CLK2, CLK3 PIN 1,2,3; 
INP, OUT PIN 4,15; 

"hidden register declaration (negated) 
IC1,1C2, 1C3 NODE 31,32,33; 

As with the state machine syntax, when using the 
'COUNT = COUNT + l' syntax, you also must invert 
the polarity of any buried registers. The easiest place to 
accomplish the inversion is at the node definitions state­
ment as shown in the previous example. Also, refer to 
the counter example at the end of this document. 

State Machine Syntax 

ABEL supports state machine syntax on the 7C330. The 
only drawback at this time is that the toggle flip-flop 
emulation mode can only be used with very simple state 
machines. As mentioned earlier, the results of using 
state machine syntax with T flip-flop emulation are un­
predictable. The T flip-flop is much more efficient for 
state machines due to the fact that a toggle flip-flop· 
only needs to use a product term for a state change. A 
toggle flip-flop will hold it's state unless told otherwise. 
A state machine using D flip-flops needs a product 
term both to change states and to hold states. Even with 
this limitation, the CY7C330 contains from nine to 
nineteen product terms per output and will usually 
handle a medium size state machine with ease. ABEL 
has promised that future releases will contain support 
for T flip-flops. 

Simulation Caveats 

There are limitations to what ABEL can and cannot 
simulate. The first limitation is that when writing 
simulation test vectors, only one of the three clock lines 
can be used on a single test vector line. The following 
example would not simulate correctly. 
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TEST_ VECfORS 

([CKS,CK1,CK2,INP] - > [OUT)) 
[C,C,O,O] -> [0]; 



This example will simulate correctly if modified as fol­
lows: 

TEST VECTORS 
([CKS~CKl,CK2,INP] 
[O,C,O,O] 
[C,O,O,X] 

-> [OUT]) 
->[X]; 
-> [0]; 

The preload function is supported. Refer to the 15 bit 
counter example for more information on how to use it. 

Example: 16-Bit Up/Down Counter 

This first application, COUNTER6, is an example of a 
15-bit up-counter with a terminal count output. The ex­
ample shows how to use the 'COUNT = COUNT + l' 
syntax of ABEL along with correcting the polarity prob­
lem that crops up when combining normal I/O macro­
cell output registers and buried macrocell registers. It 
also gives an example of using the preload function. 
The ABEL source code for this example can be found 
in Appendix B. 

Example: Modulo 11 Counter Using State 
Machine Syntax 

The second example is a basic state machine applica­
tion implementing a - bit modulo-11 counter using state 
machine syntax. This again shows how to handle 
polarity using both normal registers and buried 
registers. The ABEL source code for this example can 
be found inAppendix C. 

Appendix A. P330.INC - Macro Listing 

" P330.INC 
"The following select Clock 2 (pin 3) for the 
"Output Macrocell Input register. 

CLK2 28 macro 0 {FUSES[17030] = I;} 
CLK2-27 macro 0 {FUSES[17034] = I;} 
CLK2-26 macro 0 {FUSES[17037] = I;} 
CLK2-25 macro 0 {FUSES[17041] = I;} 
CLK2=24 macro 0 {FUSES[17044] = I;} 
CLK2 23 macro 0 {FUSES[17048] = I;} 
CLK2-20 macro 0 {FUSES[17051] = I;} 
CLK2-19 macro 0 {FUSES[17055] = I;} 
CLK2-18 macro 0 {FUSES[17058] = I;} 
CLK2-17 macro 0 {FUSES[17062] = I;} 
CLK2-16 macro 0 {FUSES[17065] = I;} 
CLK2=15 macro 0 {FUSES[17069] = I;} 

"The following enables clock 2 (pin 3) 
CLK2 macro 0 {FUSES[17070] = I;} 
CLK2 4 macro 0 {FUSES[17072] = I;} 

. CLK2-5 macro 0 {FUSES[17073] = I;} 
CLK2-6 macro 0 {FUSES[17074] = I;} 
CLK2-7 macro 0 {FUSES[17075] = I;} 
CLK2 -9 macro 0 {FUSES[17076] = I;} 
CLK2-10 macro 0 {FUSES[17077] = I;} 
CLK2 -11 macro 0 {FUSES[17078] = I;} 
CLK2-12 macro 0 {FUSES[17079] = I;} 
CLK2 -13 macro 0 {FUSES[170BO] = I;} 
CLK2)4 macro 0 {FUSES[17081] = I;} 

"The following program the C3 bit in the Output Mac­
rocell 
"and selects feedback from the lower pin. 
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FEEDPIN 27 macro 0 {FUSES[17031] = I;} 
FEED PIN -25 macro 0 {FUSES[17038] = I;} 
FEEDPIN-23 macro 0 {FUSES[17045] = I;} 
FEED PIN -19 macro 0 {FUSES[17052] = I;} 
FEEDPIN-17 macro 0 {FUSES[17059] = I;} 
FEEDPIN=15 macro 0 {FUSES[17066] = I;} 



Appendix B. ABEL Source Code for 16-Bit Counter Example 

module counter6 
title 'CoUnter application for 330 application note, ,Cypress Semiconductor June 19,1989' 

counter6 device 'p33Oa'; 
" This is example of a 15 bit counter showing: 
"1. How to handle the polarity when combining normal output registers and buried regs. 
"2. How to use the 'count = count + l' syntax. . . 
"3. How to use preload for simulation vectors and handle the polarity inversion for the 
" buried registers. 

" inputs pins 
clk,clk1,clk2,preset 

" output pins 
pin 1,2,3,4 ; 

cO,c1,c2,c3,c4,c5,c6 pin 15,28,26,17,24,19,20 ; 
cll,cl2,c13,c14 pin 25,18,16,27; 
tei pin 23; 
spreset node 30 ; 
!c7,!c8,!c9,!c10 node 31,32,33,34 ; 

" macros 
c_cntr = [c14, cU, cl2, cll, c10, c9, c8, c7, c6, c5, c4, c3, c2, c1, cO] ; 

" this is used to handle the preload inversion of the buried registers. See test vectors below. 
c_cntrs = [c14, cU, c12, cll, !c10, !c9, 1c8, !c7, c6, c5, c4, c3, c2,c1, cO] ; 
c,x,p .c., .x., .p. ; 

equations 
spreset 
c_cntr : 
tei := 

preset; 
(c_cntr + 1) ; 
(c_cntr = = 2346) ; 

" Example of using preset with simulation 

test vectors 
([clk,clk1,preset,c_cntrs] - > [c_cntr,tei)) 
[ 0 ,0 ,x ,x ] - > [x , x ]; 
[ 0 ,c , 1 ,x ] - > [x , x ]; 
[ c ,0 , x ,x ] -> [0 , ° ]; 
[ 0 ,c , 0 ,x ] -> [0 , ° ]; 
[ c ,0 ,x ,x ] -> [1 , ° ]; 
[ c ,0 ,x ,x ] - > [2 , ° ]; 
[ c ,0 ,x ,x ] - > [3 , ° ]; 
[ c, 0 ,x ,x ] -> [4 , ° ]; 
[ c , 0 ,x ,x ] -> [5 , 0 ]; 
[ p ,0 ,x , 62 ] - > [x , 0 ]; 
[0,0 ,x ,x ] -> [62 ,0]; 
[ c ,0 ,x , x ] -> [63 , 0 ]; 
[ c , 0 , x ,x ] -> [64 , 0 ]; 
[ c ,0 ,x ,x ] -> [65 , 0 ]; 
[ c ,0 ,x ,x ] - > [66 , 0 ]; 
[ c ,0 ,x , x ] - > [67 , 0 ]; 
[ I; ,0 ,x ,x ] -> [68 , ° ]; 
[ p ,0 ,x ,2345] - > [x , ° ]; 
[ 0 ,0 ,x ,x ] - > [2345 , ° ]; 
[ c ,0 ,x ,x ] -> [2346, 0 ]; 
[ c ,0 ,x ,x ] - > [2347 , 1 ]; 
[ c ,0 ,x ,x ] -> [2348, 0 ]; 
[ c ,0 , x ,x ] -> [2349, 0 ]; 
end 
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Appendix C. ABEL State Machine Source Code for Modll Counter 

module statem 
title 'Application Note State Machine Example, Cypress Semiconductor 5-12-89' 

statem device 'P33O'; 

clk1,clk2,clk3 
c1,c2 
res 
reset 
!c3,!c4 
count 
c4,c3,c2,c1 
c,x,z,h,l 

pin 
pin 

1,2,3 ; 
15,16 ; 

pin 4 ; 
node 30; 
node 31,32; 

[c4,c3,c2,c1] ; 
istype 'feed_reg' ; 
.c.,.x.,.z.,l,O ; 

" This is an example of implementing a modulo counter using state machine syntax. 
" This example also shows how to use the hidden registers. 

" counter states 
sO = A bOOOO; s3 = A bOOll; s6 = A bOllO; s9 = A b1001; 
51 = AbOOOl' 54 = Ab0100' s7 = AbOlll' 510 = Ab101O; 
s2 = AbOO10; s5 = Ab0101; s8 = Ab1000; 

equations 
c4.pr 

state_diagram [c4,c3,c2,c1] 
state sO: goto sl ; 
state sl: goto s2 ; 
state s2: goto s3 ; 
state s3: goto s4 ; 
state s4: goto s5 ; 
state s5: goto s6 ; 
state s6: goto s7 ; 
state s7: goto s8 ; 
state s8: goto s9 ; 
state s9: goto slO ; 
state s10: goto sO ; 

test vectors 
([ clk1,clk2,res] - > [count]) 
[0 , c , 1 ] -> [15 ]; 
[c , 0 , 0 ] - > [ 0 ]; 
[0 , c , 0 ] - > [ 0 ]; 
[c , 0 , 0 ] -> [ 1 ]; 
[c ,0 ,0] -> [ 2 ]; 
[c , 0 , 0 ] -> [ 3 ]; 
[c ,0 ,0] -> [ 4 ]; 
[c ,0 ,0] -> [ 5 ]; 
[c ,0 ,0] -> [ 6 ]; 
[c ,0 ,0] -> [ 7 ]; 
[c , 0 , 0 ] -> [ 8 ]; 
[c , 0 , 0 ] -> [ 9 ]; 
[c , 0 , 0 ] - > [ 10]; 
[c , 0 , 0 ] - > [ 0 ]; 

end 

res; 
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CYPRESS 
SEMICONDUCTOR 

CY7C330 66-MHz 28-Pin 
Synchronous EPLD 

CY7C33X PLD Family 

The Cypress CY7C330 is the first in a family of high­
speed, application-optimized CMOS EPLDs. This fully 
synchronous part is designed for state machine and 
other clocked systems. The CY7C330 offers new solu­
tions for systems designers, with a truly usable high­
speed clock rate, 39 total registers, 17,000 program­
mable bits providing up to 1200 gate complexity. Other 
devices in the family are the CY7C331 and the 
CY7C332. All family members are packaged in 28-pin 
300 mil dual inline and LCC/PLCC packages. The tech­
nology is low-power CMOS and UV-erasable. 

The Cypress CY7C330 is the fIrst application-specifIc 
EPLD from Cypress. The concept behind this family of 
high-speed devices, is to provide the optimal solution 
for each system design using Cypress's 0.8 micron, dual­
level metal CMOS technology. Systems using other 
types of programmable logic devices for synchronous 
state machine applications, will use the CY7C330 asa 
higher density, lower power solution at speeds up to 66 
MH~. The application-specifIc family from Cypress 
prOVides the CY7C330 for sequential state machine ap­
plications, the CY7C331 for general purpose 
asynchronous designs, and the CY7C332 for decoders 
and combinational logic applications. 

The Cypress PALC22V10, PLDC20G10 and PAL20 
devices proved the popUlarity of high-speed, low-power, 
erasable CMOS logic, and the CY7C330 builds on that 
base. One CY7C330 can easily replace four 
P ALC22VlOs by offering features such as extending the 
number of state registers to 16, extending the number of 
product terms per output to 19 maximum, and by ad­
ding the XOR logic function plus the ability to use pins 
as bidirectional I/O. 

The CY7C330 design goal was to increase the speed of 
synchronous systems to 66 MHz. This is the actual 
usable speed, and is determined by the total 15 ns feed­
back time from the Q of a flip-flop to the D of any flip­
flop in the device. The CY7C330 offers 258 variable 
product terms for 16 state registers. This allows very 
complex sequential machiries to be designed with vir­
tually no limitation of product terms. These designs can 
easily exceed the size anyone wants to manage with 
Karnaugh mapping. However, the new generation of ad­
vanced EPLD compilers can manage very complex state 
machine designs on workstations such as the IBM® 
PC/XT"". 

In order to ensure the 66 MHz operation, all 23 inputs 
to the device have registers, thus pipelining the device 
operation. This allows external data to the 
synchronized, or CPU bus-oriented data to be latched. 
Input registers may be clocked from either of two input 
clock sources on either pin 2 or 3. Like all other 
programmable devices from Cypress, the CY7C330 is 
UV-light erasable, and comes in either a windowed 
ceramic package or in a plastic DIP or PLCC. 

T.his application note contains four design examples; a 
hIgh-speed Up/Down Counter with Limits, a 16x16 
Crossbar Switch, a Pipelined Buffer, a simple Toggle 
Counter, and an Internal Product term numbering 
chart. All example source code is in Cypress PLD 
ToolkitlM syntax. 

Overview 
An easy way to picture the CY7C330 is with the block 
diagrams in Figure 1. On the input side of the CY7C330 
(pins 1-7 and 9-14) are 11 input registers and 3 clocks. 
Pin 1 is the State Clock. Each of the 11 input registers is 
edge-triggered, and each can use either device pin 2 
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Figure 1. The CY7C330 Block Diagram 

(clock 1) or pin 3 (clock 2) (shown in Figure 2) as a 
clock. An architecture bit for each input register con­
trols the selection of the input clock. This approach al­
lows input data to be synchronized to a clock edge, or 
to be loaded into the device from a CPU data bus, with 
the clocks being decoded I/O write signals. The setup 
and hold times are very short allowing high-system 
throughput. The outputs of these registers feed the 
"AND-OR-XOR" array. Pin 14 has an additional func­
tion to the input register, it can be used as a fast, 
asynchronous output enable to the device, allowing a 
CPU to read out data in the state machine registers 
onto a bus, for example. 

On the I/O side of the device, (pins 15-20 and 23-28) 
are 12 macrocells. Each I/O macrocell, Figure 3, con­
tains a type D register, an input register with clock con­
trols, and output enable resources. Architecture bits for 
feedback selection, output enable configuration and 
input register clock selection allow each of the macro­
cells to be independently configured. Each adjacent I/O 

macrocell shares an input multiplexer (see Figure 5) al­
lowing either macrocell register to be buried while the 
I/O pin is used as an input. In addition, there are four 
buried register macrocells (see Figure 4) providing addi­
tional state registers but without direct output connec­
tions. 

Logic Array 

The "AND-OR-XOR" array in Figure 1 has 66 inputs 
and 244 product terms driving 16 "OR"XOR" gates. The 
16 OR gates have from 9 to 19 inputs (variable product 
terms) allowing very complex designs to fit into each 
stage. An XOR product term for each OR output al­
lows equations to be solved either with D or T type flip­
flops in the output stage, or for active high or active low 
equatious. Twelve product terms provide the output 
enable function. A global reset and preset is also 
generated out of the array. Each product term forms an 
AND function with up to 66 inputs. The 66 inputs are 
the true and complement signals of 33 internal nodes in 
the CY7C330. . 
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Figure 3. The CY7C330 Input Macrocell 

Macrocell State Registers 

The OR-XOR gates feed into 16 state registers Figures 
3 & 5. These are edge-triggered D flip-flops with pin 1 
as clock. Output from these state registers are fed back 
into the array allowing high-speed state machines to be 
constructed. Total feedback time period from Q to D 
and array delay from input register to state register is 15 
ns, allowing a full usable clock rate of 66 MHz. Four of 
these registers are always buried inside the device. A 
buried register allows intermediate states or other func­
tions to be built without loading an I/O pin. Of the 
twelve remaining registers, up to 6 can be buried, giving 
a total of 10 maximum usable buried registers while al­
lowing the 28-pin device to have 17 dedicated input 
pins, plus 6 I/O pins, plus many other combinations. 
Valid 1/0 macrocell configurations are shown in Figure 
6. 

SR 

55 

PINS 15 .. 2111. 22 .. 28 

OESYS 

CLK. 

CLKI 

CLK2 

HP\.JT REGISTER 

Figure 2. The CY7C330 I/O Macrocell 

TO I/O 
PIN 

Additional Input Registers 

Each I/O macrocell (pins 15-20 and 22-28) also has an 
input, edge triggered register with either pin 2 or pin 3 
as clock. The total register count is 39: 16 state 
registers and 23 input registers. 

XOR PT~ 

OR TERIIS 

INPUT TO 
ARRAY 

5R 

55 

NOOES3l. .34 

1 
0 

5 o-

R o~ I 

OE5Y5 FROII PIN 14 

ClK0 

ClKl 

ClK2 

Figure 4. CY7C330 Buried Macrocell 

In order to keep the device speed as high as possible, 
the number of inputs to the array was limited to 33 (x2) 
- six of the array inputs from the I/O Macrocells are 
multiplexed (shared). Thus three feedbacks are 
provided for the two output and two input registers for 
each set of two I/O pins. The easiest way to understand 
the net result is that the maximum number of buried 
registers in the twelve I/O Macrocells is six. Output 
registers that have no feedback to the array are useful 
for data outputs or single clock delayed Mealy outputs 
from the state machine. 

INPUT TO 
ARRAY o 

C3 

FROII UPPER IIACROCELL 

o 

FROII LOVER IIACROCELL 
Figure S. The CY7C330 Shared Input Multiplexer 

The twelve macrocells have 24 registers total and 18 
feedbacks. The assigument of functions in the user's ap­
plication to physical pins in the device needs to be done 
with consideration of the number of feedbacks available 
(and the number of product terms required). 
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Figure 6. Four CY7C330 I/O Macrocell Configurations 

Center Pinning 

AlI Cypress CY7C330 family products use center pins 
for Vee and V ss connections. In addition, the V ss for 
the internal logic and the V ss for the output drivers are 
on different pins. Center power pins eliminate noise 
generated by both TIL and CMOS devices. This noise 
is inductive noise proportional to the package lead in­
ductance. Moving the power pins to the center lowers 
pin inductance and noise by a factor of 3 compared 
with corner-pin power connections. 

Splitting ground lines between input and logic on pin 8 
and output drivers on pin 21 has additional benefits. 
Ground bounce noise is caused when outputs switch 
from HIGH to WW. The more pins switching at the 
same time, the more noise generated. Several hundred 
mV can be induced on the chip's internal ground from 

this effect. While the level is low enough to meet output 
Vol specs, this voltage must be considered when design­
ing the input buffers on a chip, since it wilI influence the 
Vii spec of 0.8 V. 400 millivolts of gI:ound bump noise 
wilI shift the AC effective Vii to 1.2 V. 

By separating the input reference ground from the out­
put ground where the noise is generated, Cypress can 
design a faster input buffer, because ground noise com­
pensation is lowered or eliminated. ExternalIy, the two 
grounds are connected together. Also, by placing the 
Vee pin close to the GND pin, external 0.1 uP 
capacitors (as usual, one per chip) can be very close to 
the actual device power pins. 

All Cypress EPLDs permit the registers to be 
preloaded into any configuration. This can vastly reduce 
the test time, and allows all patterns programmed into 
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an EPLD to be completely tested. Without preload, for 
example, testing a muItibit counter that has no reset 
product term could be very slow or impossible. 

CY7C33X Family Technology Characteristics 

The CY7C330 and most other new Cypress products 
are being built in the Cypress 0.8 micron, N-well 
CMOS, high-speed technology. New Cypress EPLDs 
use a dual metal layer connection method to further in­
crease speed. This technology allows static RAMs to 
be built with 7 ns access times, 35 MHz FIFOs, a 33 
MHz RISC processor and many other high-perfor­
mance products. 

Cypress uses an EPROM (vs. fuse link or EEPROM) 
technology for all its EPLDs (and (E)PROMS) because 
of the tremendous increase in manufacturing yields it 
offers, as well as 100% testability. This UV -erasable 
EPROM technology offers proven data retention, tes­
tability, and manufacturability. In addition, the Cypress 
2T (2 transistor) cell design allows very high speed cir­
cuits to be built. Cypress uses this 2T cell design for 
performance. One transistor is used only for program­
ming and the other for reading with each optimized for 
only one function. The program transistor can be larger 
and slower. It is designed to withstand 15 V source to 
drain, and is the maximum program charge on the float­
ing gate. The read transistor can be very small and fast. 
Because the read bit line is only switching between 0-5 
V, the sense amp is smaller and faster, and no high-cur­
rent 15 V driver MOSFETS are present. The result is 
very fast (sub 10 ns) array times. 

All Cypress devices offer protection against static dis­
charge (ESD). This means the devices are no more sen­
sitive than bipolar devices. By using a unique -3V sub­
strate bias generator (Vbb), Cypress devices are 
protected from latchup caused by transient voltages 
below ground, which are commonly seen in TTL sys­
tems. This internally generated Vbb also allows the 
device to maintain high speed over a wide temperature 
range by controlling switching thresholds. No current 
flows in an input even under extreme undershoot situa­
tions, and there is no recovery time required for the 
input transistor after an undershoot. 

In addition to Substrate bias for latchup elimination, 
Cypress uses a Stacked TTL output driver, removing 
the Pin to P channel transistor connection, a major 
source of latchup. Overshoot and noise generation is 
also improved by reducing the energy in HIGH to 

LOW transitions. Virtually all high-performance sys­
tems using TTL or CMOS adhere to the TTL standard 
voltage specification -- 2.0 V for a TTL HIGH and 0.8 
V for a TTL LOW. This means that a P-channel output 
transistor for pulling the output to Vee causes more 
problems than it solves because it overdrives the output. 
The lower voltage output from a stacked N channel out­
put drive of 3.5 V vs. 5.0 V causes less noise on the 
HIGH to LOW transition because less energy needs to 
be switched. 

Cypress uses stacked N-channel transistors on the out­
puts of all devices, eliminating latchup and fast transi­
tion to an overly high output "1" level. The devices are 
more compatible with the TTL devices Cypress 
replaces. 

Resource Planning 

Planning the assignment of functions to pins in the 
CY7C330 is an important step in a CY7C330 design. 
The resource planning sheet on the following page will 
be helpful for this procedure. Examples of its use are 
included with each application. 

The decision on which pin to use is based on: 
1. Asynchronous output enable, set to pin 14 or 

synchronous enable with a product term 

2. State clock is pin 1 

3. Input clock is pin 2 

4. Second input clock is pin 3 or use pin 3 as a normal 
input if pin 2 will be the only input clock 

5. Input only on pins 4-7 and 9-13 

6. Device outputs: Assign pins in the sequence of 
counter MSB to LSB bits Pins 20, 23, 19, 24, 17, 26, 
15, 28, 16, 27, 18, 25.7. 

7. Use of Hidden Registers 

4-75 

a. Four registers HI to H4 are always hidden. 
b. Up to six additional hidden registers can be 

defined. We suggest this sequence: 25, 18, 27, 
16,23,20; 

c. Assign input names to these six registers that are 



IfI::::::z CY7C330 Synchronous EPLD 
_r~~==============~==== 

defined. We suggest this sequence: 25, 18, 27, 

16,23,20; 
c. Assign input names to these six registers that are 

different from the physical device pin names; 

d) The optionally hidden registers can be viewed if 
their output enable is made active (and the exter­

nallogic driving the pin is in a high-impedance 
state), otherwise the OE (Output Enable) 

product term of the hidden register must be set 

to "ZERO". (NAME.ENA = 0;) 

8; The remaining visible regist~rs can still be used in 

applications where both inputs of a macrocell pair 

are used. However, one of the output registers of 
each adjacent pair. cannot have a feedback; 

it is used only as an output synchronized by the 

State Clock on pin 1. 

If, after this assignment, the compiler or assembler 
complains that not enough product terms are available, 
then some pins may haveto be re-assigned. 

Table 1. A CY7C330 Resources Planning Sheet 

Project: Your project name 

Input Input 

Register Register Register Output #of 
Pin Function Clock Function Enable PTerms 

State Ok 

2 Okl 
3 Input/Ok 2 lifInput 
4 Input 1/2 
5 Input 1/2 
6 Input 1/2 
7 Input 1/2 
8 VSS 
9 Input 1/2 
10 Input 1/2 
11 Input 1/2 
12 Input 1/2 
13 Input 1/2 
14 Input/OE 1/2 if Input 
15 Input 1/2 if Input Output Pin 14/pterm 9 
16 Input 1/2 if input Output Pin 14/Pterm 19 
17 Input 1/2 if input Output Pin 14/Pterm 11 
18 Input 1/2 if input Output Pin 14/Pterm 17 
19 Input 1/2 if input Output Pin 14/pterm 13 
20 Input 1/2 if Input Output Pin 14/pterm 15 
21 VSS 
22 vee 
23 Input 1/2 if input Output Pin 14/Pterm 15 
24 Input 1/2 if input Output Pin 14/Pterm 13 
25 Input 1/2 if input Output Pin 14/pterm 17 

26 Input 1/2 if input Output Pin 14/Pterm 11 
27 Input 1/2 if input Output Pin 14/pterm 19 
28 Input 1/2 if input Output Pin 14/Pterm 9 
HI None None 19 

H2 None None 11 
H3 None None 17 
H4 None None 13 
Notes: Input Register Oock #1 is pin 2 

#2 is pin 3 

See the Application Note for the meaning of the pin names. 
Output Enable = 14 means the asynchronous pin 14 direct enable. 

Z means the pin is never active 
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Software Design Tools 

Logic for the CY7C330 can be compiled with a number 
of packages available from third party independent 
software vendors. These include ABEL'" V3.0 from 
DATA 1/0® and LOG/lC'" V3.0 from ISDATA®. 
Cypress has developed a PLD Toolkit (CY7C3101) that 
can be used to design any PLD that Cypress makes. All 
of these are logic compilers capable of converting state 
machine or binary logic descriptions into a JEDEC file 
to program the device. 

The JEDEC file is the standard interface from a 
software development tool to a logic programmer. See 
the examples section for more detail on the software 
tools. 

Logic Programmers 

The CY7C330 can be programmed today on the mM 
(or compatible) QuickPro'" plug-in board, and shortly, 
it will be able to be programmed on DATA I/O®, 
STAG® and other programmers. Some software tools 
require the user to set "fuses" or bits in the device to 
enable certain functions, whereas others will set the ar­
chitecture bits automatically. These bits are shown in 
Table 6. Special attention needs to be applied to bit 
17070: it must be set to 1 if any input register uses a 
clock from pin 3. These requirements will disappear in 
future releases of these software packages and the bits 
will be set automatically. 

Applications Example: Pipelined ButTer 

The Pipe330 example is a two-stage pipeline that simply 
shifts parallel data from the inputs to the outputs (see 
Figure 7). This example shows the overall Cypress PLD 
Toolkit source syntax, and shows how macrocells are 
configured. 

In the Pipe330 example, the output enable for particular 
macrocells. is either under control of pin 14 or under 
control of the associated product term. The latter case 
is the default. To control the output enable of a macro­
cell with pin 14, add "NENBPT" to the list of attributes 
following the node assignment in the configuration sec­
tion. 

If NENBPT does not appear in the attribute list for a 
node, then the output enable is controlled by the ex-

pression that follows the construct < OE > in the equa­
tions. If < OE > is not part of the equation, the output 
is permanently disabled. If < OE > is present, but there 
is not expression following it, the output is permanently 
enabled. 

The output registers in the CY7C330 are always clocked 
by pin 1. The input registers can be clocked by either 
pin 2 or 3. Pin 2 is the default clock, so no special at­
tributes are required for this configuration. If you wish 
to clock an input register with pin 3, the attribute list 
for that node must contain "ICLK=3". 

The resource planning sheet for the pipelined buffer is 
in Table 2, and the source code is in Appendix A. 

Test patterns for the Pipe330 example are relatively 
simple but a few guidelines should not be ignored. At 
first, the state of the registers in the device is unknown, 
and all of the registers are put in a known state before 
any outputs are checked (non-X). Another aspect of 
simulation of the CY7C330 is the need to look after 
multiple clocks. The input and output clocks should be 
treated separately, since the simultaneity of clock asser­
tion is not guaranteed in programmers (or in any real 
system for that matter.) 

CLK0 

IS 019 

16 020 

I? 023 

19 024 

CLKI 

110 025 

III 026 

112 02? 

113 028 

CLK2 
Figure 7. Pipelined ButTer Block Diagram 
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7C330.Resource Pianning Sheet 

Project: Pipelined ButTer 

Input 
Register 

Pin Function 
1 State ak 
2 Okl (LHS) 
3 Ok2(RHS) 
4 14 
5 IS 
6 16 
7 17 
8 VSS 

9 19 
10 110 
11 III 
12 112 
13 I13 

14 OE 
15 
16 
17 
18 
19 
20 
21 VSS 
22 vee 
23 
24 
25 
26 
27 
28 
HI None 
H2 None 
H3 None 
H4 None 

Notes: Input Register aock 

CY7C330 

Table 2. Resource Planning Sheet for Pipelined ButTer 

Input 
Register 
Clock 

1 
1 

2 
2 
2 
2 

#lispin 2 
#2 is pin 3 

Register 
Function 

Q19 
Q20 

Q23 
Q24 
Q25 
Q26 
Q27 
Q28 

Output 
Enable 

Z 
Z 
Z 
Z 
Pterm (Eqn) 
Pterm (Eqn) 

Pterm (Eqn) 
Pterm (Eqn) 
Pin 14 
Pin 14 
Pin 14 
Pin 14 
None 
None 
None 
None 

Synchronous EPLD 

#of 
PTerms 

9 
19 
11 
17 
13 
15 

15 
13 
17 
11 

19 
9 

19 
11 
17 
13 

See the Application Note for the meaning of the pin names. 
Output Enable = 14 means the asynchronous pin 14 direct enable. 
Z means the pin is never active 
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Applications Example: 4·Bit Up/Down Toggle 
Counter with Preloads 
The Tog330 example shows how the XOR product 
terms can be used to emulate a T-type flip-flop. The 
statement: 

Q= <XSUM> Q 
<SUM> T; 

causes the XOR product term to be programmed with 

the feedback of the register output, making the register 
into a T-type. By architecture, all of the outputs are ac­
tive LOW, so the T-type register configuration is active 
LOW. You can also use the configuration above, with 
the following relation: 

T = J!Q + KQ 

to emulate a JK-type flip-flop. 

Table 3. Resource Planning Sbeet for Toggle Counter 

7C330 Resource Planning Sbeet 
Project: 4 Bit Toggle Counter 

Input 
Register 

Pin Function 
1 State Ok 

2 Clk 1 
3 Oear 
4 
5 

6 
7 
8 VSS 
9 

10 

11 
12 
13 

14 

15 
16 
17 

18 

19 

20 
21 VSS 

22 VCC 

23 
24 
25 
26 
27 

28 
HI None 
H2 None 
H3 None 
H4 None 

Notes: Input Register Clock 

Input 
Register 

Clock 

#1 is pin 2 
#2 is pin 3 

Register 

Function 

!OO 
!OI 
!O2 

!O3 

Output 

Enable 

Ptenn 
Ptenn 
Ptenn 

Ptenn 

Z 
Z 

Z 
Z 
Z 
Z 
Z 
Z 
None 

None 

None 

None 

#of 

PTerms 

9 

19 
11 
17 

13 

15 

15 

13 
17 

11 
19 

9 
19 

11 
17 

13 

See the Application Note for the meaning of the pin names. 

Output Enable = 14 means the asynchronous pin 14 direct enable. 

Z means the pin is never active 
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The resource planning sheet for the toggle counter ex­
ample is in Table 3, and the source code· can be found 
in Appendix B. Figure 8 shows the block diagram for 
the design. 

L T0 00 

TI 01 

l T2 02 
--

J-\ T3 03 
J 

A I I <. 

C LK I 

CLR 
Figure 8. Toggle Counter Block Diagram 

Applications Example CY7C330 Up!Down 
Counter with Limits 

This example shows how the pins can be assigued for 
maximum use in the CY7C330. This counter operates at 
66 MHz, counting up until the value stored in the 8-bit 
upper limit register is reached, then down until the 
lower limit is reached. Also included is a method to 
preload the counter to either the upper or lower limit, 
as well as a device reset. 

Let us assume that the two 8-bit limit registers are 
loaded from a CPU. The lower limit is on pins 4 to 12, 
with a 9th bit for preload on pin 13. Clock for this lower 
limit is pin 2. The upper limit is loaded via pins 15-27, 
with pin 27 being the 9th preload bit. These pins are 
also used for reading out the counter value, and pin 14 
is the output enable for the 8 bit up/down counter. Four 
buried registers are used to detect equality of the 
counter with the limits, to maintain up/down direction 
and to detect the preload request as an edge-triggered 
signal. By using the XOR product terms, the counter 
needs only 9 total products even on the most significant 
bit. Without XOR, the 8th bit mould needs 18 product 
terms because of the 2 preload sources. Because of the 
large number of product terms per output in the 
CY7C330, this counter can operate at 66 MHz. 

The contents of the counter can be read out when pin 
14 (direct output enable) is LOW. In a bus-oriented 
system, a microprocessor could read out the register if a 

decoded I/O read signal were applied to pin 14. Note 
that the other method of output enable, ·via the array, 
requires a clock edge to load the required enable input 
condition into the input registers. When pin 14 is high, 
the upper limit register can be loaded, for example from 
a microprocessor bus. The lower limit register can be 
loaded at any time. The block diagram for this design is 
Figure 9. The resource planning sheet for this design is 
in Table 4 and the code is inAppendix C. 

Description: 

The device is a up-down 8-bit counter that counts be­
tween the limits stored in two registers. The operation is 
as follows: 

Lower limit (LL) data is loaded on the positive edge of 
pin 2. There are 8 data bits plus 2 control bits, LPL and 
Reset. If LPL is low, then only the limit compare 
register is changed. If LPL is high, then the LL data is 
loaded into the counter on the next clock edge, and the 
counter will count up. The LL data is one count higher 
than the actual lower limit. If RESET is active, then all 
internal registers will be reset to 0 as long as the reset 
bit is set in the LL register. 

Upper limit (UL) data is loaded on the positive edge of 
pin 3. There are 8 data bits plus a preload control bit. If 
UPL is low, then only the limit compare register is 
changed. If UPL is high, then the UL data is loaded 
into the counter on the next clock edge, and the counter 
will count down. UL data is multiplexed with Counter 
output data. The UL data is one count lower than the 

Prelood L­

Prelood H­
Reset. --

Pin 3 

~-+---Pin 1 

L---,--~~t-~O~E-Pin 14 

B 

Figure 9. Up/Down Counter Block Diagram 
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actual upper limit. Pin 16 is the RESET input. Pin 14 is 
the active low output enable for the counter. The 
counter can be read at any time. Pin 1 is the clock for 
the counter. Pins 18 and 20 are connected together for 
data bit 6. Pins 23 and 25 are connected together for 
data bit 7. 

The buried (hidden) registers are used as follows: 
HI is loaded with the result of the comparison between 
the counter and UL. H2 is UPL or LPL delayed by 
one clock edge. It is used as an edge detect. H3 is 
loaded with the result of the comparison between the 
counter and LL. H4, when high, forces the counter to 
count up. 

Table 4. Resource Planning Sheet for UP/Down Counter 

7C330 Resource Planning Sheet 
Project: Up/Down Counter with Limits 

Input Input 
Register Register Register Output # of 

Pin Function Clock Function Enable PTerms 
1 State Clk 

2 Clk 1 
3 Clk2 
4 LLO 

5 LLl 
6 LL2 
7 LL3 
8 VSS 

9 LL4 
10 LL5 

11 LL6 
12 LL7 
13 PRELOAD LOW 

14 COUNIEROE 
15 ULl 2 CNTI Pin 14 9 
16 Reset 1 Z 19 
17 UL3 2 CNT3 Pin 14 11 
18 UL6 2 Z 17 
19 UU 2 CNT4 Pin 14 13 
20 CNT6 Pin 14 15 
21 VSS 

22 VCC 

23 CNT7 Pin 14 15 
24 ULS 2 CNTS Pin 14 13 
25 UL7 2 Z 17 
26 UL2 2 CNT2 Pin 14 11 
27 PRELOAD HIGH 2 Z 19 
28 ULO 2 CNTO Pin 14 9 
HI None Up Equals None 19 
H2 None I)H Prel'Done None 11 
H3 None Down Equals None 17 
H4 None Up Count None 13 

Notes :Input Register Clock #1 is pin 2 
#2 is pin 3 

See the Application Note for the meaning of the pin names. 
Output Enable = 14 means the asynchronous pin 14 direct enable. 

Z means the pin is never active 
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Application Example: 16 x 16 Crossbar 
Switch 
A data switch capable of multiplexing 16 inputs into 4 
outputs can be built with one CY7C330. The 66 MHz 
clock rate alloWs even asynchronous input signals of up 
to 33 MHz to be switched through the device. The com­
pact 300 mil package saves PCB space. Normally such a 
multiplexer would need at least 40 pins partitioned as 
follows: 

16 input pins, 
4 output pins, 
4 x 4 = 16 selection inputs 
4 pins for power and clock connections 

No other PLD today can perform this function using a 
single device, because of the logic requirement (i.e., the 
number of product terms required per output) as well 
as the timing requirement. However, this is no problem 
for the CY7C330; the entire design fits in one 300 mil, 
28-pin package and runs with a maximum clock rate of 
66 MHz. 

Description: 

This example uses 12 state registers plus 4 input 
registers to act as the 4 x 4 bit selection registers. Each 
output channel needs a 4 bit register to select one of 16 
input channels. In this example we construct a 4 stage, 4 
bit -wide shift register inside the part to hold the select 
status. This way the data to these 4 x 4 bits can be 
loaded via only 4 pins without needing any address pins. 
When the PL (PRELOAD) pin 3 is LOW, input data 
bits 0 to 3 become the selector data lines; 5 clock pulses 
will shift the select data through the device into the 
selectors 1, 2 and 3 as well as the output pins. Setting 
pin 3 HIGH after the fifth pulse will load the output 
data pins into the select register O. This last load opera­
tion utilizes the function of pin 3 as a data pin as well as 
a clock. Setting pin 3 LOW switches the internal logic 
from a selector into a shift register; setting pin 3 HIGH 
is a clock edge which loads the data output into the 
input registers associated with the output pins (16, 18, 
25,27). 

This design requires that we "bury" the output register 
of several of the I/O macrocells, and use the pin as an 
input by utilizing a shared input mux. This is ac­
complished in the configuration section of the source 
me. First, we must assign the name of the output 

register to the macrocell node number. Since the 
default configuration is for the Q output of the output 
register to be fed back into the array, no other con­
figuration attributes are needed here. The name of the 
input is assigned to the node number of the shared 
input mux adjacent to the pin. The default for the 
shared input muxes is to pass the data on the even pin 
into the array. If the input is to come from an odd 
numbered pin, you must add the attribute "SRC = N" 
(where N is the pin number) to the list of attributes in 
parentheses following the node name. For an example 
of this syntax, refer to d10 and sa2 in the source me. 

The space advantage of the CY7C330 in this crossbar 
switch application becomes especially important as the 
size of the matrix increases. A 32 x 32 matrix would 
need only 16 devices vs. 64 P ALC22V10s or 96 TTL 
circuits. Loading of the internal data selection registers 
is easily done with a Cypress 24-pin EPLD, the 
PLDC20GlO, and a FIFO. A CPU would load the 16 x 
4 bit selector information into the FIFO and the 
PWC20G10 would move the data from the FIFO into 
the device. One PLDC20GlO and one 16 x 4 (or larger) 
FIFO is required. The Cypress CY7C403 would be an 
ideal FIFO for this application. 

The resource planning sheet for the 16 X 16 crossbar 
switch design is in Table 5, and a block diagram of the 
design is pictured in Figure 10. The source code can be 
found in Appendix D. 

Figure 10. 16X16 Crossbar Switch Block Diagram 
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Reading the JEDEC Map CY7C330 Internal 
Array Reference 

Table 6 is intended to help read the JEDEC MAP of a 
CY7C330. The pin or node reference number is on the 
left. These numbers correspond to the pin and node 
numbers on the block diagram Figure 1. The column 
labeled "Input True" gives the sequential number (left to 

right) of the column corresponding to the non-inverted 
input to the array. If the number is even, then the false 
input is the next-higher integer; if the number is odd, 
then the false input is the next lower integer. The num­
ber of product terms in each output stage is listed, 
along with the JEDEC offset (sequential fuse position) 
for each. 

Table 5. Resource Planning Sheet for Crossbar Switch 

7C330 Resources Planning Sheet 
Project :16 X 16 Crossbar Switch 

Input 
Register 

Pin Function 
Stateak 

2 ak! 
3 SeIPRELOAD 
4 Data 0 
5 Data 1 
6 Data 2 
7 Data 3 
8 VSS 
9 Data 4 
10 DataS 
11 Data 6 
12 Data 7 
13 Data 8 
14 Data 9 
15 Data 10 
16 Select DO 
17 Data 11 
18 Select CO 
19 Data 12 
20 
21 VSS 
22 VCC 
23 
24 Data 13 
25 Select BO 
26 Data 14 
27 Select AO 
28 Data 15 
H1 None 
H2 None 
H3 None 
H4 None 

Notes: Input Register aock 

Input 
Register 
Clock 

1 
1 
2 

1 
2 

1 
2 

2 

1 

#1 is pin 2 
#2 is pin 3 

Register 
Function 

SelectA2 
Output 3 
SelectA1 
Output 2 
Select Cl 
Select 01 

Select B2 
Select A2 
Output 1 
Select C2 
Output 0 
Select 02 
Select A3 
Select B3 
Select C3 
Select 03 

Output 
Enable 

Z 
Ptenn 
Z 
Ptenn 
Z 
Z 

Z 
Z 
Ptenn 
Z 
Ptenn 
Ptenn 
None 
None 
None 
None 

# of 

PTerms 

9 
19 
11 
17 
13 
15 

15 
13 
17 
11 
19 
9 

19 
11 
17 
13 

See the Application Note for the meaning of the pin names. 
Output Enable = 14 means the asynchronous pin 14 direct enable. 
Z means the pin is never active 
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Table 6. Tbe CY7C330 Internal Array Reference List 

Pin or Function Input #of lst 
Node True Pterms OE XOR OR 

State Clock 
2 Input Oock1 
3 Input Oock2 0 
4 Input Register 2 
5 Input Register 4 
6 Input Register 6 
7 Input Register 8 
8 VSS 
9 Input Register 10 
10 Input Register 12 
11 Input Register 14 
12 Input Register 16 
13 Input Register 18 
14 Input Register 20 
15 1/0 Regs, mux 65 9 Ll6236 Ll6302 Ll6368 
N-35 mux input(node) 62 
16 I/O Regs, mux 61 19 Ll4850 Ll4916 Ll4982 
17 I/O Regs, mux 59 11 Ll3m Ll4058 Ll4124 
N-36 mux input(node) 56 
18 I/O Regs, mux 55 17 Ll2738 Ll2804 Ll2870 
19 I/O Regs, mux 49 13 L9636 L9702 L9768 
N-37 mux input(node) 46 
20 I/O Regs, mux 45 15 L8S14 L8SSO L8646 
21 VSS 
22 VCC 
23 I/O Regs, mux 39 15 L5280 L5346 1.5412 
N-38 mux input(node) 36 
24 I/O Regs, mux 35 13 U290 U356 L4422 
2S I/O Regs, mux 33 17 L3036 L3102 L3168 
N-39 mux input(node) 30 
26 I/O Regs, mux 29 11 L2178 L2244 L2310 
27 I/O Regs, mux 27 19 L792 L8S8 L914 
N-40 mux input(node) 24 
28 I/O Regs, mux 23 9 IA6 Ll32 Ll98 
N-29 Sync. Reset LO 
N-30 Sync. Preset Ll6962 
N-31 Buried Register 40 13 L11814 Ll1870 
N-32 Buried Register 42 17 Ll0626 Ll0692 
N-33 Buried Register 50 11 L7722 L7788 
N-34 Buried Register S2 19 L6402 L6468 
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CY7C330; 

CONFIGURE; 

CkS (node = 1), 
Ckl, 
Ck2, 
10 (iclk = 3), 
11 (iclk = 3), 
12 (iclk = 3), 
13 (iclk=3), 
14 (node = 9), 
15, 
16, 
17, 
OEl, 
!OE2(node = 14), 
07, 
06, 
OS, 
04, 
03(nenbpt), 
02(nenbpt), 
01(node = 23,nenbpt), 
OO(nenbpt), 
!RST(iop), 
reset(node = 29), 

EOUATIONS; 

reset = RST; 

!OO = <sum> 110; 

!Ol = <sum> !11; 

!02 = <sum> !l2; 

!03 = <sum> !l3; 

!04 = <oe> OEI & OE2 
<sum> !l4; 

!OS = <oe> OEI & OE2 
<sum> !IS; 

!06 = <oe> OEI & OE2 
<sum> !16; 

!07 = <oe> OEI & OE2 
<sum> !l7; 

Appendix A. PLD ToolKit Source Code for Pipelined Buffer 

{Pipe330} 

{Output register clock} 
{Input register clock I} 
{Input register clock 2} 
{Input 0, clocked by Ck2 (pin 3)} 
{Input 1, clocked by Ck2 (pin 3) } 
{Input 2, clocked by Ck2 (pin 3)} 
{Input 3, clocked by Ck2 (pin 3)} 
{Input 4, clocked by Ckl (pin 2)} 
{Input 4, clocked by Ckl (pin 2)} 
{Input 4, clocked by Ckl (pin 2)} 
{Input 4, clocked by Ckl (pin 2)} 
{output enable for 0 < 7:4 > } 
{direct output enable for 0 < 7:0 > } 
{Output 7, clocked by CkS, enabled by OEl&!OE2} 
{Output 6, clocked by CkS, enabled by OEI&!OE2} 
{Output 5, clocked by CkS, enabled by OEI&!OE2} 
{Output 4, clocked by CkS, enabled by OEI&!OE2} 
{Output3, clocked by CkS, enabled: pin14} 
{Output2, clocked by CkS, enabled: pinl4} 
{Outputl, clk: CkS, OE:: pinl4} 
{OutputO, clocked by CkS, enabled: pinl4} 
{low asserted reset, I/O macrocell as input} 
{internal reset node} 

{end of file} 
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Appendix B. PLD ToolKit Source Code for a Toggle Counter 

CY7C330; 

CONFIGURE; 

CkS, 
Ckl, 
!Clr, 
!OE(node = 14), 
!OO(nenbpt), 
!OI(nenbpt), 
!02(nenbpt), 
!03(nenbpt), 
reset(node = 29), 

EOUATIONS; 

reset = Clr; 

00 = <xsum> 00 
<sum>; 

01 = <xsum> 01 
<sum> 00; 

02 = <xsum> 02 
<sum> 01 & 00; 

03 = <xsum> 03 
<sum> 02 & 01 & 00; 

{Tog330} 

{Count clock, This is pinl since it is first in the list.} 
{Input clock,. This is piu2 since it is next.} 
{Low true clear, Pin3 is next in sequential order.} 
{Low asserted output enable pin, pin 14} 
{00-03 are the counter outputs - pins 15-18.} 

{The reset product term is node 29.} 

{Feeding the register output back into the XOR emulates a T flop.} 
{T input - No expression after the connective < sum> means always asserted} 

{Feeding the register output back into tpe XOR emulates a T flop.} 
{T input} 

{Feeding the register output back into the XOR emulates a T flop.} 
{T input} 

{Feeding the register output back into the XOR emulates a T flop.} 
{T input} 

{end of fIle} 
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Appendix C. PLD ToolKit Source Code for Up/Down Counter 

CY7C330; 
CONFIGURE; 

{File: COUNTER.CYP Date: 11/9/1988 } 

CLK (node = 1), LLC (node = 2), ULC (node = 3), {Count cLocK, Lower Unlit Clock, Upper Limit Clock} 
LLO (node = 4, iclk = 2), LLl, LL2, LL3, {The Lower Limit register is clocked by pin 2-LLC- by default.} 
LL4 (node =9), LLS, LL6, LL7, {The register is located at pins 4-7, 9-12 - pin 8 is Vss.} 
LPL(node = 13), {Lower limit PreLoad} 
ICNTOE (node = 14), {Counter output enable on pin 14} 
CNTO (node = 28, nenbpt,oclk = 1, iclk = 3), {The counter itself is in the output register of various I/O macrocells} 
CNTI (node = 15, nenbpt, iclk = 3), {as noted in the node numbers after the names.Pin 1 always clocks the} 
CNT2 (node = 26, nenbpt, iclk = 3), { output registers-oclk = 1 was included once for documentation.} 
CNT3 (node = 17, nenbpt, iclk=3), {'nenbpt' specifies that the output enable is controlled by pin 14} 
CNT4 (node = 19, nenbpt, iclk = 3), {rather than the output enable product terms in each macrocell} 
CNTS (node = 24, nenbpt, iclk = 3), {Most of these macrocells will be bidirectional, with the Upper Limit} 
CNT6 (node =20, nenbpt), {register residing in the input registers. 'iclk=3' specifies that pin 3 } 
CNT7 (node = 23, nenbpt), {clocks the input registers. This overrides the default, pin 2. } 

ULO (node =40, src = 28), 
ULl (node =35, src=1S), 
UL2 (node =39, src=26), 
UL3 (node =36, src=I7), 
UL4 (node =37, src=19), 
ULS (node = 38, src=24), 
UL6 (node = 18, iop, iclk=3), 
UL7 (node =25, iop, iclk=3), 
UPL (node =27, iop, iclk=3), 
Ireset (node = 16, iop), 
node29 (node =29), 
UP (node =31), 
LEQUAL (node =32), 
PLDONE (node =33), 
UEQUAL (node =34), 

EQUATIONS; 

ICNTO = < XSUM > ICNTO 
< SUM> /LPL & /UPL 
< SUM > /PLDONE 
< SUM> /LLO & LPL & CNTO 
< SUM> ICNTO & ULO & UPL 
< SUM> LLO & LPL & ICNTO 
<SUM> CNTO & /ULO & UPL; 

ICNT1 = < XSUM > ICNTl 
< SUM> /LPL & CNTO & /UPL & /UP 
< SUM > /LPL & ICNTO & /UPL & UP 

{The output register is fed back into array by default.} . 
{ULO is the input reg of pin28, routed thru shared input mux-node40} 
{ULl is the input reg of pinlS, routed thru shared input mux-node3S} 
{UL2 is the input reg of pin26, routed thru shared input mux-node39} 
{UL3 is the input reg of pinl7, routed thru shared input mux-node36} 
{UL4 is the input reg of pinl9, routed thru shared input mux-node37} 
{ULS is the input reg of pin24, routed thru shared input mux-node38} 
{UL6 is the input reg of pin18, 'iop' selects array input from input reg} 
{UL7 is the input reg of pin25, 'iop' selects array input from input reg} 
{Upper limit PreLoad, array input from input reg, clocked by pin 3} 
{low asserted clear, array input from input reg, clocked by pin 2} 
{The reset product term is node29} 
{buried node 31 selects the counter direction, clocked by pin I} 
{buried node 32 compares counter with lower limit, clocked by pin l} 
{buried node 33 is the preload done flag, clocked by pin l} 
{buried node 34 compares counter with upper limit, clocked by pin l} 

< SUM> ILL1 & LPL & PLDONE & CNTl 
< SUM> LLl & LPL & PLDONE & ICNTl 
< SUM> UPL & PLDONE & /ULl & CNTl 
<SUM> UPL & PLDONE & ULl & ICNT1 
<SUM> CNTO & /PLDONE & /UP 
< SUM> ICNTO & /pLDONE & UP; 
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Appendix C. Source Code for Up/Down Counter (continued) 

/CNTZ = < XSUM > /CNTZ 
< SUM> /LPL & CNTO & /UPL & /UP & CNTl 
< SUM >/LPL & /CNTO & /UPL & UP & /CNTl 
< SUM> /LL2 &. LPL & CNT2 & PLDONE 
< SUM> LL2 & LPL & /CNT2 & PLDONE 
< SUM> UPL & CNT2 & /UL2 & PLDONE 
< SUM> UPL & /CNT2 & UL2 & PLDONE 
<: SUM> CNTO & /PLDONE & /UP & CNTl • 
< SUM> /CNTO & /PLDONE & UP & /CNTl;. 

/CNT3 = < XSUM > /CNT3 
< SUM > /LPL&CNTO&/UPL&CNT2&/UP&CNTl 
< SUM> /LPL&/CNTO&/UPL&/CNTZ&UP&/CNTl 
<SUM> /LL3 & LPL & PLDONE & CNT3 
< SUM > LL3 &LPL & PLDONE & /CNT3 
< SUM> U.PL & PLDONE & /UL3 & CNT3 
< SUM> UPL & PLDONE & UL3 & /CNT3 
< SUM > CNTO&CNT2&/PLDONE&/UP&CNTl 
< SUM> /CNTO&/CNT2&/PLDONE&UP&/CNTl; 

/CNT4 = < XSUM > /CNT4 
< SUM> /LL4 & LPL & PLDONE & CNT4 
<SUM> LL4 & LPL & PLDONE & /CNT4 
<SUM> UPL & PLDONE & /UL4 & CNT4 
<SUM> UPL & PLDONE& UL4 & /CNT4 
<SUM> /LPL & CNTO & /UPL & CNTZ & /UP & CNT3 & CNTl 
<SUM> /LPL & /CNTO & /UPL & /CNTZ & UP & /CNT3 & /CNT 
<SUM> CNTO {k. CNT2 & /PLDONE & /UP & CNT3 & CNTl 
<SUM> /CNTO & /CNT2 & /PLDONE & UP & /CNT3 & /CNTl; 

/CNT5 = < XSUM > /CNT5 
<SUM> /LLS &LPL & CNT5 & PLDONE 
<SUM> LLS & LPL & /CNT5 & PLDONE 
<SUM> UPL & CNT5 & /ULS & PLDONE 
<SUM> UPL & /CNT5 & ULS & PLDONE 
<SUM> /LPL & CNTO & /UPL & CNT2 & CNT4 & /UP & CNT3 & CNTl 
<SUM> /LPL & /CNTO & /UPL & /CNTZ & /CNT4 & UP & /CNT3 & /CNTl 
<SUM> CNTO & CNT2 & /PLDONE & CNT4 & /UP & CNT3 & CNTl 
< SUM> /CNTO & /CNT2 & /PLDONE & /CNT4 & UP & /CNTI & /CNTl; 

/CNT6 = < XSUM > /CNT6 
<SUM> /LL6 & LPL & PLDONE & CNT6. 
<SUM> LL6 & LPL & PLDONE & /CNT6 
< SUM> UPL & PLDONE & CNT6 & /UL6 
< SUM> UPL & PLDONE & /CNT6 & UL6 
<SUM>/LPL&CNTO&/UPL&CNT2&CNT5&CNT4 & /UP & CNT3 & CNTl 
< SUM> /LPL & /CNTO & /UPL & /CNTZ & /CNT5 & /CNT4 & UP & /CNT3 &. /CNTl 
< SUM> CNTO&CNT2&CNT5&/pLDONE&CNT4 & /UP & CNT3 & CNTl 
< SUM> /CNTO & /CNT2 & /CNT5 & /PLDONE & /CNT4 & UP & /CNT3 &. /CNTl; 
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Appendix C. Source Code for Up!Down Counter (continued) 

ICNT7 = < XSUM > ICNT7 
<SUM> /U-7 & LPL & CNT7 & PLDONE 
<SUM> LL7 & LPL & ICNT7 & PLDONE 
<SUM> UPL & /UL7 & CNT7 & PLDONE 
<SUM> UPL & UL7 & ICNT7 & PLDONE 
< SUM> /LPL & CNTO & /UPL & CNT2 & CNT5 & CNT6 & CNT4 & /UP & CNT3 & CNT! 
<SUM> /LPL & ICNTO & /UPL & ICNTI & ICNT5 & ICNT6 & ICNT4 & UP & ICNT3 & ICNT! 
<SUM> CNTO & CNTI & CNT5 & /PLDONE & CNT6 & CNT4 & /UP & CNT3 &CNT! 
< SUM> ICNTO & ICNTI & ICNT5 & /PLDONE & ICNT6 & ICNT4 & UP & ICND & ICNT!; 

node29 = < SUM > reset; 

UP= <XSUM> UP 
< SUM> /UEQUAL & /UP 
< SUM> /LEQUAL & UP 
<SUM> UPL&PLDONE&/UP 
< SUM> LPL & PLDONE & UP; 

PLDONE= < SUM> /LPL & /UPL; 

LEQUAL= <SUM> LL6 & ICNT6 
<SUM> /U-7 & CNT7 
<SUM> LL7 & ICNT7 
< SUM> LL3 & ICND 
<SUM> /LL5 & CNT5 
<SUM> LL5 & ICNT5 
< SUM> /LLl & CNT! 
<SUM> LLO & ICNTO 
< SUM> /LU & CNT2 
< SUM> /LL4 & CNT4 
<SUM> LL4 & ICNT4 
< SUM> /LLO & CNTO 
< SUM> LLl & ICNT! 
< SUM> /LL6 & CNT6 
< SUM> /LL3 & CND 
< SUM> LL2 & ICNTI; 

UEQUAL= <SUM> ICNT6 & UL6 
<SUM> /UL7 & CNT7 
<SUM> UL7 &/CNT7 
< SUM> UL3 & ICND 
< SUM > CNT5 & /UL5 
< SUM> ICNT5 & UL5 
< SUM> /ULl & CNT! 
< SUM > ICNTO & ULO 
< SUM > CNT2 & /UL2 
< SUM> /UU & CNT4 
<SUM> UU & ICNT4 
< SUM> CNTO & /ULO 
<SUM> ULl & ICNT! 
< SUM > CNT6 & /UL6 
< SUM> /UL3 & CND 
<SUM> ICNT2 & UL2; 
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Appendix D. PLD ToolKit Source Code for Crossbar Switch . 

CY7C330; 

configure; 
elk (node=l), iclk, pI, 
dO, d1, d2, d3, 
d4 (node =9), dS, d6, d7, d8, d9, 
dlO (node = 35, sre= 15), dll (node =36, sre=17), 
d12 (node =37, sre=19), d13 (node =38, sre = 24), 
d14 (node =39, sre=26),d15 (node =40, sre = 28), 
sal (node = 17), sa2 (node = 15), sa3 (node =34), 
sb1 (node =24), sb2 (node = 23), sb3 (node =33), 
se1 (node = 19), se2 (node =26), sc3 (node=32), 
sd1 (node =20), sd2 (node =28), sd3 (node=31), 
yO (node =27, iop, ielk=3), 
y1 (node =25, iop, iclk=3), 
y2 (node = 18, iop, ielk=3), 
y3 (node = 16, iop, ielk = 3), 

EQUATIONS; 

Isa1 = < SUM> Ipl & Isa2 
< SUM> pI & Isa1; 

Isa2 = <SUM> IpI & sa3 
< SUM> pI & Isa2; 

sa3 = <SUM> IpI & dO 
<SUM> pI & sa3; 

Isb1= < SUM> IpI & Isb2 
< SUM> pI & Isb1; 

Isb2= <SUM> IpI & sb3 
< SUM> pI & Isb2; 

sb3 = <SUM> IpI & dl 
<SUM> pI & sb3; 

Isel= < SUM> IpI & Ise2 
< SUM> pI & Isel; 

Ise2 = <SUM> IpI & sc3 
< SUM> pI & Ise2; 

se3 = <SUM> IpI & d2 
<SUM> pI & sc3; 

Isd1 = < SUM> IpI & Isd2 
< SUM> pI & Isd1; 

Isd2 = <SUM> IpI & sd3 
< SUM> pI & Isd2; 

sd3 = <SUM> IpI & d3 
<SUM> pI & sd3; 
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Appendix D. Source Code for Crossbar Switch (continued) 

ly3 = < DE> Ipi 
< SUM> pI & IdO & Isa3 & Isb3 & Isc3 & Isd3 
< SUM> pI & Idl & sa3 & Isb3 & Isc3 & Isd3 
< SUM> pI & 1d2 & Isa3 & sb3 & Isc3 & Isd3 
< SUM> pI & 1d3 & sa3 & sb3 & Isc3 & Isd3 
< SUM> pI & Id4 & Isa3 & Isb3 & sc3 & Isd3 
< SUM> pI & IdS & sa3 & Isb3 & sc3 & Isd3 
< SUM> pI & Id6 & Isa3 & sb3 & sc3 & Isd3 
<SUM> pI & Id7 & sa3 & sb3 & sc3 & Isd3 
< SUM> pI & IdS & Isa3 & Isb3 & Isc3 & sd3 
< SUM> pI & Id9 & sa3 & Isb3 & Isc3 & sd3 
< SUM> pI & Isa3 & sb3 & Isc3 & sd3 & IdlO 
< SUM> pI & sa3 & sb3 & Isc3 & sd3 & Idll 
< SUM> pI & Isa3 & Isb3 & Idl2 & sc3 & sd3 
< SUM> pI & Id13 & sa3 & Isb3 & sc3 & sd3 
<SUM> pI & Idl4 & Isa3 & sb3 & sc3 & sd3 
<SUM> pI & Idl5 & sa3.& sb3 & sc3 & sd3 
<SUM> Ipi & sdlj 

lyZ = <DE> Ipi 
<SUM> pi & IdO & sd2 & sc2 & sb2 & sa2 
<SUM> pI & Idl & sd2 & sc2 & sb2 & Isa2 
<SUM> pI & 1d2 & sd2 & sc2 & Isb2 & sa2 
< SUM> pI & Id3 & sd2 & sc2 & Isb2 & Isa2 
<SUM> pI & Id4 & sd2 & Isc2 & sb2 & sa2 
< SUM> pI & IdS & sd2 & Isc2 & sb2 & Isa2 
< SUM> pI & Id6 & sd2 & Isc2 & Isb2 & sa2 
< SUM> pI & Id7 & sd2 & Isc2 & Isb2 & Isa2 
<SUM> pI & IdS & Isd2 & sc2 & sb2 & sa2 
< SUM> pI & Id9 & Isd2 & sc2 & sb2 & Isa2 
< SUM> pI & Isd2 & sc2 & Isb2 & IdIO & sa2 
< SUM> pI & Isd2 & sc2 & Isb2 & Idll & Isa2 
< SUM> pI & Isd2 & Isc2 & sb2 & Idl2 & sa2 
< SUM> pI & Isd2 & Isc2 & Id13 & sb2 & Isa2 
<SUM> pI & Isd2 & Isc2 & Idl4 & Isb2 & sa2 
< SUM> pI & Isd2 & Idl5 & Isc2 & Isb2 & Isa2 
<SUM> Ipi & sclj 

Iyl = <DE> Ipi 
<SUM> pI & IdO & sbl & sdl & scI & sal 
<SUM> pI & Idl & sbl & sdl & scI & Isal 
<SUM> pI & 1d2 & Isbl & sdl & scI & sal 
< SUM> pI & 1d3 & Isbl & sdl & scI & Isal 
<SUM> pi & Id4 & sbl & sdl & Isel & sal 
< SUM> pi & IdS & sbl & sdl & Iscl & Isal 
< SUM> pI & Id6 & Isbl & sdl & Iscl & sal 
< SUM> pI & Id7 & Isbl & sdl & Isel & Isal 
<SUM> pI & IdS & sbl & Isdl & scI & sal 
< SUM> pI & Id9 & sbl & Isdl & scI & Isal 
< SUM> pI & Isbl & Isdl & scI & sal & IdIO 
< SUM> pI & Isbl & Isdl & scI & Idll & Isal 
< SUM> pi & sbl & Isdl & Idl2 & Isel & sal 
< SUM> pi & sbl & Id13 & Isdl & Iscl & Isal 
< SUM> pi & Idl4 & Isb! & Isdl & Iscl & sal 
< SUM> pI & Idl5 & Isbl & Isdl & Isel & Isal 
< SUM> Ipi & sblj 
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Appendix D. Source Code Cor Crossbar Switch (continued) 

lyO = <DE> IpI 
<SUM> pI & IdO & /yO & Iyl & 112 & /'f3 
< SUM> pI & Idl & yO & /yl & Iy2 & ly3 
<SUM> pI & 1d2 & /yO & yl & Iy2 & ly3 
<SUM> pI & 1d3 & yO & yl & /12 & /y3 
<SUM> pI & /d4 & /yO & /yl & 12 & /y3 
<SUM> pI & /dS & yO & /yl & 12 & /y3 
<SUM> pI & /d6 & /yO & yl & 12 & 1y3 
<SUM> pI & /d7 & yO & yl & 12 & /'f3 
<SUM> pI & /dS & lyO & /yl & 112 & y3 
<SUM> pI & /d9 & yO & Iyl & /12 & y3 
<SUM> pI & /yO & yl & 112 & y3 & IdlO 
<SUM> pI & yO & yl & Iy2 & /dll & y3 
<SUM> pI & /yO & /yl & /d12 & 12 & y3 
<SUM> pI & yO & /yl & Id13 & 12 & y3 
<SUM> pI & /yO & /d14 & yl & 12 & y3 
<SUM> pI & /d15 & yO & yl & 12 & y3 
< SUM> IpI & sal; 
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CYPRESS 
SEMICONDUCTOR 

CY7C330 State Machine Example: 
SCSI Host Adapter 

Introduction 

This application note describes a minimal, though ex­
tremely fast, SCSI (Small Computer Systems Interface) 
controller that is built up from a few parts surrounding 
a CY7C330 synchronous state machine PLD. The con­
troller is compliant with the SCSI standard for a host-
based minimally featured interface. . 

A optimal speeds are achieved by efficiently using 
various features of the CY7C330. The 66 MHz speed, 
the input registers, and the device size -- including the 
array size -- are all features that help to achieve this 
level of performance. 

At 66 Mhz the register to register transfers can occur at 
15 ns intervals, which is fast enough to keep datapath 
transfers out of the way of SCSI transfers. In order to 
achieve optimal throughput, the SCSI handshake trans­
fer must be made the limiting factor, so this clock speed 
is necessary. 

Computer 

Bus Interfac( 

The input registers are used to synchronize external sig­
nals. Synchronization is necessary so that the state 
machine can respond to these signals, and the input sec­
tion of the state machine is the correct place to perform 
the task. Since the signals are synchronized at the input 
to the array, adherence to Gray code transitions can be 
ignored in the design, and thus time critical transitions 
can be made in less cycles. 

The device and array size of the CY7C330 are sufficient 
to accommodate the entire control section of the inter­
face. In fact, because the device is large enough, several 
signals are shared, and therefore more features can be 
accommodated in this design than would be the case if 
the interface was constructed from smaller PLDs. 

The minimally featured SCSI Host implementation is a 
complete interface to one or more SCSI controllers 
from a single host. 

DBO-DB7 
BSY 
ACK 

Mass 

RST 
SEL Store 

C/D 
REO 

Subsystem 
I/O 

MSG 

Figure 1. Small Computer System Interface (SCSI) 
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Conventions 

In this document, conventions are followed so that sig­
nal names in timing and state diagrams can be related 
to schematics without signal sense ambiguity. 

If a signal name appears suffixed by a minus sign (-), 
then that signal is active low. The minus sign is part of 
the signal name, and not an operator. As an example, 
the signal ACK- appears on several timing diagrams 
and the minus is there to remind the reader that a low 
on the timing diagram is the asserted state. 

In state diagrams the asserted states appear as 1s. This 
makes the diagram easier to read than one with Ts and 
Fs. In any case there is no ambiguity because the 
boolean variables which are used in state diagrams are 
not circuit level signals. For example, the variable COlT 
is used in a state diagram with a 1 being true, while the 
corresponding signal name in the schematic and the 
timing diagram is CDIT- with a low assertion level. 

The backslash / is the inversion operator. This is similar 
to the BAR operator in boolean algebra, so / A has the 
same meaning as A. An operator does not signify ac­
tivity level, so the inclusion of a signal suffIX (- or blank) 
is additional information. 

In PLD definitions and equations, the signal assertion 
level should only appear in the pin name declaration. 
PLD equations should then be written referring only to 
variable names as they appear in state diagrams and 
truth tables. 

The design file for this CY7C330 application has not 
been included in this note, but is available from Cypress 
Semiconductor. 

History 

The SCSI standard evolved from the SASI controller 
specification by DTC and Shugart, which was a widely 
adopted parallel interface for disk controllers. The cur­
rent SCSI standard is upwards compatible from this 
original specification. 

Apart from the more rigorous timing and electrical 
specifications, most SCSI additions (i.e., reselection, ar­
bitration, and synchronous mode) apply when the inter­
face' is being used as a network. If the sole use of the 
interface is to access a mass storage subsystem, then 

these features may be oinitted and the resultant SCSI 
implementation will be smaller and faster. 

The current SCSI interface is 8 bits wide, and it is pos­
sible to operate in asynchronous mode for a minimally 
featured interface at a rate of up to 16 megacycles. The 
interface may be widened to 16 bits at some time in the 
near future; if so, then the SCSI throughput rate will 
double to a theoretical maximum. of about 32 megabytes 
per second. 

The SCSI standard is likely to prevail in storage system 
interfaces. The only competing standard is ESDI which, 
being a serial data interface, has a much lower data 
throughput. 

System Considerations 

A block diagram of a minimal SCSI implementation is 
shown in Figure 1. Normally the mass store subsystem is 
inside the same enclosure as the computer; if it is not, 
then for emission considerations differential drivers and 
receivers should be used. In this application note, it is 
assumed that the flat cable SCSI bus is about a foot 
long so that transmission delays ate minimal (5 ns). 

The mass store subsystem consists of one or more disk 
drives or other high density storage devices, and one or 
more controllers with SCSI ports. Unused line~ in the 
SCSI bus are not shown in Figure 1. 

The computer system itself will access the SCSI control­
ler from its own bus. For this example, a simple 
asynchronous interface has been implemented. This in­
terface only one data strobe and there are two signals: 

BSY-

SEL-~ 
OBX-~ 
C/O-

1/0- H 400 ns, 

REO- ----------~I I 
ACK-

Figure 2. SCSI Command Phase Timing 
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RTS (Request To Send) and ers (Clear To Send) to 
request or acknowledge data access cycles. These sig­
nals allow for the connection of a DMA device or 
another data interface. 

The SCSI Transfer Protocol 

A SCSI data access consists of a command transfer fol­
lowed by a data transfer. The command transfer 
proceeds as follows: 

1. The host waits for BSY to go inactive, then asserts 
SEL and one of the 8 data bits (to select one of 8 con­
trollers). 

2. The controller drives BSY active when this selection 
combination is detected. 

3. The host releases SEL and the data bit used for 
selection. 

4. The controller asserts C/D and REO to read a com­
mand byte from the host. 

5. The host outputs the fIrst byte of the command and 
asserts ACK. 

6. The controller accepts the data and deasserts REO. 

7, The host then deasserts ACK. 

8. Steps 4 through 7 are repeated for 6 bytes (more in 
special cases). 

Figure 2 illustrates this process. 

After the command has been read in by the controller, 
the operation is either performed or aborted. After ex­
ecuting a command, a status byte (C/D asserted) is sent 
to the host to indicate success or an error condition. 

If the command is a write command, then data is first 
transferred from the host to a buffer on the controller. 
After the data is written to the disk, a command com­
plete status message is sent to the host. 

If the command is a read command, then data is read 
from the disk, checked for validity, and passed to the 
host. Some controllers offer a "Fly-by" mode, which 
means data is passed to the host as soon as it is read 
and an error condition is signalled afterwards. 

The normal data transfer protocol follows the above 
description (steps 4 to 7). At the end of the access, the 
status byte is transferred, then activity ceases. BSY goes 
inactive to signal the end of the access. 

Interface Timing Considerations 

There is one major delay and one minor delay to be 
observed during selection, and there is a data setup 
delay to be observed during data transfer. 

For the host interface, under the single initiator option 
in the SCSI specification there is a 400 ns "bus settle 
delay" to be observed after BSY goes false, and before 
SEL is asserted. Additionally, SEL is to be deasserted 
at least two deskew delays after BSY is asserted. A des­
kew delay is 45 ns. Data is to be set up for a minimum 
of one deskew delay plus one cable skew delay (45ns + 
10ns) before the ACK signal is given. 

Like the host interface, the controller interface has 
timing constraints associated with selection and data ac­
cess. 

The controller implements the same data setup delay as 
the host, but the strobe which is accomodatedfrom the 
controller side is REQ. The response to SEL must be 
shorter than 200 microseconds. 

The setup time allowed for I/O and C/D [control sig­
nals] is specified as one "bus settle delay" or 400 ns. It 
is worth noting here that the response to SEL, and the 
various bus settle delay constraints are really system 
level response times, and need not be of concern in the 
hardware design at this level. 

Performance Considerations 

The CY7C330 is a Moore machine; there are no com­
binatorial paths from the inputs to the outputs. One 
consideration in state machine design with Moore 
machines is that the turnaround time or handshake 
delay to external signals can become the limiting factor 
in throughput. This problem is most obvious in 
asynchronous interfaces. 

Figure 3 shows a hypothetical synchronized transfer 
cycle. This is the cycle as it could be implemented with 
a CY7C330 synchronous state machine, if the ACK sig­
nal was directly controlled by the CY7C330. 
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Figure 3. Synchronized Transfer Cycle 

Definitions for.Figure 3: 

1. Tsu: 55 ns setup time for data 
2. TLA: Latency time delay; this consists of device 
propagation delays plus 0 or 1 clock cycles. For prelimi­
nary estimates, assume a 20 ns clock and 15 ns of delay. 
3. Tc: Clock period. 
4. TD: Data delay (max) after REO deasserted. 

The time for one cycle using synchronized transfer 
cycles is about 180 ns. This cycle time corresponds. to a 
throughput rate of just under 6 MHz, which is not as 
high a rate as the CY7C330 is capable of supporting .. 

The problem is that for every edge there is a 
synchronization or latency delay plus a clock delay 
before the corresponding handshake signal is given. 
These delays are undesireable and for the most part un­
necessary, since the data path is capable of accepting 
data at a higher rate. . 

This result underscores the need for supervisory control 
over the handshake sequence. If the output· data is 
ready and waiting, there is no need to delay the hand­
shake sequence until the state machine synchronizes to 
the event and reacts. Likewise, if the input buffer is 
empty then it can be asynchronously loaded~ 

In the schematic (Figure 10) a NOR buffer is used to 
drive the output strobes, and to perform the 
asynchronous handshake, and to latch ACK- until the 
state machine has had sufficient time to react. The sig­
nal CDIT- is used by the CY7C330 to supervise the 
handshake sequence. 

Transfer to the Controller 

For transfers to the controller, the asynchronous .signal 
that needs to be controlled is ACK- (active low acknow-

ledge). This signal should go low soon after REO- is 
asserted by the controller, but only after data has been 
setup for a minimum of 55ns. This signal should go high 
when REO- is deasserted. 

To guarantee that the state machine sees the cycle take 
place, ACK- is latched low until released by a control­
ling signal (CDIT-) that comes from the state machine. 
The same signal is used to hold off ACK- until the data 
setup has been met. (Refer to Figure 10for latch circuit 
details.) 

ACK-

CD IT - __ -"-":"":"--=..-1 

CAB - _____ ---'F3-f31L _____ _ 

CAB_D _______ --!F3-f31'-____ _ 

Figure 4. Host to Controller Transfer Timing 

Another signal is required to clock data into the output 
register (CAB). This signal has a duration of two clock 
cycles for data setup timing. In Figure 4 the signal 
CAB _Dis a delayed feedback version of CAB which is 
used to add a delay cycle. 

Definitions for Figure 4: 

1. TAT: Asynchronous turnaround time (8 ns) X is the 
turnaround time in the other direction (8 ns) 
2. TLA: Latency time delay;· this consists of device 

. propagation delays plus 0 or 1 clock cycles. For prelimi­
nary estimates, assume a 20 ns clock and 15 ns of delay. 
(25 ns average) 
3. TC: pock period. (20 ns) 
4. TDO: Delay to output (15 ns) 
5. Asynchronous turnaround time from controller end 
(8 ns) . 

Figure 4 shows the resultant transfer cycle to the con­
troller from the host. The cycle time can be estimated 
from one REO- rising edge to another. This time works 
out to an expected value of 108 ns: 
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The state diagram for the part of the controller that 
handles the interface timing is shown in Figure 5. At the 
start of the cycle, CDIT- is active because it is assumed 
that data has been at the interface for at least the setup 
requirement. CAB is the register clock for the output 
register, and it goes high after REQ- goes inactive 
(high) if there is data available (DA V, which is a logic 
function yet to be defined). The cycle then proceeds to 
completion and as CDIT- goes active, another cycle can 
start. 

Outputs: I coni CAB I CAB 0 I 
Inpuls: I REO I ACK I OAV I 

ACK"/REO"OAV 

Figure S. Controller to Host Trimsfer 

The state diagram for the associated system transfer to 
the SCSI controller is shown in Figure 6. EO- and E1-
are output enables for the two input registers; CKO and 
CK1 are clocks for the same two registers; CTS- is a 
signal to the Host system that these registers are empty. 
At the beginning [state 0000], EO- and E1- are inactive, 
the clocks are low, and CTS- is active [0]. When DS- is 
asserted, the clocks go high to capture the data, EO­
goes active and CTS- goes inactive to signal that the 
registers have been loaded [state 1011, CTS- = 1]. 

Oulpuls: I EO I EI I CKO I CKI I 
Inpuls: IcolT I CAB los I 

'DS.''''.'~ 
OS "CTS 

IDS ~------''''--~ 

ICAB"/COIT.COIT"/CAB"ACK"/REO 

ICAB"/COIT·COIT"/CAB"ACK"/REO ---=----
01111111 

Figure 6. Host to Controller Transfer 

When either CKO or CK1 are high, data is considered 
available by the state machine in Figure 5, and conse­
quently, DAV=CKO+CK1. After CAB goes high, E1-
goes active, EO- inactive, and CKO goes low. [state 0101] 
The next time CAB goes high, CK1 goes low to signify 
that the input registers are empty again. [state 0100] 
The state counter then automatically progresses [0000]. 
The machine waits for DS- to go inactive before allow­
ing another cycle so that double clocking does not oc­
curr on one write cycle. 

Transfer to the Host 

When data is transferred to the Host from the control­
ler, the handshake happens so quickly that there is a 
possibility that the interface will not see it, and for this 
reason ACK- must be latched until the CY7C330 signals 
[moves CDIT- high] to release it. 

In this case, CDIT - is a signal that signifies that there is 
room in the receiving buffer for a data transfer. CBA is 
the clock for the input buffer and it goes high when 
CDIT- goes low or afterwards. 

Figure 7. Controller to Host Transfer Timing 

Definitions for Figure 7: 

1. TAT: Asynchronous turnaround time (8 ns.) X is the 
turnaround time the other direction (8 ns.) 
2. TLA: Latency time delay; this consists of device 
propagation delays plus 0 or 1 clock cycles. For prelimi­
nary estimates, assume a 20 ns. clock and 15 ns. of 
delay. (25 ns average) 
3. TC: Clock period. (20 ns) 
4. TDO: Delay to output (15 ns) 

Figure 7 shows the relevant timing for this transfer cycle. 
The cycle time can be estimated from the rising edge of 
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Out.put.: I CD IT I 
~~=---=-:-:-::--lr-=-:--:--r-=-::-, 

Input.s: I ACK I CKe! I CK11 os I 

Figure 8. Controller to Host Transfer 

CDIT - to the next similar edge. In this case, it is 
reasonable to exp<:ct a cycle time of about SO ns. Figure 
8 shows the state diagram for this cycle. Figure 9 shows 
the state diagram for the system to interface transfer 
cycle. 

Staging Considerations 

Staging considerations include the initialization, startup, 
and change of direction of the interface. The signal I/O 
from the SCSI port mandates the direction of transfer, 
which changes during the process of command comple­
tion, so there is a need to make sure that the relevant 
state machines are all qualified by I/O. 

A readback path is provided for the CPU on the Host 
system to be able to read the SCSI signals directly. The 
signal DS- is reserved for normal data, but the signals 
CSO- thru CS1- allow DO on the system data bus to be 
used to read SCSI signals. 

The following addresses apply: 
CSO = 0: enable readback to DO 
CSO = 1: disable readback 
CS2,CS1: 00 - BSY 
CS2,CS1: 01 - C/D 
CS2,CS1: 10 - I/O 
CS2,CS1: 11 - REQ 

The reset function for SCSI Controllers is independent 
of the Host interface controller. In the schematic of Fig­
ure 10, the signal RST is set by the Host system and this 
simply forces the RST - signal low on the interface. 

IE0 EI Out.put.sICK0 LCKI I RTSI 

Input.s ICOIT I os I 

III 

Figure 9 •. System to Host Adaptor Transfer 

os 

The controller can be reset at any time by asserting 
INIT- from the host system. If the code 001 is on 
CS2,CS1,CSO then a select is performed: SEL- is pulled 
low until BSY- appears. 

The transfer of data to the interface, in particular the 
device select code, should be done before the selection 
sequence is performed. After INIT - is released, data 
can be transferred normally and the REQ, ACK hand­
shake will operate properly. 

The transfer of diagnostic. data (i.e., s~nse byte, errors) 
to the Host will be indicated by the DIAG- flag, which 
is set until INIT - is asserted. 
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CYPRESS 
SEMICONDUCTOR 

Using the Cypress CY7C330 in Closed-Loop 
Servo Control 

Introduction 

This application note examines a common facet of en­
gineering design--control systems--and offers an alterna­
tive to common implementations. An overview of con­
trol systems is discussed, along with several implemen­
tation strategies. The benefits and disadvantages of 
these implementations is briefly reviewed. Finally, the 
PLD-specific elements of a method are disclosed that 
use the Cypress CY7C330 as a key processing element 
that offloads the processing bandwidth requirements of 
a controlling cpu. This method has been successfully 
employed in a high-speed customer application--a laser 
mirror positioning servo. 

Control Systems Overview· General Concepts 

Control systems constitute a considerable portion of en­
gineering design. Control system theory is applied to 
areas as diverse as pneumatic controls to economic 
models. There are numerous references available for an 
in-depth discussion of control theory. The mathematical 
analysis of their behavior relies heavily on a solid under­
standing of Laplace and z-transforms. Fortunately, we 
wilI limit ourselves to a practical discussion of control 
systems and briefly discuss the PIO, (Proportional, In­
tegral, Differential), method. Variations of the PID are 
used for approximately 80-90% of industrial control im­
plementations. 

Control systems are broadly divided into two major 
categories: open loop and closed loop. An open-loop 
system is one that generates outputs based on input 
conditions, but has no feedback from the output to 
verify or correct the output condition. Examples of 
open-loop systems include light switches (although one 
could reasonably argue that the human is the feedback 
loop), and self-timed, free-running traffic control sig-

nals. Closed-loop systems are those that provide infor­
mation pertaining to the system status to the controller. 
Examples of closed-loop systems include the eye-brain 
system being used to read this line of text, the engine 
thermostat in most automobiles, and the print head of a 
dot-matrix printer. The closed-loop application we will 
discuss later consists of a mirror attached to a motor 
that can rotate 360 degrees in either direction. Closed­
loop systems use information from the enviroment 
under control to influence the output. Control systems 
are typically represented with block diagrams as shown 
in Figure 1. 

INo~JT 
REFERENCE 

PO'lNT 

DISTURBANCES 

Figure 1. Closed-Loop Servo System 

OUTRJT 

In a closed-loop design, numerous factors influence the 
system behavior. Among them are: 

Input [I(t)]. The input to the system is the signal from 
an external source that is used to reference the steady­
state behavior desired. In our mirror servo system, the 
steady-state output that we are attempting to attain is 
the absolute position of the mirror at a given location 
within a given percentage of accuracy. The input is also 
known as the reference or set point. 
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Summing Function. This is the section of the control 
system that determines the amount of error [E(t)] 
presently in the system. It is the difference between the 
input or reference point and the current state of the 
controlled environment. In a motor servo system, it is 
the difference between the target reference position 
desired and the current position of the motor. In an 
analog implementation, the summing function is usually 
implemented with an operational amplifier. 

Controller. In most control systems there is a controller 
that has the error signal as an input and generates an 
output that attempts to reduce this error to within 
tolerable levels (ideally 0). The controller has an as­
sociated control mode that determines how the error 
signal is manipulated to produce a control signal. Com­
mon control modes include proportional, integral, dif­
ferential, and the combination of these three --PID. 

Controlled Device. The object of our effort is to have a 
controlled device perform satisfactorily. In our servo 
case, this is the motor. e • 

Output [O(t)]. This is the physical entity to be control­
led. In our automobile thermostat system, it is the 
temperature of the engine. In the servo postioned mir­
ror example, it is the position of the mirror. 

Disturbance [D(t»). Any influence on the system that 
negatively affects the desired output is called a distur­
bance. In the automobile, operation in bumper-to­
bumper traffic that reduces airflow through the radiator 
is a disturbance to the thermostat. 

This is a partial list of the influences in a closed-loop 
control system, but those mentioned are the most sig­
nificant for our example. A more complete discussion 
can be found in a good reference source. 

Some of the parameters used to quanitize the behavior 
of control systems are listed below. 

Accuracy. This is the difference between ideal and ac­
tual steady-state system behavior. 

(258 X 66) 

Figure 2. Cypress 7C330 PLD 
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Settling Time. This is the time required to reach steady 
state after the reference point is changed or set. 

Percentage Overshoot. This is the difference between 
the reference point and the maximum excursion after 
passing through the reference point. 

Jitter. This is a condition that occurs when the control­
ling element improperly overcompensates for an over­
shoot of the reference point. This results in an under­
shoot that is again overcompensated for and produces 
overshoot. This can result in an unstable oscillatory con­
dition where the reference point is never obtained, or it 
can increase the settling time. 

Rise Time. This is the time required for the system's 
output to increase from 10% to 90% of the final value. 

Control Systems Overview - Implementations 

Control system implementations vary from purely 
analog to completely digital. Many popular implementa­
tions use a hybrid of digital and analog techniques. The 
approach we will examine uses a digital element to per­
form the summing, control, and part of the feedback 
section. This approach and the pure analog method are 
possibly the most often used. Naturally there are trade­
offs in each approach. Analog systems continuously per­
form the summing function (usually with an op-amp) 
and therefore are usually more stable because they are 

. immmune to the problems associated with the quan­
titization of data. Digital hybrids offer improved sen­
sitivity, greater immunity to noise, better resolution, 
minimized drift, more flexibility, and are usually easier 
to design at a lower cost. 

With the hybrid approach, several methods are used for 
the controller. With the advent of the microprocessor, it 
is relatively easy to implement the controller and the 
summing function on chip. When this approach is taken, 
a number of algorithms can be used to generate the 
control signal. The simplest is proportional control. In 
proportional control, the correction made is proportion­
'al to the error signal. The value that the error is scaled 
by is the proportionality constant or gain. Proportional 
control offers an intuitively reasonable solution: the 
larger the error, the larger the corrective signal. Using 
integral control, the corrective signal is based on the 
time integral of the error multiplied by a weighting fac­
tor. This value is typically calculated using a numeric 
approximation. Integral control is usually combined 

with proportional control to increase the accuracy or 
reduce the steady-state error. Finally, the corrective sig­
nal with derivative control is the derivative of the error 
signal over time multipled by a weighting factor. Again, 
a numeric approximation is used to calcluate the deriva­
tive. This addition to proportional control contributes a 
stabilizing influence to the system. However, it is often 
omitted in "noisy" systems due to its effect of amplifying 
high-frequency disturbances. When combined, these 
three methods constitute proportional + integral + 
derivative, or PID control. The influences of the integral 
and derivative methods on PID can be verified with 
analysis based on Laplace transforms. The cost of using 
PID is in the reduction in the available bandwidth of 
the processor to perform other tasks. Also, a finite 
amount of time is required to calculate the output 
value. 

Another factor to consider in a hybrid control system is 
the sampling/processing rate of the system. Several ref­
erences indicate that the sampling rate for a closed-loop 
control system should be significantly above the mini­
mum dictated by Shannon's sampling theorem. Rather 
than being able to operate at the Nyquist frequency of 
twice the highest frequency sampled, it is often recom­
mended that a sampling rate of eight to ten times the 
highest sampled frequency be used. The reasons cited 
include an uncertainty associated with determing the 
highest frequency component of the sampled signal, and 
the possibility of aliasing or a decrease in system 
stability occurring due to the selection of too Iowa sam­
pling rate. Again, in a microprocessor-based implemen­
tation, the available processor bandwidth is quickly con­
sumed as the sampling rate is increased to maximize 
stability. 

Using the Cypress CY7C330 in Servo Control 

In response to an ever-increasing system workload, the 
Cypress CY7C330 has been utilized in a high-speed 
servo control system to offload the microprocessor. This 
particular application positioned a mirror to form im­
ages with a laser beam. The previous implementation 
used a 68000 microprocessor in the servo loop, as 
detailed above. As the number of tasks on the 68000 
increased, the processors ability to maintain a stable 
servo system became marginal. The design engineer's 
goal was to meet the servo loop stability requirements 
and the additional processor system throughput needs 
with a minimum of additional cost and complexity. The 
solution offered here is both simple and efficient. 
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INPUTS 
0 0 

TO 
CLK 

LOGIC 
0 ARRAY 

ClK! 

ClK2 

Figure 3. 7C330 Dedicated Input Register 

Several features of the 7C33O (Figure 2) are fundamen­
tal to understanding this design. The first is the dedi­
cated input registers (Figure 3). These registers allow 
data to be loaded onto the chip with either of two data 
input clocks, CLK! (pin 2) or CLK2 (pin 3). The choice 
of input clock is done at program time via an EPROM 
configuration fuse. The I/O macrocells (Figure 4) also 
featUres input registers, again with two clocks for data 
entry. In some applications,· such as up/down counters, 
the ability to three-state the macrocell output drivers 
and load data into the macrocell input register allows 
the designer to use these macroceU input registers to 
hold reference values (such as counter upperllower 
limit). In our design, the macrocell input registers are 
used to store the calculated target position of the mir­
ror, and are clocked in with clla. The dedicated input 
registers in this design are used while actively control­
ling the servo for loading the present mirror position 
from the servo loop. When in command mode, the dedi­
cated input registers are loaded with data from the 
microprocessor that is used to calculate a new target 
position. In either case, the dedicated input registers 
are loaded with clk!. Subsequent diagrams will show 
the the 7C33O's dedicated input registers and macro­
cells in a simplified format that highlights our servo im­
plementation. 

Let's take a look at the fundamentals of the design. 
Referring to Figure 1, we see that the basic mechanism 
of.control loops is proportional feedback of the error 
signal. If we were to design this loop as a self-contained 
co-processor to the main CPU, the CPU would only be 
required to input the reference point to which we want 
to move the mirror. Now the CPU would no longer be 
required to perform the control algorithm at a pace 
equal to the sampling rate. Essentially, the processor 

Figure 4. 7C330 I/O Macrocell 

could "set and forget" the servo co-processor. One way 
to implement this servo co-processor would be through 
the addition of an additional microprocessor. This 
would add additional hardware (CPU, RAM, ROM, 
Clock, I/O, Interrupt Control, etc.), additional software, 
and possibly require an In-Circuit Emulator for 
development if a low-cost microcontroller were used. 
We might use an analog servo controller, but the ac­
curacy requirements preclude this when drift is con­
sidered. Instead we used several simple PLDs in a 
hybrid control-loop implementation. 

The system block diagram in Figure 5 shows the general 
approach used. Three CY7C33Os are used that each 
generate art 8-bit accumulate for 24 bits of precision. 
The microprocessor provides to the CY7C33Os a 24-bit 
position reference target for the mirror. This 24-bit 
value is latched into the 7C33Os on-board registers. The 
330 performs the summing and proportional feedback 
function of the control loop. The 24-bit desired position 
is compared to the present position that is maintained 

Figure S. 7C330 Servo Control Loop 
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in an external 24-bit current position counter. The result 
is the error multiplied by a fixed unity gain. This 
proportional control signal is then converted to an 
analog signal that controls the positioning mirror's 
motor after being converted to a current level. The shaft 
of the motor has an optical encoder that creates a sin­
cos analog signal. When converted to a digital signal, 
this gives a direction of rotation indication and a pulse 
that increments or decrements an external 24-bit 
present-position counter. This allows the loop to 
operate as fast as the slowest of the following elements: 
the 7C330s configured as a multistage accumulator/sub­
tractor, the D/A conversion time, or the AID conversion 
time. The host microprocessor is completely decoupled 
from the servo loop. Should the microprocessor halt, 
the servo circuitry will continue to maintain the desired 
reference position without intervention. 

Of course the actual implementation is slightly more 
complex than the block diagram indicates. Essentially, 
the CY7C330 macrocell output registers are 
programmed to act as an accumulator. This ac­
cUmulator generates a value that is one of two things 
depending on the mode of operation--either a new tar-

MICROPROCESSOR 
LOGIC 

DEDICATED 
POSITION INPUT ARRAY 

DATA REOISTER 

0 0 PROGRAMMED 
CLK WITH 
CP~T~TEP 0 

ACCUMULATOR 
EQUATIONS 

ClKI Cln • 0 

get position of the servo motor or the proportional 
error feedback value to the servo. When the system is 
started, the macrocell input registers wake up with an 
initial value of O. These macrocell input registers are 
dedicated to holding the current target position of the 
motor. At the same time the external position counter is 
also set to zero. Then the microprocessor steps the tar­
get position until an alignment sensor is targeted by the 
laser. 

This is accomplished using the following steps. First the 
outputs of the external 24-bit position counter are 
placed into a three-state condition. These outputs are 
shared with the outputs of the microprocessor as inputs 
to the dedicated input registers. The processor drives a 
step value onto the inputs, which is clocked into the 
7C330's dedicated input registers with the CLK! pin. 
Then, this value is added (via the PLD equations 
described later) to the current value in the macrocell 
input registers on the rising edge of the eLK pin. The 
result of this addition is now in the macrocell output 
registers and is clocked with CLK2 into the same mac­
rocell input registers that were a source value for the 
add. Thus the 7C330s in this mode use the current value 

MACROCELL 

OUTPUT SO 

REGISTER 

0 a 
CLK 
ADDER 

RESlA..T 

0 D 
T ..... ET 

POSITION MACROCEll 

ClK INPUT 
REGISTER 

ClK CLK2 

Target Update Mode Operation Seqence 

(1) With external position counter's output three-state, host microprocessor drives position step data. 
(2) Step data (provided in 2's complement form if a subtract is desired) is loaded into the 330 with CLK!. 
(3) Step data is added or subtracted from present target position with logic equations to create new target position. 
(4) New target position is clocked into macrocell output registers with CLK. 
(5) On CLK2, the new target position is clocked into the macrocell input register. 

Figure 6. Target Update Mode 
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on the dedicated input pins to adjust the target postion 
in the macrocell input registers with an accumulate 
cycle. This target position update cycle is pictured in 
Figure 6. Data from the microprocessor is always 
provided as a delta or step from the current position. 
The accumulate can be either an add or subtract. Sub­
tracts are accomplished by providing the step data from 
the microprocessor in 2's-complement form. After 
alignment, the position and accumulator values are 
reset to zero and the system is ready for operation. 

In operation, the outputs from the microprocessor are 
three-state and the value from the 24-bit position 
counter is loaded into the the dedicated input registers. 
This value is always provided in a 2's-complement form 
by inverting the outputs of the position counter (1's 
complement) and setting carry in to one. This value is 
thus subtracted from the present target position value 
stored in . the macrocell input registers to form the 
proportional error feedback value that is used to con­
trol the servo motor. This servo control mode is shown 
in Figure 7. 

Again, the actual implementation details are different 

COUNTER 
LOGIC 

DEDICATED 
POSITION INPUT ARRAY 

DATA REGISTER 

0 0 PROGRAMMED 
ClK WITH 

TI ACCUMULATOR 
EQUATIONS 

from the conceptual block diagram. The digital-to­
analog converter does not need a 24-bit digital value for 
control. In.practice, an 8-bit D/A value is used that is 
biased such.that the 8th bit provides direction' control 
(clockwise vs. counterclockwise). In the .actual design, 
the upper 16 bits from the two most significant 33Os· are 
tested for rail high and low conditions and generate·two 
offscale bits each for these conditions. The seven low­
order bits, along with the four offscale bits, are passed 
to a second PLD (22VI0) that drives the output to the 
D/A in the proper direction (eighth bit}, with the 
proper magnitude. If the four off scale bits indicate that 
the upper bits are all close to 0, the seven bits to the 
D/A are masked to O. Likewise if the upper bits are 
mostly I, the D/A bits are set to 1. The determination of 
how to use the offsca1e bits for compensation in the 
second PLD is specific to a given application. 

. The backbone of the logic required to create this design 
is the implementation of an accumulator with the 
CY7C330. The logic required for implementing a 
synchronous full adder is described by an equation for 
the sum and an equation for the carry of a given bit. 

MACROCELL 
OUTPUT 

REGISTER 

0 0 

ClK 
ADDER 
RESULT 

SO 

Q 
TARGET 

POSITION 

PROPORTIONAL 
ERROR 

FEEDBACK 

MACROCEll 

INPUT 
REGISTER 

ClKI C In elK 
Control Mode Operation Sequence 

(I) External 24-bit position data (in 1's complement form) is loaded into the 7C330's dedicated input register with 
eLK!. 
(2) With carry in set to I, logic equations subtract current position from target position to form error amount. 
(3) Error result is clocked into macrocell output register with CLK and is available to servo motor interface. 

Figure 7. Control Mode 
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The equation for the sum, S at bit position n with inputs 
A, B, and carry in, Cin, is: 

So = (An XOR Bo XOR CIN). 
The equation for the carry out is: 

COUTn = (An * Bo) + (An * Co-l) + (Bo * CN-l) 
The equations for a 4-bit synchronous adder requiring 

'" Four Bit Adder - General Case "' 

Inputs: An, Bn ; Inputs to be added at Bit n 

ClN ; Cany in to Adder 

Outputs: Sn ; Sum out for Bit n 

Cn ; Cany out from adder stage n 

,. Equations to be reduced ., 

so = AO XOR BO XOR CIN 

CO= (AO' BO) + (AO' ClN) + (BO' CIN) 

Sl = A1 XOR B1 XOR CO 

C1 = (A1 * B1) + (A1 • CO) + (B1 • CO) 

S2 = A2 XOR B2 XOR C1 

C2 = (A2 " B2) + (A2 • C1) + (B2 " C1) 

S3 = A3 XOR B3 XOR C2 

C3 = (A3 " B3) + (A3 " C2) + (00 " C2) 

,. C3 = = Cany Out of Four Bit Adder" 

Figure 8. Equations for Four Bit Adder 

four clocks to complete are shown in Figure 8. Since the 
objective is to calculate a complete 24-bit sum as quick­
lyas possible, the equation for carry out (CO) from the 
first bit of the adder can be substituted into the equa­
tion for the second bit of the adder. This allows the first 
two bits to be added in a single clock cycle. Likewise, 
the equation for the carry out from the second bit can 
be substituted into the equation for the third sum, and 
so on. This resulting equations for three bits of substitu­
tion are shown in Figure 9. The 7C33O's XOR product 
term is useful in reducing the number of product terms 
required for a given sum bit. However, even after 
boolean reduction with utilization of the 7C330's XOR 
product term, the fourth bit of the adder requires 30 
product terms for the sum bit and 31 product terms for 
the carry out bit to generate a 4-bit result in a single 

'* Synchronous 3 bit adder - derivative of General Case *' 
,. Uses substitution of Cany Out in fltSt 3 bits to generate 3 bit 

result in one clock cycle *' 
so = AO XOR BO XOR ClN 

'" CO= (AO * BO) + (AO * CIN) + (BO * CIN) *' 

Sl = A1 XOR B1 XOR [(AO * BO) + (AO * ClN) + (BO * 
CIN)] 

'* C1 = (A1 * B1) 

+ (A1 * [(AO * BO) + (AO * CIN) + (BO * CIN)]) 

+ (B1 * [(AO * BO) + (AO * ClN) + (BO * CIN)]) *' 

S2 = A2 XOR B2 XOR 

{(A1 • Bl) 

+ (A1 * [(AO • BO) + (AO * CIN) + (BO * CIN)]) 

+ (81 " [(AO • BO) + (AO * CIN) + (BO * CIN)])} 

C2 = (A2 * B2) 

+ (A2 * 

{(Al * Bl) 

+ (Al * [(AO • BO) + (AO • CIN) + (BO * ClN)]) 

+ (B1 • [(AO * BO) + (AO * CIN) + (BO * CIN)])}) 

+ (B2 * 

{(Al * Bl) 

+ (Al • [(AO * BO) + (AO * CIN) + (BO * CIN)]) 

Figure 9. Equations for a Synchronous 3-Bit Adder 

clock cycle. Since the maximum number of product 
terms for a given macrocell in the 7C330 is 19, the ac­
cumulate process must be accomplished over multiple 
3-bit stages. The addition of the first three bits will be 
complete after one clock cycle, the second three bits 
after two cycles, and so on. Therefore the complete 24-
bit accumulate requires nine clock cycles implemented 
on three 7C330s. With 66 MHz devices this translates to 
a complete calculation cycle in 120. nanoseconds. 

The minimized equations for one of the three 8-bit 
adder stages is shown in Appendix A. The syntax used 
in this example is the Cypress PLD ToolKit. Variables 
BO - B7 are the eight dedicated inputs that are sourced 
from either the microprocessor or the 24-bit position 
counter. INCLK is the clkl pin on the 7C330 that is 
used to clock in the BO-B7 variables. CIN is the Carry 
in from external logic (set to one for subtraction when 
in control mode on the first 8-bit adder stage) or from 
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the previous stage of the adder. AO - A 7 are the sum 
outputs for either target update or control mode. If the 
processor is updating the target position by a step incre­
ment, AO - A 7 are loaded into the macrocell input 
registers with clk2 (named ACLK). When this new posi­
tion update is being loaded, the output drivers of the 
macrocells are not three-stated with the OE pin or a 
product term equation. This allows the macrocell out­
put registers (which have the newly .calculated target 
position) to be loaded into the macrocell input registers 
(which are used to hold the target position) with 
ACLK. C2 and C5 are internal carry-out bits generated 
from the fust and second 3-bit adder stages respective­
ly. Finally, COUT is the carry out generated as either 
the final carry out or as the input to carry in of the next 
8-bit adder stage. 

Appendix B shows the implementation of the two upper 
7C33O stages. The equations for the accumulator func­
tion are the same as in the previous equation. The addi­
tions here are the equations for detecting rail conditions 
and generating the· offscale bits. These bits are 
generated to minimize the number of inputs required 
for the subsequent PLD that feeds the D/A converter. 
The use of these bits is dependent on the application. 

Conclusion 

This application note discusses some of the basic con­
cepts involved in control theory and several implemen­
tation strategies. Control theory is a very wide subject 
area, and the underlying mathematical analysis of these 
systems is beyond the scope of this paper. Several good 
sources for further reading are listed below. An ex­
ample of a PLD servo loop co-processor that utilizes 
proportional control with unity gain has been detailed. 
This example is intended to cover the specifics involved 
in utilizing the Cypress PLD 7C33O in this type of ap­
plication. There are numerous other hardware im­
plementation details that are left to the designer (such 
as D/A design, feedback design, leadllag compensation, 
etc.). Our intent is to focus on a different approach to 
implementing a closed-loop servo controller with the 
Cypress 7C330 as the central element, and to disclose 
the details unique to the 7C33O. Implementation of the 
24-bit UpIDown position counter with the 7C33O is dis-

cussed in the "66 MHz 7C33O Synchronous State 
Machine" application note. 
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Appendix A. PLD ToolKit Code for an 8-Bit Accumulator 

{Cypress Semiconductor· 8-bit accumulator· June 14, 1989} 

CY7C330; 

CONFIGURE; 

Outclk(node = 1), 
Inclk(node = 2), 
Aclk(node=3), 
CIN(node=4), 
BO(node=5), 
B1(node = 6), 
B2(node=7), 
B3(node=9), 
B4(node = 10), 
B5(node = 11), 
B6(node = 12), 
B7(node = 13), 
oe(node = 14), 

{ Dedicated input registers. Default configuration is use of pin 2 for clock } 

{Output nodes assigned to maximize available product term utilization. In the following declarations, the 7C330's 
macrocell outputs are configured as follows: 

ireg--This sets the macrocell feedbac\c MUX for feedback from the macrocell input register instead of the 
(default) macrocell output register (rgd) 

iclk=3--This selects the clock on pin 3 instead ofthe default (used for the inputs above) of clock on pin 2 for the 
macrocell input register 

IOP··Same as ireg. 

nenbpt··Selects OE control from pin 14 instead of a product term} 

AO(node = 28,iop,iclk = 3,ireg,nenbpt), 
A1(node = 15,iop,iclk = 3,ireg,nenbpt), 
A2(node = 2O,iop,iclk = 3,ireg,nenbpt), 
A3(node = 17,iop,ic1k = 3,ireg,nenbpt), 
A4(node = 26,IOP,iclk = 3,ireg,nenbpt), 
A5(node = 23,IOP ,iclk = 3,ireg,nenbpt), 
A6(node = 19,IOP,iclk = 3,ireg,nenbpt), 
A 7(node = 24,IOP,iclk = 3,ireg,nenbpt), 
COUT(node = 18,nenbpt), 
C2(node=32), 
C5(node=34), 

{ Available nodes -# P.T.'s } 
{ I/O macrocell • 16 • 19 } 
{ I/O macrocell - 25 - 17 } 
{ I/O macrocell • 27 • 19 } 
{ hidden macrocell - 31 - 13 } 
{ hidden macrocell • 33 - 11 } 

{End of configuration section} 

{ Sum 0 / Accum. Feedback Register 0 } 
{ Sum 1 / Accum. Feedback Register 1 } 
{ Sum 2 / Accum. Feedback Register 2 } 
{ Sum 3 / Accum. Feedback Register 3 } 
{ Sum 4 / Accum. Feedback Register 4 } 
{ Sum 5 / Accum. Feedback Register 5 } 
{ Sum 6 / Accum. Feedback Register 6 } 
{ Sum 7 / Accum. Feedback Register 7 } 
{Carry out } 
{ Carry 2 - Hidden } 
{ Carry 5 - Hidden} 
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Appendix A. PLD ToolKit Code for an 8-Bit ACcumulator (continued) 

{Logic equation section} 

EQUATIONS; 

{AD: 2 product terlllS, pin 28: 9 P.T. Available} 

lAO = <XSUM> CIN 
<SUM> lAO" IBO 

+ AD" BO; 

{AI: 6 product terlllS, pin 15: 9 P.T. Available} 

IAI = <XSUM> IAI 
<SUM> Bl" IBO * ICIN 

+ IBl" BO" CIN 
+ IBl * AD * CIN 
+ IBl" AD * BO 
+ Bl " lAO" ICIN 
+ Bl " lAO" BO; 

{A2: 14 product terms, pin 20: 15 P.T. Available} 

IA2 = <XSUM> IA2 
<SUM>B2 * IAl" IBl 

+ IB2" Bl" BO" CIN 
+ IB2" AI" BO" CIN 
+ IB2" Bl" AD· CIN 
+ IB2" AI" AD" CIN 
+ IB2" Bl" AD" BO 
+ IB2" AI" AD· BO 
+ B2 " IBl • IBO " ICIN 
+ B2 .. IAI .. IBO .. ICIN 
+ IB2" AI" Bl 
+ B2 .. IBl " lAO" ICIN 
+ B2 .. IAI .. lAO * fCIN 
+ B2 .. IBl • lAO" IBO 
+ B2" IAI " lAO • IBO; 

{C2: 15 product terlllS, virtual pin 32: 17 P.T. Available} 

C2 = <SUM> B2 .. Bl .. BO *CIN 
+ A2 .. Bl .. BO .. CIN 
+ B2"Al*BO·CIN 
+ A2*Al*BO"CIN 
+ B2 • Bl • AD .. CIN 
+ A2 .. Bl .. AD • CIN 
+ B2"Al*AO"CIN 
+ A2*Al*AO"CIN 
+ B2 .. Bl " AD '" BO 
+ A2 .. Bl .. AD " BO 
+ B2"Al"AO'"BO 
+ A2" AI" AD *BO 
+ B2" Al * Bl 
+ A2" Al * Bl 
+ A2" B2; 

4-110 



s;~ CY7C330: Closed-Loop Servo Control 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Appendix A. PLD ToolKit Code for an 8·Bit Accumulator (continued) 

{A3: 2 product terms, pin 17: 11 P.T. Available} 

IA3 = <XSUM> C2 
<SUM> IA3" /B3 

+ A3" B3; 

{A4: 6 product terms, pin 26: 11 P.T. Available} 

IA4 = <XSUM> IA4 
<SUM> B4" /B3 * IC2 

+ /B4* B3* C2 
+ /B4" A3* C2 
+ /B4* A3* B3 
+ B4" 1A3 " IC2 
+ B4" 1A3" B3; 

{AS: 14 product terms, pin 23: 15 P.T. Available} 

lAS = <XSUM> lAS 
<SUM> B5" IA4· /B4 

+ /B5* B4* B3* C2 
+ /B5 * A4 * B3 * C2 
+ /B5* B4· A3" C2 
+ /B5" A4 * A3" C2 
+ /B5" B4" A3" B3 
+ /B5 * A4 * A3" B3 
+ B5*/B4*/B3*/C2 
+ B5 " IA4 * /B3 .. IC2 
+ /B5· A4 * B4 
+ B5 .. /B4 * 1A3 * IC2 
+ B5 .. IA4 * 1A3 * IC2 
+ B5 " /B4 " IA3 * /B3 
+ B5 " IA4 .. IA3 * /B3; 

{C5: 15 product terms, virtual pin 34: 19 P.T. Available} 

C5= <SUM> B5 * B4 * B3" C2 
+ AS"B4*B3"C2 
+ B5 .. A4 .. B3 * C2 
+ AS .. A4 " B3 .. C2 
+ B5*B4"A3·C2 
+ AS*B4"A3"C2 
+ B5 " A4 " A3 .. C2 
+ AS .. A4 " A3 * C2 
+ B5*B4*A3"B3 
+ AS*B4*A3*B3 
+ B5 * A4 .. A3 .. B3 
+ AS .. A4 " A3 .. B3 
+ B5" A4" B4 
+ AS" A4" B4 
+ AS" B5; 
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Appendix A. ·PLD ToolKit Code for an 8-Bit Accumulator (continued) 

{A6: 2 product terms, pin 19: 13 P.T. Available} 

fA6 = <XSUM> C5 
<SUM> fA6" /B6 

+ A6* B6j 

{A7: 6 product terms, pin 24: 13 P.T. Available} 

fA7 = <XSUM> fA7 
<SUM> B7" /B6 "fC5 

+ /B7* B6* C5 
+ /B7* A6* C5 
+ /B7* A6* B6 
+ B7 * fA6 * fC5 
+ B7 .. fA6" B6j 

{COUT: 7 product terms, pin 18: 17 P.T. Available} 

fCOUT = < SUM> /B7 * /B6 .. fC5 
+ fA7 .. /B6 * fC5 
+ /B7 .. fA6 .. fC5 
+ fA7 .. fA6 * fC5 
+ /B7 .. fA6 .. /B6 
+ fA7 .. fA6 .. /B6 
+ fA7" /B7j 

{End of file.} 
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Appendix B. PLD ToolKit Code for an Accumulator with Rail Condition 

{Mark Aaldering - Cypress Semiconductor - 8-bit accumulator with rail condition outputs - June 14, 1989} 

CY7C330; 

CONFIGURE; 

Outclk(node = 1), 
Inclk(node = 2), 
Aclk(node = 3), 
CIN(node = 4), 
BO(node=5), 
B1(node=6), 
B2(node=7), 
B3(node=9), 
B4(node = 10), 
B5(node = 11), 
B6(node = 12), 
B7(node = 13), 
oe(node=14), 

{ Dedicated input registers. Default configuration is use of pin 2 for clock} 

{Output nodes assigned to maximize available product term utilization. In the following declarations, the 33O's 
macrocell outputs are configured as follows: 

ireg--This sets the macrocell feedback MUX for feedback from the macrocell input register instead of the 
(default) macrocell output register (rgd) 

iclk = 3--This selects the clock on pin 3 instead of the default (used for the inputs above) of clock on pin 2 for the 
macrocell input register 

IOP--Same as ireg. 

nenbpt--Selects OE control from pin 14 instead of a product term } 

AO( node = 28,iop,iclk = 3,ireg,nenbpt), 
A1(node = 15,iop,iclk = 3,ireg,nenbpt), 
A2( node = 2O,iop,iclk = 3,ireg,nenbpt), 
A3(node = 17,iop,iclk = 3,ireg,nenbpt), 
A4(node = 26,iop,iclk = 3,ireg,nenbpt), 
A5( node = 23,iop,iclk = 3,ireg,nenbpt), 
A6(node = 19,iop,iclk = 3,ireg,nenbpt), 
A 7(node = 24,iop,iclk = 3,ireg,nenbpt), 
COUT(node = 18,nenbpt), 
C2(node=32), 
C5(node=34), 
RO(node = 16,nenbpt), 
R1(node = 25,nenbpt), 

{ Available nodes # P.T.'s } 
{ I/O macrocell - 27 - 19 } 
{ Hidden macrocell - 31 - 13 } 
{ Hidden macrocell - 33 - 11 } 

{End of configuration section} 

{ Sum 0 / Accum. Feedback Register 0 } 
{ Sum 1/ Accum. Feedback Register 1 } 
{ Sum 2/ Accum. Feedback Register 2 } 
{ Sum 3/ Accum. Feedback Register 3 } 
{ Sum 4/ Accum. Feedback Register 4 } 
{ Sum 5 / Accum. Feedback Register 5 } 
{ Sum 6 / Accum. Feedback Register 6 } 
{ Sum 7 / Accum. Feedback Register 7 } 
{Carry Out} 

{ Carry 2 - Hidden } 
{ Carry 5 - Hidden } 

{ Rail Bit O} 
{ Rail bit 1} 
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Appendix B.PLD ToolKit Code Cor an Accumulator with Rail Condition (continued) 

{Logic equation section} 
EQUATIONS; 

{AO: 2 product terms, pin 28: 9 P.T. Available} 

lAO = <XSUM> CIN 
<SUM> lAO * fBO 

+ AO" BO; 

{A1: 6 product terms, pin 15: 9 P.T. Available} 

IA1 = < XSUM >IA1 
<SUM> B1" /BO" ICIN 

+ fB1" BO" CIN 
+ fB1" AO" CIN 
+ fB1" AO * BO 
+ B1 * fAO * ICIN 
+ B1 .. fAO" BO; 

{A2: 14 product terms, pin 20: 15 P.T. Available} 

IA2 = <XSUM> IA2 
<SUM> B2" IA1 * /B1 

+ fB2" B1" BO" CIN 
+ fB2* A1" BO" CIN. 
+ fB2" B1" AO" CIN 
+ fB2" A1" AO" CIN 
+ fB2" B1" AO" BO 
+ fB2* A1* AO* BO 
+ B2 .. fB1 * fBO .. ICIN 
+ B2 .. IA1 * /BO * ICIN 
+ fB2 * Al * Bl 
+ B2 * fB1 * lAO" ICIN 
+ B2" fAl .. lAO" ICIN 
+ B2 .. fBl .. lAO" /BO 
+ B2" fAl * lAO" fBO; 

{C2: 15 product terms, virtual pin 32: 17 P.T. Available} 

C2 = <SUM> B2" Bl" BO '" CIN 
+ A2 .. B1 * BO .. CIN 
+ B2*Al*BO*CIN 
+ A2*Al*BO*CIN 
+ B2 '" Bl .. AO .. CIN 
+ A2 .. Bl .. AO '" CIN 
+ B2*Al*AO"'CIN 
+ A2*Al*AO*CIN 
+ B2 .. Bl .. AO * BO 
+ A2 .. Bl * AO .. BO 
+ B2"'Al"AO"BO 
+ A2*Al"'AO*BO 
+ B2 * Al" Bl 
+ A2" Al" Bl 
+ A2 * B2; 
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Appendix B. PLD ToolKit Code for an Accumulator with Rail Condition (continued) 

{A3: 2 product terms, pin 17: 11 P.T. Available} 

1A3 = <XSUM> C2 
<SUM> 1A3" /B3 

+ A3" B3; 

{A4: 6 product terms, pin 26: 11 P.T. Available} 

IA4 = <XSUM> IA4 
<SUM> B4 * /B3" 1C2 

+ /B4* B3* C2 
+ /B4*A3*C2 
+ /B4*A3*B3 
+ B4 * 1A3 .. 1C2 
+ B4 .. 1A3" B3; 

{AS: 14 product terms, pin 23: IS P.T. Available} 

lAS = <XSUM> lAS 
<SUM> BS" IA4" /B4 

+ /BSOO B4* B3* C2 
+ /BS" A4" B3 '" C2 
+ /BSOO B4* A3* C2 
+ /BS * A4" A3 * C2 
+ /BS* B4* A3* B3 
+ /BS * A4 * A3 * B3 
+ BS"/B4*/B3'"/C2 
+ BS .. IA4 .. /B3 .. 1C2 
+ /BS" A4" B4 
+ BS .. /B4 .. 1A3 '" 1C2 
+ BS '" IA4 .. 1A3 * IC2 
+ BS " /B4 .. 1A3 .. /B3 
+ BS * IA4 .. 1A3 * /B3; 

{C5: IS product terms, virtual pin 34: 19 P.T. Available} 

CS = < SUM> BS" B4 .. B3 .. C2 
+ AS*B4"B3*C2 
+ BS .. A4 * B3 .. C2 
+ AS .. A4 .. B3 .. C2 
+ BS*B4"A3*C2 
+ AS*B4*A3*C2 
+ BS " A4 .. A3 .. C2 
+ AS * A4 .. A3 " C2 
+ BS*B4*A3*B3 
+ AS*B4*A3*B3 
+ BS " A4 .. A3 .. B3 
+ AS .. A4 " A3 .. B3 
+ BS* A4* B4 
+ AS" A4" B4 
+ AS * BS; 
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Appendix B. PLD ToolKit Code Cor an Accumulator with Rail Condition (continued) 

{A6: 2 product terms, pin 19: 13 P.T. Available} 

/A6 = <XSUM> CS 
<SUM> /A6 * /B6 

+ A6* B6j 

{A7: 6 product terms, pin 24: 13 P.T. Available} 

/A7 = <XSUM> /A7 
<SUM> B7 * /B6 * /C5 

+ /B7* B6* C5 
+ /B7 * A6 * C5 
+ /B7 * A6 * B6 
+ B7*/A6*/C5 
+ B7 * /A6 * B6; 

{COUT: 7 product terms, pin 18: 17 P.T. Available} 

/COUT = < SUM> /B7 * /B6 * /CS 
+ /A7 * /B6 * /C5 
+ /B7 * /A6 * /C5 
+ /A7 * /A6 * /C5 
+ /B7 * /A6 * /B6 
+ /A7 * /A6 * /B6 
+ /A7 * /B7; 

{RO: rail bit OJ Ar~itrarily equation chosen to detect when upper 5 bits are all 1 - this decision is a matter of 
preference output actIve low} 

IRO = < SUM> A 7 * A6 * AS * A4 * A3j 

{ Rl: rail bit 1; Again, arbitrarily chosen to reflect value of carry out, therefore this is a redundant output - active low 
output} 

IRI = < SUM> COUT; 

{End of file} 
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CYPRESS 
SEMICONDUCTOR 

FDDI Physical Connection Management Using 
the CY7C330 Synchronous State Machine 

Purpose 

The purpose of this application note is to show how the 
Cypress CY7C330 programmable logic device (PLD) 
can be used to implement the Physical Connection 
Management (PCM) state machine specified in the Sta­
tion Management (SMT) of the Fiber Distributed Data 
Interface (FDDI) standard. Although there will be a 
brief overview of the FDDI standard, the purpose of 
this application note is to show the features of the 
CY7C330, the design methodology used in this design, 
as well as an example of how a complex function can be 
synthesized into this device. This application note is not 
meant to be an in-depth tutorial of the FDDI standard 
and its various layers. 

FDDI Overview 

FDDI is a 100 Mbits/second dual token ring network 
that can connect as many as 500 nodes with a maximum 
link-to-link distance of 2 km and a total network cir­
cumference of about 100 km. The network employs two 
rings, a primary and a secondary. The primary ring is 
for data transmission and the secondary ring is mainly 
for fault tolerance, but can be used for data transmis­
sion as well. It is a token ring network, whereby access 
is gained to the network by rotating a token. The node 
with the token can transmit data. This insures a deter­
ministic, collision-free network, independent of the 
number of stations contained in the network. 

Because of the dual ring topology, FDDI dermes a 
fault-recovery mechanism. If a fault is detected, such as 

a broken fiber-optic cable, the network can be restored 
by routing around the break with the second ring. This 
function is largely controlled by the state machine that 
will be shown later, performed with the CY7C330. 

The FDDI standard was developed using the Open Sys­
tems Interconnection (OSI) model, implementing the 
physical and data-link layers of the OSI model. The 
four FDDI layers are Physical Media Dependent 
(PMD), Physical (PRY), Media Access Control 
(MAC), and Station Management (SMT). The PMD 
layer is the lowest and it specifies the actual connectors, 
transceivers, and bypass switches. The PRY layer 
specifies the type of encoding used on the data, 4B/5B, 
and specifies a set of line states. These line states per­
form a handshake mechanism between PRYs of ad­
jacent nodes. The MAC layer performs higher-level 
peer-to-peer communications. It also provides for sys­
tem timer support, packet framing, and responses to 
various types of errors in the network. The SMT layer 
controls the activities of the MAC, PRY, and PMD. It 
includes functions such as connection management 
(CMT), fault detection, and ring reconfiguration. 

It should be noted that the FDDI standard is controlled 
by the ANSI X3T9.5 standards committee. At the time 
of this writing, the committee has accepted the 
specification of the MAC and PRY layers, and the 
PMD and SMT specifications are expected to be com­
plete in the summer of 1989. The state machine ex­
ample specified later was developed with the December 
2, 1988 update of the SMT specification. There is a 
possibility that the fmal specification might be slightly 
different, but the design methodology would be the 
same. 
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The CMT is, the portion of Station Management that 
controls the insertion, removal and logical connection of 
the PHYentities. Within the CMT, is an area known 
as the Physical Connection Management (PCM). A 
chart showing a hierachical view of the location of the 
PCM is shown in Figure 1 The PCM provides the 
necessary signals to perform the following functions: 

1. initializing a connection 
2. reject a marginal connection 
3. support maintenance. 

I SMT I I CMT III PCM 

I MAC I 
I PHY I 
I PMD I 

Figure 1. FDDI Hierarchy 

The synthesized state machine to perform these ac­
tivities is show in Figure 2. This state machine is based 
on version 9.1 of the PCM state machine specified in 
the SMT specification. 

In order to meet the I/O constraints of the CY7C330, of 
which there are 25 total, there was a small amount of 
logic that was performed outside the CY7C330. For in­
stance, there are two timers used by the PCM. These 
timers are not included in the CY7C330, but two signals 
(timerl and timer2) are decoded signals that signal that 
the timer has reached particular values. The signals 
timerl and timer2 are inputs to the CY7C330. The 
chart in Figure 3 shows all the macrofunctions, how 
they are decoded, and their function. 

Introduction to the CY7C330 

The CY7C330 is a synchronous 28-pin programmable 
logic device that is packaged in a 300 mil DIP package, 
as well as several surface· mount packages, including 
leadless ceramic chip carrier (LCe) and plastic leaded 
chip carrier (PLCC). The device is fabricated on the 
Cypress 0.8 micron CMOS process, and is available in 
speeds of 33, 50 and 66 MHz. The device is also avail­
able as a military device, in speeds of 33, 40, and 50 
MHz. The device is optimized to perform high-speed 
state machine designs. 

The features of the CY7C330 can be generalized into 
four groups: 

1. the dedicated input cell 
2. the product term array 
3. the I/O macrocell, and 
4. the hidden state register macrocell. 

The dedicated input cell (see Figure 4) contains a D­
flip-flop, with a programmable multiplexer (mux) that 
allows a choice of two input clocks. The two input 
clocks allowed are CKI and CK2, which correspond 
directly to pin 2 and pin 3 of the device, respectively. 
Note that the input registers (or any other register in 
the device) are not bypassable. The device is purely 
synchronous in nature. There are eleven dedicated 
input macrocells in the device. 

The product term array (see Figure 5 and Figure 6), as 
with any programmable logic device, is where the logi­
cal connections of the design are synthesized. It con­
tains product terms that control a global reset, a global 
preset, an exclusive OR gate, the output enables, and 
the product terms that go to the D input of the flip­
flops in the output macrocells. Most of these features 
will be covered later in the explaination of the macro­
cell. The device features product term distribution that 
varies between 9 and 19, depending on which output 
macrocell is being addressed. The 19 product terms be­
come the limiting factor in the complexity of the design. 

The I/O macrocell (see Figure 7) contains two D flip­
flops. One of the D flip-flops clocks data from the 
array to either the output pin, or back to the array, and 
is intended to be a state register. It has a clock, dif­
ferent than the input registers, called CLK, which is 
derived directly from pin 1. The other D flip-flop is an 
input register, which can clock data from the I/O pin 
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QLS+TIM 

~ PC_STOP 8. PC MAINI' 

P~::AR_~ ____________________________________________ ~ 
QLS+HLS+NOISE 

--+--1- (QLS+ HLS+ VLS)*TIMEl 

QLS+ (MLS*TIME2) 

HLS 

~+MLS+TIMEl 
PC55 ]-----. 

~+MLS+TIMEl 
l--V-ALS--· ~ 

TIMEl 

QLS+TIME2 

PC36 1---1 PC44 MLS 8 
LQ-LS-+-TI-M-E2------'"'- "El 

QLS + HLS + TIME2 + NOISE 

Figure 2. PCM State Machine 
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MACRO NAME 

MLS 
ILS 

HLS 
QLS 

pc_start 

pc_reject 

scjoin 

pcstop 
pcmaint 
timel 

time2 

n_neCLIO 

n_eCL7 
n_eCL9 

n_eCLlO 
noise 
vaIn 
va18· 

val9 

Timer 1 

Oms 
0.2ms 

480ns 
15 us 

25ms 
200ms 

Timer 2: 

lOOms 

TB_Min 
A_Max 
LS_Min 

LS_Max 
I_Max 

T_next(9) 

T_Out 

SYNTHESIZED SIGNAL FUNCTION 

!MLS 
!u.s 
IHLS 
!QLS 

IpcO & !pcl 
!pcO & pcl 

pcO& !pcl 

!pc_stop 
!pc_maint 
!timer1 

Itimer2 

!nO & !nl 

!nO& nl 
nO & !nl 

nO&nl 

!noise _count 
VaI_n 

IVat8 
!Val_9 

Master line State 
Idle line State 

Halt line State 
Quiet line State 

State PCM State Machine 

Enter Reject State 

Encorporate connection into token path 

PCM state machine to enter OFF state 

Enter maintenance state 
See timer explanations below. 

See timer explanations below. 
Counter indicating 10 bits of data have not been received or transmitted 

Counter indicating 7 bits have been transmitted or received 
Counter indicating 9 bits have been transmitted or received 

Counter indicating 10 bits have been transmitted or received 

Noise counter threshold 
Transmitted value n 
Transmitted or Received value = 8 

Transmitted or Received value = 9 

Minimum break time for link. 
Maximum time required to achieve signal aquisition. 

Length of time reception of ILS 
Max time required for line state recognition 

Max optical bypass insertion/deinsertion time 
Default time for MAC loopback 

Signalling Timeout 

Figure 3. Macro Definitions 

into the array. It may be clocked from CK1 or CK2 as 
in the dedicated input cell. As mentioned previously, 
there is an XOR gate, fed from the product term array, 
that feeds the D input of the state register. This gives 
the designer quite a bit of flexibility. The XOR gate 
can be used as a simple inverter by setting the XOR 
product term to a one. The XOR can be used to 
change the type of the flip-flop from a D to a T, or JK. 
For example, wrapping the Q output back to the XOR 
input changes the flip-flop from D-type to T -type. This 
feature will be used later in the example design. The 
output macrocell also allows for a choice of the output 
enable control for the pin. The output enable can be 
from a product term, or directly from pin 14. There are 
twelve I/O macrocells in the CY7C330. 

There are four hidden-state macrocells in the CY7C330. 
The hidden-state macrocells can be used to synthesize a 
small 4-bit internal state machine, or perform any func­
tion required only internally to the device itself. 

FROM 
INPUT P;.,.IN.,-+-f-----. 

C4 

ClK2 FROM PIN 3 

ClK1 FROM PIN 2 

The hidden-state macrocell (see Figure 8) contains a 
state register with no output pin associated with it. 
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Methodology of Design 

The PCM design was first attempted using ABEL ver­
sion 3.0 as a development platform, with the ABEL 
state machine syntax. The original ABEL source code 
is shown in Appendix A. Note that the state machine 
requires 31 states. This meant that the state machine 
could be performed with 5 bits, for 32 total states, leav­
ing one illegal state. When the design was run at reduc­
tion level 4, which is the maximum reduction in ABEL, 
the software responded with the output that the design 
required in excess of 30 product terms per output. This 
is far more than the 19 that are possible on anyone 
output. At fll"st glance, one might assume that the 
design was far too complex for the 7C330. At this 
point, a process of product term squeezing was in­
itiated. The process is described below. 

First of all, a comment on how ABEL performs reduc­
tion. ABEL will reduce everything to sum of products, 
and not make use of the XOR gate in the macrocell. 
To make use of the XOR gate, you must specify it in 
boolean equation form, and run the reduction at level O. 

TO LOWER SECTION 

Figure 5. The CY7C330 Block Diagram (Lower Half) 

Secondly, in ABEL 3.0, specifying T flip-flops will again 
cause ABEL to reduce to sum of products, and not cre­
ate the T flip-flop using the XOR gate. ABEL 3.1 ac­
cepts T flip-flops and corrects this situation. 

The timing. required for this design is 12.5 MHz, allow­
ing the slowest version CY7C330, at 33 MHz, to be 
used. The design requires one clock, although two pins 
are dedicated for clocks in the CY7C330. In this 
design, pins 1 and 2 will be tied together externally, 
making the input registers and state register clock 
together. The labels for the two clocks in the source 
code are CKS and CKl. 

Product Term Squeezing 

The first method of getting the design to use less 
product terms was to increase the number of bits in the 
state machine from 5 bits to 6 bits. Although the state 
machine only requires 31 states, much more choice is 
allowed for when you have 64 possibilities for placing 
the states. 

TO UPPER SECTION 

Figure 6. The CY7C330 Block Diagram (Upper Half) 
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SET 
RESET 

I LK1 
I LKO 

CLK 
OE 

OEPT~R~ ____________________ -+~+-r+~-i 

i PIN 

FROM ADJACENT 
MACROCELL 

Figure 7..CY7C330 MacrOcell 

The next procedure involved changing from D flip­
flops, to T flip-flops. T flip-flops are more efficient 
than D flip-flops because when the T input is high, the 
flip-flop toggles. Otherwise, the flip-flop retains its pre­
vious state. 

Because a T flip-flop only needs one product term for a 
transition to occur, the state machine can be optimized 
by choosing state transitions that use a minimum num­
ber of bits. For example, a transition between states 6 
and 9 requires more bits to change than a transition 
between states 6 and 7 as shown in Figure 8. 

TOINP TS FER 

SS 

OE (FROM PIN 14) 
CLKO 

CLK1 
CLK2 

SR 

Figure 8. The CY7C330 Buried Register 

In case 1, four product terms are required. In case 2, 
only one product term is required. Since we increased 
the number of total states available from 32 to 64 by 
adding one more bit to the state machine, we provide 
much more flexibility in choosing states.' Carefully 
choosing the states in a state machine is the easiest way 
to reduce the number of product terms required. 

Another way to make the design implementation more 
efficient is to use the synchronous global reset and 
preset in the CY7C33O. Initially the state machine will 
be in state 0 because the CY7C33O has. a power-on 
reset. It is good desigu practice to make provisions for 
illegal states. Although an illegal state shoUld never 
occur, the state machine should be able to recover. 
Many times the recovery mechanis!ll is built into the 
state machine itself, causing more product terms to be 
required. In this example, ifim :illegal state. is detected, 
the state machine will re-initialize itself; and go to state 
O. Instead of building this requirement into the design, 
a hidden register was used to detect the occurrence of 
illegal states. That signal is then used. to cQntrol the 
synchronous reset of the.7C33O, 'which will return the 
state machine to state O. Because of the synchronous 
nature of the device, the state machine will go to state 0 
two clocks after the illegal state is encountered. One 
clock is required to detect· the illegal' state, and one 
clock is required to reset the device. This ,requirement , 
is acceptable for this application. ' 
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Case 1. 

Case 2. 

Decimal 
6 
9 

6 
7 

Binary 
()()()110 
001001 
(4 bits toggle) 

()()()110 
000111 
(1 bit toggles) 

Figure 9. State Change Comparison 

In this particular design, it was noticed that in every 
case the condition pcmaint was encountered, the state 
machine was unconditionally required to go to a par­
ticular state. In order to reduce the state machine even 
further, the state that was chosen on this condition was 
63 (111111 binary). The synchronous preset was then 
used to detect of this signal. When pcmaint is asserted, 
this forces the state machine to state 63, thus avoiding 
the use of any product terms in the main body of the 
design. 

In this design, there were several synchronous resets 
required. There is an external pin (RST), the illegal 
state detect, and the signal pc_stop. Because there is 
only one product term allowed for the synchonous reset 
of the device, the other two resets must be developed by 
ANDing the reset signal with every product term as­
sociated with the outputs that are to be reset. This per­
forms the same function, but does not utilize any addi­
tional resources in the CY7C330. 

Keep in mind that the CY7C330 has varied product 
term distribution. The state registers associated with 
pins 16 and 27 have 19 product terms. Put the state 
outputs that require the most product terms to these 
pins. In this example, QO required 18 product terms, 
and 05 required 17. These outputs were assigned pins 
27 and 16. The remaining outputs were placed in the 
same manner. 

Converting the state machine to boolean equations is a 
straight-forward procedure. By examining the state 
transistions, the boolean equations can be extracted. 
The reduced design is shown in Figure 10. 

The development platform used for which this is the 
source code is the Cypress PLD ToolKit. The Cypress 
PLD ToolKit is a low-cost software development sys-

tem for all Cypress PLD's. Although the reduced equa­
tions could have been obtained using ABEL, in many 
ways the ToolKit is easier to use, and more tailored to 
the Cypress devices. The ToolKit source file is listed in 
Appendix B. The ToolKit also features a mouse-driven 
interactive simulator/waveform editor. This makes 
design verification very easy. 

Conclusion 
State !S48: if (HLS) then !S52 

else if (OLS # time2) then !S32 
else !S48; 

48 = 110000 (binary) 
52 = 110100 

02 is the only bit that transitions 

Therefore, a product term of: 

05 & 04 & !03 & !02 & !Q1 & !OO & HLS 
\ / 

state 48 

would be added to the equation for 02. 

To continue the example: 

48 = 110000 
32 = 100000 

04 is the only bit that transitions 

Therefore, the product terms of: 

05 & 04 & !03 & !02 & !01 & !OO & OLS 
# 05 & 04 & !03 & !02 & !01 & !OO & time2 

\ / 
state 48 

would be added to the equation for 04. 

Figure 10. Boolean Equation Extraction Example 

The purpose of this applications note was to introduce 
the CY7C330, and show a useful application example 
for the device. Although this example, the PCM state 
machine for FDDI, is a very complex function, the 
design was made to fit in the CY7C330. The CY7C330 
offers the designer a high degree of flexibility. Using 
the available software development tools, ABEL and 
Cypress PLD ToolKit, the designer can implement even 
more complex functions by following the methodology 
outlined in this example. There is no other device 
presently available that can implement complex state 
machines at the speeds the 7C330 can offer. 
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Appendix A. Orignal Abel Source Code 

module pcm flag '-r3' 
title 'Physical Connection Management (PCM) state Machine version 9.1 
Steve Traum Cypress Semiconductor. March 27, 1989' 

"Inputs 

·Outputs 

U1 device 'P330'; 

CKS,Ck1,rst 
pcO,pc1 -
timed 
timer2 
mls,ils,hls,qIs 
Val..:.n 
nO,n1 
Val 8 
Val=9 
noise_count 
pc_stop 
pc_maint 
n1 
Val 8 
Val=9 
noise_count 

pin 1,2,3; 
pin 4,5; 
pin 6; 
pin 7; 
pin 9,10,11,12; 
pin 13; 
pin 14,15; 
pin 16; 
pin 17; 
pin 18; 
pin 19; 

pin 20; 
istype 'feed "pin'; 
istype 'feedJ>in'; 
istype 'feed"pin'; 
istype 'feed"pin'; 

Reset node 29; 
05,04,03,02,01,00 pin 28,27,26,25,24,2 3; 

"declarations 

"Ostate 
SO = A bOOOOOO; 
S5 = A bOOO101; 
S10 = A bOO1010; 
S15 = "'bOO11l1· 
S20 = '" b010100; 
S25 = "'bOllOO1· 
S30 = '" bOllllO: , 
S35 = '" b1000ll; 
S40 = '" b101000; 
S45 = '" b10ll01; 
S50 = '" bllOO10; 
S55 = '" bll01ll; 
S60 = '" bllllOO; 

MLS MACRO {(!mls)}j 
ILSMACRO {(!ils)}j 
HLS MACRO {(!hIs)}j 
OLS MACRO {(!qIs)}j 

05,04,03,02,01,00 istype 'pos;reg'; 
Ostate = [05,04,03,02,01,OO]j 

= l,Oj High,Low 
H,L,C,X,Z = 1,0, .C.,.X.,.Z.j 

Sl = '" bOOOOO1j 
S6 = '" bOOOllOj 
Sll = '" bOOlOllj 
S16 = '" b010000j 
S21 = '" b010101j 
S26 = '" bOll010j 
S31 = '" bOllll1j 
S36 = '" b100100j 
S41 = "'b101001; 
S46 = "'blOlllOj 
S51 = '" bllOOllj 
S56 = '" bll1000j 
S61 = '" bllll01j 

S2 = '" bOOOO10j 
S7 = '" bOO01ll; 
S12 = '" bOOllOO; 
S17 = "'b010001j 
S22 = '" bOlO 1l0j 
S27= '" bOllOllj 
S32 = '" b100000j 
S37 = '" b100101; 
S42 = '" b101010j 
S47 = '" b10llllj 
S52 = '" bll0100j 
S57 = "'bll1001j 
S62 = '" b1llll0j 

pc_start MA CRO {(!pcO & !pc1)}j 
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S3 = '" bOOOOllj S4 = A bOOO100j 
S8 = A bOO1000;S9 = '" bOO1001j 
S13 = "'bOOll01jS14 = "'b001ll0j 
S18 = '" b010010jS19 = '" b0100ll; 
S23 = '" b0101lljS24 = '" bOllOOOj 
S28 = '" bOll100jS29 = '" b01l101j 
S33 = '" b100001jS34 = '" b100010j 
S38 = "'b100ll0jS39 = "'b100ll1j 
S43 = "'b1010lljS44 = "'blOllOOj 
S48 = "'bllOOOOjS49 = "'bllOOO1j 
S53 = A bll0101jS54 = '" bllOllOj 
S58 = '" b111010;S59 = '" bll1011j 
S63 = '" bllllllj 
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Appendix A. Original Abel Source Code (continued) 

pCJeject MACRO {(!pcO & pcl)}; 
scjoin MACRO {(pcO & !pcl)}; 
pcstop MACRO {(!pc_stop)}; 
pcmaint MACRO {(!pc_maint)}; 
timel MACRO {(!timerl)}; 
time2 MACRO {(Itimer2)}; 
n_ne~lO MACRO {(InO & !nl)}; 
n_e~7 MACRO {(InO & nl)}; 
n _ e~9 MACRO {(nO & !nl)}; 
n_e~lO MACRO {(nO & nl)}; 
noise MACRO {(!noise_count)}; 
vaIn MACRO {(Vatn)}; 
val8 MACRO {(!Val_8)}; 
val9 MACRO {(!Vat9)}; 

state_diagram Qstate 
state ISO: 

if (pc_start) then !S32 
else if ( pcmaint ) then !S31 
else ISO; 

state !Sl: 
if (HLS) then !S32 
else if ( pcstop ) then ISO 
else if ( pcmaint ) then !S63 
else !SI; 

state !S2: 
if (time 1) then !S3 
else !S2; 

state !S3: 
if (timel) then !S19 
else if (pcJeject) then !SI 
else !S3; 
state !S63: 
if ( pc_stop) then ISO 
else !S63; 

state !S6: 
goto !S38; 

state !S8: 
if ( QLS # HLS # noise) then !S32 
else if (pc_stop) then ISO 
else if (pc_maint) then !S63 
else if (pc_start) then !S32 
else !S8; 

state !S9: 
if (scjoin&timel) then !S8 
else if ( pc Jeject # MLS ) then !SI 
else !S9; 

state !SI6: 
if (val_9) then !S48 
else !S32; 

state !S17: 
goto !SI8; 
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Appendix A. Original Abel Source Code (continued) 

state !S1S: 
if ( QLS # time2 ) then !S32 
else if ( MLS ) then !S6 
else if (HL S) then !S22 
else !S1S; 

state !S19: 
if (n_ne<LlO) then !S51 
else if (n_eCL7) then !S27 
else if (n_eCL9) then !S59 
else if (n_eCLlO) then !S16 
else !S19; 

state !S22: 
goto !S38; 

state !S27: 
if (valS = = High) then !S54 
else !S39; 

state !S39: if ( HLS # MLS # time1 ) then !S55 
else !S39; 

state !S32: if « QLS # HLS # MLS) & time1 ) then !S33 
else if (pc_stop) then ISO 
else if (pc_maint) then !S63 
else !S32; 

state !S33: 
if ( HLS ) then !S35 
else if (ILS) then !S32 
else !S33; 

state !S34: 
if ( ILS ) then !S2 
else if (QLS # (MLS & time2)) then !S32 
else !S34; 

state !S35: 
if ( time1 ) then !S34 
else !S35 

state !S36: 
if ( MLS ) then !S44 
else if ( QLS # time2 ) then !S32 
else if (pc_stop) then ISO 
else if (pc_maint) then !S63 
else !S36; 

state !S38: 
if (time1) then !S34 
else !S38; 

state !S40: 
if ( ILS ) then !S41 
else if ( QLS # HLS # time2 # noise) then !S32 
else !S40; 

state !S41: 
if ( time1 ) the n !S9 
else !S41; 

state !S44: 
if ( time1 ) then !S40 
else !S44; 
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Appendix A. Original Abel Source Code (continued) 

state IS48: 
if (HLS) then !S52 
else if (QLS # ti me2) then !S32 
else !S48; 

state !S5O: 
goto !SlS; 

state !S51: 
if (vain = = High) then !S17 
else !S5O; 

state !S52: 
if ( time1 ) then !S36 
else !S52; 

state !S55: 
goto !S51; 

state !S59: 
if (valS) then !S54 
else !S51; 

state !S54: 
if ( HLS # MLS # time1 ) then !S55; 
else !S54; 

state !4 goto ISO; 
state !5: goto ISO; 
state !7: goto ISO; 
state 110: goto ISO; 
state! 11: goto ISO; 
state !12: goto ISO; 
state !13: goto ISO; 
state 114: goto ISO; 
state !15: goto ISO; 
state !2O: goto ISO; 
state !21: goto ISO; 
state !23: 
state !24: 
state !25: 
state !26: 
state !28: 
state !29: 
state !30: 
state !31: 
state !37: 
state !42: 
state !43: 
state !45: 
state !46: 
state !47: 
state !49: 
state !53: 
state !56: 
state !57: 
state !58: 
state !6O: 
state !61: 
state !62: 

equations 
Reset = !rst ; 

goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 
goto ISO; 

endpcm - "end of file 
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Appen~ B. Cypress PLD ToolKit Source File 

CY7C330; 
{This file is the Cypress ToolKit Source Code for FODI Design } 

CONFIGURE; 

CKS,Ck1,RST -' 
pcO, pel, timed, timer2, MLS (node = 9), ILS, HLS, OLS, 
Val_n, nO, n1(iop,ireg), !OO, Val_8(iop,ireg), !01, Val_9(iop,ireg), !02, 
!03 (node = 23), noise_count(iop,ireg), !04, pe_stop(iop,ireg), !05, 
pc_maint(iop,ireg), RST, SET, ILSTATE (node =34), 

{************************************************************************} 

EOUATIONS; 

ILSTATE = # 02 & !01 & !04 & !05 & pc_stop 
# 02 & 00 & 104 & !05 & pc_stop 
# 01 & 03 & !04 & !05 & pc_stop 
# !01 & 02 & 04 & !05 & pc_stop 
# 00 & 02 & 04 & !05 & pc_stop 
# 03 & !01 & 04 & !05 & pc_stop 
# 03 & !OO & 04 & !05 & pc_stop 
# 03 & 01 & !04 & 05 & pc_stop 
# 00 & !01 & 02 & !04 & 05 & pc_stop 
# !01 & 03 & 04 & 05 & pc_stop 
# !01 & 00 & 04 & 05 & pc_stop 
# 03 & !OO & 04 & 05 & pc_stop; 

00 ,- <oe> 
<xsum> 00 & !ILSTATE & pc_stop 
# !05 & !04 & !03 & !02 & !01 & 00 & !HLS & !ILSTATE & pc_stop 
# !05 & 104 & !03 & !02 & 01 & !OO & !timed & !ILSTATE & pc_stop 
# !05 & !04 & 03 & !02 & !01 & 00 & pcO & Ipc1 & Itimed & !lLSTATE & pc_stop 
# !05 & 04 & !03 & !02 & !Q1 & 00 & !lLSTATE & pc_stop 
# !05 & 04 & !03 & !02 & 01 & 00 & nO & n1 & !lLSTATE & pc_stop 
# 05 & 04 & 03 & !02 & 01 & 00 & !Val_8 & !ILSTATE & pc_stop 
# 05 & 04 & !03 & 02 & 01 & !OO & !HLS & !ILSTATE & pc_stop 
# 05 & 04 & 103 & 02 & 01 & 100 & IMLS & IILSTATE & pc_stop 
# 05 & 04 & !03 & 02 & 01 & 100 & !timed & IILSTATE & pc_stop 
# !05 & 04 & 03 & !02 & 01 & 00 & Val_n & !lLSTATE & pc_stop 
# 05 & !04 & 103 & !02 & !01 & 100 & 10LS & Itimed & !ILSTATE & pc_stop 
# 05 & !04 & !03 & !02 & 101 & !OO & !HLS & !timed & !ILSTATE & pc_stop 
# 05 & !04 & !03 & !02 & !01 & !OO & !MLS & !timed & !ILSTATE & pc_stop 
# 05 & !04 & !03 & 102 & !01 & 00 & !lLS & !ILSTATE & pc_stop 
# 05 & !04 & !03 & !02 & 01 & 00 & !timed & !lLSTATE & pc_stop 
# 05 & !04 & 03 & !02 & !01 & !OO & !lLS & IILSTATE & pc_stop 
# 05 & 04 & 103 & !02 & 01 & 00 & !Val_n & !ILSTATE & pc_stop 
# 05 & 04 & 03 & 02 & 01 & 00 & !pcO & !pc1 & !ILSTATE & pc_stop; 
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Appendix B. Cypress PLD ToolKit Source File (continued) 

<oe> 
<xsum> 01 & !ILSTATE & pc_stop 
# !05 & !04 & !03 & !02 & 01 & 00 & !pcO & pc1 & IILSTATE & pc_stop 
# 05 & 04 & 03 & 02 & 01 & 00 & !pcO & !pc1 & !ILSTATE & pc_stop 
# !05 & 04 & !03 & !02 & !01 & 00 & !ILSTATE & pc_stop 
# 105 & 04 & !03 & !02 & 01 & !OO & !OLS & !ILSTATE & pc_stop 
# !05 & 04 & !03 & !02 & 01 & !OO & !timer2 & !lLSTATE & pc_stop 
# !05 & 04 & !03 & !02 & 01 & 00 & nO & n1 & !ILSTATE & pc_stop 
# 05 & !04 & !03 & !02 & !01 & 00 & !HLS & !ILSTATE & pc_stop 
# 05 & !04 & !03 & !02 & 01 & !OO & !OLS & !ILSTATE & pc_stop 
# 05 & !04 & !03 & !02 & 01 & !OO & !timer2 & !MLS & !lLSTATE & pc_stop 
# 05 & 04 & !03 & !02 & 01 & 00 & Val_n & !ILSTATE & pc_stop; 

<oe> 
<xsum> 02 & !lLSTATE & pc_stop 
# 05 & 04 & 03 & 02 & 01 & 00 & !pcO & !pc1 & !lLSTATE & pc_stop 
#!05 & 04 & !03 & !02 & 01 & !OO & !HLS & !lLSTATE & pc_stop 
# !05 & 04 & !03 & !02 & Q1 & !OO & !MLS & !lLSTATE & pc_stop 
# 05 & 04 & 03 & !02 & 01 & 00 & !Val_8 & !lLSTATE & pc_stop 
# !05 & 04 & 03 & !02 & 01 & 00 & !lLSTATE & pc_stop 
# 05 & !04 & !03 & 02 & !01 & !OO & !OLS & !ILSTATE & pc_stop 
# 05 & !04 & !03 & 02 & !01 & 100 & !timer2 & !ILSTATE & pc_stop 
# 05 & !04 & !03 & 02 & 01 & 100 & !timed & !lLSTATE & pc_stop 
# 05 & !04 & 03 & 02 & !01 & !OO & !timed & !ILSTATE & pc_stop 
# 05 & 04 & !03 & !02 & !01 & !OO & IHLS & !lLSTATE & pc_stop 
# 05 & 04 & !03 & 02 & 01 & 00 & !lLSTATE & pc_stop; 

<oe> 
< xsum > 03 & !lLSTATE & pc_stop 
# 05 & 04 & 03 & 02 & 01 & 00 & !pcO & !pc1 & !lLSTATE & pc_stop 
# !05 & 104 & 03 & !02 & !01 & !OO & !OLS & !ILSTATE & pc_stop 
# !05 & !04 & 03 & !02 & !01 & !OO & !HLS & !ILSTATE & pc_stop 
# !05 & !04 & 03 & !02 & !01 & !OO & !noise_count & !lLSTATE & pc_stop 
# !05 & !04 & 03 & !02 & !01 & 00 & !pcO & pcl & !lLSTATE & pc_stop 
# !05 & !04 & 03 & !02 & !Q1 & 00 & !MLS & !lLSTATE & pc_stop 
# !05 & 04 & !03 & !02 & 01 & 00 & !nO & n1 & !lLSTATE & pc_stop 
# !05 & 04 & !03 & !02 & 01 & 00 & nO & !nl & !ILSTATE & pc_stop 
# 05 & 04 & 03 & !02 & 01 & 00 & !lLSTATE & pc_stop 
# 05 & !04 & !03 & 02 & !Ol & !OO & !MLS & !lLSTATE & pc_stop 
# 05 & !04 & 03 & !02 & !Ol & !OO & !OLS & !lLSTATE & pc_stop 
# 05 & !04 & 03 & !02 & !01 & !OO & IHLS & !lLSTATE & pc_stop 
# 05 & !04 & 03 & !02 & !01 & !OO & !timer2 & !ILSTATE & pc_stop 
# 05 & !04 & 03 & !02 & !01 & !OO & !noise_count & !lLSTATE & pc_stop; 
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{en,j of file} 

Appendix B. Cypress PLD ToolKit Sourcel"i1e (continued) 

<oe> 
<xsum> Q4& !ILSTATE & pc_stop 
# !Q5 & !Q4 & IQ3 & !Q2 & Ql & QO & !timed & !ILSTATE & pc_stop 
# Q5 & Q4 & Q3 & Q2 & Ql & QO & !peO & !pcl &I.ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & !Ql & !QO & VaI_9 & !lLSTATE & pc_stop 
# IQ5 & Q4 & !Q3 & !Q2 & Ql & !QO &IQLS & !lLSTATE & pc_stop 
# IQ5 & Q4 & !Q3 & IQ2 & Ql & !QO &!timer2 & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & Ql & !QO & !MLS & !ILSTATE& pc_stop 
# !Q5 & Q4 & !Q3 & Q2 & Ql & IQO & !ILSTATE & pc_stop 
# !Q5 & Q4 & Q3 & !Q2 & Ql & QO & !VaI_n & !lLSTATE & pc_stop 
# Q5 & !Q4 & !Q3 & Q2& Ql & QO & !HLS & !lLSTATE & pc_stop 
# Q5 & !Q4 & !Q3 & Q2 & Q1 & QO & !MLS & !lLSTATE & pc_stop 
# Q5 & !Q4 & !Q3 & Q2 & Ql & QO & !timed & !ILSTATE & pc_stop 
# Q5 & Q4 & !Q3 & IQ2 & !Q1 & !QO & !QLS & !ILSTATE & pc_stop 
# Q5 & Q4 & !Q3 & !Q2 & !Ql & !QO & !timer2 & !ILSTATE & pc_stop 
# Q5 & Q4 & !Q3 & Q2 & !Ql & !QO & !timed & !ILSTATE & pc_stop; 

<oe> 
<xsum> Q5 & IILSTATE & pc_stop 
# !Q5 & !Q4 & !Q3 & !Q2 & !Ql & !QO & !peO &!pcl & !lLSTATE & pc_stop 
# !Q5 & !Q4 & !Q3 & !Q2 & !Ql & QO & IHLS & !ILSTATE & pc_stop 
# !Q5 & !Q4 & !Q3 & Q2 & Ql & !QO & !lLSTATE & pc_stop 
# !Q5 & !Q4 & 03 & !Q2 & !Ql & !QO & !QLS & !ILSTATE & pc_stop 
# !Q5 & !Q4 & Q3 & !Q2& !Ql & !QO & IHLS & IILSTATE & pc_stop 
# !Q5 & !Q4 & Q3 &IQ2 & !Ql & !OO & !noise_count & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & IQl & !QO & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & Ql & !QO & !QLS & IILSTATE & pc_stop 
# !Q5 & Q4 & IQ3 & !Q2 & Ql & !QO & !timer2 & !ILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 &!Q2 & Ql & QO & !nO & !nl & IILSTATE & pc_stop 
# !Q5 & Q4 & !Q3 & !Q2 & Ql & QO & nO & !nl & !lLSTATE & pc::.stop 
# !Q5 & Q4 & !Q3 & Q2 & Ql & !QO & !lLSTATE & pc_stop 
# !Q5 & Q4 & Q3 & !Q2 & Ql & QO & !ILSTATE & pc_stop 
# Q5 & IQ4 & !Q3 & !Q2 & Ql & !QO & !lLS & !ILSTATE & pc_stop 
# Q5 & !Q4 & Q3 & !Q2 & !Ql & QO & !timed & !lLSTATE & pc_stop 
# Q5 & Q4 & !Q3 & !Q2 & Ql & !QO & !ILSTATE & pc_stop 
# Q5 & Q4 & !Q3 & !Q2 &Ql & QO & Vatn & !lLSTATE & pc_stop; 
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CYPRESS 
SEMICONDUCTOR 

CY7C331 Application Example: Asynchronous, 
Self-Timed VME Bus Requester 

Introduction 
This application note shows the capability of the 
Cypress CY7C331 CMOS Erasable Programmable 
Logic Device (EPLD) to support asynchronous, self­
timed designs. The CY7C331 is ideal for implementa­
tion of asynchronous, self-timed, and general-purpose 
logic integration applications. The ability to implement 
self-timed applications is unique to the CY7C331. The 
application example shown consists of the design and 
implementation of a self-timed VME Bus Requester. 

The CY7C331 is a member of the Cypress slimline 28-
pin family of high-performance CMOS EPLDs. Family 
members are characterized by high speed, increased 
I/O, and high integration. The CY7C331 has a highly 
flexible architecture intended to support asynchronous 
and general-purpose logic integration applications. The 
device has a 192 product term logic array and twelve 
I/O logic macrocells. Each macrocell has two D-type 
flip-flops with asynchronous set, reset, and bypass 
capability. The clock, set and reset inputs of a flip-flop 
are individually programmable. Logic polarity and out­
put enable control are also individually programmable 
in each macrocell. Combinatorial and registered inputs 
and outputs and buried states are easily supported by 
the CY7C331. 

The CY7C331 has the unique capability to be able to 
self-time asynchronous, sequential applications. A self­
timed design performs a sequential task without the 
presence of a clock to synchronize each step in the se­
quence. The benefit of this design approach is usually 
higher performance. The main application for self­
timing is in high-performance I/O interfaces. No other 
PLD has this capability. The CY7C331 is able to sup­
port self-timed designs because clock inputs are 

programmable, internal timing relationships are well­
controlled, and metastable resolution is ultra-fast. 

The VME Bus Requester application example shows 
the CY7C331 in an asynchronous, self-timed design. 
The VME Bus is a common, high-performance 
asynchronous bus. The VME bus request function is 
asynchronously initiated and sequential. The application 
example also shows usage of many of the features of the 
CY7C331. 

CY7C331 Brief Description 

The CY7C331 is a member of the Cypress slimline 28-
pin family of CMOS, UV-erasable programmable logic 
devices. The device is available in a 28-pin slimline (.3-
inch wide) plastic or windowed DIP, and 28-pin PLCC 
and LCC packages. The windowed DIP version of the 
device is erasable and reprogrammable, and the plastic 
Dip, PLCC, and LCC versions are one-time program­
mable. The CY7C331 is available with TPD and TCO 
specified as a maximum of 25 ns, with register set-up 
times of 12 or 2 ns, depending on whether the register is 
connected to an input pin or to the array. Other com­
mercial and military speed grades are available. 

The CY7C331 is based on a programmable sum-of­
products (AND-OR) logic array architecture. The logic 
array consists of 192 programmable product terms, each 
having as input the true and complement versions of 
thirty-one logic inputs. The product terms connect to 
one of twelve I/O logic macroceIls, each connecting to a 
device pin. The product terms are allocated with a vari­
able distribution to the macrocells. There are thirteen 
combinatorial inputs to the array from dedicated input 
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Figure 1. The CY7C331 Block Diagram 

pins, one of which (pin 14) may also be used as an out­
put enable control. The macrocells and six shared input 
muxes each provide an input to the array. A shared 
input mux selects the input from one of two adjacent 
macrocells. (Refer to Figure 1.) 

An I/O macrocell sums array product terms, selectively 
inverts the sum and provides the result to the D-input 
of a D-type flip-flop. The output (Q) of the flip-flop is 
connected through an inverting tri-state buffer to a 
device pin and can be fed back to the array. An I/O 

macrocell also provides a second D-type flip-flop that 
latches data from the same device pin. The Q output of 
this flip-flop connects to the array input select mux and 
to the shared input mux (see Figure 2). Both flip-flops 
have asynchronous set (S) and reset (R) inputs, and 
bypass capability. A flip-flop will bypass the D input to 
Q when Sand R are both high. The clock, S, and R 
inputs of both flip-flops are each driven from separate 
product terms. 

A mUlti-input OR gate sums the product terms. The 
number of product terms input to the OR gate depends 
on the macrocell (see Figure 1). A dual-input XOR gate 
selectively inverts the sum. The second input of the 
XOR gate is a product term that can be used to control 
polarity, or to emulate T or JK type flip-flops. The out­
put enable of a macrocell can be controlled by pin 14, 
or a product term. One of these two options is selected 
by the OE mux. The macrocell array input is selected by 
another mux called the feedback mux. Each OE, feed­
back and shared input mux has an associated program­
mable configuration bit that controls mux selection. 

CY7C331 Self-Timed Capability 

The CY7C331 is designed with the capability to imple­
ment self-timed designs. The main application for self­
timed functions are in high-performance I/O interfaces 
where clocking restrictions prevent performance re­
quirements from being satisfied. These applications may 
not have an available clock, the clock may be too slow 
or synchronization time may have to be minimized. 

A self-timed design implements a state machine without 
the presence of a clock to synchronize each state transi­
tion. The implementation of a self-timed design must 
meet two basic requirements: 

1. Time and perform state transitions. 
2. Synchronize asynchronous inputs. 

As in any state machine, a self-timed design must meet 
minimum state flip-flop set up times before performing 
a state transition. Without the benefit of a clock, self­
timing clocks must be generated based on the state data 
change due to a state transition itself. This means that 
clock initiation and data changes are coincident. A 
clock must be delayed to allow data to settle and meet 
minimum set up time requirements. The simplest ex­
ample of self-timing is shown in Figure 3. A logic one is 
clocked into a D-type flip-flop on the rising edge of the 
input. The design works if the clock delay time is long 
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Figure 2. The CY7C331 I/O Macrocell 

enough to allow the data input to be set up. The 
CY7C331 is able to support self-timed designs because 
the timing relationship between the D input logic and 
clock input logic of a flip-flop can be programmed to 
guarantee that minimum set up time requirements are 
satisfied. The synchronization of asynchronous inputs is 
performed in the same manner, except that set up time 
is longer to allow for metastable resolution. The 
CY7C331 can also perform self-timed synchronization 
because metastable resolution is ultra-fast. 

The approach used in the CY7C331 to self-time state 
transitions is to delay a clock signal by passing it 
through the logic array one additional time to allow 
data to meet set up time requirements. Further, to 
guarantee that this approach works, the extra level of 
delay in the clock path must be programmed to delay 
the clock as long as possible (see Figure 4). In general, a 
self-timed design should set up data as fast as possible 
and delay the clock long enough to guarantee that data 
is set up. Delay time in the CY7C331 is sensitive to the 
logic function programmed. To guarantee that data is 
set up as fast as possible would restrict logic functions 
that could be performed. This is avoided by placing 
restrictions on the clock path. Any logic function can be 
programmed when the clock delay path element is as 
slow as possible. 

To perform self-timed synchronization, the clock is 
delayed by two extra passes to allow for the extra delay 
required for metastable resolution (see Figure 5). Both 
clock delay elements must be programmed to be as slow 
as possible to allow any logic function to be 
programmed. These restrictions allow for a Mean Time 
to Failure (MTF) of greater than 10 years due to a 
metastable condition in a CY7C331. 

IN 

Lac" ==>-> -l3 OUT 

Figure 3. A Simple Self-Timed Element 

Clock Delay Programming 

In the CY7C331, a product term output transition from 
low to high is generated faster than from high to low. A 
transition caused by a single input and a single product 
term will be faster than those caused by multiple inputs 
or product terms. The shortest delay time through a 
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Figure 4. CY7C331 Self-TImed Element 

CY7C331 is when a single input triggers a single 
product term to transition from low to high. The slowest 
clock path is obtained by placing restrictions on how the 
extra level of clock delay is programmed. These restric­
tions are: 

1. The clock delay should use a multiple product term, 
OR gate, XOR gate logic path to a bypassed ffip-flop; 

2. Clock delay logic should make product term outputs 
transition from high to low. 

3. All product terms to the OR gate should be 
programmed identically to implement clock logic. The 
OR gate should have the same or more inputs than as­
sociated data path OR gates. 

4. The programmable XOR input should be set al~ays 
low. 

The clock delay element of Figure 4 illustrates each of 
the four programming restrictions. 

Self-Timed VME Bus Requester 

The application used to illustrate the use of ~e 
CY7C331 in a self-timed design is a VME bus re­
quester. Bus requesters are used in common bus sys­
tems that support multiple processors controlling bus 
transfers. A processor that controls bus transfers is typi­
cally referred to as a bus master. The function of a bus 
requester is to request permission for a master to con­
trol data bus transfers. The requester also indicates to 
the master when control has been granted. The VME 
Bus is a common, high-performance asynchronous bus 
that supports multiple bus masters. 

A self-timed design approach for a VME bus requester 
is appropriate because the VME bus is asynchronous 
and high performance. The bus request function is 
asynchronously initiated and sequential. A self-timed 
design will self-synchronize to initiate the request and 
self-time the rest of the request sequence at CY7C331 
device speed. A synchronous approach requires an ex­
ternal clock to synchronize and time the sequence. The 
VME bus provides a 16 MHz system clock. A 

I---"""T 

Figure 5. CY7C331 Self·Synchronizing Element 
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CY7C331 self-timed design provides much higher per­
formance than a synchronous design using the system 
clock. 

The application example also shows usage of many of 
the features of the CY7C331, and the process used for 
design and implementation with a CY7C331. The VME 
bus requester design supports request generation for 
three on-board masters and overlaps requests with bus 
transfers. The requester is assumed to be on a board 
that contains three separate DMA channels. Each chan­
nel is a bus master. The requester prioritizes on-board 
grants to the three masters. A bus master must obtain 
the bus before data transfers can be performed. This is 
extra overhead that can lower bus performance. The re­
quester is designed so that bus requests are overlapped 
with data bus transfers to maintain high performance. 
The features of the CY7C331 allow these additional 
functions to be implemented into the requester. 

VME Background 

The VME bus is defIned to support multiple bus 
masters. Only one bus master can control the bus at a 
time. The VME bus provides an arbitration subsystem 
to allocate the data bus. A central bus arbiter deter­
mines which master is granted the data bus. Each 
master contains a bus requester to request control of 
the bus from the arbiter. 

The arbitration subsystem is supported on the bus with 
six bused lines and four daisy-chained lines. All of these 

SYSRESET· 

BRx- 'L...-__ ....II ... , 3
1
0ns mini" 

BGxIN- --=-1 .... __ -l. 

BBSY- I' 90ns min 

BGxOU~-----------------

Figure 6. VME Arbitration Timing 

lines are active low; indicated by a '-' suffIx on a line 
name. The bused lines are Bus Busy (BBSY-), Bus 
Clear (BCLR-), and Bus Request 3-0 (BR3- - BRO-). 
The daisy-chained lines when entering a board are 
designated Bus Grant 3-0 In (BG3IN- - BGOIN-) and 
when leaving are designated Bus Grant 3-0 Out 
(BG30UT- - BGOOUT-). (The terms BRx-, BGxIN-, 
and BGxOUT- are used when references aren't to a 
specillc line or lines. x is assumed to be any value from 
o to 3.) Highest priority is allocated to number 3 lines 
and lowest 0 lines. The BGxOUT- lines that leave a 
board in slot n enter the board in slot n + 1 as BGxIN­
lines. The bus arbiter must always reside in the fIrst slot 
of a VME bus-based system to initiate BGxOUT­
generation. 

A simple VME Bus requester initiates a request when 
an on-board request (OBR) has been detected. (A 
simplilled bus request state diagram and timing diagram 
appear in Figures 6 and 7.) The requester then drives 
the appropriate BRx- line active and waits for the as­
sociated BGxIN- line to become active. Once the re-

Figure 7. VME Bus Requester State Diagram 
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quester detects BGxIN- active, BBSY- and an on-board 
grant (OBG) are driven active and BRx- is released to 
inactive. OBG indicates to a master that it has the bus 
and may perform a data transfer once the previous 
transfer has completed. Transfer completion is indi­
cated when the Address Strobe (AS-) is inactivated. 
The requester releases the bus by releasing BBSY- and 
OBG when BGxIN- and OBR have become inactive. If 
BGxIN- becomes active, but OBR isn't, the requester 
passes the grant down the daisy chain by making 
BGxOUT- active. 

A VME bus requester must meet two timing require­
ments. BBSY- must be driven for a minimum of 90 
nanoseconds and release of BRx- must occur at least 30 
nanoseconds before BBSY- is released. BGxOUT- must 
never glitch during operation. BBSY- and BRx- lines 
must use open-collector drivers. All masters drive 
BBSY- and all masters on a bus grant daisy chain drive 
the same BRx- line. More than one master on a bus 
grant daisy chain may request the data bus at the same 
time by simultaneously driving their associated BRx­
line. 

Requester Design 

The first concern of the design is to understand the 
functions of the example requester. The requester is 
defined to support overlapped bus requests and release 
the data bus every transfer cycle. The data bus is 
released each transfer cycle because the extra over­
lapped. bus arbitration performance overhead is small 
and requester design is simplified. The requester sup­
ports three on-board DMA request lines (DMARQ2- -
DMARQO-). All of the DMARQx- lines must be able 
to generate a bus request on the BRx- line. The re­
quester supports three on-board grant lines 
(DMAGR2- - DMAGRO-), one for each request line. 
When a bus grant is received on BGxIN-, the requester 
must determine which DMAGRx- line to activate. The 
requester prioritizes the DMARQx- lines and grants to 
the highest priority request. DMARQO- has the highest 
priority and DMARQ2- has the lowest. The selected 
DMAGRx- line must not be activated until the previous 
data transfer is complete. 

The requester must drive BBSY - to take control of the 
data bus. If any of the DMARQx- lines is requesting the 
bus when a grant is received, the requester will drive 
BBSY-. To support overlapped operation, BBUSY- is 
released as soon as possible to facilitate the next bus 
arbitration. BBSY- must be driven for at least 90 

nanoseconds, and until BGxIN- is released and the pre­
vious data transfer is complete. If none of the 
DMARQx- lines is requesting the bus when a grant is 
received, the requester must pass the grant onto 
BGxOUT- for the next requester on the daisy chain. 
The requester must also recoguize a system reset (SYS­
RESET-). 

A logic diagram of a self-timed implementation of the , 
example VME bus requester using the CY7C331 ap-' 
pears in Figure 8. BRx- is the OR of the DMARQx­
lines. If any DMARQx line becomes active, BRx will 
become active. BRx is driven by an external inverting 
open-collector driver. 

Self-timed operation is iuitiated by the incoming 
BGxIN- line becoming active. The three on-board 
DMA request lines (DMARQ2- - DMARQO-) are self­
synchronized to the BGxIN- line. The falling edge of 
BGxIN- is used as a clock to register the DMARQx­
lines and toggle a flip-flop from high-to-Iow to initiate 
an internal, self-timed clock signal (STCP). The 
DMARQx- lines must be synchronized because BGxIN­
can be activated by any BRx- becoming active or BBSY­
being released. For example, if DMARQO caused the 
associated BRx- to initiate bus arbitration, and 
DMARQ2 attempted to become active at the same time 
BGxIN- became active, the resulting state of DMARQ2 
could be an indeterminate metastable that would need 
time for resolution. 

The internal, self-timed clock signal is delayed by two of 
the CY7C331 delay elements to allow for the time re­
quired to self-synchronize the requests. The requests 
are prioritized during the clock delay time. The result­
ing delayed clock (STCP2) then clocks a NOR of the 
requests into a register to generate BBSY-, and an OR 
of the requests to generate BGxOUT-. This guarantees 
that both lines are synchronized and won't glitch. 

BBSY - is driven onto the bus with an external inverting 
open- collector driver. The prioritized requests are 
clocked into registers to create the DMAGRx- signals 
on the rising edge of the delayed STCP if the previous 
data transfer had already completed, or on the rising 
edge of AS- when the data transfer completes. An inter­
nal flip-flop toggles at the same time. The flip-flop out­
put is used to indicate transfer completion (TC). 

The registered BBSY - line is fed into an external 90 ns 
line that is used to guarantee that BBSY- will be active 
for the minimum required time. BBSY- is inactivated 
when the 90 ns delay has elapsed, TC is indicated and 
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BGxIN- is inactive. The requester is initialized for 
another self-timed operation at the same time. The re­
quester is initialized by clearing the STCP and TC flip­
flops. 

A SYSRESET resets the requester by clearing the 
DMAGRx- lines and generating a requester initialize. 
The design assumes that the 30 ns minimum release 
time requirment for BRx- before BBSY - is done exter­
nally. This gives the DMA masters flexibility to deter­
mine operation of their own request lines. 

The delay line is used in the design because an absolute 
delay is required to meet the VME specification. A self­
timed delay can yield only relative results. There is no 
way to determine how many levels of delay would be 
required to obtain a 90 ns delay. Anyone delay is usual­
ly much faster than worst-case, but may be that slow. 
The delay can be emulated on-chip by creating a digital 
delay, but accuracy would be poor because BBSY­
would have to be synchronized to an absolute time base 

PO = 10 
P1 = 11 &/10 

such as the 16 MHz system clock. The external inverting 
open-collector drivers can be emulated by the 
CY7C331, but they wouldn't meet the drive require­
ments of the VME bus specification. Emulation of an 
open-collector driver requires that the signal output to 
the external driver instead be used to drive the DE of 
an on-board inverting tristate driver (with the input tied 
high). 

CY7C331 Implementation 

The implementation of the example design was 
specified for assembly and simulation by the ABEL .... 
PLD design support software package. The ABEL 
package, like any other PLD software, allows a design 
to be specified in terms of boolean equations and auto­
matically generates the appropriate programming pat­
tern for a selected PLD to implement the design. PLD 
software also typically provides simulation capability to 
verify correct design operation. 

BAx· 

DMA 

DMA R1· 

P2 = 12&/11 &/10 
DMA 

'1' 

'1' 

B xlN· 

y 

Figure 8. Self-Timed VME Bus Requester Schematic 
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The DMARQx- lines are defined to use two CY7C331 
pins for each line; one combinatorial and one 
registered. The registered input pins are used to con­
serve output logic for other functions. The three macro­
cells associated with the registered inputs also are used 
to perform the internal self-timed clock generation and 
delay functions: Most other PLDs require six outputs to 
implement these functions. In addition, the individually 
programmable clocks of the CY7C331 allow the input 
register flip-flops to be clocked on the falling edge of 
BGxIN-. 

The BR and BBSY lines are defined to be active high to 
allow for external inverting open-collector .drivers. 
BBSY is assumed to be the input to the external delay 
line and the CY7C331 input BBSY90 is assumed to con­
nect to the delay line output. 

The self-timed clock generation and delay logic is 
defined to meet the requirements of CY7C331 self­
synchronization. The ABEL source file for this im­
plementation are available upon request. 
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Bus-Oriented Maskable Interrupt Controller 

Introduction 

In virtually all microprocessor designs there is a re­
quirement for some level of interrupt support. In com­
plex applications, a dedicated interrupt controller chip 
from the specific microprocessor family can provide the 
required support, but for simple applications, or where 
special requirements exist, a standard interrupt control­
ler is either inadaquate or represents overkill for the 
design. In such cases, a custom-designed controller is 
implemented using some combination of MSI logic and 
PLDs. This application note is intended to illustrate the 
design flexibility of the CY7C331 PLD from Cypress 
Semiconductor in a single-chip interrupt controller 
design. The design is implemented in two stages. The 
first is a simple 4-channel controller where the major 
functional blocks are developed. In the second stage, 
the simple design is extended to allow cascading of a 
second controller to provide support for up to 8 inter­
rupt channels. 

Design features of the interrupt controller include: 

1. Programable Polarity Level Sensitive Inputs 
2. Interlocked REQ/ACK Handshake 
3. Simple MPU Bus Attachment For Read and Write 
4. Masking of Individual Channels 
5. Prioritized Interrupt Vector 
6. Fully Asynchronous Operation 

Description 

The interrupt controller is attached to the MPU data 
bus and is controlled by the system processor through a 
Read and a Write port on the data bus. The Read port 
provides interrupt status and a prioritized vector for the 

processor and the Write port allows the processor to 
selectively mask indiviual interrupt channels. A separate 
interrupt request line to the processor is provided to 
signal a pending interrupt. The bit assignments for the 
Read and Write ports are defIned in Figure 1. 

~EE I ~ I 3 I 2 11 I 0 

Il~~ 
~JJl~ ~ I ~ 121 ~=~ 

0-> ENABLED 
1-> MASKED 

1-> Vector Valid 
Interrupt Vector (Read) 

r------~Status Bit 

Figure 1. Data Bus Bit Assignments 

A functional block diagram of the interrupt controller 
is provided in Figure 2 Major functional blocks include 
the Mask Register and Gating block, the Priority En­
coder and Latch, and the Acknowledge Generator 
block. 

The operation of the interrupt controller is quite 
simple. On reset, all interrupt channels are masked off, 
and no interrupts are permitted. The processor then 
loads the mask register with the desired interrupt chan­
nel mask bits cleared. When an interrupt request oc-
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"I---'--'!!JId'N,OWLEDGE 

Figure 2. Interrupt Controller Block Diagram 

curs, if the channel is not masked, the request is 
prioritized and the Interrupt Request (IRQ) to the 
processor is asserted. The processor responds to the 
IRQ by reading the Interrupt Vector port. When the 
read is detected by the interrupt controller, the current 
interrupt priority is latched and the priority vector is 
placed on the data bus. Latching the current priority 
while the vector is being read prevents the vector from 
being altered in the midst of the read cycle. In addi­
tion, the vector is decoded within the interrupt control­
ler and the Acknowledge line of the corresponding 
channel is asserted. The Acknowledge remains as­
serted until detected by the interrupting element, which 

OEPTERM 

OUT SET PTERM 

OUT ClK PTERM 

OUT RESET PTERM 

IN ClKPTERM 

IN SETPTERM 

IN RESET PTERM 

TO INPUT BUFFER 

shared 
inputmux C2 

iNTn 

IRQ 

CS 

D TB LL<CLLL.L...<¥LL..LCLLL.L...<'fLL_ 

ACK ---i----" 
Figure 3. Timing Sequence for Single Interrupt 

Channel 
responds by deasserting its interrupt request. This inter­
locking handshake insures that a pending interrupt is 
not lost or responded to more than once. The Acknow­
ledege is also used internally to disable the interrupt re­
quest into the priority encoder during the interval be­
tween the interrupt acknowledge and the interrupt re­
quest being deasserted. A simple example of the timing 
sequence for a single interrupting channel is provided in 
Figure 3. 

CY7C331 Description 

The CY7C331 is an asynchronous PLD packaged in a 
28 pin 300 mil DIP. The device features 12 I/O macro­
cells and 13 dedicated inputs. The I/O macrocell is con-

OE (PIN 14) 

TO I 0 PIN 

FROM ADJACE T 
MACROCEll 

Figure 4. CY7C331 Macrocell 
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figured with a separate input and output flip-flop, which 
is highly useful in bus oriented applications. Each flip­
flop has a separate product term for the clock, preset 
and reset. The D input of the output flip-flop incor­
porates an XOR with the sum-of-products array to 
allow selectable polarity, or implementation of a toggle 
or JK flip-flop. A unique feature of the macrocell flip-

Figure 5. CY7C331 Block Diagram 

Bus-Oriented Maskable Interrupt Controller 

flops is the characteristic that when the set and reset 
inputs are both asserted, the flip-flop becomes 
transparent and the Q output follows the D input. Thus, 
the flip-flop can be used as a clocked register with an 
independent clock, set and reset, or as a combinational 
path. In addition, 6 shared input multiplexers are in­
cluded in the CY7C331 which allow the user to bury up 
to 6 output flip-flops without giving up the input pins. 
The logic diagram of the I/O macrocell is illustrated in 
Figure 4 and a block diagram of the CY7C331 is 
provided in Figure 5. 

4 Channel Interrupt Controller Design 

A functional block diagram of the interrupt controller is 
provided in Figure 2. Major functional blocks include 
the Mask Register and Gating block, the Priority En­
coder and Latch, and the Acknowledge Generator 
block. Pin assignments for the first-stage interrupt con­
troller are defined in Figure 6. 

Data Bus Interface 

The data bus interface requires bidirectional operation. 
When CS and WE are asserted low, data is written into 
the mask register. When CS is asserted low and WE 
remains high, the current priority vector and interrupt 
status is held and is placed on the data bus. The I/O 
macrocell of the CY7C331 is readily adapted to the re­
quirement. A logic diagram of the mask/priority vector 
function is illustrated in Figure 7. The interrupt status 
generation requires a different implementation. When a 
read cycle is detected (CS low, WE high), if any inter­
rupt requests are currently pending, the interrupt status 
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1 
2 
3 

!CS 4 
!WT 5 

!RST 6 
7 
8 

REQ3 9 
REQ2 10 
REQ1 11 
REQO 12 

13 
14 

28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 

DTB3 
IRQ 
DTB2 

DTB1 

DTBO 

ACK3 
ACK2 
ACK1 
ACKO 

Figure 6. Interrupt Controller Pin Assignments 
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ICS*WE 

DECODEn 

CE DATABUSn 

WE 

RST 

MASKn 
CE 
WE 

Figure 7. Mask/Priority Vector Function 

bit must be asserted high. Furthermore, new interrupt 
requests are held off until the end of the read cycle. 
This requires a clocked implementation of the interrupt 
status bit on the data bus. This is illustrated in Figure 8. 
Note that the flip-flop is configured to be reset when CS 
is deasserted high. 

Acknowledge Generation 

Acknowledge generation requires that the priority vec­
tor being placed on the data bus be decoded and the 
corresponding Acknowledge line asserted until the In­
terrupt Request line is deasserted. There is a timing 
issue that must be resolved for proper operation. A 

ICS*WE 
REQ3 
REQ2 

ISTAT 
REQl 
REOO 

ICS*WE 

RST 

MASK3 
.0" 

Figure 8. Interrupt Status Generation 

valid priority vector is not available until after CS is as· 
serted low. Thus, the proper channel cannot be 
decoded until the priority vector register has settled. A 
delay is required before the Acknowledge generation 
can be initiated. This can be accomplished in the fol­
lowing manner. The interrupt status bit is always as­
serted if there is a pending interrupt request and it oc­
curs one propagation delay after CS is asserted on a 
read cycle. The Interrupt Status signal is then passed 
through an internal strobe stage which causes and an 
additional propagation delay. The Internal Strobe is 
then used to initiate the Acknowledge Generation se­
quence. The delayed strobe assures that the priority 
vector value has settled and the setup requirements for 
decoding have been met. The actual Acknowledge 
Generation function for a channel is implemented as a 
SR flip-flop which is set when a read cycle occurs, the 
priority vector corresponds to the channel and the 
delayed Internal Strobe occurs. The flip-flop is reset 
when the interrupt request for the channel is deas­
serted. A logic diagram for the Internal Strobe genera­
tion and a single Acknowledge Generation block is 
provided in Figure 9 with a timing diagram illustrating 
typical operation in Figure 10. 

INTERNAL STROBE 

INTSTATUS --,,---.._,, 

ICS 
WE 

PRIORITY 
ACKn 

VECTOR 

cs 

Figure 9. Internal Strobe/Acknowledge Generation 
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CS 
INT 
STATUS 

INTERNAL 
STROBE 

ACKn 

REOn 
Figure 10. Timing Diagram 

Logic Equations 

The boolean equations for the interrupt controller are 
implemented using the syntax of the Cypress PLD 
Toolkit, which is a simple PLD assembler as shown 
below in Appendix A. The equations are heavily com­
mented for clarity. The PLD Toolkit does not currently 
support "de-morganization" and because the CY7C331 
contains inverting output buffers, boolean equations for 
output flip-flops are written for negative logic (i.e., solv­
ing for zero). In addition, the inversion requires swap­
ping of the the preset and reset functions on the output 
flip-flops. Thus, the logical boolean equation required 
to "set" the flip-flop must be implemented on the "reset" 
of the flip-flop and in a similar manner the equation 
required to "reset" the flip-flop must be implemented on 
the "set" of the flip-flop. 

Adding Cascade Capability 

The interrupt controller design can be readily extended 
to accomodate four additional channels. The channels 
can be added by incorporating a cascade mechanism to 
allow a second interrupt controller to be attached to the 
first. The cascade method is illustrated in Figure 11. The 
additional channels require the format of the mask 
register and the interrupt vector to be extended. This 
extension is defined in Figure 11. The lower interrupt 
controller provides support for the lower priority inter­
rupt channels, generates the IRQ to the processor and 
places the interrupt status and priority vector on the 
data bus during a read cycle. The upper interrupt con­
troller supports the higher-priority channels and passes 
its current status and priority vector down to the lower 
interrupt controller. The interrupt status line is asserted 
high when the upper interrupt controller has a non­
masked interrupt request pending. The upper interrupt 
controller is attached to the upper four bits of the data 
bus to allow the host processor to write into its mask 
register. However, because the upper interrupt control­
ler passes its priority vector directly to the lower inter-

rupt controller, there is no requirement for the upper 
interrupt controller to output any data on the bus 
during a read cycle. Operation of the cascaded version 
requires the lower interrupt controller to monitor the 
status interrupt line from the upper controller and in­
corporate it into the IRQ to the host processor and the 
interrupt vector placed on the data bus during a read 
cycle. Modification of the interrupt vector is straight 
forward. The upper interrupt channels have higher 
priority, so when the interrupt status from the upper 
controller is asserted, the lower 2 bits of the interrupt 
vector are the 2 vector bits from the upper controller. 
When the status is not asserted, the lower 2 bits of the 
interrupt vector are the lower priority interrupt vector 
encoded from the lower interrupt controller. The third 
bit of the interrupt vector is simply the state of the in­
terrupt status signal from the upper controller. The 
modified interrupt controller equations for the lower 
element are shown in Appendix B. The upper element 
equations are shown in Appendix C. 

Summary 

This application note has offered a brief introduction to 
the CY7C331 asynchronous PLD and illustrated its 
flexibility in bus-oriented applications. The interrupt 
controller described is intended to serve as the basis for 
the design of flexible low-to-moderate complexity inter­
rupt controllers. The design can be extended as re­
quired for different request polarity levels, edge sensi­
tive inputs, or additional channels. A disk containing 
the PLD source mes are available on request from the 
local Cypress Sales Office. 

REQ4-REQ7 4 UPPER 
4 DTB4-DTB7 

CS INTERRUPT 
4 ACK4-ACK7 

WE CONTROLLER 

VECTOR 2 

IRQ 

REQO.-REQ3 4 LOWER 
INTERRUPT DTBO-DTB3 

CS CONTROLLER 
WE 4 ACKO-ACK3 

Figure 11. Block Diagram for Cascading Controllers 
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Appendix A. PLD ToolKit Source Code 
Stand Alone Interrupt Controller 

CY7C331; 

CONFIGURE; 

CS (node = 4), 
WE (node = 5), 
RST (node = 6), 
REQ3 (node = 9), 
REQ2 (node = 10), 
REQl (node = 11), 
REQO (node = 12), 

!IRQ (node = 27), 
ISTAT (node = 28), 
PVEC2 (node = 26), 
PVECl (node = 24), 
PVECO (node = 20), 
ACK3 (node = 18), 
ACK2 (node = 17), 
ACKl (node = 16), 
ACKO (node = 15), 
MSK3 (node = 34, SRC = 28), 
MSK2 (node = 33, SRC = 26), 
MSKl (node = 32, SRC = 24), 
MSKO (node = 31, SRC = 20), 

ISTB (node = 25), 

EQUATIONS; 

IRQ = <oe> 
<set out> 
< cIr=out > 
< xsum > 
< sum > REQ3 & IACK3 & IMSK3 
# REQ2 & IACK2 & IMSK2 
# REQl & IACKl & IMSKl 
# REQO & IACKO & IMSKO; 

!ISTAT = <oe>ICS&WE 
<xsum> 
<set out> CS & ISTAT 
<ck -out>ICS & WE 
< set in > IRST 
< ck -in> lWE & ICS 

{Stand Alone Interrupt Controller} 
{declare device type} 

{pin 4, chip select} 
{pin 5, write enable} 
{pin 6, reset} 
{pin 9, interrupt request channel3} 
{pin 10, interrupt request channel2} 
{pin 11, interrupt request channell} 
{pin 12, interrupt request channelO} 

{pin 27, interrupt to processor} 
{pin 28, data bus 3 - interrupt status} 
{pin 26, data bus 2 - priority vector bit 2} 
{pin 24, data bus 1 - priority vector bit 1} 
{pin 20, data bus 0 - priority vector bit O} 
{pin 18, acknowledge channel3} 
{pin 17, acknowledge channel2} 
{pin 16, acknowledge channell} 
{pin 15, acknowledge channel O} 
{shared input mux for pin 28} 
{shared input mux for pin 26} 
{shared input mux for pin 24} 
{shared input mux for pin 20} 

{pin 25, internal strobe} 

{no expression means always asserted, thus IRQ is always enabled.} 
{make FF transparent} 
{make FF transparent} 
{force invert} 

{force invert} 
{FF output is reset } 

{interrupt is masked on reset} 

< sum > REQ3 & IACK3 & IMSK3 
# REQ2 & IACK2 & IMSK2 

IPVEC2 = 

# REQl & !ACKl & IMSKl 
# REQO & IACKO & IMSKO; 

<oe>!CS & WE 
<set out> 
< seCin> IRST 
< ck'::-in> lWE & !CS; 

{set is always asSerted, thus pin is always zero} 
{interrupt is masked on reset} 
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!PVECl = 

!PVECO = 

!ACK3 = 

!ACK2 = 

!ACKl = 

!ACKO = 

!ISTB = 

Bus-Oriented Maskable Interrupt Controller 

Appendix A. PLD ToolKit Source Code 
Stand Alone Interrupt Controller (continued) 

<oe> !CS&WE 
<xsum> 
<ck out> !CS & WE 
< sum> !ACK3 & REQ3 & !MSK3 
# !ACK2 & REQ2 & !MSK2 
< set in> !RST 
<ck,=-in> lWE & ICS; 

<oe>!CS & WE 
< xsum > 
<ck out>!CS & WE 
< sum> !ACK3 & REQ3 & !MSK3 

# IACKl & REQl & !MSKl & MSK2 
# IMSKl & !ACKl & REQ1 & !REQ2 

< set in> !RST 
<ck~in>IWE & ICS; 

<oe> 
< cIr out> !CS & WE & PVECl & 

- PVECO & ISTB & !ACK3 
< set_out >CS & ACK3 & !REQ3; 

<oe> 
< elr out>!CS & WE & PVECl & 

- !PVECO & ISTB & !ACK2 
<set_out>CS & ACK2 & !REQ2; 

<oe> 
< cIr out>!CS & WE & IPVECl & 

- PVECO & ISTB & !ACKl 
<set_out>CS & ACKl & lREQl; 

<oe> 
< elr out> lCS & WE & lPVECl & 

- lPVECO & ISTB & lACKO 
< set_out> CS & ACKO & lREQO; 

<oe> 
< cIr out> 1ST AT & !ISTB 
< seC out> CS & ISTB; 

4-145 

{force invert} 

{interrupt is masked on reset} 

{force invert} 

{interrupt is masked on reset} 

{FF output is set} 

{FF output is reset } 

{FF output is set} 

{FF output is reset } 

{FF output is set} 

{FF output is reset} 

{FF output is set} 

{FF output is reset} 

{FF output is set } 
{FF output is reset} 

{end of file} 
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Appendix B. PLD ToolKit Source CQde 
Cascadable Interrupt Controller-Lower Element 

CY7C331; 

CONFIGURE; 
USTAT (node = 1), 
RVEC1 (node = 2), 
RVECO (node = 3), 
CS (node = 4), 
WE (node = 5), 
RST (node = 6), 
REQ3 (node = 9), 
REQ2 (node = 10), 
REQ1 (node = 11), 
REQO (node = 12), 

!IRQ (node = 27), 
ISTAT (node = 28), 
PVEC2 (node = 26), 
PVEC1 (node = 24), 
PVECO (node = 20), 
ACK3 (node = 18), 
ACK2 (node = 17), 
ACK1 (node = 16), 
ACKO (node = 15), 
MSK3 (node = 34, SRC = 28), 
MSK2 (node = 33, SRC = 26), 
MSK1 (node = 32, SRC = 24), 
MSKO (node = 31, SRC = 20), 

ISTB (node = 25), 

EQUATIONS; 

IRQ = <oe> 
<set out> 
< clr=out > 
< xsum > 
< sum > REQ3 & !ACK3 & !MSK3 
# REQ2 & !ACK2& !MSK2 
# REQ1 & !ACK1 & !MSK1 
# REQO & !ACKO & !MSKO 
#USTAT; 

!ISTAT = <oe> !CS&WE 
< xsum > 
<set out> CS & ISTAT 
<ck -out> !CS & WE 
<sefin> !RST 
<ck -in> !WE &!CS 

{Cascaded Interrupt Controller - Lower Element} 
{declare device type} 

{pin 1, upper element interrupt status} 
{pin 2, ripple vector bit 1 from upper element} 
{pin 3, ripple vector bit 0 from upper element } 
{pin 4, chip select} . 
{pin 5, write enable} 
{pin 6, reset} 
{pin 9, interrupt request channel3} 
{pin 10, interrupt request channel2} 
{pin 11, interrupt request channell} 
{pin 12, interrupt request channel O} 

{pin 27, interrupt to processor} 
{pin 28, data bus 3 - interrupt status} 
{pin 26, data bus 2 - priority vector bit 2} 
{pin 24, data bus 1 - priority vector bit I} 
{pin 20, data bus 0 - priority vector bit O} 
{pin 18, acknowledge channel 3} 
{pin 17, acknowledge channel2} 
{pin 16, acknowledge channell} 
{pin 15, acknowledge channel O} 
{shared input mux for pin 28} 
{shared input mux for pin 26} 
{shared input mux for pin 24} 
{shared input mux for pin 20} 

{pin 25, internal strobe} 

{make FF transparent} 
{make FF transparent} 
{force invert} 

{force invert} 
{FF output is reset } 

{interrupt is masked on reset} 

< sum> REQ3 & !ACK3 & !MSK3 
# REQ2 & !ACK2 & !MSK2 
# REQl & !ACK1 & !MSK1 
# REQO & !ACKO & !MSKO 
#USTAT; 
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!PVEC2 = 

!PVECl = 

!PVECO = 

!ACK3 = 

!ACK2 = 

IACKl = 

!ACKO = 

!ISTB = 

Appendix B. PLD ToolKit Source Code 
Cascadable Interrupt Controller-Lower Element (continued) 

<oe> !CS& WE 
< xsum > 
<ck out>!CS & WE 
< sum. > USTAT 
< set in> !RST 
< ck]n> !WE & !CS; 

<oe> !CS& WE 

{force invert} 

{interrupt is masked on reset} 

< xsum > {force invert} 
<ck out> !CS & WE 
<sum.> !ACK3 & RE03 & !MSK3 & IUSTAT 
# !ACK2 & RE02 & !MSK2 & IUSTAT 
# RVECl & USTAT 
. < set_in> !RST {interrupt is masked on reset} 
<ck_in>!WE & !CS; 

<oe> !CS&WE 
< xsum > {force invert} 
<ck out>!CS & WE 
<sum.> !ACK3 & RE03 & !MSK3 & IUSTAT 
# !ACKl & REOl & !MSKl & MSK2 & !USTAT 
# !MSKl & !ACKl & REOl & !RE02 & !USTAT 
# RVECO & USTAT 
< set in> !RST 
< ck,=-in>!WE & !CS; 

<oe> 
< clr out>!CS & WE & !PVEC2 & PVECl & 

- PVECO & ISTB & !ACK3 
< set_out> CS & ACK3 & !RE03; 

<oe> 
< clr out> !CS & WE & !PVEC2 & 

- PVECl & !PVECO & ISTB & !ACK2 
< set_out> CS & ACK2 & !RE02; 

<oe> 
< elr out>!CS & WE & !PVEC2 & 

- !PVECl & PVECO & ISTB & !ACK! 
< set_out> CS & ACKl & !REOl; 

<oe> 
< clr out> !CS & WE & !PVEC2 & 

- !PVECl & !PVECO & ISTB & !ACKO 
< set_out> CS & ACKO & !REOO; 

<oe> 
<clr out > ISTAT & !ISTB 
< seC out> CS & ISTB; 

{end of file} 
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{interrupt is masked on reset} 

{FF output is set } 

{FF output is reset} 

{FF output is set} 

{FF output is reset } 

{FF output is set } 

{FF output is reset } 

{FF output is set } 

{FF output is reset } 

{FF output is set } 
{FF output is reset } 



Appendix C. PLD ToolKit Source- Code 
Cascadable Interrupt Controller-Upper Element 

CY7C331; 

CONFIGURE; 

CS (node = 4), 
WE (node = 5), 
RST(node = 6), 
REQ3 (node = 9), 
REQ2 (node = 10), 
REQ1 (node = 11), 
REQO (node = 12), 
PVEC3 (node = 28), 
PVEC2 (node = 26), 
PVEC1 (node = 24), 
PVECO (node = 20), 
ACK3 (node = 25), 
ACK2 (node = 23), 
ACK1 (node = 19), 
ACKO (node = 17), 
MSK3 (node = 34, SRC = 28), 
MSK2 (node = 33, SRC = 26), 
MSK1 (node = 32, SRC = 24), 
MSKO (node = 31, SRC = 20), 
ISTB (node = 27), 
USTAT(node = 18), 
ISENSE (node = 30, SRC = 18), 

RVEC1 (node = 16), 
RVECO (node = 15), 

EQUATIONS; 

IPVEC3 = 

IPVEC2 = 

IPVEC1 = 

!PVECO = 

<set out> 
<set-in>IRST 
< ck:in> lWE & !CS; 

<set out> 
< set-in> IRST 
<ck]n>IWE & !CS; 

< xsum > 
<ck out>ICS & WE 
< sum > IACK3 & REQ3 & !MSK3 
# !ACK2 & REQ2 & IMSK2 
< set in> !RST 
<ckJn>!WE & ICS; 

< xsum > 
<ck out> ICS & WE 
< sum. > IACK3 & REQ3 & IMSK3 
# IACK1 & REQ1 & IMSK1 & MSK2 
# !MSK1 & !ACK1 & REQ1 & IREQ2 
< set in> IRST 
< ckJn> lWE & !CS; 

{declare device type} 
{Cascaded Interrupt Controller - Upper Element} 

{pin 4, chip select} 
{pin 5, write enable} 
{pin 6, reset} 
{pin 9, interrupt request channel3} 
{pin 10, interrupt request channel2} 
{pin 11, interrupt request channell} 
{pin 12, interrupt request channelO} 
{pin 28, data bus 3 - always zero} 
{pin 26, data bus 2 - always zero} 
{pin 24, data bus 1 - always zero} 
{pin 20, data bus 0 - always zero} 
{pin 25, acknowledge channel3} 
{pin 23, acknowledge channel2} 
{pin 19, acknowledge channell} 
{pin 17, acknowledge channel O} 
{shared input mux for pin 28} 
{shared input mux for pin 26} 
{shared input mux for pin 24} 
{shared input mux for pin 20} 
{pin 27, internal strobe} 
{pin 18, interrupt status output} 
{shared input mux for pin 18} 
{internal interrupt sense to generate input for ISTB} 
{pin 16, ripple vector bit 1 output} 
{pin 15, ripple vector bit 0 output} 

{output always zero} 
{interrupt is masked on reset} 

{output always zero} 
{interrupt is masked on reset} 

{force invert} 

{interrupt is masked on reset} 

{force invert} 

{interrupt is masked on reset} 
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!ACK3 = 

!ACK2 = 

!ACKl = 

!ACKO = 

!USTAT = 

!RVECl = 

!RVECO = 

!ISTB = 

Appendix C. PLD ToolKit Source Code 
Cascadable Interrupt Controller-Upper Element (continued) 

<oe> 
<cIr out>!CS & WE & PVECl & 

- PVECO & ISTB & !ACK3 
<set_out>CS & ACK3 & !RE03j 

<oe> 
<cIr out>!CS & WE & PVECl & 

- !PVECO & ISTB & !ACK2 
<set_out>CS & ACK2 & !REQ2j 

<oe> 
< cIr out>!CS & WE & !PVECl & 

- PVECO & ISTB & !ACKl 
<set_out>CS & ACKl & !REQlj 

<oe> 
< cIr out>!CS & WE & !PVECl & 

- !PVECO & ISTB & !ACKO 
<set_out>CS & ACKO & !REQOj 

<oe> 
<xsum> 
<set out> 
<cIr -out> 
< sum> REQ3 & !ACK3 & !MSK3 

# REQ2 & !ACK2 & !MSK2 
# REQl & !ACKl & !MSKl 
# REQO & !ACKO & !MSKO 

<ck in>!CS & WE 
< cIr-=,in> CS & ISENSEj 

<oe> 
<xsum> 
<set out> 
< cIr-out > 
< sum> !ACK3 & REQ3 & !MSK3 

# !ACK2 & REQ2 & !MSK2j 

<oe> 
< xsum > 
<set out> 
<cIr -out> 
<ck -out>!CS & WE 
< sum> !ACK3 & REQ3 & !MSK3 

# !ACKl & REOl & !MSKl & MSK2 
# !ACKl & REOl & !MSKl & !REQ2j 

<oe> 
< cIr out> ISENSE & !lSTB 
< seC out> CS & ISTBj 

{end of file} 
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{FF output is set} 

{FF output is reset } 

{FF output is set } 

{FF output is reset } 

{FF output is set } 

{FF output is reset} 

{FF output is set} 

{FF output is reset} 

{force invert} 
{make FF transparent} 
{make FF transparent} 

{force invert} 
{make FF transparent} 
{make FF transparent} 

{force invert} 
{make FF transparent} 
{make FF transparent} 

{FF output is set } 
{FF output is reset } 
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SEMICONDUCTOR 

Using the CY7C331 as a Waveform Generator 

Introduction 

This application note demonstrates the capability of the 
Cypress CY7C331 CMOS Erasable Programmable 
Logic Device (EPLD) to support a design requiring 
multiple clocks, input registers, buried registers, and in­
dependent control of individual register's set and reset 
inputs. Combining this flexibility of design with high­
speed performance has previously not been possible. 
The application example shown demonstrates the use of 
the CY7C331 as a programmable waveform generator. 

The CY7C331 is a member of the Cypress slimline 28-
pin family of high performance CMOS EPLDs. Family 
members are characterized by high speed, increased 

I/O, and high integration. The CY7C331 has a highly 
flexible architecture intended to support asynchronous 
and general purpose "glue" logic integration applica­
tions. The device has a 192 product term array and 
twelve I/O logic· macrocells. Each macrocell has two D­
type flip-flops with asynchronous set, reset, and bypass 
capability. The clock, preset, and reset inputs of a flip­
flop are individually programmable. Output enable 
control and feedback are also individually program­
mable in each macrocell. Combinatorial and registered 
inputs, as well as buried states, are all easily supported 
by the CY7C331. 

OE(PIN 14) 

OEPTUE~R~ ____________________________ ~ 

OUT ETPTERM 

OUT~~~R~M~ ________________ ~ 

OUT RESET PTERM 

IN CLKPTERM 

FFER 

FROM ADJACENT 
MACROCELL 

Figure 1. The CY7C331 Macrocell 
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The ability to bury registers and associated gates is 
highly desireable as it aids in increasing the number of 
"usable gates" in an EPLD. Typically, if an I/O pin is 
used as an input, the corresponding output register and 
its supporting product term structure is wasted. This 
loss occurs because only one macrocell feedback path is 
present. When this path is used by the I/O pin (as an 
input) no register feedback path is available, and the 
contents of the register cannot be fed back into the" 
array. 

The dual muxing structure of the CY7C331 prevents 
this limitation by allowing the designer to make use of 
the shared input mux (see Figure 1) as an I/O path into 
the array, while simultaneously feeding back the 
registered contents using the separate macrocell feed­
back mux. Because the output register can be made to 
be transparent by asserting both the register's set and 
preset nodes, simultaneous combinatorial feedback can 
also be achieved. Use of this feature allows the im­
plementation of bidirectional I/O in both registered and 
combinatorial configurations. 

Figure 2 contains PLD ToolKit source code that con­
figures an I/O macrocell as bidirectional, with feedback 
from the output. The I/O pin corresponding the macro­
cell will be labeled 10 PIN and each line of code is 
commented to explain What it accomplishes. 

Note that 10 ]IN is assigned to node 28, and 
IN PATH is assigned. to node 34, with pin 28 as a 
so";;"ce. In the simulator, the input waveform must be 
added on the trace corresponding to node 28, even 
though that trace is named 10]IN. IN_PATH will be 
assigned to node 34, which is a read only node. This is 
true even if 10_PIN is configured as a buried register, 
and IN PATH is always an input. The reason for this is 
that node 34 is just a mux, and the register associated 
with the input belongs to node (pin) 28. If you wish to 
see the value of the output register when the pin is an 
input, you can create a view node for the node. This 
allows the user to probe several different places inside a 
macrocell. For more information on view nodes, con­
sult the PLD ToolKit Manual, Chapter 4.3. 

{********** •• ************************************************************.****************} 
CY7C331; {The first line of code selects the device } 
CONFIGURE; {In this section pin,and node names are specified, along with configuration information} 

INCLK, OUTCLK, /INCLR, /INSET, OE1, 10E2, INPUT, IOUTCLR(NODE=9), 10UTSET, 
{The input names are listed above. Pin 1 will be the input clock, pin 2 will be the output clock. Pins 3 and 4 
will be the input register's clear and set signals respectively. Pins 5 and 6 will be output enables, OE1 is high 
asserted, IOE2 is low asserted. Pin 7 is a straight input. We skip pin 8 because it is Vss. Pins 9 and 10 will 
be the input register's clear and set signals.} 
IO]IN(NODE=28, IREG); IN]ATH(NODE=34, SRC=28), OUT(NODE=27), . 
{Pin 28 is the actual bidirectional pin. The IREG attribute specifies that the input to the array comes from 
the output register, rather than the pin. Node 34 is the shared input mux for nodes 27 and 28. IN_PATH is 
the input path to the array from pin 28. Pin 27 is a simple output.} 
EQUATIONS; {This is where the array is specified.} 

10]IN = 

OUT = 

<SUM> INPUT {When IO_PIN is an output, it follows Pin 7.} 
<SET OUT> OUTSET 
< CLR- OUT> OUTCLR 
<CLK-OUT> OUTCLK 
< OE'; OE1 * OE2 {Outputs are enabled when OE _1 is high, and 10E _ 2 is low.} 
< CLK IN> INCLK 
< CLR -IN> INCLR 
< SET IN > INSET; 

<OE> {Usting the connective alone sets the product term to "1", always asserted.} 
< SET_OUT> {When both the set and reset product terms are asserted, the register} 
<CLR_OUT> {becomes transparent. Thus, this is a combinatorial output.} 
< SUM > IN] A TH; {This output always shows the value of the input register at pin 28.} 

{If the register is in combinatorial mode, the value on pin 28 will be shown.} 

Figure 2. PLD ToolKit Source Code for Bidirectional Pin 
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The CY7C331 as a Function Generator 

Waveform generators are useful in a variety of a ap­
plications, primarily in the test and diagnostic areas. 
Any time high~speed digital waveforms must be created, 
a programmable waveform generator is the ideal solu­
tion. This CY7C331 solution allows waveforms of fre­
quencies greater thaJi 30 MHz to be generated. 

This waveform generator builds waveforms. with respect 
to a system clock called SYS_CLK. The number of 
cycles of SYS_CLK that the output waveform 
(OUT_WAVE) should be low is loaded into 
LOW_REG(2:0). The number of cycles of SYS_CLK 
that OUT WAVE should be high is loaded into 
HI REG(2~O). For this implementation, these values 
must be between 2 and 7. 

When the START signal is asserted, OUT_WAVE goes 
low, and LOW_REG(2:0) is loaded into a counter. 
When the count is almost 0, the signal TERM_CNT is 

deasserted, then reasserted when the count reaches o. 
This toggles OUT_WAVE, and loads a second counter 
with the value in HI REG(2:0). The. cycle repeats, al­
ternating between fitREG(2:0) and LOW_REG(2:0) 
until SYS CLK is witheld, or new values are loaded 
into HI_REG(2:0) and LOW_REG(2:0), and START is 
reissued. Figure 3 depicts the waveforms for this design. 

HI REG(2:0) and LOW _REG(2:0) are loaded using 
/DSTRB and ADDR(7:0). The user can specify any 
address for these registers. In this example, 
HI_REG(2:0) is at ADDR(7:0) =00 Hex, and 
LOW _ REG(2:0) is at ADDR(7:0) = 01 Hex. 

The implementation of this design requires two 
separate three bit input registers, decoding logic for the 
input register clocks, two separate three bit counters, 
logic and two miscellaneous registers. In this design, all 
the counter flip-flops must be individually settable or 
resettable. In addition, there are four separate clocking 
functions. 

ADDR(7:0) xg\ 00 / 01 XL ______________ ~DO~N~·T~CA~R~E ______________________ ___ 

IDS 

xxxxxx 5 

xxxxxxxxxxxx 2 

START ______ ~r_\L ______________________________ ___ 

\'----~/ 

/ '6X5X4X3~ 

Figure 3. Waveform Generator Internal/External Waveforms 
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This type of design is historiciillyverydifficu1t to imple­
ment in a PLD. Typiciilly the use of the preset an.d 
reset inputs on individual flip-flops is not amIable nor 
is separate clocking of those flip-flops; Because the 
CY7C331 has these features,' implementation of this 
design was effortless. 

similarly decoded withIDSand:ADDR(7,O) =00 Hex .... 

LOW. Cm' (2:0) and HI,,-CNT_J2:0) form 2 three bit 
coUnters ... Thesecoumers are loaded with the contents 
of the LOW _REG(2:0) and· HI.:.. REG(2:0). registers 
respectively, by using the individual set and reset on. 
each flip-flop. LOW.:.CNT_(2:0) is loaded when 
trERM_ CNT is low. and ... OUT .:.WA VB . is . high. 
Similarly, HI_CNT_(2:0) is loaded when trERM_CNT 
is low and OUT WA VB is low. The counters are both 

Figure 4 shows the SSI implementation. of this design. 
LOW_IN_CLK is the clock input for LOW~REG(2:0): 
It is the result of decoding the active low IDS (dat\ 
strobe) and ADDR(7:0)=Ol Hex. HUN_CLK,is, cloeked withSyt CLK. . '.' . 

sys eLK 

in" 
IAoORo 

-t>o-~ IAnnR, 

==t IADDR2 ~ .. ~-~ IADDR3 }.LQl _CLKJN 
'",I 

IADDR4 

' ..... ; OUT WAVE 
:<IDDR5 =:J 

lADORa 
IADDRl ~h TFRUr.NT 

.' 
LOW IN DO "'IT iN.V>' .. ' 

~ LOW "NT" I 
LOW_REGO 

~I~ r=v- 9[l nllT "'AV. 
... h TERM eM 

LOW IN 

~.~ 
"'. 

rtl~ 
nlrT ",AVF 

I'll IT WAV>' """"'''NT 

II TERM eN 

~ "'".WA· 

I . TERM.,Q!!!L 

LOW IN ~ DO 9tB .' pr-, as 

~ LOW_REG2 . /OUT WAVE .. .. ' '. 

~ J--!:!! CLKJN ~-~ . 913 . tnIlT WAv.. 

. ~ -, TERM CNT 
HIIN 0 DO In'ITWAv.. 

--f!t HI ClNTO r 
HI_REGO 

~I~ flU- 9tB "" "NT IOLrT WAVE 
TF ..... "N1 

H IN DO 

~ ""IT "'AV>' 

~3a: 
""FlU eN" HI...REGI 

. ,..,.; w~:n. " TERMeNT 
HIIN 2 DO 

VE 

as ;} 

'START HI_REG2 

SYS eLE:r.R 

Figure 4. Waveform Generator Schematic 
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trERM _ CNT is also clocked by SYS _ CLK and it 
detects when either of the counters are equal to 1. 
When a counter reaches 1, /TERM _ CNT goes low for 
one clock, and then goes high again. The rising edge of 
/TERM_CNT is used to clock OUT_WAVE, which is 
configured to toggle on every clock. 

PLD ToolKit Implementation 

Appendix A contains the Cypress PLD ToolKit im­
plementation of the waveform generator discussed in 
this application note. There are two areas which may 
require some clarification, These are the pin assign­
ments and polarity. 

The pin assignments for nodes (pins) 1 through 14 are 
straightforward. Pin 8 has been skipped because it is a 
V 55 pin. These pins are the combinatorial inputs of the 
CY7C331, so no configuration information is needed. 

OUT_WAVE is assigned to pin 16. "lOP" following the 
node assignment indicates that the feedback mux is 
programmed to feed back the Q output of the 
OUT_WAVE register. This is actually the default so it 
does not need to be specified. It has been included 
here for documentation purposes. The same is true for 
TERM_CNT, /HI_CNT_O and /LOW_CNT_l. Notice 
that HI IN 1 and LOW IN 0 have the attribute 
"IREG" listed after the nod~ as~ignment. This specifies 
that these pins are dedicated inputs, that is the feed­
back mux is configured to select the Q output of the 
input register associated with the pin, as opposed to the 
Q output of the output register. This is an override of 
the default discussed above. 

The rest of the assignments are of the same form as 
!HI_ CNT _ 2 and HI_IN _ 2. /HI _ CNT _ 2 is assigned to 
node 18, with an attribute of lOP. As mentioned ear­
lier, this configures the feedback mux to select feedback 
from /HI _ CNT _ 2 as the array input. HI_IN _ 2 has been 
assigned to node 30, with "SRC = 18". Node 30 is a 
shared input mux that serves as an input path from 
either the input register on pin 18 or the input register 
on pin 17. SRC=18 specifies that HI_IN_2 is assigned 
to the input register on pin 18. (The default is that the 
even pin is always selected. Again the statement 
"SRC = 18" has been included primarily for documenta­
tion purposes. This method for utilizing both the input 
and output registers of a pin is used 4 times in this 
design. In all of these cases, the output register is 
buried (not accessible to the pin). Figure 5 is a footprint 
of the CY7C331 with all external pin signals labeled. 

IDS 
ADORa 
ADDR1 
ADDR2 
ADDR3 
ADDR4 
ADDR5 
Vss 

ADDR6 
ADDR7 
START 

SYS ClK 
NO CONNECT 
SYS_ClEAR 

NO CONNECT 
lOW IN a 
lOW-IN-1 
IlOvii CNT 1 
lOWIN 2-
IHI CNT-a 
Vee -
Vss 
HI IN a 
HI-IN-1 
HI-IN-2 
TERMCNT 
OUT WAVE 
NO CONNECT 

A close look at the file in Appendix A may also raise 
some questions concerning polarity conventions in the 
PLD ToolKit. Polarity on inputs is fairly straightfor­
ward. Note that the "t' in ISTART means that this is a 
low asserted signal. When START appears in the 
EQUATIONS section (refer to lOUT_WAVE and 
trERM_CNT equations) this is interpreted as ISTART 

being asserted. Thus, when ISTART=O, the 
OUT_WAVE register is set. 

This leads us to the more confusing case of output feed­
back polarity. Polarity on the CY7C331 is not program­
mable, unless it is done using the XOR in the array. 
Thus when TERM_CNT is specified in the CON­
FIGURATION section, this means that the output 
register is trERM _ CNT because there is an inversion 
between the register output and the pin. This means 
that when you set TERM_CNT, the pin will be low. 
How, then, do you specify that TERM _ CNT is asserted 
when it appears on the right of an equation? The 
answer is that you refer to the polarity present on the 
pin. Thus, in the < CK _OUT> portion of the equation 
for lOUT_WAVE, is is specified TERM_CNT. This 
means that lOUT_WAVE is clocked when pin 17 
(TERM _ CNT) exhibits a rising edge. 
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Appendix A. PLD Toolkit Source Code for the Waveform Generator 

CY7C331; 

CONFIGURE; 
IDS, 
ADDRO, ADDRl, ADDR2, ADDR3, ADDR4, ADDRS, 
ADDR6(NODE=9), ADDR7 
ISTART, 
SYS_CLK, 
SYS_CLEAR(NODE=14), 
OUT _ WA VE(NODE = 16,IOP), 
TERM _ CNT(NODE = 17,IOP), 
/HI _ CNT _ 2(NODE = 18,IOP), 
HUN~(NODE = 30,SRC = 18), 
HUN _1(NODE = 19,IREG), 
/HI_ CNT _1(NODE = 2O,IOP), 
HUN_O(NODE=31,SRC=20), 
/HI_CNT_O(NODE=23,IOP), 
/LOW _ CNT _ 2(NODE = 24,IOP), 
LOW_IN _ 2(NODE = 32,SRC = 24), 
/LOW _ CNT _1(NODE = 25,IOP), 
LOW_IN _1(NODE = 33,SRC = 26), 
/LOW _ CNT _O(NODE = 26,IOP), 
LOW_IN_O(NODE=27,IREG), 

EQUATIONS; 

< SUM> /LOW CNT ° 
<CK OUT> SYS cLk 

{Low asserted data strobe} 
{address bits O,I,2,3,4,S,} 
{address bits 6 and 7} 
{start sequence} 
{ counter clock} 
{initialize OUT_WAVE,TERM_CNT to a quiescent state} 
{ output wave form} 
{terminal count decode register} 
{high counter bit 2, a buried register} 
{high register input bit 2} 
{high counter input bit I} 
{high counter bit 1, a buried register} 
{pin 20 acts as high register input bit O} 
{high counter bit O} 
{low counter bit 2, a buried register} 
{pin 24 is low register input bit 2} 
{low counter bit I} 
{pin 26 acts as low register input bit I} 
{low counter bit 1, a buried register} 
{low register input bit O} 

< CK-IN > DS* ADDRO*/ADDR1 *IADDR2*/ADDR3*/ADDR4*/ADDRS*/ADDR6*/ADDR7 
<SET OUT> /LOW IN 0" lOUT WAVE" /TERM CNT 

/LOW_IN_O = 

LOW_CNT_l := 

<CLR-=-OUT> LOW=IN=O * IOUT=WAVE" /TERM=CNT; 

< CK_IN > DS* ADDRO*/ADDRI */ADDR2*/ADDR3*IADDR4*IADDRS*/ADDR6*/ADDR7; 

<SUM> LOW CNT 1 
<XSUM> LOW cm 0 
<SET OUT> tWwiN 1" lOUT WAVE" /TERM CNT 
<CLR- OUT> LOW-IN-1*IOUT-WAVE * /TERM-CNT 
<CK OUT> SYS CLK- - -
<OE>; -

<SUM> LOW CNT 2 
< XSUM > LOW cm ° .. LOW CNT 1 
< SET OUT> /LOW iN 2 * lOUr WAVE * /TERM CNT 
<crn OUT> LOW-IN-2 • lOUT-WAVE .. /TERM-CNT 
<CK OUT> SYS CLK - - -
< CK)N > DS* ADDRO* IADDR1" IADDR2* IADDR3* IADDR4"/ADDRS* /ADDR6*/ADDR7; 

<SUM> OUT WAVE 
<CK OUT> TERM CNT 
<SET OUT> START 
< cuf OUT > SYS CLEAR 
<OE>-; -
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/TERM_ CNT : = 

/HUN_l = 

HI_CNT_2 := 

Appendix A. PLD Toolkit Source Code for the Waveform Generator (continued) 

< SUM> fLOW CNT 0 * LOW CNT 1 " LOW CNT 2 
< SUM> /HI cm 0 -;; HI cm 1 * HI CNT 2- -
<CK OUT>-SYS CLK - - - -
<CLR OUT> START 
< SET -OUT> SYS CLEAR 
<OE>; -

<SUM> /HI CNT 0 
< CK OUT> -SYS CLK 
<OE> -
<CLR OUT> HI IN 0 * OUT WAVE * /TERM CNT 
<SET~OUT> /H(IN=O * OUT=WAVE * /TERM=CNT; 

<SUM> HI CNT 1 
<XSUM> HI CNT 0 
<SET OUT>-/HI iN l*OUT WAVE*/TERM CNT 
<CLR- OUT> HI-IN-l*OUT-WAVE*/TERM-CNT 
<CK OUT> SYS-CLK - -
< CK)N> DS*/ADDRO* /ADDR1" /ADDR2* /ADDR3* /ADDR4* /ADDR5* /ADDR6" /ADDR7; 

< CK _IN> DS· /ADDRO* /ADDR1" /ADDR2*/ADDR3* /ADDR4* /ADDR5*/ADDR6* /ADDR7; 

<SUM> HI CNT 2 
< XSUM > HI CNT 1 "HI CNT 0 
<SET OUT> /HI iN 2*OUT WAVE*/TERM CNT 
<CLR- OUT> HI-IN-2*OUTWAVE*/TERM-CNT 
<CK OUT> SYS-CLK - -
<CK)N> DS*/ADDRO*/ADDR1*/ADDR2*/ADDR3*/ADDR4*/ADDR5*/ADDR6"/ADDR7; 
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CYPRESS 
SEMICONDUCTOR 

Microcoded Systems Performance 
The microcoded processor family of devices offered by Cy­
press Semiconductor are the fastest available. High per­
formance systems designed for specific applications can be 
configured using this high performance chip set. The per­
formance of these devices in 16- and 32-bit processOrs is 
detailed below. 

Increasing functional integration is evident in the 
CY7C9101 16-bit slice, which is the equivalent to four 
CY7C90ls (4-bit slice) and a 2902 carry lookahead genera-

tor. By placing these functions on a single chip, the inter­
connect delays between chips are reduced. Significant im­
provement in overall system throughput, reduced board 
space, and reduced power requirements are among the ad­
vantages of the CY7C9101 systems over CY7C901 based 
systems. Following is a critical path timing analysis of the 
data loop and control loop for generic 16- and 32-bit sys­
tems. A discussion of the speed and power advantages of­
fered by CY7C9101 systems will also be presented. 

Minimum Cycle Time Calculations for 16· and 32·Bit Systems 

~--------------~CN 

G.P 

DATA 
REGISTER 

WIRED "OR" f=O 
fROM OTHER CY7C901s 

r----. 

f=O 

Cn+4 
CY7C901 OVR 1---1'-----+1 

(4) f3 

DATA 
REGISTER 

Figure 1. CY7C901 Based 16-Bit System (Pipelined System, Add without Simultaneous Shift) 

CY7C245 
CY7C901 
Carry Logic 
CY7C901 
Register 

Data Loop 
Clock to Output 
A,BtoG,P 
Go. Po to en +z 
en to Worst Case 
Setup 

12 
28 
9 

18 
4 

71 ns 

CY7C245 
MUX 
CY7C91O 
CY7C245 

Minimum Clock Period = 71 os 

5-1 

Control Loop 
Clock to Output 
Select to Output 
CC to Output 
Access Time 

12 
12 
22 
20 

66ns 

4 

0096-1 

October 1986 
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Minimum Cycle Time Calculations for 16-and 32-Bit Systems (Continued) 

} ~C901(6,7,8) 

} 
TO FROM CY7C901(5,6,7) 

CY7C901(2,3,.) 

WIRED "OR" F=O 
FROII OTHER CY7C901s ...------.--, 

Figure 2. CY7C901 Based 32·Bit System (Pipelined System, Add without Simultaneous Shift) 

Data Loop Control Loop 
CY7C245 Clock to Output 12 CY7C245 Clock to Output 
CY7C901 A, BtoG, P 28 MUX Select to Output 

[ Go, Po to G, P 12 CY7C91O CC to Output 
Carry 

Go, Po to Cn + x 9 CY7C245 Access Time 
Logic en to en + x, y, z 14 

CY7C901 en to Worst Case 18 
Register Setup 4 

97ns 

Minimum Clock Period = 97 ns 

0096-3 

Figure 3. CY7C9101 Based 16·Bit System (Pipelined System, Add without Simultaneous Shift) 

Data Loop Control Loop 
CY7C24S Clock to Output 12 CY7C24S Clock to Output 
CY7C9101 A,BtoY, en +16,OVR 37 MUX Select to Output 
Register Setup 4 CY7C910 CC to Output 

S3 ns CY7C245 Access Time 

Minimum Clock Period = 66 ns 

5·2 

0096-2 

12 
12 
22 
20 

66ns 

12 
12 
22 
20 

66ns 
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Minimum Cycle Time Calculations for 16- and 32-Bit Systems (Continued) 

0096-4 

Figure 4. CY7C9101 Based 32-Bit System (Pipelined System, Add without Simultaneous Shift) 

CY7C245 
CY7C9101 
CY7C9101 
Register 

Data Loop 
Clock to Output 
A, B to en + 16 
en to Worst Case 
Setup 

12 
35 
24 
4 

75 ns 

CY7C245 
MUX 
CY7C91O 
CY7C245 

Minimum Clock Period = 75 ns 

Control Loop 
Clock to Output 
Select to Output 
CCtoOutput 
Access Time 

Table 1 

12 
12 
22 
20 

66ns 

Power is an important consideration in microcoded sys­
tems. For an equivalent system, the CY7C901 offers sub­
stantial savings in power over the bipolar devices. Coupled 
with other low power Cypress CMOS devices, the power 
savings over bipolar is clearly evident. The functional inte­
gration of four CY7C90ls with carry lookahead gives the 
CY7C9lOl even greater advantages. The number of ALU 
elements is reduced by a factor of four, also, there is a 
reduction in the carry logic needed. A comparison between 
bipolar, CY7C901-based, and CY7C9101-based systems is 
given below in Table 1. Note that in this comparison, the 
devices common to a1116- and 32-bit system configurations 
are included in the Icc computations. 

Icc Calculations for 16-Bit Systems (All Figures in mA) 

Cypress CMOS 

CY7C901 CY7C9101 Bipolar 
Based Based 

Sequencer 100 100 340 
Registered PROM 90 90 185 
Carry Logic 110 - 110 
ALU Elements 

4x Four-Bit Slice 320 1060 
16-Bit Slice 75 

Total 620 265 1695 
Cypress CMOS devices offer the highest speed microcoded 
solutions while keeping power consumption to reasonable 
levels. The CY7C901-based systems win over bipolar's fast­
est devices in a speed comparison, while consuming rough­
ly Va the power. Upgrading to the CY7C9101 will result in 
even faster systems, at close to Va the power of the 
CY7C901-based systems. This comparison is illustrated be­
low, in Table 2. 

Icc Calculations for 32-Bit Systems (AlI Figures in mA) 

Cypress CMOS 

CY7C901 CY7C9101 Bipolar 
Based Based 

Sequencer 100 100 340 
Registered PROM 90 90 185 
Carry Logic 330 110 330 
ALU Elements 

8x Four-Bit Slice 640 2120 
2x Sixteen-Bit Slice 150 

Total 1160 450 2975 

Table 2. Speed/Power Comparison between Bipolar, CY7C901, CY7C9101 

Minimum Clock Cycle (ns) Maximum Icc (mA) 

Bipolar CY7C901 CY7C9101 Bipolar CY7C901 CY7C9101 

16-Bit Systems 85 71 66 1695 620 265 

32-Bit Systems III 97 75 2975 1160 450 
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CYPRESS 
SEMICONDUCTOR 

Systems with CMOS 16-bit Microprogrammed 
ALUs 

Introduction 

In the past, the dominant use of microprogrammed 
Arithmetic and Logic Units (ALUs) has been as 
general-purpose data processors in computers. The 
reason for using microprogrammed machines in these 
applications was to improve performance, i.e., general 
purpose microprocessors were too slow. 
Microprogrammed processors, in addition to allowing 
custom instruction sets, were the only way to achieve 
the desired MIPS (Millions of Instructions Per Second) 

10·115 

4 
ISRE =>----+---1 

OEl 

T1·T4 

CT 

32WORO 
x 

16BrrRAM 
ADDRESS 

rate. However, with the advent of high performance, 20 
MIPS Reduced Instruction Set Computers (RISC), 
microprogrammed ALUs have relinquished the 
general-purpose data processor application and moved 
to custom processors or special-purpose controllers. 
This application brief shows how to improve reliability, 
flexibility, and speed by diagramming timing and high­
lighting applications that benefit significantly from the 

16 

1----- N 

10Ey 

YO·Y15 

OLE 

Fignre 1. CY7C9116 Block Diagram 
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features of the 7C9116n architecture and CMOS tech­
nology. 

7C911617 Architecture and Implementation 

The 7C9116 and 7C9117 are extremely fast arithmetic 
and logic units implemented in a 1.2-micron double­
metal CMOS process technology. As shown in Figures 1 
and 2, the 7C9117 differs from the 7C9116 by incor­
porating a separate bus for data input (D) and for data 
output (Y) and thus allows for the design of faster 
microprogrammed systems. Both units are capable of 
worst-case propagation delays from instruction in to 
data out of 35 ns. 

The 7C9116n contain single port 32 x 16 bit word 
register files, two operand arithmetic units, and three 
input logic units. Carry look ahead logic is also in­
tegrated together with the logic and arithmetic units. 
The instruction set of the 7C9116n can be divided into 
~leven. types as listed in Table 1. Single clock operation 
is attamed on the extensive bit manipulation and rotate 
instructions via the on-chip barrel shifter. In fact all in­
structions in the ALU execute within one clock' except 
for immediate instructions, where a second clock is 

10·115 

ISRE c:>-----I.--.r-s:~Sl 

OEI c::>--v 

Tl·T4 

32 WORD 
X 

16 BIT RAM 
ADDRESS 

needed to obtain the inlmediate operand. 

Table 1. 7C9116/7 Instruction Types 

Instruction 'Ij(pe 
Single Operandine: 
Two Operand add: 
Single Bit Shift shupl: 
Bit Oriented 
Rotate by n bits 
Rotate & Merge 
Rotate & Compare 
Prioritize 
CRC cref: 
Status 
No-Op 

~ 
sre plus 1-> dest 
sre plus sre - > dest 
sre up 1 
setnr: set RAM bit n 
rotr1: rotate RAM n bits 
mdai: rotate sre and src' w/mask 
rotc: rotate src cmp w/sre' set cc 

prtnr: indicate highest priority bit 
create ere fwd from qlink 
rslst: 
noop: 

reset status register 
no effect 

The 7C9116n are TTL-compatible and fully interchan­
geable with their counterparts from Advanced Micro 
Devices and Texas Instruments. However, caution 
should be exercised when illegal instructions or un­
defmed opcodes are used. As the results are not pre­
dictable or guaranteed during these operations, they 
should not be used in any production system. Table 2 

F MUXAND ZERO DETECT 
Z 

16 

16 

~----
N 

IOEy 

YO·YI5 

DO·DI5 

OLE 

Figure 2. CY7C9117 Block Diagram 
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shows an example of such a condition, when SOA is 
mistakenly encoded as an undefmed operation. 

Table 2. Example Instruction Encoding Error 

All 

AMD 

Cypress 

n 

SOA instruction: 

Instruction Code 

Correct encoding: 

11111000 1000 0000 

Y Coding Error 

11~010000000 
1110 0110 1000 0000 

11100110 1000 0000 

ACC-> Ybus 

0000 1110 0000 1101 

1111111111111110 

1111 0100 1000 1100 

0000 0000 0000 1001 

Another feature of the Cypress 7C9116n is that it al­
lows the priority instruction to operate with both the 
source and destination as the accumulator. A secondary 
caution that could produce incorrect results is that 
older implementations of this architecture in bipolar 
technology do not allow such an operation. When using 
older bipolar implementations or testing devices, it 
should be noted that some machines may behave im­
properly and that undefined or illegal operations may 
produce different results for various device types 
depending on vendor and technology. 

CMOS 16-Bit ALV - Faster Operation and 
Lower Power 

Advanced microprogrammed architecture, combined 
with Cypress CMOS process technology, has multiple 
benefits to the design engineer. Custom computing units 
and controllers can operate at higher frequencies and 
consume less power, about 80% less, while being more 
reliable. Table 3 compares the performance and power 
characteristics between a typical 16-bit 
microprogrammed ALU and the 7C9116n. The results 
show that in addition to power savings, the 7C9116n's 
reliability is enhanced by operating at lower die 
temperatures. . 

Other aspects of the 7C9116n CMOS processing tech­
nology also contribute to increased system reliability. In 

Table 3. CMOS vs. Bipolar Performance and Power 

Cypress Generic 

2C2lliL1 ~ 

speed (ns) 35 53 

Power (Icc, mA) 
Stactic 30 400 
Max@10Mhz 150 600 

Technology CMOS Bipolar 

the past, CMOS technologies experienced problems 
with destructive latch-up conditions. Cypress CMOS 
processes minimize this problem by employing guard 
rings and a substrate bias generator to achieve latchup 
trigger currents in excess of 200 rnA. Electrostatic dis­
charge (ESD) protection circuitry to withstand voltages 
greater than 2001 V and voltage supply tolerances of 
10% are standard features of the 7C9116n devices that 
also contribute to its reliability and performance. 

System Timing 

In microcoded systems there are two loops that deter­
mine system performance. These two loops are the data 
and control loops. The control loop, as shown in Figure 
3, is essentially the instruction stream for the 7C9116n. 

CCfromALU 

L-________ ~ L ____________ ~ALU 

Figure 3. Microcoded System Control Loop 
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The current instruction combined with other status in­
formation is used to generate a new address and in­
struction for the processor. The data loop, shown in Fig­
ure 4, moves information from an external source to a 

Figure 4. Microcoded System Data Loop 

register where it is stored and operated on by the 
7C9116n to produce a result and status information for 
use by the external element. It should be apparent that 
this is a Harvard-style architecture as instructions and 
data are in separate domains. Hence, to achieve optimal 
performance, each of these loops should be as short as 
possible and equal in length. 

An example of control loop timing for a typical 
7C9116n system is shown in Figure 5. Four 7C245A, 

1 1 
Condition Code 

Multiplexer: 74F151 

IMux Delay 

Microcode Sequencer 
7C910 

1 CC -> Output 

Microcode Control Store 

7045 Registered Proms 

Current State Register 

I Registered Output 

Mux Delay 9ns 
7C910 CC -> Output 22ns 
7045A Setup Time 12ns 
7045A CP - > Q l.llns. 
Total 61ns 

Figure S. Control Loop Timing for Embedded 
Applications 

registered 2K x 8 PROMs are used tp implement the 
control store and current state register in a single pack­
age. The 7C910 12-bit microsequencer is used to allow 
for 4K words of addressing, i.e., instruction memory. In 
this example a 74F151 is used to mUltiplex status and 
condition code information into the sequencer to com­
plete the control loop. The components that make up 
this particular system would be appropriate for em­
bedded applications where the microcOde control store 
is ftxed. 

Improved system performance and flexibility can be 
achieved by using Cypress static RAMs instead of 
PROMs, thus forming a writeable control !\tore (WCS). 
As diagrammed in Figure 6, four 7Cl68, 4K x 4 static 

Mux Delay 9ns 
7C910 CC -> Output ' 22ns 
7Cl68 Access time 20ns 
74FCI'374CP-> Q ~ 

Total 57.5ns 

Figure 6. 7C911617 Reprogrammable Control Loop 
Timing 

RAMS can replace the ROMmed microcode control 
store. However, an external 74FCT374A register must 
be added to make up for the on-chip register of the 
7C245A PROM. Thus, there is a board space penalty 
for slightly improved performance and increased 
flexibility. Flexibility is deftned as the microcode's 
abilility to be downloaded or reprograIllliled at run time 
to allow different applications or algorithms to be 
loaded into the machine as needed by the user or sys­
tem designer. 

The data loop timing for both the embedded and 
reprogrammable microcoded applications is shown, in 
Figure 7. Here, the 7C9116n and its fast operation 
beneftt the systems designer in two ways. First, as the 
data path is siguiftcantly faster than the control path, 
results are available early for the external data units, 
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6.505 

lSDi 
Total 41.505 

Figure 7. Microcoded System Data Loop TIming 

thereby allowing more time for external operations. 
Secondly, as faster memory technologies become avail­
able, systems can be designed to operate at rates up to 
25 MIPS. 

Applications" Old and New 

The applications for fast CMOS 16-bit 
microprogrammed ALUs can be divided into two 
categories. The first is similar to their traditional use as 
a central processing unit for general purpose comput-

ing. A designer may choose to use a microprogrammed 
machine simply because instruction set compatibility 
with previous machines may be a design requirement. 
Here, the 7C9116n's speed and low power serve as 
powerful upgrades to existing hardware, with the pos­
sibility of lower cost from reduced power supply needs. 

The more exciting applications for 16-bit 
microprogrammed ALUs are in loosely coupled co­
processor or embedded controllers. Here, the 
7C9116/7's special bit, rotate, and CRC capabilities 
deliver significant performance advantages over, "off­
the-shelf," microprocessors. Graphics and imaging co­
processors benefit from single clock bit manipulation 
and rotation. The forward and reverse CRC instructions 
are very helpful in communications and disk controller 
applications in terms of speed and code 'density. 
Graphics, communications, and disk controllers are just 
three examples that benefit from an application specific 
instruction set provided by microprogrammed machines 
like the 7C9116n. 

There remain a myriad of custom control and em­
bedded applications in military, industrial and commer­
cial systems which exploit the performance and 
flexibility of the 7C9116n CMOS 16-bit 
microprogrammed arithmetic and logic units. 
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CYPRESS 
SEMICONDUCTOR 

Understanding FIFOs 
Introduction 
FIFO is an acronym for First-In-First-Out. 

In digital electronics, a FIFO is a buffer memory that is 
organized such that the first data entered into the memory 
is also the first data removed from the memory. 

History of FIFOs 
Software FIFOs 
Software FIFOs have been (and are being) used extensively 
in computer programs where tasks are placed in queues 
waiting for execution. In the programmers' language the 
program (process) that puts data into the memory is a 
"producer" and the program that takes data out is a "con­
sumer". Obviously the producer and the consumer cannot 
access the memory simultaneously. It is the responsibility 
of the programmer to insure that contention does not 0c­

cur. Oata transfer via a shared memory is a standard pro­
gramming technique but it is not feasible to have the proc­
essor in the data path for data rates greater than 5 Mega­
bytes per second (MB/s). For higher data rates OMA, 
FIFO, or some combination of the two techniques are used 
to transfer information. 

Hardware FIFOs 
In the design of systems, once procedures are standardized 
and verified in software, the software can be replaced with 
hardware. The benefits of doing this are improved perform­
ance, reduced software, ease of design and usually reduced 
costs. 
Register Array 
The first hardware FIFOs were of the "register array" ar­
chitecture and included the serializer/deserializer 
(SEROES) within the IC. As they evolved, and due to the 
Ubiquitous microprocessor, the parallel input and parallel 
output configuration became the standard. For applica­
tions that required SERDES users added external shift reg­
isters. 

The method of transferring data from one register to an­
other is called a "bucket brigade". The transfer is con­
trolled by a "valid data" bit (one per word) that designates 
which words have been written into but not yet read from 
and combinatorial control logic. The time for this logic to 
propagate a word of data from the input to the output of an 
initially empty FIFO is called "fallthrough time". 

Dual Port Ram 
The "second generation" of FIFOs are of the "dual port 
RAM" architecture. In order to achieve truly independent, 
asynchronous operation of inputs and outputs, the capabili­
ty to read and write simultaneously must be designed into 
the basic memory cell. 
The fallthrough time present in the register array organiza­
tion is eliminated by the RAM architecture. However, the 
RAM must be (internally) addressed, which requires two 
pointers. One points to the location to be written into and 
the other points to the location to be read from. In addi­
tion, a bit is required for every FIFO word to designate 
which words have been written to but not yet read. 

Applications 
FIFOs are used as building blocks in applications where 
equipment that are operating at different data rates must 
communicate with each other, i.e., where data must be 
stored temporarily or buffered. 

These include: 

• Word processing systems 

• Terminals 
• Communications systems; including Local Area Net­

works 

• EOP, CPU, and peripheral equipment; including disk 
controllers and streaming tape controllers 

The Ideal FIFO 
The characteristics of an ideal FIFO are: 

INPUTS 

• Infinitely variable input frequency (0 to infinity) 

• Infinitely variable input handshaking signals 
OUTPUTS 

• Infinitely variable output frequency 

• Infinitely variable output handshaking signals 
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The Ideal FIFO (Continued) 

BOTH 

• Inputs and outputs are completely independent and 
asynchronous to each other, except that over-run or 
under-run are not possible. 

STATUS INDICATORS 

• FulVempty 

• One-half full, '14 full, '14 empty 

LATENCY 

• The latency should be zero. In other words, the data 
should be available at the FIFO outputs as soon as it is 
written. In the empty condition this would be the next 
cycle. 

EXPANSION 

• Expandable word length and depth without external 
logic and without performance degradation. 

NO FALLTHROUGH OR BUBBLETHROUGH TIME 

Analysis of Present Architectures 
Register Array 
The first Integrated Circuit FIFOs were an extension of the 
simplest FIFO of all; a serial shift register. 
Input Stage 
As illustrated in Figure 1, the input stage is a one word by 
m-bit parallel shift register that is under control of the in­
put handshaking signals SI (Shift In) and IR (Input 
Ready). 
Output Stage 
The output stage is also a one word by m-bit parallel shift 
register that is under control of the output handshaking 
signals OR (Output Ready) and SO (Shift Out). 
Register Array 
The middle N-2 X m-bit registers are controlled by signals 
derived from the preceding control signals. 

Valid Data 
A flag bit is associated with each word of .the FIFO in 
order to tell whether or not the data stored in that word is 
valid. The usual convention is to set the bit to a one when 
the data is written and to clear it when the data is read. 
Fallthrough and Bubbletbrough 
The preceding statements regarding input and output 
stages are not precisely correct under two special condi­
tions, which occur when the FIFO is empty and full: 

EMPTY CONDITION - FALLTHROUGH 

In the empty condition the data must enter the input 
stage and propagate to the output stage. This is called 
Fallthrough time and it limits the output data rate. 

FULL CONDITION - BUBBLETHROUGH 

When the FIFO is full and one word is read, all of the 
remaining words must move down one word (or the 
empty word must propagate to the input). This is 
called Bubblethrough time and it limits the input data 
rate. 

As we shall see, Bubblethrough time and Fallthrough time 
are usually equal because the same logic is used. 

Dual Port RAM Architecture 
The dual port RAM architecture refers to the basic memo­
ry cell used in the RAM. By adding read and write transis­
tors to the conventional two transistor RAM cell, the read 
and write func~ons can be made indepen(ient of each oth­
er. Obviously this increases the size of the RAM cell, but 
doing this is more than compensated for by simpler control 
logic and improved performance. 

The RAM requires two address pointers; one to address 
the location where data is to be written and the other to 
address where data is to be read. Comparators are used to 
sense the empty and full conditions and control logic is 
required to prevent over-run and under-run. 

OUTPUT DATA 

1 WORD 

N-2 
WORDS 

1 WORD 

Figure 1. Register Array Architecture 
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Analysis of FIFOs 
The procedure will be to first analyze the FIFO as a "black 
box" and then to compare the most important characteris­
tics of a class of representative FIFOs with the characteris­
tics of the CY7C401 FIFO. 

The class of FIFOs chosen is the industry standard 
XXX40lA and XXX402A that are available from several 
sources. The 401 is 64 x 4 and the 402 is 64 x 5 with the 
same performance. Both are of the register array architec­
ture. Both are expandable in depth (number of words), 
which is called cascadeable, without additional logic as 
well as expandable in word width (number of bits per 
word) with additional logic. The operation will first be ana­
lyzed in the standalone configuration. 

Functional Description 
Data Input - Refer to Figures 2, 3 
After power-on the Master Reset (MR) input is pulsed 
LOW to initialize the FIFO. When the IR output goes high 
it signifies that the FIFO is able to accept data from the 
producer at the DI inputs. Data is entered into the input 
stage when the SI input is brought high (if IR is also high). 
SI going high causes IR to go low, acknowledging receipt 
of the data, which is now in the input stage. 

When SI goes low (in response to IR going low) and if the 
FIFO is not fuJI, IR will go back high, indicating that more 
room is available in the FIFO. At the same time SI goes 
low data is propagated to the next empty location, which 

may be the second location, but could be any location up to 
but not including the output stage. 
Data Output - Refer to Figures 4, 5 
Data is read from the DO outputs of the output stage un­
der control of the SO and OR handshaking signals. The 
high state of OR indicates to the consumer that valid data 
is available at the outputs. When OR is high, data may be 
shifted out by bringing the SO line high (request), which 
causes the OR line to go low (acknowledge). Valid data is 
maintained on the outputs as long as SO is high. When SO 
goes low (in response to OR going low) and if the FIFO is 
not empty, OR will go back high, indicating that there is 
new valid data at the outputs. If the FIFO is empty OR 
will remain low and the data on the outputs will not 
change. 
Empty/Full 
If the FIFO is empty, OR will not go high within a fall­
through time after SO goes low, so this condition may be 
sensed and used to indicate EMPTY. 

Similarly, if the FIFO is full, IR will not go high within a 
bubblethrough time after SI goes low, so this condition 
may be sensed and used to indicate FULL. 

Standalone Operation 
Input Data Setup and Hold 
The input data must be stable for an amount of time equal 
to the setup time (tIDS) before the rising edge of SI and 

fFl /P-SHIFT IN + 4~' "M'~ c:--~ ~ ______ ~ 
INPUT DATA ZDESTABLE DATA3(xxxxxxXXXXXXXXXXXXXXXX 

0044-2 

Figure 2. Method of Data Input 
Notes: 

Shift in pulses applied while Input Ready is LOW will be ignored. 
Eb External "producer" response time. 
+ SI pulse could be of fixed positive duration and would then not de­

pend upon response time of producer. 
(i) Input Ready HIGH indicates space is available and a Shift in pulse 

may be applied. 
<I> Input Data is loaded into the fIrSt word. 

SHIFT IN 
INPUT READY ---+-+-=~..,. 

INPUT DATA 
HOLD TIME 

4Ono 
~On. 

@ Input Ready goes LOW indicating the first word is full. 
@ The Data from the first word is released to propagate to the second 

word. 
@ The Data from the first word is transferred to the second word. The 

first word is now empty as indicated by Inpnt Ready HIGH. 
@ If the second word is already full then the data remains at the first 

word. Since the FIFO is now fuJI, Input Ready remains low. 

0044-3 

Figure 3. Input Timing for FIFO 
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Analysis of FIFOs (Continued) 

~. 0 

:Y~l :; fL~ SHIFT OUT 

OUTPUT READY ~ - -----ll2--
}'Jvvw\N, OUTPUT DATA A-DATA • ~ B-DATA 

-~---------'C:A OR B~'----
0044-4 

Figure 4. The Method of Shifting Data Out of the FIFO 
Notes: 
E9 External ucohsumer" response time. 
+ SO pulse could be of fixed positive duration and would then not 

depend upon response time of consumer. 
(j) Output Ready high indicates that data is available and a Shift Out 

pulse may be applied. 
@ Shift Out goes high causing the next step. 

SHIFT OUT 

OUTPUT READY ---+++=~ 

® Output Ready goes LOW. 
@) Contents of word 52 (B-DATA) is released to propagate to word 53. 
@ Output Ready goes high indicating that new data (B) is now available 

at the FIFO outputs. 
@) If the FIFO has only one word loaded (A-DATA) then Output 

Ready stays LOW and the A-DATA remains unchanged at the out­
puts. 

C-DATA 

0044-5 

Figure S. Output Timing for Register Array FIFO 

Notes: 
(j) The diagram assumes that, at this time, words 63, 62, 61 are loaded 

with A, B, C Data respectively. 

remain stable for an amount oftime equal to the hold time 
(tmw after the rising edge of SI. 

tms = Ons 

tlDH = 40ns 
Input Timing 
Figure 3 shows the timing relationships between the input 
data and the handshaking signals when operating at the 
maximum input data rate of 15 MHz. The Input Ready 
signal lags (follows) the rising edge of the Shift In signal by 
40 ns (max.) for this two edge handshake. 
FaIlthrough Time 
Figure 2 shows the method of entering data into the FIFO. 
The fallthrough time (Figure 6) is measured from the fall­
ing edge of the SI signal to the rising edge of the IR signal. 
For a 15 MHz Register Array FIFO, this time is specified 
as tPT = 1.6 /ls (microsecollds). 

@ Data in the crosshatched region may be A or B Data. 

Register Array Propagation Delay Time 
The· register array propagatioll delay time may be approxi­
mated by using the delay from the falling edge of the SO 
signal to the rising edge of the OR signal as being repre­
sentative of the data propagation delay through the output 
stage and subtracting this from the fallthrough time. 

Reg. Prop. Delay = 
Fallthrough time - Output Prop. Delay Time 

The delay per stage is then calculated by dividing the regis­
ter array propagation delay time by the number of stages 
the data propagates through. 

5-14 

Reg. Prop. Delay = 1.6/ls - 50 ns 

= 1.55/ls 

Delay per stage = 1.55/ls 
64 - 2 

= 25 ns 
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Analysis of FIFOs (Continued) 
Output Timing 
Figure 5 shows the timing relationships between the output 
data and handshaking signals when operating at the maxi­
mum output data rate of 15 MHz. The Output Ready sig­
nal lags the Shift Out signal by 45 ns (max.) for this two 
edge handshake. Data is shifted to the output stage on the 
falling edge of SO, but does not stabilize until 45 ns later. 
OR goes low in response to SO going high (45 ns later) and 
then goes back high 50 ns (max). after the high to low 
transition of SO. 

The reader may assume that the (new) output data is valid 
50 - 45 = 5 ns before the rising edge of the OR signal, but 
this is incorrect. The data sheet specifies these two num­
bers only as maximums and not also as minimums. Evalua­
tion of these FIFOs has revealed that the data may change 
several nanoseconds AFTER the rising edge of the OR 
signal. 

The consumer is responsible for delaying the rising edge of 
the SO signal in order to satisfy his data setup time require­
ments, which may further reduce the throughput. 

SHIFT IN 

INPUT READY ----+-+0-"" 

SHIFT OUT 

Full Condition 
The maximum propagation delay from SI going low until 
IR goes high is 40 ns (Figure 3). The bubblethrough time 
for the full condition is illustrated in Figure 7. This time, 
tPT, is specified as 1. 6 /ks on the data sheet. The delay per 
stage is calculated by subtracting 40 ns from 1.6 /ks and 
dividing by the number of stages (64 - 2). 

Delay per stage = 

Bubblethrough time - Output Delay time 

Number of stages 

1.6 /ks - 0.04 /ks 

64 - 2 

= 25.16 ns 

Bubblethrough Time 
The bubblethrough timing is illustrated in Figure 7. It is 
seen to be equal to the fallthrough time. 

tPT 
1.61'1---+- _;-. __ 

OUTPUTREADY~----------------------------' 

Figure 6. Fallthrough Timing 
Notes: 
<D FIFO initially empty. 
a> Consumer requests data. 
a> Producer enters data. 

SHIFT OUT 

OUTPUT READY ----+-+-'" 

SHIFT IN 

@ Data enters internal register 
array. 

<i> Data is available at output. 

'PT 1.61'1---+--1_;-. __ 

INPUT READY -'--------------..1, 
Figure 7. Bubblethrough Timing 

Notes: 
<D FIFO is initially full. 
a> Shift In held HIGH. 
Ql Consumer reads data. 

@ Empty location begins to 
propagate to input. 

<i> Empty location reaches input. 
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Analysis of FIFOs (Continued) 
Maximum Throughput Calculations 
The maximum throughput of the FIFO is seen to be limit­
ed by the fallthrough time when it is empty and the bubble­
through time when it is full. 

The "throughput period" corresponding to the "standalone 
period" (tN and the fallthrough time (tF) is: 

Tmax. = tA + tF 

Converting to frequency yields 

1 1 
--=-+tF 
Fmax. FA 

Rearranging and solving for Fmax yields 

1 
F =---max 1 

-+tF 
FA 

EQ.l 

The expressions for the throughput frequencies for the 
FIFO under the full and empty conditions are then; 

EMPTY FIFO 

FULL FIFO 

Fin = Fin (max.) 

1 
F9ut= -1---

-+tF 
FA 

Fout = Fout (max.) 
1 

1 
-+ tF 
FA 

The maximum throughput that can be handled by a "near­
ly empty" or a "nearly full" FIFO operating in the stand­
alone mode is then: 

1 
F(max.) = -1--

1 

-+ tF 
FA 

F (max.) = --1----- = ---
1.667,...s "i'SMih + 1.6,...s 

F (max.) ";,, 599.88 kHz 

Note that this is considerably less than the 15 MHz speci­
fied on the data sheet. 

FULLNESS SENSITIVITY (STANDALONE) 

The number of words written into the FIFO corresponding 
to the fallthrough time if the input data rate is at the maxi­
mum (15 MHz) is: 

Fin 15 MHz 
F fallthrough = --1- = 24 words. EQ. 2 

1.6,...s 

Since the bubblethrough time is the same as the fallthrough 
time (in this case) the same number of words. can be output 
at the maximum data rate from a full FIFO. 
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What this means is that the FIFO can operate at its maxi­
mum data rate (15 MHz) only when it is between 24 words 
and 64 -24 = 40 words full. In order to NOT be sensitive 
to its fullness, the FIFO must be operated at a maximum 
frequency less than or equal to the frequency correspond­
ing.to the fallthrough/bubblethrough time (625 KHz). 

Cypress proposes defming a Fullness Sensitivity (FS) figure 
of merit for FIFOs that is a measurement of the capacity 
range (or fullness) over which the FIFO can be operated at 
its maximum input rate AND its maximum output rate. 
The FS is normalized; one (1) is ideal and 1 > FS > o. 

N - FIA tF - FOA tB 
~= ~3 

N 

Where: FS = Fullness Sensitivity 

N = The number of words in the FIFO 

FIA = Standalone maximum input frequency 

tF = Fallthrough time 

FOA = Standalone maximum output frequency 

tB = Bubblethrough time 

As an example we will calculate FS for a typical register 
array FIFO. 

FIA = FOA = 15 MHz 

tF = tn = 1.6,...s 

N = 64 words 

64-15X 106 X 1.6X 10-9 -15X 106 X 1.6X 10-9 
FS = ---------------

64 

64-24-24 
FS=-----

64 

FS = 0.25 

If the partial products would have had fractional parts we 
would have rounded them up to the next highest integers. 
FIFO Expansion 
The interconnection of two 64 word FIFOs to form a 128 x 
4 FIFO is shown in Figure 8. Observe that the OR output 
of the first FIFO becomes the SI input of the second FIFO 
and that the IR of the second becomes the SO input to the 
first. 

What this means is that the bubblethroughlfallthrough 
times serially add when the FIFOs are cascaded. 

The ,maximum throughput that can be handled by two 
FIFOs cascaded together is: 

F(max.) = 1 
-+ 2tF 
FA 

F(max.) = 306 KHz 

Where, as before, FA = 15 MHz, tF = 1.6,...s. 
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Analysis of FIFOs (Continued) 

In general, when N FIFOs are cascaded together, the max­
imum throughput of .the combination is: 

I 
F(max.) = I 

-+NtF 
FA 

EQ.4 

The FS is also affected by the cascading of FIFOs. If N 
FIFOs are cascaded together the number of words that can 
be output or input is N times that of the standalone condi­
tion. 

Fin = FA 
F fallthrough I 

EQ.5 

NtF 

If this number is greater than the actual (physical) FIFO 
depth it means that the FIFO cannot be operated at its 
maximum frequency. 

To make a wider word, as well as a deeper FIFO, connect 
the FIFOs as illustrated in Figure 9. Composite IR and OR 
signals must be generated using two external AND gates 
(e.g., 74LS08) to compensate for variations in the propaga­
tion delay of these signals from device to device. The max-

SHIFT IN 

INPUT READY 

~ 

51 

IR 

010 
011 
012 

013 

OR 

SO 

DOo 
DOl 
002 

iiR 003 

r 

imum throughput for this configuration is 205 KHz 
(N = 3 in preceding formula). 
Cascadability Considerations 
In order to guarantee the ability of multiple FIFOs to reli­
ably cascade with each other using the handshaking meth­
od previously described, certain conditions must be met. 
These are now considered. 
SI or OR Signal Compatability 
In the cascaded configuration, the OR signal of the Nth 
FIFO must be specified such that it can be detected when it 
is applied to the SI input of the N + Ith FIFO. See Figure 
8. This means that the minimum high time (positive pulse 
width) of the OR output signal of the input FIFO must be 
able to be recognized at the SI input of the output FIFO. 
IR and SO Signal Compatability 
In the cascaded configuration, the IR output of the N + I th 
FIFO must be specified such that it can be detected when it 
is applied to the SO input of the Nth FIFO. 
Minimum Delay Between SI and IR 
The minimum delay between SI going HIGH and IR going 
LOW is an unspecified parameter in the industry standard 

51 

IR 

010 
011 

012 

013 iiR 
y 

OR 

SO 

000 

001 

002 
003 

OUTPUT READY 

SHIFT OUT 

I DATA OUT 
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Figure 8. 128 x 4 FIFO 

IR 

SI 

010 
011 

012 

013 

COMPOSITE 
INPUT READY 

IR 

DID 

SHIFT IN 
011 

012 

013 

so IR so 
OR SI OR 

000 010 000 

001 011 001 

D02 012 D02 

iiR D03 013 iiR D03 

SO IR SO 

OR SI OR 

DOD DID DOD 

DOl 011 DOl 
D02 012 D02 

iiR D03 013 iiR D03 

IR 

SI 

010 
011 

012 

013 iiR 

IR 

SI 

010 
011 

012 

013 iiR 

so 
OR 

DOD 

001 

002 
003 

SO 

OR 

DOD 

001 

002 
D03 

SHIFT OUT 

COMPOSITE 
OUTPUT READY 

L-------------~--------------~--------4_-------iiR 0044-9 

Figure 9. 192 x 8 FIFO 
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Analysis of FIFOs (Continued) 

data sheets. The Cypress FIFO exhibits a 6 to 10 ns mini­
mum delay. Care must be taken when mixing Cypress FI­
FOs and competitive FIFOs to insure that the parts will 
cascade with one another. In general, delaying the IR out­
put· of the Cypress FIFOs enables competitive parts to c,as­
cadewith Cypress parts. The Cypress FIFO can always 
recognize the output of the competitive product. 
Minimum Delay Between OR and SO 
Another unspecified industry parameter is the delay be­
tween OR and SO. The minimum delay for Cypress FIFOs 
is 6 ns. A 500 pF capacitor added between the OR pin and 
ground and the IR pin and ground of all Cypress FIFOs 
will permit cascading with' competitive FIFOs. These ca­
pacitors delay the signals the appropriate amount of time. 

Product Configuration tF 
CY7C401 64x4 65 ns 
CY7C403 64x4 65 ns 

CY7C402 64x5 65 ns 
CY7C404 64x5 65 ns 

IR 

Cascading at the Operating Frequency 
In order to operate at a given frequency, Fo, in the cascad­
ed configuration the following relationship must be satis­
fied; 

1 
tSIH + tIRH < Fo 

This condition is met by both the MMI and Cypress 
FIFOs. 

Description of the CY7C401 
A block diagram of the CY7C401 is shown in Figure 10. It 
is a direct, pin for pin, functional equivalent, improved per­
formance, replacement for the register array FIFOs. The 
similarities and differences between the 401, 402, 403, and 
404 are summarized in the table. 

Package Description 

16 pin DIP Industry Standard 
16 pin DIP Pin ~ is three-state 

output enable 
18 pin DIP Industry Standard 
18 pin DIP Pin 1 is three-state 

output enable 

.... _W_R_IT"TE_PT_R_. -,,1-+ 
l 

DATA 
01--+ IN 

CONTROL 

MUX IN 

RAM 
64X5 

Figure 10. CY7C401 Block Diagram 
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Description of the CY7C401 (Continued) 

Architecture Refer to Figure 10 

The architecture is that of a dual port RAM, which is 
accessed by two pointers; a read pointer and a write point­
er. The input data and output data do not reside in input or 
output registers as in the register array architecture. In­
stead, the pointers address the memory locations of the 
input and output data. Comparators are used to control the 
IR and OR lines to prevent overflow and underflow. The 
key to this architecture is the dual port RAM cell, which is 

illustrated in Figure 11. It is only 1.2 square mils in area. 
Separating the read and write functions enables the memo­
ry cell to be read from and written to simultaneously and 
independently. This increases the basic cell size, but simpli­
fies the overall architecture and improves the performance. 

The bubblethrough time is greatly reduced (65 ns versus 
1.6 /l-s) because it now represents the time required to up­
date the pointers, not the time required for data to propa­
gate through the memory array. 

0044-11 

Figure 11A. CY7C401 Ram Cell Layout 
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Figure 11D. Cell Schematic 
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Description of The CY7C401 (Continued) 

Functional Description 
To!he "outside world" the CY7C401 appears functionally 
~U1valent to the register array FIFOs. All of the timing 
diagrams as well as the expansion. diagrams of Figures 8 
and 9 apply. . 

Input data is sampled with the rising edge of the SI signal if 
the IR signal is high. The input (write) pointer is incre­
mented on the falling edge of the SI signal. 

Data is output with the falling edge of the SO signal if the 
OR signal is high. The output (read) pointer is incremented 
on the rising edge of the SO signal. 
Output Timing 
In the discussion on output timing it was pointed out that 
(for the register array FIFO) the way the timing of the data 
out with respect to OR, there is no guarantee that the data 
will be stable before the rising edge of OR. This time 
(tSOlU is guaranteed to be a minimum of 5 ns on the 
CY7C401 data sheet. 

Comparison of Register Array FIFOs 
and the CY7C401 
Throughput 
Using equation 4 the values in the following table were 
calculated and are plotted in Figure 12. 

Fullness Sensitivity 
Register Array FIFOs in the Standalone Mode 
Equation 2 was used to calculate the number of words that 
could be input and output corresponding to the maximum 
frequency of 15 MHz. Subtracting these from the FIFO 
capacity (64) gives us the capacity range over which the 
FIFO can operate at its maximum rate. This was calculat­
ed to be between 24 and 40 words, or 32± 8 words. Equa­
tion 3 was used to calculate the FS and it was found to be 
0.25. 

Using equation 2 we have; 

Fin = FA 

F fallthrough 1 

15 MHz 

1 

67 ns 

tF 

= 0.975 words 

The CY7C401 is seen to be much less sensitive to fullness 
than the register array FIFOs. Its capacity can range from 
2 to 63 words, or 32 ±3l words in the standalone mode. 

The FullnessSensitivities are plotted in Figure 13. They are 
also plotted in a slightly different form in Figure 14. 

A little thought will convince the reader that Fullness Sen­
sitivity is another way of quantifying the range of the dif­
ference between input and output data rates. The closer the 
FS is to 1 the greater the capacity of the FIFO to handle 
bursts of data. 

Latency 
~e classic definition of latency is the difference, in elapsed 
time, between when a resource is requested and when it is 
granted. In disks, the worst case latency is the time re­
quired for one revolution of the disk. The average latency is 
then the time required for one-half a revolution. The as­
sumptionsare one head per track and no contention for the 
head. 

Worst Case Latency· refer to Figures 6 and 7 
The worst case latency for the consumer occurs when the 
FIFO is empty and for the producer when it is full. It is; 

Where: tin + tout + tF 

tin = period of the input frequency 

tout = period of the output frequency 

tF = Fallthrough time 

Average Latency 
If the FIFO is operated such that it is not sensitive to its 
fullness tF '= O. In addition,' if tin = tout the average laten­
cy is one cycle. Otherwise, it is; 

tin + tout 

2 

Throughput 

N D C67401A CY7C401·5 CY7C401-25 

FA - 15 MHz 15 MHz 25 MHz 

tF - - 1.6 p.s 65 ns 65 ns 

1 64 600KHz 7.57 MHz 9.52 MHz 

2 128 306KHz 5.01 MHz 5.8 MHz 

4 256 155 KHz 3 MHz 3.3 MHz 

8 512 77.7 KHz 1.7 MHz 1.78 MHz 

16 1024 38.9 KHz 903KHz 925.9 KHz 

32 2048 19.5 KHz 465.7 KHz 471 KHz 
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Comparison of Register Array FIFO's and the CY7C401 (Continued) 
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Figure 12. Maximum FIFO Throughput vs. Depth 
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Figure 13. Fullness Sensitivity in the Standalone Mode 
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Summary and Conclusions 
In most systems where FIFOs are used they are neither full 
nor empty, except at the beginning or end of an operation. 
After analyzing the preceding two FIFOs the reader can 
understand why. Serious performance degradation occurs 
under these conditions, especially if the FIFO uses the reg­
ister array architecture. To compensate for this, manufac-

turers have added one-half empty/full indicators (etc.), 
which has helped by alerting the system controller before 
the performance suffers. 

A better solution to the performance problem is to use a 
FIFO that has the dual port RAM architecture, which has 
been shown to result in a superior performance FIFO. 
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SEMICONDUCTOR 

Interfacing to the FIFO 
Application Brief 

Introduction 
This application brief is intended to be a guide to the FIFO 
user and to make him aware of certain conditions that 
should be considered when interfacing to the FIFO. The 
two areas of concern are (1) voltage sensitivity on the 
SI and SO inputs and, (2) metastability when the SI or the 
SO signals are derived from independent clocks. These 
two issues are independent of each other. All comments 
apply to the following Cypress CMOS FIFOs: 
CY7C4011402/403/404, CY7C3341, CY7C40S/409. 

High Gain Inputs 
The minimum positive SI and SO pulse widths are speci­
fied on the FIFO data sheet as II ns (25 MHz SI/SO) and 
20 ns (other speed grades). At room temperature and nom­
inal (5V) V cc the FIFO will operate reliably with SI/SO 
pulses as short as S ns. The reason these FIFOs respond to 
such short pulses is that the Cypress high performance 
CMOS process yields circuits that have very high gains 
and, consequently, require very little energy to change 
state. 

Termination networks are recommended on the SI and SO 
lines (traces) on Printed Circuit Boards (PCBs) when the 
lines exceed seven inches in length (from source to load). 
The termination matches the load impedance to the char" 
acteristic impedance of the PCB trace, which is typically 
500. or less for microstrip or stripline construction on G-IO 
glass epoxy material. For minimum voltage reflections a 
slightly overdamped termination is preferred. Cypress rec­
ommends a series capacitor of 47 pF and resistor of 470. be 
connected from the input pin (SI/SO) to ground as shown 
in Figure 1. This termination network acts as a low pass 
filter for short, high frequency pulses and dissipates no DC 
power. If more than one FIFO is connected in parallel to 

47pF T 
470HIotS* 

CYPRESS 
FIFO 

0097-1 

Figure 1. Recommended Termination Network 
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make a wider word only one termination network is re­
quired. It should be located at the input that is electrically 
the farthest away from the source. 

Please refer to the low pass filter analysis in the "Systems 
Design Considerations When Using Cypress CMOS Cir­
cuits" application brief (in this databook) for the method of 
determining the values of R and C for the termination net­
work. 

Synchronous And Asynchronous 
Operation 
When the SI and SO signals are derived from. a common 
freq~en~y source (or clock) the FIFO is, by definition, op­
eratmg m the synchronous mode. There is a precise, known 
relationship between the SI and SO signals. 

Conversely, when the SI and SO signals are derived from 
!wo independent frequency sources, the FIFO is operating 
m an asynchronous mode. 

In the synchronous mode the designer can assure that the 
OR signal not occur within the setup and hold time win­
dow that normally "surrounds" the output system clock 
edge (or sampling signal). The same reasoning applies to 
the occurance of the IR signal with respect to the input 
system clock. 

In the asynchronous mode, the designer cannot assure a 
known reiatioll!lhip be!ween the OR signal and the output 
system clock etther Wlth respect to frequency or with re­
spect to phase. It is the responsibility of the designer to 
insure that, even though the output system clock edge may 
occur at the same time that the OR signal occurs, the 
FIFO still receives a SO clock that is wide enough to be 
reliably recognized as such by the FIFO. The same reason­
ing appl~es to the SI signal that is generated in response to 
the IR Signal under control of the input system clock. 

OR 

ClK ...... ----1..J SO 

0097-2 

Figure 2. Pulse Synchronizer 
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Pulse Synchronizer 
The circuit of Figure 2 is recommended to generate the SO 
pulse as a function of OR under control of the output sys­
tem clock. An identical circuit should be used to generate 
the SI pulse as a function of IR un4er control of the input 
system clock. If it is required to perform control functions 
on the OR or the IR signals, it should be done before they 
are clocked by the first D flip-flop. 

State Diagram 
The two stage shift register is analyzed as a state machine 
in Figure 3. Other, more complex state',machines can be 
designed, but the idea is the same; reliably generate a single 
pulse of a known minimum width for "very OR or IR 
LOW to HIGH transition. 

0097-3 

Figure 3. Pulse Synchronizer State Diagram 

Transition Table 

A B STAlE DESCRIPTION 

,....... 0 0 0 IDLE AT STAlE 0 

1 0 1 GENERAlE SO = 1 ". 

1 1 3 GENERAlE 50=0' 

'-- 0 1 2 ,TRANSmON STAlE 

0097-4 

Design Considerations 
The frequency of the clock to the pulse synchronizer 
should be at least twice that of the maximum rate data is . 
shifted into or out of the FIFO. 

For example, if it is required to shift data into the FIFO at 
a 10 MHz (SI) rate, the clock to the input pulse synchroni­
zer should be 20 MHz. Ifit is required to shift data out of 
the FIFO at a IS MHz (SO) rate the clOck to the output 
pulse synchronizer should be 30 MHz. 

Minimum.SI/SO Pulse Width" 
The minimum pulse width·of the SO signal of Figure 2 
under normal oPerating conditions will be one cycle of the 
output clock (CLK). However, when the OR or the IR 
signal changes within the "unallowed window" around the 
clock edge, defined by the flip-flop setup time and hold 
time, the flip-flop may go into a metastable state. i.e., its 
outputs may be between the logic ONE and the logic 
ZERO voltage levels. The amount of time the flip-flop will 
stay in the metastable region will be approximately 4 X, 
where X = clock to output propagation delay time. 

The minimum pulse width of the SO signal is determined 
by the delay, d, through the NOR gate, plus any delay the 
designer may add (D,shown as a box) in the path from the 

, /Q output orthe A flip-flop to the input of the NOR gate. 
The NOR gate acts as a low pass filter and will not pass a 
pulse if its width is less than d. Adding an external delay, 
D, increases the minimum pulse width to d + D. The 
maximum frequency that the circuit can operate at, assum­
ing equal gate turn-on and turn-off times, is then 

I 
f(max.) = 2 (d + D)· 

The total delay should be chosen such that the minimum 
pulse width. is sufficient to reliably be detected by the 
FIFO. The preceding comments apply to lumped delays, 
not to analog or distributed delay lines. 

Implementation Of The Delay 
If only the NOR gate provides the delay, the following 
table lists typical and maximum propagation delays under 
nominal V cc and loading (20 pF) conditions. 

Table 1. Propagation Delay in ns 

Family Typical Maximum 

LS 10 15 

ALS 5 11 

HCMOS 8 23 

FACT 5 9.5 

A 74LS02 NOR gate will result in a minimum pulse width 
of 10 ns, which will reliably operate a 25 MHz CY7C403 
or a CY7C404 FIFO. 

If i,t is required to operate a 10 MHz CY7C40l/402. the Q 
output of the A flip-flop may be inverted through a 74LS04 
and applied to the lower input of the NOR gate. The .mini­
mum pulse width is then 10 + 10 = 20 ns. 

A delay line or a RC network could also be used to delay 
the signal to the lower input of the NOR gate. 

The circuit of Figure 2 can also be used to synchronize the 
SI and SO inputs of tile CY7C3341. 

The rising edge of the SO signal should be used to sample 
the FIFO data. 
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Understanding Dual-Port RAMs 

Introduction 

A dual-port RAM is a Random Access Memory that 
can be accessed simultaneously by two independent en­
tities. In digital integrated circuits, this implies a dual 
port memory cell that can be accessed at the same time 
using two independent sets of address, data, and control 
lines. 

This applications brief examines the evolution of multi­
port memories and presents, illustrates, and explains the 
operation of, and benefits to the user of, Cypress's dual­
port RAMs. 

A Brief History of Multi-Port Memories 

The first multi-port memories were probably used in the 
CPU (Central Processing Unit) of the first computers. 
Many two-operand instructions are efficiently imple­
mented using dual-port registers for the operands and 
the result. 

Consider, for example, Equation 1, which describes a 
typical two-operand operation in the ALU (Arithmetic 
Logic Unit) of a CPU. 

( C) = (A)[ OPERATOR ]( B ) Equation 1 

A and B could be either the operands (i.e., the data) or 
the addresses of the operands, in which case the data 
could be either in memory or in registers. In any case, 
Equation 1 describes two pieces of data, A and B, being 
operated upon by the OPERATOR, which could be 
arithmetic or logical, and the results being designated as 
C. C could also be the data, a register, or a memory 
location. 

The Combinatorial ALU 

The 74181 was the first integrated circuit 'ALU. The 
four-bit operands, A and B, are operated upon accord­
ing to a four-bit command, and the result, C, is output. 
A carry-in input, a carry-out output, and A = B out­
puts are also provided. A mode control pin selects 
either logical or arithmetic operations. The 74181 is 
combinatorial; no storage is provided. 

Early computers used the contents of a memory loca­
tion as one operand and an accumulator in the CPU as 
the second operand. The results were usually stored in 
the accumulator. 

Bringing the Registers On-Chip 

The 67901 was the first four-bit slice that brought six­
teen four-bit registers onto the chip. The MMI 67901 
was second sourced by AMD and became the 2901. At 
one point in time there were five sources for this in­
dustry standard bipolar ALU. The Cypress CMOS 
CY7C901 is the highest performance, TTL compatible, 
four-bit slice that is form, fit, and functionally 
equivalent to the original **901. 

The sixteen-word deep, four-bit wide register array is 
functionally equivalent to a 16 x 4 dual-port memory. 
Four A address lines and four B address lines select the 
contents of two of the sixteen registers, whose outputs 
are applied to transparent latches. The outputs of the 
latches are then applied to 3:1 multiplexers, whose out­
puts drive the ALU inputs. The outputs of the ALU 
may be sent off chip, entered into a temporary register 
(Q), or written back into the register file, thus replacing 
one of the operands. This architecture is shown in the 
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block diagram of the CY7C901 in the Cypress databook 
and is not reproduced here. Instead, a simplified block 
diagram of the **901 dual-port memory is presented in 
Figure 1. 

Figure 1. **901 Dual-Port Memory (Simplified) 

Functional Operation of the **901 Dual-Port 
Memory 

The A and B addresses select the contents of two 
registers, whose outputs are applied to two 4-bit latches. 
When the clock (CP) is HIGH the outputs of the 
latches follow their data inputs (i.e., are transparent). 
When the clock is LOW the outputs of the ALU are 
written (WE) into the register array at the location 
specified by the A or B addresses, depending upon the 
instruction being executed. The LOW level of the clock 
causes the data in the latches not to change so that the 
ALU outputs will be stable when they are written back 
into the register array. 

Observations 

It is seen that the **901 dual-port memory does not 
perform the function described by Equation 1, which is 
a three-port operation. The C operand is equal to either 
the A operand or theB operand, depending upon the 
instruction being executed. In fact, the A and B ad­
dresses could be the same. An old programming trick 
is to "exclusive OR". the contents of a register with itself, 
which clears it. 

Also, the dual-port memory of the CY7C901 does not 
use a dual-port memory cell. It is not required because 
the operations performed by the **901 do not require 
simultaneously writing independently to two separate 
memory locations. 

Oual-Port Memory Using a Single Port RAM 

Before the dual-port memory cell existed, a standard 
solution to creating a dual-port RAM using a standard 
single-port RAM, was to add a multiplexer between the 
RAM and the two entities which shared the RAM. 

A block diagram of such an arrangement is illustrated 
in Figure 2. The RAM is shared between two proces­
sors, MPI and MP2. If each processor has access to it 
one-half of the time, the resource is shared equally, and 
it is said to be allocated according to a "fairness" 
doctrine. 

Figure 2. Dual-Port Ram Memory Using a Single-Port 
Ram 

This time division multiplexing assures that there is no 
contention for the RAM. However, performance suffers 
if the access time of the RAM is not at least equal to 
one-half (or less) of the clock period of the 
microprocessors, assuming that they are clocked from 
the same source. 

For example, if both processors are clocked from the 
same 25 MHz frequency source (period of 40 ns), and 
are closely coupled (i.e., there is one and only one 
operating system in memory), the maximum access time 
of the dual port will have to be 20 ns or less. The 
fastest speed dual port available has a 25 ns access time. 
Therefore, each processor will suffer a worst case 20% 
performance degradation. 

Dual-Port RAM Applications 

The first applications for dual-port memories were for 
CPU register fUes. They may also be used for cache 
(data or instruction) memories. However, the largest 
usage of dual-port RAMs is in communications. 
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For the purpose of this discussion, communications is 
further divided into the exchange of data between 
processors, processes, and systems. 

Communications Between Systems 

Data is usually exchanged serially in order to reduce the 
cost of the circuits required. In all real world systems, 
noise is present and data will be corrupted. Studies 
have shown that noise on communications channels 
tends to occur in bursts. Several general techniques are 
used to improve the probability of correctly receiving 
data over the channel. 

The most basic technique is to divide the data into 
blocks in order to reduce the probability of a noise "hit". 
As the block size increases, the probability of getting hit 
also increases, so the block size should not be too long. 
However, a small block size leads to inefficient use of 
the channel. 

A second technique is to add additional characters to 
each block that either (1) guarantee the integrity of the 
data, such as a CRC (Cyclic Redundancy Character), or 
(2) detect and correct any errors, such as an ECC 
(Error Checking and Correcting) field. However, ad­
ding characters increases the block size and the prob­
ability of a hit, which defeats the purpose of adding the 
CRC or ECC field. 

A third technique is to require a protocol such that ac­
knowledgment of the reciept of a packet (a number of 
blocks) is required before the next packet is trans­
mitted. This decreases the channel efficiency because it 
must be "turned around", but only the blocks of data 
that were corrupted need to be retransmitted. 

In many applications all three of the preceding techni­
ques are used. In addition, some channel controllers 
adaptively change the baud rate, depending upon the 
error rate. 

Virtual Dual-Port RAM 

Physical dual-port RAMs are not required for com­
munication between systems. Instead, a conventional 
RAM memory is partitioned into virtual data storage 
areas (buffers); usually at least two packets of data are 
stored. These buffers are shared between the intel­
ligence (usually a microprocessor) that assembles the 

packets and stores them and the communications con­
troller (which may also be a microprocessor) that reads 
the data from memory, converts the data from parallel 
to serial, encodes it, converts it to analog, and sends it 
out over the communications channel (on the transmit 
side). If there is only one processor in the system, the 
data buffers are not shared, and there is no need for 
either a virtual or a physical dual-port RAM. 

Associated with each data buffer is control information 
that tells the communications controller (1) how many 
words are in the buffer, and (2) the starting address of 
the data in the buffer. The control information is 
stored in one or more RAM memory locations whose 
addresses have been previously agreed upon by the two 
processors. 

A second level of control is required in this simple ex­
ample. It is a mechanism or procedure to follow which 
insures that the two microprocessors do not "get in each 
other's way". In other words, it is a "procedure control 
mechanism". Another way of analyzing the procedure 
that must be followed in order to eliminate contention 
introduces the concept of "the ownership of data". 

In this example the processor that is assembling and 
storing the messages (let's call it MP A) can be said to 
"own" the data while it is performing its task. Likewise, 
the communications processor (let's call it MP B) owns 
the data while it is performing its task. The procedure 
reduces to the transfer of ownership of the data be­
tween MP A and MP B. In large systems, where many 
processors perform many different operations, the 
processing of the information is called a job, or a proce­
dure. The procedure is divided into many tasks, which 
may be performed by different processors and which 
may either (1) be scheduled and assigned by a proces­
sor dedicated to that task (called an autocratic system), 
or (2) be performed by any available processor (called 
an egalitarian [meaning equal processors] system). In 
either case, the two (or more) processors must have ac­
cess to a shared memory location that is used for mes­
sage passing. 

Synchronization of sequential processes is the 
cornerstone of concurrent programming, be it within a 
multi-tasking single processor system, a distributed net­
work of processors, or a tightly-coupled multi-processor 
system. 
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Message Passing Using a Shared Memory 
and Lockvariables 

In the two-processor example under consideration, 
synchronization can be achieved by the use of a "lock­
word" or "lockvariable". The lockvariable can apply 
either to data (this example) or to executable instruc­
tions. 

The lockvariable is a location in shared memory that is 
operated upon using two synchronization primitives; 
LOCK (v) and UNLOCK(v). They are simple binary 
switch operations. If a processor wishes to "lock" or 
own a critical section (code or data) it does so by test­
ing the lockvariable and indivisibly setting it if it was 
zero. If it was not zero, then the operation is repeated 
until it is zero. A processor unlocking the critical sec­
tion simply sets the lockvariable to zero and continues. 

Most modern processors have indivisible 
readlmodify/write instructions, also called "test and set" 
(TAS) instructions. However, Dijkstra's original paper, 
"Solution of a Problem in Concurrent Programming 
Control" [1], shows that lockvariables can be imple­
mented without using a readtmodify/write instruction. 
He also developed the semaphore [2], which is a techni­
que for managing a queue of tasks waiting for a 
resource. Lockvariables "surround" or "bracket" 
semaphores and thus provide entry and exit control on 
a mutual exclusion basis. 

For the purpose of this example we will assume thatthe 
processors have a TAS instruction. A typical TAS in­
struction operates as follows: 

Typical TAS Instruction 

Read, test, and set to X. The addressed memory loca­
tion is read, and if its contents are zero, the. value X is 
written into that location. If the contents are not zero, 
the contents are returned to the processor and the value 
in the memory location is not disturbed. 

The usual convention is that a value of zero in the lock­
variable means that the resource associated with it is 
available .. A non-zero value means that another proces­
sor temporarily owns it and that it is not available. 
After performing the task associated with the lockvari­
able, the processor sets its value to zero. The system is 
initialized with alllockvariables set to zero. 

In this example, MP A performs a TAS operation on 
the lockvariable and, finding it zero, sets it to a one. 
This tells MP B that the message is in the process of 
being assembled in the memory buffer area and is "not 
ready" to be transmitted. MP A then assembles the mes­
sage. After the message is assembled, MP A clears the 
lockvariable and sends a message to MP B telling it (1) 
that the message is ready to be transmitted, and (2) 
where the data is stored and how many bytes are to be 
sent. MP B reads the message from MP A, performs a 
T AS operation on the lockvariable and, finding it zero, 
sets it to a two. This tells MP A that the message is in 
the process of being transmitted. MP B then transmits 
the message and clears the lockvariable. MP B then 
sends MP A a message that the transmission task has 
been completed. After receiving the message from MP 
B, MP A performs a T AS operation on the lockvariable 
and, finding it zero, concludes that the message has 
been successfully transmitted. 

Note that this procedure does not require the use of a 
dual port RAM. It does require each processor to per­
form a TAS instruction, clear the lockvariable, and send 
a message to the other processor. Sending a message 
implies writing to a location in shared memory. In 
order to know that a message is waiting, the processor 
receiving the message must either poll (periodically 
read) the memory location (mailbox) or, the act of 
writing to the mailbox must generate an interrupt to the 
receiving processor. The interrupt driven alternative is 
usually preferred because the receiving processor does 
not have to waste time in a polling sequence. 

Dual-Port Memory Using A Dual-Port RAM 
Cell ... Recent history 

The first dual-port RAM integrated circuits to use a 
dual-port RAM cell were the Synertek SY2130 and 
SY2131, which were introduced in 1983. . These 
products were organized as 1024 words of 8-.bits and 
use n-channel double-polysilicon technology to achieve 
100 ns access times. The SY2130 had an "automatic 
power down" feature that was controlled by the chip 
enables, and the SY2131 did not. The smaller (512 X 8) 
SY2132 and SY2133 were similar (but unsuccessful). 

These original dual-port RAMs included two mailboxes 
for message passing that, when written to from one port 
(side), generated an interrupt to the opposite port. 
Also, on-chip arbitration logic generated a "busy" signal 
to the loser when both left and right ports addressed 
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the same memory location. If the loser was attempting 
to write the write was supressed. Most of the the dual­
port RAMs on the market today are functionally 
equivalent to the original Synertek products. The "new 
features" that have been added to several dual-port 
RAM products by Motorola and Integrated Device 
Technology (IDT) include dedicated "semaphore 
registers". However, not only are these semaphores un­
necessary, the products that use them do not have 
second sources. 

The SY2130 was second sourced by IDT in 1984 and 
Advanced Micro Devices (AMD) in 1985. IDT also 
doubled the density to 2K X 8 and called the new part 
the IDT7132. Due to pin limitations (48 pins), the inter­
rupt functions were deleted. 

The AMD part (Am2130, 1024 X 8) had at least three 
logic errors. Busy going active failed to reset the inter­
rupt when both ports addressed the same mailbox loca­
tion. Also, busy going inactive failed to retrigger the 
ATD (Address Transition Detection) circuitry (at all 
locations). And finally, when contention occurred and 
both ports were attempting to write, the losing port was 
not prevented from writing. These conditions are not 
explicitly stated on the data sheets, but a little thought 
will convince the reader that these things must be done 
in order to make logical sense. More about this later. 

In 1985 IDT added the "slave" companion parts to their 
dual-port family. The IDT7140 (1024 X 8) is the slave to 
the IDT7130 and the IDT7142 (2K X 8) is the slave to 
the IDT7132. The slave deVice is used in word width 
expansion. Busy is an input to the slave (from the 
master) and there is no arbitration logic in the slave. 
One master may drive many slaves. This avoids the clas­
sic "deadly embrace" problem described in the following 
paragraphs. 

The Deadly Embrace as a Result of Busy 
Arbitration 

If two masters are connected in parallel to make a 
wider word and if the left and right port addresses 
match, and if the left and right port chip enables (to 
both) then become active at approximately the same 
time, it is possible to have one port of one master lose 
and the opposite port of the other master also lose. In 
other words, there is a small "time window" or "apera­
ture of uncertainty", if within which an address match 
occurs and both ports are enabled, the dual-port RAM 

cannot determine which port will win or lose. 

If the corresponding left and right port busy pins are 
connected together (respectively), under the preceding 
conditions, both ports of both masters will be active 
(LOW). This will happen because the busy outputs are 
open drain, and the loser will pull the node LOW. 

At this point, as far as the external world is concerned, 
both ports are busy and the system will remain "locked 
up" indefinitely, with each port waiting to be released by 
the other. This condition is the simplest example of the 
deadly embrace. Each "arbiter section" of each master 
thinks that it has lost the arbitration, and is waiting to 
be released by the other. 

The Classic Definition of the Deadly 
Embrace 

The deadly embrace is a condition that occurs in a sys­
tem where a processor requires one or more resources 
in order to perform a task, and one 01:: more of the re­
quired resources is temporarily owned by another 
processor that requires one or more of the same resour­
ces in order to perform its task. 

For example, if processor A owns resource X and 
processor B owns resource Y, and both resources are 
required to accomplish the task, we have a stalemate 
condition where each proCessor is waiting for the other 
to relinquish the required resource. This is the most 
simple example. The concept can be extended to n 
processors and m resources. 

There is, of course, a solution to this situation. It 
depends upon whether the system is auto~ratic or 
eglitarian, the priorities of the tasks, etc., and IS beyond 
the scope of this discussion. 

The Cypress Dual-Port RAM Family 

The members of the Cypress dual-port RAM family are 
tabulated in Table 1. The package designator D26 
stands for 600 mil ceramic, dual in-line package (DIP) 
and P25 stands for 600 mil plastic DIP. The 48-pin 
ceramic leadless chip carrier (Lee) is designated as 
L68. The 52-pin packages are designated as L69 for 
ceramic Lee and J69 for plastic Lee (PLee). 
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Note that the interrupt function is not available at the 
2048 X 8 level in a 48-pin package. This is due to pin 
limitations. At the two kilobyte level, two additional ad­
dress pins are required, one fOJ; each port, for the ad­
dress MSB. 

Masters and Slaves 

The difference between masters and slaves is that the 
masters have arbitration logic and the slaves do not. 
The busy signals are outputs from the master and in­
puts to the slave. The ramifications of this will be ex­
amined later. 

Dual-Port RAM Block Diagram 

A simplified block diagram of the Cypress dual port 
RAM is shown in Figure 3. At the device interface there 
are two sets of three groups of signals: address, data, 
and control. By convention, the two sets of signals are 
called "left port" and "right port". Each and every signal 
has either the subscript "L" for Left or the subscript "R" 
for Right. 

Address Pins 

The address pins are designated AO through A9 (1024 
X 8) and AO through AlO (2048 X 8), where AO is the 
least significant bit (LSB) and A9 or AlO is the most 
significant bit (MSB). The address pins areunidirec­
tional inputs to the device; their states specify the 
memory location to be either read from or written into. 

Figure 3. Dual-Port RAM Block Diagram 

Data Pins 

The data pins are designated 1/00 through 1/07, where 
1/00 is the LSB and 1/07 is the MSB. The data pins are 
bidirectional; their states represent either the data to be 
written or the data to be read. 

Control Pins and Flags 

The control pins are Chip Enable( CE), ReadlWrite 
(R/W), and Output Enable (OE). Two flags are also 
provided, INT and BUSY; both have open-drain out­
puts and require external pullup resistors. A. LOW 
level on the chip enable input allows that port to be­
come functional. Data is either read from the internal 
dual-port RAM array, or written into it, depending 
upon the state of the ReadlWrite signal: a LOW in­
itiates a write operation. The three-state, data output 
drivers are enabled by the LOW state of the output 
enable signal. 

Table 1. The Cypress Dual-Port RAM Family 

Cofiguration Part Number MIS Packasre Ontions 

48-oin Dual In-line PkI!:. 48-oin S~uare 52-oin S~uare 

Ceramic Plastic LeC LeC PLeC 

lKX8 CY7C13O M D26 P25 L68 --- ---
CY7C131 M --- --- --- L69 J69 

CY7Cl40 S D26 P25 L68 --- ---
CY7C14l ·S --- --- --- L69 J69 

2KX8 CY7C132 M D26 P25 L68 --- ---
CY7C136 M --- --- --- L69 J69 

CY7C142 S D26 P25 L68 --- ---
CY7Cl46 S --- --- --- L69 J69 

Note: The Interrupt function is not available at the 2KX8 level in a 48.pin package 
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When one port writes to a pre-determined memory 
location (mailbox), an interrupt to the other port is 
generated. When the interrupted port reads that 
memory location, the interrupt is reset. 

When both ports address the same memory location 
and both chip enables are active (LOW), there is said 
to'be contention for that address. 

When contention occurs, an arbitration is performed, 
and ownership of the resource (a memory location) is 
assigned to the winner. The loser of the arbitration is so 
notified by the active (LOW) state of the busy signal to 
it. 

Detailed Functional Description 

The following paragraphs describe the functional opera­
tion of the Cypress dual port RAM family. 

Interrupt Logic 
A simplified functional logic diagram of the interrupt 
logic of the dual-port RAMs is shown in Figure 4. The 
chip enable signals to this logic are not shown. The 
chip enable must be asserted for the port to either read 
from or write to any location, including the mailboxes. 
Note that the mailbox locations may be used as conven­
tional memory by simply not connecting the interrupt 
line to the appropriate processor. 

(OPEN DRAIN) 

INTL (OPEN DRAIN) 

Figure 4. Interrupt Logic 

INTR 

RIGHT SIDE 

ADDRESS 

The upper two memory locations (7FF, 7FE for 2K x 8, 
3FF, 3FE for lK x 8) may be used for message passing. 
The interrupt (request) to the right processor, INTR, 

goes LOW when the left processor writes to the highest 
memory location, which is the mailbox for the right 
processor. When the right processor reads the highest 
memory location, the flip-flop is reset, and INTR goes 
HIGH. The interrupt (request) to the left processor, 
INTL, goes LOW when the right processor writes to the 
second highest memory location, which is the mailbox 
for the left processor. When the left processor reads the 
second highest memory location, the flip-flop is reset, 
and INTL goes HIGH. Note that each port may read 
the other port's mailbox without resetting the associated 
flip-flop. 

Interrupt Interaction With Busy 

The active state of the busy signal to a port prevents it 
from setting the interrupt to the winning port. Also, 
the active state of the busy signal to a port prevents that 
port from resetting its own interrupt. These opera­
tions are ramifications of the concept of the ownership 
of data. 

Functional Operation With Contention; 
Master 

If both ports address the same memory location at the 
same time there is said to be contention for that ad­
dress. The master will perform an arbitration and one 
port will win and the other port will lose. Since there 
are two ports and each can be in one of two states 
(either reading or writing), as shown in Table 2, there 
are four combinations of ports and states. 

Case 1: Both Ports Reading 

If both ports read the same location at the same time, 
one would assume that there is no problem; both ports 
should read the same data. This is true for all dual-port 
integrated circuits. However, under this condition, 
which is called contention, an arbitration is performed 
(by the master) and the memory location is assigned to 
the winner. The loser is not prevented from reading but 
is notified that the memory location "is owned by" the 
other port by the active state of its busy signal. 
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Table 2. Functional Operation of Dual Port Masters 

OPERATION RESULT OF OPERATION AFTER ARBITRATION (MASTER) 

CASE LEFTPORT RIGHT PORT AMD CYPTESS and IDT 

1 READ READ BOTH PORTS READ BOTH PORTS READ 

2 READ WRITE LOSER WRITES, WINNER IF READ· LOSER PREVENIED FROM WRIT· 
ING,MA Y HA VB CORRUPTED ING. IF LOSER IS READING AND 

3 WRITE READ .DATAAND NOT KNOW IT PORTS ARE ASYNCHRQNUS, DATA 

READ MAY NOT BE VAUD 

4 WRITE WRITE BOTH PORTS WRITE, WINNER'S WINNER WRITES, LOSER 
DATA MAYBE CORRUPTED PRBVBNTBD FROM WRITING 

The Ownership of Data 

In order to guarantee data integrity in a multiprocessor 
system it is standard practice to, apply the concept of 
"the ownership of data". This ownership may be applied 
to eJl;ecutable rode, data, or control locations in 
memory. The control locations in memory may pe as· 
sociated with a resource (e.g., printer, tape drive, disk 
drive, communications port). 

When arbitration occurs as a result of contention' in a 
Cypress dual-port RAM, one port (the winner of the 
arbitration) is given temporary ownership of the 
memory location. The losing port is allowed to read the 
memory location but is told that it lost the arbitration by 
the active state of its busy ·signal. ' 

Cases 2 and 3: One Port Reading and the 
Other Port Writing 

In the AMD dual port the losing port is not prevented 
from writing. In the Cypress and IDT dual ports the 
losing port is prevented from writing. All dual ports 
assert busy to the losing port, so that it can tell thatthe 
data may be corrupted. 

In the Cypress dual ports the losing port is prevented 
from writing so that the data cannot be corrupted. Busy 
is asserted to the losing port, so that it can tell that its 
read or write operation may not have been successful. 

Case 4: Both Ports Writing 

In the AMD dual-ports both are allowed to write. Busy 
is asserted to the losing port, so that it can tell that the 
data may be corrupted. However, the winning port is 

not told that the data it just wrote may be corrupted by 
the writing of the losing port, which could cause system 
errors. 
In the Cypress and IDTdual-ports, the losing port is 
prevented from writing so that the data cannot be cor­
rupted. Busy is asserted to the losing port, so that it can 
tell that its write operation was unsuccessful. 

Arbitration Logic 

A block diagram of the arbitration logic used in the 
Cypress dual port RAM masters is presented in Figure 
5. The functions of the arbitration logic are (1) to 
decide which port will win and which will lose if the 
addresses are equal simultaneously, (2) to prevent, the 
losing port from writing, and (3) to provide a busy sig. 
nal to the losing port. 

The arbitration logic consists of left and right address 
equality comparators (with their associated delay [d) 
buffers), the arbitration latch formed bv the cross-

ADDRESS (l) JIDDRESS (R) 
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coupled, three-input, NAND gates labeled Land R, 
and the gates that generate the busy signals. 

Operation With Unequal Addresses 

When the addresses of the right and left ports are not 
equal, the outputs of the address comparators (nodes A 
and B) are both LOW, the outputs of the gates labeled 
Land R (nodes C and D) are both HIGH, which forces 
both busy not signals HIGH and both write inhibit not 
signals HIGH. The arbitration latch does not function 
as a latch. 

Operation With Left Port - Camped on an 
Address 

Next, consider the condition where the left port address 
and chip enable signals are quiescent and the right port 
address changes from an address different from that of 
the left port to an address equal to that of the left port. 
Nodes A and B are initially LOW. 

The right-port address signals do not go through the 
delay buffer (d), so the output ofthe right-address com­
parator (node B) will go HIGH an amount of time, d, 
before node A goes HIGH. The delay, d, must be 
greater than the delay through the R gate, so that when 
node B goes HIGH, node D will go LOW, causing node 
C to remain HIGH. The CE(R) and CE(L) signals are 
both HIGH; they are the inverse of the chip enable 
device inputs. Node D going LOW causes the output of 
the BR gate to go LOW, which tells the right port that 
the memory location it just addressed belongs to the left 
port. A write-inhibit signal is also generated that 
prevents the right port from writing into the addressed 
memory location. To summarize; when the right port 
addresses a memory location that is already being ad­
dressed by the left port, after an amount of time equal 
to the sum of the propagation delays of the right ad­
dress comparator, the R gate, the BR gate, and the out­
put driver (not shown), the busy signal to the right port 
is asserted. Nodes A, B, and C are now HIGH and 
node D is LOW. BUSY is asserted to the right port. 

Operation With Right Port - Camped on an 
Address 

A little thOUght should convince the reader that, due to 
the symmetry of the arbitration logic, the operation of 
the circuits, when the right port camps on an address 
and the left port then addresses the same location, is 

similar to that of the preceding paragraph. 

Both Right and Left Port Addresses Equal 
Simultaneously 

In the general case, unless guaranteed not to occur by 
the design of the system, it is possible to have both 
ports access the same memory location simultaneously. 
When nodes A and B go from LOW to HIGH at exact­
ly the same instant, the arbitration latch will settle into 
one of two states and will determine which port wins 
and which port loses. The latch is designed such that 
its two outputs will never be LOW at the same time. It 
is also designed to have a very fast switching time. 

Port Setup for Priority 

There is a minimum time difference between either, (1) 
the two chip enables going from inactive to active, or 
(2) the two sets of addresses going from mis-match to 
equal, after which the first port is guaranteed of winning 
the arbitration. This parameter is called "port set-up 
time for priority', and is abbreviated as tps on the data 
sheets. The specified value is five nanoseconds. 
Cypress product engineering has measured this 
parameter at room temperature and nominal Vcc (5 
Volts) and determined it to be approximately 200 
picoseconds. This same parameter could be specified 
between the addresses of one port and the chip enable 
of the other, but it is not. 

Other Busy Key Parameters 

There are several other key parameters that are 
specified with respect to the busy signal. Their sig­
nificance will be explained and the ramifications of their 
values will be analyzed. 

Busy LOW from address match, tBLA, is the maximum 
time it takes busy to go LOW, as measured from the 
time the two port addresses are the same. This is the 
time from an address match until the losing port is 
notified that it has lost the arbitration. Obviously, the 
sooner this occurs the better. If the value of tBLA is 
greater than the the memory cycle time it means that 
another cycle must be added in order to detect the con­
dition, which may severely reduce performance. This 
time is less than the minimum cycle time for all speed 
grades of all Cypress dual-port RAMs. 
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Busy HIGH from address mismatch, tBHA, is the maxi­
mum time it takes busy to go from LOW to HIGH, as 
measured from the time the two port addresses do not 
match until the busy signal goes HIGH. The comments 
of the preceding paragraph apply. 

.The next two parameters are similar to the preceding 
two. The difference is that the chip enable controls the 
busy signal. They are BUSY LOW from CE LOW; 
tBLC, and BUSY HIGH from CE HIGH; tBHC. Both of 
these parameters are less than the minimum cycle time 
for all speed grades of all Cypress dual-port RAMs. 

Busy HIGH to valid data, tBDD, is the maximum time it 
takes the data to become valid to the losing port after 
BUSY goes away. The value of this parameter is equal 
to the address access time, tAA, because a read cycle is 
initiated to the losing port when its BUSY signal transi­
tions from LOW to HIGH. The cause of the busy tran­
sition could be an action by either port. The winning 
port could either change its address or deassert its chip 
enable signal. Refer to the following paragraph for the 
conditions that will trigger a valid read to a port that 
has just lost an arbitration to a port that is writing. 

The final two. parameters are shown in Figure 6, which 
illustrates the timing for the right port performing a 
write operation, and the left port asynchronously 
moving to the same address and attempting to perform 
a read operation. The first parameter of interest is 
tDDD, which is the maximum time from when the data 
to be written by the winning port is stable until that 
same data is valid at the outputs of the port that 
received the busy. The second parameter of interest is 
twnD, which is the maximum time from the write strobe 
HIGH to LOW transition of the winning port until the 
data is valid at the outputs of the port that received the 
busy. 

In the general case, when the two ports are operating 
asynchronously (i.e., independent clocks), and the con­
ditions illustrated in Figure 6 occur (winning port writ­
ing and losing port reading), it is possible for the losing 
port to read either the old data, the new data, or some 
random combination of the two. If the read occurs early 
with respect to the write, old data will be read. If it 
occurs late with respect to tIie write, new data will be 
read. And, if the read oCCUrs at the same time that the 
data is changing from old to new, the data read will not 
be predictable. However, all is not lost. There are two 
general solutions. Both use the fact that the busy signal 
is asserted to the losing port, telling it in this instanCe 
that the data it is reading may not be valid. 

AOOR. ==>< ADDRESS M TCH >k'-__ -'--__ _ 
__ ~{uut~u .. u.~~.---'--

I I k.t.><P'/ 
DIN. ----'O:C-L-=-D --I9nTI I InTI I ITTnI I I'%, NE~. )Kr----

I t I r I 

Figure 6. Busy Timing 

One solution is to use the HIGH to LOW transition of 
the busy signal to the losing port to generate an inter­
rupt to the processor (or state machine) so that it can 
repeat the operation. The drawback of this technique is 
that a "snapshot" of the states of the address lines and 
the read/write .line of the losing port must be taken, so 
that the processor can tell what load/store operation 
caused the interrupt. This requires latches or flip-flops 
for the data, control logic for doing the sampling, and 
uses up an interrupt line. The processor must also be 
able to read the sampled dat~ later. 

A second solution is to use the LOW level of the BUSY 
signal to the losing port to either delay the reading of 
data until it becomes valid; which occurs an access time 
after the LOW to HIGH transition of busy, or insert 
"wait states" until busy goes HIGH, or stretch the clock 
until busy goes HIGH. This will probably require less 
hardware and control logic than the preceding ap­
proach. It does mean that the busy signal must even­
tually go from LOW to HIGH. This will happen when 
the winning port either changes its address or deasserts 
its chip enable. For this reason, as well as system noise 
immunity and power saving considerations, it is recom­
mended that "blocks of addresses" be decoded in order 
to generate chip enables for the dual ports. However, 
the losing port has no control over the winning port in 
the general case, so the question is, what can the losing 
port do in order to sucCessfully read the data just writ­
ten (assuming the winning port does not change its ad­
dress, write, or chip enable signals) ? 
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The answer is, there are two operations the losing port 
can perform in order to initiate a successful read opera­
tion from an address that is temporairly owned by a 
winning port. They are: 

1. Change an address line to a different address and 
then change it back to the original address. This tog­
gles the busy signal to the losing port. 

2. Change the state of the chip enable signal. This also 
toggles the busy signal to the losing port. 

These two operations by a losing port or changing 
either any address line or the chip-enable line by the 
winning port Will initiate a successful read to the losing 
port when the winning port is writing. The next ques­
tion to be answered is why? 

ATD (Address Transition Detection) 

The reason is that all Cypress dual-port RAMs, both 
masters and slaves, use a circuit design technique called 
Address Transition Detection (ATD) in order to im­
prove performance to and reduce power dissipation. 

ATD Improves Performance 

Performance is improved by equilibration of differential 
paths, pre-charging critical nodes, and forcing the out­
puts to a high-impedance state. Equilibration and pre­
charging bias critical nodes to voltage levels ap­
proximately in the mid-point of the small-signal operat­
ing range, so that when the data is sensed it takes a 
shorter amount of time to transition to the ZERO or to 
the ONE level. Forcing the outputs to their high-im­
pedance states improves speed slightly, but more impor­
tantly, reduces output sWitching noise by eliminating 
crowbar current and separating the output current into 
two pulses instead of one. 

ATD Reduces Power Dissipation 

Power dissipation is reduced by turning on power­
hungry circuits only when they are required. Slightly 
over fifty percent of the circuits in a RAM are linear 
and approximately seventy percent of the power is dis­
sipated in the sense amplifiers during a read operation. 
When the RAM is operating at its maximum frequency 
the ATD circuits are being constantly triggered, So the 
power savings are minimal. However, at lower speeds 

IDLE -------, 
j 

DETECT EVENT 
j 

TURN-ON CIRCUITS 

PERFORM 6PERATION 
1 

TURN-OFF CIRCUITS 

1 
Figure 7. Simplified ATD Sequence 

or smaller duty cycles the power savings are significant. 
A diagram representing a typical ATD sequence is il­
lustrated in Figure 7. The event that triggers the ATD 
sequence (per port) is the transition of any address sig­
nal, the chip enable signal, or the read/write signal. 
Equilibration and pre-charging are performed next, fol­
lowed by either turning on the sense amplifiers and 
latch1!!&. the data (read operation) or pulling the BIT 
and BIT lines to the required levels (write operation) at 
the addressed location. The master clock pulse lasts 
from seven to eleven nanoseconds, depending upon 
temperature, supply voltage, and the distributions of in­
tegrated circuit processing parameters. At the end of 
the pulse the data is latched and the appropriate cir­
cuits are turned off. 

Standalone Operation of the Master Dual­
Port RAM 

A block diagram shoWing the interconnections between 
the major elements in a system using two eight-bit 
microprocessors, the Cypress CY7C132 dual-port 
RAM, static RAM, and EPROM is presented in Figure 
8. 

The key points are (1) the address lines of each 
microprocessor are decoded to generate the chip 
enable signals to the dual port, the RAM, and the 
EPROM, (2) the interrupt requests to the microproces­
sors require pullup resistors, and (3) the busy signals, 
which go to the wait inputs of the microprocessors, also 
require pullups. 
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Word Width Expansion Using the Slave 

A block diagram showing how to interconnect a 
CY7C132 (2K x 8) master and a CY7C142 (2K x 8) 
slave together to form a 16-bit wide word is presented 
in Figure 9. The interfaces to the processors are not 
shown. Also not shown are the connections for the in­
terrupt signals. The interrupt outputs are not avail­
able at the 2K X 8 level in the 48-pin DIP due to pin 
limitations. In the LCC and PLCC packages the inter­
rupt outputs are available from both the master and the 
slave devices. Either one may be used. It is not re­
quired to tie the corresponding interrupt pins of the 
master and the slave together. 

Delaying of the Write Strobe 

In width expansion, the write signals to the slave devices 
must be delayed an amount of time at least equal to 
tBlA, which is the time required for the master to assert 
the busy signal to the slave after an address match. 
These delay elements are labeled DELAY in the 
diagram. This prevents the data in the slave at the ad­
dress in contention from being overwritten. The write 
cycle time must be increased by this amount of time. In 
equation form; 

twc = tpwE + tBLA . Equation 2 

Where the delay of the delay element must be at least 
equal to tBLA. 

Note that if more slaves are added to make a wider 
word, (e.g., 24-bits, 32-bits) the outputs of the delay ele­
ments can be connected directly to the write strobe in­
puts. Additional delay elements are not required. 

Standalone Operation of the Slave 

Certain applications may require giving one port per­
manent and absolute priority over the other. This can 
easily be done by implementing the memory using only 
slave dual-port RAMs. The BUSY input to the priority 
port must be tied HIGH by either connecting it directly 
to Vee, or to Vee through a 10 K Ohm pullup resistor. 
The BUSY input of the low priority port may be con­
nected to the read/write input of the high priority port. 
In this configuration, the busy (read/write) signal to the 
lower priority port will always prevent it' from writing 
when the high priority port is writing (to any and all 
locations). In the general case, when the two ports are 

operated asynchronously, and the lower priority port is 
writing, and the higher priority port simultaneously 
writes, the data of the lower priority port will be over­
written. Admittedly, this is not a very elegant solution 
because the BUSY input to the low priority port is not 
qualified by comparing the addresses of the two ports 
or their chip enables. However, it stimulates the reader 
to think of how the slave dual-port RAMs can be used 
with external arbitration logic. The busy inputs may be 
used by either control logic or under program control to 
dynamically change the priority of the ports. 

If the lower priority port is "read only" its BUSY input 
may be tied HIGH by either connecting it directly to 
Vee, or to Vee through a pullup resistor. 

Dual-Port Design Example 

The following design example is presented to illustrate 
the methodology to follow when designing with Cypress 
dual-port RAMs. 

Design Specification 

A dual port memory is to be used for message passing 
and bus snooping between many bus masters on a 32-bit 
wide system bus on one side (the right side) and a 16-
bit processor on the other side (the left side). 

From the right port the memory appears as 8K 32-bit 
words and from the left port it appears as 16K 16-bit 
words. 

Design such a memory with the following additional 
constraints: 

1. The memory location corresponding to address zero 
for both ports is the same. 

2. The data read from and written to the memory from 
both ports is in the same order (Le., DO of the right port 
corresponds to DO of the left port). Also, D16 of the 
right port appears as DO of the left port in address 
location 2048. 

3. The minimum cycle time is 35 nanoseconds. 

4. In order to conserve power, blocks of addresses will 
be decoded to generate the required chip selects. 
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5 The CY7C132 and CY7C142 dual-port RAMs are to 
be used. 
Part of the design is to chose how many masters and 
how many slaves are required and how they are to be 
interconnected. 

6. The appropriate BUSY signals are to be generated to 
the correct port when contention occurs. 

7. All possible mailbox locations that can be used for 
message passing are to be used. Explain how the inter-
rupt lines should be connected. ' 

8. Name the right port signals ARO .. AR12, 
DRO ... DR31, CER, and BUSYR. Name the left port 
signals ALO .. AL13, DLO ... DL15, CEL, and BUSYL. 

Show a logic diagram, interconnections, and timing. 

Design Overview 

A simplified logic diagram of the memory is presented 
in Figure 10. A total of sixteen 2K X 8 dual-port RAMs 
are required. The devices labeled MA (Master, bank A) 
through MD (Master, bank D) are CY7C132 masters 
and the devices labeled SU (Slave, Upper half-word) 
and SL (slave, Lower half-word) are CY7C142 slaves. 
The memory consists of four masters and twelve slaves, 
together with the required control logic. 

From the right port the memory is configured as 8K 
32-bit words, with a master controlling three slaves. 
The one of four decoder labeled, RB (Right Bank) 
generates chip enable signals for each bank of 2K 32-bit 
words. In this example data is written (sampled) on the 
bus side and the only reads performed are from the 
mailbox locations. A general purpose "right port control 
logic" block is shown that generates control signals 
which conform to the timing diagram of Figure 11. The 
generation of the output enable control signals is not 
illustrated, but they are similar to the RB decoder. If 
the application does not require message passing to the 
right port, the right port output enable pins of all of the 
dual port RAMs may be tied directly to V cc. 

From the left port the memory is configured as 16K 16-
bit words. For this organization the reader is probably 
thinking that the slave dual ports in the second column 
from the right in Figure 10 should be masters. However, 
if this were done, the arbitration logic in them would 

have to be defeated when the right port addressed the 
same address, which would add logic, reduce the speed, 
and complicate the design. Therefore, a combination of 
left bank decoding (LB, 1 of 4 decoder) and upper­
lower (UL, 1 of 8 decoder) 16-bit word decoding is 
used to cause the "bank master" to arbitrate when the 
left port is addressing the same bank as the right port. 

Operation of the Right Port 

For purposes of this discussion, the word word refers to 
the 32-bit long word at the right port system bus inter­
face. At the 16-bit processor interface the 32-bit word 
will be refered to as either the lower half-word (bits 
zero through fifteen of the right port), or as the upper 
half-word (bits sixteen through thirty-one of the right 
port). 

Bank Selection Using the Chip Enables 

The one-of-four RB decoder decodes the four combina­
tions of the right port upper two address bus signals 
and generates four active-low chip enables to each bank 
of four dual port RAMs. Bank A contains addresses 
zero through 2047, bank B contains addresses 2048 
through 4095, bank C contains addresses 4096 through 
6143, and bank D contains addresses 6144 through 
8191. In other words, bank A addresses 0 to 2K, bank B 
2K to 4K, bank C 4K to 6K, and bank D 6K to 8K. 

Addressing and Write Strobe 

The lower eleven right port address lines, AR(O:10), are 
connected, respectively, to the AO through A10 right 
port address pins of all of the dual ports. 

The generation of the write strobe is not shown, but the 
timing is illustrated in Figure 11. Note that the signal is 
applied directly to all of the masters in parallel, then 
buffered, and then applied to all of the slaves. The 
minimum propagation delay of the buffer must be at 
least as large as tBLA, which is the time required for the 
master to assert the busy signal to the slaves after an 
address match occurs. 

Note that all of the right port output enable pms are 
connected together and should either be driven if read­
ing is required, or connected to Vcc if not. 
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Right Port Busy Connections 

The open-drain busy outputs of the right port masters 
must be pulled up to V ce using resistors. A value of 330 
Ohms is recommended. The master busy output is then 
connected to all of the right port slave busy inputs for 
each bank. 

Data Bus Connections 

The I/O pins of each column of RAMs are connected to 
their respective I/O pin on each bank. This "OR-tie" 
connection is allowed because the bank selection chip 
enable causes the output buffers of the un-selected 
banks to go to the highcimpedance state. 

Operation of the Left Port 

Bank selection is performed by the one-of-four decoder 
labeled LB. The upper two left port address lines, AL13 
and AL12, are used to decode bank select chip enable 
signals for the four masters only. Bank A corresponds 
to addresses 0 through 4095, bank B corresponds to ad­
dresses 4096 through 8191, bank C corresponds to ad­
dresses 8192 through 12,287, and bank D corresponds 
to addresses 12,288 through 16,383. 

Upper and Lower Half-word Selection 

The one-of-eight decoder labeled UL deCodes the 
upper three right port address signals to generate eight 
chip enable signals with a resolution of 2048. The 
respective chip enables are applied to the chip enable 
and output enable pins of the slaves (2048 resolution) 
and to the output enable of the masters. Because the 
master chip enable resolution is 40% it arbitrates for 
two blocks of 2048 16-bit half-words. 

Addressing and Write Strobe 

The lower eleven left port address lines, AL(O:lO), are 
connected, respectively, to the AO through AI0 left port 
address pins of all of tl;te dual ports. 

At the 16-bit interface, writing is required only if the 
left port wishes to send a message to the right port. 
Otherwise, the left port write pins of all of the dual 
ports may be connected to V ce. 

CL OCK _------' 

ADDRESS _~X,-__ ----,X'--__ 

CE.OE.VE 

Figure 11. Dual-Port Timing for Example 

Left Port Data Bus Connections 

The respective data I/O pins of the left port are con­
nected together in the same manner as· those of the 
right port for all RAMs in the same column. In addi­
tion, in order to multiplex a 32-bit wide data word to a 
16-bit half-word, the least significant bytes and the most 
significant bytes of each 2048 word group are connected 
together. The UL decoder that controls the output 
enable of the left port performs the selection. 

Interrupts (not shown). 
The interrupt pins of the masters (if used) should be 
pulled up to Vcc through a 330 Ohm resistor and con­
nected to the processor interrupt request input. The in­
terrupt pins of the slaves may be left unconnected. 

Control Signal Terminations 

If the control signal connections from their source to 
the dual port memory are "long lines" they may require 
proper termination in order to avoid voltage reflections 
due to impedance mis-matches. Please refer to the ap­
plications paper titled "Systems Design Considerations 
When Using Cypress CMOS Circuits" in this handbook 
for further information. 
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CYPRESS 
SEMICONDUCTOR 

Using Dual-Port RAMs Without Arbitration 

Dual-Port Applications 

One of the most common applications for dual-port 
RAMs is to provide a high-speed shared memory 
resource between two processors in a system. Figure 1. 
illustrates how the two processors communicate by 
passing data and commands via the shared memory. 
Both processors benefit by having access to the dual­
port since it is mapped just like any other memory 
device on the board. Fast, local access to the shared 
memory eliminates the need to arbitrate for and access 
the system bus in order to read or write a common 
resource area such as a shared memory card. In fact, 
many multiprocessor embedded control systems imple­
ment dual-ports for interprocessor communication and 
choose to eleminate the system bus entirely. Removing 
the burden of a system bus, which only exists to "hook" 
the processors together, reduces not only the complexity 
of the system, but the part count and power consump­
tion as well. 

Processor DUAL PORT 
Processor ADDRESS RAM ADDRESS 

"'" 'B' 

DATA DATA 

BUSY BUSY 

INTERRUPT INTERRUPT 

Figure 1. Dual-Processor Communication 

Incorporating dual-ports into a design, such as the dual 
processor example, is very straight forward. It is impor­
tant however to consider the case of an address conten­
tion or ''busy'' situation that can arise when both proces­
sors simnltaneously attempt to access the exact same 
location. Cypress dual-ports have several mechanisms 
which simplify these simultaneous access conditions. 
The simplest approach to resolving contention is to use 
the dual-port's "BUSY" output lines. Both right and left 
ports provide a busy output signal. Busy is activated by 
the arbitration logic inside the dual-port when it senses 
a match between the left and right address lines. Asser­
tion of busy indicates that both ports have attempted to 
access the same location in the RAM. In the case of a 
dual processor system, these signals can easily be gated 
with the processor's local WAIT signal in order to 
generate a hold to the micro until the busy is deas­
serted. Adding an occasional wait state to a 
microprocessor generally has no effect on the overall 
system performance. Gating the wait line and generat­
ing a hold to the processor resolves the logical problem 
of simultaneous address conflicts, but does not address 
the system level issues that can cause it. For example, in 
the case of two microsystems, we can see a common un­
derlying cause of a busy state. In this example processor 
A attempts to read an array of data that was generated 
by processor B. However, there is no mechanism to 
alert processor "A" when the data is really ready or 
valid. Therefore, the system potentially runs into the 
situation where processor "A" is updating a RAM loca­
tion while another processor, "B", is reading the same 
address or vice versa. This lack of overall synchroniza­
tion or interprocessor communication can manifest it­
self as stale data or incomplete arrays of data in the 
shared memory. In a few cases, stale or incomplete 
date is tolerable, but in most it can be fatal. Locking a 
processor or processors out of certain areas of memory 
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until the data is available will guarantee that the proces­
sors never receive stale data. In order to implement ad­
dress space restrictions, it is necessary to provide a 
higher level of access protection above the basic gating 
of busy technique. In most cases, it becomes necessary 
to add· some external hardware which ·signals· the 
processors that new data is available or that it now has 
permission to access a certain area of the dual-ported 
device. Interrupts serve well as a simple means of alert­
ing or synchronizing interdependent system elements 
that pass data via a shared memory. Cypress dual-ports 
provide interrupt lines, as outputs, in order to simplify 
the task of interrupting or signaling the processors that 
relieves the designer of the need to create his own inter­
rupt mechanism. Assertion and deassertion of these in­
terrupt lines is accomplished by performing write and 
read operations to special locations within the dual­
port. The read and write operations are listed in Table 1 
below. 

Table 1. Interrupt Line Usage 

Function. 

Write to left Address 
3FFh 

Read from Right Address 
3FFh 

Write to Right Address 
3FEh 

Read from Left Address 
3FEh 

Result 

Asserts IntJight 

Removes Int Jight 

Asserts IntJeft 

Removes InUeft 

The data word written to, 3FEh and 3FFh, can be used 
as a status word. This data word is presented to the 
data bus during the read operation of an interrupt 
removal cycle. This status word, or semaphore provides 
additional ·system level· information that augments the 

hardware interrupt signal by adding the ability 'to easily 
pass along some meaning with the actual interrupt 
event. More simply, the interrupt line alerts the proces­
sor that some action is required and status word 
provides additional information as to exactly what hap­
pened or what needs to be done. The actual meaning 
of this status byte that is passed between processors is 
defined by the system designer. Generally, the status 
byte is used to indicate that data is ready, to lock a 
processor out of a specific range of addresses, or to 
prompt a processor for new data. Using the interrupt, 
along with status information, is an easy way of avoiding 
busy conditions by synchronizing processes or restrict­
ing address spaces via software. The designer now has 
several options for dealing with simultaneous address 
situations. Busy can be used in a strictly hardware solu­
tion, or interrupts coupled with status words may be 
chosen for a software solution. Regardless of the desig­
ners preference for a hardware or software approach, 
Cypress dual-ports provide all signals and functions 
necessary to insure a simple and effective· system solu­
tion that maintains data integrity and system sanity. 

Using Dual-ports Without Arbitration 

Wait states and interrupts are a good solution for sys­
tems with microprocessor-like elements that are not af­
fected by an occasional wait state. However, there is 
another much broader class of systems and applications 
that cannot tolerate any type of data flow interruption 
or busy condition. Typically, these systems are ·dedi­
Cated function units· that are rigidly pipelined and 
operate on continuous or nearly continuous streams of 
data. A high-speed video processor is a good example 
of a system whose elements cannot be wait stated due 
to the constraint that requires a data word or pixel be 
processed in every clock cycle. The block diagram in 
Figure 2 shows a video data transform or look-up table. 

Video RAM Transforned 
Data Out Data ---~ D,I---..... ~--"'* 

(Bank 01 

RAM 
Processor 
Address 

Bus -----*A ~ ____ ~Proce.:;sor 
Data tJus 

IBank 11 

Figure 2. Video Look Up Table 
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This implementation uses a very common dual-banked, 
or "ping-pong" RAM to realize a look up table transla­
tion function as seen in Figure 3. A continuous stream 
of video data drives the address lines of RAM bank o. 
The output or transformed data of bank 0 then flows 
downstream to the post processor units. Meanwhile, as 
continuous video data is flowing through RAM bank 0, 
the transform table of second bank, bank 1, is updated 
by a processor element without interfering with the 

Video Dato 

video data flow. Dual banks make it impossible for a 
busy condition or address conflict to exist, since each 
system element essentially has its own discrete dedi­
cated RAM. When the processor has completed its task 
of updating the look-up table, it swaps RAM banks by 
toggling the Bank-select line. The PAL then changes 
the state of the buffer-enable signals, which redirects 
the data flow of the two banks of RAM. The ping-pong 
arrangement is effective, however, the implementation is 

110 ...... 050 Tr"'QnsforPied 

DotQ (lUI 

~~k~lect~ __ ,-____ ~ ____ ~ ____ ~ ______ -+ __ ~~ ____________ ~ 

CPlLAddress-BuSI..-_+_..--I_-4 

RNf..JIonk...sel"ct, __ -t-__ I-~ ____ ~ __ ~ 
CPlLVrlte 

CPlLReod 

w--,~ ____ ~~ ___ ~C~oto 

Dot us fCT 1-__ ' 
2M 

Figure 3. Ping-Pong RAM Array 
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very costly in terms of real estate. At least eleven very 
high speed devices are required to build this function 
using standard static RAMs. Replacing the buffers, 
logic, and SRAMs with a single dual-port RAM (Figure 
4) in this application would simplify the design substan­
tially. Video data utilizes the left port of the device, 
while the processor communicates with the right port. 

Video 
na' 

Processor 
~~~ress ____ ~AA(O:8' 

Data Out 

Processor 
DRtO:ll!E----4 Data Bus 

Figure 4. Video Lookup with Segmented Dual-Port 
RAM 

Having two ports eliminates the need for any type of 
data and address steering buffers. There still remains, 
however, the problem of simultaneous address accesses 
and busy conditions that could potentially exist during 
processor update cycles. RAM segmentation eliminates 
the possibility of a busy conflict and is the key to im­
plementing a dual banked RAM within a single dual­
port. Segmentation is accomplished by the use of a 
single inverter. The Bank_select signal from the 
processor drives the left address port MSB and its in­
verse drives the right MSB. The dual-port has now been 
separated or segmented into two 1K addresses spaces 
that do not overlap. The dual-port now appears a two 
totally separate RAMs just as it did in the ping-pong 
implementation. Again, since the left address can never 
equal the right address due to the opposite state of 
their MSB's a busy condition is not possible. Choosing 
to use a dual-port does more than simplify the design. 
Table 2 clearly shows the tremendous saving in real es­
tate and power consumption. 

Table 2 demonstrates that a single dual-port device 
reduces the board area by 68% and reduces the power 
consumption by almost 80%. System reliability in terms 
of MTBF benefits greatly by having fewer components 
and significantly lower power dissipation. The multi­
tude of buffers and transceivers that steer data and ad-

Table 2. Dual-Port v.s. Ping-Pong RAM Comparison 

Device Otv Power (Ma) Size (Sa.in.) 

FCI'244 6 15 0.4 

FCT245 2 10 0.4 

PAL16L8-D 1 180 0.4 

2Onsx8RAM 2 140 0.52 

Total 11 570 4.64 

CY7C142-35 1 120 1.5 

dress signals in a ping pong memory array not only take 
up relatively large amounts of board space but also add 
to the prop delay of the data forcing the designer to use 
very high-speed RAMs. Dual-ports do not suffer from 
the added burden of buffer delays and, therefore, can 
operate at significantly lower speeds. 

There are many types of high-speed data-processing ap­
plications that can benefit form the use of dual-ports. 
For example, high speed video or radar data is often 
transmitted in a nonsequential or cross interleaved 
order. The receiver must first descramble or reorder 
the data before it can be used. Again, the incoming 
data stream cannot be stopped in the event of an ad­
dress contention. Figure 5 shows that a dual-port is 
again an ideal solution for this type of problem. Incom­
ing data is written into the left port of the RAM in the 
order that it was received. The pixel counter provides 
sequential addresses to the left side of the dual-port 

PIxel 

Counter 

CY7Ct42 
Dual Port Ran f-____ ~ALCO:.' OUO:71 

ALIIOI 

_+--+--'lHR/W_L 
• E_L. 

OE_L 

R/'II_R 
OE_R DRIO:71 
CE_R 

MIIOI 

CPtLDATA rlFC 
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and increments after each pixel. At the end of the first 
line, the counter reaches terminal count and initiates a 
bank toggle via a nT" type flip-flop function. After the 
banks switch, the new data is accessible via the right 
port. A FIFO which is used to store the reordering se­
quence, drives the right port's address lines in order to 
read out the stored video data. Notice that by using a 
FIFO there is no need for counters to generate addres­
ses for the reording sequence table. This function can 
also be implemented with PROMs and counters but re­
quires more parts and is much less flexible. The CPU is 
responsible for initializing the de scrambling FIFO at 
boot up. This initialization is only required once since 
the FIFO utilizes its retransmit function (refer to 
CY7C429 FIFO data sheet), unless the data ordering 
changes. We can again ignore the problems caused by 
address contention because the design implements the 
dual-port as a segmented memory. 

Interfacing a high-speed-pipelined digital signal proces­
sor or a bit-slice processor to the system CPU is 
another very common system interface problem. Coeffi­
cients and commands must be passed to the pipelined 
processor and final results read back by the CPU. Dual 
banks of RAM are often implemented as a solution be­
cause they provide a shared memory space that can be 
used by both elements of the system without the threat 
of address contention. Again, since the machines are 
rigidly pipelined, they cannot easily be stopped or inter­
rupted. Therefore, a single segmented dual-port (Figure 
6), or several in parallel with no additional glue logic, is 
a simple cost effective solution to this problem. If two 
banks of data are too restrictive the dual-port can be 
segmented into multiple address spaces by simply 
reserving more or the upper address line pairs. This 
scheme allows the processor to easily and quickly com­
municate with the pipeline processor without using 
large amounts of real estate and power. 

In summary, dual-port Static RAMs are a great solution 
for interprocessor communication problems. By utilizing 
some simple techniques such as RAM segmentation, 
the designer can now implement dual-port solutions 
without regard to arbitration and address contention. 
These techniques allow the use of dual-ports in a very 
broad spectrum of applications. Dual-ports are not only 
extremely versatile and easy to use, but they also add 
the benefits of simplicity, reduced board space, lower 
power consumption, and increased reliability. 

Using Dual-Port RAMs Without Arbitration 

RAM_Bank 

Select 

Processor 
Address __ ~ARIO:8J 

,,, 

PIII'llned 
Proc"".or 
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ORIC:11 ~ ____ Processor 
Dota 
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Figure 6. CPU/Pipelinell Processor Interface 
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CWR~S~~~~~~~~~~~~ 
SEMICONDUCTOR 

Memory System Design for the CY7C601 
SP ARC Processor 

Introduction 

This paper describes a simple 25 MHz CY7C601 
memory design for non-cache memory applications. The 
memory subsystem consists of 128 KB of data RAM 
and 128 KB of instruction RAM. (The instruction RAM 
is easily expandable to 256 KB with the current design.) 
The distinction made, between data memory and in­
struction memory for this design, is that the CY7C601 
Integer Unit (IU) is not allowed to write instruction 
memory. This implies that instruction RAM will be 
loaded at power-up by an external device. 

The design will utilize the CY7C157 cache RAM, which 
has been designed specifically for use with the 
CY7C601 SPARC Integer Unit (IU) and the 
CY7C604/605 Cache/Memory Management Unit 
(CMMU). When used in this environment, all necessary 
control signals (byte-writes and output enables) are 
provided by the CMMU. However, this article shows 
that the CY7C157 can be easily adapted for use in non-
cache applications. . 

First, a description of the CY7C157 will be provided, 
followed by a brief description of the CY7C601 bus in­
terface. Finally, a design using the CY7C330 EPLD to 
generate the required byte-write signals will be 
described. Also, a CY7C332 EPLD design will be 
described that provides the required output enable sig­
nals. A block diagram is shown in Figure 1. 

CY7C157 Cache-RAM 

The CY7C157 cache RAM is a very high-performance 
16 K x 16 bit static RAM. This device employs common 
I/O architecture and a self-timed byte-write mechanism. 
The self-timed write relieves the designer of the difficult 

task of generating accurate write strobes in high-speed 
systems. Address and write-enable inputs are loaded 
into input registers on the rising edge of the system 
clock. Data-input and data-output latches are provided, 
and an asynchronous output enable is also present. The 
CY7C157 is available in 20, 24, and 33 ns speed grades. 
A 25 MHz IU requires the slowest device offered, 33 
ns, so this device has been chosen for the design. 

CY7C601 Bus Interface 

The IU has a 32-bit address bus and can directly ad­
dress four gigabytes of memory. The address bus, data 
bus, and all memory interface signals (except INULL), 
are sent "unlatched" in the cycle prior to use and should 
be latched externally before they are used. Refer to the 
Bus Cycle sections for more detailed information. 

,-------
2 

7C332 4 x 7CIS711 
PLD 3 -IIDS::tion 

'-- .---

7C601 
SPARC 

Processor 

,-L- ~ 
7C33O 4X7CIS711 
PLD 4 -I-Data RAM 

'--

Figure 1. Block Diagram 
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Memory Wait States and Memory Exceptions 

The memory design described does not require wait 
states, but information on this topic and on memory ex­
ceptions is provided in the IU data sheet. 

Bus Cycles 

If we assume that our system does not contain a float­
ing-point processor Or a coprocessor, the bus cycles that 
must be dealt with are: instruction fetch, load single, 
load double, store single, store double, and atomic 
load/store. 

Instruction Fetch 

Address and control bits are sent out at the beginning 
of the fetch cycle and must be latched externally. In­
structi?~ data is expected at the end of the fetch cycle, 
when It IS then latched from the data bus into the on­
chiP. instruction register. The first cycle in Figure 2 
shows an instruction fetch. All instruction fetches are 
single-cycle operations, so no pipeline delays are in­
curred. Under some conditious, the processor is unable 
to fetch an instruction, usually because a prior multi­
cycle instruction needs to use the bus. When this oc­
curs, the processor asserts INULL to indicate that the 
current fetch cycle should be nullified. 

Load Cycles 

The first and second clock cycles in Figure 2 show the 
~ing f?r a load single inte~er instruction. Load single 
mteger IS a two-cycle operation: logically the first cycle 
fetches the load instruction, however due to the proces­
sor pipeline the instruction is actually faetached at least 
two cycles prior to the load/store cycle, and the second 
cycle actually loads the required information from 
memory. A load double instruction is similar to the load 
single instruction except that a third cycle is added to 
fetch the second data word from memory. This is also 
illustrated in Figure 2. 

Store Cycles 

Figure 3 illustrates store. single and store double instruc­
tions. A store single requires three clocks. For 
simplicity assume the store instruction is fetched during 
the first clock. During the second clock, the destination 
address of the store is driven onto the bus. Store data is 
driven onto the data bus at the middle of cycle two and 

Addr/Size 

DXFER k?A • F/Z/I · '(2ZJ' • ~ 

DataIn ~ 

Figure 2. Load/Load Double Timing 

removed at the middle of cycle three. Memory update 
occurs in cycle three. The early arrival of the store ad­
dress allows it to be checked for possible write-protect 
violations or memory exceptions in systems that imple­
ment these features. 

The store double instruction is very similar to a store 
single instruction, except for an extra cycle needed to 
store the second data word. Note thilt the address of 
the second store is set to the first address plus 4, and 
that the size bits are set to 11, indicating a double-bus 
access. 

Atomic Load/Store Cycles 

Atomic transactions consist of two or more transactions 
which. areindivisiblej once started, the sequence cannot 
be interrupted. To ensure bus access for the second 
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Sys_clk 

Addr/Size 

RD 

WR T 17).,. f77). . f/Z/ 7 • "V'7/\ • .t?72J 
Data In 

Data Out 

DXFER 17)., . f77/I • \ZZ2l • \ZZ2l • "<Z22 
LOCK 17).,. IV//? • \ZZ2l • '?Z"'2 . fZ?J 

Figure 4. Atomic Load/Store Timing 

transaction, the IU asserts LOCK for the necessary 
length of time. Figure 4 shows the timing of an atomic 
load/store instruction. 

Design Considerations 

Using the CY7C157s in a non-cache application re­
quires generation of appropriate byte-write signals and 
generation of appropriate output enables. The 
CY7C157 does not require a chip select when used with 
the CMMU device, so none is provided. This means 
that separate sets of write enables must be decoded for 
each 64 KB (16K word deep) block of RAM. Also, an 
output enable must be generated on 16K word boun­
daries during reads. Since address and data setup!hold 
requirements between the IV and the CY7C157 are 
guaranteed by design, we will concentrate on the 
CY7CI57-33's write-enable and output-enable timing 
requirements. 

The CY7C157 requires a 6 ns write-enable setup to 
clock low time and 3 ns write-enable hold from clock 
low. From the store transaction timing diagrams, it can 
be seen that the store data valid times are referenced to 
the falling edge of the system clock, while transaction 
information (address, size, etc.) is referenced to the 
rising edge of the same clock. The desired PLD ar­
chitecture for the write enable generator would provide 
one clock for clocking in the transaction information 
and a separate clock for clocking out the write enables. 
The Cypress CY7C330 state machine is such a PLD. 
The next critical factor is: Will the CY7C330 meet the 

write enable setup and hold times? Inspection of the 
CY7C330-50WC data sheet for tCO and tOH specs 
shows that these conditions are met. Figure 5 shows that 
any write enable is valid 15 ns after the falling edge of 
Sys_Ck (thus providing a 25 ns setup time) and is held 
for 3 ns after the falling edge of Sys_Ck (matching the 
required hold time at the 7CI57). 

For reads, Figure 5 shows that the CY7C332 output 
delay plus the CY7C157 output enable time provides a 
5 ns data setup time, which easily meets the 3 ns re­
quirement of the IV. Data hold time requirements are 
determined by examining the CY7C332 output enable 
hold time from the Sys _ Ck falling edge. This hold time 
is 3 ns which, when added to a 2 ns minimum turnoff 
time for the CY7C157, guarantees the required 5 ns 
data hold time at the IV. 

Addr/Size 

RD tzI: '(Z2J 
DXFERVA • j/,rT2-r2-r-jr'!--\Z5~ . 

Data ,----Q-5 s-----c=:>-
WA/WB 

Figure S. Actual Timing 

CY7C330 Write-Enable Design 

The signals required to generate the byte-write signals 
are shown in Table L 

State_Clock is the inverted version of the Syste~ Clock. 
It is used to drive the state registers in the CY7C330 
PLD. 

System_Clock is the clock that drives the IV and 
CY7C330 input registers. All transaction information is 
valid on the rising edge of this clock. 
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Table 1. Byte Write Signals 

Name Mnemomc 

State_Clock St_Ck 

System_Clock Sys_Ck 

Advanced Write WRT 

Size(1:0) Size1, SizeO 

Adr(1:0) A1,AO 

Adr14 A14 

INULL INULL 

!Reset !Rst 

/Output Enable fOE 

!Write Enables - Bank A !WA3-!WAO 

!Write Enables - Bank B !WB3- !WBO 

Advanced Write 

Advanced Write (WRT) is asserted (set to 1) by the 
processor during the first data cycle of single or double 
integer store instructions, and during the third cycle of 
atomic load/store instructions. WRT is send out "un­
latched" and must be latched externally before it is 
used. 

Size(1:0) 

These two bits specify the data size associated with all 
transactions on the data bus. Size bits are sent out "un­
latched" by the IU. The value of these pins corresponds 
to the data size corresponding to the memory address 
on the current cycle. The size bits are valid at the same 
time as the address bus. Since all instructions are 32-
bits long, Size(1:0) is set to 10 during all instruction 
fetch cycles. Encoding of the Size bits is shown in Table 
2 

Address (1:0), Address 14 

The address bus is sent out "unlatched" and must be 
latched externally before use. If the Address Output 
Enable (/AOE) or Test Output Enable (/TOE) signals 
are de-asserted, the address bus tri-states. Address 
(1:0) is used to decode individual byte-write lines for 
writes within a 32-bit word boundary. Additionally, the 
CY7C330 design that follows, uses these lines to inhibit 
writes on unaligned boundaries. This feature could easi­
ly be modified to generate a memory exception, if so 
desired. Address 14 is used to select between Bank A 

Table 2. Size Bit Encoding 

Size 1:0 Transaction e 

00 Byte 

01 Halfword 

10 Word 

11 Double Word 

write-enables (lower 16K words) and Bank B write­
enables (upper 16K words) for the data RAMs. 

INULL 

INULL has two meanings. First, it always occurs during 
the second cycle of a store transaction. When it occurs 
under these conditions, the signal is telling the memory 
subsystem that the current memory transaction has 
proceeded too far to be nullified, i.e., it is too late to 
initiate a wait -state or memory exception. Second, if the 
INULL occurs during the first cycle of a transaction, it 
is telling the memory subsystem to ignore the transac­
tion entirely. This signal is of consequence only for 
store transactions that must be inhibited before the 
write occurs. 

!Reset 

This active low input to the CY7C330 PLD forces all 
outputs to the inactive state. It is a clocked reset. 

fOE 

This active low input to the CY7C330 PLD enables all 
outputs on the device. When high, all CY7C330 outputs 
are tristated. The ABEL source file containing the PLD 
equations for the CY7C330 Write-Enable Generator is 
shown in Appendix A. 

CY7C332 Output Enable Design 

The signals used to generate the required output enable 
signals are listed in Table 3. The design file for the 
CY7C332 PLD output enable circuit is provided in Ap­
pendix B and has been implemented using the Cypress 
PLD Toolkit, an assembler/simulator package 
developed by Cypress Semiconductor. 
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The design utilizes a CY7C332 to generate five instruc­
tion output enables and five data output enables for a 
Cypress SPARC-based non-cached memory system. 
Each output enable is decoded on a 16K word (word = 
32-bits) boundary. The CY7C332 is especially well­
suited for this application, since it incorporates input 
latch/registers with output decoding in a single PLD. 
When combined with a CY7C33O programmed as a 
write-enable generator, complete memory control is 
achieved in just two PLDs. 

Table 3. Output Enable Signals 

Name Mnemonic 

System_Clock Sys_Ck 

Size(1:0) Sizel, SizeO 

Adr(16:14) A16,A15,A14 

INULL INULL 

!Reset IRst 

/Output Enable- > 332 IOE 

/Output Enables - Inst IIOE4 - !lOEO 
Bank 

/Output Enables - Data !DOE4 - !DOEO 
Bank 

Inst Fetch Mem Exception !IFMEMx 

Pin 1 is the system clock, active on the rising edge. Pins 
2-4 are address bits 16-14, which are used in the output 
enable decoding. Pins 5 and 6 are the IU size bits. For 
instruction fetches, if SIZE is not equal to '10' (00) 
then IFMEMx is made active. The SIZE bits are ig­
nored for data fetches, since all alignment occurs in the 
IV. RD = 1 signifies that the following cycle is a read 
cycle. DXFER = 1 signals that the following cycle is a 
data transfer. Conversely, if DXFER = 0, the next 
cycle is a non-data (instruction) cycle. The INULL sig­
nal is not needed here, since the CPU ignores instruc­
tion/data fetched in the next cycle anyway. DOEx and 
IOEx are the data output enables and instruction out­
put enables, respectively. IFMEMx occurs when an in­
struction fetch is attempted with SIZE not equal to '10' 
(l-word). 

Conclusions 

This application note shows that a non-cached memory 
subsystem for the Cypress CY7C601 SP ARC IV can be 
easily implemented using the CY7C157, CY7C33O, and 
CY7C332 devices. The design presented provides 

128KB of instruction memory and 128KB of data 
memory with just ten components (eight CY7C157's, 
one CY7C33O, and one CY7C332). 

It is also important to realize that the memory could be 
easily expanded. The CY7C33O has four additional out­
puts, which could be used as write enables for an addi­
tional 64 KB of data memory. The CY7C332 design al­
ready provides output enables for 320 KB of data 
memory and 320 KB of instruction memory. 

For systems requiring even larger memory spaces, a 
trade-off can be made with the CY7C330. If the smal­
lest write boundary is changed to half-word (16-bits) in­
stead of byte, the CY7C33O can provide byte writes for 
384 KB of data memory. In a similar manner, for sys­
tems requiring only 32-bit writes to data memory, a 
single CY7C33O can provide the required write enables 
for 768 KB of memory! However, this would require an 
additional CY7C332 to decode output enables for data 
memory reads. 

To summarize, for a system supporting byte writes to 
data memory, only ten components are needed to build 
a 128KB data and 128KB instruction memory subsys­
tem. Using only one CY7C330 and one CY7C332, and 
adding only sixteen CY7C157s, a memory subsystem 
providing 320k bytes of instruction memory and 192KB 
of data memory can be constructed at a chip count of 
only eighteen devices! Table 4 below tabulates the 
power characteristics of the memory subsystem. 

Table 4. Memory Subsystem Characteristics 

Comoonent Quantity Power 

7C157-33 8 1.375W 

7C33O-50 1 O.99W 

7C332-20 1 O.99W 

TOTAL 10 13.0W 

6-5 



'ir~OR ========M;;;;e;;;;m;;;;o;;;;ry;;;;;;;S~y;;;;st;;;;e;;;;m;;;;D;;;;e;;;;s;;;;;ign;;;;;;;fi;;;;o;;;;r;;;;th;;;;. e;;;;';;;;C;;;;6;;;;O;;;;1;;;;S;;;;P;;;;i\R=C;;;;·;;;;P;;;;r;;;;oc;;;;e;;;;s;;;;so;;;;;;;;r 

Appendix A. ABEL CY7C330 Write Enable PLD Equations 

Module SPARC _ WRTENB flag '-r3' 
title 
UB~Y 'P330'; 
IC device 'P330'; 

St_Ck,Sys_Ck,INULL, Rst 
WRT,Size1,SizeO,A1,AO,A14 

Reset, Set 
IWA3,!WA2,!WAl,!WAO,!WB3,!WB2,!WBl,!WBO 
JOE 
!W A3.0E iStype. 'Pin'; 

SIZE = [Sizel,SizeO); ADR - [AI, AO); 

Pin 1,2,10,13; 
Pin 3,4,5,6,7,9; 

node 29, 30; 
Pin 28,27,26,25,24,23,20,19; 
Pin 14; 

'SPARC Write Enable Generator' 
"Enable various useful macros 

"Inputs 

"Outputs and Internal Node declarations. 

"Enable pin 14 as common OE for all outputs 

"Definitions for readability and test vector generation 
WA = [WA3,WA2,WAI,WAO); WB = [WB3,WB2,WBl,WBO); 

H,L,C,X,Z = 1,0,.C.,.x.,.Z.; 

equations 
WA3.0E = JOE; 

"Declarations 

"Tum on outputs 

WA3:= !Rst &!INULL &!A14 & WRT & (SIZE = = 0) & (ADR = = 3) #!Rst &!INULL &!A14 & WRT & (SIZE = = 1) & (ADR = = 2) 
#!Rst &!INULL &IA14 & WRT & (SIZE = = 2) & (ADR = = 0) #!Rst &!INULL &!A14 & WRT & (SIZE = = 3) & (ADR = = 0) 
#!Rst &!A14 & (SIZE = = 3) & (ADR = = 0)& WA3; 

WA2: = !Rst &!INULL &!A14 & WRT & (SIZE == 0) & (ADR = = 2) #!Rst &!INULL &IA14 & WRT & (SIZE = = 1) & (ADR = = 2) 
#!Rst &!INULL &!A14 & WRT & (SIZE = = 2) & (ADR = = O).#!Rst &!INULL &!AI4 & WRT & (SIZE = = 3) & (ADR = = 0) 
#!Rst &!A14 & (SIZE = = 3) & (ADR = = 0)& WA2; 

WAI: = !Rst &!INULL &!A14 & WRT & (SIZE = = 0) & (ADR = = 1) #!Rst &!lNULL &!A14 & WRT & (SIZE = = 1) & (ADR = = 0) 
#!Rst &!INULL &!A14 & WRT & (SIZE = = 2) & (ADR = = 0) #!Rst &!lNULL &!A14 & WRT & (SIZE = = 3) & (AoR = = 0) 
#!Rst &!A14 & (SIZE = = 3) & (ADR = = 0)& WAl; .. 

WAO:= !Rst &!INULL &!A14 & WRT & (SIZE = = 0) & (ADR = = 0) #!Rst &!INULL &!AI4 & WRT & (SIZE = = 1) & (ADR = = 0) 
#!Rst &!lNULL &!AI4 & WRT & (SIZE = = 2) & (ADR = = 0) #!Rst &!INULL &!A14 & WRT & (SIZE = = 3) & (ADR = = 0) . 
#!Rst &!A14 & (SIZE = = 3) & (ADR = = 0)& WAO; 

WB3: = IRst &!INULL & Al4 & WRT & (SIZE = =0) & (ADR = = 3) #!Rst &!INULL & A14 & WRT & (SIZE = = 1)·& (ADR = = 2) 
#!Rst &!lNULL & A14 & WRT & (SIZE = = 2) & (ADR = = 0) #!Rst &!INULL & A14 & WRT & (SIZE = = 3) & (ADR = = 0) 
#!Rst & A14 & (SIZE = = 3) & (ADR = = 0)& WB3; 

WB2: = !Rst &!INULL & A14 & WRT & (SIZE = = 0) & (ADR = = 2) #!Rst &!lNULL & A14 &WRT & (SIZE '" = 1) & (ADR '" = 2) 
#!Rst &!INULL & A14 & WRT & (SIZE = = 2) & (ADR = = 0) #!Rst &!INULL & A14 & WRT & (SIZE == 3) & (ADR = = 0) 
#!Rst & A14 & (SIZE = = 3) & (ADR = = 0)& WB2; 

WBI : = !Rst &!INULL & A14 & WRT & (SIZE '" = 0) & (ADR = = 1) #!Rst &IINULL & A14 & WRT & (SIZE = = 1) & (ADR = = 0) 
#!Rst &!INULL & A14 & WRT & (SIZE = = 2) & (ADR = = 0) #!Rst &!INULL & A14 & WRT & (SIZE = '" 3) & (ADR '" = 0) 
#!Rst & A14 & (SIZE = = 3) & (ADR = = 0)& WB1; 

WBO: = IRst &!INULL & A14 & WRT & (SIZE = = 0) & (ADR = = 0) #!Rst &!lNULL & A14 & WRT & (SIZE'" = 1) &(ADR '" '" 0) 
#!Rst &!lNULL & A14 & WRT & (SIZE = = 2) & (ADR = = 0) #!Rst &!lNULL & A14 & WRT & (SIZE = = 3) &. (APR = = 0) . 
#!Rst & A14 & (SIZE = = 3) & (ADR = = 0)& WBO; 
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Appendix A. ABEL CY7C330 Write Enable PLD Equations (continued) 

"Test vectors for WA outputs, WB outputs are similar except for A14 
"Note that the W A outputs are treated as active-high in the test vectors 
"since they were declared as active-low in the pin declaration sections. 

([!OE,!Rst,St_Ck,Sys_Ck,WRT,INULL,SIZE,ADR,AI4]-> [WA,WB]): "!OE,!Rst,StCk,SyCk,W, I, S,ADR,AI4] 
[0,0,0,0, X, X, X, X, X]-> [X,X]: [0,0,0,1, X, X, X, X, X]-> [X,X]: [0,0,1,0, X, X, X, X,X]-> [0,0] 

"WRT = 0 = WAx inactive 
[ 0,1, 0, I, 0, 0, x, x, 0 ] - > [0,0]: [0,1, 1,0,0,0, X, X, 0 ]-> [0,0]; 

"Halfword transactions to lower word (bytes 1:0) 
[0,1,0, I, 1,0, 1,0,0 ]-> [0,0]: [ 0,1, I, 0, I, 0, I, 0, 0] - > [03,0]; 

"Halfword write on byte boundaty results in IV generated alignment error. 
[0,1,0,1, 1,0, I, 1,0 ]-> [03,0]; [0,1, 1,0, 1,0, I, I, 0 ]-> [00,0]; "vl0 

"Halfword write to upper word 
[ 0,1, 0, I, I, 0, I, I, 0] - > [03,0]: 

"Halfword write to upper word 
[0,1,0, I, 1,0, 1,2,0 ]-> [00,0]; 
[ 0,1, 0, I, 0, 0, I, X, 0 ] - > [Oc,O]: 

[0,1, I, 0, I, 0, I, I, 0 ] - > [00,0]: 

[0,1, 1,0, 1,0, 1,2,0 ]-> [Oc,O]; 
[O,I,I,O,O,O,I,X,O]-> [00,0]: 

"Word write on byte bndaty results in IV generated alignment "error 
[ 0,1, 0, I, I, 0, I, 3, 0] - > [0,0]; [ 0,1, I, 0, I, 0, I, 3, 0 ] - > [0,0]; 

"Verify WA follows byte writes correctly [!OE,!Rst,StCk,SyCk,W,I,S,ADR,A14] 
[0,1,0, I, 1,0,0,3,0 ]-> [0,0]: 
[0,1, 1,0, 1,0,0,3,0 ]-> [OS,O]; 
[0,1, 1,0,0,0,0,2,0 ]-> [04,0]: 
[0,1, 1,0,0,0,0, I, 0 ]-> [02,0]; 
[0,1, I, 0, 0, 0, 0, 0, 0 ] - > [01,0]: 
[0,1, I, 0, 0, 0, 0, 0,0 ]-> [00,0]; 

[0,1,0, I, 1,0,0,2,0 ]-> [OS,O]: 
[ 0,1, 0, I, I, 0, 0, I, 0] - > [04,0]: 
[0,1,0, I, 1,0,0,0,0 ]-> [02,0]; 
[0,1,0, I, 0, 0, 0, 0, 0 ]-> [01,0]: 

"v10 

"v20 
"wrtbyte 3 
"wrtbyte 2 
"wrt byte 1 
"wrtbyte 0 
"writes are inactive 

"Verify single store works correctly [!OE,!Rst,StCk,SyCk,W,I,S,ADR,A14] for ease of programming only 

[0,1,0, I, 1,0,2,0, 0] -> [0,0]; 
[0,1,0, I, 0, 0, 0, X, 0 ]-> [Of,O]; 

"Verify W A responds correctly to double stores 
[0,1,0, I, 1,0,3, X, 0 ]-> [0,0]; 
[ 0,1, I, 0, 0, 0, 3, X, 0 ] - > [Of,O]: 

[ 0,1, I, 0, I, 0, 2, 0, 0] - > [Of,O]: 
[ 0,1, I, 0, 0, 0, 0, X, 0 ] - > [0,0]: 

[ 0,1, I, 0, I, 0, 3, X, 0 ] - > [Of,O]: 
[ 0,1, 0, I, 0, 0, 2, X, 0 ] - > [Of,O]: 

"Do the same thing for the WB outputs (no comments) 
[0,0,0,0, X,O, X, X, X]-> [X,X]: [0,0,0,1, X,O, X, X, X]-> [X,X]; 

"WRT = 0 = W AlB inactive 
[0,1,0,1,0,0, X, X, 1]-> [0,0]; [0,1, 1,0,0,0, X, X, 1] -> [0,0]; 

"Halfword transactions to lower word (bytes 1:0) 
[0,1,0,1,1,0,1,0,1]-> [0,0]; [0,1,1,0,1,0,1,0,1]-> [0,03]; 
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"v30 

[ 0,1, 0, I, 0, 0, 3, X, 0 ] - > [Of,O]; 
[ 0,1, I, 0, 0, 0, 2, X, 0 ] - > [0 ,0 ]: 

[0,0, I, 0, X, 0, x, x, X] -> [0,0]; 

;"vl Reset 

"vI Reset 
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Appendix A. ABEL CY7C330 Write Enable PLD Equations (continued) 

"Halfword write on byte boundaty - octUrencc results in IU generated alignment error. 
[0,1,0,1,1,0,1,1,1]-> [0,03]; "v10 
[0,1,1,0,1,0,1,1,1]-> [0,0]; 

"Halfword write to upper word 
[0,1,0,1,1,0,1,2,1]-> [0,0]; 
[0,1,0,1,0,0,1, X, 1]-> [O,Oc]; 

[0,1, 1, 0, 1, 0, 1, 2, 1] - > [O,Oc]; 
[0,1,1,0,0,0,1, X, 1]-> [0,0]; . 

"Word write on byte boundaty results in IU generated alignment "error 
[0,1,0,1,1,0,1,3,1]-> [0,0]; [0,1,1,0,1,0,1,3,1]-> [0,0]; 

"Verify WB follows byte writes correctly 
[!OE,!Rst,StCk,SyCk,W,I,S,ADR,A14] 
[0,1,0,1,1,0,0,3,1]-> [0,0]; "v2O 

[0,1,1,0,1,0,0,3,1]-> [0,08]; 
[0,1,1,0,0,0,0,2,1]-> [0,04]; 
[0,1,1,0,0,0,0,1,1]-> [0,02]; 
[ 0,1, 1, 0, 0, 0, 0, 0, 1] -> [0,01]; 
[0,1,1,0,0,0,0,0,1]-> [0,0]; 

[0,1,0,1,1,0,0,2,1]-> [0,08]; 
[0,1,0,1,1,0,0,1,1]-> [0,04]; 
[0,1,0,1,1,0,0,0,1]-> [0,02]; 
[0,1,0,1,0,0,0,0,1]-> [0,01]; 

"wrt byte 3 
"wrt byte 2 
"wrt byte 1 

"wrt byte ° 
"writes are inactive 

"Verify single store works correctly [!OE,IRst,StCk,SyCk,W, I, S,ADR,A14] for ease of programming only 
[0,1,0,1,1,0,2,0,1]-> [0,0]; [0,1,1,0,1,0,2,0,1]-> [O,Of]; 
[0,1,0,1,0,0,0, X, 1]-> [O,Of]; [0,1,1,0,0,0,0, X, 1]-> [0,0]; 

"Verify WB responds correctly to double stores 
[ 0,1, 0, 1, 1,0, 3, X, 1] -> [0 ,0 ]; [ 0,1, 1, 0, 1, 0, 3, X, 1] -> [0, Of ]; 
[0,1,1,0,0,0,3, X, 1]-> [0, Of]; [0,1,0,1,0,0,2, X, 1]-> [0, Of]; 

"Check that all W A's and WB's are inhibited when INUlL occurs with WRT 
[0,0,0,0, X, X, X, X, X]-> [X,X]; [0,0,0,1, X, X, X, X, X]-> [X,X]; 
[0,0,1,0, X, X, X, X, X ]-> [0,0]; [0,1,0,1,1,1,0,3, X ]-> [0,0]; 
[0,1,1,0,1,1,0,3, X ]-> [0,0]; [0,1,0,1,1,1,0,2, X ]-> [0,0] 
[0,1,1,0,0,1,0,2, X ]-> [0,0]; [0,1,0,1,1,1,0,1, X ]-> [0,0]; 
[ 0,1, 1, 0, 0, 1, 0, 1, X ) - > [0,0); [ 0,1, 0, 1, 1, 1, 0, 0, X) - > [0,0); 
[0,1,1,0,0,1,0,0, X) -> [0,0); [0,1,0,1,0,1,0,0, X) -> [0,0]; 
[ 0,1, 1, 0, 0, 1, 0, 0, X] -> [0,0]; 

"Double stores 

[ 0,1, 0, 1, 0, 0, 3, X, 1] -> [ 0, Of ); 
[0,1,1,0,0,0,2, X, 1] -> [ 0 ,0]; 

"v1 Reset 

;"write byte 3 
"write byte 2 
"write byte 1 
"write byte 0 

"writes are inactive 

[0,1,0,1,1,1,3, X, X ]-> [0,0]; 
[0,1,0,1,0,1,3, X, X ]-> [0,0]; 
[0,1,0,1,0,1,2, X, X]-> [0,0]; 

. [ 0,1, 1, 0, 1, 1, 3, X, X] - > [0, 0 ]; "Inactive 
[0,1,1,0,0,1, 3,X, X]-> [0,0]; 
[0,1,1,0,0,1,2, X, X ]-> [0,0]; 

" MORE REAUSTIC OCCURANCE OF DOUBLE STORE INUlL 
[0,1,0,1,1,0,3, X, ° ]-> [0 ,0]; 
[0,1,1,0,0,1,3, X, 0) -> [Of, 0]; 

"Double stores 
[0,1,0,1,1,0,3, X, 1]-> [0 ,0]; 
[0,1,1,0,0,1,3, X, 1]-> [0 ,Of]; 

[ 0,1, 1, 0, 1, 0, 3, X, ° ] -> [Of, ° ]; 
[ 0,1, 0, 1, 0, 0, 2, X, ° ] -> [Of, ° ]; 

[0,1,1,0,1,0,3, X, 1)-> [0 ,Of]; 
[0,1,0,1,0,0,2, X, 1]-> [0 ,Of]; 
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[ 0,1, 0, 1, 0, 1, 3, X, 0 ] - > [Of, 0 ]; 
[0,1,1,0,0,0,2, X, 0]-> [0,0]; 

[ 0,1, 0, 1, 0, 1, 3, x, 1) -> [0 ,Of]; 
[0,1, 1,0,0,0,2,X, 1]-> [0,0); 
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Appendix B. PLD ToolKit CY7C332 Output Enable PLD Equations 

CY7C332; 

CONFIGURE; 

Sys_Ck, 

A16(ireg), A15(ireg), A14(ireg), 
SIZEl(ireg), SIZED(ireg), 
RD(ireg), DXFER(node = 9,ireg), 

!OE(node = 14), 
!DOED(nenbpt),!DOEl(nenbpt),IDOE2(nenbpt), 
!DOE3(nenbpt),!DOE4(nenbpt), 

{Pin I} 

{Pins 2 thru 4} 
{Pins 5 and 6} 
{Pins 7 and 9} 

{Pin 8 is GND} 
{Pin 14 is out enb} 
{Pin 15 thru .. } 
{ .. 19 } 

lIFMEMx(node = 23,nenbpt), 

!IOED(nenbpt),!IOEl(nenbpt),!IOE2(nenbpt), 
lIOE3(nenbpt),lIOE4(nenbpt), 

{Inst Fetch Mem Excp} 
{Pins 24 thru .. } 
{ .. 28} 

EQUATIONS; 

IOE4 = RD & IDXFER & SIZEI & !SIZED & !A16 & !A15 & !A14; 

IOE3 = RD & !DXFER & SIZEI & !SIZED & !A16 & !A15 & A14; 

IOE2 = RD & !DXFER & SIZEI & !SIZED & !A16 & A15 & !A14; 

IOEl = RD & !DXFER & SIZEI & !SIZED & !A16 & A15 & A14; 

IOED = RD & !DXFER & SIZEI & !SIZED & A16 & !A15 & !A14; 

{ Recall that for Inst Fetches only SIZE(l:O) = '10' is allowed} 

IFMEMx = RD & !DXFER & !SIZEI & !SIZED 

RD & IDXFER & !SIZEI & SIZED 
RD & !DXFER & SIZEI & SIZED; 

{DOE's do not depend on SIZE bits, since IU does alignment internally} 

DOE4 = RD & DXFER & !A16 & !A15 & !A14; {A = OOO} 

DOE3 = RD & DXFER & !A16 & !A15 & A14; {A = OOl} 

DOE2 = RD & DXFER & !A16 & A15 & !A14; {A = 0l0} 

DOEI = RD & DXFER & !A16 & A15 & A14; {A = Oll} 

DOED = RD & DXFER & A16 & !A15 & !A14; {A = lOO} 

{end of file} 
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{A = OOO} 

{A = OOl} 

{A = OlO} 

{A = Oll} 

{A = lOO} 

{SZ = OO} 

{SZ = Ol} 
{SZ = ll} 
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CYPRESS 
SEMICONDUCTOR 

Cache Memory Design 

Introduction 
The first commercial use of a cache memory was in 
1969, the year mM introduced the IBM 360/85. Since 
that time, cache memory has spread from mainframes 
to minicomputers to microcomputers, thus becoming an 
accepted design technique for a broad range of comput­
ing machines. Cache memory was conceptualized as an 
engineering solution to unacceptably high main memory 
access times relative to CPU cycle time, so high that 
main memory access time was severely limiting overall 
machine performance. This solution dictates logical 
placement of a small, high-speed buffer between the 
CPU and main memory. If this buffer (which is hidden 
from the outside world, thus the name cache) is 
designed properly, the machine will appear to have a 
large amount of very fast main memory. As an example 
of the effectiveness of this approach, consider a high­
end machine like· the Amdahl 580 or IBM 3090. This 
caliber of machine has amain memory access time of 
200-500 ns and a cache access time of 20-50 ns, yielding 
an effective memory access time of 30-100 ns, a 5 to 7x 
increase in memory performance. 

The use of cache memory has become very widespread 
as evidenced by cache being directly supported or in­
cluded on-chip in a variety of microprocessors: the Na­
tional Semiconductor 32000 family, the Motorola 68000 
family, and the Intel 80386 and 80486, as well as all of 
the currently available RISC families such as the 
Cypress CY7C600 SP ARC family. Clearly, an under­
standing of the functional attributes and engineering 
tradeoffs of cache design is in order. 

The purpose of this application note is to serve that end 
in a general sense. The first section is a discussion of 
the cache design goal and methods of achieving that 
goal. Next, several main cache design factors are 

described, outlining the engineering tradeoffs or ad­
vantages/disadvantages of each factor. The cache con­
cept is then extended to a multilevel hierarchy, includ­
ing a discussion on the conditions for and techniques 
used in design of multilevel cache for uniprocessor and 
multiprocessor environments. The intent of this paper is 
to lay the groundwork for successive application notes 
that outline specific cache designs. 

Cache Design 

Cache Basics 
The objective of cache design is to reduce the effective 
(or average) memory access time to some predeter­
mined, acceptable level (generally determined from 
cost/performance tradeoff analysis). The mechanism 
through which this is accomplished can be identified by 
realizing that most processor reference streams are both 
highly sequential and highly loop-oriented. Therefore, a 
cache operates on the principle of spatial and temporal 
locality of reference. Spatial locality means that infor­
mation that will be referenced by the CPU in the near 
future is likely to be logically close in main memory to 
information that is currently being referenced. Tem­
poral locality means that information currently being 
referenced by the CPU is likely to be referenced again 
in the near future. Through these mechanisms, a cache 
is designed such that there is a high probability that 
CPU references will be located in the cache. Spatial 
locality of reference is serviced in the following manner: 
if the cache is referenced by the CPU, and does not 
contain the information requested (a "miss"), then the 
cache will access main memory and retrieve not only 
the information currently being requested, but also 
several additional locations that logically follow the cur­
rent reference (this large set of information is called a 
"line" , or "block"). In this manner, the next CPU refer­
ence has a high statistical probability of being serviced 
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by the cache, thus avoiding the relatively long access 
time of main memory. Temporal locality of reference is 
serviced by allowing information to remain in the cache 
for an extended period of time, only replacing the line 
in order to make room for a new one. There are several 
algorithms that can be used to manage cache line re­
placement, which will be discussed later. By allowing 
the information to remain in the cache and assuming 
sufficient cache size, it is possible for an entire loop of 
code to fit into the cache, thereby allowing very high 
speed execution of instructions in a loop. 

The Cache Design Goal 
The goal of a cache design is to reduce the effective 
memory access time as seen by the CPU. Effective ac­
cess time can be expressed as: 

teff=tcache+m xtmain 

Where: 

tcache effective "hit time" of cache C (ie, 
cache access time) 

m "miss rate" of cache C 
tmaln Main memory access time (penalty 

beyond tcache for main memory acces­
ses) 

Design of a cache revolves around: 

• Minimizing the time for the cache to service a "hit" 
• Maximizing the hit rate (obviously, hit rate = 1 -

miss rate) 

• Minimizing the delay due to a cache miss (included 
in tmaln) 

• Minimizing the delay caused by overhead as­
sociated with keeping main memory coherent, espe­
cially in multicache configurations (included in 
tmaln) 

Generally, all of the above factors are impacted in some 
way by each of the design parameters that will be dis­
cussed below. In an attempt to simplify the overall 
design process, it may be useful to view cache design 
from· the following "macroarchitecture" viewpoints, 
each of which can be broke~ down into one or more 
"microarchitectural" parameters: 

• Cache placement 
physical vs. virtual cache 

• Cache organization 
cache mapping method 
cache size 
cache line size 
split cache vs. combined cache 

• Cache management 
main memory coherence schemes 
line replacement algorithms 
fetching algorithms 

The next several sections will examine,.in the context of 
the macroarchitectural parameters, each of the microar­
chitectural aspects in detail, giving the performance 
trade-offs relative to the four cache performance factors 
identified above. After discussion of these design 
parameters, the critical parameters of cache design will 
be pulled together and a method of calculating ball­
park estimates for effective cycle time will be presented. 

Cache Placement 
As stilted earlier, the cache resides logically between 
the CPU and main memory. However, the cache is not 
the only functional block that resides in that location; an 
"address translation unit," usually called a Memory 
Management. Unit (MMU), also sits between the CPU 
and main memory. The purpose of the MMU is to 
manage the mapping of virtual addresses (which are 
generated by a program and are used by the CPU) to 
physical addresses (which are used to access main 
memory). Cache placement refers to the location of the 
cache relative to the MMU. Figure 1 shows two ways of 

1 a. Physical Cache System 1 b. Virtual Cache System 

Figure 1. Cache Placement 
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arranging the cache and MMU. The issue boils down to 
"Where in the system should the MMU delay occur?" 
Traditionally, caches have been referenced with physical 
addresses, as in Figure la. The advantage of a physical 
cache is that it is easier to manage. The disadvantage is 
that it is slower than a virtual cache, which is referenced 
by virtual addresses as in Figure lb. The reason that it is 
slower is that the address translation time is included in 
tcache, which means that the translation delay occurs on 
every memory reference. A virtual cache system allows 
address translation to occur in parallel with cache ac­
cess, thereby shifting the translation time penalty from 
tcache to tmain, where the overall negative impact that it 
has on telf will be reduced significantly if the hit rate is 
high. Cypress's CY7C600 SPARC family utilizes a vir­
tual caching scheme. The disadvantage of a virtual cach­
ing scheme is that the cache is more difficult to manage, 
since support must be included to detect and correct 
"aliases" (or synonyms). Aliasing occurs when two vir­
tual addresses translate to the same physical address, 
and can occur, for example, when two different 
programs in the CPU share pages placed in different 
locations in the two programs' respective address maps. 
This "problem" can be detected and fixed in a number 
of ways. The most complete solution is to add dual 
cache tags (cache tags will be explained later) - a set 
of virtual cache tags and a set of physical cache tags -
and use these two tables as a "cross-referencer" to 
detect and prevent aliasing. The CY7C605 CMU-MP 
uses this methodology. Another solution is to use an 
operating system detector that either forces shared data 
to the same cache line or marks shared data as non­
cacheable. The CY7C604 CMU uses this technique. 
The bottom line is that aliasing is correctable, and as 
the demands placed on cache systems by faster proces­
sor speeds becomes more intense, virtual caching 
schemes will become more popular. Finally, consider 
the concept that as integration levels increase, more and 
more microprocessors will be available with on-board 
cache. In fact, several CISC (Complex Instruction Set 
Computer) chips already contain on-board cache 
(32000, 68030, 80486), and several RISC architectures 
have been proposed or introduced as a single chip with 
on-board cache. As a result, virtual cache vs. physical 
cache is likely to become a silicon design issue, with sys­
tem-level designers focusing on methods of designing an 
efficient second-level cache to back up relatively small 
on-board cache. Second-level cache is defined hierar­
chically as a cache located between the cache accessed 
directly by the processor and main memory. In the 
event of a multilevel cache hierarchy, cache placement 
mayor may not be an option. If the cache is on the 
processor chip, chances are that this will force a physi-

cal level 2 cache. There is also the probability that a 
multiple chip processor family will be partitioned in 
such a way that it forces a physical level 2 cache. 

Cache Organization 
Cache organization has four basic parameters: cache 
mapping method, cache size, cache line size, and split 
vs. combined cache. Note that for a multilevel cache 
hierarchy, the trade-offs associated with cache organiza­
tion decisions regarding cache size, cache mapping 
method, and cache line size are multidimensional (and 
thus more complex) from the standpoint that choices 
made for the level 1 cache are likely to impact the per­
formance of the level 2 cache - and vice versa. 

Cache Mapping Method 

Since a cache can be viewed as a (small) moving win­
dow into portions of a (larger) main memory, it is 
necessary to devise a scheme for mapping main memory 
locations to and from locations in the cache. The type 
of mapping that is used impacts both cache hit time and 
miss rate. Generally, an increase in hit rate exacts a 
penalty on cache hit time. However, recent research 
supports the idea that if a cache is sufficiently large, the 
relative difference in miss rate for various mapping 
methods becomes very small, indicating that a suffi­
ciently large cache should be mapped according to the 
scheme that exacts the least penalty on cache hit time. 

The most widely used mapping schemes are based on 
the principle of associativity. A fully associative cache 
allows any location in main memory to be mapped to 
any location in the cache. An noway set associative 
cache (typically n = 2, 4, 8, etc) allows any particular 
location to be mapped to n locations in the cache. A 
direct-mapped cache allows any particular location in 
main memory to be mapped to only one location in the 
cache (i.e., it is a I-way set associative cache). The fol­
lowing discussion details each technique, beginning with 
the least complex (direct-mapped) and finishing with 
the most complex (fully associative). 

Direct Mapping 
Figure 2 illustrates direct mapping. Each location in 
main memory maps to a unique location in the cache. 
For instance, location 1 in main memory maps to loca­
tion 1 in the cache. Location 2 in main memory maps to 
location 2 in the cache. Location m in main memory 
maps to location m in the cache. Location m + 1 in main 
memory maps to location 1 in the cache, etc. A simplis-
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Figure 2. Direct Mapping 

tic direct mapped cache implementation is shown in 
Figure 3. A direct-mapped cache consists of a data 
memory, a tag memory, ·and a comparator. The size of 
the data memory (which contains the cached data and 
instructions) is defined as the cache size. The tag 
memory is used to determine if the line being addressed 
by the processor is actually in the cache (via use of the 
comparator). The address is split into three fields: a tag 
field, an index 'field, and a word-offset field. The tag 
field consists of the higher-order bits of the address. 
The Index field is used to address the tag memory in 
order to see if the line being accessed is indeed the line 
that the processor desires. This mechanism ensures 
that, for example, data from (desired) cache location 
2m + 4 is retrieved instead of data from cache location 

'--________ ---' DATA OUT 

Figure 3. A Direct-Mapped Cache 

4m+4 (which would reside in the same location in the 
cache). The line size is defined as the basic ~t of 
transfer between the cache and main memory .'and is 
typically 16, 32, 64, 128, etc bytes. The number of bits in 
each field can be deciphered as follows: 

i=logz(# cache tag entries) 

w=logz(line size) 

i+w=logz(cache size) 

t=(# address bits)-i-w 

The cache functions in the following way: When an ad­
dress is presented to the cache, the bits of the index 
field are used to address the tag store. The tag is ac­
cessed, and the tag contained in the location addressed 
by the index field is presented at its outputs. This tag is 
compared with the reference tag, while also checking to 
see that the status bits (i.e., VAUD, DIRTY, etc.) are 
all right. In parallel with the tag access· and status 
check, i + w bits are used to address the data memory, 
with the accessed word being placed in the DATA 
OUT buffer. If the tags match and if the status bits 
check out all right, MATCH OUT is asserted, indicat­
ing that the information retrieved from the data 
memory is correct (a cache hit). If' the tags do not 
match or if the status bits do not check out all right, 
MATCH OUT is deasserted (indicating that the data in 
DATA OUT is invalid and, therefore, a cache miss) 
and the correct data is retrieved from main memory. 
Consequently, a direct-mapped cache has two critical 
timing paths: 

1. Read-data: accessing the data memory & pass­
ing the word to the DATA OUT register. 

2. Asserting the MATCH OUT signal if the status 
bits are all right and the retrieved tag matches 
the reference tag. , 

Accordingly, cache access time for a direct-mapped 
cache is limited by the slower of paths 1 and 2. 

Set Associative Cache Mapping 
Figure 4 illustrates how set associative mapping works 
for the 2-way set associative case. The cache consists of 
2 sets or banks of memory cells, each containing m 
lines. Location 1 in main memory maps to cache line 1 
of either set. Location 2 in main memory maps to cache 
line 2 of either set. Location m in main memory maps to 
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Figure 4. Set Associative Mapping 

cache line m of either set. Location m + 1 in main 
memory maps to cache line 1 of either set. Location 
m + 2 in main memory maps to cache line 2 of either 
set, and so on. In this manner, each location in main 
memory has 2 chances of being in the cache. This 
scheme allows, for. example, main memory locations 
m+z and 5m+z (where z is any integer) to coexist in 
the cache. This is an advantage in that it supports the 
principle of temporal locality of reference very efficient­
ly for small cache sizes. This advantage goes away, how­
ever, when the cache becomes sufficiently large. FigUre 
5 shows an implementation of an noway set associative 
cache where n = 2. Each of the sets, which are enclosed 
by a dashed block, contain the same logic that is inside 
the dashed block in Figure 3 (direct-mapped cache). 
Additionally, an OR function is included to assert 
MATCH OUT if either set contains a match. The 
decode function selects data from the bank containing 
the match, and asserts a control line to the mux, thereby 
allowing the matched data to propagate to DATA 
OUT. Two comments: First, extension of this topology 
to noway set associativity simply means having n sets of 
memory, and n-input OR function, an n-to-l decoder, 
and an n-to-l mux. Second, this is only one of several 
topologies. Another way of implementing the mux func­
tion would be to assert RAM output enables based on 
the outcome of the matching function. Yet another way 
would be to combine the OR and DECODE functions 
into one package (which could easily fit into a PLD). 
Obviously, there are more logic levels in a multi-way set 
associative cache than in a direct-mapped cache. A 
multiway set associative cache contains three critical 
timing paths: 

Figure S. A 2-Way Set Associative Cache 

1. Read-data: accessing the cache data memory in 
each of the sets. 

2. Asserting the MATCH OUT signal in one of 
the sets if the tag is matched and valid. 

3. Select-data: selecting the cached data from the 
set that matches (if there is a match). 

Intuitively, multiway set associative caches are slower 
than a direct-mapped cache because of the added logic 
delay associated with the select-data path. Therefore, a 
direct-mapped cache will exhibit a faster cache hit time 
at a lower system cost. 

Fully Associative Mapping 
Figure 6 illustrates fully associative mapping. With a 
fully associative scheme, any location in main memory 
can be mapped to any location in the cache. This 
scheme theoretically produces the highest hit rate be­
cause there is no possibility of "thrashing." Thrashing 
occurs when two or more blocks of data that map to the 
same location in the cache start replacing each other 
frequently. The end result is a drastic increase in terr 
due to increased miss rate. Thrashing becomes statisti­
cally unlikely, however, as cache size increases. Figure 7 

. illustrates a simplistic fully associative cache. As shown, 
the address accesses a CAM (Content Addressable 
Memory) bank that simultaneously searches all loca­
tions for a match. If a valid match is found, the cache 
data RAM places the requested information in DATA 
OUT. If a match is not found, main memory must be 
accessed for the correct data. Fully associative caches 
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Figure 7. A Fully Associative Cache 

are very expensive to build due to the fact that CAM 
cells are not readily available. Consequently, most 
caches are designed with direct or set-associative map­
ping, which can be realized with SRAM technology. 

Design Trade-offs: Direct vs. Set Associative Mapping 
The trend in cache design is toward larger caches. In 
the past, cache sizes of 8 KB to 16 KB were fairly com­
mon. Today, 64 KB is probably the average with many 
processors capable of supporting much larger cache 
sizes. As an example, consider the 80386. (a low-end 
processor) used in combination with the 82385 cache 
controller. The i82385 directly supports 32 KB cache 
size, and will indirectly support 64 KB and 128 KB 

cache. The '385 supports both direct mapped and 2-way 
set associative cache. When coupled with the Cypress 
CY7C184 Cache Data RAM (which was designed 
specifically for this application) a 32 KB cache can be 
realized with three chips - one 82385 and two 
CY7Cl84's. As another example, consider the Cypress 
CY7C600 SPARC family (a high-end processor family). 
This family supports direct-mapped cache in 64 kB 
"clusters," each consisting of one CY7C604 Cache 
Tag/Cache Controller/Memory Management Unit 
(CMU) and two CY7C157 16K x 16 Cache Data 
RAM's. Up to four clusters can be included per proces­
sor, effecting up to a 256 KB direct-mapped cache. 
Clearly, the industry trend is toward larger cache size. 

There are two basic reasons for this: First, semiconduc­
tor technology is now capable of easily supporting 64 
KB cache size with reasonable chip count and speed. 
Second, the emergence of multiple RISC (Reduced In­
struction Set Computer) architectures demand higher 
cache hit rate and faster cache hit time; in other words 
a large, simply designed (i.e., fewer logic delays) cache. 
These trends, larger cache size and faster hit time, tend 
to favor easier-to-design direct mapped cache. The 
basic trade-off is that as associativity (which is defined 
as the number of cache lines in which a given block of 
data may reside) is reduced, fewer lines are searched-on 
a memory reference. This provides a potential im­
plementation advantage in that as fewer lines are sear­
ched, logic delay paths disappear and the cache gets 
faster. The downside to this is that as associativity 
decreases, the number of lines which have identical tags 
that can be simultaneously resident in the cache also 
decreases. 

Valid arguments can be presented that support using 
set-associative mapping over direct mapping and vice 
versa. However, most researchers agree that the trend is 
toward direct mapping. There are two basic arguments 
against direct mapping: First, direct-mapped cache has a 
lower hit rate than a set-associative .cache of the same 
size. This is a true statement, but .is rapidly becoming a 
"don't care." CO!l,sider Figure 8.1 For small cache size, 
direct mappip,g exhibits a considerably higher miss rate 
than either 2-way or 4-way set associative mapping. But 
fodarge cache size (64 KB) the miss ratio difference 
between direct mapping and set-associative mapping 
becomes a fraction of 1%. Research presented in [Hill] 

1 Transcribed from the ACM Tranuction. po Computer ~m. 11/88, Vol. 6, No.4, "Cache Performance of Operating Systems and 
Multiprogramming Workloads", (Agrawal, Hennesy, Horowitz) 
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shows that, for an 8 KB unified instruction/data cache, 
the difference in miss rate for 2-way set-associative vs. 
direct-mapped cache is around 1.3%. That figure drops 
to around 0.5% for 32 KB cache. The end result is that 
for large cache size, the reduced logic delay inherent in 
direct mapping (specifically, elimination of the Select­
Data path) produces a cache that is faster and displays 
essentially the same hit rate as a similarly sized set as­
sociative cache. Thus, recent research supports the use 
of direct mapping. 

~f~=···~R=.=W~(~2)--------------~==========;-l 
-+- 4-W'q Set. "'-Oil 

20 -6- Z"''I'q Selt -.00. 

...... Direct Kapped 
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Cache Size (kB) 

Figure 8. Cache Miss Rate as a Function of 
Associativity 

The second argument against direct-mapped cache is 
that a direct-mapped cache is more prone to "thrashing.» 
On the surface, this makes a good deal of sense. But for 
larger cache size, the statistical likelihood of this occur­
ring is so low that it becomes negligible. Additionally, 
for real-time applications where deterministic response 
time (to a memory reference) is critical, the possibility 
of thrashing can be completely eliminate<,i if cache 
entries can be "locked." 

Four sound arguments can be presented in support of 
direct mapping: First, direct-mapped cache is less ex­
pensive than set-associative cache due to elimination of 
the logic associated with the Select-Data function. 
Second, the cache access time for a direct-mapped 
cache is faster than for a set associative cache due to 
elimination of logic delays associated with the Select­
Data function. Third, terr is generally lower for a direct 
mapped cache than for a set associative cache for suffi­
ciently large (generally 32 KB) cache. size because tcache 

is reduced and delta-m is negligible. Finally, there is no 
need for implementation of a cache line replacement 
policy for a direct-mapped cache since direct mapping 
is a one-to-one relationship (cache replacement policies 
will be discussed later). 

Cache size 

Cache size is perhaps the single largest influence on 
miss ratio, and also the most difficult to quantify in 
terms of miss ratio impact since the size of cache 
needed is so closely related to the principle of locality 
of reference and therefore the software workload. In 
general, however, a larger cache has a lower miss ratio. 
But large cache is also significantly more expensive to 
build given ·the relatively higher cost of fast SRAMs. In 
addition, mindlessly increasing the size of the cache can 
actually result in a performance drop. This performance 
drop may be the result of an increase in output loading 
due to fan-in/fan-out limitations or the increase in cache 
hit processing time due to added logic delays necessary 
to manage a larger cache. Given the current state of 
semiconductor technology, cache sizes of 64KB are easy 
to achieve, which is generally large enough to allow a 
cache to be designed with a 96% hit rate. 

For multilevel cache hierarchies, a level 2 cache must, 
in general, be very much larger than the level 1 cache in 
order to be effective. Research results presented in 
[Short, Levy] indicate that addition of a second level of 
cache can provide a worthwhile performance increase 
given the proper combination of small-fIrst-level cache 
and slow main memory. 

Cache Line Size 

Cache line size, which is defIned as the basic unit of 
information transfer between the cache and main 
memory, ranks second, right behind cache size, as the 
parameter that most affects cache performance. Proper 
choice of line size is important because it impacts both 
miss rate and tmain. Figure 9 presents data that has been 
transposed from [Smith]. Note that for a given cache 
size, increasing the line size reduces miss rate. But 
eventually miss rate begins to increase with larger line 
size (see the 2 KB curve in Figure 9). Cache line size 
also has an impact on tmain. Line sizes that are too 
large have long transfer times (thereby increasing tmain) 
and create, difficulties in multiprocessing systems by 
generating excessive bus traffic. This is particularly true 
for primitive buses that do not support single-address, 
multiple-data cycle burst transfers. Newer bus 
protocols, such as Futurebus and Cypress's Mbus 
(Module bus), allow larger line sizes with less impact on 
tmain due to their burst transfer capabilities. Additional­
ly, larger line sizes tend to effect a degree of "memory 
pollution." Memory pollution occurs when information 
is loaded into the cache, but is never referenced by the 
processor. 
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Figure 9. Cache Miss Rate as a Function of Line Size 

For multicache organizations, having a level 2 cache line 
size that is greater than the level 1 cache line size has 
other advantages as well (that are not discussed in 
[Short, Levy)). Specifically, increased performance (due 
to the pre-fetch nature of the line-si7.e difference) arid 
lower cache tag cost. If the level 2 cache line size is 
greater than the level 1 cache line size, provision must 
be included to account for this. Generally, the ratio of 
level 2 cache line size to level 1 cache line size is set to 
be a power of 2. Recall that line size is defined as the 
basic size of information transfer between the cache and 
main memory (or between the level 1 cache and the 
level 2 cache). If the line size of the level 2 cache is not 
equal to the line size of the level 1 cache, the level 2 
cache controller must be able to communicate in two 
different sizes of "data chunks." Using this type of sec­
tor-oriented cache, coherency is maintained in sizes 
equal to.the level 1 cache line size (a "sub-block" of a 
level 2 cacht: line), meaning that the level 2 cache tag 
entries must include bits to track VALID, DIRTY, and 
INCLUSION (which indicates that the sub-block is 
present in the level 1 cache) for each sub-block. To il­
lustrate this, consider a 16 KB direct-mapped level 1 
cache with a 16 byte line size that is backed up by a 256 
l<B direct-mapped level 2 cache. If the level 2 cache 
line size is equal to the level 1 cache line size (e.g., 16 
bytes), the level 2 cache will have (256K/16) or 16K 
cache tag entries. The tag size in bits (if a 32 bit address 
is assumed) is then 32 - 10g2(16K) - 10g2(16) or 14 bits 
plus 3 bits (for VALID, DIRTY, and INCLUSION) for 
a total of 17 bits long. This equates to a cache tag size 

of 16K x 17 or 272 Kbits tag size. If, on the other hand, 
the level 2 cache line size is set at 64 bytes, the level 2 
cache will have 4K tag entries. The tag size would then 
be 14 bits plus the 3 status bits needed for each of the 4 
sub-blocks in the level 2 cache line for a total of 26 bits 
of tag. The total tag size would then be 4K x 26 or 104 
Kbits, meaning that the tag for the sector-based level 2 
cache would cost 40% as much as the tag for the non­
sector-based cache tag on a costJbit basis. Therefore, in 
addition to the possible performance benefit associated 
with having a level 2 line size that is greater than the 
level 1 line size, the cache will be less expensive as well. 

In summary, three factors influence cache line size 
choice: 

1. The type of bus protocol that is used. Use of a 
protocol that is capable of burst transfers (such 
as Futurebus or Mbus) will permit a larger line 
size with a potential increase in performance. 

2. The structure of main memory. In other words, 
make sure that the chosen line size will not cre~ 
ate a bottleneck at the main memory interface. 

3. Bus bandwidth/data contention considerations, 
especially in a multiprocessing environment. 

The design task 'boils down to choosing a line size that 
is big enough to effect a good miss ratio, but small 
enough to minimize tmain. Typically, cache line size is 
16, 32, 64, or 128 bytes. 

Split vs. C()mbined Cache 
In the past, computers have generally utilized a single 
cache for both instructions and data. It is possible, how­
ever, to design a system that has separate caches for 
instructions and data. Generally, as shown in Figure 10,2 
a unified instruction/data cache results in slightly higher 
performance through a lower miss ratio. The ad­
vantages of splitting the cache are: 

1. It makes design of the instruction cache easier 
since it's contents do not generally need to be 
modified. 

2. It may eliminate conflict between data and in­
struction accesses in a pipelined architecture 
(this would depend, of course, on the overall 
processor architecture). 

2 Transcribed from "CPU Cache Memories", 1984 (Smith, UniVersity of California, Bcrkcly) 
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There are also advantages to using a unified cache: 

1. Cache design is simpler for a unified cache be­
cause: (a) cache-to-main memory communica­
tions are one-to-one and (b )cache-to-processor 
communications are one-to-one. 

2. A unified instruction/data cache tends to make 
more efficient use of the cache, which is a 
limited resource. 

Cache Management 
Cache management, in this context, refers to the 
policies that are used to move information into and out 
of the cache. These policies are not directly related to 
cache organization, but they do have an impact on the 
complexity of the cache controller. Specifically, cache 
management refers to the policies that: 

1. Keep main memory coherent relative to cached 
information. 

2. Determine when new information should be 
loaded into the cache from main memory. 

3. Determine (if there is a choice available) which 
line in the cache should be replaced with the 
new information that is being loaded into the 
cache. 

Miss Rate 
30%I----------~=======;:_1 

25% 

O%~~~=~. 1 8 16 32 64 128 256 512 

Cache Size (kB) 

Figure 10. Miss Rate for Split Cache v.s. Combined 
Cache 

Main Memory Coherence Schemes 

When the CPU modifies data that is cached, main 
memory needs to be notified of the change at some 
point in time. Whether this happens "sooner" or "later" 
depends on the coherency scheme that is used. There 
are two mainstream coherency schemes: write-through 
and copy-back. Each policy has advantages and disad­
vantages, and each impacts both the complexity of the 
cache controller and terr. Using write-through, all writes 
to cached locations are immediately written through to 
main memory. This policy is the simpler of the two to 
implement, resulting in a less complex cache controller 
design. It can, however, result in a performance 
decrease since the CPU usually must be held pending 
completion of the write. Write-through can also cause 
problems due to increased bus traffic. The copy-back 
policy only updates the cache on CPU store cycles, up­
dating main memory only when it becomes necessary to 
replace a modified (or "dirty") line in the cache. This 
policy requires an extra bit in the cache tag array to 
keep track of whether a line is "clean" or "dirty." The 
main advantage of copy-back is that it generates less 
memory bus traffic, resulting in higher performance. 
The main disadvantage of copy-back is increased com­
plexity of the cache controller. Table 1 outlines the 
major advantages/disadvantages of both policies. Addi­
tionally, a system can implement "write allocation". 
Write allocation means that on a write miss, the data 
addressed by the write miss is loaded into the cache and 
then modified. With no write allocate, the data is writ­
ten to main memory only, and the cache is not updated. 

For multilevel cache systems, reducing the overhead re­
quired to maintain consistency between the level 1 
cache, the level 2 cache, and main memory is a critical 
design factor. The trade-off is one of cache controller 
complexity and the amount of bus bandwidth vs. cost. 
According to [Short, Levy], the level 1Ilevel 2 cache 
coherency strategy could result in a 15% cache system 
performance differential. In a 2-level cache, choice of 
write strategy can generally be made independently of 
the level, the choice of strategies (from highest perfor­
mance to lowest performance) being: 
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Level 1 

Copy-back 

Copy-back 

Write-through 

Write-through 

Level 2 

Copy-back 

Write-through 

Copy-back 

Write-through 



Table 1. Enlrlneerinl! Trade-offs: Write-throul!b vs. CODv-back 

+/- Write-througT, Copy-back 

+ Main memory always has the most up-to-date Produces a lower miss rate than write-through 
version of data - minimizing cache coherency for some applications 
problems for multicache confil!Ufations. 

+ Easy to implement in the cache controller. Frees up bandwidth on the main memory bus 
due to less freauent memorv undates. 

- Without buffering (eg, posted writes), CPU must Difficult to realize in multiprocessing systems 
wait for write to complete. 

- If write buffers are present, extra logic must be 
included to ensure that data will not be refer-
enced from main memory until it has been 
stored there. 

- Generates increased bus traffic, which is par-
ticularly bad for multiprocessing systems. 

Line Replacement Algorithms 
The function of the line replacement algorithm is to 
decide which entry in the cache will be replaced when a 
new line must be loaded into the cache. For a direct 
mapped cache this task is very straightforward, since 
each main memory location maps to a unique line in the 
cache. For set-associative cache (fully associative will 
not be discussed), there is some latitude as to which set 
will have a line replaced. The most common methods of 
replacing cache lines are Least Recently Used (LRU) 
and First In/First Out (FIFO). The LRU algorithm 
keeps track of which set contains the line that has gone 
the longest without being used, and replaces that line. 
The FIFO algorithm keeps track of which set contains 
the oldest line, and replaces that line. It is also possible 
to use a random cache line replacement algorithm, 
where the set containing the line to be replaced is 
chosen at random. Curiously, research presented in 
[Smith, Goodman] shows that random replacement 
generally produces higher hit ratios than either the 
LR U or FIFO algorithms. Figure 11 was created using 
data from [Smith, Goodman] and shows relative hit 
ratios for 4-way set associative LRU and random, 2-way 
set associative LRU and random, and direct replace­
ment (for direct-mapped cache). Two notes of caution: 
First, this data is fairly old (1983) and therefore does 
not show data for reasonable cache size (by today's 
standards). Second, this data was obtained by averaging 
trace data from three different C programs running 
under UNIX on a VAX-11/780, .so depending on this 
data absolutely would be inappropriate (especially for 
RISe machines). Rather, relative comparison of each 
policy and cache organization is most appropriate. 

due to cache coherency issues. 

Extra logic needed for DIRTY bit. 

Results in a more complex controller design, 
since it caches writes in addition to reads. 

Some interesting conclusions can be drawn from the 
data that is presented in Figure 11. First, the random 
replacement algorithm appears to provide nearly the 
same or better hit rates than LRU. This is significant 
because a random replacement algorithm is very much 
easier to design into a cache controller and requires less 
hardware. The second conclusion is that for 8 KB (and 
presumably larger) cache size, direct mapped cache of­
fers nearly the same hit ratio performance as 2-way and 
4-way set associative cache. This supports the con­
clusions drawn in the section on cache mapping techni­
ques. 
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Figure 11. Cache Hit Rate as a Function of 
Replacement Algorithm 
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Fetching Algorithms 

Most caches use demand fetching, where a new line is 
requested from main memory only when a CPU refer­
ence results in a cache miss. This method results in a 
less complex cache controller design. An alternate 
method, which can produce higher hit rates in some ap­
plications, is pre-fetching. Pre-fetching makes use of 
idle memory cycles to move data into the cache. Static 
pre-fetch is implemented at compile time, while 
dynamic pre-fetch occurs at run time. Sequential 
dynamic pre-fetching can cut miss rate in half according 
to [Smith]. [Kabakibo, et all] estimate a reduction in 
miss rate of as much as 75%-80%. This points to a sig­
nificant performance advantage, but it requires a large 
cache size to be effective. The reason for this is that 
dynamic pre-fetch can result in increased memory pol­
lution, and the statistical likelihood of this happening 
increases dramatically for decreasing cache size. There­
fore, if cache size is large and cache controller com­
plexity is not a major issue, inclusion of a dynamic pre­
fetch mechanism can result in a significant performance 
increase. In a multilevel cache hierarchy, one way to in­
crease the hit rate of the level 2 cache would be to im­
plement a pre-fetch mechanism. Since the level 2 cache 
hit rate is usually fairly low anyway (generally 50% to 
90%), memory pollution introduced by pre-fetch tends 
to be a don't care. This pre-fetch could be implemented 
with minimal hardware overhead by making the line size 
of level 2 greater than the line size of levell. 

Pulling it all together 
This section will provide a simplistic method of calculat­
ing terr and the performance improvement of cache vs. 
no cache given various assumptions and design choices. 
Note that this methodology only provides ''ballpark'' 
figures. More accurate figures could be obtained by 
simulating an actual design either directly or via a 
software model. 

As presented earlier, the goal of cache design is to 
reduce the effective memory aCcess time (terr) as seen 
by the CPU. Effective access time is defined as 

telf = tcache + m X tmain 

The following methodology does not take into account 
the effects of design choices on tcadle or tmain - ie, 
these numbers are either already known or will be es­
timated. This methodology does, however, take into ac­
count the following factors via their effect on miss rate: 

• Cache size 
• Cache line size 
• Cache mapping scheme 
• Main memory coherency algorithm 

This is accomplished by modeling the miss rate as 

m=MxMRM+CF 

where: 

m 
M 
MRM 
CF 

Cache miss rate 
"Raw" miss rate 
Miss Rate Multiplier 

Coherency Factor 

The raw miss rate is miss rate strictly as a function of 
cache size and cache line size, and is looked up in Table 
z3 (which assumes direct mapped cache). The Miss 
Rate Multiplier is essentially a "fudge factor" that ac­
counts for variations in miss rate between direct 
mapped and set associative cache organizations, and is 
looked up in Table 3. The Coherency Factor is included 
to account for variations in miss rate due to the choice 
of main memory coherency algorithm. Recall that the 
write-through policy does not cache CPU writes. Write­
through forces all CPU writes to inunediately pass 
through to main memory. Thus, CPU writes to a write­
through cache can be regarded as cache misses, mean­
ing that CF > O. If the cache uses write-through with 
posted write capability or uses the copy-back algorithm, 
CPU writes can be considered as cache hits, meaning 
CF = O. CF is obtained by determining (or assuming) 
the percentage of cache references that are writes, and 
then derating the miss rate by that factor. 

As an example, consider a single cycle 64 KB direct 
mapped cache with 32 byte line size that uses write­
through and with 30% of cache references being writes. 

3 Derived from" A Case for Direct Mapped Caches," IEEE Computer, 1988 (Hill) and "Une (Block) Size Choice for CPU Memories' IEEE 
Transactions on Computers, 1987 (Smith). ' 
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Table 2. Miss Rate as a Function of Cache Size and Cache Line Size 

Cache Size (kB) Cache Line Size (Bytes) 

8 16 32 64 128 256 

2 0.154 0.116 0.092 0.080 0.084 0.088 

4 0.116 0.086 0.074 0.064 0.061 0.065 

8 0.096 0.073 0.060 0.053 0.050 0.045 

16 0.086 0.064 0.054 0.047 0.044 0.039 

32 0.081 0.060 0.051 0.044 0.041 0.036 

64 0.079 0.057 0.050 0.043 0.040 0.035 
.> 

128 0.077 0.056 0.049 0.042 0.039 0.034 

256 0.076 0.055 0.048 0.041 0.038 0.033 

512 0.075 0.054 0.047 0.040 0.037 0.032 

Table 3. Cache Miss Rate as a Function of Cache Size and Mapping Method 

Mapping Method Cache Size (kB) 

2 4 8 

Direct MaDDed 1.000 1.000 1.000 

2-Wav Set Assoc. 0.975 0.980 0.986 

4-Way Set Assoc. 0.925 0.940 0.958 

Assume a IS-cycle main memory access. time. From 
Table 2, M = 0.050. From Table 3, MRM = 1.000. CF 
= 0.300 (given). Then . 

and 

m=MxMRM+CF 
= (0.050) (1.000) + 0300 
= 0.350 

terr = tcache + m x tmain 
= 1 + (0.350) (15) 
= 6.25 cycles 

meaning that this system will ac4ieve it 2.4x perfor­
mance increase if the cache as described is used. Note 
that the same system with a copy-back cache would 
achieve a terr of 1.75 cycles, meaning an 8.57x perfor­
mance improvement.. Finally, consider a 2-way set as­
sociative cache using copy-back. Now terr = 1.746 cycles 
and a performance improvement of 8.59 (which is less 

16 

1.000 

0.990 

0.970 

32 64 '128 256 512 

1.000 1.000 1.000 1.000 1.000 

.0.994 0~995 0.996 0.996 0.996 

0.982 0.985 0.988 0.989 0.989 
. 

than 0.2% better than a direct mapped cache). 

Multilevel Cache 

Recent advances in silicon technology have forced a 
new focus in cache design methodology. Increased gate 
densities in integrated circuits have helped Create the 
situation where it is now possible to include a small­
to-medium-sized cache on the CPU chip itself. Ex­
amples of this include the Motorola 68030/040, the Intel 
80486, and Intel's i860. Also, recent advances in silicon 
technology have permitted the introduction of ICs that 
support multiprocessing in a straightforward manner, 
meaning that multiprocessing systems will become more 
common. Examples of this include the Intel 80486 and 
the Cypress CY7C600 RISC family. Both of these issues 
tend to support a multilevel cache hierarchy. There are 
basically four factors that support a move to a multilevel 
cache hierarchy: 
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1. The actual implementation of the on-chip 
cache can force a cache partition. Specifically, 
a small or insufficiently large on-chip cache 
(with unacceptable or marginally acceptable hit 
rates) may force the addition of a second level 
of cache off-chip to achieve the performance 
objectives of a design. However, if the on-chip 
cache is designed improperly, a multilevel 
cache may be impossible or impractical. The 
on-chip cache must have the necessary "hooks" 
to permit communication between the flrst­
level and second-level caches. If these "hooks" 
are not present, the user will be forced to ac­
cept lower performance in return for higher in­
tegration. An example of this is the Intel i860. 

2. Detailed study of lerr supports the statement 
that a multilevel cache hierarchy can offer 
higher performance than a single level cache 
hierarchy, particularly if the difference between 
processor speed and memory speed is very 
high. This speed difference may not be created 
solely from increases in CPU speed, but could 
also be the result of larger (and therefore 
slower) main memory. 

3. Creating mUltiple cache levels also creates the 
possibility of functionally tuning each cache 
level for highest performance. For example, the 
first level cache .could be optimized to minimize 
lett, and the second level cache could be op­
timized for high hit ratio, reduced cost, or 
reduced interconnect traffic. 

4. Increased usage of multiprocessing may force a 
multilevel cache hierarchy. Generally, each 
processor needs it's own cache (especially if it 
is a RISC engine) to increase performance and 
decrease bus traffic (bus bandwidth being an 
especially valuable resource in multiprocessing 
systems). Addition of a second level cache can 
be used to further reduce lett, particularly if the 
level! cache does not meet performance objec­
tives. 

The issue that must be resolved is the cost vs. perfor­
mance tradeoff of multilevel vs. single level cache. This 
tradeoff is a function of the processor architecture, the 
on-board cache (if there is one), the structure of main 
memory, and the type of connection between the cache 
and main memory. Consequently, there are no set rules 
to justify inclusion of a multilevel cache hierarchy. How­
ever, recall that cache memory was created in the '60s 

PROlC£S'aR CHIP .7 ~----------------: 

CPU : 

L----,,-----' : 

Figure 12. Multilevel Cache Hierarchy for Single 
Processor Systems 

as an engineering solution to performance problems 
stemming from extremely fast CPU speeds relative to 
main memory access times. [Kabakibo, et al] state that 
this gap needs to be a "factor of 10" before inclusion of 
a cache is justified and extend this to a "factor of 40" 
before a multilevel cache is justified. The actual ratio 
that justifies inclusion of a multilevel cache hierarchy is 
a personal decision (generally as much a marketing 
decision as an engineering decision) and making con­
crete statements regarding justification is not valid. 

The balance of this paper will focus on multilevel cache 
hierarchies for uniprocessor and multiprocessor sys­
tems. In both cases, however, the hierarchy will be 
limited to two levels. 

Multilevel Cache in Single-Processor Systems 
The cache hierarchy that will be discussed in this sec­
tion is presented in Figure 12. In this scheme, the level! 
cache services processor references and obtains data on 
a miss from the level 2 cache. The level 2 cache services 
references from the level ! cache and obtains data on a 
cache miss from main memory. The level! cache can be 
inside or outside the processor chip. The design goal 
and methods of achieving that goal have not changed, 
there are simply more variables in the equations. The 
effective memory access time can be expressed as: 

where: 

ILl 

tu 
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Icff = ILl + mLl (IU + mu x Imain) 

Level! cache access time. 
Level 2 cache access time (penalty 
beyond ILl). 



mLl Levell cache miss rate. 
mu Level 2 cache miss rate. 
tmaln Main memory access time (penalty 

beyondtu). 

Minimizing the delay caused by overhead associated 
with maintaining cache consistency is much more com­
plex for multilevel cache hierarchies than for a single 
level cache hierarchy. When beginning a multilevel 
cache design, all of the previously discussed design fac­
tors must be carefully considered, but all of these design 
factors are now multidimensional problems. 

The miss rate approximation presented earlier can be 
extended for two levels of cache. As an example, con­
sider a system with a single cycle 2-way set associative 
level 1 cache that is 8 KB with a 32 byte line size and 
uses copy-back and a single cycle direct mapped level 2 
cache that is 128 KB with a 128 byte line size and uses 
write-through with 30% writes. Main memory access re­
quires 20 cycles. The effective memory access time for 
both levelland level 2 cache will be compared with 
access time for level 1 cache alone. 

First, mLl can be calculated from data in Tables 2 and 3 
to be: 

mu=Mu xMRMu +CFu 
= (0.060 )(0.986) + 0 
= 0.059 

Then 

teIT IUonly = tu + mu X tmain 
= 1 + (0.059) (20) 
= 2.18 cycles 

Next, mu can be calculated as: 

mu = Mu x MRMu + CFu 
= (0.039 )(1.000) + 0.300 
= 0.339 

Then 

teff I u & u = tu + mu (tu + mu X tmain) 
= 1 + 0.059 [1 + 0.339 (20)] 
= 1.46 cycles 

So, the percent performance improvement over using 
only the level 1 cache is 33%. Also, note that our model 
produces a telf of 1.459 cycles for a 2-way set associative 
level 2 cache, which results in trading a more complex, 
more expensive cache controller design for essentially 
IUl performance improvement over a direct mapped im­
plementation. Also, if the level 2 cache is direct­
mapped and uses copy-back, telf is 1.11 cycles, resulting 
in nearly a 50% improvement over using only the level 1 
cache. 

Multil~el Cache in Multiprocessing Systems 
Multiprocessing systems are becoming more and more 
prevalent in the industry. The obvious reason for this is 
to allow the rate of growth of computer system technol­
ogy to be higher than the rate of growth of processor 
technology. The single most performance-limitil)g factor 
in mUltiprocessing systems. is maintaining consistency 
between a global main memory (a global main memory 
being desireable to programmers) and multiple proces­
sors each having its own cache. Adding a second level 
of cache may aggravate this consistency problem, and in 
fact may cause a degradation in performance. However, 
a multilevel cache hierarchy can increase performance 
if implemented properly. 

Multicache Consistency in Multiprocessing Systems 

In multiprocessing systems, it is generally preferable for 
each processor to have a private cache to minimize bus 
traffic· and a common global main memory to support 
ease of programming. Since a cache system works by 
providing a (small) local window into a (larger) main 
memory, and since a multiprocessing environment 
generally consists of more than one of these local win­
dows, there is a possibility (in fact a definite prob­
ability) that more than one cache can contain the same 
data. Furthermore, if more than one cache shares a 
piece of data, and one of them should happen to change 
that piece of data, one or more of the caches will con­
tain incoherent data. Therefore, a set of rules (e.g., a 
multicache consistency protocol) must be created to 
manage the task of maintaining consistency. As 
described earlier, maintaining coherence in a uniproces­
sor system with a single level of cache is fairly simple 
because coherence only needs to be maintained be­
tween one cache and main memory, and can be realized 
by implementing the copy-back or the write-through 
protocol. The consistency problem is more complex in 
multiprocessing systems where each processor has a 
private cache because consistency must be maintained 
between a cache, its "sibling" caches, and main 
memory. The consistency problem in this case (while 
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more complex) is well dermed and has well-known solu­
tions. Typically, for a multiprOcessing system with a 
large number of processing elements, a software consis-" 
tency protocol is implemented. For systems with a 
small-to-medium number of processing elements, a bus­
based protocol is usually implemented. Addition of a 
second level of cache tends to aggravate the consistency 
problem by introducing another level at which consis­
tency must be maintained. Since multicache, multi­
processor topologies have some combination of multiple 
level 1 caches interfacing to a single level 2 cache 
and/or multiple level 2 caches interfacing to a co=on 
global main memory, there must be a component in the 
effective memory access time equation to account for 
time wasted while attempting to gain access to a 
"parent memory." Therefore, the effective memory ac­
cess time equation for mUltiprocessing systems with 
multilevel cache hierarchies contain an additional term 
to account for "consistency management traffic." The 
position at which this time delay enters the equation 
depends on the topology used. Minimization of this 
contention delay as well as minimization of the delays 
caused by consistency management is critical to cache 
design in multiprocessing systems with a multilevel 
cache hierarchy. The rest of this section will consist of a 
discussion of how this extra level of coherence manage­
ment impacts system performance. 

TOPOLOGY A 

Three different mUltiprocessing topologies are 
presented in Figure 13. Most authors agree that the level 
2 caches should be supersets of their children caches. In 
this manner, the coherence management protocol can 
be moved as far away from the processing element as 
possible, thus allowing the level 2 caches to shield the 
level 1 caches from unnecessary blind checks and in­
validations that may propagate up from main memory. 
The Multilevel Inclusion (MLI) Principle is stated for 
set associative caches in [Baer, Wang]. As stated, MLI 
can be achieved if the degree of set associativity of a 
parent (level 2) cache is greater than or equal to the 
product of the number of its children (level 1) caches, 
their degree of set associativity, and the ratio of their 
block sizes. Expressed mathematically: 

AlILls 
Set Associativityu = L [ Set AssociativitYLl 

Line Sizeu 
x Line SizeLl ] 

Note that MLI is not a requirement in multicache 
designs, and furthermore, the scheme proposed in 
[Baer, Wang] is only one of several ways to achieve 
MLI. As will be shown, MLI as stated in [Baer, Wang] 
is very restrictive and results in an extremely complex 
and expensive level 2 cache design. As an example of 
this, consider that to enforce MLI according to the 

TOPOLOGY B 

TOPOLOGY C 

Figure 13. Multiprocessing Topologies with Multilevel Cache Hierarchies 
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scheme presented in [Baer, Wang], the example given in 
the section on Multilevel Cache in Single Processor sys­
tems would dictate an 8-way set associative level 2 
cache. This may be an unrealistic goal from a cost 
standpoint, since an 8-way set-associative 128 KB cache 
would be very expensive to implement. However, for 
Topology A in Figure 13, MLI can be effected under the 
scheme presented in [Baer,Wang] if, for example, the 
level 1 cache is a direct mapped 16 KB cache with 16 
byte line size, and if the level 2 cache is a 4-way set-as­
sociative 256 KB sector-based cache with 64 byte line 
size. Additionally, using Topology A a simple cache 
coherence protocol such as copy-back or write-through 
can be implemented at the level 1 cache (which is 
generally small). Cost effectiveness may dictate a fairly 
large sector-based level 2 cache. Consistency among the 
level 2 caches is maintained on a level 1 cache line-size 
basis. All level 1 cache misses are serviced by a private 
level 2 cache. Only when a sub-block in a level 2 cache 
(that has its INCLUSION bit set) needs to be replaced 
does the level 1 cache need to be disturbed. Perfor­
mance can be increased dramatically if the bus can sup­
port direct data intervention (more on this later) and if 
the level 2 cache controller has a bus snooping 
mechanism that allows it to monitor bus activity and 
perform invalidations based on observed bus traffic. 
The effective memory access time for this topology is: 

teff = tLl + mLl [t1.2 + m1.2 (tmain + tbus,1.2-main)] 

where !bus, Ll-maln is defined as the time required for a 
given level 2 cache to acquire the bus. The advantage of 
this topology is that it is simple and fairly straightfor­
ward to implement. The main disadvantage of this 
topology is that the level 2 cache is not shared by 
several level 1 caches. 

Topology B, which depicts a multiport level 2 cache 
connected to multiple other level 2 caches via a bus, is 
probably the least desireable of the three topologies 
shown for several reasons. First, note that this topology 
contains two points at which contention may be ex­
perienced, resulting in an effective memory access time 
equation of: 

teff = ILl + mLl [(t1.2 + Icontention, Ll-1.2) 

+ m1.2 (tmain + tbus, l.2-main)] 

where tcontention, Ll-Ll denotes the arbitratiOn/conten­
tion penalty for a level 1 cache to be serviced by a level 
2 cache. Thus, this cache will be slower than topology 
A. Additionally, the logic required for arbitration at 

level 2 among the several level 1 caches will be expen­
sive; Finally, note that MLI is very difficult to obtain for 
this type of system. Consider a system with four 16 KB 
direct mapped level 1 caches that have a 16 byte line 
size co,nnected to a 256 KB level 2 cache that has a 64 
byte line size. Given these parameters, the scheme 
proposed by [Baer, Wang] would dictate that the level 2 
cache be 16-way set associative. 

Topology 3, which is a bus-based hierarchy, is probably 
the most attractive topology for systems with a small-to­
medium number of processing elements. Using this 
scheme, MLI is guaranteed through the use of broadcast 
invalidations. The effective memory access time for this 
topology is given by: 

teff = tLl + mLl [(t1.2 + tbus, Ll-1.2) 

+ m1.2 (tmain + tbus,1.2-main)] 

where !bus, Ll-Ll is defined as the time required for a 
given level 1 cache to acquire the bus between the level 
1 caches and the level 2 cache. If the buses shown are 
architected properly (like Futurenet or MBus), bus traf­
fic can be reduced to a minimum. The disadvantages of 
this topology are that it introduces greater hardware 
complexity, and that it really needs VLSI chips to be 
manageable (VLSI solutions such as this are available in 
the Cypress CY1C600 family). With a good bus 
protocol, the amount of bus traffic will still limit the 
number of resources that can share the bus. Even with 
these disadvantages, a bus-based multilevel cache 
hierarchy appears to be the most promising in terms of 
cost and performance considerations. 

Multilevel Cache in SPARC Multiprocessing System 
The Cypress CY1C600 RISC microprocessor family 
contains full support for multiprocessing, including an 
excellent bus-based multicache consistency mechanism. 
This section will cover the CY1C600 family members 
that comprise an "MP Cluster"; specifically, the 
CY1C601 Integer Unit (IU), the CY1C602 Floating 
Point Unit (FPU), the CY1C605 Cache Tag-Cache 
Controller-Memory Management Unit for Multi­
processing (CMU-MP), and the CY1C151 16K x 16 
Cache RAM. In particular, the features of the CY1C605 
CMU-MP that support multicache consistency will be 
highlighted. Additionally, a section is included on Mbus. 
Finally, a SP ARC multiprocessing system will be ex­
tended to a multilevel; cache hierarchy (demonstrated in 
two topologies). These topologies will then be ex­
amined, with a focus placed on implementation and 
performance advantages/disadvantages. 
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The SPARC Multiprocessing Cluster 

As presented in Figure 14, the basic SPARC Multi­
processing (MP) cluster consists of a CY7C601 IU, a + 
CY7C602 FPU, a CY7C605 CMU-MP, and two 
CY7C157 Cache RAMs. The cache size can· be in­
creased by adding up to three more CY7C605s and 6 
more CY7C157s as shown in Figure 15, thereby allowing 
cache sizes from 64 KB to 256 KB in 64 KB increments. 
Also, several MP clusters can be connected over the M­
bus (Module-bus) to form a multiprocessing system as 
shown in Figure 16. 

The CY7C601 Integer Unit. The CY7C601 IU is fully 
compliant with the SP ARC reference Instruction Set 
Architecture, contains full support for eight register 
windows, full IEEE. floating point co-processor inter­
face in addition to a second generic (user-defined) co­
processor interface. The device is available at 25 33 
and 40 MHz and is implemented in a 0.8 micron 'duai 
layer metal CMOS process. 

The CY7C602 Floating Point Unit. The CY7C602 FPU is 
a single chip SP ARC floating point processor with full 
IEEE double precision support, a dedicated register 
file, 64 bit data paths, and is available at up to 40 MHZ. 

The CY7CI57 Cache Data RAM. The CY7C157 Cache 
RAM is a custom design for CY7C604 and CY7C605 
ca~he systems (but is still a fairly generic cache RAM). 
It IS a fully synchronous (eg, self-timed) device that is 
organized as 16kx16, which is much better suited to 
cache design than "industry standard" asynchronous 
RAM's. The '157 is designed such that it will scale in 

CY7C601 
INTEGER UNIT 

(IU) 

MAIN MEMORY 

CY7C602 
flOATING POINT 

UNrT (FPU) 

Figure 14. The SPARC Multiprocessing Cluster 

speed, matching the clock rate of the IU and CMU. It 
is also implemented in 0.8 micron dual layer metal 
CMOS technology. 

The CY7C605 Cache and Memory Management Unit for 
Multiprocessing. The CY7C605 CMU-MP includes all of 
the features of the CY7C604 CMU (uniprocessing ver­
sion) plus extra provisions for mUltiprocessing. It is fully 
compliant with the SPARC Reference MMU Architec­
ture Standard. It has a 32-bit (4 GB) virtual address 
space and a 36-bit (64 GB) physical address space. Its 
memory management features include support for 4k 
multiple contexts, a 4 KB page size, an on-board 64 
entry fully associative Translation Lookaside Buffer 
(TLB), support for memory address protection check­
ing, support for hardware table walking, and support for 
sparse address spaces with a 3-level page table map. 
For cache control, the CMU contains 2K direct mapped 
virtual cache tag entries and support for 32 byte line 
size, meaning that it can manage a 64 KB direct 
mapped cache. It also has support for either write­
through with no write allocate or copy-back with write 
allocate. Copy-back with write allocate poses no perfor­
mance degradations since the CMU has a full 32 byte 
cache read buffer. The CMU is also capable of posted 
writes via an on-chip 32-byte write buffer, which sup­
port fully buffered STORE DOUBLEs. The advantage 
of this, of course, is that it increases the performance of 
the cache when a write miss is encountered by allowing 
the main memory update to occur in the background. 
The CMU also contains a cache lock mechanism, which 
allows entries to be locked in the cache thereby ena­
bling deterministic response time for real-time applica­
tions. The CMU also provides for five levels of cache 
flushing. It has a 64 bit multiplexed address/data bus 
that provides the interface to Mbus. The CY7C605 
CMU-MP provides full alias detection and correction 
through use of both a virtual and physical cache tag 
array. The addition of physical tags, which are not 
present in the CY7C604 CMU-UP, serves two pur­
poses. First, thi$ second bank of cache tags acts as a 
reverse translation unit, allowing on-chip detection and 
correction of aliasing. Second, the physical tag array 
permits bus snooping to occur completely independent 
of the processor, which interfaces to the virtual cache 
through the virtual cache tag array. Bus snooping is a 
mechanism whereby the CMU monitors all activity on 
the Mhus, watching for invalidation broadcasts or re­
quests. for data from other caches in the system, and 
responds to them. The key advantage of this second set 
of tag entries is that it enables the bus snooping logic to 
be decoupled from processor traffic, resulting in a sub­
stantial performance increase. The CMU-MP contains 
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Figure 15. Fully Extended SPARC Cache 
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Figure 16. A SPARC Multiprocessing System 

full support for the Futurebus MOBSI cache consisten­
cy model. The MOESI (Modified, Owned, Exclusive, 
Shared, Invalid) model enables multiple caches to c0-

exist on a single bus and share a global main memory 
while guaranteeing multicache consistency. Using this 
methodology, each entry in a cache can be in one of five 
states: PRIVATE CLEAN, PRIVATE DIRTY, 
SHARED CLEAN, SHARED DIRTY, or INVALID. 
If an entry is located in only one cache in the system, it 
will be either PRIVATE CLEAN or PRIVATE 
DIRTY. If more than one cache shares unmodified 
data, they will all be in the SHARED CLEAN state. 
Once a cache modifies shared data, it marks the data 
SHARED DIRTY, broadcasts a invalidation message 
informing all other caches that have that particular 
piece of data to mark their entries INVALID, and im­
mediately becomes responsible for responding to any 

further requests for that particular piece of data. Note 
that any time a processor is in one of the DIRTY states, 
it becomes the "owner" of the data, and is responsible 
for servicing any requests for that data. F'mally, the 
CMU-MP supports direct data intervention and reflec­
tive main memory. Direct data intervention provides a 
significant performance increase over indirect data in­
tervention. To illustrate. the difference between direct 
and indirect data intervention, consider a MP system 
with a common main memory and, for simplicity, two 
caches. Cache A retrieves a . line of information from 
main memory and modifies it, thus becoming the owner 
of the data. At some point in the future, Cache B re­
quests the same piece of information. In a system using 
indirect data intervention, Cache A would inform Cache 
B that it had a miss and to attempt to gain access to the 
bus at some later point. Cache A would then seize the 
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bus and update main memory. Meanwhile, Cache B is 
spinning on the bus, trying to gain access while it's 
processor is on hold, awaiting the new data. When 
Cache A is finished updating main memory, it releases 
the bus. Cache B gains access, and begins to retrieve 
the data from main memory. Eventually, after a consid­
erable number of cycles, processor B is released from 
hold and permitted to continue. In a system using direct 
data intervention, the data requested by Cache B would 
be supplied directly by cache A, resulting in consider­
ably fewer hold cycles for processor B. Additionally, 
with a reflective main memory system, main memory 
would observe the transfer of information and update 
itself at the same time. With a non-reflective main 
memory, main memory would contain stale data relative 
to the cache's. 

MBus. This a fully synchronous 64-bit multiplexed ad­
dress/data bus that supports multiple bus masters and 
has a peak transfer rate of 320 MB/s at 40 MHz. All 
signals are sampled on rising clock edges. All signals 
are driven active and inactive. Mbus includes support 
for single address/multiple data cycle bursts in 16, 32, 
64, and 128 byte sizes with full retry support. Finally, 
central arbitration is separate from the master and 
slave. The type of arbitration scheme that is used is 
completely up to the user. The cache consistency model 
for the Mbus is based on the Futurebus MOESI model. 

Adding a Cache Hierarchy to SPARC MP Systems 

In this section, two possible multilevel cache implemen­
tations are presented for SPARC multiprocessing sys­
tems. For highest performance, both topologies require 
a level 2 cache controller that is more complex than the 
cache controller in the CY7C605. Specifically, the level 
2 cache needs to be capable of fully concurrent bus 
snooping and direct data intervention. In addition, it 
would generally be preferable that the level 2 cache 
have a larger line size than the level 1 cache. This 
means that the level 2 cache controller needs to be sec­
tor-based, thus adding to the complexity of the level 2 
cache controller. 

Figure 17 shows a single level cache extension topology. 
This topology forces the level 2 cache to manage cache 
consistency, which can be a performance benefit be­
cause consistency management is moved to the furthest 
possible point away from the processor, which tends to 
cause fewer hold cycles for the processor, thus increas­
ing performance. This topology would permit smaller 
level 2 caches. Accordingly, if speed of the level 2 cache 
is critical, this topology has a definite advantage be-

cause small caches are easier to optimize for speed. The 
main disadvantage of this topology is that the level 2 
cache is not shared by several level 1 caches, thus 
resulting in higher total system cost since each level 2 
cache will require its own controller. 

Topology 2, which is presented in Figure 18, is a multi­
layer bus-based hierarchy. This topology permits a com­
mon level 2 cache, resulting in lower cost than. topology 
1 since it does not contain multiple level 2 cache con­
trollers. However, a level 2 cache size of 2 MB or more 
will probably be required to achieve high system-level 
performance. As a result of this large cache size, this 
topology would probably result in a slower (perhaps 
multicycle) level 2 cache. If cost of the level 2 cache is 
critical, this topology is probably the best choice. 

To summarize, for performance-critical applications, a 
multicache hierarchy like topology 1 produces a faster 
second level cache but at a higher cost. For cost-sensi­
tive applications, topology 2 is best because it results in 
a lower device cost, particularly for a multi cycle level 2 
cache. 

Summary 
Cache design is becoming a very common design 
methodology, having become commonplace even in the 
design of personal computers. Basic cache design 
parameters and techniques have been extended to mul­
tilevel hierarchies in both single-processor and multi­
processor systems, both of which introduce an addition­
allevel of complexity to traditional cache design factors. 
Additionally, multilevel cache hierarchies tend to make 
cache coherence and consistency management more 
complex, especially in multiprocessor systems. Cypress 
is taking a leading role position toward solving these 
problems, as evidenced by the multicache consistency 
features that have been designed into our SPARC fami­
ly of products. The goal of Cypress Semiconductor is to 
allow our customers to leverage this high level of in­
tegration, making multiprocessing and multilevel cache 
systems realizable with the least amount of design effort 
possible. 

Glossary of Cache Memory Terms 
Arbitration time 
The time taken to determine which of simultaneous 
contenders for a service takes priority. 
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TOPOLOGY 1 
Figure 17. SPARC Single-Level Cache Extension Multilevel Cache Topology 

• • • 

L2 CACHE 

TOPOLOGY 2 
Figure 18. SPARC Bus-Based Multilevel Cache Topology 
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Associativity 

The number of information elements per set in a cache. 

Consistency (coherency) 

Agreement between shared contents of members of the 
memory system. 

Effective access time 

A cache performance metric giving the average time re­
quired to service a reference. 

Ljne (block) 

The basic unit of information exchange between a cache 
and main memory or between a parent cache and it's 
child(ren) cache(s). 

Miss rate 

A cache performance metric giving the probability that 
a reference will produce a miss. 

Page table 
A set of tables, which are stored in main memory, that 
translate virtual addresses to physical addresses. 

Physical address 

The actual hardware address of a piece of information 
in main memory. 

Placement algorithm 

The method used to determine where a block may 
reside in a cache; often selects the set of a reference. 

Reference 

A request by the processor to read or write a memory 
location. 

Set 
A collection of cache locations in which a line may 
reside. 

Virtual address 
An address generated by a program and later translated 
into a real address for main memory. 
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CYPRESS 
SEMICONDUCTOR 

SPARC as a Real-Time Controller 

Overview of Real-Time Computing 

A real-time system is one in which it is mandatory to 
react to external events as they happen. These systems 
are, by nature, event driven as they respond to external, 
asynchronous stimuli and must do so in a timely man­
ner. If logical correctness, as well as timing correctness 
are not satisfied severe consequences will result. While 
the need for logical correctness is obvious, the need for 
timing correctness arises due to the possible physical 
impact of the controlling system's activities. If a com­
puter controlling a satellite does not respond to an ex­
ternal event in time, the satellite may collide with a 
foreign object and be knocked out of its orbit. 

At the highest level, a real-time system can be viewed as 
one which acquires data and detects the occurrence of 
events by means of hardware inputs. These inputs are 
then processed with the results being transmitted to 
hardware outputs. The processing of this data is the job 
of the embedded computer. The control of the em­
bedded computer is the job of the real-time operating 
system. 

When defining a real-time system it is essential to parti­
tion the functions to be performed into individual units. 
These units are called tasks and are implemented as 
software modules that can be invoked to perform a par­
ticular function. Although there are usujilly many tasks 
associated with a real-time system, there generally are a 
limited number of processors to execute these tasks. 
This paper will concentrate on the simplest case where 
a single processor is involved. 

Since multiple tasks are competing for use of a limited 
resource, the processor, it is crucial that tasks be 
prioritized. The highest priority task that is ready to 

run at any given time, must actually be running. This 
will often lead to a case where a higher priority task 
becomes ready while a lower priority task is executing. 
In this case, the lower priority task must immediately 
be pre-empted and the higher priority task must take 
control of the processor. This is the concept of pre­
emptive scheduling and is essential in all real time sys­
tems. 

The real-time systems design considerations described 
in the previous paragraphs are the general behavior of 
a real-time system. In order to put this into perspective 
the following paragraphs will deal with specific ex­
amples. 

In this particular example, the following tasks are 
defined in prioritized order (task 1 through task 6). In­
cluded in this system is a real time clock that will 
generate an interrupt to the processor every 500 
microseconds. Refer to Table 1 for the CPU require­
ments of this example. 

Tasks 1-5 all have specific jobs that require a fixed 
amount of time. Task 6, in this case, will check for user 
commands and vary in the amount of time needed 
based on whether or not a user command is present. 

Table 1. CPU Requirements 

Task Duration 0 Seed 

1 35 uS 2000 Hz 

2 100 uS 1000 Hz 

3 1mS 333Hz 

4 200 uS 200Hz 

5 1mS 200Hz 
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Table 2. CPU Time Per Second 

Task Time! Invocations Total Time 
Invocation 

1 35 uS 2000 70mS 

2 100 uS 1000 lOOmS 

3 1mS 333 333mS 

4 200 uS 200 40mS 

5 1mS . 200 200mS 

Background 10ms Display 

Background 200ms Command 

By examining the above data, the following require­
ments of CPU time per second, for the individual tasks, 
are noted in Table 2: In this case tasks 1-5 are using 
743 mS, which leaves 257 m:S for the background task 
to execute. This means that the background task will 
execute at a worst case rate of 1.3 times: a: second. In the 
best case, frequency of the background task would be 
25 times a second, which means the display can be up­
dated 25 times a second, while user commands can only 
be processed at the rate of 1.3 per second. 

In this example, the overhead associated with switching 
processor contexts between tasks has not been taken 
into account. The state of the processor at the time of 
pre-emption is saved with each context switch. Then, 
the scheduler determines the next task to run. Finally, 
the state of the new task is loaded into the processor. 
In commercially availabie real-time operating systems 
the time required for a task switch generally ranges 
from 25 microseconds to. over 100 microseconds for 
some processors. 

Context Switch Overhead 

If, in the above example, a 25 microsecond task switch 
overhead is included, the following system behavior 
occur. Table 3 shows how one second of CPU time 
breaks down. 

In this case, over 14 percent of the total CPU time was 
spent on nothing but overhead; no useful work was 
done. 

The frequency of the background task in this case will 
only run at a best case frequency of 11 times a second, 
while the worst case frequency will only be once every 
other second. 

Table 3. 2S uS Co~text Switch OVerhead 

Tasks 1-5 

Switch Overhead 

Number of Switches 

Overhead 

Background Task 

743mS 

25 uS 

5733 

143mS 

114mS 

If the context switch overhead is increased to 35 
microseconds, another interesting thing associated with 
real-tinie systems occurs, as shown iriTable 4. 

Table 4. 3S us Context Switch Overhead 

Tasks 1-5 

Switch Overhead 

Number of Switches 

Overhead 

Background Task 

743mS 

35 uS 

5733 

200mS 

57mS 

Although it seems as if everything will work, critical 
timing parameters have been violated. In this particular 
case, task 5 will be scheduled to run its second time 
when it hasn't been allocated enough CPU time to 
complete its fIrst run. An.example C program to com­
pute context switch overhead is iri Appendix A. Context 
switching is only one of the many factors to take irito 
account when designing a real-time system. Another 
critical factor is interrupt latency. 

Interrupt Latency 

The requirement to meet externally imposed deadlines 
is at the heart of what is termed a real-time system. 
Real-time computing is that type of computirig where 
the correctness of the system depends not only on the 
logical resnlt of the computation, but also on the time 
at which the results are produced. A system must be 
fast as well as predictable. 

The term used to specify the predictability of the system 
is the worst case iriterrupt latericy . This is defIned as 
the maximum amount of time a system will take before 
respondirig to an external event. This parameter is 
usually a good indication of the worthiriess of a par­
ticular processor as a real-time controller. 

The iriterrupt latency directly effects two key factors of 
system performance, the guaranteed response time to 
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an event, and the guaranteed response time of any in­
dividual task. The response time to an event can be 
thought of as the maximum amount of time that will 
elapse before the system can identify that an event has 
occurred and respond with. the necessary action. An 
example would be detection of meltdown on a nuclear 
power plant. In this case, the processor would do the 
critical actions necessary to shut the reactor down from 
the interrupt handler without paying the time penalty 
of a context switch. The response time of a task is the 
maximum amount of time it takes to pass control from 
a lower priority task to a pre-empting higher priority 
task. Table 5 shows the system characteristics of the ef­
fect of interrupt latency in a real-time system. Many fac-

Table S. Effect of Interrupt Latency 

Event 

Task Switch 

Interrupt latency 

Res onse to event 

To pre-empting task 

Worst Case Time 

35 uS 

25 uS 

25 uS 

60 uS 

tors contribute to interrupt latency. The processor itself 
has a worst case interrupt response time. The memory 
subsystem may also contribute to interrupt latency. The 
operating system may be required to disable interrupts 
during critical sections of code, thus adding to interrupt 
latency. 

Interrupt response time varies between processors. 
Some processors are designed such that when an inter­
rupt occurs, the entire state of the machine is saved. In 
this case, the interrupt handler simply starts executing 
without having to worry about the context of the inter­
rupted task. While this may be convenient for the per­
son writing the interrupt handler, it introduces sufficient 
overhead and slows interrupt response time. Other 
processors simply vector to the interrupt handler and 
make the interrupt routine responsible for saving any 
part of the state of the interrupt task that it might use. 
This state must then be restored upon exit from the in­
terrupt handler. This is a good approach as no unneces­
sary overhead is introduced. The best approach in mini­
mizing interrupt latency at the processor level is one 
where the hardware has a dedicated set of registers 
reserved for interrupt handlers. With this approach, the 
interrupt handler need not be concerned with saving 
and restoring the interrupted tasks working registers. 
Another factor that must be taken into account is the 
latency of the memory system. In a design using 
dynamic memory, included in the interrupt latency is 

the worst case memory cycle timing for fetching of in­
terrupt handler instructions. In a cache system, the 
worst case timing would include the case of a cache 
miss. With the speed of processors in the 25 Mhz to 40 
Mhz ranges, failure to take these things into considera­
tion could have drastic effects. 

Just as important as the time it takes to switch tasks or 
respond to interrupts, is the window of time during 
which the operating system is unable to do these things. 
The ability for an operating system to do a context 
switch in 10 microseconds isn't useful if that operating 
system disables context switching for periods of 50 
microseconds or more. while doing something else. 
Some of the reasons an operating system might disable 
interrupts would be for placing a task in a ready queue, 
or when accessing a critical region while doing inter­
task communication, resource allocation, or task 
synchronization. 

When accessing a critical region, there must be some 
way of getting uninterrupted access to a shared variable. 
Although some processors have support for this in 
hardware, this is not always the case. The following is 
an example of the overhead involved when hardware 
support for uninterruptable access to shared variables is 
not present. The two tasks are arranged as shown in 
Table 6. 

In this example, two tasks are defmed. Task 1 will count 
the number of input pulses from an input stream. Task 
2 will read the total number of pulses every second, 
clear the count variable, and perform a series of opera-

Table 6. Format of Tasks 

Task 1 

count - > register 

register + 1- > register 

register- > count 

Task 2 

count - > register 

0-> count 

process based on count 

tions based on the total number of pulses. into the sys­
tem . If special care is not taken in the critical region of 
accessing the shared count variable, the following may 
occur: 

1. Task 1 has control J* count is at 200 * / 
count- > register 
register + 1- > register 
interrupt occurs 
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2. Task 2 gets c.ontr.ol (One second has elapsed) 

count- > register 
O->count 
execute based .on count 

3. Task 1 resumes 
register- > count 

It is .obvi.ous that a seri.ous pr.oblem has .occurred, the 
variable count contains a value .of 201 when it sh.ould 
be 1. This is a comm.on pr.oblem that must be .overcome 
in. a . mul~tasking envir.onment. The key t.o eliminating 
this IS umnterruptable updating .of shared variables. In 
process.ors with.out hardware supp.ort f.or this, the .only 
way t~ update a shared variable with.out the p.ossibility 
.of bemg pre-empted is by disabling interrupts. Table 7 
sh.ows m.odificati.ons. 

Table 7. Modified Format of Tasks 

Task 1 

disable interrupts 

count- > register 

register + 1- > register 

register- > c.ount 

enable interrupts 

Task 2 

disable interrupts 

c.ount - > register 

O->count 

enable interrupts 

execute based .on c.ount 

While this s.oluti.on will w.ork, and the maximum am.ount 
.of time in which interrupts are disabled is minimal 
~verything is n.ot as it seems. The maj.or pr.oblem is tha~ 
mterrupts can .only be disabled in supervis.or m.ode. 
This means that a s.oftware trap must be executed, the 
pr.o~ss.or must branch t.o a trap vect.or, change int.o su­
~efV1s.or m.ode, execute the few uninterruptable instruc­
tI.ons, then g.o back t.o where it .originally came fr.om. 
All this time that the pr.ocess.or is uninterruptable must 
~e taken into consideration when calculating w.orst case 
mt~rrupt l~tency. The above pr.oposed soluti.on is .only 
valid for smgle pr.ocessor systems. In a multiprocess.or 
system, s.ome f.orm of hardware l.ockout is essential. 

SPi\RC as a Real-time Controller 

~s real-time systems vary widely in requirements, it is 
Imp.ort~n~ .that a particular process.or chipset pr.ovide 
the fleXibility t.o meet the needs .of specific applicati.ons. 
It d.oes n.ot make sense to pay for a process.or which has 
a built in floating p.oint unit to do strictly integer .opera-

ti.ons.The same holds true when paying for a processor 
with a built in MMU when .only a,physical memory sys­
tem is used. The Cypress SP ARC chip set is specificallY 
designed t.o meet the needs . 
of individual applications with6tit f.orcing the designer 
t.o buy s.omething he d.oes n.ot need. Table 8 shows the 
SPARC family.of chips. These parts can be used in any 
combinati.on to make up a system t.ofit the desired ap­
plicati.on. 

Table 8. RlSC 600 Family· of SPARC Chips 

Device 

CY7C601 

CY7C602 

CY7C604 

CY7C157 

Descri tion 

Intege~ Unit 

Fl.oating P.oint Pr.ocess.or 

Cache Tag-C.ontr.oller! 
MMU 

Cache RAM 

Worst Case Processor Interrupt Response 
Time 
The CY7C601 has been designed to minimize interrupt 
latency at the pr.ocess.or level. The process.or dedicates 
eight .of its .one hundred and thirty-six registers strictly 
f.or use by interrupt handlers. When an interrupt .occurs, 
the interrupt routine aut.omatically gets a new set of 
eight registers with which t.o w.ork. On an interrupt, the 
process.or switches t.o supervisor m.ode, gets the new set 
of registers, and completes executi.on of the first instruc­
tion in the interrupt r.outine in a worst case time .of 14 
clock cycles. At 4OMHz' that is 350 nanoseconds. The 
pr.ogram counter and next program counter of the inter­
rupted task, are saved automatically in tw.o of these 
registers, with the remaining six registers at the disp.osal 
of the interrupt r.outine. Up.on return from the inter­
rupt, the state .of the interrupted task is automatically 
restored by the pr.ocess.or, this is done in tw.o clock 
cycles or 50 nan.oseconds at 4OMHz. 

Achieving Deterministic Response Time 

The CY7C604 CMU has tw.o special features, which 
helps t.o guarantee deterministic resp.onse for systems 
using either virtual .or physical addressing with or 
without cache memory. The MMU allows selected 
pages to be l.ocked into the Translation Lookahead 
Buffer (TLB). This ensures that critical pages of 
memory are always in main memory and the delay as-. 
sociated with a table walk is not incurred. In systems 
using cache memory, the CY7C604 provides a feature 
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allowing the cache to be locked. A user can load the 
cache with time critical code, such as interrupt hand­
lers and time critical tasks, and be sure that these 
routines will always be present in the cache. With these 
features, memory latency is no longer a problem and 
predictability is guaranteed. 

Semaphore Support in Hardware 

Included in the instruction set of the CY7C601 are two 
instructions that provide uninterruptable access to an 
external memory location. The SWAP instruction ex­
changes the contents of a selected register with the 
contents of the addressed memory location. The atomic 
load-store instruction moves a byte from memory into 
the selected register and then rewrites the same byte in 
memory to all ones. Both of the instructions are ex­
ecuted without allowing intervening asynchronous 
traps. Either of the two instructions can be used to cre­
ate a semaphore for accessing a critical region without 
the need to enter supervisor mode and disable inter­
rupts. The SWAP instruction would be used for count­
ing semaphores and the atomic load-store is ap­
propriate for a simple semaphore for critical regions. 

Alternate Register Models For Sparc 

The Cypress CY7C601 has a total of 136, thirty two bit 
registers. These are divided into a set of 128 local 
registers and eight globals. The way these registers are 
used is configurable by accessing a processor register 
called the Current Window Pointer (CWP). Two com­
mon models supported by commercially available com­
pilers and operating systems are the standard register 
windowing model optimized to minimize procedure call 
overhead, and an alternate model used to significantly 
reduce the time required for a context switch. 

Register Windowing Model 

In this mode of operation, the register file is divided up 
into a set of eight overlapping register windows. Each 
window contains a set of twenty-four local registers. The 
registers in each window are divided into three sets of 
eight registers referred to as INS, LOCALS, and 
OUTS. At any given time, only one window and the 
eight globals are accessible to the processor. The win­
dows are joined together in a circular stack with each 
window sharing its INS and OUTS with adjacent win-

dows. Two instructions are provided for rotating the 
windows between procedures. 

A "save" instruction is used with a procedure call to al­
locate the next window for the called procedure. Before 
executing the save instruction, the calling procedure 
would store the parameters to be passed in its OUT 
registers. Upon execution of the save instruction, the 
register set would be rotated such that the called proce­
dure would have access to the passed parameters in its 
IN registers. 

A "restore" instruction is used with a return from proce­
dure to restore the register set of the calling procedure. 
Before executing the restore instruction, the called pro­
cedure would store the parameters to be returned to 
the calling procedure in its IN registers. Upon execu­
tion of the restore instruction, the register set will be 
rotated back to its previous position with the returned 
parameters in the callers OUT registers. 

Because the processor logically provides new LOCALS 
and OUTS with each procedure call, local register 
values need not be saved and restored across calls. The 
overlapping registers also minimize the overhead of 
passing and returning procedure parameters as they are 
passed in registers as opposed to the main memory 
stack. 

Fast Task Switch Register Model 

In this mode of· operation, the register set is divided 
into four non-overlapping sets of twenty four registers. 
Three of the four register sets are dedicated to the 
three highest priority or time dependent tasks. The last 
set of registers is shared between all remaining tasks. 
Associated with each set of registers are a set of eight 
independent registers to be used by interrupt handlers. 
These registers are also used to store the state of the 
processor on a task switch. 

Using this register model, a task switch to any of the 
three highest priority tasks can be done in under a 
microsecond. A task switch to one of the other tasks 
can be done in less than three microseconds. 

When an interrupt occurs, the processor automatically 
switches register sets to access the interrupt registers 
corresponding to that particular task. If the interrupt in­
itiates a task switch, the state of the processor is saved 
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in the interrupt registers. IT the new. task is one of the 
three high priority tasks, its state is loaded from its 
dedicated interrupt registers and execution begins im­
mediately. In this case, the state of the machine is 
merely the PSR, PC, NPC and possibly a few other con­
trol registers. The general purpose registers have not 
been affected as they are dedicated to this task. 

If the new task is one which shares a set of registers, the 
state of the task previously using that register set is 
saved to memory and the state of the new task is loaded 
into the processor. In this case the state includes the 
minimal processor state as well as the twenty-four 
general purpose registers. 

Example 1 --- Switching to a higher priority task 

1)Interrupt occurs 
Automatically switches to interrupt registers 
PC and NPC saved in interrupt registers 

2) Save PSR and any other control register to interrupt registers 
3) Load the pointer to the new tasks interrupt registers into the C:WP 
4) Restore new tasks PSR and any other control registers 
5) Execute RETf (return from trap) 

Example 2 -- Switching to a lower priority task 

1) Interrupt occurs 
Automatically switches to interrupt registers 
PC and NPC saved in interrupt registers 

2) Save PSR and any other control registers to interrupt registers 
3) Load pointer to the shared set of working registers into the cw.p 
4) Save the registers to memory 

(these are the registers of the previous task using the window) 
5) Restore the working registers of the new task from memory 
6) Update the cw.p to point to the shared tasks interrupt registers 
7) Save the eight interrupt registers containing the state of the pre­
vious ta~k running out of these registers to memory 
8) Restore the state of the new task 
9) RETf (return from trap) 

As can be seen, each register model has certain ad­
vantages. Using register windowing significantly reduces 
both procedure call overhead and data bus traffic as 
parameters are passed in registers. This also has the af­
fect of caching local variables as each procedure get a 
new set of local registers. The price paid for this is in 
the context • switch overhead. In this case, all of the 
used registers, i.e. up' to 136, as determined by the Win­
dow Invalid Mask (WIM), a processor status register, 
must' be saved and restored on a context switch. 
When using the fast context switch register model, one 
does not get the benefit of register windowing i.e., ultra­
fast prOCedure calls. But, in return, gets the benefit of 

four separate register files and very fast context switch­
ing. In this mode, parameters are simply passed on the 
stack as is done on most other architectures. Each task 
is allocated twenty-four general purpose local registers 
and eight global registers which is the same as the total 
number of registers in most other architectures. 

Since the usage of the registers on the CY7C601 are 
configurable by software, these modes can also be 
mixed, allowing the benefits of both models. The 
SP ARC register set as well as the entire Cypress chip 
set has been designed to cover a wide range of applica-
tions efficiently. ' 
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Appendix A. Sample C Program to Computer Context Switch Overhead 

/* '" '" '" *****,..,.,,.,.. **** ****** .*.,..,..,.,,..,.. ** ***,..,..,..,.,..,... '" '" '" *.*"'* ** •• ** •• '" '" '" '" '" '" '" '" '" '" '" '" '" "' .. '" **.* *.* '" '" '" '" '" '" '" '" '" '" '" '" '" ** '" '" '" '" '" '" '" '" '" "',., '" '" '" / 
1* 0, 
'* This program is used for determining the overhead of context switching in a real-time system. This simulation does not take into 0, 
1* account interrupt latency, memory latency, or any of the other many possible forms of overhead associated with a realtime 0, 
1* system, but these can easily be added. The current version should be sufficient to give a good idea of how much time the kernel 0, 
1* is spending on context switching. 0, ,*.* '" '" '" .*.* '" *"'* '" '" '" '" '" '" ••••••••••• '" '" '" ••• ** •• '" '" '" '" '" '" **** .**** '" *.* '" '" '" '" '" '" "' ....... '" '" '" ••••••••••••• '" .* ... "' .. '" "':(I *.*. '" '" '" '" * .. "'; 
#include \c\ms\include\math.h 
#include \c\ms\include\stdio.h 
#define BCKGRND 100 
FILE °fp; int openfile; char fname[35); int numtasks; 
main (argc, argv) 
int argc; 
char *argv[); 

{ 
int iJ; 
int iterations; 
int curr_task; 
int time[I(0); 

int duration[I00); 
int frequency[I(0); 

int total; 
float background; 
int swtime; 
int switchh; 
int temp; 
int temp!; 
int sampfreq; 
float tempflt; 
float cs_time; 

create _fileO; 
temp = 0; 

1* get number of simulation points per second 0, 
while (temp = =0) 

{ 
place (7,4, "Enter the sampling rate in Hz (100 - 100(0) : "); 
locate (7,58); 
ceolO; 
iterations = 0; 

temp = getchar(); 
while (temp < >Oxa) 

{ 
if «temp> = 0x30) && (temp < = 009» 

{ 
temp = temp - 000; 
iterations = iterations 0 10; 
iterations = iterations + temp; 

} 
temp = getcharO; 

}. 
temp = 1; 
locate (22,5); 
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Appendix A. Sample C Program to Computer Context Switch Overhead (continued) 

ceolO: 
if «(iterations % 100) 1= 0) II (iterations = 100) II (iterations = 10000» 

{ 
temp = 0; 
place (22,5, "Error must be = 100 or 10,000 and a mult of 100"): 
} 

}, 

,. time in microseconds of one clock tick *' 
sampfreq = 10000' (iterations' 100): 

place (S,4,"Enter the context switch overhead in mi~nds : "); 
locate (S,5S); 
swtime = 0; 
temp = getchar(); 

while (temp < >Oxa) 

{ 
if «temp> = 0x30) && (temp < = Ox39» 

{ 
temp = temp - 0x30: 
swtime = swtime • 10: 

swtime = swtime + temp; 
} 

temp = getchar(); 

}, 

temp = 0; 
while (temp = =0) 

{ 
place (9,4," Enter the number of tasks (100 max) : "); 
locate (9,58); 
ceol(); 

numtasks = 0; 
temp = getchar(); 

while (temp <> Oxa) 

{ 
if «temp > =. 0x30) && (temp < = Ox39»; 

{ 
temp = temp - 0x30; 
numtasks = numtasks * 10; 

numtasks = numtasks + temp: 

} 
temp = getchar(); 

} 
temp = 1; 
locate (20,5); 

ceol(); if (numtasks > 100) 

{ 
temp = 0; 
place (20,5 ,"Maximum number of tasks is 100"); 
} 

}, '* tasks numbered 0 to n *' 
numtasks = numtasks - 1; 
for (i = 0; i = numtasks; i + + ) 
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Appendix A. Sample C Program to Computer Context Switch Overhead (continued) 

temp = 0; 
while (temp = =0) 

{, 
locate (i + 11,4); 
printf("Enter the frequency of task 0/0<1 in Hz",i); 
locate (i + 11,60); 
ceolO; 
frequency[i] = 0; 
temp = getchar(); 
while (tem< >Oxa) 

{ 
if «temp> = Ox30) && (temp < =0x39» 

{ 
temp = temp - 0x30; 
frequency[i] = frequency[i] * 10; 
frequency[i] = frequency[i] + temp; 
} 

temp = getchar(); 
} 

locate (20,5); 

ceolO; 
locate (21,5); 
ceol(); 
if (frequency[i] 0) 

{ 
if «iterations % frequency[iJ) ! = 0) 

else 

{ 
locate (20,5); 

printf (" Warning: %d and the simulator frequency: 0/0<1 are not multiples',frequency[i],iterations); 
place (21,5," Would you like to re-enter the value (not mandatory) (yIn) : H);, 
locate (21,70); 
temp = getchar(); 

tempI = getcharO; 

1* CR *1 
if «temp = ='Y') II (temp = =Y» 

temp = 0; 
else 

temp = 1; 

place (20,5," Frequency must be greater than zero H); 
temp = 0; 

} 

1* frequency[i] will be used with modulo operator to see when task ready *1 
frequency[i] = iterations I frequency[i]; 

1* integer divide *1 
} 

locate (20,5); 
ceolO; 
locate (21,5); 
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Appendix A. Sample C Program to Computer Context Switch Overhead (continued) 

ceolO; 
for (i = 0; i = numtasks; i + + ) 

{ 
locate (i + numtasks + 14,4); 

printf("Enter the duration of task %d in microseconds",i); 

locate (i+numtasks+14, 60); 
duration[i) = 0; 
temp = getchar(); 
while (temp< >Oxa) 

{ 
if «temp > = 0x30) && (temp < = (09» 

{ 
temp = temp - 0x30; 
duration[i) = duration[i) * 10; 
duration[i) = duration[i) + temp; 

} 
temp = getchar(); 

} 

'" init ialize current task "' 
curr_task = BCKGRND; 

1* init current task, task switch needed for 1st task background task time of execution *' 
background = 0; 

'* number of context switches "' 
switchh = 0; 

'" init total time left in this time s lice "' 
total = 0; 

1* check to see whether a disk file is to be opened *' 
if (openfile= = 1) 

iniUileO; 
c1s0; 
1* init time spent in individual tasks *' 
for (i = 0; i = numtasks; i + + ) 

time[i) = 0;, 

1* iterations start at 0 "' 
iterations = iterations - 1; 

1* ntain simulation loop *' 
for G = 0; j = iterations; j + + ) 

'" number of samples *' 
{ 

'" screen oup ut to show system didn't die *' 
if(G % 100)= =0) 
{ 
locate (10,6); 

printf (" Doing simulation loop 0/011 of 0/011 ", j,iterations + 1); 

}, 
total = total + sampfreq; 

'" increment clock time for each time slice scheduling of tasks *' 
for (i=O; i=numtasks; i+ +) 

{ 
1* check if task is scheduled to execute *' 
if (G % frequency[i)) = = 0) 

1* modu 10 operator "' 
if (time[i) = = 0) 
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Appendix A. Sample C Program to Computer Context Switch Overhead (continued) 

else 

'* has it completed from last time *' 
{ 
time[i) = duration[i); 

1* init time slice required *' 
if (openfile = = 1) 

fprintf(fp,"task%d is ready \n",i); 

'* hasn't completed previous scheduled time *' 
{ 
clsO; 
locate (10,6); 
printf (" Need a faster processor, check simulation file"); 

if (openfilc= =1) 
fprintf (fp," task %d has been scheduled again but has not completed",i); 

gato p1; '* abort simulation *' 
} 

I" print which clock tick in file *' 
if (openfile= =1) 

fprintf(fp, "%d:" J);, 

1* executing of tasks *' 
for (i = 0; i = numtasks; i + +) '* check for tasks 0 to n being ready *' 

{, 
if (total > 0) '* check if there is time to run the task *' 

if (time[i) > 0) 

1* is this particular task ready to run *' 
{ 
1* does a context switch actually take place or was *' 
if (i ! = curr_task) 

{ 
total = total. swtime; 

'* context switch time *' 
switchh = switchh + 1; '* II of context switches *' 

1* can task time slice be completed *' 
if (total = time[i)) 

{ 
if (openfile= =1) 

fprintf(fp,"%d",time[i); 
total = total· time[i]; 

'* time left in slice *' 
time[i) = 0; 

'* update ready list *' 
curr _task = i; 

'* mark as last task to run *' 
} 

'* can run portion of task *' 
else 
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Appendix A. Sample C Program to Computer Context Switch Overhead (continued) 

else 

1* use remaining time available in simulation slice "' 
if (total 0) 

total = 0; 

'* time still required by the iask *' 
time[i) = time[i) - total; 

'* time slice has expired *' 
} 

'" mark in sim me that a context switch has started for *' 
'" one task but a higher priority task has become ready *' '* and will has pre-empted the scheduled task *' 
else 

if (openfile= =1) 
fprintf(fp,"X"); 

1* mark state of processor *' 
curr_t ask = i; 
} 

if (opcnfile = = 1) 
fprintf(fp, "_H); 

if(opcnfile= =1) 
fprintf(fp,"-"); 

'* background *' '* if time left after all scheduled tasks have run, let bac kground task run *' 
if (total 0) 

{ 
1* check to see if background was last to use the processor *' 
if (curr_task 1= BCKGRND) 

{ 
switchh = switchh + 1; 
total = total· swtime; 
} 

curr_task = BCKGRND; 

'* set curr _task to background *' 
if (total 0) 

{ 
if (opcnfile= = 1) '-

fprintf(fp, "o/od" ,total); '* add to background task exec ution time "' 
background = background + total; 
total = 0; '* background takes all remaining time *' 
} 

else 
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AppendixA. Sample C Program to Computer Context Switch Overhead (continued) 

else 

if (openfile= = 1) 

fprintf(fp,"X"); 

if (openfile= = 1) 
fprintf(fp,"-"); 

if (open file = = 1) 
fprintf(fp, "\n"); 

/* screen output ./ 
cls(); 
for (i = 0; i = numtasks; i + + ) 

{ 
temp!lt = «(!loat)iterations + 1) / (!loat)frequency[iJ) * (!loat)duration[ij; 
temp!lt = temp!lt/l000; 
locate (i + 4,6); 
printf (" Total execution time for task o/oci : %6.2f ms",i,tempflt); 
} 

locate (numtasks + 6,6); 
printf (" There were %d context switc hes" ,switchh);, 

cs_time = «!loat) swtime * (!loat) switchh) /1000; 
locate (numtasks + 8,6); 

printf (" Context switch ave rhead : %6.2f ",cs_time); 
locate (numtasks + 10,6); 
printf ("Time available for background tasks : %6.2f ",background /1 000); 
pI: locate (numtasks + 15,6); 

printf ("Por more info look at simulation file H); 
locate (22,1); 
if (openfile = =1) 

fclose(fp ); 

/* screen utilities supported with ansi.sys clear screen utility */ 
cis () 

{ 
printf ("%c[ 2J" ,27); 
} 
ceol() 
{ 
printf ( "%c[K" ,27); 
} 
locate (row,col) 
int row,col; 
{ 
printf("%c[o/oci;o/ociH":n, row,col); 
} 
place (row,col,text) 
int row,col; char textO; 
{ 
locate (row,col); 

puts (text); 
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Appendix A. Sample C Program to Computer Context Switch Overhead.(continued) 

create_fileO 
{ 
inttemp,i; 
openfile' = 0; 
for (i=O;i#;i+ +) 

fname[i) = 0; 
c1s0; 
place (5,4,"Enter file to be created (Retu m for no file): "); 
locate (5,51); 
i = 0; 

temp = getchar(); 
if (temp=Oxa) 

{ 
temp = getchar(); 
while (temp < >Oxa) 

{ 
fname[ i) = temp; 
i++; 
temp = getchar(); 
} 

fp = fopen(fname, "w"); 
openfile = 1; 
} 

iniUileO 
{ 
int ij 
fp rintf(fp,"\n\n\n\n Simulation Results \n\n\n\n\n"); 
fprintf(fp," Tick "); 
for (i = 0; i = numtasks; i + + ) 

fprintf(fp,"taskO/od ",i); 
fprintf(fp,"background \n\n"); 
}, 
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CYPRESS 
SEMICONDUCTOR 

Using the CY7C330 as a Multi-channel Mbus 
Arbiter 

Introduction 

This application note discusses the use of the CY7C330 
as a bus arbiter for a Cypress SPARC CY7C600 RISC 
processor Mbus system. The Cypress CY7C330 is a 
high-speed synchronous Erasable Programmable Logic 
Device (EPLD) optimized for Finite State Machine 
(FSM) applications. The Cypress SP ARC system util­
izes a CY7C601 33MHz RISC processor, a CY7C602 
Floating Point Unit (FPU), four CY7C604 Cache Con­
troller and Memory Management Units (CMU) and 
eight CY7C157 16K x 16 cache RAMs make up a 256 
Kb cache. The arbiter uses a combination of techniques 
to resolve Mbus access contention for a system with 
four CMU bus masters. Refer to Figure 1 for a block 
diagram of the Mbus system. 

Figure 1. Mbus System Block Diagram 

TO LOWER SECTION 

Figure 2a. CY7C330 Block Diagram (Upper Halt) 

CY7C330 Brief Description 

The CY7C330 is a 66 MHz, high-performance PLD 
with 11 input latches, 17,000 programmable bits, 4 
buried state registers and 12 user-configurable output 
macrocells. It is manufactured using a CMOS 0.8 
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TO Uf!PER SECTION 

Figure 2b. CY7C330 BI!)ck Diagram (Lower Hall) 

micron, double metal processing technology that is UV 
erasable and is packaged in a 28-pin 300 mil Dual Inline 
or LCC/PLCC package(s). It can be partitioned into 
multiple functional blocks as shown in this application. 
The CY7C330 block diagram is shown in Figures 2a and 
2b. 

CLOCK 

I~RO I 1'--_--' 

I~R00 1<-_____ --' 

I~GTI 

IMGT0 

I~BB 

Figure 3. Mbus Multiple Request Sequence 

SIN(lE VRlTE ACCESS, NO VAn STATES 
IIBJ5 QOCK 

,\[]]{SS/Il.I.TA ~f---;---;----i--

I~ ~-~-~-;--~-~--

INfNJ'f ~ 

IIII{TRY 

1/IEffiffi 

II'ffi ---'L' _---:--_-,-~:----
",,"HUl$_*-IITlAWl~ 

llfl£ QOCK 

I~ 

INfNJ'f 

IflifTRY 

1/IEffiffi 

16-BYTE BlRST READ, (){ VAn STATE 

II'ffi ---.~. __ ~_~ __ ~_~~~ 
~NIJI$M!i~IMTl'fIl.E~"ll:PIW£~ 

Figure 4. Mbus Data Transfer Waveforms 

Mbus Description 

Mbus is a system bus which is defined to be a SPARC 
standard main memory interface for the Cypress 
SPARC Cache/Memory Management Unit device (the 
CY7C604). The "M" in Mbus stands for module and 
emphasizes the multi-processor module support that 
SP ARC offers. It is a high-speed synchronous, 64-bit 
multiplexed address/data bus that operates at the clock 
rate of the CY7C601. Mbus accesses are initiated by a 
MASTER and responded to by a SLAVE. Generally a 
bus transaction takes place between a MASTER and 
main memory, but in the case of direct data interven­

,tion, transactions can occur between MASTERs. The 
handshake between the 7C604 CMMU and the arbiter 
consists of a request line (MROO-3) and a grant line 
(MGTO-3) for each master. A busy line (MBB) is com­
mon to all mastt;rs and indicates that the bus is in use. 
Refer to Figure 3 for the multiple· Mbus request se­
quence. By design, bus mastership and resolution of 
multiple requests are performed outside of the realm of 
Mbus and SPARC. This allows the designer to imple-
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Figure 5. CY7C604 & CY7C330 Timing for Master 0 

ment any arbitration scheme that best fits the system re­
quirements. This application example describes only 
one such implementation. 

Mhus transfers are synchronous with respect to the sys­
tem clock. The data transactions across the bus consist 
of a single clock period address phase, and a multiple 
clock period data phase. Data is transferred in word 
(64-bit), multi-word burst, or atomic load store formats. 
All signals are valid and sampled on the rising edge of 
the system clock. The address phase is validated by the 
Memory Address Strobe (/MAS) signal and denotes the 
start of the actual data transfer. Bus states are indi­
cated by three status lines and convey the current bus 
operation as well as error status. Refer to Figure 4 for 
Mhus data transfer waveforms. 

Timing Considerations 

To meet the timing specifications of Mbus, the ar­
bitrator must be capable of: (1) accepting a request; (2) 
resolving access contention (if any); and (3) granting 
bus rights to a master in a single Mhus clock cycle. In 
this application, the arbiter, a 66 MHz CY7C330, will 
have its input registers running at the same clock rate 
(33 MHz) as the CY7C601 and CY7C604s. This allows 
the arbiter inputs to meet the timing requirements of 
the Mhos masters. The output registers (including the 
state machine) are clocked at twice the rate of the bus 
masters, (66 MHz) enabling the arbiter to sample re­
quests with the input latches on the rising edge of one 
Mhus clock cycle, transfer from one state to another 
and grant access before the next rising edge of th~ 
Mhus clock. 

The timing relationship between Master 0 (CY7C604 at 
33 MHz) and the 66 MHz CY7C330 arbiter are shown 
inFigureS. 

Arbitration Scheme 

With the arbitration function left to the designer, there 
are several resolution techniques that can be employed. 
Fixed priority, rotating priority, least recently used, and 
random priority are all contention resolution schemes 
that have been employed successfully, with each having 
their own faults. A fixed priority, for instance, will favor 
one requester more than the others. Rotating priority 
will provide a simple but not always fair approach to 
arbitration. An LRU arbitration scheme represents the 
fairest form of contention resolution but requires a 
highly complex implementation. The random technique 
will not allow predictable arbitration results and could 
result in performance problems. 

Since there are negatives associated with most arbitra­
tion techniques, a combination of methods will be used 
to minimize the associated problems. In this example, 
we have chosen to employ both a random and a fixed 
priority scheme. The random scheme uses a two bit 
counter that increments every clock cycle and varies the 
priority accordingly. The priority function can be set to 
allow the processor to define which master has the 
highest priority by loading a value into the 7C330 via a 
store instruction. The interface to the processor ac­
complishing this store function requires a latched and 
decoded chip select along with the latched write enable 
connected directly to the arbiter. This priority function 
can be of value if critical data required by a program is 
being fetched from main memory by the pre-set highest 
priority Mhus master. The remaining channels follow a 
pre-set priority that is defmed in Table 1 below. 

The Random Priority Counter also uses the same 
priority scheme and is effect only when the latched 
priority is disabled. 

Table I. Mbus Channel PrIorities 

Latched PRIORITY 
value FIRST 2ND 3RD LOWEST 

11 MASTER3 MASTER2 MASTERI MASTERO 

10 MASTER2 MASTER1 MASTERO MASTER3 

01 MASTER1 MASTERO MASTER3 MASTER2 

00 MASTERO MASTER3 MASTER2 MASTER1 
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Figure 6. Arbiter Block Diagram 

Design Partitioning 

/I\GT0 
INJTI 
/I'IGT2 
I/'IGT3 

The design. is partitioned into four functional blocks 
that are designed separately. Refer to Figure 6 for the 
arbiter block diagram. The first block is the priority 
latch, which is a synchronous register using decoded 
and latched/CS and !WE from the CY7C601 for an 
enable signal. It accepts three data lines from the 
processor bus (one for the priority enable and two for 
the value of the high priority bus master) and loads the 
values into the dedicated registers. The random counter 
is a minor portion of the design, it is a free J,'UllIling 
counter that supplies. a two bit binary value which is 
routed to the priority select bloCk. The count changes 
every output clock (CLK1) cycle and provides a "seed" 
for the random priority function. The priority select 
block choos.es between the priority latch outputs (LPO-
1) and the random counter value (CfO-1) using the EN 
signal as the selection criteria. The two outputs (PRIO-
1), are fed to the. hand shake state machine and .are 
used to arbitrate between bus masters when more than 
one simultaneous request occurs. This state machine 
monitors the request (MRQO-3) and the busy (MBB) 
inputs and generates the grant (MGTO-3) signals that 
give an Mhus master ownership of the bus. 

Priority Latch, Select and Random Counter 
Implementation 

As described previously, the .pt:iority latch is a 
synchronous register that is loaded by the processor. 
The active low write enable (!WE) and chip select (fCS) 
are used to gate the three data bits from the bus to the 
three macrocells dedicated for the Priority l.atch. When 
both !WE and ICS are active (low), the latch loads. 
When either are inactive (high), the output value of 
each register is continuously reloaded every clock cycle, 

thus retaining the proper value. The equations for the 
priority latch are shown below: 

EN= <oe> 
<sum> ICS*/WE*D2 

+EN*WE 
+EN*CS; 

LP1= <oe> 
<sum> ICS*/WE*D1 

+ LP1*WE 
+ LP1*CS; 

LPO= <oe> 
<sum> ICS*/WE*OO 

+LPO*WE 
+LPO*CS; 

The random counter is simply a two bit counter that 
changes state every output clock (CLK!) transition. It is 
cleared when /RESET is low arid counts in a 0-1-2-3 
sequence. Shown below are the equations for the ran­
dom counter: 

CT1= <oe> 
<sum> CTI*/CTO. 

+/CTl*CTO; 

CTO = <oe> 
<sum> ICTO; 

Selection between the prioritf latch and the random 
counter is done by the priority selection block. This 
block is a registered multiplexer that loads its register 
outputs with either the priority latch value if EN = 1, 
or the current state of the counter if EN = O. The out­
puts are updated every clock and are fed to the hand­
shake state machine. 

Handshake State Machine 

The Mhus handshake and arbitration are controlled by 
this state machine. There are thirteen discrete states 
that the machine cycles through in performing its fi.mc­
tion. On power-up or reset, the FSM enters the "idle" 
state, waiting for a bus request. Once a request 
(/MRQO for instance) has been received, the machine 
enters a "wait" mode (state GTO_O). In wait mode the 
arbiter looks for busy (!MBB) to go inactive (if not al­
ready inactive), while driving the /MGTO output active. 
When /MBB goes inactive, it goes to state GTO_1 and 
holds /MGTO active while waitng for /MBB to be as­
serted by the granted master. When /MBB is detected, 
the machine goes to state GTO_WAlT and looks for 
another request. The MGTO grant line is held active 
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during and after the sequence, allowing the master to 
maintain bus ownership until it is requested by another 
master. 

Refer to Figure 7 for the bus master 0 state diagram and 
the request/grant handshake. The operation is the iden­
tical for each of the four bus masters. 

TO GTU 
TO GT2_0 

Figure 7. Bus Master 0 State Diagram. 

The equations for the handshake state machine were 
produced from a state transition table that also included 
the priority encoding for the arbiter. The table was then 
reduced down to a manageable number of minterms 
using a public domain optimizer called McBOOLE1. 
Refer to Appendix A for the state transition table. The 
sum-of- products format equations were then merged 
into the PLD ToolKit design file with the priority latch, 
random counter and priority selection equations. The 
PLD ToolKit Design File can be found in Appendix B. 

Design Verification 

The entire CY7C330 FOUR CHANNEL MBUS AR­
BITER design was entered and verified using the 
CYPRESS PLD Toolkit. Design verification was per­
formed using the PLD Toolkit's interactive simulator. 
The circuit stimuli was created using a mouse with pop 
down menus and drawing the waveform on the graphics 
screen for a each node or pin on the device. The 
SIMULATE command is then selected and the 
response waveforms are visually inspected giving the 

designer a very high degree of confidence in the 
functionality of the device before programming a part. 

IMcBOOLE, From "McBOOLE: A New Procedure For 
Exact Logic Minimization", M.R. Dagenias, V.K. Agar­
wal, N.C. Rumin, IEEE transactions on CAD of Circuit 
and Systems, vol. CAD-5, N.1, January 1986, p.229. 
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Appendix A. Mbus Handshake/Arbiter State Transition Table. 

I*SfATE TABLE FOR MBUS ARBITER HANDSHAKE Sf ATE MACHINE -names: 
MBB,MRQ3,MRQ2,MRQ1,MRQO,PRI1,PRIO,ST3,rn,Sfl,sro,MGTI,MGT2,MGTt,MGTO; input 
ST3,rn,STt,sro,MGTI,MGTI,MGTt,MGTO; output 

*' I*RESENr 
Sf ATE 
(INPUTS) 

MMMMPP MMMM 
MRRRRRRSSSSGGGG 
BQQQQlllI1I II II 
832101032103210 
X1111XXOOOOOOOO 
Xl110XXooXOXXXX 
XllOIXXooXOXXXX 
X1011XXOOXOXXXX 
X01l1XXOOXOXXXX 
XOOOOOOOOXOXXXX 
X0001OOOOXOXXXX 
Xool00000XOXXXX 
XoollooooXOXXXX 
X01000000XOXXXX 
X0101OOOOXOXXXX 
XOllOOOOOXOXXXX 
X10000000XOXXXX 
X1OO1OOOOXOXXXX 
X10100000XOXXXX 
XllOOOOOOXOXXXX 
XOOOOOlooXOXXXX 
XoooI01OOXOXXXX 
XoolOOlooXOXXXX 
Xooll01ooXOXXXX 
XOl000100XOXXXX 
X010101OOXOXXXX 
X011oo100XOXXXX 
X1oooo100XOXXXX 
Xloo101ooXOXXXX 
X101001OOXOXXXX 
XllooolooXOXXXX 
X00001oooXOXXXX 
XooolloooXOXXXX 
XooI01oooXOXXXX 
X00111oooXOXXXX 

X01oo1oooXOXXXX 
XOlOlloooXOXXXX 
XOll01oooXOXXXX 
X1OOO1OOOXOXXXX 
X1OO11OOOXOXXXX 
X10101OOOXOXXXX 
Xll001000XOXXXX 
XOOOOllooXOXXXX 
X0001l1ooXOXXXX 

NEXT 
Sf ATE 
(OUTPUTS) 

MMMM 
SSSSGGGG 
IlIIlIIl 
32103210*1 
OOOOOOOO 
01000001 
01000010 
10000100 
10001000 
01000001 
10001000 
01000001 
10001000 
01000001 
10001000 
01000001 
01000001 
10000100 
01000001 
01000001 
01000010 
01000010 
01000001 
10001000 
01000010 
01000010 
01000001 
01000010 
01000010 
01000001 
01000010 
10000100 
10000100 
10000100 
10000100 

01000010 
01000010 
01000001 
10000100 
10000100 
10000100 
01000010 
10001000 
10001000 

I*WAlTFORMRQx*' 
I*GOTO OTO *' 
'*GOTO GTt *' 
I*GOTO GTI *' 
I*GOTO GTI *1 
{*GOTO GTO *' 
I*GOTO GTI *1 
I*GOTO GTO *' 
I*GOTO GTI *' 
I*GOTO GTO *1 
{*GOTO GTI *' 
I*GOTO GTO *' 
,*GOTO GTO *' 
I*OOTO 0T2 *' 
I*GOTO GTO *1 
I*GOTO GTO *1 
I*GOTO GTt *' 

'*GOTO GTt *' 
,*GOTO GTO *' 
I*GOTO GTI *' 
{*GOTO GTt *' 
{*GOTO GTI *1 
I*GOTO GTO *1 
I*GOTO GTt *1 
I*GOTO GTt *' 
I*GOTO OTO *' 
I*GOTO GT1 *1 
I*GOTO GTI *1 
'*GOTO GTI *1 
'*GOTO GT2 *' 
I*GOTO GT2 *' 

I*GOTO GTt*1 
I*GOTO GTI *' 
'*GOTO GTO *' 
I*GOTO GT2 *1 
I*GOTO GTI *' 
'*GOTO GTI *' 
I*GOTO GTt *1 

I*GOTO GTI *' 
I*GOTO GTI *' 
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Appendix A. Mbus Handshake/Arbiter State Transition Table. 

XOOI01100XOXXXX 10001000 "GOTO G1'3 ., 

XOO111100XOXXXX 10001000 "GOTO G1'3', 
XOl00ll00XOXXXX 10001000 I*GOTO G1'3', 

XOI011100XOXXXX 10001000 "GOTO G1'3 ., 

X01101100XOXXXX 10001000 "GOTO G1'3 ., 

Xl0001100XOXXXX 10000100 I*GOTO G1'2', 

Xl00l1100XOXXXX 10000100 I*GOTO G1'2 ., 

XI0I01100XOXXXX 10000100 "GOTO G1'2', 
XllOO1100XOXXXX 01000010 I*GOTO GTI ., 

,·CH 0 STATFS ., 

OXXXXXXOl00000l 01000001 "G1'O_O, WAlTONMBB=IING1'O_O"' 
lXXXXXXOl00000l 00010001 "G1'O_O, GOTO G1'O_1 ., 

lXXXXXXOOOl000l 00010001 '"G1'O_I, WAlT ON MBB=O "' 
OXXXXXXOOOl000l 00100001 I*G1'O_I, GOTO G1'O_WAlT" 
XI111XXOOl0000l 00100001 "G1'O_WAlT" 

,·CH 1 STATFS ., 

OXXXXXXOl000010 01000010 "GTl_O, WAlT ON MBB= 1 IN GTl_O"' 
lXXXXXXOl000010 00010010 I*GTt_O, GOTO GTl_1 ., 

1XXXXXX00010010 00010010 I*GTl_l, WAlT ON MBB=O "' 
OXXXXXXOOOl0010 00100010 I*GTt_l, GOTO GTt_WAlT"' 
X1111XXOOl00010 00100010 "GTt_WAlT", 

/*CH :l STATFS ., 

OXXXXXXl0000l00 10000100 "G1'2_0, WAlTONMBB=IINGTI_O" 
1XXXXXXl0000l00 00010100 "G1'2_0, GOTO G1'2_1 ., 

lXXXXXXOOO10100 00010100 "G1'2_1, WAlTONMBB =0', 
OXXXXXXOOOI0100 00100100 I*G1'2_1, GOTO G1'2_WAlT"' 
X1111XXOOl00100 00100100 ,oG1'2_WAlT"' 

/*CH 3 STATES ., 

OXXXXXXl0001000 10001000 ,oG1'3_0, WAlTONMBB=IING1'3_0" 

lXXXXXXl000l000 00011000 ,oG1'3_0, GOTO G1'3_1 "' 
lXXXXXXOOOllOOO 00011000 I*G1'3_1, WAlTONMBB =0°, 
OXXXXXXOOOllOOO 00101000 I*G1'3_1, GOTO G1'3_WAlTo, 
X1111XXOOI01000 00101000 ,oG1'3_WAlT "' 
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CY7C330; 

CONFIGURE; 

CLK1, 
CLK2, 
!RESET, 
MBB, 
MRQO, 
MRQ1, 
MRQ2, 
MRQ3(node = 9), 
CS, 
WE, 
DO, 
D1, 
D2, 

!MGTO(node = 15), 
!MGT1, 
!MGT2, 
!MGT3, 
!EN, 
!PRIO(node = 23), 
!PRIl, 
!CTO, 
!CT1, 
!LPO, 
!LP1, 
INT_RST(node=29), 
STO(node = 31), 
ST1, 
ST2, 
ST3, 

Appendix B. PLD ToolKit Source File for·Mbus Arbitrater 

{DESIGN FILE: FOUR CHANNEL MBUS AR.BITRATION UNIJ' WITH 
RANDOM PRIORITY COUNTERS AND SYNCHRONOUS PRIORITY ENABLE} 

{INPJJTS} 

{Output Clock 2x CLK2 } 
{Input Clock = MBUS System Clock} 
{Reset, Active Low } 
{MBUS Busy, Active Low} 
{MBUS Channel 0 Request, Active Low} 
{MBUS Channell Request, Active Low} 
{MBUS Channel 2 Request, Active Low} 
{MBUS Channel 3 Request, Active Low} 
{Decoded Processor Chip SeleCt} 
{Processor Write Enable} 
{Data Bus Bit 0, LalchedPriority Bit O} 
{Data Bus Bit 1, Latched Priority Bit I} 
{Data Bus Bit 2, Latched Priority Enable Bit} 

{OUTPUTS} 

{MBUS Channel 0 Grant, Active Low} 
{MBUS Channell Grant, Active Low} 
{MBUS Channel 2 Grant, Active Low} 
{MBUS Channel 3 Grant, Active Low} 
{Settable Priority Enable Bit} 
{Priority Selection Bit O} 
{Priority Selection Bit I} 
{Random Counter Bit O} 
{Random Counter Bit I} 
{Latched Priority Bit O} 
{Latched Priority Bit I} 
{Sync Reset Node} 
{State Variable Bit O} 
{State Variable Bit I} 
{State Variable Bit 2} 
{State Variable Bit 3} 

{End of configuration section} 
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Appendix B. PLD ToolKit Source File for Mbus Arbitrater (continued) 

EQUATIONS; 

{MBUS Request/Grant Handshake State Machine Equations} 

ST3 = <sum> /MRQ3*MRQ1*MRQO*/PRIl*/ST3*/ST2*/STO 
+ /MRQ3*PRIl *PRIO*/ST3*/ST2*/STO 

+/MRQ3*MRQO*/PRIl*/PRIO*/ST3*/ST2*/STO 
+ /MRQ3*MRQ2*MRQ1 *MRQO*/ST3* /ST2* /STO 
+ /MRQ2*PRIl */PRIO*/ST3*/ST2*/STO 
+ MRQ3*/MRQ2*MRQ1 *MRQO*/ST3* /ST2* /STO 
+ MRQ3*/MRQ2*MRQO*/PRIO*/ST3*/ST2*/STO 

+ MRQ3* /MRQ2*PRIl * /ST3* /ST2* /S1'O 
+ /MBB*ST3*/ST2"/ST1" /STO*/MGT3*MGT2*/MGT1 * /MGTO 
+/MBB*ST3*/ST2*/ST1*/STO*MGT3*/MGT2*/MGT1*/MGTO; 

ST2 = <sum> MRQ2*/MRQ1*PRIl*/pRIO*/ST3*/ST2*/STO 
+ MRQ2*MRQ1" /MRQO* /PRIO* /ST3* /ST2* /STO 
+ /MRQ1 */PRIl*PRIO*/ST3*/ST2*/STO 
+/MRQO*/PRIl*/PRIO*/ST3*/ST2*/STO 
+MRQ1*/MRQO*/PRIl*/ST3*/ST2*/STO 
+MRQ3*MRQ2*/MRQ1*MRQO*/ST3*/ST2*/STO 
+MRQ3*MRQ2*/MRQ1*PRIl*/ST3*/ST2*/STO 
+MRQ3*MRQ2*MRQ1*/MRQO*/ST3*/ST2*/STO 
+ /MBB* /ST3*ST2* /ST1 * /STO*/MGT3* /MGT2* /MGT1 *MGTO 
+ /MBB*/ST3*ST2* /ST1 * /STO*/MGT3* /MGT2*MGT1 * /MGTO; 

ST1 = <sum> /MBB*/ST3*/ST2*/ST1*STO*/MGT3*/MGT2*MGT1*/MGTO 
+/MBB*/ST3*/ST2*/ST1*STO*/MGT3*MGT2*/MGT1*/MGTO 
+/MBB*/ST3*/ST2*/ST1*STO*MGT3*/MGT2*/MGT1*/MGTO 
+/MBB*/ST3*/ST2*/STl*STO*/MGT3*/MGT2*/MGT1*MGTO 
+ MRQ3*MRQ2*MRQ1 *MRQO*/ST3*/ST2*ST1 */STO*/MGT3*/MGT2*MGTl*/MGTO 
+ MRQ3*MRQ2*MRQ1*MRQO* /ST3* /ST2*ST1 * /STO*/MGT3*MGT2* /MGT1" /MGTO 
+ MRQ3*MRQ2"MRQ1 *MRQO* /ST3* /ST2*ST1 */STO*/MGT3* /MGT2* /MGT1*MGTO 
+ MRQ3*MRQ2*MRQ1 *MRQO* /ST3* /ST2*ST1 */STO*MGT3* /MGT2* /MGT1" /MGTO; 

STO = <sum> MBB*/ST3*/ST2*/ST1*STO*/MGT3*/MGT2*/MGT1*MGTO 
+ MBB* /ST3* /ST2* /ST1 ·STO* /MGT3* /MGT2*MGT1 * /MGTO 
+ MBB*/ST3*/ST2*/ST1 *STO*/MGT3*MGT2*/MGT1 */MGTO 
+ MBB* /ST3* /ST2*/STl"STO"MGT3"/MGT2* /MGT1* /MGTO 
+ MBB*/ST3*ST2*/STl*/STO*/MGT3*/MGT2*MGT1*/MGTO 
+ MBB*ST3*/ST2*/STl" /STO* /MGT3*MGT2* /MGT1 * /MGTO 
+MBB*/ST3*ST2*/ST1*/STO*/MGT3*/MGT2*/MGT1*MGTO 
+ MBB*ST3*/ST2*/STl */STO*MGT3*/MGT2*/MGTl */MGTO; 

MGT3=<oe> 
<sum> /MRQ3*MRQ1*MRQO*/PRIl*/ST3*/ST2*/STO 

+ /MRQ3*PRIl *PRIO*/ST3*/ST2*/STO 
+/MRQ3*MRQO*/PRIl*/PRIO"/ST3*/ST2*/STO 

+ /MRQ3*MRQ2*MRQ1*MRQO* /ST3* /ST2*/STO 
+ MBB* /ST3* /ST2* /ST1*STO*MGT3*/MGT2*/MGT1 * /MGTO 
+ /MBB*/ST3* /ST2* /ST1 *STO*MGT3*/MGT2* /MGT1"/MGTO 
+ MRQ3*MRQ2*MRQ1 *MRQO*/ST3* /ST2*ST1 */STO*MGT3*/MGT2* /MGT1 * /MGTO 
+ MBB*ST3*/ST2" /ST1 * /STO*MGT3* /MGT2* /MGT1* /MGTO 
+/MBB*ST3*/ST2"/ST1*/STO*MGT3*/MGT2*/MGT1*/MGTO; 
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Appendix B. PLD ToolKit Source File for Mbus Arbitrater (continued) 

MGT2 = <oe> 
< sum > MBB*/STJ"/ST2*/STl*STO*/MGTJ*MGT2*/MGTl* /MGTO 

+ /MBB*/STJ*/ST2"/STl*STO"/MGTJ*MGT2"/MGTl*/MGTO 
+ /MRQ2*PRIl .. /PRIO*/STJ*/ST2* /STO 
+ MRQ3*/MRQ2*MRQl*MRQO*/STJ*/ST2*/STO 
+ MRQ3*MRQ2*MRQl "MROO*/STJ*'ST2*STl*/STO*/MGTJ*MGT2*/MGTl" /MGTO 
+MRQ3*/MRQ2*MRQO"/PRIO*/STJ*/ST2*/STO . 
+ MRQ3*/MRQ2*PRIl*/STJ*/ST2*/STO 
+ MBB*STJ*/ST2*/STl*/STO*/MGTJ*MGT2*/MGTl* /MGTO 
+ /MBB*STJ*/ST2* /STl*/STO*/MGTJ*MGT2*/MGTl* /MGTO; 

MGTl = <oe> 
< sum> MBB*/STJ*/ST2*/STl *STO"/MGTJ*/MGT2*MGTl */MGTO 

+/MBB*/STJ"/ST2*/STl*STO*/MGTJ*/MGT2"MGTl*/MGTO 
+MRQ2*/MRQl*PRIl*/PRIO*/STJ*/ST2*/STO 
+/MRQl */PRIl *PRIO*/STJ*/ST2*/STO 
+ MRQ3*MRQ2*/MRQl *MRQO*/STJ*/ST2* /STO 
+ MRQ3*MRQ2*/MRQl"PRIl */STJ*/ST2*/STO 
+ MRQ3*MRQ2"MRQ1 *MRQO*/STJ*/ST2*ST1 */STO* /MGTJ*/MGT2*MGT1" /MGTO 
+ /MBB*/STJ*ST2*/STl * /STO* /MGTJ* /MGT2*MGT1 */MGTO . 
+ MBB* /STJ*ST2*/ST1 */STO*/MGTJ*/MGT2*MGTl */MGTO; 

MGTO = <oe> 
<sum> MBB*/STJ*/ST2*/ST1*STO*/MGTJ"/MGT2*/MGT1*MGTO 

+ /MBB*/STJ*/ST2"/ST1 *STO*/MGTJ*/MGT2*/MGT1"MGTO 
+MRQ2*MRQ1*/MRQO*/PRIO"/STJ"/ST2*/STO 
+ /MROO*/PRIl*/PRIO*/STJ*/ST2*/STO 
+MRQ1*/MRQO*/PRIl*/ST3*/ST2*/STO 
+ MRQ3*MRQ2*MRQl* /MRQO*/STJ*/ST2* /STO 
+ MRQ3*MRQ2*MRQ1*MRQO*/STJ*/STI*ST1*/STO*/MGTJ*/MGT2*/MGT1 '"MGTO 
+ /MBB*/ST3*ST2*/ST1*/STO*/MGTJ*/MGT2*/MGTl *MGTO 
+MBB*/ST3*ST2*/STl*/STO*/MGTJ*/MGT2*/MGTl*MGTO; 

CT1 = <oe> 
<sum> 

CTO = <oe> 

{Random Counter Equations} 

CT1*/eTO 
+/eT1*CTO; 

<sum> /CTO; 
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Appendix B. PLD ToolKit Source File for Mbus Arbitrater (continued) 

{Latched Priority Equations} 

EN = <oe> 
<sum> /CS*/WE*D2 

+EN*WE 
+EN*CS; 

LPI = <oe> 
<sum> /CS*/WE*Dl 

+ LPl*WE 
+ LPl*CS; 

LPO = <oe> 
<sum> /CS*/WE*DO 

+LPO*WE 
+LPO*CS; 

{Priority Selection Latch} 

PRIl = <oe> 
<sum> /EN*CTI 

+EN*LPl; 

PRIO = <oe> 
<sum> /EN*CTO 

+EN*LPO; 

{End of file} 

6-57 



.~ Using the CY7C330 as a Multi-channel Mbus Arbiter '\ _r~OR =======;;;;;;;;;===============;;;;;;;;;;== 
NOTES: 
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Index 

A 

ABEL, 

arithmetic operators, 
assignment operator, 
boolean equations, 
logic reduction, 
logical operators, 
macros, 
output enable, 
polarity, 
relational operators, 
reset/preset, 
simulator, 
special constants, 
state machine syntax, 
test vector, 
truth tables, 

Accumulator, 
Address contention, 
ALU, 
Arbitration, 
Array, 

CY7C330, 
CY7C331, 
PALC16L8, 
PALC22V10, 

Asynchronous, 

B 

Bias generator, 
Block diagram, 

CY7C330, 
CY7C331, 
CY7C342, 
dual-port RAM, 
PALC16L8, 
SPARC memory sys, 

Buried macrocell, 

c 
Cache, 

CY7C330, 

line replacement, 
algorithms, 
set-associative, 

4-9,4-30 - 4-31, 4-41, 
4-61,4-77,4-121,6-6 
4-42 
4-43 
4-44 
4-44 
4-42 
4-61- 4-62, 4-64 
4-62 
4-49, 4-65 - 4-67 
4-42 
4-46 - 4-48, 4-62 
4-58 
4-43 
4-45 - 4-46, 4-66 - 4-67 
4-48,4-58,4-66 - 4-67 
4-45 
5-25 
5-41 
5-5 
5-41 

4-72 
4-151 
4-3 
4-4 
4-5,4-131, 
4-139,4-151 

4-75 

4-72 
4-132, 4-141 
4-9 
5-30 
4-3 
6-1 

4-7, 4-62, 4-65 - 4-67, 
4-72 - 4-73, 4-80 

6-1,6-11- 6-16 
6-20 
6-21 
6-20 

C (continued) 

set associtivity, 
bit, 
coherancy, 
consistency, 
dirty bit, 
hit, 
line replacement, 
line size, 
management, 
miss rate, 
miss, 
multilevel, 
policy, 
valid bit, 

CAM, 
Capacitance, 

load, 
Cascading, 

CISC, 
Clock, 

interrupt controllers, 

distribution, 
CMMU, 
CMOS, 

CMU, 

bias generator, 
reliability, 
technology, 
versus bipolar, 
versus NMOS, 

CY7C604, 
CMU-MP, 

CY7C605, 
Coaxial cable, 
Comparator, 
Controller, 

cache, 
Counter, 

toggle, 
CPU, 

Index-1 

68000 
68030/40, 
80486, 
CY7C601, 

6-25 
6-14 
6-12 
6-24 
6-18 
6-14 
6-17 
6-17 - 6-18 
6-19 
6-17 - 6-19, 6-22 
6-14 
6-17,6-23,6-25 - 6-26 
6-17 
6-18 
6-15 
1-21 
2-3,2-5 

4-139,4-143 
6-13 

2-1,2-3 
6-48 

2-9 
4-19 
2-1- 2-2, 4-1, 4-75, 5-7 
2-1,2-3,2-9 
2-9 

6-13,6-27,6-47 
6-27 
6-13 
6-26 - 6-27 
1-11 
4-53 

6-16 
4-53,4-67 
4-79 
6-11,6-13 
4-103 
6-22 
6-22 
6-22,6-26 - 6-27 



C (continued) 

i860, 
multiprocessing, 

Crossbar switch, 
Crosstalk, 
CUPL, 
Current, 

average, 
instantaneous, 
typical, 
versus frequency, 
versus temperature, 

CY3000, 
CY7C122, 
CY7C13O, 
CY7C131, 
CY7C132, 
CY7Cl36, 
CY7C14O, 
CY7C141, 
CY7C142, 
CY7Cl46, 
CY7Cl48, 
CY7C149, 
CY7C157, 

CY7C184, 
CY7C189, 
CY7Cl90, 
CY7C264, 
CY7C268, 
CY7CU,9, 
CY7C330 
CY7C330, 

array, 
block diagram, 
buried macrocell, 

clocking, 

feedback, 
I/O macrocell, 

6-22 
6-25 

4-82 
1-3 
4-9 

1-25 
1-25 
2-4 
1-26 
1-22 
3-9 
2-7 
5-30 
5-30 
5-30 
5-30 
5-30 
5-30 
5-30 
5-30 
2-8 
2-8 
6-1,6-3,6-5,6-16, 
6-36,6-47 
6-16 
1-15,2-7,2-15 
2-7,2-15 
3-7,3-9 
3-4- 3~5 
3-4 - 3-5 
4-101,4-103 
4-61,4-71,4-93,4-104, 
4-106,4-108, 
4-117 - 4-118, 
4-121 - 4-123, 6-1, 
6-3 - 6-5, 6-47 

4-72 
4-72, 6-48 
4-7,4-62, 4-64 - 4-67, 
4-72 - 4-73, 4-75 - 4-76, 
4-80,4-120 
4-61 - 4-62, 4-71 - 4-72, 
4-75,4-77 
4-6, 4-63 - 4-64, 4-73 
4-6, 4-61, 4-63 - 4-64, 
4-67, 4-72 - 4-73, 
4-104 - 4-105, 4-118 

C (continued) 

input macrocell, 
input register, 
JK ff emulation, 
output enable, 

pinout, 
polarity, 
preload, 
preset, 
product term array, 
programming, 
reset, 
shared input mux, 

T ffemulation, 
technology, 

CY7C331, 
array, 
block diagram, 
buried register, 
clocking, 

feedback, 
I/O macrocell, 

JK ff emulation, 
output enable, 
pinout, 
polarity, 
preload, 
preset, 

register bypass, 

reset, 

self-timing, 
shared input mux, 

T ff emulation, 
CY7C332, 

clocking, 
input macrocell, 
output enable, 

CY7C3341, 
CY7C342, 

Index-2 

block diagram, 
clocking, 
expanders, 
I/O macrocell, 

4-6,4-61,4-73,4-77,4-118 
6-49 
4-6, 4-64 - 4-65, 4-79 
4-61 - 4-62, 4-75 

·4-74 
4-64 - 4-67 
4~ 74 - 4-75, 4-80 
4-62 - 4-63, 4-66, 4-72 
4-118 
4-77 
4-62 - 4-63, 4-66, 4-72, 4-80 
4-6, 4-61, 4-64, 
4-72 - 4-73, 4-82 

4-6, 4-64 - 4-66, 4-79 
4-75 
4-131,4-139,4-151 
4-131,4-151 
4-132, 4-141 
4-141,4-152 
4-7,4-132 - 4-133, 
4-141,4-151,4-154 
4-132,4-152,4-155 
4-7,4-132 - 4-133, 
4-140 - 4-141, 4-151 
4-132,4-141 
4-7,4-132,4-151 
4-155 
4-132,4-155 
4-7 
4-7,4-132,4-141, 
4-143,4-151,4-154 
4-7,4-132,4-141, 
4-152 

4-7,4-132,4-141, 
4-143,4-151,4-154 
4-7,4-131- 4-134 
4-7,4-132,4-141, 
4-152,4-155 
4-132,4-141 
6-1,6-3 - 6-5 
4-7 
4-7 - 4-8 
4-7 
5-23 

4-9 
4-9 
4-8 
4-8 



&;z~OR 
C (Continued) I 

LAB, 4-9 
PIA, 4-9 Impedence, 1-1 
preset, 4-8 Input buffers, 1-23 - 1-24, 1-26 
reset, 4-8 Interrupt, 

CY7C401, 5-13,5-23 controller, 4-139 
CY7C402, 5-23 latency, 6-34 
CY7C403, 5-23 vector, 4-139 
CY7C404, 5-23 
CY7C408, 5-23 J 
CY7C409, 5-23 
CY7C429, 5-45 Jedecmap, 4-2 - 4-3, 4-31, 
CY7C601, 6-1,6-5,6-13,6-26, 4-41,4-65, 4-n 

6-36-6-38,6-47-6-50 
CY7C602, 6-36,6-47 

L CY7C604, 6-1,6-13,6-36 - 6-37, 
6-47 - 6-49 

CY7C605, 6-1,6-13,6-29 Latchup, 2-11- 2-12, 4-21, 4-75 

CY7C901, 5-1,5-25 - 5-26 Lockvariable, 5-28 
CY7C9101, 5-1 LOG/iC, 4-9,4-n 
CY7C9116, 5-5 Logic products, 5-1 

applications, 5-9 
instruction set, 5-6 M 
system timing, 5-7 

CY7C9117, 5-6 Macrocell, 
CY7C330, 4-6, 4-61, 4-63 - 4-64, 

D 4-67,4-72 - 4-73 
CY7C331, 4-7,4-132 - 4-133, 

DRAM, 3-7 4-141,4-151 
Dual-port RAM, 5-25,5-41 CY7C332, 4-8 

CY7C342, 4-8 

E P ALC20RA10, 4-5 
PALC22V10, 4-4 - 4-5, 4-49 

ESD, 2-10,4-75 
MAX family, 

SeeCY7C342 
MAX + PLUS, 4-9 

F Mbus, 6-47 - 6-50 
McBOOLE, 6-51 

FDDI, 4-117 Memory, 6-5 
FIFO, 2-1,5-11,5-23,5-45 coherance, 6-19 

analysis, 5-13 Metastability, 2-1,2-5,4-133 
architecture, 5-12 - 5-13 Microcoded processor, 5-1 
asynchronous, 5-23 Microstrip line, 1-12 
bubblethrough, 5-12 MINC, 4-9 
fallthrough, 5-12 MMU, 6-12 - 6-13 
synchronous, 5-23 
timing, 5-13 N 

Flip-flop, 
JK-type, 4-6,4-64 - 4-65, 4-79, 4-132 Noise 2-1 
T-type, 4-6, 4-64 - 4-66, 4-79, 4-132 ' crosstalk, 2-5 

FPU, 
ground bounce, 2-2, 4-74 

CY7C602, 6-26 - 6-27 margin, 2-2 

Index-3 
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programming, 4-2,4-15 
Nyquist frequency, 4-103 register preload, 4-12 

security function, 4-12 

0 security fuse, 4-4 
technology, 4-1- 4-2 

OSI, 4-117 testability, 4-2, 4-4 
verify, 4-17 Output buffers, 1-24 

PLDC2OG10, 4-5 Output enable, 6-4 
Policy, 

copy-back, 6-19 - 6-20 P write-through, 6-19 - 6-20 
Power, 

PAL, consumption, 1-22 
SeePLO dissipation, 1-21-1-23 

PALASM, 4-30 pins, 4-74 
PALC16L8, 4-2 Preload, 4-4 

array, 4-3 CY7C33O, 4-67,4-74 - 4-75, 4-80 
block diagram, 4-3 CY7C331, 4-7 

PALC16R4, 4-4 Preset, 
PALC16R6, 4-4,4-23 CY7C33O, 4-62 - 4-63, 4-66 
PALC16R8, 4-4 CY7C331, 4-7,4-132, 4-141, 
P ALC20 series, 1-15 4-143,4-151,4-154 
P ALC20RA10, CY7C342, 4-8 

clocking, 4-5 P ALC2ORAlO, 4-5 
macrocell, 4-5 PALC22VlO, 4-5, 4-46 - 4-48 
output enable, 4-6 Processor, 6-11 
preset, 4-5 PROM, 3-1,3-8 
register bypass, 4-6 diagnostic, 3-1 
reset, 4-5 shadow register, 3-1 

PALC22VlO, 4-41,4-106 PROMs, 3-7 
array, 4-4 Propagation delay, 1-11,1-16 
feedback, 4-53 Protocol, 
I/O macrocell, 4-4 - 4-5, 4-49 Futurebus, 6-18 
output enable, 4-51,4-53 Mbus, 6-18 
polarity, 4-49 Pullup/Pulldown, 1-13 
preset, 4-5, 4-46 - 4-48 
register bypass, 4-49 Q reset, 4-5, 4-46 - 4-48 

PIO, 4-101 - 4-103 
QuickPro, 3-9 Pinout, 

CY7C33O, 4-74 
Pipelining, 4-77 R 
PLO ToolKit, 4-2, 4-9, 4-77, 4-123, 

4-143,4-152,4-155, RAM, 2-7 
6-4, 6-9, 6-51 Cache data, 6-27 

polarity, 4-143,4-155 CY7C157, 6-27 
PLD, 1-15 - 1-16,2-1,2-4, input character, 2-8 

4-1,4-11,4-101,4-117, los, 2-8 
5-43,6-1,6-47 output character, 2-8 

erasable, 4-1 switching character, 2-10 
phantom array, 4-15 Real-time controller, 6-33 

Index-4 
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Reflection, 1-2 -1-5, 1-7, 1-9 -1-11, Termination, 1-13,1-15,2-2,2-5 
1-17 Test vectors, 4-48,4-58,4-66 - 4-67 

Reset, Testability, 4-2,4-4, 4-75 
CY7C330, 4-62 - 4-63, 4-66, 4-80 Transforms, 
CY7C331, 4-7,4-132,4-141,4-143, Laplace, 4-103 

4-151,4-154 Transmission line, 1-1-1-5,1-7, 
CY7C342, 4-8 1-9 - 1-11, 1-13 
PALC2ORA10, 4-5 Transmission lines, 2-2,2-5 
PALC22V10, 4-5, 4-46 - 4-48 Twisted pair, 1-11 

RISe, 6-1,6-11,6-13,6-16, 
6-23,6-47 V 

S VME bus requestor, 4-131 

SCSI, 4-93 W 
protocol, 4-95 

Self-timing, 4-131- 4-134 Waveform generator, 4-151 Series damping, 1-13 Write enable, 6-3 
Servo 4-101 
Servo, 

closed loop, 4-101 

SShannon's sampling thm, 4-103 
Shared input multiplexer, 4-72 

CY7C330, 4-6,4-61,4-64,4-73, 
4-82 

CY7C331, 4-7,4-132,4-141, 
4-152,4-155 

SPARC, 6-11,6-13,6-26, 
6-28 - 6-29, 6-47 - 6-48 

alternate register, 6-37 
bus interface, 6-1 
context switch, 6-34 
interrupt latency, 6-34 
INULL signal, 6-4 
memory system, 6-1 
multiprocessing, 6-27 - 6-28 
multitasking, 6-33 
output enable, 6-4 
register window, 6-37 
semaphores, 6-37 
size bits, 6-4 
task switch, 6-37 
write enable, 6-3 

SRAM, 1-15 - 1-16,2-1, 
3-7 - 3-8 

State machine, 4-58,4-66 - 4-67, 
4-71,4-93 

Switching characteristics, 2-1 
Synchronous, 4-71 
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CYPRESS 
SEMICONDUCTOR 

Sales Representatives and Distribution 

Direct Sales Offices 

California 
Cypress Semiconductor Corporate Headquarters 
3901 N. First Street 
San Jose, CA 95134 
Tel: (408) 943-2600 
Telex: 821032 CYPRESS SNJ UD 
TWX 910 997 0753 
FAX: (408) 943-2741 

Cypress Semiconductor 
23586 Calabasas Rd., Ste 201 
Calabasas, CA 91302 
Tel: (818) 884-7800 
FAX: (818) 348 6307 

Cypress Semiconductor 
2151 Michelson Dr., Suite 240 
Irvine, CA 92715 
Tel: (714) 476-8211 
FAX: (714) 476-8317 

Cypress Semiconductor 
16496 Bernardo Center Dr., Suite 215 
San Diego, CA 92128 
Tel: (619) 487-9446 
FAX: (619) 485-9716 

Colorado 
Cypress Semiconductor 
4851 Independence St., Suite 189 
Wheat Ridge, CO 80033 
Tel: (303) 424-9000 
FAX: (303) 424-0627 

Florida 
Cypress Semiconductor 
804 E. Church Street 
Orlando, FL 32801 
Tel: (407) 422-1890 
FAX: (407) 841-9927 

Florida 
Cypress Semiconductor 
10014 N. Dale Mabry Hwy, Suite 101 
Tampa, FL 33618 
Tel: (813) 968-1504 
FAX: (813) 968-8474 

Illinois 
Cypress Semiconductor 
1530 E. Dundee Rd., Suite 190 
Palatine,IL 60067 
Tel: (312) 934-3144 
FAX: (312) 934-7364 

Maryland 
Cyress Semiconductor 
5457 Twin Knolls Rd., Suite 103 
Columbia, MD 21045 
Tel: (301) 740-2087 
FAX: (301) 992-5887 

Massachusetts 
Cypress Semiconductor 
2 Dedham Place, Suite 1 
Dedham, MA 02026 
Tel: (617) 461-1778 
FAX: (617) 461-0607 

Minnesota 
Cypress Semiconductor 
14525 Hwy. 7, Suite 115 
Minnetonka, MN 55345 
Tel: (612) 935-7747 
FAX: (612) 935-6982 

New York 
Cypress Semiconductor 
244 Hooker Ave., Suite B 
Poughkeepsie, NY 12603 
Tel: (914) 485-6375 
FAX: (914) 485-7103 
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Direct Sales Offices (continued) 

New York 
Cypress Semiconductor 
3 Nob Hill Dr. 
Smithtown, NY 11787 
Tel: (215) 639-6663 
FAX: (516) 544-4359 

North Carolina 
Cypress Semiconductor 
10805 Brass Kettle Road 
Raleigh, NC 27614 
Tel: (919) 870-0880 
FAX: (919) 870-0881 

Oregon 
Cypress Semiconductor 
6950 SW Hampton St., Suite 230 
Portland, OR 97223 
Tel: (503) 684-1112 
FAX: (503) 684-1113 

Pennsylvania 
Cypress Semiconductor 
2 Neshaminy Interplex, Suite 203 
Trevose, P A 19047 
Tel: (215) 639-6663 
FAX: (215) 639-9024 

Texas 
Cypress Semiconductor 
Great Hills Plaza 
%00 Great Hills Trail, Suite 150W 
Austin, TX 78759 
Tel: (512) 338-0204 
FAX: (512) 338-0865 

Cypress Semiconductor 
333 W. Campbell Rd., Suite 220 
Richardson, TX 75080 
Tel: (214) 437-0496 
FAX: (214) 644-4839 

Cypress Semiconductor 
Twelve Greenway Plaza, Suite 1100 
Houston, TX 77046 
Tel: (713) 621-8791 
FAX: (713) 621-8793 

Belgium 
Cypress Semiconductor International 
51 Rue Du Moulin A Papier, Bte, 11 
1160 Brussels, Belgium 
Tel: (32) 2 672 2220 
Telex: 64677 CYPINT B 
FAX: (32) 26600366 

France 
Cypress Semiconductor France 
Miniparc Bat. no 8 
61 Avenue des Andes 
A.A. de Courtaboeuf 
91952 Les Lilis Cedex, France 
Tel: (33) 1169-07-5546 
FAX: (33) 1169-07-5571 

Germany 
Cypress Semiconductor GmbH 
Hohenlindner Str. 6 
D-8016 Feldkirchen, W. Germany 
Tel: (49) 089 903 10 71 
FAX: (49) 089 903 84 27 

Japan 
Cypress Semiconductor Japan KK 
Fuchu-Minami Bldg., 2F 
9052-3, 1-Chome, Fuchu-Cho, 
Fuchu-Shi, Tokyo, Japan 183 
Tel: (81) 423-69-8211 
FAX: (81) 423-69-8210 

Sweden 
Cypress Semiconductor Scandinavia 
Kanalvagen 17 
18330 Taby, Sweden 
Tel: (46) 8 758 2055 
FAX: (46) 8 792 1560 

United Kingdom 
Cypress Semiconductor U.K 
3, Blackhorse Lane, 
Hitchin, 
Hertfordshire, SG4 9EE 
Tel: (44) 0462-420566 
FAX: (44) 0462-421969 



&r~~========================= 
North American Sales Representatives 

Alabama 
CSR Electronics 
303 Williams Ave., Suite 931 
Huntsville, AL 35801 
Tel: (205) 533·2444 
FAX: (205) 536·4031 

Arizona 
Thom Luke Sales 
2940 N. 67th Place, Suite H 
Scottsdale, AZ 85251 
Tel: (602) 941·1901 
FAX: (602) 941-4127 

California 
TAARCOM 
451 N. Shoreline Blvd. 
Mountain View, CA 94043 
Tel: (415) 960-1550 
FAX: (415) 960·1999 

Canada 
E.S.P. 
5200 Dixie Road, Suite 201 
Mississauga, Ontario Canada UW 1E4 
Tel: (416) 626-8221 
FAX: (416) 238·3277 

E.S.P. 
447 McLeod Street, Suite 3 
Ottawa, Ontario Canada KIR 5P5 
Tel: (613) 236-1221 
FAX: (613) 236·7119 

E.S.P. 
4250 Sere Street 
St. Laurent, Quebec H4T 1A6 
Tel: (514) 737·9344 
FAX: (514) 737·4128 

Connecticut 
HLM 
3 Pembroke Road 
Danbury, CT 06813 
Tel: (203) 791-1878 
FAX: (203) 791·1876 

Florida 
CM Marketing 
14350 Gulf to Bay Blvd. 
Clearwater, FL 34615 
Tel: (813) 443-6390 
FAX: (813) 443-6312 

CM Marketing 
6091·A Buckeye Ct. 
Tamarac, FL 33319 
Tel: (305) 722·9369 
FAX: (305) 726-4139 

CM Marketing 
804 E. Church St. 
Orlando, FL 32801 
Tel: (407) 341·9924 
FAX: (407) 841-9927 

Georgia 
CSR Electronics 
1651 Mt. Vernon Rd., Suite 200 
Atlanta, GA 30338 

, Tel: (404) 396·3720 
FAX: (404) 394·8387 

Illinois 
Micro Sales Inc. 
54 West Seegers Road 
Arlington Hts., IL 60005 
Tel: (312) 956-1000 
FAX: (312) 956-0189 

Indiana 
Technology Marketing Corp. 
599 Industrial Dr. 
Carmel, IN 46032 
Tel: (317) 844-8462 
FAX: (317) 573-5472 

Technology Marketing Corp. 
4630-10 W. Jefferson Blvd. 
Ft. Wayne, IN 46804-6800 
Tel: (219) 432-5553 
FAX: (219) 432-5555 

Iowa 
Midwest Tech. Sales 
1930 St. Andrews N.E. 
Cedar Rapids, IA 52402 
Tel: (319) 393-5115 
FAX: (319) 393·4947 
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Kansas 
Midwest Tech. Sales 
21901 Lavista 
Goddard, KS 67052 
Tel: (316) 794-8565 

Midwest Tech. Sales 
15301 W. 87 Parkway, Suite 200 
Lenexa, KS 66219 
Tel: (913) 888-5100 
FAX: (913) 888-1103 

Kentucky 
Technology Marketing Corp. 
4012 Du Pont Circle, Suite 414 
Louisville, KY 40207 
Tel: (502) 893-1377 
FAX: (502) 896-6679 

Michigan 
Techrep 
2550 Packard Road 
Ypsilanti, MI 48197 
Tel: (313) 572-1950 
FAX: (313) 572-0263 

Missouri 
Midwest Tech. Sales 
1314 Robertridge st. 
Charles, MO 63303 
Tel: (314) 441-1012 
FAX: (314) 447-3657 

Midwest Tech. Sales 
4637 Chippewa Way 
St. Charles, MO 63303 
Tel: (314) 441-1012 
FAX: (314) 447-3657 

New Jersey 
HLM 
1300 Route 46 
Parsippany, NJ 07054 
Tel: (201) 263-1535 
FAX: (201) 263-0914 

New Mexico 
Quatra Associates 
9704 Admiral Dewey N.E. 
Albuquerque, NM 87111 
Tel: (505) 821-1455 
FAX: (602) 820-7054 

New York 
HLM 
64 Mariners Lane 
PO Box 328 
Northport, NY 11768 
Tel: (516) 757-1606 
FAX: (516) 757-1636 

Reagan/Compar 
3215 E. Main Street 
Endwell, NY 13760 
Tel: (607) 754-2171 
FAX: (607) 754-4270 

Reagan/Compar 
3449 St. Paul Blvd. 
Rochester, NY 14617 
Tel: (716) 338-3198 

Reagan/Compar 
41 Woodberry Road 
New Hartford, NY 13413 
Tel: (315) 732-3775 

Ohio 
KW Electronic Sales 
8514 N. Main Street 
Dayton, OH 45415 
Tel: (513) 890-2150 
FAX: (513) 890-5408 

KW Electronic Sales 
3645 Warrensville Center Rd., #244 
Shaker Heights, OH 44122 
Tel: (216) 491-9177 
FAX: (216) 491-9102 

Pennsylvania 
KW Electronic Sales 
4485 William Flynn Hwy. 
Allison Park, P A 15101 
Tel: (412) 487-4300 
FAX: (412) 487-4841 

L.D.Lowery 
2801 West Chester Pike 
Broomall, P A 19008 
Tel: (215) 356-5300 
FAX: (215) 356-8710 
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Puerto Rico 
ETS, Inc. 
PO Box 10758, 
Caparra Heights Station, 
San Juan, Puerto Rico 00922 
Tel: (809) 798-1300 
FAX: (809) 798-3611 

Tennessee 
CSR Electronics 
4314 Woodlawn Pike 
Knoxville, TN 37920 
Tel: (615) 577-1317 
FAX: (615) 577-1306 

Texas 
Southern States Marketing 
400 E. Anderson Lane, Suite 111 
Austin, TX 78752 
Tel: (512) 835-5822 
FAX: (512) 835-1404 

South States Marketing 
1143 Rockingham, Suite 106 
Richardson, TX 75080 
Tel: (214) 238-7500 
FAX: (214) 231-7662 

Utah 
Sierra Technical Sales 
4700 South 900 East, Suite 3-150 
Salt Lake City, UT 84117 
Tel: (801) 566-9719 
FAX: (801) 565-1150 

Washington 
Electronic Sources 
1603 116th Avenue NE, Suite 115 
Bellevue, WA 98004 
Tel: (206) 451-3500 
FAX: (206) 451-1038 

Wisconsin 
Micro Sales Inc. 
16800 W. Greenfield Ave., Suite 116 
Brookfield, WI 53005 
Tel: (414) 786-1403 
FAX: (414) 786-1813 



International Sales Representatives 
Australia 
Breamac Pty. Ltd. 
1045-1047 Victoria Rd. 
West Ryde, N.S.W. 2114 
Tel: (61) 02-858-5085 

Austria 
Hitronik Vertriebs GmBH 
St. Veitgasse 51 
A-113O Wien, Austria 
Tel: (43) 222 824199 
FAX: (43) 222 828 55 72 

Belgium 
Microtronica 
Research Park Zellik 
Pontbeeklaan 43 
B-1730 Asse Zellik 
Tel: (32) 02-466-7260 
FAX: (32) 02-466-4697 

Denmark 
AlS Nordisk Electronik 
Transformervej 17 
DK-2730 Herlev, Denmark 
Tel: (45) 02 842000 
FAX: (45) 02921552 

Finland 
OY Fintronic AB 
Italahdenkatu 22 
00210 Helsinki, Finland 
Tel: (358) 0-6926002 
FAX: (358) 0-674886 

France 
Newtek 
8 Rue de L'Esterel, Silic 583 
F-94663 Rungis Cedex, France 
Tel: (33) 1-4687-2200 
FAX: (33) 146878049 

Jermyn + Generim 
73n9, Rue des Solets 
Silic 585 
94663 Rungis Cedex, France 
Tel: (33) 1-4978-4400 
FAX: (33) 1-4978-0599 

France 
Jermyn + Generim 
31, Domaine Chevalier 
83440 tourrettes, France 
Tel: (33) 1-9476-2585 

Jermyn + Generim 
60 Rue Pierre Cazenueve 
31200 Toulouse, France 
Tel: (33) 1-6157-9695 

Jermyn + Generim 
Immeuble Saint-Christophe 
Rue de la Frebardiere 
B.P. 42-Z.I. Sud Est 
35135 Chantepie, France 
Tel: (33) 1-9941-7044 
FAX: (33) 1-9950-1128 

Jermyn + Generim 
60 Rue des Acacias 
Herrin, France 
59147 Gondecourt, France 
Tel: (33) 1-2032-3095 

Germany 
AP.I. Elektronik GmbH 
Lorenz-Braren-Str.32 
D-8062 Markt, Indersdorf, W. Germany 
Tel: (49) 8136 7092 
FAX: (49) 8136 7398 

AstekGmbH 
Gottlieb-Daimler-Str.7 
D-2358 Kaltenkirchen, W. Germany 
Tel: (49) 41918711 
FAX: (49) 41918249 

Metronik GmbH 
Leonhardsweg 2, Postfach, #1328 
D-8025 Unterhaching b. Munich, 'W. Germany 
Tel: (49) 89-611080 
FAX: (49) 896116468 

Metronik GmbH 
Laufamholzstrabe 118 
D-8500 Nurnberg, W. Germany 
Tel: (49) 9 11 59 00 61 

Metronik GmbH 
Siemensstrabe 4-6 
D-6805 Heddesheim, W. Germany 
Tel: (49) 6203 47 01 
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International Sales Representatives 
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Germany 
Metronik GmbH 
Semerteichstrabe 92 
D-4600 Dortmund 30, W. Germany 
Tel: (49) 2 31 42 30 37 
FAX: (49) 0231-418232 

Metronik GmbH 
Buckhorner Moor 81 
D-2000 Norderstedt bei Hamburg, W. Germany 
Tel: (49) 040 522 8091 
FAX: (49) 040 522 8093 

Metronik GmbH 
Loewenstrabe 37 
D-7000 Stuttgart 70, W. Germany 
Tel: (49) 7 11 76 40 33 
FAX: (49) 711 76 5181 

Metronik GmbH 
Gutenbergstr. 5 
D-7550 Rastatt, W. Germany 
Tel: (49) 7222-69464 
FAX: (49) 7222-69896 

Hong Kong 
Tekcomp Electronics 
514 Bank Centre 
636 Nathan Road 
Kowloon, Hong Kong 
Tel: (852) 710-8721 
FAX: (852) 3 710 9220 

Israel 
Talviton Electronics 
PO Box 21104, 9 Biltmore St. 
Tel Aviv 61 210, Israel 
Tel: (972) 3-444572 
FAX: (972) 3-455626 

Italy 
Cramer Italia s.p.a. 
134, Via C. Colombo 
1-00147 Roma, Italy 
Tel: (39) 6-517-981 
FAX: (39) 65140722 

Dott.lng.Giuseppe De Mico s.p.a. 
V. Le Vittorio Veneto, 8 
1-20060 Cassina d'Pecchi 
Milano, Italy 
Tel: (39) 2 95 20 551 
FAX: (39) 29522227 

Japan 
Tomen Electronics Corp. 
2-1-1 Uchisaiwai-Cho, Chiyoda-Ku 

Tokyo, Japan 100 
Tel: (81) 3 506 3670 
FAX: (81) 3 506 3497 

C. !toh Techno-Science Co. Ltd. 
8-1, 4-Chome, Tsuchihashi, 
Miyamae-Ku, Kawasaki-shi, 
Kanagawa, Japan 213 
Tel: (81) 44-852-5121 
FAX: (81) 44-877-4268 

Fuji Electronics Co., Ltd. 
Ochanomizu Center Bldg. 
3-2-12 Hongo, Bunkyo-ku 
Tokyo, Japan 213 
Tel: (81) 03-814-1411 
FAX: (81) 03-814-1414 

International Semiconductor Inc. (lSI) 
The Second Precisa Bldg. 
4-8-3 Iidabashi Chiyoka-ku 
Tokyo, Japan 
Tel: (81) 03-264-3301 
FAX: (81) 03-264-3419 

Korea 
Hanaro Corporation 
Daeyoung Bldg., 2nd Floor 
643-8, Yeoksam-Dong, Kangnam-Ku 
Seoul, 150-010 Korea 
Tel: (82) 02-558-1144 . 
FAX: (82) 02-558-0157 

Netherlands 
Semicon B.V. 
Gulberg33 
NL-5672 AD Nuenen 
Tel: (31) 040 837 075 
FAX: (31) 040 838 635 
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International Sales Representatives 
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Norway 
Nortec Electronics NS 
Smedsvingen 4, P.O. Box 123 
N-1364 Hvalstad, Norway 
Tel: (47) 2 846-210 
FAX: (47) 2 846-545 

Singapore 
Desner Electronics 
190 Middle Rd., #16-17 
Fortune Center, Singapore 0718 
Tel: (65) 3373 180 
FAX: (65) 3373180 

Spain 
Comelta S.A. 
Pedro IV. 8 4-5 Planta 
08005 Barcelona, Spain 
Tel: (34) 3007-7128 

Comelita S.A. 
Emilio Munez, 41 Nave 1-1-2 
E-Madrid 17 
Tel: (34) 1 754 3001 
FAX: (34) 17542151 

Sweden 
Nordisk Electronik AB 
P.O. Box 36 
Torshamnsgatan 39, 
S-164 93 Kista, Sweden 
Tel: (46) 87034630 
FAX: (46) 8 703 9845 

Switzerland 
BASIX fur Electronik AG 
Forrlibuckstrasse 150, Postrach 
CH-8010 Zurich, Switzerland 
Tel: (41) 01-276-1100 
FAX: (41) 01-820-3441 

Taiwan R.O.C. 
Prospect Technology Corp. 
5, Lane 55, Long-Chiang Road 
Taipei, Taiwan 
Tel: (886) 2 721 9533 
FAX: (886) 2 m 3756 

United Kingdom 
Pronto Electronic System LTD. 
City Gate House 
399-425 Eastern Ave. 
Gants Hill Ilford, Essex IG2 6LR, U.K. 
Tel: (44) 1 554 62 22 
FAX: (44) 15183222 

Ambar Cascom Ltd. 
Rabans Close 
Aylesbury Bucks HP19 3R5, U.K. 
Tel: (44) 0296 434 141 
FAX: (44) 0296 296 70 
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Anthem Electronics 

Arizona 
Tempe, AZ 85281 
(602) 966-6600 

California 
Irvine, CA 92718-2809 
(714) 768-4444 

Rocklin, CA 95834 
(916) 624-9744 

San Jose, CA 95131 
(408) 453-1200 

San Diego, CA 92121 
(619) 453-9005 

Chatsworth, CA 91311 
(818) 775-1333 

Colorado 
Englewood, CO 80112 
(303) 790-4500 

Connecticut 
Meriden, CT 06450 
(203) 237-2282 

Florida 
Clearwater, FL 34623 
(813) 796-2900 

Georgia 
Norcross, GA 30093 
(404) 381-0768 

Illinois 
Elk Grove, IL 60007 
(312) 640-6066 

Massachusetts 
Wilmington, MA 01887 
(503) 657-5170 

Distribution 

Maryland 
Columbia, MD 21045 
(301) 995-6640 

Minnesota 
Eden Prairie, MN 55344 
(612) 944-5454 

New Jersey 
Fairfield, NJ 07006 
(201) 227-7960 

New York 
Hauppauge, NY 11787 
(516) 273-1660 

Ohio 
Worthington, OH 43085 
(614) 888-9707 

Oregon 
Beaverton, OR 97005 
(503) 643-1114 

Pennsylvania 
Horsham, PA 19044 
(215) 443-5150 

Texas 
Richardson, TX 75081 
(214) 238-7100 

Utah 
Salt Lake City, UT 84119 
(801) 973-8555 

Washington 
Bothel, WA 98052 
(206) 483-1700 
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Arrow Electronics 

Alabama 
Huntsville, AL 35816 

(205) 837-6955 

Arizona 
Phoenix, AZ 85040 

(602)437-0750 

California 
Chatsworth, CA 91311 

(818) 701-7500 

San Diego, CA 92123 

(619) 565-4800 

Sunnyvale, CA 94089 

(408) 745-6600 

Tustin, CA 92680 

(714) 669-4524 

Canada 
Montreal, Quebec, Canada H4PIWI 

(514) 735-5511 

Mississauga, Ontario, Canada L5TIH3 

(416) 670-7769 

Neapean, Ontario, Canada K2E7W5 

(613) 229-6903 

Quebec, Que., Canada GIN2C9 

(418) 871-7500 

Colorado 
Englewood, CO 80112 

(303) 790-4444 

Connecticut 
Wallingford, CT 06492 

(203) 265-7741 

Distribution 

Florida 
Deerfield Beach, FL 33441 

(305) 429-8200 

Lake Mary, FL 32746 

(407) 333-9300 

Georgia 
Norcross, GA 30071 

(404) 449-8252 

Illinois 
Itasca, IL 60143 

(312) 250-0500 

Indiana 
Indianapolis, IN 46241 

(317) 243-9353 

Kansas 
Lenexa, KS 66214 

(913) 541-9542 

Maryland 
Columbia, MD 21046 

(301) 995-6002 

Massachusetts 
Wilmington, MA 01887 

(617) 658-0900 

Michigan 
Ann Arbor, MI 48108 

(313) 971-8220 

Grand Rapids, MI 49508 

(616) 243-0912 

Minnesota 
Edina, MN 55435 

(612) 830-1800 
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Arrow Electronics (continued) 

New Hampshire 
Manchester, NH 03013 

(603) 668-6968 

New Mexico 
Albuquerque, NM 87106 

(505) 243-4566 

New Jersey 
Parsippany, NJ 07054 

(201) 538-0900 

New York 
Hauppauge, NY 11788 

(516) 231-1000 

Marlton, NY 08053 

(609) 596-8000 

Corporate Headquarters 

Melville, NY 11747 

(516) 391-1300 

Rochester, NY 14623 

(716) 427-0300 

North Carolina 
Raleigh, NC 27604 

(919) 876-3132 

Ohio 
Centerville, OH 45459 

(513) 435-5563 

Solon, OH 44139 
(216) 248-3990 

Distribution 

Oklahoma 
Tulsa, OK 74146 

(918) 252-7537 

Oregon 
Beaverton, OR 97006 

(503) 645-6456 

Pennsylvania 
Monroeville, PA 15146 
(412) 856-7000 

Texas 
Austin, TX 78758 

(512) 835-4180 

Carrollton, TX 75006 

(214) 380-6464 

Houston, TX 77099 

(713) 530-4700 

Washington 
Kent, WA 98032 

(206) 575-4420 

Wisconsin 
Brookfield, WI 53005 

(414) 792-0150 
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Marshall Industries 

Alabama 
Huntsville, AL 35801 
(205) 881-9235 

Arizona 
Phoenix, AZ 85044 
(602) 496-0290 

California 
Corporate Headquarters 
EI Monte, CA 91731-3004 
(818) 459-5500 

Chatsworth, CA 91311 
(818) 407-0101 

Irvine, CA 92718 
(714) 458-5355 

San Diego, CA 92131 
(619) 578-9600 

Milpitas, CA 95035 
(408) 942-4600 

Rancho Cordova, CA 95670 
(916) 635-9700 

Canada 
Montreal, Ontario 
(514) 848-9112 

Ottawa, Ontario 

(613) 564-0166 

Colorado 
Thornton, CO 80241 
(303) 451-8383 

Connecticut 
Wallingford, cr 06492-0200 
(203) 265-3822 

Distribution 

Florida 
Ft. Lauderdale, FL 33309 
(305) 977-4880 

Altamonte Springs, FL 32701 
(305) 767-8585 

St. Petersburg, FL 33702 
(813) 576-1399 

Georgia 
Norcross, GA 30093-9990 
(404) 923-5750 

Illinois 
Schaumburg, IL 60195 
(312) 490-0155 

Indiana 
Indianapolis, IN 46278 
(317) 297-0483 

Kansas 
Lenexa, KS 66214 
(913) 492-3121 

Maryland 
Silver Springs, MD 20910 
(301) 622-1118 

Massachusetts 
Wilmington, MA 01887 
(508) 657-9029 

Michigan 
Livonia, MI 48150 
(313) 525-5850 

Minnesota 
Plymouth, MN 55441 
(612) 559-2211 



Distribution 
Marshall Industries (continued) 

Missouri 
Bridgetown, MO 63044 
(314) 291-4650 

New Jersey 
Fairfield, NJ 07006 
(201) 882-0320 

Mt. Laurel, NJ 08054 
(609) 234-9100 

New York 
Johnson City, NY 13790 
(607) 798-1611 

Hauppauge, NY 11788 
(516) 273-2424 

Rochester, NY 14624 
(716) 235-7620 

North Carolina 
Raleigh, NC 27604 
(919) 878-9882 

Ohio 
Dayton, OH 45424 
(513) 898-4480 
Solon, OH 44139 
(216) 248-1788 

Oregon 
Beaverton, OR 97005 
(503) 644-5050 

Pennsylvania 
Pittsburgh, P A 15238 
(414) 963-0441 

Texas 
Austin, TX 78754 
(512) 837-1991 

Carrollton, TX 75006 
(214) 770-0604 

Houston, TX 77040 
(713) 795-9200 

Utah 
Salt Lake City, UT 84115 
(801) 485-1551 

Washington 
Bothell, WA 98011 
(206) 486-5747 

Wisconsin 
Waukesha, WI 53186 
(414) 797-8400 

Falcon Electronics 

Connecticut 
Milford, CT 06460 
(203) 878-5272 

Massachusetts 
Franklin, MA 01701 
(508) 520-0323 

New York 
Hauppauge, NY 11788 
(516) 724-0980 
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Semad 
Canada 
Toronto 
Markham, Ontario L3R 4Z4 

(416) 475-3922 
FAX: (416) 475-4158 

Montreal 

Point Claire, Quebec H9R 427 
(514) 694-0860 
1-800-363-6610 

Ottawa 

Ottawa, Ontario K2C OR3 
(613) 727-8325 
FAX: (613) 727-9489 

Vancouver 
Burnaby, B.C. V3N 4S9 
(604) 420-9889 
1-800-663-8956 
FAX: (604) 420-0124 

Calgary 

Calgary, Alberta T2H 2S8 
(403) 252-5664 
FAX: (403) 255-0966 

Zeus Components Inc. 
California 
Agoura Hills, CA 91301 
(818) 889-3838 

Yorba Linda, CA 92686 
(714) 921-9000 

San Jose, CA 95131 
(408) 998-5121 

Florida 
Oviedo, FL 32765 
(305) 365-3000 

Massachusetts 
Lexington, MA 02173 
(617) 863-8800 

Maryland 
Columbia, MD 21045 
(301) 997-1118 

Distribution 
Zeus Components Inc. (continued) 
New York 
Port Chester, NY 10573 
(914) 937-7400 

Ronkonkoma, NY 11779 
(516) 737-4500 

Ohio 
Dayton, OH 45439 
(513) 293-6162 

Texas 
Richardson, TX 75081 
(214) 783-7010 



Cypress Semiconductor 
3901 North First Street 

San Jose, CA 95134 
(408) 943-2600 


