7200 MICROPROCESSOR

MACRO INSTRUCTION SET DESCRIPTION

8/3/72

AMI Proprietary

INSTRUCTION SET

I.’ Geperal Description

The virtual machine described herein is a dual-accumulator, dual-index-
register, multi-address-mode, byte-oriented structure. Most arithmetic and
logical operations are performed on 8-bit bytes between memory and one of the
accumulators, but several 32-bit memory-to-memory arithmetic operations and
a limited number of 16-bit operations are also available. Facility is also pro-
vided for packing and unpacking 4-bit digits to and from bytes. Bit testing
is facilitated by special "Test Under Mask" instructions. A 32-byte hardware
stack is available for general program use, and is also used to hold subroutine and
interrupt returns. The head (top two bytes) of the stack may be used as an
autoincrement register to facilitate subroutine parameter pickup and sequential
list operations. Memory is expandable to 65K bytes, with all locations sim-
ultaneously addressable.

All operations can be performed by pure code; that is, it is never necessary
to modify instructions; hence, they can be located in Read-Only Memory.

A flexible, multi-level interrupt system and I/O instructions which can
address up to 256 different devices allow sophisticated I/O operation while
minimizing interface complexity and timing.

Provisions are made for a general purpose console operating on the Data
Exchange Bus which is capable of loading and examining registers and memory,
running in single-instruction mode, executing instructions from the console
switch register, etc. Virtually all timing and control for these operations is

provided by the processor itself.

II. Programmable Registers
1) Accumulators
Two 8-bit accumulators, A and B, are used for general data manipulation.
Most binary operations (Add, Subtract, etc.) are performed with one of

the operands in an accumulator and leave the result in the accumulator.

2) Index Registers

Two 16-bit index, or base registers, X and Y, may be used for addresses
and bases. They may be loaded, stored, incremented and tested, and a

displacement byte may be added to them. They contain the addresses of
operands for all 32-bit operations, and may be used as base registers for

all 8-, and 16-bit memory reference instructions.

3) General Stack

The General Stack, GS, is a 32-byte first-in last-out stack implemented
as a 32-byte high-speed RAM and a 5-bit Stack Pointer Counter (SP)

Before a byte is stored in the Stack (pushed onto the GS), the Stack Pointer
is incremented to point to the next free location in the RAM prior to the
store operation. After a byte is read from the RAM (popped off of the GS),
the SP is decremented to point to the byte which was pushed onto the
stack immediately prior to the one that was read. Thus, pushing a byte

onto the GS appends it to a list, and popping a byte deletes it from that

list.

The Stack Pointer is a polynomial counter, and therefore is not " incremented"
and "decremented" in the usual binary sequence. The counting sequence

is listed below:

g-gop8g 9-gg11g
1-1g88¢84 1-18411
2-g1p904 11-11841
3-gg1p0 12-11184
4-1090149 13-1111¢
s-g1gg1 | 14-11111
6-10818¢ 15-g1111
7-11414 16 -gg111
8-41141 17-gg411

18-144841 25-1g4111
19-11844 26-41411
20-41190¢4 27-19141
21-1911¢4 28-g1g14
22-11011 29 -gg101
23-11181 M-ggF1 4
24-411148 31-gggg1

When a 16-bit quantity is pushed onto the GS, the low-order 8 bits are
first pushed, and then the high-order 8 bits are pushed. When a 16-bit
quantity is popped, the bytes are retrieved in the opposite order; that is,
the first byte popped from the stack (the most recently pushed) is the high-

order 8 bits, and tne second byte popped is the low-order 8 bits,

The top (most recently entered) two bytes of the GS are called the Stack
Head, SH. The SH may be used as an autoincrement register to provide
the address for mo:t 8- and 16-bit memory reference instructions. When
autoincrement addressing is specified, the SH is popped off of the stack
and stored in a temporary storage register and used to provide the memory
address to fetch the data byte(s). It is then incremented by the number

of bytes fetched and pushed back onto the GS.

The SH may also be swapped with X and Y, incremented and decremented by
one or two, and a displacement byte may be added to it, by special

instructions.

4) Status Register

The Status Register, SR, is a flag register consisting of 8 bits, as shown

below:

C|V |M|Z|LIE | HIE | SF1 | SF2

7 6 S 4 3 2 1 0
Condition Interrupt User
Codes Control Flags

The SR consists of three types of flags, as listed and described below:

A. Condition Codes
The Condition Codes, CC, are four flags which record the result of per-
forming an instruction and may later be used to cause conditional program

branching, determined by the result of the instruction. They are:

C - The Carry bit, C, is set or cleared by most arithmetic instructions to
save carries out of the most significant bit of adder (unsigned arithmetic
overflows). The value of C (1 or 0) may be added to an operand by a
subsequent instruction, thus facilitating multiple-precision arithmetic.

It also receives the bit which is shifted out as a result of a rotate or shift
instruction, and provides the bit to be shifted in by a rotate instruction.
Thus, the C bit acts as a link between the most and least significant bits

of data in a rotate operation,

V - The Signed Overflow bit, V, is set or cleared by most arithmetic
instructions to indicate whether a signed two's-complement arithmetic
overflow occured as a result of the instruction. A signed arithmetic over-
flow is the result of adding two numbers of the same sign whose sum exceeds
the capacity of the register, yielding a result of the opposite sign, or of
subtracting two numbers of different sign whose difference exceeds the
capacity of the register. The V bit is irrelevant to unsigned arithmetic.

Most logical instructions clear V.

4

Left shift and rotate instruction (but not right shift and rotate) shifts V
in a special way. For these instructions V is set if the bit shifted into the
signed bit (most significant bit) is difference from the bit shifted out of the

signed bit, and cleared otherwise.

M - The Minus bit, M, is set or cleared by most arithmetic and logical
instructions to record the value of the sign bit (most significant bit) of

the result.

Z - The Zero bit, Z, is set or cleared by most arithmetic and logical
instructions to record whether the result of the operation was zero. Zis

set on a zero result, and cleared otherwise.

B. Interrupt Control
The Interrupt Control Flags, LIE and HIE, enable interrupts in response to
requests on the Low~, and High-priority interrupt levels, respectively.

Their use will be explained more fully in a later section.

C. User Flags
The User Flags, SF1 and SF0, may be set, cleared and tested by special

instruction. Their use is uncommitted.

5) Program Counter
The Program Counter, PC, is a 16-bit counter which always contains the

address of the next instruction byte to be fetched from memory.

6) Memory
The memory may be as large as 65K bytes. It may consist of read/write
and/or read-only types of various speeds in any mixture. Memory access

is not constrained by page boundaries.

7) Interval Timer/Real-Time Clock

The Interval Timer/Real-Time Clock (IT/RTC) provides a means of measuring
time intervals for controlling I/O device operations, etc., or maintaining

a real-time clock. It consists of a time-base generator timed by the
processor input clock signals, @1M and @2M, an interval counter driven

by the time base, interrupt logic, and various control flags. These registers

and control flags are described below:

A. Time Base and TBS

The Time Base register is a pre-determined counter driven by the processor
clock which produces time base pulses at one of two program selectable
rates, determined by the state of the Time Base select flag, TBS, as follows:
TBS = # - Time Base frequency = 1 KHz

TBS = 1 - Time Base frequency =1 Hz

B. Interval Counter
The interval counter, IC, is an 8-bit binary counter which is loaded under

program control and incremented by time base pulses until overflow to time

out the select‘ed interval.

C. Time Out Logic and TO

The Time Out Logic examines the state of the IC and sets the Time Out
flag, TO, when the selected interval has passed. It operates in one of
two modes: If IC is initially loaded with zero, TO is set each time a time
base pulse occurs; if IC is initially loaded with any non-zero value, TO
is set upon IC overflow, and all IT/RTC operations are then halted until

a new IT/RTC operation is initiated under program control. In the first
(RTC) mode, the IT/RTC functions as a real-time clock, setting TO
periodically at regular intervals, while in the second (IT) mode, the
IT/RTC functions as an interval timer to time a single, pre-selected

interval and then halt,.

D. Timer Interrupt Logic and TE

The Timer Interrupt Logic is enabled and disabled by the Timer Interrupt
Enable flag, TE. TE is cleared to disable timer interrupts each time a new
IT/RTC operation is initiated and may subsequently be set under program
control. Whenever TE is ONE and TO is ONE and low-priority interrupts are
enabled (LIE is ONE), a processor interrupt occurs via an interrupt vector at
location 3. Thus, the IT/RTC functions as the highest device on the low-
priority interrupt bus, on a tenth level. (See section III for a discussion of

interrupts.) Upon initiating the timer interrupt, both TO and TE are cleared.

III. Interrupt Operation

The interrupt system is a two-line, multiple-device priority structure. Each
device which must interrupt processor operation is assigned to one of two priority
lines (the high-priority line, *SI, or the low-priority line, *IA) and one of nine
device levels on that line. The device may request a processor interrupt by
asserting its assigned priority line, More than one device may be requesting an
interrupt on the same line simultaneously. At the end of each instruction, the
processor examines the *SI line and if it is asserted and high-priority interrupts
are enabled (HIE = ONE), it responds to the request by initiating a Peripheral In
operation with DEH <7:0> = peripheral address FE16. (See Electrical Specification
for timing details of the Peripheral In operation.) When the requesting device
sees the Peripheral In PE16 command it identifies its device level in one of
two ways: If it is assigned to the lowest device level, it makes no response at
all. The processor waits approximately three microcycles after initiating the
Peripheral In operation and,if no device has responded, it assumes that the lowest-
level device is requesting, drops Bus Attention, and interrupts on that level. If
the device is assigned to one of the eight higher device levels, it responds to
the Peripheral In command by bringing the DEL <7:0> line corresponding to its

assigned device level to ZERO and asserting *AK.

The DEL <7> line is the highest device level and DEL <ﬂ> , the second
lowest. Upon seeing the assertion of *AK, the processor finishes the Peripheral
In operation by reading the DEL <7:O> lines and negating Bus Attention. It then
sequentially scans the eight bits, starting with bit 7, and interrupts on the level

of the first zero bit encountered. If no zero bit is found, the processor interrupts

on the lowest device level,

Low-priority interrupt requests are handled in a similar manner. If, at the
end of an instruction, the *IA line is asserted and low-priority interrupts are
enabled (LIE = ONE) and no high-priority interrupt is requested and enabled,
then the processor responds with a Peripheral In FF command to determine

16
which device level is the highest requesting. Except for the peripheral address

issued (PF16 instead of FE16) the determination of interrupt level proceeds exactly

as for high-priority interrupts,

When the processor has responded to an interrupt request and determined the
interrupt priority and device level, it proceeds with the following operations:

a) PC <7:0> is pushed onto the GS
) PC {15:8) is pushed onto the GS
) SR is pushed onto the GS
)

Q T

Q.

An interrupt vector address is determined, according to the interrupt
priority and level. The interrupt vector addresses are located in the lower
part of memory. Each interrupt vector consists of three consecutive bytes.
The address for a low-priority interrupt on the lowest device level is 6,

for a high-priority interrupt on the lowest device level it is 9, for a low-
priority interrupt on the second lowest level it is 12, etc. Thus, the address
for a low-priority interrupt on the highest device level is 5410 and that for
a high-priority interrupt on the highest level is 5710 .
e) The contents of the byte of memory located at the interrupt vector address
is loaded into PC (7:0) .

f) The contents of the next byte, the second byte of the interrupt vector, is
loaded into PC (15:8) .

g) The contents of the third byte of the interrupt vector is loaded into the SR.

h) Program execution is resumed at the location specified by the new PC

contents.

Thus, the PC and SR are saved in the stack and a new PC and SR are fetched
from the interrupt vector. Normally, the new PC will be the addres.s of the interrupt
service routine for the peripheral device assigned to the corresponding priority
and device level, and the new SR will disable interrupts at and below the interrupting
priority while enabling higher-priority interrupts. Thus, interrupt vectors for
low-priority interrupts will contain a ZERO for the LIE and a ONE for the HIE bits
of the new SR, while interrupt vectors for high-priority interrupts will contain
7EROs for both the LIE and SIE bits. This allows a low-priority interrupt to be

itself interrupted by a high-priority interrupt, but not the other way around.

In some cases it may be necessary or desirable to assign more than one
peripheral device to the same priority/device level. This may be true if the
number of peripherals which must interrupt the processor exceeds 18, or when
system cost considerations dictate the minimization of peripheral interface
complexity, making it desirable to put multiple devices on the lowest device

level so that they need not respond to the Peripheral In FF. . or Peripheral In

16

FEIG command. In this case, the interrupt service routine must interrogate the

various devices to determine which device initiated the interrupt request.

In addition to requests on the *SI and *IA lines, interrupts may also be
caused in two other ways. The first of these is an IT/RTC interrupt, as described
in section II.7.d. This interrupt uses an interrupt vector at location 3. Note

that timer interrupts can occur only when low-priority interrupts are enabled

(LIE = ONE).

Additionally, a Power Up Start interrupt is generated upon the negation of
*RESET, unless the console issues a console command. (See section VI for a
description of consoile operations.) Power Up Start interrupts use interrupt
vector address #, Power Up Start interrupts have the highest priority of all

and cannot be disabled by either LIE or SIE.

IV. Addressing

Several different address modes may be used for memory reference

instructions, as described below:

1) Immediate Addressing
In Immediate Mode, the Effective Address (EA) of the operand is contained
in the PC. After fetching each byte the PC is incremented by one to point

to the next location. Thus, the data is attached to, and part of the

instruction.

2) Indexed Addressing

Indexed Address Mode uses one of the two index registers, X or Y, as a base

register, The contents of the base register plus an additional instruction

byte, regarded as an unsigned integer in the range of 255 to @, forms

the EA.

3) Autoincremented Addressing
In Autoincremented Address Mode, the SH, the top two bytes of the GS, are

used as the EA. After fetching or storing each byte the SH is incremented

by one.

4) Deferred Addressing

Deferred (indirect) Addressing may be specified with any of the above modes
in most instructions. If deferral is specified, the EA calculated as per
sections IV.1-IV.3 above are used to fetch two bytes which then become

the EA of the operand. As with all multiple-byte data structures, deferred
addresses are stored in memory least-significant-byte-first; that is, the
address of the low-order deferred-address byte is calculated as per one of the
above modes, and the high-order deferred-address byte is fetched from the
next successive location. Note that by using Immediate Mode Deferred, a

full 16-bit address may be specified in an instruction.

5) Relative Addressing

ranch instructions always use Relative Addressing to specify the location at
which program execution is to resume if the branch test is successful. The
relative address is formed by adding a second instruction byte with sign
(most significant) bit extended to form a 16-bit displacement to the PC to
form the effective address. Thus, relative addressing allows any location
within -128_. _ to +127 bytes of the first byte of the instruction following

10
the branch instruction to be specified as the branch address.

Instructions

Several different instruction formats are used which occupy from one to four

bytes of memory. The operation to be performed is specified by the first byte

of the instruction; subsequent bytes, if any, specify address(es) and/or immediate

data.

10

1) Symbols and Abbreviations

The symbols and abbreviations used in describing the instructions are
listed below:

a) Subregisters and Compound Registers

X <a:b> - a "subregister" consisting of bits a through b, inclusive,

of register x.

%,y - a "compund register", the more significant bit(s) of which are the
bits of the register or subregister x, and the less significant bit(s) of

which are those of the register or subregister y.

b) Register and Flags

AorA <7:0> - the contents of accumulator A

BorB <7:0> - the contents of accumulator B

X or X <15:0> - the contents of index register X

YorY <15:0> - the contents of index register Y

PC or PC <1 5:0> - the contents of the Program Counter

GS - the General Stack. When a byte from the GS is used, it is popped
(removed) from the stack; when GS is loaded, the byte is pushed (added) to
the stack.

SH or SH {15:0) - the top two bytes of the GS

SR or SR <7:0> - the contents of the Status Register

¢c) Memory Locations
EA - Effective Address

(x) - the contents of memory location x.

d) Operators

+ - transfer of data; read as "replaces"
+ - binary two's-complement addition

- - binary two's-complement subtraction
v - logical Inclusive OR

A - logical AND

v - logical Exclusive OR (XOR)

11

+ - sign extension; e.g., "< X <7:O>+y <15:O> " is equivalent to "x <7>,
x (D . x (D ,x D ,x . xD,xD , x(7 , x(71:0~
y <15:0> ", Sign extension preserves the value of signed, two's-
complement number when it is transferred or added to a second register

with more bits of precision than the first.

e) Unless otherwise stated, all Instruction Opcodes are listed in the
hexadecimal number systems.

2) Single-Address, Multi-Mode, Memory-Reference Instructions (Multi-
Mode Group)

These instructions provide the primary means of loading and storing registers
and memory locations, of performing binary (two-operand) operations from
memory to a register, and of performing unconditional program jumps and

subroutine calls.

Six basic address modes may be used with most of these instructions, as

shown below:

Immediate: OP 944
7 ')
Immediate Data
7 ')
___I_rrlrf_lgc_lg_a_t_e_g)_a;cz_a_____ (for 16-bit data only)
7)

In Immediate Mode, the data, which may consist of one or two bytes, is

located immediately following the instruction byte.

Autoincrement;

OP g41
7 '}

In Autoincrement Mode, the SH contains the EA. The SH is incremented

after each byte of data is fetched.

12

X-Indexed:

| o°p ﬁ1ﬁ|
7 ')

255 > Displ.> & |
7 ')

In X-Indexed Mode, the contents of X plus the displacement byte is the EA.

Y-Indexed:

OP ;2/11'
7 g

2552 Displ.> @ l
7 ')

In Y-Indexed Mode, the contents of Y plus the displacement byte is the EA.

Immediate Deferred:
(Full Address) OP 1 944
7)
EA (7:0)
7 %)
EA {15:8)
7 o}

In Immediate Deferred, or Full Address Mode, the EA is contained in two

bytes immediately following the instruction byte.

Autoincrement Deferred:

OP 1 g1
7 I}

In Autoincrement Deferred Mode, the EA is contained in two consecutive

bytes of memory, the address of the first of which is contained in the SH.

The SH is incremented by one after each byte of the EA is fetched.

13

X-Indexed Deferred:

OP 114

255 > Displ.> g
7 g

In X-Indexed Deferred Mode, the EA is contained in two consecutive bytes of

memory, the address of the first of which is the contents of X plus the

displacement byte.

Y-Indexed Deferred:

oP 111

255 >2Displ.> @
7 ']

In Y-Indexed Deferred Mode, the EA is contained in two consecutive bytes of

memory, the address of the first of which is the contents of Y plus the

displacement byte.

In certain cases, wherein the use of a particular address mode with a
particular instruction would be of little or no utility, that opcode/mode

combination was used to implement other, Operate Group, instructions.

In such a case, the statement that " " Mode is invalid for this

instruction” is included in the instruction definition.
The condition codes may be treated in one of three ways, indicated below:

"CC Unchanged" - No change to C, M, Z or V bits

"Z,M,V Loaded" - Z set if result is zero, cleared otherwise; M set equal
to most significant bit of result; V cleared unconditionally; C remains
unchanged.

"CC Loaded" - Z set if result is zero, cleared otherwise; M set equal to
most significant bit of result; V set if signed arithmetic overflow occurs
as a result of operation, cleared otherwise; C set to value of carry

out of the most significant bit of the adder during operation.

14

In the instruction definitions below, the top line consists of the mnemonic,

named, and opcode of the instruction, in that order.

a) LDX - LoaD X - #4 + MODE
(EA + 1), (EA) ~X; CC Unchanged
b) LDY - LoaD Y - #8 + MODE
(EA + 1), (EA)» Y; CC Unchanged
c) LDA - LoaD A - 1§ + MODE
(EA) >~ A; Z, M, V Loaded
d) LDB - LoaDB - 18 + MODE
(EA) > B; Z,M, V Loaded
e) ADA - ADd A - 2@ + MODE
@, (EA) +§,A ~C,A; CC Loaded
f) ADB - ADd B - 28 + MODE
g, (EA) + 9,B» C,B; CC Loaded
g) SBA - SuBtract A - 3¢ + MODE
g, A-1, (EA)»~ C,A; CC Loaded
h) SBB - SuBtract B - 38 = MODE
g, B-1, (EA) ~C,B; CC Loaded
i) XORA - eXclusive OR A - 4§ + MODE
A v (EA) »A; Z, M, V Loaded
j) IORA - Inclusive OR A - 48 + MODE
Av (EA) ~A; Z, M, V Loaded
k) ANDA - AND A - 54 + MODE
A A (EA)» A; Z,M,V Loaded
1) CMPA - CoMPare to A - 58 + MODE
g, A-1, (EA) »C, Temporary register; CC Loaded
(Note: the only effect of CMPA is to set the CC as _though a SBA
instruction had been executed; no register is changed.)
m) PUM - PUsh Memory - 64 + MODE
(EA) » GS; CC Unchanged

(Pushes one byte of data onto stack)

15

n)

r)

t)

PUMD - PUsh Memory Double - 68 + MODE

(EA) » GS; (EA + 1) ~GS; CC Unchanged

(Pushes two bytes onto stack)

BTST - Bit TeST - 78 + MODE

(EA) o (PC) Temporary register; Z, M, V Loaded: PC + 1+ PC

(Note 1: This instruction has one additional byte, a mask byte, following -

the address byte(s), if any. This mask byte is ANDed with the data byte,

and Z and M are set according to the result. No register is changed.
Note 2: Immediate (non-Deferred) Mode is invalid with BTST.)

INC - INCrement memory - 78 + MODE

(EA) + 1 > (EA); Z, M, V Loaded

(Note: Immediate (non-Deferred) and Autoincrement (non-Deferred)
Modes are invalid with INC.)

STA - STore A - 84 + MODE

A ~(EA); Z, M, V Loaded

(Note: Immediate (non-Deferred) mode is invalid with STA.)

STB - STore B - 88 + MODE

B »(EA); Z, M, V Loaded

(Note: Immediate Mode is invalid with STB.)

POM - POp to Memory - 94 + MODE

GS ~ (EA); (One byte popped off stack and stored); CC Unchanged
(Note: Immediate, Autoincrement, and Autoincrement Deferred Modes
are invalid with POM.)

POMD - POp to Memory Double - 98 + MODE

GS~+ (EA + 1); (Two bytes popped off stack and stored); GS - (EA);

CC Unchanged

(Note: Immediate, Autoincrement, and Autoincrement Deferred Modes

are invalid with POMD.)

16

w) JMP - JuMP - Ag + MODE

EA-+ PC; CC Unchanged

(Note: Immediate and Autoincrement Modes are invalid with TMP)
v) PJMP - Push and JuMP - A8 + MODE

pc (7:0) ~ GS; PC (15:8) » GS; (PC pushed onto stack)

EA+ PC; CC Unchanged.

(Note: Immediate and Autoincrement Modes are invalid with PJMP.)

3) Branch Instructions

Branch instructions occupy two bytes, as shown below:

OoP

+127 2 Displ.> -128
7 0

When the test condition is met, the displacement byte, with sign extended,
is added to the PC to allow branching to any location within +127 to -128
locations of the byte following the displacement byte. Otherwise, instru-
ction execution continues sequentially with the instruction following the

displacement byte.

All Branch Instructions leave the Condition Codes unchanged.

a) BRN - BRaNch - Bl
Unconditional branch

b) BRTO - BRanch on Time Qut - B2 branch if TO (Time Out flag) = 1;
g ~TO.

c) BNTO - Branch on Not Time Qut - B3 branch if TO = g; g ~TO.

d) IBZX - Increment and Branch on Zero X - B4
X + 1 >X; branch if X = 0.

e) IBZY - Increment and Branch on Zero Y - BS

Y + 1-Y; branch if Y =@

17

f) IBNX - Increment and Branch on Non-zero X - Bb
X + 1> X; branch if X # 4.

g) IBNY - Increment and Branch on Non-zero Y - B7
Y + 1-Y; branch if Y # .

h) BRZ - BRanch on Z - B8

i) BNZ - Branch on Not Z - B9

j) BRM - BRanch on M - BA

k) BNM - Branch on Not M - BB

1) BRV - BRanch on V - BC

m) BNV - Branch on NotV - BD

n) BRC - BRanch on C - BE

o) BNC - Branch on Not C - BF

4) Unary, Memory-to-Memory, 32-bit Data Instructions (M-M Unary Group)
The M-M Unary instructions perform unary (single-operand) operations on
32-bit (4-byte) signed two's-complement integers stored in memory and
leave the result where the operand was. These instructions are limited

to one address mode, the Y-Indexed Mode. Therefore, they are two-byte

instructions, as shown below:

OP

255 2Displ. 2 g
7 %)

a) SLI - Shift Left, Integer - C#
(EA+3), (BA+2), EA+1), (EA), #>C, (EA+ 3), (EA+2), (EA+1), (EA;
CC Loaded.
This operation shifts left, with zero shifted into the least significant

bit. As in all shifts and rotates, the bit shifted out is shifted into C.

18

b) RLI - Rotate Left, Integer - C1
(EA+3), (EA+2), (EA+1), (EA), C>C, (EA+3), (EA+2), (EA+1), (EA);
CC Loaded.
This operation rotates left through C; that is, the old C is shifted into the least
significant bit, and the old most significant bit is shifted into C. All
rotate operations in this machine rotate through C.

c) SRI - Shift Right, Integer - C2
(EA +3){7) , (EA+3), (EA+2), (EA+ 1), (EA) ~ (EA+ 3), (EA+ 2),
(EA+ 1), (EA), C; CC Loaded
This operation shifts right, preserving (duplicating) the sign bit. The
old least significant bit is shifted into C.

d) RRI - Rotate Right, Integer - C3
C, (BA+3), (EA+2), (EA+1), (EA) »(EA+ 3), (EA+2), (EA+ 1), (EA), C;
CC Loaded
This operation rotates right through C.

e) NGI - NeGate Integer - C4
-1, (BEA+ 3), (EA+ 2), (EA+ 1), (EA> C, (EA+ 3), (EA+ 2), (EA+ 1), (EA);
CC Loaded

f) ABSI - ABSolute value of Integer - C5
If (BA+3){7) =1:
-1, (EA+ 3), (EA+2), (EA+ 1), (EA) ~C, (EA+ 3), (EA+2), EA+ 1), (EA);
CC Loaded;
Else if (EA+ 3) (7) =#:
1-C>V -M>2.
If the (old) value of the operand is positive, the CC bits are setto 1l's,
but no change is made in the data; otherwise, if the value of the operand
is negative, then the operand is negated to produce a positive result and
CC is loaded according to the result. Usually, a two's comp\lement
negation of a negative number produces a zero sign bit (M = g), zero
carry out (C = #), and no signed overflow (V = @), but if the most

negative number (in this case, —231) is negated, then M, C and V

19

will all be 1's. However, regardless of which negative value is chosen,
the result will never be zero. Hence, a BRZ or BNZ instruction following
the ABSI instruction will determine the sign of the data prior to the ABSI
operation. If Z =1, the data was positive; if Z = #, it was negative.

g) CLI - Clear Integer - C6
g >(EA+3), (EA+2), (EA+ 1), (EA); Z, M, V Loaded

5) Binary, Memory-to-Memory, 32-bit Data Instructions (M-M Binary Group)
The M-M Binary instructions perform binary (two-operand) operations on
32-bit (4-byte) signed two's complement integers stored in memory. The
instructions contain two addresses, a Source and a Destination. The
instruction obtains one operand from the Source and the other from the
Destination, and leaves the result in the Destination. As with the M-M
Unaries, the M-M Binaries are limited to a single type of addressing:

the Source address uses X-Indexed Mode, and the Destination uses Y-Indexed

Mode. Thus, they are three-byte instructions, as shown below:

OP
7 %)
2552 X-Displ. 2 g (Source Address)
7 2]
| 2552 Y-Displ. 2 g (Destination Address)
7 g

In the instruction definitions below, the source EA is called SA and the
Destination EA is called DA.
a) MVI - MoVe Integer - C7
(SA+3), SA+2), (SA+1), (SA) ~(DA+ 3), (DA +2), (DA + 1), (DA);
M, Z, V Loaded.

20

b) ADI - ADd Integer - C8
¥, SA+3), (SA+2), (SA+1), (SA) +4, (DA+ 3), (DA+ 2), (DA+ 1), (DA
+ C, (DA+3), (DA+ 2), (DA+ 1), (DA); CC Loaded.

c) ADCI - ADd with Carry Integer - C9
g, SA+3), (SA+2), SA+1), (SN +4, (DA+ 3), (DA + 2),(DA + 1) (DA)
+C>C, (DA+3), (DA+ 2), (DA+ 1), (DA); CC Loaded

d) SBI - SuBtract Integer - CA
9, DA+ 3), (DA+2), (DA+ 1), (DA) -1, (SA+3), (SA+2), (SA+1), (SA
+ C, (DA+3), (DA+2), (DA+ 1), (DA); CC Loaded

e) SBCI - SuBtract with Carry Integer - CB
g, (DA+3), (DA+2), (DA+ 1), (DA) -1, (SA+3), (SA+2), (SA+1), (SA
-1+C~+C, (DA+3), (DA+2), (DA+ 1), (DA) CC Loaded

6) Register Operation Instructions (Operate Group)
The Operate instructions perform inter-register data transfers and unary
operations of various sorts. In general, operations which can be performed
on one of a pair of similar registers (A and B, X and Y) can also be performed
on the other. In the listing which follows, such instructions are listed
in pairs, only the first of which is fully described.
a) PUSR - PUsh SR - D6

SR+ GS; CC Unchanged
b) POSR - POp SR - D7

GS +SR; CC changed in the same manner as the rest of the SR.
c) SWX - SWap X with SH - DA

X +~ Temporary register; SH~ X; Temporary register > SH; CC Unchanged.
d) SWY - SWap Y with SH - DB
e) PUX - PUsh X - DC

X (7:8) ~ GS; X (15:8) - GS; CC Unchanged
f) PUY - PUsh Y - DD
g) POX - POp X - DE

Gs »X (15:8) ; GS X (7:8) ; CC Unchanged

21

POY - POp Y - DF
CLA - Clear A - Eff

g7 gV, F>M 152

CLB - CLear B - E1

RLA - Rotate Left A = E2

A,C »C,A; CC Loaded

RLB - Rotate Left B - E3

RRA - Rotate Right A - E4

C,A +A,C; CC Loaded

RRB - Eotate Right B - ES

SRA - Shift Right A - E6

A~7) , A+A, C; CC Loaded

SRB - Shift Right B - E7

INA - INcrement A - E8; #, A+ 1 >C, A; CC Loaded
INB - INcrement B - E9

DCA - DeCrement A - EA

g, A-1->C, A; CC Loaded

DCB - DeCrement B - EB

ACA - Add Carry to A - EC

g, A+ C>C, A; CC Loaded

ACB - Add Carry to B - ED

DACA - Decrement and Add Carry to A - EE
g, A-1+C~>C, A; CC Loaded

DACB - Decrement and Add Carry to B - EF
NGA - NeGate A - F4

-1, A» C, A; CC Loaded

NGB - NeGate B - F1

CMA - CoMplement A - F2

-A-1> A; Z, M, V Loaded

22

ab) CMB - CoMplement B - F3
ac) PUA - PUsh A -TF4
A +GS; Z, M, V Loaded
ad) PUB - PUsh B - F5
ae) POA-POp A - F6
GS-» A; Z, MV Loaded
af) POB - POp B - F7
ag) SDA - Swap Digits of A - F8
A (3:8) , A {(7:4) A 2, M, V Loaded
ah) SDB - Swap Digits of B - F9
ai) SAB - Swap Aand B - FA
A, BB, A; Z, M, V Loaded
(Note: M is loaded with the new value of B <7>)
aj) RDLD - Rotate Digits Left Double - FB
B (3:¢) , A, B (7:4) » B, A; Z, M, V Loaded
ak) RLD - Rotate Left Double - FC
B, A, C~C, B, A; CC Loaded
al) RRD - Rotate Right Double - FD
C, B, A>~B, A, C; CC Loaded
am) SXY - Swap X andY - FE
X, Y »>Y, X; CC Unchanged
an) HLT - HalT - FF
This instruction causes all processor operations to cease, with PC
containing the address of the byte following the HILT.
ao) CPYA - CoPY A into B - 8¢
A >B: M, Z, V Loaded
ap) CPYB - CoPY B into A - 88
aq) POP - POP GS - 9¢; GS +Temporary Register; CC Unchanged
ar) POPD - POP GS Double - 98
GS~ Temporary register; GS »Temporary register; CC Unchanged
as) ISH - Increment QI;I - 91
SH + 1 » SH; CC Unchanged

23

at) ISHT - Increment SH by Two - 95
SH + 2 »SH; CC Unchanged

au) DSH - Decrement SH -99
SH - 1> SH; CC Unchanged

av) DSHT - Decrement SH by Two - 9D
SH - 2+ SH; CC Unchanged

aw) NOP - No OPeration - Ag

‘ No operation is performed

ax) CCAL - Co-CALL - A8
SH, PC - PC, SH; CC Unchanged

ay) RTS - Belufn from Subroutine - Al
GS +PC: CC Unchanged

az) RTI - Return from Interrupt - AS
GS »SR; GS +»PC; CC Unchanged

ba) ITO - Interrupt on Time Qut - D8
1> TE; CC Unchanged ‘
(This enables a timer interrupt when both TO (Time Out flag) and
LIE (Low-priority Interrupt Enable) are 1)

bb) RSTT - ReSeT Timer - D9
All timer flags are cleared, including TO and TE, and IT/RTC operation
is halted

bc) CLC - ClLear Carry - D3
g +C; Other CC Unchanged

7) Input and Output

The two I/O instructions defined below provide a means of communication
between the processor and peripheral devices. All I/O operations are
D.C.-interlocked to allow communication with devices of varying speeds
located at varying distances from the processor. No timing circuitry

or sequential logic is required to interface a peripheral to the Data
Exchange Bus. See the Electrical Specification for details of the Peripheral

In and Peripheral Out I/O operations.

24

Both I/O instructions use the following format:

OP

I1/0O Address
7 0

The I/O Address is transmitted on the Data Exchange Bus to select the

particular peripheral device or device register with which the processor

is to communicate. It is in no way related to any memory address.

The 1/0 instructions are:
a) IN - INput from peripheral - CC
I/O Address > Data Exchange Bus <15:8> :
Peripheral In Operation;
Data Exchange Bus (7:ﬁ> + A: M, Z, V Loaded
b) OUT - QUTput to peripheral - CD
I/O Address » Data Exchange Bus (15:8) ;
A »Data Exchange Bus <7:ﬁ>
Peripheral Out Operation; M, Z, V Loaded according to A

8) Miscellaneous Two-Byte Instructions
The following instructions have only one thing in common: All of them
consist of a single instruction byte followed by a single byte of immediate
data. In the following instruction definitions, this immediate data is
called ID.
a) TSTSR - TeST bits of SR - 74
SRA ID~»> Temporary register; M, V, Z Loaded
While C, M, V, & Z can be directly tested by Branch instructions, the
other four bits of SR cannot; this instruction enables the program to

test those bits by loading CC bits according to their state.

25

b) TSTA - TeST bits of A - 78
A4~ ID »Temporary Register; M, Z, V Loaded

c) TSTB - TeST bits of B - 79
Ba ID *Temporary Register; M, Z, V Loaded

d) LITP - Load IC, start IT/RIC, and set TBS to # - CE
g~ TBS; § »TO; @ -~ TE; ID~ IC; Start IT/RTC Operation;
CC Unchanged
(See section II.7, Interval Timer/Real-Time Clock)

~e) LIT1 - Load IC, Start IL/RTC, and set TBS to 1 - CF
1+ TBS; g +TO, #~ TE; ID »IC;
Start IT/ﬁTC Operation; CC Unchanged.

f) ADSH - ADd to SH - B@
< ID + SH » SH; CC Unchanged
This instruction allows the Stack Head, SH, to be changed by any
number in the range of -128 to + 127,

g) ADX - ADd to X - Dff
« ID + X »X; CC Unchanged

h) ADY - ADdtoY - DI
+< ID + Y>Y; CC Unchanged

i) ANSR - ANd into SR - D4
ID ASR~ SR
This allows any bit or bits of the SR to be cleared without modifying other
bits.

j) ORSR - Inclusive OR SR - D5
ID v SR -»SR.

' 9) Find On List Instruction
The Find On List instruction, FOL, is in a class by itself. Like Operate
roup instructions, it occupies only a single byte of memory, but unlike the

Operates, it references memory, using Autoincrement Mode addressing. The

is defined as:

26

FOL - Find On List - D2
(SH) v A+ Temporary register; Z, M, V Loaded;
If Z = 1 then go on to next instruction;
Otherwise:
SH+1~+SH; B-1~+B;
If B = g then go on to next instruction;
Otherwise:
PC - 1 »PC, so that the FOL instruction will be re-fetched and

re-executed.

Thus, the FOL instruction fetches data bytes from a list using Autoincrement
Mode, compares them to A, and decrements B until either a byte is found
on the list which is equal to A, or all elements of the list have been

checked (B = #).

Note the following characteristics of FOL:

a) The list length may be from one to 256 characters. (If B = # when
FOL is first executed, 256 characters will be searched.)

:b) If a character matching A is found, the FOL search will stop with
the address of that character in the SH; otherwise, it will stop with
the address of the last character on the stack, plus one, in the SH.

c) The FOL operation may be interrupted after each character is tested, and
execution of the FOL operation will resume at the point at which it left
off following the return from interrupt. This feature is necessary due

to the length of the FOL operation when searching a long list,

10) Instruction Set Summary

a) Multi-Mode Group

Modes: Immediate 11
Autoincrement 1
X-Indexed 2
Y-Indexed 3
Full (Immediate 4

Deferred)

27

Autoincrement Deferred 5

X-Indexed Deferred 6
Y-Indexed Deferred 7
Instructions:

LDX - Load X

LDY - Load Y

LDA - Load A

LDB - Load B

ADA - Add to A

ADB - Add to B

SBA - Subtract from A

SBB - Subtract from B

XORA - Exclusive - OR into A
IORA - Inclusive - OR into A
ANDA - AND into A

CMPA - Compare with A
PUM - Push Memory onto GS
PUMD - Push Double-byte from Memory onto GS

BTST - Bit Test
Note: Mode g (Immediate) is invalid.

INC - Increment Memory
Note: Modes # (Immediate) and 1 (Autoincre-
ment) are invalid.

STA - Store A in Memory
Note: Mode @ (Immediate) is invalid.

STB - Store B in Memory
Note: Mode # (Immediate) is invalid.

POM - Pop GS and Store in Memory
Note: Modes # (Immediate), 1 (Autoincre-
ment), and 5 (Autoincrement Deferred) are
invalid,

POMD - Pop Double-byte from GS and Store in
Memory
Note: Modes g (Immediate), 1 (Autoin-

28

#% + Mode
#8 + Mode
14 + Mode
18 + Mode
27 + Mode
28 + Mode
374 + Mode
38 + Mode
40 + Mode
48 + Mode
5¢ + Mode
58 + Mode
64 + Mode
68 + Mode
78 + Mode

78 + Mode

84 + Mode

88 + Mode

94 + Mode

98 + Mode

POMD - (Continued)

crement), and 5 (Autoincrement Deferred)
are invalid,

JMP - Program Jump
Note: Modes # (Immediate) and 1 (Autoincre-
ment) are invalid,

PJMP - Push PC onto GS and Jump
Note: Modes # (Immediate) and 1 (Atuoincre-
ment) are invalid.

Branch Group (Relative Addressing)

BRN - Branch (Unconditional)

BRTO - Branch if TO = 1 and clear TO

BNTO - Branch if TO = # and clear TO

IBZX - Increment X and Branch if X = &

IBZY - Increment Y and Branch if Y= @

IBNX - Increment X and Branch if X # &

IBNY - Increment Y and Branch if Y # §

BRZ - Branch if Z = 1 '

BNZ - Branch if Z = ¢

BRM - Branch if M =1

BNM - Branch if M= g

BRV - Branch if V=1

BNV - Branch if V=g

BRC - Branch if C =1

BNC - Branch if C = ¢

M~-M Unary Group (Y-Indexed Addressing)
SLI - Shift Integer Left '

RLI - Rotate Integer Left

SRI - Shift Integer Right

RRI - Rotate Integer Right

NGI - Negate Integer

29

AZ + Mode

A8 + Mode

Bl
B2
B3
B4
BS
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

cg
c1
C2
c3
C4

e)

ABSI ~ Take the Absolute Value of Integer
CLI - Clear Integer

M-M Binary Group (X-Indexed Addressing for Source,
Y-Indexed Addressing for Destination)

MVI - Move Integer

ADI - Add Integer to Integer

ADCI - Add Integer to Integer with Carry

SBI - Subtract Integer from Integer

SBCI - Subtract Integer from Integer with Carry

Operate Group

CPYA - Copy A into B

CPYB - Copy B into A

POP - Pop and Discard a byte from GS
ISH - Increment SH by one
ISHT - Increment SH by two
POPD - Pop and Discard a Double-byte from GS
DSH - Decrement SH by one
DSHT - Decrement SH by two
NOP - No Operation

RTS - Return from Subroutine
CCAL - CoCall

RTI - Return from Interrupt
CLC - Clear C

PUSR - Push SR onto GS
POSR - Pop from GS into SR
ITO - Interrupt when TO =1
RSTT - Reset IT/RTC

SWX - Swap X and SH

SWY - Swap Y and SH

PUX - Push X onto GS

30

CS
Cé6

Cc7
C8
C9
CA
CB

8g
88
of
91
95
98
99
9D
A
Al
A8
A9
D3
D6
D7
D8
D9
DA
DB
DC

PUY - Push Y onto GS
POX - Pop GS to X
POY - PopGStoY
CLA - Clear A

CLB - Clear B

RLA - Rotate A Left
RLB - Rotate B Left
RRA - Rotate A Right
RRB - Rotate B Right
SRA - Shift A Right
SRB - Shift B Right
INA - Increment A
INB - Increment B
DCA - Decrement A
DCB - Decrement B
ACA - Add Carry to A
ACB - Add Carry to B

DACA - Decrement and Add Carry to A
DI.CB - Decrement a:'d Add Carry to B

NGA - Negate A

NGB - Negate B
CMA - Complement A
CMB - Comrlement B
°UA - Push A onto GS
PUB - Push B onto GS
POA - Pop GS to A
POB - Pop GS to B

SDA - Swap Digits of A
SDB - Swap Digits of B

31

DD
DE
DF
EF
El
E2
E3
E4
ES
E6
E7
E8
ES
EA
EB
EC
ED
EE
EF
13
F1l
F2
F3
F4
F5
F6
F7
F8
F9

1)

g)

h)

SAB - Swap A and B

RDLD - Rotate Digits Left in Double Register B,A
RLD - Rotate Double Register B,A Left

RRD - Rotate Double Register B,A Right

S)éY -Swap X andY

HLT ~ Halt

I/0O Instructions
IN - Input from Peripheral
OUT - Output to Peripheral

Miscellaneous Two-Byte Instructions (Immediate
data forms second byte)

TSTSR - Test Bits of SR

TSTA - Test Bits of A

TSTB - Test Bits of B

ADSH - Add Sign - Extended Byte to SH

LITY - Load IC, Start IT/RTC, and Clear TBS
LIT1 - Load IC, Start IT/RTC, and Set TBS
ADX - Add Sign-Extended Byte to X

ADY - Add Sign-Extended Byte to Y

ANSR - AND into SR

ORSR - OR into SR

Find On List (Repeated instruction, Autoincexed
Mode Addressing)
FOL - Find On List

32

FA
FB
FC
FD
FE
FF

CC
CDh

78
78
79
Bg
CE
CF
DJ
D1
D4
D5

D2

VI, Console Operation

The console operations described herein allow implementation of a
console which operates as a peripheral device in the system. Great
fiexibility is afforded the system designer in defining a console to meet
his cost and performance objectives. In fact, the system may function
without any console at all, provided that certain parts of memory are
nonvolatile so that it is not necessary to load the memory upon power-
up before beginning program execution. The various console features are

described below.

1) *RESET Input Line
The *RESET input line to the processor allows the processor operation
to be terminated at any point. When *RESET is asserted, the
processor operation stops, any I/O or memory reference operation
in progress is terminated, and any IT/RTC operation is stopped.
When *RESET is negated, the processor attempts to perform a
Peripheral In operation from the Console Command Register, 1/0

Address FC The processor then waits three microcycles for *AK

16°
to be asserted.
If the Console does not respond, the processor clears all operating
registers (A, B, X etc.) and performs a Power-Up Start interrupt
using interrupt vector address . This allows automatic starting
of systems without consoles, and unattended power-up restart of

all systems.

If the Console does respond, it places a console command on the
Data Exchange <7:0> lines, which the processor reads and executes.

The console commands are described below.

2) Console Commands
Console Commands, in conjunction with the *RESET and RUN input

lines to the processor, enable the console to perform all standard

33

console operations, such as reading and loading registers and
memory, stopping and starting program execution as desired,
performing single instructions on demand, etc. The console

command format is shown below:

Console Command Register fANY { QP }
7 54)

Bits 7 to 5 of the command are not used. The console commands

are listed and described below. Most of them use data from, or

lead data into the Console Data Register, I/O Address FD16. For
simplicity, the Peripheral In and Peripheral Out operations necessary
to read and load this register are omitted from the descriptions below.
and the Console Data Register is represented as a register called CDR.
Except for operations gf and 14, all operations read the CDR,

whether or not they use the data.

OP:
g# - RUN, fetching the instruction from the address specified in PC.

g1 - SR=CDR

Reads the Status Register

97 - SP-=CDR
Reads the Stack Pointer Counter

Instruction Register ~CDR
Reads the Instruction Register, containing the first byte of the
last program instruction {not console command) fetched.

g3

#4 -~ GS ~ CDR
Pops & byte from the GS

@5 - Increment SP; GS »CDR
Reads the iast byte popped from the GS, or the next location

into which data would be pushed. SP is first incremented,
and then decremented (by popping data from the GS), and

therefore is not changed by this opecration.

g6 - (PC)~» CDR
Reads the memory location that's address is contained in the PC.

g7 - PC + 1+ PC; (PC) ~CDR
Increments the PC, and then reads the memory location that
address is contained in the PC.

34

g8 -pC {7:9) > CDR
AReads the low-order byte of the PC.

g9 -pC (15:8) -~ CDR
Reads the high-order byte of the PC.

gA - A > CDR
" Reads A.
gB -B >~ CDR
Reads B.

gc-x (7:8) ~ CDR
Reads the low-order byte of X.

gD-x (15:8) > CDR
Reads the high-order byte of X.

gE -Y (@:7) » CDR
Reads the low-order byte of Y.

gr -y {(15:8) » CDR ,
Reads the high—-order byte of Y.

14 -Run, fetching the instruction from the address specified in PC.
This operation is identical to 2¢.

11 -CDR~> SR; SR> CDR
Load Status Register.

12 -CDR~+» 8P; SP-»CDR
Load SP

13 - CDR ~+ CDR; CDR ~ Instruction Register; Run

The instruction byte read from the CDR is executed., If it requires
additional instruction bytes, then these bytes are fetched from

memory using the PC for address, and the PC incremented after each
byte is fetched. If the console does not stop the processor, it will then
go on executing instructions from memory. This command is identical
to @7 and 1§, except that the first instruction byte is fetched from the
CDR.

14 -GS »Temporary register;
CDR -~ Temporary register;
Temporary register - GS;
Temporary register - CDR.
The top byte of the GS is changed (loaded).

35

15 - CDR~ Temporary register;
Temporary register> GS;
Temporary register-+ CDR.

A byte is pushed onto the GS.

16 - (PC)~ Temporary register;
CDR- Temporary register;
Temporary register~ (PC);
Temporary register> CDR.
A byte is loaded into the memory location that's address
is contained in the PC.

17 - PC + 1 »PC;
(PC) > Temporary register;
Temporary register~ (PC);
Temporary register-» CDR.

Increments the PC, and then loads the memory location that's
address is contained in the PC.

18 - CDR+ PC (7:0) ;
PC (7:f) = CDR.
. Loads the low-order PC.

19 - CDR~ PC {15:8) ;
PC (15:8) » CDR.
Loads the high-order PC.

1A - CDR-+» A;
A >CDR.
Loads ..

1B - CDR~ B;
B »-CDR.
Loads B.

1C - CDR>¥ (7:9) ;
X (7:f) ~CDR.
Loads low-order X.

1D - CDR» X (15:8) ;
X (15:8) > CDR.
Loads high-order X.
1E - CDR» Y (7:8) ;

Y (7:4) > CDR.
Loads low-order Y.

1IF - CDR» Y (15:8) ;
Yy {15:8) -~ CDR.
Loads high-order VY.

36

3)

Note that all of the above operations, except #7 and 17, which
refer to no register, load the CDR (perform a Peripheral Out/FD16 |
operation) with the final contents of the register on which the
operation (read or load) is performed. In most applications the
Peripheral In FD] 6 operation will read a switch register which will

be the "CDR" for inputs, while the Peripheral Out FD_ . operation

16
will load a display register which will be the "CDR" ror outputs.

At the end of each console command, the processor will begin

to execute instructions, starting at the location specified in the

PC, unless inhibited from doing so by the negation of RUN. (See below)

RUN Input Line

The RUN line enables normal processor operation. When RUN is
negated, the processor operation comes to a halt the next time a
"Return" microinstruction is encountered; that is, it comes to a
halt at the end of execution of the current macroinstruction or

console operation.

Negating the RUN line differs from asserting the *RESET line in
three important ways The first is that, while asserting *RESET
stops all processor operation immediately, negating RUN stops
only at the end of an operation, The second is that negating RUN
does not clear any processor flags nor pending interrupts nor does
it stop the IT/RTC. The third is that, while necating *RESET causes
“he processor to poll the console and then either execute a console
command or clear the processor registers and perform a Power-Up
Start interrupt, reasserting RUN simply causes the processor to
continue running where it left off. Thus, while asserting *RESET
actually resets the processor, negating RUN simply causes it to

pause between instructions or console commands.

37

4)

Performing Console Operations

The only way to initiate a console commard is to assert, and then
negate *RESET. However, this cannot be done at just any point in
instruction execution if the major "stafe" of the processor is to be
pr‘leserved. For instance, during the execution of an Autoincrement
Mode Instruction the SH may have been popped off of the GS and
stored in a temporary register for use as an address, and may not
have yet been incremented and pushed back onto the GS. If *RESET
were asserted at that time, the SH would be lost and the two bytes

on the GS immediately below the SH would appear to be the SH.

In order to prevent such difficulties, RUN should be negated for a
length of time greater than the length of the longest instruction
sequence, prior to asserting *RESET, If this is done, the processor
will always have paused at the end of an instruction before *RESET

is asserted, and the major register. will not be disturbed. RUN may
then be reasserted at any time before or after *RESET is negated. The
processor will not begin to run until RUN has been reasserted gr_i_ci

*RESET has been negated.

As mentioned above, unless continued execution is somehow inhibited,
the processor will begin to fetch and execute instructions as soon as
it finishes executing a console command. This may be prevented by
negating RUN at some time between the stert of the console operation
and its end. There are two easy ways of insuring this timing when
performing a series of console commands. The first is to keep RUN
negated except for a brief time (2 to 44 microcycles) at the beginning
of each console operation, Then RUN is asserted long enough to
start the console command, but is negated before the end of the
console operation. The other method is to allow the processor itseli
to time the RUN signal. In this case, RUN is asserted to start the

console command operation, and is negated as soon as the processor

38

5)

polls the console with the Peripheral In FC (Read Console Command

Register) operation.

Single~Instruction Mode

A useful feature for debugging both hardware and software is the
ability to execute a single instruction when a switch is depressed,
and then to pause so that the results of executing that instruction can
be observed and interpreted. This is referred to as Single Instruction

Mode operation,

There are two ways to perform Single Instruction Mode operation
for this processor. The first is to maintain the processor in the
Paused State (RUN negated) at all times except for brief (two-, to
five microcycle) periods to start the execution of instructions. In

this method, the *RESET line is never asserted.

The second method is the same as the first except that Console
Command g7 or 14 is performed to execute an instruction. Like all
other console operations, but unlike the first method, Console

Commands #@ and 1§ stop the IT/RTC. Also, while an interrupt may

occur immedjately if processor operation is started by simply reasserting

RUN, the second method prevents interrupts from occuring. Therefore,

the second method is preferable for most program debugging functions.

39

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39

