

COMPLETE
SINGLE-CHIP
MICROCOMPUTER

FEATURING

IN A SINGLE STANDARD 40-PIN PACKAGE

AMI S2000

PROGRAMMING MANUAL

AMI $2000 SIMPLIFIED BLOCK DIAGRAM

sl

. .
| 3-LEvEL
ﬁ STACK

LATCHES
7-SEGMENT
DECODER

CONTROL

S$2000 GENERAL DESCRIPTION

AMI’s S2000 is a complete single-chip microcomputer
which brings all the advantages of computer control
to low-cost keyboard/display systems. The S2000 is
ideal for a wide range of appliance and process mon-
itoring applications. Versatile input/output and an in-
struction set optimized for its intended applications
make the S2000 preferable to more expensive mul-
tiple-chip solutions with dramatic cost reductions
during product design, manufacture, testing, and
maintenance.

The S2000 has an on-chip 1024 -instruction ROM. If
necessary, additional program memory can be added
externally up to a maximum of 8192 instructions.
The Program Counter is a pointer to the next instruc-
tion to be executed. The Subroutine Stack holds re-
turn addresses during execution of subroutines.

The scratchpad RAM is used for temporary data stor-
orage of up to 64 4-bit data words, typically numeric
quantities. The BU and BL Registers are pointers used
to access RAM words. The E Register can be used as
a general purpose register or as an index limit register
for controlling RAM accesses.

Arithmetic and logical operations are performed by
the Adder and 1-bit Carry Register with results stored
in the Accumulator and the Carry Register. Two Flag
bits are available which can be set, reset and tested as
temporary indicators by software.

The Control Logic provides centralized control for all
S2000 operation and includes three inputs and three
outputs for interfacing external devices. The Oscillator
generates all clocking signals and needs only an exter-
nal RC circuit to set its rate. the KREF Input is the
analog reference for TouchControl™ and similar in-
terfaces. Software decision-making instructions sam-
ple the four K Inputs and the four | Inputs, one of
which can be used in conjuction with the 50 or 60
cycle frequency counter to provide a one-second
pulse for real-time applications.

The eight bidirectional three-state D Lines are general-
purpose data signals. The thirteen A Lines are outputs
for displays, keyboard strobes, and other applications.

1 INTRODUCTION

APPLICATIONS

The S2000 is a computer on a chip, suitable for vol-
ume applications which require intelligent control
in a minimum space at a minimum cost.

It is ideally suited for systems with the following
requirements.

Time-of-day and interval timer control
AC line synchronization

Display drive

Keyboard inputs (ohmic or TouchControl)
Arithmetic operations

Single power supply

Program expandability and testability
Triac drive

The S2000 can lower the cost and enhance the per-
formance of control circuits in applications such as
the following:

Major household appliances
Vending machines

CB radios

Electronic scales

Toys and games

Lab instruments
Point-of-sale devices
Vehicle instruments
Programmable calculators
Data sampling devices
Data logging devices

Test equipment
Keyboard devices

Display devices

Remote monitors

INTERFACE AND TIMING
REQUIREMENTS

PROTOTYPE CHECKOUT
HARDWARE AND SOFTWARE
(DEV-2000, SES-2000)

PRE-PRODUCTION CHECKOUT

(SES-2000)

MEMORY ALLOCATION AND
INPUT/OUTPUT ASSIGNMENTS

THE DEVELOPMENT CYCLE

Product development using AMI’s S2000 single-chip
microcomputer proceeds in generally the following
sequence. Following Product Definition and System
Specification, the customer’s development effort splits
into the Hardware Design and Software Design phases.

The Hardware Design team produces a Block Diagram
identifying the major functional blocks as well as In-
terface and Timing Requirements. Detailed design ac-
tivity results in a Logic Schematic which is the “blue-
print’”’ from which actual hardware prototypes can be
built. A “breadboard’’ or Prototype unit is built for
the purpose of checking out both the hardware and
software designs. Prototype Test, independent of the
software effort, assures a level of confidence in the
prototype unit prior to combining it with the actual
software in the Prototype Checkout phase.

Working in parallel, but interacting with the hardware
effort when necessary, the Software Design team pro-
duces a “Flowchart” which identifies the major func-
tional and operational blocks of the software design.
Detailed design activity may result in a second or more
detailed flowchart depending on the complexity of
the system. Memory Allocation, Input/Output Assign-

ments and any special software requirements are also
factored into the design. Coding and Assembling of
the product software is followed by Simulation and
Debug in a non-hardware environment prior to the
Prototype Checkout phase. AMI'S MDC plays a major
supporting role during these Coding, Assembling, Sim-
ulation and Debug stages of the Software Design effort.

Hardware and Software efforts join together for the
Prototype Checkout phase which verifies that the
actual hardware and software designs perform as re-
quired. AMI’'s MDC, DEV-2000 and SES-2000 de-
velopment tools provide the required effective test
environment during this checkout phase. A Pre-
Production Development and Checkout phase may
follow completion of the prototyping effort if the
customer feels that the prototype units are not suf-
ficiently representative of the final product.

When the customer is satisfied that the software is
ready for production, AMI takes on the task of de-
veloping the ROM Masks and fabricating Sample Units
of the product. Following Customer Acceptance of
the sample units, AMI proceeds into high volume
S$2000 Production.

ROM

The ROM addressing range is divided into eight
“banks’’ of 1024 locations. Bank 0 is on the S2000
itself and the others can be provided externally (Fig-
ure 2.1). Each bank is further divided into sixteen
“pages’’ of 64 locations and each location holds one
S2000 instruction. The Program Counter is thus thir-
teen bits wide — three bits for the bank, four bits for
the page within a bank, and six bits for an instruction
within a page.

When a power-on reset occurs, the Program Counter
is zeroed, so execution starts at Bank O, Page O, Loca-
tion 0. Normal execution proceeds sequentially until
a Jump or Return forces a new Program Counter value.

To save ROM bits in Jump-type instructions, only the
Location is indicated. A special instruction — Prepare
Page — can set a new Page (and if required, a new
Bank) just before a long (i.e., off page) Jump.

EXAMPLE: TO TRANSFER TO A LABEL LL IN
THE SAME PAGE, USE

JMP LL

2 S2000
ARCHITECTURE

TO TRANSFER TO A LABEL LP IN ADIFFERENT
PAGE, USE

PP LP/64
JMP LP

TO TRANSFER TO A LABEL LB INADIFFERENT
BANK, USE

;Set Page Address_

PP LB/64 ;Set Page Address
PP LB/1024 ;Set Bank Address
JMP LB

As an additional ROM-saving feature, the JMS (Jump-
to-Subroutine) instruction automatically performs its
own Prepare Page to Page F (decimal 15). Hence, by
convention, most subroutine entries reside on Page F.
However, subroutines may reside on any page, and a
Prepare Page instruction preceding a JMS will override
the automatic Prepare Page to Page F.

The Subroutine Stack remembers the Page and the
Location for three stccessive return addresses, which
allows for complex ““nested’’ logic within each Bank.

(PROGRAM COUNTER
ROM BANK ADDRESSING

BANK 0 ON-CHIP

-

BANK PAGE LOCATION BANK 1-7 OFF-CHIP

_ Figure 2.1

PROGRAM COUNTER \
ROM PAGE/LOCATION ADDRESSING

3 ROM BANK 0

PAGE
LocaTion 0 1 2 3 E F

~

~

g il 7 o
: ~N b

‘ 61

62

63

A

RAM

The S2000’s RAM is divided into Pages and Locations
— four Pages, each containing sixteen Locations. In
each Location is a ““Word’’ of four data bits. RAM is
addressed by the BU (2-bit) and BL (4-bit) Registers.
The BU Register selects .one of four RAM pages, and
the BL selects one of sixteen words in a page. Data
handling is made simple by the fact that the BL Regis-
ter is also a general-purpose register that can be
operated upon arithmetically — there are instructions
to load it, increment it, decrement it, and exchange
it with the Accumulator.

Instructions that access RAM permit loading the ad-
dressed RAM word into the Accumulator and auto-

matically incrementing or decrementing the BL Reg-
ister. This permits processing RAM words top-down
or bottom-up. In addition, within a selected RAM
word, any bit can be set, cleared or tested.

Like the BL Register, the E Register can also be used
for general storage, but it has the additional capability
of serving as a RAM index pointer since it can be com-
pared to BL and thus control RAM indexing limits.

To aid in program control, the S2000 includes two
single-bit Flags which can be set, reset, or tested as (for
example) subroutine parameters or result indicators.

4 RAM ADDRESSING

PAGE = <BU>
WORD = <BL> 0 1

T MmO O ® P © O NG S W N =

Figure 2.2

A

RAM PAGE 2
SEGMENT TO BE
PROCESSED

E REGISTER USABLE AS A

BOUNDARY OR LIMIT
REGISTER WHEN -

ADDRESSING RAM

10

AMI $2000 DETAILED BLOCK DIAGRAM

3-LEVEL
STACK

ROM
1Kx8

DECODER

PROGRAM COUNTER
BANK PAGE

CONTROL
LOGIC

CARRY

RAM
256 BITS
16x4x4

SELECTOR

DECODER

SELECTOR

1

ARITHMETIC UNIT

The 4-bit parallel Adder and 1-bit Carry Register are
used for adding, complementing, incrementing, decre-
menting, comparing and performing Boolean opera-
tions. Inputs to the ALU can be from many different
sources depending upon the instruction. The ALU de-
posits its output into the Accumulator and Carry
Register. The Carry bit can also be independently set,
reset, or tested.

The Accumulator is the main working register and is
the principle source and destination for data being
operated upon, both internally and for 1/0.

I INPUTS AND K INPUTS

The | and K Inputs transfer no data to internal registers.
Both of these 4-bit groups can be sensed directly by
certain Skip instructions, so they are useful in control-
ling programlogic. Any combination of | inputs togeth-
er or K inputs together can be sensed simultaneously.

The | inputs have internal pullup resistors, and can di-
rectly sense keyboards and switches. A timer is driven
from a tap off the I8 input, so that a 60Hz or 50Hz
input at 18 will cause the timer to set a flag (the "sec-
onds” flag) once per second. The seconds flag can be
tested and cleared under program control.

The K inputs can be used to implement TouchCon-
trol™ capacitive switching or similar analog inter-
faces, because of the voltage comparator and line-
discharge transistors on the chip. K inputs may also
be used as conventional keyswitch inputs using exter-
nal pullup resistors.

SECONDS TIMER AND EUR INSTRUCTION

For time-of-day or interval timer applications, the
product’s power line frequency is fed to Input I8,
where it passes through a Schmitt-trigger, a digital
filter, and a +60/+50 counter to the ‘‘seconds’’ flag.
An instruction called SOS (Skip On Second) can test
and reset the seconds flag to control program logic
flow.

During power-on-reset, the S2000 assumes it is run-
ning in a 60Hz environment for the purposes of the
SOS instruction. However, a single instruction (EUR)
can initiate a switch to 50Hz (or back) as needed.

12

D-LINES AS INPUTS

The INP instruction inputs 8 bits of data from the
bidirectional D Lines. Four bits of the data go to the
Accumulator and four bits go to the RAM word ad-
dressed by BU and BL. These lines are three-state.
An instruction, MVS, is provided for strobing a peri-
pheral device and making the lines available to the
peripheral.

D-LINES AS OUTPUTS

The eight bidirectional three-state D Lines are typical-
ly used for display segment drive and 8-bit 1/0 data
transfer. Data outputs are all 8-bit parallel. During the
execution of the OUT instruction, contents of the
RAM and ACC are directly transferred to the D Lines.
Simultaneously the EXT signal is being generated for
use by external circuitry as a ““data strobe” or the D
Lines can all be latched.

For 7-segment display applications, output-latching
of the segment data is performed during eithera DISN
(Display Number) or a DISB (Display Binary) instruc-
tion. During a DISN the ACC contents (Carry = Dec-
imal Point) are encoded automatically into the 7-seg-
ment hexadecimal codes shown on the next page. All
the D Lines are then latched.

During a DISB the contents of the RAM and the ACC
are directly loaded into the Display Latch, bypassing
the display encoder. This allows arbitrary binary pat-
terns to be displayed.

DISN INSTRUCTION CODING
SEGMENT-LATCH OUTPUTS, NONINVERTED

The Carry Bit is output at D7 for decimal point display.
D7 = Carry if normal output polarity is selected using the EUR instruction. a
__/
f' g ‘b
D
N’
Table 2.1

13

A LINE OUTPUTS

The A Lines — the 13 Address/Control Outputs — are
used both for general-purpose control outputs, for
strobing displays and keyboards, and for outputing
the contents of the Program Counter.

A set of Master Latches can be set by a sequence of
PSH (Preset High) and PSL (Preset Low) instructions,
during which the contents of the BL Register indicates
which latch is to be affected as shown in Figure 2.4.

Once the strobe pattern is set up, an MVS (Move
Strobe) instruction will copy the bits into some Slave

14

Latches and then onto the A Lines. The MVS will
also float the D Lines, making them available to the
peripheral devices being strobed.

LIGHT-EMITTING DIODE DISPLAYS

The S2000 can directly drive a common-cathode
LED display. The D Lines are the source for the
LEDs, and the A Lines are the sink. Furthermore,
the polarity of both the A Lines and the latches on
the D Lines are software-controlled. Thus a wide
variety of display types can be accommodated.

3 S2000
INSTRUCTION
SUMMARY

REGISTER INSTRUCTIONS

Load ACC from BL Register BL -~ ACC

LAI X * Load accumulator immediate, select K and X - ACC
I lines. Discharge to V. the K lines corre- 0<X<1b
sponding to the bits o?X containing zeroes. SELECT K INPUTS
For TouchControl applications, see page 56. SELECT | INPUTS

*Load BL with E plus 1 and BU with Y E+1->BL
Y->-BU 0<Y<3

= s

*Load BL with zero and BU with Y

Y-BU 0<Y<3 J

Exchange ACC and BU Registers. (The most
significant ACC bits are unchanged.)

*The first instruction to follow POR may not be an LB-type or an LAI.
Only the first LAl of an LAI sequence is executed, and only the first LB of an LB sequence is executed.

15

RAM INSTRUCTIONS

In all cases below, MEM refers to the word in RAM addressed by BU, BL

LAM Load ACC from memory, then modify BU MEM - ACC
BU®Y->BU
XClI Y Exchange ACC with memory, then increment MEM <— ACC
BL and modify BU. Skip* if BL=10 BL+ 1~ BL
after incrementing. BU®Y - BU
The exclusive-OR of BU with Y allows bouncing back and forth
between 2 ‘“‘pages’’ of RAM without concern for which was the
starting page. The same subroutine can manipulate two different
pairs of pages.
Old BU
0123
00123
New BU 11103 2
212301
313210
Y
N | J
‘ STM
RSM B Reset bit B in memory to 0 0- MEMBITB
0<B<3

*Skips, when invoked, skip the very next instruction; whenever that skipped instruction is a PP (Prepare
Page) however, the next instruction is skipped as well.

16

ARITHMETIC AND LOGICAL INSTRUCTIONS

In all cases below, MEM refers to the word to RAM addressed by BU, BL.

Add memory to ACC. Carry unaltered MEM + ACC -~ ACC

ADIS X Add X to ACC immediate and skip* if X+ ACC - ACC-

sum << 15. Carry unaltered. CARRY UNALTERED
IF SUM < 15, SKIP
IF SUM > 15, NO SKIP

STC Set carry to 1 1-CY

Set flag 1

Set flag 2

*Skips, when invoked, skip the very next instruction; whenever that skipped instruction is a PP (Prepare
Page) however, the next instruction is skipped as well.

17

SKIP* INSTRUCTIONS

Skip if ACC = memory at BU, BL. If ACC = MEM, SKIP
SZM
SBE Skip if BL=E. IF BL = E, SKIP
e —_— ‘
SOS Skip on ‘seconds’ Flag (i.e., timer output). IFSF=1,0~>SF
and SKIP
If ‘seconds’ Flag = 1, skip and reset
‘seconds’ Flag.
SzZK
ecte
TouchControl applications, see page
Szi Skip if zero in | input. The bits in the
last executed LAI instruction select the
corresponding | inputs. The instruction
skips if selected | input is 0.
TF1 | Testflaglskipifser. SKIP
\ TF2 Test flag 2, skip if set. IF F2=1, SKIP

*Skips, when invoked, skip the vrry next instruction; whenever that skipped instruction is a PP (Prepare
Page) however, the next instruction is skipped as well.

18

PROGRAM CONTROL INSTRUCTIONS

PP Y Prepare Page or Bank Register. If previous IF PREV INSTR #
instruction was not a PP, Y - Prepare PP, Y - PPR
Page Register. (PPR) o<Y<15
If previous instruction was a PP, Y - IF PREV INSTR =
prepare Bank Register. If a PP is skipped PP, Y - PBR
the following instruction will also be o<Y<7
skipped. Any number of PP’s plus the
following JMP or JMS may be skipped in
this fashion.

JMS X Jump to location X on page 15. LR+ 1-> LSTACK

Save PR and LR + 1 in program stack. PR - P STACK
X - LR
15> PR

Exception: if previous instruction was LR+ 1- LSTACK

a PP, jump to PBR, PPR, X. PR - P STACK
X - LR
PPR - PR

k PBR -> BR)

19

PROGRAM CONTROL INSTRUCTIONS (Cont.)

RT Return from a subroutine. LSTACK - LR
PSTACK - PR

20

INPUT/OUTPUT INSTRUCTIONS

In all cases below, MEM refers to the word in RAM addressed by BU, BL.

In all cases involving 8-bit data transfers, the low-ordered bits are in the accumulator and the high-ordered
bits are in RAM.

Input data from D Lines to ACC and memory, if D-bus is floating. Otherwise, transfer
Display Latch to ACC and memory.

Dy > ACC, D, 4 ~ MEM

DISB Display binary data from ACC and memory.
Exit from floating mode on D Lines.
The display latch outputs may invert, depending upon
the last executed EUR instruction.
ACC ~> DISPLAY LATCH (3-0) » D5 4
MEM —~ DISPLAY LATCH (7-4) > D, 4

MVS Move A-Line Master-Strobe-Latch to A Lines.
Enter floating mode on D Lines.
MASTER STROBE LATCH{5.4 =~ Aj2.9

PSL Preset low the Master-Strobe- Latch addressed by BL
ifO<BL<12:SET LATCHBIT (BL) LOW.
ifBL=13:SET STATIC OPERATION.

if BL
if BL

14 : FLOAT D LINES.
15 : SET ALL MASTER STROBE LATCH BITS LOW

21

INSTRUCTION CODES AND TIMING

f

MNEMONIC

CYCLES

HEX

BINARY

00000111

1T+n

00001000

00001011

00001100

0001
00001111

00010000

00010011

00010100

00010111

00011000

00011011

'00101000

000111XX

00101100

00101001

34 to 37

40 t0 43

001101XX

010000XX

44 to0 47

50 to 5F

010001XX _

0101XXXX

60 to 6F

COto FF

0110XXXX

TIXXXXXX

automatically
n = number of instructions skipped

Note: OP code 01 is reserved for use with the development tools as a breakpoint.

* Assembled code should contain the complements of these arguments: the AP Assembler complements them

22

$2000 INSTRUCTIONS

23

$2000 DEVELOPMENT TOOLS

AM! Microcomputer Development Center

AMI‘s MDC with specialized S2000 components pro-
vides a complete software development center and
hardware prototyping facility.

The DEV-2000 Development & Debug Module links
the user’s prototype to the MDC. It gives quick-turn-
around, on-line debug of hardware and software,
including trace, step and macro capabilities.

The SES-2000 emulator board, a pin-for-pin substi-
tute for an S-2000 chip, provides program storage on
UV erasable PROM:s.

24

DEVELOPMENT SYSTEM OVERVIEW

4 S2000
DEVELOPMENT
TOOLS

The S2000 single-chip microcomputer is fully supported by a proven array of sophisticated development aids:

HARDWARE

SOFTWARE
Written in 6800 assembly language for
operation on an MDC

GENERAL-PURPOSE
can also be used for
development of 6800
microprocessor systems

Center (MDC)

Line Printer

SPECIALIZED
for S2000
developments

-

/Microcomputer Development

MDC-140 Logic Analyzer

DEV-2000 Development Board
SES-2000 Emulator Module
TES-2000 Functional Tester

\

FDOS- 11l — disk operating system
ED — text editor

LA — logic analyzer

P6834 — EPROM programmer

AP — assembler

LD — loader

DB — debugger

SM — software simulator

68.F — LA display formats

ALL — macros for DB and SM

2KF — skeleton program
Cross-assemblers, editor and simulator/
debug software are also available on a
major timesharing service. J

MICROCOMPUTER DEVELOPMENT CENTER
(MDC)

AMI’s MDC is a fully equipped, disk-based micro-
computer development facility, complete with FDOS-
Il Floppy-Disk-Operating and File Management Sys-
tem. Controlled from its CRT terminal, MDC provides
instant access to program and data files resident on
removable diskettes. It comes complete with RS-232
interface, current-loop interface, EPROM burner, and
self-diagnostics.

DEV-2000

The DEV-2000 Development Module provides quick-
turnaround on-line debug of your prototype S2000
system hardware and software, by linking your proto-
type system with the MDC. It comes fully assembled
including an S2000 chip and a TTL-compatible 40-pin
DIP connector that plugs right into your S2000 socket.

When running DB (the S2000 Debugger Program) on_

the MDC, you can fully and easily control and inter-

25

rogate the S2000 chip on the DEV-2000. This sophis-
ticated Debugger permits full execution control —
including single-step, N-step, and breakpoint modes
— over your S2000 prototype hardware. You can jam-
load all the S2000’s registers, trace their behavior,
and get an output listing of everything that appears
on the CRT. And you can work in a higher level of
language by using the Debugger’s Macro capability
and its accessibility to special-purpose 6800
subroutines.

SES-2000

The SES-2000 Emulator Module acts like an S2000
microcomputer with erasable program memory. This
compact unit comes fully assembled with an S2000
chip and two S6834 EPROMs, which can be erased
by ultraviolet light and electrically reprogrammed.
SES-2000 offers real-time execution at a low cost.

TES-2000

The TES-2000 is a dedicated S2000 tester which
allows functional go/no-go comparison of CPU and
ROM against those of a model S2000 chip.

MDC-140 LOGIC ANALYZER

The MDC-140 Logic Analyzer is an advanced debug
tool connected as a peripheral device of the AMI
Microcomputer Development Center (MDC). Features
include:

e Captures 1024 Events of 40 Parallel Inputs

e Captures Data Under Control of Programmable
Start on Data Content

e Delay of -1024 to +64K Clock Periods

e Setup and Display of Captured Data Under Control
of MDC Software

26

e Display Format is User-Definable; Captured Data
Can Be Displayed in a Mix of Hex, Octal, Binary,
ASCII and Special Formats for Support of S6800,
$6820, S2000, 8080, etc.

Four Clock Sources
Input Voltage Range = -15 to +15 volts
Adjustable Input Thresholds

Data-Dependent Output for Triggering an
Oscilloscope

CUSTOMER ASSISTANCE

AMI’s S2000 Applications Engineering staff are avail-
able for consultation regarding all aspects of S2000
usage. AMI’s staff is also available to discuss any
special modifications to the S2000 for high volume
applications.

INTRODUCTION

This section defines the functional characteristics of
the AMI S2000 Assembler Program (AP). AP is an
MDC disk resident assembler which processes S2000
Assembly Language programs, translating mnemonic
operation codes to the binary codes needed in machine
instructions for the S2000 microcomputer. Its inputs
are a Source Program File and optionally a Macro Li-
brary File. Its outputs are (1) a formatted assembly
listing of the program which includes notification of
errors detected during the assembly process, and (2) a
binary file of the machine instructions and data assem-
bled. The significant features of the AP are:

e Symbolic representation of instruction operation
codes and memory addresses

o Predefined symbols for program constants and data
e Operand expressions
e Macros

e Conditional assembly options

ASSEMBLER STATEMENT

column 1 T (1 or more)

column 1

SOURCE PROGRAMS

—< label >-»< blanks >-»<operation>—< blanks >+-<operand>-—s;<comments>
(1 or more) "

5 MACRO
ASSEMBLER

FUNCTION

AP processes an S2000 source program as a sequence
of statements defining machine instructions, program
data or various assembler directives. Depending on the
operating system environment, sections of the source
program may reside in other files and may be included
in the assembly, and Macros may be locally defined in
a program or may reside in a Macro Library and be in-
cluded in the assembly. Typically a unique source pro-
gram will be created with the MDC Text Editor (ED)
and assembled with predefined Macros. FDOS-11 only
supports a single input file; MERGE can be used toin-
corporate a Macro Library.

The binary words into which statements are translated
are normally placed in successively increasing memory
locations when loaded by the S2000 Loader (LD).
The assembler keeps an internal location counter to
point to where each newly translated code is to be
placed. This location counter is accessible as an oper-
and and modifiable. The location counter is defined as
a binary sequence for the generation of program data.

!

L » x <Comment — assembler comment statement > T

A source program consists of two or more statements of the form:

LABEL OPERATION

OPERAND

COMMENT end-of-statement

A statement must contain at least one of these fields, otherwise it is a blank line generating no code.

(Note that throughout this chapter example listings generated by the AP assembler program may include

features not described until later sections.)

NOTE: No embedded blank characters within label or operation fields; blanks (one or more) separate the opera-

tion field. Semicolon begins comment field.

Each statement may (1) define one or more machine
language instructions, or (2) invoke one of the many
assembler directives. Which function is performed is
defined by the OPERATION field thus defining the

Statement Type. The first statement of the program
should be a TITLE statement (optional) and the last
statement must be an END statement.

FIELDS

Statements consist of four fields, namely: the Label
field, the Operation field, the Operand field and the
Comment field. The Comment field begins with the
character ‘;’ and terminates at the end-of-statement
character (eos), carriage return. A full comment
record may begin with an asterisk (*) in position one.

The Label field is present when the first character of
the statement is non-blank and not (*) or (;).

The Label field terminates at the occurrence of the
first blank.

28

The Operation field begins at the first non-blank char-
acter following the Label field and terminates at the
occurrence of the first blank, the Comment field or
the end-of-statement.

The Operands field begins at the first non-blank char-
acter following the Operation field and terminates at
the Comment field or end-of-statement.

The following examples detail the statement structure:

Label Field

The Label field (when present) defines a symbol known
as a label which “labels’’ either

1) a unique location in the S2000 memory space, or
2) a macro in a MACRO definition statement, or

3) avariable value as the result of an assignment state-
ment (SET), or :

4) an absolute data value (EQU).
The form of a label is a single letter [A .. Z], or a let-

ter followed by a sequence of letters or digits [0 .. 9],
six characters maximum.

29

If the first character of a label is a colon (:), the sym-
bol is called a local symbol and is defined only within
a local region. This allows the same symbol (e.g.
:LOOP) to be defined more than once; each definition
must be in a separate local region and each definition
is treated by the assembler as unique.

The directive LOCAL is used to define the beginning
of a new local region and the end of an old one. A
local region may be nested within another, giving up
to 8 levels of nesting, using the directives LBEG and
LEND. LBEG begins, and LEND ends, a local region
nested within a larger region.

Operation Field

The Operation field defines the statement type and
may be optionally omitted in which case the state-
ment is a full comment statement. The operation
‘mnemonic’ is a symbol which defines a machine in-
struction or assembler directive. Table 3-2 is a list of
the predefined instruction mnemonics and Table 5-1
summarizes the assembler directives. The different in-
struction mnemonics may define variations of the
operand field, since some instructions permit or re-
quire different formats of operands. Assembler direc-
tives are used to assign a value to a label, to define a
macro, to generate object code data or to control the
assembly process.

30

Operand Field

The Operand field is the third field of the source state-
ment. It is used to define the instruction operands,
parameters for data in macro calls and assembler di-
rectives. This field is required by some statement types,
and not by others. The operand field may contain any
number of sub-fields dependent upon the statement
type. The range of an operand is specifically defined
by its operation mnemonic. WHERE REQUIRED,
OPERAND COMPLEMENTATION IS DONE AUTO-
MATICALLY, (e.g. PP instruction).

Comment Field

The Comment field is the last field and is signalled by
the occurance of a ‘;” which is not embedded in any
text string of an operand. The comment is optional
but highly recommended for good program documen-
tation. It may contain any characters and is terminated
by the end-of-statement character.

SELF-DEFINING TERMS — OPERAND FIELD

Numeric and character data is required frequently in
the operand field of the source statement. The charac-
ter representations of these data are predefined within
the assembler domain and are known as self-defining
terms. All self-defining terms are, by definition, non-
negative. They may be formed into negative values
by prefixing with the unary operator ‘—’'. Three types
of self-defining terms are available; decimal, hexa-
decimal, and current location counter (*).

Decimal

Decimal radix is assumed; therefore, to specify a dec-
imal number, one need only write the number. The
range of decimal number is zero through 65535.

Expressions are evaluated according to these rules:

. Portions within parenthesis are evaluated first.

Examples: 32671 10 5 600

Hexadecimal

A hexadecimal self-defining term is preceded by a $
(dollar sign). The range of a hexadecimal number is
zero to FFFFqg.

Examples: $A2 $80 $F

Current Location Counter

An asterisk (¥) in an expression (where an operand is
expected) is replaced by the current value of the lo-
cation counter.

OPERAND EXPRESSIONS (See table, page 33)

The simple operand terms previously described (labels,
numbers, location counter) may be combined with
arithmetic and logical operators to produce complex
expressions.

1
2. Unless overridden by parenthesis, operations with higher precedence are done first.

3. If neither parenthesis or precedence supply an order, operations are performed from left to right.

4. Numbers may range from —32768 to 32767 (16 Bits), integer values only. Non-integer division results are truncated. Negative numbers are

represented in two’s complement form.

3

Sample uses of expressions:

1. Loop until Key Input NKEY is zero.

Note that the assembled operand values are truncated depending on the length required for the particular in-
struction (and complemented if required).

Note: For explanation of Assembler Directives, e.g., EQU, ORG, see index on page 44.

32

TABLE OF OPERATORS

— 6 Unary Minus.

< 3 ‘ Less Than. All relational operators produce $FFFF
if the relation is true, and O if the relation is false.

& 2 Logical And. Each bit of the result is the And of
the corresponding bits from the initial values.

Exclusive Or.

Note: An asterisk (“‘*'’) has three interpretations: (1) the beginning of a comment; (2) the value of the present lo-
cation counter contents; or (3) the multiplication operator. Its context determines its meaning.

33

ASSEMBLER DIRECTIVES

The assembler directives enable the programmer to
control the assembly process. The directives appear in
the operation field. They are used to allocate working
memory space, assign values to data, control the se-
quencing of source programs through the assembler
and control the format of the assembly listable output.
Assembler directives used as pairs (MACRO/MEND,
IF/IEND) are described in the following sections.

Heading Statements

A TITLE statement is optional. The label is ignored
if present. The Operand field will be placed at the top
of each page of listable output. A PAGE statement
can be used to force a new listing page and add a sec-
ondary title from its operand field.

Source Program Terminations

END is the last statement of the program and termi-
nates the assembly process. The assembler is a two
pass assembler. At the end of the first pass, the input

file pointer is reset to point to the first record of the
file and the second pass is begun. At the end of the
second pass, the assembly is complete.

Vertical Spacing

Blank statements (one or more spaces followed by
carriage return) are used for vertical spacing.

Variable Value Definition

The SET statement defines the symbol in the Label
field, giving it the value of the expression in the Op-
erand field. Symbols defined with a SET statement
may be redefined. Symbols previously defined in the
Label field of any statement other than a SET state-
ment may not be redefined with a SET statement.
All terms in the expression must eventually be defined.
The range of the expression is -32768 to 32767.

Among the more useful functions of the SET statement
is the saving of the current value of the location coun-
ter for later usage.

* <CCCCCCLK

34

Location Counter Control

The 0 RG statement permits the programmer to direct the binary machine code of the translated statements to
specific sequential locations within the S2000 8K memory space. The location counter is set to the value of the
expression. All terms used in the expression must be defined. The value of the expression must be in the range of
0to 1FFF 4.

Symbol Value Definition of any statement other than a SET statement may not
be reused in the Label field of an EQU statement.

The EQU statement defines the symbol in the Label

field, giving it the value of the expression in the Op- All terms in the expression must be defined. The range

erand field. A symbol once defined in the Label field of the expression is -32768 to 32767.

35

Data Generation/Reservation

The assembler recognizes four directives for data gen-
eration and memory reservation, namely: FCB, FDB,
FCC, and RMB. These directives are included for future
extensions to the processor. They are of limited utility
for the S2000. The Operand field is required for each
of these directives. The Label field is optional, and if
present, the symbol is assigned the value and mode of
the location of the first byte of the data or reserved

space.

FCB

The Form-Constant-Byte directive generates one byte
of data for each expression (subfield) in the Operand.
Subfields are separated by commas.

Each expression is evaluated and the resultant byte is
formed from the modulo 256 remainder of the
expression.

FCC

The Form-Constant-Character directive generates n
bytes of 7-bit ASCII code corresponding to the char-
acter string in the Operand field. Any of the. ASCI|
character set may be used.

FDB

The Form-Double-Byte directive generates two bytes
of code for each expression in the Operand field. The
format of the FDB statement is identical to that of

36

the FCB. Each expression is evaluated as a signed 16-
bit value in the range —-32768 to 65535, with the most
significant eight bits placed in the first byte.

RMB

The Reserve-Memory-Block directive is used to re-
serve one or more bytes of memory without filling
them with data. The expression in the Operand field
must evaluate to a positive integer and defines the
number of bytes to reserve.

MACROS

Often the programmer will find the same or similar
sequence of source language instructions occurring
in the program in several different places. With an
ordinary assembler, the duplicate code must be re-
written for each occurrence. A Macro is a device which
permits the programmer to give a symbolic name to a
sequence of source code. Then in each place where
that sequence would occur, its name is placed as if it
were an instruction mnemonic, and the assembler

substitutes instead the body of the macro, which is
the sequence of instructions with that name. Para-
meters may be defined for the macro, which further
specialize the sequence for each use of it.

For example, suppose the programmer has several
occasions to perform the same operation. This may
be coded in the source language as the following:

If every occurrence of these instructions together involved the same two memory locations, a macro might be

defined with the name ADD2C7:

Then where the sequence is actually to occur, the single mnemonic ADD2C7 may be used.

Suppose however, as is more likely, that the source and destination addresses are not the same for every occur-

rence. Then the macro should be defined with parameters, so that the actual source and destination addresses
may be used:

38

The mnemonic must be accompanied by the actual addresses (or their symbolic names):

Note that in each reference, the first parameter is sub-
stituted for the dummy parameter “@ROW’’ and the
second for the dummy parameter “@COL"’; the three
macro expansions follow each call or invocation.

MACRO Directive

The MACRO directive signals the beginning of a macro
definition. The symbol in the Label field of the
MACRO statement is required, and becomes the name
of the macro. The Operand field is optional. The Op-
erand field may contain any number of symbols,
which are defined within the macro as parameters;
subsequent use within the macro definition of the
parameter symbols become references to the macro
parameters. The symbols in the Operand field of the
MACRO statement are formal or ‘“‘dummy’’ para-
meters, and will not conflict with any symbols defined
elsewhere in the program; they are thus local to the
macro definition. Each formal parameter must begin
with the character ‘@.” When the macro is called or

39

invoked, the actual arguments (which form sub-fields
of the calling statement’s Operand field) replace every
occurrence of the corresponding formal parameters.
The parameters are passed as strings, so there are no
restrictions in the manner of their use in the macro
definition. The macro call must specify the same num-
ber of parameters as the definition. Null parameters
can be specified in the macro call by leading or suc-
cessive commas, in which case the corresponding
actual parameters are null, and their references in
the macro expansion are deleted.

MEND Directive

The MEND directive designates the end of a macro
definition. Every occurrence of a MACRO directive
must be followed eventually by exactly one matching
MEND directive. The MEND directive permits neither
Label nor Operand. Review the examples in the pre-
vious section for MEND usage.

CONDITIONAL ASSEMBLY

One of the advantages the use of a microprocessor
brings to a system design is the ease of restructuring
it for different configurations by simply changing the
program. When the larger part of a program is the same
for the different versions of the system, and only sec-
tions of it need to be added or deleted to configure the
various versions, it is convenient to write one program
incorporating all of the potential sections, then tell

the assembler to omit those parts which are not ap-
plicable to the particular configuration. This is done
by the feature know as ‘‘conditional assembly’’ since
parts of the program are assembled or not, based on
some defined conditions. The same method may be
used in writing a program which includes debugging
and test statements during checkout, but excludes
them in the final product.

Conditional assembly is controlled by the IF, ELSE,
and IEND assembler directives. There are two basic
forms:

IF condition
IEND

and
IF condition
ELSE

IEND

In the first case, the statements between the IF and
the IEND will be assembled only if the condition is
true (least significant bit = 1). When an ELSE is in-
cluded, the statements between the |F and the ELSE
will be assembled when the condition is true, and the
statements between the ELSE and the IEND will be
processed when the condition is false. |IFs may be
nested up to eight deep; that is to say, a complete
IF — ELSE — IEND block may appear within the
range of another IF.

ERROR

The Error directive will force an assembly error mes-
sage. The errror text is taken from the Operand field
of the directive.

Example of Use: Assume your program may not ex-
ceed 1K (400 hex) in size. The sequence below will
produce an error message if the limit is exceeded.

IF *>=$400

ERROR PROGRAM TOO LARGE
IEND

END

Error messages are listed under the offending state-
ment. The flag

> > > > ERROR < < < < [message]

4

appears immediately below the statement; the unique
self -explanatory message that caused the error follows
the flag.

LISTABLE OUTPUT

The assembly listing is formatted in pages of 52
lines per page plus headings. The first line contains
the Operand field appearing on the TITLE statement
and a page number. The second line contains the Op-
erand field of the most recent PAGE statement. The
third line is blank and the fourth line contains the head-
ing categories for the listing. The category names are:
statement number (STMT), location counter (LOC),
object code (OBJ), and source statement (SOURCE).

LISTABLE OUTPUTS (Continued)

The set of statements to be included in the assembled output listing can be controlled by the following

directives:

LIST

— the primary switch for generation of the listing information; its

initial value is set by the FDOS option selected when calling the

assembler:

1AP, inputfile, outputfile, option

The following table shows the destination of both the output listing and the object code, in response to

the chosen “option.”

If Destination Destination
““Option”’ of Listable of Object Remarks
Is: Output Code
0 disk outputfile — 0 is the default value of “option.”
1 disk outputfile disk outputfile List and object interleaved.
2 MDC screen disk outputfile
3 MDC screen -
4 — disk outputfile
LDATA — list object for statements generating more than one byte of data; initial
value “off.”
LMCAL — list statements generated from macro calls (invocation of previously
defined macros); initial value “on.”
LMDEF — list macro definitions; initial value “on.”
LSKIP — list statements skipped by conditional assembly directives; initial
value ““on.”
LSYMB — list symbol table after assembly is complete; (value only checked

once); initial value "‘off.”

The value of a directive’s operand expression deter-
mines whether the option is on or off, i.e., whether the
statements controlled by the directive are included
in the listing. A “true” value (least significant bit =
1) requests “on” or "inclusion”; a “false’” value (0)
requests exclusion.

The previous values are maintained on an eight level

42

stack. If no operand is present for the directive, then
the previous value is pulled from the stack and this
value is used to control the listing. This feature is very
useful when using the options in macros.

Note that when LIST is off, the other directives have
no effect.

43

44

LOADER

The AMI S2000 Loader (LD) is a MDC 6800 program
that is used to load object files created by the AMI
S2000 Assembler into MDC memory. This allows
operation of the DEV-2000 Board with the MDC
S2000 Debug (DB) program for verifying the correct
functioning of the S2000 with a user’s program; it is
also necessary to use LD prior to using the software
simulator (SM) and the EPROM programmer (P6834).

FUNCTION

LD offsets the user’'s defined memory allocation by
(2000) 1 before loading. In addition, it optionally
places a WAI instruction in all undefined memory
locations. The DEV-2000 Board, when issuing S2000
memory requests, also offsets the request by (2000)1 6
This allows the MDC programs (e.g., LD, DB) to ex-

6 LOADER

ecute in the lower 8K of MDC memory. It also facil-
itates loading separate S2000 object programs before
beginning the debug process. The upper 8K (2000-
3FFF) is shared memory; while the debug program is
running, it is available to the MDC; while the S2000
program is executing, it is available to the DEV-2000
Board.

EXAMPLE:

To load an S2000 program assembled by AP (for ex-
ample, DEMO), use

LD, DEMO

INTRODUCTION

The AMI S2000 Debug Program (DB) is a powerful
tool designed to allow the users to interact with the
combined MDC/DEV-2000 Board for controlled test-
ing of their S2000-based hardware. The commands
available to the user provide far more extensive cap-
abilities than are normally found on a computer con-
trol panel.

To call DB from FDQOS, type
IDB,ALL,<outputfile>

where ALL is a file containing Debugger commands
in the form of macros. While a value of 1 is in the

7 DEBUGGER AND
DEV-2000 BOARD

pseudo-register DSK, anything that appears on the
CRT will be output to the disk file named. To exit
the Debugger, close the output file, and return to
FDOS, use the shifted DPLX key.

BASIC COMMANDS

DISPLAY
SET
REMOVE
EXECUTE

The minimum abbreviation is underlined on each syn-
tax diagram.

Displays the contents of S2000 registers or memory.

“ALL" displays all S2000 registers. Note: ALL is an
S2000 library macro which must be loaded explicitly,
i.e.,, DB, ALL.

Quoted strings are displayed verbatim. They may be
used to format and label the display output.

Slashes cause a carriage return — line feed to be output.

EXAMPLES:
DISPLAY ALL
DISPLAY A, E, BL, BU
DISPLAY “BL =" BL

D M 400 50

REGISTERS:

A SAL Slave Address Latch
BL PC Program Counter = LR + PR + BR
BU STACK (level @ is closest to the PC)
CARRY . BP Break Points
DISPLAY =DIN ifin float; MEMORY ROM
= SL if not floating
RAM RAM
E
DF Float on D bus*
|
DP Polarity of display outputs (1=normal)
K
DINPUT D external input source
KIS Input Source for K & | lines
(1 = external, 0 = MDC control) SL Segment latches
LI Last Executed Instruction F1
NI Next Instruction (Memory at PC) F2
MAL Master Address Latch DS Switch for CRT output to disk

When an “INP" instruction is executed, the source of the data being put into the Accumulator and RAM is a function of DF; if the D Bus is floating,
data comes from DIN (i.e., from an outside source); if DF = @, data comes from SL. :

The SET statement assigns new values to S2000 reg- RAM refers to S2000 internal RAM, which is organized

isters or memory. into 4 rows of 16 digits each. <row> and <column>
provide the starting digit location. Row ranges from

MEMORY refers to program-storage, which is actually

RAM located in the MDC system.

48

0 to 3, column from O to F (hex). Providing more than EXAMPLES:
one value after row/column will set multiple digits
along a row. SET BL6

SET RAM306,6,7,9

Breakpoints are set with the SET command, displayed EXAMPLES:
by the DISPLAY command, and removed by the
REMOVE command. A maximum of 16 breakpoints REMOVE 13F0
may be set concurrently.
R DF1

EXECUTE causes the S2000 to run. If no count, or a EXAMPLES:
count of O is provided, it will run until either a break-
point is encountered or a key is depressed. EXECUTE

A count greater than zero will cause that many S2000 E 3
instructions to be executed.

The MACRO command is used to attach a name to a The name must begin with a letter and consist entirely
frequently used debugger command sequence. Once a of letters and numbers. There is no restriction on length.
macro has been defined, the name may be used any
place the original text is desired. This can save lots of

typing. EXAMPLES:

A MACRO definition with no text will cause any MACRO DABE DISP “A="A"B="B"E="E
previous definition to be deleted.
MACRO 101 E;D SL;S K O;E; D SL
The text includes everything between the name and
the end of the line. M KILL

49

A special macro named PROFILE is called automatically after each execution of the EXECUTE command. Thus
a special display can be implemented each time a breakpoint is encountered, or each time the EXECUTE counter
is decremented. To disable the PROFILE macro, simply redefine it with no argument.

-The LMACRO command lists all macro names and definitions if no name is specified, or the definition of the
named macro if a name is supplied.

XFER causes the 6800 to do a JSR to the indicated EXAMPLES:
address. This allows convenient access to special pur-
pose user written debug functions. XFER EC00

NOTE: Thisis a good one to try.
$ECOO0 is the MDC boot address.

50

SIMULATION

The S2000 simulator, SM, is identical in operation
with the DB program except the S2000 instructions
are simulated entirely by software without any ex-
ternal attachments. Thus, the 1/O ports are not avail-
able to connect to real devices. The simulator is useful
for initial debug of algorithms or for educational
purposes in learning how each instruction operates on
the S2000 machine state. FINAL PROTOTYPE
DEBUG SHOULD BE DONE WITH THE SES-2000.

No count or count = 0 causes simulation to begin at
the current PC value and continue until:

a) HALT ($01) or DB breakpoint occurs
b) Keyboard input (e.g., DISPLAY)
c) (PC) >$1,000

A positive count causes simulation of “‘count’’ instruc-
tions unless a condition (a-b-c above) occurs before
the count is finished.

8 INSTRUCTION
SIMULATOR

The user program is limited to 4K. Any PC reference
>$1,000is asimulated “HALT" and immediate return
to the debugger (which is included as part of the SM
program).

All registers described for DB are available to the sim-
ulator for setting and display. The Execute command
is disabled. The SIMulate command is enabled and
the following additional simulation only-registers are
available:

A negative count causes the display of the previous
“count” PC values (<50) LIFO.

Examples:

SIMULATE
SIM 7

SIM -7
SIM 250

Programs loaded for simulation by LD should have
memory initialized (by LD) to 01 (HALT).

6834 PROMS

AMI 6834 PROMs may be programmed on the MDC
from RAM memory. Note that the LD program loads
S$2000 programs offset by 8K (2000 HEX) which is
out of the way of the PROM programmer software,
P6834.

Issue the FDOS-1l command

LD,filename
to load the S2000 object program into memory.
Issue the FDOS- Il command

P6834
to run the 6834 PROM programmer. Commands to
P6834 are entered via the keyboard after the prompt
character ““%’’ is displayed. The programming com-

mand is

Pxxxx,yyyy,zzzz where

xxxXx is the hexadecimal low memory address
yyyy is the hexadecimal high memory address
zzzz is the starting PROM address, usually zero

Because the 6834 PROM contains 512 (200 HEX)
bytes and LD offsets the S2000 program by 8K
(2000 HEX) the command to program the lower 512
bytes of a S2000 program would be

P2000,21FF,0

and the next locations would require
P2200,23FF,0

After typing the P command, the prompt

TURN PWR ON, STRIKE ANY KEY

52

9 PROM/ROM
GENERATION

is displayed. This is a request to the user to place his
blank PROM in the programming socket and turn the
power switch on (and then strike any key to signal
the power is on).

Following programming, a comparison is made be-
tween memory and the PROM to ensure correct
programming. |f a discrepancy exists, the following
error message is displayed

XXXX A% zz where
xxxXx is the memory address

A% is the data in the PROM

zz is the data in memory

After the comparison is complete, the message
TURN PWR OFF, STRIKE ANY KEY

is displayed. This requires the user to immediately
place the power switch in the ‘“‘off’” position and
signal the program through the keyboard. Additional
PROMs may then be programmed.

Other P6834 commands are

CXXXX,YYYY Compare yyyy (hex) bytes in
the PROM with memory at
xxxx (hex)

TXXXX,YYYY Transfer yyyy (hex) bytes in

the PROM to memory begin-
ning at xxxx (hex)

ROM GENERATION

The S2000 includes masked read only memory. Mask
generation is performed on the B6700 computer
system. The binary bit pattern from a S2000 object
program can be transferred from a diskette file on
the‘MDC to a B6700 CANDE file.

10 PROGRAMMING
NOTE AND EXAMPLES

INVERTED INSTRUCTION ARGUMENTS:

Several instructions in the S2000 instruction set require that the argument of the instruction be inverted.
Specifically, these are the XCIl, XCD, XC, LAM, and PP instructions. The assembler automatically performs
the required inversion. The instruction descriptions are written from the point of view of an assembly -language
programmer; therefore the arguments are presented in their uncomplemented form. Thus for example, PP Y
in the descriptions assembles as HEX 60 + 1Y.

Program Start

When power is turned on, an automatic power-on reset (POR) occurs. POR sets the Program Counter to Bank
0, Page 0, and Location 0 (NOTE: the Prepare Registers must be cleared by the programmer); it sets the
50/60Hz Counter to 60Hz, the Display Latch outputs to “non-inverted,” and the mode to STATIC with a
FLOATING D-bus. The first instruction to follow POR may not be an LAI, LBE, LBEP, LBF, or LBZ. A dual
PP should be used to initiate the Prepare Registers.

Program Control

Unless a JMP or JMS instruction is immediately preceded by a PP, the Page Register will retain its contents
and not be loaded from the Prepare Page Register.

NOTE: The last location on a page cannot be a JMP or JMS, or else the jump destination will be in the very
next page, rather than the intended page, and the AP assembler generates an error message.

BU Modification Instruction

Several instructions modify the BU register according to the equation: new BU = old BU®Y where Y is the
instruction’s argument.

old BU
01 2 3
olo 1 2 3
gu 1|1 032 NOTE: IfY=0
new 212 3 0 1 BU does not
3|13 2 1 0 change
Y

The generation of a new BU value by exclusive OR-ing of the old value and an instruction variable allows
bouncing back and forth between 2 RAM pages without concern for what the RAM page was at the beginning.

53

LAI Instruction

LAl instruction is used to load a number (0-15) into the Accumulator. If there is a group of LAl instructions
immediately following one another, only the first one is executed. This is useful for coding subroutines with
many entry points using multiple accumulator preloading. For example,

KO LAI 0

K3 LAI 3

K8 LAI 8
RT

is a subroutine which will load the Accumulator with the value 0, 3, or 8 depending upon whether it is entered
at address KO, K3, or K8. The same is true when using the LAl instruction to select one of the K or | inputs.
Note that the variable could select more than one input.

Subroutines and Page 15

If possible, arrange for page 15 to contain jumps to each of the major subroutines. Arrange for all subroutines
and other program modules to start on page boundaries if there is enough room to do this — this will both
decrease the likelihood that PP instructions will be needed, and decrease the likelihood that inserting or
deleting an instruction (typically near the beginning of the program) will cause instructions further down to
move across page boundaries, causing PP instructions to appear or disappear (causing further changes).

A convenient macro to assist this process is the following:

NEWPAG MACRO START A NEW ROM PAGE
ORG (*/64 + 1) =64
MEND

Skip Instructions and Program Size

Since skip instructions are assymetric (you can skip on only one of the two possible conditions), a little thing
like the sense of a flag bit (i.e., 1 or O for condition true) can make a large difference in the size and efficiency
of the resulting program. Internal flags can of course be redefined; this is more difficult with external hardware.
It is essential that the programmer be aware of any hardware restrictions, and establish such things as the sense
of the various switches and indicator lights as early as possible. If the program is begun soon enough into the
hardware development, the programmer can make suggestions as to the most convenient hardware configuration
from his/her point of view. It is most important to avoid unpleasant surprises late in the project (“‘Didn’t you
know you get a 0 input if the touch pad is touched?’’).

54

Skip Instructions and Documentation

For documentation, it is useful to define mnemonic macros for such things as |-Input tests, and symbolic
names for A lines and the like. Thus, if A6 is the output which turns on an alarm, write

ALARM EQU 6
And if 14 is O if the door is open, write

SKDOOR MACRO
LAl 4
SZ| ;5SKIP IF DOOR OPEN
MEND

It is important to note that the most important part of the above macro is the comment, which appears auto-
matically every time the macro is invoked!

Control Transfer Macros:

The following macros are useful for calling subroutines not in page 15, and transferring control to locations out
of page. Note that with the automatic local label convention in macros, local labels cannot be passed to these
macros (i.e., they only work with global labels).

CALL MACRO @ADDR ;CALL SUBROUTINE AT ADDR

PP @ADDR/64
JMS @ ADDR
MEND
GOTO MACRO @ADDR ;TRANSFER CONTROL TO ADDR
PP @ADDR/64
JMP @ADDR
MEND

EXAMPLE:
CALL SuUB1
GOTO LOOP

55

TouchControl Capacitive Touch Keyboard Sensing:
The touch keyboard must be sensed in the following peculiar manner:

;SET BL TO ADDRESS APPROPRIATE A LINE

PSL ;NOT NECESSARY IF A LINE ALREADY LOW
MVS ;NOT NECESSARY IF A LINE ALREADY LOW
PSH ;NOT NECESSARY IF A LINE PRESET HIGH (BUT OUTPUT LOW)

LAI X SELECT EXACTLY ONE K INPUT, DISCHARGE ALL OTHER K INPUTS TO Vss
MVS ,STROBE A LINE HIGH — ONE POSITIVE-GOING STROBE FOR EACH KEY PAD
* (SOME NUMBER OF NOPs MAY BE REQUIRED IF THERE ARE PROPAGATION DELAYS IN THE
* EXTERNAL CIRCUIT.)
SKZ ;SKIP IF SELECTED K INPUT IS 0 (KEY TOUCHED!)

A convenient trick is to preceed a sequence of tests on the same A line by setting a byte in memory to 15 (all
1’s), and make the skipped instruction an RSM. This results in a byte in memory with a ““1”’ bit for each key
touched. Thus, with 4 keys on AO,

SF1 ;FLAG 1 WILL REMAIN SET IF THE KEYBOARD IS
; THE SAME AS IT WAS LAST TIME IT WAS SCANNED,
; THUS ALLOWING FOR NOISE AND “BOUNCE".

LBZ 0 ;SSELECT MEMORY BYTE ATBU=BL=0
LAI 15 JALL ONES
XC 0 ;ACC « MEM
XAE ;SAVE OLD MEM VALUE IN E FOR DEBOUNCE TEST
TTOUCH MACRO @NUM, @BIT ;MACRO TO TEST BIT IN TOUCH KEYBOARD
PSL ;STROBE LOW
MVS
PSH ;READY TO STROBE HIGH
LAI @NUM 'SSELECT K1
MVS ;STROBE HIGH
SZK
RSM @BIT
MEND
TTOUCH 1,0 ;TEST TOUCH PAD 1
TTOUCH 2,1 ;TEST TOUCH PAD 2
TTOUCH 4,2 ;TEST TOUCH PAD 4
TTOUCH 8,3 ;TEST TOUCH PAD 8
XAE ;GET OLD KEYS BACK FOR DEBOUNCE TEST
SAM ;SKIP IF SAME AS LAST TIME
RF1 ; ELSE RESET FLAG 1

56

RAM Addressing:

If a program has any number of flags and variables scattered throughout memory, it is almost essential to have a
set of macros designed to simplify the process of addressing them. In the following macros, addresses are repre-
sented as BU * 16 + BL. A constant BUK has been defined for clarity: The BU part of an address ADR can then
be expressed as ADR/BUK.

BU EQU 16
SET BU, BL TO POINT TO ADDRESS IN RAM

ARGUMENT IS BU*16 + BL
ACCUMULATORMAY BE CLOBBERED; MAY BE SAVED USING XAE

>*****

DDR MACRO @A

IF ((@A)&15) = 15

LBF (@A)/BUK

ELSE

LBZ (@A)/BUK

IF ((@A)&15) « 0

LAI @A A CLOBBERED!
XAB

IEND

IEND

MEND

Note that the most commonly used variables should have BU equal to either 0 or 15, so that they can be addressed
in a single byte (using LBZ or LBF) without changing the accumulator.

*

» LOAD A FROM MEM AT ADR

LOADA MACRO @ADR
ADDR @ADR
LAM 0
MEND

*
* STORE A TO MEM AT ADR
* OLD VALUE OF MEM TO A

STORA MACRO @ADR

IF ((@ADR)&15) = 15
LBF (@ADR)/BUK
ELSE

IF ((@ADR)&15) =0
LBZ (@ADR)/BUK
ELSE

XAE

ADDR @ADR

XAE

IEND

IEND

XC 0

MEND

57

*

» SET MEM AT ADR TO VAL
* OLD VALUE OF MEM TO A

SETMEM MACRO @ADR, @VAL

ADDR @ADR
LAI @VAL
XC 0
MEND

+ SET BL REGISTER
* A CLOBBERED

*
SETBL MACRO

@BL
LAI @BL
XAB
MEND

*

» SET BU REGISTER
* A CLOBBERED

*
SETBU MACRO

@BU
LAI @BU
XABU
MEND

*

* INCREMENT BL
* LEAVES ACC AND MEM INTACT

*

INCBL MACRO
XC 0
XClI 0
MEND

*

* DECREMENT BL
» LEAVES ACC AND MEM INTACT

DECBL MACRO

XC 0
XCD 0
MEND

58

2KF

2KF is a text file containing a suggested standardized
format for S2000 source programs. It is a basic skele-
ton to which you can add your own code to create a
complete S2000 source program. For a copy, contact
AMI,

Appendix A
MDC FDOS 11
Command Summary

MDC Switches: ' general: 20-key pad on right is for edit (program
ED) operations; main keyboard is standard
power on underneath keyboard on left; seven-bit ASCII.

toggle on front of diskette drive Diskettes: Floppy but fragile; handle with care.

Power should be on to the drive when
inserting or removing a diskette. The only
time the diskettes should be removed from
their protective paper jackets is when they

<RESET> top row, right most key, total
system reset

<BOOT> top row, left most key, boot- . . .
strap FDOS-1I from diskette are in the disk drive.
indrive O Standard Operating Procedure: Power on system;
insert diskette with S2000 software; wait
<COM> top row, middle, MDC CRT/ approximately 20 seconds for diskette to
keyboard simulated teletype become ready; <BOOT>; communicate

with FDOS-11 via keyboard.

NOTE: No blank characters anywhere in the FDOS prompts user by displaying an exclamation
command line. Parameters are order de- mark (!). User commands are followed by carriage
pendent for all programs. return <RETURN>. <BACKSPACE> deletes the

most recently typed character.

EXAMPLES:
AP, <inputfilename>,<outputfilename>,

<option>
ED,<oldfile>,<newfile>

59

Name:
Format:

Purpose:

Comments:

EXAMPLE:

Name:
Format:

Purpose:

Comments:

Name:

Format:

Purpose:

AP
AP sourcefilename,outputfilename,option

To assemble the contents of the source

file and generate an object or listing file.

= 0 is default. Both filenames
must be specified.

option

0 listing to output file, no
object

listing and object merged to
output file

listing to CRT, object to
output file

listing to CRT, no object
no listing, object to output
file

option =

=1

LW N

to produce listing file
AP, TECSI, TECSL

to produce object file
AP, TECSI, TECSX,4
cory

COPY

To copy the contents of the diskette in
drive unit O onto the diskette in drive
unit 1.

This is a one-for-one image copy; there-
fore, the contents of either diskette need
not be of FDOS-11 format.

If any sector of the source diskette is
determined bad after 5 read tries, the
last data read from that sector, whether
good or bad, is written to the new
diskette.

DELET

DELET:unitnumber,filenamel,filename2,
..... filenamen

To delete the designated, non-perma-
nent, files from the diskette, in the
specified drive unit, and to repack the
contents of that diskette’s user file area
and file directory area, thus making the
disk space available for additional files.

60

Comments:

Examples:

Name:
Format:

Purpose:

Name:
Format:

Purpose:

Name:

Format:

Purpose:
Name:
Format:

Purpose:

Comments:

Name:
Format:

Purpose:

The file names need not be in any speci-
fic order.

The unit number refers to the drive unit
in which the diskette, with the specified
files to be deleted, is loaded. The unit
number be 0, 1, 2, or 3. If the unit num-
ber is omitted, O is assumed.

DELET:2,JOE1,JOE7,AL,SAM,JACK
DELET,JOE1,JOE7,AL,SAMJACK

Deletes the specified files from the
diskette loaded into drive unit 0.

DB

DB, inputfilename

To debug, using the MDC and S2000
emulation board, an S2000 object pro-
gram previously loaded into memory.
DPA

DPA ,inputfile

To print on the Data Products line printer
the contents of the diskette input file.

ED

ED.,inputfile,outputfile
ED,,outputfile

Text editor. See Appendix B.

GPIO

GPI10,inputfile

To transfer input file (S2000 object) to
B6700 for masked ROM generation. See

Section 9.

See MDC software reference for other
uses.

LD

LD, inputfile

To load S2000 object program into MDC
memory. .

Name:
Format:

Purpose:

Comments:

Example:

Name:

Format:

Purpose:

Comments:

Examples:

LDIR

LDIR:unitnumber,listdevice

To print out the contents of the file
directory on the diskette in the specified
drive unit. Lists the file names, attributes,
file’s starting track and sector, and the
file’s size in sectors. Lists to the specified
list device.

The unit number may be 0, 1, 2, or 3.
If the unit number is omitted, O is
assumed.

The listdevice operand may be C or L.
If the listdevice operand is omitted, C is
assumed. C specifies the console and L
specifies the line printer.

LDIR:1,L

Lists the file directory of the diskette in
drive unit 1 onto the line printer.

LDIR
LDIR:
LDIR:0
LDIR:0O,C
LDIR:C

Lists the file directory of the diskette in
drive unit O onto the console.

MERGE

ME RGE newfilename,filename1,
filename2, filenamen

To create a new file whose contents are
the concatenation of the contents of the
specified files, in the order in which they
appear in the command.

The existing files are unaffected.

MERGE,MAIN,SUB1,SUB2,SUB3

Creates the new file MAIN with the con-
tents of files SUB1, SUB2, and SUB3, in
that order.

MERGE,MAINC,MAIN

Copies the contents of file MAIN into a
new file MAINC.

Name:
Format:

Purpose:

Comments:

Examples:

Name:

Format:

Purpose:

Name:
Format:

Purpose:

Comments:

Example:

Name:

Format:

Purpose:

o1

PRINT

PRINT,filename,listdevice

To print the contents of the specified
file to the designated list device.

The list device operand may be C or L.
If the list device operand is omitted, C
is assumed. C specifies the console and L
specifies the line printer.

PRINT,JOE
PRINT,JOE,C

Prints the contents of file JOE to the
console.

PRINT,JOE,L

Prints the contents of file JOE to the
line printer.

P6834
P6834

To program (burn) AMI 6834 PROMS.
See Section 9.

RENAM
RENAM,oldfilename,newfilename

To modify the specified file’s file direc-
tory entry by replacing its existing file
name with a new file name.

Only the file name area of the file's file
directory entry is affected.

RENAM,MAIN5,MAIN

Renames the file MAINS with the name
MAIN.

RUN

programname,inputfile,outputfile,option
RUN,programname,inputfile,outputfile,
option

To execute a 6800 object program.

Comments:

Name:
Format:

Purpose:

Comments:

RUN is the default command and the
“RUN", is optional.

VIEW

VIEW, inputfile

To display portions of a file on the CRT.
The edit key (J) advances the window

to include the next 20 lines. <HOME>
returns control to FDOS.

See MDC software reference for other
options.

62

Except for the DELET command, references to file
names can specify the drive number by following the
character string with a colon (:) index (e.g., 1).

AP,IND:1,0UTL:1

Files IND and OUTL will be on the diskette in drive
number 1.

Commands referring to the line printer with the
option ‘“‘L” require the standard Centronics printer.
Only the DPA command utilizes the high speed Data-
products printer.

INTRODUCTION

A text editor is a program for creating or modifying
files containing text — letters, numbers, punctuation
marks, and perhaps some special characters. Such files
include source programs, documentation, and test
data.

The MDC program named ED is a display-oriented
text editor. This means that text is always visible
while it is being entered or changed, and that the ef-
fect of any editing function can be seen immediately.

ED is executed just like any other MDC program. To
create a new (output) file by modifying an old (input)
file —

ED,name-of-input,name-of-output
To create a new file solely from keyboard input —
ED,,name-of-output

For the purposes of editing, the MDC keyboard is
divided into three separate sections. The ‘“Main Sec-
tion” group resembles a typewriter. The “Edit Key”
group is the 4-by-5 arrangement to the right. These
keys are used to control the operation of the editor.
The “Function Key"” group is the top row, from BOOT
to the red RESET key. None of these keys is used
during an editing run.

Certain keys on the edges of the Main Section have
special purposes. As on a typewriter, the SHIFT key
changes other Main Section keys from lower case to
upper case only while it is held down. The ALL CAPS
key acts like a typewriter’s Shift Lock, but it affects
only letters. A red light built into this key will indicate
whether it is “off” or “on’ from its most recent use.

OPERATION

When ED is executed, it will divide the screen into two
areas or “windows’’ and separate them with a line of
hyphens.

63

Appendix B
MDC Text Editor
(ED) Summary

The top window — 20 lines by 80 characters — is the
Text Window. In this area, part of your text, as sup-
plied from the keyboard and possibly from a floppy
disk file, will always be visible.

The bottom window — 5 lines — is the Control Window.
It contains information about the editing process. As
explained in detail later, the entries on the first line
are the current mode, the cursor line and column, the
size of the Selection, the size of the accumulated dele-
tions in E4, the capacity of the Workspace for more
separate lines or total characters, an error or warning
message (or “OK”), and a message telling you what
the editor is doing (or what its version number is).

The remaining lines of the Control Window — labeled
E2, E3, and E4 are used for searching, substitution,
and error correction.

Somewhere on the screen, you will always see the
“cursor” — a blinking marker. This indicates the
location which will be affected by the very next edit-
ing operation, such as text entry or modification.
When ED starts up, the cursor will be on Line 1 of
your text, and at Column 1 within that line.

As various editing operations move the cursor around,
the Control Window will always show the line and col-
umn at which the cursor is located. The text charac-
ter which occupies the same screen position as the
cursor is said to be “under’’ the cursor; its neighbors
are “before” and “‘after’’ the cursor.

Four of the Edit Keys are marked with arrows, and
are used to move the cursor in the directions indicated.
The cursor is never allowed to move sideways off the
screen. It can go no further up than the start of the
Workspace, and no further down than the end of your
complete text. Any attempt to move the cursor be-
yond these limits will result in a beep from the MDC,
and an error message of “CAN'T" — the editor’s stan-
dard response to an impossible request.

ED provides margin controls and tabulation settings
similar to those on an electric typewriter. In addition,
it can do semi-automatic adjustment of old text to
fit new margins.

To set a tab stop, move the cursor to the desired posi-
tion and hit C/TABS. The hyphen (or margin indicator)
for the current column will change to highlight. To
clear a tab stop, use exactly the same procedure, and
the column indicator will go back to lowlight. To clear
all the tabs at once, simply hit CS/TABS.

DATA ENTRY

To supply new text from the keyboard, you would
ordinarily set CHR Mode and type in line after line of
text, ending each line with the RETURN key. Each
character entered will appear under the cursor, push-
ing the cursor (and the rest of the line) to the right.

To correct trivial typing errors during this type of text
entry, use the BACKSPACE key. It will remove the
character just to the left of the cursor, allowing you
to re-type into that same position, or to hit BACK-
SPACE again. More elaborate corrections can be made
with the insertion and deletion features described
later.

You can also set modes in which each character en-
tered will replace the old character which was under
the cursor, rather than pushing it to the right.

To insert a small number of characters anywhere with-
in an existing line of text, get into either CHR Mode
or WRD Mode, and position the cursor at the desired
point of insertion. Now enter the new characters, and
the editor will push over the rest of the line to make
room.

To create a whole new line in the middle of existing
text, position the cursor in Column 1 of the line just
below the intended point of insertion. Hit S/INS. An
empty line will appear, and the rest of your text will
be adjusted downward.

To create a large block of new empty lines — perhaps
for the insertion of a whole paragraph — position the
cursor in Column 1, get into PAGE Mode (or PAGE*),

and then hit INS. Everything below the cursor will
be pushed off the bottom of the screen, opening up
from 2 to 20 new lines.

To delete a character anywhere in your text, get into
CHR or LIN Mode, position the cursor over the char-
acter, and hit the DEL key. The character will disap-
pear from the screen, and the rest of the line will be
closed up from the right. The cursor will not move, so
repeated uses of DEL will delete consecutive charac-
ters until the end of the line is reached, at which point
the editor will display a “CAN'T"" message.

You can inform the editor that a certain block of text
should be handled as a single unit during deletion, or
movement, or the search and selection processes.

This block of text is called the “Selection,’” and its
size (in complete lines) appears in the Control Window.
When the “‘sel” indicator is in lowlight, there is no
Selection; when it is in highlight, the Selection covers
at least one character.

To mark the boundaries of a Selection, put the cur-
sor over the first character needed, and hit SEL. De-
pending on the current mode, this will switch to low-
light one character, word, line, or page, and move the
cursor to the next position still in highlight. Now put
the cursor over the other boundary of the desired Se-
lection, and hit SEL again. Everything between the
area already in lowlight and the cursor will be added
to the Selection.

It is often useful to have the cursor jump forward to
the next occurrence of some “‘string’”’ — a specific se-
quence of characters. Similarly, finding a string and
replacing it with another one automatically is a great
convenience.

The E2 line in the Control Window is used to specify
the string to be searched for. Ordinarily, the search-
ing process is limited to the text from the current
cursor position to the end of the Workspace. How-
ever, the search can be extended right through to the
end of your input file by using the special combina-
tion CS/E2 instead of E2. This may cause some disk
input and output to occur.

64

— SUMMARY OF ED KEY FUNCTIONS —

CHR
WRD
LIN
PAGE
S/mode

UP or Down
S/UP or S/DOWN
C/UP or C/DOWN
CS/UP or CS/DOWN
LEFT or RIGHT
TABS or S/TABS
S/RIGHT
S/LEFT
RETURN

LF

CS/LEFT
CS/RIGHT
C/TABS
CS/TABS

BACKSPACE
ESC

INS

S/INS

LIN

DEL

S/DEL

E4

S/MOV

SEL

CS/SEL

S/SEL

C/LEFT or C/RIGHT
C/DEL

C/INS or C/MOV
WIN

S/E2 or S/E3

E2

E3

CS/E2 or CS/E3

CS/DPLX
S/DPLX

MODE —

Character

Word

Line

Page

Replacement (star) vs. insertion

CURSOR, MARGINS, AND TABS —

One line or page

5 lines

10 lines

To extreme start or end
One character or word

To next or previous tab stop
To end of this line

To Left Margin, this line

To Left Margin, next line
To Left Margin, previous line
Set Left Margin

Set Right Margin

Set or clear tab stop

Clear all tab stops

TEXT ENTRY AND MODIFICATION —

Allow correction of entry

Allow special character

Insert a space or a page of spaces
Insert an End-of-Line Marker

Insert new lines automatically

Delete a character, word, or page
Delete through End-of-Line Marker
Reverse most recent deletions

Move words to Left Margin, next line

SELECTION, SEARCH, AND SUBSTITUTION —

Set a boundary of the Selection
Select to end of all text

Forget the Selection

Cursor to a boundary of the Selection
Delete the Selection

Insert or move the Selection

Change windows

Clear E2 or E3

Search in Workspace or Selection
Substitution in Workspace or Selection
Process through all text

SPECIAL OPERATIONS —

Force output of Workspace
Perform normal exit processing

65

66

The MDC-140 Logic Analyzer is an advanced debug
tool connected as a peripheral device of the AMI
Microcomputer Development Center (MDC). Features
include:

e Captures 1024 Events of 40 Parallel Inputs

e Captures Data Under Control of Programmable
Start on Data Content

e Delay of ~1024 to +64K Clock Periods

e Setup and Display of Captured Data Under Control
of MDC Software

e Display Format is User-Definable; Captured Data
Can Be Displayed in a Mix of Hex, Octal, Binary,
ASCII and Special Formats for Support of S6800,
$6820, S2000, 8080, etc.

Four Clock Sources
Input Voltage Range = - 15 to +15 volts
Adjustable Input Thresholds

Data-Dependent Output for Triggering an
Oscilloscope

TIPS FOR USE OF LOGIC ANALYZER IN
DEBUGGING S2000 SYSTEMS

From FDOS, call up the Logic Analyzer software and
prewritten display formats:

ILA,68.F
When the CRT asks for your choice of format, type:
2000

followed by two blanks.

67

Appendix C
MDC-140 Logic Analyzer
(LA) Summary

To monitor the S2000 STATUS output, specify the
clock source as “UCF" (“user clock, falling edge’’)
and connect the red clock-source-input lead to pin
23, CLK, on the S2000 chip (set threshold level
~2.0VDC). This will give you four lines of CRT dis-
play per S2000 instruction cycle. You may want to
trim down the oscillator R or C in your prototype to
compensate for the capacitance added in by the red
clock-source lead, and insulate pin 23 on the 40-pin
clip to keep its capacitance out of the S2000 oscil-
lator circuit.

(An alternative approach which will result in the dis-
play of more instruction cycles — but less information
per cycle — is to clip the red clock-source lead to
SYNC (pin 35) and specify the clock sourceas “UCR".
When S2000 is in the multiplexed mode, address and
opcode data will be displayed, but control outputs
won't be displayed.)

If your prototype uses the S2000 K lines as Touch-
Control™ inputs, insulate those pins (30-33) on the
Logic Analyzer clip, too; sense the K lines with low-
capacitance probes or sense them through large-valued
resistors having low capacitance (i.e., small surface-
area). Make sure that the Logic Analyzer is powered-up
before you clip it to your prototype system; the
Analyzer’s input protection diodes clamp when its
power is down.

Next, set the A and B qualifiers. Set the SYNC quali-
fier = 0 to qualify on an address (possible only if
S2000 is in its multiplexed mode). ““E2 ESC A" will
set the B qualifier equal to the A. Set the Analyzer
delay to 3FE,g if you want the qualifying event to
appear at the beginning of the trace memory display.

Consult the Logic Analyzer instruction manual for
further information.

DOMESTIC
Western Area

100 East Wardlow Rd., Suite 203
Long Beach, California 90807
Tel: (213) 595-4768

TWX: 910-341-7668

3800 Homestead Road

Santa Clara, California 95051
Tel: (408) 249-4550

TWX: 910-338-0018

Central Area

500 Higgins Road, Suite 210
Elk Grove Village, Illinois 60007
Tel: (312) 437-6496

TWX: 910-222-2853

Suite Number 204

408 South 9th Street
Noblesville, Indiana 46060
Tel: (317) 773-6330

29200 Vassar Ave., Suite 303
Livonia, Michigan 48152

Tel: (313) 478-9339

TWX: 810-242-2903

725 So. Central Expressway, Suite B-5
Richardson, Texas 75080

Tel: (214) 231-5721

TWX: 910-867-4766

Eastern Area

237 Whooping Loop

Altamonte Springs, Florida 32701
Tel: (305) 830-8889

TWX: 810-853-0269

1420 Providence Turnpike, Suite 220
Norwood, Massachusetts 02062

Tel: (617) 762-6141

TWX: 710-336-0073

20 Robert Pitt Drive, Room 212
Monsey, New York 10952

Tel: (914) 352-5333

TWX: 710-577-2827

Axe Wood East

Butler & Skippack Pikes, Suite 3-A
Ambler Pennsylvania 19002

Tel: (215) 643-0217

TWX: 510-661-3878

INTERNATIONAL
England

AMI Microsystems, Ltd.
108 A Commercial Road
Swindon, Wiltshire

Tel: (0793) 31345 or 25445
TLX: 851-449349

France

AMI Microsystems, S.A.R.L.
124 Avenue de Paris

94300 Vincennes

France

Tel: (01) 374 00 90

TLX: 842-670500

Holland

AMI Microsystems, Ltd.
Calandstraat 62
Rotterdam

Holland

Tel: 010-361483

TLX: 844-27402

Italy

AMI Microsystems, S.p.A.
Via Pascoli 60

20133 Milano

Tel: 29 37 45 or 2360154
TLX: 843 32644

Japan

AMI Japan Ltd.

7th Floor Daiwa Bank Building
1-6-21, Nishi-Shimbashi
Minato-ku, Tokyo 105

Tel: (501) 2241

TLX: 781-0222-5351

Korea

KMI Inchon Export Industrial Estate

Block 1
Hyo Sung-Dong Buk-ku
Inchon, Korea

West Germany

AMI Microsystems, GmbH

Rosenheimer Strasse 30/32, Suite 237

8000 Munich 80, West Germany
Tel: (SV 089) 48 30 81
TLX: 841-522743

68

AMERICAN MICROSYSTEMS, INC.

3800 HOMESTEAD ROAD e SANTA CLARA CA 95051 e TELEPHONE (408) 246-0330 ¢ TWX: 910-338-0018

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	xBack

