
AMD-K6™
MMX™ Enhanced Processor

Multimedia Technology Manual

AMD~

Preliminary Information

MMXTM Enhanced
Processor

Multimedia Technology

AMD~

Trademarks

Preliminllry Infonnlllion

© 1997 Advanced Micro Devices, Inc. All rights reserved.

Advanced Micro Devices, Inc. ("AMD") reserves the right to make changes in its
products without notice in order to improve design or performance characteristics.

The information in this publication is believed to be accurate at the time of
publication, but AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication or the information
contained herein, and reserves the right to make changes at any time, without
notice. AMD disclaims responsibility for any consequences resulting from the use
of the information included in this publication.

This publication neither states nor implies any representations or warranties of
any kind, including but not limited to, any implied warranty of merchantability or
fitness for a particular purpose. AMD products are not authorized for use as critical
components in life support devices or systems without AMD's written approvaL
AMD assumes no liability whatsoever for claims associated with the sale or use
(including the use of engineering samples) of AMD products except as provided in
AMD's Terms and Conditions of Sale for such product.

AMD, the AMD logo, and combinaiions thereof are trademarks of Advanced Micro Devices, Inc.

RISC86 is a registered trademark, and K86, AMD-K5, AMD-K6, and the AMD-K6logo are trademarks of Advanced
Micro Devices, Inc.

Windows NT is a trademark of Microsoft Corporation.

MMX is a trademark of the Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Preliminory Information AMD~

20726C/O-June 1997 AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

Contents

1 AMD-K6™ Processor Multimedia Technology

Introduction. 1

Multimedia Technology Architecture 2

Key Functionality 2

Register Set. 4

Data Types .. 6

Instructions. 7
Instruction Formats 8

1 Programming Considerations

Feature Detection 9

Task Switching. 11

Exceptions .. 13

Mixing MMXTM and Floating-Point Instructions 14

Prefixes .. 14

3 MMrM Instruction Set

EMMS ... 18

MOVD ... 19

MOVQ ... 20

PACKSSDW .. 21

PACKSSWB ... 23

PACKUSWB .. 26

PADDB ... 29

PADDD .. 31

PADDSB ... 33

PADDSW ... 35

PADDUSB .. 37

PADDUSW ... 39

PADDW .. 41

Contents iii

AMD~ Preliminory Informotion

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

iv

PANDo 000000000000000000000043

PANDN 0045

PCMPEQBo 047

PCMPEQDo 049

PCMPEQW 00051

PCMPGTB 0053

PCMPGTDo 0 0 0 0 0 00000000000000000000000000000000000055

PCMPGTW 00057

PMADDWDo 0 0 0 0 00000000000000000000000000000000000059

PMULHW 0061

PMULLWo 0 00063

POR 00065

PSLLD 0 0 0 0 0 0067

PSLLQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000000069

PSLLWo 00000000000000000071

PSRADo 00073

PSRAW 0075

PSRLDo 0077

PSRLQo 0079

PSRLW 00 81

PSUBB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000000000 83

PSUBDo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000085

PSUBSBo 00000000000000087

PSUBSW 00089

PSUBUSB 0091

PSUBUSWo 00000000000000093

PSUBW 0095

PUNPCKHBW 0 97

PUNPCKHDQ 0 99

PUNPCKHWD 0 101

PUNPCKLBW 00000000000000000000000000000000000000 103

PUNPCKLDQ 0 105

PUNPCKLWDo 0 0 00000000000000000000000000000000000 107

PXORo 00109

Contents

Preiiminllry informlltion AMD ~

20726C/O-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

Revision History

Date Rev Description

July 1996 A Initial Release

March 1997 B
Removed paragraph from "Mixing MMX'M and Floating-Point Instructions" on page 14 that
contained inaccuracies pertaining to floating-point tag words.

June 1997 C
Revised stack exception entry in Table 1, "MMXTM Instruction Exceptions," on page 13 to include
Real mode and Virtual-8086 mode.

June 1997 C Revised note 2 on page 13 regarding floating-point exceptions.

June 1997 C Replaced overbar with # to indicate active-Low signals.

June 1997 C Revised document to comply with MMX trademark.

June 1997 C Revised description of EMMS instruction on page 18.

Revision History v

AMD~ Preliminary Information

AMO-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

vi Revision History

20726CjO--June 1997

Introduction

Pre/iminDry /nformlllion AMD~

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

AMD-K&TM Processor
Multimedia Technology

1

Next generation PC performance requirements are being
driven by emerging multimedia and communications software.
3D graphics, video, audio, and telephony capabilities are
evolving across education, entertainment, and internet
applications. As multimedia applications continue to
proliferate in the marketplace, PC systems suppliers are being
challenged to deliver multimedia-enabled PC solutions
covering all mainstream price/performance points.

In response to the growing need to provide improved PC
multimedia capabilities, the AMD-K6™ MMXTM enhanced
processor is the first member in the AMD family of processors
to incorporate a robust multimedia technology that is fully
software compatible with the MMXTM technology as defined by
Intel. This multimedia technology enables scale able
multimedia capabilities across a broad range of PC system
price/performance points.

The AMD-K6 processor features a decode-decoupled
superscalar microarchitecture and state-of-the-art design
techniques to deliver true sixth-generation performance while
maintaining full x86 binary software compatibility. An x86
binary-compatible processor implements the industry-standard
x86 instruction set by decoding and executing the x86

AMD-K6™ Processor Multimedia Technology ,

AM D ~ Preliminllry Informlltion

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

instruction set as its native mode of operation. Only this native
mode enables delivery of maximum performance when running
PC software.

The AMD-K6 processor delivers leading-edge performance to
mainstream PC systems running industry-standard x86
software. The AMD-K6 processor implements advanced design
techniques like instruction pre-decoding, dual x86 opcode
decoding, single-cycle internal RISC operations, parallel
execution units, out-of-order execution, data forwarding,
register renaming, and dynamic branch prediction. In other
words, the AMD-K6 is capable of issuing, executing, and
retiring multiple x86 instructions per cycle, resulting in
superior scale able performance.

This document describes the multimedia technology of the
AMD-K6 processor, including data types, instructions, and
programming considerations.

Multimedia Technology Architecture

Key Functionality

2

The multimedia technology in the AMD-K6 MMX enhanced
processor is designed to accelerate media and communication
applications. Specialized applications that use music synthesis,
speech synthesis, speech recognition, audio and video
compression and decompression, full motion video, 2D and 3D
graphics, and video conferencing, can take advantage of the
AMD-K6 processor multimedia technology. The multimedia
technology implements new instructions, new data types, and
powerful parallel processing (Single Instruction Multiple Data,
SIMD) techniques that can significantly increase the
performance of these applications.

At the lowest levels, multimedia applications (audio, video, 3D
graphics, and telephony, etc.) contain many similar functions.
When these functions are performed on a processor that does
not have MMX capability, the processor is heavily burdened by
the computational requirements of this information. Processors
executing the MMX instructions increase the performance of

AMD-K6™ Processor Multimedia Technology

20726CjO-June 1997

Prelimintlry Infonntltion AM 0 l'
----------------------------------=-

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

multimedia applications. This performance increase is a direct
result of the increased multimedia bandwidth of the processor.

Multimedia applications must process large amounts of data.
Parallel data computing is exemplified by applications that
manipulate screen pixel information. Instead of acting on one
pixel at a time, multimedia technology enables the system to
act on multiple pixels simultaneously. This Single Instruction
Multiple Data (SIMD) model is a key feature of MMX
technology.

The AMD-K6 processor multimedia technology architecture
includes four new MMX data types, 57 new MMX instructions,
eight new 64-bit MMX registers, and an SIMD processing
pipeline. The multimedia technology is compatible with
existing x86 applications.

The 57 new MMX instructions include arithmetic functions,
packing and unpacking functions, logical operations, and
moves. These are the basic functions that are most commonly
used in repetitive computational multimedia programs.

Multimedia applications often use smaller operands-8-bit
data is commonly used for pixel information and 16-bit data is
used for audio samples. The new MMX registers allow data to
be packed into 64-bit operands. For example, 8-bit data (1 byte)
can be packed in sets of eight in a single 64-bit register, and all
eight bytes can be operated on simultaneously by a single MMX
instruction.

For 256-color video modes, this translates to computing eight
pixels per instruction. When an entire screen is being re-drawn,
these pixel manipulation routines often use highly repetitive
loops. Parallel processing of eight pieces of data can reduce the
processing time of a code loop by up to a factor of eight.

Multimedia applications frequently multiply and accumulate
data. The multimedia technology provides instructions that
add, multiply, and even combine these operations. For
example, the PMADDWD instruction can multiply and then
add words of data in a single instruction that uses far less
processor cycles than the equivalent x86 operations.

AMD-K6™ Processor Multimedia Technology

AMD~ Preliminary Information

AMO-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Executing MMX™
Instructions

Register Set

4

A programmer must approach the use of MMX instructions
differently, based on whether the code being developed is at
the system level or at the application level. The details of these
differences are discussed in "Programming Considerations" on
page 9.

Before using the MMX instructions, the programmer must use
the CPUID instruction to determine if the processor supports
multimedia technology. See the AMD Processor Recognition
Application Note, order# 20734, for more information.

Function 1 (EAX=l) of the AMD-K6 processor CPUID
instruction returns the processor feature bits in the EDX
register. Software can then test bit 23 of the feature bits to
determine if the processor supports the multimedia technology.
If bit 23 is set to 1, MMX instructions are supported. All
AMD-K6 processors have bit 23 set. Once it is determined that
multimedia technology is supported, subsequent code can use
the MMX instructions. Alternatively, the AMD 8000_0001h
extended CPUID function can be used to test whether the
processor supports multimedia technology.

After a module of MMX code has executed, the programmer
must empty the MMX state by executing the EMMS command.
Because the MMX registers share the floating-point registers,
an instruction is needed to prevent MMX code from interfering
with floating-point. The EMMS command clears the multimedia
state and resets all the floating-point tag bits. Emptying the
MMX state sets the floating-point tag bits to empty (all ones),
which marks the MMXJFP registers as invalid and available.

The AMD-K6 processor implements eight new 64-bit MMX
registers. These registers are mapped on the floating-point
registers. As shown in Figure 1 on page 5, the new MMX
instructions refer to these registers as mmregO to mmreg7.
Mapping the new MMX registers on the floating-point stack
enables backwards compatibility for the register saving that
must occur as a result of task switching.

AMO-K6™ Processor Multimedia Technology

20726CjO--June] 997

Preliminary Information AMDl1
AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

TAG BITS 63 o -
xx mmregO

xx mmregl

xx mmreg2

xx mmreg3

xx mmreg4

xx mmreg5

xx mmreg6

xx mmreg7

-
Figure 1. MMX'M Registers

Aliasing the MMX registers onto the floating-point stack
registers provides a safe way to introduce this new technology.
Instead of needing to modify operating systems, new MMX
applications can be supported through device drivers, MMX
libraries, or DLL files. See the Programming Considerations
section of this document for more information.

Current operating systems have support for floating-point
operations. Using the floating-point registers for MMX code is
an ingenious way of implementing automatic support for MMX
instructions. Every time the processor executes an MMX
instruction, all the floating-point register tag bits are set to zero
(OOb::::valid). Setting the tag bits after every MMX instruction
prevents the processor from having to perform extra tasks.
These extra tasks are normally executed on floating-point
registers when the Tag field is something other than OOb.

If a task switch occurs during an MMX or floating-point
instruction, the Control Register (CRO) Task Switch (TS) bit is
set to 1. The processor then generates an interrupt 7 (int 7
DevicE:(Not Available) when it encounters the next
floating-point or MMX instruction, allowing the operating
system to save the state of the MMXlFP registers.

AMD-K6™ Processor Multimedia Technology 5

AM 0 ~ Pre/iminDry /nionDDtion

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Data Types

6

If there is a task switch when MMX applications are running
with older applications that do not include MMX instructions,
the MMXlFP register state is still saved automatically through
the int 7 handler.

The AMD-K6 processor multimedia technology uses a packed
data format. The data is packed in a single, 64-bit MMX register
or memory operand as eight bytes, four words, or two double
words. Each byte, word, doubleword, or quadword is an integer
data type.

The form of an instruction determines the data type. For
example, the MOV instruction comes in two different forms
MOVD moves 32 bits of data and MOVQ moves 64 bits of data.

The four new data types are defined as follows:

Packed byte

Packed word

Packed
doubleword

Ouadword

Eight 8-bit bytes packed into 64 bits
Signed integer range(-27 to 27-1)
Unsigned integer range(O to 28-1)

Four 16-bit words packed into 64-bits
Signed integer range(-215 to 215_1)
Unsigned integer range(O to 216_1)

Two 32-bit doublewords packed into 64 bits
Signed integer range(-231 to 231_1)
Unsigned integer range(O to 232_1)

One 64-bit quadword
Signed integer range(-263 to 263_1)
Unsigned integer range(O to 264_1)

Figure 2 on page 7 shows the four new data types.

AMD-K6™ Processor Multimedia Technology

20726CjO-June 1997

Instructions

Preliminary Information AMD~

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

(8 bits x 8) Packed bytes
63 5655 4847 4039 3231

I B7 I 86 I B5 B4 I
(16 bits x 4) Packed words
63 4847 3231

I ,"V3 I W2

(32 bits x 2) Packed double words
63 3231

I D1 I

(64 bits xl) Quadword
63

Figure 2. MM)(TM Data Types

QO

2423 1615 87 o
83 I 82 81 BO

1615 o
W1 wo

o
DO I

o

The AMD-K6 processor multimedia technology includes 57 new
MMX instructions. These new instructions are organized into
the following groups:

• Arithmetic
• Empty MMX registers

• Compare
• Convert (pack/unpack)

• Logical

• Move

• Shift
The following mnemonics are used in the instructions:

• P-Packed data

• B-Byte

• W-Word
• D-Doubleword

• Q-Quadword

• S-Signed

AMD-K6™ Processor Multimedia Technology 7

AMD~ Preliminllry IntorRIden

AMD-K6™ MMX'" Enhanced Processor Multimedia Technology 20726QO-June 1997

• U-Unsigned
• SS-Signed Saturation

• US-Unsigned Saturation
For example, the mnemonic for the PACK instruction that
packs four words into eight unsigned bytes is PACKUSWB. In
this mnemonic, the US designates an unsigned result with
saturation, and the WB means that the source is packed words
and the result is packed bytes.

The term saturation is commonly used in multimedia
applications. Saturation allows mathematical limits to be
placed on the data elements. If a result exceeds the boundary of
that data type, the result is set to the defined limit for that
instruction. A common use of saturation is to prevent color
wraparound.

Instruction Formats

8

All MMX instructions, except the EMMS instruction that uses
no operands, are formatted as follows:

INSTRUCTION mmregl. mmreg2/mem64

The source operand (mmregZ/mem64) can be either an MMX
register or a memory location. The destination operand
(mmregl) can only be an MMX register.

The MOVD and MOVQ instructions also have the following
acceptable formats:

MOVD mmregl. mreg32/mem32
MOVD mreg32/mem32. mmregl
MOVO mem64. mmregl

In the first example, the source operand (mreg32/mem32) can
be either an integer register or a 32-bit memory address. The
destination operand (mmregl) can only be an MMX register.
The second example has the source operand as an MMX
register. The destination operand (mreg32/mem32) can be
either an integer register or a 3Z-bit memory address. The third
example has the source operand as an MMX register and the
destination operand as a 64-bit memory location

The SHIFT instructions can also utilize an immediate source
operand. It is designated as imm8.

PSRLW mmregl. immB

AMO-K6™ Processor Multimedia Technology

20726CjO-June 1997

Feature Detection

Preliminary Infonnmion AMD~

AMD-K6™ MM)(TM Enhanced Processor Multimedia Technology

Programming
Considerations

2

This chapter describes considerations for programmers writing
operating systems, compilers, and applications that utilize
MMX instructions as implemented in the AMD-K6 MMX
enhanced processor.

To use the AMD-K6 processor multimedia technology, the
programmer must determine if the processor supports them.
The CPUID instruction gives programmers the ability to
determine the presence of multimedia technology on the
processor. Software must first test to see if the CPUID
instruction is supported. For a detailed description of the
CPUID instruction, see the AMD Processor Recognition
Application Note, order# 20734.

The presence of the CPUID instruction is indicated by the ID
bit (21) in the EFLAGS register. If this bit is writable, the
CPUID instruction is supported. The following code sample
shows how to test for the presence of the CPUID instruction.

9

AMD~ Preliminary Information

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

10

pushfd save EFLAGS
pop eax store EFLAGS in EAX
mov ebx. eax save in EBX for later testing
xor eax. 00200000h toggl e bit 21
push eax put to stack
popfd save changed EAX to EFLAGS
pushfd push EFLAGS to TOS
pop eax store EFLAGS in EAX
cmp eax. ebx see if bit 21 has changed
jz NO_CPUID if no change. no CPUID

If the processor supports the CPUID instruction, the
programmer must execute the standard function, EAX=O. The
CPUID function returns a 12-character string that identifies the
processor's vendor. For AMD processors, standard function 0
returns a vendor string of "Authentic AMD". This string
requires the software to follow the AMD definitions for
subsequent CPUID functions and the values returned for those
functions.

The next step is for the programmer to determine if MMX
instructions are supported. Function 1 of the CPUID
instruction provides this information. Function 1 (EAX=l) of
the AMD CPUID instruction returns the feature bits in the EDX
register. If bit 23 in the EDX register is set to 1, MMX
instructions are supported. The following code sample shows
how to test for MMX instruction support.

mov eax.1
CPUID
test edx. BOOOOO
jnz YES_MM

setup function 1
ca 11 the funct ion
test 23rd bit
multimedia technology supported

Alternatively, the extended function 1 (EAX=8000_0001h) can
be used to determine if MMX instructions are supported.

mov eax.BOOO_0001h
CPUID
test edx. BOOOOO
jnz YES MM

setup extended function 1
call the function
test 23rd bit
multimedia technology supported

Programming Considerations

20726CjO-June 1997

Task Switching

Cooperative
Multitasking

Preliminary Information AMD~

AMD-K6™ MM)(fM Enhanced Processor Multimedia Technology

A task switch is an event that occurs within operating systems
that allows multiple programs to be executed in parallel. Most
modern operating systems utilizing task switching, are called
multitasking operating systems.

There are two types of multitasking operating systems
cooperative and preemptive.

In cooperative multitasking operating systems, applications do
not care about other tasks that may be running. Each task
assumes that it owns the machine state (processor, registers, I/O,
memory, etc.). In addition, these tasks must take care of saving
their own information (i.e., registers, stacks, states) in their own
memory areas. The cooperative multitasking operating system
does not save operating state information for the applications.

There are different types of cooperative multitasking operating
systems. Some of these operating systems perform some level
of state saves, but this state saving is not always reliable. All
software engineers programming for a cooperative
multitasking environment must save the MMX or floating-point
states before relinquishing control to another task or to the
operating system. The FSA VE and FRSTOR commands are
used to perform this task. Figure 4 illustrates this task
switching process.

Note: Some cooperative operating systems may have API calls to
perform these tasks for the application.

TAlK 1 n TASK2 n TASK 1

,
PROGRAM MUST executing
RESTORE STATES

MMX™/FP code
FRSTOR

PROGRAM MUST
RESTORE STATES

r------, code executing
I Task Switch : code module FRSTOR
I to TASK 2 V finished ____ ') executing code
I

PROGRAM MUST i I PROGRAM MUST

I SAVE STATES I
SAVE STATES

I FSAVE I FSAVE
L _____ .J goto TASK 1

Figure 3. Cooperative Task Switching

Programming Considerations 11

AMD~ Preliminory Informotion

AMD-K6™ MMJrM Enhanced Processor Multimedia Technology 20726C/O-June 1997

Preemptive
Multitasking

12

In preemptive multitasking operating systems like OS/2,
Windows NTTM, and UNIX, the operating system handles all
state and register saves. The application programmer does not
need to save states when programming within a preemptive
multitasking environment. The preemptive multitasking
operating system sets aside a save area for each task.

In a preemptive multitasking operating system, if a task switch
occurs, the operating system sets the Control Register 0 (CRO)
Task Switch (TS) bit to 1. If the new task encounters a
floating-point or MMX instruction, an interrupt 7 (int 7, Device
Not Available) is generated. The int7 handler saves the state of
the first task and restores the state of the second task. The int7
handler sets the CRO.TS to 0 and returns to the original
floating-point or MMX instruction in the second task. Figure 4
illustrates this task switching process.

TASK 1 r-, TASK 2 ~NT 7 handler
J. ,

executing executing code Save Task 1 State
MMX""jFP code r------,

I Encounter I Restore Task 2
r------,

I Task Switch I
I MMX/FPcode I
I I Set CRO.TS=O

I to TASK 2 I V I Because TS= 1 I J I SetCRO.TS=l I' I goto INTl -r Return to Task 2
I I I handler I MMXfFPcode
L _____ ..J L _____ -l

Figure 4. Preemptive Task Switching

Programming Considerations

20726CjO-June 1997

Exceptions

Preliminllry Informlliion AMD~

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

Table 1 contains a list of exceptions that MMX instructions can
generate.

Table 1. MMX'" Instruction Exceptions

I Exception I Real I V!:~:I I Protected I
i i Description

Invalid opcode (6) X
I

X X I The emulate MMX instruction bit (EM) of the control
register «(RG) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch
bit (fS) of the control register «(RG) is set to 1.

Stack exception (12) X X X During instruction execution, the stack segment limit
was exceeded.

General protection (13) X During instruction execution, the effective address of
one of the segment registers used for the operand
points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the
address range oooooh to GFFFFh.

Page fault (14) X X A page fault resulted from the execution of the
instruction.

Floating-point exception X X X An exception is pending due to the floating-point
pending (16) execution unit

Alignment check {17} X X An unaligned memory reference resulted from the
instruction execution, and the alignment mask bit
(AM) of the control register «(RG) is set to 1. (In
Protected Mode, (PL = 3.)

The rules for exceptions have not changed in the
implementation of MMX instructions. None of the exception
handlers need to be modified.

Note:

1. An invalid opcode exception interrupt 6 occurs if an MMX
instruction is executed on a processor that does not
support MMX instructions.

2. If a floating-point exception is pending and the processor
encounters an MMX instruction, FERR# is asserted and, if
CRO.NE = 1, an interrupt 16 is generated.

Programming Considerations

AM D~ Pre/iminllry Informlltion

AMD-K6™ MM)(TM Enhanced Processor Multimedia Technology 20726CjO-June 1997

Mixing MMrM and Floating-Point Instructions

Prefixes

14

The programmer must take care when writing code that
contains both MMX and floating-point instructions. The MMX
code modules should be separated from the floating-point code
modules. All code of one type (MMX or floating-point code)
should be grouped together as often as possible. To obtain the
highest performance, routines should not contain any
conditional branches at the end of loops that jump to code of a
different type than the code that is currently being executed.

In certain multimedia environments, floating-point and MMX
instructions may be mixed. For example, if a programmer
wants to change the viewing perspective of a three-dimensional
scene, the perspective can be changed through transformation
matrices using floating-point registers. The picturelpixel
information is integer-based and requires MMX instructions to
manipulate this information. Both MMX and floating-point
instructions are required to perform this task.

The software must clean up after itself at the end of an MMX
code module. The EMMS instruction must be used at the end of
an MMX code module to mark all floating-point registers as
empty (l1=empty/invalid). In cooperative multitasking
operating systems, the EMMS instruction must be used when
switching between tasks.

Note: In some situations, experienced programmers can utilize the
MMX registers to pass information between tasks. In these
situations, the EMMS instruction is not required.

The tag bits are affected by every MMX and floating-point
instruction. After every MMX instruction except EMMS, all the
tag bits in the floating-point tag word are set to O. When the
EMMS instruction is executed, all the tag bits in the tag word
are set to 1.

All instructions in the x86 architecture translate to a binary
value or opcode. This 1 or 2 byte opcode value is different for
each instruction. If an instruction is two bytes long, the second
byte is called the Mod RIM byte. The Mod RIM byte is used to
further describe the type of instruction that is used.

Programming Considerations

Preliminary Information AMDl1 ---_._-- .-------------~~ .- ~.- - -_ ... ----------------_._- -,,------ ------"---~---

20726CjO-June 1997 AMO-K6™ MMX'M Enhanced Processor Multimedia Technology

The x86 opcode and the Mod RIM byte can also be followed by
an SIB byte. This byte is used to describe the Scale, Index and
Base forms of 32-bit addressing.

The format of the x86 instruction allows for certain prefixes to
be placed before each instruction. These prefixes indicate
different types of command overrides.

The MMX instructions follow these rules just like all the
current existing instructions. This allows for an easy
implementation into the x86 architecture. All of the rules that
apply to the x86 architecture apply to MMX instructions,
including accessing registers, memory, and I/O.

Most opcode prefixes can be utilized while using MMX
instructions. The following prefixes can be used with MMX
instructions:

• The Segment Override prefixes (2Eh/CS, 36h/SS, 3EhIDS,
26h/ES, 64h/FS, and 6Sh/GS) affect MMX instructions that
contain a memory operand.

• The LOCK prefix (FOh) triggers an invalid opcode excep
tion (interrupt 6).

• The Address Size Override prefix (67h) affects MMX
instructions that contain a memory operand.

Programming Considerations 15

AM D~ Preliminory InformDtion

AMD-K6™ MMJrM Enhanced Processor Multimedia Technology 20726CjO-June 1997

16 Programming Considerations

20726C/O-June 1997

Preliminary Information AMD~

AMO-K6™ MM)('M Enhanced Processor Multimedia Technology

3
MMrM Instruction Set

The following MMX instruction definitions are in alphabetical
order according to the instruction mnemonics.

17

AMD~ Preliminllry Informmion

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

EMMS

mnemonic

EMMS

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Exception Real

Invalid opcode (6) X

Device not available (7) X

Floating-point exception X
pending (16)

Virtual
8086

X

X

X

opcode descripuon

OF 77h Clear the MMX state

none
MMX
none

Protected

X

X

X

Description

The emulate MMX instruction bit (EM) ofthe control register (CRO) is setto l.

Save the floating-point or MMX state if the task switch bit (TS) of the con-
trol register (CRO) is setto l.

An exception is pending due to the floating-point execution unit.

The EMMS instruction is used to clear the MMX state following the execution of a
block of code using MMX instructions. Because the MMX registers and tag words are
shared with the floating-point unit, it is necessary to clear the state before executing
code that includes floating-point instructions.

18 MM)('M Instruction Set

Preliminary Information AMD~
-----.---.-~~-------,--.~---~--~-~-----------~--~-~-~------~----~--.------------------.--------

20726C/O-June 1997

MOVD

mnemonic

MOVD mmregl, reg32/mem32

MOVD reg32/mem32, mmregl

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

opcode description

OF 6Eh Copy a 32-bit value from the general purpose register or
memory location into the MMX register

OF 7Eh Copy a 32-bit value from the MMX register into the general
purpose register or memory location

none
MMX
none

Proteded

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register «(RO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register «(RO) is set to 1.
(In Protected Mode, (Pl = 3.)

The MOVD instruction moves a 32-bit data value from an MMX register to a general
purpose register or memory, or it moves the 32-bit data from a general purpose
register or memory into an MMX register. If the 32-bit data to be moved is provided
by an MMX register, the instruction moves bits 31-0 of the MMX register into the
specified register or memory location. If the 32-bit data is being moved into an MMX
register, the instruction moves the 32-bits of data into bits 31-0 of the MMX register
and fills bits 63-32 with zeros.

Related Instructions See the MOVQ instruction.

MM)('M Instruction Set 19

AMD ~ Preliminory Information

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

MOVQ

mnemonic opcode description

MOVQ mmregl, mmreg2/mem64 OF 6Fh Copy a 64-bit value from an MMX register or memory location
into an MMX register

MOVQ mmreg2/mem64, mmregl OF 7Fh Copy a 64-bit value from an MMX register into an MMX register
or memory location

Privilege:
Registers Affected:
Rags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register ((RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register ((RO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OoOooh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register ((RO) is set to 1.
(In Protected Mode, (Pl = 3.)

The MOVQ instruction moves a 64-bit data value from one MMX register to another
MMX register or memory, or it moves the 64-bit data from one MMX register or
memory to another MMX register. Copying data from one memory location to another
memory location cannot be accomplished with the MOVQ instruction.

Related Instructions See the MOVD instruction.

20 MM)('M Instruction Set

Preliminory Informotion AMD~

20726CjO-June 1997 AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

PACK55DW

mnemonic opcode description
~---------------------------------

PACKSSDW mmregl, mmreg2jmem64 OF 6Bh Pack with saturation signed 32-bit operands into signed
16-bit results

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Exception Real

Invalid opcode (6) X

Device not available (7) X

Stack exception (12)

General protection (13)

Segment overrun (13) X

Page fault (14)

Floating-point exception X
pending (16)

Alignment check (17)

Virtual
8086

X

X

X

X

X

X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register ((RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register ((RO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register ((RO) is set to 1.
(In Protected Mode, (Pl = 3.)

The P ACKSSDW instruction performs a pack and saturate operation on two signed
32-bit values in the first operand and two signed 32-bit values in the second operand.
The four signed 16-bit results are placed in the specified MMX register.

The pack operation is a data conversion. The P ACKSSDW instruction converts or
packs the four signed 32-bit values into four signed 16-bit values, applying saturating
arithmetic. If the signed 32-bit value is less than -32768 (8000h), it saturates to -32768
(8000h). If the signed 32-bit value is greater than 32767 (7FFFh), it saturates to 32767
(7FFFh). All values between -32768 and 32767 are represented with their signed
16-bit value.

The first operand must be an MMX register. In addition to providing the first
operand, this MMX register is the location where the result of the pack and saturate
operation is stored. The second operand can be an MMX register or a 64-bit memory
location.

MM)('M Instruction Set 21

AM D l1 Preliminory Informotion

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Fundionalillustration of the PACKSSDW Instrudion

mmreg2/mem64

63

mmregl

32 31 32 31 0 63 0

r--S-O-O-O--'---OO-O-Z-h--'--O-O-O-O--'--S-O-O-O-h~1 'I --F-F-F-F--'--S-O-O-Z-h-'---O-O-o-O--'--O-l-FC-h-'I

r SOOOh r 7FFFh SOOZh OlFCh 1

63 48 47 32 31 16 15 0

• Indicates a saturated value
mmregl

The following list explains the functional illustration of the P ACKSSDW instruction:

• Bits 63-32 of the source operand (mmreg2/mem64) are packed into bits 63-48 of
the destination operand (mmreg1). The result is saturated to the largest possible
16-bit negative number because the 32-bit negative source operand (8000_0002h)
exceeds the capacity of the signed 16-bit destination operand.

• Bits 31-0 of the source operand are packed into bits 47-32 of the destination
operand. The result is saturated to the largest possible 16-bit positive number
because the 32-bit positive source operand (0000_8000h) exceeds the capacity of
the 16-bit destination operand.

• Bits 63-32 of the destination operand are packed into bits 31-16 of the destination
operand. The results are not saturated because the 32-bit negative source operand
(FFFF _8002h) does not exceed the capacity of the 16-bit destination operand.

• Bits 31-0 of the destination operand are packed into bits 15-0 of the destination
operand. The results are not saturated because the 32-bit positive source operand
(OOOO_OlFCh) does not exceed the capacity of the 16-bit destination operand.

Related Instrudions

22

See the P ACKSSWB instruction.

See the P ACKUSWB instruction.

See the PUNPCKHWD instruction.

See the PUNPCKL WD instruction.

MMX'M Instruction Set

Preliminary Informotion AMD~

20726C/O-June 1997 AMO-K6™ MMX'M Enhanced Processor Multimedia Technology

PACKSSWB

mnemonic opcode description

PACKSSWB mmregl, mmreg2/mem64 OF 63h Pack with saturation signed 16-bit operands into signed 8-bit
results

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Virtual
Ex(eption Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Proteded

X

X

X

X

X

X

X

Desuiption

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register «(RO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

-~

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register «(RO) is set to 1.
(In Protected Mode, (PL = 3.)

The P ACKSSWB instruction performs a pack and saturate operation on four signed
16-bit values in the first operand and four signed 16-bit values in the second operand.
The eight signed 8-bit results are placed in the specified MMX register.

The pack operation is a data conversion. The P ACKSSWB instruction converts or
packs the eight signed 16-bit values into eight signed 8-bit values, applying saturating
arithmetic. If the signed 16-bit value is less than -128 (80h), it saturates to -128 (80h).
If the signed 16-bit value is greater than 127 (7Fh), it saturates to 127 (7Fh). All values
between -128 and 127 are represented by their signed 8-bit value.

The first operand must be an MMX register. In addition to providing the first
operand, this MMX register is the location where the result of the pack and saturate
operation is stored. The second operand can be an MMX register or a 64-bit memory
location.

MMX'M Instruction Set 2J

AMD~ Pre/iminory /nioTmotion

AMD-K6™ MM)(lM Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PACKSSWB Instruction

mmreg2/mem64 mmregl

63 48 47 32 31

00 7 E h I 7 F : 00 h E F

16 15 0

9Dh I FF ! SSh I
63 48 47 32 31 16 15 0

I FF ! 02h 00: S5h I DO! 7Eh I Sl : CFh I

• Indicates a saturated value

17EhrlFhrSOhl8ShrSOh r7Fhl7EhrSOhi

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

mmregl

The following list explains the functional illustration of the P ACKSSWB instruction:

• Bits 63-48 of the source operand (mmreg2/mem64) are packed into bits 63-56 of
the destination operand (mmreg1). The result is not saturated because the 16-bit
positive source operand (007Eh) does not exceed the capacity of a signed 8-bit
destination operand.

• Bits 47-32 of the source operand are packed into bits 55-48 of the destination
operand. The result is saturated to the largest possible 8-bit positive number
because the 16-bit positive source operand (7FOOh) exceeds the capacity of a
signed 8-bit destination operand.

• Bits 31-16 of the source operand are packed into bits 47-40 of the destination
operand. The result is saturated to the largest possible 8-bit negative number
because the 16-bit negative source operand (EF9Dh) exceeds the capacity of a
signed 8-bit destination operand.

• Bits 15-0 of the source operand are packed into bits 39-32 of the destination
operand. The result is not saturated because the 16-bit negative source operand
(FF88h) does not exceed the capacity of the 8-bit destination operand.

• Bits 63-48 of the destination operand are packed into bits 31-24 of the destination
operand. The result is saturated to the largest possible 8-bit negative number
because the 16-bit negative source operand (FF02h) exceeds the capacity of a
signed 8-bit destination operand.

24 MM)(lM Instruction Set

Preliminary Informllfion AMD~

20726CjO-June 1997 AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

• Bits 47-32 of the destination operand are packed into bits 23-16 of the destination
operand. The result is saturated to the largest possible 8-bit positive number
because the 16-bit positive source operand (0085h) exceeds the capacity of a
signed 8-bit destination operand.

• Bits 31-16 of the destination operand are packed into bits 15-8 of the destination
operand. The result is not saturated because the 16-bit positive source operand
(007Eh) does not exceed the capacity of a signed 8-bit destination operand.

• Bits 15-0 of the destination operand are packed into bits 7-0 of the destination
operand. The result is saturated to the largest possible 8-bit negative number
because the 16-bit negative source operand (81CFh) exceeds the capacity of a
signed 8-bit destination operand.

Related Instructions

MM)('M Instruction Set

See the P ACKSSDW instruction.

See the P ACKUSWB instruction.

See the PUNPCKHBW instruction.

See the PUNPCKLBW instruction.

25

AM D ~ Preliminary Infonnotion

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726CjO-June 1997

PACKUSWB

mnemonic opcode description

PACKUSWB mmregl, mmreg2/mem64 OF 67h Pack with saturation signed16-bit operands into unsigned
8-bit results

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Exception Real

Invalid opcode (6) X

Device not available (7) X

Stack exception (12)

General protection (13)

Segment overrun (13) X

Page fault (14)

Floating-point exception X
pending (16)

Alignment check (17)

Virtual
8086

X

X

X

X

X

X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register ((RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register ((RO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register ((RO) is set to 1.
(In Protected Mode, (PL = 3.)

The P ACKUSWB instruction performs a pack and saturate operation on four signed
16-bit values in the first operand and four signed 16-bit values in the second operand.
The eight unsigned 8-bit results are placed in the specified MMX register.

The pack operation is a data conversion. The P ACKUSWB instruction converts or
packs the eight signed 16-bit values into eight unsigned 8-bit values, applying
saturating arithmetic. If the signed 16-bit value is a negative number, it saturates to 0
(OOh). If the signed 16-bit value is greater than 255 (FFh), it saturates to 255 (FFh). All
values between 0 and 255 are represented with their unsigned 8-bit value.

The first operand must be an MMX register. In addition to providing the first
operand, this MMX register is the location where the result of the pack and saturate
operation is stored. The second operand can be an MMX register or a 64-bit memory
location.

26 MM)('M Instruction Set

Preliminory Informnfion AMDl1
20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

Functional Illustration of the PACKUSWB Instruction

mmreg2/mem64 mmregl
(Signed) (Signed)

63 48 47 32 31 16 15 0 63 48 47 32 31

12h I
I

80h I i 88h I
I

3Ah I 00 : 01 00 I 8Bh OF FF 00 02h 02

rFFhl8BhrFFhrOOhl02hrFFhl7EhrOOhj

63 56 55 48 47 4039 32 31 24 23 16 15 8 7 0

• Indicates a saturated value

mmregl
(Unsigned)

16 15 0

7 Eh I
I

F8h I FF I

The following list explains the functional illustration of the P ACKUSWB instruction:

• Bits 63-48 of the source operand (mmreg2/mem64) are packed into bits 63-56 of
the destination operand (mmreg1). The result is saturated to the largest possible
8-bit positive number because the 16-bit positive source operand (0112h) exceeds
the capacity of an unsigned 8-bit destination operand.

• Bits 47-32 of the source operand are packed into bits 55-48 of the destination
operand. The result is not saturated because the 16-bit positive source operand
(008Bh) does not exceed the capacity of an unsigned 8-bit destination operand.

• Bits 31-16 of the source operand are packed .into bits 47-40 of the destination
operand. The result is saturated to the largest possible 8-bit positive number
because the 16-bit positive source operand exceeds the capacity of an unsigned
8-bit destination operand.

• Bits 15-0 of the source operand are packed into bits 39-32 of the destination
operand. The result is saturated to OOh because the source operand (FF88h) is a
negative value.

• Bits 63-48 of the destination operand are packed into bits 31-24 of the destination
operand (mmreg1). The result is not saturated because the 16-bit positive source
operand (0002h) does not exceed the capacity of an unsigned 8-bit destination
operand.

• Bits 47-32 of the destination operand are packed into bits 23-16 of the destination
operand. The result is saturated to the largest possible 8-bit positive number

MMX'M Instruction Set 27

AMD~ PreliminDry InformDtion

AMD-K6™ MMX'" Enhanced Processor Multimedia Technology 20726CjO-June 1997

because the 16-bit positive source operand (023Ah) exceeds the capacity of an
unsigned 8-bit destination operand.

• Bits 31-16 of the destination operand are packed into bits 15-8 of the destination
operand. The result is not saturated because the 16-bit positive source operand
(007Eh) does not exceed the capacity of an unsigned 8-bit destination operand.

• Bits 15-0 of the destination operand are packed into bits 7-0 of the destination
operand. The result is saturated to OOh because the source operand (FFF8h) is a
negative value.

Related Instructions

28

See the P ACKSSDW instruction.

See the P ACKSSWB instruction.

See the PUNPCKHBW instruction.

See the PUNPCKLBW instruction.

MMX'M Instruction Set

Preliminary Information AMD~

20726C!O-- June 1997 AMD-K6™ MMX!M Enhanced Processor Multimedia Technology

PADDB

mnemonic opcode description
----~-----.------

PADDB mmregl, mmreg2/mem64 OF FCh Add unsigned packed 8-bit values

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Exception Real

Invalid opcode (6) X

Device not available (7) X

Stack exception (12)

General protection (13) I

Segment overrun (13) X

Page fault (14)

Floating-point exception X
pending (16)

Alignment check (17)

Virtual
8086

X

X

X

X

X

X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register «(RO) is set to I.

Save the floating-point or MMX state if the task switch bit (TS) of the control I

register «(RO) is set to 1. I
During instruction execution, the stack segment limit was exceeded. I
During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register «(RO) is set to 1.
(In Protected Mode, (PL = 3.)

The PADDB instruction adds eight unsigned 8-bit values from the source operand (an
MMX register or a 64-bit memory location) to the eight corresponding unsigned 8-bit
values in the destination operand (an MMX register). If any of the eight results is
greater than the capacity of its 8-bit destination, the value wraps around with no carry
into the next location. The eight 8-bit results are stored in the MMX register that is
specified as the destination operand.

MMX'M Instruction Set 29

AM 0 ~ Preliminary Information

AMD-K6™ MMJ<'M Enhanced Processor Multimedia Technology

Functional Illustration of the PADDB Instruction

mmreg2/mem64

mmreg1

mmreg1

~ 0

I OOh I F2h 153h 142h I FCh 112h I 07h IIAh I
+ + + + + + + +

~ 0

I OOh laSh I ECh I OOh 114h I DOh I F7h I OSh I
~ 0

I DOh I FAh 13Fh 142h IIOh I E2h I FEh I 22h I

20726C/O-June 1997

The following list explains the functional illustration of the P ADDB instruction:

• The value 53h is added to ECh and wraps around to 3Fh.

• The value FCh is added to 14h and wraps around to 10h.

• The remaining addition operations are simple unsigned operations with no
wraparound.

Related Instructions

30

See the P ADDD instruction.

See the P ADDW instruction.

See the PADDSB instruction.

See the P ADDSW instruction.

See the P ADDUSB instruction.

See the P ADDUSW instruction.

MMJ<'M Instruction Set

Preiiminllry infomJlltion AMD~

20726CjO-June 1997 AMD-K6™ MM)(TM Enhanced Processor Multimedia Technology

PADDD

mnemonic opcode description

PADDD mmregl, mmreg2/mem64 OF FEh Add unsigned packed 32-bit values

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

I I Virtual
Exception I Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

I Segment overrun (13) X X

Page fault (14) X

Floating-point exception I X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected I Description

X The emulate MMX instruction bit (EM) of the control register ((RO) is set to 1.

X Save the floating-point or MMX state if the task switch bit (TS) of the control
register ((RO) is set to 1.

X During instruction execution, the stack segment limit was exceeded.

X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

X A page fault resulted from the execution of the instruction.

X An exception is pending due to the floating-point execution unit.

X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register ((RO) is set to 1.
(In Protected Mode, (PL = 3.)

The PADDD instruction adds two unsigned 32-bit values from the source operand (an
MMX register or a 64-bit memory location) to the two corresponding unsigned 32-bit
values in the destination operand (an MMX register). If any of the two results is
greater than the capacity of its 32-bit destination, the value wraps around with no
carry into the next location. The two 32-bit results are stored in the MMX register
specified as the destination operand.

MM)(TM Instruction Set 31

AMD ~ Pre/iminory /nformotion

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PADDD Instruction

63 0

mmreg2/mem64 8000_0000h I
+ +

63 0

mmreg1 OOOF A3BEh 0123_4567h I
63 0

mmreg1 0000 0001h 8123_4567h I
The following list explains the functional illustration of the P ADDD instruction:

• The value FFFO_SC43h is added to OOOF _A3BEh and wraps around to OOOO_OOOlh.

• The second addition is a simple unsigned add operation with no wraparound.

Related Instructions See the P ADDB instruction.

See the P ADDW instruction.

See the P ADDSB instruction.

See the P ADDSW instruction.

MM)('M Instruction Set

Pre/iminory /nlormllfion AM D ~
-~.--------'------~--~-~----,--------~~-~-~--.----------~-~--~-.-----------

20726CjO-June 1997 AMO-K6™ MM)('M Enhanced Processor Multimedia Technology

PADDSB

mnemonic opcode description

PADDSB mmregl, mmreg2/mem64 OF ECh Add signed packed 8-bit values and saturate

Privilege:
Registers Affected:
Rags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected
X

X

X

X

X

X

X

Desc:ription
The emulate MMX instruction bit (EM) of the control register ((Ra) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register ((Ra) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One ofthe instruction data operands falls outside the address range aaaaoh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register ((Ra) is set to 1.
(In Protected Mode, (PL = 3.)

The PADDSB instruction adds eight signed 8-bit values from the source operand (an
MMX register or a 64-bit memory location) to the eight corresponding signed 8-bit
values in the destination operand (an MMX register). If the sum of any two 8-bit values
is less than -128 (80h), it saturates to -128 (80h). If the sum of any two 8-bit values is
greater than 127 (7Fh), it saturates to 127 (7Fh). The eight signed 8-bit results are
stored in the MMX register specified as the destination operand.

MM)('M Instruction Set II

AMD~ Preliminary Information

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PADDSB Instruction

~ 0

mmreg2/mem64 I DOh ID2h 153h 142h l77h 170h I D7h 19Ah I
+ + + +++ ++

~ 0

mmregl I Dlh ISSh I ECh I DOh 114h 144h I F7h I ASh I
~ 0

mmregl I Dlh [SOh 13Fh 142h [7Fh [lFh I FEh [SOh I
• Indicates a saturated value

The following list explains the functional illustration of the P ADDSB instruction:

• The signed 8-bit positive value OOh is added to the signed 8-bit positive value 01h
with a signed 8-bit positive result of 01h.

• The signed 8-bit negative value D2h (-46) is added to the signed 8-bit negative
value 88h (-120) and saturates to 80h (-128), the largest possible signed 8-bit
negative value.

• The signed 8-bit positive value 53h (+83) is added to the signed 8-bit negative
value ECh (-20) with a signed 8-bit positive result of 3Fh (+63).

• The signed 8-bit positive value 42h is added to the signed 8-bit positive value DOh
with a signed 8-bit positive result of 42h.

• The signed 8-bit positive value 77h (+119) is added to the signed 8-bit positive
value 14h (+20) and saturates to 7Fh (+127), the largest possible positive value.

• The signed 8-bit positive value 70h (+112) is added to the signed 8-bit positive
value 44h (+68) and saturates to 7Fh (+127), the largest possible positive value.

• The signed 8-bit positive value 07h (+7) is added to the signed 8-bit negative value
F7h (-9) with a signed 8-bit negative result of FEh (-2).

• The signed 8-bit negative value 9Ah (-102) is added to the signed 8-bit negative
value A8h (-88) and saturates to 80h (-128), the largest possible signed 8-bit
negative value.

Related Instructions

34

See the P ADDB instruction.

See the P ADDD instruction.

See the P ADDW instruction.

See the P ADDSW instruction.

MMX'M Instruction Set

20726C(O-June 1997

PADDSW

mnemonic

PADDSW mmregl, mmreg2/mem64

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

Preliminllry Informlltion AMD~

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

opcode description

OF EDh Add signed packed 16-bit values and saturate

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register ((RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register ((RO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OoooOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register ((RO) is set to 1.
(In Protected Mode, (Pl = 3.)

The PADDSW instruction adds four signed 16-bit values from the source operand (an
MMX register or a 64-bit memory location) to the four corresponding signed 16-bit
values in the destination operand (an MMX register). If the sum of any two 16-bit
values is less than -32768 (8000h), it saturates to -32768 (8000h). If the sum of any two
16-bit values is greater than 32767 (7FFFh), it saturates to 32767 (7FFFh). The four
signed 16-bit results are stored in the MMX register specified as the destination
operand.

MMX'M Instruction Set

AMDl1 Preliminary Informmion

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PADDSW Instruction

63 0

mmreg2/mem64 I D250h 5321h 7007h FFFFh I
+ + + +

63 0

mmreg1 I 8807h EC22h OFF9h FFFFh I
63 o

mmreg1 r 8000h 3F43h r 7FFFh FFFEh I
• Indicates a saturated value

The following list explains the functional illustration of the P ADDSW instruction:

• The signed 16-bit negative value D250h (-11696) is added to the signed 16-bit
negative value 8807h (-30713) and saturates to 8000h (-32768), the largest
possible signed 16-bit negative value.

• The signed 16-bit positive value 5321h (+21281) is added to the signed 16-bit
negative value EC22h (-5086) with a signed 16-bit positive result of 3F43h
(+16195).

• The signed 16-bit positive value 7007h (+28679) is added to the signed 16-bit
positive value OFF9h (+4089) and saturates to 7FFFh (+32767), the largest possible
positive value.

• The signed 16-bit negative value FFFFh (-1) is added to the signed 16-bit negative
value FFFFh (-1) with the negative 16-bit result of FFFEh (-2).

Related Instructions

36

See the P ADDB instruction.

See the P ADDD instruction.

See the P ADDW instruction.

See the P ADDSB instruction.

See the P ADDUSB instruction.

See the P ADDUSW instruction.

MM)('M Instruction Set

Preliminary Information AMD~

20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

PADDUSB

mnemonic opcode description

PADDUSB mmregl, mmreg2/mem64 OF DCh Add unsigned packed 8-bit values and saturate

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register «(RO) is setto 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register «(RO) is set to 1.
(In Protected Mode, (PL = 3.)

The P ADDUSB instruction adds eight unsigned 8-bit values from the source operand
(an MMX register or a 64-bit memory location) to the eight corresponding unsigned
8-bit values in the destination operand (an MMX register). The eight unsigned 8-bit
results are stored in the MMX register specified as the destination operand.

If the sum of any two unsigned 8-bit values is greater than 255 (FFh), it saturates to
255 (FFh).

MMX'M Instruction Set 37

AMDl1 Preliminory Informotion

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration ofthe PADDUSB Instruction

~ 0

mmreg2/mem64 17Fh I 02h 153h 142h Inh 170h I 07h 19Ah I
+ + + + + + + +

~ 0

mmreg1 IBlh IBSh IECh I OEh 114h 144h I F7h I ABh I
~ 0

mmreg1 rFFh rFFh rFFh 1 50h IBSh I S4h I FEh rFFh I
• Indicates a saturated value

The following list explains the functional illustration of the P ADDUSB instruction:

• The sum of 7Fh and 81h is 100h. This value is greater than FFh, so the result
saturates to FFh.

• The sum of D2h and 88h is 15Ah. This value is greater than FFh, so the result
saturates to FFh.

• The sum of 53h and ECh is 13Fh. This value is greater than FFh, so the result
saturates to FFh.

• The sum of 42h and OEh is 50h. This value is not greater than FFh, so the result
does not saturate.

• The sum of 77h and 14h is BBh. This value is not greater than FFh, so the result
does not saturate.

• The sum of 70h and 44h is B4h. This value is not greater than FFh, so the result
does not saturate.

• The sum of 07h and F7h is FEh. This value is not greater than FFh, so the result
does not saturate.

• The sum of 9Ah and A8h is 142h. This value is greater than FFh, so the result
saturates to FFh.

Related Instructions

J8

See the P ADDB instruction.

See the P ADDD instruction.

See the P ADDW instruction.

See the P ADDSB instruction.

See the P ADDSW instruction.

See the P ADDUSW instruction.

MM)('M Instruction Set

Pre/iminDry /nformDfion AMD~

20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

PADDUSW

mnemonic opcode description

PADDUSW mmregl, mmreg2/mem64 OF DDh Add unsigned packed 16-bit values and saturate

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

I
Description

The emulate MMX instruction bit (EM) of the control register ((RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register ((RO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOoooh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register ((RO) is set to 1.
(In Protected Mode, (Pl = 3.)

The P ADDUSW instruction adds four unsigned 16-bit values from the source operand
(an MMX register or a 64-bit memory location) to the four corresponding unsigned
16-bit values in the destination operand (an MMX register). The four unsigned 16-bit
results are stored in the MMX register specified as the destination operand.

If the sum of any two unsigned 16-bit values is greater than 65,535 (FFFFh), it
saturates to 65,535 (FFFFh).

MM)(TM Instruction Set 39

AM D l1 Preliminary Informlltion

AMO-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PADDUSW Instruction

63 0

mmreg2/mem64 I 7ElOh 8000h FFFEh 1234h I
+ + + +

63 0

mmreg1 I 7000h 8000h OO15h 4567h I
63 0

mmreg1 I EElOh [FFFFh [FFFFh 5798h I
• Indicates a saturated value

The following list explains the functional illustration of the P ADDUSW instruction:

• The sum of 7E10h and 7000h is EE10h. This value is not greater than FFFFh, so the
result does not saturate.

• The sum of 8000h and 8000h is lOOOOh. This value is greater than FFFFh, so the
result saturates to FFFFh.

• The sum of FFFEh and 0015h is l0013h. This value is greater than FFFFh, so the
result saturates to FFFFh.

• The sum of 1234h and 4567h is 579Bh. This value is not greater than FFFFh, so the
result does not saturate.

Related Instructions

40

See the P ADDB instruction.

See the P ADDD instruction.

See the P ADDW instruction.

See the P ADDSB instruction.

See the P ADDSW instruction.

See the P ADDUSB instruction.

MM)(TM Instruction Set

Preliminllry InfonDlllion AMD~

20726C/O-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

PADDW

mnemonic opcode description

PADDW mmregl, mmreg2/mem64 OF FDh Add unsigned packed 16-bit values

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Exception Real

Invalid opcode (6) X

Device not available (7) X

Stack exception (12)

General protection (13)

Segment overrun (13) X

Page fault (14)

Floating-point exception X
pending (16)

Alignment check (17)

Virtual
8086

X

X

X

X

X

X

none
MMX
none

Protected

X

X

X

X

X

X

X

Des(fiption

The emulate MMX instruction bit (EM) of the control register ((RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register ((Ra) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register ((RO) is set to 1.
(In Protected Mode, (Pl = 3.)

The PADDW instruction adds four unsigned 16-bit values from the source operand (an
MMX register or a 64-bit memory location) to the four corresponding unsigned 16-bit
values in the destination operand (an MMX register). If any of the four results is
greater than the capacity of its 16-bit destination, the value wraps around with no
carry into the next location. The four 16-bit results are stored in the MMX register
specified as the destination operand.

MMX'M Instruction Set 41

AMD~ Preliminary In/ormation

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Fundionallllustration of the PADDW Instruction

63 0

mmreg2/mem64 I 8000h FFOOh OOFCh FFFFh •
+ + + +

63 0

mmreg1 I O123h OlECh 8014h FFFFh I
63 0

mmreg1 I 8123h OOECh 8110h FFFEh I
The following list explains the functional illustration of the P ADDW instruction:

• The value 8000h is added to 0123h with a normal unsigned result of 8123h.

• The value FFOOh is added to 01ECh and wraps around to OOECh.

• The value OOFCh is added to 8014h with a normal signed result of 8110h.

• The value FFFFh is added to FFFFh and wraps around to FFFEh.

Related Instructions

42

See the P AD DB instruction.

See the P ADDD instruction.

See the P ADDSB instruction.

See the P ADDSW instruction.

See the P ADDUSB instruction.

See the P ADDUSW instruction.

MMX'M Instruction Set

Preliminory Informotion AMDl1
20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

PAND

mnemonic opcode description

PAND mmregl, mmreg2/mem64 OF DBh AND 64-bit values

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register (CRa) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CRO) is set to l.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One ofthe instruction data operands falls outside the address range OaaOah
to aFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CRa) is set to 1.
(In Protected Mode, CPl = 3.)

The P AND instruction operates on the 64-bit source and destination operands to
complete a bitwise logical AND. The results are stored in the destination operand. If
the corresponding bits in the source and destination operands both equal 1, the
resulting bit is 1 in the destination. If either bit in the source or destination operands
equals 0, the resulting bit is ° in the destination.

The P AND instruction can be used to extract operands from packed fields based on
the masks that are produced by the compare instructions-PCMPEQ and PCMPGT_
This technique can eliminate branch prediction overhead in MMX routines_

MM)('M Instruction Set

AMDl1 Pre/iminory /nlonnotion

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

Functional Illustration of the PAND Instruction

63

Logical AND

63

63

Related Instructions

44

48 47

Logical AND

48 47

48 47

mmregl

32 31

mmreg2/mem64

32 31

Result

mmregl

32 31

Logical AND

See the P ANDN instruction.

See the POR instruction.

See the PXOR instruction.

20726CjO-June 1997

16 15 o

Logical AND

16 15 o

16 15 o

MM)('M Instruction Set

Preiiminory informotion AMD~

20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

PANON

mnemonic opcode description

PANDN mmregl, mmreg2/mem64 OF DFh Invert a 64-bit value, then AND the inverted value and a 64-bit
value in memory or an MMX register

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register «(Ra) is set to 1.
-

Save the floating-point or MMX state if the task switch bit (TS) of the control
register «(RO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOah
to aFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register «(Ra) is set to 1.
(In Protected Mode, (PL = 3.)

The PANDN instruction first operates on the 64-bit destination operand (an MMX
register) to complete a bitwise logical NOT, inverting each bit. This operation changes
1 bits to 0 bits and 0 bits to 1 bits, storing the results in the destination operand. The
inverted 64-bit destination operand is then logically AND'd with the 64-bit source
operand (an MMX register or a 64-bit memory operand) to complete the PANDN
operation.

If corresponding bits in the source operand and the inverted destination operand are
both 1, the resulting bit is 1 in the destination. If either bit in the source operand or
the inverted destination operand is 0, the resulting bit is 0 in the destination.

The P ANDN instruction can be used to extract alternate operands from packed fields
based on the inverse of the masks that are produced by the compare instructions
PCMPEQ and PCMPGT. This technique can eliminate branch prediction overhead in
MMX routines.

MMX'M Instruction Set 45

AMD~ Preliminory Infonnl1fion

AMD-K6™ MMJ(fM Enhanced Processor Multimedia Technology

Functional Illustration of the PANDN Instruction

63 48 47

Invert

63 48 47

Invert

mmregl

32 31

mmregl

32 31

Invert

20726CjO-June 1997

16 15 o

Invert

16 15 o
r-------------~--------------.-------------_.--------------~

Logical AND

63

63

Related Instructions

46

Logical AND

48 47

48 47

mmreg2/mem64

32 31

Result

mmregl

32 31

See the P AND instruction.

See the POR instruction.

See the PXOR instruction.

Logical AND Logical AND

16 15 o

16 15 o

MMJ(fM Instruction Set

Pre/iminory /nformotion AMDl'
20726CjO-June 1997 AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

PCMPEQB

mnemonic opcode description

PCMPEQB mmregl, mmreg2/mem64 OF 74h Compare packed 8-bit values for equality

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

1--............... __ ._ .. - ..

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description I
The emulate MMX instruction bit (EM) of the control register (CRO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CRa) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One ofthe instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (eRO) is set to 1.
(In Protected Mode, CPL = 3.)

The PCMPEQB instruction operates on 8-bit data values. The instruction compares
two 8-bit values to determine if they are equal.

If the corresponding bits in the two operands are equal, all the bits in that 8 bits of the
destination operand are set to 1. If any of the corresponding bits in the two operands
are not equal, all the bits in that 8 bits of the destination operand are set to O.

MM)('M Instruction Set 47

AMD~ Pre/iminory Informotion

AMO-K6™ MM)(TM Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PCMPEQB Instruction

63 32 31 0

mmreg2/mem64 I DBh I5h 43h FFh I BOh CEh AIh 04h I
Compare Compare Compare Compare Compare Compare Compare Compare

63 32 31 0

mmregl I DDh I5h 42h FFh I BOh EEh AIh I4h I
Result Result Result Result Result Result Result Result

63 32 31 0

mmreg1 I OOh FFh OOh FFh I FFh OOh FFh OOh I
False True False True True False True False

Related Instructions See the PCMPEQD instruction.

See the PCMPEQW instruction.

See the PCMPGTB instruction.

See the PCMPGTD instruction.

See the PCMPGTW instruction.

48 MM)(TM Instruction Set

Preliminory Informllfion AMD~

20726CjO-June 1997 AMO-K6™ MM)('M Enhanced Processor Multimedia Technology

PCMPEQD

mnemonic opcode description

PCMPEQD mmregl, mmreg2/mem64 OF 76h Compare packed 32-bit values for equality

Privilege:
Registers Affected:
Rags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register (CRO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CRO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range oooooh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CRO) is set to 1.
(In Protected Mode, CPL = 3.)

The PCMPEQD instruction operates on 32-bit data values. The instruction compares
two 32-bit values to determine if they are equal.

If the corresponding bits in the two operands are equal, all the bits in that 32 bits of the
destination operand are set to 1. If any of the corresponding bits in the two operands
are not equal, all the bits in that 32 bits of the destination operand are set to o.

MM)('M Instruction Set 49

AMD~ Preliminary Information

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

Related Instructions

50

o r--------.----.,

See the PCMPEQB instruction.

See the PCMPEQW instruction.

See the PCMPGTB instruction.

See the PCMPGTD instruction.

See the PCMPGTW instruction.

o

20726CjO-June 1997

MM)(TM Instruction Set

Pre/iminory /nfonnotion AMD~
--.----------~---~~--.--,~-~--~.~---~----

20726QO-June 1997 AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

PCMPEQW

mnemonic opcode description

PCMPEQW mmregl, mmreg2/mem64 OF 7sh Compare packed 16-bit values for equality

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register «(RO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register «(RO) is set to 1.
(In Protected Mode, (Pl = 3.)

The PCMPEQW instruction operates on 16-bit data values. The instruction compares
two 16-bit values to determine if they are equal.

If the corresponding bits in the two operands are equal, all the bits in that 16 bits of the
destination operand are set to 1. If any of the corresponding bits in the two operands
are not equal, all the bits in that 16 bits of the destination operand are set to o.

MM)('M Instruction Set 51

AMD~ Pre/iminDry /nfonntdion

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PCMPEQW Instruction

63 0

mmreg2/mem64 I DA14h BOOOh 1243h 1234h I
Compare Compare Compare Compare

63 0

mmreg1
I DA24h BOOOh 1243h 1243h I

Result Result Result Result
63 0

mmreg1 I OOOOh FFFFh FFFFh OOOOh I
False True True False

Related Instructions See the PCMPEQB instruction.

See the PCMPEQD instruction.

See the PCMPGTB instruction.

See the PCMPGTD instruction.

See the PCMPGTW instruction.

52 MM)('M Instruction Set

Preliminary Information AMD~

20726C/O-June 1997 AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

PCMPCiTB

mnemonic opcode description
--~~---~~~~~~--~~~~~---~~--

PCMPGTB mmregl, mmreg2/mem64 OF 64h Compare signed packed 8-bit values for magnitude

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:
,---:--

Exception Real

Invalid opcode (6) X

Device not available (7) X

Stack exception (12)

General protection (13)

Segment overrun (13) X

Page fault (14)

Floating-point exception X
pending (16)

Alignment check (17)

Virtual
8086

X

X

X

X

X

X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register (CRa) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CRa) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range aaOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CRO) is set to 1.
(In Protected Mode, CPL = 3.)

The PCMPGTB instruction operates on signed 8-bit data values. The instruction
compares two signed 8-bit values to determine if the value in the destination operand
is greater than the corresponding signed 8-bit data value in the source operand.

If the value in the destination operand is greater than the value in the source
operand, all the bits in that 8 bits of the destination operand are set to 1. If the value
in the destination operand is equal to or less than the value in the source operand, all
the bits in that 8 bits of the destination operand are set to O.

MM)('M Instruction Set 53

AMD~ Preliminory Infomlotion

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PCMPCiTB Instruction

63 32 31 0

mmreg2/mem64 I DCh 25h 41h FFh I SOh 7Fh A6h 04h I
Greater7 Greater7 Greater? Greater7 Greater? Greater? Greater? Greater?

63 32 31 0

mmregl I DOh 24h 42h Olh I SOh SOh A3h 14h I
Result Result Result Result Result Result Result Result

63 32 31 0

mmregl I FFh OOh FFh FFh I OOh OOh OOh FFh I
True False True True False False False True

The following list explains the functional illustration of the PCMPGTB instruction:

• The negative value DDh (-35) is greater than the negative value DCh (-36), so the
result is true (FFh).

• The positive value 24h (+36) is not greater than the positive value 25h (+37), so the
result is false (OOh).

• The positive value 42h (+66) is greater than the positive value 41h (+65), so the
result is true (FFh).

• The positive value 01h (+1) is greater than the negative value FFh (-1), so the
result is true (FFh).

• The negative value 80h (-128) is not greater than the negative value 80h (-128), so
the result is false (OOh).

• The negative value 80h (-128) is not greater than the positive value 7Fh (+127), so
the result is false (OOh).

• The negative value A3h (-93) is not greater than the negative value A6h (-90), so
the result is false (OOh).

• The positive value 14h (+20) is greater than the positive value 04h (+4), so the
result is true (FFh).

Related Instructions

54

See the PCMPEQB instruction.

See the PCMPEQD instruction.

See the PCMPEQW instruction.

See the PCMPGTD instruction.

See the PCMPGTW instruction.

MMX'M Instruction Set

Preliminory Infonnllfion AMDl1
20726C/O-June 1997 AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

PCMPGTD

mnemonic opcode description

PCMPGTD mmreg 1, mmreg2/mem64 OF 66h Compare signed packed 32-bit values for magnitude

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register (CRO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CRO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CRO) is set to 1.
(In Protected Mode, CPL = 3.)

The PCMPCTB instruction operates on signed 32-bit data values. The instruction
compares two signed 32-bit values to determine if the value in the destination
operand is greater than the corresponding signed 32-bit data value in the source
operand.

If the value in the destination operand is greater than the value in the source operand,
all the bits in that 32 bits of the destination operand are set to 1. If the value in the
destination operand is equal to or less than the value in the source operand, all the
bits in that 32 bits of the destination operand are set to O.

MMrM Instruction Set 55

AMD~ Preliminary Information

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PCMPGTD Instruction

63 0

OOOO_BA14h FFFF_FFFFh I mmreg2/mem64 I
~-------------------Greater? Greater?

63 0

OOOO_BA15h OOOO_OOOOh I mmreg1 I
~--------------------~

Result Result
63 0

FFFF _FFFFh FFFF JFFFh I mmreg1 I
~--------------------... True True

The following list explains the functional illustration of the PCMPGTD instruction:

• The positive value OOOO_BA15h (+47637) is greater than the positive value
OOOO_BA14h (+47636), so the result is true (FFFF _FFFFh).

• The positive value OOOO_0001h (+1) is greater than the negative value
FFFF _FFFFh (-1), so the result is true (FFFF _FFFFh).

Related Instructions

56

See the PCMPEQB instruction.

See the PCMPEQD instruction.

See the PCMPEQW instruction.

See the PCMPGTB instruction.

See the PCMPGTW instruction.

MM)('M Instruction Set

Preliminllry Informlltion AMD~

20726CjO-June 1997 AMO-K6™ MMX'" Enhanced Processor Multimedia Technology

PCMPCiTW

mnemonic opcode description

PCMPGlW mmregl, mmreg2/mem64 OF 6sh Compare signed packed 16-bit values for magnitude

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Proteded

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register «(RO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register «(RO) is set to 1.
(In Protected Mode, (Pl = 3.)

The PCMPGTW instruction operates on signed 16-bit data values. The instruction
compares two signed 16-bit values to determine if the value in the destination
operand is greater than the corresponding signed 16-bit data value in the source
operand.

If the value in the destination operand is greater than the value in the source operand,
all the bits in that 16 bits of the destination operand are set to 1. If the value in the
destination operand is equal to or less than the value in the source operand, all the
bits in that 16 bits of the destination operand are set to O.

MMX'M Instruction Set 57

AMD~ Preliminory Informotion

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726C/O-June 1997

Functional Illustration of the PCMPGTW Instruction

63 0

mmreg2/mem64 I OOOlh BOOOh FFFFh 1234h I
Greater? Greater? Greater? Greater?

63 0

mmreg1 I DA14h BOOOh 000lh 1243h I
Result Result Result Result

63 0

mmreg1 I OOOOh OOOOh FFFFh FFFFh I
False False True True

The following list explains the functional illustration of the PCMPGTB instruction:

• The negative value DA14h (-9708) is not greater than the positive value 0001h
(+ 1), so the result is false (OOOOh).

• The negative value 8000h (-32768) is not greater than the negative value 8000h
(-32768), so the result is false (OOOOh).

• The positive value 0001h (+1) is greater than the negative value FFFFh (-1), so the
result is true (FFFFh).

• The positive value 1243h (+4675) is greater than the positive value 1234h (+4660),
so the result is true (FFFFh).

Related Instructions

58

See the PCMPEQB instruction.

See the PCMPEQD instruction.

See the PCMPEQW instruction.

See the PCMPGTB instruction.

See the PCMPGTD instruction.

MM)('M Instruction Set

Preliminory Informotion AMDl1
20726C/O-June 1997 AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

PMADDWD

mnemonic opcode description
~~~~~~~- ~~~~~~-

PMADDWD mmregl, mmreg2/mem64 OF Fsh Multiply signed packed 16-bit values and add the 32-bit 
results 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

1----
Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register «(RO) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

-~~~-.-----.--.~--~-.--------

One of the instruction data operands falls outside the address range OOOOOh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) ofthe control register «(RO) is set to 1. 
(In Protected Mode, (PL = 3.) 

The PMADDWD instruction multiplies signed 16-bit values from the source operand 
(an MMX register or a 64-bit memory location) by the corresponding signed 16-bit 
values in the destination operand (an MMX register), adds the resulting 32-bit values 
from the left and right halves of the 64-bit work space, and stores the 32-bit sums in 
the MMX destination register. 

Note: If all four of the 16-bit operands are 8000h, the result wraps around to 8000_0000h 
because the maximum negative 16-bit value of 8000h multiplied by itself equals 
4000_0000h, and 4000_0000h added to 4000_0000h equals 8000_0000h. The result 
of multiplying two negative numbers should be a positive number, but 8000_0000h 
is the maximum possible 32-bit negative number rather than a positive number. 
This is the only instance of wraparound that can occur as a result of the 
PMADDWD instruction. 

MM)('M Instruction Set 59 



AMD~ Pre/iminory /nfonnmion 

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726QO-June 1997 

Fundionalillustration of the PMADDWD Instruction 

63 48 47 32 31 16 15 0 

mmreg2/mem64 I FFFEh I 7FFFh I 7007h I FFFFh I 
* * * * 

63 48 47 32 31 16 15 0 

mmreg1 I 0OO2h 
I 

7 FFFh 
I 

OFF9h 
I FFFFh I 

intermediate results FFFF JFFCh 3FFF_OOOlh 06FD_5FCFh OOOO_OOOlh 

+ + 

FFFF JFFCh OOOO_OOOlh 

63 0 

mmregl I 3FFE FFFDh 06FD_5FDOh I 
The following list explains the functional illustration of the PMADDWD instruction: 

• The signed 16-bit negative value FFFEh (-2) is multiplied by the signed 16-bit 
positive value 0002h to produce a signed 32-bit negative intermediate result of 
FFFF _FFFCh (-4). 

• The signed 16-bit positive value 7FFFh is multiplied by the signed 16-bit positive 
value 7FFFh to produce a signed 32-bit positive intermediate result of 
3FFF _OOOlh. 

• The two 32-bit intermediate results are added together to produce the final signed 
32-bit positive result of 3FFE_FFFDh. 

• The signed 16-bit positive value 7007h is multiplied by the signed 16-bit positive 
value OFF9h to produce a signed 32-bit intermediate result of 06FD_5FCFh. 

• The signed 16-bit negative value FFFFh (-1) is multiplied by the signed 16-bit 
negative value FFFFh (-1) to produce a signed 32-bit positive intermediate result 
of OOOO_OOOlh. 

• The two 32-bit intermediate results are added together to produce the final signed 
32-bit positive result of 06FD_5FDOh. 

Related Instructions 

60 

See the PMULHW instruction. 

See the PMULL W instruction. 

MMX'M Instruction Set 



Preliminary Information AMDl1 
20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 

PMULHW 

mnemonic opcode description 

PMUlHW mmreg1, mmreg2/mem64 OF Esh Multiply signed packed 16-bit values and store the high 16 
bits 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register (CRO) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register (CRO) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range oooooh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register (CRO) is set to 1. 
(In Protected Mode, CPl = 3.) 

The PMULHW instruction multiplies four signed 16-bit values from the source 
operand (an MMX register or a 64-bit memory location) by the four corresponding 
signed 16-bit values in the destination operand (an MMX register) and then stores the 
high-order 16 bits of the result (including the sign bit) in the destination operand. 

MMX'M Instruction Set 61 



AM D ~ Preliminory Informotion 

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726CjO-June 1997 

Functional Illustration of the PMULHW Instruction 

63 0 

mmreg2/mem64 I 
D250h 5321h 7007h FFFFh I 

* * * * 
63 0 

mmreg1 
I 

8807h EC22h OFF9h FFFFh I 

63 0 

mmregl I 1569h F98Ch 06FDIl OOOOh I 
The following list explains the functional illustration of the PMULHW instruction: 

• The signed 16-bit negative value D250h (-2DBOh) is multiplied by the signed 16-bit 
negative value 8807h (-77F9h) to produce the signed 32-bit positive result of 
1569_ 4030h. The signed high-order 16-bits of the result are stored in the 
destination operand. 

• The signed 16-bit positive value 5321h is multiplied by the signed 16-bit negative 
value EC22h (-13DEh) to produce the signed 32-bit negative result of F98C_7662h 
(-0673_899Eh). The signed high-order 16-bits of the result are stored in the 
destination operand. 

• The signed 16-bit positive value 7007h is multiplied by the signed 16-bit positive 
value OFF9h to produce the signed 32-bit positive result of 06FD_5FCFh. The 
signed high-order 16-bits of the result are stored in the destination operand. 

• The signed 16-bit negative value FFFFh (-1) is multiplied by the signed 16-bit 
negative value FFFFh (-1) to produce the signed 32-bit positive result of 
OOOO_0001h. The signed high-order 16-bits of the result are stored in the 
destination operand. 

Related Instructions 

62 

See the PMADDWD instruction. 

See the PMULL W instruction. 

See the PUNPCKHWD instruction. 

See the PUNPCKL WD instruction. 

MM)(TM Instruction Set 



20726(jO-June 1997 

PMULLW 

mnemonic 

PMULLW mmregl, mmreg2/mem64 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X I 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

Preliminary Information AMDl1 
AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 

opcode description 

OF D5h Multiply signed packed 16-bit values and store the low 16 
bits 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register (CRa) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register (CRa) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range aaaaah 
to aFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register (CRa) is set to 1. 
(In Protected Mode, CPl = 3.) 

The PMULLW instruction multiplies four signed 16-bit values from the source 
operand (an MMX register or a 64-bit memory location) by the four corresponding 
signed 16-bit values in the destination operand (an MMX register) and then stores the 
low-order 16 bits of the result (unsigned) in the destination operand. 

MMX'M Instruction Set 63 



AMD~ Preliminory Information 

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997 

Functional Illustration of the PMULLW Instruction 

63 0 

mmreg2/mem64 I D250h 5321h 7007h FFFFh I 
* * * * 

63 0 

mmreg1 I 8807h EC22h OFF9h FFFFh I 
63 0 

mmreg1 
I 

4030h 7662h 5FCFh OOOlh I 
The following list explains the functional illustration of the PMULL W instruction: 

• The signed 16-bit negative value D250h (-2DBOh) is multiplied by the signed 16-bit 
negative value 8807h (-77F9h) to produce the signed 32-bit positive result of 
1569_ 4030h. The unsigned low-order 16-bits of the result are stored in the 
destination operand. 

• The signed 16-bit positive value 5321h is multiplied by the signed 16-bit negative 
value EC22h (-13DEh) to produce the signed 32-bit negative result of F98C_7662h 
(-0673_899Eh). The unsigned low-order 16-bits of the result are stored in the 
destination operand. 

• The signed 16-bit positive value 7007h is multiplied by the signed 16-bit positive 
value OFF9h to produce the signed 32-bit positive result of 06FD_5FCFh. The 
unsigned low-order 16-bits of the result are stored in the destination operand. 

• The signed 16-bit negative value FFFFh (-1) is multiplied by the signed 16-bit 
negative value FFFFh (-1) to produce the signed 32-bit positive result of 
OOOO_OOOlh. The unsigned low-order 16-bits of the result are stored in the 
destination operand. 

Related Instructions 

64 

See the PMADDWD instruction. 

See the PMULHW instruction. 

See the PUNPCKHWD instruction. 

See the PUNPCKL WD instruction. 

MMX'M Instruction Set 



20726CjO-June 1997 

POR 

mnemonic 

POR mmregl, mmreg2/mem64 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

Preliminary Information 

AMO-K6™ MM)(fM Enhanced Processor Multimedia Technology 

opcode description 

OF EBh OR 64-bit values 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register «(RO) is set to l. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range OOOOOh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register «(RO) is set to 1. 
(In Protected Mode, (PL = 3.) 

The POR instruction logically ORs the 64 bits of the source operand (an MMX register 
or a 64-bit memory location) with the 64 bits of the destination operand (an MMX 
register) and stores the result in the destination register. 

A logical OR produces a 1 bit if either or both input bits is a 1. If both input bits are 0, 
a logical OR produces a Obit. 

MM)(fM Instruction Set 65 



AMD~ Preliminary Information 

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 

Fundional Illustration of the POR Instrudion 

63 48 47 

Logical OR 

63 48 47 

63 48 47 

Logical OR 

mmregl 

32 31 

mmreg2/mem64 

32 31 

Result 

mmregl 

32 31 

Logical OR 

20726CjO-June 1997 

16 15 o 

Logical OR 

16 15 o 

16 15 o 

In the functional illustration of the POR instruction, the 64-bit source value is 
logically OR'd to the 64-bit destination value, and the result is stored in the 
destination register. 

Related Instrudions 

66 

See the P AND instruction. 

See the P ANDN instruction. 

See the PXOR instruction. 

MM)('M Instruction Set 



20726C/O-June 1997 

PSLLD 

mnemonic 

PSLLD mmregl, mmreg2/mem64 

PSLLD mmregl, imm8 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

Pre/iminD" InformDtion AMDl1 
AMD-K6™ MM)(TM Enhanced Processor Multimedia Technology 

opcode description 

OF F2h Shift left logical packed 32-bit values in mmregl the number of 
positions in mmreg2/mem64 with zero fill from the right 

OF 72h /6 Shift left logical packed 32-bit values in mmregl the number of 
positions in imm8 with zero fill from the right 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register «(Ra) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register «(Ra) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range ODDDah 
to aFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register «(Ra) is set to 1. 
(In Protected Mode, (PL = 3.) 

The PSLLD instruction shifts the two 32-bit operands in the destination operand (an 
MMX register) to the left by the number of bit positions indicated by mmreg2/mem64 
or by imm8, the 8-bit immediate operand. The shifted values are zero filled from the 
right. The two 32-bit results are stored in the MMX register specified as the 
destination operand. 

MM)(TM Instruction Set 67 



AMD~ Preliminary Information 

AMO-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997 

Functional Illustration of the PSLLD Instruction 

~ 0 

mmreg2/mem64 1"-__ .0.0.0.0-.0.0.0.0-.0.0.0 0.-.0.0.0 B.h ___ .. 1 

63 0 

mmreg1 OOOF_A3BEh 0123_4567h I 
63 0 

mmreg1 I OFA3 - BEOOh 2345_6700h I 
The following list explains the functional illustration of the PSLLD instruction: 

• The value OOOO_OOOO_OOOO_OOOBh in mmreg2/mem64 indicates a shift of B bit 
positions to the left. 

• The 32-bit value OOOF _A3BEh in mmreg1 is shifted B bit positions to the left and 
stored in mmreg1 as OF A3_BEOOh. 

• The 32·bit value 0123_ 4567h in mmreg1 is shifted B bit positions to the left and 
stored in mmreg1 as 2345_6700h. 

Related Instructions 

68 

See the PSLLQ instruction. 

See the PSLL W instruction. 

See the PSRAD instruction. 

See the PSRA W instruction. 

See the PSRLD instruction. 

See the PSRLQ instruction. 

See the PSRL W instruction. 

MMX'M Instruction Set 



Preliminory Infonnotion AM D ~ 
----------------------------~ 

20726CjO-June 1997 AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 

PSLLQ 

mnemonic opcode description 

PSLLQ mmregl, mmreg2/mem64 OF F3h Shift left logical 64-bit values in mmregl the number of positions 
in mmreg2/mem64 with zero fill from the right 

PSLLQ mmregl, imm8 OF 73h /6 Shift left logical 64-bit values in mmregl the number of positions 
in imm8 with zero fill from the right 

Privilege: none 
Registers Affected: MMX 
Flags Affected: none 
Exceptions Generated: 

Virtual 
Exception Real 8086 Protected Description 

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register ((RO) is set to 1. 

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control 
register «(Ra) is set to 1. 

Stack exception (12) X During instruction execution, the stack segment limit was exceeded. 

General protection (13) X During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

Segment overrun (13) X X One of the instruction data operands falls outside the address range OOOOOh 
to OFFFFh. 

Page fault (14) X X A page fault resulted from the execution of the instruction. 

Floating-point exception X X X An exception is pending due to the floating-point execution unit. 
pending (16) 

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register ((RO) is set to 1. 
(In Protected Mode, (PL = 3.) 

The PSLLQ instruction shifts the 64-bit operand in the destination operand (an MMX 
register) to the left by the number of bit positions indicated by mmreg2/mem64 or by 
imm8, the 8-bit immediate operand. The shifted value is zero filled from the right. The 
64-bit result is stored in the MMX register specified as the destination operand. 

MMX'M Instruction Set 69 



AMD~ Preliminory Informotion 

AMD-K6™ MMJrM Enhanced Processor Multimedia Technology 20726CjO-June 1997 

Functional Illustration of the PSLLQ Instruction 

63 o 

mmreg2/mem64 I 

63 o 

mmreg1 I 

63 o 

mmreg1 OFA3 BEOl_2345 6700h I 
The following list explains the functional illustration of the PSLLQ instruction: 

• The value OOOO_OOOO_OOOO_OOOSh in mmregZ/mem64 indicates a shift of S bit 
positions to the left. 

• The 64-bit value OOOF _A3BE_0123_ 4567h in mmregl is shifted S bit positions to 
the left and stored in mmregl as OFA3_BE01_Z345_6700h. 

Related Instructions 

70 

See the PSLLD instruction. 

See the PSLL W instruction. 

See the PSRAD instruction. 

See the PSRA W instruction. 

See the PSRLD instruction. 

See the PSRLQ instruction. 

See the PSRL W instruction. 

MM)('M Instruction Set 



Preliminary Information AMD~ 

20726CjO-June 1997 AMO-K6™ MMX'M Enhanced Processor Multimedia Technology 

PSLLW 

mnemonic opcode description 

PSLLW mmregl, mmreg2/mem64 OF Fl h Shift left logical packed 16-bit values in mmregl the number of 
positions in mmreg2/mem64 with zero fill from the right 

PSLLW mmregl, imm8 OF 71 h /6 Shift left logical packed 16-bit values in mmregl the number of 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

positions in imm8 with zero fill from the right 

Description 

The emulate MMX instruction bit (EM) of the control register ((RO) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register ((RO) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range OOooOh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution. 
and the alignment mask bit (AM) of the control register ((RO) is set to 1. 
(In Protected Mode, (Pl = 3.) 

The PSLLW instruction shifts the four 16-bit operands in the destination operand (an 
MMX register) to the left by the number of bit positions indicated by mmreg2/mem64 
or by imm8, the 8-bit immediate operand. The shifted values are zero filled from the 
right. The four 16-bit results are stored in the MMX register specified as the 
destination operand. 

MMX'M Instruction Set 71 



AMD~ Preliminory InformDtion 

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726C/O-June 1997 

Functional Illustration of the PSLLW Instruction 

~ 0 

mmreg2/mem64 \ ., ___ .00.0.0-.0.0.0.0-.0.0.0.0-.0.0.0.8 h ___ .. 1 

63 0 

mmreg1 8807h EC22h OFF9h FFFFh I 
63 0 

mmreg1 0700h 2200h F900h FFOOh I 
The following list explains the functional illustration of the PSLL W instruction: 

• The value OOOO_OOOO_OOOO_0008h in mmreg2/mem64 indicates a shift of 8 bit 
positions to the left. 

• The 16-bit value 8807h in mmregl is shifted 8 bit positions to the left and stored in 
mmregl as 0700h. 

• The 16-bit value EC22h in mmregl is shifted 8 bit positions to the left and stored in 
mmregl as 2200h. 

• The 16-bit value OFF9h in mmregl is shifted 8 bit positions to the left and stored in 
mmregl as F900h. 

• The 16-bit value FFFFh in mmregl is shifted 8 bit positions to the left and stored in 
mmregl as FFOOh. 

Related Instructions 

72 

See the PSLLD instruction. 

See the PSLLQ instruction. 

See the PSRAD instruction. 

See the PSRA W instruction. 

See the PSRLD instruction. 

See the PSRLQ instruction. 

See the PSRL W instruction. 

MM)('M Instruction Set 



Prelimintlry Informtltion AMDl1 
20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 

PSRAD 

mnemonic opcode description 

PSRAD mmregl, mmreg2/mem64 OF E2h Shift right arithmetic packed signed 32-bit values in mmregl the 
number of positions in mmreg2/mem64 with sign fill from the 
left 

PSRAD mmregl, imm8 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

OF 72h /4 Shift right arithmetic packed signed 32-bit values in mmregl the 
number of positions in imm8 with sign fill from the left 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register «(RO) is setto l. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range ooooOh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register «(RO) is set to 1. 
(In Protected Mode, (Pl = 3.) 

The PSRAD instruction shifts the two signed 32-bit operands in the destination 
operand (an MMX register) to the right by the number of bit positions indicated by 
mmreg2/mem64 or by imm8, the 8-bit immediate operand. The shifted values are sign 
filled from the left. The two signed 32-bit results are stored in the MMX register 
specified as the destination operand. 

MMX'M Instruction Set 7J 



AMD~ Preliminory Informotion 

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997 

Functional Illustration of the PSRAD Instruction 

~ 0 

mmreg2!mem64 LoI ___ o.o.o.o_.o.o.o.o_.o.o.o.o_.O.O.10.h ___ ..... 1 

63 0 

mmreg1 FFFO_OOOOh O123_0000h I 
63 a 

mmreg1 FFFF FFFOh OOOO_0123h I 
The following list explains the functional illustration of the PSRAD instruction: 

• The value OOOO_OOOO_OOOO_0010h in mmreg2/mem64 indicates a shift of 16 bit 
positions to the right. 

• The 32-bit negative value FFFO_OOOOh in mmreg1 is shifted 16 bit positions to the 
right with sign fill from the left and stored in mmreg1 as FFFF _FFFOh. 

• The 32-bit positive value 0123_0000h in mmreg1 is shifted 16 bit positions to the 
right with sign fill from the left and stored in mmreg1 as OOOO_0123h. 

Related Instructions 

74 

See the PSLLD instruction. 

See the PSLLQ instruction. 

See the PSLL W instruction. 

See the PSRA W instruction. 

See the PSRLD instruction. 

See the PSRLQ instruction. 

See the PSRL W instruction. 

See the PUNPCKHWD instruction. 

See the PUNPCKL WD instruction. 

MMX'M Instruction Set 



Preliminory InfoTmotion AMDl1 
----

20726C/O-June 1997 AMO-K6™ MM)('M Enhanced Processor Multimedia Technology 

PSRAW 

mnemonic opcode description 

PSRAW mmreg1, mmreg2/mem64 OF E1 h Shift right arithmetic packed signed 16-bit values in mmreg1 the 
number of positions in mmreg2/mem64 with sign fill from the 
left 

PSRAW mmreg1, imm8 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Exception Real 
Invalid opcode (6) X 

Device not available (7) X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X 

Page fault (14) 

Floating-point exception X 
pending (16) 

Alignment check (17) 

Virtual 
8086 

X 

X 

X 

X 

X 

X 

OF 71 h /4 Shift right arithmetic packed signed 16-bitvalues in mmreg1 the 
number of positions in imm8 with sign fill from the left 

none 
MMX 
none 

Protected 
X 

X 

X 

X 

X 

X 

X 

Description 
The emulate MMX instruction bit (EM) of the control register (CRO) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register (CRO) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range OOOOOh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register (CRO) is set to 1. 
(In Protected Mode, CPl = 3.) 

The PSRA W instruction shifts the four signed 16-bit operands in the destination 
operand (an MMX register) to the right by the number of bit positions indicated by 
mmregZ/mem64 or by imm8, the 8-bit immediate operand. The shifted values are sign 
filled from the left. The four signed 16-bit results are stored in the MMX register 
specified as the destination operand. 

MM)('M Instruction Set 75 



AMD~ Preliminory Information 

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726CjO-June 1997 

Functional Illustration of the PSRAW Instruction 

63 0 

mmreg2jmem64 I 0000_0000_0000 0008h I 
63 a 

mmreg1 8800h ECOOh OFOOh 7FOOh I 
63 a 

mmreg1 H8Sh FFECh OOOFh 007Fh I 
The following list explains the functional illustration of the PSRA W instruction: 

• The value OOOO_OOOO_OOOO_0008h in mmregZ/mem64 indicates a shift of 8 bit 
positions to the right. 

• The 16-bit negative value 8800h in mmregl is shifted 8 bit positions to the right 
with sign fill from the left and stored in mmregl as FF88h. 

• The 16-bit negative value ECOOh in mmregl is shifted 8 bit positions to the right 
with sign fill from the left and stored in mmregl as FFECh. 

• The 16-bit positive value OFOOh in mmregl is shifted 8 bit positions to the right 
with sign fill from the left and stored in mmregl as OOOFh. 

• The 16-bit positive value 7FOOh in mmregl is shifted 8 bit positions to the right 
with sign fill from the left and stored in mmregl as 007Fh. 

Related Instructions 

76 

See the PSLLD instruction. 

See the PSLLQ instruction. 

See the PSLL W instruction. 

See the PSRAD instruction. 

See the PSRLD instruction. 

See the PSRLQ instruction. 

See the PSRL W instruction. 

See the PUNPCKHBW instruction. 

See the PUNPCKLBW instruction. 

MM)('M Instruction Set 



20726CjO-June 1997 

PSRLD 

mnemonic 

PSRLD mmregl, mmreg2/mem64 

PSRLD mmregl, imm8 

Privilege: 
Registers Affected: 
Rags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

Pre/iminllry Informmion AMD~ 

AMO-K6™ MMX'M Enhanced Processor Multimedia Technology 

opcode description 

OF D2h Shift right logical packed 32-bitvalues in mmregl the number of 
positions in mmreg2/mem64 with zero fill from the left 

OF 72h /2 Shift right logical packed 32-bitvalues in mmregl the number of 
positions in imm8 with zero fill from the left 

none 
MMX 
none 

Proteded 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register (CRa) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register (CRa) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range aaaaah 
to aFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register (CRa) is set to 1. 
(In Protected Mode, CPL = 3.) 

The PSRLD instruction shifts the two 32-bit operands in the destination operand (an 
MMX register) to the right by the number of bit positions indicated by 
mmreg2/mem64 or by imm8, the 8-bit immediate operand. The shifted values are zero 
filled from the left. The two 32-bit results are stored in the MMX register specified as 
the destination operand. 

MM)('M Instruction Set 77 



AMD~ Preliminlll'}' Informlltion 

AMD-K6™ MM)(TM Enhanced Processor Multimedia Technology 20726C/O-June 1997 

Functional Illustration of the PSRLD Instruction 

63 0 

mmreg2/mem64 ...,1 ___ o.o.o.o_.o.o.o.o_.o.o.o.o_.o.o.10.h ___ .. 1 

63 0 

mmreg1 FFFO_OOOOh 0123_4567h I 
63 0 

mmreg1 I 0000_ FFFOh 0000_0123h I 
The following list explains the functional illustration of the PSRLD instruction: 

• The value 0000_0000_0000_0010h in mmreg2/mem64 indicates a shift of 16 bit 
positions to the right. 

• The 32-bit value FFFO_OOOOh in mmreg1 is shifted 16 bit positions to the right and 
stored in mmreg1 as OOOO_FFFOh 

• The 32-bit value 0123_ 4567h in mmreg1 is shifted 16 bit positions to the right and 
stored in mmreg1 as 0000_0123h. 

Related Instructions 

78 

See the PSLLD instruction. 

See the PSLLQ instruction. 

See the PSLL W instruction. 

See the PSRAD instruction. 

See the PSRA W instruction. 

See the PSRLQ instruction. 

See the PSRL W instruction. 

MM)(TM Instruction Set 



20726C/O-June 1997 

PSRLQ 

mnemonic 

PSRLQ mmregl, mmreg2/mem64 

PSRLQ mmregl, imm8 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 
I I Virtual 

Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

I 

Pre/iminory /nfonDotion AMD~ 

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 

opcode description 

OF D3h Shift right logical 64-bit values in mmregl the number of 
positions in mmreg2/mem64 with zero fill from the left 

OF 73h /2 Shift right logical 64-bit values in mmregl the number of 
positions in imm8 with zero fill from the left 

none 
MMX 
none 

--,- l 
Protected Description I 

X The emulate MMX instruction bit (EM) of the control register ((RO) is set to 1., 

X "', th' flo" "g-po;," "' MMX "", ,th, "'k ~;"h " (TS) of th' <ootro' I 
register ((RO) is set to 1. 

X During instruction execution, the stack segment limit was exceeded. I 

X I During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range ODOOOh 
to OFFFFh. 

X A page fault resulted from the execution of the instruction. 

X An exception is pending due to the floating-point execution unit. 

X An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register ((RO) is set to 1. 
(In Protected Mode, (PL = 3.) 

The PSRLQ instruction shifts the 64-bit operand in the destination operand (an MMX 
register) to the right by the number of bit positions indicated by mmreg2/mem64 or by 
imm8, the 8-bit immediate operand. The shifted value is zero filled from the left. The 
result is stored in the MMX register specified as the destination operand. 

MM)('M Instruction Set 79 



AM 0 ~ Preliminary Information 

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726C/0-June 1997 

Functional Illustration of the PSRLQ Instruction 

63 o 
mmreg2/mem64 I 

63 o 

mmreg1 I 

63 o 

mmreg1 I 0000 000F_A3BE 0123h I 

The following list explains the functional illustration of the PSRLQ instruction: 

• The value OOOO_OOOO_OOOO_0010h in mmreg2/mem64 indicates a shift of 16 bit 
positions to the right. 

• The 64-bit value OOOF _A3BE_0123_ 4567h in mmreg1 is shifted 16 bit positions to 
the right and stored in mmreg1 as OOOO_OOOF _A3BE_0123h. 

Related Instructions 

80 

See the PSLLD instruction. 

See the PSLLQ instruction. 

See the PSLL W instruction. 

See the PSRAD instruction. 

See the PSRA W instruction. 

See the PSRLD instruction. 

See the PSRL W instruction. 

MM)('M Instruction Set 



Preliminary Information AMD~ 
--------

20726CjO-June 1997 AMO-K6™ MMX'M Enhanced Processor Multimedia Technology 

PSRLW 

mnemonic opcode description 

PSRlW mmregl, mmreg2/mem64 OF Dlh Shift right logical packed 16-bitvalues in mmregl the number of 
positions in mmreg2/mem64 with zero fill from the left 

PSRlW mmregl, imm8 OF 71h /2 Shift right logical packed 16-bitvalues in mmregl the number of 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

positions in imm8 with zero fill from the left 

Description 

The emulate MMX instruction bit (EM) of the control register (CRa) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register (CRa) is set to 1-

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range OOOOOh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register (CRO) is set to I. 
(In Protected Mode, CPl = 3.) 

The PSRLW instruction shifts the four 16-bit operands in the destination operand (an 
MMX register) to the right by the number of bit positions indicated by 
mmreg2/mem64 or by imm8, the 8-bit immediate operand. The shifted values are zero 
filled from the left. The four 16-bit results are stored in the MMX register specified as 
the destination operand. 

MMJrM Instruction Set 81 



AMD~ Pre/iminDry InformDfion 

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726CjO-June 1997 

Fundionalillustration of the PSRLW Instruction 

63 a 
mmreg2/mem64 I 0000_0000_0000_ 0008h I 

63 a 
mmreg1 8800h EC22h OFF9h FFOOh ~ 

63 a 
mmreg1 I 008Sh OOECh OOOFh OOFFh 

The following list explains the functional illustration of the PSRL W instruction: 

• The value OOOO_OOOO_OOOO_0008h in mmreg2/mem64 indicates a shift of 8 bit 
positions to the right. 

• The 16-bit value 8800h in mmregl is shifted 8 bit positions to the right and stored 
in mmregl as 0088h. 

• The 16-bit value EC22h in mmregl is shifted 8 bit positions to the right and stored 
in mmregl as OOECh. 

• The 16-bit value OFF9h in mmregl is shifted 8 bit positions to the right and stored 
in mmregl as OOOFh. 

• The 16-bit value FFOOh in mmregl is shifted 8 bit positions to the right and stored 
in mmregl as OOFFh. 

Related Instructions 

82 

See the PSLLD instruction. 

See the PSLLQ instruction. 

See the PSLL W instruction. 

See the PSRAD instruction. 

See the PSRA W instruction. 

See the PSRLD instruction. 

See the PSRLQ instruction. 

MM)('M Instruction Set 



Preliminary Information AMD~ 

20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 

PSUBB 

mnemonic opcode description 
--------------------'--- --- ------- -.~---

PSUBB mmregl, mmreg2/mem64 OF Fsh Subtract unsigned packed s-bit values with wraparound 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 
The emulate MMX instruction bit (EM) of the control register (CRO) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register (CRu) is sei io i. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range OOOOOh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register (CRO) is set to 1. 
(In Protected Mode, CPl = 3.) 

The PSUBB instruction subtracts eight unsigned 8-bit values in the source operand 
(an l.\1JV:IX register or a 64-bit memory location) from the eight corresponding unsigned 
8-bit values in the destination operand (an MMX register). If the source operand is 
larger than the destination operand, the result wraps around. 

MMX'M Instruction Set 83 



AMD~ Preliminary Information 

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726CjO-June 1997 

Functional Illustration of the PSUBB Instruction 

~ 0 

mmreg1 IOOh I D2h 153h 142h Inh 170h I 07h 19Ah I 

~ 0 

mmreg2/mem64 I OOh ISSh I ECh I OOh 114h 144h l F7h I ASh I 

~ 0 

mmreg1 l DOh l4Ah 167h 142h 163h lZCh llOh l F2h I 
The following list explains the functional illustration of the PSUBB instruction: 

• The unsigned 8-bit value ECh is subtracted from the unsigned 8-bit value 53h and 
wraps around to 67h. 

• The unsigned 8-bit value F7h is subtracted from the unsigned 8-bit value 07h and 
wraps around to lOh. 

• The unsigned 8-bit value A8h is subtracted from the unsigned 8-bit value 9Ah and 
wraps around to F2h. 

• All the remaining operations are simple subtraction with no wraparound. 

Related Instructions 

84 

See the PSUBD instruction. 

See the PSUBW instruction. 

See the PSUBSB instruction. 

See the PSUBSW instruction. 

See the PSUBUSB instruction. 

See the PSUBUSW instruction. 

MM)('M Instruction Set 



Preliminary Information AMD~ 

20726CjO-June 1997 AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 

PSUBD 

mnemonic opcode description 

PSUBD mmregl, mmreg2/mem64 OF FAh Subtract unsigned packed 32-bit values with wraparound 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register «(Ra) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range OOOOOh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register «(RO) is set to 1. 
(In Protected Mode, (Pl = 3.) 

The PSUBD instruction subtracts two unsigned 32-bit values in the source operand 
(an MMX register or a 64-bit memory location) from the two corresponding unsigned 
32-bit values in the destination operand (an MMX register). If the source operand is 
larger than the destination operand, the result wraps around. 

MM)('M Instruction Set 85 



AMD~ Preliminary Information 

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726C/O-June 1997 

Functional Illustration of the PSUBD Instruction 

63 0 

mmreg1 I FFFO_5C43h 0123_4567h I 
63 0 

mmreg2/mem64 OOOF - A3BEh 8000_0000h I 
63 0 

mmregl FFEO B885h B123_4567h I 
The following list explains the functional illustration of the PSUBD instruction: 

• The unsigned 32-bit value 8000_0000h is subtracted from the unsigned 32-bit value 
0123_ 4567h and wraps around to 8123_ 4567h. 

• The remaining operation is a simple subtraction with no wraparound. 

Related Instructions 

86 

See the PSUBB instruction. 

See the PSUBW instruction. 

See the PSUBSB instruction. 

See the PSUBSW instruction. 

See the PSUBUSB instruction. 

See the PSUBUSW instruction. 

MM)('M Instruction Set 



Pre/iminory InfonDotion AMD~ 

20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 

PSUBSB 

mnemonic opcode description 

PSUBSB mmregl, mmreg2/mem64 OF Esh Subtract signed packed s-bit values and saturate 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Exception Real 

Invalid opcode (6) X 

Device not available (7) X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X 

Page fault (14) 

Floating-point exception X 
pending (16) 

Alignment check (17) 

Virtual 
8086 

X 

X 

X 

X 

X 

X 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register (CRO) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register (CRO) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range OOOooh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register (CRO) is set to 1. 
(In Protected Mode, CPL = 3.) 

The PSUBSB instruction subtracts eight signed 8-bit values in the source operand (an 
MMX register or a 64-bit memory location) from the eight corresponding signed 8-bit 
values in the destination operand (an MMX register). If a result is less than -128 
(80h), it saturates to -128 (80h). If a result is greater than 127 (7Fh), it saturates to 127 
(7Fh). The eight signed 8-bit results are stored in the MMX register specified as the 
destination operand. 

MMX'M Instruction Set 87 



AMD~ Preliminory Informllfion 

AMO-K6™ MMxrM Enhanced Processor Multimedia Technology 20726C/O-June 1997 

Functional Illustration of the PSUBSB Instruction 

8 0 

mmreg1 18Zh I DZh 153h 14Zh l77h 170h I 07h 19Ah I 

8 0 

mmreg2/mem64 I OFh 188h I ECh I Clh 114h 144h I F7h I A8h I 

8 0 

mmreg1 r80h 14Ah 167h r7Fh 163h IZCh IIOh I F2h I 
• Indicates a saturated value 

The following list explains the functional illustration of the PSUBSB instruction: 

• The signed 8-bit positive value OFh is subtracted from the signed 8-bit negative 
value 82h, and the result saturates to 80h because it is less than 80h, the smallest 
possible signed 8-bit value. 

• The signed 8-bit negative value Clh is subtracted from the signed 8-bit positive 
value 42h, and the result saturates to 7Fh because it is greater than 7Fh, the 
largest possible signed 8-bit value. 

• All the remaining operations are simple signed subtraction with no saturation. 

Related Instructions 

88 

See the PSUBB instruction. 

See the PSUBD instruction. 

See the PSUBW instruction. 

See the PSUBSW instruction. 

See the PSUBUSB instruction. 

See the PSUBUSW instruction. 

MM)(tM Instruction Set 



Preliminory Information AMDl1 
20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 

PSUBSW 

mnemonic opcode description 

PSUBSW mmregl, mmreg2/mem64 OF E9h Subtract signed packed 16-bit values and saturate 

Privilege: 
Registers Affected: 
Rags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register «(RO) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range OOOOOh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register «(RO) is set to 1. 
(In Protected Mode, (PL = 3.) 

The PSUBSW instruction subtracts four signed 16-bit values in the source operand (an 
J\.1J.\1X register or a 64-bit memory location) from the four corresponding signed 16-bit 
values in the destination operand (an MMX register). If a result is less than -32768 
(8000h), it saturates to -32768 (8000h). If a result is greater than 32767 (7FFFh), it 
saturates to 32767 (7FFFh). The four signed 16-bit results are stored in the MMX 
register specified as the destination operand. 

MMX'M Instruction Set 89 



AMD~ Preliminory Inlormotion 

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726CjO-June 1997 

Functional Illustration of the PSUBSW Instruction 

63 0 

mmregl I D250h 5321h 8007h FFFFh I 
63 0 

mmreg2/mem64 8807h D320h OFF9h FFFFh I 
63 0 

mmregl 4A49h [ 7FFFh r 8000h OOOOh I 
• Indicates a saturated value 

The following list explains the functional illustration of the PSUBSW instruction: 

• The signed 16-bit negative value D320h is subtracted from the signed 16-bit 
positive value 5321h, and the result saturates to 7FFFh because it is greater than 
7FFFh, the largest possible signed 16-bit value. 

• The signed 16·bit positive value OFF9h is subtracted from the signed 16·bit 
negative value 8007h, and the result saturates to 8000h because it is less than 
8000h, the smallest possible signed 16-bit value. 

• The remaining operations are simple signed subtraction with no saturation. 

Related Instructions 

90 

See the PSUBB instruction. 

See the PSUBD instruction. 

See the PSUBW instruction. 

See the PSUBSB instruction. 

See the PSUBUSB instruction. 

See the PSUBUSW instruction. 

MM)('M Instruction Set 



Preliminary Information AMD ~ 

20726CjO-June 1997 AMD-K6™ MM)(TM Enhanced Processor Multimedia Technology 

PSUBUSB 

mnemonic opcode description 

PSUBUSB mmregl, mmreg2/mem64 OF D8h Subtract unsigned packed 8-bit values and saturate 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register «(RO) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range OOOOOh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register «(RO) is set to 1. 
(In Protected Mode, (PL = 3.) 

The PSUBUSB instruction subtracts eight unsigned 8-bit values in the source operand 
(an MMX register or a 64-bit memory location) from the eight corresponding unsigned 
8-bit values in the destination operand (an MMX register). If any 8-bit source value is 
greater than its corresponding 8-bit destination value, the result saturates to OOh. The 
eight unsigned 8-bit results are stored in the MMX register specified as the 
destination operand. 

MM)(TM Instruction Set 91 



AMD~ Preliminary Information 

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997 

Functional Illustration of the PSUBUSB Instruction 

8 0 

mmreg1 18Zh I DZh I 53h 142h l77h 170h I 07h 19Ah I 

8 0 

mmreg2/mem64 I OFh 188h I ECh I Clh 114h 144h I F7h 198h I 

8 0 

mmreg1 l73h l4Ah [OOh [OOh l63h IZCh [OOh I OZh I 
• Indicates a saturated value 

The following list explains the functional illustration of the PSUBUSB instruction: 

• The unsigned 8-bit value ECh is subtracted from the unsigned 8-bit value 53h, and 
the result saturates to OOh because the source operand is greater than the 
destination operand. 

• The unsigned 8-bit value Clh is subtracted from the unsigned 8-bit value 42h, and 
the result saturates to OOh because the source operand is greater than the 
destination operand. 

• The unsigned 8-bit value F7h is subtracted from the unsigned 8-bit value 07h, and 
the result saturates to OOh because the source operand is greater than the 
destination operand. 

• All the remaining operations are simple unsigned subtraction with no saturation. 

Related Instructions 

92 

See the PSUBB instruction. 

See the PSUBD instruction. 

See the PSUBW instruction. 

See the PSUBSB instruction. 

See the PSUBSW instruction. 

See the PSUBUSW instruction. 

MMX'M Instruction Set 



Preliminllry Informlltion AMD~ 
-------------------------------
20726CjO-June 1997 AMO-K6™ MMX'M Enhanced Processor Multimedia Technology 

PSUBUSW 

mnemonic opcode description 

PSUBUSW mmregl, mmreg2/mem64 OF D9h Subtract unsigned packed 16-bit values and saturate 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register (CRa) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register (CRa) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range aaaOoh 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory referenc~ resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register (CRO) is set to 1. 
(In Protected Mode, CPL = 3.) 

The PSUBUSW instruction subtracts four unsigned 16-bit values in the source 
operand (an MMX register or a 64-bit memory location) from the four corresponding 
unsigned 16-bit values in the destination operand (an MMX register). If any 16-bit 
source value is greater than its corresponding 16-bit destination value, the result 
saturates to OOOOh. The four unsigned 16-bit results are stored in the MMX register 
specified as the destination operand. 

MMX'M Instruction Set 9:5 



AMD~ Preliminory Inferlnden 

AMD-K6™ MM)(TM Enhanced Processor Multimedia Technology 20726QO-June 1997 

The following list explains the functional illustration of the PSUBUSW instruction: 

• The unsigned 16-bit value EC22h is subtracted from the unsigned 16-bit value 
5321h, and the result saturates to OOOOh because the source operand is greater 
than the destination operand_ 

• The remaining operations are simple unsigned subtraction with no saturation. 

Related Instrudions 

94 

See the PSUBB instruction. 

See the PSUBD instruction. 

See the PSUBW instruction. 

See the PSUBSB instruction. 

See the PSUBSW instruction. 

See the PSUBUSB instruction. 

MMJrM Instruction Set 



Preliminary Information AMDl' 
20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 

PSUBW 

mnemonic opcode description 

PSUBW mmregl, mmreg2/mem64 OF F9h Subtract unsigned packed 16-bit values with wraparound 

Privilege: 
Registers Affected: 
Flags Affected: 
Exceptions Generated: 

Virtual 
Exception Real 8086 

Invalid opcode (6) X X 

Device not available (7) X X 

Stack exception (12) 

General protection (13) 

Segment overrun (13) X X 

-
Page fault (14) X 

Floating-point exception X X 
pending (16) 

Alignment check (17) X 

none 
MMX 
none 

Protected 

X 

X 

X 

X 

X 

X 

X 

Description 

The emulate MMX instruction bit (EM) of the control register ((RO) is set to 1. 

Save the floating-point or MMX state if the task switch bit (TS) of the control 
register ((Ra) is set to 1. 

During instruction execution, the stack segment limit was exceeded. 

During instruction execution, the effective address of one of the segment 
registers used for the operand points to an illegal memory location. 

One of the instruction data operands falls outside the address range oOooah 
to OFFFFh. 

A page fault resulted from the execution of the instruction. 

An exception is pending due to the floating-point execution unit. 

An unaligned memory reference resulted from the instruction execution, 
and the alignment mask bit (AM) of the control register ((RO) is set to 1. 
(In Protected Mode, (Pl = 3.) 

The PSUBW instruction subtracts four unsigned 16-bit values in the source operand 
(an MMX register or a 64-bit memory location) from the four corresponding unsigned 
16-bit values in the destination operand (an MMX register). If the source operand is 
larger than the destination operand, the result wraps around. 

MM)('M Instruction Set 95 



AMD~ Preliminary Information 

AMO-K6'" MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997 

Functional Illustration of the PSUBW Instruction 

63 0 

mmreg1 I 025011 5321h 7007h FFFFh I 
63 0 

mmreg2/mem64 8807h EC22h OFF9h FFFFh I 
63 0 

mmreg1 4A49h 66FFh 600Eh OOOOh I 
The following list explains the functional illustration of the PSUBW instruction: 

• The unsigned 16-bit value EC22h is subtracted from the unsigned 16-bit value 
5321h and the result wraps around to 66FFh. 

• The remaining operations are simple unsigned subtraction with no saturation. 

Related Instructions 

96 

See the PSUBB instruction. 

See the PSUBD instruction. 

See the PSUBSB instruction. 

See the PSUBSW instruction. 

See the PSUBUSB instruction. 

See the PSUBUSW instruction. 

MMX'M Instruction Set 



Pre/iminory Informofion AMD~ 
~~~~~~-. 

20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

PUNPCKHBW

mnemonic opcode description

PUNPCKHBW mmregl, mmreg2/mem64 OF 68h Unpack the high 32 bits of packed 8-bit values

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Exception Real
Invalid opcode (6) x
Device not available (7) X

Stack exception (12)

General protection (13)

Segment overrun (13) X

Page fault (14)

Floating-point exception X
pending (16)

Alignment check (17)

Virtual
8086

X

X

X

X

X

X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register «(RO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register «(RO) is set to 1.
(In Protected Mode, (PL = 3.)

The PUNPCKHBW instruction unpacks and interleaves four 8-bit values from the
high 32 bits of the source operand (an MMX register or a 64-bit memory location) and
four 8-bit values from the high 32 bits of the destination operand (an MMX register).
The 8-bit values from the source operand become the high 8 bits of the 16-bit results,
and the 8-bit values from the destination operand become the low 8 bits of the 16-bit
results. The eight interleaved 8-bit values are stored in the MMX register specified as
the destination operand.

MMX'M Instruction Set 97

AMD~ Pre/iminory /nformotion

AMD-K6™ MM)('M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PUNPCKHBW Instruction

In the following figure, the destination register is shown at the center to illustrate the
flow of data from the two source operands.

source mmreg2/mem64

destination mmregl

source mmregl

o

In the functional illustration of the PUNPCKHBW instruction, the 8-bit values from
mmregl are stored in the low-order 8 bits of the 16-bit result. The mmregZ/mem64
source operand is set to all zero bits so it can provide zero fill in the high-order 8 bits
of the 16-bit result. This is a method that can be used to expand unsigned 8-bit values
into unsigned 16-bit operands for subsequent processing that requires higher
precision.

Related Instructions

98

See the P ACKSSWB instruction.

See the P ACKUSWB instruction.

See the PSRA W instruction.

See the PUNPCKHDQ instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLBW instruction.

See the PUNPCKLDQ instruction.

See the PUNPCKL WD instruction.

MM)('M Instruction Set

PreliminDry InformDtion AMD~

20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

PUNPCKHDQ

mnemonic opcode description

PUNPCKHDQ mmregl, mmreg2/mem64 OF 6Ah Unpack the high 32 bits of packed 32-bit values

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

I
Description

The emulate MMX instruction bit (EM) of the control register (CRO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CRa) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CRa) is set to 1.
(In Protected Mode, CPL = 3.)

The PUNPCKHDQ instruction unpacks and interleaves the high 32 bits of the source
operand (an MMX register or a 64-bit memory location) and the high 32 bits of the
destination operand (an MMX register). The 32-bit value from the source operand
becomes the high 32 bits of the 64-bit result, and the 32-bit value from the destination
operand becomes the low 32 bits of the 64-bit result. The interleaved 32-bit values are
stored in the MMX register specified as the destination operand.

MMX'M Instruction Set 99

AMD~ PreliminDry InfonnDtion

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726C/O-June 1997

Functional Illustration of the PUNPCKHDQ Instruction

In the following figure, the destination register is shown at the center to illustrate the
flow of data from the two source operands.

63 0

source mmreg2/mem64 OOOO_OOOOh OOOO_OOOOh

~
destination mmreg1 OOOO_OOOOh 8880_44A8h

/
source mmreg1 8880_44A8h 7F06 FE80h

63 0

In the functional illustration of the PUNPCKHDQ instruction, the 32-bit value from
mmregl is stored in the low-order 32 bits of the 64-bit result. The mmreg2/mem64
source operand is set to all zero bits so it can provide zero fill in the high-order 32 bits
of the 64-bit result. This is a method that can be used to expand unsigned 32-bit values
into unsigned 64-bit operands for subsequent processing that requires higher
precision.

Related Instructions

100

See the PUNPCKHBW instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLBW instruction.

See the PUNPCKLDQ instruction.

See the PUNPCKL WD instruction.

MMX'M Instruction Set

Preliminllry Informlltion AMDl1
20726CjO-June 1997 AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

PUNPCKHWD

mnemonic opcode description

PUNPCKHWD mmregl, mmreg2/mem64 OF 69h Unpack the high 32 bits of packed 16-bit values

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

Desuiption

The emulate MMX instruction bit (EM) of the control register (CRO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CRO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOoooh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CRO) is set to 1.
(In Protected Mode, CPl = 3.)

The PUNPCKHWD instruction unpacks and interleaves two 16-bit values from the
high 32 bits of the source operand (an MMX register or a 64-bit memory location) and
two 16-bit values from the high 32 bits of the destination operand (an MMX register).
The 16-bit values from the source operand become the high 16 bits of the 32-bit
results, and the 16-bit values from the destination operand become the low 16 bits of
the 32-bit results. The four interleaved 16-bit values are stored in the MMX register
specified as the destination operand.

MM)('M Instruction Set 101

AMD~ Preiiminory informotion

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PUNPCKHWD Instruction

In the following figure, the destination register is shown at the center to illustrate the
flow of data from the two source operands.

63

source mmreg2/mem64 1569h

~
destination mmreg1 1569h

/: W
source mmreg1

63 0

In the functional illustration of the PUNPCKHWD instruction, the 16-bit values from
mmreg1 are stored in the low-order 16 bits of the 32-bit result. The 16-bit values from
the mmreg2/mem64 source operand are stored in the high-order 16 bits of the 32-bit
result. This is an example of the use of the PUNPCKHWD instruction to assemble
32-bit operands from the high and low 16-bit results produced by the PMULHW and
PMULLW instructions. In this example, the high and low 16-bit results are
interleaved to produce the signed 32-bit results 1569_ 4030h and F98C_7662h.

Related Instructions

102

See the P ACKSSDW instruction.

See the PSRAD instruction.

See the PMULHW instruction.

See the PMULL W instruction.

See the PUNPCKHBW instruction.

See the PUNPCKHDQ instruction.

See the PUNPCKLBW instruction.

See the PUNPCKLDQ instruction.

See the PUNPCKL WD instruction.

MM)('M Instruction Set

Preiiminory infortnotion AMDl1
---- ---

20726CjO-June 1997 AMD-K6™ MM)('M Enhanced Processor Multimedia Technology

PUNPCKLBW

mnemonic opcode description
--------.------~. ---------~

PUNPCKLBW mmregl, mmreg2/mem64 OF 60h Unpack the low 32-bits of packed 8-bit values

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X

Stack exception (12)

General protection (13)

Segment overrun (13) X X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register «(RO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register «(RO) is setto 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register «(RO) is set to 1.
(In Protected Mode, (Pl = 3.)

The PUNPCKLBW instruction unpacks and interleaves four 8-bit values from the low
32 bits of the source operand (an MMX register or a 64-bit memory location) and four
8-bit values from the low 32 bits of the destination operand (an MMX register). The
8-bit values from the source operand become the high 8 bits of the 16-bit results, and
the 8-bit values from the destination operand become the low 8 bits of the 16-bit
results. The eight interleaved 8-bit values are stored in the MMX register specified as
the destination operand.

MM)('M Instruction Set 10J

AMDl' Preiiminory Infonnotion

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PUNPCKLBW Instruction

In the following figure, the destination register is shown at the center to illustrate the
flow of data from the two source operands.

source mmreg2/mem64

destination mmreg1

source mmreg1

63 o

In the functional illustration of the PUNPCKLBW instruction, the 8-bit values from
mmregl are stored in the low-order 8 bits of the 16-bit result. The mmreg2/mem64
source operand is set to all zero bits so it can provide zero fill in the high-order 8 bits
of the 16-bit result. This is a method that can be used to expand unsigned 8-bit values
into unsigned 16-bit operands for subsequent processing that requires higher
precision.

Related Instructions

104

See the P ACKSSWB instruction.

See the P ACKUSWB instruction.

See the PSRA W instruction.

See the PUNPCKHBW instruction

See the PUNPCKHDQ instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLDQ instruction.

See the PUNPCKL WD instruction.

MMX'M Instruction Set

PreliminDry InfomJDtion AMD~

20726CjO-June 1997 AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

PUNPCKLDQ

mnemonic opcode description

PUNPCKLDQ mmregl, mmreg2/mem64 OF 62h Unpack the low 32 bits of packed 32-bit values

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Exception Real

Invalid opcode (6) X

Device not available (7) X

Stack exception (12)

General protection (13)

Segment overrun (13) X

Page fault (14)

Floating-point exception X
pending (16)

Alignment check (17)

Virtual
8086

X

X

X

X

X

X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register (CRO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CRO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (eRO) is set to 1.
(In Protected Mode, CPL = 3.)

The PUNPCKLDQ instruction unpacks and interleaves the low 32 bits of the source
operand (an MMX register or a 64-bit memory location) and the low 32 bits of the
destination operand (an MMX register). The 32-bit value from the source operand
becomes the high 32 bits of the 64-bit result, and the 32-bit value from the destination
operand becomes the low 32 bits of the 64-bit result. The interleaved 32-bit values are
stored in the MMX register specified as the destination operand.

MM)('M Instruction Set 105

AMD~ Preliminary Information

AMO-K6™ MM)('M Enhanced Processor Multimedia Technology 20726C/O-June 1997

Functional Illustration of the PUNPCKLDQ Instruction

In the following figure, the destination register is shown at the center to illustrate the
flow of data from the two source operands.

63

source mmreg2/mem64

destination mmregl 7 F06 FEBOh

t
source mmreg1

63 o

In the functional illustration of the PUNPCKLDQ instruction, the 32-bit value from
mmregl is stored in the low-order 32 bits of the 64-bit result. The mmreg2/mem64
source operand is set to all zero bits so it can provide zero fill in the high-order 32 bits
of the 64-bit result. This is a method that can be used to expand unsigned 32-bit values
into unsigned 64-bit operands for subsequent processing that requires higher
precision.

Related Instructions

106

See the PUNPCKHBW instruction.

See the PUNPCKHDQ instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLBW instruction.

See the PUNPCKL WD instruction.

MM)('M Instruction Set

Preliminary Information AMD~ ----------------------------
20726CjO-June 1997 AMO-K6™ MMX'M Enhanced Processor Multimedia Technology

PUNPCKLWD

mnemonic opcode description

PUNPCKLWD mmreg1, mmreg2/mem64 OF 61 h Unpack the low 32 bits of packed 16-bit values

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

Exception Real
Invalid opcode (6) X

Device not available (7) X

Stack exception (12)

General protection (13)

Segment overrun (13) X

Page fault (14)

Floating-point exception X
pending (16)

I--cc .
Alignment check (17)

Virtual
8086

X

X

X

X

X

X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register (CRO) is set to 1.

Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CRO) is set to 1.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One ofthe instruction data operands falls outside the address range OOOOOh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CRO) is set to 1.
(In Protected Mode, CPl = 3.)

The PUNPCKLWD instruction unpacks and interleaves two 16-bit values from the low
32 bits of the source operand (an MMX register or a 64-bit memory location) and two
16-bit values from the low 32 bits of the destination operand (an MMX register). The
16-bit values from the source operand become the high 16 bits of the 32-bit results,
and the 16-bit values from the destination operand become the low 16 bits of the
32-bit results. The four interleaved 16-bit values are stored in the MMX register
specified as the destination operand.

MM)('M Instruction Set 107

AM D ~ Preliminllry Informllfion

AMD-K6™ MMJrM Enhanced Processor Multimedia Technology 20726CjO-June 1997

Functional Illustration of the PUNPCKLWD Instruction

In the following figure, the destination register is shown at the center to illustrate the
flow of data from the two source operands.

source mmreg2/mem64

destination mmreg1

source mmreg1

63 a

In the functional illustration of the PUNPCKLWD instruction, the 16-bit values from
mmreg1 are stored in the low-order 16 bits of the 32-bit result. The 16-bit values from
the mmreg2/mem64 source operand are stored in the high-order 16 bits of the 32-bit
result. This is an example of the use of the PUNPCKLWD instruction to assemble
32-bit operands from the high and low 16-bit results produced by the PMULHW and
PMULLW instructions. In this example, the high and low 16-bit results are
interleaved to produce the signed 32-bit results 06FD_5FCFh and OOOO_OOOlh.

Related Instructions

108

See the P ACKSSWD instruction.

See the PSRAD instruction.

See the PMULHW instruction.

See the PMULL W instruction.

See the PUNPCKHBW instruction.

See the PUNPCKHDQ instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLBW instruction.

See the PUNPCKLDQ instruction.

MMX'M Instruction Set

Preiiminllry Informllfion AMD~

20726C/O-June 1997 AMO-K6™ MMJrM Enhanced Processor Multimedia Technology

PXOR

mnemonic opcode description

PXOR mmregl, mmreg2/mem64 OF EFh XOR 64-bitvalues

Privilege:
Registers Affected:
Flags Affected:
Exceptions Generated:

: Virtual
Exception Real 8086

Invalid opcode (6) X X

Device not available (7) X X
I

Stack exception (12) i

General protection (13)

Segment overrun (13) X

I
X

Page fault (14) X

Floating-point exception X X
pending (16)

Alignment check (17) X

none
MMX
none

Protected

X

X

X

X

X

X

X

Description

The emulate MMX instruction bit (EM) of the control register (CRO) is set to 1.

Save the floating-point or MMX state if t~e task switch bit (TS) of the control
register (CRO) is set to l.

During instruction execution, the stack segment limit was exceeded.

During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

One of the instruction data operands falls outside the address range OOOOoh
to OFFFFh.

A page fault resulted from the execution of the instruction.

An exception is pending due to the floating-point execution unit.

An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CRO) is set to 1.
(In Protected Mode, CPL = 3.)

The PXOR instruction logically XORs the 64 bits of the source operand (an MMX
register or a 64-bit memory location) with the 64 bits of the destination operand (an
MMX register) and stores the result in the destination register.

A logical XOR produces a 1 bit if only one of the two input bits is a 1. If both input bits
are 0 or both input bits are 1, a logical XOR produces a 0 bit.

MMX'M Instruction Set 109

AMD~ Preliminary Information

AMD-K6™ MMX'M Enhanced Processor Multimedia Technology

Fundionalillustration of the PXOR Instruction

63 48 47

Logical OR

63 48 47

63 48 47

Logical OR

mmregl

32 31

mmreg2!mem64

32 31

Result

mmregl

32 31

Logical OR

20726CjO-June 1997

16 15

Logical OR

16 15

16 15 o

In the functional illustration of the PXOR instruction, the 64-bit source value is
logically XOR'd to the 64-bit destination value, and the result is stored in the
destination register.

Related Instructions

110

See the P AND instruction.

See the P ANDN instruction.

See the POR instruction.

MMX'M Instruction Set

Sales Offices

North American
ALABAMA (205) 830-9192

......... (602) 242-4400 ARIZONA
CALIFORNIA,

Calabasas (818) 878-9988
Irvine (714) 450-7500
Sacramento (Roseville). (916) 786-6700
San Diego (619) 560-7030
San Jose (408) 922-0300

CANADA, Ontario,
Kanata ..
Woodbridge

.. (613) 592-0060
. (905) 856-3377
.(303) 741-2900 COLORADO

CONNECTICUT (203) 264-7800
FLORIDA,

Clearwater (813) 530-9971
Ft. Lauderdale (954) 938-9550
Orlando (Longwood) (407) 862-9292

GEORGIA (770) 449-7920
IDAHO (208) 377-0393
ILLINOIS, Chicago (Itasca) (708) 773-4422
KENTUCKy....... (606) 224-1353
MARYLAND .(410) 381-3790
MASSACHUSETTS. (617) 273-3970
MINNESOTA.. . .. (612) 938-0001
NEW JERSEY,

Cherry Hill.
Parsippany

NEW YORK,
Brewster ...
Rochester

NORTH CAROLINA,
Charlotte
Raleigh

OHIO,

. ... (609) 662-2900
... (201) 299-0002

. (914) 279-8323
. .. (716) 425·8050

. (704) 875-3091
..(919) 878-8111

Columbus (Westerville) (614) 891-6455
Dayton (513) 439-0268

OREGON (503) 245·0080
PENNSyLVANIA ... (610) 398-8006
TEXAS,

Austin
Dallas
Houston

International
AUSTRALIA, N Sydney ..

BELGIUM, Antwerpen '"

CHINA,

TEL
FAX
TEL.
FAX ..

. (512) 346-7830
.......... (214) 934-9099

............... (713) 376-8084

. (61) 2 9959-1937
..... (61)29959-1037
....... (03) 248-4300

.. (03) 248-4642

Beijing TEL (8610) 501-1566
FAX (8610) 465-1291

Shanghai TEL (8621) 6267-8857
TEL (8621) 6267-9883
FAX.. (8621) 6267-8110

FINLAND, Helsinki TEL (358) 9 881 3117
FAX (358) 9 8041110

FRANCE, Paris TEL (1) 49-75-1010
FAX (1) 49-75-1013

GERMANY,
Bad Homburg TEL (06172) 92670

.... (06172) 23195
....... (089) 450530

FAX
Munchen TEL

FAX (089) 406490
HONG KONG, Kowloon. TEL (852) 2956-0388

FAX (852) 2956-0588
ITALY, Milano. TEL (02) 381961

FAX (02) 3810-3458
JAPAN,

Osaka TEL (06) 243-3250
FAX (06) 243-3253

Tokyo TEL (03) 3346-7600
FAX. (03) 3346-5197

KOREA, Seoul TEL (82) 2784-0030
FAX (82) 2784-8014

SINGAPORE, Singapore TEL (65) 337-7033
FAX (65) 338-1611

SCOTLAND, Stirling TEL (44) 7186-450024
FAX (44) 1786-446188

SWITZERLAND, Geneva TEL (41) 22-788·0251
FAX (41) 22-788-0617

SWEDEN,
Stockholm area TEL (08) 629-2850
(Bromma) FAX (08) 98-0906

TAIWAN, Taipei TEL (886) 2715-3536
FAX (886) 2712-2182

UNITED KINGDOM,
London area TEL (01483) 74-0440
(Waking) FAX.. .. (01483)75-6196
Manchester area TEL (01925) 83-0380
(Warrington) FAX (01925) 83-0204

North American Representatives
ARIZONA,

Scottsdale - THORSON DESERT STATES (602) 998-2444
CALIFORNIA,

Chula Vista - SONIKA ELECTRONICA (619) 498-8340
CANADA,

Burnaby, B.C. - DAVETEK MARKETING (604) 430-3680
Dorval, Quebec- POLAR COMPONENTS (514) 683-3141
Kanata, Ontario - POLAR COMPONENTS (613) 592-8807
Woodbridge, Ontario- POLAR COMPONENTS (416) 410-3377

ILLINOIS,
Skokie -INDUSTRIAL REPS, INC (847) 967-8430

INDIANA,
Kokomo - SCHILLINGER ASSOC (317) 457-7241

IOWA,
Cedar Rapids - LORENZ SALES (319) 377-4666

KANSAS,
Merriam - LORENZ SALES (913) 469-1312
Wichita - LORENZ SALES (316) 721-0500

MEXICO,
Guadalajara - SONIKA ELECTRONICA (523) 647-4250
Mexico City - SONIKA ELECTRONICA (525) 754-6480
Monterrey - SONIKA ELECTRONICA (528) 358-9280

MICHIGAN,
Brighton - COM-TEK SALES, INC (810) 227-0007
Holland - COM-TEK SALES, INC (616) 335-8418

MINNESOTA,
Edina - MEL FOSTER TECH. SALES, iNC (612) 941-9790

MISSOURI,
St Louis - LORENZ SALES (314) 997-4558

NEBRASKA,
Lincoln - LORENZ SALES (402) 475-4660

NEW YORK,
Plainview - COMPONENT CONSULTANTS (516) 273-5050
East Syracuse - NYCOM (315) 437-8343
Fairport - NYCOM (716) 425-5120

OHIO,
Centerville - DOLFUSS ROOT & CO
Powell - DOLFUSS ROOT & CO

.... (513) 433-6776
(614) 781-0725

... (216) 816-1660 Middleburg Hts - DOLFUSS ROOT & CO
PUERTO RICO,

Caguas - COMP REP ASSOC, INC (787) 746-6550
UTAH,

Murray - FRONT RANGE MARKETING (801) 288-2500
WASHINGTON,

Kirkland - ELECTRA TECHN ICAL SALES (205) 821-7442
WISCONSIN,

Pewaukee -Industrial Representatives, Inc (414) 574-9393

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or periormance characteristics. The
performance characteristics listed lnthis document are guaranteed by specific tests, guard banding, design and other practices common lathe industry. Forspecific
testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

~
RECYCLED &
RECYCLABLE

©1997 Advanced Micro Devices, Inc

01/97

AMD~
One AMD Place

P.O. Box 3453
Sunnyvale,

California 94088-3453
408-732-2400

Toll Free 800-538-8450
TWX 910-339-9280

TELEX 34-6306

TECHNICAL SUPPORT &

LITERATURE ORDERING
USA 800-222-9323

USA PC CPU Technical Support 408-749-3060

JAPAN 03-3346-7550
Fax 03-3346-9628

FAR EAST Fax 852-2956-0599

EUROPE & UK 44-(0)-1276-803299
Fax 44-(0)-1276-803298

BBS 44-(0)-1276-803211
FRANCE 0590-8621

GERMANY 089-450-53199
ITALY 1678-77224

ARGENTINA 001-800-200-1111,

after tone 888-263-8500
BRAZIL 000-811-718-5573

CHILE 800-570-048
MEXICO 95-800-263-4758

PC CPU Technical Support E-mail: hwsupt@brahms.amd.com
Europe Technical Support E-mail: euro.tech@amd.com

Europe Literature Request E-mail: euro.lit@amd.com
http://www.amd.com

RECYClED &
RECYCLABLE

Printed in USA
Con-3.7M-6/97-0

20726C

	01474065.tif
	01474066.tif
	01474067.tif
	01474068.tif
	01474069.tif
	01474070.tif
	01474071.tif
	01474072.tif
	01474073.tif
	01474074.tif
	01474075.tif
	01474076.tif
	01474077.tif
	01474078.tif
	01474079.tif
	01474080.tif
	01474081.tif
	01474082.tif
	01474083.tif
	01474084.tif
	01474085.tif
	01474086.tif
	01474087.tif
	01474088.tif
	01474089.tif
	01474090.tif
	01474091.tif
	01474092.tif
	01474093.tif
	01474094.tif
	01474095.tif
	01474096.tif
	01474097.tif
	01474098.tif
	01474099.tif
	01474100.tif
	01474101.tif
	01474102.tif
	01474103.tif
	01474104.tif
	01474105.tif
	01474106.tif
	01474107.tif
	01474108.tif
	01474109.tif
	01474110.tif
	01474111.tif
	01474112.tif
	01474113.tif
	01474114.tif
	01474115.tif
	01474116.tif
	01474117.tif
	01474118.tif
	01474119.tif
	01474120.tif
	01474121.tif
	01474122.tif
	01474123.tif
	01474124.tif
	01474125.tif
	01474126.tif
	01474127.tif
	01474128.tif
	01474129.tif
	01474130.tif
	01474131.tif
	01474132.tif
	01474133.tif
	01474134.tif
	01474135.tif
	01474136.tif
	01474137.tif
	01474138.tif
	01474139.tif
	01474140.tif
	01474141.tif
	01474142.tif
	01474143.tif
	01474144.tif
	01474145.tif
	01474146.tif
	01474147.tif
	01474148.tif
	01474149.tif
	01474150.tif
	01474151.tif
	01474152.tif
	01474153.tif
	01474154.tif
	01474155.tif
	01474156.tif
	01474157.tif
	01474158.tif
	01474159.tif
	01474160.tif
	01474161.tif
	01474162.tif
	01474163.tif
	01474164.tif
	01474165.tif
	01474166.tif
	01474167.tif
	01474168.tif
	01474169.tif
	01474170.tif
	01474171.tif
	01474172.tif
	01474173.tif
	01474174.tif
	01474175.tif
	01474176.tif
	01474177.tif
	01474178.tif
	01474179.tif
	01474180.tif
	01474181.tif
	01474182.tif
	01474183.tif
	01474184.tif
	01474185.tif
	01474186.tif

