
ATT2100 Microprocessor
Hardware Specification

RELEASE 1.7.2

March 31,1991

AT&T -PROPRIETARY
Use pursuant to Company Instructions.

AT&T reserves the right to make changes to the products{s), including any hardware, software, and/or
firmware contained therein, described herein without notice. No liability is assumed as a result of the use
or application of this product{s). No rights under patentaccompany the sale of any such product(s).

AT&T ~PROPRJETARY
Use pursuant to Company Instructions.

CONTENTS

1. PRODUCT OVERVIEW • • • • •
1.1 Product Summary • .- • • • •

1.1.1 A1T2100 Functional Description 1-1
1.1.2 Electrical Interface 1-1
1.1.3 Summary of the A1T2100 Pin-Out and Protocol Features 1-2
1.1.4 Memory Management 1-2
1.1.5 Reliability 1-2
1.1.6 Environmental Requirements 1-2
1.1.7 Physical Design 1-2
1.1.8 Timing Specifications 1-2
1.1.9 Testability 1-2

1.2 Supporting Documentation

2. A1T2100 FUNCTIONAL DESCRIPTION. •
2.1 Data Types • • • • • • • • • •
2.2 Addressing and Alignment Restrictions. •
2.3 Stack Cache • • • • • • • . • •

2.3.1 Stack Cache Maintenance 2-2
2.3.2 Integer Accumulator 2-2
2.3.3 Floating-point Accumulator 2-3
2.3.4 Stack Precautions 2-3

2.4 Control Registers • • • •
2.4.1 Configuration Register (CONFIG) 2-4

2.4.1.1 Assembler Language Syntax 2-5
2.4.2 FaultRegister(FAULT) 2-5

2.4.2.1 Assembler Language Syntax 2-5
2.4.3 Floating-point Status Word Register (FPSW)

2.4.3.1 Assembler Language Syntax 2-5
2.4.4 Identification Register (lD) 2-6

2.4.4.1 Assembler Language Syntax 2-6
2.4.5 Interrupt Stack Pointer (lSP) 2-6

2.4.5.1 Assembler Language Syntax 2-6
2.4.6 Maximum Stack Pointer (MSP) 2-6

2.4.6.1 Assembler Language Syntax 2-7
2.4.7. Program Counter (PC) 2-7
2.4.8 Program Status Word (pSW) 2-7

2.4.8.1 Assembler Language Syntax 2-8
2.4.9 Segment Table Base (STB) 2-8

2.4.9.1 Assembler Language Syntax 2-9
2.4.10 Shadow (SHAD) 2-9

2.4.10.1 Assembler Language Syntax 2-9
2.4.11 Stack Pointer (SP) 2-9

2.4.11.1 Assembler Language Syntax 2-9
2.4.12 Timer One (TIMERl) 2-9

2.4.12.1 Assembler Language Syntax 2-9
2.4.13 Timer Two (TIMER2) 2-9

2.4.13.1 Assembler Language Syntax 2-10
2.4.14 VectorBase(VB) 2-10

2.4.14.1 Assembler Language Syntax 2-11

• • • .1. •

_2-5

1-1
1-1

1-3

2-1
2-1
2-1
2-2

2-3

2.5 Instruction Fonnat • • • • 0 0 • • • • • • • • • 0 0 0 •

2.5.1 One-Parcel Fonnats 2-11
2.5.2 Three-Parcel Fonnats 2-11
2.5.3 Five-Parcel Format 2-12

2.6 Addressing Modes • . • • • •
2.6.1 Immediate 2-12

2.6.1.1 Assembler Language Syntax 2-12
2.6.2 Absolute 2-12

2.6.2.1 Assembler Language Syntax 2-12
2.6.3 Stack Offset 2-13

2.6.3.1 Assembler Language Syntax 2-14
2.6.4 Stack Offset Indirect 2-14

2.6.4.1 Assembler Language Syntax 2-14
2.6.5 Absolute Indirect 2-14

2.6.5.1 Assembler Language Syntax 2-14
2.6.6 Program Counter Relative 2-14

2.6.6.1 Assembler Language Syntax 2-14
2.6.7 Register 2-13

2.6.7.1 Assembler Language Syntax 2-15
2.7 Integer Arithmetic • • . . • •

2.7.1 The Language ofInteger Arithmetic 2-15
2.7.2 Signed and Unsigned Integer Values 2-15
2.7.3 ATT.tl00 Integer Types 2-15
2.7.4 Two's Complement Arithmetic 2-15
2.7.5 ATT2100 Integer Arithmetic Operations 2-16
2.7.6 The Carry Bit C and Unsigned Overflow 2-16
2.7.7 Hardware versus ATT2100 Arithmetic versus Mathematics 2-18
2.7.8 The oVerflow Bit V and Signed oVerflow 2-18
2.7.9 A Note About Division and Remainder 2-18

2.8 Tagged Integer Arithmetic •••••
2.9 ATI'2100 Floating-Point Arithmetic
2.10 A Fast Calling Sequence •
2.11 Prefetching Strategy
2.12 Tracing Instructions
2.13 Event Processing

2.13.1 Reset 2-21
2.13.2 Interrupt 2-21

2.13.2.1 Interrupt Sequence 2-22
2.13.3 Exceptions 2-22

2.13.3.1 Exception Sequence 2-24
2.13.4 Unimplemented Instruction 2-24

2.13.4.1 Unimplemented Instruction Sequence 2-25
2.13.5 Trapped Niladics 2-25

2.13.5.1 Trapped Niladic Sequence 2-25
2.13.6 Event Processing Priority 2-25

2.14 Instructions • • • • •
2.15 Pipeline Considerations • • • 0 • •

3. PERFORMANCE • • • • • • • • • • • •
3.1 Instruction Execution Times • •••••
3.2 Branch Folding • • • •

2-11

2-12

2-15

2-18
2-18
2-19
2-20
2-20
2-20

2-26
2-87

3-1
3-1
3-5

4. ELECI'RICAL IN1ERFACE •
4.1 Input Protection. • • •
4.2 Pin Electrical Specifications
4.3 Absolute Maximum Rating

5. PIN-OUT AND PROTOCOL. •
5.1 Summary of Pin-Out and Protocol Features
5.2 Pin-Out • • • • • •

5.2.1 Clock Group 5-1
5.2.2 Bus Arbitmtion Group 5-2
5.2.3 Exception Handling Group 5-3

5.2.3.1 Priorities Of Exception Handling Pins 5-4
5.2.4 Transfer Group 5-4

5.2.4.1 Hand-shake Signals 5-4
5.2.4.2 Address and Data Signals 5-4
5.2.4.3 Transfer Qualifier Signals 5-5

5.2.5 Interrupt Handling Group 5-6
5.2.6 Test Pins 5-7
5.2.7 Power and Ground Pins 5-7

5.3 Bus Transaction Types
5.4 Protocol • • • • • •

5.4.1 ATT2100 and System Clocks 5-9
5.4.2 Latch and Toggle Points of Signals 5-9
5.4.3 Reset 5-9
5.4.4 Bus Arbitmtion 5-10

5.4.4.1 Requesting the Bus 5-10
5.4.4.2 Surrendering The Bus 5-11

5.4.5 Read Transactions 5-12
5.4.6 Write Transactions 5-13
5.4.7 Interlocked Bus Transfer. 5-14
5.4.8 Block Data Transfer 5-15

5.5 Special Purpose Bus Transactions • • • . • .
5.5.1 Bus Error 5-15

5.5.1.1 Bus Error in an Interlocked or Block Transfer 5-15
5.5.2 Retry 5-15

5.5.2.1 Retry in an Interlocked Transfer 5-15
5.5.3 Interrupts 5-16

5.5.3.1 Generating Interrupts 5-16
5.5.4 Testing 5-16

6. MEMORY MANAGEMENT •
6.1 Address Mapping • • •
6.2 Segment Mapping • • .
6.3 . Page Mapping • • • • •
6.4 Memory Management Summary. .
6.5 Memory Management Operations
6.6 MMU Performance. • . • . •

7. ENVIRONMENTAL REQUIREMENTS
7.1 RELIABILITY • •
7.2 Shipping and Storage
7.3 POWER • • • •

4-1
4-1
4-1
4-1

5-1
5-1
5-1

5-7
5-8

5-15

6-1
6-1
6-2
6-3
6-5
6-5
6-6

7-1
7-1
7-1
7-1

8. PHYSICAL DESIGN • • • • • • • •
8.1 ATT2100 Ceramic PGA Prototype Package
8.2 ATI'2100 Plastic Prototype Package

9. TIMING SPECIFICATIONS •
9.1 AC Load Specification. •
9.2 Load Specifications
9.3 Timing Diagrams

10. Testability ••••
10.1 Conformance
10.2 Test Access Pon (TAP)

10.2.1 TAP I/O 10-1
10.2.2 TAP Controller (TAPC) 10-2

10.2.2.1 TAPC State Diagram 10-2
10.3 IEEE 1149.1/05 Registers

10.3.1 Instruction Register (IR) 10-4
10.3.2 By-pass Register (BR) 100 5
10.3.3 Boundary-scan Register (BS) 10-5
10.3.4 Identification Register (10) 10-6

11. APPENDIX • • • • • • • .• • •

8-1
8-1
8-1

9-1
9-1
9-1
9-1

10-1
10-1
10-1

10-4

11-1

LIST OF FIGURES

Figure 1-1.. ATI2100 Functional Block Diagram •

Figure 2-1. ATI2100 Little Endian Byte Ordering

Figure 2-2. ATI2100 Little Endian Byte Ordering

Figure 2-3. Integer Accumulator. • • • •

Figure 2-4. Floating-point Accumulator

Figure 2-5. Configuration Register Format. •

Figure 2-6. Floating-point Status Word Register Format

Figure 2-7. Identification Register Format •

Figure 2-8. Program Status Word Format •

Figure 2-9. Segment Table Base Format

Figure 2-10. Vector Table • • • • • •

Figure 2-11. One-Parcel Instruction Formats

Figure 2-12. Three-Parcel Instruction Formats

Figure 2-13. Five-Parcel Instruction Format.

Figure 2-14. Typical Stack-frame. • • •

Figure 5-1. Reset with Bus Grant Asserted •

Figure 5-2. ATI2100 Read Bus Cycles with Bus Arbitration

Figure 5-3. ATI2100 Write Bus Cycles with Bus Arbitration

Figure 5-4. Interlocked Bus Transfer without and with Retry

Figure 6-1. Page-based Virtual Address Format

Figure 6-2. Non-paged Virtual Address Format

Figure 6-3. Segment Table Base Format

Figure 6-4. Paged Segment Table Entry Format

Figure 6-5. Non-paged Segment Table Entry Format. •

Figure 6-6. Page Table Entry Format

Figure 6-7. Paged Segment Address Mapping. •

Figure 6-8. Non-paged Segment Address Mapping

Figure 8-1. ATI2100 125 CPGA Pin Location

Figure 9-1. Oock Input Timing.. • • •

Figure 9-2. Synchronous Input Timing.

1-3

2-1

2-1

2-3

2-3

2-5

2-6

2-6

. , . 2-8

2-9

2-10

2-11

. . 2-12

2-12

2-18

5-9

5-11

5-13

5-14

6-2

6-2

6-2

6-2

6-3

6-3

6-4

6-5

8-1

9-2

9-3

Figure 9-3. Output Timing.

Figure 9-4. Bus Reiinquish Cycle Output Timing.

Figure 9-S. DTRI~ to Data Tri-state Output Timing.

Figure 9-6. BREQ- and BGACK- Output Timing.

Figure 10-1. TAP Controller State Diagram. • •

9-4

9-5

9-6

9-6

10-4

./

UST OF TABLES

TABLE 3-1. Performance Abbreviations • • •

TABLE 3-2. Simple Insttuction Execution Times

TABLE 3-3. Multi-Cycle Arithmetic Insttuction Execution Times

TABLE 3-4. DQM Insttuction Execution Times • • • • .'

TABLE 3-5. Miscellaneous Insttuction Execution Times •

TABLE 3-6. Conditional Jump Insttuction Execution Times

TABLE 3-7. Insttuction Fetch and Empty Pipeline Delays

TABLE 3-8. Operand Access Delays • •

TABLE 3-9. Data Type Delays. •

TABLE 3-10. Miscellaneous Delays

TABLE 4-1. Pin Electrical Specifications

TABLE 4-2. Absolute Maximum Ratings

TABLE 5-1. AT1'2100 Pin Designations •

TABLE 5-2. Priorities of Bus Transaction Termination Signals

TABLE 5-3. Byte Mark Strobe Encoding

TABLE 5-4. Interrupt Levels

TABLE 5-5. Latch and Toggle Points. •

TABLE 6-1. Address Translation Perfonnance •

TABLE 8-1. AT1'2100 125 PGA Pad Assignments with PGA Pin Assignment

TABLE 8-2. AT1'2100 132PQFPPad Assignments with Buffer Types •

TABLE 9-1. Loading Specifications • •

TABLE 10-1. TAP Controller State Table • •

TABLE 10-2. Insttuction Register Encodings

TABLE 11-1. One-Parcel Insttuction Encodings. MonadicS/Dyadics

TABLE 11-2. One-Parcellnsttuction Encodings. Stack •

TABLE 11-3. One-Parcel Insttuction Encodings. Niladics •

TABLE ~1-4. Three-Parcel Instruction Encodings

TABLE 11-5. Three-Parcel Insttuction Monadic Subcodings

TABLE 11-6. Five-Parcel Insttuction Encodings •

TABLE 11-7. Geneial Addressing Mode Encodings

3-1

3-2

3-3

3-3

3-3

3-4

3-4

3-4

3-5

3-5

4-1

4-1

5-2

5-4

5-6

5-7

5-8

6-6

8-2

8-3

9-1

10-2

10-5

11-1

11-1

11-1

11-2

11-2

11-2

11-3

TABLE 11-8. Floating Point Addressing Mode Encodings •

TABLE 11-9. CalJI]mp Addressing Mode Encodings

TABLE 11-10. Register Addressing Mode Encodings. •

TABLE 11-11. Register Access Codes

TABLE 11-12. Exception Identifiers •

. . 11-3

114

11-4

11-4

11-5

A TT2100 Microprocessor Release 1072

1. PRODUcr OVERVIEW

The ATT2I00 is a next generation general purpose microprocessor designed for high performance and low
power dissipation.

1.1 Product Summary

The following sections summarize the major features of this product

1.1.1 A1T2100 Functional Description

The A1T2100 microprocessor, which is functionally depicted in Figure I-I, has a full 32-bit byte
addressable architecture. The instruction set uses a simple memory to memory addressing scheme and
there are no programmer visible general registers. It has a small but "sufficient" number of user level
instructions and addressing modes suitable for programming in a high level language on a highly pipelined
machine. With pipelining. most instructions can be executed in a single cycle. Major implementation
features of the A 1T2loo include:

1. A 3K-byte three-way set associative physical Prefetch Buffer Cache.

2. A 32-entry direct mapped physical/virtual Decoded Instruction Cache.

3. A 256-byte (64-word) direct Stack Cache which maintains the top of stack on chip.

4. Two 32-entry Translation Look-aside Buffers for address translation of text and data references.

5. A simple and efficient subroutine linkage mechanism.

6. Static branch prediction and the folding of branches into other instructions.

7. Data byte encoding selectable for both user and kernel modes of operation.

8. A one cycle minimum access synchronous I/O protocol and a block mode access.

9. 3.3 Volt operation.

10. Low-power stand-by mode.

The Prefetch Buffer Cache holds copies of text from external memory. The Prefetch Buffer is a three-way
set associative cache. with each way being lK bytes in size. and using physical. rather than virtual
addressing.

The Decoded Instruction Cache holds one fully decoded instruction per entry. It is a direct-mapped cache
with no translation performed on addresses to be looked up in the cache. Therefore. it caches using virtual
addressing when virtual addressing in enabled. and physical addresses when virtual addressing is disabled.

To provide for further functional integration. a set of instruction encodings have been reserved to provide
floating-point support These reserved instructions are trapped as are all unimplemented instructions. See
Section 2.11.4 for details.

A complete description of the architectural implementation is given in Section 2. A complete description of
the performance of the architecture is given in Section 3.

1.1.2 Electrical Interface

The electrical interface of the A1T2100 microprocessor is a CMOS design. with current leakage
characteristics of CMOS. All inputs are CMOS circuits with CMOS voltage levels. All outputs are CMOS
levels. The A 1T2IOO operates from two 20 MHz clocks, one delayed 90 degrees in phase with respect to
the other as depicted in Figure 9-1. The ATT2I00 requires a 3.3 ±5% volt supply. A complete description
of the electrical interface is given is Section 4.

I-I 3/31/91

A TT2100 Microprocessor Release 1.7.2

1.13 Summary of lhe Am100 Pin-Out and Protocol Features

The ATT2100 microprocessor interface is designed to provide an easily interfaced high performance data
transfer mechanism. Salient features of the interface are:

" One clock period synchronous bus cycle.

" Synchronous wait state insertion.

" Double-word/quad-word "Block Transfer>' capability.

• Read-modify-write interlocked bus cycle.

II IEEE 1149.1/OS Test Access Port Compatible.

• Six levels of maskable interrupts and a non-maskable interrupt.

• External Bus arbitration

" Byte marks for sub-word access.

" Low~power stand-by mode.

There are 93 active signal pins.

A complete description of the I/O protocol is given in Section S.

1.1.4 MemtJry Management

The ATl'2100 microprocessor has an integrated Memory Management Unit which supports paged and
unpaged segmented address translation. A complete description of the memory management unit is given
in Section 6.

1.1.5 Reliability

The long term reliability objective for the A1T2100 microprocessor is SOO FIT when the nominal junction
temperature is at or below SsoC. If the nominal junction is at or below SsoC the long term reliability
objective is 250 FIT. One FIT is defined as one device failure in 1,000,000,000 device hours. More details
on reliability can be found in Section 7.

1.1.6 Environmental Requirements

The environmental section provides temperature and humidity limits for the device. A means of
determining junction temperature is provided. The package's thermal resistance is given as well as a means
to determine power dissipation at a given frequency of operation. More details on environmental
requirements can be found in Section 7.

1.1.7 Physical Design

The ATl'2100 microprocessor is available in both a 125 pin CPGA and a 132 pin PQFP. A complete
description of packaging is given in Section S.

1.108 Timing Specifications

The lIO timing specification section identifies the preliminary timing of all signals. A complete description
ofllO timing is given in Section 9.

1.19 Testability

A IEEE 1149.1/DS interface is provided which allows access to a boundary scan mechanism for board
testing. The chip can be tri-stated from the rest of the system to allow safe in-circuit testing of circuit
boards. Also, all on-chip caches can be individually disabled to facilitate testing. Details on testability can
be found in Section 10.

1-2 3131/91 /

A 112100 Microprocessor Release 1.7.2

1.2 Supporting Documentation

This document specifies all requirements to be satisfied by the A112100 microprocessor. It does not
contain supporting documentation such as technical memoranda relating to the project, data sheets. user
manuals, etc.

data in

f --L- STC-

Prefetch Buffer
R/W-

CACHE-
Cache IOC<1:0>

1KB x 3 T/D-
LOCK-l' 64b A<31:02>

.... 32b
0<31:00>

Prefetch/Decode I/O
BM<3:O>-

Unit
virtual address DTRI-

3 stage pipeline DTACK-
BERR-

f192b HOLD-
RETRY-

Decoded Instruction Memory physical
BRED-

address
Cache Management BGRANT-

Unit BGACK-
32x192

2x32 page TLB IL<2:0> .1' 192b 2x1 seg TLB
STOP-

f

Stack ~2b Execution
RESET-

Cache
I

Unit CK23
~2b

virtual address CK34
64x32x2 I 3 stage pipeline

:t 32b
data out T

TCK
TOI

JTAG TMS
TRST-

TOO

Figure 1-1. A112100 Functional Block Diagram

1·3 3(31191

A Tr2100 Microprocessor Release 1.7.2

1-4 3131/91

ATI'2100 Microprocessor

2. A TT2100 FUNCTIONAL DESCRIPTION

2.1 Data Types

Release 1.7.2

CUITendy, six integer data types are supported: signed and unsigned bytes (S-bits), signed and unsigned
half-words (l6-bits), and signed and unsigned words (32-bits). Non-word operands are properly aligned
and then expanded to 32-bits through sign extension (if signed) or clearing high order bits (if unsigned).

After alignment and expansion, the 32-bit ALU performs the requested function. Carry and overflow are
detennined relative to the 32-bit result Section 2.7 gives a full description of integer arithmetic and the
detennination of carry and overflow.

For destinations less than 32-bits, the least significant bits of the 32-bit ALU result are selected. Changing
a value by truncation constitutes neither overflow nor carry. For two-and-a-half-operand instructions, the
full 32-bits of the result are placed in the Accumulator regardless of the sizes of the two operands.

To provide for further functional integration, three floating-point data types have been defined. These
floating-point data types are: float (32-bits), double (64-bits) and extended (SO-bits). Although hardware
floating-point support is not provided in this Version of the ATI'2100, a series of instructions have been
defined to provide for software implementation of floating-point operations. Section 2.S will give a full
description of floating-point arithmetic in a future release.

2.2 Addressing and Alignment Restrictions

The numbering of bits within bytes and words corresponds to that in the DEC V AX, Intel SOXS6 and the
Motorola 680XO. The numbering of bytes within data words is selectable for both the User and Kernal
modes via the PSW UL-bit and the CONFIG KL-bit, respectively. When the PSW UL-bit and CONFIG
KL-bit are set to 0, the numbering of bytes within data words corresponds to that in the mM 370 and
Motorola 680XO in the user mode and kemal mode, respectively:

address 131 byte 0 ,..123 byte 1 lit byte 2 '.I, - byte 3 01

,Figure 2-1. ATI'2100 Little Endian Byte Ordering

When the PSW UL-bit and CONFIG KL-bit are set to I, the numbering of bytes within data words
corresponds to that in the, V AX and Intel SOXS6 in the user mode and kernal mode, respectively:

address~131~_b_yte __ 3 __ ,..~I23~,_b_yte __ 2 __ 1~6~115~_b_yte __ l __ ~.~17 ___ b_yte __ O __ ~ol
Figure 2-2. ATI'2100 Little Endian Byte Ordering

Text is always big endian.

The A1T2100 fetches only words; bytes and half-words are accessed by extracting them from the
surrounding word. Likewise, all stores are done to word-addresses, with the appropriate write strobes
enabled. However, during reads, the byte-strobes indicate which bytes within the word being fetched will
ultimately be extracted by the instruction.

All operand addresses should be naturally aligned for the operand type. l If an operand fetch or operand

2-1 3/31191

A TT2100 Microprocessor Release 1.7.2

store is to an address which is not properly aligned for the data type, an Alignment Exception is signaled.
Instructions can only be fetched on half~word boundaries so instruction addresses should be suitably
aligned. although no exception is signaled.

13 Stack Cacbe

The goal of the stack cache is to keep the top elements of the stack in high speed registers. The stack cache
consists of a bank of 64 registers organized as a circular buffer maintained by two registers, the Maximum
Stack Pointer (MSP) and the Stack Pointer (SP). Both the MSP and the SP are 28-bit registers holding
quad=word addresses. The MSP contains the address above the highest address of the data which is
currently kept in the stack cache registers; the SP delimits the lowest address of data in the stack cache.
Therefore only a simple range-check is needed to determine if an address resides within the stack cache. If
SP S ADDR < MSP, it falls within the stack cache. Although the stack cache limits are maintained on
quad-word boundaries, the stack cache is byte addressable and appears as normal memory. All virtual
addresses generated within the ATT2100 to access data may freely reference the stack cache.

23.1 Stack Cache Maintenance

Six instructions mainiaID the· stack cache. They are CALL, CATCH, CRET, ENTER, POPN and
RETURN. The CALL instruction places the return address on the stack and branches to the target address.
The ENTER instruction allocates space for the new procedure's stack-frame by subtracting its operand, the
size of the new stack-frame, from the SP. The POPN instruction deallocates the current stack-frame by
adding its argument to the SP. The RETURN instruction deallocates the current stack-frame by adding its
argument to the SP, then branching to the return address on the stack. The CATCH instruction guarantees
that the stack cache is filled at least as deep as the number of the bytes specified in its operand. The CRET
instruction is used by the kernel to load a new SP and MSP and execute the function of CATCH to fill the
stack cache.

ENTER and CATCH are also used to handle the cases where the stack cache circular buffer is not large
enough to accommodate the entire stack. When a new procedure is entered, the ENTER instruction
attempts to allocate a new set of registers equal to the size of the new stack-frame. If free register space
exists in the circular buffer then all that needs to be done is to modify the SP. If not, then the entries nearest
the MSP are flushed back to main memory. Two cases exist:

• If the new stack~frame size is less than 256 bytes, then only the stack~frame size minus the number of
free entries must be flushed.

• If the , new frame size greater than or equal to 256 bytes, then all valid stack cache entries are flushed
and only part of the new stack-frame nearest the SP is kept in the stack cache.

After successful completion of the ENTER, the PSW E-bit is set The PSW E-bit is cleared by the CLRE
instruction.

After a procedure returns to the caller, it is not known how many of the stack cache entries were flushed
since the call, so some entries may need to be restored from off-chip memory. The argument of the
CATCH instruction specifies the number of stack cache entries that must be valid before execution can
continue. The CATCH argument is used as a stack offset and a virtual address is generated. If this
calculated address resides within the stack cache, (SP S ADDR < MSP) execution continues. However if it
lies outside the oodress range of valid stack cache entries. quad-words pointed to by the MSP are restored
from off-chip memory to the stack cache and the MSP incremented until either the CATCH instruction js

10 Byte-by-byle, half-words-on-half-words, words-an-words.

2-2 3/31/91

A TI'2100 Microprocessor Release 1.7.2

satisfied or the stack cache is full. The CA TCD instruction behaves much like an assertion, since usually
no entries need to be restored and the CA TCD takes only one clock cycle.

23.2 Integer Accumulator

The Integer Accumulator is not an actual hardware register. It is the word in memory above the word
addressed by the Current Stack Pointer (CSP). The CSP is either the Stack Pointer (SP) or the Interrupt
Stack Pointer (lSP), as determined by the Program Status Word (pSW) S-biL Many two operand
instructions use the Integer Accumulator as an implicit destination address. The Integer Accumulator
normally resides on chip in the stack cache, but may be off chip if the SP = MSP or CSP = ISP.

OxFFFFFFFC

o

31 0

accumulator +- CSP + 4
PC save area +- CSP

'-------'

Figure 2·3. Integer Accumulator

233 Floating-point Accumulator

The Floating-point Accumulator is not an actual hardware register. It is the quad-word in memory based at
the word addressed by the CSP. The CSP is either the SP or the ISP, as determined by the PSW S-bit.
There are no hardware instructions which currently use the Floating-point Accumulator.

The value at RO is not affected by manipulations of the Floating-point Accumulator due to the alignment of
the FP A. RO is the location pointed to by the CSP and is where the retmn PC is saved by CALL
instructions. Section 2.8 will describe the format of the Floating-point Accumulator in a future release.

31 0
OxFFFFFFFC

FP A word3 +- CSP + 12
FPA word2 +- CSP + 8
FPA wordl +- CSP + 4

PC save area +- CSP

o
Figure 2-4. Floating-point Accumulator

23.4 Stack Precautions

As discussed in Section 2.3, the stack cache is conceptually a cache for memory. If an address is generated
in any processing stage, for example in doing indirect address calculations, the stack cache is referenced if
that address is greater-than the SP and less-than the MSP. However, for implication simplicity, this
conceptual model is violated for some interrupt stack references during event processing and for some
references to RO and R4 when executing with CSP = ISP. There are no problems with memory accesses as
long as the the user stack, based at the SP, and the interrupt stack, based at the ISP, do not overlap.

2-3 3/31~1

A TI'2100 Microprocessor

For similar reasons, the following addresses must not lie between the SP and MSP:

.. The vector table, defined by the Vector Base (VB) described in Section 204.14,

.. the address translation tables used by the MMU, or

• any text

2.4 Control Registers

2.4.1 Configuration Register (CONFIG)

Release 1.7.2

The Configuration Register (CONFIG), which is set to OxO upon reset, contains the following information:

• Reserved (R): Bits 0 through 15 are reserved. They return zeros when read and should be written
with zeros on CONFIG writes.

• Kernal Little Endian (KL): A 0 selects data as big endian in kernal mode; a 1 selects data as little
endian in kemal mode. Note that text is always big end ian .

., PC Extension (PX): A 0 selects zero extension of lIS-bit absolute addresses; a 1 selects the extension
of 16-bit absolute addresses where bits 29 through 31 are copied from bits 29 through 31 of the PC
and bits 16 through 28 set to O.

• SC Enable (SE): A 0 disables the Stack Cache (SC) from hitting; a 1 enables the SC. The SC is
neither flushed or altered when this bit is modified.

• Ie Enable (IE): A 0 disables the Instruction Cache (IC) from hitting; a 1 enables the IC. The Ie is
neither flushed or altered when this bit is modified.

• PF Enable (PE): a 0 disables the Prefetch Buffer (PFB) from hitting; a 1 enables the PFB. The PFB
is neither flushed or altered when this bit is modified.

• Prefetch Mode (PM): This bit controls prefetching of instructions. When 0, prefetching off chip is
nOl performed; predecoding from the PFB into the Ie is performed. When I, aggressive prefetching
is performed. See Section 2.11 for a full description of the pre fetching strategy.

• TIMER! Configuration (Tl): A three~bit field which configures TIMER1:

- Bit O. When O. TIMERI counts clock cycles. When 1. TIMERl counts completed
instructions (folded branches do not count).

- Bit 1. When 0, TIMERI is on all the time (with reference to bit 0). When I, the timer only
increments when the PSW X-bit is O.

- Bit 2. When 0, TIMER! does not generate an interrupt When 1. TIMERl generates an
interrupt using a TIMER! vector when an overflow does occur (goes from OxFFFFFFFF to
OxO). This interrupt is a level one interrupt If an external level one interrupt occurs at the
same time as a TIMERl interrupt, the external interrupt is serviced first

• TIMER2 Configuration (1'2): A seven-bit field which configures TIMER2:

- Bit 0 through 4. A five-bit encoded field which selects the internal event which increments
TIMER2.

r:r OxO - Count clock cycles.

r:r Oxl - Count completed instructions (folded branches do not count).

r:r OxlF - Do not increment the timer; a low power feature.

2-4 '3/31.191

ATI'2100 Micropiocessor Release 1.7.2

. - Bit S. When 0, TIMER2 is on all the time (with reference to bits 0 through 4); when I, the
timer only increments when the PSW X-bit is O.

- Bit 6. When 0, TIMER2 does not generate an interrupt; when I, TIMER2 generates an
interrupt using a TIMER2 vector when an overflow does occur (goes from OxFFFFFFFF to
OXO). This interrupt is a level one interrupt. If either an external level one interrupt or a
TIMERI interrupt occur at the same time as a TIMER2 interrupt, the other -interrupts
dominate and are serviced first.

1'2

Figure 2-5. Configuration Register Format

2.4.1.1 Assembler Language Syntax

%CONFIG

R

Caution: Special precautions must be taken when modifying the Configuration Register. The number of
NOPs which must come after the register write varies according to which bits are being modified and the
number of wait states being used by I/O transactions. The prescribed means of modifying CONFIG is to
follow the CONFIG write by either a CRET or KRET.

2.4.2 Fault Register (FAULT)

The Fault Register (FAUL 1) reports the 32b operand aligned virtual address for the processing of exception
IDs Ox8 and Ox9. Section 2.13.3 gives more detail on exceptions.

2.4.2.1 Assembler Language Syntax

%FAULT

2.43 Floating-point Status Word Register (FPSW)_

The Floating-point Status Word Register (FPSW) is not implemented in this version of the A TT2100, but is
defined for software emulation of the unimplemented floating-point instructions.

• Reserved (R): The bits 0 through 2 are reserved. They return zeros when read and should be written
with zeros on FPSW writes.

• Remainder Quotient (RQ): The signed low 4-bits from the last FREM, in 2's complement.

• Excluded exceptions (XE): A five-bit-field which masks the selected exceptions from LSB to MSB
as: invalid, underflow, overflow, division by zero, inexact.

• Exceptions last operation (XL): A five-bit-field which indicates exceptions from the last performed
operation defined from LSB to MSB as: invalid, underflow, overflow, division by zero, inexact.

• Exceptions halt enables (XH): A five-bit-field which enables exception halts defined from LSB to
MSB as: invalid, underflow, overflow, division by zero, inexact.

• Accumulated exceptions (XA): A five-bit-field which indicates accumulated exceptions defined
from LSB to MSB as: invalid, underflow, overflow, division by zero, inexact.

• R01D1ding precision (RP): A two-bit-field which indicated the rounding precision used as: 00 - to
extended, 01-- to double, 10 - to single, 11 - reserved.

• R01D1ding direction (RD): A two-bit-field which indicates the rounding direction used as: 00 - to
nearest, 01 - toward +00, 10 - toward -00, 11 - toward O.

2-S 3/31191

A TT2100 Microprocessor

RQ

Figure 2·6. Floating-point Status Word Register Fonnat

2.4.3.1 Assembler Language Syntax

%FPSW

2.4.4 ldentificaJion Register (ID)

Release 1.7.2

R

The Identification Register (ID) serves as the JTAG Device Identification Register and is readable by serial
shifting through the Test Access Port (TAP) and through nonnal register access. This register is only
readable. No operation is perfonned if the kernel attempts to write the ID register .

• Manufacturer Code (MC): A 12-bit-field which identifies the manufacturer of the device as AT&T
Microelectronics. The encoding is Ox3B from MSB to LSB with LSB closest to the Test Data
Output (TDO) pin.

e Part Code (PC): A 16-bit-field which identifies the device. The encoding for the ATI'2100 is OxO.

• Version Code (VC): A 4-bit-field which identifies the version of the device. The encoding for Mask
1 silicon is OxO and for Mask 2 silicon is Oxl with the MSB closest to the Test Data Input (TO!) pin.

PC

Figure 2-7. Identification Register Fonnat

2.4.4.1 Assembler Language Syntax

%ID

2.4.5 InterrJlpt Stack Pointer (ISP)

MC

The Interrupt Stack Pointer (ISP) is used to generate addresses (i.e .• as the base address in offset modes, to
locate the Accumulator, and as the pointer manipulated by the instructions CALL, RETURN and ENTER)
whenever the PSW S-bit is O. The ISP is not associated with the stack cache as detailed in Section 2.3. The
instructions CRET, KCALL and KRET, and operating system sequences interrupts and exceptions, use
the ISP to maintain a stack of event blocks.

The ISP must be valid at all times. A fault on any ISP based address results in the ATT2100 resetting. See
Section 2.13.1 for details.

Address translation is perfonned if the MMU is enabled by setting the PSW VP-bit to 1.

The ISP is quad-word-aligned. The low-order four bits return zero when read.

2.4.5.1 Assembler Language Syntax

%ISP

2.4.6 Maximum Stack Pointer (MSP)

The Maximum Stack Pointer (MSP), in conjunction with the SP, is associated with the on-chip stack cache
as detailed in Section 2.3. Any address which is greater than or equal to the SP and less than the MSP hits
in the stack cache.

SC hit when SP S address < MSP

2-6 3/31/91

A TI2100 Microprocessor Release 1.7.2

On a memory access which hits in the stack cache, data is fetched or stored in the cache and not in external
memory. The MSP must be greater than or equal to the SP and less than or equal to SP + SCSIZE,2 or the
result of stack cache accesses are dependent upon context and therefore are unpredicatable.

Whenever the SP is the direct destination of an instruction, through a CPU-prefixed instruction with the SP
as the destination, the MSP is updated with the same value. This defines an empty stack cache (SP = MSP).
The MSP is manipulated implicitly by the CA TCO, CRET, ENTER and RETURN instructions.

Address translation is performed if the MMU is enabled by setting the PSW VP-bit to 1.

The MSP is quad-word-aligned. The low-order four bits return zero when read.

2.4.6.1 Assembler Language Syntax

%MSP

2.4.7 Program Counter (PC)

The Program Counter (PC) addresses the instruction which is currently being executed. Instructions are
aligned on parcel (half-word) boundaries. Since parcels are composed of two-bytes, the PC is always a
multiple of two and the iow-order bit is always O. The PC cannot be directly manipulated by a general
instruction. It can only be read or modified by control-flow instructions CALL, CRET, JMP, KCALL,
KRET, and RETURN and read by the move instruction LDRAA.

2.4.8 Program Status Word (PSW)

The Program Status Word (pSW), which is set to OxO upon reset, contains the following information:

• Reserved (R): The bits 0 through 3 are reserved. They return zeros when read and must be written
with zeros on PSW writes, to provide for future expansion compatibility.

• Flag (F): Set/cleared by a CMP, FCMP, TADD, TESTC, TESTV and TSUB instructions. The
F-bit is not cleared when the PSW is read.

• Carry (C): When I, indicates that an operation generated an unsigned overflow; when 0, indicates
that an operation did not generate an unsigned overflow. See Section 2.7 for detail.

• oVerflow (V): When I, indicates that an operation generated a signed overflow; when 0, indicates
that an operation did not generate a signed overflow. See Section 2.7 for detail.

• Trace instruction (11): Controls instruction tracing. When I, the ATI2IOO allows the next
• instruction, N, to execute normally. The instruction following instruction N, referred to as N+I, is

not permitted into the Execution Unit and a "trace instruction" is generated on the fly. This "trace
instruction" blocks the pipeline and forces the ATI2100 to take a trace exception using the PC of
the N+ 1 instruction-as the exception PC. As branch folding is performed prior to the trace identifier,
folded branches are not explicitly traceable. See Section 2.12 for additional detail on tracing. If
both TI and TB are set to I, the function is that of TI.

• Trace basic block (TB): Controls basic block tracing. When I, the ATI2IOO executes instructions
until a CALL, RETURN, or any jump (folded or not) instruction. referred to as the N instruction,
executes. The instruction following instruction N, referred to as N+l, is not permitted into the
Execution Unit and a "trace instruction" is generated on the fly. This "trace instruction" blocks
the pipeline and forces the ATI2IOO to take a trace exception using the PC of the N+l instruction

2. SCSIZE = stack cache size currently 256 bytes

2-7 3/31/91

31

A TI'21 00 Microprocessor Release 1.7.2 .

as the exception PC. As branch folding is performed prior to the trace identifier, folded branches
are not explicitly traceable. See Section 2.12 for additional detail on tracing. If both TI and TB are
set to I, the function is that of TL

• Current Stack Pointer (5): When 1 the SP is used as the Current Stack Pointer (CSP) for address
generation; when 0 the ISP is used as the CSP for address generation.

• Execution level (X): When 1 execution at user level is performed. when 0 execution at the kernel
(privileged) level is performed.

• Enter guard (E): Set on an uneventful ENTER. The E-bit is not cleared when the PSW is read.

• Interrupt Priority Level (IPL): Interrupts are accepted when the requesting device level (IL<2:0» <
IPL or if IL<2:0>=0. IPL of 7 enables all interrupts.

• User Little Endian (UL): A 0 selects data as big endian in user mode; a 1 selects data as little endian
in user mode. Note that text is always big endian.

fl VirtuallPhysical (VP): Bit 16, enables virtual-addressing (memory mamigement enabled) when I, a
o enables physicaloaddressing (memory management disabled). When the vpobit is 0, indicating
physical-addressing, the CACHE· pin is de-asserted.

• Unassigned (UA): Bits 17 through 31 are not assigned any CPU function, and may be read at either
execution level or written by the kernel.

UA R
o

Figure 2-8. Program Status Word Format

The exception and interrupt sequences only alter the lower 16 bits of the PSW. To remain restartable the
Carry and oVerflow bits are not cleared on reading the PSW until the instruction completes. Reads of the
PSW are not interlocked against ftag·setting. If an instruction sets the Flag, the Carry or the oVerflow
bits, there must be at least two intervening instructions before the PSW can be read .

. Cautions:

• Special precautions must be taken when explicitly modifying the VP bit in the PSW. If the VP-bit
is explicitly modified, the section of code executing must be mapped physical address = virtual
address. The safest means of manipulating the PSW VP-bit is through either CRET or KRET
instructions.

• If the PSW S-bit is modified by a direct write to the PSW, thereby changing the CSP, it is necessary
to update SHAD to the value of the new SP. This update is handled automatically by CRET.
KCALL and KRET.

If the S-bit is set to 1, and it was previously 0, the instruction modifying the PSW should be
followed by the instruction

MOV %SP,%SHAD

If the S-bit is set to 0 when it was previously I, the next instruction should be

MOV %ISP,%SHAD

Due to interrupts and exceptions, it is recommended that the S-bit not be modified by a direct write to the
PSW as the above operations can not be guaranteed to be atomic.

2-8 3/31/91

A 1T2100 Microprocessor Release 1.7.2

2.4.8.1 Assembler Language Syntax

%PSW

2.4.9 Se~nt Table Base (STB)

The Segment Table Base (STB) contains a pointer to the start of the Segment Table used in address
translation when virtual addressing is turned on by the PSW VP-biL The base of the Segment Table is
always page-size-aligned, where the size of a page in the A1T2100 is 4,096 bytes. The STB is only used
during miss processing, which is used in turn to fill enuies in the on-chip Translation Look-aside Buffer
CILB) or Segment Registers. The translation process is described in Section 6.

When the STB is written, the 1LB's and Segment Registers of the MMU are flushed, invalidating all
entries. Neither the physically addressed PFB, the virtually addressed Ie or the virtually addressed se are
flushed. Cache coherency is the responsibility of the user.

Bit I 1 of the STB is a cacheable bit: it is copied to the cacheable pin whenever a Segment Table access is
made during miss processing, indicating whether Segment Table Enuies should be cached.

The format of the STB is described in Figure 2-8. The symbol'S' is the cacheable bit. The field marked
'0' always renuns 0 when read.

Segment Table Base Address

Figure 2-9. Segment Table Base Format

2.4.9.1 Assembler Language Syntax

%STB

2.4.10 Shadow (SHAD)

o

The Shadow Register (SHAD) is a copy of the esp. It is maintained by the A 1T2100's internal sequences
to facilitate restarting of instructions. In the course of CRET, ENTER, KCALL, KRET and RETURN
instructions, or any time the esp is modified, SHAD is automaticly updated to be consistent with the esp.

The SHAD is quad-word-aligned. The low-order four bits return zero when read.

Caution: As described in Section 2.4.8, if the PSW S-bit is modified by a direct write to the PSW, thereby
changing the esp, it is necessary to update the SHAD to the value of the new SP. This update is handled
automatically by KCALL and KRET.

2.4.10.1 Assembler Language Syntax

%SHAD

2.4.11 Stack Pointer (SP)

The Stack Pointer (SP) usually addresses the top of stack. The stack grows downwards - towards memory
location zero. The SP is used to generate addresses (i.e., as the base address in offset modes, to locate the
Accumulator, and as the pointer manipulated by the instructions CALL, ENTER and RETURN) whenever
the PSW eSP-bit is 1.

Address translation is performed if the MMU is enabled by setting the PSW VP-bit to 1.

The SP is quad-word-aligned. The low-order four-bits return zero when read.

2-9 3/31191

A1T2100 Microprocessor Release 1.7.2

2.4.11.1 Assembler Language Syntax

%SP

2.4.12 TiTrU!r One (TIMER1)

Timer One is a 32-bit internal register which can be configured by the three-bit Tl field of CONFIG to
count various events. See Section 2.4.1 for a description of the events and how selection is performed.

2.4.12.1 Assembler Language Syntax

%TIMERI

2.4.13 TiTrU!r Two (TIMER2)

Timer Two is a 32-bit internal register which can be configured by the seven-bit T2 field of CONFIG to
. count various events. See Section 2.4.1 for a description of the events and how selection is performed.

2.4.13.1 Assembler Language Syntax

%TIMER2

2.4.14 Vector Base (VB)

The Vector Base (VB) is used as the base of a table which contains transfer addresses used by KCALL,
interrupts, and exceptions. Address translation is performed if the MMU is enabled by setting the· PSW
VP-bit to 1. The Vector Table, described in Figure 2-9, should always be available. If an access to the
Vector Table entry is faulted. the A1T2100 resets. See Section 2.12.1 for details on the reset sequence.

The exception.PC handler should be present in memory as a memory fault would cause an infinite loop
until the interrupt-stack is exhausted and the ATT2100 resets. Additionally, the niladic trap and
unimplemented instruction handlers must be in the user memory space as these handlers can be accessed
while in user mode.

The VB is quad-word-aligned. The low-order four bits return zero when read.

VB + 52--+
VB+48 -+
VB+44 -+
VB+40-+
VB+36-+
VB+32-+
VB+28-+
VB +24 -+
VB+20-+
VB+ 16-+

VB+ 12-+

VB+8 -+
VB+4 -+

VB-+

31 o
FP exception

timer 2 interrupt
timer 1 interrupt

interrupt 6
interrupt 5
interrupt 4
interrupt 3
interrupt 2
interrupt 1

non-maskable
interrupt

unimplemented
instruction
niladic traps
exception PC
KCALLPC

Figure 2·10. Vector Table

2-10 3/31/91

2.4.14.1 Assembler lAnguage Syntax

%VB

l.s InstruCtioD Format

A TI'2100 Microprocessor Release 1.7.2

Instructions are composed of parcels which are two-bytes long. Instructions are encoded in one-, three- and
five-parcel lengths. A canonical instruction is encoded in five-parcels, which allows for the encoding of
two complete 32-bit addresses in each instruction. In general, the one- and three-parcel instructions are

" more compact encodings of five-parcel instructions. Instructions may have at most two operands, for
which, in general, any addressing mode may be used. For the dyadic instructions, one source doubles as
destination, or the Accumulator is selected to serve as an implicit destination. The instruction formats are:

• One-Parcel Formats
(for zero-, one-, and two-operand instructions)

• Three-Parcel Formats
(for one- and two-operand instructions)

• Five-Parcel Format
(for two-operand instructions)

2.5.1 One-Parcel Formats

Many of the most common zero-, one-, and two-operand instruction types may be encoded in one-parcel:

niladic I 0 114 OxB 101, subcode(10) 01 15

monadic I 0 I opcode(S) I src(lO)
01 15 14 10 ,

·stack I 0 114 0x2 101, src(8) J 01 15

subcode(2)I

dyadic I 0 I opcode(S) I src(S) 514
dst(S)

01 15 14 10 ,

Figure 2-11. One-Parcel Instruction Formats

A zero in the most significant bit distinguishes all one-parcel instruction formats. The subcode field
distinguishes among the different niladic and stack instructions. Five-bit immediate fields are sign
extended, while five-bit stack offset fields are zero-extended. AlI10-bit fields are zero-extended except for
CALL and JMP which are sign-extended; The 8-bit fields are zero-extended, except for ENTER, which is
one-filled. Tables 11-1, 11-2 and 11-3 show how to decode each one-parcel instruction.

Note that operand alignment restrictions allow some address offsets to be scaled, thus extending the
effective addressing range. The scaling of certain immediate constants is made possible by the specific
operand value restrictions of the corresponding instructions. Five-bit offset values are multiplied by four
before they are added to the SP. The 10-bit PC-relative offsets in JMP and CALL instructions are
multiplied by 2 before they are used, the other 10-bit values are multiplied by 4 before they are used.

2.5.2 Three-Parcel FormalS

Three-parcel instructions are distinguished by a "10" in the two most significant bits. The subcode field
distinguishes among the different" monadic instructions. The notation "operand-Io(l6)" refers to the low-

2-11 3/31191

A TI'2100 Microprocessor Release l. 7 .2

order 16-bits and "operand-hi(16)" refers to the high-order 16-bits. A similar convention applies to the
source and destination operands of the dyadic instructions.

1st parcel: 10 JI opeode(6)
.17

smode(4) oil, subcode(4)
15 14 1] 0

2nd parcel:
15

operand-hi(l6)
0

3rd parcel: operand-lo(16)
15 0

1st parcel: 10 J opcode(6) .1,. smode(4)
413

dmode(4)
15 141] 0

2nd parcel: src(l6)
15 0

3rdparcel: dst(16) .
15 0

Figure 2·12. Three-Parcel Instruction Formats

The 16-bit source and destination fields are sign-extended to 32-bits when they are used in immediate or
offset modes. When the 16-bit source and destination fields are used as absolute addresses extension of the
upper 16 bits depends upon the setting of the PX bit in CONFIG. IfPX is set to 1. bits 16 through 28 are
replaced with 0 and bits 29 through 31 (the high-order three bits) are copied from bits 29 through 31 of the
PC. IfPX is set to O. the upper 16 bits are set to zero. Tables 11-4 and 11-5 shows how to decode each
opcode. The source and destination addressing mode fields are encoded in the same way for both three
parcel and five-parcelinstructions. (see Tables 11-7. 11-8. 11-9 and 11-10.)

2.5.3 Five-Parcel FOrmal

Five-parcel instructions are distinguished by a "11" in the two most significant bits. Five-parcel
instructions are encoded similarly to three-parcel instructions. See Table 11-6 for instruction encodings .

1st parcel: 11 J 15 14 13
opcode(6) .I, smode(4) dmode(4)

o

2nd parcel:
15

src-hi(l6)
o

2nd parcel: src-lo(16)
15 o

4th parcel:
15

dst-hi(l6)
o

5th parcel:
15

dst-Io(l6)
o

Figure 2·13. Five-Parcel Instruction Format

1.6 AddresslDg Modes

There are seven addressing modes:

1. Immediate

2. Absolute·

2-12 3/31/91

A TI'2100 Microprocessor Release 1.7.2

3. Stack Offset

4. Stack Offset Indirect

s. Absolute Indirect

6. Program Counter Relative

7. Register

The ALU operations generally permit any of the first four of these addressing modes to be used with either
operand. The valid addressing modes for each instruction are indicated in the detailed inslIUction
descriptions. Any mode which is not explicitly mentioned for a given insuuction should not be used. This
section brietly describes each mode.

The suffixes indicate the size of data operands, a missing suffix implies word operands.

:B signed byte
:UB unsigned byte
:H signed half-word
:UH unsigned half-word
:W word
:F single precision tloat
:0 double precision tloat
:E extended precision float

2.61 I~diale

In the Immediate addressing mode, the operand value is stored in the instruction. Values up to 32-bits in
length are pennitted. Shorter values are appropriately sign or zero extended before use. An "illegal
instruction" exception is executed if any of the uses identified in Section 2.12.3 related to this address
mode occur.

2.6.1.1 Assembler Language Syntax

$data

2.6.2 Absolute

In the Absolute addressing mode, the address of the operand is stored in the instruction.

2.6.2.1 Assembler LAnguage Syntax

*$addr:B
*Saddr:UB'
*$addr:H
*$addr:UH
*$addr:W
*$addr:F
*$addr:0
*Saddr:E

2.6.3 Stack Offset

lit the Stack Offset addressing mode, a signed, two's complement offset stored in the instruction (except for
CATCH and ENTER, see the instruction descriptions for details) is added to the CSP value to obtain the
operand address.] .

2-13 3/31/91

2.63.1 Assembler Language Syntax

Rojfset:B
Roffset:UB
Roffset:H
Roffset:UH
'Roffset:W
Rojfset:F
Roffset:D
Roffset:E.

2.6.4 Stack Offset Indirect

ATI'2100 Microprocessor Release 1.7.2

In the Stack Offset Indirect addressing mode, an ojfset is added to the CSP value to obtain the address of
the address of the operand. The offset must be word aligned4•

2.6.4.1 Assembler Language Syntax

*Roffset:B
*Roffset:UB
*Roffset:H
*Rojfset:UH
*Rojfset:W
*Rojfset:F
*Rojfset:D
*Roffset:E

2.6.5 Absolute Indirect

In the Absolute Indirect addressing mode, the address of the address of the operand is stored in the
instruction. This mode is only used for the JMP (conditional jump instructions excluded), CALL, and
LDRAA instructions, so that the operand value should be an instruction address which must be parcel
aligned.

2.6.5.1 Assembler Language Syntax

*·Saddr

2.6.6 Program Counter Relative

In the Program Counter Relative addressing mode, a signed, two's complement offset stored in the
instruction is added to the address of the instruction to obtain the operand value. This mode is only used
'for the JMP, CALL and LDRAA instructions.

2.6.6.1 Assembler Language Syntax

label

2.6.7 Register

A CPU instruction is never directly executed, but serves to modify the next instruction's addressing modes.
This ··modified" instruction must use the addressing modes given in Table 11-10.

3. For negative offsets, off chip stack aCcesses are perfonned and cache coherency is not maintained.

4. An Alignment Fault, Ox4, is executed if the offset is not word aligned.

..

2-14 3131,191 I':'

A TI'21 00 Microprocessor Release 1.7.2

Mode Ox7 allows access to theintemal registers for use as data. The register number is specified in the data
portion of the operand. Only,bits 0 through 3 are considered for determining the register numW. At most
one register may be read per instruction. The register encoding presently supported is given in Table 11-11.

If register OxO or OxD through OxF is specified. an unimplemented register exception sequence, exception
ID Ox6, is performed. See Section 2.13.3 for details.

If there is a write of registers Oxl through oxe in user mode. a privilege violation exception sequence,
exception ID Ox5, is performed.

Register OxlO is defined as the FPSW allowing emulation via the unimplemented register exception.

2.6.7.1 Assembler LAnguage Syntax

%REGISTER

2.7 Integer Arithmetic

2.7.1 The LAnguage of Integer Arithmetic

The concepts of integer arithmetic as implemented on various processors, while quite straightforward, are
usually complicated by sloppy language which obscures the several related but distinct topics. For
example, most processors support a so-called •• carry bit" to indicate, say. borrow during subtraction, but in
fact the setting of this carry bit is typically different from the hardware carry bit associated with the adder
logic that supports the subtraction. In this section we carefully distinguish:

a. Signed integer arithmetic as supported by the ATT2100,

b. unsigned integer arithmetic as supported by the ATT2100, and

c. hardware issues which lead to nuances of (a) and (b).

In what follows all values and arithmetic operators are to be interpreted in their true mathematical sense
unless otherwise indicated.

2.7.2 Signed and Unsigned Integer Values

The ATT2100 uses t'!Yo common interpretations, denoted functionally. of a bit string b, Unsigned(b) and
Signed(b). If the n-bit string b is b,,-l b,,-2 ... b2 b 1 boo then:

and

Signed(b) = Unsigned(b) when b,,-l is 0
= -(2"-Unsigned(b» whenbll _ 1 is 1

Bit bll - 1 is often called the "sign bit" In what follows, we denote specific bit strings in hexadecimal form
with a "Ox" prefix. To look at a common example in 16-bit arithmetic Unsigned(OxFFFF) is 65535 and
Signed(OxFFFF) is -1. Note that the wordlength n is crucial to signed interpretation; in 32-bit arithmetic
Signed(OxOOOOFFFF) = Unsigned(OxOOOOFFFF) = 65535.

S. Bits 4 through 31 are ignored resulting in modulo 16 addressing. The upper bits should be zero for compatibility with fumre
versions of the A 1T2100.

3/31191

ATI'2I00 Microprocessor Release 1.7.2

The definition of signed values used in the ATI'2100. called "two's complement." is but one of several
possible representations, though it enjoys advantages described below. "Ones' complement"
representation was popular with some manufactures until the 1960's and "signed magnitude" continues to
be popular for floating-point representations. Just for completeness, they are defined for integers:

OnesComplementSigned(b) = Unsigned(b) when b,,-l is 0
= -(2" - 1 - Unsigned(b» when b,,-1 is 1

and

SignedMagniwdeSigned(b) = Unsigned(b) when b,,-1 is 0
= -(Unsigned(b) - 2,,-1) when b,,-1 is 1

2.7.3 AmlOOlnlegerTypes

The ATI'2100 supports three widths of integers, 32-bit words, 16-bit half-words and 8-bit bytes. Using the
language above, sign interpretation is done with n = 32,16 and 8, respectively.

The ATI'2100 extends all operands to word length before an operation and computes a word result, before
possibly truncating a result to accommodate a byte or half-word destination. This so-called sign-extension
requires that byte and half-word operands be given a sign interpretation as part of their addressing mode.
Unsigned values are padded on the left with zeros; signed values are padded on .the left with a copy of the
sign bit.

This definition of sign-cxtension is obviously correct for positive values. padding on the left with zeros
being innocuous. To see how it works for negative values, consider a negative byte b = b7b6 '" b1bo,
that is with b7 = I. When extended to a word, b would yield B = 1l1 ... llb7b6 ... b1bo
= OxFFFFFFOO + b = 232 - 21 + b, from which we see:

Signed(B) = -(232 - (232 - 28 + b»
=-(21 -b)
= Signed(b)

On the other hand, because truncation on the left may remove sign information, narrow results are prone to
misinterpretation. For example. consider the byte product of bytes Ox05 and Ox33. which have the values 5
and 51 regardless of sign interpretation. The result is OxOOOOOOFF, unambiguously 255. But this is OxFF
when trimmed to a byte, which may be mistaken for -I later.

2.7.4 Two's Complement Arithmetic

Before looking at the ATI'2I00 arithmetic in particular, let's see what makes two's complement arithmetic
so desirable. In the last section we saw that the ATI'2100 sign-extends all operands to word length. But
what is the sign interpretation of that word operand (recall that the word addressing modes are mute about
sign)? The answer is, "It usually doesn't matter," because of the fonowing:

Theorem: When applied to word operands. the operations addition. subtraction and multiplication
produce word results which are independent of the sign interpretation of the operands.

That is, two's complement arithmetic dovetails so nicely with unsigned arithmetic that one need implement
only one version of addition, subtraction and multiplication to serve both needs. This simplifies the
hardware and shrinks the instruction seL To amplify the theorem, the only distinction between +,- and·
applied to signed or unsigned is in the side-effect of (signed and unsigned) overflow of the word result,
hence the C- and V -bits below. .

Note that the theorem applies to multiplication only when the result is the same width as the operands.
Machines which produce the true double width result must distinguish between signed and unsigned

2-16 3131~1

A TI'2100 Microprocessor Release 1.7.2

multiplication. The operations division and remainder always require variants for signed and unsigned
interpretation of the operands. Hence DIV vs. UDIV and REM vs. UREM in the ATI'2100.

2.7.5 ATI2100 Integer Arithmetic Operations

The ATI'2100integer arithmetic is perfonned in the following four straightforward steps:

1) The source operand(s) are extended to word length;

2) The mathematically correct result of the operation is computed;

3) Rounding of any nonintegral result to the nearest integer toward zero is perfonned, and any
signed and unsigned overflow are recorded in the V-and C-bits, reSpectively;

4) The result, truncated on the left to fit a byte or half-word destination if required, is delivered
to the destination.

The extension in (1) is as discussed in Section 2.7.3, with sign interpretation given by the addressing mode.
The "mathematically correct" result in (2) depends on the sign interpretation of the operands, but this is
independent of the kind of extension in (1); in the case of [U]DIV and [U]REM the interpretation is
determined by the opcode, and in the case of ADD, MUL and SUB results are computed for both
interpretations which, in light of the theorem, differ only in overflow conditions. A nonintegral result in (3)
is only possible in the case of DIV or UDIV. C- and V-bits in (3) are discussed below. Truncation in (4)
may cause loss of information as demonstrated in Section 2.7.3.

The ATT2100 offers seven arithmetic instructions, with two-and-a-half-address variants for all but UDIV
andUREM:

ADD
DIV
MUL
REM
SUB
UDIV
UREM

a,b ; add a into b
a,b ; divide b by a, signed
a,b ; multiply a into b
a,b ; calculate the remainder of signed division of b by a
a,b ; subtract a from b
a,b ; divide b by a, unsigned
a,b ; calculate the remainder of unsigned division of b by a

REM and UREM are defined in tenns of DIV and UDIV, respectiv~ly, and are described more fully in
Section 2.7.9. As shown in Section 2.6, operands a and b may be referenced using a variety of addressing
·modes, with sign interpretation given for byte and half-word arguments.

2.7.6 The Carry Bit C and Unsigned Overflow

On the ATT2100, the Carry bit C indicates the occurrence of a borrow during subtraction, or of unsigned
overflow during addition or multiplication. Unsigned overflow arises when a result exceeds
Unsigned(OxFFFFFFFF). In tenns of the operations above, the PSW C-bit is set precisely when unsigned
borrow on a subtract:

Unsigned(b) - Unsigned(a) < 0

or unsigned overflow on an addition or multiplication:

Unsigned(b) (+ or.) Unsigned(a) > Unsigned(OxFFFFFFFF)

Unsigned overflow does not apply to the signed operations DIV and REM and cannot occur in UDIV and
UREM.

2·17 3/31J)1

A TI'2100 Microprocessor Release 1.7.2

2.7.7 Hardware versus ATnlOO Arithmetic versus Mathematics

Careful inspection of the operations of addition and subtraction gives some insight into the interplay
between the various disciplines at hand. Internal to the ATI'2100 is an adder circuit which is capable of
computing the mathematical sum of two unsigned word length numbers, with a thirty-third bit on the left to

. catch the possible carry-oUl.

In the ADD operation, the adder computes the sum of a and b; the word result is delivered and, if carry-out
occurs, the C-bit is seL This is all quite intuitive. However, in the SUB operation, the two's complement
of a (that is, 232-Unsigned(a» is added to b, except in this case the C bit is set only if no carry-out occurs.

This subtlety in the definition of the PSW C-bit, which is quite useful in practice, means that, contrary to
ones' expectations since elementary school, adding -.x and sUbtracting.x are not identical on the ATI'2I00.

2.7.8 The oVerflow Bit V and Signed oVerflow

Analogous to the C-bit, the oVerflow bit V signals the occurrence of signed overflow of the word result of
an arithmetic operation, this is a result outside the interval:

[Signed(Ox80000000) , Signed(Ox7FFFFFFF)]

In terms of the operations above, the PSW V -bit is set unless

Signed(OxSOOOOOOO) S (Signed(b) (+,- or *) Signed(a» S Signed(Ox/FFFFFFF)

Signed overflow does not apply to the unsigned operations UDIV and UREM and cannot occur in REM.
Signed overflow does arise in DIV in precisely the case of Ox80000000 divided by -I (i.e. OxFFFFFFFF).

2.7.9 A Note About Division and Remainder

UDIV never suffers unsigned overflow because its dividend is at most Unsigned(OxFFFFFFFF) and its
divisor is no less than 1 (except for a zero divisor, which triggers a divide by zero exception), so its result is
no greater than its dividend. A similar argument applies to DIV, except for the sole case of overflow.

Like UDIV. UREM never suffers unsigned overflow. To see why, consider the word results UD and UR of
the operations UDIV and UREM applied to operands a and b. UDIV and UREM are related by the
formula:

b = (UD * a) + UR, where 0 S UR < a

with all values .unsigned. It's easy to see that UR is no greater than a and therefore no greater than
Unsigned(OxFFFFFFFF), hence, overflow cannot occur. A similar argument applies to REM.

2.8 Tagged Integer Arithmetic

This section will be provided in Release 1.7.

2.9 ATTl100 Floating-Point Arithmetic

This section will be provided in Release 1.7.

2.10 A FISt Call1ng Sequence

The ATI'2I00 microprocessor provides an efficient procedure calling sequence. Procedure call overhead
includes copying the outgoing arguments to an argument area, saving the return address, transferring
control to the called procedure, and allocating a new stack-frame for the new procedure's local variables,
temporaries and outgoing arguments. The ATI'2100 calling sequence accomplishes these goals with as few
operations as possible. A typical stack-frame is depicted in Figure 2-13.

2-18 3/31/91

old SP-+

SP-+

A'IT2100 Microprocessor

Incoming Argument N
Incoming Argument N-I

...
Incoming Argument I

Saved PC of Caller
Local Variable N

Local Variable N-l
...

Local Variable 1
Temporary Variables
Outgoing Argument N

Outgoing Argument N-l
...

Outgoing Argument 1
Empty (pC save area)

higher memory

direction of
stack growth

J.

lower memory

Figure 2·14. Typical Stack-frame

Release 1.7.2

The stack grows downward in memory with the Stack Pointer (SP) always pointing to a free memory
location. This free slot is where the Program Counter (PC) is stored on a procedure call (or unimplemented
instruction exception). This avoids having to adjust the SP to save or restore the PC. The PC is the only
machine register implicitly saved during a procedure call. Above the saved PC slot in the stack-frame is an
area large enough to store outgoing arguments for any call from the current procedure. Above the outgoing
arguments are stored temporary values and local variables. Thus outgoing arguments may be calculated in
place with stack offset addressing modes. This statically allocated stack-frame allows the SP to be updated
only on procedure entry or procedure return. Traditional push or pOp6 instructions which automatically
adjust the SP are intentionally avoided. Therefore, side-effects to the SP are nearly eliminated and operand
address generation for subsequent instructions may smoothly proceed in a pipelined implementation.

The steps required for a procedure call are straightforward. Outgoing arguments are moved (or even better:
calculated) onto the stack-frame. In the event of word arguments, the first argument is stored at SP+4, the
second at SP+8, etc. The CALL instruction performs an atomic move and jump operation, saving the
return point at the CSP and loading the PC with the address of the first instruction of the called procedure.
This first instruction of the called procedure, ENTER, adjusts the SP to 8Ilocate its new stack-frame. The
last instruction of the called procedure, RETURN. re-adjusts the SP to deallocate its stack-frame and then
branches to the address pointed to by the SP. Customarily, a CA TCn follows the RETURN.

This procedure call overhead: call, allocate, deallocate, and return, can be as little as four clock cycles!

1.11 Prefetching Strategy

The A'IT2100 provides two types of instruction fetching selectable through the Configuration Register
PM-bie prefetching and demand-fetching. When prefetching is enable (CONFIG PM-bit set to" 1) the
Prefetch Unit on the A'IT2100 fetches text, which has not been previously fetched and stored in the
prefetch buffer memory, in quad-word pieces consisting of two double-word 1/0 requests. Text is
prefetched sequentially until a branch (predicted jump, unconditional jump, CALL, CRET. KCALL,
KRET or RETURN) is decoded. If the target of the branch is encoded in the instruction (non.indirect),

6. P<>PN is provided to deallocale from Ihe saade-frame IIId is uscfulin aail n:c:union.

2-19 3/31,91

ATT2100 Microprocessor Release 1.7.2

prefetching then continues from the target (if it is not already in the prefetch buffer); if the target is indirect.
prefetcmng stops and waits for a demand fetch request from the Execution Unit A demand fetch is
requested if the Execution Unit takes a missepredicted or indirect branch and the target has not been
previously decoded. If at any time while the Prefetch Unii is prefetching sequential code and following
taken branches a demand fetch is requested, any I/O requested by the unit will complete and prefetching
begins anew from the Execution Unit requested target. .

If demand fetching is enabled (CONFIG PM-bit set to 0), the Prefetch Unit only issues an I/O request for
text when it is requested by the Execution Unit and is not stored in the prefetch buffer. The I/O request is
made for a doubleeword and all instructions contained in the double-word are decoded. but prefetching
ceases until another demand fetch is requested by the Execution Unit Demand fetching is the default mode
on reset of the chip.

2.12 Tracing Instructions

Instruction b'acing is supported by setting of the PSW TB- and TI-bits. These bits control when b'acing is
enabled as discussed in Section 2.4.8.

If an instruction is uacable, a trace exception is taken after the instruction completes execution. The PC
saved on the interrupt stack is the PC of the next instruction.

Instructions before folded branches cannot be traced (i.e .• if a jump is folded into the previous instruction.
the trace will occur after the jump.) To. circumvent this from occurring. all jumps must be encoded as
three-parcel and hence. will not be folded.

Event sequences are non-b'acable. This includes exceptions and interrupts. The unimplemented instruction
sequence is ttacable a the trace bits are not altered.

CRET. KCALL and KRET are always non-b'aceable.

2.13 Event Processing

There are several sequences which can be triggered in the ATT2100 that are not usually invoked by the
regular instruction set. These events include. in order of priority:

• reset

• interrupt

• exception

The sequences executed by the A TT2100 for each of these events are listed in the following sections. In all
cases, interrupts are inhibited while an event processing sequence is in progress.

As described in the following sections, the processing of exceptions. interrupts and unimplemented
instructions includes the saving of the PC on the interrupt stack. There are some subtleties to note
respecting the definition of the "current PC"being saved; these subtleties are described in the notes
portion of the instruction descriptions given in Section 2.14 for the CPU and flow control instructions
which save a PC value.

2.13.1 Reset

The ATr2100 enters the reset sequence when.:

1. the e~temal reset pin is asserted.

2. a memory fault, which is signaled either externally or by the MMU,

• occurs when aUempting to read or write the Interrupt Stack duiing any event processing
sequence.

2-20 3131/91

A 112100 Microprocessor Release 1.7.2

• occurs when attempting to read from the Vector Table during any event processing sequence.

The reset sequence is:

disable interrupts
invalidate the PFB and IC
if (reset pin)

SHAD = OxO
else

SHAD=PSW
PSW=OxO
CONFIG=OxO
PC=OxO
enable interrupts

As indicated above, after a reset, SHAD is set to either OXO or the current PSW depending upon which type
of reset occurred. Independent of the type of reset, the PFB and IC are flushed and PSW, CONFIG and the
PC initialized to OxO. OxO in the PSW Register sets the execution level to kernel, with physical addressing
enabled, tracing disabled, interrupts inhibited and the ISP as the CSP. OxO in the CONFIG Register
disables all on chip caches, disables timer interrupts and selects demand prefetching. OxO in the PC Register
starts executing instructions at physical address OxO.

Caution: If the reset sequence was initiated by the external reset pin, the SP and the MSP are undefined.
The caches should not be enabled until these registers are assigned values since the range check circuitry
will not know whether an address should access the on-chip stack cache or off-chip to memory.

2.13.2 Interrupt

An interrupt is signaled when an external device requests service on the interrupt request input lines
ll..<2:0:> or either TIMERI or TIMER2 overflows with interrupts enabled. The three input lines associated
with external interrupts and the timer interrupts, which are asserted at level one, are compared with the
PSW Interrupt Priority Level (IPL) field. If the interrupt request is logically less than the IPL field, the
interrupt can be serviced. An IPL field of 7 allows interrupts at levels 0 through 6. An IPL field of 0
inhibits interrupts 1 through 6 and allows only interrupts at level 0, which is referred to as a "non-maskable
interrupt" .

The interrupt request input lines ll..<2:0> must be asserted with the same value for at least two cycles before
an interrupt is recognized by the ATT21oo. If the level of the interrupt request is less-than or equal-to the
IPL field of the PSW, the interrupt is accepted and the interrupt request enters at the top of the execution
unit pipeline. Once the interrupt enters the top of the execution-unit pipeline, all further interrupts are
disabled until completion of the interrupt sequence outlined in Section 2.13.2.1. No indication is given by
the A112100 as to when the interrupt is being serviced other than the I/O caused by the interrupt sequence
and the subsequent handler.

A non-maskable interrupt can be generated by setting IL<2:0> to OxO. An interrupt at level 0 is "edge
sensitive" in that once asserted, it must be de-asserted for at least two cycles before another interrupt at any
level is recognized Once any interrupt enters the execution pipeline all interrupts are disabled, including
NMI. After the interrupt sequence completes, if the NMI is still asserted, it will be serviced.

Most instructions complete execution before the interrupt request enters the top of the execution-unit
pipeline. CATCH, ENTER, MUL[3], DIV[3], REM[3], UDIV and UREM are interruptible. The
"CATCH" portion of CRET is interruptible. The PC stored on the interrupt stack is the proper value for
transparently resuming execution. CA T~H, ENTER and the "CATCH" portion of CRET continue as
opposed to restarting.

2-21 3/31191

A TT21 00 Microprocessor Release 1.7.2

2.13.2.1 Interrupt Sequence

When the interrupt is serviced, the sequence is:

disable interrupts
if (CSP = ISP) ISP = SHAD
else SP = SHAD
.OSP - 8) = PC of interrupted instruction
.(ISP - 4) = PSW
ISP-= 16
SHAD=ISP

/* Becomes R8 wrt new ISP .,
/* Becomes R12 wrt new ISP "'/

PC = .(VB + 16 + (4*interrupt level))
PSW<UL.IPL[O:3].E,x,S,TB,TI,V,C,F,R[O:3]> = <O,OxO,O,O,O,O,O,O,O,O,OxO>
enable interrupts

Where "interrupt level" is the value of the IL<2:O> lines producing the interrupt. The ATT2100 state is
the same as immediately after a reset, except that the PSW VP-bit and UA-bits and CONFIG do not
change. Note that the interrupt sequence is almost the same as the KCALL sequence. In particular. the
event frame left on the Interrupt Stack is the same, so a KRET instruction is sufficient for returning from
an interrupt as well as, interrupts are disables during this processing.

2.133 Exceptions

Exceptions signal an error in a program. Exceptions, preceded by their respective ID, can occur in several
ways:

Oxl An integer division by zero.

Ox2 A trace operation, single or block.

0x3 An illegal instruction is executed. Illegal instructions include:

- An instruction with an immediate as a destination (other than CMP and two-and-one
half -operand instructions).

- A CPU instruction followed by an instruction other than a MOV which uses registers
as both source and destination.

- A CPU instruction followed by an instruction which uses an addressing mode other
than those listed in Table 11-10.

- A CPU instruction followed by a MOV A instruction with a source addressing mode of
register.

- A CPU instruction followed by a single-parcel instruction.

- A CPU instruction followed by a monadic instruction.

- A CPU instruction followed by an ADDI, ANDI or ORI.

- A CPU instruction followed by a DQM.

- A CPU instruction followed by a DIV. DIV3, MUL. MUL3. REM, REM3, UDIV or
UREM.

- A CPU instruction followed by aT ADD or TSUB.

- A CPU instruction followed by a three-parcel monadic or the corresponding five-parcel
slot.

2-22 3/31191

A TI'2100 Microprocessor Release 1.7.2

- A CPU instruction followed by the last three-parcel or five-parcel instruction slot.
opcode all ones.

- A conditional three-parcel branch instruction which uses indirect addressing.

- A MOV A instruction with an immediate source operand.

- A six byte monadic instruction with a byte or half-word addressing mode (i.e .• SOxC);
this includes the unimplemented monadics.

- DQM with source non-word addressing modes or destination addressing modes other
than OXO. Ox4. Ox8. Oxe. OxE or OxF. -

- An ENTER with a negative Stack Offset Addressing mode.

- A six byte RETURN instruction with a source operand mode other than word stack
offset (OxD) and negative value stack offsets.

- a POPN instruction with an immediate source operand.

Ox4 Alignment faults. Alignment faults include:

- Data accesses without natural alignmenL

- DQM with miss-aligned source addresses.

0xS Privilege violations. Privilege violations include:

- An instruction which attempts to write a register while the ATI'2100 is not in kernel
execution level

- Execution of a CRET or KRET in user mode. Note that these two instructions are the
the only privileged instructions.

Ox6 Accesses to unimplemented registers.

0xB MMU table walk access terminated by assertion of the 110 bus error inpuL

Ox7 Instruction fetches terminated by a faulL Such faults are signaled by:

- Violation of the User/Kemel access bits in a PTE or non-paged segment STE.

- Invalid STE or PTE.

- Failure of the bounds test on a non-page segmenL

Ox8 Data read terminated by a fault. Such faults are signaled by:

- Violation of the User/Kemel access bits in a PTE or non-paged segment STE.

- Invalid STE or PTE.

- Failure of the bounds test on a non-page segmenL

Ox9 Data write terminated by MMU faulL Such faults are signaled by:

- Violation of the User/Kemel access bits in a PTE or non-paged segment STE.

- Invalid STE or PTE.

- Failure of the bounds test on a non-page segmenL

OxA Memory access terminated by assertion of the J/O bus error inpuL

2-23 . 3/31,91

A 1T2100 Microprocessor Release 1.7.2

The exception handler must always be presenL

2.13.3.1 Exception Sequence

disable interrupts
if (CSP = ISP) ISP = SHAD
else SP = SHAD
.(lSP - 12) = "exception identifier"
.(lSP - 8) = PC of faulted instruction
*(lSP - 4) = PSW
ISP-- 16
SHAD=ISP
PC=.(VB+4)

/. Becomes R4 wrt new ISP ./
/. Becomes R8 wrt new ISP ./
/. Becomes R12 wrt new ISP ./

PSW<UL,IPL[2:0].E,x,S,TB,TI,V,C,F ,R[3:0]> = <O,OXO,O,O,O,O,O,O,O,O,OXO>
enable interrupts

Again, the sequence is almost the same as that of KCALL. See Table 11-12 for the "exception identifier"
codes.

If the target address of a CALL, CRET, JMP. KCALL, KRET or RETURN instruction, or of an
intemlpt, causes a memory fault, the PC saved on the Interrupt Stack is the target pc, not the address of the
cmrent instruction.

In the case of exception IDs Ox8 and Ox9, the 32b operand aligned virtual address of faulted access is saved
in the Fault Register.

For exception mOxA, the PC placed on the interrupt stack is not the PC of the instruction associated with
the faulted access. Due to the "unhinged" nature of stores in the A1T2100, it is the pc of the instruction
which was at the bottom of the execution pipeline when the fault occurred.

2.13.4 Ummplementedlnstruction

An attempt to execute an unimplemented opcode results in an Unimplemented Instruction sequence. This
sequence is faster than the exception sequence facilitating software emulation of extended instructions. As
an unimplemented instruction can occur in either execution mode, the unimplemented instruction handler
should be in the user address space.

If an unimplemented instruction has an addressing mode which is illegal for that instruction class, it is
considered an illegal instruction (exception m Ox3). Specificly:

1. An unimplemented monadic instruction is considered illegal if it has a non-word addressing mode (<
OxC).

2. An unimplemented instruction is considered illegal if it follow a CPU instruction and contains an
addressing mode, or combination of modes, which Section 2.13.3 lists as illegal for an instruction
following a CPU instruction.

3. RETURN with a negative operand.

There are no tests performed upon the addressing modes of unimplemented dyadic instructions which do
not follow CPU instructions; this includes unimplemented dyadics reserved for floating-point

2.13.4.1 Unimplemented Instruction Sequence

*(CSP) = PC of unimplemented opcode
PC = .(VB + 12)

where CSP is either SP or ISP, depending upon the state of the PSW S-bit.

2-24 3(.31~1

ATI'2100 Microprocessor . Release 1.7.2

2.13.5 Trapped Niladics

An attempt to execute a one-parcel niladic with an opcode in the range ~OO through Ox3FF results in a
variant of the previously described Unimplemented Instruction sequence called the Trapped Niladic
exception. This sequence is the same as the Unimplemented Instruction sequence except VB + 8 is used for
the vector.

The trapped niladic handler should be in the user address space.

2.13.5.1 Trapped Niladic Sequence

*(CSP) = PC of unimplemented opcode
PC= * (VB + 8)

where CSP is either SP or ISP. depending upon the state of the PSW S-bit.

2.13.6 Event Processing Priority

Given that several event requests can be generated simultaneously. an event processing priority must be
established. The priorities assigned to each event type are:

1. reset.

2. interrupt.

3. timer interrupts.

4. tmce.

5. instruction fetch faults.

6. illegal instructions.

7. unimplemented instructions.

8. unimplemented registers.

9. alignment faults.

10. operand faults.

11. privilege violation.

12. divide by zero.

Events 4 through 12 are associated with a particular instruction. while the higher priority events (reset.
interrupt. and timer) can occur independent of what instruction is being executed. During some internal
sequences interrupts are disabled. Many events given in the list above are mutually exclusive of each other
and can not occur at the same time or within the same instruction.

2.14 IastruCtiODS

The format for instructions has already been described. The instructions themselves may be divided into
nine categories. The following special notation has been used: [] and (I). ADD[J] for example. indicates
that both ADD and ADDJ instructions exisL JMP(F IT)(y IN) indicates that JMPFY. JMPFN. JMPTY.
and JMPTN instructions exist.

• Arithmetic

• ADD[J] - add
• ADDI - add interlocked
• DIV[J] - divide

2-25 . 3/31,91

• MUL[J] - multiply
.. REM[J] - remainder
• SUB [3] - subtract
.. UDIV - unsigned divide

A TI'2100 Microprocessor

• UREM - unsigned remainder

.. Logical

.. Shift

• AND[J] - bitwise logical and
• ANDI - bitwise logical and interlocked
.. OR[J] - bitwise logical or
.. OR! - bitwise logical or interlocked
.. XOR[J] - bitwise logical exclusive or

.. SHL[J] -left shift

.. SHR[J] - arithmetic right shift
" USHR[3] -logical right shift

• Compare

.. CMPEQ - equality comparison

.. CMPGT - signed greater than comparison

.. CMPHI - high comparison (unsigned greater than)

.. Move

.. DQM - double or quad word move

.. LDRAA -load PC-relative address into accumulator
• MOV-move
.. MOV A - move address

• Program Control

• CALL - call subroutine
.. CATCH - fill stack cache
.. CRET - return from kernel with context
.. ENTER - enter subroutine and allocate procedure frame
.. JMP - unconditional jump
.. JMP(F I T)(Y I N) - conditional jump
.. KCALL - kernel call
.. KRET - return from kernel
.. POPN - free N entries from procedure frame
.. RETURN - free procedure frame and return from subroutine

.. Tagged

.. T ADD - tagged addition

.. TSUB - tagged subtraction

.. Floating-point (unimplemented)

• FADD[J] - floating-point addition
.. FCLASS - floating-point classify
.. FCMP - floating-point compare
• FDIV[J] - floating-point division
.. FLOGB - floating-point exponent extraction

2-26

Release 1.7.2

3/31191

ATI'2100 Microprocessor Release 1.7.2

• FMOV -floating-point move
• FMUL(3) - floating-point multiply
• FNEXT - floating-point next-after
• FREM - floating-point remainder
• FSCALB - floating-point scaling by a power of radix, 2
• FSQRT - floating-point square root
• FSUB(3) - floating-point subttaction

• Other

• CLRE - clear PSW E-bit
• CPU - register mode escape
• FLUSHD - flush the Data Cache (unimplemented)
• FLUSHDCE - flush an entry in the Data Cache (unimplemented)
• FLUSm - flush the Decoded Instruction Cache
• FLUSHP - flush the Prefetch Buffer Cache
• FLUSHPBE - flush an entry in Prefetch Buffer Cache
• FLUSHPI'E - flush a page-table-entry in the Translation Look-aside Buffers or Segment

Registers
• NOP - no operation
• TESTC - copy PSW carry-bit to PSW flag-bit and clear carry-bit
• TESTV - copy PSW overflow-bit to PSW flag-bit and clear overflow-bit

3/31191

A TI'2100 Microprocessor Release 1.7.2

The next section contains detailed descriptions of the instruction seL The following abbreviations are used:

abs32 A 32-bit value with any of the two word operand addressing modes:

fgeo[lI]

flow32

gen[II]'

imm[lI]

istkS

perellO

stk5

stk8

stk32

uimm[lI]

Wai[lI]

w0Id32

• PC~relative or

• absolute.

Any of the following modes with a value that can fit in II-bits:

• absolute.

• immediate.

• stack offset. or

• stack offset indirect

A 32-bit value with any of the four word operand addressing modes (i.e •• modes ~ OxC):

• absolute,

• absolute indirect.

• PC-relative. or

• stack offset indirect mode.

Any of the following modes with a value that can fit in II-bits:

• absolute.

• immediate.

• stack offset. or

• stack offset indirect

A two's complement constant in the range _2,.-1 through 2,.-1_1.

An Indirect Stack Offset mode of type word with the offset a number divisible by four in the
range 0 through 124.

A pc-offset mode in which the offset is a number divisible by 2 in the range -1024 through
1022.

A Stack Offset mode with the offset a number in the range 0 through 124 and is divisible by
four. which is the operand size of word.

A Stack Offset mode which is operand size of word.

A Stack Offset mode with the offset any 32-bit number.

An unsigned constant in the range 0 through 2"-1.

An unsigned constant in the range 0 through 2"-1 which is multiplied by 4 (word aligned).

A 32-bit value with any of the four word operand addressing modes (i.e •• modes >= OxC):

7. The CPU prefix insuuc:lion modifies the meaning of these addressing modes.

2-28 3/311)1

A 172100 Microprocessor Release 1.7.2

• absolute,

• immediate mode,

• stack offset, or

• stack offset indirect

2-29 3/31191

Name:

Format

Operation:

Description:

ATI'2100 Microprocessor

ADD - ADDition

ADD[J] src, dst

ADD:

ADDJ:

dst+= SIC

"unsigned overflow" ? PSW.C = 1 : PSW.C = 0
"signed overflow" ? PSW.V = 1 : PSW.V = 0

Acc = dst + SIC

"unsigned overflow"? PSW.C = 1 : PSW.C = 0
"signed overflow" ? PSW.V = 1 : PSW.V = 0

Release 1.7.2

The source operand is added to the destination operand and the sum is placed in either the
destination (ADD) or the Accumulator (ADDJ).

The PSW C-bit is set to 1 on unsigned overflow and the PSW V -bit is set to 1 on signed
overflow, otherwise the PSW C- and V-bits are set to O. See Section 2.7 for a full
description of ATI'2100 integer arithmetic.

Encodings

length opcode instruction SIC dst

2 OxOD ADDJ waiS, stkS
2 Ox 14 ADD immS, stkS
2 OxIS ADDJ immS, stkS
2 Ox16 ADD stkS, stkS
2 Oxl7 ADD3 stieS, stkS
6 Ox23 ADD gen16, gen16
6 Ox33 ADD3 gen16, gen16

10 Ox23 ADD gen32, gen32
10 Ox33 ADD3 gen32, gen32

2-30 3/31,91

Name:

Fonnat

Operation:

Description:

Notes:

A TI'2100 Microprocessor

ADDI - ADDition Interlocked

ADDI SIC. dst

hidden = dst
dst+=src
Acc = hidden

Release 1.7.2

The source operand is added to the destination operand and the sum is placed in the
destination. The lock pin is asserted during the fetch of tist. if tist is in memory and not in
the stack cache. The lock pin is de-asserted at the completion of the final store to tist. No
other accesses are done between the fetch and store of dst. The original value of tist
(obtained during the fetch) is placed in the Accumulator. If the Accumulator is not in the
stack cache. a store is made after the interlocked I/O completes.

The PSW C- and V -bits are not affected by an ADDI instruction.

Encodings

length opcode instruction

6 Ox03 ADDI
10 Ox03 ADDI

src

genl6.
gen32.

dst

gen16
gen32

Pipeline bypass hazards associated with semaphore operations are avoided in the
ATI'2I00 by clearing the pipeline before an interlocked instruction enters the first
pipeline stage. No other instruction is allowed into the pipeline until the executing
interlocked instruction completes.

If R4 is the destination. after the interlocked instruction completes. R4 is the previous
value ofR4. hence no operation is performed.

If the accumulator is not in the SC. CSP = MSP. an I/O access is made to update the
accumulator after the interlocked accesses complete. The access to the accumulator must
not fault in any manner for the ADDI is not restartable from this point of the operation.

2-31 3/31/91

Name:

Fonnat

Operation:

Description:

A 1T2100 Microprocessor

AND - bitwise logical AND.

AND[3] src, dst

AND: dst &= src
AND3: Acc = dst & src

Release 1.7.2

A bitwise logical AND operation is perfonned on the source and destination operands.
The result is placed in either the destination (AND) or the Accumulator (AND3).

Encodings

length opcode instruction src dst

2 OxOE AND3 immS, stk5
2 OxOF AND stIeS, stIeS
6 Ox22 AND gen16. gen16
6 Ox32 AND3 gen16, gen16

10 Ox22 AND gen32. gen32
10 Ox32 AND3 gen32. gen32

2-32 3131191

Name:

Fonnat:

Operation:

Description:

Notes:

A TI'21 00 Microprocessor

ANDI - bitwise logical AND Interlocked

ANDI STe, dst

hidden = dst
dst&= src
Acc=hidden

Release 1.7.2

A bitwise logical AND operation is performed on the source and destination operands and
the result is placed in the destination. The lock pin is asserted during the fetch of dst, if
dst is in memory and not in the stack cache. The lock pin is de-asserted at the completion
of the final store to dsl. No other accesses are done between the fetch and store of dsl.
The original value of dst (obtained during the fetch) is placed in the Accumulator. If the
Accumulator is not in the stack cache, a store is made after the interlocked I/O completes.

length

6
10

opcode

OX02
OX02

Encodings

instruction

ANDI
ANDI

STe

gen16,
gen32,

dst

gen16
gen32

Pipeline bypass hazards associated with semaphore operations are avoided in the
ATI'21oo by clearing the pipeline before an interlocked instruction enters the first
pipeline stage. No other instruction is allowed into the pipeline until the executing
interlocked instruction completes.

If R4 is the destination, after the interlocked instruction completes, R4 is the previous
value ofR4, hence no operation is performed.

If the accumulator is not in the SC, CSP = MSP, an I/O access is made to update the
accumulator after the interlocked accesses complete. The access to the accumulator must
not fault in any manner for the ANDI is not restartable from this point of the operation.

. 2-33 3/31/91

Name:

Format:

Operation:

Description:

A TT2100 Microprocessor Release 1.7.2

CALL - subroutine CALL

CALLsrc

*(CSP) = next PC
PC=src

/* save return PC in RO */

The next Program Counter value (return address) is stored at the location indicated by the
SP, or the ISP, whichever is the CSP. The source operand (subroutine entry point)
becomes the new Program Counter value.

length

2
6

opeode

OxOl
OxOO

Encodings

subcode

Oxl

instruction

CALL
CALL

src

perellO
flow32

Note: If the location pointed to by the CALL instruction can not be referenced, a fetch-fault
results. In this case, the PC stored on the interrupt stack is the target pc, not the PC of the
original CALL. The address of the original CALL instruction is not saved. In the event
of an indirect CALL, if the ATT2100 can not reference the indirection word. a read-fault
results and the PC stored on the interrupt stack is that of the indirect CALL. In either
case, fetch-fault or read-fault. the correct return PC is saved in RO.

2-34 3/31191

Name:

Format:

Operation:

Description:

Notes:

A TI'2100 Microprocessor

CATCH - fill stack cache

CATCH src

if (CSP = = SP) (
while((MSP < (CSP + src)) && ((MSP - SP) < SCSlZE))
{

stack _ cache[MSP] = memory[MSP]
stack _ cache[MSP+4] = memory[MSP+4]
stack_cache[MSP+S] = memory[MSP+S]
stack_cache[MSP+12] = memory[MSP+12]
MSP+= 1"6

Release 1.7.2

If the CSP is SP, the stack cache is filled to the extent indicated by the source operand.
The semantics of CATCH are somewhat different depending upon the address mode of
src.

1. If the source operand is defined with a Stack Offset mode (Roffset), the address is
formed by adding the offset to the SP to determine the target value for the MSP
(MSP = SP + offset).

2. If the source operand is defined with an Immediate mode ($data), the immediate
value is used as the target for the MSP (MSP = data).

3. If the source operand is defined with a Stack Offset Indirect mode (*Roffset), the
target value for the MSP is fetched from memory (or the Stack Cache) at the
address formed by adding the offset to SP (MSP = *(offset + SP».

4. If the source operand is defined with an Absolute mode (*$addr), the target value
for the MSP is fetched from memory (or the Stack Cache) at the address specified in
the absolute address (MSP = *(addr».

In no case will the MSP be incremented beyond the size of the on-chip stack cache. If the
CSP is the ISP, CATCH is a no-op.

length opcode

2 Ox02
6 OXOO

ENCODINGS

subcode instruction

Oxl CATCH
OxS CATCH

src

stkS*
word32

The MSP must be greater than or equal to the SP when CATCH executes, otherwise
instruction operation depends upon context and is therefore unpredicatable.

... The 8-bit stack offset is zero-extended and multiplied by 16 giving it an effective range of 0 through 4080 in quad-aligned
increments.

2-35 3/31;91

A TT2100 Microprocessor Release 1.7.2

If virtual addressing is enabled, and the MSP is updated. the new value is checked to
verify that stores are valid at the current execution level. If the address is not valid. either
a Read Fault, exception ID Ox8. or a MMU Table Walk Fault. exception ID OxE, is
flagged for the CATCH instruction.

Since the lower four bits of the SP do not exist. cache filling is done in 16 byte blocks. If
the source operand to CATCH is not divisible by 16. the cache is filled to the next
multiple of 16.

3/31/91

Name:

Fonnac

Description:

A TI'2100 Microprocessor

CLRE - clear PSW E-bit

CLRE

Release 1.7.2

The CLRE instruction clears the PSW E-bil The PSW E-bit is set by an ENTER
instruction which has successfully completed execution.

Encodings

length opcode subcode instruction

2 OxOB OxA CLRE

2-37 3/31191

Name:

Fonnat

Operation:

Description:

Notes:

CMP - CoMPare

CMPrel srcl. src2

ATI'2100 Microprocessor

srcl rei src2 7 PSW.F= 1: PSW.F=O

Release 1.7.2

The PSW F-bit is set to 1 if the comparison between the two source operands is true. If
the comparison is false the PSW F-bit is set to ·0. Rei is one of the following:

EQ equal to

GT signed greater than

lU higher (unsigned greater than)

Encodings

length opcode instruction SIC 1 src2

2 Ox, 10 CMPEQ immS. stkS
2 Ox 11 CMPGT stkS. stkS
2 Ox, 12 CMPGT immS. stkS
2 Ox, 13 CMPEQ stkS. stkS
6 OxlD CMPGT gen16. gen16
6 Ox, IE CMPlU gen16. gen16
6 Ox, IF CMPEQ gen16. gen16

10 OxlD CMPGT gen32. gen32
10 OxlE CMPHI gen32. gen32
10 Ox, IF CMPEQ gen32. gen32

srel is specified in the source operand field. src2 is specified in the destination operand
field.

CMPEQ may be used to test either = or *-. CMPGT may be used to test signed >. ~. <. S.
and CMPm may be used to test unsigned >. ~. <. S. In the latter cases. it is simply a
matter of ordering the operands properly and testing the correct sense of the PSW F-biL

2-38 3/3VJ1

Name:

Fonnat:

Description:

Notes:

Hazards:

A 1T2100 Microprocessor

CPU - register access escape

CPU

Release 1.7.2

The CPU instruction is a prefix which changes the meaning of the instruction which
follows iL Specifically, it changes the definition of address modes to enable access to the
internal registers. All word-sized address modes remain the same, while mode Ox7
becomes the register addressing mode, (see Section 2.6.7). The register number is stored
in the operand field. The low four bits of the operand are used as the register number; The
high-order bits are ignored, but should be zero. Accessing the undefined register 0 results
in an Unimplemented Instruction exception.

Encodings

length opcode subcode instruction

2 OxOB OXO CPU

The instruction following the CPU is considered part of the CPU instruction: if an
exception or intelTUpt occurs the PC saved on the intelTUpt stack is the PC of the CPU
instruction. In the Prefetch and Decode section of the A1T2100, the Program Counter is
incremented by four- or six-parcels depending on whether the instruction following the
CPU instruction is three- or five-parcels. '

See Section 2.13.3 for legal and illegal use of the CPU instruction.

For future suppon of floating-point instructions, a CPU instruction followed by a reserved
floating-point instruction should not be used.

The CPU is an interlocked instruction in that no other instruction is staned until the CPU
reaches the RR pipeline stage. It is still possible to cause a hazard between instructions
which modify the PSW C-, E-, F- or V -bits. If the either of the two instructions
proceeding the CPU instruction modified the psW C-, E-, F- or V -bits, any access of the
PSW should be padded by two NOP instructions.

See Section 2.4.8 for additional hazards associated with storing into the PSW.

2-39 3/31,91

Name:

Format:

Operation:

Description:

Notes:

A 112100 Microprocessor

CRET;.. Context RETurn from kernel

CRET

disable interrupts
SP = *(ISP + 0)
fetch *(ISP + 4)
enable interrupts
CATCH(MSP - SP)
disable interrupts
MSP = *(ISP + 4)
PC = .(lSP + 8)
PSW = *(ISP+ 12)
ISP+= 16
if (CSP = = ISP)

SHAD=ISP
else

SHAD=SP
enable interrupts

/* RO wrt ISP */

/* R4 wrt ISP *,
'* R8 wrt ISP *'
/* R12 wn ISP */

Release 1.7.2

A new SP is loaded from the Interrupt Stack. The current contents of the stack cache are
discarded and an unconditional CATCH is performed filling the stack cache to the MSP.
The Program Status Word and Program Counter values are restored by "popping" the
Interrupt Stack. .

Encodings

length opcode subcode instruction

2 OxOB Ox5 CRET

The target MSP is fetched prior to the "CATCH" portion executes, but the MSP is not
updated until the "CATCH" portion completes.

Interrupts are disabled as indicated in the Operation description during a portion of the
CRET. Interrupts are enabled as indicated during the "CATCH" portion of CRET at the
level of the restored PSW. The "CATCH" portion of of CRET is perfonned consistent
with the restored PSW VP- and S·bits.

If a memory fault occurs while reading from the Interrupt Stack the A 112100 resets.

The CRET instruction is privileged. If a CRET is initiated at the user level, a privilege
exception is executed. .

The CRET instruction can not be traced.

If the location pointed to by the new PC value can not be referenced, a fetch-fault results.
In this case, the PC stored on the interrupt stack is the new PC value. not the address of
the CRET instruction.

2-40 3/31/91

Name:

Fonnat

Operation:

Description:

Notes:

DIV -DIVide

DIV[3] src. dst

DIV: dst/= src
DIV3: Acc = dst / src

A TI'2100 Microprocessor Release 1.7.2

The destination operand is divided by the source operand and the quotient is placed in
eiJher the destination (DIV) or the Accumulator (DIV3). Two's complement division is
perfonned. See Section 2.7 for a full description of ATI'2100 integer arithmetic.

Encodings

length opcode instruction src dst

6 007 DIV genl6. gen16
6 Ox37 DIV3 genl6. gen16

10 Ox27 DIV gen32. gen32
10 Ox37 DIV3 gen32. gen32

Division by zero results in a zero divide exception. Division of Ox80000000 by
OxFFFFFFFF sets the PSW V -bit and returns the result Ox80000000. The V -bit is cleared
in all the other cases. The C-bit is unchanged in all the cases.

2-41 3/31,91

Name:

Format

Operation:

Description:

A'IT2100 Microprocessor

DQM - Double-word or Quad-word Move

DQM src, dst

<1st = src

Release 1.7.2

Double- or Quad-word Move moves either two or four contiguous words from the source
to the destination. The size of the transfer is determined by the destination address mode
field.

Double-word data size is encoded in the destination mode field as OxO. x4 or Ox8. Quad
word data size is encoded in the destination mode field as Oxe, OxD or 0xE. If the source
mode is OxF. the constant is replicated either two or four times depending upon the
destination mode. If the destination mode is OxF, an illegal instruction exception is taken.
All other addressing modes result in.an alignment fault.

length opcode

6 OX07
10 Ox07

Encodings

instruction

DQM
DQM

SIC

genl6*,
gen32*,

dst

gen16*
gen32*

Note: Source and destination addresses of quad-word operands must be divisible by 16 (quad
aligned) and addresses of double-word operands must be divisible by 8 (double-aligned).
Otherwise an alignment exception occurs.

Only word addressing modes are permitted for the source and the special modes for the
destination. Other modes bigger an illegal instruction sequence.

« The limiwions given in the description and note apply.

2-42 3/31/91

Name:

Format

Operation:

Description:

A TI'2100 Microprocessor

ENTER - ENTER subroutine

ENTERsrc

if(CSP = = ISP)
{

SHAD = ISP = target*
}
if((CSP = = SP) && (src address mode != Stack Offset))
{

}

/* flush stack cache unconditionally */
while (MSP > SHAD)
{

}

memory[MSP-16] = stack_cache[MSP-16]
memory[MSP-12] = stack _~he[MSP-12]
memory[MSP-8] = stack_cache[MSP-8]
memory[MSP-4] = stack _ cache[MSP-4]
MSP-= 16

/* force stack cache to be empty */
SHAD = MSP= SP = target

if((CSP = = SP) && (src address mode = = Stack Offset))
{

}

/* flush only as much of the stack cache as is necessary */
if (MSP - target> SCSIZE)
{

}

while « MSP ~ SHAD) && (MSP - target> SCSlZE)
{

}

memory[MSP-16] = stack_cache[MSP-16]
memory[MSP-12] = stack_cache[MSP-12]
memory[MSP-8] = stack _ cache[MSP-8]
memory[MSP-4] = stack _ cache[MSP-4]
MSP-= 16

if(MSP> (target + SCSIZE))
MSP = target + SCSIZE

SHAD = SP = target

PSW.E= 1

*see Description for determination of target value

. Release 1.7.2

The CSP is altered either by adding the source operand (Stack Offset addressing mode), or
replacing it with a new value (all other addressing modes). If SP is not the current stack
pointer no data traffic between the Stack Cache and memory is performed, and the MSP is
not updated. If SP is the CSP, the contents of the stack cache are written to memory (if
necessary) in quad word transfers until no more than SCSIZE bytes are held in the cache.
The semantics of ENTER are somewhat different depending upon the address mode of
src.

2-43 3/31191

Notes:

A'IT2.I00 Microprocessor Release 1.7.2

1. If the source operand, is defined with a Stack Offset mode (Roffset), the address
fonned by adding the offset to the CSP is used to detennine the target value (MSP =
CSP + offset). The bounds of the stack cache are set to encompass the full amount
of the ENTER instruction. within the limits of SCSIZE.

2. If the source operand is defined with an Immediate mode ($data), the immediate
value is used as die target value (MSP =:' data) and the stack cache is set empty at
the completion of the ENTER instruction.

3. If the source operand is defined with a Stack Offset Indirect mode (*Roffset), the
target value is fetched from memory (or the Stack Cache) using the address fonned
by adding the offset to the CSP (MSP = *(offset + CSP» and the stack cache is set
empty at the completion of the ENTER instruction.

4. If the source operand is defined with an Absolute mode (*$addr), the target value
for the CSP is fetched from memory (or the Stack Cache) using the address
specified in the absolute address (MSP = *(addr» and the stack cache is set empty
at the completion of the ENTER instruction.

Upon successful completion of the ENTER, the PSW E-bit is seL The PSW E-bit is
cleared with the CLRE instruction.

length opcode

2 OX02
6 OXOO

Encodings

subcode instruction

OXO ENTER
Ox9 ENTER

src

stk8t
word32

If the 6 byte fonn of ENTER is used with a Stack Offset mode for STe, the magnitude of
the offset must be greater than SCSIZE, and the offset must be less than or equal to 0, or
unpredictable results may occur. The MSP must be greater than or equal to the SP when
an ENTER begins, otherwise instruction operation depends upon context and therefore is
unpredictable.

For the Stack Offset Addressing model, only negative stack offsets are legal, positive
stack offsets bigger an illegal instruction sequence. This includes ENTER RO.

lf virtual addressing is enabled, the target address and the new MSP. if the MSP is
updated, are checked to verify that stores are valid at the current execution level. If the
addresses are not valid, a Read Fault exception, exception type 8, or MMU a MMU Table
Walk Fault, exception ID OxB, is flagged for the ENTER instruction. The exception is
processed after any stack flushing is completed.

Since the lower four bits of the SP do not exist, the lower four bits of the source operand
are ignored.

t The 8-bilsuck offset is left padded with ones and multiplied by 16 giving it an effeclive range of -161hrough 4096 in quad
aligned dec:Janmu.

2-44 3/31~1

A'IT2100 Microprocessor

Name: FADD - Floating-point ADDition

Fonnat: . FADD[3] SI'C, dst

Operation: FADD: dst += src
FADD3: Ace = dst+ SI'C

Release 1.7.2

Description: The source operand is added to the destination operand and the sum is placed in either the
destination (FADD) or the floating-point Accumulator (FADD3).

Encodings

length opcode instruction src dst

6 Ox2B FADD fgen16, fgen16
6 Ox3B FADD3 fgen16, fgen16

10 Ox2B FADD fgen32, fgen32
10 Ox3B FADD3 fgen32, fgen32

Notes: May result in overflow, underflow, an inexact or an invalid operation. See Section 2.9 for
a complete description of floating-point arithmetic.

The FADD[3] instruction is not implemented in hardware. An unimplemented instruction
sequence is taken.

2-45 3/31/91 .

Name:

Format

Operation:

Description:

Notes:

A TI'2100 MiCroprocessor

FCLASS - Floating-point CLASSify

FCLASS src,dst

if (src = = "signaling NaN")
dst= 1

else if (src = = "quiet NaN")
dst=2

else if (src = = "00")
dst=3

else if (src = = "0")
dst=4

else if (src = = "nonnalized")
dst=S

else if (src = = "subnormalized ")
dst=6

Release 1.7.2

The destination is set to the nonzero integral value whose sign is that of the source
operand and whose magnitude is determined by the source.

length opcode

6 Ox13
10 Ox 13

Encodings

instruction

FCLASS
FCLASS

src

fgen16,
fgen32,

dst

gen16
gen32

The FCLASS operation never results in an exception. See Section 2.9 for a complete
description of floating-point arithmetic.

The FCLASS instruction is not implemented in hardware. An unimplemented instruction
sequence is taken.

2-46 3/31/91 --; .

Name:

Fonnat:

Operation:

Description:

Notes:

A TI'2100 Microprocessor

FCMP - Floating-point CoMParison

FCMPrel srcl.src2

srcl rei src2? PSW.F= 1: PSW.F=O

Release 1.7.2

The PSW F-bit is set to I if the comparison between the two source operands is true. If
the comparisOn is false P5W F-bit is set to O. Rei is one of the following comparisons:

EQ equal to

EQN equal to or unordered with

GT greater than

GE greater than or equal to

N unordered

Encodings

length opcode instruction srcl src2

6 Ox18 FCMPGE fgenl6. fgenl6
6 Oxl9 FCMPGT fgenl6. fgenl6
6 OxlA FCMPEQ fgenl6. fgenl6
6 OxlB FCMPEQN fgenl6. fgenl6
6 OdC FCMPN fgenl6. fgen16

10 OxIS FCMPGE fgen32. fgen32
10 Ox19 FCMPGT fgen32. fgen32
10 OdA FCMPEQ fgen32. fgen32
10 OdB FCMPEQN fgen32. fgen32
10 OdC FCMPN fgen32. fgen32

FCMPGT and FCMPGE signal invalid operation if the operands are unordered. See
Section 2.9 for a complete description of floating-point arithmetic.

The FCMP instructions are not implemented in hardware. An unimplemented instruction
sequence is taken.

2-47 3/31191

Name:

Format:

Operation:

Description:

Notes:

A lT2100 Microprocessor

FOIV - Floating-point DIVision

FDIV[3] STC, dst

FDIV: dst/= src
FDIV3: Ace = dst / src

Release 1.7.2

The destination operand is divided by the source operand and the quotient is placed in
either the destination (FDIV) or the floating-point Accumulator (FDIV3).

Encodings

length opcode instruction src dst

6 oxiA FDIV fgen16, fgen16
6 Ox3A FDlV3 fgen16, fgen16

10 0x2A FDIV fgen32. fgen32
10 Ox3A FDIV3 fgen32. fgen32

May result in overflow, underflow. division by zero, an inexact or an invalid operation.
See Section 2.9 for a complete description of floating-point arithmetic.

The FDIV[3] instruction is not implemented in hardware. An unimplemented instruction
sequence is taken.

2-48 3/31/91

Name:

Fonnat:

Operation:

Description:

Notes:

ATI2100 Microprocessor

FLOGB - Floating-point exponent extraction

FLOGB src, dst

if (src = = "±O")
dst=-oo

else if (src = = "±oo' ')
dst=+oo

else if (src = = "NaN")
dst=src

else
dst = exponent of src

Release 1.7.2

The destination receives the exponent of the source operand, in floating-point fonnat. with
the special cases.

length

6
10

opcode

Ox12
Ox12

Encodings

instruction

FLOGB
FLOGB

src

fgen16,
fgen32,

dst

fgen16
fgen32

Never results in an exception. See Section 2.9 for a complete description of floating-point
arithmetic.

The FLOGB instruction is not implemented in hardware. An unimplemented instruction
sequence is taken.

2-49 3/31191

Name:

Fonnat:

Description:

A TT2100 Microprocessor

FLUSHD - FLUSH Data cache

FLUSHD

The Data Cache is flushed: all entries are marked invalid.

Encodings'

length opcode subcode instruction

2 OxOB Ox6 FLUSHD

Release 1.7.2

Note: The FLUSHD instruction is not implemented in hardware as there is no data cache. An
Wlimplemented instruction sequence is taken.

2-50 3/31,91

Name:

Fonnat

Description:

A TI'2100 Microprocessor

FLUSHDCE - FLUSH a Data Cache Entry

FLUSHDCE src

The quad-word at sre t is flushed from the DC.

Encodings

length opcode subcode instruction src

6 OxOO OxD FLUSHDCE word32

Release 1.7.2

Note: The FLUSHDCE instruction is not implemented in hardware as there is no data cache.
An unimplemented instruction sequence is taken.

2-51 3/31191

Name:

Format:

Description:

A 'IT2100 Microprocessor

FLusm - FLUSH decoded Instruction cache

FLUSHI

The Decoded Instruction Cache is flushed: all entries are marked invalid.

Encodings

length opcode subcode instruction

2 OxOB Ox3 FLUSm

2-52

Release L 7.2

3/31191

Name:

Fonnat

Description:

A TT2100 Microprocessor

FLUSHP - FLUSH Prefetch buffer cache

FLUSHP

The Prefetch Buffer Cache is flushed: all entries are marked invalid.

Encodings

length opcode subcode instruction

2 OxOB Ox4 FLUSHP

2-53

Release 1.7.2

3131191

Name:

Fonnat:

Description:

A TT2100 Microprocessor

FLUSHPBE - FLUSH a PreFetch Buffer Entry

FLUSHPBE src

Release 1.7.2

The quad-word at src, is marked invalid in the PFB. None of the other caches are
affected.

Encodings

length opcode subcode instruction src

6 OXOO oxe FLUSHPBE word32

2-54 3/31/91 ':) -.-.'!'

Name:

Fonnat

Description:

A TI'2100 Microprocessor

FLUSHPIE - FLUSH a Page Table Entry from the db's

FLUSHPTE src

Release i. 7.2

If there is a Page Table Entry for the address defined by STC, in either the Text or Data
Translation Look-aside Buffers, the entry is marked invalid. Both -the Text and Data
Non-paged Segment Registers are invalidated.

Encodings

length opcode subcode instruction src

6 OXOO OxB FLUSHPTE word32

Note: For the FLUSH PTE instruction the STC operand is an address. Normally, the address
would be moved into the Stack Cache and the Stack Offset Indirect addressing mode
would be used for src.

2-55 3/31191

Name:

Format

Operation:

Description:

Notes:

A TI'2100 Microprocessor

FMOV - Floating-point MOVe

FMOV sec. dst

dst= sec

Release 1.7.2

The s.ource operand is moved into the destination with any required conversions
perfonned.

length

6
10

opcode

OxIl
Oxll

Encodings

instruction

FMOV
FMOV

src

fgenl6.
fgen32.

dst

fgen16
fgen32

May result in an overflow. underflow. an inexact or an invalid operation. See Section 2.9
for a complete description of floating-point arithmetic.

The FMOV instruction is not implemented in hardware. An unimplemented instruction
sequence is taken.

2-56 3131191

Name:

Fonnat:

Operation:

Description:

Notes:

A TT2100 Microprocessor

FMUL - Floating-point MULtiplication

FMUL[3] src. dst

FMUL: dst *= src
FMULJ:Acc = dst * src

Release 1.7.2

The product of the source and the destination operands is placed in the destination
(FMUL) or the floating-point Accumulator (FMUL3).

Encodings

length opcode instruction src dst

6 Ox29 FMUL fgen16, fgen16
6 Ox39 FMUL3 fgen16. fgen16

10 Ox29 FMUL fgen32. fgen32
10 Ox39 FMULJ fgen32. fgen32

May result in an overflow, underflow. an inexact or an invalid operation. See Section 2.9
for a complete description of floating-point arithmetic.

The FMUL[3] instruction is not implemented in hardware. An unimplemented
instruction sequence is taken.

2-57 3!3i!91

Name:

Fonnat

Operation:

Description:

Notes:

A 1T2100 Microprocessor

FNEXT - Floating-point NEXT-after

FNEXTsrc.dst

if «src I dst) = = "NaN")
dst= "NaN"

else
dst = value adjacent 10 SIC in the direction of dst

Release 1.7.2

The destination receives the value nadjacent 10" the source operand in the direction of the
destination operand. n Adjacency" is meant in terms of the format of the source operand.

If either operand is NaN, the result is NaN. Otherwise. for the pmposes of FNEXT. the
floating-point values in a particular format may be taken 10 be lexicographically ordered:

(-oo) < {negative numbers} < {-O} < {+O} < {positive numbers} < (+co)

Lexicographic order differs from numeric order only in that -0 and +0 are taken to be
distinguished neighbors. even though they are equal when compared with any of the
variants of FCMP. .

length

6
10

opcode

Ox08
Ox08

Encodings

instruction

FNEXT
FNEXT

SIC

fgen16.
fgen32.

dst

fgen16
fgen32

Never results in an exception. See Section 2.9 for a complete description of floating-point
arithmetic.

The FNEXT instruction is not implemented in hardware. An unimplemented instruction
sequence is taken.

2-58 3/31191

Name:

Format:

Operation:

Description:

Notes:

A Tn! 00 Microprocessor

FREM - Floating-point REMainder

FREM src, dst

Given R in the fonnat of dst, and unbounded
integers IQ and QQ satisfying:

then:

dst = (src '* IQ) + R. with I R I ~ 1 src + 21
QQ = IQ 1 16. rounded toward O.

dst=R
FPSW.RQ = IQ - (16 '* QQ)

Release 1.7.2

The destination operand is given its floating-point remainder modulo the source. The low
four bits of the integer quotient. with the quotient's sign. are delivered as a 5-bit two's
complement number to the RQ field of the FPSW.

length

6
10

opcode

OxOB
OxOB

Encodings

instruction

FREM
FREM

src

fgenl6.
fgen32.

dst

fgen16
fgen32

FREM may be thought of as the dividion of dst by sre to produce all (possibly thousands)
of the integer quotient bits. which is called IQ in the operation description. To insure that
R is no bigger than half of sre. IQ may be adjusted upward by 1. The resulting remainder,
R, is exact. The FPSW RQ-field is the low four bits of the magnitude of IQ. with the sign
of IQ, as a two's compliment value. In doing argument reduction for operations such as
trigonometric functions. the FPSW RQ-field is of great value when the sre might be 1C/4;
the FPSW RQ-field would indicate in which octant the argument. dst.lies.

May result in an invalid operation. See Section 2.9 for a complete description of
floating-point arithmetic.

The FREM instruction is not implemented in hardware. An unimplemented instruction
sequence is taken.

2-59 3/31/91

Name:

Fonnat:

Operation:

Description:

Notes:

A TT2100 Microprocessor

FSCALB - Floating-point SCALing by a power of the radix. 2

FSCALB STe, dst

Release 1.7.2

The destination is scaled by 2 raised to the source power. The source, which is an
integral. not a floating-point, operand, is truncated to 16-bits before scaling is perfonned.

length

6
10

opcode

Ox09
Ox09

Encodings

instruction

FSCALB
FSCALB

src

gen16.
gen32.

dst

fgen16
fgen32

May result in an overflow. underflow. an invalid or an inexact operation. See Section 2.9
for a complete description of floating-point arithmetic.

The FSCALB instruction is not implemented in hardware. An unimplemented instruction
sequence is taken.

2-60 3/31/91

Name:

Fonnat

Operation:

Description:

Notes:

A TI'2100 Microprocessor

FSQRT - Floating-point SQuare Rc;»oT

FSQRT src, dst

dst=...Jsrc

The destination receives the square root of the soUrce.

length opcode

6 OxIO
10 Oxl0

Encodings

instruction

FSQRT
FSQRT

src

fgenl6,
fgen32,

dst

fgen16
fgen32

Release 1.7.2

May result in an inexact or invalid operation. See Section 2.9 for a complete description
of floating-point arithmetic.

The FSQRT instruction is not implemented in hardware. An unimplemented instruction
sequence is taken.

2-61 3/31/91

Name:

Format:

Operation:

Description:

Notes:

A TI'2100 Microprocessor

FSUB - Floating-point SUBtraction

FSUB[3] src. dst

FSUB: dst-= src
FSUB3:Acc = dst - src

Release 1.7.2

The source operand is subtracted from the destination operand and the difference is placed
in either the destination (FSUB) or the floating-point Accumulator (FSUB3).

Encodings

-length opcode instruction src dst

6 Ox28 FSUB fgen16, fgen16
6 Ox38 FSUB3 fgen16, fgen16

10 Ox28 FSUB fgen32, fgen32
10 Ox38 FSUB3 fgen32, fgen32

May result in overflow, underflow, inexact or an invalid operation. See Section 2.9 for a
complete description of floating-point arithmetic.

The FSUB(3) instruction is not implemented in hardware. An unimplemented instruction
sequence is taken.

2-62 3131191

Name:

Format:

Operation:

IMP-JuMP

JMPdst
JMPT(Y I N) dst
JMPF{Y I N) dst

JMP:
PC=&dst

JMPT:

A'IT2100 Microprocessor

if (PSW.F) PC = &dst
JMPF:

if (IPSW.F) PC = &dst

Release 1.7.2

Description: The jump instructions cause the address of the destination operand to become the new
Program Counter value unconditionally (JMP), if the PSW F-bit is one (JMPT), or if the
PSW F-bit is zero (JMPF). A branch prediction bit is available for the conditional jumps
to indicate that the jump more likely will (y), or will not (N) be taken. Conditional jumps
cannot use the indirect addressing modes.

Encodings

length opeode subcode instruction src(dst)

2 OX03 JMP perellO
2 Ox04 JMPFN perellO
2 OX05 JMPFY pcrellO
2 Ox06 JMPTN perellO
2 OX07 JMPTY perellO
6 OXOO Ox3 JMP ftow32
6 OxOO Ox4 JMPFN abs32
6 OXOO Ox5 JMPFY abs32
6 OXOO Ox6 JMPTN abs32
6 OXOO Ox7 JMPTY abs32

Note: If the location pointed to by the jump instruction can not be referenced, a fetch-fault
results. In this case, the PC stored on the interrupt stack is the target pc, not the pc of the
original jump. The address of the original jump instruction is not saved. In the event of
an indirect jump, if the A'IT2100 can not reference the indirection word, a read-fault
results and the pc stored on the interrupt stack is that of the indirect jump.

2-63 3/31~1

Name:

Format

Operation:

Description:

Notes:

A TI'2100 Microprocessor

KCALL - Kernel CALL

KCALLsrc

disable interrupts
. *(lSP - 12) = src
*(ISP - 8) = PC of next instruction
*(lSP - 4) = PSW
ISP-= 16
SHAD=ISP
PC= *(VB +0)
PSW = PSW & OxFFFFOOOO
enable interrupts

'* R4 wrt new ISP *' ,* R8 wrt new ISP *, '* R12 wrt new ISP *'

Release 1.7.2

The Program Stabls Word, the Program Counter (rebJrn point) and the src operand values
are saved on the Interrupt Stack as a quad-word. The new Program Counter value is read
from the memory location pointed to by the Vector Base Register. The low-order 16-bits
of the PSW are set to 0, which selects kernel execution level, the ISP as the CSP, disables
tracing and inhibits interrupts. The PSW VP- and UA-bits do not change.

length

2
6

opcode

OxOO
OxOO

Encodings

subcode instruction

KCALL
OxO KCALL

src

immlO*
word32

Interrupts are disabled while KCALL is processing. If a memory fault occurs while
writing to the Interrupt Stack or reading from the table pointed to by the Vector Base. the
A1T2100 resets.

If the location pointed to by the KCALL PC entry in the vector table can not be
referenced. a fetch-fault results. In this case, the PC stored on the interrupt stack is the
target PC (the value in the location pointed to by the VB), not the PC of the original
KCALL instruction.

... The 1O-bit immediate value is zero-extended and multiplied by four giving it an effective range of 0 through 4092 in inc:reinents of
4.

2-64 3/31.191

Name:

Fonnat:

Operation:

Description:

Notes:

A TTl! 00 Microprocessor

KRET - Kernel RETurn

KRET

disable interrupts
PC = *(ISP + 8)
PSW = *(ISP + 12)
ISP+= 16
if (CSP = = ISP)

SHAD=ISP
else

SHAD=SP
enable interrupts

1* R8 WIt ISP *1
1* R12 WIt ISP *1

Release 1.7.2

The Program Status Word and Program Counter values are restored from the Interrupt
Stack.

Encodings

length opcode subcode instruction

2 OxOB Ox 1 KRET

Interrupts are disabled while KRET is processing. If a memory fault occurs while
reading from the Interrupt Stack the ATTllOO resets.

The KRET instruction is privileged. If a KRET is executed at the user level, a privilege
exception is executed.

The KRET instruction can not be traced.

If the location pointed to by the new PC value can not be referenced, a fetch-fault results.
In this case, the PC stored on the interrupt stack is the new PC value, not the address of
the KRET instruction.

2-65 3/31/91

Name:

Format:

Operation:

Description:

A TI'2100 Microprocessor

LDRAA - LoaD Relative Address into Accumulator

LDRAAdst

ACC=&dst

Release 1.7.2

The destination address is calculated as if a JMP instruction were being executed and
stored in the Accumulator. 0

Encodings

length. opcode subcode instruction sec

6 OxOO OxA LDRAA fiow32

3131191 /,

A TT21 00 Microprocessor Release 1.7.2

Name: MOV-MOVe

Fonnat MOV src,dst

Operation: dst= src

Description: The value of the source operand is stored in the destination.

Encodings

length opcode instruction src dst

2 OxOA MOV wai5. stk5
2 OxI8 MOV stIe5. stkS
2 Ox19 MOV istIe5, stk5
2 OxlA MOV stIe5, istk5
2 OxlB MOV istk5, istkS
2 OxIC MOV imm5, stkS
6 Ox06 MOV gen16, genl6

10 Ox06 MOV gen32. gen32

3/31/91

Name:

Fonnat

Operation:

Description:

Note:

ATI'2100 Microprocessor

MOVA - MOVe Address

MOV A src. dst

dst=&src

The address of the source operand is calculated and stored in the destination.

Encodings

length opcode instruction SIC dst

2 OdD MOVA stkS. stkS
6 Ox04 MOVA genI6*. gen16

10 Ox04 MOVA gen32*. gen32

Release l. 7 .2

If the size of the destination is byte or half-word. the calculated address is truncated (or
sign-extended) to 8- or 16-bits. An immediate source operand as well as a register source
or destination causes an illegal instruction exception.

.. The IOUR:e operand must use a word addressing mode (i.e., modes ~ OxC) except for immediate as already noted. Any ather mode
causes an illegal instruction exception.

2-68 3/31/91) i

Name:

Format

Operation:

Description:

A TI'2100 Microprocessor

MUL - MULtiply

MUL[3] src. dst

MUL:

MUL3:

dst.= src
"unsigned overflow" ? PSW.C = 1 : PSW.C = 0
"signed overflow" ? PSW.V = 1 : PSW.V = 0

Acc = dst • src
"unsigned overflow" ? PSW.C = 1 : PSW.C = 0
"signed overflow" ? PSW.V = 1 : PSW.V = 0

Release 1.7.2

The source operand is multiplied by the destination operand and the product is placed in
either the destination (MUL) or the Accumulator (MULl). The PSW C-bit is set to 1 if
the product of the operands as unsigned values overflows the destination (or
Accumulator): similarly. the PSW V -bit is set to 1 if the product of the operands as signed
values overflows the destination (or Accumulator); otherwise. the PSW C- and V -bits are
set to O. See Section 2.7 for a full description of ATI'2100 integer arithmetic.

Encodings

length opcode instruction src dst

"6 Ox26 MUL genl6. gen16
6 Ox36 MUL3 genl6. gen16

10 Ox26 MUL gen32. gen32
10 Ox36 MUL3 gen32. gen32

2-69 3/31191

Name:

Fonnat:

Description:

ATI'2100 Microprocessor

NOP - No OPeration

NOP

No operation is performed.

Encodings

length opcode subcode instruction

2 OxOB Ox2 NOP

2-70

Release 1.7.2

3131/91) I '-,
, "" j .:;~

Name:

Format

Operation:

Description:

A TT2100 Microprocessor

OR - bitwise logical OR

OR[3] src, dst

OR: dst 1= src
OR3: Ace = dst I src

Release 1.7.2

A bitwise logical OR is performed on the source and destination operands and the result is
placed in either the destination (OR) or the Accumulator (OR3).

Encodings

length opcode instruction src dst

6 Ox21 OR gen16, gen16
6 Ox31 OR3 gen16, gen16

10 Ox21 OR gen32, gen32
10 Ox31 OR3 gen32, gen32

2-71 3/31/91

Name:

Format

Operation:

Description:

Notes:

A TI'2100 Microprocessor

OR! - bitwise logical OR Interlocked

OR! src, dst

hidden = dst
dst 1= src
Acc = biddel)

Release 1.7.2

A bitwise logical OR operation is perfonned on the source and destination operands and
the result is placed in the destination. The lock pin is asserted during the fetch of dst, if
dst is in memory and not in the stack cache. The lock pin is de-asserted at the completion
of the store to dst. No other accesses are done between the fetch and store of dst. The
original value of dst (obtained during the fetch) is placed in the Accumulator. If the
Accumulator is not in the stack cache, a store is made after the interlocked I/O completes.

length

6
10

opcode

OxOI
OxOI

Encodings

instruction

ORI
ORI

src

gen16,
gen32,

dst

gen16
gen32

Pipeline bypass hazards associated with semaphore operations are avoided in the
ATI'2100 by clearing the pipeline before an interlocked instruction enters the first
pipeline stage. No other instruction is allowed into the pipeline until the executing
interlocked instruction completes.

If R4 is the destination, after the interlocked instruction completes, R4 is the previous
value ofR4, hence no operation is performed.

If the accumulator is not in the se, esp = MSP, an I/O access is made to update the
accumulator after the interlocked accesses complete. The access to the accumulator must
not fault in any manner for the ORI is not restartable from this point of the operation.

2-72 3/31191

Name:

Format

Operation:

Description:

Notes:

A TI'2100 Microprocessor

POPN - Pop N entries from stack cache

POPNsrc

disable interrupts
SHAD = CSP = CSP + src
if ((CSP = = SP) && (CSP > MSP))

MSP=SP
enable interrupts

Release 1.7.2

The src operand is fetched. added to the CSP and SHAD. If the CSP is SP, and the new
SP value exceeds the MSP. the MSP is also updated to the new value. If the CSP is ISP.
the MSP is not updated.

Encodings

length opcode subcode instruction

2 Ox02 Ox3 POPN
6 OxOO OxF POPN

src

stk8*
stk32

Only the Stack Offset Addressing mode is legal; any other mode results in an illegal
instruction exception sequence. Negative stack offsets are illegal.

• The 8-bil stack offset is zero extended arid multiplied by 16 giving it an effective range of 0 througb 4080 in quad-aligned
inc:n:mc:nts.

2-73 3/31191

Name:

Fonnat

Operation:

Description:

Notes:

REM - REMainder

REM[3] src, dst

A 1T2100 Microprocessor

REM: dst %= src
REM3: Acc = dst % src

Release 1.7.2

The destination operand is divided by the source operand and the remainder is placed in
either the destination (REM) or the Accumulator (REM3). Two's complement division
is performed. See Section 2.7 for a full description of A1T2100 integer arithmetic.

Encodings

length opcode instruction SIC dst

6 Ox25 REM gen16, gen16
6 Ox35 REM3 gen16, gen16

10 Ox2S REM gen32, gen32
10 Ox35 REM3 gen32, gen32

Division by zero results in a zero divide exception.

The PSW V -bit is always cleared in the REM operation. The C-bit is unchanged in all
the cases. .

2-74 3/31191 ..) / '-

Name:

Fonnat

Operation:

Description:

Notes:

A'IT2100 Microprocessor

RETURN - RETURN from subroutine

RETURNsrc

disable interrupts
PC= -(CSP+ src)
SHAD = CSP = CSP + src
if((CSP = = SP) && (CSP > MSP))

MSP=SP
enable interrupts

Release 1.7.2

The src operand is fetched and used as the new Program Counter value. If the CSP is SP.
and the new SP value exceeds the MSP. the MSP is also updated to the new value. If the
CSP is ISP. the MSP is not updated.

Encodings

length opcode subcode

2 OX02 Ox2
6 OXOO Ox2

instruction

RETURN
RETURN

src

stk8-
slk32

Only the Stack Offset Addressing mode is legal; any other mode results in an illegal
instruction exception sequence. Even though the lower four bits of the SP do not exist,
RETURN can obtain a new PC for a word aligned register offset which is not a multiple
of 16. but when adjusting the SP. the lower four bits of the offset is ignored. For
example:

RETURNR4

obtains the new PC from R4. but the SP does not change. Similarly.

RETURNR20

obtains the new PC from R20. but the SP only increments 16.

Only positive offsets are legal. Negative offsets result in an illegal instruction exception
sequence.

If the location pointed to by the new PC value can not be referenced. a fetch-fault results.
In this case. the PC stored on the interrupt stack is the new PC values. not the address of
the RETURN instruction.

• The 8-bil ltack offset is zero extended Ind multiplied by 16 giving it In effective range of 0 through 4080 in quad·aligned
increments.

2-75 3/31191

Name:

Fonnat

Operation:

Description:

Sm. - SHift Left

SHL[3] src, dst

A TI'2100 Microprocessor

SHL: dst «= Unsigned(src}
SHL3: Acc = dst« Unsigned(src}

Release 1.7.2

The destination operand is shifted left by the number of bits indicated by the source
operand. Zeroes replace the bits shifted out of the least-significant-bit of dst. Only the
low-order five bits of src are used for the shift amount The upper-bits are ignored.

For SHLJ, the result is placed in the Accumulator and the destination is left unchanged.

Encedings

length opcode instruction src dst

2 OxlE SHL3 uimm5, stkS
6 OxlE SHL gen16, gen16
6 Ox3E SHL3 genl6, gen16

10 Ox2E SHL gen32, gen32
10 Ox3E SHL3 gen32, gen32

2-76 3131191

..

Name:

Fonnat

Operation:

Description:

A 112100 Microprocessor

SHR - arithmetic SHift Right

SHR[3] src. dst

SUR: dst >>= src
SHR3: Ace = dst » src

Release 1.7.2

The destination operand is shifted right by the number of bits indicated by the source
operand. The sign-bit of the destination is copied as bits are shifted rightward. Only the
low-order five bits of src are used for the shift amount. The upper-bits are ignored.

For SHR3. the result is placed in the Accumulator and the destination is left unchanged.

Encodings

length opcode instruction src dst

2 OxIF SHR3 uimm5. stk5
6 Ox2C SHR genl6. gen16
6 Ox3C SHR3 gen16. gen16

10 OxlC SHR gen32. gen32
10 Ox3C SHR3 gen32. gen32

2-77 3/31191

Name:

Format:

Operation:

Description:

A TI'2100 Microprocessor

SUB - SUBtract

SUB [3] src. dst

SUB:

SUB3:

dst-= src
"unsigned borrow"? PSW.C= 1.: PSW.C=O
"signed borrow" ? PSW.V = 1 : PSW.V = 0

Acc = dst - src
"unsigned borrow" ? PSW.C = 1 : PSW.C = 0
"signed borrow" ? PSW.V = 1 : PSW.V = 0

Release 1.7.2

The source operand is subtracted from the destination operand and the difference is placed
in either the destination (SUB), or the Accumulator (SUB3). The PSW C-bit is set on
unsigned overflow and the PSW V -bit is set on signed overflow, otherwise the PSW C
and V-bits are set to O. See Section 2.7 for a full description of ATI'2100 integer
arithmetic.

Encodings

length opcode instruction SIC dst

6 Ox20 SUB gen16, gen16
6 Ox30 SUB3 gen16, gen16

10 000 SUB gen32, gen32
10 Ox30 SUB3 gen32, gen32

2-78 3/31191

Name:

Fonnat:

Operation:

Description:

A TI'2100 Microprocessor

TADD - Tagged ADDition

T ADD src, dst

if «src[l:O] 1= OXO) II (dst[l:O] 1= OxO)

else (

)

PSW.F= 1 -

dst+src
"unsigned overflow" ? PSW.C = 1 : PSW.C = 0
"signed overflow" ? PSW.V = 1 : PSW.V = 0
PSW.F = PSW.V

if (pSW.F = 0)
dst = dst + src

Release 1.7.2

The source operand is added to the destination operand and the sum is placed in the
destination if the PSW F-bit is set to O. The PSW F-bit is set to 1 if the low two bits of
either the source and destination operands are non-zero or the PSW V-bit was set to 1.
The PSW C-bit is set to 1 on unsigned overflow and the PSW V -bit is set to 1 on signed
overflow. otherwise the PSW C- and V -bits are set to O. See Section 2.7 for a full
description of ~TI'2100 integer arithmetic.

Encodings

length opcode instruction

6 OXOC TADD
10 OxOC TADD

SIC

genl6.
gen32.

2-79

dst

genl6
gen32

3/31191

Name:

Fonnat

Operation:

Description:

A Tl'2100 Microprocessor

msTC - mST psw Carry

TESTC

PSW.F = PSW.C
PSW.C=O

The PSW C-bit is copied into the PSW F-bit and the PSW C-bit is set to O.

Encodings

length opcode subcode instruction

2 OxOB Ox9 TESTC

2-80

Release 1.7.2

. 3!3V)1

Name:

Fonnat

Operation:

Description:

ATT2100 Microprocessor

TESTV - TEST psw oVerflow

TESTV

PSW.F=PSW.V
PSW.V=O

The PSW V -bit is copied into the PSW F-bit and the PSw' V -bit is set to O.

Encodings

length opcode subcode instruction

2 OxOB Ox8 TESTV

2-81

Release 1.7.2

3/31191

Name:

Fonnat

Operation:

Description:

A TI'2100 Microprocessor

TSUB - Tagged SUBtraction

TSUB src, dst

if «src[l:O] != OxO) II (dst[l:O] != OxO)
PSW.F= 1

else {

}

dst-src
"unsigned borrow" ? PSW.C = 1 : PSW.C = 0
"signed borrow" ? PSW.V = 1 : PSW.V = 0
PSW.F=PSW.V

if (PSW.F = 0)
dst = dst - src

Release 1.7:1.

The source operand is subtracted from the destination operand and the difference is placed
in the destination if the PSW F-bit is set to O. The PSW F-bit is set to 1 if the low two bits
of either the source and destination operands are non-zero or the V -bit was set to 1. The
PSW C-bit is set to 1 on unsigned overflow and the PSW V -bit is set to 1 on signed
overflow, otherwise the PSW C- and V -bits are set to O. See Section 2.7 for a full
description of ATI'2100 integer arithmetic.

length

6
10

opcode

OxOD
OxOD

Encodings

instruction

TSUB
TSUB

src

gen16,
gen32,

2-82

dst

gen16
gen32

3/3!f)1

Name:

Fonnat

Operation:

Description:

Notes:

A 1T2100 Microprocessor

UDIV - Unsigned DIVide

UDIV SIC. dst .
dst+= SIC

Release 1.7.2

The destination operand is divided by the source operand and the quotient is placed in the
destination. Unsigned division is perfonned. See Section 2.7 for a full description of
ATI'2100 integer arithmetic.

Encodings

length opcode instruction src dst

6 Ox2F UDIV gen16. gen16
10 Ox2F UDIV gen32. gen32

Division by zero results in a zero divide exception.

The PSW C-bit is always cleared in the UDIV operation. The V -bit is unchanged in all
the cases.

2-83 3/31191

Name:

Fonnat

Operation:

Description:

Note:

A1T2100 Microprocessor

UREM - Unsigned REMainder

UREM src. dst

dst %=src

Release 1.7.2

The destination operand is divided by the source operand and the remainder is placed in
the destination. Unsigned division is performed. See Section 2.7 for a full description of
A1T2100 integer arithmetic.

Encodings

length opcode instruction SIC dst

6 OXOS UREM genl6. gen16
10 OXOS UREM gen32. gen32

Division by zero results in a zero divide exception.

The PSW C-bit is always cleared in the UDIV operation. The V -bit is unchanged in all
the cases.

2-84 3/31/91 ,'. --.--,;

Name:

Fonnat

Operation:

Description:

A TI'2100 Microprocessor

USHR - Unsigned SHift Right

USHR[3] src. dst

USHR: dst >>= Unsigned(src)
USHR3: Acc = dst » Unsigned(src)

Release 1.7.2

The destination operand is shifted right by the number of bits indiCated by the source
operand. Zeroes replace the bits shifted out of the most-significant-bit of destination
operand. Only the low five bits of the source operand are used for the shift amount. The
upper-bits are ignored.

For USHR3. the result is placed in ~e Accumulator and the destination is left unchanged

Encodings

length opcode instruction src dst

6 Ox2D USDR gen16. gen16
6 Ox3D USDR3 genl6. gen16

10 Ox2D USDR gen32. gen32
10 Ox3D USDR3 gen32, gen32

2-85 3/31~1

Name:

Fonnat:

Operation:

Description:

ATI'2100 Microprocessor

XOR - bitwise logical eXclusive OR

XOR[3] src, dst

XOR: dst A= src
XORJ: Ace = dst A src

Release 1.7.2

A bitwise logical exclusive OR operation is perfonned on the source and destination
operands and the result is placed in either the destination (XOR) or the Accumulator
(XORJ).

Encodings

length ,opcode instruction src dst

6 Ox24 XOR gen16. gen16
6 Ox34 XOR3 gen16. gen16

10 004 XOR gen32. gen32
10 Ox34 XOR3 gen32. gen32

2-86 3/31191

A TT2100 Microprocessor Release 1.7.2

2.15 Pipellne Considerations

Because of the pipelining within the ATT2100 microprocessor. certain combinations of instructions may
have unexpected results. Some of these cases were noted in the previous section. These cases include:

1. There must be at least two instructions between instructions that might set the Carry and oVerflow
bits (such as ADD or MUL) and an instruction that explicitly reads the PSW. using the CPU prefix.
The intervening instructions are not necessary if the Carry and Overflow bits are queried with the
TESTC or TESTV instructions.

2. An ENTER cannot immediately follow the invalidation of the page into which it enters. There
should be two instructions between the invalidation of the page and the ENTER to allow memory
table to be updated.

3. If a ADD. SHL or MUL instruction with a destination size of byte or half-word results in a number
which overflows the destination size. but can fit in a 32-bit word. a subsequent instruction may use
the 32-bit version of the result. rather than a truncated 8- or 16-bit result. The non-truncated result
may affect the computation if the MUL. USHR or ADD overflows its byte or half-word destination
and

a. The following instruction is a divide or a right shift and it uses the destination of the first
instruction as one of its operands. or

b. The destination of the second instruction is larger than the destination of the first instruction.

The use of the truncated version of the result can be forced by interposing two instructions between
the MUL. SHL or ADD and the following instruction.

Examples:

MUL $Ox7F.R4:B MUL $Ox7F.R4:B
USHR $4.R4:B --+ instr

instr
USHR $4.R4:B

MUL $Ox7F.R4:B MUL $Ox7F.R4:B
MOV R4:B.R8:L --+ instr

instr
MOV R4:B.R8:L

4. An instruction which reads the SHAD register cannot be executed immediately after an ENTER or
RETURN instruction. Two NOPs should be placed between such instructions to permit the writing
of the SHAD.

2-87 3/31191

ATI'2100 Microprocessor Release 1.7.2

Examples:

ENTER R-16 ENTER R-16
MOV $new. %SHAD ~ NOP

NOP
MOV $new.%SHAD

CAlL routine CAlL routine
ADD $16.%SHAD~ NOP

NOP
ADD $16.%SHAD

2-88 3/31/91 I-~--· .-
~~.., ,I

A TI'2100 Microprocessor

3. PERFORMANCE

This section contains perfonnance data on an instruction basis.

3.1 Instruction Execution Times

Release 1.7.2

Because of the highly pipelined nature of the ATI'2100 microprocessor, it is difficult to detennine how long
it takes to execute any single instruction. Many instructions can be executed at the rate of one per cycle,
because pipelining allows the execution of instructions to be overlapped. In order to describe the time it
takes to execute an instruction, execution times will be specified assuming the following conditions exist:

• instruction fetches must hit in the instruction cache,

• only the stack offset, immediate, register, absolute (for jumps and calls only), or program counter
relative addressing modes are used,

• all stack offset accesses are captured in the stack cache,

• and no data hazards occur between instructions.

In addition to the instruction execution time, there are a number of pipeline delays that cause instructions to
take longer to execute. These delays are listed in supplementary tables and should be added to the base
execution time if they exist

The following abbreviations will be used in this section:

TABLE 3·1. Perfonnance Abbreviations

Abbreviation
IC
PDU
A
D
Q
M
N
SC
E

Meaning
decoded instruction cache
prefetch and decode unit
memory access time for a single word access
memory access time for a double word access
memory access time for a quad word access
memory
the number of valid entries in the stack cache
stack cache
ENTER size

Instructions are grouped into five types for the purposes of estimating their execution time. These types are
presented in the subsequent tables. Delays are also grouped into four types which are presented at the end
of this section.

Delays for simple instructions are given in Table 3-2. For such instructions, instruction fetch and operand
access delays, given in Tables 3-7 and 3-8, are possible.

3-1 3/31/91

•

A TT2100 Microprocessor

TABLE 39 2. Simple Instruction Execution Times

Instruction Min Max Instruction Min

ADD 1 1 OR 1
ADD3 1 1 ORJ 1
ADDI 2 2 OR! 2
AND 1 1 RETURN" 2

AND3 1 1 POPN 2

ANDI 2 2 SOL 1
CALL .1 1 SHL3 1
CLRE 1 1 SHR 1
CMP 1 1 SHR3 1
CPU 0 0 SUB 1
FLUSH! 1 1 SUB3 1
FLUSHP 1 1 TADD 1
FLUSHPBE 1 1 TESTe 1
FLUSHPTE 1 1 TESTV 1
JMp •• 0 1 TSUB 1
LDRAA 1 1 USHR 1
MOV 1 1 USHR3 1
MOVA 1 1 XOR 1
NOP 1 1 XOR3 1

Do not add delay for mdtrection smce RETURNs are always mdtrect.
If an unconditional jump is folded into the previous instruction. it takes
no time to execute, otherwise it takes one cycle.

Release 1.7.2

Max

1
1
2

·2

2
1
1
1
1
1
1
1
1
1
1
1
1
1
1

The execution times for multi-cycle arithmetic instructions given in Table 3-3 are data dependent. For
these instructions. instruction fetch, operand access, and data type delays,' given in Tables 3-7. 3-8, and 3-
9, are possible.

1. Data type delays only occur for signed rnulti-cycle instructions.

3-2 3131191

A Tf2100 Microprocessor Release l. 7 .2

TABLE 3·3. Multi-Cycle Arithmetic Instruction Execution Times

Instruction Min Max

DIV 38 38
DIV3 38 38
MUL 3 20

MUL3 3 20

REM 38 38

REM3 38 38
UDIV 38 38

UREM 38 38

The execution times for DQM are given in Table 3-4. For DQM, instruction fetch delays, given in Tables
3-7, are possible.

TABLE 3-4. OQM Instruction Execution Times

TypeofOQM Cycles

Constant to SC double-word 3
Constant to SC quad-word 5
Constant to M double-word 1+0

Constant to M quad-word I+Q
SC double-word to SC double-word 4

SC quad-word 10 SC quad-word 8

SC/M double-word to MlSC double-word 2+0

SC/M quad-word to MlSC quad-word 4+Q
M double-word to M double-word 2*0
M quad-word to M quad-word 8*S

The delays for the remaining miscellaneous instructions are given in Table 3-5. For these instructions,
instruction fetch and miscellaneous delays, given in Tables 3-7 and 3-10, are possible.

TABLE 3-5. Miscellaneous Instruction Execution Times

Instruction Cycles

CATCH I
CRET ll+Q

ENTER 1 + (Q * E)
KCALL 8+D+A,

KRET 10+0

unimplemented opcode 7+A
exception 9+0+A

The delays associated with conditional jump instructions are given in Table 3-6. For this class of
instruction the fetch delays given in Table 3-7 are possible if the branch is not folded.

3-3 3/31/91

A1T2100 Microprocessor Release 1.7.2

TABLE 3·6. Conditional Jump InsU'Uction Execution Times

InsU'Uction Cycles

correct prediction. folded 0
correct prediction. unfolded 1
incorrect prediction, jump after compare 3
incorrect prediction, jump 2 instructions after compare 2
incorrect prediction, jump 3 instructions after compare 1
incorrect prediction, unfolded, 4 or more instructions after compare 1
incorrect prediction, folded, 4 or more insU'Uctions after compare 0

Instruction fetch delays occur when the insU'Uction is not immediately available for execution by the EU.
The instruction misses the IC and the EU resets the PDU to fetch the desired insU'Uction. These delays are
best case. H the EU is using I/O. the PDU is doing an unrelated memory access at the time of reset, or the
PDU is handling a previously received fault, the delays will be longer.

Operand accesses may also take longer than can be predicted using these tables because of the possibility of
a data hazard or internal contention for I/O. Data hazards occur when a previous insU'Uctions tries to write
to a memory location which overlaps the location being read by a subsequent insU'Uction. I/O contention
occurs when the EU wants to make an external memory access while the PDU is in the middle of an access.
These delays also cannot be accurately predicted.

TABLE 3·7. InsU'Uction FelCh and Empty Pipeline Delays

Condition Penalty

IC miss, instruction contained in prefetch buffer 3
IC miss, insU'Uction contained in single double word in memory 5+D
IC miss, instruction contained in single quad word in memory 5+2D
IC miss, insU'Uction contained in 2 quad words in memory 8+2D
IC miss and insU'Uction is a CPU-prefix operation 1
EU pipeline empty 2

TABLE 3·8. Operand Access Delays

Condition Penalty

one operand in memory I+A
two operands in memory 1+2A
one or two operands indirect, both pointers in stack cache 1

one or two operands indirect, on~ pointer in memory I+A
two operands indirect, both pointers in memory 1+2A
destination in memory A

3-4 3/31191

A TI'2100 Microprocessor Release 1.7.2

TABLE 3·9. Data Type Delays

Condition Penalty

One operand not word type 1
Two operands not word type 2

TABLE 3·10. Miscellaneous Delays

Condition Penalty

one or two operands indirect, both pointers in stack cache 1

one or two operands indirect, one pointer in memory I+A
two operands indirect.. both pointers in memory 1+2A

3.2 Brancb Folding

The ATI'21oo provides a next address field with each decoded instruction. When the PDU detects a non
branching operation followed by a branch, it "folds" the two instructions to fonn a single
instruction/branch operation. As a result, branches are rarely explicitly executed since they are folded and
executed along with other instructions. A one-parcel branch will be folded into a previous one~ or three
parcel instruction and executed together except when the previous instruction is one of the following:

1. another jump of any kind,

2. anyone-parcel instruction with an opcode (five-bit) in the range OOOOO~ 00111, or

3. any three-parcel monadic instruction, i.e .• opcode equals 000000.

3·5 3131191

A 1T2100 Microprocessor Release 1.7.2

3-6 3/31/91

A 1T2100 Microprocessor Release 1.7.2

4. ELECTRICAL INTERFACE

This section specifies input, clock, and output voltage and current operating levels. Unless otherwise
stated, all voltage level specifications are referenced to Vss (ground input).

4.1 Input Protection

Specification of the input protection capability and testing technique will be given in Release 2.0.

4.1 Pin Electrical Specifications

All inputs, clocks, outputs and input/outputs from the A1T2100 are CMOS compatible, except for the test
inputs which have pull-up or pull-down devices for termination when left unconnected. Table 4.1 contains
the specifications of voltage levels, drive current, and leakage currenL

TABLE 4-1. Pin Electrical Specifications
Parameter Symbol Min Nom Max Unit
Supply Voltage 3.3V Operation VDD 3.135 3.3 3.465 V (DC)

Supply Voltage 5.0V Operation VDD 4.75 5.0 5.25 V (DC)
Input High Voltage VOl VDD-Q·5 VDD VDD+O·5 V (DC)

Input Low Voltage ·VIL -0.5 0 +0.5 V (DC)
TOI Input Low Current ITDI - - -(0.36+(V DD-3)0.32) rnA
TMS Input Low Current I TMs - - -(0.16+(VDD-3)0.16) mA
TCK Input Low Current lrex - - -(0. 18+(VDD-3)0. 16) mA
mST - Input High Current ITRST - - -(0.32+(VDD-3)0.22) mA
Input Leakage Current II -1 - 1 J.IA
Output High Voltage VOH VDD-Q.25 VDD - V (DC)
Output Low Voltage VOL - 0 0.25 V (DC)

Output High Current IOH -1 - - mA
Output Low Current IOL - - 1 mA
Tri-stated Output Leakage Current lOTI -1 - 1 J.IA
20 MHz Supply Current at 3.465V IDD - 150 175 mA
Standby Current ISB 0 - 40 J.IA

4.3 Absolute Maximum Rating

The Table 4.2 gives the absolute maximum ratings for the A 1T2100.

TABLE 4-2. Absolute Maximum Ratings
Type Symbol Min Max Unit
Supply Voltage VDD-VSS $.7 V (DC)

Ambient Operating Temperature Range TA 0 +70 °C
J unction Operating Temperature TJ 0 +125 °C
Storage Temperature Range Tsro -40 +125 °C

4-1 3/31191

A TT2100 Microprocessor Release 1.7.2

3/31/91

A TI'2100 Microprocessor Release 1.7.2

5. PIN-OUT AND PROTOCOL

5.1 Summary of Pin-Out and Protocol Features

The ATI'2100 interface is designed to provide a high perfonnance data transfer mechanism. Salient
features of the interface are as follows:

• One clock period synchronous bus transactions.

• Synchronous wait state insertion.

• Double-word/Quad-word "Block Transfer" capability.

• Read-modify-write interlocked bus transactions.

• Six levels of maskable interrupts and one non-maskable interrupt.

• Fast external bus arbilration.

• Byte marks for sub-word access.

• "High Priority" bus arbitration through retry.

• IEEE 1149.1/05 Test Access Pon Compatible.

• Low-power stand-by mode.

There are 93 active signal pins plus 19 power and 20 ground signals (see Table 5-1) accounting for a total
ofl32 pins.!

In Section 5 the following notation has been used to describe signal pins:

- Any signal name suffixed with a minus sign is designated active low, while signals that are not
suffixed with a minus sign are designated active high.

- Multi-bit field signals are described by the notation, NAME<msb:lsb>. For example,
A<31:02> defines 30 signals whose designations are A02 through A31.

5.2 Pin-Out

The 93 active signal pins on the ATI'2100 can be divided into several logical groups. Each of these have
been individually described here.

5.2J Clock Group

Two IX clocks in quadrature are required by the ATI'2100. The internal clocks are decoded from these
inputs. the internal clocks can be stopped in phase 1 by a synchronous input allowing for burst-mode and
single-stepping operation. See Figure 9-1 for clock timing requirements.

CK23 Phase 23 Clock. Input. The primary clock high during phases 2 and 3.

CK34 Phase 34 Clock. Input. The primary clock high -during phases 3 and 4.

STOP- Stop Oocks. Input. STOP- is used to stop the ATI'2100 master clock decoder in phase
1. This input is asserted a setup time prior to phase 1 to halt the A TI'2100.

1. TAB packaging is being investigated. As well. a higher pin count package may be required lQ satisfy switching noise
requirements. The additional pins will be allocated to power and ground,

5-1 3/3VJ1

A TI'2100 Microprocessor Release 1.7.2

TABLE 5-1. ATI'2100 ~ Designations

Function Type Name Description Pins
Start Cycle 0 STC-* Start of Cycle Strobe 1
WritelRead- 0 WIR-* Write or Read Transfer Strobe 1
Not Cache 0 NCACHE-* Address may not be ~ached 1
10 Count 0 IOCOUNT <1:0>* Block Transfer I/O Remaining 2
Data/I'ext- 0 Drr-* Data or Text Bus Transaction 1
Bus Lock 0 LOCK-* Multiple Transfer Bus Lock 1
Address Bus 0 A<31:02>* Address Bus 30
Byte Marks 0 BM<3:0>-* Bytes Active During Trans. 4
Data Bus I/O 0<31:00>* Bi-directional Data Bus 32
Data Ack. I DTACK-** Data Transfer Acknowledge 1
Bus Error I BERR-** Transaction Error Signal 1
Hold I HOLD-* Bus Transaction Hold Input 1
Retry I RETRY-* Bus Transaction Retry Input 1
Bus Grant I BGRANT- Bus Grant Input from Bus Arbiter 1
Bus Request 0 BREQ .. A TI'2100 Bus Request 10 Bus Arbiter 1
Bus Grant Ack. 0 BGACK- Bus Grant Acknowledge 1
Interrupt Req. I IL<2:0> Interrupt Level Inputs 3
Clock SlOp I STOP- ATI'2100 Stop Input 1
Data Tri-state I DTRI- Data Tri-state 1
'Reset Signal I RESET- Reset Input to ATI'2100 1
Clock Input I CK23 Phase 23 Clock Input 1
Clock Input, I CK34 Phase 34 Clock Input 1
Test Clock I TCK Test Clock Input 1
Test Input I TOI Test Data Input 1

Test Mode I TMS Test Mode Select Input 1
Test Reset I TRST- Test ReseiInput 1
Test Out 0 TOO Test Data Output 1
Power P VDD<18:00> Power Pins 19
Ground G Vss<19:00> Ground Pins 20

*
Tn-stated when RESET- asserted or bus not owned after de-asseroon ofBGRANT-.
Masked when RESET-asserted. bus not owned after de-assertion of BGRANT-
or RETRY-is asserted.

5.2.2 Bus Arbitration Group

To facilitate multiple bus masters, the bus arbitration protocol does not make the ATI'2100 microprocessor
default master. A centralized arbiter selects the current bus master.

BGRANT- is used to grant exclusive use of the bus. In a multiple bus master system. only one BGRANT
is 10 be asserted at any time 10 avoid bus contention. See Section 5.4.4 for a complete description of the
bus arbitration protocol.

The following signals are used for granting and releasing the bus.

5-2 3/31/91

BREQ-

BGRANT-

BGACK-

A TT21 00 Microprocessor Release 1.7.2

Bus Request Output. BREQ- is asserted when the ATT2100 has a valid I/O transaction
pending. BREQ- is de-asserted when the ATT2100 has no pending I/O transactions.
When BREQ- is de-asserted, I/O may be in progress on the pins, but there are no
transactions following the bus transaction in progress.

Bus Grant Input. The bus arbiter asserts BGRANT- to the ATT2100 indicating it is bus
master for the next bus transaction. While BGRANT- is asserted, the ATT2100 remains
bus master.

BGRANT - is asserted or de-asserted by the arbiter a set-up time prior to the rising edge
ofCK23.

While BGRANT- is asserted the ATT2100 remains in control of the bus. The arbiter
de-asserts BGRANT - to tell the A TT2100 to get off the bus after it completes the current
bus transaction.

Bus Grant Acknowledge. Output. BGACK- is asserted by the ATT2100 to indicate
ownership of the bus and de-asserted to indicate that the ATT2100 no longer owns the
bus. BGACK- is provided for systems which can not follow bus transactions to
determine when the ATT2100 is finished with the current transaction.

5.2.3 Exception Handling Group

The exception handling group of signals provides a means by which external devices can inform the
ATT2100 of an unusual condition which requires the ATT2100 to deviate from its normal execution.

See Section 2.13.3 for a description of exception processing.

RESET- Reset Signal. Asynchronous Input. The ATT2100 can be reset by asserting this signal
for at least two consecutive clock cycles. RESET- is internally double sampled.

BERR-

HOLD-

For multiple masters, RESET- should be synchronous to insure proper initialization. In
this mode. de-assertion of RESET- should be a set-up time prior to the rising edge of
CK34.

Bus Error. Input. The assertion of BERR- indicates an errant a bus transaction. BERR
is used to signal a transaction error for any type of bus transaction. An internal I/O fault
is generate when BERR- is asserted and a DTACK- is received.

When BERR,- is asserted and DTACK- received, the exception taken depends upon the
type of bus transaction being terminated. See Section 2.13.3 for details.

BERR- is asserted and de-asserted by the slave device a set-up time prior to the rising
edge of CK34.

Hold 10 State. Input. HOLD- is asserted to hold up any further I/O transactions by the
ATT2100.

HOLD- is asserted or de-asserted a set-up time prior to the rising edge of CK23.

Once HOLD- is de-asserted. bus transactions are allowed to start once the ATT2100
obtains ownership of the bus as HOLD- is orthogonal to bus arbitration.

There are several applications in which the hold feature is necessary. For example. in
systems with slow tn-stating devices assertion of HOLD- may be necessary to allow the
device time to get off the bus after DTACK-, described in Section 5.2.4.1, has been
returned.

5-3 3/31/91

RETRY-

A TT'2100 Microprocessor Release 1.7.2

Retry Bus Transaction" Input RETRY-is asserted to retry the current bus transaction"

RETRY-is asserted or de-asserted a set~up time prior to the rising edge of CK23"

When RETRY- is asserted during a valid bus transaction, the ATT'2100 abortS the
current bus transfer and masks the DT ACK- input

Once RETRY- is de-asserted. the bus transaction is rerun after the ATT'2100 obtains
ownership of the bus as RETRY-is orthogonal to bus arbitration.

There are several applications in which the retry feature is necessary. For example, in
systems with gateways through which two busses communicate with each other the retry
feature is required to break deadlock conditions when the two busses have simultaneous
requests for their respective counterpart bus.

5.2.3.1 Priorities Of Exception Handling Pins

A bus transfer may be ended in the normal case by DTACK- or in case of an exception by RESET-.

Htwo or more of these occur simultaneously the A1T2100 uses the priority scheme shown in Table 5-2. If
RETRY- is asserted. DTACK~ is maSked. hence RETRY- has a higher priority than DTACK- even though
it does not end the bus transfer, but does abort the transaction which will be rerun after de-assertion of
RETRY-.

TABLE 5-2. Priorities of Bus Transaction Termination Signals

Signal Priority Level
RESET- HIGHEST
RETRY-
DTACK- LOWEST

5.2.4 Transfer Group

This group of signals is used for addressing devices and transferring text and data. These signals can be
further divided into three sub-groups.

52.4.1 Hand-shake Signals

The hand-shake signals control bus transaction hand-shaking.

STC·

DTACK-

> Start Cycle. Output Start cycle strobe is asserted by the master having BGRANT- to
indicate start of a bus transaction. STC- is asserted for only one clock cycle at the
beginning of the bus transaction.

Data Transfer Acknowledge. Input. DT ACK- is used to handshake between the
A1T2100 and the slave devices. During a normal bus transfer this signal is used to
terminate the transaction [data latched during read transaction, withdrawn during write
transaction]

DTACK~ is asserted and de-asserted by the slave device a set-up time prior to the rising
edge of CK34.

5.2.4.2 Address and Data Signals

This group of signals indicate the address and data.

A<31:02> Address lines. Output This 3D-bit address bus indicates word-aligned physical
addresses. The byte mark signals, BM<3:0>- described in Section 5.2.4.3, are used for
sub-word accesses.

5-4 3J31f.) 1

0<31:00:>

A TT2100 Microprocessor Release 1.7.2

Data lines. Bi-directional. This 32-bit data bus conveys data to and from the ATI'2100.
On byte writes, the active byte is indicated by the BM<3:0>- signals with that byte
replicated on the other inactive bytes. On half-word writes, the active half-word is
indicated by the BM<3:0>- signals with that half-word replicated on the inactive half
word.

Looping-back of the data bus is supported. After completion of a read ttanSaction, if the
current bus master retains ownership of the bus and there are no other transactions
pending. the data just read by the ATT2100 is looped-back onto the data bus.

52.4.3 Transfer Qualifier Signals

This group of signals identify the type of transfer.

LOCK-

NCACHE-

Bus Lock. Output. This signal is asserted to identify interlocked operations.

The instruction set allows the ATT2100 to run interlocked operations for communication
and message passing in multiprocessor system. As well, the MMU asserts LOCK
during miss-processing (see Section 6.5). Interlocked transfers in the ATT2100 are of
the read-modify-write (RMW) type although MMU miss-processing may abort the
interlocked operation before the write starts. LOCK- remains asserted through the write
access.

Once the ATT2100 begins an interlocked operation, loss of bus ownership must not
occur until LOCK- is de-asserted. Effectively, a dead cycle is inserted after a RMW
operation.

Interlocked transfers are not interruptible.

Interlocked transfers may not be retryed after the read completes. It is up to the system
to enforce this restriction. If RETRY-is asserted any time during an interlocked
transfer, the retry is honored. It is illegal to assert RETRY-after the read portion of the
transfer since it causes the ATT2100 to abort the operation and become susceptible to
bus arbitration, thus breaking the lock on the bus.

Bus error can be asserted in either the Read or Write portion of the interlocked transfer.
The interlocked operation is faulted with the appropriate exception sequence executed.

If the operands being read by the interlocked instruction are in the stack cache, the lock
sign3I is not asserted. See Section 2.14 for descriptions of the interlocked instructions.

None Cache Transaction. Output. The NCACHE- output is provided for use with
external caches.to indicate an address may not be cached. When the PSW VP-bit is 1,
the MMU uses the NCACHE- output to indicate the status of the $-bit in various entries.
See Sections 6.2 and 6.3 for details. When the PSW VP-bit is 0, NCACHE- is asserted.

IOCOUNT<1:0> I/O Transaction Count. Output. These signals indicate the number of words remaining
to be transferred.

..

IOCOUNT<1:0> is used to determine the size of a block transfer being performed by the
ATT2100. These block transfers look like a series of bus transfers with STC- asserted
for each and the new address provided by incrementing the lower address bits for each
word transfer.

Once the ATT2100 begins a block transfer operation, loss of bus ownership must not
occur until the block transfer is completed .

3131/91

Orr-

BM<3:O>-

A TT2100 Microprocessor Release 1.7.2

The block transfer is not interruptible.

Write!Read. Output This signal indicates whether a read or write bus transaction is
taking place. It is asserted (high for write, low for read) at the beginning of each bus
transfer and is valid for the entire length of the transaction.

Oataffext Output This signal indicates whether data or text is being accessed. It is
asserted (high for data, low for text) at the beginning of each bus transfer and is valid for
the entire length of the transaction.

Byte Marks. Output. These signals indicate which bytes are valid during a data transfer,
. which may be either a read or a write (See Table 5-3). The bus is capable of doing 8-,
16-, 24- or 32-bit data transfers (although the instruction set uses only 8-, 16- or 32-bit
data transfers).

Combinations of the byte mark strobes are used to accomplish the desired word or sub
word transfer.

Either little-endian or big-endian bYte encoding may be selected for data via the PSW
UL-bit or the CONFIG KL-bit for the user or kernel, respectively. Text is always big
endian encoding.

TABLE 5·3. Byte Mark Strobe Encoding

Pin Name Bits Active
BMO- 0<31:24>
BMl- 0<23:16>
BM2- 0<15:8>
BM3- 0<7:0>

~ 5.2.5 Inte"upt Handling Group

This group of signals controls interrupting of the ATT21oo.

IL<2:O> Interrupt Level. Inputs. The ATI'21oo recognizes six levels of interrupts encoded onto
these lines. These lines are intended to be connected to the outputs of an 8-m-3 priority
encoder. The Table 5-4 gives the interrupt level encoding.

When a valid interrupt is recognized, the A TT21 00 requests ownership of the bus if it is
not bus master. After becoming the bus master, the A TT2100 services the interrupt after
aborting or completing the current instruction, depending on the type of instruction being
'executed.

The internal latching of the interrupt is not predictable; it is necessary that the
interrupting device maintain its interrupt assertion until it is serviced, see Sections 2.13.2
and 5.5.3 for more detail.

An external Interrupt Controller is required to resolve conflicts between simultaneously
occurring interrupts.

5-6 3/31,91

A TI'21oo Microprocessor Release 1.7.2

TABLE 5-4. Interrupt Levels

IL<2:0> Interrupt Level
000 nmi
001 Levell
010 Level 2
011 Level 3
100 Level 4
101 Level 5
110 Level 6
III No interrupt

52.6 Test Pins

The ATI'21oo microrocessor provides boundary scan and extensive built-in-test (BIT) features accessed
through an interface specified by the IEEE 1149.1105. See Section 10 for details on the implementation.

The signals required to provide this interface are described in this section for completeness.

TCK

TMS

TOI

Test Clock. Input An externally gated clock signal with a 50% duty cycle. The
changes on the TAP input signals (TMS and TOI) are clocked into the TAP controller,
instruction register or selected test data register on the rising edge of TCK. Changes at
the TAP output signal (TOO) occur on the falling edge of TCK. This signal does not
conform to IEEE 1149.1105 requirement ofTCK being a free-running clock at all times.
TCK must be stopped at 1 when internal BIT features are accessed The TCK input has
a built in pull-up resistor to ensure a high signal value is seen on an unterminated
input

Test Mode Select Input. TMS is a serial control input which is clocked into the TAP
controller on the rising edge of TCK. The TMS input has a built in pull-up resistor to
ensure a high signal value is seen on an un terminated input.

Test Data Input Input. TOI is clocked into the selected register-data or instruction
on the rising edge of TCK. The TO I input has a built in pull-up resistor to ensure a high
signal value is seen on an un terminated input.

TOO Test Data Output Output The contents of the selected register-data or instruction
are shifted out of the TDO on the falling edge ofTCK. TOO is tri-stated except when
scanning of data is in progress.

'IRST - Test Reset Input. 'IRST - is the reset input to the TAP contro~er. Assertion of this input
forces the TAP controller into the reset state. The 'IRST- input does not conform to
IEEE 1149.1105 as it has a built in pull-down resistor to ensure a low signal value is
seen on an unterminated input to force the TAP controller into the reset state.

52.7 Power and Ground Pins

The current frame design allocates the following number of power and ground pins.

VDD<18:00> +3.3 Volt to +5.0 Volt Power pins.

Vss<19:00> o Volt Ground Pins.

5.3 Bus Transaction Types

NoimaI bus transfers begin with the assertion of STC- and end with the assertion of DT ACK-. In case of
an exception during a bus transfer, the transaction may be ended by the assertion of RESET- or BERRe

5-7 3/31191

A TI'21oo Microprocessor Release 1.7.2

with DTACK-. Interlocked bus transfers end with the negation of LOCK- following a DTACK-. Multiple
word transfers end when IOCOUNT<l:O> are zero with assertion ofDTACK-.

Instruction prefetch is initiated by the pre fetch unit according to the chosen prefetch strategy, selectable via
the CONFIG register PM-bit. Section 2.11 details the prefetching strategy.

A data read transaction is initiated by the ATI'2100 to read data from memory or a peripheral device.

A data write transaction is initiated by the ATI'21oo to write data to memory or a peripheral device.

TABLE 5-5. Latch and Toggle Points

Pin Latch Toggle Drive Tri·state
Name VO Point Point Point Point

A<31:02> 0 134 134 T34
BGRANT- I T23
IOCOUNT<l:O> 0 134 134 134
BERR- I 134
BGACK- 0 ..L.23
BREQ- a 123
BM<3:O> 0 T34 T34 T34
0<31:00> I/O 134 ,l.23 ,l.23*
Dff- a T34 T34 134
DTACK- I 134
DTRI· I not latched
HOLD- 1- 123
ll..<2:0> I ,l.23 -
LOCK· a T34 T34 T34
NCACHE- 0 134 134 T34
RESET- I T34
STC- 0 134 T34
STOP- I not latched
RETRY- I T23
WIR- 0 134 134 134

... The DTRI· Signal can bl-state the data pms a propagauon delay from asseruon.

134 refers to the rising edge of CK34
J..34 refers to the falling edge of CK34
123 refers to the rising edge of CK23
J..23 refers to the falling edge of CK23

5.4 Protocol

In this section the various bus transactions are described with respect to the phases of the system clock.

5-8 3/31191

A TI'2100 Microprocessor Release 1.7.2

5.4.1 AmlOO and System Clocks

All other devices using the synchronous bus must derive their clocks from CK23 and CK34.

The ATI'2100 bus cycle begins on the rising edge of the CK34 and ends on the next rising edge.

5.4.2 Latch and Toggle Points of Signals

Table 5-5 gives the ATI'2100 input latch, output toggle, output drive and output tri-state points.

5.43 Reset

The reset sequence is initiated by assertion of RESET- or by internal events. The reset sequence seen on
the I/O for an externally requested reset follows:

:- The RESET- signal must be held low for at least 2 clock cycles before the A TI'2100 is reset
(RESET- is internally double sampled on the rising edge of Phase 3)

- While RESET- is held low all output signals except BREQ- and BGACK- are tri-stated.
BREQ- and BGACK- are driven inactive (high).

- After RESET- is de-asserted the ATI'2100 internally executes the reset sequence. If
BGRANT- is asserted to the ATI'2100, all output signals are driven to their inactive levels and
once the internal reset sequence is completed, bus transactions begin.

- After the internal reset sequence completes, BREQ- is asserted by the ATI'2100.

C:~ 11 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 110 111 112113114115116 17 181191201
STC-:

WIR-~X:Xx:XX:XX:XX"
NCACHE-~:XX:X*X:XX:xXb-.

~~~~~~~~~==~~~= IOCOUNT<1:cl>~ ;oxo; ; ; ; X'-.;.=.:..;..-~ 
OIT- XX>OOOOO<XXXXXXXXXXXX\. 
lOCK-~ ~ 

Ad1~~~~X*:X~X~:X~X*:x~x~:~X~X~x~X~:x~~~~~~~~==~=;~~ 
BM<3:cl>-~<XX>¢O<X><XXXX:XX:X>6<*'-~~~~~r~==~:t~:0 
Od1~~~~~~~~-----~~-~~~ 

OTACK-: 
BER~!~~--~~--~~~--~~~--~~~~~~--~~~--~~~ 

HOlo.: 
Rcm~~:~--~~--~~~--~~~--~~~~~~--~~~--~~~ 

BREQ-~ 'i.-.'---;"'---;"---;;,......J 

BGRAN~~'-~i __ ~·~~~~~ _____ ~~~ _____ ~~~ _____ ~~~ _____ ~~~~ 
BGACK- XXXXXX\ 

Il<2:O>: 

STOP-: 

Figure 5·1. Reset with Bus Grant Asserted 

5-9 3/31191 



A Tri 100 Microprocessor Release 1.7.2 

A reset sequence can be internally generated. If there is a bus ttansaction owned by the ATI'2I00 in 
progress when the internal reset is generated, the ttansaction is allowed to complete prior to execution of 
the reset sequence. There is no external indication that an internal reset has occured other than the text 
fetch which occurs at location OxO after the internal reset sequence completes. Section 2.13.1 gives details 
on the internal reset sequence. 

Refer to Figure 5-1 for the following example. 

In bus cycle 2, phase I, the system asserts RESET- and BGRANT-. In bus cycle 3, phase I, the ATI'2I00 
asserted BGACK-. In bus cycle 4, phase 2, the system de-asserts RESET-. In bus cycle 5, phase 3, the 
ATI'2I00 takes ownership of the bus de-asserting STC-, BREQ- and LOCK-, asserting IOCOUNT <0: I> at 
zero and all other bus signals at unknown except for 0<31:00> which is tri-stated. 

In bus cycles 6 through 9, the ATI'2I00 is going through the internal reset sequence. In bus cycle 10, the 
ATI'2I00 begins to fetch text at location OxO. 

5.4.4 Bus Arbitration 

To facilitate multiple bus masters, the bus arbitration protocol does not make the ATI'2I00 default master. 
A centralized arbiter selects the current bus master and controls ttansactions over the bus. 

A synchronous bus protocol is used to exchange ownership of the bus from one master to another. The 
central bus aIbiter must execute this protocol, asserting and negating BGRANT- to the various bus masters 
in a consistent manner. 

The signals involved in this protocol generated by the central bus aIbiter are: RESET-, BGRANT-, 
OTACK- and RETRY-. There are separate BGRANT- per bus master, with the other signals shared among 
bus masters. 

The signals involved in this protocol generated by the bus masters are: BREQ-, STC-, IOCOUNT<O:I> and 
LOCK-. There is a separate BREQ- per bus master, with the other signals shared among bus masters. 

Upon reset of the system, which must be synchronous, the aIbiter selects one of the bus masters as current 
bus master by asserting its BGRANT-. Having received BGRANT-, the master takes ownership of the bus. 
The bus arbiter monitors the bus, keeping track of the state of the bus. 

A AlT2I00 asserts BREQ- when an I/O transaction is pending (upon reset all AlT2I00 microprocessors 
want to start execution at address OXO). 

The arbiter selects a new bus master by negating BGRANT - to the current bus master and asserting 
BGRANT- to the next bus master at the end of any outstanding bus transactions. The current bus master 
loses ownership of the bus with negation of BGRANT-. If the current bus master loses BGRANT- with an 
outstanding ttansaction on the bus, that master remains on the bus until OT ACK- is asserted. 

The new bus master takes ownership of the bus at the beginning of the next bus cycle after receipt of 
BGRANT-. The arbiter must assert BGRANT- in a manner which inserts a dead-cycle between the end of 
the previous bus owner's cycle and the beginning of the next bus owner's cycle. 

For systems which need to know when the ATI'2I00 has relinquished the bus in response to the negation of 
BGRANT-, BGACK- is provided. BGACK- is asserted when the ATI'2I00 owns the bus and de-asserted 
when it no longer owns the bus. 

5.4.4.1 Requesting the Bus 

The AlT2I00 makes requests for the bus- using the BREQ- signal whenever there is a valid request for the 
bus within the AlT2I00. 

Refer to Figure 5-2 for the following example. 

5-10 3/31/91 



A TnIOO Microprocessor Release 1.7.2 . 

In bus cycle I, the ATnIOO does not have ownership of the bus but has a valid request for the bl,ls 
internally. In bus cycle 2, phase 4, the ATnIOO asse~ BREQ-. In bus cycle 3, phase I, the external 
arbiter asserts BGRANT-. In bus cycle 4, phase 3, the ATl'2I00 drives A<3I:02> and transfer qualifier 
signals. I bus cycle 4, phase 4, the ATl'2100 asserts BGACK- and drives 0<31:00> on write cycles. 

Bus 
Cycle I 1 I 2 I 3 I 4 I 5 I 6 I 7 8 I 9 110 111 112113 114 115116117118 1191 20 I . . ... . 
~~~: ~--~~:~~~~~~~~~~~~~~~~:~,~--~~~ 

W~~: -+~~~:~~===============================;~~~~~+-~
NCACHE-:-: ~--;---;ti/ :''---;----;~+-_;

IOCOUNT<1:O>>!-: --;--~-!« i Oxo: X : Ox1 i :X i oxe;)

OIT-: ":::. =~ =_ =_=~= ~:t _= -=t-= _= ~:t_=_t=_~=,,~=*==*~=*=:;::::(;,o====J
lOC~-: ~----'~ ~
A~1~~~:~~~-~:C-~~-+--+-~~~>C X
BM~:Q>- i-; --i-----;'---i<ic:::::::;::=+=;:::::;::=+=::;:::~X :>
O~1:O(bi ~ < . . < : : X; . c::::: : ~ : :)

OTACK-: :~: :~:
BER~~~~~-';""'~-~--i-~-~~-~~--~~:-~:-~:-~~--~~~

. . .
HOLD-:
RETR~~~~-~~-';""'~-~--i-~-~-+-~~--~--i--+-~~-~--i-~

BREQ. ;...~~: ::::;::--:--,,1. \ ________ --JI.
~~. , /
BGACK-~: ~~;...:=±;:\.-:~~~--=----:--~-:---:-~---:--:-~: /:
Il~~~~~~~t=============================~~~--~~
STOP-:~ ~-~~-~~--~~~-~~-~~--~~~-~~-~~~
OTRI-:-: ~--;---;.-+--+--;--~~--;--+-~~--;---+--+-~--;--;---+---:

RESET-.:-: ~--;---;.-+--+--;--~~--;--+-~~--;---+--+-+---;--;---+---:

Figure 5·2. ATnlOO Read Bus Cycles with Bus Arbitration

5.4.4.2 Surrendering The Bus

The arbiter signals the ATnIOO to release the bus by de-asserting BGRANT·. When BGRANT· is de
asserted, the ATnIOO will relinquish ownership of the bus which is signaled by the ATl'2I00 de-asserting
BGACK·. If the ATnIOO is running a bus transaction and BGRANT- is de-asserted. ownership of the bus
will be relinquished after receipt of DTACK-. If the ATl'2I00 is not running a bus transaction and
BGRANT - is de-asserted, ownership of the bus will be relinquished at the beginning of the next bus cycle.
BGACK· will be de-asserted by the ATnlOO in the bus cycle in which ownership of the bus is being
relinquished.

Most arbitration protocols will want to make the current processor remain bus master as long as the
processor has an outstanding transaction on the bus. To implement such a protocol the the bus arbiter
should de-assert BGRANT-:

- At the end ofa single or n cycle transfer signaled by DTACK-,

- after the last transfer of a block transfer signaled by DTACK-,

5-11 3/3VJI

A TI'2100 Microprocessor . Release 1.7.2

- at the end of an interlocked transfer signaled by DT ACK-, or

- during a retryed transaction. '

The first three conditions are detected by checking IOCOUNT<I:O> are equal to zero and LOCK- is de
asserted. Detection of the retryed transaction will vary depending upon the design of the system.

Refer to Figure 5-2 for the following example.

In bus cycle IS, phase 4, the ATI'2100 is on the bus and de-asserts BREQ-. In bus cycle 16, phase I, the
external arbiter de-asserts BGRANT-. In bus cycle 16, phase 2, the external contoller asserts DTACK-. In
bus cycle 17, phase 4, the ATI'2100 tri-states A<31:02> and transfer qualifier signals. In bus cycle 17,
phase I, the ATT2100 tri-states 0<31:00> and de-asserts BGACK-.

5.4.5 Read Transactions

Read transactions occure to fetch text or data. Text reads are double-word transfers. Data reads are either
single-, double- or quad-word transfers. After completion of a read transaction, looping-back is performed
if the A TI'2100 remains owner of the bus and there are no pending bus transactions.

Refer to Figure 5-2 for the following example.

In bus cycle 4, phase I, the ATT2100 asserts STC-, A<31:02> and the transfer qualifier signals. In bus
cycle 5, phase I, the ATI'2100 de-asserts STC- and a wait-state is inserted. In bus cycle 6, phase 2, the
slave device asserts 0<31:00> and DTACK- to end bus transaction.

In bus cycle 7, phase 3, ownership of the bus is maintained and loop-back cycle performed. The ATT2100
holds all bus signals their previous values. In bus cycle 7, phase 4, the ATI'2100 loops-back the data read
on the previous cycle .. In bus cycles 8 through 10, loop-back cycles are performed.

In bus cycle 11, phase 1. the ATI'2100 asserts STC-, A<31:02> and all other data transfer signals. In bus
cycle 12, phase I, the ATT2100 de-asserts STC- and a wait-state cycle is inserted. In bus cycle 13, phase 2,
the slave device asserts 0<31 :00> and DTACK- to end the bus transaction.

In bus cycle 14, phase I, the ATI'2100 asserts STC-, A<31:02> and all other transfer qualifier signals. In
bus cycle 15. phase I, the ATT2100 de-asserts STCc and a wait-state is inserted. In bus cycle IS, phase 2,
the slave device asserts 0<31:00> .and DTACK- to end the bus transaction.

In bus cycle 16, phase 3, ownership of the bus maintained and loop-back cycle performed. The ATT2100
holds all bus signals at their previous values. In bus cycle 16, phase 4, the ATT2100 loops-back the data
read on the previous cycle.

NOTE: The bus transaction may be ended by RESET- or BERR- with DTACK- to signal an exception.

5-12 3/31191

A TI'21oo Microprocessor Release 1.7.2

Bus
Cycle 1.1 1 2 1 31 4 15 161 718 19 110111112113114115116117118119120 1

~ . 0..
STC-;"': -.;..-~...;.:~ :'--./' ~---.;-..;...-...;....-......;

:'

IOCOUNT <1 :O-~>1-; ---i:---;---;<;<:"'=O~X~0~:==:;:=:::;:==~~~X~~~0~X~1 ~: =·~X~~O~XO?:::~~)~::====
OIT--: ------~.,- ~

WC~-: ______ ~.~-~~~--~~~~--7-~~--~~~~~ __ ~~~
A<31 :O2>!;"'-";"--';""--;':< X X)>-......;..---;,.....-..;...-.....;

BM<3~: :c~~~==~~~==+=~:x~~~~~~~~~)~~~-+~ 0<31 :00> : < : : X : : X : :)>-";---?---O----i
~~~~~~~==~~~~ 

OTACK-: :~: :~: 
BER~:~: ~--~~--~~~~~~--~~--~~~,~~~--~~--~~~ 

HOLO-: 
RETRY-~~-;-~--~~--~~~--~~--~~~~~~--~~--~~~~ 

BRE~ ;...~-..;.:: :::=;::--~ 
BGRA~-~:~_~==~ __ ~~~ __ ~~~ __ ~~~ __ ~ 
BGAC~:~~~~~================================~~~~~ IL<2:O> 
STOP-~.~--~~--~~--~~~--~~--~~~~~~--~~--~~~ 

OTRI-: 
RESET-~: ~--~~--+-~--~~~--~~--~~---i:---;-~--~~--~~~ 

Figure 5·3. ATI'21oo Write Bus Cycles with Bus Arbitration 

5.4.6 Write Transactions 

Write transactions are eitfter single-, double- or quad-word transfers. 

Refer to Figure 5-3 for the following example. 

In bus cycle 4, phase 1, the ATI'21oo asserts STC-, A<31:02> and the transfer qualifier signals. In bus 
cycle 5, phase 2, the ATI'21oo asserts 0<31:00>. In bus cycle S. phase 1. the ATI'2Ioo de-asserts STC· 
and a wait-state is inserted. In bus cycle 6, a wait-state is inserted. In bus cycle 7, phase 2. the slave device 
asserts OT ACK- to end bus transaction. 

In bus cycle 8. phase 3, ownership of the bus is maintained with the ATI'21oo holding all bus signals at 
their previous values. In bus cycle 9 and 10. the ATI'21oo maintains the previous bus sign;ll values. 

In bus cycle 11, phase 1, the ATI'21oo asserts STC-, A<3I:02> and the transfer qualifier signals. In bus 
cycle 11, phase 2. the ATI'21oo asserts 0<31:00>. In bus cycle 12. phase I, the ATI'21oo de-asserts STC
and a wait-state is inserted. In bus cycle 13! phase 2, the slave device OTACK- to end the bus transaction. 

In bus cycle 14, phase 1. the ATI'2Ioo asserts STC· A<31:02> and the transfer qualifier signals. In bus 
cycle 14, phase 2, the ATI'2100 asserts 0<31:00>. In bus cycle 15. phase 1, the ATI'21oo de-asserts STC-. 
In bus cycle 15. phase 2; the slave device asserts OTACK- to end the bus transaction. 

lit bus cycle 16. phase 3. ownership of the bus is maintained with the A TI'2Ioo maintaining all bus signals 
at their previous values. 

5-13 3/31,91 



A TI'2100 Microprocessor Release 1.7.2 

NOTE: The bus transaction may be ended by RESET- or BERR- with DTACK- to signal an exception. 

;\ 

y 
./ 

if 
=' 

i' 

:) 
:) 
> 

RETRY-: ."-./ . . 
BREQ-~ :" 

Figure 5-4. Interlocked Bus Transfer without and with Retry 

5.4.7 Interlocked Bus Transfer. 

'. 

This is a read-modify-write type bus operation. This sequence of operations is non-interruptible. The bus 
remains locked through the write. If BGRANT - is de-asserted during an interlocked operation. the 
operation is completed and transfer of bus ownership is delayed a clock cycle. 

Refer to Figure 5-4 for the following example. 

In bus cycle 2. phase 1. the ATI'2100 assens STC-. A<31:02>, LOCK- and the other transfer qualifier 
signals indicating the the read portion of a RMW transaction. In bus cycle 2. phase 2. the ATI'2100 tri
states 0<31:00>. In bus cycle 3, a wait-state is inserted. In bus cycle 4, phase 2. the slave device assens 
0<31:00> and DT ACK- to end the read portion of the RMW transaction. 

In bus cycles 5 and 6, the A'IT2100 is performing the internal operation. 

In bus cycle 7, phase 1. the ATT2100 assens STC-. A<31:02>, LOCK- and the other transfer qualifier 
signals indicating the the write portion of the RMW transaction. In bus cycle 7, phase 2, the ATI'2100 
asserts 0<31:00>. In bus cycle 8, phase 2, the slave device assens DTACK- to end the RMW transaction. 

In bus cycle 9, LOCK- remains asserted by the ATI'2100 adding a dead cycle. In bus cycle 10, the next bus 
cycles begins. . 

5-14 3/31191 



A TI'2100 Microprocessor Release 1.7.2 

5.4.8 Block Data Transfer 

The block ttansfer sizes that are supported are double- and quad-word. The block transfer looks like a 
series of single word bus transfers with the ATI'2I00 incrementing address bits A<03:02> and 
decrementing IOCOUNT <1:0> for each access. 

Block transfers are non-interruptible. Block transfers may be retryed with the transfer resuming where it 
was aborted when RETRY-is de-asserted. 

5.5 Special Purpose Bus Transactions 

These include the exception and interrupt transactions and bus arbitration cycles. They are used by external 
devices to inform the ATI'2I00 of an unusual condition. 

5.5.1 Bus E"or 

Errors in the system resulting from transactions requested by the ATI'2100 are reported by assertion of 
BERR- with DTACK-. 

Upon reception of a valid bus error the A TI'2100 takes the following actions: 

- The current bus transfer is ended. 

- If when the error occurred the the bus transfer was an instruction prefetch, the ATI'2I00 puts 
the prefetch unit to sleep and goes on executing. 

- If the bus transfer was not an instruction prefetch, the A TI'21 00 initiates a bus error trap which 
eventually causes the ATI'2I00 to branch to the exception handling routine. 

- If an access to the interrupt stack, vector base table, segment table, or page table is faulted, the 
ATI'2100 resets. 

- Once a bus error is received, there is no guarantee that the next bus transaction is part of the 
exception routine. It may take several clock cycles until the bus error handling routine gets 
processed in the execution pipe. In the meantime other pipeline stages may have requests 
pending that may be honored by the I/O. 

5.5.1.1 Bus E"or in an Interlocked or Block Transfer 

The timing for a bus error during an interlocked transfer is similar to that of a read or write transaction 
except that the ATI'2I00 de-asserts LOCK- after receiving a bus error and and performs a dead cycle. 

A bus error during a block transfer terminates the transaction with transfer of ownership permitted. 

5.5.2 Retry 

RETRY- is needed to signal the ATI'2I00 that the current transaction should be aborted and then run again. 

RETRY- must be asserted a set-up time prior to the rising edge of CK23. If RETRY- is asserted on an 
access DTACK- is masked. The next transaction initiated by the ATI'2I00 after the negation of RETRY
is a rerun of the transaction which was aborted by the assertion of RETRY-. 

5.5.2.1 Retry in an Interlocked Transfer 

Retrying the read portion of an interlock access is allowed. However, assertion of RETRY-in the write 
portion of the locked transfer is illegal as it might lead to the A TI'2100 giving up the bus "before the write 
portion is executed. 

Refer to Figure 5-4 for the following example. 

In bus cycle 11, phase I, the ATI'2I00 asserts'STC-, A<3I:02>, LOCK- and the other transfer qualifier 
signals indicating the the read portion of a RMW transaction. In bus cycle 11, phase 2, the ATI'2I00 ui-

5-15 3/31191 



A TI'2100 Microprocessor Release 1.7.2 

states 1><31:00>. In bus cycle 12. a wait-state is inserted. In bus cycle 13. a wait-state is inserted. In bus 
cycle 14. phase I, the system de-asserts BGRANT- and asserts RE1RY- to abort the read portion of the 
RMW transaction. 

In bus cycle 15. phase 4. the ATI'2100 tri-states A<31:02> and the ttansfer qualifier signals. In bus cycle 
15. phase 1. the ATI'2100 tri-states D<31:00> and asserts BREQ- indicating it n~ the bus to rerun the 
aborted RMW transaction. 

It is not shown. but once BGRANT - is asserted the A TI'2100 will rerun the aborted RMW ttansaction. 

5.5.3 Ime""pts 

The ATI'2100 has seven possible levels of interrupt inputs which when recognized causes an interrupt !rap 
and jump to a particular interrupt handling routine. This section only describes the method by which 
devices generate interrupts and how they are acknowledged (for details or the interval sequence of events 
see Section 2.13.2) 

5.5.3.1 Generating Inte"upts 

The interrupting device must generate an encoded interrupt on the ll.<2:0> lines. These interrupt lines are 
latched by the ATI'2100 in phase 3. The decision of when the interrupts are internally sampled is made on 
an instruction to instruction basis (see Section 2.13.2). Most of the internal sampling is done after the 
completion of the current instruction. Once the interrupt has been internally sampled. the interrupt level is 
compared with the interrupt mask level in the PSW. If the interrupt is valid the appropriate interrupt 
sequence is executed. 

NOTE: An external interrupt controller/encoder is needed to resolve conflicts between simultaneous 
interrupts and to encode interrupts. 

5.5.4 TestingSupport 

While RESET- is asserted all outputs of the ATI'2100 are disabled and the ATI'2100 is put in an inactive 
state. The ATI'2100 clock must be run for four clock cycles while RESET- is asserted to insure that 
RESET- is properly sampled. The RESET- signal can be used to tri-state all outputs except BREQ-. 
BGACK-. which are driven to one. and TOO which is only controlled by the IEEE 1149.1/05 port. 

Boundary scan is provided via a IEEE 1149.1/05 interface. The complete specification of this interface is 
given in Section 10. 

5-16 3/31191 



A 11'2100 Microprocessor Release 1.7.2 

6. MEMORY MANAGEMENT 

The A11'2100 has an on-chip Memory Management Unit. which can translate virtual addresses, as seen by 
a programmer, into physical addresses. Two methods for address translation are provided: paged and non
paged segments. 

The 32-bit virtual address space is divided into 1,024 segments each representing 4MB of virtual addresses 
with a 4MB alignment. Paged segment address translation segments are further divided into l,024-word 
pages. Non-paged segment address translation provides a variable sized contiguous segment of memory. 
In paged segment address translation, each page can be mapped anywhere in the 32-bit physical address 
space. 

Address translation is enabled by setting the PSW VP-bit to 1. The ATT2100 has two Translation Look
aside Buffers (!LBs) - one for text addresses, one for data addresses - to Speed paged segment address 
translation. Each lLB has 32 entries and is fully associative. Two registers - one for a text address and 
one for a data address - speed non-paged segment address translation. The non-paged segment registers 
(NPSRs) are compared in parallel with their respective TI..B. 

Additionally, to provide a physical prefetch buffer, a micro-lLB is provided for text references. This 
micro-lLB contains the last translation used by the prefetch unit and provides zero cycle address 
translation. If the micro-1LB misses, one cycle is required for update if the address translation hits in the 
text lLB or text NPSR. 

If an address to be translated is not contained in the appropriate 1LB or NPSR, an on-Chip miss-processor 
automatically fetches the appropriate descriptor by walking the memory management tables. 

6.1 Address Mapping 

Logically, all addresses in the ATT2100 are translated by walking a series of map tables. All map tables in 
the ATI'2100 memory mapping scheme are 4,096 bytes long - one Page Frame. All addresses contained 
within a memory management table are physical addresses, so address translation is not recursive. 

A Page Frame is a contiguous region of 4,096 bytes, beginning at an address evenly divisible by 4,096 (the 
low-twelve-bits of the address are all 0). Because all Page Frames begin Page boundaries, additions are not 
necessary to calculate addresses. 

Address mapping checks the 'Validity of virtual addresses as well as translating them into physical 
addresses. A virtual address is flagged as illegal if: 

- There is no physical mapping, 

- user execution level code attempts to access kernel execution level addresses, or 

- a store is attempted to read-only data. 

Any violation is signaled as a memory fault, which generates a Fetch Exception (prefetches to invalid 
addresses do not generate a Fetch Exception), Read Exception (which may be ignored because of a 
mispredicted branch) or Write Exception (which may be postpOned in favor of an interrupt). Section 2.13.3 
gives details on the exceptions. Section 2.13.2 gives details on interrupts. 

When using paged segment translation, virtual addresses are divided into three fields: 

1. Segment Number . 

2. Page Number 

3. Page Offset 

6-1 3/31/91 



A TI'21 00 Microprocessor Release 1.7.2 

A paged segment translation table entry is shown in Figure 6-1: 

Segment Number Page Number 
n un un 

Page Offset 
o 

Figure 6·1. Page-based Virtual Address Format 

When using non-paged segment translation, virtual addresses are divided into two fields: 

1. Segment Number 

2. Segment Offset 

A non-paged segment translation table entry is shown in Figure 6-2: 

I Segment Number I 
31 U 11 

Segment Offset 

Figure 6·2. Non-paged Virtual Address Format 

6.2 Segment Mapping 

The Segment Number selects from 1,024 entries in the Segment Table, a 4,096 byte table located in one 
Page Frame in physical memory. Each Segment Table Entry is 4 bytes long and contains the base address 
of a Page Table. The base address of the Segment Table is contained in the Segment Table Base register. 

Segment Table Base Address o 

Figure 6·3. Segment Table Base Format 

The Segment Table defines 1,024 segments each 1,024 pages long (for a total of 4,294,967.296 bytes). 
Segments are defined as a series of pages, so there may be "holes" in a segment's address space. There is 
no specific length specification for a segment: the validity of constituent pages defines a segment's extent. 
Each Segment Table Entry defines a Page Table. The address of a Segment Table Entry is formed by 
concatenating the upper 20-bits of the Segment Table Base Register with the upper 10-bits of the virtual 
address: the Base Address field in the STB defines the beginning of a Page Frame in physical memory. and 
the Segment Number field of the virtual address defines a word within that Page Frame. The Cache-bit ($) 
in the STB indicates whether the Segment Table Entries may be cached. If $ is set, the NCACHE- output 
pin is de-asserted when fetching this Segment Table Entry. 

There are two possible formats for a Segment Table Entry. If paged segment address translation is used, 
the Segment Table Entry defines the base of a Page Table: 

31 
Page Table Base Address 

Figure 6·4. Paged Segment Table Entry Format 

where the fields mean: 

.. Page Table Base Address: the Page Frame in physical memory of the Page Table 

.. $: Cache-bit If 1, the NCACHE- output pin is de-asserted when fetching Page Table Entries. 

.. mused: available to software 

6-2 3/31191 



A TT2100 Microprocessor 

, • S: Segment-bit. A 0, indicates paged segment translation. 

• V: Valid-bit. If 1. the entry is valid. 

Release 1.7.2 

If non-page segment address translation is used, the Segment Table Entry defines the base and bound of a 
segment: 

Seg Base Address Seg Bound 
31 11 21 

Figure 6-5. Non-paged Segment Table Entry Format 

where the fields mean: 

• Seg Base Address: the base of the segment in physical memory 

• Seg Bound: the size of the segment. ranging from 4096 bytes (OxO) to 4M bytes (0x3FF) 

• $: Cache-bit. When 1. the NCACHE- output pin is de-asserted when accessing non-paged segment and 
on chip cacheing is perfonned. When 0. the NCACHE- output is asserted when accessing non-paged 
segments. When the $-bit is 0. text fetches will not be cached in the Prefetch Buffer Cache but will be 
cached in the Decoded Instruction Cache. When the $-bit is 0, data fetches will be cached in the Stack 
Cache. 

• unused: available to software 

• S: Segment-bit. A I, indicates non-paged segment translation. 

• U: User-bit. If 1. the segment can be accessed at user execution level 

• W: Writable-bit. If 1. the segment can be written (aU valid NPSR can be read) 

• V: Valid-bit. If 1. the entry is valid. 

6.3 Page Mapping 

The address of a Page Table Entry is formed by concatenating the upper 20-bits of the Segment Table Entry 
with bits 12-21 of the virtual address. Each Page Table occupies one Page Frame. so the Page Table Base 
Address is the address of the Page Frame and the Page Number field within the virtual address is a word 
offset within that Frame. 

A Page Table Entry defines the physical address corresponding to the virtual address, along with providing 
protection information and other data available for paging algorithms. The Reference- and Modified-bits 
are automatically set by the miss-processing hardware (but must be cleared by software). The format of a 
Page Table Entry is: 

31 
Page Frame Address 

Figure 6-6. Page Table Entry Format 

where the fields mean: 

• Page Frame Address: the physical address of the Page Frame in which the virtual address is mapped 

• $: Cache-bit. If 1. the NCACHE output pin is de-asserted when accessing this page and on chip 
cacheing is performed. When 0, the NCACHE- output is asserted when accessing this page. When the 
S-bit is 0, text fetches will not be cached in the Prefetch Buffer Cache but will be cached in the 
Decoded Instruction Cache. When the $-bit is 0, data fetches will be cached in the Stack Cache. 

6-3 3/31/91 



A TT2100 Microprocessor Release 1.72 

.. unused: available to software 

.. M: Modified-bit Set' to 1 when a page is first written. On subsequent writes to this page, the memory 
copy of the PTE is not accessed to set the M-bit If a direct write to the memory copy of the PTE 
changes the M-bit., the entry should be flushed from the 1LB using the FLUSH PTE instruction. 

.. R: Referenced-bit Set to 1 when a page is first referenced. On subsequent references to this page, the 
memory copy of the PTE is not accessed to set the R-bit If a direct write to the memory copy of the 
PTE changes the R-bit., the entry should be flushed from the 1LB using the FLUSHPTE instruction . 

• U: User-bit If I, the page can be accessed at user execution level (all readable pages can be accessed 
by the kernel) 

.. W: Writable-bit Ifl, the page can be written (all valid pages can be read) 

• V: Valid-bit If I, the page is valid. 

The Page Offset field of the virtual address defines the byte within the Page Frame in which the virtual 
address is mapped. The physical address consists of the Page Frame Address from the Page Table Entry 
concatenated with the Page Offset field of the Virtual Addresso If a protection violation is detected. no 
memory access is made and a memory fault exception is executed. Section 2.13.3 gives details on 
exceptions. 

Page Offset 

Segment Table Page Table Page Frame 

Segment Table Base 

Figure 6-7. Paged Segment Address Mapping 

64 3/31/91 



A TI'2100 Microprocessor Release 1.7.2 

6A Memory Management Summary 

Address mapping for paged segments is summarized Figure 6-7. Address mapping for non-paged segments 
is summarized Figure 6-8. 

Segment Offset 

Segment Table Segment Frame 

Physical Word 

Base 

Segment Table Base 

Figure 6-8. Non-paged Segment Address Mapping 

6.5 Memory Management Operations 

Both lLBs and NPSRs are completely flushed whenever the ATI'2100 is reset (either by ~g the 
external reset pin, or the detection of an internal event which causes the ATI'2100 to reset). The lLBs and 
NPSRs are also flushed whenever the Segment Table Base register is written. 

Individual lLB and NPSR entries may be flushed with the FLUSHPTE instruction, described in Section 
2.14. If the address created by the FLUSHPTE instruction is cached in one or both of the lLBs or NPSRs, 
the lLB or NPSR entry is marked invalid, so any subsequent access of that virtual address will be 
ttanslated by the full memory mapping table walk. The FLUSHPTE instruction is not privileged, so a user 
process may 6ush any or all entries in the on-chip lLBs or NPSRs. Although this may degrade the 
performance of the process, it does not affect correctness, since the memory management tables in physical 
memory define the address mapping and the FLUSHPTE instruction does not alter the tables in memory. 

The LOCK- output pin is asserted when Page Table Entries are fetched. If the R- and M-bits of the entry 
are current, the LOCK- output pin is cleared. If either R- or M-bits must be updated, the Page Table Entry 
is written back to memory with the LOCK- output pin still asserted. The LOCK- output pin is de-asserted 
when the write completes. Section 5.4.7 gives details on locked bus cycles. 

6-5 3/31~1 



ATI'2100 Microprocessor Release 1.7.2 

If there is an external bus error signaled during the memory management table walk, the ATI'2100 will take 
an exception. Section 2.13.3 gives details on exceptions. 

'''' MMU Performance 

Table 6-1 gives the perfonnance of address translation. These performance numbers do not include delay 
due to accessing the actual item being accessed. In Table 6-1, "A" indicates the I/O delay for a single 
word access. 

TABLE 6-1. Address Translation Performance 
Condition 
Text reference, micro-lLB miss, lLB/NPSR miss, 
paged segment walk, R-bit modified 
Text reference, micro-lLB miss, lLB/NPSR miss, 
paged segment walk, R-bit previously set 
Text reference, micro-lLB miss, lLB/NPSR miss, non-paged segment walle 
Text reference, micro-lLB miss, lLB/NPSR hit 
Text reference, micro-lLB hit 
Data read, lLB/NPSR miss, paged segment walk, 
R-bit modified 
Data read, lLB/NPSR miss, paged segment walk, 
R-bit previously set 
Data read, lLB/NPSR miss, non-paged segment walle 
Data read, lLB/NPSR hit 
Data write, lLB/NPSR miss, paged segment walle, 
R- and/or M-bit modified 
Data write, lLB/NPSR miss, paged segment walle, 
R- and M-bit previously set 
Data write, lLB/NPSR miss, non-paged segment walle, 
Data write, lLB/NPSR hit 

6-6 

Penalty 

3A+3 

2A+3 

lA+ 1 
1 
o 
3A+3 

2A+3 

lA+3 
o 
3A+3 

2A+3 

lA+3 
o 

3/31191 ! 



A TI'21oo Microprocessor 

7. ENVIRONMENTAL REQUIREMENTS 

7.1 RELIABILITY 

The reliability objectives for the A TI'21oo microprocessor are: 

5000 FITSl at the end of the 1st month 
1700 FITS at the end of the 1 Sl half year 
500 FITS thereafter (long tenn reliability) 

when the nominal junction temperature is at or below 85°C. 

Release 1.7.2 

If the nominal junction temperature is at or below 55°C, the long tenn reliability objective is 250 FIT. 

7.2 Shipping and Storage 

The device (and heat sink if used) will be subjected to temperature cycling due to power cycling, shipping 
and storage. In consideration of seasonal temperature variations, a temperature range of -40°C to 65°C can 
be experienced during shipping. A range of -55°C to 125°C is allowable for storage. 

7.3 POWER 

The maximum power dissipation for the device at a case temperature of 85°C is 0.60 W at 20MHz. The 
allowable operating ambient temperature is O°C to 70°C. The operating humidity range is 5% to 95%. 

The junction temperature rise above local ambient temperature is equal to the thermal resistance and power 
produCL The maximum power dissipated varies directly with the operating frequency over the practical 
range of operating and may be determined below: 

Pmax = 0.03 x F 

where Pmax is the maximum power (Watts). and F is the operating frequency (MHz). This does not imply 
an infinite selection of frequency, it is given only as a means of determining power at a given frequency. 

1. FIT (Failures in 1,000,000,000 device-houTS). 

7-1 3/31/91 



A 112100 Microprocessor Release 1.7.2 

7-2 3/31191 



A 112100 Microprocessor Release 1.7.2 

8. PHYSICAL DESIGN 

8.1 ATT2100 Ceramic PGA Prototype Package 

The ceramic prototype housing is a 100 mil spaced 125 CPGA package. The pinout for the 125 CPGA 
package is given in Figure 8-1 and Table 8-1. 

The A112100 CPGA has the following attributes: 

• V DD and Vss planes. 

• Optional mounting of four low inductance 0.033 JlF' A VX surface mounted capacitors. Order 
05085C333MA T050R from A VX. 

Two versions of CPGA were designed: one package with HOLD tied to the VDD plane; one package with 
HOLD- connected to pin K3. The pinout in Table 8-1 shows HOLD- connected to K3, which is the 
preferred package configuration. 

8.2 A 1'T2100 Plastic Prototype Package 

The plastic prototype housing is a 0.25 mil pitch gull-lead package. The package conforms to the JEOIC 
standards for 132 pin PQFP. The pinout for the PQFP is given in Table 8-2. The pad number corresponds 
to the JEOIC pin number for 132 PQFP packages. The buffer type indicates the driver size for output and 
bi-directional buffers. 

Figure 8-1. ATT2100 125 CPGA Pin Location 

x x x x x x x x x x x x x 13 
x x x x x x x x x x x x x 12 
x x x x x x x x x x x x x 11 
x x x x x x x x 10 
x x x x x x 9 
x x x x x x 8 
x x x 
x x x 
x x x 

orientation pin 
~ 

x x x 7 
x x x 6 
x x x 5 

x x x x x x x x x 4 
x x x x x x x x x x x x x 3 
x x x x x x x x x x x x x 2 
x x x x x x x x x x x x x 1 
N M L K J H G FED C B A 

VIEW OF PGA PACKAGE FROM THE PIN SIDE 

8-1 3/31/91 



A TI'2100 Microprocessor Release 1.7.2 

. TABLE 8·1. ATI'2100 125 PGA Pad Assignments with PGA Pin Assignment 
Pad Name Pi .. Pad Name Pin 
017 D08 C3 116 Al7 Cll 
016 A23 D4 11S 017 011 
01S D09 Al 114 A08 A13 
014 VSSOI VSS 113 VSS06 VSS 

013 Al4 Al 112 018 B13 

012 010 B4 113 Al8 E12 
011 A04 A4 110 019 C13 
010 VDDOI VOO 109 VOD06 VOO 

009 011 AS 108 A09 013 
008 VSS02 VSS lC17 VSSC17 VSS 

007 A16 C6 106 DOS E13 
006 012 BS lOS A19 F12 
OOS AOS A6 104 D06 F13 
004 VDDOl VDO 103 VOD07 VOO 
003 DOO A7 102 AIO Gl3 
002 VSS03 VSS 101 VSS08 VSS 
001 AI7 B6 100 . D07 011 
132 VDD03 VDO 099 VODOS VOO 
131 DOl A8 098 AlO· Gl2 

130 VSS04 VSS rm VSS09 VSS 
129 A06 B8 096 020 H13 
128 DOl C9 09S All HI2 
127 AU B7 094 021 113 
126 VDD04 VOO 093 VDD09 VOO 
115 013 A9 092 A21 KI3 
124 VSSOS VSS 091 VSSI0 VSS 
123 AC17 .AIO 090 022 LI3 
122 014 CIO 089 Al2 112 
121 A2S All 088 023 Kl2 
120 VDDOS VDO 087 VDOIO VOO 
119 01S Bll 086 Al9 Ml3 
118 A26 010 085 024 Kll 
117 016 A12 084 AlO NI3 

Pad Name 
083 015 
082 A31 
OBI D26 
080 VSSll 
C179 Al3 
C178 027 
077 A02 
C176 VDOll 
C175 028 
C174 VSSI2 
C173 AI4 
C172 029 
C171 AOO 
C170 VD012 
069 D03 

Pin 
Llt 
KIO 
NI2 
VSS 
Nll· 
LlO 
NIO 
VDO 
N9 
VSS 
M8 
M9 
N8 
VOO 
N7 

068 
067 

066 
065 
064 
063 
062 
061 
060 

059 
058 

VSS13 VSS 
AIS L7 
V0013 VDO 
D04 N6 
VSSI4 VSS 
All M6 
030 MS 
031 M7 
VOOl4 VOO 
01RI· NS 
VSS15 VSS 

Pad Name 
050 TMS 
049 TOI 
04B n.D 
047 VSS16 
046 ILl 
045 IL2 
044 DTACK-
043 HOLD· 
042 BERR-
041 VSS17 
040 RE1RY-
039 BORANT· 
038 TOO 
037 VD017 
036 BREQ-

Pin 
1.3 
K2 
Nl 
VSS 

Ml 
J2 
Ll 
K3 
KI 
VSS 

11 
H2 

HI 
VOO 
GI 

035 
034 
033 
032 
031 
030 
029 
028 
0X7 

026 
02S 

VSSl8 VSS 
BOACK- F2 
VD018 VDO 
STC· 02 
VSS19 VSS 
LOCK· FI 
IOCOUNTO F3 
IOCOUNTI El 
VDOl9 VOO 
BMO- 01 
VSS20 VSS 

057 CLK23 N4 024 BMI
BM2-
BM3-
VD020 

W/R· 
NCACHE· 

orr· 

CI 
E3 
02 
VDO 
Bl 
03 
Al 

056 STOP· lA 023 
055 CLK34 N3 022 
054 V0015 VOO 021 
053 RESET· M3 020 
052 TCK K4 019 
051 TRST· N2 018 

VSS Pins - B3. BIO. C2. CSt CSt C12. E4. Ell. G3. Hll. 13. L2. L6. L9. L12. M4. Mll 
VDD Pins - B2. B9, B12. C4. C7. D12, E2, FII. H3. JII, LS. LS. M2. MIO. MI2 

3/31/91 ". 



ATI'2100 Microprocessor Release 1.7.2 

TABLE 8·2. ATI'2100 132 PQFP Pad Assignments with Buffer Types 
Pad Name Burrer Pad Name Buffer Pad Name Burrer Pad Name Burrer 
017 D08 lOOpf 116 AZ7 lOOpf 083 025 lOOpf ·050 TMS I 
016 A23 l00pf 115 017 lOOpf 082 A3l lOOpf 049 TOI 
015 D09 lOOpf 114 AOS lSOpf 081 026 l00pf 048 ll.0 I 
014 VSS01 113 VSS06 080 VSSl1 047 VSS16 

013 A24 lOOpf 112 018 lOOpf 079 A13 lSOpf 046 ll.l 
012 010 lOOpf III A28 lOOpf 078 027 lOOpf 045 ll.2 I 

011 A04 lSOpf 110 019 l00pf 077 A02 lOOpf 044 OTACK· I 
010 VDDOI 109 VOD06 076 VOOll 043 HOLD- I 
009 011 l00pf 108 A09 lSOpf 075 028 lOOpf 042 BERR- I 
008 VSS02 107 VSS07 074 VSS12 041 VSS17 
007 A16 lSOpf 106 DOS llSpf 073 . AI4 lSOpf 040 RETRY- I 
006 012 lOOpf lOS A19 1 SOp! 072 029 lOOp! 039 BGRANT- I 
005 AOS ISOpf 104 D06 1lSpf 071 A03 lOOpf 038 TOO lOOpf 
004 VDD02 103 VOD07 mo VOO12 037 VOO17 

003 DOD llSpf 102 AIO lSOpf 069 D03 11Spf 036 BREQ- lOOpf 
002 VSS03 101 VSS08 068 VSS13 035 VSS18 
001 A17 lSOpf 100 D07 IISp! 067 A1S lSOpf 034 BGACK- lOOpf 
132 VDD03 099 VOD08 066 VODl3 033 VOO18 
131 DOl lISpf 098 A20 . lSOpf 065 D04 115pf 032 STC- lOOpf 
130 VSS04 097 VSS09 064 VSS14 031 VSS19 
129 A06 l50pf 096 020 lOOpf 063 A22 l50pf 030 LOCK- lOOpf 
128 D02 llSpf 095 All ISOpf 062 030 l00pf 029 IOCOUNTO lOOpf 
127 Al8 lSOpf 094 021 lOOpf 061 031 lOOpf (J28 IOCOUNTI lOOpf 
126 VOD04 093 VOD09 060 VOO14 027 V0019 
125 013 lOOpf 092 A2l lSOpf 059 OTRI- 026 BMO- lOOpf 
124 VSSOS 091 VSSIO 058 VSSlS 025 VSS20 
123 Am lSOpf 090 022 lOOpf 057 CLK23 024 BMl- l00pf 
122 014 lOOpf 089 Al2 150pf 056 STOP- 023 BM2- lOOpf 
121 A25 lOOpf 088 023 lOOpf 055 CLK34 022 BM3- lOOpf 
120 VODOS 087 VODlO 054 VOO15 021 V0020 

119 015 lOOpf 086 A29 lOOpf 053 RESET- 020 W/R- lOOpf 

118 A26 l00pf 085 024 lOOpf 052 TCK I 019 NCACHE- lOOpf 

117 016 lOOpf 084 A30 lOOpf 051 TRST- I 018 orr- lOOpf 

8-3 3/31/91 



A TI'2100 Microprocessor Release 1.7.2 

·8-4 3/31191 



A Tr2100 Microprocessor Release 1.7.2 

9, TIMING SPECIFICATIONS 

This section contains preliminary diagrams of the signal timing that are based upon worst case slow 
simulations with the 0.9J.1ffi 2 level metal technology used with the ATI'2100. 

9.1 AC Load Specification 

All preliminary timing specifications for output and input/output. (IO) pins are based upon preliminary 
ADVICE simulations under worst case conditions in a 132 FPT plastic package with the respective load 
identified in Table 9-1. 

9.2 Load Specifications 

TABLE 9·1. Loading Specifications 

Signal Load (pO 
A<1l:2> 100 
A<25:12> 150 
A<31:26> 100 
BGACK- 100 
BM<3:0>- 100 
BREQ- 100 
0<31:8> 100 
0<7:0> 115 
orr- 100 
IOCOUNT<I:0> 100 
LOCK- 100 
NCACHE- 100 
STC- 100 
IDO 100 
W/R- 100 

9.3 Timing Diagrams 

The following figures give preliminary timing specifications. 

9-1 3/31/91 



A TI'21oo Microprocessor 

r 5 
!E 2 ~ 

a.: .... 9I.iII! aoi 

-+::~ -+::~ 

1 ... 
3 

~ ~ ! CK23 

6 5 .E ~ ·E 
~ ~ 

E ~.E 

-+::~ ~:~ 

1 

~ 
... 

~ CK34 

L 

CK23 and CK34 Input Timing 
No. Description Min. (ns) Nom. (ns) Max. (ns) 

1 Rise Time - 2.0 3.0 
2 Pulse High 23.5 25.0 26.5 
3 Fall Time - 2.0 3.0 
4 Pulse Low 23.5 25.0 26.5 
5 Period 50.0 - 100.0 
6 Delay 11.5 12.5 13.5 

* The shortest phase permitted with these variations is 11.5 ns. 
** The clocks may be slOpped in phase 1. 

Figure 9·1. Clock Input Timing. 

9-2 

3 

Var. (ns)* 

±1.0 
±1.5 
±1.0 
±1.5 
-

±1 

Release 1.7.2 

;.: 
~. 

: 

! 

3/31191 



A TI'21oo Microprocessor Release 1.7.2 

CK34 -/ " r-
: 1 .... ·E 2: 

OTACK- /. \-
BERA- /; '\ 

RESET- X X 
0<31:00> X X 

CK23 " / 
3:4 :1IIiE ... : 

BGRANT- X X 
HOLD- X X 

RETRY- * * CK23 
\. / 

·E 5:6 .... 
IL<2:O> X X 

CK23 " / 
7:8 

·E .... 
STOP- X X 

Synchronous Input Timing 
Min. (os) Max. (os) 

No. Description Reference 3.13SV 4.75V 3.13SV 4.7SV 
1 DTACK-. BERR-. RESET-. 0<31:00> Hold CK34 rise 6.0 5.0 - -
2 DTACK-. BERR-. RESET-. D<31:oo> Set-up CK34rise 4.0 3.0 - -
3 BGRANT-. HOLD-. RETRY - Set-up CK23 rise 4.0 3.0 - -
4 BGRANT-. HOLD-. RETRY- Hold CK23rise 6.0 5.0 - -
5 IL<2:O> Set-up CK23 fall 4.0 3.0 - -
6 IL<2:O> Hold CK23 fall 6.0 5.0 - -
7 STOP- Set-up CK23 fall 4.0 3.0 - -
8 STOP-Hold CK23 rise 6.0 5.0 - -

Figure 9-2. Synchronous Input Timing. 

9-3 . 3/31/91 



A'IT2100 Microprocessor Release 1.7.2 

CK34 -/ " ~----------------~~ : 1 .... • 
~~ ~~------------------------
W~ ~~--------------------__ __ 

NCACHE-~;..-_____________ _ 

IOCOUNT<1:O> ~~: ______________ _ 

No. 
1 
2 

D~ ~~-----------------------
~~ ~~; ------------------------

A~1~2> ~~----------------------------
BM<3:O>-~!--__ -----------

~~------------------~/ :2 CK23 .... 
D<31~~ ____________ ~--------------

Output Timing 
Min. (os) Max. (its) 

Description Reference 3.13SV 4.7SV 3.13SV 4.7SV 
Address and Data Transfer Output Valid CK34 rise 12.5 9.0 25.0 18.0 
Data Output Valid CK23 fall 12.5 9.0 25.0 18.0 

Figure 9-3. Output Timing. 

9-4 3/31/91 ---/ f 



A TI'2100 Microprocessor Release 1.7.2 

~~----------------~~ CK34 /1 
: ~. 

ST~ ~~--------------------------------------

W~ ~~------------------------------------

NCACHE- =><XXXXXX>~~ ---------------------
IOCOUNT<1:O> =><XXXXXX>l!-~ -----------------------

D~ ~~------------------------------------

~~ =><XXXXXX>~~------------------------------------
A<31:02> =><XXXXXX>l!-~ -----------------------
BM~~ ~------------------------------------

~~------------------~/ 
: 2 

CK23 
:.: 

~1~ ____________ ~~~: --------------------------

Bus Relinquish Cycle Output Timing 
Min. (ns) Max. (ns) 

No. Description Reference 3.135V 4.75V 3.135V 4.75V 
1 Address and Data Transfer Output Tri-stale CK34 rise 6.2 4.5 12.5 9.0 
2 Data Output Tri-state CK23 fall 6.2 4.5 12.5 9.0 

Figure 9·4. Bus Relmquish Cycle Output Timing. 

9-5 3/31191 



A'IT2100 Microprocessor Release 1.7.2 

,~--------------------------~/ 
: 1 : 2 

~--------------~ 
OTRI-

0<31:00> 

DTRI- to Data Tri-state Output Timing 
Min. (ns) Max. (ns) 

No. Description Reference 3.13SV 4.7SV 3.13SV 4.7SV 
1 0<31:00> Tri-state DmI- fall 12.5 9.0 25.0 18.0 
2 0<31:00> Valid DmI-rise 12.5 9.0 25.0 18.0 

Figure 9-S. DTRI- to Data Tri-state Output Timing. 

CK23 --Y \~------------------~~ 
: 2 

BGAC~ -------------------------------< 

BREQ- and BGACK· Output Timing 
Min. (ns) Max. (ns) 

No. Description Reference 3.13SV 4.7SV 3.13SV 4.7SV 
1 BREQ- Output Valid CK23rise 12.5 9.0 25.0 18.0 
2 BGACK- Output Valid CK23 fall 12.5 9.0 25.0 18.0 

Figure 9-6. BREQ- and BGACK- Output Timing. 

3/31/91 



A TI'2100 Microprocessor Release 1.7.2 

10. TestabWty 

the ATI'2100 is a highly testable design providing access to all testability features via the IEEE 1149.1/05 
interface. The features which are accessible include: 

• Single clock delay by-pass. 

• Boundary-scan of I/O signals. 

• Embedded memory Built-In-Test (BIT) and scan features. 

• Embedded PLA BIT features. 

10.1 Conformance 

The Test Access Port (TAP) provided conforms to all aspects of the IEEE 1149.1/05 except for TCK and 
lRST-. 

In IEEE 1149.1/05, TCK is required to be a free-running clock with any gating performed within the 
device. Due to the tight specification of the clocks within the ATT2100 design, this feature is not provided. 
It is required that gating of TCK be performed externally. 

In IEEE 1149.1/05, an unconnected lRST- is to be terminated in the inactive mode. In the ATI'2100, an 
unconnected lRST- is terminated in the.active mode holding the TAP state-machine in reset 

10.2 Test Access Port (TAP) 

The Test Access Port (TAP) consists of five I/O pins and a sequential 16 state controller. 

10.2.1 TAP 110 

The signals in the TAP are defined 

TCK 

TMS 

TOI 

TOO 

lRST-

Test Clock. Input An externally gated clock signal with a 50% duty cycle. The 
changes on the TAP input signals (TMS and TOI) are clocked into the TAP controller, 
instruction register or selected test data register on the rising edge of TCK. Changes at 
the TAP output signal (TOO) occur on the falling edge of TCK. This signal does not 
conform to IEEE 1149.1/05 requirement ofTCK being a free running clock. TCK must 
be stopped at 1. The TCK input has a built in pull-up resistor to ensure a high signal is 
seen on an unconnected input. 

Test Mode Select Input. TMS is a serial control input which is clocked into the TAP 
controller on the rising edge of TCK. The TMS input has a built in pull up resistor to 
ensure a high signal value is seen on an unconnected input 

Test Data Input Input. TOI is clocked into the LSB of the selected register-data or 
instruction-on the rising edge of TCK. The TDI input has a built in pull up resistor to 
ensure a high signal value is seen on an unconnected input 

Test Data Output Output. The contents of the MSB of the selected register-data or 
instruction-is shifted out of the TDO on the falling edge of TCK. TOO is tri-stated 
except when scanning of data is in progress. 

Test Reset. Active low input. lRST- is the reset input to the TAP controller. Assertion 
of this input forces the TAP controller into the reset state. The lRST - input has a built 
in pull down resistor to ensure a low signal value is seen on an unconnected input to 
force the TAP controller into the reset state. 

10-1 3/31/91 



A 1T2100 Microprocessor Release 1.7.2 

10.2.2 TAP Controller (TAPC) 

The T APC is a synchronous finite state machine whereby sequencing through the various operations of the 
testability circuitry occurs under conb'Ol of the TMS signal. 

10.2.2.1 TAPC State Diagram 

The state diagram for the TAPC is given in Figure 10-1. There are 16 states in this state machine with 
advancement of state dependent upon the value of TMS at the rising edge of TCK. All operations of the 
test logic occur on the rising edge of TCK following the entry into a conb'OlIer state. Changes at TOO 
occur on the falling edge ofTCK following entry into a conb'Oller state which selects TOO. 

The states of the T APC are defined in Table 10-1 and in Figure 10-1. 

State 
OxO 

Oxl 

0x2 

Ox3 

Ox4 

Ox5 

Ox6 

Name 
Exit(2)-DR 

Exit(1)-DR 

Shift-DR 

Pause-DR 

Select-IR-Scan 

Update-DR 

CaptUre-DR 

TABLE 10-1. TAP Conb'Oller State Table 

Description 
This is a temporary conb'Oller state. All test data registers and the 
instruction register retain their previous state. A high signal on the TMS 
line while in this state causes termination of the scanning process; a low 
causes entry into the Shift-DR state. 

This is a temporary controller state. All test data registers and the 
instruction register retain their previous state. A high signal on the TMS 
line while in this state causes termination of the scanning process; a low 
causes entry into the Pause-DR state. 

In this conb'OlIer state, the selected data register shifts data one stage 
towards its serial output on each rising edge of TCK. All registers other 
than the selected test data register retain their previous state. 

This controller state allows shifting of the selected test data register to be 
temporarily halted. All test data registers and the instruction register retain 
their previous state. The controller remains in this state while TMS is low. 
When TMS goes high, the controller advances to the Exit(2)-DR state. 

This is a temporary controller state in which all test logic retains its 
previous state. If TMS is held low when the conb'Oller is in this state, then a 
scan sequence for the instruction register is initiated. 

During this controller state, data is transferred from each shift-register stage 
into the corresponding parallel output latch (if the selected test data register 
includes a parallel output latch). All shift-register stages in the selected 
register retain their previous state. 

In this controller state data is parallel loaded into the selected test data 
register. If the register does nOl have a parallel input, or if capturing is nOl 
required for the selected test, the register retains its previous state 
unchanged. 

10-2 3/31191 



ATI'2100 Microprocessor Release 1.7.2 

Ox7 Seleet-DR-Sean This is a temporary controller state in which all test logic retains its 
previous state. IfTMS is held low when the controller is in this state. then a 
scan sequence for the selected test data register is initiated. 

Ox8 Exit(2 )-IR This is a temporary controller state. All test data registers and the 
instruction register retain their previous state. A high signal on the TMS 
line while in this state causes termination of the scanning process; a low 
causes entry into the Shift-IR state. 

Ox9 Exit(l )-IR This is a temporary controller state. All test data registers and the 
instruction register retain their previous state. A high signal on the TMS 
line while in this state causes termination of the scanning process; a low 
causes entry into the Pause-IR state. 

0xA Shift-IR In this controller state. the instruction register shifts data one stage towards 
its serial output on each rising edge of TCK. 

0xB Pause-IR This controller state allows shifting of the instruction register to be 
temporarily halted. All test data registers and the instruction register retain 
their previous state. The controller remains in this state while TMS is low. 
When TMS goes high. the controller advances to the Exit(2)-DR state. 

oxe Run-Test/Idle The controller state between scan operations where an internal test 
previously selected by setting the instruction register may be executed. 
Registers not involved in the application of the test retain their previous 
state. If the data in the instruction register does not indicate that a test 
should be executed. then all test logic must retain their previous state. Once 
entered. the controller will remain in the Run-Test/Idle state as long as TMS 
is held low. 

0xD Update-IR During this controller state. the instruction is transferred from each shift
register stage of the inst,ruction register into the parallel output latch of the 
instruction register. All shift-register stages in the instruction register 
retain their previous state. 

0xE Capture-IR In this controller state data is parallel loaded into the instruction register. If 
the register does not have a parallel input. or if capturing is not required for 
the selected test. the register retains its previous state unchanged. 

0xF Test-Logie-Reset While in this state all test circuitry is disabled. The Instruction Register 
(IR) is reset to select the by-pass register. The controller remains in this 
state as long as TMS is high or TRST- is asserted. 

10-3 3/31/91 



ATI2100 Microprocessor 

Figure 10-1. TAP Controller State Diagram 

10.3 IEEE 1149.1IDS Registers 

The following registers are prescribed in the IEEE 1149.1/05 specification. 

10.3.1 Instruction Register (IR) 

Release 1.7.2 

The instruction register (IR) allows a test instruction to be shifted into the ATI2100. The IR is used to 
select the test to be perfonned or the test data register to be accessed. The IR in the ATI2100 is seven bits 
in length. Table 1()-2 identifies the instruction encodings. 

10-4 3/31,91 



A'TI'2100 Microprocessor Release 1.7.2 

TABLE 10-2. Instruction Register Encodings 
Instruction 
MSB~LSB 

00000oo 
0000001 
0000010 
0000011 
0000100 
0000101 
0000110 
0000111 
000 1 xxx 
OOlxxxx 
Olxxxxx 
IOxxxxx 
llxxxxx 

Register 
Selected 

BS 
BS 
BS 

PPLA 
ICO 
SC 

PFD 
PFr 
NA 
BP 
BP 
10 
BP 

103.2 By-pass Register (BR) 

Instruction 
Mnemonic 
EX1EST 
SAMPLE 
INTEST 
IRPPLA 
IRICO 
IRSC 
IRPFD 
IRPFr 
NA 
BP 
BP 
ID 
BP 

Description 
BS selected with BS external test. 
BS selected with BS sample. 
BS selected with BS internal test 
PPLA selected with PPLA self test 
Instruction Cache Oata selected with ICO self test. 
Stack Cache selected with SC self test. 
Prefetch Cache Oata selected with PFD self test. 
Prefetch Cache Tag selected with PFr self test 
Reserved. 
BP selected with all self test. 
BP selected and BS sample. 
10 selected and BS sample. 
BP selected and BS sample. 

The by-pass (BP) register provides a single TCK delay path from TOI to TOO. 

When the BP register is selected. a 0 is loaded on the rising edge of TCK in the Capture-DR controller 
state. When the Test-Logie-Reset controller state is entered the BP register retains its last value. 

1033 Boundary-scan Register (BS) 

The boundary-scan register allows testing of circuitry external to the A'TI'2100. Additionally. BS provides 
for sampling and examination of the I/O values without impacting the operation of the system logic. 

90 shift elements are in the boundary scan shift chain. 91 TCKs are required to shift the entire chain from 
TOI through to TOO. Position is given from TOI to TOO. 

Position Name Description Position Name Description 
1 RESET- Input 2 CK23 Sample only input 
3 STOP- Sample only input 4 CK34 Sample only input 
5 OTRI- Input 6 tridata Control for IOputs . 
7 031 IOput 8 030 IOput 
9 A22 3S-0utput 10 D04 IOput 

11 A15 3S-0utput 12 003 IOput 
13 A03 3S-0utput 14 029 IOput 
15 A14 3S-0utput 16 028 IOput 
17 A02 3S-0utput 18 027 IOput 
19 A13 3S-0utput 20 026 IOput 
21 A31 3S-0utput 22 025 IOput 
23 A30 3S-0utput 24 024 IOput 
25 A29 3S-0utput 26 023 IOput 
27 A12 3S-0utput 28 022 IOput 
29 A21 3S-0utput 30 021 IOput 
31 All 3S-0utput 32 020 IOput 
33 A20 3S-0utput 34 D07 IOput 
35 AIO 3S-0utput 36 D06 IOput 
37 A19 3S-0utput 38 005 IOput 

10·5 3/31/91 



39 
41 
43 
45 
47 
49 
51 
53 
55 
57 
59 
61 
63 
65 
67 
69 
71 
73 
75 
77 
79 
81 
83 
85 
87 
89 

A09 
A28 
A08 
A27 
A26 
A25 
A07 
AI8 
A06 
A17 
A05 
AI6 
A04 
A24 
A23 
Drr-
WIR-
BM2-
BMO
IOCOUNTO 
STC
BREQ
BGRANT
BERR
DTACK
INTI 

ATl'2I00 Microprocessor 

3S-0utput 
3S-0utput 
3S-Output 
3S-0utput 
3S-0utput 
3S-0utput 
3S-0utput 
3S-Output 
3S-0utput 
3S-0utput 
3S-Output 
3S-0utput 
3S-0utput 
3S-Output 
3S-0utput 
3S-0utput 
35-0utput 
3S-Output 
3S-Output 
3S-Output 
3S-0utput 
2S-0utput 
Input 
Input 
Input 
Input 

40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 
74 
76 
78 
80 
82 
84 
86 
88 
90 

D19 
DI8 
D17 
D16 
DIS 
D14 
DI3 
D02 
DOl 
DOO 
D12 
Dll 
DIO 
D09 
D08 
NCACHE
BM3-
BM1-
IOCOUNTI 
LOCK
BGACK
tribus 
RETRY
HOLD
INn 
INTO 

IOput 
IOput 
IOput 
IOput 
IOput 
IOput 
IOput 
IOput 
IOput 
IOput 
IOput 
IOput 
IOput 
IOput 

.IOput 
3S-Output 
3S-Output 
3S-Output 
3S-0utput 
3S-Output 
2S-Output 

Release 1.7.2 . 

Control for 3S-0utputs 
Input 
Input 
Input 
Input 

The tristate control bits tridata and tribus are control the tristating of the output side of the data pins and 
output pins. respectively. A I tristates and a 0 enables. 

Position I, the RESET- bit. is closest to TDI. Position 90. the INTO bit, is closest to TDO. 

10.3.4 Identification Register (ID) 

See Section 2.4.4 for a description of the Identificaiton Register (lD). The m register IS accessable through 
both the TAP and nonnal register access. 

10-6 3/31191 



A 172100 Microprocessor 

11. APPENDIX 

TABLE 11·1. One-Parcel Instruction Encodings, Monadics/Dyadics 

opc0de<:2:O>a ()()() 001 010 011 
opcode<4:3:>J. 

00 KCAll. CAll. 1IaCk* IMP 

01 aaimp* aaimp* MOV.WS nilt 

10 CMPEQ.CS CMPGT.ss CMPGT.cs CMPEQ.ss 

11 MOV.sS MOVlS MOV.sI MOVlI 

t: see Table 11·2. 
*: the unimplemented instruction sequence is performed 
t: see Table 11-3. 

epoXY: X = src, Y = dst 
C: 5 bit immediate 
I: 5 bit indirect stack offset 
S: 5 bit stack offset 

100 

JMPFN 

1IIIimp* 

ADD.CS 

MOV.CS 

W: 5 bit word aligned immediate 

101 

1MPFY 

ADD3.WS 

ADD3.CS 

MOVA.SS 

TABLE 11·2. One·Parcel Instruction Encodings, Stack 

I SUbcode<l:0X7 ii ~ 01 10 
CATCH 

TABLE 11·3. One-Parcel Instruction Encodings, Niladics 

subcode<2:O>a 000 001 010 011 100 101 110 
subcode<9:3:>J. 

Release 1.7.2 

110 111 

JMPIN JMPTY 

AND3.CS AND.ss 

ADD.SS ADD3.SS 

SHL3.CS SHR3.CS 

III 

00000oo CPU KREI' NOP FLUSIU FUJSHP CRET FLUSHD* unimp* 

0000001 TES1V TESTe a.RE unimp* 

OOOOOlx unimp* unimp* unimp* unimp* 

0000lxx unimp* unimp* unimp* unimp* 

0001 xxx aaimp* unimp* unimp* unimp* 

00lxxxx unimp* unimp* unimp* unimp* 

01xxxxx unimp* unimp· unimp* unimp* 

lxxxxxx Inpt Inpt Inpt Inpt 

*: the unimplemented instruction sequence is performed 
t: the niladic trap through VB + 8 

11-1 

animp* unimp* unimp* llllimp* 

animp* unimp* unimp* animp* 

Wlimp* unimp* unimp* Wlimp* 

Wlimp· unimp* unimp* Wlimp* 

WIimp* unimp* unimp* Wlimp* 

llllimp* unimp* unimp* 1IIIimp* 

Inpt Inpt Inpt Inpt 

3/31191 



A TI'2100 Microprocessor 

TABLE 11-4. Three-Parcel Insttuction Encodings 

opcode<2:Oxr 000 001 010 
opcode<5:3>.l. 

000 IIICIIIadict OR! ANDI 

001 FNEX'P FSCAIJI* unimp"' 

010 FSQRT* FMOV* FLOGB* 

011 FCMPOE* FCMPGT* FCMPEQ* 

100 SUB OR AND 

101 FSUB* FMUL* FDIV* 

110 SUB3 OR] AND3 

111 FSUB3* FMUL3* FDIV3* 

*: the unimplemented instruction sequence is perfonned 
t: see Table 11-5. 

011 100 

ADDI MOVA 

FREM* TADD 

FCLASS* uaimp"' 

FCMPEQN* FCMPN* 

ADD XOR 

FADD* SHR 

ADD3 XOR3 

FADD3 SHR3 

101 

UREM 

TSUB 

1IIIimp* 

CMPGT 

REM 

USHR 

REM] 

USHR3 

TABLE 11·S. Three-Parcel Instruction Monadic Subcodings 

subc0de<2:O:>a 000 001 010 011 100 101 
subcode<3>.l. 

0 KCALL CALL RETURN IMP JMPFN JMPFY 

1 CATCH EmER LDRAA FLUSHPTE FLUSHPBE FLUSHDCE* 

*: the unimplemented instruction sequence is perfonned 

TABLE 11·6. Five-Parcel Instruction Encodings 

opcode<2:O>a 000 001 010 011 100 101 
opcode<5:3>.l. 

000 unimp"' OR! ANDI ADDI MOVA UREM 

001 FNEXT· FSCAIJI* unimp"' FREM* TADD TSUB 

010 FSQRT* FMOV* FLOGB* FCLASS* unimp* unimp* 

011 FCMPOE* FCMPGT* FCMPEQ- FCMPEQN* FCMPN* CMPGT 

100 SUB OR AND ADD XOR REM 

101 FSUB* FMUL* FDIV* FADD* SHR USHR 

110 SUB3 OR] AND3 ADD3 XOR3 REM] 

111 FSUB3* FMUL3* FDIV3* FADD3* SHR3 USHR3 

*: the unimplemented instruction sequence is perfonned 

11-2 

1 
Release 1.7.2 

110 111 

MOV DQM 

uaimp"' llllimp"' 

unimp* UDimp* 

CMPHI CMPEQ 

MOL DIV 

SHL UDIV 

MUL3 DIV3 

SHL3 llllimp* 

110 111 

JMPI'N 1MPTY 

unUnp* POPN 

110 111 

MOV DQM 

unimp* unimp* 

llllimp* unimp* 

CMPHI CMPEQ 

MUL DIV 

SHL UDIV 

MUL3 DIV3 

SHL3 unimp* 

3/31/91 



A TI'2100 Microprocessor Release 1.7.2 

TABLE 11·7. General Addressing Mode Encodings 

mode code description 

*Saddr:B OxO byte absolute 
*$addr:UB Oxl unsigned byte absolute 
*Saddr:H Ox2 half·word absolute 
*$addr:UH Ox3 unsigned half-word absolute 
RoffsetB Ox4 byte stack offset 
Roffsett)B OXS unsigned byte stack offset 
RoffsetH Ox6 half-word stack offset 
RoffsetUH Ox7 unsigned half-word stack offset 
*Roffset:B Ox8 byte stack offset indirect 
*Roffset:UB Ox9 unsigned byte stack offset indirect 
*RoffsetH 0xA half-word stack offset indirect 
*Roffset:UH OxB unsigned half-word stack offset indirect 
*Saddr:W OXC word absolute 
RoffsetW OxD word stack offset 
*RoffsetW 0xE word stack offset indirect 
$data 0xF immediate 

TABLE 11·8. Floating Point Addressing Mode Encodings 

mode code description 

*Saddr:F OxO single precision absolute 
*Saddr.D Oxl double precision absolute 
*Saddr:X Ox2 extended precision absolute 
Reserved Ox3 Reserved addressing mode 
RoffsetF Ox4 single precision stack offset 
RoffsetD OxS double precision stack offset 
RoffsetX Ox6 extended precision stack offset 
Reserved Ox7 Reserved addressing mode 
*RoffsetF Ox8 single precision stack offset indirect 
*RoffsetD Ox9 doubfe precision stack offset indirect 
*RoffsetX OxA extended precision stack offset indirect 
Reserved OxB Reserved addressing mode 
*Saddr:W OXC word absolute 
RoffsetW OxD word stack offset 
*RoffsetW OxE word stack offset indirect 
$data 0xF single precision immediate 

11-3 3/31/91 



ATI'2100 Microprocessor Release 1.7.2 

TABLE 11·9. Call/Imp Addressing Mode Encodings 

mode code description 

"Saddr .OxC absolute indirect 
*Roffset Ox!) stack offset indirect 
Label OxE program counter relative 
*$addr 0xF absolute 

TABLE 11·10. Register Addressing Mode Encodings 

mode code description 

register Ox7 CPU prefixed 
*Saddr:W OXC word absolute 
RoffsetW OxD word stack offset . 
*RoffsetW 0xE word stack offset indirect 
$data OxF immediate 

TABLE 11·11. Register Access Codes 

register code 

MSP Oxl 
ISP Ox2 
SP Ox3 
CONFIG Ox4 
PSW OxS 
SHAD Ox6 
VB Ox7 
STB Ox8 
FAULT Ox9 
ID OxA 
TIMER 1 OxB 
TIMER2 OxC 
unimp OxD 
unimp OxE 
unimp 0xF 
FPSW OxlO 

11-4 3/3I~I 



A TI'2100 Microprocessor Release 1.7.2 

TABLE 11·12. Exception Identifiers 

exception code 

integer zero-divide Oxl 
nace Ox2 
illegal instruction Ox3 
alignment fault Ox4 
privilege violation Ox5 
unimplemented register Ox6 
fetch fault Ox7 
read fault Ox8 
write fault Ox9 
text fetch I/O bus error OxA 
data access I/O bus error 0xB 

11-5 3(31/91 



A TI'2100 Microprocessor Release 1.1.2 

3/31.191 


