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AMI 7300 MICROPROCESSOR

GENERAL FEATURES

e Microprogrammable e 49 Registers

e 1SI Based 2-Chip CPU, Memory e Tully Parallel I/O Bus

and Peripheral Functions e Multiprocessor Bus Capability

e 8-Ri .
8-Bit Byte Oriented Processor e TTL Logic Interface

e Powerful Microprogram
Instruction Set

e FEasy ROM/RAM Expansion
to 65K Bytes e 24 Non-Overlapping Clocks

e Interrupt Features

e +5, -12V Power Supplies

e 4,0u Microinstruction
Execution Time

TYPICAL APPLICATIONS

e Cash Registers e Process Control Systems
e Terminals » e Accounting Machines

e Test Systems e Calculators

e Measurement Systems e I/0 Processors

I. INTRODUCTION

The AMI 7300 CPU is a fully parallel, highly flexible bus-organized
system. It features an 8-bit Data Exchange Bus concept whereby the 1/0
devices, memory modules and central processors communicate with each

other asynchronously.

The CPU contains 49 registers, 48 of which may, under microprogram
control, be utilized as one or two First-In Last-Out (push-down) stacks or
as one or two files of general registers. The CPU incorporates many
architectural and logic design features to increase speeds of execution and

allow for a wide range of applications.



II. GENERAL DESCRIPTION

The 8-bit 7300 processor consists of two P-channel, Silicon Gate,

Ion Implanted (Iz) MOS 1SI devices:

Registers and ALU Chip (RALU)
Microinstruction ROM Chip (MIR)

The 7300 performs all of the functions commonly fbund in most
minicomputers; the primary difference is the speed of execution, which
is approximately one-sixth that of minicomputers. However, in many
cases the 7300 may be faster. For instance, the stacks allow for fast
subroutine calls executed at microinstruction speeds rather than memory
cycle speeds. In the 7300, the system memory that contains macroinstructions
and data may be core, semiconductor RAM, ROM or any combination operating

at various rates. The basic machine architecture and partitioning are shown

in Figure 1.

A typical byte-oriented application might use the complement of registers

in the following manner:

Number of 8-Bit Number of Bits
Registers Function per Register
1 Accumulator 1 8
1 Accumulator 2 8
2 Index Register 1 16
2 Index Register 2 16
2 Index Register 3 16
2 Index Register 4 . 16
2 Program Counter 16
1 Temporary Register 1 8
1 Temporary Register 2 8
1  Temporary Register 3 8
1 Temporary Register 4 8
1 Status Register 8
32 Push-down Stack 8
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The 32 register push-down stack may be utilized as a set of
general registers. A foreground-background system could be implemented

by utilizing 32 registers as two groups of 16 general purpose registers.

The D Bus provides the sources and destinations for the two operands.
The ALU chip operates autonomously because it includes all microinstruction
decoding logic along with the appropriate timing signals. A 3-bit status

register incorporates the following functions:

Bit Flag
2 Carry Flag
0 Zero Condition Flag
1 Minus Condition Flag

The A and B Source Registers, which may also act as temporary
storage registers, are connected directly to the ALU. The 4-bit ALU
performs its 8-bit operations in five time slots; while the ALU is operating
on one set of operands, those for the next operation are being accessed from
the general file registers or stack. After the next operands have been accessed

the last result is written into the register as specified by microprogram control.

The A and B Source Registers interface with the external world through
the Data Exchange Multiplexers. When addressing external memory, the
contents of the program counter are placed on the D Bus and clocked out to
the Data Exchange Bus. When data is to be read from external memory the
Data Exchange will drive the incoming data onto the D Bus. Arithmetic
operations can be performed immediately if desired. Macroinstructions are
clocked off the Data Exchange into the Instruction Register for decoding in

the Instruction Mapping Array (IMA) on the MIR chip.

The Control section of the processor is implemented by microprogramming
techniques. The microprogrammed control program is contained in the MIR
which has a maximum capacity of 512 words by 22 bits. The instruction decod-
ing function is performed by the IMA by relating the instruction to a starting
point in the MIR. The large MIR and IMA make it possible to implement
virtually any minicomputer instruction set. MIR chips may be paralleled to

expand control store and IMA.



A. DATA EXCHANGE

The 7300 Data Exchange (DE) is an 8-bit byte parallel I/O
structure used to interconnect Memory, Processors, Control Panel
and I/0 Controllers. Most systems will require only one processor;
however, the DE Bus and its handshake lines are designed so that
more than one processor may be attached to the same bus simultaneously
to construct simple multiprocessor systems. Peripheral controllers may
communicate with the processor or directly with memory. It is also possible
for peripheral processors to communicate with each other. The handshake
lines are operated semi-asynchronously so that memory and peripherals of

varying speeds and responses may be freely mixed on the same bus structure.

The form of communication is the same for every device on the DE.
The processor uses the same set of signals to communicate with memory
as with peripheral devices. Peripheral devices also use the same set of
signals when communicating with the processor, memory or other peripheral
devices. Peripheral device registers may be manipulated as flexibly as core

memory by the processors.

The total Bus Addressing space is 65, 384 bytes. Although not man-
datory, it is usually desirable to let the MSB of the 16-bit memory address

differentiate between memory addresses and peripheral addresses.

At any point in time only one device can be in control of the DE.
16-bit addresses are communicated as two each 1-byte transfers. Data

is sent or received on a byte transfer basis.



The Processor will drive the Data Exchange directly in small
systems (such as with 3 chip calculators) and may be connected to
Driver/Receiver pairs for larger systems. In larger systems the Data
Exchange Drivers on the RALU chip will not have adequate Drive capability
to Drive a number of TTL loads presented by memory controllers and

peripheral controllers. The Data Exchange lines are defined below:

SF Store/Fetch represents the direction of the transfer.

1 = Processor stores data into memory
or peripheral

2 = Processor fetches data from memory
or peripheral

DR Drive/Receive is used to control the Driver/Receiver
pairs. It specifies that the DE is busy and not
available to other devices and times the beginning of

an I/O cycle.

AK Acknowledge is used by memory and peripherals to
specify that Data or Address has been received from
the DE.

RUN Run is used to cause the machine to Run or stop running.

Direct memory access devices will drive Run low to stop
the processor and get access to the DE Bus. Run is also
driven by the Run/Stop/Step switch on a control panel.

Macro stepping is accomplished by pulsing the Run line.

FRUN Run Flip Flop tells when the machine has actually stopped
or is running. This line drives the Run light on the control
panel and specifies to direct memory access devices that the
processor will not attempt to use the DE Bus.

RESET Reset clears the machine and causes the microprogram to
begin execution at a specified address upon release of the

Reset line.



K K specifies the beginning of a microcycle. It is useful
for generating time slots in order to become synchronized
with the processor and to clock address bytes from the
Data Exchange during time slots 6 and 1. K represents
time slots 1 and 2.
When interfacing with the 7300 it is necessary to read the Address
bytes from the Data Exchange at precise times with respect to the Leading

Edge of Drive/Receive. There are two ways to achieve this timing:

1. Construct the Leading Edge of DR using #1 clocks and shift this
Leading Edge pulse through a short shift register to create the

fourth and seventh time slots following the rise of DR.

2. Use the K pulse to create all the time slots of a microcycle on a
continuous basis. Utilize time slots 6 and 1 ANDED together with

DR to clock the two bytes of address from the DE.

Because of the simplified handshake scheme used with the 7300, the
Data is left on the Data Exchange after a Reading process. This data will
remain until DR is raised for the next I/O process. Data need not necessarily
remain if it can be known how the machine will be microprogrammed, and thus

when the Data is being read by the processor,

A timing diagram of each of the I/O processes is shown below to clarify

the interrelationship between the handshake lines.

B. READ MEMORY/PERIPHERAL (Figure 2)

The processor, control panel, or peripheral device reads data by

executing the following sequence:
1. Get priority to use the DE Bus.

2. Raise DR and drive the most significant byte of address onto

the DE Bus. (SF remains Low.)

3. All receiving devices perform the required timing with respect to DR

and clock the first byte of address from the DE Bus.

7
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4. The second byte of address is placed on the Data Exchange.

S. The receiving devices clock the second byte of address from the
DE Bus. Once the second byte has been read, only the specified
device being addressed begins the cycle to place data on the

DE Bus.

6. The processor lowers DR and removes the second byte of Address

from the DE Bus.

7. The Addressed device fetches data and places it on the Data
Exchange. If it can not fetch data fast enough to respond as shown
in the timing diagram, the processor will have to be microprogrammed
to wait one or more microcycles before attempting to read the data.
Note that no special handshake Wait logic exist in the 7300 to

hold up microcycles until data is valid.

8. Data will remain on the DE Bus until the Leading Edge of DR appears

designating the beginning of the next I/0 process.

As shown by the timing diagram the minimum cycle time required is
2.0us. If one microcycle were skipped before reading, up to 6.0 us

could be used to access the data. If two microcycles are skipped the

access time could be up to 10.0us, etc.

C. WRITE MEMORY/PERIPHERAL (Figures 3A and 3B)
The sequence for writing is as follows:

1, Get Priority to use the Bus.

2. Raise DR and drive the most significant byte of address onto the

DE Bus.

3. All receiving devices perform the required timing with respect to DR

and clock the first byte of Address from the DE Bus.
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4, The second byte of address is placed on the DE Bus.

5. The receiving devices clock the second byte of address from the
DE Bus. Once the second byte has been read, only the specified

device being addressed begins the cycle to read data from the

DE Bus.

6. - The processor extracts the data to be written from one of its
registers, routes it through the ALU and places it on the Data

Exchange. ALU operations may be performed as it passes through

the ALU.

7. The processor lowers SF to indicate that the data is valid for writing.
8. The receiving device raises AK as soon as it has registered the Data.

9. When the processor senses AK it lowers DR and removes the Data

from the DE Bus.
10. When the receiving device senses the absence of DR it lowers AK.

The cycle described above may be referred to as a full cycle. A
short cycle consisting of only the transfer of the first two bytes may be desirable
when communicating with peripheral devices which need receive only 16 bits.
The short cycle can be accomplished by designing the peripheral controller so
that it returns AK immediately upon receiving the second byte of Address. At
the same time the microprogrammer must program the system to initiate a
Write Cycle but not transfer Data. In this manner only one microinstruction
is required to communicate with a peripheral. Note that short cycles may be

initiated every other microinstruction for the fastest case.

12



D. DIRECT MEMORY ACCESS

In performing Direct Memory Access it is necessary for the
peripheral device to get priority as well as hold the processor off the
Bus. A priority chaining network is used to resolve priority conflicts in
multiprocessor and direct memory access systems. The processor is restrained
from accessing the Bus by driving its Run line Low . The sequence of operations

are as follows (See Figure 4).

1. Request and Get Priority to use the Bus,

2. Drive the Run Line Low.

3. Sense FRUN from the processor to signify that it is no longer
running.

4, Sense the absence of Drive/Receive to verify that any previous

transfers are completed.

5. Do either of the two types of transfers as described above.

6. Release the request for priority and the Run line.

E. SYSTEM TIMING

The 7300 is clocked by a 2-phase non-overlapping clock. These
clocks provide precise timing for the execution of each of 8 steps which
form the microinstruction execution cycle. All microinstructions execute
in the same 8 step sequence except whe1:1 performing read I/O from the

Data Exchange. The basic microcycle is shown in Figure 5.

The microinstructions are accessed as 22-bit words but executed
one-half at a time. During time slots 7, 8 and 1 the first half is trans-
mitted over the M bus: during 2, 3, 4, 5 and 6 the second half is trans-
mitted. The first half is read from the M Bus during time slot 1 (TS1) and

the second half is read during time slot 4 (TS4).

13
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F. INTERRUPT PROCESSING

Interrupts may be initiated from four sources:
Three Data Exchange Interrupt Lines

Initialization (power up clear) Reset Line

Several types of Interrupt schemes are possible utilizing the existing

facilities of the Data Exchange.

Probably the simplest approach is to design the Controllers to drive
the Interrupt Attention Line to Initiate an Interrupt. The Processor can then
respond to the Interrupt by polling each Peripheral Controller in the order
of priority desired to determine the source and type of interrupt. Four |
levels of priority are provided by the Processor which may be adequate in

a small system to alleviate the need for polling.

Another way of implementing interrupt capability is to let the
Controllers drive Interrupt Attention and at the same time request
Interrupt Priority through a priority chaining network. The Processor will
respond to the Interrupt Attention Line by locking up the state of the

priority chaining network and performing a Peripheral Input operation as

described above.

An I/0O Address is set aside for the Interrupt System and all Controllers
sense the same address which specifies that the Interrupting Controller with
highest priority should return an 8-bit Interrupt Address on the Data Exchange.
This operation of gathering the Interrupt P;ddress from the Interrupting Controller
works exactly the same as the Peripheral Input process described above. More
logic is required in the Controller but a much more efficient Interrupt System

is generated.

16



III.

FUNCTIONAL DESCRIPTION

The 7300 microprocessor is a two-chip microprogrammed CPU. The

general logic block diagrams of the two chips are shown in Figures 6 and

7.

1-

The characteristic features of the 7300 are:

Logical and arithmetic operations are performed on 8-bit bytes by
a 4-bit ALU. Decimal arithmetic may be performed efficiently with

special microinstructions.

Memory access is performed via an 8-bit Data Exchange Bus allowing
parallel transfer of the 16-bit address as two byte transfers with

subsequent transfer of 8-bit data.

A multilevel microinterrupt hardware system is provided. Three

levels of priority are provided for the CPU.

Data Exchange handshake lines allow peripherals and/or other
processors to use the bus to gain direct access to memories and

peripherals.
Sixteen 8-bit general purpose registers are provided.

An 8-bit status register and five additional temporary status bits

are provided.

A 32-word by 8-bit stack with two 6-bit stack pointers is provided.
The stack pointers are binary counters which may address the 32-word

stack and the 16 general registers—.
An 8-bit macroinstruction register is provided for instruction decoding.

An Instruction Mapping Array is fed by the macroinstruction register to
allow immediate transfer of microprogram control to one of up to

50 locations, determined by the macroinstruction'being decoded. Up
to three independent mappings of the macroinstruction may be
obtained to select, for instance, the prbper address preparation, defer

and execute sequences to perform the specified macroinstruction.

17
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10.

11,

12,

13.

14,

A 9-bit Microinstruction ROM Return Address Stack (RRAS) in addition
to a 9-bit ROM Address Register (RAR) allows 7 levels of micro-
instruction subroutining or coroutining. When the RAR is loaded

with a new address, the old address may be stored in the RRAS
(Branch and Mark type operation). The RAR may be loaded from the
RRAS (Return from subroutine type operation) or the contents of the
RAR and RRAS may be swapped (CoCall type operation). The micro-
instruction CoCall capability effectively multiplies the power of the
mapping array for multiple byte fetch and execute operations and other

interlinked segmented tasks.

Microprogramming is facilitated by a powerful microinstruction set.
Microinstructions are 22 bits long. There are several different

microinstruction formats to optimize microinstruction bit usage.

Microinstructions are stored in a 512-word by 22-bit Read Only
Memory (ROM). This provides sufficient storage for large, powerful

microprograms.

Pipelining, or simultaneous execution of different phases of several
microinstructions, allows an execution rate of up to 250,000 micro-
instructions per second (4.0 us per microcycle). /O operations may
be performed in parallel with other microinstruction operations, allow-
ing memory access times to be overlapped with execution times on

both the micro and macro levels.

The processor operates on power supplies of +5V and -12V (nominal),
and requires two +5V to -12V (nominal) clock signals. The clock
signals are free-running and need not be gated by any other signals.

All other inputs and outputs are TTL compatible.

20



15. The execution of one microinstruction is initiated each microcycle.

A microcycle consists of eight time states (four clock cycles),

TS1 through TS8.

A. REGISTERS AND ALU CHIP (RALU)

The Registers, Arithmetic and Logic Unit chip (RALU) contains the

following basic data manipulating components of the processor:

1. Data Exchange Drivers and Receivers

The eight data exchange lines are bidirectional input and output lines
which form the path for all data and addresses in and out of the CPU.
Sixteen-bit addresses are transmitted with two l-byte transfers with the
most significant byte being transmitted first. The 65 384-byte address
space may be divided up in any manner between memory and peripheral

addresses. The I/O handshake lines do not differentiate between transfers

for memories and for peripherals.

2. Arithmetic and Logic Unit (ALU)
The ALU is the main data processing unit of the CPU. It includes an

8-bit fully parallel carry adder/subtractor and, in addition, it can perform
various logical and shifting operations on two 8-bit operands. It receives
its operands from a single 8-bit internal bus, the D Bus, and outputs to
another Temporary ALU Result Register (RR) and the D Bus. Carries into the
ALU may be constant, or may be determined by bits of the permanent or
temporary status. The temporary status bits are loaded according to the ALU
result. Decimal corrections are made by recirculating the result of a binary
add through the ALU a second time and adding A Literal in accordance with

the contents of the RR and the carries from the two BCD digits.

21



3. Decimal Arithmetic

The arithmetic unit of the 7300 performs decimal arithmetic using the

9-4-2-1 decimal code. This code is listed below:

Binary Count 2-4-2-1 Decimal Code

0000 0

0001 1

0010 2

0011 3

0100 4
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

W 0 N o o

This code has several advantages over other decimal codes, such as
BCD, Excess -3, 8-4-5—?, 5-2-1-1, when implementing decimal arithmetic.

The overwhelming advantages of 2-4-2-1 are.

1. The code self-complementing, allowing the binary complementer

to be used.

2. The code for decimal zero is the same as the code for binary

zero, allowing the binary test and branch to be used.

22



3. The code for decimal one is the same as the code for binary one,
allowing the means of presetting the input carry to be used when

incrementing in decimal.

4. The decimal correction logic is no worse than that for other codes.

Decimal addition is performed in the 7300 with two passes through the
Arithmetic/Logic Unit ALU). The first pass performs the addition and the

second pass performs the decimal correction,

'

A+B 1st Pass
Demmzlal 2nd Pass
Correction

'

The 7300 is organized as a byte or two digit machine. This allows
the microprogrammer to perform the decimal addition and correction of

two digits in two microinstructions or two passes of the ALU.

During the first pass, the two operands (two digits each) are added as
two 8-bit binary numbers allowing the carry from the least significant digit
to ripple on to the most significant digit. The carry out of the most significant
digit is saved at this time if needed for the next decimal add. During the
second pass the decimal correction code is given allowing the ALU to add a
decimal correction of +6 or -6 to each of the digits from the immediately
previous addition if needed. This process is then repeated until the number
of required digits have been exercised. The flow chart for the decimal

addition of one and two digit words are shown in Figures 8 and 9 respectively.

23
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The correction logic required is that which detects binary codes
5 through A, inclusive. These are the invalid codes for the 2-4f2—1

decimal representation. The equations would be as follows:

For the least significant digit,

c, = B4 . B3 (Bl + B2) + B4 - B3 (Bl + B2)

where, B1, B2, B3, B4 represent Bits 1-4 respectively of the lsd.

For the most significant digit,

C, = B8 . B7 (B5 + B6) + B8 - B7 (B5 + B7)

where, B5, B6, B7, B8 represent Bits 1-4 respectively of the msd..

As can be seen in Figure 9, when correcting the two digits on the
second or correction pass, the low order digit carry (C4) is not allowed to

ripple to the high order digit. The high order digit carry input is forced to

zero.

4, Signed Decimal Arithmetic

Signed decimal addition and subtraction is performed by the algebraic
addition of the two operands. For subtraction the sign of the subtrahend
is complemented before the addition is performed. Figure 10 shows the

flow chart for this process.

S, A and B Source Registers

The information fed to the ALU is stored in the A and B source registers.

These registers are dynamic storage nodes which are normally updated each
microinstruction. They may be left unmodified if specified by a previous A

or previous B source field. Storage in these registers may last for up to

200 ps.
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6. Status Register

The Status Register consists of three temporary status bits, TM,
TC and TZ and three permanent or final status bits C, M and Z as shown
below. The temporary bits hold conditions resulting from recent micro-
instruction and are loaded automatically as a result of these microinstructions,
while the final status bits are changed only by certain special Register
Control Format OpCodes and are usually used to hold long-range status.
The three final status bits may be transferred to and from the D Bus and
all of them may be directly loaded with data from the D Bus. All of the
temporary and final status bits may be tested, set and reset by Literal

Format Microinstructions.

Final Status Register

TC |TM |TZ
7 6 S 4 3 2 1 0

Temporary Status Register

7. Temporary Status Bits .

™™
TM is loaded by most ALU operations with the most significant bit

of the result and is thus a negative result.
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TC
TC is loaded by arithmetic ALU operations and shift operations. For

arithmetic operations it is loaded with the Carry Out of the high order bit
of the adder. For left shift operations it is loaded with the bit that is
shifted out of the most significant bit. For right shift operations it is

loaded with the bit that is shifted out of the least significant bit.

TZ
TZ is loaded by most ALU operations. It is set if the result is zero and

cleared otherwise.

8. Final Status Bits

C

C may be set, cleared or loaded with the contents of TC. It is
usually used to indicate a carry or shift out of the ALU as a result of the

previous macroinstruction.

M

M may be set, cleared or loaded with the contents of TM. It is

usually used to indicate a negative signed arithmetic result of the previous

macroinstruction.

Z
7 may be set, cleared or loaded with either the contents of TZ or the

AND of the contents of TZ with the old contents of Z.

9. General Registers

The General Registers consist of sixteen 8-bit registers implemented as
a 16-word by 8-bit RAM with one output and one input port. Only one
operand may be fetched at a time from the General Registers and placed on
the D Bus to be used by the ALU, loaded into the Final or Temporary Status,
outputted to DE (7:0), loaded into the stack pointers or loaded into the
stacks. The General Registers may be used to hold addresses, data,

macroinstruction words, etc., in any combination.
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10. Stack and Stack Pointers

The Stack consists of a 32-word by 8-bit, single port RAM. Unlike
the General Registers, which are directly addressed by microinstructions,
the Stack is addressed by the contents of two address counters called the
Stack Pointers, each of which addresses only one location in the Stack at
a given time., The contents of that location may be put on the D Bus or may

be loaded from the D Bus.

The two pointers give the effect of having two stacks and allows for
list type processing of two multiple precision integers. The pointers may
be used in an unmodified manner or they may be incremented or decremented
in order to implement first-in last-out push-down stacks. The two pointers

may also be utilized to construct double buffer schemes of data movement.

If the Stack Pointers (SP1 and SP2) are incremented the contents of
their address is accessed before incrementation, If the Stack Pointers are

decremented the contents of their address is accessed before decrementation.

When the incrementation or decrementation appears in the B-D source

field the same address is used for both source and destination.

Each microinstruction is to be treated independently such that Stack

Pointer operations are not dependent on previous or subsequent microinstructions.

When using the Stack as one or two sets of general registers the General

Register field of the macroinstruction is loaded from the D Bus into the Stack

Pointer as follows:

SP5 | SP4|SP3|SP2|SP1{SPO
7 6 S 4 3 2 1 0
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Stack Pointers cause the access of zero values when addressing beyond

the boundaries of the general register and stack addressing space.

The Stack Pointer ROM may be mask-programmed with up to 16 pairs of
Stack Pointer values. When a Branch and Load Stack pointer operation is
performed one of the pairs of values are loaded into each pointer. This
enables the programmer to set up the pointers when branching to routines

which are written for any combination of pointer values.

11. ALU Result Register (RR)
The RR dynamically holds the result of the ALU operation until it

can be loaded onto the D Bus and clocked into the selected Destination
register, The result of an ALU operation is not clocked into the Destination
register until after the next two A and B sources have been fetched and loaded.
The previous ALU result may be loaded as a source into the A and the B source
registers in cases where sequential subsequent microinstructions utilize

results of previous microinstructions. The RR is implemented with dynamic

storage nodes.

B. MICROINSTRUCTION ROM CHIP (MIR)

The MIR (Figure 7) contains the Microprogram Control Unit of the CPU
and I/O handshake logic. The I/O handshake logic consists of decoding and
sequencing logic which causes the handshake lines to be operated as described
above for the Data Exchange. The CPU does not contain any special logic
for causing the microinstruction execution to hold up and wait for data to
become available. If the DE is referenced as a source for data, it will be
read and assumed to be valid. Thus the microprogrammer must be aware of

memory and peripheral timing to be assured that data is valid when accessed.

The Microprogram Control Unit consists of the following components:
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1. Macroinstruction Register (IR)

The IR is an 8-bit register which holds macroinstructions for decoding
by the Instruction Mapping Array. The IR is always loaded by a Register

Control Microinstruction with Decode I specified in the OpCode field.

2. Instruction Mapping Arrays (IMA)

The IMAs and their associated control and multiplexing circuitry
convert the outputs of the IR into the microinstruction ROM addresses of

the proper microinstruction routines to perform the specified macroinstruction.

a. Mapping Array Design
A diagram of one of the IMAs is shown in Figure 11. Each of the n

inputs is inverted and the true and complement signals for each are run to
the inputs of 25 2n~input NOR gates, called conjunction (AND) gates.

These NOR gates are exactly like the Address Decode Network for any MOS
ROM: each input device may be fabricated or not according to the oxide mask
used to make the chip. Thus, it is possible to specify simply and easily
which inputs are to be connected to the conjunctions (AND function). In
Figure 11, connected inputs are shown as circles at the intersections of the
input lines and conjunction lines. For instance, the first conjunction is
connected to Il’ TB and fn' Its output is zero unless I1 is zero and 13 and
In are one, but it does not depend upon the state of I2 since neither I2 nor

I2 is connected as an input.

The outputs of the conjunction gate-s form the inputs of another array
of NOR gates, called disjunctions (OR function). Again, the inputs may or
may not be connected to the gates, as specified by the programmer. If a
conjunction output is one for which there is an input device in a disjunction
term gate, the output of that disjunction will be zero. If no such conjunction
term is one, the output (disjunction term) will be one. In most applications,
the conjunction terms will be disjoint; i.e., at most, one conjunction

will be one for a given input word. In this case, the outputs for a given
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input word will be determined solely by whether there is an input device
in each disjunction gate for the conjunction term that is one; a device

equals a zero, no device equals a one.

b. Decoder Design

As shown in Figure 12, the Macroinstruction Decode Array consists
of an 8-input, ll-output mapping array (IMA 1), a 9-input, 12-output mapping
array (IMA 2) and output selector gates which select the outputs of one of
the two arrays to provide the 10-bit MIR Address and a tenth bit called CI,

to be discussed later.

To make the macroinstruction decoding flexible, three different types
of decode microinstructions are prcvided - Decodes 1, 2 and 3. (Decode 1,
in addition to initiating the decode operation, loads the IR with the contents
of the DE Bus). The conditions which determine the Mapping Array output
to be used are the 12th output bit of Mapping Array 2 and whether a Decode 3

operation is being performed.

If a Decode 3 operation is being performed, the outputs of Mapping
Array 1 are always used. If a Decode 1 or Decode 2 operation is being
performed, Mapping Array 2 outputs are used unless the extra, 12th output
bit of Mapping Array 2 is one. Note that Decode 1 and Decode 2 outputs
are differentiated whether a Decode 1 or a Decode 2 operation being performed
is one of the inputs to Mapping Array 2.. (Decode 3 is a Don't Care condition
for Mapping Array 2 since the outputs of that array are never used for a

Decode 3.)
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3. Microprogram Read-Only Memory (MIROM)

The MIROM is a 512-word by 22-bit mask-programmable ROM which
contains the microprograms. It receives 9 address input bits from the RAR and
outputs 22 microinstruction bits each microcycle. The outputs are transmitted
to the RALU in two groups of 11 bits on the M Bus. The high-order bits, MI
(21:11), are transmitted during TS7, TS8 and TS1, and the low-order bits,

MI (10:0), are transmitted during TS2, TS3 and TS4.

4, ROM Address Register (RAR) and ROM Return Address Stack (RRAS)

The RAR is a 9-bit polynomial counter based on a primitive polynomial.
Each microcycle, it is incremented (shifted) to point to the next MIROM
address. It can increment through all 511 non-zero addresses, but cannot

shift out of zero: thus, if the RAR is loaded with zero it will remain zero

until loaded with another address. The RRAS provides a first-in last-out

stack for return addresses from microinstruction subroutines and coroutines.

The RAR + 1 is loaded into the RRAS each time a Branch and Mark
operation is used. The RRAS is loaded into the RAR for Microreturn operations
and a swap occurs for CoCall operations. No overflow conditions are detected
for the RRAS so it is necessary for the microprogrammer to keep track of the

number of microsubroutine levels being used.

Decode operations cause the RAR to be pushed into the RRAS. The
RRAS is implemented as a single-port 7-word RAM in a manner similar to the
Stack on the RALU chip. Branch operations always execute in two microcycles
worth of time. The first microcycle is used to access the register specified
by the A source field and select a specified bit. The Branch Control Line BC
then represents the one or zero state of the selected bit at the end of the
first microcycle. The Branch Address is conditionally clocked into the RAR

and the second microcycle is used to access the next microinstruction.
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5. Starting Address ROM (SAR) and Microinterrupt Control Logic

The SAR is a 5-word by 9-bit mask-programmable ROM which
produces a microinstruction address to be loaded into the RAR when a
Return to Fetch microinstruction (normally the last microinstruction in
each execute routine) is executed. The proper address for the SAR is
selected by the Microinterrupt Control Logic, a priority-chaining network.
The levels of priority for the five inputs to the chaining network in decreasing
order of priority are:

1. Reset
2. Interrupt 1
3. Interrupt 2
4, Interrupt 3
5

Return to Instruction Fetch

If a reset occurs, the microinstruction execution is halted immediately.

The other control inputs are sensed only at the Return to Instruction Fetch

time.

6. Step Counter (SC)/Step Counter Stack (SCS)

The 7300 may be utilized to implement macro-operations which do
multiple precision arithmetics. An SC is included to make it easy to call
a microroutine and execute it a specific number of times without the need
for including a software step count function in each subroutine. The SC is
loaded by a Branch Microinstruction and may be interleaved up to seven
times by subroutines which push and pop its contents into the SCS. Each
time the Branch and Mark and Load Step Counter operation is performed the
SC is loaded into the SCS. Each time a Return from Microsubroutine Loop
(RLR) SC is decremented. If an RLR is executed and the SC is equal to
zero, then the top of the SCS is loaded into the SC and the SCS is popped.
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Thus the SC may be interleaved just as microsubroutines are interleaved.

The SCS is seven levels deep. The SC is a 4-bit polynomial counter.
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